

Page 1 of 56 Version 1.20

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

DSP/BIOS™ LINK

MULTI-DSP DESIGN

LNK 182 DES

Version 1.20

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 2 of 56 Version 1.20

This page has been intentionally left blank

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 3 of 56 Version 1.20

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2008, Texas Instruments Incorporated

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 4 of 56 Version 1.20

This page has been intentionally left blank.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 5 of 56 Version 1.20

TABLE OF CONTENTS

1 Introduction ... 7
1.1 Purpose and Scope .. 7
1.2 Terms and Abbreviations .. 7
1.3 References ... 7

2 Overview .. 8

3 Design .. 9
3.1 ARCH..10
3.2 Configuration ...13
3.3 Dynamic Configuration..14
3.4 Configure Script ...15
3.5 Modules Changes ...20

4 Details .. 22
4.1 DSP Layer ...22
4.2 HAL Layer..31
4.3 Dynamic configuration ..53
4.4 Config ...54

5 Decision Analysis & Resolution... 55
5.1 Platform Configuration ..55

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 6 of 56 Version 1.20

TABLE OF FIGURES

Figure 1. Block Level Architecture of DSPLink ... 9
Figure 2. Connectivity Diagram of ARCH component...10
Figure 3. Concept demonstration ...11
Figure 4. CFG capturing architecture of DSPLink ..14
Figure 5. Module changes ...21

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 7 of 56 Version 1.20

1 Introduction

1.1 Purpose and Scope
This document defines the multi-DSP design of the DSP/BIOS™ LINK.

The architecture is intended to be independent of operating system on the GPP side.

It, however, assumes DSP/BIOS™ to be running on the DSP.

DSP/BIOS LINK provides communication and control infrastructure between GPP and

DSP and is aimed at traditional embedded applications. Many applications require a

specific framework for communication and control between GPP and DSP. Therefore,

the document also extends the architecture beyond DSP/BIOS LINK and discusses

the possibility of building a reference framework (e.g. DSP/BIOS™ Bridge) over

LINK. This is discussed in detail on section 6.4.

The document does not discuss the packaging and installation.

The development teams for DSP/BIOS LINK are the intended audience of this

document.

1.2 Terms and Abbreviations
GPP General Purpose Processor

DSP Digital Signal processor

OS Operating System

LINK A generic term used for DSP/BIOS LINK. It appears in italics

in all usages.

1.3 References
1. LNK 137 DES DYNAMIC CONFIGURATION

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 8 of 56 Version 1.20

2 Overview
DSP/BIOS™ Link is runtime software, analysis tools, and an associated porting kit

that simplifies the development of embedded applications in which a general-purpose

microprocessor controls and communicates with a TI DSP. DSP/BIOS™ Link provides

control and communication paths between GPP OS threads and DSP/BIOS™ tasks,

along with analysis instrumentation and tools.

Previous releases of DSP/BIOS™ Link are targeted towards a GPP and a DSP type of

platforms only. As the new products are becoming more DSP hungry, so solutions

with multiple DSP (each one dedicated for a specific job) are used.

To cater these types of solution, DSP/BIOS™ Link must be upgraded to handle

multiple-DSP with a GPP. This document outlines the changes and upgrades

required.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 9 of 56 Version 1.20

3 Design
Below diagram shows the block level architecture of DSPLink.

Figure 1. Block Level Architecture of DSPLink

The above diagram shows the block diagram of DSP/BIOS™ Link. Here except

RINGIO component all other components fall into the LINK DRIVER. RINGIO

component is a logical protocol which uses POOL, MPCS and NOTIFY APIs only, thus

it does not uses any features from the LINK Driver. OSAL component abstract the OS

on GPP, this makes DSP/BIOS™ Link a cross platform product.

In case of OSes like Linux, where there is a user and kernel level separation,

processor manager and link driver layer remains in kernel (as kernel module) and

API layer provides the features exposed by the kernel module. OSAL and HAL are

also part of kernel module. So RINGIO is a pure user-land protocol.

All these components would provide communication between GPP and a DSP

connected via ARCH module.

Applications /
Infrastructure

DSPLink API Layer

Processor Manager

Link Driver

M
S

G
Q

C
H

N
L

P
R

O
C

P
O

O
L

M
P

C
S

M
P

LI
S

T

OSAL

ARCHDSP 1 DSP n

PHY HAL

CFG

PHY HAL

CFG

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 10 of 56 Version 1.20

OSAL component provides OS provided features to all modules (except API layer) in

an abstracted form.

3.1 ARCH

3.1.1 Design

This component would abstract the physical connection between GPP and DSPs

through a set of hardware features. This hardware features are such as interrupts,

DMA, shared memory, PCI/VLYNQ interface.

This component would represent for all the configured DSPs in the DSPLink system.

Each DSP would be represented by a DSP object. These objects would be used for

serving the request (coming for Link Driver module) and managing/maintaining the

DSPs. These DSP objects would be associated to a DSP using a DSP identifier. So

there would an array of DSP objects (length equals number of DSPs configured).

For better manageability and portability of ARCH component, this component is

divided into four internal parts, their connection is show below:

Figure 2. Connectivity Diagram of ARCH component

CFG module represents configuration mapping information, which are supported by a

DSP. This information is used at runtime to cross check the user provided

configurations, so that DSPLink is configured correctly according to the supported

configurations.

DSP API part would connect the ARCH component to the Link Driver module

through a set of APIs. This layer would use the PHY and HAL layer to make required

hardware operations.

PHY stands for physical connection/physical interface, for e.g. PCI is physical

interface. This part would initialize the physical interface so that DSP connected

through it is usable by DSPLink. For e.g. for PCI DSP cards, PHY part would initialize

all PCI and DSPLink required hardware features (such as mapping of memories).

Most often all hardware features required from a DSP are accessible from GPP as a

set of registers, which would be mapped to GPP address space by the PHY part.

D S P #

P H Y H A L

C F G
D S P A P I

L I N K D r i v e r M o d u l e

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 11 of 56 Version 1.20

HAL abstract the required hardware features of a DSP. These hardware features are

such as interrupts, DMA, power off/on, mapping of a DSP memory into GPP address

space.

HAL and PHY are plugged into the DSP API layer as interface so that if a DSP

supports multiple of these layers then it easy to chose the required ones.

As above mentioned most often hardware features are just a set of registers, so if a

particular DSP can be connected to a GPP in different ways, then developers would

create different PHY layer according to physical interface and keep the HAL layer

intact as they would take a base address of the register area and add offsets

accordingly. The below diagram shows the concept:

Figure 3. Concept demonstration

Here PHY returns the base address of the exposed window into the DSP address

space by the physical interface, this base address is mapped in GPP address space so

that GPP can access it. Now, whenever a HAL request comes, HAL logic first maps

the required register area to the exposed window and then simply adds the base

address to registers offset and performs the required action.

APIs exposed by HAL layer are as follows:

FnBootCtrl This API would provide the boot loading functionalities.

FnIntCtrl This API would provide the interrupt management related

functionalities.

FnMapCtrl This API would provide mapping/unmapping of a DSP address into

GPP address space. This API would exist only on platforms where

A R C H in it ia liz tio n

P H Y In it ia liz t io n

R e tu rn s th e b a s e a d d re s s

H A L re q u e s t

A d d b a s e a d d re s s a n d o ffs e t
P e r fo rm th e re q u ire d a c t io n

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 12 of 56 Version 1.20

DSP address space is not directly visible to GPP. For e.g. PCI DSP.

VLYNQ DSP.

FnPwrCtrl This API would provide the power management functionalities

such as power off/on, reset/release DSP.

FnRead This API would read a buffer from DSP memory.

FnWrite This API would write a buffer to DSP memory.

FnReadDMA This API would DMA contents from a buffer in DSP address space

to a buffer in GPP address space. This API would exist only on

platforms where no shared memory is present between GPP and a

DSP.

FnWriteDMA This API would DMA contents from a buffer in GPP address space

to a buffer in DSP address space. This API would exist only on

platforms where no shared memory is present between GPP and a

DSP.

APIs exposed by PHY layer are as follows:

phyInit This API would initialize the physical interface. On platforms

where no shared memory is present between GPP and a DSP, it

would return the base address of the exposed window and map

the exposed window into GPP address space. On platform like PCI

DSP, this is equivalent to PCI driver initialization.

phyExit This API would finalize the physical interface and relinquish all

hardware features that were in used by GPP.

APIs exposed by DSP API layer are as follows:

DSP_init This API would initialize the DSP identified by the DSP identifier.

By using FnPwrCtrl API from HAL layer & phyInit from PHY

layer, it would power on all required hardware modules and

DSP. Then it would put the DSP in reset mode.

DSP_exit By using FnPwrCtrl API from HAL layer & phyExit from PHY

layer, it would put the DSP in reset mode and power off all

hardware modules and the DSP.

DSP_start By using FnPwrCtrl API from HAL layer, it would program the

DSP start address and release the DSP from reset mode.

DSP_stop By using FnPwrCtrl API from HAL layer, it would put the DSP in

reset mode.

DSP_idle This API would idle the DSP, available on platform where

hardware supports idle mode.

DSP_intCtrl By using FnIntCtrl API from HAL layer, it would perform the

specified DSP interrupt control activity for e.g. interrupt

generation to DSP, acknowledge, clear interrupt etc.

DSP_read By using FnRead API from HAL layer, it would read a buffer from

DSP memory.

DSP_write By using FnRead API from HAL layer, it would write a buffer to

DSP memory.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 13 of 56 Version 1.20

DSP_addrConvert This API would convert addresses between GPP and DSP

address space.

DSP_control This API would provide a hook for performing device dependent

control operation. For e.g. it provides DMA functionality using

FnReadDMA/FnWriteDMA APIs from HAL layer.

3.2 Configuration
Configuration mapping information is now represented as an array, indexed using

the processor identifier. Each element is a configuration mapping structure for a

DSP. This array would be populated by CFGMAP_attachObject function called by

LDRV_init, which in turn would be called at PROC_attach time.

Main purpose of this function is to tie a DSP to particular procId. For example, in

multi-DSP system, DSP#0 can be programmed for procId 1, for a particular iteration

and in second iteration it can be moved to procId 0. This creates the true dynamic

behavior of DSPLink.

This function would take a DSP name and then it would search the dspName in the

array containing name and object association (CFGMAP_objDB). User has to add

name and object association into this array (CFGMAP_objDB) for new a platform.

For e.g.

CONST CFGMAP_ObjDB CFGMAP_objDB [] = {

#if defined (DM6446GEM)

 {

 "DM6446GEM",

 &DM6446GEMMAP_Config,

 },

#endif /* if defined (DM6446GEM) */

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 14 of 56 Version 1.20

3.3 Dynamic Configuration
Config is pre-defined ‘C’ source file that contains with configuration values defined

within a fixed structure format. This file is compiled with the DSPLink user library by

default.

For multi-DSP DSPLink system, Config would be broken into more than one ‘C’ file.

For a GPP and a DSP system, files would be CFG_gpp.c, CFG_dsp.c, and

CFG_common.c. For multiple DSP in the system, there would multiple CFG_dsp#.c

files. The idea behind this division is to configure DSPLink with all common and GPP

specific configuration at the start of DSPLink and then configure each DSP as

required by the application.

Figure 4. CFG capturing architecture of DSPLink

Configuration values from the files CFG_gpp.c and CFG_common.c are passed to

DSPLink through PROC_setup API, whereas values from CFG_DSP#.c file are passed

through PROC_attach API.

For backward compatibility, PROC_setup requires all config values (i.e. for DSP and

GPP as well) to be passed to it. But values related to DSP are read in PROC_attach

step only.

Previous version of DSPLink used to take all DSP related values at the time of

PROC_setup time, which limits running a DSP with some modification in configuration

values without calling PROC_destroy.

Passing the configuration values in PROC_attach solves the above problem, as new

configuration values can be passed after calling PROC_detach and then calling

PROC_attach with new values.

Now each CFG_dsp#.c file is logically divided into 2 sections, application specific

configuration values and system integrator configuration values. All obvious and

frequently changed configuration values by an application writer are exposed as

macros (#define in C syntax) so that application writer does not has to go through

the whole C file to find out which values he/she update according to his/her system.

Similarly all values specific to system integrator are exposed as macros in the

beginning of the file.

CFG_system

CFG_ARM CFG_Linux

CFG_DRA44XGEM_SHMEM

CFG_DM6437_VLYNQ

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 15 of 56 Version 1.20

Currently number of a specific item is hard coded into some structures; we would be

replacing them with sizeof operator syntax. This would solve the problem of incorrect

configuration values.

For e.g. in LINKCFG_Dsp number of MEMENTRIES would be written as

sizeof (LINKCFG_memTable_00) / sizeof (LINKCFG_MemE ntry) ;

3.4 Configure Script
Static configuration of DSPLink is done through a Perl script called configure.pl,

which is invoked through dsplinkcfg script. This static configuration chooses the

platform type (from available platforms), GPP OS, DSP type, etc. Also this script

generates proper compiler/linker flags and macros to compile correct version of code

file if multiple versions exists of the same.

For multi-DSP DSPLink system, this script would be enhanced so that it provides the

following features:

• Command line configuration selection.

• Easy addition of new platform.

Command line would enable application writer to automate the configuration step

(Previously it was a manual task). Writers can pass the configuration values directly

while invoking the configure script. For e.g.:

$./configure.pl –-platform=Davinci --gppos=MVL5 --d spos=BIOS5X --
modules=lmrc

Following are the full list of option provided by this script:

--platform Indicates the platform to be used. For e.g. --platform=DAVINCI,

Chooses DAVINCI platform.

--nodsp Indicates number of DSPs present in the system. For e.g. --

nodsp=2, two DSPs are presented in the system.

--dsp_# Indicates which DSP to be used as DSP#. For e.g. --

dsp_1=DM6446GEM, Use Davinci Gem DSP.

--phy_# Indicates which physical interface to be used for DSP#. For e.g. --

phy_1=DM6446GEMSHARED, Davinci Gem is connected through

shared memory interface.

--dspos_# Indicates which DSP OS to be used for DSP#. For e.g. --

dspos_1=DSPBIOS5XX, Davinci Gem uses DspBios 5.XX.

--gppos Indicates which GPP OS to be used for chosen platform. For e.g. -

-gppos=MVL4G, use montavista pro 4.0 with glibc on GPP.

--comps Indicates which component to be included while building DSPLink.

For e.g. --comps=lmrc, chooses MPLIST, MSGQ, RINGIO and

CHNL components.

--trace Indicate whether trace has to be enabled or not. For e.g. --

trace=1, trace is enabled.

--loader Indicate which loader to be used for boot loading DSPs on the

GPP. This is required when GPP/Platform supports multiple loaders

type otherwise no need to provide it. For e.g. --

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 16 of 56 Version 1.20

loader=COFF_LOADER.

--fs Indicates which filesystem to be used on GPP[OS]. This is

required when GPP/Platform supports multiple filesystem type

otherwise no need to provide it. For e.g. --loader=PRFILE_FS.

This script would display help messages if any required option is not provided. This

message would give enough details to allow users to provide correct options.

As DSPLink is being ported to new and newer platforms, configure script must allow

writers to add their own definitions inside the script in easier way. This is done in the

following way:

1. Loader definitions:

Create entries like below for the new loader:

my %CFG_LOADER_YOUR =
(
 'NAME' => 'YOUR LOADER', # name of the loader
 'ID' => 'YOUR_LOADER', # Identifier
 'DESC' => 'Your file format loader', # a smal l description
);

Example:

my %CFG_LOADER_COFF =
(
 'NAME' => 'COFF LOADER',
 'ID' => 'COFF_LOADER',
 'DESC' => 'TI Coff file format loader',
);

Then add the created entry in the global array of loaders:

my %CFG_LOADERS =
(
 '0' => \%CFG_LOADER_COFF,
 …
 …
 'n' => \%CFG_LOADER_YOUR
) ;

2. Filesystem definitions:

Create entries like below for the new filesystem:

my %CFG_FS_YOUR =
(
 'NAME' => 'Your Filesystem',
 'ID' => 'YOUR_FS',
 'DESC' => "Your filesystem",
);

Example:

my %CFG_FS_PRFILE =
(
 'NAME' => 'PrFile Filesystem',
 'ID' => 'PRFILE_FS',
 'DESC' => "Read PrFile guide for further d etails",
);

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 17 of 56 Version 1.20

Then add the created entry in the global array of filesystems:

my %CFG_FSS =
(
 '0' => \%CFG_FS_PSUEDO,
 '1' => \%CFG_FS_PRFILE,
 …
 …
 'n' => \%CFG_FS_YOUR
) ;

3. GPP OS definitions:

Create entries like below for the new GPP OS:

my %CFG_GPPOS_YOUR =
(
 'NAME' => 'MVL4U', #name of the GPP OS
 'PREFIX' => 'mvl4u', #prefix, used for generati ng file names
 'ID' => 'MVL4U', #identifier
 'DESC' => 'Montavista Pro 4.0 Linux + uCLibc Filesystem',
 'VER' => '2.6.10', #Version (if any)
 'TYPE' => 'Linux', #Type of GPP OS (Linux, P rOs, WinCE)
 'LOADER' => \%CFG_LOADER_YOUR, # loader used in this OS.
);

Example:

my %CFG_GPPOS_MVL4U =
(
 'NAME' => 'MVL4U',
 'PREFIX' => 'mvl4u',
 'ID' => 'MVL4U',
 'DESC' => 'Montavista Pro 4.0 Linux + uCLibc Filesystem',
 'VER' => '2.6.10',
 'TYPE' => 'Linux',
 'LOADER' => \%CFG_LOADER_COFF,
) ;

Then add the created entry in the global array of GPP OSes:

my %CFG_GPPOS =
(
 '0' => \%CFG_GPPOS_MVL4U,
 '1' => \%CFG_GPPOS_MVL4G,
 '2' => \%CFG_GPPOS_MVL5U,
 '3' => \%CFG_GPPOS_MVL5G,
 '4' => \%CFG_GPPOS_RHEL4,
 '5' => \%CFG_GPPOS_RHL9,
 '6' => \%CFG_GPPOS_PROS,
 'n' => \% CFG_GPPOS_YOUR
) ;

4. DSP OS definitions:

Create entries like below for the new DSP OS:

my %CFG_DSPOS_YOUR =
(
 'NAME' => 'YOUR_DSP_OS',
 'PREFIX' => 'yourdspos',

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 18 of 56 Version 1.20

 'ID' => 'YOURDSPOS',
 'DESC' => 'Your DSP OS',
 'VER' => '5.XX',
 'TYPE' => 'DspBios',

) ;

Example:

my %CFG_DSPOS_5XX =
(
 'NAME' => 'DSPBIOS5XX',
 'PREFIX' => 'dspbios5xx',
 'ID' => 'DSPBIOS5XX',
 'DESC' => 'DSP/BIOS (TM) Version 5.XX',
 'VER' => '5.XX',
 'TYPE' => 'DspBios',
) ;

Then add the created entry in the global array of DSP OSes:

my %CFG_GPPOS =
(
 '0' => \%CFG_GPPOS_MVL4U,
 '1' => \%CFG_GPPOS_MVL4G,
 '2' => \%CFG_GPPOS_MVL5U,
 '3' => \%CFG_GPPOS_MVL5G,
 '4' => \%CFG_GPPOS_RHEL4,
 '5' => \%CFG_GPPOS_RHL9,
 '6' => \%CFG_GPPOS_PROS,
 'n' => \% CFG_GPPOS_YOUR
) ;

5. Physical Interface definitions:

Create entries like below for the new Physical interface:

my %CFG_PHY_YOUR =
(
 'ID' => 'YOUR_PHY',
 'DESC' => 'Your Physical Interface',
 'DEV' => 'DAVINCIGEM', #Target Device connec t by this interface
) ;

Example:

my %CFG_PHY_DAVINCISHARED =
(
 'ID' => 'DAVINCI_SHAREDPHY',
 'DESC' => 'Shared Physical Interface',
 'DEV' => 'DAVINCIGEM',
);

Then add the created entry in the global array of DSP OSes:

my %CFG_GPPOS =
(
 '0' => \%CFG_GPPOS_MVL4U,
 '1' => \%CFG_GPPOS_MVL4G,
 '2' => \%CFG_GPPOS_MVL5U,
 '3' => \%CFG_GPPOS_MVL5G,
 '4' => \%CFG_GPPOS_RHEL4,
 '5' => \%CFG_GPPOS_RHL9,

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 19 of 56 Version 1.20

 '6' => \%CFG_GPPOS_PROS,
 'n' => \% CFG_GPPOS_YOUR
) ;

6. DSP processor definitions:

Create entries like below for the new DSP processor:

my %CFG_DSP_YOUR =
(
 'NAME' => 'YOURDSP',
 'PREFIX' => 'Yourdsp',
 'ID' => 'YOURDSP',
 'DESC' => 'Your DSP',
 'TYPE' => 'C64XX',
) ;

Example:

my %CFG_DSP_DAVINCIGEM =
(
 'NAME' => 'DAVINCIGEM',
 'PREFIX' => 'Davincigem',
 'ID' => 'DAVINCIGEM',
 'DESC' => 'On-Chip DSP of DaVinci SoC',
 'TYPE' => 'C64XX',
);

Then add the created entry in the global array of DSP processors:

my %CFG_DSPS =
(
 '0' => \%CFG_DSP_DAVINCIGEM,
 '1' => \%CFG_DSP_DAVINCIHDGEM,
 '2' => \%CFG_DSP_JACINTOGEM,
 '3' => \%CFG_DSP_DM642,
 '4' => \%CFG_DSP_DM64LC,
 '5' => \%CFG_DSP_DAVINCIGEM1,
) ;

7. Base Platform definitions:

Create entries like below for the new platform:

my %CFG_PLATFORM_YOUR =
(
 'NAME' => 'YOURPLATFORM',
 'ID' => 'YOURPLATFORM',
 'PREFIX' => 'Yourplatform', # used for generati ng directories and
filenames, and also used for picking up correct fil es.
 'DESC' => "YOUR PLATFORM description",
 'GPPOS' => [
 \%CFG_GPPOS_PROS,
], # Supported GPP OSes (multiple p ossible)
 'DSPS' => [#Supported DSP with combination o f DSP, GPP OS, PHY,
DSP OS
 [
 \%CFG_DSP_YOUR, # DSP of the system
 \%CFG_PHY_YOUR, # Phy type of DSP
 \%CFG_GPPOS_YOUR, # GPP OS
 \%CFG_DSPOS_YOUR # DSP OS

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 20 of 56 Version 1.20

],
],
) ;

Example:

my %CFG_PLATFORM_DAVINCI =
(
 'NAME' => 'DAVINCI',
 'ID' => 'DAVINCI',
 'PREFIX' => 'Davinci',
 'DESC' => "DaVinci SoC - C64P DSP interfaced directly to ARM9",
 'GPPOS' => [
 \%CFG_GPPOS_MVL4U,
 \%CFG_GPPOS_MVL4G,
 \%CFG_GPPOS_MVL5U,
 \%CFG_GPPOS_MVL5G,
 \%CFG_GPPOS_PROS,
],
 'DSPS' => [
 [
 \%CFG_DSP_DAVINCIGEM,
 \%CFG_PHY_DAVINCISHARED,
 \%CFG_GPPOS_MVL4U, # montavis ta pro 4.0
 \%CFG_DSPOS_5XX
],
 [
 \%CFG_DSP_DAVINCIGEM,
 \%CFG_PHY_DAVINCISHARED,
 \%CFG_GPPOS_MVL4G, # montavis ta pro 5.0
 \%CFG_DSPOS_5XX
],
],
);

Then add the created entry in the global array of DSP processors:

my %CFG_PLATFORMS =
(
 '0' => \%CFG_PLATFORM_DAVINCI,
 '1' => \%CFG_PLATFORM_DAVINCIHD,
 '2' => \%CFG_PLATFORM_JACINTO,
 '3' => \%CFG_PLATFORM_LINUXPC,
 'n' => \%CFG_PLATFORM_YOUR
);

3.5 Modules Changes
As previously, DSPLink used to exist between a GPP and a DSP, so only one form of

module implementation used to exist in the DSPLink. For e.g. if user chooses DaVinci

platform then only zero copy implementation of MSGQ, CHNL is compiled. But now

multiple DSP exists which can have different physical interface, so we would require

different implementation of these modules to coexists inside the DSPLink. For

example if we have a platform where a PCI DSP is attached to DaVinci board, then

zero copy implementation would exist between GPP and DaVinci Gem and sync copy

implementation would exist between GPP and PCI DSP.

So, to achieve the above said, all modules would be plugged into Link Driver layer as

function interface. This plugging would be done at the runtime using the user

provided configuration data.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 21 of 56 Version 1.20

Below diagram shows the concept:

Figure 5. Module changes

Link Driver

Shared MSGQ
implementation

Shared CHNL
implementation

Sync MSGQ
implementation

Sync CHNL
implementation

DaVinciGem

PCI DSP

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 22 of 56 Version 1.20

4 Details

4.1 DSP Layer
DSP API part would connect the ARCH component to the Link Driver module through a set of
APIs.

4.1.1 DSP_moduleInit

This function initializes the DSP module.

Syntax
NORMAL_API Void DSP_moduleInit (Void) ;

Arguments

None.

Return Value

None.

Comments
None.

Constraints

None.

See Also
DSP_moduleExit

4.1.2 DSP_moduleExit

This function finalizes the DSP module.

Syntax
NORMAL_API Void DSP_moduleExit (Void) ;

Arguments

None.

Return Value

None.

Comments
None.

Constraints

None.

See Also
DSP_moduleInit

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 23 of 56 Version 1.20

4.1.3 DSP_init
This function initializes a DSP and plugs the DSP interface. Also calls the init function

from the attached interface .

Syntax
NORMAL_API DSP_STATUS DSP_init (IN ProcessorId dspId,
 IN DSP_Interface * interface) ;

Arguments

IN ProcessorId dspId

 Processor Identifier

IN DSP_Interface * interface

 Interface to DSP/DEVICE APIs

Return Value

DSP_SOK Operation successfully completed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL DSP_setup function wasn't called before calling this

function.

DSP_EVALUE Invalid DSP MMU endianism configuration.

Comments
None.

Constraints

None.

See Also

DSP_exit

4.1.4 DSP_ exit
This function finalizes a DSP and also calls the exit function of attached DSP/Device

interface.

Syntax
NORMAL_API DSP_STATUS DSP_exit (IN ProcessorId dspId) ;

Arguments

IN ProcessorId dspId

 Processor Identifier

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 24 of 56 Version 1.20

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL DSP_setup function wasn't called before calling this

function.

Comments
None.

Constraints

None.

See Also

DSP_init

4.1.5 DSP_ start
This function causes DSP to start execution from the given DSP address. DSP is put

to STARTED state after successful completion. This is achieved by calling start

function from the attached interface.

Syntax
NORMAL_API DSP_STATUS DSP_start (IN ProcessorId ds pId,
 IN Uint32 ds pAddr) ;

Arguments

IN ProcessorId dspId

 Processor Identifier

IN Uint32 dspAddr

 Address to start execution from.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL DSP_setup function wasn't called before calling this

function.

Comments
None.

Constraints

None.

See Also

DSP_stop

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 25 of 56 Version 1.20

4.1.6 DSP_ stop
This function stops execution on DSP. DSP is put to STOPPED state after successful

completion. This is achieved by calling stop function from the attached interface.

Syntax
NORMAL_API DSP_STATUS DSP_stop (IN ProcessorId dsp Id) ;

Arguments

IN ProcessorId dspId

 Processor Identifier

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL DSP_setup function wasn't called before calling this

function.

Comments
None.

Constraints

None.

See Also

DSP_start

4.1.7 DSP_idle
This function idles the DSP. DSP is put to IDLE state after successful completion. This

is achieved by calling idle function from the attached interface.

Syntax
NORMAL_API DSP_STATUS DSP_idle (IN ProcessorId dsp Id) ;

Arguments

IN ProcessorId dspId

 Processor Identifier

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL DSP_setup function wasn't called before calling this

function.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 26 of 56 Version 1.20

Comments
None.

Constraints

None.

See Also

DSP_start/DSP_stop

4.1.8 DSP_ intCtrl
This function performs the specified DSP interrupt control activity. This is achieved

by calling intCtrl function from the attached interface.

Syntax
NORMAL_API DSP_STATUS DSP_intCtrl
 (IN ProcessorId d spId,
 IN Uint32 i ntId,
 IN DSP_IntCtrlCmd c md,
 IN OUT OPT Pvoid a rg);

Arguments

IN ProcessorId dspId

 Processor Identifier

IN Uint32 intId

 Interrupt ID

IN DSP_IntCtrlCmd cmd

 Interrupt control command to be performed.

IN/OUT
OPT

Pvoid arg

 Optional input/output argument specific to each control command.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL DSP_setup function wasn't called before calling this

function.

Comments
None.

Constraints

None.

See Also

DSP_start/DSP_stop

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 27 of 56 Version 1.20

4.1.9 DSP_read
This function reads data from DSP. This is achieved by calling read function from the

attached interface.

Syntax
NORMAL_API DSP_STATUS DSP_read
 (IN ProcessorId dspId,
 IN Uint32 dspAddr,
 IN Endianism endianInfo,
 IN Uint32 numBytes,
 OUT Uint8 * buffer);

Arguments

IN ProcessorId dspId

 Processor Identifier

IN Uint32 dspAddr

 DSP address to read from.

IN Endianism endianInfo

 endianness of data - indicates whether swap is required or not

IN Uint32 numBytes

 Number of bytes to read.

OUT Uint8 * buffer

 Buffer to hold the read data

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL DSP_setup function wasn't called before calling this

function.

Comments
None.

Constraints

None.

See Also

DSP_write

4.1.10 DSP_write
This function writes the data to DSP. This is achieved by calling write function from

the attached interface.

Syntax
NORMAL_API DSP_STATUS DSP_write
 (IN ProcessorId dspId,
 IN Uint32 dspAddr,

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 28 of 56 Version 1.20

 IN Endianism endianInfo,
 IN Uint32 numBytes,
 OUT Uint8 * buffer);

Arguments

IN ProcessorId dspId

 Processor Identifier

IN Uint32 dspAddr

 DSP address to write to.

IN Endianism endianInfo

 endianness of data - indicates whether swap is required or not

IN Uint32 numBytes

 Number of bytes to write.

OUT Uint8 * buffer

 Buffer to write

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL DSP_setup function wasn't called before calling this

function.

Comments
None.

Constraints

None.

See Also

DSP_read

4.1.11 DSP_ addrConvert
This function converts address between GPP and DSP address space. This is achieved

by calling addrConvert function from the attached interface.

Syntax
NORMAL_API DSP_STATUS DSP_addrConvert
 (IN ProcessorId dspId,
 IN Uint32 addr,
 IN DSP_AddrConvType type);

Arguments

IN ProcessorId dspId

 Processor Identifier

IN Uint32 addr

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 29 of 56 Version 1.20

 Address to be converted. If DSP address, the addr parameter reflects

the DSP MADU address.

IN DSP_AddrConvType type

 Type of address conversion

Return Value

ADDRMAP_INVALID Specified address is not in mapped range

Converted address Operation successfully completed.

Comments
None.

Constraints

None.

See Also

None.

4.1.12 DSP_ Control
This function is a hook for performing device dependent control operation. This is

achieved by calling control function from the attached interface.

Syntax
NORMAL_API DSP_STATUS DSP_control
 (IN ProcessorId dspId,
 IN Int32 cmd,
 OPT Pvoid arg);

Arguments

IN ProcessorId dspId

 Processor Identifier

IN Int32 cmd

 Command id.

OPT Pvoid arg

 Optional argument for the specified command.

Return Value

DSP_EINVALIDARG Invalid arguments specified

DSP_SOK Operation successfully completed.

Comments
None.

Constraints

None.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 30 of 56 Version 1.20

See Also

None.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 31 of 56 Version 1.20

4.2 HAL Layer
HAL abstract the required hardware features of a DSP.

4.2.1 Device APIs
This APIs are called by DSP Layer as function inter face. This APIs calls HAL and PHY APIs to
perform the required action.

4.2.1.1 <device>_init

This function Resets the DSP and initializes the components required by DSP. Also

puts the DSP in RESET state. Also calls <device>_halInit to initializes the HAL
component

Syntax
NORMAL_API DSP_STATUS <device>_init (IN ProcessorI d dspId,
 IN DSP_Object * dspState) ;

Arguments

IN ProcessorId dspId

 Processor Identifier

IN DSP_Object * dspState

 DSP state Object

Return Value

DSP_EFAIL All other error conditions

DSP_SOK Operation successfully completed.

Comments
None.

Constraints

None.

See Also

<device>_exit.

4.2.1.2 <device>_exit

This function resets the DSP and puts it into IDLE Mode. Also calls <device>_halExit

to finalizes the HAL component.

Syntax
NORMAL_API DSP_STATUS <device>_exit (IN ProcessorI d dspId,
 IN DSP_Object * dspState) ;

Arguments

IN ProcessorId dspId

 Processor Identifier

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 32 of 56 Version 1.20

IN DSP_Object * dspState

 DSP state Object

Return Value

DSP_EFAIL All other error conditions

DSP_SOK Operation successfully completed.

Comments
None.

Constraints

None.

See Also

<device>_init.

4.2.1.3 <device>_start

This function causes DSP to start execution from the given DSP address. DSP is put

to STARTED state after successful completion. Calls HAL APIs to achieve the required

logic.

Syntax
NORMAL_API DSP_STATUS <device>_start (IN Processor Id dspId,
 IN DSP_Object * dspState,
 IN Uint32 dspAddr) ;

Arguments

IN ProcessorId dspId

 Processor Identifier

IN DSP_Object * dspState

 DSP state Object

IN Uint32 dspAddr

 Address to start execution from

Return Value

DSP_EFAIL All other error conditions

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG
Invalid argument

Comments
None.

Constraints

None.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 33 of 56 Version 1.20

See Also

<device>_stop.

4.2.1.4 <device>_stop

This function stops execution on DSP. DSP is put to STOPPED state after successful

completion.

Syntax
NORMAL_API DSP_STATUS <device>_stop (IN ProcessorI d dspId,
 IN DSP_Object * dspState) ;

Arguments

IN ProcessorId dspId

 Processor Identifier

IN DSP_Object * dspState

 DSP state Object

Return Value

DSP_EFAIL All other error conditions

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG
Invalid argument

Comments
None.

Constraints

None.

See Also

<device>_start.

4.2.1.5 <device>_idle

This function idles the DSP. DSP is put to IDLE state after successful completion.

Syntax
NORMAL_API DSP_STATUS <device>_idle (IN ProcessorI d dspId,
 IN DSP_Object * dspState) ;

Arguments

IN ProcessorId dspId

 Processor Identifier

IN DSP_Object * dspState

 DSP state Object

Return Value

DSP_EFAIL All other error conditions

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 34 of 56 Version 1.20

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG
Invalid argument

Comments
None.

Constraints

None.

See Also

<device>_start.

4.2.1.6 <device>_intCtrl

This function performs the specified DSP interrupt control activity.

Syntax
NORMAL_API DSP_STATUS <device>_intCtrl
 (IN ProcessorId d spId,
 IN DSP_Object * d spState,
 IN Uint32 i ntId,
 IN DSP_IntCtrlCmd c md,
 IN OUT OPT Pvoid a rg);

Arguments

IN ProcessorId dspId

 Processor Identifier

IN DSP_Object * dspState

 DSP state Object

IN Uint32 intId

 Interrupt Identifier

IN DSP_IntCtrlCmd Cmd

 Interrupt control command to be performed.

IN/OUT

OPT

Pvoid Arg

 Optional input/output argument specific to each control command.

Return Value

DSP_EFAIL All other error conditions

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG
Invalid argument

Comments
None.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 35 of 56 Version 1.20

Constraints

None.

See Also

None.

4.2.1.7 <device>_read

This function reads data from DSP.

Syntax
NORMAL_API DSP_STATUS <device>_read
 (IN ProcessorId dspId,

 IN DSP_Object * dspState,
 IN Uint32 dspAddr,
 IN Endianism endianInfo,
 IN Uint32 numBytes,
 OUT Uint8 * buffer);

Arguments

IN ProcessorId dspId

 Processor Identifier

IN DSP_Object * dspState

 DSP state Object

IN Uint32 dspAddr

 DSP address to read from.

IN Endianism endianInfo

 endianness of data - indicates whether swap is required or not

IN Uint32 numBytes

 Number of bytes to read.

OUT Uint8 * buffer

 Buffer to hold the read data

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL DSP_setup function wasn't called before calling this
function.

Comments
None.

Constraints

None.

See Also

<device>_write

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 36 of 56 Version 1.20

4.2.2 DSP_write
This function writes the data to DSP. This is achieved by calling write function from

the attached interface.

Syntax
NORMAL_API DSP_STATUS <device>_write
 (IN ProcessorId dspId,

 IN DSP_Object * dspState,
 IN Uint32 dspAddr,
 IN Endianism endianInfo,
 IN Uint32 numBytes,
 OUT Uint8 * buffer);

Arguments

IN ProcessorId dspId

 Processor Identifier

IN DSP_Object * dspState

 DSP state Object

IN Uint32 dspAddr

 DSP address to write to.

IN Endianism endianInfo

 endianness of data - indicates whether swap is required or not

IN Uint32 numBytes

 Number of bytes to write.

OUT Uint8 * buffer

 Buffer to write

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL DSP_setup function wasn't called before calling this

function.

Comments
None.

Constraints

None.

See Also

<device>_read

4.2.3 <device>_ addrConvert
This function converts address between GPP and DSP address space. This is achieved

by calling addrConvert function from the attached interface.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 37 of 56 Version 1.20

Syntax
NORMAL_API <device>_STATUS DSP_addrConvert
 (IN ProcessorId dspId,
 IN DSP_Object * dspState,
 IN Uint32 addr,
 IN DSP_AddrConvType type);

Arguments

IN ProcessorId dspId

 Processor Identifier

IN DSP_Object * dspState

 DSP state Object

IN Uint32 addr

 Address to be converted. If DSP address, the addr parameter reflects

the DSP MADU address.

IN DSP_AddrConvType type

 Type of address conversion

Return Value

ADDRMAP_INVALID Specified address is not in mapped range

Converted address Operation successfully completed.

Comments
None.

Constraints

None.

See Also

None.

4.2.4 <device>_ Control
This function is a hook for performing device dependent control operation. This is

achieved by calling control function from the attached interface.

Syntax
NORMAL_API DSP_STATUS <device>_control
 (IN ProcessorId dspId,
 IN DSP_Object * dspState,
 IN Int32 cmd,
 OPT Pvoid arg);

Arguments

IN ProcessorId dspId

 Processor Identifier

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 38 of 56 Version 1.20

IN DSP_Object * dspState

 DSP state Object

IN Int32 cmd

 Command id.

OPT Pvoid arg

 Optional argument for the specified command.

Return Value

DSP_EINVALIDARG Invalid arguments specified

DSP_SOK Operation successfully completed.

Comments
None.

Constraints

None.

See Also

None.

4.2.5 DSP Layer Structures

4.2.5.1 DSP_Interface
This structre defines DSP Function table.

Definition
struct DSP_Interface_tag {
 FnDspInit init ;
 FnDspExit exit ;
 FnDspStart start ;
 FnDspStop stop ;
 FnDspIdle idle ;
 FnDspIntCtrl intCtrl ;
 FnDspRead read ;
 FnDspWrite write ;
 FnDspAddrConvert addrConvert ;
 FnDspControl control ;
} ;

Fields

Init Function pointer to init function for the DSP.

exit Function pointer to exit function for the DSP.

start Function pointer to start function for the DS P.

stop Function pointer to stop function for the DSP.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 39 of 56 Version 1.20

idle Function pointer to idle function for the DSP.

intCtrl Function pointer to interrupt control function for the
DSP.

read Function pointer to read function for the DSP.

write Function pointer to write function for the DS P.

addrConvert Function pointer to address conversion function for the
DSP.

Control Function pointer to device dependent control
functionality for the DSP

Instrument Function pointer to instrument function for the DSP

debug Function pointer to debug function for the DS P

Comments

Each supported device must export this function table, this function table will be

used by DSP layer to program/control the DSP.

Constraints

None.

See Also
None.

4.2.5.2 DSP_Object
This structure defines the state of a DSP.

Definition
typedef struct DSP_Object_tag {
 Uint32 dspId ;
 Pvoid halObject ;
 DSP_Interface * interface ;
#if defined (DDSP_PROFILE)
 DSP_Stats dspStats ;
#endif /* if defined (DDSP_PROFILE) */
} DSP_Object ;

Fields

dspId DSP identifier

halObject HAL object

interface Function table for the DSP APIs

dspStats Profiling information related to the target DSP

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 40 of 56 Version 1.20

Comments

halObject is defined by each DSP separately.

Constraints

None.

See Also
None.

4.2.6 HAL & PHY Layer Structures

4.2.6.1 HAL_Interface

Interface functions exported by the HAL subcomponent.

Definition
typedef struct HAL_Interface_tag {
 FnPhyInit phyInit ;
 FnPhyExit phyExit ;
 FnBootCtrl bootCtrl ;
 FnIntCtrl intCtrl ;
 FnMapCtrl mapCtrl ;
 FnPwrCtrl pwrCtrl ;
 FnRead read ;
 FnWrite write ;
 FnReadDMA readDMA ;
 FnWriteDMA writeDMA ;
} HAL_Interface ;

Fields

phyInit Function pointer to Initializes physical interface
function for the DSP.

phyExit Function pointer to Finalizes physical interface
function for the DSP.

bootCtrl Function pointer to boot control function for the DSP.

intCtrl Function pointer to interrupt control function for the
DSP.

mapCtrl Function pointer to map control function for the DSP.

intCtrl Function pointer to interrupt control function for the
DSP.

pwrCtrl Function pointer to power control functio n for the DSP.

read Function pointer to read memory function for the DSP.

write Function pointer to write memory function for the DSP.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 41 of 56 Version 1.20

readDMA Function pointer to read DMA function for the DSP.

writeDMA Function pointer to write DMA function for the DSP.

Comments

Each DSP and HAL must export this structure, if a DSP supports two physical

interface, then the DSP must export two of this structure.

Constraints

None.

See Also
None.

4.2.6.2 DSP_ IntCtrlCmd

Defines the types of interrupt control commands; handled by the DSP component.

Definition
typedef enum {
 DSP_IntCtrlCmd_Enable = 0u,
 DSP_IntCtrlCmd_Disable = 1u,
 DSP_IntCtrlCmd_Send = 2u,
 DSP_IntCtrlCmd_Clear = 3u,
 DSP_IntCtrlCmd_WaitClear = 4u,
 DSP_IntCtrlCmd_Check = 5u
} DSP_IntCtrlCmd ;

Fields

DSP_IntCtrlCmd_Enable Enable interrupt

DSP_IntCtrlCmd_Disable Disable interrupt

DSP_IntCtrlCmd_Send Send interrupt

DSP_IntCtrlCmd_Clear Clear interrupt

DSP_IntCtrlCmd_WaitClear Wait for interrupt to be c leared

DSP_IntCtrlCmd_Check Check whether DSP has generated INT or
not.

Comments

Each DSP and HAL must export this structure, if a DSP supports two physical

interface, then the DSP must export two of this structure.

Constraints

None.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 42 of 56 Version 1.20

See Also
None.

4.2.6.3 DSP_BootCtrlCmd

Defines the types of boot control commands; handled by the DSP component.

Definition
typedef enum {
 DSP_BootCtrlCmd_SetEntryPoint = 0u,
 DSP_BootCtrlCmd_SetBootComplete = 1u,
 DSP_BootCtrlCmd_ResetBootComplete = 2u,
} DSP_BootCtrlCmd ;

Fields

DSP_BootCtrlCmd_SetEntryPoint Sets entry point

DSP_BootCtrlCmd_SetBo otComplete Indicate complete of boot sequence

DSP_BootCtrlCmd_ResetBootComplete Reset the boot complete boot flag.

Comments

None.

Constraints

None.

See Also
None.

4.2.6.4 DSP_ MapCtrlCmd

Defines the types of map control commands; handled by the DSP component.

Definition
typedef enum {
 DSP_MapCtrlCmd_Map = 0u,
 DSP_MapCtrlCmd_Unmap = 1u,
 DSP_MapCtrlCmd_SetShared = 2u,
} DSP_MapCtrlCmd ;

Fields

DSP_MapCtrlCmd_Map Maps the given dsp address

DSP_MapCtrlCmd_Unmap Maps the given previous dsp ad dress

DSP_MapCtrlCmd_SetShared Maps the shared memory to the given

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 43 of 56 Version 1.20

dsp address

Comments

None.

Constraints

None.

See Also
None.

4.2.6.5 DSP_PwrCtrlCmd

Defines the types of power control commands; handled by the DSP component.

Definition
typedef enum {
 DSP_PwrCtrlCmd_PowerUp = 0u,
 DSP_PwrCtrlCmd_PowerDown = 1u,
 DSP_PwrCtrlCmd_Reset = 2u,
 DSP_PwrCtrlCmd_Release = 3u,
 DSP_PwrCtrlCmd_PeripheralUp = 4u,
} DSP_PwrCtrlCmd ;

Fields

DSP_PwrCtrlCmd_PowerUp Power the DSP device

DSP_PwrCtrlCmd_PowerDown Power down the DSP device.

DSP_PwrCtrlCmd_Reset Reset the DSP device

DSP_PwrCtrlCmd_Rele Release the DSP device from res et

DSP_PwrCtrlCmd_PeripheralUp Initialize any peripheral that is used
by DSPLink. For example, EDAM/PLL/DDR
is needed to be initialized on DM6437
platfrom.

Comments

None.

Constraints

None.

See Also
None.

4.2.6.6 DSP_DmaCtrlCmd

Defines the types of DMA control commands; handled by the DSP component.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 44 of 56 Version 1.20

Definition
typedef enum {
 DSP_DmaCtrlCmd_GppToDsp = 0u,
 DSP_DmaCtrlCmd_DspToGpp = 1u
} DSP_DmaCtrlCmd ;

Fields

DSP_DmaCtrlCmd_GppToDsp Start DMA from GPP to DSP

DSP_DmaCtrlCmd_DspToGpp Start DMA from DSP to GPP

Comments

None.

Constraints

None.

See Also
None.

4.2.7 HAL APIs & PHY APIs

4.2.7.1 <device>_ halInit

This function initializes the HAL object and physical interface. Calls <device>_phyInit

to initialize the physical interface.

Syntax
NORMAL_API
DSP_STATUS
<device>_halInit (IN Pvoid * halObject, IN Pvoid in itParams) ;

Arguments

IN Pvoid * halObject

 HAL Object

IN Pvoid initParams

 Optional parameters for initialization

Return Value
DSP_EFAIL

All other error conditions

DSP_SOK Operation successfully completed.

Comments
None.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 45 of 56 Version 1.20

Constraints

None.

See Also

<device>_halExit.

4.2.7.2 <device>_ halInit

This function finializes the HAL object and physical interface. Calls <device>_phyExit

to finalize the physical interface.

Syntax
NORMAL_API
DSP_STATUS
<device>_halExit (IN Pvoid * halObject) ;

Arguments

IN Pvoid * halObject

 HAL Object

Return Value
DSP_EFAIL

All other error conditions

DSP_SOK Operation successfully completed.

Comments
None.

Constraints

None.

See Also

<device>_halInit.

4.2.7.3 <device>_ phyInit

This function initializes physical interface.

Syntax
NORMAL_API
DSP_STATUS
<device>_phyInit (IN Pvoid * halObject) ;

Arguments

IN Pvoid * halObject

 HAL Object

Return Value
DSP_EFAIL

All other error conditions

DSP_SOK Operation successfully completed.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 46 of 56 Version 1.20

Comments
None.

Constraints

None.

See Also

<device>_phyExit.

4.2.7.4 <device>_ phyExit

This function finalizes physical interface.

Syntax
NORMAL_API
DSP_STATUS
<device>_phyExit (IN Pvoid * halObject) ;

Arguments

IN Pvoid * halObject

 HAL Object

Return Value
DSP_EFAIL

All other error conditions

DSP_SOK Operation successfully completed.

Comments
None.

Constraints

None.

See Also

<device>_phyInit.

4.2.7.5 <device>_ bootControl

This function provides boot control functionality.

Syntax
NORMAL_API
DSP_STATUS
<device>_bootControl (IN Void * h alObject,
 IN DSP_BootCtrlCmd c md,
 IN OUT OPT Pvoid a rg);

Arguments

IN Pvoid * halObject

 HAL Object

IN DSP_BootCtrlCmd cmd

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 47 of 56 Version 1.20

 Boot Command ID.

IN Pvoid arg

 Command specific argument (Optional).

Return Value
DSP_EFAIL

All other error conditions

DSP_SOK Operation successfully completed.

Comments
None.

Constraints

None.

See Also

None.

4.2.7.6 <device>_ intControl

This function provides interrupt control functionality.

Syntax
NORMAL_API
DSP_STATUS
<device>_intControl (IN Void * ha lObject,
 IN DSP_ IntCtrlCmd cm d,
 IN OUT OPT Pvoid ar g);

Arguments

IN Pvoid * halObject

 HAL Object

IN DSP_ IntCtrlCmd cmd

 Interrupt Command ID.

IN Pvoid arg

 Command specific argument (Optional).

Return Value
DSP_EFAIL

All other error conditions

DSP_SOK Operation successfully completed.

Comments
None.

Constraints

None.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 48 of 56 Version 1.20

See Also

None.

4.2.7.7 <device>_ mapControl

This function provides map control functionality.

Syntax
NORMAL_API
DSP_STATUS
<device>_ mapControl (IN Void * ha lObject,
 IN DSP_MapCtrlCmd cm d,
 IN OUT OPT Pvoid ar g);

Arguments

IN Pvoid * halObject

 HAL Object

IN DSP_MapCtrlCmd cmd

 Map Command ID.

IN Pvoid arg

 Command specific argument (Optional).

Return Value
DSP_EFAIL

All other error conditions

DSP_SOK Operation successfully completed.

Comments
None.

Constraints

None.

See Also

None.

4.2.7.8 <device>_ pwrControl

This function provides power control functionality.

Syntax
NORMAL_API
DSP_STATUS
<device>_pwrControl (IN Void * ha lObject,
 IN DSP_pwrCtrlCmd cm d,
 IN OUT OPT Pvoid ar g);

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 49 of 56 Version 1.20

Arguments

IN Pvoid * halObject

 HAL Object

IN DSP_pwrCtrlCmd cmd

 Power Command ID.

IN Pvoid arg

 Command specific argument (Optional).

Return Value
DSP_EFAIL

All other error conditions

DSP_SOK Operation successfully completed.

Comments
None.

Constraints

None.

See Also

None.

4.2.7.9 <device>_read

This function to read DSP data.

Syntax
NORMAL_API DSP_STATUS <device>_read
 (IN Void * halObject ,
 IN Uint32 dspAddr,
 IN Uint32 cBytes,
 OUT Char8 * readBuffe r);

Arguments

IN Pvoid * halObject

 HAL Object

IN Uint32 dspAddr

 Address to read from

IN Uint32 cBytes

 Number of bytes to be read.

OUT Char8 * readBuffer

 Buffer to hold read data.

Return Value
DSP_EFAIL

All other error conditions

DSP_SOK Operation successfully completed.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 50 of 56 Version 1.20

Comments
None.

Constraints

None.

See Also

None.

4.2.7.10 <device>_write

This function to write to DSP memory.

Syntax
NORMAL_API DSP_STATUS <device>_write
 (IN Void * halObject ,
 IN Uint32 dspAddr,
 IN Uint32 cBytes,
 OUT Char8 * writeBuff er);

Arguments

IN Pvoid * halObject

 HAL Object

IN Uint32 dspAddr

 Address to write to

IN Uint32 cBytes

 Number of bytes to be wrtten.

OUT Char8 * readBuffer

 Buffer to containing data.

Return Value
DSP_EFAIL

All other error conditions

DSP_SOK Operation successfully completed.

Comments
None.

Constraints

None.

See Also

None.

4.2.7.11 <device>_ readDMA

This function DMAs contents from DSP memory to GPP Memory. Here read means

DSP write.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 51 of 56 Version 1.20

Syntax
NORMAL_API DSP_STATUS <device>_readDMA
 (IN Void * halObject ,
 IN Uint32 srcAddr,
 IN Uint32 dstAddr,
 IN Uint32 size) ;

Arguments

IN Pvoid * halObject

 HAL Object

IN Uint32 srcADdr

 Source address

IN Uint32 dstAddr

 Target address

OUT Uint32 size

 Number of bytes

Return Value
DSP_EFAIL

All other error conditions

DSP_SOK Operation successfully completed.

Comments
None.

Constraints

None.

See Also

None.

4.2.7.12 <device>_ writeDMA

This function DMAs contents from GPP memory to DSP Memory. Here write means

DSP read.

Syntax
NORMAL_API DSP_STATUS <device>_writeDMA
 (IN Void * halObject ,
 IN Uint32 srcAddr,
 IN Uint32 dstAddr,
 IN Uint32 size) ;

Arguments

IN Pvoid * halObject

 HAL Object

IN Uint32 srcADdr

 Source address

IN Uint32 dstAddr

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 52 of 56 Version 1.20

 Target address

OUT Uint32 size

 Number of bytes

Return Value
DSP_EFAIL

All other error conditions

DSP_SOK Operation successfully completed.

Comments
None.

Constraints

None.

See Also

None.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 53 of 56 Version 1.20

4.3 Dynamic configuration

4.3.1 Data structures

4.3.1.1 CFGMAP_ObjDB

Defines object containing configuration mapping information for all DSPs configured

in the DSP/BIOS LINK.

Definition
typedef struct CFGMAP_ObjDB_tag {
 Char8 * dspName ;
 CFGMAP_Object * obj ;
} CFGMAP_ObjDB ;

Fields

dspName Name of the DSP

obj CFGMAP object associated with the DSP.

Comments

None.

Constraints

None.

See Also
CFGMAP_Object

4.3.2 Functions

4.3.2.1 CFGMAP_ attachObject

This function plugs the CFGMAP object at correct place in CFGMAP_Config array.

Syntax
EXPORT_API
DSP_STATUS
CFGMAP_attachObject (IN ProcessorId procId, IN Char 8 * dspName) ;

Arguments

IN ProcessorId procId

Processor Identifier

IN Char8 * dspName

Name of the DSP.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 54 of 56 Version 1.20

Return Value

DSP_SOK Operation successfully completed.

DSP_ECONFIG Incorrect configuration.

Comments

None.

Constraints

None.

See Also
None

4.4 Config

4.4.1 Data structures

4.4.1.1 LINKCFG_Object

This structure defines the configuration structure for the system.

Definition
typedef struct LINKCFG_Object_tag {
 LINKCFG_Gpp * gppObject ;
 LINKCFG_DspConfig * dspConfigs [MAX_DSPS] ;
} LINKCFG_Object ;

Fields

gppObject Pointer to the GPP specific configuration

object.

dspConfigs DSP/BIOS LINK configuration structures.

Comments

None.

Constraints

None.

See Also
None.

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 55 of 56 Version 1.20

5 Decision Analysis & Resolution

5.1 Platform Configuration
There are two options for platform configuration design.

5.1.1 DAR Criteria

1. Meets customer needs

2. Meets expected requirements for multi-DSP support

3. Ease of use

4. Scalability and flexibility for future usage

5. Ease of porting

6. Consistency with existing DSPLink design and implementation

5.1.2 Available Alternatives

1. Combined configuration file

2. Individual C configuration files

5.1.2.1 Combined configuration file

Summary:

o Here full system architecture would be captured in a single file.

o For this, there would be templates available, containing default values for all

supported platforms.

o Static build configuration script would use these templates and generate the

CFG_arch.c.

Advantages:

1. Backward compatibility to some level with existing DSPLink, since currently
customers are used to only having one configuration file for each platform.

2. Will reduce confusion for customers having to move from earlier non-multi-DSP
DSPLink versions to the new version.

Disadvantages:

1. Not intuitive, since now configurations are really different for GPP and each DSP.

2. Since each PROC_attach must take a different configuration for each DSP, having
all the objects in a single file is not intuitive.

3. Not scalable and flexible to support multiple types of combinations

4. Static configuration script is required to do parsing of the templates and generate
file. This parsing will require more effort.

5. Porting to a different platform combination would take more effort

5.1.2.2 Individual C configuration files

Summary:

DSP/BIOS™ LINK

LNK 182 DES

MULTI-DSP DESIGN

Page 56 of 56 Version 1.20

1. Every supported DSP device's configuration values would be provided in a
separate file.

2. GPP configuration values are also provided in a separate file

3. Static configuration script would generate a file CFG_system.c which will tie the
full system architecture.

Advantages:

1. Intuitive usage of configuration files with separate configuration for each
logical entity.

2. Scalable and flexible to support multiple types of configurations

3. Simpler logic in static configuration script and easy maintenance.

4. Porting to a different platform combination would be simpler.

Disadvantages:

1. Multiple files represent the configuration, so it may confuse users which file to
modify. This can be mitigated by having all files used in a specific

configuration copied to a BUILD separate location so that it is clear which files

are involved in the build.

5.1.3 Decision

Alternative 2 has been chosen based on the advantages and disadvantages listed for

each approach.

	Introduction
	Purpose and Scope
	Terms and Abbreviations
	References

	Overview
	Design
	ARCH
	Design

	Configuration
	Dynamic Configuration
	Configure Script
	Modules Changes

	Details
	DSP Layer
	DSP_moduleInit
	DSP_moduleExit
	DSP_init
	DSP_ exit
	DSP_ start
	DSP_ stop
	DSP_idle
	DSP_ intCtrl
	DSP_read
	DSP_write
	DSP_ addrConvert
	DSP_ Control

	HAL Layer
	Device APIs
	<device>_init
	<device>_exit
	<device>_start
	<device>_stop
	<device>_idle
	<device>_intCtrl
	<device>_read

	DSP_write
	<device>_ addrConvert
	<device>_ Control
	DSP Layer Structures
	DSP_Interface
	DSP_Object

	HAL & PHY Layer Structures
	HAL_Interface
	DSP_ IntCtrlCmd
	DSP_BootCtrlCmd
	DSP_ MapCtrlCmd
	DSP_PwrCtrlCmd
	DSP_DmaCtrlCmd

	HAL APIs & PHY APIs
	<device>_ halInit
	<device>_ halInit
	<device>_ phyInit
	<device>_ phyExit
	<device>_ bootControl
	<device>_ intControl
	<device>_ mapControl
	<device>_ pwrControl
	<device>_read
	<device>_write
	<device>_ readDMA
	<device>_ writeDMA

	Dynamic configuration
	Data structures
	CFGMAP_ObjDB

	Functions
	CFGMAP_ attachObject

	Config
	Data structures
	LINKCFG_Object

	Decision Analysis & Resolution
	Platform Configuration
	DAR Criteria
	Available Alternatives
	Combined configuration file
	Individual C configuration files

	Decision

