

Template Version 1.2

Version 0.50 Page 1 of 41

DESIGN DOCUMENT

DSP/BIOS™ LINK

MPLIST DESIGN

LNK 131 DES

Version 0.50

Page 2 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

This page has been intentionally left blank.

Page 3 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

This page has been intentionally left blank.

Page 5 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

TABLE OF CONTENTS

1 Introduction ... 7
1.1 Purpose & Scope ... 7
1.2 Terms & Abbreviations ... 7
1.3 References ... 7
1.4 Overview.. 7

2 Requirements ... 8

3 Assumptions... 9

4 Constraints ... 9

5 High Level Design... 10
5.1 Architecture overview ...11
5.2 Control flow ...14

6 Sequence Diagrams.. 15
6.1 _MPLIST_init () ..16
6.2 MPLIST_create () ...17
6.3 MPLIST_delete ()..18
6.4 MPLIST_getHead ()...19

7 MPLIST ... 20
7.1 GPP and DSP side low level design..20

Page 6 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

TABLE OF FIGURES

Figure 1. Basic architecture of system supporting linked-list transfer

mode ..11
Figure 2. MPLIST sub-component interaction ...14
Figure 3. On the GPP: _MPLIST_init () control flow...16
Figure 4. On the GPP: MPLIST_create () control flow ..17
Figure 5. On the GPP: MPLIST_delete () control flow ..18
Figure 6. On the GPP: MPLIST_getHead () control flow ...19

Page 7 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

1 Introduction

1.1 Purpose & Scope
This document describes the design and interface definition of linked list based

transport mechanism between GPP and DSP.

The document is targeted at the development team of DSP/BIOS™ LINK.

1.2 Terms & Abbreviations
DSPLINK DSP/BIOS™ LINK

MPLIST Multi-processor list

SMA Shared Memory Allocator

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

1.3 References
1. LNK 084 PRD DSP/BIOS™ LINK Product Requirement Document

2. LNK 082 DES POOL Design Document

3. LNK 132 DES PCI Driver Redesign

1.4 Overview
DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit

that simplifies the development of embedded applications in which a general-purpose

microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK

provides control and communication paths between GPP OS threads and DSP/BIOS™

tasks, along with analysis instrumentation and tools.

This module provides the design for implementing a linked-list in the pool.

This document describes the various design alternatives to achieve the linked-list

functionality between GPP and DSP using DSP/BIOS™ LINK. It also gives an

overview of the MPLIST component on the GPP and DSP-sides of DSPLINK and its

interaction with the other components within DSPLINK. The document also gives a

detailed design with sequence diagrams of MPLIST component.

Page 8 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

2 Requirements
Please refer to section 16.2 of LNK 084 PRD - DSP/BIOS™ LINK Product Requirement

Document.

This module provides a linked list based transport mechanism between GPP and DSP.

On the devices where a shared memory region exists between GPP and DSP, this

module shall implement the linked-list in the shared memory region. In cases where

a shared memory region does not exist, the module shall internally maintain

coherence between linked lists on the remote processors.

R105 The APIs shall enable users to create a linked list that can be used as a

transport between GPP and DSP.

R106 This module shall support variable size buffers to be transferred between GPP

and DSP. These buffers shall be required to contain a header structure of 8

bytes in addition to buffer contents.

R107 This module shall support placing an element at the end of list and removing

the element from the front of the list.

R108 This module shall also enable applications to insert a buffer at any location in

the linked-list. The location shall be identified through an existing node in the

linked-list.

R109 This module shall also enable applications to remove a buffer from any

location in the linked-list. This location shall be identified through the node to

be removed.

In addition, the linked-list based transport mechanism must meet the following

generic requirement:

1. The API exported by the linked-list component shall be common across different

GPP operating systems.

2. Both the DSP as well as the GPP side shall expose same API.

3. During static configuration the priority shall be assigned to the linked-list based

transport mechanism. It will have the lowest priority below other DSP/BIOS™

LINK components.

4. Multiple threads can perform linked-list operations on the linked-lists created in

the system. However, ownership shall come into play while creation/deletion of

the list. The processor which creates the linked-list shall be the one which

deletes it.

Page 9 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

3 Assumptions
The MPLIST design makes the following assumptions:

1. The hardware provides a buffer pool, to which both the GPP and the DSP have

access.

4 Constraints
The user constraints are:

� The size of the buffer transported by the linked-list should be at least greater

than the size of the fixed linked-list element header.

� Each linked-list will have an associated critical section as the data resides in pool

and multiple processors can access it.

� The linked-list elements must have a fixed header as their first field. This header

is used by the MPLIST component for including information required for accessing

the element. The contents of the linked-list header are reserved for use internally

within DSPLINK and should not directly be modified by the user.

� The linked-list elements must be allocated and freed through POOL APIs provided

by DSPLINK. Elements allocated through the POOL API can be accessed by

multiple processors. Any other means for memory allocation (for example:

standard OS calls) will fail as the elements cannot be accessed across processors.

� The user has to use unique identifier to identify individual linked-lists across the

system.

� The user can use the linked-list only as a transport mechanism between GPP and

DSP and not among different processors as the linked-list works on underlying

POOL concept.

Page 10 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

5 High Level Design
In a multiprocessor system having shared access to a memory region, a linked list

based transport mechanism between GPP and DSP can be implemented. . In cases

where a shared memory region does not exist, the module shall internally maintain

coherence between linked lists on the remote processors. This mode of

communication is called MPLIST transfer mode.

MPLIST module will expose linked-list based transport mechanism to the user. It

shall provide a mechanism for creating the list, common list operations like

addition/removal of element and deletion of list. The list will be created using POOL.

This will ensure both GPP/DSP have visibility into the list. The client will have to

provide a list element structure contained fixed size header information along with

variable size buffers which can be added to the list.

Memory needed for creation of the list shall be taken from the buffer pool. After

freeing the list the memory shall be returned to the buffer pool. The linked-list

component utilizes buffer pool which can be configured through the static

configuration system.

The basic data structures of linked-list based transport mechanism from a client’s

perspective are a linked-list and linked-list element. Each linked-list shall be

addressed through a unique name.

The MPLIST component on each processor shall provide the ability to create and

delete a list from the buffer pool. It shall also provide the client with means of

traversing, writing into and reading from the list.

Linked list related operations like

1. Creating a linked-list that can be used as a transport mechanism between GPP

and DSP.

2. Placing an element at the tail of list.

3. Getting an element from the head of the list.

4. Removing an element from the list.

5. Traversing the list.

6. Insert an element before any location in the linked-list.

7. Deleting a linked-list.

Page 11 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

5.1 Architecture overview

Figure 1. Basic architecture of system supporting linked-list transfer
mode

Linked-List

The list that will be used in the linked-list based transport mechanism is a circular

doubly linked list.

Linked-List element

GPP

1. create

2. putTail

5. delete

3. first

4. putTail

Shared memory

1

2

3

List state object

1

2

3

4

5

n. MPLIST command

 Pointer to

 List State Object

 List Element

Page 12 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

The list can contain variable sized list elements.

The element must contain the fixed linked-list header as the first element. This

header is not modified by the user, and is used within DSPLINK for including

information required for the linked-list.

APIs provided by the linked-list component are used for allocating and freeing the

linked-list element. Pool has to be specified for allocation of the linked-list element.

Linked-list elements cannot be allocated on the stack or directly through the

standard OS allocation and free functions.

Initialization and finalization

Before using any of the MPLIST features, the user must initialize the POOL

component.

A global object which contains information about all linked lists is present in the

system. This global object is termed as the list state object. This global object is

used among multiple processors to see which lists are present in the system. This

object also enables any processor to retrieve the linked-list handle to which it wants

to perform linked-list operations. The system internally needs to initialize this global

object.

Internal MPLIST functions like _MPLIST_init and _MPLIST_exit shall be used to

initialize and finalize the system respectively.

Creating a linked-list

Both the GPP and the DSP can create the linked-list. The only constraint is that the

processor which creates the linked-list must delete it.

The memory needed to create the linked-list is obtained from buffer pool. After

translation of the address (if required) from the kernel space into the user space, the

pointer to the list structure is returned to the user application that had requested the

buffer allocation.

On creation of the list, the global list state object is updated with an entry to the

newly created list. This entry is used by other processors when they want to perform

linked-list operations on any list.

When a linked-list is created or referenced, a unique handle to the linked-list is

returned to the user. This handle is used for all further accesses to the linked-list.

The unique linked-list handle is a structure which contains the handle to the linked

list, a critical section and the entry with the global list state object

On the DSP-side, the list creation proceeds in a similar manner.

Use of API MPLIST_create can be made to create the list.

Traversing a linked-list

The client uses the linked-list handle from the global list state object to reference the

linked-list to traverse the list.

With the linked-list handle and use of API’s like MPLIST_first and MPLIST_next link

traversal can be achieved.

Deleting a linked-list

Both the GPP and the DSP can delete the linked-list. The constraints to be kept in
mind while deleting the linked-list are:

Page 13 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

1. The processor which creates the list shall delete it.

 This implies that the DSP cannot delete a list created by the GPP and vice versa.

On a GPP-side call to free a list, the buffer pool takes care of the address translation

needed between GPP user and kernel space internally. The list to be deleted must be

empty as the individual list elements will not be deleted. On deletion of the list, the

global list state object is updated by removing the entry to the deleted list.

On the DSP-side, the list is freed in a similar manner.

Use of API MPLIST_delete can be made to delete the list.

Adding an element to the list

The element can be added to the tail of the list. An API can also be provided where

the client can insert an element before a particular list element.

The client uses the linked-list handle from the global list state object to reference the

linked-list to which it wants to add an element.

Use of API’s MPLIST_putTail and MPLIST_insertBefore can be made to insert an

element to the list.

Removing an element from the list

The client uses the linked-list handle from the global list state object to reference the

linked-list from which it wants to remove an element.

An API is provided where the list element to be removed itself is passed. Use of API

MPLIST_removeElement can be made to remove an element from the list.

Existing components like POOL and MPCS will be used to implement linked-list. New

components MPLIST (which exposes the API used by the client) will be additionally created.

This design assumes hardware provides a buffer pool, to which both the GPP and the DSP

have access. In some systems, shared memory is the buffer pool to which both GPP and

DSP have access. When shared memory is not present, other methods like a combination of

signaling and DMA access can be used. Please refer to LNK_132_DES design document.

Page 14 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

5.2 Control flow

Figure 2. MPLIST sub-component interaction

GPP

POOL

MPLIST_create/delete
MPLIST_putTail
MPLIST_removeElement
 …
 …
 …

MPCS

DSP

MPLIST_create/delete
MPLIST_putTail
MPLIST_removeElement
 …
 …
 …

POOL

MPCS

Shared
Memory

List State Object

Linked-list

Page 15 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

6 Sequence Diagrams
The following sequence diagrams show the control flow for a few of the important

functions to be implemented within the DSPLINK MPLIST driver.

The sequence diagrams indicate the linked-list control flow through the MPLIST

component and its interaction with the rest of the DSPLINK components and the

MPLIST components on the DSP-side.

Sequence diagrams have been drawn for the control flow on the GPP as well as the

DSP side.

� The dashed arrow in all sequence diagrams indicates an indirect control
transfer, which does not happen through a direct function call.

Page 16 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

6.1 _MPLIST_init ()

Figure 3. On the GPP: _MPLIST_init () control flow

1. _MPLIST_init()

MPLIST

2. Enter critical
section

3. Allocate memory for list
state object from pre-
decided pool. The name of
the list is pre-defined.

4. Initialize list

5. Leave critical section

6. Address translation of
list state object from User
space to DSP physical
address space using
POOL api

Page 17 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

6.2 MPLIST_create ()

Figure 4. On the GPP: MPLIST_create () control flow

1. MPLIST_create()

MPLIST

2. Within lock, check if the user
defined name already exists in the
global list state object

3. If user has not allocated
memory for the list, allocate
memory for list creation from
user defined pool

4. Initialize list

5. Create a critical
section for each list

6. Initialize a list state
element with the list
name, handle, associated
critical section

7. Within lock, add entry of
created list to list state object

Page 18 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

6.3 MPLIST_delete ()

Figure 5. On the GPP: MPLIST_delete () control flow

1. MPLIST_delete()

MPLIST

3. Delete list

4. Delete critical section

5. Within lock, remove
linked-list entry from list
state object

2. Ensure that the processor calling the
delete function is the same processor
that has created the linked-list

Page 19 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

6.4 MPLIST_getHead ()

Figure 6. On the GPP: MPLIST_getHead () control flow

2. MPLIST_getHead()

1. Index into list state object to
get handle to linked-list

3. Do address translation

4. Within the list-specific lock,
pop the head of the list

Page 20 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7 MPLIST
The MPLIST component has the same design on both the GPP and DSP sides. This

section primarily refers to the GPP side design. However, the DSP-side design shall

contain the same enumerations, structures, and API definitions, with minimal

changes for different naming conventions on the GPP and DSP-sides.

7.1 GPP and DSP side low level design

7.1.1 Constants & Enumerations

None.

7.1.2 Typedefs & Data Structures

7.1.2.1 MPLIST_Attrs

This structure defines the MPLIST Creation Parameters.

Definition
typedef struct MPLIST_Attrs_tag {
 Uint16 poolId ;
} MPLIST_Attrs ;

Fields

poolId Pool to be used to allocate memory for MPLIST data

structures.

Comments

GPP-side: This structure defines the attributes required during opening of the

MPLIST.

The attributes can contain the pool id specified by the user. This will determine from

which pool the MPLIST_create function will allocate memory for the MPLIST data

structures.

Constraints

None.

See Also
None.

Page 21 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.2.2 MPLIST_Header

This structure defines an element of a list.

Definition
typedef struct MPLIST_Header_tag {
 struct Mplist_Header_tag * next ;
 struct Mplist_Header_tag * prev ;
} MPLIST_Header ;

Fields

next Next node pointer.

prev Previous node pointer.

Comments

GPP-side: This structure defines the element of a list. It contains a fixed size header

along with pointers to the next and previous element of the list.

Constraints

None.

See Also
None.

Page 22 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.2.3 MPLIST_List

This structure defines an MPLIST.

Definition
typedef struct MPLIST_List_tag {
 MPLIST_ElementHeader head ;
 ADD_PADDING (padding, MPLIST_LIST_PADDING)
 MPCS_ShObj mpcsObj ;
} MPLIST_List ;

Fields

head Head of the list.

padding Padding for cache-line alignment, if required.

mpcsObj MPCS object used for protection of the list.

Comments

GPP-side: This structure defines the list. The field is the head of the list.

Constraints

None.

See Also
None.

Page 23 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.2.4 MPLIST_Entry

This structure defines the MPLIST descriptor entry for each MPLIST in the system.

Definition
typedef struct MPLIST_Entry_tag {
 Uint16 ownerProcId ;
 Uint16 poolId ;
 Pvoid phyListHandle ;
 Char8 name [DSP_MAX_STRLEN] ;
 ADD_PADDING (padding, MPLIST_ENTRY_PADDING)
} MPLIST_Entry ;

Fields

ownerProcId Processor ID of the creator of the MpList.

poolId Pool id to be used to allocate memory for all MPLIST data

structures.

phyListHandle Handle of the MPLIST in Physical (DSP) address space.

name System wide unique identifier for the MPLIST.

padding Padding for cache-line alignment, if required.

Comments

GPP-side:. This structure defines a single entry in the MPLIST entries table, which

contains information about all MPLIST objects in the system.

Constraints

None.

See Also
None.

Page 24 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.2.5 MPLIST_Ctrl

This structure defines the control structure required by the MPLIST component.

Definition
typedef struct MPLIST_Ctrl_tag {
 Uint32 isInitialized ;
 Uint32 dspId ;
 Uint32 maxEntries ;
 Uint32 ipsId ;
 Uint32 ipsEventNo ;
 MPLIST_Entry * dspAddrEntry ;
 ADD_PADDING (padding, MPLIST_CTRL_PADDING)
 MPCS_ShObj lockObj ;
} MPLIST_Ctrl ;

Fields

isInitialized Flag to indicate if this region was initialized.

dspId ID of the DSP with which the MPLIST region is shared.

maxEntries Maximum number of MPLIST instances supported by the

MPLIST.

ipsId ID of the IPS to be used (if any). A value of -1 indicates

that no IPS is required by the MPLIST.

ipsEventNo IPS Event number associated with MPLIST (if any). A value

of -1 indicates that no IPS is required by the MPLIST.

dspAddrEntry Pointer to array in DSP address space of MPLIST objects

that can be created.

padding Padding for cache-line alignment, if required.

lockObj Lock used to protect the shared MPLIST control region

from multiple simultaneous accesses.

Comments

GPP-side:. This structure defines the control structure required by the MPLIST

component. It contains information about all MPLIST objects shared between the GPP

and a specific DSP.

Constraints

None.

See Also
None.

Page 25 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.3 API Definition

7.1.3.1 MPLIST_create

This function creates a list in shared memory.

Syntax
DSP_STATUS MPLIST_create (ProcessorId procId,
 Char8 * listName,
 MPLIST_List * mplistObj,
 MPLIST_Attrs * attrs) ;

Arguments

IN ProcessorId procId

Processor Identifier.

IN Char8 * listName

List Name.

IN OPT MPLIST_List * mplistObj

 List

IN MPLIST_attrs attrs

List Attributes.

Return Value

DSP_SOK This component has been successfully initialized.

DSP_EINVALIDARG Invalid arguments.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EALREADYEXISTS The specified MPLIST name is already in use.

DSP_ERESOURCE All MPLIST entries are currently in use.

DSP_EACCESSDENIED The MPLIST component has not been initialized

DSP_ENOTFOUND Information about specified POOL buffer was not

available.

DSP_EFAIL General failure.

Comments

GPP-side:

This function performs the following initialization:

o Within lock, check if the user defined name already exists in the global list

state object.

Page 26 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

o If user has not allocated memory for the list, allocate memory for list

creation from user defined buffer pool. If user has already allocated

memory for list creation then this function, then skip this step.

o Initialize the list.

o Create a critical section for each list

o Initialize a list state element with the list name, handle, associated critical

section.

o Within lock, add entry of created list to list state object.

DSP-side:

The API definition is:

Int MPLIST_create

This DSP-side function performs similar initialization as GPP side.

Constraints

The processor which does list creation should be the processor which does the list

deletion.

See Also
MPLIST_delete

Page 27 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.3.2 MPLIST_delete

This function deletes a list from shared memory.

Syntax
DSP_STATUS MPLIST_delete (ProcessorId procId,
 Char8 * listName) ;

Arguments

IN ProcessorId procId

Processor Identifier.

IN Char8 * listName

List Name.

Return Value

DSP_SOK This component has been successfully deleted.

DSP_EINVALIDARG Invalid arguments.

DSP_EMEMORY Operation failed due to a memory error.

DSP_ENOTFOUND The specified MPLIST is not present.

Information about specified POOL buffer was not
available.

DSP_ERESOURCE All MPLIST entries are currently in use.

DSP_EACCESSDENIED The MPLIST component has not been initialized.

DSP_EFAIL General failure.

Comments

GPP-side:

This function performs the following function:

o Free memory for list.

o Removal of list related variables which could include a critical section.

o Removal of list entry in global control structure which contains all list

entries.

DSP-side:

The API definition is:

Int MPLIST_delete

This DSP-side function performs similar function as GPP side.

Page 28 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

Constraints

The processor which does list creation should be the processor which does the list

deletion.

See Also
MPLIST_create

Page 29 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.3.3 MPLIST_open

This function opens an MPLIST object specified by its name and gets a handle to the

object. Every process that needs to use the MPLIST object must get a handle

to the object by calling this API.

Syntax
DSP_STATUS MPLIST_open (ProcessorId procId,
 Char8 * name,
 MPLIST_Handle * mplistHandl e

Arguments

IN ProcessorId procId

Processor Identifier.

IN Char8 * name

List Name.

OUT MPLIST_Handle listHandle

Handle for List Operations.

Return Value

DSP_SOK This component has been successfully initialized.

DSP_EINVALIDARG Invalid arguments.

DSP_ENOTFOUND The specified MPLIST is not present.

Information about specified POOL buffer was not

available.

DSP_ERESOURCE All MPLIST entries are currently in use.

DSP_EACCESSDENIED The MPLIST component has not been initialized

DSP_EFAIL General failure.

Comments

GPP-side:

This function performs the following initialization:

o Check if the user defined name already exists in the global list state

object.

o Allocate memory for list handle in process space.

o Open the critical section lock handle.

o Fill handle with valid pointers to list, list entry and lock object

DSP-side:

The API definition is:

Page 30 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

Int MPLIST_open

This DSP-side function performs similar initialization as GPP side.

Constraints

None.

See Also
MPLIST_close

Page 31 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.3.4 MPLIST_close

This function closes the MPLIST associated with the process calling all list operations.

Syntax
DSP_STATUS MPLIST_close (MPLIST_Handle mplistHandl e) ;

Arguments

IN MPLIST_Handle listHandle

Handle for List Operations.

Return Value

DSP_SOK This component has been successfully deleted.

DSP_EFAIL General failure.

DSP_EINVALIDARG Invalid arguments.

DSP_SFREE Resource has been freed successfully

DSP_EACCESSDENIED The MPLIST component has not been initialized

Comments

GPP-side:

This function performs the following function:

o Clearing of list handle contents

o Free memory for list handle.

DSP-side:

The API definition is:

Int MPLIST_close

This DSP-side function performs similar function as GPP side.

Constraints

None.

See Also
MPLIST_open

Page 32 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.3.5 MPLIST_isEmpty

This function checks whether the list is empty.

Syntax
Bool MPLIST_isEmpty (MPLIST_Handle listHandle) ;

Arguments

IN MPLIST_Handle listHandle

Handle for List Operations.

Return Value

TRUE The list is empty.

FALSE General failure.

Comments

GPP-side:

This function performs the following function:

� Checks if given list is empty.

DSP-side:

The API definition is:

Bool MPLIST_isEmpty

This DSP-side function performs similar function as GPP.

Constraints

None.

See Also
None.

Page 33 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.3.6 MPLIST_getHead

This function pops the head pointer from the list.

Syntax
DSP_STATUS MPLIST_getHead (MPLIST_Handle listHandle ,
 MPLIST_Elem * listEl ement) ;

Arguments

IN MPLIST_Handle listHandle

Handle for List Operations.

OUT MPLIST_Elem listElement

 List Element.

Return Value

DSP_SOK The head of the list is returned successfully.

DSP_EFAIL General failure.

DSP_EINVALIDARG Invalid arguments.

DSP_ENOTFOUND Information about specified POOL buffer was not

available.

Comments

GPP-side:

This function performs the following function:

� Pops the head of the list into listElelement.

DSP-side:

The API definition is:

Int MPLIST_getHead

This DSP-side function performs similar function as the GPP.

Constraints

None.

See Also

None.

Page 34 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.3.7 MPLIST_putTail

This function adds the specified element to the tail of the list.

Syntax
DSP_STATUS MPLIST_putTail (MPLIST_Handle listHandle ,
 MPLIST_Elem listElement) ;

Arguments

IN MPLIST_Handle listHandle

 Handle for List Operations.

IN MPLIST_Elem listElement

 List Element.

Return Value

DSP_SOK This component has been added to the tail of the list.

DSP_EFAIL General failure.

DSP_EINVALIDARG Invalid arguments.

DSP_ENOTFOUND Information about specified POOL buffer was not

available.

Comments

GPP-side:

This function performs the following function:

� Adds the specified element to the tail of the list.

DSP-side:

The API definition is:

Int MPLIST_putTail

This DSP-side function performs similar function as GPP side.

Constraints

None.

See Also

None.

Page 35 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.3.8 MPLIST_removeElement

This function removes (unlinks) the given element from the list.

Syntax
DSP_STATUS MPLIST_removeElement (MPLIST_Handle list Handle,
 MPLIST_Elem listE lement) ;

Arguments

IN MPLIST_Handle listHandle

Handle for List Operations.

IN MPLIST_Elem listElement

 List Element.

Return Value

DSP_SOK This list element has been successfully deleted.

DSP_EFAIL General failure.

DSP_EINVALIDARG Invalid arguments.

DSP_ENOTFOUND Information about specified POOL buffer was not

available.

The specified buffer was not present in POOL.

Comments

GPP-side:

This function performs the following function:

� Removes (unlinks) the given element from the list.

DSP-side:

The API definition is:

Int MPLIST_removeElement

This DSP-side function performs similar function as GPP side.

Constraints

None.

See Also

None.

Page 36 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.3.9 _MPLIST_init

This function creates the global list state object.

Syntax
DSP_STATUS _MPLIST_init (ProcessorId procI d) ;

Arguments

IN ProcessorId procId

Processor Identifier.

Return Value

DSP_SOK The global list state object has been successfully

created.

DSP_EFAIL General failure.

DSP_EINVALIDARG Invalid arguments.

Comments

GPP-side:

This function performs the following initialization:

o Creates the list state object

o Initializes the list state object

o The name of this list is known to both GPP and DSP which enables

access by all writers.

DSP-side:

The API definition is:

Int _MPLIST_init

This DSP-side function performs similar initialization as GPP side.

Constraints

None.

See Also
_MPLIST_exit

Page 37 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.3.10 _MPLIST_exit

This function finalizes the MPLIST component.

Syntax
DSP_STATUS _MPLIST_exit (ProcessorId procI d) ;

Arguments

IN ProcessorId procId

Processor Identifier.

Return Value

DSP_SOK The global list state object has been successfully

deleted.

DSP_EFAIL General failure.

DSP_EINVALIDARG Invalid arguments.

DSP_EMEMORY Operation failed due to memory error.

Comments

GPP-side:

This function performs the following initialization:

o Frees the memory required to store information about each list present

in the system

o Frees the memory required to store the list object.

DSP-side:

The API definition is:

Int _MPLIST_exit

This DSP-side function performs similar initialization as GPP side.

Constraints

None.

See Also
_MPLIST_init

Page 38 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.3.11 MPLIST_first

This function returns a pointer to the first element of the list.

Syntax
DSP_STATUS MPLIST_first(MPLIST_Handle listHandle,
 MPLIST_Elem * listElement

Arguments

IN MPLIST_Handle listHandle

Handle for List Operations.

OUT MPLIST_Elem listElement

 List Element.

Return Value

DSP_SOK The first element of the list has been successfully

returned.

DSP_EFAIL General failure.

DSP_EINVALIDARG Invalid arguments.

DSP_ENOTFOUND Information about specified POOL buffer was not

available.

The specified buffer was not present in POOL.

Comments

GPP-side:

This function performs the following function:

� Returns a pointer to the first element of the list, or NULL if the list is empty.

DSP-side:

The API definition is:

Int MPLIST_first

This DSP-side function performs similar function as GPP side.

Constraints

None.

See Also
None.

Page 39 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.3.12 MPLIST_next

This function returns a pointer to the next element of the list.

Syntax
DSP_STATUS MPLIST_next(MPLIST_Handle listHandle,

 MPLIST_Elem currentElement,
 MPLIST_Elem * nextElement)

Arguments

IN MPLIST_Handle listHandle

Handle for List Operations.

IN MPLIST_Elem currentElement

 List Element.

OUT MPLIST_Elem nextElement

 List Element.

Return Value

DSP_SOK The next element of the list has been successfully

returned.

DSP_EFAIL General failure.

DSP_EINVALIDARG Invalid arguments.

DSP_ENOTFOUND Information about specified POOL buffer was not

available.

The specified buffer was not present in POOL.

Comments

GPP-side:

This function performs the following function:

� Returns a pointer to the next element of the list, or NULL if the list is empty

or the next element is the head of the list.

DSP-side:

The API definition is:

Int MPLIST_next

This DSP-side function performs similar function as GPP side.

Constraints

None.

Page 40 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

See Also
None.

Page 41 of 41 Version 0.50

DSP/BIOS™ LINK

LNK 131 DES

MPLIST DESIGN

7.1.3.13 MPLIST_insertBefore

This function inserts an element before the existing element in the list.

Syntax
DSP_STATUS MPLIST_insertBefore(MPLIST_Handle listHa ndle,

 MPLIST_Elem insertElement,
 MPLIST_Elem existi ngElement)

Arguments

IN MPLIST_Handle listHandle

Handle for List Operations.

IN MPLIST_Elem insertElement

 List Element to be inserted.

OUT MPLIST_Elem existingElement

 Existing List Element.

Return Value

DSP_SOK The next element of the list has been successfully

returned.

DSP_EFAIL General failure.

DSP_EINVALIDARG Invalid arguments.

DSP_ENOTFOUND Information about specified POOL buffer was not

available.

The specified buffer was not present in POOL.

Comments

GPP-side:

This function performs the following function:

� Inserts a new element before an existing element in the list.

DSP-side:

The API definition is:

Int MPLIST_insertBefore

This DSP-side function performs similar function as GPP side.

Constraints

None.

See Also
None.

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Requirements
	Assumptions
	Constraints
	High Level Design
	Architecture overview
	Control flow

	Sequence Diagrams
	_MPLIST_init ()
	MPLIST_create ()
	MPLIST_delete ()
	MPLIST_getHead ()

	MPLIST
	GPP and DSP side low level design
	Constants & Enumerations
	Typedefs & Data Structures
	MPLIST_Attrs
	MPLIST_Header
	MPLIST_List
	MPLIST_Entry
	MPLIST_Ctrl

	API Definition
	MPLIST_create
	MPLIST_delete
	MPLIST_open
	MPLIST_close
	MPLIST_isEmpty
	MPLIST_getHead
	MPLIST_putTail
	MPLIST_removeElement
	_MPLIST_init
	_MPLIST_exit
	MPLIST_first
	MPLIST_next
	MPLIST_insertBefore

