

Page 1 of 64 Version 1.13

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

DSP/BIOS™ LINK

PROCESSOR MANAGER

LNK 010 DES

Version 1.13

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 2 of 64 Version 1.13

This page has been intentionally left blank.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 3 of 64 Version 1.13

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make
corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should
verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the
risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right
relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third–party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other
intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,
conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered
documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 4 of 64 Version 1.13

This page has been intentionally left blank.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 5 of 64 Version 1.13

TABLE OF CONTENTS

1 Introduction ... 7
1.1 Purpose and Scope .. 7
1.2 Terms and Abbreviations .. 7
1.3 References ... 7
1.4 Overview.. 8

2 High Level Design... 9

3 PMGR_PROC ... 11
3.1 Resources Available ..11
3.2 Dependencies ..11
3.3 Description ..11
3.4 Typedefs and Data Structures ..12
3.5 API Definition...14

4 PMGR_CHNL ... 24
4.1 Resources Available ..24
4.2 Description ..24
4.3 API Definition...25

5 PMGR_CODE ... 35
5.1 Description ..35
5.2 API Definition...36

6 PMGR_PARS ... 39
6.1 Resources Available ..39
6.2 Description ..39
6.3 Typedefs and Data Structures ..40
6.4 API Definition...43

7 Different Boot Mode support .. 51
7.1 Resources Available ..51
7.2 Dependencies ..51
7.3 Description ..51
7.4 Decision Analysis & Resolution ...56
7.5 Decision Analysis & Resolution ...58
7.6 Typedefs and Data Structures ..60

8 Appendix .. 64
8.1 Concept of Ownership of Components ...64
8.2 Future Enhancements ...64

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 6 of 64 Version 1.13

TABLE OF FIGURES

Figure 1. Relationship Between the Components in Processor Manager

and DSP/BIOS™ Link ... 9
Figure 2. Components involved in parsing a DSP executable....................................35
Figure 3. DSPLINK_BOOT_MODE: Default ...53
Figure 4. DSPLINK_NOLOAD_MODE: Optimized load ..54
Figure 5. DSPLINK_NOBOOT_MODE: Optimized start ...56

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 7 of 64 Version 1.13

1 Introduction

1.1 Purpose and Scope
This document describes the overall design and architecture of the Processor

Manager layer of the DSP/BIOS™ Link. The initial implementation of Processor
Manager is intended for the DSP/BIOS™ LINK on the OMAP running Nucleus.

It lists the interfaces that the PMGR layer exposes and also describes the overall

design for implementing these interfaces.

Return values as returned by a function in the document may not reflect all possible
values that the function returns.

1.2 Terms and Abbreviations
CFG Configuration sub-component

PMGR_CHNL Channel sub-component

COFF Common Object File Format

GPP General Purpose Processor

LDRV Link Driver sub-component

LIST A collection of methods that allow list management.

OMAP TI’s multicore chipset

PGMR Processor Manager component

PMGR_PARS Parser sub-component

PMGR_PROC Processor sub-component

User API Application Programming Interface exposed by DSP/BIOS™
LINK

1.3 References
1 LNK 012 DES DSP/BIOS™ LINK

Link Driver

Version 1.11, dated JUL 25, 2003

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 8 of 64 Version 1.13

1.4 Overview
The Processor Manager forms the layer of DSP/BIOS™ Link that is exported to the

user. It provides functionality to both, control the DSP i.e., load code, start the DSP
image execution, stop it etc., and transfer the data through the data streams or
channels between the GPP and the DSP. The Processor Manager is also responsible

for parsing the image file before loading it onto the DSP. It uses the services of the
Link Driver to perform the tasks for a user.

The Processor Manager’s individual subcomponents implement this policy:

a. The first client that starts using a resource (PMGR_PROC/PMGR_CHNL) is
designated as the owner of the resource.

b. It frees the resource only when the owner releases it.

If the owner frees a resource, the resource is released even if the other clients have

not yet released the resource. In such a case, the other clients (if any) are notified
about the release of the resource.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 9 of 64 Version 1.13

2 High Level Design
The Processor Manager implements its dual functionality of control and

communication with the DSP, using services from the Link Driver and the GPP OS
services from the OSAL.

Figure 1 shows the relationship of components in the Processor Manager layer with

other components of DSP/BIOS™ Link.

Figure 1. Relationship Between the Components in Processor
Manager and DSP/BIOS™ Link

The PMGR_PROC subcomponent provides services to control the target DSP and uses

services from PMGR_CODE and LDRV_PROC sub-components to accomplish its tasks.

The PMGR_CHNL component provides services for transferring data between the GPP

and the DSP and uses the services that the LDRV_CHNL sub-component provides to
accomplish its tasks.

PMGR_PROC PMGR_CHNL

ParserObj_1

…

ParserObj_N

 PMGR_PARS

Partition between independent components

Interaction between components through function calls

O
S

A
L

PMGR_CODE

LDRV_PROC LDRV_CHNL

Link Driver

Processor Manager

User API

PROC CHNL

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 10 of 64 Version 1.13

The base image of a DSP is stored in COFF file format. PMGR_CODE uses the

services that PMGR_PARS provides to parse the image and then loads this file onto

the DSP. The PMGR_PARS sub-component is designed to be capable of
understanding multiple COFF formats to support multiple and heterogeneous DSPs
through DSP/BIOS™ Link. For this, it uses multiple (possibly plug-able) parsers.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 11 of 64 Version 1.13

3 PMGR_PROC

3.1 Resources Available
This subcomponent uses the services from the PMGR_CODE sub-component for parsing
base image file and from LDRV_PROC for interacting/controlling the target DSP. It also
uses OSAL for performing the OS dependent tasks in an OS independent manner.

3.2 Dependencies

3.2.1 Subordinates
PMGR_CODE, LDRV_PROC

3.2.2 Preconditions

PMGR_PROC_Attach() must be called before any other PMGR_PROC and PMGR_CHNL
APIs are called.

3.3 Description
This subcomponent provides services to start, stop, and initialize a DSP. It also

provides services to load a base image onto the target DSP. It maintains a list of
clients that are attached to the DSP.

The first client (thread/process) that attaches to a DSP is designated as the owner of
that DSP. Any number of clients can subsequently attach to and use the DSP.

However, only the owner of the DSP has rights to load a base-image on the DSP and
effect transitions in the DSP processor’s state.

For example, from Idle to Loaded, Loaded to Started. (Refer to the Link Driver

design document for details on the DSP’s states).

PMGR_PROC releases the resources reserved for controlling the DSP only when the

owner detaches from the DSP. Also, when the owner detaches from the DSP, all the
other clients of the DSP are also detached and the DSP is in an unusable state i.e., is

the ‘Idle’ state.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 12 of 64 Version 1.13

3.4 Typedefs and Data Structures

3.4.1 PMGR_ClientInfo

An element that holds process info and that can be manipulated using LIST.

Definition
typedef struct PMGR_ClientInfo_tag {
 ListElement listElement ;
 PrcsObject * prcsInfo ;
} PMGR_ClientInfo ;

Fields

listElement Structure that allows it to be used by LIST

prcsInfo Placeholder for process information

Comments

None.

3.4.2 PMGR_PROC_SetupObj

Object containing information regarding setup of this subcomponent.

Definition
typedef struct PMGR_PROC_SetupObj_tag {
 Uint32 signature ;
 PrcsObject * owner ;
 SyncCsObject * mutex [MAX_PROCESSORS] ;
} PMGR_PROC_SetupObj ;

Fields

signature Signature of this object

owner Identifier of the owner of the subcomponent.

mutex Critical section object to ensure mutual exclusion

Comments

None.

3.4.3 PMGR_PROC_Object

Object containing information maintained by this subcomponent.

Definition
typedef struct PMGR_PROC_Object_tag {
 Uint32 signature ;
 PrcsObject * owner ;
 List * clients ;
 Uint32 entryPoint ;
} PMGR_PROC_Object ;

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 13 of 64 Version 1.13

Fields

signature Signature of this object

owner The owner of the processor

clients List of clients that have attached to the processor

entryPoint Entry point of the executable loaded on target processor

Comments

None.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 14 of 64 Version 1.13

3.5 API Definition

3.5.1 PMGR_PROC_Attach

Attaches the client to the specified DSP and also initializes the DSP (if required). The

first caller to this function is designated as the owner of the DSP.

Syntax
DSP_STATUS PMGR_PROC_Attach (ProcessorId procId,
 ProcAttr * attr) ;

Arguments

IN ProcessorId procId

Specifies the index of processor to attach to

OPT ProcAttr * attr

Attributes for the processor on which the attach must be done

Return Values

DSP_SOK Operation completed successfully.

DSP_SALREADYATTACHED Successful attach. Also, indicates that another client
has already attached to the DSP.

DSP_EACCESSDENIED Not allowed to access the DSP

DSP_EFAIL Unable to attach to processor

DSP_EWRONGSTATE Incorrect state to the completed requested operation

Comments

This function calls LDRV_PROC_Initialize () to initialize the DSP if it is not already
initialized. This function maintains a list of client’s process/thread IDs (as returned by

PRCS_GetInfo ()) to keep track of all the clients attached to a target DSP.

Constraints

Build options can be specified to exclude PMGR_CHNL from the system. Therefore, this

function initializes the PMGR_CHNL component conditionally.

See Also
PMGR_PROC_Detach

3.5.2 PMGR_PROC_Detach

This function allows the client to detach from a DSP and indicates the Processor

Manager that the target DSP will not be used any longer.

Syntax
DSP_STATUS PMGR_PROC_Detach (ProcessorId procId) ;

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 15 of 64 Version 1.13

Arguments

IN ProcessorId procId

Identifier for the target DSP to be detached from.

Return Values

DSP_SOK Operation completed successfully.

DSP_EFAIL A failure occurred, unable to detach

DSP_ENOTOWNER Not the owner of DSP

DSP_EATTACHED Not attached to the target processor

DSP_EWRONGSTATE Incorrect state to the completed requested operation

Comments

This function removes the caller’s process/thread ID information from its list. If the
caller is the owner of the target DSP, it releases all resources used for managing the

DSP calls LDRV_PROC_Finalize() .

Constraints

The callers must do a PMGR_PROC_Attach() before calling this function.

See Also
PMGR_PROC_Attach

3.5.3 PMGR_PROC_GetState

This function obtains the current state of the target DSP.

Syntax
DSP_STATUS PMGR_PROC_GetState (ProcessorId procId,
 ProcState * procSta te) ;

Arguments

IN ProcessorId procId

DSP identifier.

OUT ProcState * ProcState

Buffer to hold the processor’s current state. Link Driver defines this
type.

Return Values

DSP_SOK Operation successfully completed.

DSP_EPOINTER Invalid status buffer

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 16 of 64 Version 1.13

Comments

This function queries the Link Driver to get the current state of DSP by querying the

Link Driver. Since this function does not affect a state change on the DSP, all the

clients are allowed to make a call to this function.

Constraints

The caller must do a PMGR_PROC_Attach() before calling this function.

See Also
PMGR_PROC_Load
PMGR_PROC_Start
PMGR_PROC_Stop
PMGR_PROC_Idle

3.5.4 PMGR_PROC_Load

This function loads the specified base image onto the target DSP.

Syntax
DSP_STATUS PMGR_PROC_Load (ProcessorId procId,
 Char8 * imagePath,
 Uint32 argc,
 Char8 ** argv) ;

Arguments

IN ProcessorId procId

Target DSP identifier where the base image must load.

IN Char8 * imagePath

Full path to the image file to load on DSP

IN Uint32 argc

Number of argument to pass to the base image upon start

IN Char8 ** argv

Arguments to pass to the DSP main application

Return Values

DSP_SOK Base image successfully loaded.

DSP_EACCESSDENIED Not allowed to access the DSP

DSP_EFILE Invalid base image

DSP_EFAIL Unable to load image on DSP

Comments

Loads the specified base image onto the target DSP after ensuring that the caller is

the owner of the target DSP. It invokes the services from the PMGR_CODE component
for parsing the DSP image file, which loads the base image onto the DSP using the

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 17 of 64 Version 1.13

LDRV_PROC interface. It also retrieves the start address of the base image and stores
it in a private structure for future use (to be used in PMGR_PROC_Start()).

Constraints

The caller must do a PMGR_PROC_Attach() before calling this function.

See Also
PMGR_PROC_Attach
PMGR_PROC_LoadSection

3.5.5 PMGR_PROC_LoadSection

This function loads a particular section from the base image file onto the target DSP

Syntax
DSP_STATUS PMGR_PROC_LoadSection (ProcessorId proc Id,
 FileName imag ePath,
 Uint32 sect ID) ;

Arguments

IN ProcessorId procId

DSP identifier.

IN FileName imagePath

Full path to the image file

IN Uint32 sectID

Section ID of the section to load.

Return Values

DSP_SOK Operation successfully completed

DSP_EFILE Invalid baseImage parameter

DSP_EINVALIDSECTION Invalid section name

DSP_EACCESSDENIED Not allowed to access the DSP

DSP_EFAIL General failure, unable to load section on DSP

Comments

This function retrieves the specified section from the base image and loads it onto

the target DSP using the services from PMGR_CODE

Constraints

The caller must do a PMGR_PROC_Attach() before calling this function.

See Also
PMGR_PROC_Attach
PMGR_PROC_Load

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 18 of 64 Version 1.13

3.5.6 PMGR_PROC_Start

This function starts the execution of the loaded code on the DSP from the starting

point specified in the base image.

Syntax
DSP_STATUS PMGR_PROC_Start (ProcessorId procId) ;

Arguments

IN ProcessorId procId

DSP identifier.

Return Values

DSP_SOK Operation successfully completed

DSP_SALREATESTARTED DSP is already in running state

DSP_EACCESSDENIED Not allowed to access the DSP

DSP_EFAIL General failure, unable to start the DSP

DSP_EATTACHED Client has not attached the to the DSP

Comments

This function executes the loaded code on the DSP from the starting point specified

in the base image. The function retrieves the start address of the base image when

parsing the file (during PMGR_PROC_Load()).

Constraints

A base image must be loaded onto the target DSP before this call.

The caller must do a PMGR_PROC_Attach() before calling this function.

See Also
PMGR_PROC_Attach
PMGR_PROC_Load
PMGR_PROC_Stop

3.5.7 PMGR_PROC_Stop

The function stops the execution on the target DSP processor by making a call to
LDRV_PROC_Stop ().

Syntax
DSP_STATUS PMGR_PROC_Stop (ProcessorId procId) ;

Arguments

IN ProcessorId procId

DSP identifier.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 19 of 64 Version 1.13

Return Values

DSP_SOK Operation successfully completed

DSP_SALREADYSTOPPED DSP has stopped

DSP_EACCESSDENIED Not allowed to access the DSP

DSP_EFAIL General failure, unable to stop the DSP

DSP_EATTACHED Client has not attached the to the DSP

Comments

None.

Constraints

The caller must do a PMGR_PROC_Attach() before calling this function.

See Also
PMGR_PROC_Attach
PMGR_PROC_Load
PMGR_PROC_Start

3.5.8 PMGR_PROC_Control

Provides a hook to perform device dependent control operations.

Syntax

DSP_STATUS PMGR_PROC_Control (ProcessorId dspId,

 Int32 cmd,

 Pvoid arg) ;

Arguments

IN ProcessorId dspId

Identifier for the DSP

IN Int32 cmd

Command identifier.

IN Pvoid arg

Optional argument

Return Values

DSP_SOK Operation completed successfully

DSP_EINVALIDARG Invalid dspId or dspObj specified

Comments

None.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 20 of 64 Version 1.13

Constraints

PMGR_Initialize () must be called before calling this function.

The DSP must not be in the Error state.

See Also
None.

3.5.9 PMGR_PROC_Debug

This function prints the current status of this component for debugging purposes

Syntax
Void PMGR_PROC_Debug () ;

Arguments

None.

Return Value

None.

Comments

None.

Constraints

None.

See Also
PMGR_PROC_Attach

3.5.10 PMGR_PROC_Instrument

Gets the instrumentation data associated with PMGR_PROC sub-component.

Syntax
DSP_STATUS PMGR_PROC_Instrument(ProcessorId pr ocId,
 ProcInstrument* re tVal);

Arguments

IN ProcessorId procId

Identifier for processor for which instrumentation information is to be
obtained.

OUT ProcInstrument * retVal

OUT argument to contain the instrumentation information

Return Values

DSP_SOK Operation completed successfully

DSP_EINVALIDARG retVal is invalid.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 21 of 64 Version 1.13

Comments

None.

Constraints

procId must be valid.

retVa l must be a valid pointer.

See Also
None.

3.5.11 PMGR_PROC_IsAttached

Function to check whether the client identified by the specified 'client' object is

attached to the specified processor.

Syntax
PMGR_PROC_IsAttached (ProcessorId procId,

 PrcsObject * client,
 Bool * isAttached) ;

Arguments

IN ProcessorId procId

Identifier for processor for which instrumentation information is to be
obtained.

OUT PrcsObject * client

Client identifier.

OUT Bool * isAttached

Placeholder for flag indicating the client is attached.

Return Values

DSP_SOK Operation completed successfully

DSP_EINVALIDARG Invalid argument

Comments

None.

Constraints

procId must be valid.

See Also
PMGR_PROC_Attach

3.5.12 PMGR_PROC_Destroy

Destroys the data structures for the PMGR_PROC component, allocated earlier by a

call to PROC_Setup ().

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 22 of 64 Version 1.13

Syntax
Void PMGR_PROC_Destroy () ;

Arguments

None.

Return Values

DSP_SOK Operation completed successfully

DSP_EMEMORY Operation failed due to memory error.

DSP_EACCESSDENIED Access denied. Only the client who had successfully
called PMGR_PROC_Setup() can call this function.

DSP_EFAIL DSP_EFAIL

Comments

None.

Constraints

None.

See Also
PMGR_PROC_Setup

3.5.13 PMGR_PROC_Setup

Sets up the necessary data structures for the PMGR_PROC sub-component.

Syntax
Void PMGR_PROC_Destroy () ;

Arguments

None.

Return Values

DSP_SOK Operation completed successfully

DSP_EMEMORY Operation failed due to memory error.

DSP_EACCESSDENIED Access denied. Only the client who had successfully
called PMGR_PROC_Setup() can call this function

DSP_EFAIL General failure

Comments

None.

Constraints

None.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 23 of 64 Version 1.13

See Also
PMGR_PROC_Destroy

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 24 of 64 Version 1.13

4 PMGR_CHNL

4.1 Resources Available
This component uses the services from the LDRV_CHNL and OSAL components to
achieve its tasks.

4.1.1 Subordinates

None.

4.1.2 Preconditions

PMGR_PROC_Attach () must be done before making any calls from this component

4.2 Description
This component provides the infrastructure to transfer the data buffers between the

DSP and the GPP. The current design restricts the usage of a channel by only one
process/thread.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 25 of 64 Version 1.13

4.3 API Definition

4.3.1 PMGR_CHNL_Initialize

Sets up all channel objects in Link Driver.

Syntax
DSP_STATUS PMGR_CHNL_Initialize (ProcessorId procI d) ;

Arguments

IN ProcessorId procId

Processor ID

Return Values

DSP_SOK Operation completed successfully

DSP_EFAIL General failure

DSP_EMEMORY Operation failed due to memory error

Comments

This function calls LDRV_CHNL_Initialize () to set up all the channel objects in the

Link Driver.

Constraints

ProcessorId must be valid.

See Also
PMGR_CHNL_Finalize
PMGR_CHNL_Create

4.3.2 PMGR_CHNL_Finalize

Releases all channel objects setup in Link Driver.

Syntax
DSP_STATUS PMGR_CHNL_Finalize (ProcessorId procId) ;

Arguments

IN ProcessorId procId

Processor ID

Return Values

DSP_SOK Operation completed successfully

DSP_EFAIL General failure

DSP_EMEMORY Operation failed due to memory error

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 26 of 64 Version 1.13

Comments

None.

Constraints

Channels for specified processor must be initialized. Processor Id must be valid.

See Also
PMGR_CHNL_Initialize
PMGR_CHNL_Create
PMGR_CHNL_Destroy

4.3.3 PMGR_CHNL_Create

Creates resources used for transferring data between GPP and DSP.

Syntax
DSP_STATUS PMGR_CHNL_Create (ProcessorId procId,
 ChannelId chnlId,
 ChnlAttrs * attrs);

Arguments

IN ProcessorId procId

Processor ID

IN ChannelId chnlId

Channel ID of channel to create

IN ChnlAttrs * attrs

Channel attributes, if NULL, default attributes are applied

Return Values

DSP_SOK Operation completed successfully

DSP_EFAIL General failure

DSP_EMEMORY Operation failed due to memory error

Comments

This function calls LDRV_CHNL_Open () and creates the resources for transferring the
data between the GPP and the DSP.

Constraints

Channels for specified processors must be initialized. Processor and channel ids must

be valid. Attributes must be valid.

See Also
PMGR_CHNL_Initialize

4.3.4 PMGR_CHNL_Delete

Releases channel resources used for transferring data between GPP and DSP.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 27 of 64 Version 1.13

Syntax
DSP_STATUS PMGR_CHNL_Delete (ProcessorId procId,
 ChannelId chnlId) ;

Arguments

IN ProcessorId procId

Processor Identifier

IN ChannelId chnlId

Channel Identifier

Return Values

DSP_SOK Operation completed successfully

DSP_EFAIL General failure

DSP_EMEMORY Operation failed due to memory error

Comments

None.

Constraints

Channels for specified processors must be initialized. Processor and channel ids must

be valid.

See Also
PMGR_CHNL_Create

4.3.5 PMGR_CHNL_AllocateBuffer

Allocates an array of buffers of specified size and returns them to the client.

Syntax
DSP_STATUS PMGR_CHNL_AllocateBuffer (ProcessorId p rocId,
 ChannelId c hnlId,
 Char8 ** b ufArray,
 Uint32 s ize,
 Uint32 n umBufs);

Arguments

IN ProcessorId procId

Processor Identifier

IN ChannelId chnlId

Channel Identifier

OUT Char8 ** bufArray

Pointer to receive an array of allocated buffers

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 28 of 64 Version 1.13

IN Uint32 size

Size of each buffer

IN Uint32 numBufs

Number of buffers to allocate

Return Values

DSP_SOK Operation completed successfully

DSP_EFAIL General failure, channel not initialized

DSP_EMEMORY Operation failed due to memory error

Comments

None.

Constraints

Channels for specified processors must be initialized. Processor and channel ids must

be valid.

See Also
PMGR_CHNL_Initialize
PMGR_CHNL_Create
PMGR_CHNL_FreeBuffer

4.3.6 PMGR_CHNL_FreeBuffer

Frees buffer(s) allocated by PMGR_CHNL_AllocateBuffer.

Syntax
DSP_STATUS PMGR_CHNL_FreeBuffer (ProcessorId procI d,
 ChannelId chnlI d,
 Char8 ** bufAr ray,
 Uint32 numBu fs);

Arguments

IN ProcessorId procId

Processor ID

IN ChannelId chnlId

Channel ID

IN Char8 ** bufArray

Pointer to the array of buffers to freed

IN Uint32 numBufs

Number of buffers to be freed

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 29 of 64 Version 1.13

Return Values

DSP_SOK Operation completed successfully

DSP_EFAIL General failure, channel not initialized

DSP_EMEMORY Operation failed due to memory error

Comments

None.

Constraints

Channels for specified processors must be initialized. Processor and channel ids

must be valid.

See Also
PMGR_CHNL_Initialize
PMGR_CHNL_Create
PMGR_CHNL_AllocateBuffer

4.3.7 PMGR_CHNL_Issue

Issues an input or output request on a specified channel.

Syntax
DSP_STATUS PMGR_CHNL_Issue (ProcessorId procId,
 ChannelId chnlId,
 ChannelIOInfo * ioReq
) ;

Arguments

IN ProcessorId procId

Processor Identifier

IN ChannelId chnlId

Channel Identifier

IN ChannelIOInfo * ioReq

IO request packet

Return Values

DSP_SOK Operation completed successfully

DSP_EFAIL General failure

DSP_EMEMORY Operation failed due to memory error

DSP_EACCESSDENIED Not the owner of the channel

Comments

This function calls LDRV_CHNL_AddIORequest() to queue ioReq on the channel.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 30 of 64 Version 1.13

Constraints

Channels for specified processors must be initialized. Processor and channel ids must

be valid.

See Also
PMGR_CHNL_Reclaim

4.3.8 PMGR_CHNL_Reclaim

Gets the buffer back that has been issued to this channel

Syntax
DSP_STATUS PMGR_CHNL_Reclaim (ProcessorId procI d,
 ChannelId chnlI d,
 Uint32 timeo ut
 ChannelIOInfo * ioReq);

Arguments

IN ProcessorId procId

Processor Identifier

IN ChannelId chnlId

Channel Identifier

IN Uint32 timeout

Timeout for this operation

OUT ChannelIOInfo * ioReq

Information needed for doing reclaim

Return Values

DSP_SOK Operation completed successfully

DSP_EFAIL General failure, channel not initialized

DSP_EMEMORY Operation failed due to memory error

DSP_EACCESSDENIED Not the owner of the channel

DSP_ETIMEOUT Timed out. Waiting for a buffer on channel

CHNL_E_NOIOC Timeout parameter was "NO_WAIT", yet no I/O
completions were queued.

Comments

This function calls LDRV_CHNL_AddIORequest() to queue ioReq on the channel.

Constraints

Channels for specified processors must be initialized. Processor and channel ids must

be valid.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 31 of 64 Version 1.13

See Also
PMGR_CHNL_Initialize
PMGR_CHNL_Create
PMGR_CHNL_AllocateBuffer

4.3.9 PMGR_CHNL_Idle

If the channel is an input stream this function resets the channel and causes any
currently buffered input data to be discarded. If the channel is an output channel,

this function causes any currently queued buffers to be transferred through the
channel. It causes the client to wait for as long as it takes for the data to be
transferred through the channel.

Syntax
DSP_STATUS PMGR_CHNL_Idle (ProcessorId procId,
 ChannelId chnlId) ;

Arguments

IN ProcessorId procId

Processor ID

IN ChannelId chnlId

Channel ID

Return Values

DSP_SOK Operation completed successfully

DSP_EFAIL General failure, channel not initialized

DSP_EMEMORY Operation failed due to memory error

DSP_EACCESSDENIED Not the owner of the channel

DSP_ETIMEOUT Time out occurred before the channel could be idled

Comments

None.

Constraints

Channels for specified processor must be initialized. Processor and channel ids must

be valid.

See Also
PMGR_CHNL_Initialize
PMGR_CHNL_Create

4.3.10 PMGR_CHNL_Flush

Discards all the requested buffers that are pending for transfer both in case of input

mode channel as well as output mode channel. One must still have to call the
PMGR_CHNL_Reclaim to get back the discarded buffers.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 32 of 64 Version 1.13

Syntax
DSP_STATUS PMGR_CHNL_Flush (ProcessorId procId,
 ChannelId chnlId) ;

Arguments

IN ProcessorId procId

Processor Identifier

IN ChannelId chnlId

Channel Identifier

Return Values

DSP_SOK Operation completed successfully

DSP_EFAIL General failure, channel not initialized

DSP_EMEMORY Operation failed due to memory error

Comments

None.

Constraints

Channels for specified processor must be initialized. Processor and channel ids must

be valid.

See Also
PMGR_CHNL_Initialize
PMGR_CHNL_Create
PMGR_CHNL_Issue

4.3.11 PMGR_CHNL_Control

Provides a hook to perform device dependent control operations on channels.

Syntax
DSP_STATUS PMGR_CHNL_Control (ProcessorId procId,
 ChannelId chnlId,
 Int32 cmd,
 Pvoid arg) ;

Arguments

IN ProcessorId procId

Processor Identifier

IN ChannelId chnlId

Channel Identifier

IN Int32 cmd

Command id.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 33 of 64 Version 1.13

IN Pvoid arg

Optional argument

Return Values

DSP_SOK Operation completed successfully

DSP_ENOTIMPL Functionality not implemented

Comments

This function provides a hook to perform the device dependent control operations on

channels. Not implemented in current implementation

Constraints

None.

See Also
PMGR_CHNL_Initialize

4.3.12 PMGR_CHNL_Debug

This function prints the current status of the PMGR_CHNL sub-component.

Syntax
Void PMGR_CHNL_Debug () ;

Arguments

None.

Return Value

None.

Comments

None.

Constraints

None.

See Also
None.

4.3.13 PMGR_CHNL_Instrument

Gets the instrumentation information related to CHNL's

Syntax
PMGR_CHNL_Instrument (ProcessorId procId,
 ChannelId chnlId,
 ChnlInstrument * retVal) ;

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 34 of 64 Version 1.13

Arguments

IN ProcessorId procId

Identifier for processor

IN ChannelId chnlId

Identifier for channel for which instrumentation information is to be
obtained

OUT ChnlInstrument * retval

OUT argument to contain the instrumentation information

Return Values

DSP_SOK Operation completed successfully.

DSP_EINVALIDARG retVal is invalid.

Comments

This function provides a hook to perform the device dependent control operations on

channels. Not implemented in current implementation.

Constraints

retVal must be a valid pointer

See Also

None.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 35 of 64 Version 1.13

5 PMGR_CODE

5.1 Description
This component provides the COFF file parsing services to the DSP/BIOS™ Link.Link

is designed to support heterogeneous DSPs and therefore this component creates
different parser objects to handle this scenario.

Based on the CFG information of Link, PMGR_CODE modifies itself and can load parsers
for different file formats. A call to PMGR_CODE_LoadExecutable() results in multiple

calls to the PMGR_PARS sub-component functions. These functions in turn load the
data into format independent structures that are used while loading the image onto
the DSP.

Figure 2. Components involved in parsing a DSP executable.

PMGR_CODE

PMGR_PARS

Parser_1 Parser_2 Parser_N …

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 36 of 64 Version 1.13

5.2 API Definition

5.2.1 PMGR_CODE_LoadExecutable

Uses interfaces provided in ParserObj to parse the COFF file and load it onto DSP.

Syntax
DSP_STATUS PMGR_CODE_LoadExecutable (ProcessorId p rocId,
 FileName b aseImage,
 Uint32 a rgc,
 Char8 ** a rgv,
 Uint32 * e ntryAddress) ;

Arguments

IN ProcessorId procId

Target DSP identifier where the base image is to load

IN FileName baseImage

File identifier for the base image

IN Uint32 argc

Number of arguments to pass to the base image upon start

IN Char8 ** argv

Arguments to pass to the DSP main application.

OUT Uint32 * entryAddress

OUT argument for returning entry address for the executable

Return Values

DSP_SOK Base image successfully loaded

DSP_EFILE Invalid base image

DSP_EACCESSDENIED Not allowed to access the DSP

DSP_EFAIL General failure, unable to load image onto DSP

DSP_EINVALIDARG Invalid procId argument.

Comments

None.

Constraints

procId must be a valid DSP processor ID.

baseImage must be a valid file identifier.

entryAddress must be a valid section identifier.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 37 of 64 Version 1.13

See Also
PMGR_PROC_Load

5.2.2 PMGR_CODE_LoadSection

Uses interfaces provided in ParserObj to parse the COFF file and load it onto DSP.

Syntax
DSP_STATUS PMGR_CODE_LoadSection (ProcessorId proc Id,
 FileId * base Image,
 Uint32 sect Id) ;

Arguments

IN ProcessorId procId

DSP identifier

IN FileId * baseImage

Full path to the image file.

IN Uint32 sectId

Identifier for the section to load

Return Values

DSP_SOK Operation successfully completed

DSP_EFILE Invalid base image

DSP_EACCESSDENIED Not allowed to access the DSP

DSP_EFAIL General failure, unable to load image onto DSP

DSP_EINVALIDARG Invalid procId argument.

DSP_EINVALIDSECT Invalid section name

Comments

None.

Constraints

procId must be a valid DSP processor ID.

baseImage must be a valid file identifier.

sectId must be a valid section identifier.

See Also
PMGR_PROC_Load

5.2.3 PMGR_CODE_Debug

This function prints the current status of the PMGR_CODE sub-component.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 38 of 64 Version 1.13

Syntax
Void PMGR_CODE_Debug () ;

Arguments

None.

Return Value

None.

Comments

None.

Constraints

None.

See Also

None.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 39 of 64 Version 1.13

6 PMGR_PARS

6.1 Resources Available
This subcomponent uses services from the parser to get image data in format
dependent structures.

6.1.1 Subordinates
None.

6.1.2 Preconditions

None.

6.2 Description
This subcomponent provides the PMGR_CODE subcomponent with image data in
format independent structures to use while loading the image onto the DSP.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 40 of 64 Version 1.13

6.3 Typedefs and Data Structures

6.3.1 ImageAttributes

This structure defines a format agnostic definition of attributes that a parser

requires.

Definition
typedef struct ImageArttributes_tag {
 Uint16 version ;
 Uint16 numSections ;
 Int32 symTabOffset ;
 Int32 numSymTabEntries ;
 Uint16 numBytesOptHeader ;
 Uint16 flags ;
 Uint16 targetId ;
} ImageAttributes ;

Fields

version The version of the file format

numSections Number of sections in a file

symTabOffset Symbol table offset in a file

numSymTabEntries Number of symbol table entries in a file

numBytesOptHeader Number of bytes in the optional header

flags Flags associated with the file format

targetId Target of the DSP base image file

6.3.2 OptImageAttributes

Structure defining a format agnostic definition of optional attributes required from a

parser. This structure is a placeholder for optional attributes associated with file.
These attributes could be useful in debugging.

Definition
typedef struct OptImageAttributes _tag {

Int32 dummy ;
} OptImageAttributes ;

Fields

dummy Dummy parameter (unused)

6.3.3 SectionAtrributes

Structure defining a format agnostic definition of section related attributes required

from a parser.

Definition
typedef struct SectionAttributes_tag {
 Char8 * name ;

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 41 of 64 Version 1.13

 Uint32 index ;
 Uint32 size ;
 Uint32 sectOffset ;
 Uint32 loadAddr ;
 Uint32 runAddr ;
 Bool isLoadSection ;
 Char8 * data ;
} SectionAttributes ;

Fields

name Name of the section

index Index of the section in the DSP base image file

size Size of the section data in bytes

sectOffset Offset of the section data in a file

loadAddr Load address of the section data

runAddr Run address of the section

isLoadSection Flag to indicate that the section is loadable

data Buffer to hold data

6.3.4 SymbolAttrs

This structure defines the format agnostic definition of symbols and their attributes.

Definition
typedef struct SymbolAttrs_tag {
 Uint32 symIndex ;
 Char8 * name ;
 Uint32 addr ;
} SymbolAttrs ;

Fields

symIndex Index of the symbol in the symbol table

name Name of the symbol

addr Address of the symbol

6.3.5 ParserContext

This structure defines the context of parser. This object is created on initialization of

this sub-component and it is required to be passed as a parameter for any
subsequent function call.

Definition
typedef struct ParserContext_tag {
 KFileObject * fileObj ;
 ProcessorId procId ;

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 42 of 64 Version 1.13

 Uint32 startAddr ;
 ImageAttributes * attrs ;
 OptImageAttributes * optAttrs ;
 Uint32 numSymbols ;
 SymbolAttrs * symbols ;
} ParserContext ;

Fields

fileObj File object for the DSP base image file

procId Processor identifier

startAddr Entry point address for the DSP base image file

attrs Attributes associated with the DSP base image file

optAttrs Optional attributes associated with the DSP base image file

numSymbols Number of symbols in the DSP base image file

symbols Symbol table containing all the symbols from the DSP base
image file

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 43 of 64 Version 1.13

6.4 API Definition

6.4.1 PMGR_PARS_Initialize

Initializes a base image file for parsing. This function is required to be called before

any other function is called from this sub-component.

Syntax
DSP_STATUS PMGR_PARS_Initialize (ProcessorId procI d,

 FileName file,
 Void ** obj) ;

Arguments

IN ProcessorId procId

Processor Id

IN FileName file

Identifier for the file.

OUT Void ** obj

OUT argument that contains the object to be passed in any subsequent
call from this subcomponent.

Return Values

DSP_SOK Operation completed successfully

DSP_EMEMORY Memory error

Comments

None.

Constraints

file must be valid.

See Also
PMGR_PARS_Finalize

6.4.2 PMGR_PARS_Finalize

This function releases the context object obtained through PMGR_PARS_Initialize.

Syntax
DSP_STATUS PMGR_PARS_Finalize (Pvoid objCtx) ;

Arguments

IN Pvoid objCtx

The context object that PMGR_PARS_Initialize() obtains

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 44 of 64 Version 1.13

Return Values

DSP_SOK Operation completed successfully

DSP_EMEMORY Operation failed due to memory error

Comments

None.

Constraints

objCtx must be valid.

See Also
PMGR_PARS_Initialize

6.4.3 PMGR_PARS_GetImageAttributes

This function gets the attributes for a particular base image file.

Syntax
DSP_STATUS PMGR_PARS_GetImageAttributes (Pvoid objCtx,
 ImageAttri butes ** attrs);

Arguments

IN Pvoid objCtx

The context object that PMGR_PARS_Initialize () obtains

OUT ImageAttributes ** attrs

Required attributes associated with the DSP base image file

Return Values

DSP_SOK Operation completed successfully

DSP_EFILE File format not supported

DSP_ERANGE File seek operation failed

DSP_EMEMORY Operation failed due to memory error

DSP_EINVALIDARG Invalid arguments

Comments

None.

Constraints

objCtx must be valid..

See Also
PMGR_PARS_Initialize

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 45 of 64 Version 1.13

6.4.4 PMGR_PARS_GetOptImageAttributes

This function gets the optional attributes for a particular base image file.

Syntax
DSP_STATUS
PMGR_PARS_GetOptImageAttributes (Pvoid objCtx,
 OptImageAttributes ** optattrs) ;

Arguments

IN Pvoid objCtx

The context object that PMGR_PARS_Initialize () obtains

OUT OptImageAttributes ** optattrs

Optional attributes associated with the DSP base image file

Return Values

DSP_SOK Operation completed successfully

DSP_EFILE File format not supported

DSP_ERANGE File seek operation failed

DSP_EMEMORY Operation failed due to memory error

DSP_EINVALIDARG Invalid arguments

Comments

None.

Constraints

objCtx must be valid.

See Also
PMGR_PARS_Initialize

6.4.5 PMGR_PARS_GetEntryAddress

Gets the entry address for a particular base image file

Syntax
DSP_STATUS PMGR_PARS_GetEntryAddress (Pvoid objC tx,
 Uint32 * addr) ;

Arguments

IN Pvoid objCtx

The context object obtained through PMGR_PARS_Initialize ()

OUT Uint32 * addr

OUT argument containing the entry address for the base address

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 46 of 64 Version 1.13

Return Values

DSP_SOK Operation completed successfully

DSP_EFILE File format not supported

DSP_ERANGE File seek operation failed

DSP_EMEMORY Operation failed due to memory error

DSP_EINVALIDARG Invalid arguments

Comments

None.

Constraints

objCtx must be valid.

See Also
PMGR_PARS_Initialize

6.4.6 PMGR_PARS_GetSymbolAddress

This function gets the address of a particular symbol.

Syntax
DSP_STATUS PMGR_PARS_GetEntryAddress (Pvoid objC tx,
 Char8 * symN ame,
 Uint32 * addr) ;

Arguments

IN Pvoid objCtx

The context object that PMGR_PARS_Initialize () obtains

IN Char8 * symName

Name of the symbol

OUT Uint32 * addr

OUT argument containing the entry address for the base address

Return Values

DSP_SOK Operation completed successfully

DSP_EFILE File format not supported

DSP_ERANGE File seek operation failed

DSP_EMEMORY Operation failed due to memory error

DSP_EINVALIDARG Invalid arguments

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 47 of 64 Version 1.13

Comments

None.

Constraints

objCtx must be valid.

symName must be valid.

See Also
PMGR_PARS_Initialize

6.4.7 PMGR_PARS_GetSectionAttributes

Gets the attributes associated with a section. Memory for holding the section

attributes must be allocated by the caller.

Syntax
DSP_STATUS PMGR_PARS_GetEntryAddress(Pvoid objCtx,
 Uint32 sectIndex,
 SectionAttribu tes* sectAttrs);

Arguments

IN Pvoid objCtx

The context object that PMGR_PARS_Initialize () obtains

IN Uint32 sectIndex

Index of the section

OUT SectionAttributes * sectAttrs

OUT argument containing the attributes associated with a section

Return Values

DSP_SOK Operation completed successfully

DSP_EFILE File format not supported

DSP_ERANGE File seek operation failed

DSP_EMEMORY Operation failed due to memory error

DSP_EINVALIDARG Invalid arguments

Comments

None.

Constraints

objCtx must be valid pointer.

sectAttrs must be a valid pointer.

The data field in sectAttrs must be a valid buffer.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 48 of 64 Version 1.13

See Also
PMGR_PARS_Initialize
PMGR_PARS_GetSectionAttributes

6.4.8 PMGR_PARS_GetSectionData

This function gets the data for a section.

Syntax
DSP_STATUS PMGR_PARS_GetSectionData (Pvoid objCt x,
 SectionAttribu tes * sectAttrs) ;

Arguments

IN Pvoid objCtx

The context object through PMGR_PARS_Initialize

IN OUT SectionAttributes * sectAttrs

IN OUT argument containing the section attributes with section data

Return Values

DSP_SOK Operation completed successfully

DSP_EFILE File format not supported

DSP_ERANGE File seek operation failed

DSP_EMEMORY Operation failed due to memory error

DSP_EINVALIDARG Invalid arguments

Comments

None.

Constraints

objCtx must be valid pointer.

sectAttrs must be a valid pointer.

The data field in sectAttrs must be a valid buffer.

See Also
PMGR_PARS_Initialize
PMGR_PARS_GetSectionAttributes

6.4.9 PMGR_PARS_Debug

This function prints the current status of the PMGR_PARS component.

Syntax
Void PMGR_PARS_Debug () ;

Arguments

None.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 49 of 64 Version 1.13

Return Value

None.

Comments

None.

Constraints

None.

See Also

None.

6.4.10 PMGR_PARS_FillArgsBuffer

Fills up the data-buffer with the specified arguments to be sent to DSP's "main"

function.

Syntax
PMGR_PARS_FillArgsBuffer (ProcessorId proc Id,
 Uint32 argc ,

Char8 ** argv,
SectionAttributes * sectAttrs) ;

Arguments

IN ProcessorId procId

Processor Identifier

IN OUT SectionAttributes * sectAttrs

Attributes of the “.args” section

IN Uint32 argc

Number of arguments to be passed

IN Char8 ** argv

Argument strings to be passed.

Return Values

DSP_SOK Operation completed successfully

DSP_ESIZE Insufficient space in .args buffer to hold all the
arguments

DSP_EMEMORY Operation failed due to memory error.

Comments

None.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 50 of 64 Version 1.13

Constraints

ProcessorId must be valid.

argc must be more than 0.

argv must be valid pointer.

sectAttrs must be a valid pointer.

See Also

None.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 51 of 64 Version 1.13

7 Different Boot Mode support
DSPLink PROC module needs to support three different scenarios for DSP boot-
loading:

o DSPLINK_BOOT_MODE: Default

o DSPLINK_NOLOAD_MODE: Optimized load

o DSPLINK_NOLOAD_MODE which powers up the DSP

o DSPLINK_NOLOAD_MODE which does not power up the DSP

o DSPLINK_NOBOOT_MODE: Optimized start

7.1 Resources Available
DSPLink configuration will provide the details regarding which boot mode application

is currently using.

These details include the DSP control mode and the loader to be used.

7.2 Dependencies

7.2.1 Subordinates

Linkcfgdefs, DSP module

7.2.2 Preconditions

o Application will call PROC_load and PROC_start for all boot modes.

o The DSPLink configuration will provide the details regarding which boot mode

application is currently using. These details include the DSP control mode and
the loader to be used.

7.3 Description
DSPLink PROC module needs to support three different scenarios for DSP boot-
loading:

o DSPLINK_BOOT_MODE: Default

o GPP boots first

o Uses DSPLink to load the DSP

o Uses DSPLink to start the DSP running

o DSPLINK_NOLOAD_MODE: Optimized load

o GPP boots first

o Application/GPP boot-loader pre-loads the DSP

o Uses DSPLink to optionally power up the DSP

o Uses DSPLink to start the DSP running

o DSPLINK_NOBOOT_MODE: Optimized start: Two situations:

o GPP-based load

o GPP boots first

o Application/GPP boot-loader pre-loads the DSP

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 52 of 64 Version 1.13

o Application/GPP boot-loader starts the DSP running

o Uses DSPLink only for IPC with the DSP

 OR

o DSP-based load

o DSP boots first, starts running an application.

o Then ARM comes up later and initializes shared memory

o DSPLink is not used to load or start the DSP

o Uses DSPLink only for IPC with the DSP

7.3.1 DSPLINK_BOOT_MODE: Default
This is the default boot mode presently supported within DSPLink. In this boot mode:

o GPP boots first

o Uses DSPLink PROC_attach API to reset and power up the DSP

o Uses DSPLink PROC_load API to load the DSP and get the address of c_int00

from the COFF file

o Uses DSPLink PROC_start API to release the DSP from reset and start DSP

running from c_int00

o Uses DSPLink PROC_detach API to reset and power down the DSP

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 53 of 64 Version 1.13

Figure 3. DSPLINK_BOOT_MODE: Default

7.3.2 DSPLINK_NOLOAD_MODE: Optimized load
This is the requirement for a new boot mode support to be added in DSPLink.

o DSPLINK_NOLOAD_MODE: Optimized load

o GPP boots first

o Application/GPP boot-loader pre-loads the DSP i.e. external non

DSPLink entity loads the COFF in DSP memory. The Application/GPP

boot-loader must put DSP in reset to avoid DSP to start running.

o Uses DSPLink PROC_attach API. This API will always reset the DSP and

optionally power up the DSP depending upon configuration specified by

the application.

o Uses DSPLink PROC_load API with a dummy loader. The application

will provide the entry point c_int00 as parameter to PROC_load.

o Uses DSPLink PROC_start API to release the DSP from reset and start

DSP running from c_int00.

o Uses DSPLink PROC_detach API. This API will always reset the DSP

and optionally power down the DSP depending upon configuration
specified by the application.

GPP

PROC_setup

PROC_attach

PROC_load

PROC_start

PROC_stop

PROC_detach

Other operations

PROC_destroy

DSP starts running

DSP is loaded

DSPLINK_init

DSP is reset

Other operations

DSP

Call
from
main

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 54 of 64 Version 1.13

o Second run of DSPLink without rebooting the board or re-running

application/GPP boot loader is not possible

Figure 4. DSPLINK_NOLOAD_MODE: Optimized load

7.3.3 DSPLINK_NOBOOT_MODE: Optimized start
This is the requirement for a new boot mode support to be added in DSPLink.

o DSPLINK_NOBOOT_MODE: Optimized start: Two situations:

o GPP-based load

o GPP boots first

o Application/GPP boot-loader pre-loads the DSP

o Application/GPP boot-loader starts the DSP running

o Uses DSPLink PROC_attach API. This API will not reset and power up

the DSP as the Application/GPP boot-loader has already done that.

o Uses DSPLink PROC_load API with a dummy loader. The application

will provide the entry point c_int00 as parameter to PROC_load. This is
a dummy parameter as it is not needed.

GPP

PROC_setup

PROC_attach

PROC_load

PROC_start

PROC_stop

PROC_detach

Other operations

PROC_destroy

DSP starts running

DSP is loaded

DSPLINK_init

DSP is reset

Other operations

DSP

Call
from
main

Does not actually load the DSP

Reset the DSP. Can be restarted
if external loader reloads the
DSP

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 55 of 64 Version 1.13

o Uses DSPLink PROC_start API. This API will do handshake with DSP to

ensure compatibility of both sides. It will also send an interrupt to DSP

indicating GPP start.

o Uses DSPLink PROC_detach API. This API will not reset and power

down the DSP.

o Second run of DSPLink without rebooting the board or re-running

application/GPP boot loader is not possible

o Uses DSPLink only for IPC with the DSP

 OR
o DSP-based load
o DSP boots first, starts running an application.
o Uses DSPLink PROC_attach API. This API will not reset and power up

the DSP as the Application/DSP boot-loader has already done that.
o Uses DSPLink PROC_load API with a dummy loader. The application

will provide the entry point c_int00 as parameter to PROC_load. This is
a dummy parameter as it is not needed.

o Uses DSPLink PROC_start API. This API will do handshake with DSP to
ensure compatibility of both sides. It will also send an interrupt to DSP
indicating GPP start.

o Uses DSPLink PROC_detach API. This API will not reset and power
down the DSP.

o Second run of DSPLink without rebooting the board or re-running
application/DSP boot loader is not possible

o Uses DSPLink only for IPC with the DSP

DSPLink will support both polling of DSP side executable on non NULL value of

DSPLINK_shmBaseAddress as an entry guarantee to call DSPLINK_init from the task.

DSPLink will also send an interrupt to the DSP in PROC_start. This will enable a non
polling dynamic method where DSP will register an ISR. This ISR will post a

semaphore which will waken the task which will call DSPLINK_init.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 56 of 64 Version 1.13

Figure 5. DSPLINK_NOBOOT_MODE: Optimized start

7.4 Decision Analysis & Resolution
There are two options for boot modes support design.

7.4.1 DAR Criteria

1. Meets customer needs

2. Consistency with existing DSPLink design and implementation

3. Ease of use

7.4.2 Available Alternatives

1. Dynamic configuration of DSPLink with application calling PROC_load and
PROC_start API for all boot modes.

2. Application will make API calls only as per boot mode requirements. Add new API
called PROC_join for DSPLINK_NOBOOT_MODE.

7.4.2.1 Dynamic configuration of DSPLink with appli cation calling PROC_load and PROC_start API
for all boot modes.

Summary:

GPP

PROC_setup

PROC_attach

PROC_load

PROC_start

PROC_stop

PROC_detach

Other operations

PROC_destroy

DSP starts running

DSP is loaded

DSPLINK_init

Other operations

DSP

Call from
TSK after
ISR
received

Does not actually load the DSP

No capability to stop/ reload/
restart the DSP

Does not actually start the DSP
Send an interrupt to DSP to
indicate GPP init done

Register app ISR (can
be done statically)

Receive ISR

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 57 of 64 Version 1.13

o Applications will call PROC_load and PROC_start regardless of boot mode.

o Dynamic configuration of DSPlink using application configuration file will decide

loader type and DSP control level.

o Depending on value of DSP control variable, extent of functionality of PROC_load

and PROC_start will be decided.

Advantages:

1. Backward compatibility for application regarding PROC API calls will be
maintained. Application will not need to call separate API’s for separate boot
mode.

2. Configuration provides all boot mode related information required by DSPLink.

Disadvantages:

1. GPP side application rebuild will be required to take the value of the DSP control
and the type of loader. These changes will be in

$DSPLINK/configl/all/<CFG_platform.c> i.e. the application configuration file
DOPOWERCTRL and LOADERNAME fields in the LINKCFG_Dsp structure.

o This can be mitigated by using the following approach.

o Application can decide at run time which boot mode will be used. This could

be a run time parameter: For e.g. ./app default or ./app no_load

o Application will link in three separate $DSPLINK/config/all/<CFG_platform.c>

i.e. the application configuration files. Namely CFG_default.c, CFG_noload.c,

CFG_noboot.c with relevant DOPOWERCTRL and LOADERNAME fields in the
LINKCFG_Dsp structures in each file at build time.

o Depending upon the value of the boot mode, PROC_setup can be called with

the bootmode specific LINKCFG_config structure.

o Since all configurations are linked in, no application side rebuild will be

required to switch between the boot modes.

7.4.2.2 Application will make API calls only as per boot mode requirements. Add new API called
PROC_join for DSPLINK_NOBOOT_MODE.

Summary:

1. Application will not call PROC_load in DSPLINK_NOLOAD_MODE.

2. Application will not call PROC_load and PROC_start in DSPLINK_NOBOOT_MODE
since there is no need to call PROC_load if DSP does not need to be loaded and
No need to call PROC_start if DSP does not need to be started etc.

3. No need to change DSPlink configuration for loader type or DSP control values.

Advantages:

1. The applications needs to only make API calls as per their requirements, and
this gives a more logical flow for application writers.

Disadvantages:

1. The following DSPLink requirements are not supported:

o In DSPLINK_NO_LOAD_MODE: PROC_load is needed to be called to give the

entry point (c_int00) for PROC_start to succeed.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 58 of 64 Version 1.13

o In DSPLINK_NOBOOT_MODE: PROC_start is needed to be called to complete

GPP and DSP handshake.

o Calling PROC_join API does not give complete DSP control information to

DSPLink as reset of DSP happens earlier in DSPLink startup sequence in
PROC_attach itself.

o DSPLink configuration related changes are needed anyway.

7.4.3 Decision

Alternative 1 has been chosen based on the advantages and disadvantages listed for

each approach.

7.5 Decision Analysis & Resolution
There are two options for enhanced COFF loader for DSPLINK_BOOT_MODE.

The goal is to reduce coff load time by replacing file operations by memory copy
operations

7.5.1 DAR Criteria

1. Meets customer needs

2. Consistency with existing DSPLink design and implementation

3. Ease of use

7.5.2 Available Alternatives

1. Use application provided user space buffer. Use this buffer for PROC_load.
PROC_load internally replicates the user space buffer in kernel and uses that
for enhanced memory based COFF load operations

2. Use POOL_alloc to get a user space buffer. Use this buffer for PROC_load.

7.5.2.1 Use application provided user space buffer. Use this buffer for PROC_load. PROC_load
internally replicates the user space buffer in kern el and uses that for enhanced memory based
COFF load operations.

Application will call:
o Application specific memory allocation calls to get user space buffer. (non

DSPLink operation)
o Application must fill user space buffer with COFF data by performing DMA

from ROM to SDRAM (non DSPLink operation)
o Application will use default boot mode i.e. both PROC_load and PROC_start

will be called.
o Application will change loader type which is dynamically configurable through

application configuration file to COFF_MEM
o Application will pass user space address of buffer as parameter to PROC_load
o PROC_load will internally replicate user space buffer in kernel space and use it

for COFF memory operations
o After PROC_load, user can delete the user space buffer. (non DSPLink

operation)

o Normal IPC using DSPLink can begin after PROC_start

Advantages:

None

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 59 of 64 Version 1.13

Disadvantages:

o Application will have to write driver to perform address translation etc

7.5.2.2 Use POOL_alloc to get a user space buffer. Use this buffer for PROC_load.

Application will call:

o Application will use default boot mode i.e. both PROC_load and PROC_start

will be called.
o Application will change loader type which is dynamically configurable through

application configuration file to COFF_MEM
o POOL_alloc to allocate user space buffer (DSPLink API)

o POOL_translateAddr to get DSP physical address to perform DMA from ROM
to SDRAM and fill buffer with COFF data (DSPLink API)

o POOL_translateAddr to get kernel virtual address of user space buffer
(DSPLink API)

o PROC_load will be called with kernel virtual address in the second parameter
i.e. a structure instead of the imagepath

o Internally PROC_load implementation will use enhanced COFF loader which

does a memory operation instead of file operation
o Normal IPC using DSPLink can begin after PROC_start

Advantages:

o Usage of DSPLink API to get all information including physical address/kernel

virtual address.

Disadvantages:

o Since POOL is non cached memory it will result in performance degradation.

This can be avoided by remapping same area as cached.

7.5.3 Decision

Alternative 2 has been chosen based on the advantages and disadvantages listed for

each approach.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 60 of 64 Version 1.13

7.6 Typedefs and Data Structures

7.6.1 LINKCFG_Dsp

This structure defines the configuration structure for the DSP.

Definition
typedef struct LINKCFG_Dsp_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 Uint32 dspArch ;
 Char8 loaderName [DSP_MAX_ST RLEN] ;
 Bool autoStart;
 Char8 execName [DSP_MAX_STRL EN] ;
 enum doDspCtrl ;
 Uint32 resumeAddr ;
 Uint32 resetVector;
 Uint32 resetCodeSize ;
 Uint32 maduSize;
 Uint32 cpuFreq ;
 Uint32 endian ;
 Uint32 wordSwap ;
 Uint32 memTableId;
 Uint32 memEntries ;
 Uint32 memEntries;
} LINKCFG_Dsp ;

Fields

Name Name of DSP processor.

dspArch Architecture of the DSP.

loaderName Name of loader to be used for loading the DSP executable.

autoStart AutoStart flag indicating whether a default DSP image should
be loaded on startup. Currently not supported.

execName Name of executable to load in case autostart is used.

doDspCtrl Indicates whether DSP/BIOS LINK should do

o Reset/release for DSP
o the power control for DSP

resumeAddr The resume address after hibernating.

resetVector Address of reset vector of DSP.

resetCodeSize Size of code at DSP Reset Vector.

maduSize Minimum addressable unit on the DSP.

cpuFreq The frequency at which the DSP is running (in KHz).

Specify -1 if the cpuFreq is not to be set from GPP-side and
the default DSP/BIOS setting is to be used.

Endian Endianism info of DSP.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 61 of 64 Version 1.13

wordSwap Indicates whether words need to be swapped while writing
into the memory for the DSP.

memTableId Table number of the MEM entries for this DSP.

memEntries Number of entries in the MEM table.

linkDrvId Link Driver table identifier for this DSP.

Comments

The value of doDspCtrl will be updated from bool to enum in LDRV_MSGQ_State as
well as LDRVChnlObject.

7.6.2 Dsp_BootMode_Control

This enum defines the level of DSP control for the DSP.

Indicates whether DSP/BIOS LINK should do

o Do Reset/release for DSP
o Do the power control for DSP

Definition
typedef enum {
 DSP_BootMode_Boot_NoPwr = 0x0,
 DSP_BootMode_Boot_Pwr,
 DSP_BootMode_NoLoad_NoPwr,
 DSP_BootMode_NoLoad_Pwr,

 DSP_BootMode_NoBoot}
 DSP_BootMode ;

Fields

DSP_BootMode_Boo
t_NoPwr

This is backward compatible with the default false i.e.
DSPLINK_BOOT_MODE.

• PROC_attach will put DSP in local reset. It will not power
up the DSP.

• PROC_start will set entry point for DSP i.e. c_int00 and
release DSP from reset

• PROC_stop will put DSP in local reset.
• PROC_detach will not power down the DSP.

DSP_BootMode_Boo
t_Pwr

This is backward compatible with the default true i.e.
DSPLINK_BOOT_MODE.

• PROC_attach will put DSP in local reset. It will power up

the DSP.
• PROC_start will set entry point for DSP i.e. c_int00 and

release DSP from reset

• PROC_stop will put DSP in local reset.
• PROC_detach will power down the DSP.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 62 of 64 Version 1.13

DSP_BootMode_NoL
oad_NoPwr

This is added to support DSPLINK_NOLOAD_MODE where

DSPlink will do a local reset /release DSP from reset but not
do any power management.

• PROC_attach will put DSP in local reset. It will not power
up the DSP.

• PROC_start will set entry point for DSP i.e. c_int00 and
release DSP from reset

• PROC_stop will put DSP in local reset.

• PROC_detach will not power down the DSP.

DSP_BootMode_NoL
oad_Pwr

This is added to support DSPLINK_NOLOAD_MODE where

DSPlink will a local reset /release DSP from reset as well as
power management.

• PROC_attach will put DSP in local reset. It will power up
the DSP.

• PROC_start will set entry point for DSP i.e. c_int00 and
release DSP from reset

• PROC_stop will put DSP in local reset.
• PROC_detach will power down the DSP.

DSP_BootMode_NoB
oot

This is added to support DSPLINK_NOBOOT_MODE where

DSPlink will neither reset DSP nor release DSP from reset
nor do any power management.

• PROC_attach will not put DSP in local reset. It will not
power up the DSP.

• PROC_start will not set entry point for DSP i.e. c_int00

and not release DSP from reset
• PROC_stop will not put DSP in local reset.
• PROC_detach will not power down the DSP.

Comments

The value of doDspCtrl will be updated from bool to enum in LINKCFG_Dsp ,

LDRV_MSGQ_State as well as LDRVChnlObject.

Functionality of DSP_init, DSP_start, DSP_exit will be updated to do DSP control

operations based on the value of doDspControl.

Updates in CHNL and MSGQ state diagram regarding the behavior based on the DSP

state will need to be updated.

7.6.3 NOLOADER_ImageInfo
This structure defines the DSP address from where DSP will start execution in
DSPLINK_NOLOAD_MODE. A pointer to this structure is passed during the

PROC_load () function as the imagePath, when the dummy loader is used.

Definition
typedef struct NOLOADER_ImageInfo_tag {
 Uint32 dspRunAddr ;
 Uint32 argsAddr ;
 Uint32 argsSize ;
 Uint32 shmBaseAddr ;

} NOLOADER_ImageInfo ;

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 63 of 64 Version 1.13

Fields

dspRunAddr DSP address of the symbol from where the binary file

execution is to be started.

argsAddr Address of the .args section

argsSize Size of the .args section

shmBaseAddr DSP address of the symbol DSPLINK_shmBaseAddress. The

value of DSPLink shared memory base address will be written
at this address.

Comments

Argument related information is optional. Dummy loader will not fill .args section if

NULL is specified in the argsAddr. It is the responsibility of application/ GPP
loader/DSP loader to fill .args section in that case.

PROC_load API signature remains unchanged.

DSP/BIOS™ LINK

LNK 010 DES

PROCESSOR MANAGER

Page 64 of 64 Version 1.13

8 Appendix

8.1 Concept of Ownership of Components
The concept of ownership in DSP/BIOS™ LINK is defined as:

1. The first user of an instance of a component is designated as the owner for that
instance.

2. All the resources used for managing/interfacing the component are released
when the owner releases the component.

3. If the owner releases the component, the associated resources are released even
when other clients have not released the component.

This is different compared to the ‘lock’ interface implementation. The ‘lock’

mechanism allows a client to specify the access rights that it wants.

The current design allows a much simpler way to control the ownership of a

component. Especially for PMGR_PROC, as the first client is designated as the owner, it
simplifies the user side implementation. The client that gets a return code of

DSP_SALREADYATTACHED can safely assume that some other client has already
attached to the DSP and loaded the base image. Also, since state transitions can

occur from only one place, the user side code is simplified.

8.2 Future Enhancements
DSP/BIOS™ LINK currently allows a channel to be accessed from only one thread. As

a future enhancement, the plan is to allow multiple threads to share a channel for

data communication. Threads that belong to a process context can be assumed to be
coordinating threads and can be allowed to share a channel. However, we can have a
restriction that two processes cannot access the same channel.

In this scenario as well, the first thread that opens a channel can be designated as

the owner of that channel. Other threads can also open the same channel but when

the owner closes the channel (by a call to PMGR_CHNL_Close()) it is unusable.

	Introduction
	Purpose and Scope
	Terms and Abbreviations
	References
	Overview

	High Level Design
	PMGR_PROC
	Resources Available
	Dependencies
	Subordinates
	Preconditions

	Description
	Typedefs and Data Structures
	PMGR_ClientInfo
	PMGR_PROC_SetupObj
	PMGR_PROC_Object

	API Definition
	PMGR_PROC_Attach
	PMGR_PROC_Detach
	PMGR_PROC_GetState
	PMGR_PROC_Load
	PMGR_PROC_LoadSection
	PMGR_PROC_Start
	PMGR_PROC_Stop
	PMGR_PROC_Control
	PMGR_PROC_Debug
	PMGR_PROC_Instrument
	PMGR_PROC_IsAttached
	PMGR_PROC_Destroy
	PMGR_PROC_Setup

	PMGR_CHNL
	Resources Available
	Subordinates
	Preconditions

	Description
	API Definition
	PMGR_CHNL_Initialize
	PMGR_CHNL_Finalize
	PMGR_CHNL_Create
	PMGR_CHNL_Delete
	PMGR_CHNL_AllocateBuffer
	PMGR_CHNL_FreeBuffer
	PMGR_CHNL_Issue
	PMGR_CHNL_Reclaim
	PMGR_CHNL_Idle
	PMGR_CHNL_Flush
	PMGR_CHNL_Control
	PMGR_CHNL_Debug
	PMGR_CHNL_Instrument

	PMGR_CODE
	Description
	API Definition
	PMGR_CODE_LoadExecutable
	PMGR_CODE_LoadSection
	PMGR_CODE_Debug

	PMGR_PARS
	Resources Available
	Subordinates
	Preconditions

	Description
	Typedefs and Data Structures
	ImageAttributes
	OptImageAttributes
	SectionAtrributes
	SymbolAttrs
	ParserContext

	API Definition
	PMGR_PARS_Initialize
	PMGR_PARS_Finalize
	PMGR_PARS_GetImageAttributes
	PMGR_PARS_GetOptImageAttributes
	PMGR_PARS_GetEntryAddress
	PMGR_PARS_GetSymbolAddress
	PMGR_PARS_GetSectionAttributes
	PMGR_PARS_GetSectionData
	PMGR_PARS_Debug
	PMGR_PARS_FillArgsBuffer

	Different Boot Mode support
	Resources Available
	Dependencies
	Subordinates
	Preconditions

	Description
	DSPLINK_BOOT_MODE: Default
	DSPLINK_NOLOAD_MODE: Optimized load
	DSPLINK_NOBOOT_MODE: Optimized start

	Decision Analysis & Resolution
	DAR Criteria
	Available Alternatives
	Dynamic configuration of DSPLink with application calling PROC_load and PROC_start API for all boot modes.
	Application will make API calls only as per boot mode requirements. Add new API called PROC_join for DSPLINK_NOBOOT_MODE.

	Decision

	Decision Analysis & Resolution
	DAR Criteria
	Available Alternatives
	Use application provided user space buffer. Use this buffer for PROC_load. PROC_load internally replicates the user space buff
	Use POOL_alloc to get a user space buffer. Use this buffer for PROC_load.

	Decision

	Typedefs and Data Structures
	LINKCFG_Dsp
	Dsp_BootMode_Control
	NOLOADER_ImageInfo

	Appendix
	Concept of Ownership of Components
	Future Enhancements

