{'f TeExAs
INSTRUMENTS

USER GUIDE

DSP/BIOS™ LINK

LNK 058 USR

Version 1.65

Document Template Version 1.4

Version 1.65 Page 1 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

This page has been intentionally left blank.

Version 1.65 Page 2 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (Tl) reserve the right to make
corrections, modifications, enhancements, improvements, and other changes to its products
and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should
verify that such information is current and complete. All products are sold subject to TI's
terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the
time of sale in accordance with TI's standard warranty. Testing and other quality control
techniques are used to the extent Tl deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is
not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers
are responsible for their products and applications using Tl components. To minimize the
risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted
under any TI patent right, copyright, mask work right, or other Tl intellectual property right
relating to any combination, machine, or process in which Tl products or services are used.
Information published by Tl regarding third—party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from Tl under the patents or other
intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if
reproduction is without alteration and is accompanied by all associated warranties,
conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. Tl is not responsible or liable for such altered
documentation.

Resale of Tl products or services with statements different from or beyond the parameters
stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Version 1.65 Page 3 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

This page has been intentionally left blank.

Version 1.65 Page 4 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

TABLE OF CONTENTS

INTRODUCTION 9
1] 00 1= = T S 9
2 L2 e 0 1Y/=]) { o] o 1 R 9
3 Terms & ADDreViatioNS. ... 10
4 =T (=T =T o [0 T PP 10
WHERE TO BEGIN? 11
5 Available DOCUMENTS ... e e 11
AL, Platform SPECITIC . ..o 11
N € 1= o =T o o 11
SOFTWARE ARCHITECTURE 13
6 L@V VT PP 13
6.1 ON the GPP SIOE. ... ettt e ne e e aes 13
6.2 ON The DSP SI0e. ...ttt ane e nes 13
7 S} YA e 0 0] eTe] 8 1= 81 K= 15
7.1 P RO C e 15
7.2 L 1 PPN 15
7.3 N[O I 1 2 PP 15
7.4] O PP 16
7.5] T 1 PP 16
7.6 L0 o | P 17
7.7 5T T PP 17
7.8 L N [O PP 17
8 SOUICE COE LAYOUT ...ttt ettt et e eaaa e eaas 19
8.1 GPP SIOE SOUICES. ...ttt ettt ettt ettt et e ettt et et e e e e e e e en e 20
8.2 DSP SIOE SOUICES ... ettt ettt et et ettt ettt e et et e e e rn e raeeraneaneaas 21
8.3 Make-system Organization e e 23
BUILD PROCEDURE 24
9 Customizing and configuring the build environment.................ccooiiae. 24
9.1 DSPLink make system cuStomizationcooiiiiii i 24
9.2 Setup the build enVIroNMENT ... i eaeeeas 25
9.3 DSPLiNk build coNfiguration ... e 26
9.4 Additional steps for XDCtools-based configuration userscccocevvienn. 33
10 BUIID The SOUICES ... e 35
10.1 Linux development hOSt. ... 35
10.2 Windows development NOSt.oo e e 37
11 SCaAlAI Ity ... e 41
12 TYPICAL APPLICATION FLOW 42

Version 1.65 Page 5of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
13 N I D N0 I 1] 42
010G 200 N = {0 T 42

010G T2 = T | 42

0 IRC JC T (N[N I 1 43

IR I S /| 0 T 43

0 IRC IS N 1Y/ 1 = I 13 I 43

010G 2 T O o |1 44

I TR 1Y T 44

0 IRC I S T = 1\ 44

14 E X E U T L ON L 45
010 N = {0 T 45

10 = T | I 45

010G N (N[N I 46

0 S V| 0 S 46

010 Y/ 1 = I 1Y 46

010 T O o |1 N 47

1 A 1Y T 47

010 T = 1\ 48

15 [l BN 7 N I 1 N N 48
1L 00 N = {0 T 48

1L T2 = T | 49

I TG T 1 [N I 49

I T S Y/ | 0 T 49

LTS N 1Y, 1 = I 13 49

1L TS O |1 49

LS T Y T 50

LT S T = 111 50
SAMPLE APPLICATIONS 51
16 1 T = N 51
IS R @ 1Y /=Y V11 51

17 1Y ST N 1 N 54
A R © 1Y /=Y V11 54

18 R O N I 57
IR T R @ 1Y /=Y V1 57

19 L AN B VLY I I =N 61
K T R @ 1Y /<Y V11 61

20 1Y AN = 1@\ N 64
D2 O I R O LV /Y V=V N 64

21 L NN [G P 67
Dt T R @ LV /Y V=V 67

22 Y7 3 P 71
D T © 1V /Y VTV 71

23 1Y LR O Gt = N 74
D2 T N O LV /Y V=V 74

24 MESSAGE IMULTH .. e e et e ettt e eaeeeaneas 77
D N @ VY VTV 77

Version 1.65 Page 6 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
25 MESSAGE_IMULTIDSP ...ttt ettt et ee s 81
25.1 OVEBIVIBW . .eeeeit ettt et ettt ettt et et et ettt et ettt e et et e as 81
TESTSUITE 86
26 L@V VT PP 86
APPENDIX 87
27 ISsue reclaim MOdEl.. e 87
28 Adding application or platform specific capabilities ... 88
29 Passing arguments to DSP side applicationo 89
29.1 Passing arguments from the GPP Side.......cooiiiiiiii e 89

29.2 Receiving arguments on the DSP Side.......cooiiiiiiii i 89

30 Debugging ApPlICatioNS ... 90
30.1 ON The GPP SIAe ...ttt ettt ettt et et e e e e 90

30.2 ON The DSP SIAe. ... e et 92

30.3 Stopping eXeCUtioN N M@AIN ...t ns 92

30.4 SET_FAILURE_REASON. ...ttt e ettt ettt e e e ae e eaas 92

31 Configuring DSP/BIOS™ LINK ...t as 93
31.1 Dynamic CONFIQUIATIONttt ettt et et ae e eaeeans 93

BL.2 GPP IO et aan 93

0 I T B 1S = T [TP 102

32 Understanding The MAKE SYStem ... 103
G N O 1Y =T Y 1 PR 103

32.2 ComMMON TASKS ... s 109

32.3 Text files generated during build ProCesscooiiiiiiiiii i 118

33 Scripts to load and unload dsplinkk.ko module in Linux based targets 119

Version 1.65 Page 7 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

TABLE OF FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
1.

Figure 15.
Figure 16.
Figure 17.

Software architecture of DSP/BIOS™ LINK ..ot 13
Top level view of directory StrUCTUNe..... ... 19
Directory structure for GPP Side SOUICESo.iiiiii i 20
Directory structure for DSP Side SOUICES ...t eaaee e 21
Directory structure for the make-system........ .o, 23
Data flow in the sample application — LOOP........oii i 51
Message flow in the sample application — MESSAGE ..., 54
Data and message flow in the sample application — SCALE........................ 58
Data and message flow in the sample application — READWRITE................ 62
Data and message flow in the sample application — MAPREGION................ 65
Data flow in the sample application — RING_10.... ..o, 67
Data flow in the sample application — MP_LIST ... i 72
Data flow in the sample application — MCPSXFER ..., 75
Message flow in the sample application — MESSAGE_MULTI.............ccoenee.. 78
LINUXPC connected with two DM6437 over PCl.ooiiiiiiiiiiiiiiiieeeeen 81
Message flow in the sample application — MESSAGE ..., 81
Issue Reclaim Model e 87
Execution flow: PROC_control () and CHNL_control ()ccvvivviiiiniiiannnn... 88

Version 1.65

Page 8 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

INTRODUCTION

1 Purpose

DSP/BIOS™ LINK is foundation software for the inter-processor communication
across the GPP-DSP boundary. It provides a generic APl that abstracts the
characteristics of the physical link connecting GPP and DSP from the applications. It
eliminates the need for customers to develop such link from scratch and allows them
to focus more on application development®.

This software can be used across platforms:
§ Using SoC (System on Chip) with GPP and one DSP.
8 With discrete GPP and DSP.

As the name suggests, DSP/BIOS™ is expected to be running on the DSP. No specific
operating system is mandated to be running on the GPP. It is released on a reference
platform for a set of reference operating systems. The release package contains full
source code to enable the customers to port it to their specific platforms and/ or
operating systems.

Depending on the supported platform and OS, DSP/BIOS™ LINK provides a subset of
the following services to its clients:

Basic processor control

Shared/synchronized memory pool across multiple processors
Notification of user events

Mutually exclusive access to shared data structures

Linked list based data streaming

Data transfer over logical channels

Messaging (based on MSGQ module of DSP/BIOS)

w W W W W W

Ring buffer based data streaming
The following physical mechanism may be used for messaging
§ Zero Copy Messaging

A typical application may not require all services provided by DSP/BIOS™ LINK. Also,
a typical application may use only one mechanism for transferring messages
between GPP and DSP. To enable this capability, DSP/BIOS™ LINK can be scaled at
compile time to choose only the required components.

This document provides necessary information for users to get started with the basic
concepts of DSP/BIOS™ LINK.

2 Text Conventions

@) This bullet indicates important information.

Please read such text carefully.

* Applications differentiate the products. The application developers would prefer to focus on the application rather
than the IPC mechanism.

Version 1.65 Page 9 of 119

Ju'? TEXAS

INSTRUMENTS

DSP/BIOS™ LINK
LNK 058 USR
USER GUIDE

q

This bullet indicates additional information.

3 Terms & Abbreviations

CCs Code Composer Studio
IPC Inter Processor Communication
DSPLink DSP/BIOS™ LINK

4 References

1. LNK_041 DES Zero Copy Link Driver design document

2. LNK_076_DES Buffer Pools design document

3. LNK 040 DES DSP Executable Loader design document

4. LNK_137_DES Dynamic Configuration design document.

5. LNK 133 DES MPCS design.

6. LNK 010 DES Processor Manager design document.

7. LNK 012 DES Link Driver design document.

8. LNK 015 DES Test Suite design document.

9. LNK 024 DES OS Adaptation Layer for Linux.

10. LNK 031 DES Messaging Component design document.

11. LNK 082 DES Pool design document.

12. LNK 096 DES OS Adaptation Layer for PROS.

13. LNK 128 DES IPS & Notify

14. LNK 129 DES RINGIO.

15. LNK 131 DES MPLIST design.

16. LNK 157 DES Enhanced Multi-process support design

17. LNK 182 DES Multi-DSP Design

18. LNK 181 DES MMU Dynamic entry support (OMAP)
Version 1.65 Page 10 of 119

Ju'? TEXAS

DSP/BIOS™ LINK

LNK 058 USR
INSTRUMENTS USER GUIDE
WHERE TO BEGIN?
5 Available Documents
A.l. Platform Specific
These documents are specific to the supported platform.
1. INSTALLATION GUIDE InstallGuide_[platform].
pdf
This document provides information to install DSP/BIOS™ LINK on the
development host and setup the development platform. The platform can
be OMAP2530, OMAP3530 or DM6437 etc.
2. OS Adaptation Layer for Linux LNK_024_ DES.pdf
This document describes the overall design and architecture of the OS
Adaptation Layer (OSAL) of DSP/BIOS™ Link for Linux.
3. OS Adaptation Layer for PrOS LNK_096_DES.pdf
This document describes the overall design and architecture of the OS
Adaptation Layer (OSAL) of DSP/BIOS™ Link for PrOS.
A.2. Generic

These documents are generic. They do not contain any information that is specific to
any platform or the operating system running on the GPP.

1. RELEASE NOTES ReleaseNotes.pdf
This document provides information on the current release [Version 1.65].

2. USER GUIDE UserGuide.pdf
The current document.

This document provides information to get started on DSP/BIOS™ LINK.
3. PROGRAMMER’S GUIDE ProgrammersGuide.
pdf
This document provides information enabling users to write applications
using DSP/BIOS™ LINK.

4. PROCESSOR MANAGER LNK_010_DES.pdf
This document describes the detailed design of the Processor Manager
component.

5. LINK DRIVER LNK_012_DES.pdf
This document describes the detailed design of the Link Driver component.

6. SHARED MEMORY PROCESSOR COPY LINK LNK_019_DES.pdf
DRIVER
This document explains the design of link driver for data communication
between the GPP and DSP for OMAP5910/5912 using shared memory.

Version 1.65 Page 11 of 119

Ju'? TEXAS

DSP/BIOS™ LINK

LNK 058 USR
INSTRUMENTS USER GUIDE

7. MESSAGING USING MSGQ LNK_031_DES.pdf
This document describes the detailed design of the messaging component
utilizing MSGQ module of DSP/BIOS™.

8. ZERO COPY LINK DRIVER LNK_041_DES.pdf
This document describes the detailed design of the Zero Copy Link Driver
for shared memory based architectures.

9. RING 10 LNK_129_DES.pdf
This document describes the detailed design of the Ring Buffer Based data
streaming component.

10. MPLIST LNK_131_DES.pdf
This document describes the design and interface definition of linked list
based transport mechanism between GPP and DSP.

11. MPCS LNK_133_DES.pdf
This document describes the design and interface definition of the multi-
processor critical section component.

12. BUFFER POOLS LNK_0O76_DES.pdf
This document describes the detailed design of the different fixed-size
buffer based pools provided with DSPLink.

13 PORTING GUIDE LNK_017_PRT.pdf
Provides recommendations and guidelines for the developers to port
DSP/BIOS™ LINK to a different GPP OS, a different platform or a different
physical link.

14. DSP Executable Loader Design LNK_040_DES.pdf
This document describes the overall design and architecture of the Loader
used to parse and load DSP binaries for DSP/BIOS™ LINK.

It lists the interfaces exposed by the loader and also describes the overall
design for implementation of these interfaces.

15. Dynamic configuration Design LNK_137_DES.pdf
This document describes the overall design and architecture of the dynamic
configuration used to build DSP/BIOS™ LINK.

16 Enhanced multiprocess support LNK_157_ DES.pdf
This module provides the design for enhanced multi-process support within
DSPLink. This allows multiple applications/processes to use DSPLink
independently, and without being aware of each other.

17 Multi DSP Design LNK_182_ DES.pdf
This document describes the overall design of MULTI-DSP DSPLink.

18. MMU Dynamic entry support (OMAP) LNK_181 DES.pdf
This document describes the overall design and architecture of the MMU
dynamic entry creation.

Version 1.65 Page 12 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

SOFTWARE ARCHITECTURE

6 Overview

The software architecture of DSP/BIOS™ LINK is shown in the diagram below:

DSP/BIOS™ LINK API
PROCESSOR MANAGER DSP/BIOS
GPP oS LINK LINK OTHER
oS ADAPTATION DRIVER DRIVER DRIVERS
LAYER
GPP DSP

Figure 1. Software architecture of DSP/BIOS™ LINK

6.1 Onthe GPP side
On the GPP side, a specific OS is assumed to be running.

The OS ADAPTATION LAYER encapsulates the generic OS services that are
required by the other components of DSP/BIOS™ LINK. This component exports a
generic API that insulates the other components from the specifics of an OS. All
other components use this API instead of direct OS calls. This makes DSP/BIOS™
LINK portable across different operating systems.

The LINK DRIVER encapsulates the low-level control operations on the physical link
between the GPP and DSP. This module is responsible for controlling the execution of
the DSP and data transfer using defined protocol across the GPP-DSP boundary.

The PROCESSOR MANAGER maintains book-keeping information for all
components. It also allows different boot-loaders to be plugged into the system. It
builds exposes the control operations provided by the LINK DRIVER to the user
through the API layer.

The DSP/BIOS™ LINK API is interface for all clients on the GPP side. This is a very
thin component and usually doesn’'t do any more processing than parameter
validation. The API layer can be considered as ‘skin’ on the ‘muscle’ mass contained
in the PROCESSOR MANAGER and LINK DRIVER.

The thin API layer allows easy partition of DSP/BIOS™LINK across the user kernel
boundary on specific operating systems e.g. Linux. Such partition may not be
necessary on other operating systems.

6.2 On the DSP side

Here, the LINK DRIVER is one of the drivers in DSP/BIOS™. This driver specializes
in communicating with the GPP over the physical link.

Version 1.65 Page 13 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

The communication (data/ message transfer) is done using the DSP/BIOS™
modules- SIO/ GIO/ MSGQ. There are specific DSP/BIOS™ LINK APl on the DSP for
the other modules RinglO, MPCS, MPLIST, NOTIFY, POOL.

Version 1.65 Page 14 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
7 Key Components
7.1 PROC
This component represents the DSP processor in the application space. PROC is an
acronym for ‘processor’.
This component provides services to:
Initialize the DSP & make it available for access from the GPP.
8§ Load code on the DSP.
§ Start execution from the run address specified in the executable.
8 Read from or write to DSP memory.
§ Stop execution.
§ Additional platform-specific control actions.
§ Get DSP address for given symbol.
In the current version, only one processor is supported. However, the APIs are
designed to support multiple DSPs and hence they accept a processorl d argument
to support this future enhancement.
7.2 POOL
This component provides APIs for configuring shared memory regions across
processors. It also provides APIs for synchronizing the contents of buffer as seen by
the two CPU cores.
These buffers are used by other modules from DSP/BIOS Link for providing inter-
processor communication functionality. These can also be used by applications for
implementing their own protocol for data streaming if desired.
The specific services provided by this module are:
Configure the shared memory region through open & close calls.
Allocate and free buffers from the shared memory region.
Translate address of a buffer allocated to different address spaces (e.g. GPP
to DSP)
4. Synchronize contents of memory as seen by the different CPU cores.
This component is responsible for providing a uniform view of different memory pool
implementations, which may be specific to the hardware architecture or OS on which
DSP/BIOS™ LINK is ported. This component is based on the POOL interface in
DSP/BIOS™.
7.3 NOTIFY

This component allows applications to register for notification of events occurring on
the remote processor and send event notification to the remote processor.

It allows applications to register a callback function with an associated parameter for
events that occur on remote processors.

It enables applications to send specific event notification to remote processors. The
applications can also send an optional value with the event.

Version 1.65 Page 15 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

The NOTIFY component enforces a priority on event notifications. The priority is
defined by the event number, with lower event number indicating higher priority.

The applications can also un-register their event callback functions at runtime if such
event notification is no longer required.

7.4 MPCS

This component allows applications to achieve mutually exclusive access to shared
data structures through a multi-processor critical section (MPCS) between GPP and
DSP.

Applications may need to define their own data structures in memory that can be
accessed by multiple processors. Such data structures can be used for
communicating pieces of information between the processors. However, applications
need to ensure mutually exclusive access to such data structures between multiple
processors, and multiple tasks on each processor, to ensure consistency of data. To
enable such scenarios, the MPCS component is provided to support this functionality.

In a multiprocessor system having shared access to a memory region, a multi-
processor critical section between GPP and DSP can be implemented. In cases where
a shared memory region does not exist, the module internally performs the
synchronization required to provide the protection required by the MPCS component.

The MPCS component provides APIs to create and delete instances of the MPCS.
Each instance of the MPCS is identified by a system-wide unique string name. Every
client that needs to use an MPCS must get a handle to the MPCS by calling an API to
open it. A corresponding API to close the MPCS handle is used when the client no
longer needs to use the MPCS.

APIs to enter and leave the critical section specified by the MPCS object handle are
also provided.

If provided by the user, the memory required for the MPCS object must be allocated
from a pool accessible across the processors. Alternatively, if no memory is provided
during creation of the object, the pool ID specified is used to internally allocate the
MPCS object.

7.5 MPLIST

This component provides a doubly-linked circular linked list based transport
mechanism between GPP and DSP.

On the devices where a shared memory region exists between GPP and DSP, this
module implements the linked-list in the shared memory region. In cases where a
shared memory region does not exist, the module internally maintains coherence
between linked lists on the remote processors.

This component provides APIs to create and delete instances of the MPLIST. Each
instance of the MPLIST is identified by a system-wide unique string name. Every
client that needs to use an MPLIST must get a handle to the MPLIST by calling an API
to open it. A corresponding API to close the MPLIST handle is used when the client
no longer needs to use the MPLIST.

The MPLIST component provides APIs to place an element at the end of list, and
remove an element from the front of the list. It also allows applications to insert a
buffer before an existing element in the list, and remove any specified list element
from the list. An API to check if the list is empty is also provided. In addition, APIls

Version 1.65 Page 16 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

are also provided to traverse the list by getting a pointer to the first element in the
list and the element after a specified element.

7.6 CHNL

This component represents a logical data transfer channel in the application space.
CHNL is responsible for the data transfer across the GPP and DSP. CHNL is an
acronym for ‘channel’.

A channel (when referred in context of DSP/BIOS™ LINK) is:
8 A means of transferring data across GPP and DSP.
8 A logical entity mapped over a physical connectivity between the GPP and DSP.

§ Uniquely identified by a number within the range of channels for a specific
physical link towards a DSP.

§ Unidirectional. The direction of a channel is decided at run time based on the
attributes passed to the corresponding API.

Multiple channels may be multiplexed on single physical link between the GPP and
DSP depending upon the characteristics of the link & associated link driver.

The data being transferred on the channel does not contain any information about
the source or destination’. The consumer and producer on either side of the
processor boundary must establish the data path explicitly.

This component follows the issue-reclaim model for data transfer. As such, it mimics
the behavior of issue-reclaim model of the SIO module in DSP/BIOS™. This model is
briefly summarized in the appendix of this document.

7.7 MSGQ

This component represents queue based messaging. It is an acronym for ‘message
queue’.

This component is responsible for exchanging short messages of variable length
between the GPP and DSP clients®. It is based on the MSGQ module in DSP/BIOS™.

The messages are sent and received through message queues.

A reader gets the message from the queue and a writer puts the message on a
queue. A message queue can have only one reader and many writers. A task may
read from and write to multiple message queues.

The client is responsible for creating the message queue if it expects to receive
messages. Before sending the message, it must ‘locate’ the queue where message is
destined.

7.8 RING 10
This component provides Ring Buffer based data streaming.

This component allows creation of a ring buffer created within the shared memory.
The reader and writer of the ring buffer can be on different processors.

2 The contents of data buffer are not interpreted during the data transfer operations.
% The unit of execution on the GPP depends upon the GPP OS.

Version 1.65 Page 17 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

The RinglO component provides the ability for the writer to acquire empty regions of
memory within the data buffer. The contents of the acquired region are committed to
memory when the data buffer is released by the writer.

The RinglO component provides the ability for the reader to acquire regions of
memory within the data buffer with valid data within them. On releasing the acquired
region, the contents of this region are marked as invalid.

Each RinglO instance can have a single reader and a single writer.

The RinglO component also supports APIs for enabling synchronous transfer of
attributes with data. End of Stream (EOS), Time Stamps, Stream offset etc. are
examples of such attributes and these can be associated with offsets in the ring
buffer.

Version 1.65 Page 18 of 119

Ju'? TEXAS
INSTRUMENTS

DSP/BIOS™ LINK
LNK 058 USR
USER GUIDE

8 Source Code Layout
The top-level source code layout is shown in the diagram below:

BASE DI R

:

bi n

gpp
export

nc

rc

dsp

=

export

i nc

etc

host

g

t ar get

All documents

Configuration related
All configuration files

Tools to create and act on configurations

The MAKE system

GPP side sources

Header files
Sources

DSP side sources

Header files

Sources

Additional utilities
Utilities for the development host

Utilities for the target platform

Figure 2.

Top level view of directory structure

Version 1.65

Page 19 of 119

Ju'? TEXAS

DSP/BIOS™ LINK

LNK 058 USR
INSTRUMENTS USER GUIDE
8.1 GPP side sources
The directory structure for the sources in the GPP side is shown below:
=) app = 120 gpp
=) inc #) inc
=) sys =) src
= | arch # |2 api
+) DME4s =1 |2 arch
=l |Z) DMe437 H 7)) DME4S
) Linux = [5) DM&437
) Prios + |3 pei
|) DME446GEM + 1) whvng
[5) DM&467FEEM + () DME446EEM
[DRA44RGEM # |2 DME467EEM
+) OMAPZ530 # | 2) DRA445GEM
+) ©MAP3S30 + |) DRX416GEM
I3 L) Lirnx
+) Mucleus +) OMAPZS30
) Pros +) OMAP3S30
0 usr) Pros
*) src + | gen
= 1) I
) DATA
) DRy
IS
) Lir
I MPCS
I MPLIST
L MQT
+) Mucleus
0 POOLS
0 Pros
0 RINGIO
0 SMmM
+ () osal
+ 1) pmgr
Figure 3. Directory structure for GPP side sources
q All directories in “LDRV” may have sub-directories for platform-specific files.

This is not shown explicitly in above diagram.

Version 1.65

Page 20 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE

8.2

DSP side sources
The directory structure for the sources in the DSP side is shown below:

= 12 dsp
= | inc
05 C:
=l |Z) DspBios
=) 5
) DMB42
C5) DMe4s
) DMe437
) DME446GEM
) DMB467EEM
) DRA34%GEM
) DRx4168GEM
) OMAP2530
) OMAP3S30
= () 6.
) DME446GEM
=) sre
=l |) base
+ | drw
+) gen
+) hal
+) ips
) data
] mpcs
) mplisk
) msg
I nokify
) pools
L) ringio

oy O e e R e

Figure 4. Directory structure for DSP side sources

When compiled through the DSP/BIOS™ Link build system the subdirectories
in “src” tree generates up to eight libraries. The “base” directory contains the
sources for generating the base dsplink.lib that is needed for both data
transfer and messaging. This part implements the basic driver functionality.
The “data” directory contains the sources for generating the data transfer-
specific library dsplinkdata.lib. The “msg” directory contains the sources for
generating the messaging-specific library dsplinkmsg.lib. The “ringio”
directory contains the sources for generating the ringio-specific library
dsplinkringio.lib. The “mplist” directory contains the sources for generating
the mplist-specific library dsplinkmplist.lib. The “mpcs” directory contains the
sources for generating the mpcs-specific library dsplinkmpcs.lib. The “pool”
directory contains the sources for generating the pool-specific library
dsplinkpool.lib. The “notify” directory contains the sources for generating the
notify -specific library dsplinknotify.lib.

Version 1.65

Page 21 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

q All directories in “base”, “data”, “msg”, “ringio” “mpcs”, “notify”, “pools” and
“mplist” may have sub-directories for platform-specific files. This is not shown
explicitly in above diagram.

Version 1.65 Page 22 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

8.3 Make-system Organization

The directory structure for the common make-system for building GPP as well as DSP
sources is shown below.

make

PROCESSCR X |

PROCESSCR Y |

GPP G5 A

PLATFORM X

PLATFORM Y |

GPP OS5

PLATFORM X |

Mmﬁﬁ |1

PLATFORM Y |

4{ Ceneric makesystemfiles ‘

Figure 5. Directory structure for the make-system

Version 1.65 Page 23 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

BUILD PROCEDURE

Two types of development hosts can be used for building the DSPLink sources. If the
target GPP OS is Linux, the GPP-side sources must be built on a Linux development
host.

When working with PrOS, a windows development host must be used for building the
GPP-side sources.

For building the DSP-side sources, either a Linux or Windows development host may
be used.

9 Customizing and configuring the build environment

Before building the DSPLink sources, the DSPLink build system needs to be
customized and configured for the user’s build environment and target application.

This involves the following three major activities:
1. DSPLink make system customization

2. Setup the build environment

3. DSPLink build configuration

9.1 DSPLink make system customization

The DSPLink make system provided with the release assumes the build environment
setup as documented in the Installation Guide. To customize the make system to the
user’s build environment, some files may need to be modified.

9.1.1 Operating System distribution file

DSPLink supports build for the Linux and Windows development hosts. The different
platforms may support different variants or versions of the target operating system.
In addition, the tool-chain used for building the sources may differ based on the
selected platform.

To support this, the make system provides a separate distribution file for the
Operating System distribution being used. Typically, there is one distribution file for
each platform-OS combination. For more details on distribution files, please refer to
the section 32.2.5 on “Supporting a new distribution”.

The distribution file for a specific platform-OS combination can be found within the
DSPLink installation at:

$(DSPLI NK) / make/ <$(GPPOS) | $(DSPOCS) >

For example, the distribution file for the Davinci platform for Linux is:

$(DSPLI NK) / make/ Li nux/ davi nci _nmvl pro5. 0. nk

The distribution file for the DSP-side for the Davinci platform for Linux is:
$(DSPLI NK) / make/ DspBi 0s/ c64xxp_5. xx_I i nux. nk

The configuration values within this distribution file can be modified to customize the
make system for the user build environment. Some of the common values that may
need to be modified are:

For GPP-side distribution file:

Version 1.65 Page 24 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

9.1.2

9.2

9.2.1

INSTRUMENTS USER GUIDE
BASE_BUI LDOS Base directory for the GPP operating system
For DSP-side distribution file:
BASE_I NSTALL Base directory for the installed tools and operating system.
BASE_SABI G5 Base directory for the DSP operating system
BASE_CSL Base directory for the Chip Support Library (if required for the
platform)

For both GPP and DSP-side distribution file:

BASE_CGTOOLS Base directory for the code generation tool chain
STD_CC_FLAGS Standard build flags for the compiler

STD_AR _FLAGS Standard build flags for the archiver
STD_LD_FLAGS Standard build flags for the linker

In addition, there may be some configuration values within the distribution file that
are specific to the selected platform-OS combination.

System Tools configuration file

For each target operating system, based on whether the build environment is Linux
or Windows-based, the DSPLink make system configures the system tools and
system calls through a specific file syst ool s. nk present in:

$(DSPLI NK) / make/ <$(GPPOS) | $(DSPOCS) >
This file may also need to be customized for the user build environment.

Typically, the following configuration values may need to be modified:

BASE_PERL Base directory for the PERL installation

Setup the build environment

Scripts are provided to setup the necessary environment variables required by
DSPLink:

DSPLINK Defines the root for DSP/BIOS LINK installation.
PATH Appends the path to include scripts provided in the
installation.

Linux development host
1. Set up necessary environment variables.
$ source ~/dsplink/etc/host/scripts/Linux/dsplinkenv

2. The modified environment variables are displayed.

The environnent for DSP/BIOS LI NK devel opnment has been set:
DSPLI NK = /home/ <user >/ dspl i nk
PATH += / hone/ <user >/ dspl i nk/ et ¢/ host/ scri pt s/ Li hux

Version 1.65 Page 25 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

q

q

The above command assumes that you have installed DSP/BIOS™ Link in
your home directory on the development host. If this is not the case, the
script must be updated to reflect the location where the product is installed.

The above command assumes that you are using t csh shell. If you are using
bash shell, an equivalent script 'dspl i nkenv. bash' is shipped with the release
package that can be used.

This command can be included in the '.rc' file corresponding to your shell in
which case you will no longer need to execute the ‘dsplinkenv’ script.

9.2.2 Windows development host

1.

Set up necessary environment variables.
L: > dsplink\etc\host\scripts\nsdos\dsplinkenv. bat

The modified environment variables are displayed.

The environnent for DSP/BIOS LI NK devel opnment has been set:
DSPLI NK = L:\dsplink
PATH += L:\dsplink\etc\host\scripts\nsdos

In general, it is advisable to use a Linux host for Linux-based development.
However, if a Windows development host is being used for this, the following
points need to be considered:

On a Windows development host, if using PC-based Linux development
environment such as mvcyg4.0, only GPP-side of DSPLink can be built using
this shell.

For building DSP-side, an MSDOS shell should be used. On this shell, it must
be ensured that cygwin is not in the path, else errors will be seen during
build.

9.3 DSPLink build configuration

The build configuration script must be executed to configure DSPLink for the various
parameters such as platform, GPP OS, build configuration etc.

The build configuration for DSP/BIOS™ LINK is an interactive process. The generated
configuration file is appropriately included during the build process. The build
configuration depends upon the environment variable — DSPLink set by execution of
the script mentioned earlier.

9.3.1 Linux development host

The build configuration can be initiated by executing the command: dspl i nkcfg

1. Execute the build configuration perl script.
$ perl ~/dsplink/config/bin/dsplinkcfg.pl
2. This script expects command line options to configure the DSPLink. These
command line options are described in this section.
Version 1.65 Page 26 of 119

{'f TeExAs
INSTRUMENTS

DSP/BIOS™ LINK
LNK 058 USR
USER GUIDE

9.3.2 Windows development host

The build configuration can be initiated by executing the command: dspl i nkcf g. bat

1. Execute the build configuration script.

L: > perl dsplink\config\bin\dsplinkcfg.pl

This script expects command line options to configure the DSPLink. These
command line options are described in this section.

Command Line Options

Platform

This option directs the configure script to configure DSPLink for the provided
platform.

Usage --platform=<PLATFORM ID>

Example --platform=DAVINCI, DSPLink is configure for Davinci Platform.

O If no option is provided, configure script displays help message with listing all

supported platforms:
Rk Sk I b Sk S S O S O

Rk S I R O R Rk O R

ERROR !'I'!

Pl ease provide a valid Platform
Fol | owi ng pl atform are supported currently:

| D- - >DAVI NCI
DaVi nci

| D- - >DAVI NCI HD
DaVi nci HD SoC - C64P DSP interfaced directly to ARW
This pl atform does not supports multi DSP scenari o

| D- - >JACI NTOL
Jacinto SoC version 2 -

SoC - C64P DSP interfaced directly to ARWD

C64P DSP interfaced directly to ARW
Thi s pl at form does not supports nulti DSP scenario
| D- - >JACI NTQ2
Jacinto SoC Version2 - C64P DSP interfaced directly to ARW
Thi s pl at form does not supports nulti DSP scenario
| D- - >LI NUXPC
Li nux Box (PC) with PCl based cards
This platform supports nulti DSP (PCl cards) architecture
| D- - >OVAP2530
Omap2530 SoC - C64P DSP interfaced directly to ARWD
Thi s pl at form does not supports nulti DSP scenario
| D- - >OVAP3530
Omap3530 SoC - C64P DSP interfaced directly to ARWD
Thi s pl at form does not supports nulti DSP scenario

Version 1.65

Page 27 of 119

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

9.3.3.2

9.3.3.3

| D- - >DA8XX
DA8BXX SoC - C64P DSP interfaced directly to ARV
Thi s pl atform does not supports nulti DSP scenario
| D- - >OVAPL1XX
OVAP- L1XX SoC - C64P DSP interfaced directly to ARMD
Thi s pl atform does not supports nulti DSP scenario
Pr ovi ded:
Exampl e: --pl atform=DAVI NCI or --pl atform=<I D>

On successful condition it will display messages as below:

Chosen configuration is as foll ows:

Chosen pl atform

| dentifier: DAVI NCI
Descri ption: DaVi nci SoC - C64P DSP interfaced directly to
ARMD
Number of DSPs

This option directs the configure script to configure DSPLink for the desired number
of DSPs.

Usage --nodsp=<Number of DSPs>

Example --nodsp=1.

O If no option is provided, configure script displays help message as below:

khkkkhkkhkkhkkhkhkkhkhkkhkhk*k ERRm 111 R R R R R I R

Pl ease provide a valid nunber of DSPs!

Pl ease provi de nunmber of DSPs in the system
Pr ovi ded:

Exanpl e: --nodsp=2

On successful condition, it will display messages as follows:

No of DSPs: 1

DSPPhysical Interface.

This option directs the configure script to configure the DSPLINK for the desired DSP
and also makes the chosen DSP uses the desired physical interface. For example
user can choose DM6437 VLYNQ interface with Jacintol system, where DM6437 can
support two different physical interfaces, PCl and VLYNQ.

Usage --dspcfg_0==<DSPID><PHY ID>

Version 1.65 Page 28 of 119

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

Example --dspcfg_0=DM6446GEMSHMEM. Here _0O denotes phy for first DSP.

O If no option is provided, configure script displays help message as below:

khkkkhkhkkhkkhkhkkhkhkkhkhk*k ERRm 111 R Rk R R Rk R R I R

Pl ease provide a valid DSP for DSPO with a valid Physical Interface
conbi nati on!

Foll owing DSP & Physical interface (PHY) conbinations are supported
by DM6446 GEM

<| D>- - >DM6446 GEMSHVEM
Shared Menory Physical Interface
Pr ovi ded:
Exampl e: --dspcfg 0==<ID> or --dspcfg_0==DM6446GENVSHVEM

On successful condition, it will display messages as follows:

Chosen conbi nati on for DSPO:

I dentifier : DV6446 GEM

DSP Descri ption : On- Chi p DSP of DaVi nci SoC
Physi cal Interface (PHY): DV6446 GEMSHVEM

PHY Descri ption : Shared Menory Physical Interface

9.3.34 DSP OS.

This option directs the configure script that the chosen DSP uses the desired DspBios
interface. For example user can choose DspBios5 or DspBios6 on DaVinci Platform.

Usage --dspos_0=<DSP OS ID>

Example --dspos_0=DSPBIOS5XX. Here _0 denotes DSP OS for first DSP.

O If no option is provided, configure script displays help message as below:

khkkkhkkhkhkkhkhkkhkhhkhkhk*k ERRm 111 R Rk R R Rk R R R

Pl ease provide a valid DSP OS!

Fol |l owi ng DSP CS are supported by DV6446CGEM wi t h Shared Menory Physi cal
Interface:

<| D>- - >DSPBI CS5XX
DSP/BIGS (TM Version 5. XX
<| D>- - >DSPBI CS6XX
DSP/BICS (TM Version 6. XX
Pr ovi ded:
Exampl e: --dspos_0=<ID> or --dspos_0=DSPBI OS5XX

On successful condition, it will display messages as follows:

Chosen DSP OS for DSPO:
Identifier: DSPBI OS5XX
Description: DSP/BIOCS (TM Version 5. XX

Version 1.65 Page 29 of 119

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

9.3.35 GPP OS.
This option directs the configure script to configure DSPLink for desired GPP OS.

Usage --gppos=<GPP OS ID>

Example --gppos=MVL4G. Configures to use, Montavista Pro 4.0 Linux with
GLibc system.

O If no option is provided, configure script displays help message as below:

khkkkhkhkkhkkhkhkkhkhkkhkhk*k ERRm 111 Rk R R Rk R R R

Pl ease provide a valid GPP OS!
Foll owi ng GPP OS are supported by sel ected DSPs:
<l D>- - >WL5U
Mont avi sta Pro 5.0 Linux + uCLibc Fil esystem
<l D>- - >WL5G
Mont avi sta Pro 5.0 Linux + gLibc Fil esystem
<l D>- - >W NCE
WnCE CS 6.0
Pr ovi ded:
Exampl e: --gppos=<I D> or --gppos=MWL5G

On successful condition, it will display messages as follows:

Chosen GPP OS for DSP(s):
I dentifier: MWL5G
Descri pti on: Mont avi sta Pro 5.0 Linux + gLibc Filesystem

9.3.3.6 DSPLink Components

This option directs the configure script to configure DSPLink for the desired
components, this option provides scalability.

Usage --comps=<component string>

Example --comps=ponslrmc. Configures DSPLink with all components.

O If no option is provided, configure script displays help message as below:

khkkkhkhkkhkkhkhkkhkhkkhkhk*k ERRm 111 R Rk R R Rk R R R

Pl ease provide valid conponents!
Fol | owi ng COVPONENTs are supported by ML5G
[Pl ROC Conponent
P[Q OL Conponent
[N] OTl FY Component
MPC[S] Conponent
MP[L] I ST Conponent
[R I NG O Conponent
[M SGQ Conponent
[C] HNL Conponent

Version 1.65 Page 30 of 119

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

Pr ovi ded:
Exampl e: --conps=ponsl rnt

On successful condition, it will display messages as follows:

Chosen Conponents for DSPLi nk:
USE_PRCC =1
USE_NOTI FY
USE_POCL
USE_MPCS
USE_MPLI ST
USE_RI Nd O
USE_MSQQ
USE_CHNL

1 I A | A | I | | |
L = S TS

9.3.3.7 Filesystem
This option directs the configure script to configure DSPLink for desired filesystem.
User must provide this option only on platform which supports multiple filesystems,
for example, Jacinto support PSEUDO or PrFile.

Usage --fs=<FILESYSTEM ID>

Example --fs=PSEUDOFS.

O If no option is provided, configure script displays help message as below:

khkkkhkkhkhkkhkhkkhkhkhkhk*k ERRm 111 R Rk R R Rk R R R R

Pl ease provide a valid fil esystem
Foll owing fil esystens are supported by GPP OS (PROS):
<I D> --> PSEUDCFS
Read user guide to conpile a Pseudo fil esytem
and how to build it with dsplink
<I D> --> PRFILEFS
Read PrFile guide for further details
Pr ovi ded:
Exampl e: --fs=PSEUDCFS or --fs=<ID>

On successful condition, it will display messages as follows:

Chosen Fil esystem for GPP OS:
| dentifier: PRFI LEFS
Descri pti on: Read PrFile guide for further details

9.3.3.8 Legacy Support

This option directs the configure script to enable legacy support, for multi-DSP
DSPLink modules were upgrade, application written for older version of DSPLink will
break if legacy support is not enable. This is optional options, default is no legacy
support.

Version 1.65 Page 31 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
Usage --legacy=1
Example --legacy=1

9.3.3.9

O If no option is provided, configure script displays help message as below:

kkhkkkkhkhkkkhkkhhkkkikkhkkkkk*%x ADVICE ||| kkhkkkkhhkkkhhhkkkhhkkkrhhkkhkkhhkkkrhkkkk%k
To enabl e | egacy support use option: --|egacy=1
Trace

This option directs the configure script to enable tracing. This is an optional
argument, if not provided assumes disable state.

Usage --trace=1|0

Example --trace=1. Enables the trace.

O If no option is provided, configure script displays help message as below:

Rk Sk S O R AD\/IC:E 111 E R o S O R R I I

To enabl e trace use option: --trace=1

On successful condition, it will display messages as follows:

Trace : 1

9.3.3.10 DSP SWI-TSK mode configuration

This option directs the configure script to enable DSP SWI mode or DSP TSK mode.
This is an optional argument, if not provided assumes DSP SWI mode enabled.

Usage --DspTskMode=1

Example --DspTskMode=1. Enables the DSP TSK mode.

O If no option is provided, configure script displays help message as below:

E Rk Sk I b Sk S S I O O AD\/IC:E ||| EE R I o Sk S S O O R S S O
To enabl e DSP TSK node sel ect: --DspTskMbde=1
Pr ovi ded:

Assum ng DSP SW node enabl ed and conti nui ng. ..

On successful condition, it will display messages as follows:

Enabl i ng DSP TSK Mode !!

9.3.3.11 dspdma

This option directs the configure script to enable DMA instead of memory copy for
data transfer between host and DSP. This option is valid for pci platforms (LINUXPC)
only. This is an optional argument, if not provided assumes memory copy by default.

Usage --dspdma=1

Version 1.65 Page 32 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

Example --dspdma=1. Enables the DMA.

O If no option is provided, configure script displays help message as below:

kkhkkhkkhkhkkhkhkkhkhkkhkhk*k AD\/ICE 111 R Rk R R R R Rk R R R

To enabl e usage of dsp edma use option: --dspdma=1

On successful condition, it will display messages as follows:

Enabl i ng option to use DSP EDMA i nstead of default nencpy!!

9.3.3.12 GPP Temporary & Export Path
Using this option all GPP temporaries/Libraries and Binaries are generated at desired

path.
Usage --gpp_temp=<path>
Example --gpp_temp=/home/skull/dsplink_temp/gpp.

O If no option is provided, configure script displays help message as below:

Rk Sk S b I R AD\/IC:E 111 E R o S O R I R R

Bi naries for GPP can be generated at preferred | ocation
For exanple: --gpp_tenp=/hone/dsplink/gpp/bin

9.3.3.13 DSP Temporary & Export Path
Using this option all DSP temporaries/Libraries and Binaries are generated at desired

path.
Usage --dspO_temp=<path>
Example --dspO_temp=/home/skull/dsplink_temp/dsp_0. Here note prefix ‘0’
tells that path for first DSP.

O If no option is provided, configure script displays help message as below:

khkkkhkkkhkhkkhkhkkhkhkhx*k AD\/ICE 111 R R R R S R R R R

Bi naries for DSP can be generated at preferred | ocation
For exanple: --dspO_tenp=/hone/dsplink/dsp<#>/bin

9.4 Additional steps for XDCtools-based configuration users

If users are integrating DSPLink into their systems using XDCtools-based
configuration (e.g. using Codec Engine), there are 2 more steps required before the
Build Configuration step is complete.

cd into the $(DSPLI NK)/dsp directory and run:
$ $(XDC I NSTALL_DI R)/ xdc cl ean

Version 1.65 Page 33 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

$ $(XDC INSTALL DI R)/xdc .interfaces

cd into the $(DSPLI NK)/gpp directory and run:
$ $(XDC I NSTALL_DI R)/ xdc cl ean
$ $(XDC INSTALL DI R)/xdc .interfaces

These two steps prepare the dsplink.dsp and dsplink.gpp XDC packages for
consumption by the XDC config tooling.

Version 1.65 Page 34 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

10 Build the sources

The GPP and DSP-side DSPLink sources, sample applications and test-suite can be
built using the common make system provided with the DSPLink release. The make
system supports building the sources on Linux or Windows development host.

Please refer to the section 32 on “Understanding The MAKE System” for additional
generic details about the make system.

10.1 Linux development host
make is used for building the sources on a Linux development host.

It can be invoked from the shell within the base directory of the sources to be built:
make —s [TARGET] [VERBOSE=1]

q The '-s' option can be used to build silently. Please refer to make
documentation for other options.

The TARGET can be one of the following:

al | Make all build variants. [Default]

debug Build DEBUG variant.

rel ease Build RELEASE variant.

cl ean Delete all intermediate and output files.

cl obber Delete all directories created during build process.

targets Build the target (.o/.ko) file from the intermediate object
files.

exports Export the specified file to a pre-defined location.

10.1.1 GPP-side build
Build the sources
1. Change to the source directory:
$ cd ~/dsplink/gpp/src

2. Start the build process:
$ nmake —s [debug | rel ease]
3. Upon successful completion of build, the kernel module and user library
shall be created in the following directories:
$(DSPLI NK) / gpp/ export/ Bl N <GPP OS>/ <PLATFORM>/ DEBUG
$(DSPLI NK) / gpp/ export/ Bl N <GPP OS>/ <PLATFORM>/ RELEASE
o
$(GPPTEMPATH) / gpp/ export/ Bl N <GPP OS>/ <PLATFORM>/ DEBUG
$(GPPTEMPATH) / gpp/ export/ Bl N <GPP 05>/ <PLATFORM>/ RELEASE

Build the samples

1. Change to the source directory:

Version 1.65 Page 35 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

q

$ cd ~/dsplink/gpp/src/sanpl es

Start the build process. Based on the selected build configuration, some or
all of the samples may be built.

$ nmake —s [debug | rel ease]

Upon successful completion of build, the sample application executables
shall be created in the following directories:

$(DSPLI NK) / gpp/ export/ Bl N <GPP OS>/ <PLATFORM>/ DEBUG

$(DSPLI NK) / gpp/ export/ Bl N <GPP OS>/ <PLATFORM>/ RELEASE

o

$(GPPTEMPATH) / gpp/ export/ Bl N <GPP OS>/ <PLATFORM>/ DEBUG

$(GPPTEMPATH) / gpp/ export/ Bl N <GPP OS>/ <PLATFORM>/ RELEASE

To build a single sample application, change to the source directory of the
specific sample in the first step above..

10.1.2 DSP-side build
Build the sources

1.

Change to the source directory:
$ cd ~/dsplink/dsp/src

Start the build process:

$ nmake —s [debug | rel ease]

Upon successful completion of build, the DSP libraries shall be created in
the following directories:

$(DSPLI NK) \ dspl i nk\ dsp\ export\ Bl N\\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<D
SP PROCI D>\ DEBUG

$(DSPLI NK) \ dspl i nk\ dsp\ export\ Bl N\\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<D
SP PROCI D>\ RELEASE

0F

$(DSPTEMP PATH) \ dsp\ expor t \ Bl N\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<DSP
PROCI D>\ DEBUG

$(DSPTEMP PATH) \ dsp\ expor t \ Bl N\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<DSP
PROCI D>\ RELEASE

Based on the scalability configuration selected, the DSP/BIOS™ LINK libraries
generated are:

q dsplink.lib: Generic DSPLink base library required for using all
components supported within DSPLink.

q dsplinkdata.lib: DSPLink library required for data transfer.
dsplinkmsg.lib: DSPLink library required for messaging.
dsplinkringio.lib: DSPLink library required for RinglO.

dsplinkmplist.lib: DSPLink library required for MPLIST.

0 0 0 0

dsplinkmpcs.lib: DSPLink library required for MPCS

Version 1.65

Page 36 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

q dsplinknotify.lib: DSPLink library required for NOTIFY.

(@] dsplinkpool.lib: DSPLink library required for POOL.

Build the samples

1. Change to the source directory:
$ cd ~/dsplink/dsp/src/sanpl es

2. Start the build process. Based on the selected build configuration, some or
all of the samples may be built.
$ nmake —s [debug | rel ease]

3. Upon successful completion of build, the sample executable shall be created
in the following directories:

$(DSPLI NK) \ dspl i nk\ dsp\ export\ Bl N\ DSPBI CS\ <PLATFORM>\ <DEVI CE>_<D
SP PROCI D>\ DEBUG

$(DSPLI NK) \ dspl i nk\ dsp\ export\ Bl N\\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<D
SP PROCI D>\ RELEASE

0F

$(DSPTEMP PATH) \ dsp\ expor t \ Bl N\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<DSP
PROCI D>\ DEBUG

$(DSPTEMP PATH) \ dsp\ expor t \ Bl N\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<DSP
PROCI D>\ RELEASE

q To build a single sample application, change to the source directory of the
specific sample in the first step above.

10.2 Windows development host
gmake is used for building the sources on a Windows development host.
It can be invoked from the shell within the base directory of the sources to be built:
gmake —s [TARGET] [VERBOSE=1]

q The '-s' option can be used to build silently. Please refer to gmake
documentation for other options.

q Please refer to the Install Guide for the specific platform for details on how to
build using Platform builder for Wince GPP OS. This is the recommended way
to build the DSPLink for WinCE.

The TARGET can be one of the following:

al | Make all build variants. [Default]

debug Build DEBUG variant.

rel ease Build RELEASE variant.

cl ean Delete all intermediate and output files.

Version 1.65 Page 37 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
cl obber Delete all directories created during build process.
targets Build the target (.o/.ko) file from the intermediate object
files.
exports Export the specified file to a pre-defined location.

10.2.1 GPP-side build
Build the sources

1. Change to the source directory:
L: > cd dsplink\gpp\src

2. Start the build process:
L: \dspl i nk\ gpp\ src> gmake —s [debug | rel ease]

3. Upon successful completion of build, the user library shall be created in the
following directories:
$(DSPLI NK) \ dspl i nk\ gpp\ export\ Bl N\ <GPP OS>\ <PLATFORM>\ DEBUG
$(DSPLI NK) \ gpp\ export\ Bl N\ <GPP OS>\ <PLATFORM>\ RELEASE
o
$(GPPTEMP PATH) \ gpp\ export\ Bl N\ <GPP OS>\ <PLATFORM>\ DEBUG
$(GPPTEMP PATH) \ gpp\ export\ Bl N\ <GPP OS>\ <PLATFORM>\ RELEASE

Build the samples

1. Change to the source directory:
L: > cd dspli nk\ gpp\src\sanples

2. Start the build process. Based on the selected build configuration, some or
all of the samples may be built.
L: \ dspl i nk\ gpp\ src\ sanpl es> gnake —s [debug | rel ease]

3. Upon successful completion of build, the sample application executables
shall be created in the following directories:
$(DSPLI NK) \ dspl i nk\ gpp\ export\ Bl N\ <GPP OS>\ <PLATFORM>\ DEBUG
$(DSPLI NK) \ gpp\ export\ Bl N\ <GPP OS>\ <PLATFORM>\ RELEASE
o
$(GPPTEMP PATH) \ gpp\ export\ Bl N\ <GPP OS>\ <PLATFORM>\ DEBUG
$(GPPTEMP PATH) \ gpp\ export\ Bl N\ <GPP OS>\ <PLATFORM>\ RELEASE

q To build a single sample application, change to the source directory of the
specific sample in the first step above.

10.2.2 DSP-side build
Build the sources
1. Change to the source directory:

L: > cd dsplink\dsp\src

2. Start the build process:
L: \dspl i nk\ dsp\ src> gmake —s [debug | rel ease]

Version 1.65 Page 38 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

3.

Upon successful completion of build, the DSP libraries shall be created in
the following directories:

$(DSPLI NK) \ dspl i nk\ dsp\ export\ Bl N\\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<D
SP PROCI D>\ DEBUG

$(DSPLI NK) \ dspl i nk\ dsp\ export\ Bl N\\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<D
SP PROCI D>\ RELEASE

0F

$(DSPTEMP PATH) \ dsp\ expor t \ Bl N\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<DSP
PROCI D>\ DEBUG

$(DSPTEMP PATH) \ dsp\ expor t \ Bl N\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<DSP
PROCI D>\ RELEASE

Based on the scalability configuration selected, the DSP/BIOS™ LINK libraries
generated are:

q dsplink.lib: Generic DSPLink base library required for using all
components supported within DSPLink.

q dsplinkdata.lib: DSPLink library required for data transfer.
(@] dsplinkmsg.lib: DSPLink library required for messaging.
q dsplinkringio.lib: DSPLink library required for RinglO.
(@] dsplinkmplist.lib: DSPLink library required for MPLIST.
(@] dsplinkmpcs.lib: DSPLink library required for MPCS.

(@] dsplinknotify.lib: DSPLink library required for NOTIFY.
q

dsplinkpool.lib: DSPLink library required for POOL.

Build the samples

1. Change to the source directory:
L: > cd dsplink\dsp\src\sanples

2. Start the build process. Based on the selected build configuration, some or
all of the samples may be built.
L: \ dspl i nk\ dsp\ src\ sanpl es> gmake —s [debug | rel ease]

3. Upon successful completion of build, the sample executable shall be created
in the following directories:
$(DSPLI NK) \ dspl i nk\ dsp\ export\ Bl N\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<D
SP PRCCI D>\ DEBUG
$(DSPLI NK) \ dspl i nk\ dsp\ export\ Bl N\\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<D
SP PROCI D>\ RELEASE
o
$(DSPTEMP PATH) \ dsp\ export \ Bl N\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<DSP
PRCCI D>\ DEBUG
$(DSPTEMP PATH) \ dsp\ export \ Bl N\ DSPBI OS\ <PLATFORM>\ <DEVI CE>_<DSP

Version 1.65 Page 39 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

PRCCI D>\ RELEASE

q To build a single sample application, change to the source directory of the
specific sample in the first step above.

Version 1.65 Page 40 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

11 Scalability

Depending on application needs, DSPLink can be configured to scale out undesired
components. Subsets of the below configurations are supported for different
platform-OS configurations.

COMPONENTS and their dependencies Select The Configuration
Basic DSP boot-loading and control capability. PROC

NOTIFY — This includes PROC and NOTIFY | NOTIFY

component.

POOL — This includes PROC, MPCS along with POOL | POOL

component.

MPCS - This includes PROC, POOL along with MPCS | MPCS

component.

MPLIST - This includes PROC, POOL, MPCS along | MPLIST
with MPLIST component.

RINGIO - This includes PROC, POOL, MPCS, NOTIFY | RINGIO
along with RINGIO component.

MSGQ - This includes PROC, POOL, MPCS, and | MSGQ
MPLIST along with MSGQ component.

CHNL - This includes PROC, POOL, MPCS, and | CHNL
MPLIST along with CHNL component.

q Select the appropriate option while executing the build configuration for
DSPLink (* dsplinkcfg). These are applicable for the GPP side as well as
DSP side source build.

Version 1.65 Page 41 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

12 TYPICAL APPLICATION FLOW

This section provides overview of the typical steps involved in the following phases of
each component:

Due to the dependency between the components, it is possible that Initialization of a
component may depend upon the Execution of another. Application programmers
must consider these dependencies when writing their applications.

13 INITIALIZATION

This section provides an overview of various steps involved in initialization phase of
each component. These steps ensure that all necessary resources are allocated and
appropriately initialized.

13.1 PROC

13.1.1 Typical sequence
1. Do the basic initialization of the component.

This initialization sequence extends to the lower level components and
populates the necessary data structures.

2. Attach to the specific DSP for communication.

In the process, the lower level components initialize the hardware
interfacing the DSP to make it accessible to the GPP.

3. Load an executable on the DSP. This executable contains the application
intended to run on the DSP.

The client that attaches first to a DSP becomes the owner of the DSP. Such
ownership model is required .so that another client doesn’t cause undesirable side
affects e.g. stop the DSP/ load another executable etc.

13.1.2 APIs used

1. PRCC_setup ()

2. PROC attach ()

3. PROC | oad ()
13.2 POOL

13.2.1 Typical sequence
1. Open the pool from which data buffers or messages are to be allocated.

The default pools shipped with DSP/BIOS™ LINK are:

1. SMAPOOL: For zero-copy buffers allocated from memory with shared
access across processors.

2. BUFPOOL: For fixed-size buffers.

The buffers can be allocated and freed from the pool from the ISR and DPC
context.

Version 1.65 Page 42 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

q Each pool must be initialized only once. However, multiple pools (of differing
IDs) using the same pool function table can be configured using the static
configuration tool. Each of these pools must be initialized once.

13.2.2 APIs used
1. POOL_open ()

13.3 NOTIFY

13.3.1 Typical sequence

1. Register a callback function for notification of the required event from the
remote processor. A fixed parameter can be optionally specified during
registration, which is received with the callback function when an event
notification is received.

13.3.2 APIs used
1. NOTI FY_regi ster ()

13.4 MPCS

13.4.1 Typical sequence

1. Create an MPCS instance identified with a system-wide unique name. If
memory for the shared MPCS object is not provided by the user, it is
allocated based on the POOL IDs provided as part of the attributes.

2. Open the MPCS identified by name to get a handle to the critical section,
that can be used for further calls to the MPCS component.

13.4.2 APIs used

1. MPCS create ()
2. MPCS_open ()
13.5 MPLIST

13.5.1 Typical sequence

1. Create an MPLIST instance identified with a system-wide unique name. If
memory for the shared MPLIST object is not provided by the user, it is
allocated based on the POOL IDs provided as part of the attributes.

2. Open the MPLIST identified by name to get a handle to the list that can be
used for further calls to the MPLIST component.

13.5.2 APIs used
1. MPLI ST _create ()

2. MPLI ST_open ()

Version 1.65 Page 43 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
13.6 CHNL
13.6.1 Typical sequence
1. Create the channel for data transfer across the GPP and DSP.
2. Allocate the buffer(s) to be used for transferring the data across the
channel.
3. Prime the buffers before initiating the data transfer.

13.6.2

13.7

13.7.1

13.7.2

13.8

13.8.1

The applications must decide on the channels to be used for data transfer. The
channel must be opened in appropriate directions on the GPP and DSP to allow the
transfer to take place.

APIs used
1. CHNL_create ()
2. CHNL_al | ocat eBuffer ()
MSGQ
Typical sequence
1. Open a message queue. All messages destined for the client will be added
to this queue.
2. Open a message queue where the asynchronous error messages will be
queued.

This queue can be same as the one created in the previous step.
3. Open the transport towards the DSP to be used for messaging.

4. Locate the remote queue for sending messages by name.

Step 4 may require a response from the DSP. It should, therefore, be executed only
after the DSP is running.

The message queues are identified through system-wide unique names.

APIs used
MBGQ t ransport Qpen ()
2. MBGQ open ()
3. MBGQ set Error Handl er ()
4. MBGQ | ocate ()
RING 10

Typical sequence

1. Create a RinglO identified with a system-wide unique name. The data
buffer, attribute buffer, control structure and lock structure are allocated
based on the POOL IDs provided as part of the attributes.

2. Open the RinglO in Reader or Writer mode. This returns a client-specific
handle to the application, which is used for further calls to the RinglO

Version 1.65 Page 44 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
component.
3. If required, set the notifier function to be used for the RinglO client. Based

on the notification type specified, and whether the RinglO has been opened
in Reader or Writer mode, the notification is called when the watermark for
full or empty buffer is reached.

13.8.2 APIs used

1. Ri ngl O create ()
2. Ri ngl O _open ()
3. Ri ngl O setNotifier ()

14 EXECUTION

This section provides an overview of various steps involved in execution phase of
each component.

14.1 PROC

14.1.1 Typical sequence
1. Start execution of the executable that was loaded earlier on the DSP.

Once the DSP is executing, there isn’t much expected from the PROC
component.

Read from DSP memory.
Write to DSP memory.

Once the application completes, the execution is stopped.

14.1.2 Relevant APIs
PROC start ()

2. PRCC read ()
3. PROCC write ()
4. PRCC _stop ()
14.2 POOL
14.2.1 Typical sequence
1. Allocate a buffer from the pool.
2. If required, translate the allocated buffer between different address spaces

(user, kernel, physical, DSP).

3. Free the buffer previously allocated from the pool.

14.2.2 APIs used

1. POCL_al | oc ()
2. POOL_t ransl at eAddr ()
3. POCL_free ()

Version 1.65 Page 45 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

14.3 NOTIFY

14.3.1 Typical sequence

1. Send a notification of an event to the remote processor, along with an
optional payload value.

2. Receive notification of an event from the remote processor. The callback
function is invoked with the fixed parameter specified during registration,
and a variable payload value received with the event.

14.3.2 APIs used

1. NOTI FY_notify ()
14.4 MPCS
14.4.1 Typical sequence
1. Enter the critical section specified by its handle to get exclusive access to
the shared structure(s) protected by the MPCS.
2. After performing the required processing on the shared data structure(s)
protected by the MPCS, leave the MPCS and make it available to the other
processes/processor.

14.4.2 APIs used

1. MPCS_enter ()
2. MPCS_| eave ()
145 MPLIST

14.5.1 Typical sequence
Place a buffer allocated from the pool at the end of the linked list.

Remove a buffer from the head of the linked list.

If required, check whether the list is empty.

If required, insert a buffer before an existing element in the list.

If required, remove the specified element from the list by unlinking it.

If required, get a pointer to the first element in the list.

N o o~ N

If required, get a pointer to the element after the specified element in the
list.

14.5.2 APIs used
MPLI ST put Tail ()

MPLI ST_get Head ()

MPLI ST i sEnpty ()

MPLI ST_i nsertBefore ()
MPLI ST_r enmoveEl ement ()

ok W N

Version 1.65 Page 46 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
6. MPLI ST first ()
7. MPLI ST_next ()
14.6 CHNL

14.6.1 Typical sequence
1. Issue allocated buffer(s) to the channel(s) created earlier. Usually:

8 A primed buffer is issued on an output channel to be received by the
remote client on the DSP.

8 An empty buffer is issued on an input channel to receive the data issued
by remote client on the DSP.

2. Reclaim a buffer on the channel to which a buffer was issued in the
previous step. This is a synchronous operation i.e. the execution of the
client is blocked until the 10 operation is successful (or a timeout occurs).

14.6.2 Relevant APIs

1. CHNL_i ssue ()
2. CHNL_reclaim ()
14.7 MSGQ

14.7.1 Typical sequence
Allocate a message using the pool.

2. Send the message to the message queue.

3. Receive the message from the message queue.

4. Get the handle to the source message queue from the received message.
This message queue handle can be used for replying to the received
message.

5. If required, get information from a message, or set some information within
the message, or get information about a message queue.

6. Free the message.

q Step 4 is only required if replying to a received message is desired.

14.7.2 Relevant APlIs
MBGQ al l oc ()

MBGQ _put ()
MBGQ get ()
MBGQ _get SrcQueue ()

MBGQ _get Msgl d 0, MBGQ get MsgSi ze (), MBGQ set Msgld (),
MBGQ get Dst Queue (), MSGQ set SrcQueue (), MSGEQ i sLocal Queue ()

6. MBGQ free ()

o p W N

Version 1.65 Page 47 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
14.8 RING IO
14.8.1 Typical sequence
1. Acquire a buffer from the RinglO.
2. If the RinglO is opened in Writer mode, if required by the application, set a

14.8.2

15

15.1

1511

15.1.2

fixed or variable attribute at an offset within the acquired buffer region. If
the RinglO is opened in Reader mode, and if an attribute is present at the
present read offset, get the fixed or variable attribute.

If required, cancel the previous acquire.

If the RinglO is opened in Writer mode, write into the empty buffer
acquired, and release the size of buffer that has been initialized. If the
RinglO is opened in Reader mode, read from the full buffer acquired, and
release the size of buffer that has been read.

5. If required, get information about the current status of the RinglO client.

Relevant APIs
1. Ri ngl O_acquire ()

2. Ringl O setAttribute (), RinglOgetAttribute (),
Ri ngl O setvAttribute (), R nglO getvAttribute ()

Ri ngl O_cancel ()
Ri ngl O rel ease ()
Ri ngl O _fl ush()

Ri ngl O _get Val i dSi ze (), Ri ngl O _getEnptySize (),
Ri ngl O _get Acqui redOfset (), RinglO _getAcquiredSize (),
Ri ngl O_get Watermark ()

o o koW

FINALIZATION

This section provides an overview of various steps involved in finalization phase of
each component. These steps ensure that all resources allocated in earlier phases
are appropriately freed.

PROC

Typical sequence
1. Detach from the DSP.

If the client was the owner of the DSP (i.e. was the first to attach to the
DSP) then it also finalizes the DSP.

2. Free the resources allocated in the initialization phase.

Relevant APlIs
1. PROC det ach ()

2. PROC destroy ()

The PROC component must be the last one to be finalized by the application.

Version 1.65 Page 48 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

15.2 POOL

15.2.1 Typical sequence
1. Close the pool

15.2.2 Relevant APIs
1. POOL_cl ose ()

15.3 NOTIFY

15.3.1 Typical sequence

1. Unregister the callback function with the fixed parameter specified during
registration. After this, no further notifications for the event are received.

15.3.2 APIs used
1. NOTI FY_unregi ster ()

15.4 MPCS

15.4.1 Typical sequence

1. Close the handle to the MPCS obtained earlier. After this, no further calls
can be made to the run-time MPCS APIs.

2. Delete the MPCS instance created earlier.

15.4.2 APIs used

1. MPCS_cl ose ()
2. MPCS _del ete ()
15.5 MPLIST

15.5.1 Typical sequence

1. Close the handle to the MPLIST obtained earlier. After this, no further calls
can be made to the run-time MPLIST APIs.

2. Delete the MPLIST instance created earlier.

15.5.2 APIs used

1. MPLI ST _cl ose ()
2. MPLI ST _del ete ()
15.6 CHNL
15.6.1 Typical sequence
1. Free the buffer(s) allocated on the in the initialization step.
2. Delete the channel.

Version 1.65 Page 49 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
15.6.2 Relevant APIs
1. CHNL_freeBuffer ()
2. CHNL_del ete ()
15.7 MSGQ
15.7.1 Typical sequence
1. Release the remote message queue.
2. Close the remote transport.
3. Close the local message queue.

15.7.2 Relevant APIs

1. MBGQ r el ease ()
2. MBGQ t ransport d ose ()
3. MBGQ cl ose ()
15.8 RING IO
15.8.1 Typical sequence
1. Close the RinglO.
2. Delete the RinglO.

15.8.2 Relevant APIs
1. Ri ngl O _cl ose ()

2. Ri ngl O delete ()

Version 1.65 Page 50 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

SAMPLE APPLICATIONS

16 LOOP

16.1 Overview

This sample illustrates basic data streaming concepts in DSP/BIOS™ LINK. It
transfers data between a task running on GPP and another task running on the DSP

On the DSP side, this application illustrates use of TSK with SIO and SWI with GIO.

GPP | DSP
Channel 0: GPP to DSP
Output ! Input from
from GPP ! > GPP
Z'N :
Verify Data E
£ E
E 4
Input from E Output
DSP ¢ : from DSP
Channel 1: DSP to GPP

Figure 6. Data flow in the sample application — LOOP

16.1.1 On the GPP side
INITIALIZATION

1. The client sets up the necessary data structures for accessing the DSP. It then
attaches to the DSP identified by DSP PROCESSOR IDENTIFIER.

2. It opens the pool to be used for allocating the data transfer buffer(s).

3. It loads DSP executable (I oop. out) on the DSP.

4. It creates channels CHNL_ID_INPUT and CHNL_ID_OUTPUT for data transfer.

5. It allocates and primes buffer(s) of specified size for data transfer on these
channels.

EXECUTION

1. The client starts the execution on DSP.

2. It fills the output buffer with sample data.

Version 1.65 Page 51 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE

3. It then issues the buffer on CHNL_ ID OUTPUT and waits to reclaim it. The
reclaim is specified to wait forever.

4. The completion of reclaim operation indicates that the buffer has been
transferred across the physical link.

5. It issues an empty buffer on CHNL_ID_INPUT and waits to reclaim it. The reclaim
is specified to wait forever.

6. Once the buffer is reclaimed, its contents are compared with those of the buffer
issued on CHNL_ID_OUTPUT. Since this is a loop back application the contents
should be same.

7. The client repeats the steps 3 through 6 for number of times specified by the
user.

8. It stops the DSP execution.

FINALIZATION

N

3.
4.

The client frees the buffers allocated for data transfer.
It deletes the channels CHNL_ID_INPUT and CHNL_ID_ OUTPUT.
It closes the pool.

It detaches itself from DSP and destroys the PROC component.

16.1.2 On the DSP side

16.1.2.1

Using TSK with SIO

INITIALIZATION

1. The client task t skLoop is created in the function main ().

2. The pool to be used for allocating the data transfer buffers is configured in main
(O with the buffer size and number of buffers to be allocated.

3. This task creates SIO channels for data transfer - INPUT_CHANNEL and
OUTPUT_CHANNEL.

4. It allocates and primes the buffer(s) for to be used for data transfer.

EXECUTION

1. The task issues an empty buffer on INPUT_CHANNEL and waits to reclaim it. The
reclaim is specified to wait forever.

2. It then issues the same buffer on OUTPUT_CHANNEL and waits to reclaim it. The
reclaim is specified to wait forever.

3. The completion of reclaim operation indicates that the buffer has been
transferred across the physical link.

4. These steps are repeated until the number of iterations passed as an argument to

the DSP executable is completed.

FINALIZATION

1.
2.

The task frees the buffers allocated for data transfer.
It deletes the SIO channels INPUT_CHANNEL and OUTPUT_CHANNEL.

Version 1.65 Page 52 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

16.1.2.2 Using SWI with GIO
INITIALIZATION

1. In the function main (), GIO channels for data transfer - INPUT_CHANNEL and
OUTPUT_CHANNEL are created.

2. The pool to be used for allocating the data transfer buffers is configured in main
(O with the buffer size and number of buffers to be allocated.

3. A SWI object is created for doing the data transfer. One of the attributes for the
SWI object is the callback function | oopbackSW . This function is called when the
SWI is posted on completion of READ and WRITE requests on the GIO channels.

4. The buffers for to be used for data transfer are allocated and primed.
EXECUTION

1. To initiate the data transfer a READ request on the input buffer is submitted on
the INPUT_CHANNEL.

Once the SWI is posted, contents of input buffer are copied to the output buffer.

The empty input buffer is reissued onto the input channel and the filled buffer is
issued onto the output channel.

4. The SWI is posted again after the completion of both requests.
5. Steps 2 to 4 continue till the time GPP application is issuing buffers.
FINALIZATION

In the sample, the SWI is continuously posted due to READ and WRITE requests. So
it would never reach the finalization. The finalization sequence, however, would be:

1. The buffers allocated for data transfer are freed.
2. The GIO channels INPUT_CHANNEL and OUTPUT_CHANNEL are deleted.

16.1.3 Invoking the application
The loop sample takes the following parameters:

Parameter Example Value
Absolute path of DSP executable ./l oop. out
Buffer Size 1024
Number of iterations 10000
DSP Processor Id 0
q The sample can be executed for infinite iterations by specifying the number of

iterations as O.

q DSP processor ID is optional argument for single DSP on Linux platforms. For
multi dsp, this argument needs to be updated with DSP processor identifier.

Version 1.65 Page 53 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

17 MESSAGE

17.1 Overview

This sample illustrates basic message transferring concepts in DSP/BIOS™ LINK. It
transfers messages between a task running on GPP and another task running on the
DSP.

On the DSP side, this application illustrates use of TSK and SWI with MSGQ.

GPP | DSP
GPP Messageito GPP
Message < ! MSG
Queue :
Verify E
Message :
i DSP
MSG :) Message
Messageto DSP Queue

Figure 7. Message flow in the sample application - MESSAGE

17.1.1 On the GPP side
INITIALIZATION

1.
2.
3.

© N o v

The client sets up the necessary data structures for accessing the DSP.
It then attaches to the DSP identified by DSP PROCESSOR IDENTIFIER.

It opens the pool required for allocating the messages, depending on the physical
link to be used for the data driver.

It then opens a message queue identified by a specific nhame on the local
processor.

It sets the above-opened queue as the error handler.
It loads DSP executable (message. out) on the DSP
The client starts the execution on DSP.

It then opens the remote transport.

Version 1.65 Page 54 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

9.

It then attempts to locate the queue opened on the DSP side. Locate is specified
to wait forever. If the Locate call was unsuccessful (DSP queue still not opened),
it sleeps for some time and tries to locate the queue again.

EXECUTION

1. The client tries to get a message on the local queue. The get operation is
specified to wait forever.

2. On receiving the message, it verifies the validity of contents of the received
message.
It then sends the same message back to the DSP message queue.
Once the message is received, its contents are compared with the sequence
number, which is incremented every time a get is successful.

5. The client repeats the steps 2 through 4 for number of times specified by the
user, or infinitely if so specified.

6. For the case when finite nhumber of iterations is specified, it frees the message

that was received for the last get operation.

FINALIZATION

© N OO A BDNRE

The client releases the remote message queue on the DSP side.
It closes the remote transport.

It stops the DSP execution.

It resets the error handler which was set in the create phase.

It closes the local message queue.

It closes the pool.

It detaches itself from DSP.

It destroys the PROC component.

17.1.2 On the DSP side

17121

Using TSK with MSGQ

INITIALIZATION

1. The pool to be used for messaging is configured statically through the global
POCL_conf i g variable.

2. The MSGQ component is configured statically through the global M5GQ confi g
variable.

3. The client task tskMessage is created in the function main () .

4. It opens a message queue with a specific name on the local processor.

5. It sets the above-opened queue as the error handler.

6. It then attempts to locate the queue opened on the GPP side. Locate is specified
to wait forever. If the Locate call was unsuccessful (GPP queue still not opened),
it sleeps for some time and tries to locate the queue again. The locate operation
is synchronous.

EXECUTION

Version 1.65 Page 55 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

The task allocates a message from the pool.
It sends this message to the GPP message queue located earlier.

The task then tries to get a message on the local queue. The get operation is
specified to wait forever.

4. These steps are repeated for number of iterations specified by the user, or
infinitely, if so specified.

FINALIZATION
1. The client releases the remote message queue on the DSP side.
2. It resets the error handler which was set in the create phase.

3. It closes the local message queue.

17.1.2.2 Using SWI with MSGQ
INITIALIZATION

1. The SWMESSACE create () is called from the function main ().

2. A SWI object is created for doing the message transfer. One of the attributes for
the SWI object is the callback function nessageSW .

3. It opens a message queue with a specific name on the local processor. The SWI
object is used as the notification object for messages received on the message
queue. This ensures that the SWI is posted each time a message is received on
the message queue.

It sets the above-opened queue as the error handler.
It finally posts the SWI to be used for the execution phase of the application.

It attempts to locate the queue created on the GPP side. This Locate operation is
asynchronous.

EXECUTION

1. When the message SWI is posted for the first time, the client attempts to locate
the message queue opened on the GPP-side. The Locate operation is
asynchronous.

2. The message SWI is posted whenever a message is received on the DSP message
queue. The first message received indicates completion of the asynchronous
locate request. The asynchronous locate message has message ID
M5GQ ASYNCLOCATEMSA D. On receiving this message, the SWI function sets its
handle for the GPP message queue for sending messages to it, and frees the
received message.

3. It then allocates a new message and sends it to the GPP message queue to
initiate the message transfer.

4. Each subsequent time that the SWI is posted indicates that a new message is
received. The SWI sends the same message back to the GPP message queue.

5. In case the ID of the received message is M5SGQ ASYNCERRORMSA D, it indicates

that an error occurred. The error type is identified through the contents of the
received error message.

FINALIZATION

Version 1.65 Page 56 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

17.1.3

18

18.1

In the message sample, the SWI is continuously posted whenever a message is
ready on the local message queue. So it would never reach the finalization. The
finalization sequence, however, would be:

1. The client releases the remote message queue on the DSP side.
2. It resets the error handler which was set in the create phase.

3. It closes the local message queue.

Invoking the application
The message sample takes the following parameters:

Parameter Example Value
Absolute path of DSP executable ./ message. out
Number of iterations 10000
DSP Processor id 0
q The sample can be executed for infinite iterations by specifying the number of

iterations as O.

q DSP processor ID is optional argument for single DSP on Linux platforms. For
multi dsp, this argument needs to be updated with DSP processor identifier.
On PrOS, this argument needs to be passed with DSP processor identifier.

SCALE

Overview

This sample illustrates a combination of data streaming and messaging concepts in
DSP/BIOS™ LINK. It transfers data between a task running on GPP and another task
running on the DSP and sends messages from GPP to DSP.

On the DSP side, this application illustrates use of TSK with SIO & MSGQ, and SWI
with GIO & MSGQ.

Version 1.65 Page 57 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
GPP ! DSP
Output Channel 0: GPP to DS'5P (data to be scaled) > Input from
from GPP ' GPP
o v
Verify Data MSG Scaling Factor p Scale Data
| 4
Input from E Output
DSP Channel 1: DSP to GRP (scaled data) from DSP

Figure 8. Data and message flow in the sample application — SCALE

18.1.1 On the GPP side
INITIALIZATION

1. The client calls APIs required for making the DSP accessible.

2. It opens the pool required for allocating the messages, depending on the physical
link to be used for the data driver.

3. It then attaches to the DSP identified by DSP PROCESSOR IDENTIFIER.

4. It loads DSP executable (scal e. out) on the DSP

5. It creates channels CHNL_ID INPUT and CHNL_ID_OUTPUT for data transfer.

6. It allocates and initializes buffer(s) of specified size for data transfer on these
channels.

7. The client starts the execution on DSP.

8. It then opens the remote transport.

EXECUTION

1. It attempts to locate the MSGQ created on the DSP side. Locate is specified to
wait forever. If the Locate call was unsuccessful (DSP queue still not created), it
sleeps for some time and tries to locate the queue again.

2. It issues the buffer on CHNL _ID_OUTPUT and waits to reclaim it. The reclaim is
specified to wait forever.

3. The completion of reclaim operation indicates that the buffer has been
transferred across the physical link.

4. It issues an empty buffer on CHNL_ID_ INPUT and waits to reclaim it. The reclaim

is specified to wait forever.

Version 1.65 Page 58 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

5. Once the buffer is reclaimed, its contents are compared with those of the buffer

8.

issued on CHNL_ID_OUTPUT. The DSP-side application is initialized with a scaling
factor, which it uses to scale the data.

Every 100 iterations of data transfer, the client sends a message to the DSP-side
MSGQ with a new scaling factor within it. Following this, all further buffers
received from the DSP are expected to contain the scaled data.

The client repeats the steps 2 through 7 for number of times specified by the
user.

The client releases the remote message queue on the DSP side.

FINALIZATION

1.

© N O A~ 0D

The client closes the remote transport.

It then stops the DSP execution.

The client frees the buffer(s) allocated for data transfer.

It deletes the channels CHNL_ID_INPUT and CHNL_ID_OUTPUT.
It then closes the pool.

It detaches itself from DSP.

It closes the local transport.

Finally, it destroys the PROC component.

18.1.2 On the DSP side

18.1.2.1

Using TSK with SIO and MSGQ

INITIALIZATION

1. The client task tskScale is created in the function main () .

2. The pool required for allocating the messages and data buffers is configured as
required by the application, depending on the physical link to be used for the
data driver.

3. This task creates SIO channels for data transfer - INPUT_CHANNEL and
OUTPUT_CHANNEL.

It allocates and initializes the buffer to be used for data transfer.
It then opens a message queue identified by a specific nhame on the local
processor.

EXECUTION

1. The task issues an empty buffer on INPUT_CHANNEL and waits to reclaim it. The
reclaim operation is specified to wait forever.

5. The task tries to get a message on the local queue. The get operation is specified
with no timeout. This results in returning a message if it is already available on
the specified MSGQ.

6. If a message is available, the new scaling factor is extracted from it. This scaling
factor is used to multiply the contents of the buffer received from the GPP.

2. It then issues the scaled buffer on OUTPUT _CHANNEL and waits to reclaim it. The

reclaim operation is specified to wait forever.

Version 1.65 Page 59 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

3. The completion of reclaim operation indicates that the client on the GPP has
received the buffer.

4. These steps are repeated until the number of iterations passed as an argument to
the DSP executable is completed.

FINALIZATION
1. In its delete phase, the task first deletes the local message queue.
2. It then deletes the SIO channels INPUT _CHANNEL and OUTPUT_CHANNEL.

3. The task frees the buffer allocated for data transfer.

18.1.2.2 Using SWI with GIO and MSGQ
INITIALIZATION

1. SWISCALE_create is called from the function main ().

2. The pool required for allocating the messages and data buffers is configured as
required by the application, depending on the physical link to be used for the
data driver.

3. It then creates two GIO channels for data transfer - INPUT_CHANNEL and
OUTPUT_CHANNEL.

4. Two SWI objects are created, one for doing data transfer (dataSwWI), and the
other for message transfer (msgSWI). The data SWI function is called when the
SWI is posted on completion of READ and WRITE requests on the data channel.
The message SWI is posted whenever a message is received.

The buffers to be used for data transfer are then allocated and initialized.

It then opens a message queue identified by a specific nhame on the local
processor (DSP).

EXECUTION

1. To initiate the data transfer a READ request on the input buffer is submitted on
the INPUT_CHANNEL.

2. Once the SWI is posted, contents of input buffer are scaled by the current scaling
factor and transferred to the output buffer.

3. The empty input buffer is reissued onto the input channel and the filled buffer is
issued onto the output channel.

The SWI is posted again after the completion of both requests.

Whenever a message is received on the created MSGQ, the message SWI is
posted. This SWI checks if a message is available by attempting to get a
message with no timeout specified. If present, the new scaling factor is extracted
from the message, and saved. This scaling factor is used for scaling all data
buffers received from that time onwards.

6. Steps 1 to 5 continue till the time GPP application is issuing buffers.
FINALIZATION

In the sample, the data SWI is continuously posted due to READ and WRITE
requests. Similarly, the message SWI is continuously posted whenever a message is
ready on the local message queue. So they would never reach the finalization phase.
The finalization sequence, however, would be:

Version 1.65 Page 60 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
1. The data and message SWIs are deleted.
2. The local message queue is deleted.
3. The GIO channels INPUT_CHANNEL and OUTPUT_CHANNEL are deleted.
4. The buffers allocated for data transfer are freed.

18.1.3 Invoking the application
The scale sample takes the following parameters:

Parameter Example Value
Absolute path of DSP executable ./ scal e. out
Buffer Size 1024
Number of iterations 10000
DSP Processor Id 0
q The sample can be executed for infinite iterations by specifying the number of

iterations as O.

q DSP processor ID is optional argument for single DSP on Linux platforms. For
multi dsp, this argument needs to be updated with DSP processor identifier.

19 READWRITE

19.1 Overview

This sample illustrates large buffer transfer through direct writes to and reads from
DSP memory. It transfers a large size data buffer between the GPP and DSP using
PROC Read () and PROC Wite () API's and tasks running on the DSP

On the DSP side, this application illustrates use of TSK with MSGQ.

Version 1.65 Page 61 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
GPP ! DSP
Output 1. Write to DSP memory (data to be scaled Memory
buffer using PROC_write {) Region

2. Send Scalinig Factor TSK

MSG . > 3. Scalg

! data
Qeggga“o” p 4. Scaled data av%ailable MSG
6. Verify] data i
Input 5. Read from DSP me?morv (scaled data)
buffer using PROC_read q)

Figure 9. Data and message flow in the sample application —
READWRITE

19.1.1 On the GPP side
INITIALIZATION

1. The client sets up the necessary data structures for accessing the DSP.
2. It then attaches to the DSP identified by DSP PROCESSOR IDENTIFIER.

3. It opens the pool required for allocating the messages, depending on the physical
link to be used for the data driver.

4. It then opens a message queue identified by a specific nhame on the local

processor.

5. It sets the above-opened queue as the error handler.

6. It loads DSP executable (readwrite.out) on the DSP

7. The client starts the execution on DSP.

8. It then opens the remote transport.

9. It then attempts to locate the queue opened on the DSP side. Locate is specified
to wait forever. If the Locate call was unsuccessful (DSP queue still not opened),
it sleeps for some time and tries to locate the queue again.

EXECUTION

1. The client allocates a buffer of the required size for both input buffer and output
buffer.

2. The client primes the data regions to allow for data integrity check to ensure data
transfer has happened correctly.

3. It writes the data buffer to the DSP using PROC Wite () API.

Version 1.65 Page 62 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE

4. The client writes a message to inform the DSP that the data buffer has been
written on the DSP.

5. The client sends a message to the DSP-side MSGQ with a new scaling factor
within it. Following this, all further buffers received from the DSP are expected to
contain the scaled data
It then waits for a message from the DSP that will confirm it has the written data.
The client then reads from the DSP region using the PROC_Read () API.

8. This is followed by a data integrity check to ensure validity of buffer contents

written from the GPP to the DSP and read by the GPP from the DSP.

FINALIZATION

© N OO A DR

The client releases the remote message queue on the DSP side.
It closes the remote transport.

It stops the DSP execution.

It resets the error handler which was set in the create phase.

It closes the local message queue.

It closes the pool.

It detaches itself from DSP.

It destroys the PROC component.

19.1.2 On the DSP side

19.1.21

Using TSK with MSGQ

INITIALIZATION

1. The pool to be used for messaging is configured statically through the global
POOL_config variable.

2. The MSGQ component is configured statically through the global M5GQ confi g
variable.

3. The client task t skReadW i t e is created in the function mai n ().

4. It opens a message queue with a specific name on the local processor.

5. It sets the above-opened queue as the error handler.

6. It then attempts to locate the queue opened on the GPP side. Locate is specified
to wait forever. If the Locate call was unsuccessful (GPP queue still not opened),
it sleeps for some time and tries to locate the queue again. The locate operation
is synchronous.

EXECUTION

1. The task tries to get a message on the local queue which will inform that the data
has been written by the GPP. The get operation is specified to wait forever.

2. If a message is available, the new scaling factor is extracted from it. This scaling
factor is used to multiply the contents of the buffer received from the GPP and
the resulting values are written to a different region.

3. It then issues a message saying that the scaled buffer is ready for data transfer.

Version 1.65 Page 63 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

4. These steps are repeated for number of iterations specified by the user if so
specified.

FINALIZATION
1. The client releases the remote message queue on the DSP side.
2. It resets the error handler which was set in the create phase

3. It closes the local message queue.

19.1.3 Invoking the application
The readwrite sample takes the following parameters:

Parameter Example Value
Absolute path of DSP executable ./Ireadwite. out
DSP address 2414804992
Buffer Size 1024
Number of iterations 10000
DSP Processor Id 0
q The sample can be executed for infinite iterations by specifying the number of

iterations as O.

q The DSP address mentioned above is for the Davinci platform. This needs to
be specified as a valid DSP address for all platforms.

q DSP processor ID is optional argument for single DSP on Linux platforms. For
multi dsp, this argument needs to be updated with DSP processor identifier.
On PrOS, this argument needs to be passed with DSP processor identifier.

20 MAPREGION

20.1 Overview

This sample illustrates direct pointer access to the DSP memory region over PCI
through DSP/BIOS™ LINK. This sample application is supported only on the
DM642_PCI platform. The following diagram shows the behavior of the application.

The DSP-side for the sample is the same as the readwrite sample.

Version 1.65 Page 64 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
GPP | DSP
Output | 1. Write to DSP_memory (data to be scaled) Memory
buffer using PROC_control () and memory write Region
2. Send Scalinig Factor TSK
MSG : > 3. Scalg
| data
Application 4. Scaled data avéilable
thread < . MSG

6. Verify] data E
Input 5. Read from DSP mémorv (scaled data)
buffer using PROC_contrgl () and memory read

Figure 10. Data and message flow in the sample application -—
MAPREGION

20.1.1 On the GPP side
INITIALIZATION

1. The client sets up the necessary data structures for accessing the DSP.

2. It then attaches to the DSP identified by DSP PROCESSOR | DENTI FlI ER.

3. It opens the pool required for allocating the messages, depending on the physical
link to be used for the data driver.

4. It then opens a message queue identified by a specific nhame on the local
processor.

5. It sets the above-opened queue as the error handler.

6. It loads DSP executable (readwite. out) on the DSP

7. The client starts the execution on DSP.

8. It then opens the remote transport.

9. It then attempts to locate the queue opened on the DSP side. Locate is specified
to wait forever. If the Locate call was unsuccessful (DSP queue still not opened),
it sleeps for some time and tries to locate the queue again.

EXECUTION

1. The client gets control of buffers in the DSP memory region of the required size
for both input buffer and output buffer using PROC Control () API.

2. The client primes the data regions to allow for data integrity check to ensure data

transfer has happened correctly.

Version 1.65 Page 65 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

3.

It writes the data buffer to the DSP using the pointer which gives it direct access
to the input buffer.

It then relinquishes control of the DSP memory areas using the PROC Control ()
API.

The client sends a message to the DSP-side MSGQ with a new scaling factor
within it. Following this, all further buffers received from the DSP are expected to
contain the scaled data.

It then waits for a message from the DSP that will confirm it has the written data.

The client then again gets control of the input buffer in the DSP memory region of
required size using the PROC Control () APIL. It then reads the contents of the
memory using the direct pointer access obtained.

It then relinquishes control of the DSP memory area using the PROC Control ()
API.

This is followed by a data integrity check to ensure validity of buffer contents
written from the GPP to the DSP and read by the GPP from the DSP.

FINALIZATION

© N O kA bR

The client releases the remote message queue on the DSP side.
It closes the remote transport.

It stops the DSP execution.

It resets the error handler which was set in the create phase.

It closes the local message queue.

It closes the pool.

It detaches itself from DSP.

It destroys the PROC component.

20.1.2 On the DSP side
The DSP-side used is the same as the readwrite sample.

20.1.3 Invoking the application

The mapregion sample takes the following parameters:

Parameter Example Value
Absolute path of DSP executable ./Ireadwite. out
Buffer Size 1024
Number of iterations 10000
DSP Processor Id 0
q The sample can be executed for infinite iterations by specifying the number of
iterations as O.
q DSP processor ID is optional argument for single DSP on Linux platforms. For

multi dsp, this argument needs to be updated with DSP processor identifier.
On PrOS, this argument needs to be passed with DSP processor identifier.

Version 1.65 Page 66 of 119

DSP/BIOS™ LINK

¢ TEXAS LNK 058 USR
INSTRUMENTS USER GUIDE
21 RING_IO

21.1 Overview

This sample illustrates the usage of the RinglO component in DSP/BIOS™ LINK to
stream data between the GPP and DSP using two RinglO instances. It transfers data
between application (thread/process) running on the GPP and another task running
on the DSP. In Linux, this application runs as a set of processes or a set of thread s
in a process. In PrOS, it runs as a set of tasks.

In subsequent sections each thread/process/task in the application is treated as a
client.
On the DSP side, this application illustrates use of TSK with RinglO.

GPP DSP

RinglO 2 acquire,
RinglO1 acquire

RinglO 2 Release,
RinglO1 Release

|
|
|
|
|
|
|
|
|
|
|
RING_10_WriterClient : v
|
ibute
Data and . copy attr
Output Attribut RinglO 1 From RinglO1
From GPP ributes to RinglO2. (if
Acquire, > > attribute is received
Release \/ from RinglO1)
! v
Input Data and copy Data from
from DSP Attributes RinglO1 buffer to
Acquire, < < RinglO2 buffer. (if
Release data is received
from RinglO1)
: RinglO 2
| \ 4
A\ 4 |
] | Process data(
Verify Data | Process the RinglO2
I Buffer having
| the copied contents
| of RinglO1 Buffer)
RING_IO_ReaderClient :
: v
|
|
|
|

ARM application

DSP application

Figure 11. Data flow in the sample application — RING_IO

Version 1.65 Page 67 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

21.1.1 On the GPP side
INITIALIZATION

1. The GPP application calls APIs required for making the DSP accessible.
2. It initializes the RinglO component for the DSP. (PROC_setup internally does this)

3. It opens the pool required for allocating the RinglO data buffers, attribute
buffers, control Structures and lock objects.

It then attaches to the DSP identified by DSP PROCESSOR IDENTIFIER.
It loads DSP executable(ringio.out) on to the DSP

It starts the execution on DSP.

N o o B

The GPP client application creates the RinglO (RINGIO1) to be used for
sending data to the DSP with the GPP as the writer.

8. It then creates two clients one to send data and/or attributes to DSP (GPP RinglO
Writer) and another one to read data from the DSP (GPP RinglO reader).

EXECUTION

GPP side application has two clients (RING_10_WriterClient and
RING_10_ReaderClient) running to send and receive data to/from DSP. The
RING_10_WriterClient sends data to DSP and the RING_IO_ReaderClient receives data from
DSP.

RING_10_WriterClient

1. This client opens the RINGIO1 (created by the GPP) in write mode to read data
from DSP.

2. 1t (GPP RinglO writer) sets the notifier for the Writer with the specific
watermark value of the buffer size used for data transfer. Pointer to a
semaphore is passed to the notifier function. The notifier function post the
semaphore passed to it, resulting in unblocking the application which would be
waiting on it.

2. It inserts an attribute (RINGIO_DATA_START) in to RINGIO1 to indicate the start
of the data transfer.

3. It sends a force notification to unblock RINGIO1 reader (DSP) and to allow it to
read data from the RinglO.

4. It sets a variable attribute before acquiring any buffer. This variable attribute
payload contains size, action, factor fields.

§ Size is the size of the received data (in bytes) that needs to be considered
by DSP for processing based on the action and the factor fields.

8 Action tells the DSP what action needs to be taken on the received data
(i.e. multiply or division).

§ Factor holds the other operand used in processing the received data by
DSP.

5. It acquires and initializes the RINIGIO1 buffer .Then it releases the buffer.

Version 1.65 Page 68 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

6. If buffer is not available, the application waits on a semaphore, which will be
posted by the notification function registered for RINIGIO1 writer with watermark
equal to the buffer size.

7. Steps 4 to 6 are repeated for the number of bytes specified.

8. After finishing the data transfer, it inserts an attribute (RINGIO_DATA_END)
indicating end of data transmission from GPP. It also sends a force notification to
the RINGIO1 reader (DSP).This force notification allows DSP to come out of
blocked state, if it is waiting for data notification. Because finally we are sending
only the attribute and not data.

9. It deletes the created semaphore

10. It closes the RinglO1 opened in write mode and exits.

RING_1O_ReaderClient

This client opens the RINGIO2 in read mode to read data from DSP.

2. 1t (GPP RinglO reader) sets the notifier for the reader (RINGIO2) with the specific
watermark value of zero. Pointer to a semaphore is passed to the notifier
function. The notifier function post the semaphore passed to it, resulting in
unblocking the reader task which would be waiting on it.

3. It waits on semaphore to receive a start notification from the DSP.

After receiving notification from the RINGIO2 writer (i.e. DSP), it tries to get the
start attribute (RINGIO_DATA_START). If the start attribute is received, reader
task starts reading data.

5. It acquires data buffer in read mode from the RINGO2 and verifies the contents
based on the variable attribute received prior to this acquire call. This task always
tries to acquire the full buffer and gets what is available in the RINGIO2. If
nothing is available, it waits on a semaphore for notification.

6. Step 4 is performed repeatedly until it receives end of data transfer attribute
(RINIGIO_DATA_END) from DSP.

It deletes the created semaphore

It closes the RinglO2 opened in read mode and exits.

FINALIZATION

It deletes the RinglO1 created by the GPP-side.
It then stops the DSP execution.

It then closes the pool.

It finalizes the RinglO component for the DSP.
It detaches itself from DSP.

o ok wdR

Finally, it destroys the PROC component.

Version 1.65 Page 69 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

21.1.2 On the DSP side
INITIALIZATION

1. DspLink is initialized in the main ().

2. Then the client task tskRinglo is created in the function main ().

3. This task creates the RinglO (RINGIO2) to be used for sending data to the GPP
with the DSP as the writer.

4. It then opens the RINGIO2 (created by the DSP) in writer mode with need exact
flag set.

5. It also waits till open call for RINGIO1 in reader mode is successful with need
exact flag not set. If it is able to open the RinglO1, then the RinglO1 has been
created by the GPP.

EXECUTION
Dsp client application performs the following in the execute phase.

1. The task sets the notifier for the Writer and Reader with the specific watermark
value of the buffer size used for data transfer. Pointer to a semaphore is passed
to each notifier function. The notifier functions post the semaphore passed to it,
resulting in unblocking the application which would be waiting on it.

2. The task then waits on a semaphore (RINGIO1l reader semaphore) for a
notification.

3. If it gets the notification, it tries to get data transfer start attribute
(RINGIO_DATA_START) from RINGIOL1.

4. If it is able to get the data transfer start attribute (RINGIO_DATA_START), it
inserts the same attribute in to RINGIO2.

5. It acquires the buffer from RINGIO2 and then from RINGIO1.

6. If it fails to acquire the buffer either from the RINGIO1 or from the RINGIOZ2,

7. It waits on a corresponding semaphore for the notification.

8. If it is able to acquire the buffers, it copies the data contents from the RINGIO1
buffer to RINGIO2 buffer based on the received RINGIO1 buffer size.

9. It processes the RINGIO2 buffer contents based on the variable attribute
(contains action, data size and factor), received from the RINGIO1.

10. It also sets the same variable attribute in to RINGIO2 buffer at zero offset.

11.Then it releases the input buffer (RINGIO1 buffer).

12.1t releases the output buffer (RINGIO2 buffer) of size equal to the RINGIO1
received buffer size and cancels the remaining RINGIO2 buffer.

13.Steps 5 to 11 are repeated until it gets the end of data transfer attribute
(RINGIO_DATA_END) from the RINGIO1.

14. It cancels the RINGIO2 buffer which is acquired and sets the end of data transfer

attribute (RINGIO_DATA_END) attribute in to RINGIO2.

FINALIZATION

Version 1.65 Page 70 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
1. In its delete phase, it closes the RinglO2 opened in writer mode.
2. It deletes the RinglO2 created by the DSP.
3. It then closes the RinglO1 opened in reader mode.
4. Finally, the task frees all the temporary buffers allocated.

21.1.3 Invoking the application

The RING_10 sample takes the following parameters:

Parameter Example Value
Absolute path of DSP executable ./ringio. out
RinglO Data Buffer Size 10240
Number of Bytes to transfer 10240
DSP Processor Id 0

q The sample creates two RinglOs with the data buffer size equal to RinglO
Data Buffer Size specified through the command line arguments. The
minimum value that can be specified is 1024 Bytes. The maximum value
depends on the size of the memory configured for DSPLink.

q The RinglO Data buffer size can be given between 1k bytes to 200k bytes
with the Default memory configuration provided with the link.

q The sample can be executed infinitely by specifying Number of Bytes to
transfer as zero.

q By default sample runs in multithread mode. To run the sample in multi
process mode, define RINGIO_MULTI_PROCESS flag in
$DSPLINK\gpp\src\samples\ring_io\Linux\COMPONENT file and build the
sample. This multi process mode is applicable only for Linux.

q DSP processor ID is optional argument for single DSP on Linux platforms. For
multi dsp, this argument needs to be updated with DSP processor identifier.
On PrOS, this argument needs to be passed with DSP processor identifier.

22 MP_LIST

22.1 Overview

This sample illustrates the usage of the MPLIST component in DSP/BIOS™ LINK to
stream data between the GPP and DSP using multi-processor list instance. It
transfers data between a task running on GPP and another task running on the DSP.

On the DSP side, this application illustrates use of TSK with MPLIST.

Version 1.65

Page 71 of 119

Ju'? TEXAS

DSP/BIOS™ LINK

LNK 058 USR
INSTRUMENTS USER GUIDE
GPP : DSP
Create E Receive
List; Notification: GPP to 'DSP (elements have > notification
Add been added) 5 from GPP
elements !
Put the i Get first
element at ' element
tail of list I from list
Verify List E Update the
element ' element
Data : contents
Get first i Put the
element ' element at
from list I tail of list
Receive E Send
notification < Notification: DSP to, GPP (elements have notification
from DSP been updated and adped) to GPP

Figure 12. Data flow in the sample application — MP_LIST

22.1.1 On the GPP side
INITIALIZATION

1. The client calls APIs required for making the DSP accessible.

2. Itinitializes the MPLIST component for the DSP.

3. It opens the pool required for allocating the MPLIST data structures including the

list itself and the number of elements as specified by the user.
It then attaches to the DSP identified by DSP PROCESSOR IDENTIFIER.
It loads DSP executable (nmpl i st . out) on the DSP

It creates the GPPMPLIST (MPLIST instance) to be used for sending data to the

DSP

7. The client starts the execution on DSP.

Version 1.65

Page 72 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
8. The client sets up notification which will enable the GPP to know when the DSP
has modified the list elements.
EXECUTION
1. The client allocates memory for the MPLIST and the number of list elements as

7.

specified by the user.
The client gets a handle to the created MPLIST.

The GPP sets the list element using the iteration number and its position in the
list. The list element is then added to the tail of the list. This is done for the
number of elements as specified by the user.

After the elements have been added to the list, the GPP sends a token
notification to the DSP indicating the same.

It then waits for notification for DSP indicating that the DSP has finished
modifying the elements in the shared list.

After receiving notification it verifies that the modification done by the DSP is a
function of the iteration number and the list position.

Steps 2 to 6 are repeated for the number of iterations specified.

FINALIZATION

o 0k w N

The client closes the MPLIST opened in reader mode.
It then deletes the MPLIST instance.

It then stops the DSP execution.

It then closes the pool.

It detaches itself from DSP.

Finally, it destroys the PROC component.

22.1.2 On the DSP side
INITIALIZATION

1. The client task t skMoLi st is created in the function main ().

2. This task initializes the MPLIST, NOTIFY and MPCS components.

3. It then opens the MPLIST instance (GPPMPLIST) created by the GPP. This enables
it to get a handle with which it can perform the list operations.

4. It then registers a notification for the event callback to know when the GPP has
added all list elements to the list.

EXECUTION

1. The task waits for notification from the GPP side which will tell that all list
elements have been added to the list.

2. After the notification is received, the DSP pops the head off the list. It modifies
the data structure within the list element by setting a value data element which is
a function of the iteration number data element and the position in the list data
element. It then adds the element to the tail of the list. This is done for all
elements in the list.

3. After completing the modification, the DSP send a notification to the GPP-side

indicating the same.

Version 1.65 Page 73 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

22.1.3

23

23.1

4. Steps 1 to 3 are repeated for the number of iterations specified.
FINALIZATION

1. In the delete phase, it closes the MPLIST handle.

2. It also un-registers notification for the event callback..

3. In its delete phase, the task first frees all the temporary buffers allocated.

Invoking the application
The MP_LIST sample takes the following parameters:

Parameter Example Value
Absolute path of DSP executable .I'nplist.out
Number of iterations 10000
Number of elements 100
DSP processor Id 0
q DSP processor ID is optional argument for single DSP on Linux platforms. For

multi dsp, this argument needs to be updated with DSP processor identifier.
On PrOS, this argument needs to be passed with DSP processor identifier.

MPCSXFER

Overview

This sample illustrates data transfer between the GPP and DSP through a basic
mechanism of shared buffers with mutually exclusive access protection. It uses the
MPCS component to provide the access protection for shared buffers allocated using
the POOL component. Synchronization between the GPP and DSP-side application is
done using the NOTIFY component.

On the DSP side, this application illustrates the use of TSK with the MPCS, POOL and
NOTIFY components.

Version 1.65 Page 74 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
GPP : DSP
Create MPCS, e . : L . Send
allocate buffers, p Notification: DSP application is setup notification
receive to GPP

notification

i |

Send data No_tification: Send d_a','Fa and c_o_ntr(_)I buffer> Receive
and control pointers after receiving notification that notification

buffer ptr. | the DSP-side is setup: from GPP

! !

Enter <Get aceess 10 Get_access tr? Enter
MPGS shared region Control shared regio MPCS
buffer l

Verify and Data Verify and
update ¢ » buffer < q update
data data
Leave Release access t %?Iease access to Leave
MPCS shared region shared region MPCS

Figure 13. Data flow in the sample application — MCPSXFER

23.1.1 On the GPP side
INITIALIZATION

1.
2.
3.

The client sets up the necessary data structures for accessing the DSP.
It then attaches to the DSP identified by DSP PROCESSOR IDENTIFIER.

It opens the pool required for allocating the shared MPCS object, control and data
buffer.

It then allocates the control and data buffers and translates their addresses to
DSP address space to be sent to the DSP.

It creates the MPCS object to be used for protecting the control and data buffers
and opens it.

It then initializes the control buffer contents and writes back the buffer through
POOL to synchronize the buffer contents.

It creates a semaphore to be used to wait for notification from the DSP, and
registers for notification of the event used by the application.

It then loads DSP executable (nmpcsxf er. out) on the DSP

Version 1.65 Page 75 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

9.

The client starts the execution on DSP.

10. It then waits on the semaphore. When the semaphore is posted, it indicates that

the DSP application has completed its setup.

11. It then sends events to the DSP with the DSP addresses of the control and data

buffers as payload.

EXECUTION

1. The client tries to get access to the shared control and data buffers by entering
the MPCS used to provide mutually exclusive access to the buffers.

2. The contents of the control and data buffers are invalidated to synchronize their
contents across processors.

3. If the control buffer contents indicate that the DSP had updated the control and
data buffers, their contents are verified against the expected values. In this case,
or if the control buffer indicates empty buffer, the contents of control and data
buffers are modified to indicate that the GPP has updated them.

4. If the control buffer contents indicate that the GPP was the last to update them,
the client sleeps for a few microseconds to simulate some other processing that
can be done in this duration.

5. The contents of the control and data buffers are written back to synchronize their

contents across processors.
Then the client releases control of the buffers by leaving the MPCS.

The client repeats the steps 1 through 6 for number of times specified by the
user, or infinitely if so specified.

FINALIZATION

1.

N o o ~®

The client stops the DSP execution.

It unregisters the notification for events from the DSP and deletes the semaphore
that was created to wait for the notification.

It closes the handle to the MPCS object and deletes it.

It then frees the pool memory that was allocated for the control and data buffers.
It closes the pool.

It detaches itself from DSP.

It destroys the PROC component.

23.1.2 On the DSP side
INITIALIZATION

1.

o h WD

The pool to be used for data transfer using the MPCS component is configured
statically through the global POO__confi g variable.

The client task t skMpcsXf er is created in the function main ().
It opens the MPCS object with a specific name on the local processor.
It registers for notification of the event used by the application.

It then sends an event notification to the GPP to indicate that it has completed its
setup.

Version 1.65 Page 76 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

6.

It then waits for the event callback from the GPP-side to post the semaphore
indicating receipt of the control buffer pointer. The second event callback
indicates receipt of the data buffer pointer.

EXECUTION

1. The client tries to get access to the shared control and data buffers by entering
the MPCS used to provide mutually exclusive access to the buffers.

2. The contents of the control and data buffers are invalidated to synchronize their
contents across processors.

3. If the control buffer contents indicate that the GPP had updated the control and
data buffers, their contents are verified against the expected values. In this case,
or if the control buffer indicates empty buffer, the contents of control and data
buffers are modified to indicate that the DSP has updated them.

4. If the control buffer contents indicate that the DSP was the last to update them,
the client sleeps for a few microseconds to simulate some other processing that
can be done in this duration.

5. The contents of the control and data buffers are written back to synchronize their

contents across processors.
Then the client releases control of the buffers by leaving the MPCS.

The client repeats the steps 1 through 6 for number of times specified by the
user, or infinitely if so specified.

FINALIZATION

1.
2.

The client unregisters the notification for events from the GPP.

It then closes the handle to the MPCS object.

23.1.3 Invoking the application

The MPCSXFER sample takes the following parameters:

Parameter Example Value
Absolute path of DSP executable . I mpcsxfer. out
Buffer Size 128
Number of iterations 10000
DSP processor Id 0
q The sample can be executed for infinite iterations by specifying the number of
iterations as O.
q DSP processor ID is optional argument for single DSP on Linux platforms. For

multi dsp, this argument needs to be updated with DSP processor identifier.
On PrOS, this argument needs to be passed with DSP processor identifier.

24 MESSAGE_MULTI

24.1 Overview
This sample illustrates the following concepts in DSP/BIOS™ LINK:

1. Multi-application usage of DSPLink.

Version 1.65 Page 77 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

2. Dynamic configuration
3. Opening multiple pools dynamically

This sample supports a maximum of MAX_APPS (defined by default as 16)
application instances. Each application instance on the GPP exchanges messages
with a corresponding task on the DSP.

On the DSP side, this application illustrates use of multiple TSKs and POOLs with
MSGQ.

1 1 App instances
2 2

<3 3

\\4 \\4

GPP DSP

to GPP

GPP Message

“~

Message
Queue n

!

Verify
Message

DSR.

Message to DSP Oueue n .
!

Figure 14. Message flow in the sample application — MESSAGE_MULTI

24.1.1 On the GPP side

The application code is almost the same as that of the message sample. However, it
takes the application instance number as an additional parameter, and uses this
value to decide the message queues that are used for message transfer on the GPP
and DSP. The POOL ID used for the application is also the same as the application
instance number.

INITIALIZATION

1. The application sets up DSPLink using PROC_setup. The dynamic configuration
supports 17 pools (MAX_APPS + 1), and this configuration is passed to
PROC_setup.

It then attaches to the DSP identified by DSP PROCESSOR IDENTIFIER.

It opens the common pool required for the Message Queue Transport (MQT). This
pool is configured with the maximum number of control messages that may be
required by the MQT.

Version 1.65 Page 78 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

4.

10.

11.

12

It then opens a message queue identified by a specific nhame on the local
processor. The name is generated using the application instance number as
specified by the user as a parameter while executing the message_multi sample.

It then loads the DSP executable on the DSP
It starts the execution on the DSP.

It now also opens one pool required for allocating the messages that are
transferred between the GPP and the DSP.

The client starts the execution on DSP.
It then opens the remote transport.

The application also creates a user-level semaphore, registers for notification for
a specific event number and sends a notification to the DSP to inform the DSP
task corresponding to the application number, to get prepared for message
transfer.

Now it waits on the semaphore. When a notification is received from the DSP, it
indicates that the DSP has completed setup and is ready for message transfer.

. It then attempts to locate the queue opened on the DSP side. Locate is specified

to wait forever. If the Locate call was unsuccessful (DSP queue still not opened),
it sleeps for some time and tries to locate the queue again.

EXECUTION

1. The client tries to get a message on the local queue. The get operation is
specified to wait forever.

2. On receiving the message, it verifies the validity of contents of the received
message.
It then sends the same message back to the DSP message queue.
Once the message is received, its contents are compared with the sequence
number, which is incremented every time a get is successful.

5. The client repeats the steps 2 through 4 for number of times specified by the
user, or infinitely if so specified.

6. For the case when finite humber of iterations is specified, it frees the message

that was received for the last get operation.

FINALIZATION

1.
2.

N oo o B

The client releases the remote message queue on the DSP side.
It closes the remote transport.

It un-registers the notification and deletes the user-level semaphore used for
receiving notifications.

It stops the DSP execution.
It closes the local message queue.
It closes the pool specific to the application instance.

It also closes its handle to the common pool used for the Message Queue
Transport.

It detaches itself from DSP.

Version 1.65 Page 79 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

9. It destroys the PROC component.

24.1.2 On the DSP side
INITIALIZATION

1. The common pool to be used for messaging is configured statically through the
global POOL_confi g variable. The other MAX_APPS (16) pools that are opened
dynamically as the GPP-side application instances are created, are also
configured within the POOL_confi g variable with dummy values.

2. The MSGQ component is configured statically through the global M5GQ confi g
variable.

MAX_APPS tasks are created in the function main ().

Each task registers for notification and waits for the notification to be received
from the GPP. Notification is received by a specific task when its corresponding
application instance is created on the GPP-side.

The task that becomes active now goes into its create phase.

It configures the application instance specific pool with actual POOL function
table, parameters etc. and opens it.

It then sends a notification to the DSP that it has completed POOL setup.

It opens a message queue with a specific name on the local processor. The name
is generated from the application instance number for this task.

9. It sets the above-opened queue as the error handler.

10. It then attempts to locate the queue opened on the GPP side. Locate is specified
to wait forever. If the Locate call was unsuccessful (GPP queue still not opened),
it sleeps for some time and tries to locate the queue again. The locate operation
is synchronous.

EXECUTION
1. The task allocates a message from the pool.
2. It sends this message to the GPP message queue located earlier.

3. The task then tries to get a message on the local queue. The get operation is
specified to wait forever.

4. These steps are repeated for number of iterations specified by the user, or
infinitely, if so specified.

FINALIZATION
1. The client releases the remote message queue on the DSP side.
2. It resets the error handler which was set in the create phase.

3. It closes the local message queue.

24.1.3 Invoking the application
The message_multi sample takes the following parameters:

Parameter Example Value

Absolute path of DSP executable ./ messagenul ti . out

Version 1.65 Page 80 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
Number of iterations 10000
Application instance <1 -> 16>
DSP processor Id 0
q For OS-specific instructions on execution of the message_ multi sample,

please refer to the install guide for the specific platform.

q The sample can be executed for infinite iterations by specifying the number of
iterations as O.

q DSP processor ID is optional argument for single DSP on Linux platforms. For
multi dsp, this argument needs to be updated with DSP processor identifier.
On PrOS, this argument needs to be passed with DSP processor identifier.

25 MESSAGE_MULTIDSP

25.1 Overview

This sample illustrates basic message transferring between GPP and Two DSPs. It
transfers messages between a task running on GPP and task running on the DSP O
and DSP 1.

This sample application is supported on the following configurations.
1. LINUXPC connected with two DM6437 over PCI.
2. J1 connected to DM6437 over VLYNQ interface.

On the DSP side, this application illustrates use of TSK with MSGQ.

GPP i DSPx
GPP Messageito GPP
Message < ! MSG
Queue :
Verify E
Message :
E DSPx
MSG :) Message
Message 'to DSPx Queue

Figure 15. Message flow in the sample application - MESSAGE

Version 1.65 Page 81 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

In the above diagram DSPx indicates the DSP processors 0 and 1.

25.1.1 On the GPP side
INITIALIZATION

1. The client sets up the necessary data structures for accessing the DSPs.

2. It then attaches to the DSPs identified by ID_DSP_PROCESSOR_O and
ID_DSP_PROCESSOR_1.

3. It opens the pools required for allocating the messages, depending on the DSP
identifier and the physical link to be used for the data driver.

4. It then opens a message queue identified by a specific nhame on the local
processor.
It sets the above-opened queue as the error handler.
It loads DSP executables (nessage. out) on to the DSPs.
This application uses message.out as DSP executable. So rename message.out
generated for DSP processor ID O to message_0.out and rename message.out
generated for DSP processor ID 1 to message-1.out.
The client starts the execution on both DSPs.
It then opens the remote transports for both DSPs.
It then attempts to locate the queues opened on the both DSPs. Locate is
specified to wait forever. If the Locate call was unsuccessful (DSP queue still not
opened), it sleeps for some time and tries to locate the queue again.

EXECUTION

7. The client tries to get a message on the local queue. The get operation is
specified to wait forever.

8. On receiving the message, it verifies the validity of contents of the received
message.

9. It then sends the same message back to the DSP message queue from which
DSP the message is received.

10.0nce the message is received, its contents are compared with the sequence
number corresponding to the DSP, which is incremented every time a get from
the specific DSP is successful.

11.The client repeats the steps 2 through 4 for number of times specified by the
user, or infinitely if so specified.

12.For the case when finite number of iterations is specified, it frees the message

that was received for the last get operation.

FINALIZATION

9.

10.
11.
12.
13.

The client releases the remote message queues created on both DSPs.
It closes the remote transports.

It stops execution on both the DSPs.

It resets the error handler which was set in the create phase.

It closes the local message queue.

Version 1.65 Page 82 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

14. 1t closes the pools.
15. It detaches itself from ID_DSP_PROCESSOR_O and ID_DSP_PROCESSOR_1 .
16. It destroys the PROC component.

25.1.2 On the DSP side

25121 Using TSK with MSGQ
INITIALIZATION

7. The pool to be used for messaging is configured statically through the global
POOL_confi g variable.

8. The MSGQ component is configured statically through the global M5GQ confi g
variable.

9. The client task tskMessage is created in the function main ().
10. It opens a message queue with a specific name on the local processor.
11. It sets the above-opened queue as the error handler.

12. 1t then attempts to locate the queue opened on the GPP side. Locate is specified
to wait forever. If the Locate call was unsuccessful (GPP queue still not opened),
it sleeps for some time and tries to locate the queue again. The locate operation
is synchronous.

EXECUTION
7. The task allocates a message from the pool.
8. It sends this message to the GPP message queue located earlier.

9. The task then tries to get a message on the local queue. The get operation is
specified to wait forever.

10.These steps are repeated for number of iterations specified by the user, or
infinitely, if so specified.

FINALIZATION
4. The client releases the remote message queue on the DSP side.
5. It resets the error handler which was set in the create phase.

6. It closes the local message queue.

25.1.3 Invoking the application
The message sample takes the following parameters:

Parameter Example Value

Absolute path of DSP executable to be | -/ nessage_0. out
run on DSP processor O

Absolute path of DSP executable to be | -/ nessage_1. out
run on DSP processor 1

Number of iterations 10000

q The sample can be executed for infinite iterations by specifying the number of
iterations as O.

Version 1.65 Page 83 of 119

¢ DSP/BIOS™ LINK
TEXAS

LNK 058 USR
INSTRUMENTS USER GUIDE
q In case of PROS “Due to Dynamic configuration change during execution of

the MESSAGE_MULTI sample, MESSAGE_MULTIDSP sample should be run
before MESSAGE_MULTI sample”.

Version 1.65 Page 84 of 119

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

Version 1.65 Page 85 of 119

DSP/BIOS™ LINK

¢ TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
TESTSUITE

26 Overview

The information regarding the test suite is provided in the user guide of the
DSP/BIOS LINK test suite product.

Version 1.65 Page 86 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

APPENDIX

27 Issue reclaim model

The issue reclaim model is graphically represented in the diagram below:

APPLICATION

Issue () l T Reclaim ()

:
!
|

LINK DRIVER

— —{ J[]

A

PHYSICAL DEVICE

Figure 16. Issue Reclaim Model
The steps for data transfer with issue reclaim model may be summarized below:
1. Open a channel with defined buffer size & direction.
2. lIssue a buffer for 10 on the specified channel

§ Empty buffer for receiving data

§ Filled buffer for sending data

3. Attempt to reclaim the buffer. Reclaim will block until the 10 operation completes
or a timeout occurs.

§ This wait can be postponed to a later point in time for asynchronous 10.

4. A client must reclaim all the buffers issued to a channel.

Version 1.65 Page 87 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

28 Adding application or platform specific capabilities

As we have seen in earlier sections, DSP/BIOS™ LINK exports a basic APl for
processor control, data transfer and messaging.

However, depending upon the application and the target platform, it may be desired
to extend the functionality of DSP/BIOS™ LINK. Some such capabilities are:

§ Leveraging power management features of DSP.
§ Initializing auxiliary hardware devices on the platform.

The APIs PROC control () and CHNL_control () provide hooks to perform such
control operations.

The execution flow for both these APIs is shown below:

PROC control () CHNL_control ()
A 4 A 4
PMGER_PROC control () PMGR_CHNL_control ()
v v
LDRV_PROC control () LDRV_CHNL_control ()
v
DSP_control ()

Figure 17. Execution flow: PROC_control () and CHNL_control ()

The arguments to both these APIs include a command and optional argument(s) for
the specified command. For more details on syntax of these APIs refer to Source
Reference Guide.

Depending upon the specified command, processing can be done at all (or any) of
the stages shown in the diagram above.

In the default implementation, functions PM3R PROC control O and
PMGR_CHNL_control () return status value DSP_ENOTI MPL.

These functions can, however, easily be modified to reach the functions DSP_contr ol
() and LDRV_CHNL_control () as shown by dotted arrows in the diagram above.

Version 1.65 Page 88 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

29 Passing arguments to DSP side application

Arguments to the DSP executable’'s main () can be passed through the API
PROC Load (). This API fills the ". args" buffer before writing it to DSP's memory
spaces. This section is used by BIOS to pass arguments to mai n () .

The ". args" section is created during compilation of the DSP executable. To avoid
overwriting areas outside this section the compiler needs to be instructed to create a
large enough section based on the arguments that have to be passed to the DSP.
The following sections describe the changes that are required to achieve this.

29.1 Passing arguments from the GPP side

The following code illustrates the method to pass arguments using the PROC Load ()
API.

unt32 argc = 0 ;
Char8 * argv [NUM ARGS] ;

argc = NUM _ARGS ;

argv [0] arg_string_ 1 ;
argv [1] = arg_string 2 ;

argv [NUM ARGS - 1] = arg_string_end ;

status = PROC Load (dspld, dspExecutabl eFil eName, argc, argv)

29.2 Receiving arguments on the DSP side

The following line needs to be added to the tcf file to create the ". ar gs" section of
the specified size (in bytes).

pr og. nodul e("MEM') . ARGSSI ZE = <nunber of bytes> ;

Version 1.65 Page 89 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

30

30.1

30.1.1

Debugging Applications
On the GPP side

Trace statements

DSP/BIOS™ LINK displays the trace of its execution by conditionally printing the
function entry and exit from all functions. This information can be used for
debugging applications as well as for understanding DSP/BIOS™ LINK.

The following macros provided in the TRC subcomponent of OSAL allow selection of
trace prints:

TRC_ENABLE

TRC_DI SABLE

TRC_SETSEVERI TY

The selection can be based on the severity of the message being displayed as well as
the subcomponent origin of the message.

TRC_ENABLE and TRC_DISABLE macros allow selection of the trace prints based on
component and subcomponent. These macros take identifiers for sub-components
whose trace is required. See si gnat ur e. h for the definition of these identifiers.

The TRC_SET_SEVERITY interface allows selection of the severity level of trace
statements to print. The levels are defined from TRC_ENTER to TRC_LEVEL7, where
TRC_LEVEL?7 is the highest. The level TRC_ENTER and alternate level TRC_LEAVE is
used to print function entry and exit from all the functions in DSP/BIOS™ LINK.

These macros need to be called upon module initialization to setup necessary data
structures. (See the function DRV_I nitializeMdul e () in drv_pngr. c).

Some examples below explain the usage:

TRC_ENABLE (| D_PMGR _PROC) ;

TRC_SET_SEVERI TY (TRC_ENTER) ;

These statements enable prints from PMGR_PROC with the lowest severity allowing
all trace prints to display.

TRC_ENABLE (1D LDRV_ALL) :
TRC_SET_SEVERI TY (TRC_LEVEL2) ;

These statements enable prints from all files of LDRV with a severity allowing LEVEL2
and above trace prints to display.

TRC_ENABLE (I D_LDRV_POOL_ALL) ;
TRC_SET_SEVERI TY (TRC_LEVEL2) ;
These statements enable prints from all files of the POOL sub-component of LDRV.

TRC_ENABLE (1D OSAL_ALL) :
TRC_ DI SABLE (1 D_CSAL_MEM) ;
TRC_SET_SEVERI TY (TRC_ENTER) :

These statements enable from all subcomponents of OSAL except the MEM
subcomponent with the lowest severity level allowing all trace statements to display.

Version 1.65 Page 90 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

30.1.2

30.1.3

Profiling

DSP/BIOS™ LINK contains code to keep track of various pieces of instrumentation
information. This source code can be compiled out, and so does not interfere with
the regular code path and does not impact the code execution negatively.

The GPP-side build configuration allows different levels of profiling to be set. Please
refer to the section on build configuration for details.

The profiling levels are:

n No profiling: When profiling is not enabled, no instrumentation information is
maintained by DSP/BIOS™ LINK.

n Basic profiling: When this profiling level is selected, standard instrumentation
information maintained by DSP/BIOS™ LINK. This information includes:

Number of interrupts exchanged by GPP and DSP

Number of bytes read and written to DSP memory space by GPP
Amount of data exchanged

Channels that are currently open

Buffers that are currently queued.

w w W W W

Messages that have been transferred.
Messages that are currently queued, etc.

n Detailed profiling: When this profiling level is selected, detailed instrumentation is
maintained. This includes storing the first few bytes of data exchanged on a
channel. Enabling detailed profiling automatically enables standard profiling.

SET_FAILURE_REASON

DSP/BIOS™ LINK uses a mechanism to record an exception that may occur during
execution. Such an error/exception is stored in a structure called ErrReason. This
structure contains the fields:

Type Name Description
Bool I sSet Set to TRUE when a failure is recorded
I nt 32 Fileld Identifier for file in which the error occurred. File

si gnat ur e. h contains the list of file identifiers used in
source code.

I nt 32 Li neNum Line number on which the error was recorded

DSP_STATUS status The error status.

The macro SET_FAI LURE REASON is used to record these failures wherever such
failures are expected. However, only the first failure is recorded. This is especially
helpful since the first failure can then trigger a chain of other errors making
traceability difficult. A typical example of the usage of this macro is:

status = LDRV_ DRV Initialize (dspld) ;
i f (DSP_FAILED (status)) {
SET_FAI LURE_REASON ;

Version 1.65 Page 91 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

}

30.2 On the DSP side
The DSP side can be debugged using CCS with the QuickTurn platform.

For debugging, the DSP must be halted in a known state. The following two methods
can be used for achieving this:

30.3 Stopping execution in main

Execution of DSP can be suspended in 'main ()' by putting an infinite loop at the
beginning of the function. However a simple 'whil e (1) loop cannot be used as the
compiler optimizes away the code after the while loop as that code becomes
unreachable. To sneak through this optimization the following while loop can be

used:

{
volatile Int i =1 ;
while (i) ;

}

With this change in place on the DSP side application, the follow these steps to be to
DEBUG the DSP application.

Follow these steps to break from the loop:

1. After PROC _Start () is successful on GPP, halt the DSP. The DSP will be
executing in the while loop.

2. Load the symbols of the DSP executable using CCS.
3. Use 'Set PC to Cursor’ to break from the loop.

The DSP application can now be debugged by placing breakpoints as required or
single stepping through the code.

30.4 SET_FAILURE_REASON

The SET_FAILURE_REASON macro included with the DSP side sources can be used to
log failure or optionally stop execution upon failure in DEBUG builds. If the macro
DSPLINK_FAILURE_STOP is defined through compile flags, a failure in execution
causing invocation of the SET_FAILURE_REASON macro causes the DSP execution to
halt at the failure location.

The mechanism of halt at the failure location also depends on the
USE_CCS_BREAKPOINT macro for the 55x-based platforms. If it is defined, this
macro puts a software-breakpoint at the location where it is called from, allowing the
debugging to continue from the location.

When USE_CCS_BREAKPOINT is not defined or for non-55x based platforms, this
macro expands to the infinite loop mentioned in the previous section. The steps
mentioned in the previous section can be used to proceed with debugging.

Version 1.65 Page 92 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

31 Configuring DSP/BIOS™ LINK

31.1 Dynamic configuration

The static configuration of DSPLink was earlier achieved through a textual
configuration file (CFG_<PLATFORM=>.TXT), which was processed during the build
step of DSPLink, to generate configuration header and source files for both the GPP
and DSP-sides of DSPLink. These generated files were compiled along-with the
DSPLink GPP-side kernel module and DSP-side dsplink library.

From release 1.40.03, the textual configuration file has been replaced by a pre-
defined “C” source file with pre-defined configuration values defined within a fixed
structure format. This shall be compiled with the DSPLink user library by default.

The Dynamic Configuration of DSPLink is achieved through configuration items made
available to DSPLink from the user-side on the GPP-side only. The GPP-side kernel
module and DSP-side library do not need to be rebuilt.

31.1.1 Change in configuration

PROC setup () api has been modified to optionally take a pointer to a configuration
structure in the same format as the provided configuration source file. If a valid
pointer is provided, the configuration values provided by the application are used. If
none is provided, the default configuration is used. This ensures backward
compatibility of existing applications.

No configuration source or header files shall be generated, resulting in the GPP-side
kernel module and DSP-side DSPLink library not requiring to be rebuilt.

31.1.2 How to use dynamic configuration?

§ The file $(DSPLINK)\config\al\CFG_<Platform>.c provides the default
configuration which dsplink uses. To change your configuration, you can make a
copy of this file in your application specific code.

Modify the <application_path=\CFG_<platform> file to adapt to your application
specific needs.

Rename LINKCFG_config to application specific name say LINKCFG_appConfig to
avoid build conflict with the default configuration.

Add <application_path=\CFG_<platform=> file to the list of files to be compiled in
your application.

Modify your application code to have an extern declaration of
LINKCFG_appConfig structure and pass it as a parameter to PROC_setup

This enables that any change in the configuration causes only rebuilding of
application and not the dsplink code base.

31.2 GPP side
The need for configuration may arise due to any of the following considerations:
§ Porting to new platform/ physical link
8 Application specific requirements on the existing link driver

A pre-defined “C” source file for dsp configuration is provided with configuration
values defined within a fixed structure format. This is compiled with the DSPLink user
library by default.

Version 1.65 Page 93 of 119

DSP/BIOS™ LINK
LNK 058 USR
USER GUIDE

Ju'? TEXAS
INSTRUMENTS

The configuration file follows a specific naming convention:
CFG + <Name of platform> + <Name of variant, if any> + .c
e.g. CFG_Davinci.c, CFG_Davinci_DM6467.c, CFG_DM642_PCl.c, ...

A predefined c source files are provide with configuration values defined in a fixed
structure format for the GPP platform and for GPP OS.

The configuration file follows a specific naming convention:
CFG + <GPPARCH= + .c
CFG + <GPPOS=>+.c

31.2.1 GPP
NAME This field specifies the name of the GPP in the system. It is
used for information purposes only.
MAXMBGES This field specifies the maximum number of message queues
(MSGQs) that can be opened on the local processor.
MAXCHNL QUEUE This field specifies the maximum queue length for all
channels.
POCLTABLEI D This field specifies the ID of the POOL table (-1 if not
needed).
NUMPOCLS This field specifies the number of pools that are available for
use by the driver.
31.2.2 DSP
NAME This field specifies the name of the DSP being configured. It

is used for information purposes only.

ARCHI TECTURE This field specifies the architecture of the DSP. This field
takes enumerated values from the structure DspAr ch defined

in the file dspl i nk. h.

L OADERNAME This field specifies the name of the DSP executable loader.

AUTOSTART This field specifies whether the DSP can be auto-started. This
field is currently not used.

EXECUTABLE This field specifies the default executable for the DSP to be
loaded during autostart. This field is currently not used.

DOPONERCTRL This field indicates whether the power-control for the DSP is
to be done by DSPLink.

RESUMEADDR This field specifies the resume address for the DSP.

RESETVECTOR This field specifies the address of the reset vector of the DSP.

RESETCODESI ZE This field specifies the size of code at the DSP reset vector.

MADUSI ZE This field specifies the size of the Minimum Addressable Data
Unit (MADU) on the DSP in bytes.

ENDI AN This field specifies the default endianism of the DSP.

Version 1.65 Page 94 of 119

Ju'? TEXAS

DSP/BIOS™ LINK

LNK 058 USR
INSTRUMENTS USER GUIDE

VORDSWAP This field specifies whether the words must be swapped when
writing to memory.

MEMI'ABLEI D This field specifies the index of MEMIABLE to use for the DSP.
If none are required, this field can take the value —1.

MEMENTRI ES This field specifies the number of memory information entries
for the DSP. In case of a DSP having an MMU, this
information may map its the MMU entries. In case of DSPs
where this is not the case, this field may give information
about any memory accessible to both the GPP and the DSP.

LI NKDRVI D This field specifies the index of the LI NKDRV section to use for
accessing this DSP.

ARGUMENT1 This field platform specific argumentl.

ARGUMENT2 This field platform specific argument2.

ARGUMENT3 This field platform specific argument3.

ARGUMENT4 This field platform specific argument4.

31.2.3 MEM Tables

This specifies the MEM entries for each DSP. There is one MEMIABLE section for each
DSP. However, each MEMITABLE may contain more than one entry depending on the
number of MEM entries desired for the DSP application.

ENTRY
NAVE

ADDRPHYS
ADDRDSPVI RTUAL
ADDRGPPVI RTUAL
SI ZE

SHARED

SYNCD

31.2.4 Pools

ID of the entry in the VEMIABLE.

This field specifies a short abbreviation of the name of the
entry in the MEMTABLE.

The abbreviation is used for generating the constants related
to this entry in the generated configuration file(s).

Physical address of the memory indicated by this entry.
Virtual address of the memory as seen by the DSP
Virtual address of the memory as seen by the GPP

Size of the memory indicated by this entry.

Indicates whether the memory area is shared?

Indicates whether the memory area is synchronized?

This specifies the pools used in the system. A Pool is used for allocating the buffers
and messages to be used for data transfer and messaging respectively. The POOL
component provides a standard interface for configuration of the memory pools in
the system, which may be differently implemented based on the requirements of the
physical link and the system.

NAVE

MEMENTRY

This field specifies the name of the Pool. It is used for
information purposes only.

This field specifies the ID of the MEM entry used by the
POOL. If the pool does not use any MEM entries, this field can
take the value —1.

Version 1.65

Page 95 of 119

Ju'? TEXAS

DSP/BIOS™ LINK

LNK 058 USR
INSTRUMENTS USER GUIDE
POCLSI ZE This field specifies the maximum size of the memory used by
the pool. This field can take the value —1 if there is no
configuration limit set on the maximum size supported for the
pool.
I PSI D This field specifies the ID of the IPS used (if any)
I PSEVENTNO This field specifies the IPS event number associated with this
POOL (if any).
POOLMEMENTRY Pool memory region section 1D
ARGUMENT1 This field specifies argument 1 to the pool.
The significance of this argument depends on the
implementation of the pool.
ARGUVENT2

31.2.5 Link Drivers

This field specifies argument 2 to the pool.

The significance of this argument depends on the
implementation of the pool.

This section specifies the attributes of each of the physical link drivers to be used by
DSP/BIOS™ LINK. There is one LI NKDRV section for each DSP. The link driver may
use one or more Inter-Processor-Signaling (IPS) component(s) based on the physical
links supported between the GPP and the DSP.

NAVE

HSHKPOLLCOUNT

MEMENTRY

| PSTABLEI D
| PSENTRI ES
POOLTABLEI D
NUMPOOLS
DATATABLEI D
QUEUELENGTH

NUVDATADRV
MQTI D

Rl NG OTABLEI D
MPLI STTABLEI D
MPCSTABLEI D

This field specifies the name of the link driver. It is used for
information purposes only.

This field specifies the poll value for which handshake waits (-
1 if infinite).

This field specifies the ID of the MEM entry used by the link
driver. If the link driver does not use any MEM entries, this
field can take the value —1.

This field specifies the ID of the IPS table used.
This field specifies the number of IPS supported.
This field specifies the pool id for allocating buffers.
This field specifies the number of POOLs supported.
This field specifies the ID of the data driver table.

This field specifies the number of buffers that can be
simultaneously queued for transfer by the DSP/BIOS™ LINK
data transfer driver.

This field specifies the number of data drivers supported.
This field specifies the ID of the MQT.

This field specifies the RinglO Table Id used for this DSP.
This field specifies the MpList Table Id used for this DSP.
This field specifies the MPCS Table ID used for this DSP.

Version 1.65

Page 96 of 119

Ju'? TEXAS
INSTRUMENTS

DSP/BIOS™ LINK
LNK 058 USR
USER GUIDE

31.2.6 IPS Tables

This specifies the Inter-Processor-Signaling components used by each link driver.
There is one | PSTABLE section for each link driver. However, each | PSTABLE may
contain more than one entry depending on the number of different types of physical
links supported for the DSP.

NAVE

NUM PSEVENTS

MEMENTRY

GPPI NTI D

DSPI NTI D

DSPI NTVECTORI D

ARGUMENT1

ARGUMENT?2

31.2.7 MQTs

This field specifies the name of the IPS component. It is used
for information purposes only.

This field specifies the number of IPS events to be supported.

This field specifies the ID of the MEM entry used by the IPS.
If the IPS does not use any MEM entries, this field can take
the value —1.

This field specifies the interrupt no. to used by the IPS on
GPP-side.

This field specifies the interrupt no. to used by the IPS on
DSP-side.

This field specifies the interrupt vector no. to used by the IPS
on DSP-side. (-1 if uni-directional to GPP)

This field specifies argument 1 to the IPS.

The significance of this argument depends on the
implementation of the IPS.

This field specifies argument 2 to the IPS.

The significance of this argument depends on the
implementation of the IPS.

This specifies the Message Queue Transport (MQT) components used by each DSP.
There can be only one MJI defined at a time for each DSP.

NAVE

MEMENTRY

MAXMSGSI ZE

| PSI D
| PSEVENTNO

ARGUMENT1

ARGUMENT?2

This field specifies the name of the MQT. It is used for
information purposes only.

This field specifies the ID of the MEM entry used by the MQT.
If the MQT does not use any MEM entries, this field can take
the value —1.

This field specifies the maximum size of messages supported
by this MQT. If the MQT does not impose any limitation on
the size of messages that can be transferred by it, this field
can take the value —1.

This field specifies the ID of the IPS used (if any)

This field specifies the event number associated with this
MQT.

This field specifies argument 1 to the MQT.

The significance of this argument depends on the
implementation of the MQT.

This field specifies argument 2 to the MQT.

Version 1.65

Page 97 of 119

Ju'? TEXAS
INSTRUMENTS

DSP/BIOS™ LINK
LNK 058 USR
USER GUIDE

31.2.8 DATA Tables

The significance of this argument depends on the
implementation of the MQT.

This specifies the Data Drivers used by each DSP. There is one DATADRV table section
for each DSP. However, each DATADRV may contain more than one entry depending
on the number of physical links supported for data transfer by the DSP.

NAVE

ABBR

BASECHANNELI D

NUMCHANNEL S

MAXBUFSI ZE

| NTERFACE

MEMENTRY

PCCLI D

SI ZE

QUEUEPERCHANNEL

| RPSI ZE

| PSI D
| PSEVENTNO

ARGUMENT1

This field specifies the name of the data driver. It is used for
information purposes only.

This field specifies a short abbreviation for the data driver
name.

This field is used for generating the constants related to this
entry in the generated configuration file(s).

This field specifies the base logical channel ID for this data
driver. The channel IDs supported by this driver range
between the BASECHANNELI D and the (BASECHANNELID +
NUMCHANNELS — 1) for this data driver.

This field specifies the number of logical channels supported
by this data driver.

This field specifies the maximum size of buffers supported by
this data driver. If the data driver does not impose any
limitation on the size of buffers that can be transferred by it,
this field can take the value —1.

This field specifies the address of the interface function
pointer table for using this data driver.

This field specifies the ID of the MEM entry used by the data
driver. If the data driver does not use any MEM entries, this
field can take the value —1.

This field specifies the ID of the pool used for allocating
buffers that are transferred between the GPP and the DSP
using this data driver.

This field specifies the size of the control area required by the
data driver component within the MEM entry to which it
refers.

This field specifies the number of queued buffers per data
channel.

This field specifies the size of each 10 Request Packet for
data transfer.

This field specifies the ID of the IPS used (if any)

This field specifies the event number associated with this
data streaming driver.

This field specifies argument 1 to the data driver.

The significance of this argument depends on the
implementation of the data driver.

Version 1.65

Page 98 of 119

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

ARGUMENT2 This field specifies argument 2 to the data driver.
The significance of this argument depends on the
implementation of the data driver.

31.2.9 RINGIOTABLE
This specifies the configuration for RinglO component.

NAME This field specifies the name of this RinglO table.

MEMENTRY This field specifies the MEMENTRY to be used for placing this
RinglO table.

NUMENTRI ES This field specifies the number of RinglO instances to be
supported in the system.

I PSI D This field specifies the ID of the IPS used.

I PSEVENTNO This field specifies the event number associated with this
RinglO driver.

31.2.10 MPCSTABLE
This specifies the configuration for MPCS component.

NAME This field specifies the name of this MPCS table.

MEMENTRY This field specifies the MEMENTRY to be used for placing this
MPCS table.

NUMENTRI ES This field specifies the number of MPCS instances to be
supported in the system.

I PSI D This field specifies the ID of the IPS used (if any)

I PSEVENTNO This field specifies the event number associated with this

MPCS driver (if any).

31.2.11 MPLISTTABLE
This specifies the configuration for MPLIST component.

NAME This field specifies the name of this MPLIST table.

MEMENTRY This field specifies the MEMENTRY to be used for placing this
MPLIST table.

NUMENTRI ES This field specifies the number of MPLIST instances to be
supported in the system.

I PSI D This field specifies the ID of the IPS used (if any)

I PSEVENTNO This field specifies the event number associated with this

MPLIST driver (if any).

31.2.12 LOG
This specifies the configuration for logging instrumentation information.
COMBGPUT This field indicates whether logging is to be enabled
for: GPP->DSP MSG Transfer - MSGQ_Put call.
GOVBGBENDI NT This field indicates whether logging is to be enabled

Version 1.65 Page 99 of 119

DSP/BIOS™ LINK

Ju'? TEXAS

DGVBGSENDI NT

DGVEGJ SR

DGVBGQQUE

GDCHNL| SSUESTART

GDCHNLI SSUEQUE

GDCHNLI SSUECOVPL

GDCHNLXFERSTART

GDCHNL XFERPROCESS

GDCHNL XFERCOWPL

GDCHNLRECLSTART

GDCHNLRECLPEND

GDCHNLRECLPOST

GDCHNLRECL COVPL

Version 1.65

LNK 058 USR
INSTRUMENTS USER GUIDE
for: GPP->DSP MSG Transfer - GPP sends interrupt.
GOMBEQ SR This field indicates whether logging is to be enabled
for: GPP->DSP MSG Transfer - DSP receives
interrupt.
CDOMBEQUE This field indicates whether logging is to be enabled
for: GPP->DSP MSG Transfer - Message queued at
DSP.
DAVBGPUT This field indicates whether logging is to be enabled

for: DSP->GPP MSG Transfer - MSGQ_Put call.

This field indicates whether logging is to be enabled
for: DSP->GPP MSG Transfer - DSP sends interrupt.

This field indicates whether logging is to be enabled
for: DSP->GPP MSG Transfer - GPP receives
interrupt.

This field indicates whether logging is to be enabled
for: DSP->GPP MSG Transfer - Message queued at
GPP.

This field indicates whether logging is to be enabled
for: GPP-=>DSP CHNL Transfer - Entering inside
ISSUE call.

This field indicates whether logging is to be enabled
for: GPP-=>DSP CHNL Transfer - Buffer is queued in
internal structure on GPP.

This field indicates whether logging is to be enabled
for: GPP->DSP CHNL Transfer - ISSUE call
completed.

This field indicates whether logging is to be enabled
for: GPP->DSP CHNL Transfer - Initiating a buffer
transfer by GPP.

This field indicates whether logging is to be enabled
for: GPP->DSP CHNL Transfer - Actual transfer of
buffer is going to take place.

This field indicates whether logging is to be enabled
for: GPP->DSP CHNL Transfer - Buffer transfer is
complete.

This field indicates whether logging is to be enabled
for: GPP-=>DSP CHNL Transfer - Entring RECLAIM call.

This field indicates whether logging is to be enabled
for: GPP->DSP CHNL Transfer - Wait on a
semaphore.

This field indicates whether logging is to be enabled
for: GPP->DSP CHNL Transfer - posting the
Semaphore.

This field indicates whether logging is to be enabled

Page 100 of

Ju'? TEXAS
INSTRUMENTS

DSP/BIOS™ LINK
LNK 058 USR
USER GUIDE

DGCHNLI SSUEQUE

DGCHNLXFERSTART

DGCHNL XFERPROCESSI NG

DGCHNL XFERCOVPLETE

DGCHNLRECL PEND

DGCHNLRECLPOST

M5A DRANGESTART

M5GE DRANGEEND

31.2.13 GPPOBJECT

for: GPP-=DSP CHNL Transfer - RECLAIM call
completed.

This field indicates whether logging is to be enabled
for: DSP->GPP CHNL Transfer - Buffer is queued in
internal structure on DSP.

This field indicates whether logging is to be enabled
for: DSP->GPP CHNL Transfer - Initiating a buffer
transfer by DSP.

This field indicates whether logging is to be enabled
for: DSP->GPP CHNL Transfer - Actual transfer of
buffer is going to take place.

This field indicates whether logging is to be enabled
for: DSP->GPP CHNL Transfer - Buffer transfer is
complete.

This field indicates whether logging is to be enabled

for: DSP->GPP CHNL Transfer - Wait on a
semaphore.
This field indicates whether logging is to be enabled
for: DSP->GPP CHNL Transfer - posting the
Semaphore.

This field specifies the lower limit of the message ID
range that must be ignored during instrumentation.

This field specifies the upper limit of the message ID
range that must be ignored during instrumentation.

This structure specifies the configuration for the gpp object.

NAME Name of the GPP.

MAXMBGES Maximum MSGQs that can be opened
VAXCHNL QUEUE Maximum Queue Length for all channels
POCLTABLEI D ID of the POOL table (-1 if not needed)
NUMPOOLS Number of POOLs supported.
GPPCSOBJECT Pointer to GPP OS object

31.2.14 GPPOSOBJECT

This structure specifies the GPP OS specific configuration.

HANDLESI GNALS Should signals be handled for cleanup (Boolean flag)
NUVBI GNALS Number of signals to be handled
SI GNUVARRAY Pointer to the array of signals to be handled
Version 1.65 Page 101 of

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

31.3 DSP side
DSP side configuration is done through the TCF file. A base TCI include file is
provided with DSP/BIOS™ LINK for each supported platform.

For example, for the DaVinci platform, the TCI file provided is dspl i nk- dn6446gem
base.tci . This file provides the basic definition of the memory regions and other
configuration as required for using DSP/BIOS™ LINK. This file must be included for
all scalability configurations of DSP/BIOS™ LINK.

The anatomy of a typical application TCF file is shown below:

utils.inportFile("dsplink-dn6446gem base.tci"); Line 1

utils.inportFile("dsplink-davinci-iomtci"): line2

utils.inportFile("dsplink-davinci-dio.tci"): line3s

utils.inportFile("<app>.tci"); _L_ir;e_éz _____

Pl atform specific application configuration goes here _L_ir;e_) _5_ T
Line N

prog. gen() ; LineN+1

Here is the description of each statement listed below:

Line 1 Loads the base configuration file for DSP/BIOS™ LINK for
DaVinci.

Line 2 Loads the configuration file for DSP/BIOS™ LINK for DaVinci
containing the 10OM driver used for data transfer.

Line 3 Loads the configuration file for DSP/BIOS™ LINK for DaVinci

containing the DIO class driver used for data transfer.

Here, the statement indicates need for the DIO class driver.
The DIO class driver is required to use the SIO interface.

Line 4 This statement loads the platform independent application
specific configuration.

Line 5 -— - S . .

Line N Platform specific application configuration goes here

Line N+ 1 This statement is an instruction to generate the CDB file.

q Do not change the DSP/BIOS™ LINK specific ‘tci’ files for any application
specific configuration.

Version 1.65 Page 102 of

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
32 Understanding The MAKE System
32.1 Overview
This 'make’ system is compatible with the GNU make utility. It also uses PERL for
small tasks that cannot be accomplished with the GNU make.
This make system provides a single interface to build sources for all GPP side
operating systems and platforms as well as DSP side applications developed for
DSP/BIOS™. The make system can be used on Windows to build GPP side as well as
DSP side libraries, applications, tests etc.
The make can be invoked from shell with following command:
gmake [TARGET] [VERBOSE=1]
The TARGET can be one of the following:
all Make all build variants. [Default]
debug Build DEBUG variant.
rel ease Build RELEASE variant.
cl ean Delete all intermediate and output files.
cl obber Delete all directories created during build process.
targets Build the target (.o/.ko) file from the intermediate object
files.
exports Export the specified file to a pre-defined location.
To build a component successfully the developer needs to be aware of the following
four files:
§ MAKEFILE
COMPONENT
8§ SOURCES
8§ DIRS
32.1.1 MAKEFILE

Each component requires a make file. This MAKEFILE is standard for all the modules.
User is not required to change this file. A warning to this effect is shown in these
files.

A sample MAKEFILE file is shown below:

#

@ile MAKEFI LE

#

@ath $(DSPLINK)/dsp/src

#

@lesc This file is a standard interface to the make scripts.
Usual Iy no change is required in this file.

#

To change the way a conponent is built, edit the file
COVPONENT si tuat ed under the directory $(DSPOS).

Version 1.65 Page 103 of

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
#
@er 01. 64
#
Copyright (c) Texas |nstruments |ncorporated 2004
#
Use of this software is controlled by the terns and conditions found in the
li cense agreenent under which this software has been supplied or provided.
#

Set the device type (GPP/ DSP)

export DEVI CETYPE : = DSP

#
Get the directory separator used on the devel opnent host.
#
i fneq ("$(ContSpec)", "")
ifneq ("$(CYGAN", "")
DI RSEP ?=/
el se
DI RSEP ?=\\
endi f
el se
DI RSEP ?= /
endi f
#
Start the build process
#

i ncl ude $(DSPLI NK) $(DI RSEP) neke$(DI RSEP) st art . nk

q The variable DEVICETYPE represents the processor for which the build is to be
invoked. It can be set to either ‘DSP’ (for DSP side builds) or to ‘GPP’ (for GPP

side builds).

q The variable DIRSEP is represents the directory separator on the development
host. The variable is used in rest of the MAKE system, making it OS
independent.

q You may use the directory separator specific to operating system on

development host, if the build environment is specific to the operating system
OR you will not be using another operating system on the development host.

Version 1.65 Page 104 of

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

32.1.2 COMPONENT

There is one COMPONENT file for every component in the OS specific folder for the
component. This file affects the compilation and linking of the component by
specifying OS specific attributes during the build process.

Following variables are defined in this file:

COMP_NAME The name of the component.
COMP_PATH Path of the component base directory.
COMP_TYPE Type of the component. This can be either of LIB (library),

DRV (driver) or EXE (executable) for the GPP-side. for the
DSP-side, this can be of types ARC (archive) or EXE
(executable).

COMP_TARGET Name of the target file generated when the component is
built.

COMP_MEMSPACE Memory space in which the component is built, It could be
USER or KRNL.

EXP_HEADERS Headers files exported from the component.

USR_CC_FLAGS Compiler flags specific to the component.

USR_CC_DEFNS Compiler definitions specific to the component.

USR_LD_ FLAGS Additional linker options specific to the component.

STD_LIBS Standard OS libraries to be linked into the component when it
is built.

USR_LIBS User specific libraries to be linked into the component when it
is built.

EXP_TARGETS Target file exported from the component.

For DSP side applications an additional parameter is defined:

COMP_MAP_FILE MAP file for the component.

A sample COMPONENT file is listed below:

@ile COVPONENT

@ath $(DSPLI NK) / gpp/ src/ osal / PrOS

@lesc This file contains information to build a conponent.

@er 01. 64

Copyright (c) Texas |nstruments |ncorporated 2004

Use of this software is controlled by the terns and conditions found in the
li cense agreenent under which this software has been supplied or provided

H O HF OHF O OH OH H OH OH OH B B H*

Version 1.65 Page 105 of

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
#
Generic information about the conponent
#
COVP_NAME = OSAL
COWP_PATH = $(GPPROOT) $(DI RSEP) sr c$(DI RSEP) osal
COWP_TYPE = LIB
COWVP_TARCET = OSAL.LIB
#
Header file(s) exported fromthis conponent
#
EXP_HEADERS =\
dpc. h \
isr.h \
kfile.h \
mem h \
prcs. h \
sync. h \
trc.h \
cfg.h \
print.h \
osal . h \

$(GPPOS) $(DI RSEP) nem o0s. h

#

User specified additional conmand |ine options for the conpiler
#

USR_CC FLAGS 1=

USR_CC_DEFNS : = - DTRACE_KERNEL

#

User specified additional command |ine options for the |inker
#

USR LD FLAGS 1=

#

Standard libraries of GPP OS required during |inking

#

Version 1.65 Page 106 of

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
STD_LI BS 1=
#
User specified libraries required during |inking
#
USR LI BS 1=
#
Target file(s) exported fromthis nodul e
#
EXP_TARCGETS 1=

32.1.3 SOURCES
This file provides a list of files that make up the component in a build configuration.

A sample SOURCES file is listed below:

#

@ile SOURCES

#

@ath $(DSPLINK)/gpp/src/ldrv

#

@lesc This file contains list of source files to be conpil ed.

#

@er 01. 64

#

Copyright (c) Texas |nstruments |ncorporated 2004

#

Use of this software is controlled by the terns and conditions found in the
Ii cense agreenent under which this software has been supplied or provided.
#

SOURCES : =

ifeq ($(USE_PROC), 1)
SOURCES += Idrv.c
I drv_proc.c
DRV$(DI RSEP) I drv_drv. c
| PS$(DI RSEP) I drv_i ps. c
SMMVB(DI RSEP) | drv_snm ¢

— - - -

endi f

i feq ($(USE_POOL), 1)
SOURCES += POOLS$(DI RSEP) I drv_pool . c

i feq ($(USE_PCPY_LINK), 1)
SOURCES += POOLS$(Dl RSEP) buf _pool . c

Version 1.65 Page 107 of

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

endi f

endi f

ifeq ($(USE_CHNL), 1)
SOURCES += Idrv_chnl.c \
Idrv_chirps.c \
DATA$(DI RSEP) | drv_dat a. ¢
endi f

ifeq ($(USE_MSGQ, 1)
SOURCES += |drv_nsgg.c \
MJT$(DI RSEP) | drv_nmt . ¢
endi f

ifeq ($(USE_RING O, 1)
SOURCES += RI NG G$(DI RSEP) | drv_ringi o.c
endi f

ifeq ($(USE_MPCS), 1)
SOURCES += MPCS$(DI RSEP) I drv_npcs. c
endi f

i feq ($(USE_MPLIST), 1)
SOURCES += MPLI ST$(DI RSEP) I drv_nplist.c
endi f

q For DSP side applications, the SOURCES file must also include the filenames
that are ‘generated’ through processing of the tcf file by tconf.

Two additional parameters need to be defined for building a DSP side application
executable.

TCF_FILE Specifies the path of the application specific .tcf file relative to
component base path.

CMD_FILE Specifies the path of the application specific .cmd file relative to
component base path.

32.1.4 DIRS

This file provides a list of sub-directories that make up the component in a build
configuration.

A sample DIRS file is listed below:

#

@ile DI RS

#

@ath $(DSPLINK)/ gpp/src

#

@lesc This file defines the set of sub directories to be considered
by the MAKE system

#

Version 1.65 Page 108 of

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
@er 01. 64
#
Copyright (c) Texas |nstrunments |ncorporated 2004
#
Use of this software is controlled by the terns and conditions found in the
Ii cense agreenent under which this software has been supplied or provided.
#

#
Generic information about the conponent
#
DI R_NAME := SRC
#
Li st of directories in the conponent
#
ifeq ("$(TI_DSPLI NK_PLATFORM ", " OVAP3530")
DIRS += \
api
else # ifeq ("$(TI_DSPLI NK_PLATFORM ", " OVAP3530")
DIRS += \
arch \
gen \
osal \
I drv \
pmgr \
api

endif # ifeq ("$(TI_DSPLI NK_PLATFORM ", "OMVAP3530")

32.2 Common tasks

32.2.1 Adding a new source file
The source files can be of two types — header file (.h) and implementation file (.c).

HEADER FILE

If the new header file is local to a component and is not used by any other
component, then it can reside in appropriate directory within the component.

If the header file is required by another component, then it should be exported
during the build process. In this case, add the new header file to the list of similar
header files defined by variable EXP_HEADERS in the COMPONENT file.

Since, there is one COVPONENT file per GPP OS, you will be required to make this
change in the COVPONENT file for all GPP OSes.

IMPLEMENTATION FILE

The new implementation file simply needs to be compiled along with other such files.

Version 1.65 Page 109 of

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

Add the new implementation file to the list of other implementation files in the
SOURCES file contained in the directory.

32.2.2 Changing the Compiler

The variable COVPI LER represents the fully qualified path to the compiler used. It is
defined in the file osdefs.nk for the default OS distribution, if no additional

distributions are supported. If multiple distributions are supported for the OS, it is
defined in the file <di st ri buti on>. nk for a specific distribution.

To change the compiler, simply change the value of this variable to the new
compiler.

If the new compiler uses different switch settings, than the previous one, you may
be required to update the variables based on the switches supported by the new
compiler.

32.2.3 Changing the Archiver

The variable ARCHI VER represents the fully qualified path to the linker used. It is
defined in the file osdefs.nk for the default OS distribution, if no additional

distributions are supported. If multiple distributions are supported for the OS, it is
defined in the file <di st ri buti on>. nk for a specific distribution.

To change the archiver, simply change the value of this variable to the new archiver.

If the new archiver uses different switch settings, than the previous one, you may be
required to update the variables based on the switches supported by the new
archiver.

32.2.4 Changing the Linker

The variable LI NKER represents the fully qualified path to the linker used. It is
defined in the file osdefs.nk for the default OS distribution, if no additional
distributions are supported. If multiple distributions are supported for the OS, it is
defined in the file <di st ri buti on>. nk for a specific distribution.

To change the linker, simply change the value of this variable to the new linker.

If the new linker uses different switch settings, than the previous one, you may be
required to update the variable(s) based on the switches supported by the new
linker.

You may also be required to update the commands using the variable LI NKER for the
targets - $(t arget _deb) and $(target _rel).

32.2.5 Supporting a new distribution

It is possible that you may be required to support more than one distribution of the
operating system running on a processor. This possibility exists when more than one
port of the OS is available e.g. in case of Linux, or when more than one target is
supported by an operating system e.g. in case of DSP/BIOS™.

In such situations, it is inconvenient to continuously change the path to the code
generation tools.

A distribution specific file (di stri bution. nk) can be created in such cases. In this
file, all the definitions in the file osdef s. mk can be overridden. This file must set the
value of variable USE_DI STRI BUTI ON as 1.

Version 1.65 Page 110 of

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

The listing below shows an example of a GPP side distribution file.

@ile di stribution. nk

@ath $(MAKEROOT) \ gpp\ make\ GPPOSA\ PLATFORMX

@lesc This makefile defines OS specific macros used by MAKE system

@er 01. 64

Copyright (c) Texas |nstrunments |ncorporated 2004

Use of this software is controlled by the terns and conditions found in the
li cense agreenent under which this software has been supplied or provided.

H O O H H H H OH OH B OB H H

i f ndef DUMWY_MK

def i ne DUMWY_MK

endef

#

Let the make system know that a specific distribution for the GPP CS
i s being used.

#

USE_DI STRI BUTI ON =1

#

Base directory for the GPP OGS

#

BASE_GPPCS 1= GPPOSA

#

Base for code generation tools - conpiler, linker, archiver etc.
#

BASE_CGTOOLS : = GPPOSA\ bi n

#

Base directory for include files provided by GPP CS

#

BASE_OSI NC = $(BASE_GPPCS) \i nc

OSI NC_GENERI C $(BASE_OSI NO) \ .
0S| NC_PLATFORM : = $(BASE_OSI NC) \ PLATFORMX\ .

ifneq ("$(VARIANT)", ")

Version 1.65 Page 111 of

{'? TEXAS

DSP/BIOS™ LINK

LNK 058 USR
INSTRUMENTS USER GUIDE
CSI NC_VARI ANT : = $(BASE_OSI NC) \ PLATFORMX\ .
endi f
#
Base directory for libraries provided by GPP OS
#
BASE_OSLI B = $(BASE_GPPCS) \ Li b
OSLI B_GENERI C = $(BASE_OsLI B)
OSLI B_PLATFORM : = $(BASE_OSLI B)
ifneq ("$(VARIANT)", "")
OSLI B_VARI ANT : = $(BASE_OSLI B)
endi f
#
COWPI LER
#
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Name of the conpiler
oo ccococococcoooccooSoooSSooooooooooCoCCCooCooCoooOSOSoCooCooCCooCcoocoooooooooo
COWPI LER : = $(BASE_CGTOCLS) \ conpi | er
CROSS_COWPI LE : = crossconpile
export CROSS_COWPI LE
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Command | ine sw tches used by the conpiler
#
CC_SW DEF Command | i ne defines
CC_SW.I NC Search path for header files
CC_SW. OBJ Create object file
CC_SW DEB I ncl ude DEBUG i nf ormati on
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
CC_SW DEF :=-D
CC_SW.I NC = -
CC_SW 0BJ = -0
CC_SW DEB = -9
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Standard flags for the conpiler
oo ccoccocooccoooccooSSooSSoooooooooCCoCCCooCooCooCooCCoCCCoCCooooooOSSoooooooooo
STD_CC _FLAGS = -\Wall
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Fl ags for the conpil er when building an executable
Version 1.65 Page 112 of

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
2
EXE_CC_FLAGS = -0
2
Fl ags for the conpil er when building a driver
2
DRV_CC_FLAGS = -
2
Fl ags for the conpiler when building a library
2
LI B_CC_FLAGS = -
2
Standard definitions for the conpiler
2
STD_CC _DEFNS 1=
#

ARCHI VER
#
ARCHI VER 1= $(BASE_CGTOOLS) \ ar chi ver
2
Standard flags for the archiver
2
STD_AR FLAGS i=r
#
LI NKER
#
LI NKER : = $(BASE_CGTOOLS)\ | i nker
2
Command |ine sw tches used by the |inker
#
LD SWLIB Search path for libraries
LD_Sw out Qut put fil enanme
LD _SW RELOC Gener at e rel ocat eabl e out put
2
LD_SWLIB = -L
LD_SW oUT = -0
LD_SW RELCC = o-r
2
Standard flags for the |inker
2
STD_LD FLAGS = -lc

Version 1.65 Page 113 of

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
B o mm o ee e s
Fl ags for the linker when buil ding an executabl e
2
EXE LD FLAGS =
2
Fl ags for the linker when building a driver
2
DRV_LD FLAGS 1=

endi f # i fndef DUMWY_MK

The listing below shows an example of a DSP side distribution file created for C64xx
DSP, which is used to build DSP side applications on Windows workstation. This file
depends on the paths where CGTOOLS and DSP/BIOS™ libraries are located on the
build machine. You may need to change these if they are not already installed at the
paths expected by the distribution file.

@ile c64xxp_5. xx_w ndows. mk

@ath $(DSPLI NK) \ make\ DspBi os

@lesc This makefile defines OS specific macros used by MAKE system for
the DSP/ Bl OS version 5. xx for C64XX PLUS on W ndows.

@er 01. 64

Copyright (c) Texas |nstruments |ncorporated 2004

Use of this software is controlled by the terns and conditions found in the
li cense agreenent under which this software has been supplied or provided.

H OHF OHF O H OH H HF OH OH B OB H H R

i fndef CBAXXP_5_XX_W NDOAS_MK

define C64XXP_5_XX W NDOWS_MK
endef

Let the make system know that a specific distribution for the GPP OS
i s being used.

* H H H#*

USE DI STRIBUTION : = 1

#
Set the val ues of necessary variables to be used for the CS.
#

Version 1.65 Page 114 of

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
2
Base directory for the DSP OS
2
BASE_| NSTALL = C\ti-tools
BASE_SABI OS = $(BASE_I NSTALL) \ bi os

BASE_BUI LDOS : = $(BASE_SABI OS) \ packages\ti\ bi os

Base directory for the XDC tools

XDCTOOLS DR : = $(BASE_SABI OS) \ xdct ool s

Base for code generation tools - conmpiler, linker, archiver etc.

BASE_CGTOOLS : = $(BASE | NSTALL)\ C6000\ cgt 0ol s
BASE_CGTOOLSBI N : = $(BASE_CGTOOLS) \ bi n

oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Base for TCONF, platformfiles and dependent conponents

oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
BASE_TCONF 1= $(XDCTOOLS DI R)

BASE_PLATFORMS : = $(BASE_SABI OS) \ packages

BASE_PSL : = $(BASE_SABI OS) \ packages\ti\ psl

BASE_CSL 1=

BASE_RTDX : = $(BASE_SABI OS) \ packages\ti\rtdx

oo cccococococcoooccooSooooSSooooooCooCCoCCCooCooCoooOSOSoCooSCooooooCcooCcoooooooo
Base directory for include files

oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
BASE_OSI NC ;= $(BASE_BUI LDCS) \i ncl ude

BASE_CGTOOLSI NC : = $(BASE_CGTOOLS) \i ncl ude

BASE_RTDXI NC : = $(BASE_RTDX) \ i ncl ude\ c6000

BASE_PSLI NC ;= $(BASE_PSL) \i ncl ude

BASE_CSLI NC 1=

OSINC_GENERI C := $(BASE_OSI NO)
0S| NC_PLATFORM : = $(BASE_CGTOOLSI NC) $(BASE_RTDXI NC) \
$(BASE_PSLI NC) $(BASE_CSLI NO)

ifeq ($(PLATFORM), DMB42)
0S| NC_PLATFORM += $(BASE_| NSTALL) \ boar ds\ evndmB42\ i ncl ude
endif # ifeq ($(PLATFORM), DN642)

ifneq ("$(VARI ANT)", "")
OSl NC_VARI ANT : = $(BASE_OSI NC)
endi f

Version 1.65 Page 115 of

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Base directory for libraries
o cco-o-oooocoocooCcooccoCoooCoOSSooO-SoooSoooCooCooCCCoCCooCoooSOSoCoooooooooocso
BASE_OSLI B := $(BASE_BUI LDOS)\ i b
BASE_CGTOOLSLI B : = $(BASE_CGTOOLS)\lib
BASE_RTDXLI B := $(BASE_RTDX) \ | i b\ c6000
BASE_PSLLI B := $(BASE_PSL)\lib
BASE_CSLLI B I =

OSLIB_GENERIC := $(BASE_OSLI B)
OSLI B_PLATFORM : = $(BASE_CGTOOLSLI B) $(BASE_RTDXLIB) \
$(BASE_PSLLI B) $(BASE_CSLLI B)

ifneq ("$(VARIANT)", ")
OSLI B_VARIANT : = $(BASE_OSLI B)

endi f
#
COWPI LER
#
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Name of the conpiler
o ccccoccocoCcocoCoooSooSCooScCooCoooCooooCcoooCcCooCooCoooSooOSSooOoSooooooooooooocc
COWPI LER 1= $(BASE_CGTOOLSBI N) \ cl 6x
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Command | i ne swi tches used by the conpiler
#
CC_SW DEF Command | i ne defines
CC_SW.I NC Search path for header files
CC_SW OBJ Ooject file directory
CC_SW DEB I ncl ude debug information
CC_SW REL Rel ease build
CC_SW DEF 1= -d
CC_SW.I NC = -
CC_SW 0BJ 1= -fr
CC_SW DEB := -g -d"_DEBUG' --no_conpress
CC_SW REL := -03
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Standard flags for the conpiler
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
STD_CC_FLAGS = -q -pdr -pdv -pden -m 3 -nv6400+ --di sabl e: spl oop
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Standard flags for the conpiler when building an executable
o cCcccoccocoocooCoooSooSCooScCooCoooCoCoooCoCCCoooCooooooCoooCooOSSooOoSooooooooos o
EXE_CC_FLAGS 1=
Version 1.65 Page 116 of

‘i‘ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Fl ags for the conpiler when building an archive
oo ccococococcoooccooSoooSSooooooCooCCoCCCooCooCoooOSOSoCooSCooooooCooCcoooccooooso
ARC_CC_FLAGS =
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Standard definitions for the conpiler
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
STD_CC _DEFNS 1=
#

ARCHI VER

#

ARCHI VER ;= $(BASE_CGTOOLSBI N) \ ar 6x

o ccccoccocoCcooCoooSooSCoooCooCooooCCoCCoooCooCooooooSSooOCoooooooooooooocooooo
Standard flags for the archiver

oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
STD_AR FLAGS = -r

o ccccoccocoococoCoooSooSCoooCooCoooCCoooCCCooCCooOoSooSSooCoooCooCoooooocoooooo o
Archiver flags for extracting object files

oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
EXT_AR FLAGS = xq

#

LINKER

#

LI NKER : = $(BASE_CGTOOLSBI N) \ cl 6x -z

oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Command |ine sw tches used by the |inker

#

LD _SW.INC Search path for libraries

LD SWLIB Include |library name

LD_Sw out Qutput file nanme

LD SW MAP Map file name

LD _SW RELOC Gener at e rel ocat eabl e out put

oo cccocococCccoooccooSoooSSoooooooooCCoCCCooCooCooCooCooCCCoCCoooSooOSSoooooooooo
LD_SW I NC = -

LD_SWLIB = -

LD_SW oUT = -0

LD_SW MAP 1= -m

LD_SW RELOC = o-r

Standard flags for the linker

Version 1.65 Page 117 of

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR

INSTRUMENTS USER GUIDE
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
STD_LD FLAGS =-c-q -X
oo ccocccococcocoocoooSoooCooSCooCoooCooooCoCooCCoOSSooOSSooSSoooCooooooCcooccooooo
Flags for the |inker when building an executable
o coocococo-cccooccoocoooCoooCooOSSooCoooCCoooooCCoCCooCoooOSSooooooCooooooocooocso
EXE LD FLAGS 1=
#

TCONF
#
TCONF = $(BASE_TCONF) \ t conf

Standard flags for TCONF

STD TCF_FLAGS =

endif # ifndef OBAXXP_5_XX W NDOWS_MK

32.3 Text files generated during build process

Some text files are created as part of the build process in the
$DSPLINK/gpp/BIN/Linux/Davinci/[RELEASE|DEBUG] directory.

These can be classified into the following types:

COMPONENT_defines.txt states the —D defines needed during the build
process.

COMPONENT _includes.txt states the include directories needed during the
build process.

COMPONENT _flags.txt states the compiler flags needed during the build
process.

Where COMPONENT is API, GEN, LDRV, PMGR, OSAL, SAMPLES (LOOP, MESSAGE,
MPCSXFER, SCALE, RINGIO etc).

Out of these API is the component present in the user space whereas GEN, LDRV,
PMGR, OSAL is the components present in kernel space. These files provide the
include paths, definitions and compiler flags which are a guide for the build system in
the porting process.

For deciding the include paths, definitions and compiler flags for the application, a
good place to start is to look at the samples which are similar to the configuration
that the application is using. For e.g. if the configuration includes MSGQ, refer to the
include paths, definitions and compiler flags from MESSAGE_includes.txt,
MESSAGE_defines.txt, MESSAGE_flags.txt respectively. If configuration includes
RINGIO, refer to the include paths, definitions and compiler flags from
RINGIO_includes.txt, RINGIO_defines.txt, RINGIO_flags.txt respectively.

Version 1.65 Page 118 of

¢ DSP/BIOS™ LINK
TeExAs LNK 058 USR
INSTRUMENTS USER GUIDE

33 Scripts to load and unload dsplinkk.ko module in Linux based
targets

Scripts loaddsplink.sh and unloaddsplink.sh are provided under
$dsplink/etc/host/scripts/Linux to load and unload dsplinkk.ko module.

1. To load the dsplinkk.ko module run the following command
sh ./loaddsplink.sh
2. To unload the kernel module run the following command.

sh ./unloaddsplink.sh.

Version 1.65 Page 119 of

