

Document Template Version 1.2

Version 1.40 Page 1 of 35

PORTING GUIDE

DSP/BIOS™ LINK

Version 1.40

LNK 017 PRT

Page 2 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

This page has been intentionally left blank

Page 3 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

This page has been intentionally left blank.

Page 5 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

TABLE OF CONTENTS

A. INTRODUCTION 7

1 Purpose .. 7

2 Terms & Abbreviations ... 7

3 References ... 7

4 Overview .. 8
4.1 DSPLink architecture.. 8
4.2 System Organization Types ...10
4.3 Current ports of DSP/BIOS™ LINK ..12

5 Porting to a different GPP Operating System.. 13
5.1 Requirements of OSAL sub-components ..13
5.2 Important considerations...17
5.3 Checklist of activities involved..18

6 Porting to a different Hardware Platform ... 20
6.1 Port to a platform with similar GPP-DSP combination with an existing

physical link implementation..20
6.2 Porting to a different physical link for existing platform(s)26
6.3 Porting to a different physical link for a different platform..........................31

7 Build system... 32

8 Testing the port.. 35
8.1 Quick testing ...35
8.2 Full validation ..35

9 Packaging... 35

Page 6 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

TABLE OF FIGURES

Figure 1. DSP/BIOS™ LINK Architecture .. 8
Figure 2. Shared Memory System Organization..11
Figure 3. Memory Mapped IO System Organization ..11
Figure 4. Fully Discrete System Organization...12
Figure 5. Interactions of DRV ..13

Page 7 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

A. INTRODUCTION

1 Purpose
This document describes the changes that a user needs to make in the DSP/BIOS™

LINK sources for porting DSPLink to another GPP-side Operating System or Hardware

platform.

OEMs and software developers involved in the porting activity of DSP/BIOS™ LINK

are the target audience of this document.

2 Terms & Abbreviations
OSAL Operating System Adaptation Layer

HAL Hardware Abstraction Layer

DSPLink DSP/BIOS™ LINK

3 References
1. DSP/BIOS™ LINK

User Guide

2. DSP/BIOS™ LINK

LNK_024_DES: OS Adaptation Layer for Linux

3. DSP/BIOS™ LINK

LNK_012_DES: Link Driver

4. DSP/BIOS™ LINK

LNK_041_DES: Zero Copy Link Driver

Page 8 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

4 Overview

4.1 DSPLink architecture
DSP/BIOS™ LINK is comprised of the following major components:

Figure 1. DSP/BIOS™ LINK Architecture

4.1.1 Common modules

This section provides a brief summary of the components shown on the GPP side in

the figure above. The architecture is described in more details later in the document.

� CONFIG

This component provides configuration for DSPLink. When any new device or

Operating System support is to be added to DSPLink, the configuration needs to

be accordingly modified.

� BUILD

DSPLink provides a generic make-based build system. The build system is

portable to different Operating Systems or devices. Accordingly, it must be

ported as required to ensure correct build of DSPLink for the target environment.

4.1.2 GPP side

This section provides a brief summary of the components shown on the GPP side in

the figure above. The architecture is described in more details later in the document.

� GPP OS

On the GPP side, a specific OS is assumed to be running.

� OS ADAPTATION LAYER

Page 9 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

This component encapsulates the generic OS services that are required by the

other components of DSP/BIOS™ LINK. This component exports a generic API

that insulates the other components from the specifics of an OS. All other

components use this API instead of direct OS calls. This makes DSPLink portable

across different operating systems.

� ARCH

The ARCH component contains all device-specific functionality. Whenever

DSPLink is to be ported to a different device, this is the main component that

needs to be ported.

Each device must provide an implementation of the standard DSP interface. The

generic DSP interface abstracts the hardware specific functions for accessing

(communicating with) the target. The interface exports low level function to

control the DSP e.g. start, stop, read, write, interrupt, etc.

� LINK DRIVER

This component encapsulates the low-level control operations on the physical link

between the GPP and DSP. This module is responsible for controlling the

execution of the DSP and data transfer using defined protocols across the GPP-

DSP boundary. This module provides physical transports for common

configurations of the system.

� PROCESSOR MANAGER

This component manages the key objects visible to the user. It also verifies the

necessary access to these objects by the clients.

It utilizes the services of LINK DRIVER to perform the low level operations for

controlling the DSP and data transfer.

� DSP/BIOS™ LINK API

This component is an interface for all clients on the GPP side. For kernel-side

modules (e.g. CHNL, MSGQ, POOL), this is a very thin component and usually

doesn’t do any more processing than parameter validation. After parameter

validation, corresponding functions in the PROCESSOR MANAGER layer are

invoked.

The thin API layer allows easy partition of DSP/BIOS™LINK across the user kernel

boundary on specific operating systems e.g. Linux. Such partition may not be

necessary on other operating systems.

In addition to the kernel-side modules, the user-side modules such as RingIO,

MPCS, MPLIST and NOTIFY are implemented in user space.

4.1.3 DSP side

� DSP OS

On the DSP side, DSP/BIOS is assumed to be running. Since only DSP/BIOS OS is

supported, no OSAL is required.

� HAL

On the DSP-side, HAL layer contains all device specific implementation. This

needs to be implemented when a new device support is to be added.

� DSPLink drivers and libraries

Page 10 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

This component encapsulates the low-level control operations on the physical link

between the GPP and DSP. This module is responsible for data transfer using

defined protocols across the GPP-DSP boundary. This module provides physical

transports for common configurations of the system.

� DSP/BIOS™ LINK API

This component is an interface for all clients on the DSP side.

Message transfer is done using the DSP/BIOS™ MSGQ module. The APIs in this

case are part of DSP/BIOS MSGQ module, and DSPLink simply provides the

underlying Message Queue transport implementation that plugs into the

DSP/BIOS MSGQ module.

DSPLink also implements POOL instances that plug into the POOL interface

provided by DSP/BIOS. DSP/BIOS provides POOL configuration. However, APIs

for usage of the POOL are provided by DSPLink.

Similarly, the driver for data transfer using CHNL module is an implementation of

the IOM driver interface in DSP/BIOS. This driver allows users to use SIO/GIO

APIs in DSP/BIOS on the DSP-side to communicate with CHNL module on GPP-

side.

APIs for other modules such as MPCS, MPLIST, NOTIFY and RingIO are provided

as DSPLink APIs on the DSP-side.

4.2 System Organization Types
There are three basic types of System Organization with which DSPLink is

concerned:

o Shared Memory

o Memory mapped IO

o Fully discrete

There may be multiple combinations of any of the above types within a final

system. Each type of system organization requires a different handling within

DSPLink. All types may exist within a single system with some processors sharing

memory and some processors not sharing memory.

4.2.1 Shared Memory

The Shared Memory System Organization is shown below:

Page 11 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

Figure 2. Shared Memory System Organization

Processors that share memory can pass pointers to the shared memories to enable

efficient zero-copy transfer protocols. Usage of shared memory usually simplifies

implementations of physical transports between the processors and also enables

additional features that may not be possible on any of the other system types.

4.2.2 Memory Mapped IO

The Memory Mapped IO System Organization is shown below:

Figure 3. Memory Mapped IO System Organization

Devices that are connected using PCI, VLYNQ etc. provide memory mapped access to

the host processor into the memory on the other processor. While this is similar to

shared memory, it is not efficient to transfer large data buffers using byte-by-byte

write into the remote memory locations. For this, it is more efficient to maintain

buffer pools on both processor, and use DMA to keep them synchronized. In software

IPC, this is known as a synchronized pool of memory.

In such systems, the memory mapped addresses are used for control structure

operations and DMA is used for buffer transfers.

Page 12 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

4.2.3 Fully Discrete

The Fully Discrete System Organization is shown below:

Figure 4. Fully Discrete System Organization

In fully discrete systems, no shared memory is available, and all IPC operations must

be packet based. Such systems warrant a different architecture where the physical

transport for all IPCs must be able to work off packet-based IO. For example:

ethernet connection between two devices.

4.3 Current ports of DSP/BIOS™ LINK
DSP/BIOS™LINK is architected for easy portability to other hardware platforms and

operating systems. It can be ported to either of the following:

� A different operating system

� A different hardware platform

� A different physical link

� Any combination of above

Currently DSP/BIOS™LINK is available on devices as mentioned in the Release Notes

document.

DSPLink also provides support for Shared Memory and Memory Mapped IO system

organizations. Physical transports for these two types of System Organizations are

provided along with DSPLink releases, enabling easy port to systems using any of

these configurations. Currently, DSPLink does not provide physical transports fro

fully discrete systems.

This document discusses steps required to port DSP/BIOS™ LINK. The details on

each subcomponent can be obtained from the corresponding design document.

Page 13 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

5 Porting to a different GPP Operating System
The DSPLink architecture is designed for portability, and ensures that the higher

layers of DSP/BIOS™ LINK use OSAL for operating system specific services. This

allows these higher layers to be insulated from the subtleties of different operating

systems as long as an appropriate port of OSAL is available on the target operating

system.

Also, some operating systems are aware of the DSP on the target hardware platform

and they configure the “working environment” of DSP. In such cases, adapt the DSP

component to the configurations of the operating system.

Each operating system has its own way of identifying and providing the services

expected from these sub-components. One of the core responsibilities of these sub-

components is to abstract such subtleties and provide a uniform interface to the

upper layers.

5.1 Requirements of OSAL sub-components

5.1.1 DRV

This sub-component provides encapsulation for the driver model that the operating

systems require. Some operating systems differentiate between the user and the

kernel space and certain others don’t.

Figure 5. Interactions of DRV

The resources required by DSP/BIOS™ LINK from the driver model may vary across

different platforms/ operating systems.

This sub-component is expected to act as the ‘glue’ between different layers of

DSP/BIOS™ LINK allowing greater portability across such operating systems.

5.1.2 DPC

This sub-component provides services to defer the execution of non-critical code

from an interrupt context. Typically, the OS achieves this by scheduling a high

priority thread of execution from the interrupt context.

Many operating systems have a restriction on when such a thread can be scheduled

and do not recognize another call to schedule the thread if it is already in a running

DRV

PROCESSOR MANAGER

DSP/BIOS™ LINK API

User space

Kernel space

Possible boundary between user and kernel spaces…

Page 14 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

state. In such cases, one of the core requirements of this sub-component is to

ensure that when the OS schedules the thread to run, all the pending requests to the

DPC get serviced.

� The DPC must always execute at a higher priority than all other tasks. If

implemented as a task, the task must be of the highest priority in the system.

5.1.2.1 Key functionality

DPC creation/deletion

The DPC module supports creation and deletion of multiple DPC objects. Each DPC

object corresponds to one Deferred Procedure Call. Within DPCs, there is no

prioritization. All DPCs can run at the same priority; however, the DPC priority must

be higher than all other tasks in the system.

It must be possible for users of the DPC module to register an optional argument

with each DPC creation. This argument shall be returned back to the user within each

callback function as a parameter. If the Operating System inherently does not

support such functionality, it must be implemented within the DPC OSAL module.

DPC schedule

The DPC module provides functionality to schedule a specific DPC as identified by the

DPC object handle. The schedule implementation must ensure that the DPC executes

for the number of times the schedule API was called. If the Operating System does

not directly support this feature, this concept of pending count must be added within

the DPC OSAL module implementation.

In some cases, there is a possibility of thrashing if the DPC is scheduled with the OS

when DPCs are disabled. If this is the case, the DPC schedule call must ensure that it

checks for the disabled state of DPC and only schedules with the OS if the DPCs are

enabled. Also, in such cases, the enable API must ensure that any pending DPCs get

scheduled.

DPC callback

In case the Operating System provides all functionality needed for the DPC OSAL

module, no abstraction for the DPC callback may be needed over the user-defined

function. The user’s callback function can be directly registered with the OS.

However, in some cases, where the OS does not provide the full functionality as

needed by the OSAL DPC module, the DPC callback function may need to be defined

within the DPC module. This function would be responsible for making all user-

defined callbacks.

DPC enable/disable

The DPC enable/disable functionality is provided for users requiring protection from

all DPCs.

When a DPC is created, it must start off in the enabled state.

DPC cancel

The DPC cancel function cancels all pending schedules. On some Operating Systems,

this is required in order for the DPC deletion to succeed. The call may also block till

pending schedules are completed, and the behavior is Operating System dependant.

5.1.3 ISR

This sub-component provides services to hookup and service hardware interrupts.

Page 15 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

5.1.4 KFILE

Certain versions of operating systems do not have their own file system and certain

others do not allow access to the file system from a device driver. This sub-

component takes care of such issues and provides a uniform interface to open, close

and read files.

5.1.5 MEM

Certain operating systems distinguish between the different kinds of memory that

are available in the system. This sub-component takes care of such differences and

provides a uniform interface to allocate and free memory.

This module also provides APIs to map and unmap memory as specified within the

memory table in the dynamic configuration.

5.1.6 NOTIFY_KNL

The NOTIFY module provides capability to send and receive notifications between the

GPP and the DSP. On operating systems with user-kernel boundary, the NOTIFY_KNL

component provides services to forward notifications received from the DSP to the

user-space process/thread.

5.1.7 PRCS

This sub-component provides services to identify and compare different threads of

execution.

5.1.8 PRINT

The facility to display debug messages on the user console is provided by this sub-

component. Typically, it is a wrapper over the OS/hardware specific call to ‘print’ a

string to the console.

5.1.9 SYNC

This sub-component provides the following services:

• Facility to synchronize multiple threads of execution

• Facility to provide mutually exclusive access to key data structures/code from

multiple threads of execution

5.1.9.1 Key functionality

Semaphores

The SYNC module supports creation, deletion and usage of semaphores. It supports

two types of semaphores:

o Counting semaphores

o Binary semaphores

The SYNC Semaphore implementation must make use of the most suitable features

provided by the Operating System to implement these. Counting semaphores

maintain a count of the number of signalSEM calls and accordingly unblock the

number of waitSEM calls correspondingly. This is equivalent to making

available/consuming a number of resources. On the other hand, binary semaphores

can only have a count of 1 or 0. Even if multiple signalSEM calls are made, the

Page 16 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

binary semaphore stays at count 0. The waitSEM resets the count to 0 after

consuming the resource.

The semaphore implementation requires support of a timeout mechanism. The

waitSEM call must return with error if the semaphore does not become available

even though the specified timeout has elapsed. The timeout specified to the API is in

a standard of milliseconds. The SYNC semaphore implementation may need to

convert this to the OS-specific measures. If the OS semaphore call does not support

timeout, this feature needs to be implemented separately in SYNC module, possibly

through usage of a timer. It is also possible to specify no-wait (SYNC_NOWAIT) or

infinite-wait (SYNC_WAITFOREVER) as special values for timeout, and the SYNC

implementation must support these.

Events

The SYNC module supports creation, deletion and usage of events. The basic concept

of an event is that it stays set until it is explicitly reset through an API call. Waiting

on an event and getting unblocked does not automatically reset the event. Any

further calls to wait on the same event would also get unblocked till there was an

explicit call to reset the event.

The basic functionality provided with events is:

o Set event: This function sets the event to indicate that the event is available.

o Reset event: This function resets the event to indicate that the event is not

available.

o Wait on event: This function waits on the event till a specified timeout till the

event becomes available. It does not automatically reset the event even

though its wait may be successful. The considerations for timeout are similar

to those mentioned in the semaphore section above.

o Wait on multiple events: This function is for waiting on any one of multiple

events to be available. This is not currently used within DSPLink and may

remain unimplemented.

Critical Sections

The SYNC module also supports creation, deletion and usage of critical sections. The

critical sections are similar to binary semaphores. However, the main difference is

that the critical section must be initialized to ‘available’ when it is created, whereas

the binary semaphore count must be initialized to ‘not available’ when created. Also,

the critical section APIs are much simpler for entering and leaving the critical

sections, and do not need to support timeout.

Spinlocks

The SYNC module supports creation and usage of spinlocks. These provide the

highest level of protection in the system. They are expected to disable interrupts and

spin till the spinlock is available. They are expected to be callable from any context:

task, DPC or ISR. The default implementation of spinlock APIs provides one global

spinlock, which can be used in a simple way by just making calls to start and end the

spinlock. In addition, where there is a possibility of nesting spinlocks, additional

extended APIs are provided, where different spinlock objects can be created and

used for the same functionality.

SYNC protection

Page 17 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

The SYNC module also provides APIs for SYNC protection. These disable tasks and

DPCs and provide a different level of protection where only protection from tasks and

DPCs is needed, and interrupts do not need to be disabled.

5.2 Important considerations
The port to any new GPP operating system must take a few important aspects into

account. These may or may not be applicable based on the GPP OS to which the port

is being made.

5.2.1 Non-cached GPP-side shared memory

On the GPP-side, a certain amount of memory is reserved to ensure that the GPP OS

does not use it. The following two types of memory fall into this category:

• Shared Memory: This is the memory that is used as the shared region

between GPP and DSP. All the control structures for the DSPLINK modules,

including POOL, and any other memory regions reserved for writing into or

reading from DSP memory fall into this category.

• DSP executable memory: This is the memory that corresponds to the DSP

executable’s memory map. The code and data sections in the DSP executable

are placed into either DSP external memory or internal memory. The DSP

internal memory is accessible separately from GPP-side. However, any

external memory used for loading the DSP code & data needs to be reserved

on the GPP-side.

Both of the above types of memory regions must be reserved from the GPP OS. The

way that this is done depends on the GPP OS. On the DSP-side, the similar kind of

reservation is done through TCF file to ensure that linking does not place any DSP-

side code/data into any other memory regions.

For example:

• Linux: On Davinci Linux, in the default configuration, MEM=254M may be

used as part of bootargs in u-boot while booting up the ARM. This indicates

that 2M (out of the 256M) is reserved, and only 254M is available to the ARM

Linux. Out of this 2M, 1M is reserved as the shared memory (DSPLINKMEM)

and 1M as the DSP executable memory (DDR). Internally, OSAL MEM module

for Linux provides APIs to get virtual addresses corresponding to the physical

addresses reserved for these memory regions. IMPORTANT: The API used

must ensure that physically contiguous non-cached memory regions

are returned. On Linux, the APIs used for this are: ioremap_nocache and

iounmap .

• PrOS: When TI tools are used, the linker command file is used to reserve

regions of memory and ensure that PrOS sections do not get placed into the

reserved regions. A specific assembly file within the LSP may need to be

updated to ensure that the reserved regions are non-cached memory.

5.2.2 Physical to virtual address mapping and trans lation

Certain GPP Operating Systems such as Linux work across a user-kernel boundary.

In such cases, the physical memory is not directly accessible in user space. Shared

memory is directly reserved as physical memory in DSPLINK.

The following memory mappings are required:

• Physical to kernel virtual

Page 18 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

• Physical to user virtual

Once the mappings have been made, the DSPLINK DRV module needs to maintain all

such mappings to ensure that it can convert addresses as required between any of

physical, kernel, user and DSP address spaces.

This section details the mappings to be maintained, and uses the Linux port as a

reference.

Creating mappings

The physical -> kernel virtual address mapping is done as mentioned in the

previous section.

Physical -> user mappings are made on Linux using the mmap and munmap calls.

These are made within the DRV module, and map the memory of provided physical

address and size to a user virtual address, which can be directly used to access the

shared memory in the context of the user process.

A point to note is that mmap requires the specified physical addresses to be aligned to

PAGE_SIZE. The mappings must accordingly be modified to take this into account.

For the POOL, this is done within POOL_open API within the user-space DRV module.

Maintaining mappings

The mappings between different address spaces for the POOL are maintained within

the DRV_POOL module in user space. The mapping is created in POOL_open and

maintained separately for all POOLs in each process space.

Using the mappings

The mapping between the different address spaces is used for translation of POOL

addresses as required between user virtual, kernel virtual, physical and DSP address

spaces.

5.3 Checklist of activities involved

5.3.1 Updating sources

1. Port the OSAL component to the new GPP OS.

2. If DSP/BIOS™ LINK is divided across the user/kernel boundary then DRV module

needs to be adapted.

3. If DSP/BIOS™ LINK is not divided across the user/kernel boundary then DRV

module can be implemented to glue the API component directly to the Processor

Manager. This would mean minimal change to the implementation in both these

components.

4. If a different version/variant of a supported operating system is to be added,

then the directory for the version can be made within the OS-specific directory

and files specific to the version can be added in it.

5.3.2 Updating configuration

Update the DSPLink configuration file dsplinkcfg.pl to ensure that the configuration

displays and handles the correct options for the new Operating System also. The

dsplinkcfg.pl perl script generates a file CURRENTCFG.MK, which is used by the

DSPLink build system for understanding the system configuration being used.

Page 19 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

5.3.3 Updating build system

1. Update the MAKE system with rules specific for new OS and corresponding tool

chain. Create a new distribution file if required.

2. Create the file - COMPONENT – for each component including the sample

applications.

� For relevant details of the MAKE system, refer to the section 7 on MAKE system

in this document.

5.3.4 Other steps

1. Look for folders within DSPLink that are identified by the Operating System

name for currently supported Operating Systems. A corresponding folder

would be required to be added for the new Operating System also.

2. Look for defines within the sources that indicate any OS-specific code within

the implementation (e.g. OS_PROS)

5.3.5 Preliminary Testing

The sample applications provided with the DSP/BIOS™ LINK release can be used for

initial validation of the port to the different GPP operating system. Each sample

application demonstrates a different protocol. Successful execution of all samples will

ensure validation of most of the OSAL functionality.

5.3.6 System Testing

Once all the sample applications are working as expected, the DSP/BIOS™ LINK test

suite product can be used to validate the complete functionality of the port.

Executing the test-suite and resolving any issues found shall increase the confidence

in the integrity and stability of the port.

Page 20 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

6 Porting to a different Hardware Platform
Porting to a different hardware platform requires varying degrees of effort depending

on the differences between the new platform and existing supported platforms.

The table below gives some examples of the types of ports and their relative

complexity.

GPP DSP Physical link Complexity Example

Same Same Same Low ARM9 + C64x+ (DM6446,

DM6467 etc.)

Zero copy physical link

Similar Same Same Low ARM9 + C64x+ (DM6446),

ARM11 + C64x+ (Raven)

Zero copy physical link

Same Different Same Medium ARM + C64x+ (DM6446),

ARM + C55x (OMAP5912)

Zero copy physical link

Same Same Different Medium Zero-copy / Processor copy

physical link on OMAP5912

Same Different Different Medium/High VLYNQ physical link for ARM

+ DM6437. Zero-copy

protocol

Same Different Different High UART physical link. Packet-

based processor-copy

protocol

As given in the above table, the complexity of a platform port depends on the degree

of variance between an existing port and the platform to be ported to.

The following sections detail the activities involved for different types of ports.

6.1 Port to a platform with similar GPP-DSP combina tion with an existing
physical link implementation

6.1.1 Example

• Existing platform support: Davinci platform (ARM + C64x+)

• New platform support: DRA44x (ARM + C64x+).

The ARM and DSP on both platforms are the same. The physical link is also shared

memory based. This is a low-complexity effort, only requiring changes mostly

localized to configuration, HAL and DSP modules.

6.1.2 Overview

When porting DSP/BIOS™ LINK to a different hardware platform for this scenario,

consider the:

1. Configuration of the target DSP and its working environment for DSP/BIOS™

LINK

Page 21 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

2. Communication between GPP and DSP

6.1.3 Changes to source code

6.1.3.1 GPP-side:

All device specific files are contained within the ARCH component.

The HAL sub-components within the ARCH component provide a set of functionality

that configures the hardware to make the DSP reachable from the GPP. It also

consists of functions to read from and write into the target DSP’s memory space and

send/receive interrupts between the processors.

The implementation of the DSP interface for each device within the ARCH component

uses these services to provide a uniform interface to the higher layers of DSP/BIOS™

LINK. Consider the following changes for the components when porting DSP/BIOS™

LINK to a different hardware platform.

ARCH component

Location:

� /$(DSPLINK)/gpp/src/arch/<Device name>

Example:

� /$(DSPLINK)/gpp/src/arch/DM6446GEM

The ARCH component contains all device-specific implementation.

<Device>.c

Location:

� /$(DSPLINK)/gpp/src/arch/<Device name>.c

Example:

� /$(DSPLINK)/gpp/src/arch/DM6446GEM/dm6446gem.c

This file provides the implementation of the DSP interface. It gives the top-level

device-specific interface to the rest of DSPLink. This component is responsible for

configuring the hardware to make DSP reachable from GPP. It provides services to

start, stop, idle and interrupt the DSP. It also manages the DSP resources to provide

services to read from and write into DSPs memory space.

An existing implementation can be used as reference.

Device-specific MAP file

Location:

� /$(DSPLINK)/gpp/src/arch/<Device name>_map.c

Example:

� /$(DSPLINK)/gpp/src/arch/DM6446GEM/dm6446gem_map.c

This file provides the mappings of function table interfaces/function pointers and

other such information to the modules as provided in the DSPLink dynamic

configuration ($(DSPLINK)/config/all/CFG_<Device>_<Physical Link>. c)

provided in user-space.

An existing implementation can be used as reference.

HAL implementations

Page 22 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

Location:

� /$(DSPLINK)/gpp/src/arch/<Device name>_hal<type>.c

Examples:

� /$(DSPLINK)/gpp/src/arch/DM6446GEM/dm6446gem_hal.c

� /$(DSPLINK)/gpp/src/arch/DM6446GEM/dm6446gem_hal_bo ot.c

This component provides functions to configure these hardware parameters:

• Clock settings and DDR/EMIF initialization (if required). This may not be

required if the setting has already been done by a boot-loader.

• Interrupt services

• Power up and down the DSP

• DSP boot configuration and reset control

• MMU (in case the DSP has an MMU)

• Any other platform specific hardware configuration

Make the appropriate changes based on the target platform.

6.1.3.2 DSP-side

On the DSP-side, the following changes are required to add support for the new

platform:

HAL:

Location:

� /$(DSPLINK)/dsp/src/base/hal/DspBios/<Device name>

Example:

� /$(DSPLINK)/dsp/src/base/hal/DspBios/DM6446GEM/hal_ interrupt.c

This component provides functions to configure these hardware parameters:

1. DSP data cache

2. Interrupt services

An existing implementation can be used as reference.

TCI configuration file:

Location:

� /$(DSPLINK)/dsp/inc/DspBios/<DSP OS version>/<Devic e
name>/dsplink-<Device name>-base.tci

Example:

� /$(DSPLINK)/dsp/inc/DspBios/5.XX/DM6446GEM/dsplink- dm6446gem-
base.tci

A base TCI configuration file is provided for each platform as part of the DSPLink

port. This file contains the configuration specific to the platform as needed for the

execution of any DSPLINK applications. It includes the following information:

1. Platform/device information

2. Memory configuration

Page 23 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

3. Cache configuration

4. If CHNL module is also used, TCI files also need to be provided with DIO and

IOM driver instances. Any existing platform TCI file for this can be used as a

reference.

An existing TCI file can be used as reference.

platform.h:

Location:

� /$(DSPLINK)/dsp/inc/DspBios/<DSP OS version>/<Devic e
name>/platform.h

Example:

� /$(DSPLINK)/dsp/inc/DspBios/5.XX/DM6446GEM/platform .h

The platform.h file contains device specific information that is required by DSPLink.

This includes:

1. Definition of memory segment ID used by DSPLink for dynamic memory

allocations.

An existing header can be used as reference.

Changes in sample applications:

Location:

� /$(DSPLINK)/dsp/src/samples/<Sample app>/DspBios/<D SP OS
version>/<Device name>

Example:

� /$(DSPLINK)/dsp/src/samples/message/DspBios/5.XX/DM 6446GEM

Platform-specific TCF files need to be added for each sample application. Usually the

TCF files for the existing platform can be copied and used for this. Changes may also

be required in linker command file (if present).

6.1.4 Other Changes

6.1.4.1 Configuration

Location:

� /$(DSPLINK)/config/all

A new configuration file needs to be provided for the platform to which DSPLink is

being ported. The name of the configuration file depends on the device and physical

link between the connected devices. For example, if the device is DM6446GEM and

the physical link between the GPP (ARM) and the physical link is SHMEM (shared

memory), the configuration file name is CFG_DM6446GEM_SHMEM.c.

A separate configuration file is provided for the GPP also. Example: CFG_ARM.c

Based on the number of differences between an existing platform and the target

platform for the port, the configuration file for an existing platform can be used as a

base for the new configuration.

The structures/fields that most often need to be updated are:

� Memory table (LINKCFG_memTable_00)

Page 24 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

� GPPINTID and DSPINTID fields within the IPS objects (LINKCFG_ipsTable_00)

Other objects and fields may also undergo changes based on the platform to be

supported.

6.1.4.2 Static build configuration

Location:

� /$(DSPLINK)/config/bin

A PERL script is used as the tool for static build configuration of DSPLink. The static

configuration tool file needs to be updated to generate the required environment

variables for the new platform. The static configuration for an existing platform can

be used as reference to make the required changes in the static configuration tool.

6.1.4.3 Make System

Makefile , COMPONENT, SOURCES and DIRS files may need to be added/ modified as

per the changes made in the source base. For an overview and description of these

files, refer to the section 7 on Build system in this document.

DSP-side:

Location:

� /$(DSPLINK)/make/DspBios/<DSP family name>

For this port, the DSP family for the new platform may be the same (e.g. C64xx). In

this case, no changes are required in the DSP-side make system. If a new DSP

family is to be supported, a new directory with required files needs to be added for

it.

Correspondingly, a new distribution file may not be needed if the DSP family is the

same. However, a new distribution file needs to be added to support a new device.

GPP-side:

Location:

� /dsplink/make/$(GPPOS)/$(PLATFORM)

� /dsplink/make/$(GPPOS)/<distribution file>.mk

New files need to be added for compilation and linking for the new device. The files

for an existing device with the same Operating System can be used as a reference.

A new distribution file needs to be added for the platform. This distribution file

contains all platform and OS specific paths to tools, compile/link options etc.

The section 7 gives a summary of relevant fields in the distribution file.

6.1.4.4 Setting up the communication between GPP an d DSP

Since the physical link is the same for this porting scenario, no changes are required

for this.

6.1.5 Checklist of activities involved

6.1.5.1 Updating sources

1. Update ARCH implementation on GPP-side

Page 25 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

2. Port the hardware abstraction layer. OR use the Chip Support Library (if

available).

3. Make the required changes as mentioned in the above sections on GPP and DSP-

side of DSPLink.

6.1.5.2 Updating configuration and build system

1. Add the platform specific configuration files

2. Update the MAKE system as described in the earlier sections

6.1.5.3 Preliminary Testing

The sample applications provided with the DSP/BIOS™ LINK release can be used for

initial validation of the port to the different platform. Each sample application

demonstrates a different protocol. However, all sample applications demonstrate

boot-loading the DSP, which should be the first functionality to be validated.

6.1.5.4 System Testing

Once all the sample applications are working as expected, the DSP/BIOS™ LINK test

suite product can be adapted for the new platform. Executing the test-suite and

resolving any issues found shall increase the confidence in the integrity and stability

of the port.

Page 26 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

6.2 Porting to a different physical link for existi ng platform(s)

6.2.1 Example

• Existing platform support:

o Davinci DM6446 platform (ARM + C64x+) over shared memory

o Red Hat Linux PC + DM6437 over PCI

• New platform support:

o ARM of the Davinci DM6446 platform connected to DM6437 using

VLYNQ.

In this port, the GPP and DSP are supported in different configurations. In addition,

the GPP operating system also is the same. But the physical link used for

communication between the two devices is different.

This type of port may be a medium to high complexity port, depending on the

features supported by the new physical link.

6.2.2 Overview

The existing ports are zero-copy based protocols. If any physical link does not

support the zero-copy protocol, logical layers within DSPLINK would also require

changes.

When porting DSP/BIOS™ LINK to a different hardware platform for this scenario,

consider:

1. Booting the DSP

2. Hardware abstraction layer for communicating using the new physical link

3. Changes in logical layers (if any)

6.2.3 Changes to source code

6.2.3.1 GPP-side:

ARCH component

Location:

� /$(DSPLINK)/gpp/src/arch/<Device name>

Example:

� /$(DSPLINK)/gpp/src/arch/DM6446GEM

The ARCH component contains all device-specific implementation.

<Device>.c

Location:

� /$(DSPLINK)/gpp/src/arch/<Device name>.c

Example:

� /$(DSPLINK)/gpp/src/arch/DM6446GEM/dm6446gem.c

This file provides the implementation of the DSP interface. It gives the top-level

device-specific interface to the rest of DSPLink. This component is responsible for

Page 27 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

configuring the hardware to make DSP reachable from GPP. It provides services to

start, stop, idle and interrupt the DSP. It also manages the DSP resources to provide

services to read from and write into DSPs memory space.

An existing implementation can be used as reference.

The DSP implementation usually shall not require changes. However, significant

differences in DSP boot procedure or read/write into DSP memory space using the

new hardware abstraction layer may result in changes to support multiple types of

physical links.

Device-specific MAP file

Location:

� /$(DSPLINK)/gpp/src/arch/<Device name>_map.c

Example:

� /$(DSPLINK)/gpp/src/arch/DM6446GEM/dm6446gem_map.c

This file provides the mappings of function table interfaces/function pointers and

other such information to the modules as provided in the DSPLink dynamic

configuration ($(DSPLINK)/config/all/CFG_<Device>_<Physical Link>. c)

provided in user-space.

An existing implementation can be used as reference.

HAL implementations

Location:

� /$(DSPLINK)/gpp/src/arch/<Device name>_hal<type>.c

Examples:

� /$(DSPLINK)/gpp/src/arch/DM6446GEM/dm6446gem_hal.c

� /$(DSPLINK)/gpp/src/arch/DM6446GEM/dm6446gem_hal_bo ot.c

This component provides functions to configure these hardware parameters:

• Clock settings and DDR/EMIF initialization (if required). This may not be

required if the setting has already been done by a boot-loader.

• Interrupt services

• Power up and down the DSP

• DSP boot configuration and reset control

• MMU (in case the DSP has an MMU)

• Any other platform specific hardware configuration

Additional changes may be required based on the physical link to be supported.

6.2.3.2 DSP-side

On the DSP-side, the following changes are required to add support for the new

platform:

Location:

� /$(DSPLINK)/dsp/src/base/hal/DspBios/<Device name>

Example:

Page 28 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

� /$(DSPLINK)/dsp/src/base/hal/DspBios/DM6446GEM/hal_ interrupt.c

On the DSP-side HAL module would require changes to use the interrupt services

provided by the new physical link. However, cache module would remain the same.

TCI configuration file:

The TCI configuration file will usually not require changes since the platform is the

same.

platform.h:

The platform.h file will usually not require changes since the platform is the same.

Changes in sample applications:

Sample applications will usually not require any changes.

6.2.4 Other Changes

6.2.4.1 Configuration

Location:

� /$(DSPLINK)/config/all

A new configuration file needs to be provided for the physical link to which DSPLink

is being ported. The name of the configuration file depends on the device and

physical link between the connected devices. For example, if the device is

DM6446GEM and the physical link between the GPP (ARM) and the device is VLYNQ,

the configuration file name would be CFG_DM6446GEM_VLYNQ.c.

The structures/fields that most often need to be updated are:

� Memory table (LINKCFG_memTable_00)

� GPPINTID and DSPINTID fields within the IPS objects (LINKCFG_ipsTable_00)

In addition, if a different System Organization type is supported by the physical link

(e.g. discrete) or a different type of physical link is used (e.g. Processor-copy or

DMA-copy), the LDRV implementation may need changes, and accordingly,

configuration of POOL, DATA driver, MQT etc. may also require changes.

� LINKCFG_Pool

� LINKCFG_DataDrv

� LINKCFG_Mqt

� LINKCFG_RingIo

� LINKCFG_MpList

� LINKCFG_Mpcs

For example, ARGUMENT1 or ARGUMENT2 field in the configuration of these objects may

be used to pass physical-link specific information to these modules.

Another example is that a different implementation of POOL can be used with a

different name to differentiate it from the existing SMA POOL.

• If a new pool is added with a different function table, a different name can be

used (e.g. VLYNQPOOL).

• A corresponding entry must be made in the configuration mapping file within

the LDRV layer to provide the mapping information between the POOL name

Page 29 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

and the function table. This file is: /$(DSPLINK)/gpp/src/arch/<Device
name>_map.c

6.2.4.2 Static build configuration

Location:

� /dsplink/config/bin

A PERL script is used as the tool for static build configuration of DSPLINK. The static

configuration tool files need to be updated to generate the required environment

variables for the new platform. The static configuration for an existing platform can

be used as reference to make the required changes in the static configuration tool.

6.2.4.3 Make System

Makefile , COMPONENT, SOURCES and DIRS files may need to be added/ modified as

per the changes made in the source base. For an overview and description of these

files, refer to the section 7 on Build system in this document.

DSP-side:

For this port, the DSP-side device for the new platform is the same (e.g. C64xx).

Hence no changes are required in the DSP-side make system.

GPP-side:

For this port, the GPP side operating system as well as platform is already supported.

Hence no changes are required in the GPP-side make files.

6.2.4.4 Setting up the communication between GPP an d DSP

If a different System Organization type is supported by the physical link (e.g.

discrete), or a different type of physical link is used (e.g. Processor-copy or DMA-

copy), LDRV component on GPP-side, and corresponding modules on DSP-side need

to be updated to add the relevant physical links.

GPP-side:

Location:

� /$(DSPLINK)/gpp/src/ldrv/DRV

� /$(DSPLINK)/gpp/src/ldrv/DATA

� /$(DSPLINK)/gpp/src/ldrv/IPS

� /$(DSPLINK)/gpp/src/ldrv/MQT

� /$(DSPLINK)/gpp/src/ldrv/POOLS

� /$(DSPLINK)/gpp/src/ldrv/MPCS

� /$(DSPLINK)/gpp/src/ldrv/MPLIST

� /$(DSPLINK)/gpp/src/ldrv/RINGIO

� /$(DSPLINK)/gpp/src/ldrv/SMM

Based on the design for the new physical link, new logical modules may require to be

added to support the physical link features. For example, a different kind of shared

pool implementation VLYNQPOOL may be added to support the new VLYNQ physical

link.

DSP-side:

Page 30 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

Location:

� /$(DSPLINK)/dsp/src/base/drv

� /$(DSPLINK)/dsp/src/base/ips

� /$(DSPLINK)/dsp/src/data

� /$(DSPLINK)/dsp/src/msg

� /$(DSPLINK)/dsp/src/pools

� /$(DSPLINK)/dsp/src/mpcs

� /$(DSPLINK)/dsp/src/mplist

� /$(DSPLINK)/dsp/src/ringio

� /$(DSPLINK)/dsp/src/notify

Based on the design for the new physical link, new logical modules may require to be

added to support the physical link features. For example, a different kind of shared

pool implementation VLYNQPOOL may be added to support the new VLYNQ physical

link.

6.2.5 Checklist of activities involved

6.2.5.1 Updating sources

1. Update ARCH implementation on GPP-side as detailed above.

2. Port the hardware abstraction layer to the new physical link. OR use the Chip

Support Library (if available).

3. Make the required changes as mentioned in the above sections on GPP and DSP-

side of DSPLINK.

6.2.5.2 Updating configuration and build system

1. Add the platform specific configuration files.

6.2.5.3 Preliminary Testing

The sample applications provided with the DSP/BIOS™ LINK release can be used for

initial validation of the port to the new physical link. Each sample application

demonstrates a different protocol. However, all sample applications demonstrate

boot-loading the DSP, which should be the first functionality to be validated.

6.2.5.4 System Testing

Once all the sample applications are working as expected, the DSP/BIOS™ LINK test

suite product can be adapted for the new physical link. Executing the test-suite and

resolving any issues found shall increase the confidence in the integrity and stability

of the port.

Page 31 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

6.3 Porting to a different physical link for a diff erent platform

6.3.1 Example

• Existing platform support:

o Red Hat Linux PC + DM6437 over PCI

• New platform support:

o PowerPC connected to DM648 over a new physical link

The existing port to the DM6437 can be used as a reference. However, the GPP as

well as DSP are different, and a different physical link is used for communication.

This port may be a high complexity port.

6.3.2 Overview

For this port, a combination of porting activities mentioned for other platform ports

needs to be implemented.

Page 32 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

7 Build system
The make system used to build DSP/BIOS™ LINK is portable across multiple

operating systems and platforms. When porting to a different OS, change to a

different tool set may be required.

The User Guide describes the MAKE system in detail. This section gives an overview

of common changes that will require to be made to the MAKE system. Specific

changes for each type of port are given in the corresponding sections.

Some changes to the make system are required whether porting to a different

operating system or to a different platform. This section gives an over

7.1.1 OS distribution file

DSPLINK supports build for the Linux and Windows development hosts. The different

platforms may support different variants or versions of the target operating system.

In addition, the tool-chain used for building the sources may differ based on the

selected platform.

To support this, the make system provides a separate distribution file for the

Operating System distribution being used. Typically, there is one distribution file for

each platform-OS combination.

The distribution file for a specific platform-OS combination can be found within the

DSPLINK installation at:

$(DSPLINK)/make/<$(GPPOS) | $(DSPOS)>

For example, the distribution file for the Davinci platform for Linux is:

$(DSPLINK)/make/Linux/davinci_mvlpro5.0.mk

The distribution file for the DSP-side for the Davinci platform for Linux is:

$(DSPLINK)/make/DspBios/c64xxp_5.xx_linux.mk

The configuration values within this distribution file can be modified to customize the

make system for the user build environment. Some of the common values that may

need to be modified are:

For GPP-side distribution file:

BASE_BUILDOS Base directory for the GPP operating system

BASE_TOOLCHAIN Base directory for the tool-chain

STD_CC_FLAGS/

OS-specific
flags

Standard build flags for the compiler

STD_AR_FLAGS/

OS-specific
flags

Standard build flags for the archiver

STD_LD_FLAGS/

OS-specific
flags

Standard build flags for the linker

For DSP-side distribution file:

BASE_INSTALL Base directory for the installed tools and operating system.

Page 33 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

BASE_SABIOS Base directory for the DSP operating system

XDCTOOLS_DIR Base directory for the XDC tools installation

BASE_CGTOOLS Base directory for the code generation tool chain

BASE_CSL Base directory for the Chip Support Library (if required for the

platform)

STD_CC_FLAGS Standard build flags for the compiler

STD_AR_FLAGS Standard build flags for the archiver

STD_LD_FLAGS Standard build flags for the linker

In addition, there may be some configuration values within the distribution file that

are specific to the selected platform-OS combination such as:

COMPILER Name of the compiler

ARCHIVER Name of the archiver

LINKER Name of the linker

Other defines may be present/added as required for the specific Operating System.

7.1.2 System Tools configuration file

During the build process, different tools are used from the development environment

to accomplish simple tasks e.g. move/ copy/ delete files, echo commands, etc.

For each target operating system, based on whether the build environment is Linux

or Windows-based, the DSPLINK make system configures the system tools and

system calls through a specific file systools.mk present in:

$(DSPLINK)/make/<$(GPPOS) | $(DSPOS)>

This file may also need to be customized for the user build environment.

Typically, the following configuration values may need to be modified:

BASE_PERL Base directory for the PERL installation

7.1.3 Makefile, DIRS, COMPONENT and SOURCES files

To build a component successfully the developer needs to be aware of the following

four files:

� Makefile

� DIRS

� COMPONENT

� SOURCES

7.1.3.1 Makefile

Each component requires a make file. This Makefile is standard for all the modules.

User is not required to change this file. A warning to this effect is shown in these

files.

A Makefile needs to be added at the root location of any new directory to be

included in the build.

Page 34 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

7.1.3.2 DIRS

This file provides a list of sub-directories that make up the component in a build

configuration.

This file must be present at the base of any directory having sub-directories that

need to be included in the build. It lists the sub-directories to be included in the

build.

If any new directories are added to a base directory, the DIRS file in the base

directory must be updated to add the new directory name.

If a directory does not already have a DIRS file and new sub-directories have been

added in it, a new DIRS file must be added to ensure that the new sub-directories are

included in the build.

Additional details of the DIRS file structure are given in the User Guide document.

7.1.3.3 COMPONENT

There is one COMPONENT file for every component in the OS specific folder for the

component. This file affects the compilation and linking of the component by

specifying OS specific attributes during the build process.

If any new header files are to be added, they need to be mentioned in the COMPONENT
file to ensure that they are exported for the build process.

Additional details of the COMPONENT file structure are given in the User Guide

document.

7.1.3.4 SOURCES

This file provides a list of files that make up the component in a build configuration.

If any source files in a directory need to be included in the build, they need to be

mentioned in the SOURCES file in that directory.

If a SOURCES file is not present in a newly added directory in which source files are

present, a new SOURCES file with the list of files to be compiled needs to be added.

Additional details of the SOURCES file structure are given in the User Guide document.

Page 35 of 35 Version 1.40

DSP/BIOS™ LINK

LNK 017 PRT

PORTING GUIDE

8 Testing the port

8.1 Quick testing
The sample applications can be used as a unit test for validating the DSP boot-

loading and different data transfer mechanisms. Unlike the test suite, these

applications do not require users to understand the complete framework.

8.2 Full validation
Once the data transfers are stable, it is time to use the test suite for full system

validation.

After completion of the porting activity, use the DSP/BIOS™ LINK test bench product

(separately available) to validate the port.

9 Packaging
The ported version of DSP/BIOS™ LINK must be shipped in a similar manner as the

original product. Also, the source code must comply with the coding standards used

for the original product.

	Purpose
	Terms & Abbreviations
	References
	Overview
	DSPLink architecture
	Common modules
	GPP side
	DSP side

	System Organization Types
	Shared Memory
	Memory Mapped IO
	Fully Discrete

	Current ports of DSP/BIOS™ LINK

	Porting to a different GPP Operating System
	Requirements of OSAL sub-components
	DRV
	DPC
	Key functionality

	ISR
	KFILE
	MEM
	NOTIFY_KNL
	PRCS
	PRINT
	SYNC
	Key functionality

	Important considerations
	Non-cached GPP-side shared memory
	Physical to virtual address mapping and translation

	Checklist of activities involved
	Updating sources
	Updating configuration
	Updating build system
	Other steps
	Preliminary Testing
	System Testing

	Porting to a different Hardware Platform
	Port to a platform with similar GPP-DSP combination with an existing physical link implementation
	Example
	Overview
	Changes to source code
	GPP-side:
	DSP-side

	Other Changes
	Configuration
	Static build configuration
	Make System
	Setting up the communication between GPP and DSP

	Checklist of activities involved
	Updating sources
	Updating configuration and build system
	Preliminary Testing
	System Testing

	Porting to a different physical link for existing platform(s)
	Example
	Overview
	Changes to source code
	GPP-side:
	DSP-side

	Other Changes
	Configuration
	Static build configuration
	Make System
	Setting up the communication between GPP and DSP

	Checklist of activities involved
	Updating sources
	Updating configuration and build system
	Preliminary Testing
	System Testing

	Porting to a different physical link for a different platform
	Example
	Overview

	Build system
	
	OS distribution file
	System Tools configuration file
	Makefile, DIRS, COMPONENT and SOURCES files
	Makefile
	DIRS
	COMPONENT
	SOURCES

	Testing the port
	Quick testing
	Full validation

	Packaging

