

Template Version 1.2

Version 0.91 Page 1 of 70

DESIGN DOCUMENT

DSP/BIOS™ LINK

RING IO

LNK 129 DES

Version 0.91

Page 2 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

This page has been intentionally left blank.

Page 3 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

This page has been intentionally left blank.

Page 5 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

TABLE OF CONTENTS

1 Introduction ... 7
1.1 Purpose & Scope ... 7
1.2 Terms & Abbreviations ... 7
1.3 References ... 7
1.4 Overview.. 7

2 Assumptions... 8

3 Constraints ... 8

4 High Level Design... 9
4.1 Features..10
4.2 Control flow ...21
4.3 RingIO component..22

5 RingIO.. 25
5.1 Constants & Enumerations...25
5.2 Typedefs & Data Structures ...31
5.3 API Definition...43

Page 6 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

TABLE OF FIGURES

Figure 1. Basic architecture of system supporting RingIO transfer 9
Figure 2. Conceptual view of the RingIO data buffer ...10
Figure 3. GPP-side Component Interaction ..23
Figure 4. DSP-side Component Interaction ..24

Page 7 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

1 Introduction

1.1 Purpose & Scope
This document describes the design of the Ring IO component for DSP/BIOS™ LINK.

The document is targeted at the development team of DSP/BIOS™ LINK.

1.2 Terms & Abbreviations
DSPLINK DSP/BIOS™ LINK

RingIO Ring Input/Output

SHM Shared Memory

SMA Shared Memory Allocator

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

1.3 References
1. LNK 012 DES DSP/BIOS™ LINK

Link Driver

Version 1.20, dated DEC 30, 2004

2. LNK 128 DES DSP/BIOS™ LINK

IPS & Notify

Version 0.10, dated DEC 15, 2005

1.4 Overview
DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit

that simplifies the development of embedded applications in which a general-purpose

microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK

provides control and communication paths between GPP OS threads and DSP/BIOS™

tasks, along with analysis instrumentation and tools.

The RingIO component provides data streaming between GPP and DSP using ring

buffer data as the transport.

This document provides a detailed description of the Ring Input/Output (RingIO)

design.

Page 8 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

2 Assumptions
The RingIO design makes the following assumption:

1. The hardware provides a shared region of memory. This region is accessible

directly or indirectly to both the GPP and the DSP.

2. In the case of indirect access to the memory regions - the shared region of

memory can be synchronized across processors through DMAs or some other

mechanism.

For the purpose of this document, actual physically sharable memory architecture

shall be used.

3 Constraints
None.

Page 9 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

4 High Level Design
In a multiprocessor system having shared access to a memory region, an efficient

mode of data transfer can be implemented, which uses a ring buffer created within

the shared memory. The reader and writer of the ring buffer can be on different

processors.

Figure 1. Basic architecture of system supporting RingIO tran sfer

The RingIO component on each processor shall provide the ability to create RingIO

buffers within the memory provided by the application. The memory provided may

be within the shared memory region (SHM) between two processors. If the RingIO

buffer is created within shared memory, it shall be accessible to reader and writer

present on the two processors between which the memory is shared. The application

can obtain a handle to the RingIO through a call to open it, by passing the ID

received from the call to create the RingIO.

The RingIO component shall provide the ability for the writer to acquire empty

regions of memory within the data buffer. The contents of the acquired region are

committed to memory when the data buffer is released by the writer.

The RingIO component shall provide the ability for the reader to acquire regions of

memory within the data buffer with valid data within them. On releasing the acquired

region, the contents of this region are marked as invalid.

The conceptual view of the RingIO is demonstrated in the Figure below. A single

writer, single reader shall be supported for each RingIO buffer.

T

GPP DSP

Shared Memory Create Create

Open

Release

Acquire

Release

Open

SetAttribute

GetAttribute

SetAttribute

GetAttribute

R1

R2

Acquire

Page 10 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

Figure 2. Conceptual view of the RingIO data buffer

The RingIO component shall also support APIs for enabling synchronous transfer of

attributes with data. End of Stream (EOS), Time Stamps, Stream offset etc. are

examples of such attributes and these shall be associated with offsets in the ring

buffer.

4.1 Features

4.1.1 Generic features

� A client using RingIO is a single unit of execution. It may be a process or

thread on the GPP or the DSP.

� The RingIO instance can be created between a client on the ARM and a client

on the DSP or between two DSP clients.

� Either the reader or writer can create or delete the RingIO instance.

� The RingIO instance should be created in a shared memory region which can

be accessed directly by both the reader and the writer.

� Both the reader and the writer need to open the RingIO instance and get a

handle. Any data access on the RingIO instance should be made using these

handles.

� Each RingIO can have a single writer client and a single reader client. A

RingIO handle may not be shared between multiple clients on the GPP or

DSP. For example, the following scenario is not permitted: One thread

acquires from the RingIO, passes the buffer pointer to another thread, which

then releases the buffer. This scenario is a multi-reader/writer scenario,

which is not supported.

� Each RingIO instance is associated with a unique RingIO name. This RingIO

name is specified while creating, opening and deleting the RingIO.

� The RingIO client can be closed only if there is no currently acquired data or

attributes. If there is any unreleased data or attributes, they must be

released or cancelled before the RingIO client can be closed.

� The RingIO can be deleted only when both reader and writer clients have

successfully closed their RingIO clients.

� Each RingIO instance has an associated footer area, if configured. The foot-

buffer can be configured to be of zero size if not required. If configured, the

Reader Acquired Buffer
Start

Writer Acquired Buffer Start

Valid Data in Buffer

Writer Acquired Buffer End

Empty Buffer

Page 11 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

foot-buffer is physically contiguous with the data buffer, and hence the

memory size specified must be equal to (data buffer size + foot buffer size).

� The RingIO data and attribute buffer sizes must comply with any constraints

imposed by the pool that they are specified to be allocated from. For

example, for the Shared Memory Pool, the buffer sizes must be aligned to

DSP cache line.

4.1.2 DSP cache-related information

� On the DSP-side, cache-related flags are provided to the writer and reader

clients while opening the RingIO. These flags enable the user to get the

maximum performance from the system and customize it for their own use.

Separate cache flags are available for:

o Control structures

o Data buffer

o Attribute buffer

� These flags indicate whether cache coherence is to be performed for the

RingIO control structures, data buffer or attribute buffer. The flags need not

be specified when opening the RingIO for the following application scenarios:

o DSP-DSP RingIO

o If RingIO control structures are specified to be placed into an internal

memory pool, cache flag need not be specified for control structures.

o If the RingIO data buffer is specified to be placed into an internal

memory pool, cache flag need not be specified for data buffer.

o If the RingIO attribute buffer is specified to be placed into an internal

memory pool, cache flag need not be specified for attribute buffer.

4.1.3 Acquiring and releasing data

� The writer/reader client can acquire data buffers of any arbitrary size. RingIO

does not maintain the acquired data as separate buffers, but as the complete

acquired size.

o Each buffer received from the acquire call is guaranteed to be a

contiguous data buffer.

o However, buffers received from multiple consecutive acquire calls may

not be contiguous.

o No assumption should be made that consecutively acquired buffers

are contiguous in memory.

o The writer/reader client can acquire multiple buffers and release the

size completely, or in smaller chunks of varying sizes.

� The data is released into the RingIO by specifying the size to be released.

Buffer pointers are not provided to the release call.

� As long as the size to be released does not exceed the total acquired size,

the data can be released in any granularity. The sequence of release calls

does not need to match the acquire calls.

� Cancel: Any acquired data that is not required can be cancelled back to the

RingIO through the RingIO_cancel () API.

Page 12 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

o The cancel call removes all acquired but un-released data from the

RingIO for the calling client.

o In case of writer, any attributes that were set within this acquired but

un-released region are also removed.

o In case of reader, any attributes that were removed within the

acquired region are replaced back into the RingIO.

4.1.4 Writer

� The writer writes data into the RingIO data buffer by first acquiring a

contiguous data buffer, writing data into the acquired buffer, and then

releasing the filled up data to the RingIO.

� The behavior of acquire varies depending on the NEED_EXACT_SIZE

specified while opening the writer client. The NEED_EXACT_SIZE flag

indicates whether the writer always needs buffers only of a specific size, and

buffers of lesser size are not acceptable.

o NEED_EXACT_SIZE is TRUE

� If the requested empty size is not available within the RingIO

as a contiguous data buffer, error is returned.

� If the requested empty size is not available till the end of the

RingIO buffer, but is available from the top of the buffer, a

wraparound occurs, and a contiguous buffer is returned from

the top of data buffer.

o NEED_EXACT_SIZE is FALSE: If the requested buffer size is not

available, RingIO returns the amount of empty contiguous data buffer

that is available till the end of the data buffer, with a status code

indicating this.

� Five different types of notification mechanisms are supported. Details of the

notification types are present in later sections.

� The writer can flush the data that it has written into the RingIO in two

different modes. In the case of hard-flush, all data and associated attributes

present in the RingIO will be removed. In the case of soft-flush, all data and

associated attributes after the first readable attribute will be flushed, and the

attribute is also removed.

4.1.5 Reader

� The reader reads data from the RingIO data buffer by first acquiring a

contiguous data buffer, reading data from the acquired buffer, and then

releasing the empty buffer to the RingIO.

� The behavior of acquire varies depending on the NEED_EXACT_SIZE

specified while opening the reader client. The NEED_EXACT_SIZE flag

indicates whether the reader always needs buffers only of a specific size.,

and buffers of lesser size are not acceptable.

o NEED_EXACT_SIZE is TRUE

� If the requested valid size is not available within the RingIO as

a contiguous data buffer, error is returned.

Page 13 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

� If the requested empty size is not available till the end of the

RingIO buffer, but is available from the top of the buffer, the

behavior varies depending on whether a foot-buffer has been

configured.

• If non-zero size foot-buffer is configured, the required

amount of valid data is copied from the top of the data

buffer into the foot-buffer (assuming foot-buffer size is

sufficient). A contiguous data buffer is then returned to

the user as requested. Further acquires will happen

from the specific offset from the top of the buffer. If

foot-buffer size is not sufficient to return a contiguous

data buffer of specified size, error is returned.

• If foot-buffer is not configured, error is returned in this

case.

o NEED_EXACT_SIZE is FALSE: If the requested buffer size is not

available, RingIO returns the amount of valid contiguous data buffer

that is available till the end of the data buffer, with a status code

indicating this. Foot-buffer is not used in this scenario.

� Five different types of notification mechanisms are supported. Details of the

notification types are present in later sections.

� The reader can flush the data that is available from the RingIO in two

different modes. In the case of hard-flush, all data and associated attributes

present in the RingIO will be removed. In the case of soft flush, all data and

associated attributes before the first readable attribute will be flushed

4.1.6 Attributes

Generic information

� Attributes are used to communicate in-band information from the writer to

the reader.

� Typical attributes could be the EOS marker at the end of the stream that’s

being written, or an attribute to indicate changes in the stream’s status.

� Attributes can be of two types

o Fixed attributes: Fixed attributes have an attribute type and an

optional parameter

o Variable attributes: Variable attributes can be provided a data buffer

as payload data in addition to the attribute type and the optional

parameter. The attributes are copy-based. The information in writer-

provided buffer is copied into the attribute buffer. The size of provided

buffer in variable attributes must be a multiple of 4 bytes.

Setting attributes

� Attributes can be set by the writer only on a data buffer that has been

acquired. This means that, if the writer has acquired a buffer of size x,

attributes can be set at any of offset position between 0 and x (inclusive).

� The only exception to the above rule is if the writer wishes to set an attribute

when no data has been acquired. In this case, the writer can set attributes at

offset 0. Attempts to set attributes at any other offset are ignored, and the

attributes get set at offset 0.

Page 14 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

� When the writer writes attributes for the data buffer it has acquired, it should

set attributes in the increasing order of buffer offsets. Setting attributes in

any arbitrary order can lead to undefined behavior.

� The writer commits attributes to the attribute buffer when the associated

write buffer is released. Any attributes set when writer has no acquired data

are released immediately.

Getting attributes

� The attributes written by the writer should be “read” before the reader can

read any more data after the offset at which the attribute is set.

� If the reader could not read data due to presence of attributes at the current

read location, an error code mentioning the presence of an attribute is

returned.

� When a variable attribute is being read, a valid buffer must be provided to the

getAttribute function. The attribute information is copied into this application

buffer.

� Attributes are removed from the attribute buffer when the reader releases the

data buffer that contains the associated attributes or the writer flushes valid

data which will clear associated attributes.

� Fixed and Variable attributes can be set and received using different APIs. In

case a fixed attribute get function is called when a variable attribute is

present, an error code is returned informing of the presence of the variable

attribute.

4.1.7 Notification

The notification mechanism as well as other configuration parameters for the

notification can be set by the reader or writer through an API call to set the notifier.

Parameters that can be configured include the notification type, watermark, callback

function, and fixed parameter to the callback function.

In case of GPP-DSP RingIO, the notifier can be set only if the other client is valid, i.e.

it has opened the RingIO. This is because some information about the other client is

required for setting the notifier for GPP-DSP RingIO.

Five different types of notification are supported:

1. RINGIO_NOTIFICATION_NONE: No notification is required.

2. RINGIO_NOTIFICATION_ALWAYS:

� The notification is enabled when an attempt to acquire data by the client

has failed.

� Once enabled, the notification remains enabled till:

o For writer client, empty data size falls below the watermark.

o For reader client, valid data size falls below the watermark.

At this point, the notification is disabled again. Only a RingIO_release call

will disable the notification. RingIO_cancel and RingIO_flush will not

disable the notification.

� Notifications are sent each time when the other client releases data, as

long as the data size is above the watermark:

Page 15 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

o Empty data size for writer – This condition can be met in the

functions RingIO_release and RingIO_flush.

o Valid data size for reader

� Cancel call does not enable or disable notification.

� Flush call does not enable or disable notification. Flush called by the

reader client may cause empty data size to fall above the watermark and

cause a notification to be sent to the writer client.

As a design decision, it has been decided that cancel and flush call will not

affect notification. This is done irrespective of previous acquire call state. It is

not possible to maintain the state log for previous acquire call failures.

3. RINGIO_NOTIFICATION_ONCE:

� The notification is enabled when an attempt to acquire data by the client

has failed.

� The notification is sent when the other client releases data, when the

below condition is true:

o For writer client, empty data size is above the watermark – This

condition can be met in the functions RingIO_release and

RingIO_flush.

o For reader client, valid data size is above the watermark.

As soon as the notification is sent, it is disabled.

� The notification is re-enabled, only when the first condition is met again

(acquire attempt fails).

� Cancel call does not enable or disable notification.

� The notification is disabled only once the notification is sent by the other

client.

� Flush call does not enable or disable notification. Flush called by the

reader client may cause empty data size to fall above the watermark and

cause a notification to be sent to the writer client.

4. RINGIO_NOTIFICATION_HDWRFIFO_ALWAYS:

� Notifications are sent each time when the other client releases data, as

long as the data size is above the watermark:

o Empty data size for writer - This condition can be met in the

function RingIO_release and RingIO_flush.

o Valid data size for reader

� This notification is always enabled. Unlike

RINGIO_NOTIFICATION_ALWAYS, this notification does not require buffer

to get full/empty or acquire to fail to get enabled.

� Cancel call does not enable or disable notification.

� Flush call does not enable or disable notification. Flush called by the

reader client may cause empty data size to fall above the watermark and

cause a notification to be sent to the writer client.

Page 16 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5. RINGIO_NOTIFICATION_HDWRFIFO_ONCE: This notification type will

send a notification only once when a low watermark condition is satisfied and

then it is disabled.

���� Unlike RINGIO_NOTIFICATION_ONCE, this notification does not require

buffer to get full/empty or acquire to fail to get enabled.

� The notification is sent when the other client releases data, when the

below condition is true:

o For writer client, empty data size is above the watermark - This

condition can be met in the function RingIO_release and

RingIO_flush.

o For reader client, valid data size is above the watermark.

As soon as the notification is sent, it is disabled.

� The notification is re-enabled when the data size crosses the watermark:

o For writer client, empty data size falls below the watermark.

o For reader client, valid data size falls below the watermark.

� Cancel call will affect the notification state. If the notification has been

enabled earlier either because of a failed acquire call or a low watermark

condition is satisfied, this notification will be disabled if the low watermark

condition is no longer true.

o The notification will be disabled when the data size crosses the

watermark:

1. For writer client, empty data size falls above the watermark.

2. For reader client, valid data size falls above the watermark.

� Flush call will affect the notification state.

o For writer client, the notification will be disabled when the data size

falls above the watermark i.e. empty data size is greater than the

watermark.

o For reader client, the notification will be enabled when the data

size falls below the watermark i.e. valid data size is lesser than the

watermark.

4.1.8 Notification related details

4.1.8.1.1 Writer Client calls Acquire

The below table discusses the effect of the acquire call on the writer client’s

notification depending upon the notification type.

The acquire call called by the writer does not effect the reader client’s notification

status.

API

Writer

RingIO_acquire ()

Watermark crossed i.e. size

falls below watermark and

current acquire has passed

Current acquire call has failed

Client Notification Type Enable

Notify

Disable

Notify

Send

Notify

Enable

Notify

Disable

Notify

Send Notify

Page 17 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

RINGIO_NOTIFICATION

_ONCE:

size = emptySize

NO NO NO YES NO NO

RINGIO_NOTIFICATION

_ALWAYS:

size = emptySize

NO YES NO YES NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ONCE:

size = emptySize

YES NO NO YES NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ALWAYS:

size = emptySize

NO NO NO YES NO NO

4.1.8.1.2 Reader Client calls Acquire

The below table discusses the effect of the acquire call on the reader client’s

notification state depending upon the notification type.

The acquire call called by the reader does not effect the writer client’s notification

status.

API

Reader

RingIO_acquire ()

Watermark crossed i.e. size

falls below watermark and

current acquire has passed

Current acquire call has failed

Client Notification Type Enable

Notify

Disable

Notify

Send

Notify

Enable

Notify

Disable

Notify

Send Notify

RINGIO_NOTIFICATION

_ONCE:

size = validSize

NO NO NO YES NO NO

RINGIO_NOTIFICATION

_ALWAYS:

size = validSize

NO YES NO YES NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ONCE:

size = validSize

YES NO NO YES NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ALWAYS:

size = validSize

NO NO NO YES NO NO

4.1.8.1.3 Writer Client calls Release

The below table discusses the effect of the release call on the reader and writer client

notification state depending upon the notification type.

If notification is sent for RINGIO_NOTIFICATION_ONCE/ RINGIO_NOTIFICATION_

HDWRFIFO_ALWAYS the notification is disabled for the reader client.

Notification state for the Reader client after writerRelease

call.

API

Writer

RingIO_release () Watermark crossed i.e. size

goes above the watermark

and current release has

passed.

Watermark not crossed i.e. size

remains below the watermark and

current release has passed.

Client Notification Type Enable Disable Send Enable Disable Send Notify

Page 18 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

Notify Notify for

Reader

Client

Notify Notify Notify for

Reader

Client

RINGIO_NOTIFICATION

_ONCE:

size = validSize

NO YES YES NO NO NO

RINGIO_NOTIFICATION

_ALWAYS:

size = validSize

NO NO YES NO NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ONCE:

size = validSize

NO YES YES NO NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ALWAYS:

size = validSize

NO NO YES NO NO NO

4.1.8.1.4 Reader Client calls Release

The below table discusses the effect of the release call on the reader and writer client

notification state depending upon the notification type.

If notification is sent for RINGIO_NOTIFICATION_ONCE/ RINGIO_NOTIFICATION_

HDWRFIFO_ALWAYS the notification is disabled for the writer client.

Notification state for the Writer client after readerRelease

call.

API

Reader

RingIO_release () Watermark crossed i.e. size

is goes above the watermark

and current release has

passed.

Watermark not crossed i.e. size

remains below the watermark and

current release has passed.

Client Notification Type Enable

Notify

Disable

Notify

Send

Notify

Enable

Notify

Disable

Notify

Send Notify

RINGIO_NOTIFICATION

_ONCE:

size = emptySize

NO YES YES NO NO NO

RINGIO_NOTIFICATION

_ALWAYS:

size = emptySize

NO NO YES NO NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ONCE:

size = emptySize

NO YES YES NO NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ALWAYS:

size = emptySize

NO NO YES NO NO NO

4.1.8.1.5 Writer Client calls Cancel

The below table discusses the effect of the cancel call on the writer client’s

notification state depending upon the notification type.

The acquire call called by the writer does not effect the reader client’s notification

status.

API

Writer

Watermark crossed i.e. size

goes above the watermark

Watermark crossed i.e. size goes

above the watermark and

Page 19 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

RingIO_cancel () and notification was enabled. notification was disabled.

Client Notification Type Enable

Notify

Disable

Notify

Send

Notify

Enable

Notify

Disable

Notify

Send Notify

RINGIO_NOTIFICATION

_ONCE:

size = emptySize

NO NO NO NO NO NO

RINGIO_NOTIFICATION

_ALWAYS:

size = emptySize

NO NO NO NO NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ONCE:

size = emptySize

NO YES NO NO NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ALWAYS:

size = emptySize

NO NO NO NO NO NO

4.1.8.1.6 Reader Client calls Cancel

The below table discusses the effect of the cancel call on the reader client’s

notification state depending upon the notification type.

The acquire call called by the reader does not effect the writer client’s notification

status.

API

Reader

RingIO_cancel ()

Watermark crossed i.e. size

goes above the watermark

and notification was enabled.

Watermark crossed i.e. size

goes above the watermark and

Notification was disabled.

Client Notification Type Enable

Notify

Disable

Notify

Send

Notify

Enable

Notify

Disable

Notify

Send

Notify

RINGIO_NOTIFICATION

_ONCE:

size = validSize

NO NO NO NO NO NO

RINGIO_NOTIFICATION

_ALWAYS:

size = validSize

NO NO NO NO NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ONCE:

size = validSize

NO YES NO NO NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ALWAYS:

size = validSize

NO NO NO NO NO NO

4.1.8.1.7 Writer Client calls Flush
The below table discusses the effect of the flush c all on both the reader and writer client’s notifica tion
state depending upon the notification type.

Notification state for the RingIO client after writerFlush

call

API

Writer RingIO_flush

() Reader client Writer client

Client Notification Type Enable Disable Send Enable Disable Send

Page 20 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

Notify Notify Notify Notify Notify Notify

RINGIO_NOTIFICATION

_ONCE

NO NO NO NO NO NO

RINGIO_NOTIFICATION

_ALWAYS

NO NO NO NO NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ONCE

YES (if valid

size falls

below the

watermark),

NO (if valid

size falls

below the

water mark)

NO NO NO YES (if

empty Size

falls above

the

watermark)

NO (if empty

Size falls

below the

watermark)

NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ALWAYS

NO NO NO NO NO NO

4.1.8.1.8 Reader Client calls Flush

The below table discusses the effect of the flush call on both the reader and writer

client’s notification state depending upon the notification type.

Notification state for the RingIO client after readerFlush call API

Reader RingIO_flush

() Reader client Writer client

Client Notification Type Enable

Notify

Disable

Notify

Send Notify Enable

Notify

Disable

Notify

Send

Notify

RINGIO_NOTIFICATION

_ONCE

NO NO YES (if empty

size falls above

the watermark)

NO (if empty

size falls above

the watermark)

NO NO NO

RINGIO_NOTIFICATION

_ALWAYS

NO NO YES (if empty

size falls above

the watermark)

NO (if empty

size falls above

the watermark)

NO NO NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ONCE

YES (if valid

Size falls

below the

watermark),

NO (if valid

size falls

above the

water mark)

NO YES (if empty

size falls above

the watermark)

NO (if empty

size falls above

the watermark)

NO YES (if

empty Size

falls above

the

watermark)

NO (if empty

Size falls

below the

watermark)

NO

RINGIO_NOTIFICATION

_ HDWRFIFO_ALWAYS

NO NO YES (if empty

size falls above

the watermark)

NO NO NO

Page 21 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

NO (if empty

size falls above

the watermark)

4.2 Control flow
The typical control flow of an application using the RingIO includes the following

activities

1. Create a RingIO

A RingIO in shared memory is identified by a RingIO name. Hence, to create a

RingIO, the application has to specify a RingIO name. This name should be

used to open the RingIO buffer for reading or writing. At any point in time,

only a fixed number of RingIO can be created. This fixed number can be

modified through configuration.

The memory to be used for creation of the RingIO buffers is specified by the

application writer through a POOL interface. The application specifies the

POOL ID to be used for allocating the buffers. The POOL may be a shared

memory pool for a RingIO shared between two processors, or within local

memory if the RingIO is for intra-processor transfer. POOL IDs for four

different buffers must be provided, the data buffer memory, attribute buffer

memory, the control structure memory, and the memory for the lock to be

used for access to the RingIO structures.

2. Get a handle to the RingIO

To write and read data from the RingIO, a handle needs to be acquired. This

can be done using the RingIO_open call. The reader and writer will get

different handles using which they can read and write data to the RingIO. A

set of open flags can also be provided which will inform the RingIO whether

cache is being used for the shared buffers and whether write requests have to

be satisfied to the exact size (If requested size is not available, partial buffer

is not returned).

3. Write into an acquired buffer

To write data into the RingIO, an empty data buffer has to be first acquired.

After this data can be written into the acquired buffer and the filled up buffer

can be released back to the RingIO. Any sized data buffer can acquired and

released. Data buffer acquired using a single acquire call can also be released

in parts. Similarly data buffers acquired in multiple calls can be released using

a single release call. When the writer releases a buffer, any attributes set in

the acquired buffer also gets released.

4. Read from an acquired buffer

To read data from the RingIO, a filled up data buffer has to be first acquired.

After this the data buffer can be used up and the empty buffer can be

released back to the RingIO. Any sized data buffer can be acquired and

released. Data buffer acquired using a single acquire call can also be released

in parts. Similarly data buffers acquired in multiple calls can be released using

a single release call.

5. Set attributes

The writer can set attributes into the RingIO to communicate any

synchronous information to the reader. Attributes can be set at any offset on

Page 22 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

the acquired buffer. One exception to this rule is when no buffer has been

acquired. In this case, the attribute is set at the next write location.

6. Get attributes

The reader can read the attributes set by the writer using the get attribute

function. The attributes can be read only at the current read offset.

7. Flush

Both the reader and writer can call the flush function in two different modes

soft-flush and hard-flush. In hard-flush, all valid data and associated

attributes are removed from the RingIO. In soft-flush, the functionality of

flush is different depends on the caller. For the writer, flush will remove all

valid data after the first readable attribute. This call removes the attribute as

well. For the reader, flush will remove all valid data before the first readable

attribute. The attribute is left in the stream itself. The flush call will also

return the first readable attribute type and the optional parameter to the

caller.

8. Close RingIO

Closing the writer or the reader allows another writer or reader to open the

RingIO again. Closing of the RingIO can be done only if no data buffers have

been acquired.

9. Delete the RingIO

This removes the RingIO instance from shared memory. Both the reader and

writer will not be able to use the RingIO after it is deleted.

4.3 RingIO component
The RingIO component is implemented as a user-level library within DSPLINK, and a

library on the DSP-side.

The RingIO component utilizes the shared memory between the GPP and DSP for

implementing the data transfer protocol. The RingIO component uses the

functionality provided by the IPS component for notification of events across the

processor boundary. On the GPP-side, since RingIO is on the user-side, it uses the

NOTIFY component to register for the IPS event.

4.3.1 GPP-side

4.3.1.1 Component interaction

The component interaction diagram indicates the interaction of RingIO with the

various components within DSPLINK.

Page 23 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

Figure 3. GPP-side Component Interaction

4.3.2 DSP-side

4.3.2.1 Overview

The DSP-side of the RingIO component shall be implemented as a library over the

base inter-processor communication functionality provided by DSPLINK.

Scalability for RingIO shall be provided through compile-time flags, which shall be set

by the common configuration tool.

DSP/BIOS™ LINK API

RingIO

DRV

NOTIFY

Processor Manager

DRV

Link Driver

IPS

Page 24 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

4.3.2.2 Component interaction

Figure 4. DSP-side Component Interaction

DSPLINK
Buffer

allocation
APIs

POOL
component

DSPLINK base library

Class Drivers

GIO SIO

DIO

MSGQ
component

MSGQ

Data Transfer
library

IPS

Messaging
library

MQT

DATA
driver

DSPLINK components DSP/BIOS™ components

Other generic
components

SHMDRV
component

SMA
POOL

BUF POOL

RingIO
library

RingIO

Transport

Page 25 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5 RingIO
The RingIO component on a processor is responsible for implementing the ring buffer

data transfer protocol for intra-DSP and DSP<->GPP transfer.

This section provides a detailed design for the RingIO component on the GPP and

DSP-sides. The RingIO component has a similar design on both the GPP and DSP

sides.

5.1 Constants & Enumerations

5.1.1 RINGIO_NAME_MAX_LEN

This constant defines the maximum length of the RingIO names.

Definition
#define RINGIO_NAME_MAX_LEN 32

Comments

None

Constraints

None

See Also
None

Page 26 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.1.2 RINGIO_INVALID_ATTR

This constant defines the invalid attribute type. This value should not be used for

user defined attribute types.

Definition
#define RINGIO_INVALID_ATTR (Uint16) 0xFFFF

Comments

None

Constraints

None

See Also
None

Page 27 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.1.3 RINGIO_DATABUF_CACHEUSE

This constant defines the flag used for opening the RingIO. It indicates that cache

coherence needs to be maintained for the data buffer.

Definition
#define RINGIO_DATABUF_CACHEUSE 0x1

Comments

None

Constraints

None

See Also
None

Page 28 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.1.4 RINGIO_ATTRBUF_CACHEUSE

This constant defines the flag used for opening the RingIO. It indicates that cache

coherence needs to be maintained for the attribute buffer.

Definition
#define RINGIO_ATTRBUF_CACHEUSE 0x2

Comments

None

Constraints

None

See Also
None

Page 29 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.1.5 RINGIO_CONTROL_CACHEUSE

This constant defines the flag used for opening the RingIO. It indicates that cache

coherence needs to be maintained for the control structure buffer.

Definition
#define RINGIO_CONTROL_CACHEUSE 0x4

Comments

None

Constraints

None

See Also
None

Page 30 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.1.6 RINGIO_NEED_EXACT_SIZE

This constant defines the flag used for opening the RingIO. It indicates that exact

size buffer should be provided while acquiring a buffer for this RingIO.

Definition
#define RINGIO_NEED_EXACT_SIZE 0x8

Comments

None

Constraints

None

See Also
None

Page 31 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.2 Typedefs & Data Structures

5.2.1 RingIO_NotifyType

This structure enumerates the different RingIO notification types. Please refer to

section Notification related details for more detailed information.

Definition
typedef enum {
 RINGIO_NOTIFICATION_NONE = 0,
 RINGIO_NOTIFICATION_ALWAYS,
 RINGIO_NOTIFICATION_ONCE,
 RINGIO_NOTIFICATION_HDWRFIFO_ALWAYS,
 RINGIO_NOTIFICATION_HDWRFIFO_ONCE
} RingIO_NotifyType ;

Fields

RINGIO_NOTIFICAT
ION_NONE

No notification required.

RINGIO_NOTIFICAT
ION_ALWAYS

Notify whenever the other side sends data/frees up space.

This notification is enabled only when an attempt to acquire

data fails. The notification is sent to the writer if empty buffer

size is more than watermark, and sent to the reader if valid

buffer size is more than watermark.

RINGIO_NOTIFICAT
ION_ONCE

Notify when the other side sends data/frees up space. Once

the notification is done, the notification is disabled until it is

enabled again by a failed attempt to acquire data. The

notification is sent to the writer if empty buffer size is more

than watermark, and sent to the reader if valid buffer size is

more than watermark.

RINGIO_NOTIFICAT
ION_HDWRFIFO_ALW
AYS

Notify whenever the other side sends data/frees up space.

This notification is never disabled.

This notification type will always send a notification when low

watermark condition has been satisfied. Unlike

RINGIO_NOTIFICATION_ALWAYS, this notification does not

require buffer to get full/empty or acquire to fail to get
enabled.

Page 32 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

RINGIO_NOTIFICAT
ION_HDWRFIFO_ONC
E

Notify when the other side sends data/frees up space. Once

the notification is done, the notification is disabled until it is

enabled again. The notification is enabled once the

watermark is crossed and does not require buffer to get

full/empty.

This notification type will send a notification only once when a

low watermark condition is satisfied and then it is disabled.

The notification gets enabled when the amount of buffer

full/empty crosses above the watermark. Unlike

RINGIO_NOTIFICATION_ONCE, this notification does not

require buffer to get full/empty or acquire to fail to get
enabled.

Comments

None.

Constraints

None.

See Also
RingIO_setNotifier ()

Page 33 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.2.2 RingIO_OpenMode

This structure enumerates the different modes in which the RingIO can be opened.

Definition
typedef enum{
 RINGIO_MODE_READ = 0,
 RINGIO_MODE_WRITE
} RingIO_OpenMode ;

Fields

RINGIO_MODE_READ Reader mode.

RINGIO_MODE_WRITE Writer mode.

Comments

None.

Constraints

None.

See Also
RingIO_open ()

Page 34 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.2.3 RingIO_TransportType

This structure enumerates the different types of transports for the RingIO.

Definition
typedef enum{
 RINGIO_TRANSPORT_DSP_DSP = 1,
 RINGIO_TRANSPORT_GPP_DSP
} RingIO_TransportType ;

Fields

RINGIO_TRANSPORT_DSP_DSP Intra-DSP transport.

RINGIO_TRANSPORT_GPP_DSP GPP<->DSP transport.

Comments

This enumeration is provided as part of RingIO_create () attributes.

Constraints

None

See Also
RingIO_create ()

Page 35 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.2.4 RingIO_Attrs

This structure defines the attributes to be provided while creating the RingIO.

Definition
typedef struct RingIO_Attrs_tag {
 RingIO_TransportType transportType ;
 Uint16 ctrlPoolId ;
 Uint16 dataPoolId ;
 Uint16 attrPoolId ;
 Uint16 lockPoolId ;
 Uint32 dataBufSize ;
 Uint32 footBufSize ;
 Uint32 attrBufSize ;
} RingIO_Attrs ;

Fields

transportType Transport type - This specifies whether the data transport

is between DSP<-> DSP or DSP<->ARM.

ctrlPoolId Pool to be used to allocate memory for control structure.

dataPoolId Pool to be used to allocate memory for data buffer.

attrPoolId Pool to be used to allocate memory for attribute buffer.

lockPoolId Pool to be used to allocate memory for lock structure.

dataBufSize Data Buffer Size in bytes.

footBufSize Size of the footer area.

attrBufSize Attribute Buffer Size in bytes.

Comments

This structure is provided to the RingIO_create () call.

Constraints

None.

See Also
RingIO_create ()

Page 36 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.2.5 RingIO_Client

This structure defines the RingIO Shared memory client structure.

The RingIO Reader or Writer state information is stored in this structure.

Definition
typedef struct RingIO_Client_tag {
 Uint32 procId ;
 RingIO_OpenMode openMode ;
 RingIO_BufPtr pDataStart ;
 RingIO_BufPtr pAttrStart ;
 Uint32 acqStart ;
 Uint32 acqSize ;
 Uint32 acqAttrStart ;
 Uint32 acqAttrSize ;
 Uint32 notifyType ;
 RingIO_NotifyFunc notifyFunc ;
 RingIO_NotifyParam notifyParam ;
 Uint32 notifyWaterMark ;
 Uint32 flags ;
 RingIO_ControlStruct * virtControlHandle ;
 Void * virtLockHandle;
 Uint32 isValid ;
 Uint32 refCount ;
 Uint16 notifyFlag ;
 ADD_PADDING (padding, RINGIO_CLIENT_ PADDING)
} RingIO_Client ;

Fields

procId Processor Id where the client is executing

openMode Indicates whether the client is a reader or writer

pDataStart Virtual start address of the data buffer

pAttrStart Virtual start address of the attr buffer

acqStart Start offset of data buffer that has been acquired by the

application.

acqSize Size of data that has been acquired

acqAttrStart Start offset of the acquired attribute buffer

acqAttrSize Size of attribute data that has been acquired

notifyType Notification type

notifyFunc Notification function for this client

notifyParam Parameter to the Notification function

notifyWaterMark Watermark that should be satisfied before notification is

done

Page 37 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

flags Client-specific flags indicating cache requirements and

exact size requirement.

virtControlHandle Handle to the Control structure. Apps do not have direct

access to the control structure. The Control structure can
only be accessed through the client handle

virtLockHandle Virtual (GPP) address of the lock that should be used to

protect the Control structure from multiple accesses.

isValid Indicates whether the Client is initialized

refCount Reference count of whether RingIO has been opened.

notifyFlag Denotes whether notification needs to be done or not

padding Padding for cache-line alignment, if required.

Comments

This structure contains client-specific information for each RingIO.

Constraints

None.

See Also
RingIO_ControlStruct

Page 38 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.2.6 RingIO_ControlStruct

This structure defines the RingIO Control Structure. This structure is stored in shared

memory and is accessible by all clients. The control structure supports a single

reader and a single writer for the ring buffer.

Definition
struct RingIO_ControlStruct_tag {
 Uint32 entryId;
 RingIO_TransportType transportType;
 RingIO_BufPtr phyBufStart;
 Uint32 phyBufEnd;
 Uint32 curBufEnd;
 Uint32 dataBufEnd;
 Uint32 dataBufSize;
 Uint32 footBufSize;
 Uint32 validSize;
 Uint32 emptySize;
 RingIO_BufPtr phyAttrStart;
 Uint32 phyAttrBufEnd;
 Uint32 curAttrBufEnd;
 Uint32 validAttrSize;
 Uint32 emptyAttrSize;
 Int32 prevAttrOffset;
 Void * phyLockHandle;
 ADD_PADDING (padding, RINGIO_CONTROLS TRUCT_PADDING)
 RingIO_Client writer ;
 RingIO_Client reader ;
} RingIO_ControlStruct, *RingIO_ControlHandle;

Fields

entryId ID of the RingIO within the entry array.

transportType Transport type - This specifies whether the data transport

is between DSP<-> DSP or DSP<->ARM.

phyBufStart Physical start address of the data buffer.

phyBufEnd Total size of the Data buffer (offset from phyBufStart)

curBufEnd Current buffer size. This may be <= dataBufEnd (offset

from phyBufStart)

dataBufEnd End offset of the main data buffer. This excludes the footer

region.

dataBufSize Buffer size of the main data buffer. This excludes the

footer region.

footBufSize Size of the footer region as specified by the user.

validSize Amount of valid data available in the data buffer. Valid

Data is the total data that is readable by the reader using

an acquire call. This does not include the size of the data

buffer already acquired by the reader

Page 39 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

emptySize Amount of empty space in the data buffer. This does not

include the empty space already acquired by the writer

phyAttrStart Physical start address of the attribute buffer

phyAttrBufEnd Total Size of the attribute buffer (offset)

curAttrBufEnd Current Attribute buffer size. This may be <= the

phyAttrBufEnd (offset)

validAttrSize Amount of valid attribute bytes available in the attribute

buffer. The valid attribute bytes does not include the
attribute bytes already acquired by the reader

emptyAttrSize Amount of empty space in the attr buffer. This does not

include the empty attr space already acquired by the
writer

prevAttrOffset Offset of the most recent attribute

phyLockHandle Physical (DSP) address of the lock that should be used to

protect the Control structure from multiple accesses.

padding Padding used for cache line alignment

writer Writer state information

reader Reader state information

Comments

This structure contains the complete shared information for each RingIO.

Constraints

None.

See Also
RingIO_Client

Page 40 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.2.7 RingIO_Entry

This structure defines the Entry structure for the RingIO data transport.

Definition
typedef struct RingIO_Entry_tag {
 Pvoid phyControl ;
 Pvoid virtControl ;
 Char8 name [RINGIO_NAME_MAX_LEN] ;
 Uint16 ownerProcId ;
 Uint16 ctrlPoolId ;
 Uint16 dataPoolId ;
 Uint16 attrPoolId ;
 Uint16 lockPoolId ;
 ADD_PADDING (padding, RINGIO_RINGIOENTRY_PADDI NG)
} RingIO_Entry ;

Fields

phyControl Physical (DSP) address of the Control structure for the

RingIO.

virtControl Virtual (GPP) address of the Control structure for the RingIO.

name System wide unique identifier for the RingIO

ownerProcId Creator's processor ID of this ringio.

ctrlPoolId Pool to be used to allocate memory for control structure.

dataPoolId Pool to be used to allocate memory for data buffer.

attrPoolId Pool to be used to allocate memory for attribute buffer.

lockPoolId Pool to be used to allocate memory for lock structure.

padding Padding for cache line alignment, if required.

Comments

The RingIO entry structure is used to maintain system-wide information about each

RingIO created.

Constraints

None.

See Also
RingIORegion

Page 41 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.2.8 RingIO_Ctrl

This structure defines the control structure required by the RINGIO component. It

contains information about all RINGIO objects shared between the GPP and a specific

DSP.

Definition
typedef struct RingIO_Ctrl_tag {
 Uint32 isInitialized ;
 Uint32 dspId ;
 Uint32 maxEntries ;
 Uint32 ipsId ;
 Uint32 ipsEventNo ;
 RingIO_Entry * dspAddrEntry ;
 ADD_PADDING (padding, RINGIO_CTRL_PADDING)
 MPCS_ShObj lockObj ;
} RingIO_Ctrl ;

Fields

isInitialized Flag to indicate if this region was initialized

dspId ID of the DSP with which the RingIO Region is shared

maxEntries Maximum number of RingIO instances supported by the
RingIO.

ipsId ID of the IPS to be used.

ipsEventNo IPS Event number associated with the RingIO.

dspAddrEntry Pointer to array in DSP address space of RINGIO objects that

can be created.

padding Padding for cache line alignment, if required.

lockObj Lock used to protect the shared RingIO_Ctrl from multiple

simultaneous accesses.

Comments

The RingIO region contains all global information about RingIOs present in the

system.

Constraints

None.

See Also
RingIOEntry

Page 42 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.2.9 RingIO_MemInfo

This structure defines the memory information structure for the RingIO component.

Definition
typedef struct RingIO_MemInfo_tag {
 ProcessorId procId ;
 Uint32 physAddr ;
 Uint32 kernAddr ;
 Uint32 userAddr ;
 Uint32 size ;
} RingIO_MemInfo ;

Fields

procId Processor ID of the processor with which the RingIO is

shared.

physAddr Physical address of the memory region for RingIO

kernAddr Kernel address of the memory region for RingIO

userAddr User address of the memory region for RingIO

size Size of the memory region for RingIO

Comments

The RingIOMemInfo structure contains information about the RingIO memory region,

mapped into user space.

Constraints

None.

See Also
RingIORegion

Page 43 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3 API Definition

Page 44 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.1 RingIO_getAcquiredOffset

This macro returns the current acquire offset for the client.

Syntax
#define RingIO_getAcquiredOffset(client) \
 (((RingIO_Client *) client)->ac qStart)

Arguments

IN RingIO_Handle handle

Handle of the RingIO instance

Return Value

Current acquire offset The operation has been successfully completed.

Comments

This macro is provided as a helper utility to return information about the current

state of the RingIO client.

Constraints

None.

See Also
None.

Page 45 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.2 RingIO_getAcquiredSize

This macro returns the size of buffer currently acquired by the client.

Syntax
#define RingIO_getAcquiredSize(client) \
 (((RingIO_Client *) client)->ac qSize)

Arguments

IN RingIO_Handle handle

Handle of the RingIO instance

Return Value

Current acquired size The operation has been successfully completed.

Comments

This macro is provided as a helper utility to return information about the current

state of the RingIO client.

Constraints

None.

See Also
None.

Page 46 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.3 RingIO_getWatermark

This macro returns the current watermark level specified by the client.

Syntax
#define RingIO_getWatermark(client) \
 (((RingIO_Client *) client)->no tifyWaterMark)

Arguments

IN RingIO_Handle handle

Handle of the RingIO instance

Return Value

Current watermark
level

The operation has been successfully completed.

Comments

This macro is provided as a helper utility to return information about the current

state of the RingIO client.

Constraints

None.

See Also
None.

Page 47 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.4 RingIO_create

This function creates a RingIO instance in Shared memory using the creation params

specified.

Syntax
DSP_STATUS RingIO_create (Char8 * name, RingIO_Attr s * attrs) ;

Arguments

IN Char8 * Name

Unique name identifying the RingIO instance.

IN RingIO_Attrs * attrs

Attributes to use for creating the RingIO instance

Return Value

RINGIO_SUCCESS The operation has been successfully completed.

RINGIO_EFAILURE General failure

DSP_EINVALIDARG Invalid arguments.

DSP_EACCESSDENIED The RINGIO component has not been initialized.

DSP_EMEMORY Operation failed due to a memory error.

RINGIO_EALREADYEXISTS The specified RINGIO name is already in use.(i.e.

RingIO or MPCS name already exists)

DSP_EFAIL General failure.

DSP_ENOTFOUND A specified entity was not found. Address translation

between user space and DSP address space failed.

See POOL_translateAddr() in POOL design document.

Comments

‘name’ is a null terminated ASCII string.

Constraints

‘name’ and ‘attrs’ should not be NULL

See Also
RingIO_delete ()

Page 48 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.5 RingIO_delete

This function deletes a RingIO instance in shared memory between the reader and

writer.

Syntax
DSP_STATUS RingIO_delete (Char8* name) ;

Arguments

IN Char8 * name

Name of the RingIO instance to be deleted

Return Value

RINGIO_SUCCESS The operation has been successfully completed.

RINGIO_EFAILURE General failure

DSP_EINVALIDARG Invalid arguments.

DSP_EACCESSDENIED The RINGIO component has not been initialized.

DSP_EFAIL General failure.

Comments

‘name’ is a null terminated ASCII string.

Constraints

‘name’ should not be NULL

See Also
RingIO_create ()

Page 49 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.6 RingIO_open

This function opens a RingIO instance handle which can be used for either reading or

writing. Only one reader and one writer can be opened on a RingIO.

Syntax
RingIO_Handle RingIO_open (Char8 * name,

 RingIO_OpenMode openMode,
 Uint32 flags) ;

Arguments

IN Char8 * Name

Name of the RingIO channel to be opened.

IN RingIO_OpenMode openMode

Mode with which the RingIO channel is to be opened (Reader/Writer)

IN Uint32 Flags

Cache usage and other notification flags.

Return Value

<valid handle> Operation successfully completed.

NULL General failure, name not found.

Comments

None

Constraints

‘name’ should not be NULL.

See Also
RINGIO_DATABUF_CACHEUSE
RINGIO_ATTRBUF_CACHEUSE
RINGIO_CONTROL_CACHEUSE
RINGIO_NEED_EXACT_SIZE
RingIO_OpenMode
RingIO_close ()

Page 50 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.7 RingIO_close

This function closes an already open RingIO reader/writer.

Syntax
DSP_STATUS RingIO_close (RingIO_Handle handle) ;

Arguments

IN RingIO_Handle handle

Handle of the RingIO instance to close

Return Value

RINGIO_SUCCESS The operation has been successfully completed.

RINGIO_EFAILURE General failure

DSP_EINVALIDARG Invalid arguments.

DSP_EACCESSDENIED The RINGIO component has not been initialized.

Comments

None

Constraints

‘handle’ should not be NULL

See Also
RingIO_open ()

Page 51 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.8 RingIO_acquire

This function acquires a data buffer from RingIO for reading or writing, depending on

the mode in which the client (represented by the handle) has been opened.

Syntax
DSP_STATUS RingIO_acquire (RingIO_Handle handle,
 RingIO_BufPtr * dataBuf,
 Uint32 * size) ;

Arguments

IN RingIO_Handle Handle

Handle of the RingIO Instance

OUT RingIO_BufPtr * dataBuf

Location to receive the pointer to the acquired data buffer

IN OUT Uint32 * size

Input: The number of bytes to acquire. Output: The number of bytes

actually acquired

Return Value

RINGIO_SUCCESS The operation has been successfully completed.

RINGIO_EFAILURE General failure

RINGIO_SPENDINGATTRIBUTE No data buffer could be acquired because an

attribute was present at the current read offset.

RINGIO_EBUFWRAP Requested size of data buffer could not be returned

because the available contiguous size till end of

buffer is less than requested size. A smaller sized

buffer may have been returned, if available.
(Applicable only to RingIO writer client)

RINGIO_EBUFFULL Requested size of data buffer could not be returned

because the total available size is less than

requested size. A smaller sized buffer may have

been returned, if available. (Applicable only to
RingIO writer client).

RINGIO_EBUFEMPTY No valid size is available from the RingIO.

(Applicable only to RingIO reader client)

Page 52 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

RINGIO_ENOTCONTIGUOUSDAT
A

Requested size of data buffer could not be returned

due to one of the following.

1. Attribute is present within, or at the end of the

valid contiguous size available.

2.The available contiguous size till end of buffer is

less than requested size

(Applicable only to RingIO reader client)

Comments

None

Constraints

‘handle’, ‘dataBuf’ and ‘size’ should not be NULL.

‘size’ should be 4 Byte aligned.

See Also
RingIO_release ()

Page 53 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.9 RingIO_release

This function releases a previously acquired buffer or part of it, of the specified size.

Syntax
DSP_STATUS RingIO_release (RingIO_Handle handle, Ui nt32 size) ;

Arguments

IN RingIO_Handle Handle

Handle to the RingIO Client.

OUT Uint32 Size

Size of data buffer to be released.

Return Value

RINGIO_SUCCESS The operation has been successfully completed.

RINGIO_EFAILURE General failure.

DSP_EINVALIDARG Invalid arguments.

Comments

None

Constraints

None

See Also
RingIO_acquire ()

Page 54 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.10 RingIO_cancel

This function cancels any data buffers acquired by reader or writer. In the case of

writer, all attributes that are set since the first acquire are removed. In the case of

reader, all attributes that were obtained since the first acquired are re-instated in the

RingIO instance.

Syntax

DSP_STATUS RingIO_cancel (RingIO_Handle handle) ;

Arguments

IN RingIO_Handle handle

Handle to the RingIO Client.

Return Value

RINGIO_SUCCESS The operation has been successfully completed.

RINGIO_EFAILURE General failure.

DSP_EINVALIDARG Invalid arguments.

Comments

None

Constraints

‘handle’ must not be NULL

See Also
RingIO_acquire ()
RingIO_flush ()

Page 55 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.11 RingIO_getAttribute

This function gets a fixed-size attribute from the attribute buffer. If an attribute is

present, the attribute type and a related parameter are returned.

Syntax
DSP_STATUS RingIO_getAttribute (RingIO_Handle handl e,

 Uint16 * type,
 Uint32 * param) ;

Arguments

IN RingIO_Handle handle

Handle to the RingIO Client.

OUT Uint16 * type

Location to receive the user-defined type of attribute.

OUT Uint32 * param

Location to receive an optional parameter which depends on the

attribute type.

Return Value

RINGIO_SUCCESS The operation has been successfully completed.

RINGIO_EFAILURE No valid attributes are present or general failure.

RINGIO_SPENDINGATTRIBUTE The operation has been successfully completed It

also indicates that additional attributes are present
at the current read offset.

RINGIO_EVARIABLEATTRIBUTE A variable attribute exists. The application must

call RingIO_getvAttribute () to get the variable
attribute.

RINGIO_EPENDINGDATA More data must be read before reading the

attribute.

DSP_EINVALIDARG Invalid arguments.

Comments

None

Constraints

‘handle’ must not be NULL

‘type’ and ‘param’ must point to valid memory locations

See Also
RingIO_getvAttribute ()
RingIO_setAttribute ()
RingIO_setvAttribute ()

Page 56 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.12 RingIO_setAttribute

This function sets a fixed-size attribute at the offset provided in the acquired data

buffer. If the offset is not in the range of the acquired data buffer, the attribute is

not set, and an error is returned. One exception to this rule is when no data buffer

has been acquired. In this case an attribute is set at the next data buffer offset that

can be acquired

Syntax
DSP_STATUS RingIO_setAttribute (RingIO_Handle handl e,
 Uint32 offse t,
 Uint16 type,
 Uint32 param) ;

Arguments

IN RingIO_Handle param1

Handle to the RingIO Client.

IN Uint32 Offset

Offset in the acquired data buffer to which the attribute
corresponds

IN Uint16 Type

User-defined type of attribute.

IN OPT Uint32 Param

Optional parameter which depends on the attribute type.

Return Value

RINGIO_SUCCESS The operation has been successfully completed.

RINGIO_EFAILURE General failure

DSP_EINVALIDARG Invalid arguments

RINGIO_EWRONGSTATE RingIO is in wrong state to set an attribute.

The following scenarios will generate this error:

- The data buffer is completely full. In this case,

attribute can only be set at offset 0. But offset 0 falls
into reader region.

- The data buffer is completely acquired by the writer.

Part or none of this buffer may be released. Writer is

attempting to set an attribute at the end of its

acquired range. In this case, end of writer buffer is the
same as beginning of reader buffer.

-Attribute buffer is full.

Page 57 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

Comments

Writer client can try to set attributes after reader has released some data buffer.

Incase of attribute buffer is full, reader has to read some attributes to allow writer to

set attributes.

Constraints

‘handle’ must not be NULL

See Also
RingIO_getAttribute ()
RingIO_getvAttribute ()
RingIO_setvAttribute ()

Page 58 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.13 RingIO_getvAttribute

This function gets an attribute with a variable-sized payload from the attribute

buffer. If an attribute is present, the attribute type, the optional parameter, a pointer

to the optional payload and the payload size are returned.

Syntax
DSP_STATUS RingIO_getvAttribute (RingIO_Handle hand le,
 Uint16 * type,
 Uint32 * param,
 RingIO_BufPtr vptr,
 Uint32 * pSize) ;

Arguments

IN RingIO_Handle Handle

Handle to the RingIO Client.

OUT Uint16 * Type

Location to receive the user-defined type of attribute.

OUT Uint32 * Param

Location to receive an optional parameter which depends on the

attribute type.

OUT RingIO_BufPtr Vptr

Pointer to buffer to receive the optional payload.

OUT Uint32 * pSize

Location with the size of the variable attribute. On return, this stores

the actual size of the payload.

Return Value

RINGIO_SUCCESS The operation has been successfully completed.

RINGIO_SPENDINGATTRIBUTE Additional attributes are present at the current

read offset.

RINGIO_EVARIABLEATTRIBUTE No buffer has been provided to receive the

variable attribute payload.

RINGIO_EPENDINGDATA More data must be read before reading the

attribute.

RINGIO_EFAILURE No valid attributes are present or general failure.

DSP_EINVALIDARG Invalid arguments

Comments

None

Page 59 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

Constraints

‘handle’ must not be NULL

‘type’, ‘param’, ‘vptr’ and ‘size’ must point to valid memory locations.

See Also
RingIO_getAttribute ()
RingIO_setAttribute ()
RingIO_setvAttribute ()

Page 60 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.14 RingIO_setvAttribute

This function sets an attribute with a variable sized payload at the offset provided in

the acquired data buffer. If the offset is not in the range of the acquired data buffer,

the attribute is not set, and an error is returned. One exception to this rule is when

no data buffer has been acquired. In this case an attribute is set at the next data

buffer offset that can be acquired

Syntax
DSP_STATUS RingIO_setvAttribute (RingIO_Handle hand le,
 Uint32 offs et,
 Uint16 type ,
 Uint32 para m,
 RingIO_BufPtr pdat a,
 Uint32 size) ;

Arguments

IN RingIO_Handle handle

Handle to the RingIO Client.

IN Uint32 offset

Offset in the acquired data buffer to which the attribute

corresponds

IN Uint16 type

User-defined type of attribute.

IN OPT Uint32 param

Optional parameter which depends on the attribute type.

IN RingIO_BufPtr pdata

Pointer to attribute payload buffer.

IN Uint32 size

Size of the attribute payload.

Return Value

RINGIO_SUCCESS The operation has been successfully completed.

RINGIO_EFAILURE General failure

DSP_EINVALIDARG Invalid arguments

Page 61 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

RINGIO_EWRONGSTATE RingIO is in wrong state to set an attribute.

The following scenarios will generate this error:

- The data buffer is completely full. In this case,

attribute can only be set at offset 0. But offset 0 falls
into reader region.

- The data buffer is completely acquired by the writer.

Part or none of this buffer may be released. Writer is

attempting to set an attribute at the end of its

acquired range. In this case, end of writer buffer is the
same as beginning of reader buffer.

-Attribute buffer is full.

Comments

Writer client can try to set attributes after reader has released some data buffer.

Incase of attribute buffer is full, reader has to read some attributes to allow writer to

set attributes.

Constraints

‘handle’, ‘pdata’ should not be NULL

‘size’ should be 4 byte aligned.

See Also
RingIO_getAttribute ()
RingIO_setAttribute ()
RingIO_getvAttribute ()

Page 62 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.15 RingIO_flush

This function is used to flush the data from the RingIO. Behavior of this function

depends on the value of hardFlush argument.

When hardFlush is false:

If function is called for the writer, all the valid data in buffer after the first

attribute location will be discarded. In case there are no attributes, no data

will be cleared from the buffer. Note that this does not include the data that

has been already acquired by the reader. Note that the attribute will also be

cleared from the attribute buffer.

For the reader, all the data till the next attribute location will be discarded.

And if there is no attribute in the buffer, all valid data will get discarded. Note

that the attribute will remain the attribute buffer. This is different from the

behavior mentioned for the writer.

When hardFlush is true:

If function is called from the writer, all committed data andattributes that is

not acquired by reader are removed from the RingIO instance. The writer

pointer is moved to point to reader's head pointer

If function is called from the reader, all data and attributes that can be

subsequently acquired from the reader are removed.

Syntax
DSP_STATUS RingIO_flush (RingIO_Handle handle,
 Bool hardFlush,
 Uint16 * type,
 Uint32 * param) ;

Arguments

IN RingIO_Handle handle

Handle to the RingIO Client.

IN Bool hardFlush

Mode in which the flush operation discards committed data and

attributes.

OUT Uint16 * type

Location to receive the User-defined type of attribute.

OUT Uint32 * param

Location to receive an optional parameter which depends on the

attribute type.

Return Value

RINGIO_SUCCESS The operation has been successfully completed.

RINGIO_EFAILURE General failure

Page 63 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

DSP_EINAVLIDARG Invalid arguments

Comments

None

Constraints

‘handle’ should not be NULL

‘type’ and ‘param’ should point to valid memory locations.

See Also
None.

Page 64 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.16 RingIO_setNotifier

This function sets Notification parameters for the RingIO Client. Both the reader and

writer can set their notification mechanism using this function

Syntax
DSP_STATUS RingIO_setNotifier (RingIO_Handle h andle,
 RingIO_NotifyType n otifyType,
 Uint32 n otifyWatermark,
 RingIO_NotifyFunc n otifyFunc,
 RingIO_NotifyParam n otifyParam) ;

Arguments

IN RingIO_Handle Handle

Handle to the RingIO client.

IN RingIO_NotifyType notifyType

Type of notification.

IN Uint32 notifyWatermark

Watermark for notification

IN RingIO_NotifyFunc notifyFunc

Function to call when notification is required

IN RingIO_NotifyParam notifyParam

Pointer to the notification parameter. The type of the pointer

and its size depends on the notification function

Return Value

RINGIO_SUCCESS The operation has been successfully completed.

RINGIO_EFAILURE General failure.

DSP_EINVALIDARG Invalid arguments

Comments

None

Constraints

‘handle’ should not be NULL

See Also
RingIO_NotifyType
RingIO_NotifyFunc
RingIO_NotifyParam

Page 65 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.17 RingIO_sendNotify

This function sends a notification to the other client with an associated message

value.

The message value includes the RingIO Id only in the lower 16 bits of the payload

and the upper 16 bits includes the message.

Syntax
DSP_STATUS RingIO_sendNotify (RingIO_Handle hand le,
 RingIO_NotifyMsg msg) ;

Arguments

IN RingIO_Handle handle

Handle to the RingIO client.

IN RingIO_NotifyMsg msg

Message to be sent along with notification.

Return Value

RINGIO_SUCCESS The operation has been successfully completed.

RINGIO_EFAILURE General failure

DSP_EINVALIDARG Invalid arguments

DSP_ENOTREADY Failed .DSP is not ready to respond to requested

command.

Comments

This API will return success only when other RingIO client is valid. Along with this,

other client has to have a registered notification function.

Constraints

‘handle’ should not be NULL

See Also
RingIO_Handle
RingIO_NotifyMsg
RingIO_setNotifier ()

Page 66 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

Page 67 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.18 RingIO_getValidSize

This function returns the valid size in the RingIO.

Syntax
Uint32 RingIO_getValidSize (IN RingIO_Handle handle);

Arguments

IN RingIO_Handle handle

Handle of the RingIO instance

Return Value

Valid data size The operation has been successfully completed.

Comments

This function is provided as a helper function to return information about the current

state of the RingIO client.

Constraints

‘handle’ should not be NULL and must be valid handle.

See Also
RingIO_Handle
RingIO_ControlStruct

Page 68 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.19 RingIO_getValidAttrSize

This function returns the valid attributes size in the RingIO.

Syntax
Uint32 RingIO_getValidAttrSize (IN RingIO_Handle ha ndle);

Arguments

IN RingIO_Handle handle

Handle of the RingIO instance

Return Value

Valid attribute size The operation has been successfully completed.

Comments

This function is provided as a helper function to return information about the current

state of the RingIO client.

Constraints

‘handle’ should not be NULL and must be valid handle.

See Also
RingIO_Handle
RingIO_ControlStruct

Page 69 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.20 RingIO_getEmptySize

This function returns the current empty data buffer size.

Syntax
Uint32 RingIO_getEmptySize (IN RingIO_Handle handle);

Arguments

IN RingIO_Handle handle

Handle of the RingIO instance

Return Value

Empty data buffer size The operation has been successfully completed.

Comments

This function is provided as a helper function to return information about the current

state of the RingIO client.

Constraints

‘handle’ should not be NULL and must be valid handle.

See Also
RingIO_Handle
RingIO_ControlStruct

Page 70 of 70 Version 0.91

DSP/BIOS™ LINK

LNK 129 DES

RING IO

5.3.21 RingIO_getEmptyAttrSize

This function returns the current empty attribute buffer size.

Syntax
Uint32 RingIO_getEmptyAttrSize (IN RingIO_Handle ha ndle);

Arguments

IN RingIO_Handle handle

Handle of the RingIO instance

Return Value

Empty attribute buffer
size

The operation has been successfully completed.

Comments

This function is provided as a helper function to return information about the current

state of the RingIO client.

Constraints

‘handle’ should not be NULL and must be valid handle.

See Also
RingIO_Handle

RingIO_ControlStruct.

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Assumptions
	Constraints
	High Level Design
	Features
	Generic features
	DSP cache-related information
	Acquiring and releasing data
	Writer
	Reader
	Attributes
	Notification
	Notification related details
	
	Writer Client calls Acquire
	Reader Client calls Acquire
	Writer Client calls Release
	Reader Client calls Release
	Writer Client calls Cancel
	Reader Client calls Cancel
	Writer Client calls Flush
	Reader Client calls Flush

	Control flow
	RingIO component
	GPP-side
	Component interaction

	DSP-side
	Overview
	Component interaction

	RingIO
	Constants & Enumerations
	RINGIO_NAME_MAX_LEN
	RINGIO_INVALID_ATTR
	RINGIO_DATABUF_CACHEUSE
	RINGIO_ATTRBUF_CACHEUSE
	RINGIO_CONTROL_CACHEUSE
	RINGIO_NEED_EXACT_SIZE

	Typedefs & Data Structures
	RingIO_NotifyType
	RingIO_OpenMode
	RingIO_TransportType
	RingIO_Attrs
	RingIO_Client
	RingIO_ControlStruct
	RingIO_Entry
	RingIO_Ctrl
	RingIO_MemInfo

	API Definition
	RingIO_getAcquiredOffset
	RingIO_getAcquiredSize
	RingIO_getWatermark
	RingIO_create
	RingIO_delete
	RingIO_open
	RingIO_close
	RingIO_acquire
	RingIO_release
	RingIO_cancel
	RingIO_getAttribute
	RingIO_setAttribute
	RingIO_getvAttribute
	RingIO_setvAttribute
	RingIO_flush
	RingIO_setNotifier
	RingIO_sendNotify
	RingIO_getValidSize
	RingIO_getValidAttrSize
	RingIO_getEmptySize
	RingIO_getEmptyAttrSize

