

Template Version 1.2

Version 1.30 Page 1 of 148 Texas Instruments Proprietary Information

DESIGN DOCUMENT

DSP/BIOS™ LINK

MESSAGING COMPONENT

LNK 031 DES

Version 1.30

Author(s) Approval(s)

Mugdha Kamoolkar Sanjeev Premi

Page 2 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

This page has been intentionally left blank.

Page 3 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

This page has been intentionally left blank.

Page 5 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

TABLE OF CONTENTS

1 Introduction ... 8
1.1 Purpose & Scope ... 8
1.2 Terms & Abbreviations ... 8
1.3 References ... 8
1.4 Overview.. 8

2 Requirements ... 9

3 Assumptions... 9

4 Constraints ... 9

5 High Level Design... 11
5.1 Overview...11
5.2 DSP side ...13
5.3 GPP side..16

6 Sequence Diagrams.. 20
6.1 Initialization...20
6.2 Finalization ..22
6.3 MSGQ_open () ...24
6.4 MSGQ_close () ...25
6.5 MSGQ_locate ()..26
6.6 LDRV_MSGQ_locateAsync..27
6.7 MSGQ_release () ..28
6.8 MSGQ_alloc ()..29
6.9 MSGQ_free () ..30
6.10 MSGQ_put () ...31
6.11 MSGQ_get () ...32
6.12 MSGQ_setErrorHandler () ..33
6.13 MSGQ_count () ..34

7 API ... 35
7.1 Constants & Enumerations...35
7.2 Typedefs & Data Structures ...54
7.3 API Definition...65

8 PMGR.. 83
8.1 API Definition...83

9 LDRV MSGQ .. 100
9.1 Typedefs & Data Structures ...100
9.2 API Definition...113

Page 6 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

10 Internal Discussions... 133
10.1 Design Alternatives...133
10.2 Open Issues...138
10.3 DSP/BIOS™ Bridge compatibility ..139
10.4 Implementation notes ...141

7. History ... 147

Page 7 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

TABLE OF FIGURES

Figure 1. Messaging in DSPLINK. ...11
Figure 2. MSGQ and POOL component hierarchy ..13
Figure 3. DSP-side component interaction diagram ..14
Figure 4. GPP-side component interaction diagram...17
Figure 5. On the GPP: MSGQ initialization ...20
Figure 6. On the GPP: MSGQ_transportOpen () control flow21
Figure 7. On the GPP: MSGQ finalization ...22
Figure 8. On the GPP: MSGQ_transportClose () control flow23
Figure 9. On the GPP: MSGQ_open () control flow..24
Figure 10. On the GPP: MSGQ_close () control flow..25
Figure 11. On the GPP: MSGQ_locate () control flow ..26
Figure 12. On the GPP: MSGQ_locateAsync () control flow ..27
Figure 13. On the GPP: MSGQ_release () control flow ..28
Figure 14. On the GPP: MSGQ_alloc () control flow ..29
Figure 15. On the GPP: MSGQ_free () control flow ...30
Figure 16. On the GPP: MSGQ_put () control flow..31
Figure 17. On the GPP: MSGQ_get () control flow ..32
Figure 18. On the GPP: MSGQ_setErrorHandler () control flow33
Figure 19. On the GPP: MSGQ_count () control flow...34
Figure 20. MQT using SHM services from an SHM abstraction layer133
Figure 21. MQT using services provided by the IOM driver134
Figure 22. MQT using services provided by IOM driver using GIO API calls135
Figure 23. LDRV MSGQ directly using LDRV CHNL services......................................136
Figure 24. LDRV CHNL modified to separate out common functionality

between CHNL & MSGQ...137

Page 8 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

1 Introduction

1.1 Purpose & Scope
This document describes the design of messaging component for DSP/BIOS™ LINK.

The document is targeted at the development team of DSP/BIOS™ LINK.

1.2 Terms & Abbreviations
DSPLINK DSP/BIOS™ LINK

MSGQ Message Queue

Client Refers to a process/ thread/ task in an operating system

that uses DSP/BIOS™ LINK API.

It is used to ensure that description is free from the specifics

of ‘unit of execution’ for a particular OS.

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

1.3 References
1. LNK 012 DES DSP/BIOS™ LINK

Link Driver

Version 1.12, dated AUG 24, 2004

2. LNK 019 DES DSP/BIOS™ LINK

Shared Memory Processor Copy Link Driver

Version 1.11, dated NOV 05, 2004

3. LNK 041 DES DSP/BIOS™ LINK

Zero Copy Link Driver

Version 0.65, dated OCT 29, 2004

4. LNK 082 DES DSP/BIOS™ LINK

POOL

Version 0.01, dated AUG 26, 2004

1.4 Overview
DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit

that simplifies the development of embedded applications in which a general-purpose

microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK

provides control and communication paths between GPP OS threads and DSP/BIOS™

tasks, along with analysis instrumentation and tools.

The messaging component (MSGQ) provides logical connectivity between the GPP

clients and DSP tasks. Unlike the data transfer channels where the client is waiting

for data to arrive on a designated channel, the message transfer is completely

Page 9 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

asynchronous. The messages may be used to intimate occurrence of an error,

change in state of the system, a request based on user input, etc.

This document describes the various design alternatives to achieve the messaging

functionality between GPP and DSP using DSP/BIOS™ LINK. It also gives an

overview of the messaging component on the GPP and DSP-sides of DSPLINK and its

interaction with the other components within DSPLINK. The document also gives a

detailed design with sequence diagrams of the GPP-side MSGQ component. Detailed

designs of GPP and DSP-side Message Queue Transport (MQT) components for

different physical links can be found in the design document for the link drivers. For

example, for designs of the shared memory MQTs, please refer to the DSP/BIOS™

LINK Shared Memory Processor Copy Link Driver design [Ref. 6] and DSP/BIOS™

LINK Zero Copy Link Driver design [Ref. 7].

On the GPP side, implementation shall utilize the services of the native OS.

On the DSP side, the implementation shall utilize the services of MSGQ module of

DSP/BIOS.

2 Requirements
The basic requirements for the messaging component can be summarized as below:

R20 The messages shall be transferred at a higher priority than data channels

when only one HW medium is available.

R21 Messages of fixed length and variable length shall be supported.

R22 Messaging shall work transparently over varied links between GPP & DSP.

R23 DSP/BIOS™ LINK shall support messaging with the MSGQ module.

The messaging component shall also comply with the following additional

requirements:

1. The API exported by the messaging component shall be:

� Common across different GPP operating systems

� Similar to the API on DSP/BIOS

2. Message allocation must occur via the MSGQ component.

3. The API for sending messages must be deterministic and non-blocking.

3 Assumptions
� This document assumes that the reader is familiar with the design of the MSGQ

component of DSP/BIOS™ [Ref. 5].

� The contents of the messages shall not be interpreted within the DSP/BIOS™

LINK layer.

� The messages shall not be split & joined on either sending or receiving end. User

shall provide the maximum length of the message that can be transferred across

GPP & DSP.

4 Constraints
The design of the messaging component in DSPLINK is constrained by the following:

Page 10 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

� The DSP-side of the messaging component must match the interface of the

MSGQ module in DSP/BIOS™.

� The ARM-side of the messaging component must be as similar to the DSP-side as

possible. However, there may be some differences due to constraints imposed by

the ARM-side OSes.

The user constraints are:

� The total message size must be greater than the size of the fixed message

header. This includes the size of the complete user-defined message including the

required fixed message header.

� Multiple threads/processes must not receive messages on the same MSGQ. Only

a single thread/process owns the local MSGQ for receiving messages. However,

multiple threads/processes may send messages to the same message queue.

� The remote MQT uses the default pool for allocating control messages required

for communication with other processors. The number of control messages

required depends on the frequency of usage of APIs requiring control messages,

such as MSGQ_locate () . The user must be aware of this usage of the pool

resources by DSPLINK.

� The messages must have a fixed header as their first field. This header is used by

the messaging component for including information required for transferring the

message. The contents of the message header are reserved for use internally

within DSPLINK and should not directly be modified by the user.

� The messages must be allocated and freed through APIs provided as part of the

messaging component. Messages allocated through any other means (for

example: standard OS calls) cannot be transferred using the DSPLINK messaging

component.

� The message queue names must be unique over the complete system. This

includes message queues created across all processors in the system.

� The default pool provided to the remote MQT must be opened by the user before

any remote MSGQs are located, or the MQT is closed.

Page 11 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

5 High Level Design
The basic unit of messaging from a client’s perspective is a message queue. All the

messages are sent to a message queue existing on the same processor or a different

processor.

Each message queue shall be addressed through a unique name.

The messaging component can utilize any physical data links between GPP and DSP.

This can be configured through the static configuration system.

The message queues are unidirectional. They are created on the receiving side.

Senders locate the queue to which they wish to send messages. The queues may be

distributed across several processors. This distribution is transparent to the users.

5.1 Overview

Figure 1. Messaging in DSPLINK.

Message

Variable sized messages can be sent using the DSPLINK messaging component.

The message must contain the fixed message header as the first element. This

header is not modified by the user, and is used within DSPLINK for including

information required for transferring the message. APIs are provided for accessing

information in the header required by the user.

APIs provided by the messaging component are used for allocating and freeing the

messages. Different pools may be specified for allocation of the messages, based on

the requirement. Messages cannot be allocated on the stack or directly through the

standard OS allocation and free functions.

Referencing a message queue

GPP DSP

0 1 2 3 4 …
P
H
Y
S
I
C
A
L

L
I
N
K

n: Number of queues created on the GPP.
m: Number of queues created on the DSP.

0 1 2 3 4 …

1 1 2 3 4 … 1 1 2 3 4 …

2 1 2 3 4 … 2 1 2 3 4 …

n 1 2 3 4 … m 1 2 3 4 …

.

.

.

.

.

.

Page 12 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

On both the GPP and DSP sides, a unique name is used for identifying a MSGQ. This

name is unique over all processors in the system. When a message queue is opened

or located, a unique handle to the message queue is returned to the user. This

handle is used for all further accesses to the message queue. The unique message

queue handle is a 32-bit value composed of two 16-bit values representing the

processor ID and the message queue ID on the processor identified by the processor

ID.

For example:

A 32-bit message queue handle 0xAAAABBBB has the first 16-bits representing the
processor ID (0xAAAA) and the next 16-bits representing the ID of the message

queue on that processor (0xBBBB).

Initialization and finalization

Before using any of the messaging features, the user must initialize the MSGQ

component.

On the DSP-side, once the MSGQ and POOL components are enabled through the

DSP/BIOS™ static configuration, they get initialized as part of the DSP/BIOS™ boot-

up and initialization process. For this, the user must define and initialize the special

MSGQ_config and POOL_config structures within the application.

On the GPP-side, initialization of the MSGQ component involves initialization of the

individual transports and pools. When the messaging services are no longer required,

the user can finalize the individual transports and pools.

Creating and deleting a message queue

The message queue is created and deleted on the processor where the reader(s)

shall be.

Sending a message

To send a message to a message queue, the user must first locate the message

queue to ensure that the MSGQ exists on some processor in the system.

If the MSGQ location is successful, the user can send a message to it.

The API for sending the message is deterministic and non-blocking. However, the

actual transfer of the message may not complete immediately. Especially in the case

of remote MSGQs, the user must not assume that the message transfer over the

physical link is complete when the API returns.

Receiving a message

For receiving a message on a particular message queue, the user can specify a

timeout value to indicate the time for which the API must wait for the message to

arrive, in case it is not already available. With a timeout of zero, the API returns

immediately, and is non-blocking. If a message is available when the API is called, it

is returned immediately, otherwise an error is returned.

Replying to a message

While sending a message, the user can choose to specify a source MSGQ for

receiving reply messages. The receiver of the message may retrieve the source

MSGQ, and use it for replying to the received message. This feature may be used for

cases where an acknowledgement for reception of the message is desired.

Page 13 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

5.2 DSP side
The DSP-side of the DSPLINK messaging component is based on the MSGQ model in

DSP/BIOS™.

The MSGQ and POOL modules have a two-level architecture. The first level consists

of the MSGQ API and POOL interface. The second level consists of different

implementations of the Message Queue Transport (MQT) interface and POOL

interface.

Figure 2. MSGQ and POOL component hierarchy

For further details, please refer to the MSGQ documentation [Ref. 5].

The DSPLINK messaging component shall implement an MQT for communication with

the GPP. In addition, it shall also utilize a POOL for management of the message

buffers.

5.2.1 Component interaction

The component interaction diagram gives an overview of the interaction of the

various subcomponents involved in messaging. The component interaction shown is

with reference to an example Processor Copy (PCPY) MQT and POOL implementation

for the Shared Memory (SHM) link.

Note that the diagram does not show all the components for data transfer.

For details on the complete DSPLINK design, please refer to the DSP/BIOS™ LINK

architecture document [Ref. 3] and the DSP/BIOS™ LINK Link Driver Design [Ref. 4].

MSGQ API

Transports (MQTs)

POOL interface

POOLs

Page 14 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

Figure 3. DSP-side component interaction diagram

5.2.2 Overview

The implementation of data transfer and messaging features shall be through

completely different paths. Service common to both data transfer and messaging

shall be part of the DSPLINK generic component.

The DSP-side messaging component shall be implemented as a separate library,

utilizing the services of the generic DSPLINK component. In addition, the messaging

functionality shall conform to the MSGQ interface of DSP/BIOS™.

Scalability for CHNL and MSGQ shall be provided through compile-time flags, which

shall be set by the common configuration tool.

DSPLINK base
component

MSGQ
component

MSGQ

BUF
POOL

MQT interface

DSPLINK
messaging
component

PCPY MQT

SHM IPS

SHM Link
Driver Init

POOL
component

POOL

POOL
interface

DSP/BIOS™

DSP/BIOS™ LINK

Page 15 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

For more details on the DSPLINK driver design, please refer to the DSP/BIOS™ LINK

Link Driver Design [Ref. 4].

This design allows the flexibility of an optimized and high-performance

implementation of the MQT and data transfer protocol for a particular physical link.

In this case, the MQT shall not be completely independent of the physical link. The

implementation can however ensure that any common code between multiple MQTs

is separated for code size reduction.

Transfer of messages shall be given higher priority within the IOM driver.

5.2.3 Details

The design of the DSP-side messaging component is specific to each physical link.

This document gives an overview of the generic requirements to be met by any

implementation of the MQT and POOL for messaging within DSPLINK. Details of

specific MQT designs for physical links can be found in the design document for the

link drivers.

MQT

The MQT shall implement the transport protocol for communication with its

counterpart on the GPP.

The MQT must ensure the following:

� The MSGQs are independent of each other. No MSGQ shall be blocked due to an

unclaimed message for another MSGQ.

� Messages from different senders, intended for different MSGQs, are sent through

a common physical link to the DSP.

� The MQT function for sending a message is deterministic, and shall return

immediately. However, actual transfer of the message to the GPP may complete

later.

� Messages received from the GPP, intended for different MSGQs, are received

from the physical link and forwarded to the appropriate MSGQs on the DSP.

� Messages of varying sizes are appropriately handled, with minimum wastage of

memory.

POOL

The POOL must not allocate memory dynamically, since the functions for allocation

and freeing of memory may be called from an HWI or SWI context.

Page 16 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

5.3 GPP side
The GPP-side of the DSPLINK messaging component shall be parallel to the

corresponding design on the DSP-side. The messaging API shall be similar to the one

on the DSP-side, while incorporating restrictions imposed by the GPP-side OS.

The DSPLINK messaging component shall implement the MSGQ component, along

with the specific MQTs for communication with the DSP. It shall utilize the POOL

component as well as the specific POOLs required.

The messaging design shall be scalable to allow the users to scale out only the

messaging component, only the channel component, or both the messaging and

channel components.

5.3.1 Component interaction

The component interaction diagram gives an overview of the interaction of the

various sub-components involved in messaging. The component interaction shown is

with reference to an example Processor Copy (PCPY) MQT and POOL implementation

for the Shared Memory (SHM) link.

Note that the diagram does not show all the components for processor and DSP

control, as well as data transfer.

For details on the complete DSPLINK design, please refer to the DSP/BIOS™ LINK

architecture document [Ref. 3] and the DSP/BIOS™ LINK Link Driver Design [Ref. 4].

Page 17 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

Figure 4. GPP-side component interaction diagram

5.3.2 Overview

The GPP-side messaging component design is spread across the API, PMGR and

LDRV components.

An overview of the updates to each of these components is given below. These

updates are detailed in later sections.

DSP/BIOS™ LINK API

MSGQ

DRV

Processor Manager

MSGQ

DRV

Link Driver

MSGQ

POOL
interface

MQT interface

BUF POOL PCPY MQT

SHM IPS

POOL

POOL

Page 18 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

5.3.2.1 API

As part of the DSP/BIOS™ LINK API, additional APIs shall be provided to the user for

utilizing the messaging feature. This includes APIs for:

� Component initialization/finalization

� Message Queue creation/deletion

� Message allocation/freeing

� Message sending/receiving

� Message Queue location/release/getting the source message queue handle

5.3.2.2 PMGR

The PMGR component shall be enhanced to support the messaging feature. The

messaging sub-component within the PMGR component shall provide the counterpart

to the corresponding messaging APIs.

The messaging PMGR sub-component shall utilize the services provided by the

corresponding messaging sub-component within LDRV.

A scalability option shall allow the PMGR component to be scaled out of the DSPLINK

implementation when the MSGQ-only driver is required.

5.3.2.3 LDRV

The messaging design that is specific to the link driver is part of the LDRV

component.

This includes the following:

� Generic messaging protocol and local MSGQ management

� An implementation of an MQT (Message Queue Transport)

In addition, the following other DSPLINK components are utilized by the messaging

component and shall be implemented for the specific physical link between the

processors.

� Link-specific inter-processor signaling component (For example SHM IPS)

� POOL interface

� An implementation of a POOL

5.3.2.4 Others

The CFG sub-component shall be enhanced to include configuration information for

the MSGQ component. This includes configuration of the different MQTs in the

system.

5.3.3 Details

This document gives the detailed design of the MSGQ component.

The design of the POOL component is detailed in the DSP/BIOS™ LINK POOL design

[Ref. 8]. In addition, the design of the MQT and IPS is specific to each physical link.

Details of specific MQT designs for physical links can be found in the design

documents for the link drivers.

MSGQ

Page 19 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

The MSGQ component provides APIs for the various messaging actions similar to the

ones provided on the DSP-side by the DSP/BIOS™ MSGQ component. The GPP-side

MSGQ component spans the API, PMGR and LDRV layers. The API component

provides parameter validation and a drop down into the PMGR layer, which provides

the facility of ownership validation. The LDRV MSGQ layer contains the actual

implementation of the MSGQ features, and also includes the MQT interface, which

the specific MQT plugs into.

Configuration

The configuration shall contain dynamically configured information for the MSGQ

component.

The GPP object shall contain information about the maximum number of local

message queues in the system.

The configuration object shall contain information about the number of MQTs in the

system.

MQTs shall be configured within the dynamic configuration. The MQT object in the

configuration shall include all required information about the MQT, including

interface table, the MMU entry (if any required) configured in the CFG within the

MMU table referred to by the DSP that uses the MQT. In addition, there is provision

for optional MQT-specific arguments to be provided by the user.

The link driver object in the CFG shall specify the MQT to be used for messaging

communication with the DSP.

Page 20 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6 Sequence Diagrams
The following sequence diagrams show the control flow for a few of the important

functions to be implemented within the DSPLINK messaging component.

The design of the DSP-side messaging component is specific to each physical link.

This document does not give any sequence diagrams for the DSP-side MSGQ

component. The sequence diagrams for specific physical links can be found in the

design document for the link drivers.

This section gives the sequence diagrams for the GPP-side MSGQ component and its

interaction with the MQT and POOL components.

6.1 Initialization

6.1.1 MSGQ

Figure 5. On the GPP: MSGQ initialization

LDRV_MSGQ
MQT PMGR

API

1. PROC_setup ()
 Owner

6. For all transports:
 Extract MQT info
 from the
 LDRV object

2. PMGR_PROC_setup ()

4. LDRV_MSGQ_setup ()

 7. initialize ()

 8. Initialize the
 MQT

3. PMGR_MSGQ_setup ()

5. Initialize the
 MSGQ state
 object

Page 21 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.1.2 Transport Open

Figure 6. On the GPP: MSGQ_transportOpen () control flow

LDRV_MSGQ

PMGR_MSGQ

API

1. MSGQ_transportOpen ()

2. PMGR_MSGQ_transportOpen ()

3. LDRV_MSGQ_transportOpen ()

4. Get the transport
 interface table

MQT

5. open ()

6. Open the transport

Page 22 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.2 Finalization

6.2.1 MSGQ

Figure 7. On the GPP: MSGQ finalization

LDRV_MSGQ
MQT PMGR

API

1. PROC_destroy ()
 Owner

6. For all transports:
 Get the MQT
 interface table

2. PMGR_PROC_destroy ()

4. LDRV_MSGQ_destroy ()

 7. finalize ()

 8. Finalize the
 MQT

3. PMGR_MSGQ_destroy ()

5. Free memory for
 any open message
 queues

Page 23 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.2.2 Transport Close

Figure 8. On the GPP: MSGQ_transportClose () control flow

LDRV_MSGQ

PMGR_MSGQ

API

1. MSGQ_transportClose ()

2. PMGR_MSGQ_transportClose ()

3. LDRV_MSGQ_transportClose ()

4. Get the transport
 interface table

MQT

5. close ()

6. Close the transport

Page 24 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.3 MSGQ_open ()

Figure 9. On the GPP: MSGQ_open () control flow

LDRV_MSGQ

6. Initialize the MSGQ
 object

4. Search the local MSGQ
 array to find a free slot

5. If free slot found,
 allocate the MSGQ
 object, else
 return error

PMGR_MSGQ

2. PMGR_MSGQ_open ()

MSGQ API

1. MSGQ_open ()

3. LDRV_MSGQ_open ()

Page 25 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.4 MSGQ_close ()

Figure 10. On the GPP: MSGQ_close () control flow

LDRV_MSGQ

4. Clear out any received
 messages that were not
 taken by the user.

5. Finalize the MSGQ
 object

PMGR_MSGQ

2. PMGR_MSGQ_close ()

MSGQ API

1. MSGQ_close ()

3. LDRV_MSGQ_close ()

Page 26 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.5 MSGQ_locate ()

Figure 11. On the GPP: MSGQ_locate () control flow

LDRV_MSGQ
MQT

3. LDRV_MSGQ_locate ()

4. Search for the MSGQ
 by name in the
 list of local
 MSGQs.

PMGR_MSGQ

2. PMGR_MSGQ_locate ()

MSGQ API

1. MSGQ_locate ()

5. If not found locally,
 call locate ()
 for each MQT till
 found

7. Return MSGQ handle
 if found, else return
 failure.

6. Search for the
 MSGQ on the
 remote
 processor connected
 by this MQT.

8. Return MSGQ handle
 if found, else return
 failure.

Page 27 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.6 LDRV_MSGQ_locateAsync

Figure 12. On the GPP: MSGQ_locateAsync () control flow

LDRV_MSGQ
MQT

3. LDRV_MSGQ_locateAsync ()

4. Search for the MSGQ
 by name in the
 list of local
 MSGQs.

PMGR_MSGQ

2. PMGR_MSGQ_locateAsync ()

MSGQ API

1. MSGQ_locateAsync ()

6. If not found locally,
 call locate ()
 for each MQT.

7. Send an async locate
 request to the
 remote
 processor connected
 by this MQT.

5. If found, allocate and
 send async
 locate msg to
 reply MSGQ specified
 by the user.

 If found, allocate
 and send
 async locate
 msg to reply MSGQ
 specified by the user

8. Return status of
 async locate request
 initiation

 9. Return status of
 async locate request
 initiation

Page 28 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.7 MSGQ_release ()

Figure 13. On the GPP: MSGQ_release () control flow

LDRV_MSGQ
MQT

3. LDRV_MSGQ_release ()

4. Get the processor
 ID from the
 MSGQ handle.

PMGR_MSGQ

2. PMGR_MSGQ_release ()

MSGQ API

1. MSGQ_release ()

5. If not local procId,
 call release ()
 for the MQT
 connected to the
 remote processor

6. Release the MSGQ
 specified by
 the MSGQ
 handle.

Page 29 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.8 MSGQ_alloc ()

Figure 14. On the GPP: MSGQ_alloc () control flow

LDRV_MSGQ
LDRV_POOL

3. LDRV_MSGQ_alloc ()

5. Get the pool
 object for
 specified
 pool ID.

PMGR_MSGQ

2. PMGR_MSGQ_alloc ()

MSGQ API

1. MSGQ_alloc ()

6. Call alloc () for
 the pool instance
 represented by
 the pool object.

7. Allocate a
 buffer
 of the
 specified size.

<>_POOL (e.g. BUF_POOL)

4. LDRV_POOL_alloc ()

8. Return ptr to
 allocated buffer
 on success or
 NULL on failure..

Page 30 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.9 MSGQ_free ()

Figure 15. On the GPP: MSGQ_free () control flow

LDRV_MSGQ
LDRV_POOL

3. LDRV_MSGQ_free ()

5. Get the pool
 object for
 pool ID
 in the msg header.

PMGR_MSGQ

2. PMGR_MSGQ_free ()

MSGQ API

1. MSGQ_free ()

6. Call free () for
 the pool with
 size in the msg
 header.

7. Free the
 given
 buffer.

<>_POOL (e.g. BUF_POOL)

4. LDRV_POOL_free ()

Page 31 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.10 MSGQ_put ()

Figure 16. On the GPP: MSGQ_put () control flow

LDRV_MSGQ
MQT

3. LDRV_MSGQ_put ()

4. Check if the dest.
 MSGQ is local.
 If local, queue
 the msg on local MSGQ
 and signal its
 semaphore

PMGR_MSGQ

2. PMGR_MSGQ_put ()

MSGQ API

1. MSGQ_put ()

5. If not local, call
 put () for the MQT
 for the MQT
 connecting the dest.
 processor.

6. Send the msg to the
 MSGQ on the
 remote
 processor connected
 by this MQT.

Page 32 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.11 MSGQ_get ()

Figure 17. On the GPP: MSGQ_get () control flow

LDRV_MSGQ

3. LDRV_MSGQ_get ()

PMGR_MSGQ

2. PMGR_MSGQ_get ()

MSGQ API

1. MSGQ_get ()

4. Get the MSGQ object for
 the specified MSGQ
 handle.

6. If msg is not available,
 wait on the semaphore.
 If wait is successful,
 go back to step 5.

5. Try to get a message
 from the queue on the
 local MSGQ.

7. Return msg on
 success or NULL
 on failure.

Page 33 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.12 MSGQ_setErrorHandler ()

Figure 18. On the GPP: MSGQ_setErrorHandler () control flow

LDRV_MSGQ

3. LDRV_MSGQ_setErrorHandler ()

PMGR_MSGQ

2. PMGR_MSGQ_setErrorHandler ()

MSGQ API

1. MSGQ_setErrorHandler ()

4. Set the error queue and
 pool ID for allocation of
 async error msg
 in the global MSGQ
 state object.

Page 34 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

6.13 MSGQ_count ()

Figure 19. On the GPP: MSGQ_count () control flow

LDRV_MSGQ

3. LDRV_MSGQ_count ()

PMGR_MSGQ

2. PMGR_MSGQ_count ()

MSGQ API

1. MSGQ_count ()

4. Traverse the Message
 Queue list and get the
 count of messages
 in the queue.

Page 35 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7 API

7.1 Constants & Enumerations

7.1.1 MSGQ_INVALIDMSGQ

This constant denotes an invalid message queue.

Definition
#define MSGQ_INVALIDMSGQ (Uint16) 0xFFFF

Comments

None.

Constraints

None.

See Also
None.

Page 36 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.2 MSGQ_INVALIDPROCID

This constant denotes an invalid processor ID.

Definition
#define MSGQ_INVALIDPROCID (Uint16) 0xFFFF

Comments

None.

Constraints

None.

See Also
None.

Page 37 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.3 MSGQ_INTERNALIDSSTART

This constant defines the start of internal MSGQ message ID range.

Definition
#define MSGQ_INTERNALIDSSTART (Uint16) 0xFF00

Comments

None.

Constraints

None.

See Also
None.

Page 38 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.4 MSGQ_ASYNCLOCATEMSGID

This constant defines the asynchronous locate message ID.

Definition
#define MSGQ_ASYNCLOCATEMSGID (Uint16) 0xFF00

Comments

None.

Constraints

None.

See Also
None.

Page 39 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.5 MSGQ_ASYNCERRORMSGID

This constant defines the asynchronous error message ID.

Definition
#define MSGQ_ASYNCERRORMSGID (Uint16) 0xFF01

Comments

None.

Constraints

None.

See Also
None.

Page 40 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.6 MSGQ_INTERNALIDSEND

This constant defines the end of internal MSGQ message ID range.

Definition
#define MSGQ_INTERNALIDSEND (Uint16) 0xFF7f

Comments

None.

Constraints

None.

See Also
None.

Page 41 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.7 MSGQ_MQTMSGIDSSTART

This constant defines the start of transport message ID range.

Definition
#define MSGQ_MQTMSGIDSSTART (Uint16) 0xFF80

Comments

None.

Constraints

None.

See Also
None.

Page 42 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.8 MSGQ_MQTMSGIDSEND

This constant defines the end of transport message ID range.

Definition
#define MSGQ_MQTMSGIDSEND (Uint16) 0xFFFE

Comments

None.

Constraints

None.

See Also
None.

Page 43 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.9 MSGQ_INVALIDMSGID

This constant is used to denote no message ID value.

Definition
#define MSGQ_INVALIDMSGID (Uint16) 0xFFFF

Comments

None.

Constraints

None.

See Also
None.

Page 44 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.10 MSGQ_MQTERROREXIT

In an asynchronous error message, this value as the error type indicates that remote

MQT has called exit.

Definition
#define MSGQ_MQTERROREXIT (MSGQ_MqtError) -1

Comments

None.

Constraints

None.

See Also
None.

Page 45 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.11 MSGQ_MQTFAILEDPUT

In an asynchronous error message, this value as the error type indicates that the

transport failed to send a message to the remote processor.

Definition
#define MSGQ_MQTFAILEDPUT (MSGQ_MqtError) -2

Comments

None.

Constraints

None.

See Also
None.

Page 46 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.12 MSG_HEADER_RESERVED_SIZE

This macro defines the size of the reserved field of message header.

Definition
#define MSG_HEADER_RESERVED_SIZE 2

Comments

None.

Constraints

None.

See Also
MSGQ_MsgHeader

Page 47 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.13 IS_VALID_MSGQ

This macro checks if a message queue is valid.

Definition
#define IS_VALID_MSGQ(msgq) (msgq != MSGQ_IN VALIDMSGQ)

Comments

None.

Constraints

None.

See Also
MSGQ_Queue

Page 48 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.14 MSGQ_getMsgId

This macro returns the message ID of the specified message.

Definition
#define MSGQ_getMsgId(msg) (((MSGQ_Msg) (msg))->msg Id)

Comments

The contents of the message header are reserved for use internally within DSPLINK

and should not directly be modified by the user. For this purpose, macros or

functions are provided to access fields within the message header.

Constraints

None.

See Also
MSGQ_MsgHeader

Page 49 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.15 MSGQ_getMsgSize

This macro returns the size of the specified message.

Definition
#define MSGQ_getMsgSize(msg) (((MSGQ_Msg) (msg))->s ize)

Comments

The contents of the message header are reserved for use internally within DSPLINK

and should not directly be modified by the user. For this purpose, macros or

functions are provided to access fields within the message header.

Constraints

None.

See Also
MSGQ_MsgHeader

Page 50 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.16 MSGQ_setMsgId

This macro sets the message ID in the specified message.

Definition
#define MSGQ_setMsgId(msg, id) ((MSGQ_Msg) (msg))-> msgId = id

Comments

The contents of the message header are reserved for use internally within DSPLINK

and should not directly be modified by the user. For this purpose, macros or

functions are provided to access fields within the message header.

Constraints

None.

See Also
MSGQ_MsgHeader

Page 51 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.17 MSGQ_getDstQueue

This macro returns the MSGQ_Queue handle of the destination message queue for

the specified message.

Definition
#define MSGQ_getDstQueue(msg) ((Uint32) ID_GPP << 1 6) | \
 ((MSGQ_Msg) (msg))-> dstId

Comments

The contents of the message header are reserved for use internally within DSPLINK

and should not directly be modified by the user. For this purpose, macros or

functions are provided to access fields within the message header.

Constraints

None.

See Also
MSGQ_MsgHeader

Page 52 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.18 MSGQ_setSrcQueue

This macro sets the source message queue in the specified message.

Definition
#define MSGQ_setSrcQueue(msg, msgq) \
 ((MSGQ_Msg) (msg))->srcId = (MSGQ_Id) msgq ; \
 ((MSGQ_Msg) (msg))->srcPro cId = msgq >> 16

Comments

The contents of the message header are reserved for use internally within DSPLINK

and should not directly be modified by the user. For this purpose, macros or

functions are provided to access fields within the message header.

Constraints

None.

See Also
MSGQ_MsgHeader

Page 53 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.1.19 MSGQ_isLocalQueue

This macro checks whether the specified queue is a local queue.

Definition
#define MSGQ_isLocalQueue(msgq) ((msgq >> 16) == ID _GPP)

Comments

The message queue handle is a value composed of the processor ID and message

queue ID. This macro identifies whether the message queue represented by the

specified handle exists on the local processor.

Constraints

None.

See Also
MSGQ_Queue

Page 54 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.2 Typedefs & Data Structures

7.2.1 MSGQ_MqtError

This type is used for identifying types of MQT asynchronous error messages.

Definition
typedef Int16 MSGQ_MqtError ;

Comments

None.

Constraints

None.

See Also
MSGQ_AsyncErrorMsg
LDRV_MSGQ_sendErrorMsg ()

Page 55 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.2.2 MSGQ_Id

This type is used for identifying a message queue on a specific processor.

Definition
typedef Uint16 MSGQ_Id ;

Comments

None.

Constraints

None.

See Also
MSGQ_Queue

Page 56 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.2.3 MSGQ_Queue

This type is used for identifying a message queue across processors.

Definition
typedef Uint32 MSGQ_Queue ;

Comments

A MSGQ_Queue handle is a system-wide unique handle to the message queue,

consisting of both the processor ID on which the message exists, and the message

queue ID on the specific processor.

Constraints

None.

See Also
MSGQ_Id
ProcessorId

Page 57 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.2.4 MSGQ_Attrs

This structure defines the attributes required during opening of the MSGQ.

Definition
typedef struct MSGQ_Attrs_tag {
 Uint16 dummy ;
} MSGQ_Attrs ;

Fields

dummy Dummy placeholder field.

Comments

This structure defines the attributes structure for MSGQ_open () and is provided for

extensibility. No attributes are required currently, and the structure consists of a

dummy placeholder field.

Constraints

None.

See Also
MSGQ_open ()

Page 58 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.2.5 MSGQ_LocateAttrs

This structure defines the attributes required during synchronous location of a MSGQ.

Definition
typedef struct MSGQ_LocateAttrs_tag {
 Uint32 timeout ;
} MSGQ_LocateAttrs ;

Fields

timeout Timeout value in milliseconds for the locate call.

Comments

This structure defines the attributes structure for MSGQ_locate () .

Constraints

None.

See Also
MSGQ_locate ()

Page 59 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.2.6 MSGQ_LocateAsyncAttrs

This structure defines the attributes required during asynchronous location of a

MSGQ.

Definition
typedef struct MSGQ_LocateAsyncAttrs_tag {
 PoolId poolId ;
 Pvoid arg ;
} MSGQ_LocateAsyncAttrs ;

Fields

poolId ID of the pool to be used for allocating asynchronous locate

messages.

arg User-defined argument returned with an asynchronous locate
message.

Comments

This structure defines the attributes structure for MSGQ_locateAsync () .

Constraints

None.

See Also
MSGQ_locateAsync ()

Page 60 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.2.7 MSGQ_MsgHeader

This structure defines the format of the message header that must be the first field

of any message.

Definition
typedef struct MSGQ_MsgHeader_tag {
 Uint32 reserved [MSG_HEADER_RESERVED_SIZE] ;
 Uint16 srcProcId ;
 Uint16 poolId ;
 Uint16 size ;
 Uint16 dstId ;
 Uint16 srcId ;
 Uint16 msgId ;
} MSGQ_MsgHeader ;

typedef MSGQ_MsgHeader * MSGQ_Msg ;

Fields

reserved Reserved for use by the MQT. The MQT typically uses them as

a link for queuing the messages.

srcProcId Processor ID for the source message queue

poolId ID of the Pool used for allocating this message.

size Size of the message including the header.

dstId ID of the destination message queue.

srcId ID of the source message queue for reply.

msgId User-specified message ID.

Comments

The message header must be the first field in the message structure defined by the

user. The contents of the message header are reserved for use internally within

DSPLINK and should not be modified directly by the user.

Constraints

None.

See Also
None

Page 61 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.2.8 MSGQ_AsyncLocateMsg

This structure defines the asynchronous locate message format.

Definition
typedef struct MSGQ_AsyncLocateMsg_tag {
 MSGQ_MsgHeader header ;
 MSGQ_Queue msgqQueue ;
 Pvoid arg ;
} MSGQ_AsyncLocateMsg ;

Fields

header Fixed message header required for all messages.

msgqQueue Reply message queue specified during MSGQ_locateAsync ()

arg User-defined argument specified as part of the
MSGQ_LocateAsyncAttrs

Comments

When an asynchronous location completes with success, the handle of the located

message queue is sent to the user application through a message of this type.

Constraints

None.

See Also
MSGQ_LocateAsyncAttrs
MSGQ_locateAsync ()

Page 62 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.2.9 MSGQ_AsyncErrorMsg

This structure defines the asynchronous error message format.

Definition
typedef struct MSGQ_AsyncErrorMsg_tag {
 MSGQ_MsgHeader header ;
 MSGQ_MqtError errorType ;
 Pvoid arg1 ;
 Pvoid arg2 ;
} MSGQ_AsyncErrorMsg ;

Fields

header Fixed message header required for all messages.

errorType Type of error.

arg1 First argument dependent on the error type.

MSGQ_MQTERROREXIT: Processor ID of the transport.

MSGQ_MQTFAILEDPUT: Handle of the destination message

queue on which the put failed.

arg2 Second argument dependent on the error type.

MSGQ_MQTERROREXIT: Not used.

MSGQ_MQTFAILEDPUT: Status of the MSGQ_put () call that

failed.

Comments

The asynchronous error message is sent by the transport to a message queue

registered by the user, on occurrence of an error.

The user can register an error handler MSGQ for receiving asynchronous error

messages indicating transport errors. The error message is of a predefined format.

The first field after the required message header of the MSGQ_AsyncErrorMsg

asynchronous error message indicates the error type. The argument fields in the

error message hold different values for each error type.

Constraints

The asynchronous error message is sent by the transport only if the user has

registered an error-handler message queue with the MSGQ component.

See Also
MSGQ_MqtError
MSGQ_setErrorHandler ()

Page 63 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.2.10 MSGQ_Instrument

This structure defines the instrumentation data for a message queue.

Definition
#if defined (DDSP_PROFILE)
typedef struct MSGQ_Instrument_tag {
 MSGQ_Queue msgqQueue ;
 Uint32 transferred ;
 Uint32 queued ;
} MSGQ_Instrument ;
#endif /* if defined (DDSP_PROFILE) */

Fields

msgqQueue Message queue handle. If MSGQ_INVALIDMSGQ, indicates that
the message queue has not been opened.

transferred Number of messages transferred on this MSGQ.

queued Number of messages currently queued on this MSGQ,

pending calls to get them.

Comments

This structure is available to the user applications through the profiling feature.

Constraints

This structure is defined only if profiling is enabled within DSPLINK.

See Also
MSGQ_instrument ()

Page 64 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.2.11 MSGQ_Stats

This structure defines the instrumentation data for MSGQs on the local processor.

Definition
#if defined (DDSP_PROFILE)
typedef struct MSGQ_Stats_tag {
 MSGQ_Instrument msgqData [MAX_MSGQS] ;
} MSGQ_Stats ;
#endif /* if defined (DDSP_PROFILE) */

Fields

msgqData Instrumentation data for the local MSGQs.

Comments

This structure is available to the user applications through the profiling feature.

Constraints

This structure is defined only if profiling is enabled within DSPLINK.

See Also
MSGQ_Instrument
MSGQ_instrument ()

Page 65 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3 API Definition

7.3.1 MSGQ_transportOpen

This function initializes the transport associated with the specified processor.

Syntax
DSP_STATUS MSGQ_transportOpen (ProcessorId procId,
 Pvoid attrs) ;

Arguments

IN ProcessorId procId

ID of the Processor for which the transport is to be opened.

IN Pvoid attrs

Attributes for initialization of the transport. The structure of the

expected attributes is specific to a transport.

Return Value

DSP_SOK The MQT component has been successfully opened.

DSP_SALREADYOPENED The MSGQ transport for the specified processor has

already been opened.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EINVALIDARG Invalid argument.

DSP_EACCESSDENIED Transport already open.

DSP_ECONFIG Operation failed due to a configuration error. There is

a mismatch between number of transports configured

in the DSPLink configuration file and those provided by
DSPLink.

DSP_EFAIL General failure.

Comments

The transport corresponding to the processor ID specified in the call should be

configured in the CFG.

When any client wishes to use messaging with a specific DSP, it needs to open the

MSGQ transport for the DSP by calling this API specifying the required DSP ID.

This API carries out all initialization required to be able to use messaging with the

specified DSP ID from the calling process. This API can be successfully called once by

every process in the system after calling PROC_attach () . However, it is not

necessary that each process must call the API if another process has already

previously opened the transport.

If this API is called more than once in a single process (even if called by different

threads within the process), the subsequent calls return an error.

Page 66 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

Constraints

The configuration of the MQTs is done as part of the CFG. This includes configuration

of the fixed attributes specific to each MQT. This configuration also defines the IDs of

the MQTs. These IDs must be used while deciding the attributes required by each

MQT.

See Also
MSGQ_transportClose ()

Page 67 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.2 MSGQ_transportClose

This function finalizes the transport associated with the specified processor.

Syntax
DSP_STATUS MSGQ_transportClose (ProcessorId procId) ;

Arguments

IN ProcessorId procId

ID of the Processor for which the transport is to be closed.

Return Value

DSP_SOK The MQT component has been successfully closed.

DSP_SCLOSED The final process has closed the MSGQ transport.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EINVALIDARG Invalid argument.

DSP_EOPENED The MSGQ transport was not opened.

DSP_EACCESSDENIED The MSGQ transport was not opened in this process.

DSP_EFAIL General failure.

Comments

All applications/processes can call this API once they no longer need to use DSPLINK

messaging for sending/receiving messages to/from the specific processor. Once this

API has been called, the process cannot perform any further messaging activities

specific to the DSP.

This API finalizes the DSPLINK Message Queue Transport for the specified processor

ID in the calling process. This API can be successfully called once by every process in

the system. However, if the MSGQ_transportOpen () API for the specific processor

ID was not called in the process, MSGQ_transportClose () must not be called.

If this API is called more than once in a single process (even if called by different

threads within the process), the subsequent calls return an error.

Constraints

None.

See Also
MSGQ_transportOpen ()

Page 68 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.3 MSGQ_open

This function opens the message queue to be used for receiving messages, identified

through the specified message queue name.

Syntax
DSP_STATUS MSGQ_open (Pstr queueName,
 MSGQ_Queue * msgqQueue,
 MSGQ_Attrs * attrs) ;

Arguments

IN Pstr queueName

Name of the message queue to be opened.

OUT MSGQ_Queue * msgqQueue

Location to store the handle to the message queue.

IN OPT MSGQ_Attrs * attrs

Optional attributes for creation of the MSGQ.

 Return Value

DSP_SOK The message queue has been successfully opened.

DSP_EINVALIDARG Invalid argument.

DSP_ENOTFOUND Attempt to open more than number of message

queues configured.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EALREADYEXISTS Operation failed because message queue of same

name already exists.

DSP_EFAIL General failure.

Comments

This API is called only for receiver message queues. To send a message to any

MSGQ, its existence is verified through an MSGQ_locate () call, following which

messages can be sent to it.

The attributes parameter is provided for future extensibility and can be passed as

NULL.

Constraints

None.

See Also
MSGQ_Queue
MSGQ_Attrs
MSGQ_close ()
MSGQ_locate ()

Page 69 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.4 MSGQ_close

This function closes the message queue identified by the specified MSGQ handle.

Syntax
DSP_STATUS MSGQ_close (MSGQ_Queue msgqQueue) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the message queue to be closed.

Return Value

DSP_SOK The message queue has been successfully closed.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This API is called only for receiver message queues.

Constraints

None.

See Also
MSGQ_Queue
MSGQ_open ()

Page 70 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.5 MSGQ_locate

This function synchronously locates the message queue identified by the specified

MSGQ name and returns a handle to the located message queue.

Syntax
DSP_STATUS MSGQ_locate (Pstr queueName ,
 MSGQ_Queue * msgqQueu e,
 MSGQ_LocateAttrs * attrs) ;

Arguments

IN Pstr queueName

Name of the message queue to be located.

OUT MSGQ_Queue * msgqQueue

Location to store the handle to the located message queue.

IN OPT MSGQ_LocateAttrs * attrs

Optional attributes for location of the MSGQ.

Return Value

DSP_SOK The message queue has been successfully located.

DSP_EINVALIDARG Invalid argument.

DSP_ENOTFOUND The specified message queue could not be located.

DSP_ETIMEOUT Timeout occurred while locating the MSGQ.

DSP_ENOTCOMPLETE Operation not complete when WAIT_NONE was
specified as timeout.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This API is called to get a handle to a message queue that may exist on any

processor in the system. The message queue handle obtained after successful

completion of this API can be used for sending a message to the located MSGQ

Constraints

The default pool specified by the user for internal use by an MQT must be configured

before this API can be called for that MQT.

It may happen that the MSGQ exists when the MSGQ_locate () call is made, but is

deleted shortly after. In that case, it cannot be ensured that an MSGQ_put () call

successfully transfers the message to the destination MSGQ.

See Also
MSGQ_Queue

Page 71 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

MSGQ_LocateAttrs
MSGQ_put ()
MSGQ_release ()

Page 72 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.6 MSGQ_locateAsync

This function asynchronously locates the message queue identified by the specified

MSGQ name. An attempt is made to asynchronously locate the message queue. If

the message queue is found, an MSGQ_AsyncLocateMsg message is sent to the

specified reply message queue.

Syntax
DSP_STATUS MSGQ_locateAsync (Pstr queueName,
 MSGQ_Queue replyQueue,
 MSGQ_LocateAsyncAttrs * attrs) ;

Arguments

IN Pstr queueName

Name of the message queue to be located.

IN MSGQ_Queue replyQueue

Location to store the handle to the located message queue.

IN MSGQ_LocateAsyncAttrs * attrs

Attributes for asynchronous location of the MSGQ.

Return Value

DSP_SOK Operation successfully completed.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This API is called to get a handle to a message queue that may exist on any

processor in the system. Before sending a message to the remote MSGQ, a handle to

the message queue must be obtained by calling this API, and then waiting for a

response MSGQ_AsyncLocateMsg message on the reply message queue passed to the

function.

Constraints

The default pool specified by the user for internal use by an MQT must be configured

before this API can be called for that MQT.

See Also
MSGQ_Queue
MSGQ_LocateAsyncAttrs
MSGQ_put ()
MSGQ_release ()

Page 73 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.7 MSGQ_release

This function releases the message queue identified by the MSGQ handle that was

located earlier.

Syntax
DSP_STATUS MSGQ_release (MSGQ_Queue msgqQueue) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the message queue to be released.

Return Value

DSP_SOK The message queue has been successfully released.

DSP_EINVALIDARG Invalid argument.

DSP_ENOTFOUND The message queue has not been previously located.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This API is the counterpart to the MSGQ_locate () and MSGQ_locateAsync () APIs.

It releases any resources allocated during the locate APIs. Once the MSGQ has been

released, it needs to be located once again before sending a message to it.

The application can also use this API for carrying out the cleanup required after a

remote MSGQ has been deleted.

Constraints

None.

See Also
MSGQ_Queue
MSGQ_locate ()
MSGQ_locateAsync ()

Page 74 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.8 MSGQ_alloc

This function allocates a message, and returns the pointer to the user.

Syntax
DSP_STATUS MSGQ_alloc (PoolId poolId, Uint16 size, MSGQ_Msg * msg) ;

Arguments

IN PoolId poolId

ID of the Pool to be used for allocating this message.

IN Uint16 size

Size of the message to be allocated.

OUT MSGQ_Msg * msg

Location to receive the allocated message.

 Return Value

DSP_SOK The message has been successfully allocated.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This API allocates a message that shall be used during MSGQ_put () API calls.

Constraints

Once this message has been transferred through MSGQ_put () , the receiver owns it.

Following this, the sender must not attempt to free this message.

See Also
MSGQ_MsgHeader
MSGQ_put ()

Page 75 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.9 MSGQ_free

This function frees a message.

Syntax
DSP_STATUS MSGQ_free (MSGQ_Msg msg) ;

Arguments

IN MSGQ_Msg msg

Pointer to the message to be freed.

Return Value

DSP_SOK The message has been successfully freed.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This API frees a message that was received through an MSGQ_get () call or

MSGQ_alloc () call. Once this message has been received through MSGQ_get () ,

the receiver owns it, and can free it if so desired. The message can also be reused

for sending it to a MSGQ, as long as it fits within the existing message size.

Constraints

None.

See Also
MSGQ_MsgHeader
MSGQ_get ()

Page 76 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.10 MSGQ_put

This function sends a message to the specified MSGQ.

Syntax
DSP_STATUS MSGQ_put (MSGQ_Queue msgqQueue, MSGQ_Msg msg) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the destination MSGQ.

IN MSGQ_Msg msg

Pointer to the message to be sent to the destination MSGQ.

Return Value

DSP_SOK The message has been successfully sent.

DSP_EINVALIDARG Invalid argument.

DSP_ENOTFOUND Invalid message queue

DSP_EFAIL General failure.

Comments

This function must be non-blocking and deterministic.

Constraints

The successful completion of this API does not guarantee completion of actual

transfer over the physical link.

See Also
MSGQ_Queue
MSGQ_MsgHeader
MSGQ_get ()

Page 77 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.11 MSGQ_get

This function receives a message on the specified MSGQ.

Syntax
DSP_STATUS MSGQ_get (MSGQ_Queue msgqQueue,
 Uint32 timeout,
 MSGQ_Msg * msg) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the MSGQ on which the message is to be received.

IN timeout timeout

Timeout value to wait for the message (in milliseconds).

OUT MSGQ_Msg * msg

Location to receive the message.

Return Value

DSP_SOK The message has been successfully received.

DSP_EINVALIDARG Invalid argument.

DSP_ETIMEOUT Timeout occurred while receiving the message.

DSP_ENOTCOMPLETE Operation not complete when WAIT_NONE was

specified as timeout.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

A timeout of zero can be specified if this API is desired to be non-blocking. In that

case, a message is taken from the MSGQ if it is already available. Otherwise, an

error is returned.

After the message has been received, it is owned by the receiver application, and

can be freed by the application whenever so desired, or reused.

Constraints

None.

See Also
MSGQ_Queue
MSGQ_MsgHeader
MSGQ_put ()

Page 78 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.12 MSGQ_getSrcQueue

This function returns a handle to the source message queue of a message to be used

for replying to the message.

Syntax
DSP_STATUS MSGQ_getSrcQueue (MSGQ_Msg msg, MSGQ_Queue * msgqQueue) ;

Arguments

IN MSGQ_Msg msg

Message, whose source MSGQ handle is to be returned.

OUT MSGQ_Queue * msgqQueue

Location to retrieve the handle to the source MSGQ.

Return Value

DSP_SOK The reply information has been successfully retrieved.

DSP_EINVALIDARG Invalid argument.

DSP_ENOTFOUND Source information has not been provided by the

sender.

DSP_EFAIL General failure.

Comments

This API is used for extracting information required for sending a reply message back

to the application that had sent the message. If an application expects a reply

message, it must specify the handle to the MSGQ of a local MSGQ for receiving the

reply message from the remote processor.

After getting the reply MSGQ handle, the user can send a reply message using

MSGQ_put () .

Constraints

A reply message cannot be sent back if the source application has not specified the

source MSGQ handle.

See Also
MSGQ_Queue
MSGQ_MsgHeader

Page 79 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.13 MSGQ_count

This API returns the count of the number of messages in a local message queue.

Syntax
DSP_STATUS MSGQ_count (MSGQ_Queue msgqQueue, Uint16 * count) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the MSGQ for which the count is to be retrieved.

OUT Uint16 * count

Location to receive the message count.

Return Value

DSP_SOK The count has been successfully retrieved.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL General failure.

Comments

This API is used to retrieve the count of the number of messages currently queued

up within a local message queue.

Constraints

This API is not thread-safe, and must be called only by the reader of the message

queue.

See Also
MSGQ_Queue

Page 80 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.14 MSGQ_setErrorHandler

This API allows the user to designate a MSGQ as an error-handler MSGQ to receive

asynchronous error messages from the transports.

Syntax
DSP_STATUS MSGQ_setErrorHandler (MSGQ_Queue errorQu eue, PoolId poolId)
;

Arguments

IN MSGQ_Queue errorQueue

Handle to the message queue to receive the error messages.

IN PoolId poolId

ID indicating the pool to be used for allocating the error messages.

Return Value

DSP_SOK The error handler has been successfully set.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL General failure.

Comments

The user can designate any message queue as an error handler MSGQ using this API.

The same MSGQ can also be used for receiving other messages, apart from the error

messages. After this API has been called, the transport notifies the user of any

asynchronous error occurring during its operations, by sending a message to the

designated error handler MSGQ. The format of the error message and the different

types of errors that are notified are fixed.

Constraints

The error handler MSGQ must be created before this API can be called.

See Also
MSGQ_MqtError
MSGQ_AsyncErrorMsg

Page 81 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.15 MSGQ_instrument

This function gets the instrumentation information related to the specified message

queue.

Syntax
DSP_STATUS MSGQ_instrument (MSGQ_Queue msgqQ ueue,
 MSGQ_Instrument * retVa l) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the message queue.

OUT MSGQ_Instrument * retVal

Location to retrieve the instrumentation information.

Return Value

DSP_SOK The instrumentation information has been successfully

retrieved.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL General failure.

Comments

None.

Constraints

This function is defined only if profiling is enabled within DSPLINK.

See Also
MSGQ_Instrument

Page 82 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7.3.16 MSGQ_debug

This function prints the current status of the MSGQ subcomponent.

Syntax
Void MSGQ_debug (MSGQ_Queue msgqQueue) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the message queue.

Return Value

None.

Comments

None.

Constraints

This function is defined only for debug builds.

See Also
None.

Page 83 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8 PMGR

8.1 API Definition

8.1.1 PMGR_MSGQ_setup

This function initializes the MSGQ component.

Syntax
DSP_STATUS PMGR_MSGQ_setup () ;

Arguments

None.

Return Value

DSP_SOK The messaging component has been successfully

initialized.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function is called from PMGR_PROC_setup () for the first calling process. It
passes down the call into the Link Driver layer.

Constraints

None.

See Also
LDRV_MSGQ_setup ()

Page 84 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.2 PMGR_MSGQ_destroy

This function finalizes the MSGQ component.

Syntax
DSP_STATUS PMGR_MSGQ_destroy () ;

Arguments

None.

Return Value

DSP_SOK The messaging component has been successfully

finalized.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function is called from PMGR_PROC_destroy () for the last calling process. It

passes down the call into the Link Driver layer.

Constraints

PMGR MSGQ component must be initialized before calling this function.

See Also
LDRV_MSGQ_destroy ()

Page 85 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.3 PMGR_MSGQ_transportOpen

This function initializes the transport associated with the specified processor.

Syntax
DSP_STATUS PMGR_MSGQ_transportOpen (ProcessorId pro cId, Pvoid attrs) ;

Arguments

IN ProcessorId procId

ID of the Processor for which the transport is to be opened.

IN Pvoid attrs

Attributes for initialization of the transport. The structure of the

expected attributes is specific to a transport.

Return Value

DSP_SOK The MQT component has been successfully opened.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function passes on the call from the API layer to the Link Driver layer.

Constraints

PMGR MSGQ component must be initialized before calling this function.

attrs must be valid.

See Also
MSGQ_transportOpen ()
LDRV_MSGQ_transportOpen ()

Page 86 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.4 PMGR_MSGQ_transportClose

This function finalizes the transport associated with the specified processor.

Syntax
DSP_STATUS PMGR_MSGQ_transportClose (ProcessorId pr ocId) ;

Arguments

IN ProcessorId procId

ID of the Processor for which the transport is to be closed.

Return Value

DSP_SOK The MQT component has been successfully closed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function passes on the call from the API layer to the Link Driver layer.

Constraints

PMGR MSGQ component must be initialized before calling this function.

See Also
MSGQ_transportClose ()
LDRV_MSGQ_transportClose ()

Page 87 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.5 PMGR_MSGQ_open

This function opens the message queue to be used for receiving messages, identified

through the specified message queue name.

Syntax
DSP_STATUS PMGR_MSGQ_open (Pstr queueName,
 MSGQ_Queue * msgqQueue,
 MSGQ_Attrs * attrs) ;

Arguments

IN Pstr queueName

Name of the message queue to be opened.

OUT MSGQ_Queue * msgqQueue

Location to store the handle to the message queue.

IN OPT MSGQ_Attrs * attrs

Optional attributes for creation of the MSGQ.

Return Value

DSP_SOK The message queue has been successfully created.

DSP_ENOTFOUND Attempt to open more than number of message

queues configured.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function updates ownership information for the MSGQ and passes on the call

from the API layer to the Link Driver layer.

Constraints

PMGR MSGQ component must be initialized before calling this function.

queueName must be valid.

msgqQueue must be a valid pointer.

See Also
MSGQ_open ()
LDRV_MSGQ_open ()

Page 88 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.6 PMGR_MSGQ_close

This function closes the message queue identified by the specified MSGQ handle.

Syntax
DSP_STATUS PMGR_MSGQ_close (MSGQ_Queue msgqQueue) ;

Arguments

IN MsgQueue msgQueue

Handle to the message queue to be closed.

Return Value

DSP_SOK The message queue has been successfully deleted.

DSP_EMEMORY Operation failed due to memory error.

DSP_EACCESSDENIED Access denied. Only the client who had successfully
opened the message queue may call this function.

DSP_EFAIL General failure.

Comments

This function updates ownership information for the MSGQ and passes on the call

from the API layer to the Link Driver layer.

Constraints

PMGR MSGQ component must be initialized before calling this function.

msgqQueue must be a valid pointer.

Client must be the owner of the MSGQ.

See Also
MSGQ_close ()
LDRV_MSGQ_close ()

Page 89 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.7 PMGR_MSGQ_locate

This function synchronously locates the message queue identified by the specified

MSGQ name and returns a handle to the located message queue.

Syntax
DSP_STATUS PMGR_MSGQ_locate (Pstr queu eName,
 MSGQ_Queue * msg qQueue,
 MSGQ_LocateAttrs * att rs) ;

Arguments

IN Pstr queueName

Name of the message queue to be located.

OUT MSGQ_Queue * msgqQueue

Location to store the handle to the located message queue.

IN OPT MSGQ_LocateAttrs * attrs

Optional attributes for location of the MSGQ.

Return Value

DSP_SOK The message queue has been successfully located.

DSP_ENOTFOUND The specified message queue could not be located.

DSP_ETIMEOUT Timeout occurred while locating the MSGQ.

DSP_ENOTCOMPLETE Operation not complete when WAIT_NONE was specified
as timeout.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This function passes on the call from the API layer to the Link Driver layer.

Constraints

PMGR MSGQ component must be initialized before calling this function.

queueName must be valid.

msgqQueue must be a valid pointer.

See Also
MSGQ_locate ()
LDRV_MSGQ_locate ()

Page 90 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.8 PMGR_MSGQ_locateAsync

This function asynchronously locates the message queue identified by the specified

MSGQ name. An attempt is made to asynchronously locate the message queue. If

the message queue is found, an MSGQ_AsyncLocateMsg message is sent to the

specified reply message queue.

Syntax
DSP_STATUS PMGR_MSGQ_locateAsync (Pstr queueName,
 MSGQ_Queue replyQueue,
 MSGQ_LocateAsyncA ttrs * attrs) ;

Arguments

IN Pstr queueName

Name of the message queue to be located.

IN MSGQ_Queue replyQueue

Message queue to be used to receive the response message for

asynchronous location.

IN MSGQ_LocateAsyncAttrs * attrs

Attributes for asynchronous location of the MSGQ.

Return Value

DSP_SOK The message queue has been successfully located.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This function passes on the call from the API layer to the Link Driver layer.

Constraints

PMGR MSGQ component must be initialized before calling this function.

queueName must be valid.

replyQueue must be a valid pointer.

attrs must be a valid pointer.

See Also
MSGQ_locateAsync ()
LDRV_MSGQ_locateAsync ()

Page 91 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.9 PMGR_MSGQ_release

This function releases the message queue identified by the MSGQ handle that was

located earlier.

Syntax
DSP_STATUS PMGR_MSGQ_release (MSGQ_Queue msgqQueue) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the message queue to be released.

Return Value

DSP_SOK The message queue has been successfully released.

DSP_ENOTFOUND The message queue has not been previously located.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This function passes on the call from the API layer to the Link Driver layer.

Constraints

PMGR MSGQ component must be initialized before calling this function.

msgqQueue must be valid.

See Also
MSGQ_release ()
LDRV_MSGQ_release ()

Page 92 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.10 PMGR_MSGQ_alloc

This function allocates a message, and returns the pointer to the user.

Syntax
DSP_STATUS PMGR_MSGQ_alloc (PoolId poolId,
 Uint16 size,
 MSGQ_Msg * msg) ;

Arguments

IN PoolId poolId

ID of the Pool to be used for allocating this message.

IN Uint16 size

Size of the message to be allocated.

OUT MSGQ_Msg * msg

Location to receive the allocated message.

 Return Value

DSP_SOK The message has been successfully allocated.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function passes on the call from the API layer to the Link Driver layer.

Constraints

PMGR MSGQ component must be initialized before calling this function.

msg must be a valid pointer.

size must be a greater than size of MSGQ_MsgHeader.

See Also
MSGQ_alloc ()
LDRV_MSGQ_alloc ()

Page 93 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.11 PMGR_MSGQ_free

This function frees a message.

Syntax
DSP_STATUS PMGR_MSGQ_free (MSGQ_Msg msg) ;

Arguments

IN MSGQ_Msg msg

Pointer to the message to be freed.

Return Value

DSP_SOK The message has been successfully freed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function passes on the call from the API layer to the Link Driver layer.

Constraints

PMGR MSGQ component must be initialized before calling this function.

msg must be valid.

See Also
MSGQ_free ()
LDRV_MSGQ_free ()

Page 94 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.12 PMGR_MSGQ_put

This function sends a message to the specified MSGQ.

Syntax
DSP_STATUS PMGR_MSGQ_put (MSGQ_Queue msgqQueue, MSGQ_Msg msg) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the destination MSGQ.

IN MSGQ_Msg msg

Pointer to the message to be sent to the destination MSGQ.

Return Value

DSP_SOK The message has been successfully sent.

DSP_EFAIL General failure.

Comments

This function passes on the call from the API layer to the Link Driver layer.

Constraints

PMGR MSGQ component must be initialized before calling this function.

msgqQueue must be valid.

msg must be valid.

See Also
MSGQ_put ()
LDRV_MSGQ_put ()

Page 95 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.13 PMGR_MSGQ_get

This function receives a message on the specified MSGQ.

Syntax
DSP_STATUS PMGR_MSGQ_get (MSGQ_Queue msgqQueue,
 Uint32 timeout,
 MSGQ_Msg * msg) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the MSGQ on which the message is to be received.

IN Uint32 timeout

Timeout value to wait for the message (in milliseconds).

OUT MSGQ_Msg * msg

Location to receive the message.

Return Value

DSP_SOK The message has been successfully received.

DSP_ETIMEOUT Timeout occurred while receiving the message.

DSP_ENOTCOMPLETE Operation not complete when WAIT_NONE was specified
as timeout.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

None.

Constraints

PMGR MSGQ component must be initialized before calling this function.

msgqQueue must be valid.

msg must be a valid pointer.

See Also
MSGQ_get ()
LDRV_MSGQ_get ()

Page 96 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.14 PMGR_MSGQ_count

This function returns the count of the number of messages in a local message queue.

Syntax
DSP_STATUS PMGR_MSGQ_count (MSGQ_Queue msgqQueue, Uint16 * count) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the MSGQ for which the count is to be retrieved.

OUT Uint16 * count

Location to receive the message count.

Return Value

DSP_SOK The count has been successfully retrieved.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL General failure.

Comments

None.

Constraints

PMGR MSGQ component must be initialized before calling this function.

msgqQueue must be valid.

count must be a valid pointer.

See Also
MSGQ_count ()
LDRV_MSGQ_count ()

Page 97 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.15 PMGR_MSGQ_setErrorHandler

This function allows the user to designate a MSGQ as an error-handler MSGQ to

receive asynchronous error messages from the transports.

Syntax
DSP_STATUS PMGR_MSGQ_setErrorHandler (MSGQ_Queue er rorQueue,
 PoolId poo lId) ;

Arguments

IN MSGQ_Queue errorQueue

Handle to the message queue to receive the error messages.

IN PoolId poolId

ID indicating the pool to be used for allocating the error messages.

Return Value

DSP_SOK The error handler has been successfully set.

DSP_EFAIL General failure.

Comments

This function passes on the call from the API layer to the Link Driver layer.

Constraints

PMGR MSGQ component must be initialized before calling this function.

See Also
MSGQ_setErrorHandler
LDRV_MSGQ_setErrorHandler

Page 98 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.16 PMGR_MSGQ_instrument

This function gets the instrumentation information related to the specified message

queue.

Syntax
DSP_STATUS PMGR_MSGQ_instrument (MSGQ_Queue msgqQueue,
 MSGQ_Instrument * retVal) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the message queue.

OUT MSGQ_Instrument * retVal

Location to retrieve the instrumentation information.

Return Value

DSP_SOK The instrumentation information has been successfully

retrieved.

DSP_EFAIL General failure.

Comments

This function passes on the call from the API layer to the Link Driver layer.

Constraints

This function is defined only if profiling is enabled within DSPLINK.

PMGR MSGQ component must be initialized before calling this function.

msgqQueue must be valid.

retVal must be a valid pointer.

See Also
MSGQ_Instrument
MSGQ_instrument
LDRV_MSGQ_instrument

Page 99 of 148 Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8.1.17 PMGR_MSGQ_debug

This function prints the status of the MSGQ subcomponent.

Syntax
Void PMGR_MSGQ_debug (MSGQ_Queue msgqQueue) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the message queue.

Return Value

None.

Comments

This function prints any status of the MSGQ subcomponent contained within the

PMGR layer, and passes down the call into the LDRV layer.

Constraints

This function is defined only for debug builds.

PMGR MSGQ component must be initialized before calling this function.

msgqQueue must be valid.

See Also
MSGQ_debug
LDRV_MSGQ_debug

Page 100 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9 LDRV MSGQ

9.1 Typedefs & Data Structures

9.1.1 FnMqtInitialize

This type defines the MQT initialization function.

Definition
typedef Void (*FnMqtInitialize) () ;

Comments

This function type is part of the MQT interface table.

Constraints

None.

See Also
MQT_Interface

Page 101 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.1.2 FnMqtFinalize

This type defines the MQT finalization function.

Definition
typedef Void (*FnMqtFinalize) () ;

Comments

This function type is part of the MQT interface table.

Constraints

None.

See Also
MQT_Interface

Page 102 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.1.3 FnMqtOpen

This type defines the MQT open function.

Definition
typedef DSP_STATUS (*FnMqtOpen) (LDRV_MSGQ_Transpor tHandle mqtHandle,
 Pvoid mqtAttrs) ;

Comments

This function type is part of the MQT interface table.

Constraints

None.

See Also
MQT_Interface

Page 103 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.1.4 FnMqtClose

This type defines the MQT close function.

Definition
typedef DSP_STATUS (*FnMqtClose) (LDRV_MSGQ_Transpo rtHandle mqtHandle)
;

Comments

This function type is part of the MQT interface table.

Constraints

None.

See Also
MQT_Interface

Page 104 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.1.5 FnMqtLocate

This type defines the MQT function for locating a MSGQ identified by the specified

MSGQ name.

Definition
typedef DSP_STATUS (*FnMqtLocate) (LDRV_MSGQ_Transp ortHandle mqtHandle,
 Pstr queueName,
 Bool sync,
 MSGQ_Queue * msgqQueue,
 Pvoid attrs) ;

Comments

This function type is part of the MQT interface table.

Constraints

None.

See Also
MQT_Interface

Page 105 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.1.6 FnMqtRelease

This type defines the MQT function for releasing a MSGQ identified by the MSGQ

handle that was located earlier.

Definition
typedef
DSP_STATUS (*FnMqtRelease) (LDRV_MSGQ_TransportHand le mqtHandle,
 MSGQ_Queue msgqQueue) ;

Comments

This function type is part of the MQT interface table.

Constraints

None.

See Also
MQT_Interface

Page 106 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.1.7 FnMqtPut

This type defines the MQT function for sending a message.

Definition
typedef DSP_STATUS (*FnMqtPut) (LDRV_MSGQ_Transport Handle mqtHandle,
 MSGQ_Msg msg) ;

Comments

This function type is part of the MQT interface table.

Constraints

None.

See Also
MQT_Interface

Page 107 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.1.8 FnMqtDebug

This type defines the MQT function for printing debug information.

Definition
typedef
DSP_STATUS (*FnMqtDebug) (LDRV_MSGQ_TransportHandle mqtHandle) ;

Comments

This function type is part of the MQT interface table.

Constraints

This type is only defined if debugging is enabled.

See Also
MQT_Interface

Page 108 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.1.9 LDRV_MSGQ_State

This structure defines the MSGQ state object. It includes all global information

required by the MSGQ component.

Definition
typedef struct LDRV_MSGQ_State_tag {
 LDRV_MSGQ_Handle * msgqHandles ;
 Uint16 maxMsgqs ;
 Uint16 numDsps ;
 LDRV_MSGQ_TransportObj * transports ;
 Bool doPowerCtrl [MAX_DSPS] ;
 MSGQ_Queue errorQueue ;
 PoolId errorPoolId ;
} LDRV_MSGQ_State ;

Fields

msgqHandles Array of handles to message queue objects.

maxMsgqs Maximum number of message queues on the GPP.

numDsps Number of DSPs in the system.

transports Array of transport objects, one for every processor in the

system.

doPowerCtrl Indicates whether power control of the DSPs should be done

within DSPLINK.

errorQueue Handle to the MSGQ registered by the user as an error

handler. If no error handler MSGQ has been registered by the

user, the value of this field is MSGQ_INVALIDMSGQ.

errorPoolId ID of the Pool to be used for allocating the asynchronous

error messages, if the user has registered an error handler

MSGQ. If no error handler MSGQ has been registered by the

user, the value of this field is POOL_INVALIDID .

Comments

The MSGQ state object is filled with information extracted from the CFG during the

call to LDRV_MSGQ_setup () .

Constraints

None.

See Also
LDRV_MSGQ_setup ()

Page 109 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.1.10 LDRV_MSGQ_Object

This structure defines the MSGQ object. It includes all information specific to a

particular MSGQ.

Definition
struct LDRV_MSGQ_Object_tag {
 Char8 name [DSP_MAX_STRLEN] ;
 MSGQ_Queue msgqQueue ;
 List * queue ;
 Pvoid ntfyHandle ;
 MsgqPend pend ;
 MsgqPost post ;
 Bool defaultNtfyHandle ;
#if defined (DDSP_PROFILE)
 MSGQ_Stats msgqStats ;
#endif /* if defined (DDSP_PROFILE) */
} ;

Fields

name System-wide unique message queue name.

msgqQueue Message queue handle.

queue Queue of received messages.

ntfyHandle Pointer to the notification object for the message queue.

pend Function to be used to wait to receive a message.

post Function to be used to indicate arrival of a message.

defaultNtfyHandl
e

Indicates whether the notify handle in the message queue
object was created internally.

msgqStats Instrumentation information for the Message Queue. Defined

only if profiling is enabled.

Comments

The MSGQ object is created during the MSGQ_open () function.

The default notify handle used internally within the MSGQ object is a binary

semaphore.

Constraints

None.

See Also
LDRV_MSGQ_State
MSGQ_open ()

Page 110 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.1.11 LDRV_MSGQ_TransportObj

This structure defines the common attributes of the transport object. There is one

instance of the transport object per MQT in the system.

Definition
struct LDRV_MSGQ_TransportObj_tag {
 MQT_Interface * mqtInterface ;
 Pvoid object ;
 ProcessorId dspId ;
} ;

Fields

mqtInterface Pointer to the function table of the MQT represented by the

transport object.

object Transport-specific object.

dspId Processor identifier.

Comments

The LDRV MSGQ component maintains an array of the MSGQ transport objects.

These are used to identify the MQTs existing in the system.

The transport objects are initialized during LDRV_MSGQ_setup () through

configuration information obtained from the CFG. One MSGQ transport object is

configured for every processor in the system. The MQT state information is filled in

during LDRV_MSGQ_transportOpen () .

Constraints

None.

See Also
LDRV_MSGQ_setup ()
LDRV_MSGQ_transportOpen ()

Page 111 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.1.12 MQT_Interface

This structure defines the function pointer table that must be implemented for every

MQT in the system.

Definition
typedef struct MQT_Interface_tag {
 FnMqtInitialize initialize ;
 FnMqtFinalize finalize ;
 FnMqtOpen open ;
 FnMqtClose close ;
 FnMqtLocate locate ;
 FnMqtRelease release ;
 FnMqtPut put ;
#if defined (DDSP_DEBUG)
 FnMqtDebug debug ;
#endif /* defined (DDSP_DEBUG) */
} MQT_Interface ;

Fields

initialize Pointer to MQT initialization function.

finalize Pointer to MQT finalization function.

open Pointer to MQT open function.

close Pointer to MQT close function.

locate Pointer to MQT function for locating a MSGQ.

release Pointer to MQT function for releasing a MSGQ.

put Pointer to MQT function for sending a message.

debug Pointer to MQT debug function.

Comments

Each MQT in the system must implement a set of functions with defined interfaces.

These functions must then be exported through a function pointer table, of type

MQT_Interface .

Constraints

None.

See Also
None.

Page 112 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.1.13 LDRV_MQT_Config

This structure defines the MQT object stored in the LDRV object.

Definition
typedef struct LDRV_MQT_Config_tag {
 Uint32 maxMsgSize ;
 Uint32 ipsId ;
 Uint32 ipsEventNo ;
 Uint32 arg1 ;
 Uint32 arg2 ;
} LDRV_MQT_Config ;

Fields

maxMsgSize Maximum size of message supported by MQT. May be -1 if

there is no limit on maximum message size for the MQT.

ipsId ID of the IPS to be used (if any). A value of -1 indicates that

no IPS is required by the MQT.

ipsEventNo IPS Event number associated with MQT (if any). A value of -1

indicates that no IPS is required by the MQT.

arg1 First optional argument for this MQT. The significance of this

argument is specific to the MQT.

arg2 Second optional argument for this MQT. The significance of

this argument is specific to the MQT.

Comments

An array of MQT objects is maintained within the LDRV_MQT module. These hold all

MQT information obtained through the CFG.

Constraints

None.

See Also
None.

Page 113 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2 API Definition

9.2.1 LDRV_MSGQ_setup

This function initializes the MSGQ component.

Syntax
DSP_STATUS LDRV_MSGQ_setup () ;

Arguments

None.

Return Value

DSP_SOK The messaging component has been successfully

initialized.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function initializes the MSGQ component. It sets up the MSGQ state object with

information obtained from the LDRV object. It also initializes the individual MQTs

configured in the system.

Constraints

The LDRV_MSGQ component must not be initialized.

See Also
LDRV_MSGQ_destroy ()

Page 114 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.2 LDRV_MSGQ_destroy

This function finalizes the MSGQ component.

Syntax
DSP_STATUS LDRV_MSGQ_destroy () ;

Arguments

None.

Return Value

DSP_SOK The messaging component has been successfully

finalized.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function finalizes the MSGQ component. It also finalizes the individual MQTs

configured in the system.

Constraints

The LDRV_MSGQ component must be initialized.

See Also
LDRV_MSGQ_setup ()

Page 115 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.3 LDRV_MSGQ_transportOpen

This function initializes the transport associated with the specified processor.

Syntax
DSP_STATUS LDRV_MSGQ_transportOpen (ProcessorId pro cId, Pvoid attrs) ;

Arguments

IN ProcessorId procId

ID of the Processor for which the transport is to be opened.

IN Pvoid attrs

Attributes for initialization of the transport. The structure of the

expected attributes is specific to a transport.

Return Value

DSP_SOK The MQT component has been successfully opened.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function calls the open () function of the MQT identified through the processor

ID. It initializes the MQT using the provided attributes.

The static configuration of the MQTs is done as part of the CFG. This includes

configuration of the fixed attributes specific to each MQT, including its function table

interface.

Constraints

The LDRV_MSGQ component must be initialized.

attrs must be valid.

procId must be valid.

See Also
LDRV_MSGQ_transportClose ()

Page 116 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.4 LDRV_MSGQ_transportClose

This function finalizes the transport associated with the specified processor.

Syntax
DSP_STATUS LDRV_MSGQ_transportClose (ProcessorId pr ocId) ;

Arguments

IN ProcessorId procId

ID of the Processor for which the transport is to be closed.

Return Value

DSP_SOK The MQT component has been successfully closed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function calls the close () function of the MQT identified through the processor

ID.

Constraints

The LDRV_MSGQ component must be initialized.

procId must be valid.

See Also
LDRV_MSGQ_transportOpen ()

Page 117 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.5 LDRV_MSGQ_open

This function opens the message queue to be used for receiving messages, identified

through the specified message queue name.

Syntax
DSP_STATUS LDRV_MSGQ_open (Pstr queueName,
 MSGQ_Queue * msgqQueue,
 MSGQ_Attrs * attrs) ;

Arguments

IN Pstr queueName

Name of the message queue to be created.

OUT MSGQ_Queue * msgqQueue

Optional attributes for creation of the MSGQ.

IN OPT MSGQ_Attrs * attrs

Location to store the handle to the message queue.

Return Value

DSP_SOK The message queue has been successfully created.

DSP_ENOTFOUND Attempt to open more than number of message

queues configured.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function creates and initializes an instance of the LDRV_MSGQ_Object object
representing a local message queue.

Constraints

The LDRV_MSGQ component must be initialized.

queueName must be valid.

msgqQueue must be valid.

See Also
MSGQ_Queue
MSGQ_Attrs
LDRV_MSGQ_close ()
LDRV_MSGQ_locate ()

Page 118 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.6 LDRV_MSGQ_close

This function closes the message queue identified by the specified MSGQ handle.

Syntax
DSP_STATUS LDRV_MSGQ_close (MSGQ_Queue msgqQueue) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the message queue to be deleted.

Return Value

DSP_SOK The message queue has been successfully deleted.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function deletes the instance of the LDRV_MSGQ_Object object represented by
the specified message queue handle.

Constraints

The LDRV_MSGQ component must be initialized.

msgqQueue must be valid.

See Also
MSGQ_Queue
LDRV_MSGQ_open ()

Page 119 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.7 LDRV_MSGQ_locate

This function synchronously locates the message queue identified by the specified

MSGQ name and returns a handle to the located message queue.

Syntax
DSP_STATUS LDRV_MSGQ_locate (Pstr que ueName,
 MSGQ_Queue * msg qQueue,
 MSGQ_LocateAttrs * att rs) ;

Arguments

IN Pstr queueName

Name of the message queue to be located.

OUT MSGQ_Queue * msgqQueue

Location to store the handle to the located message queue.

IN OPT MSGQ_LocateAttrs * attrs

Optional attributes for location of the MSGQ.

Return Value

DSP_SOK The message queue has been successfully located.

DSP_ENOTFOUND The specified message queue could not be located.

DSP_ETIMEOUT Timeout occurred while locating the MSGQ.

DSP_ENOTCOMPLETE Operation not complete when WAIT_NONE was specified
as timeout.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This function searches within its own list of MSGQs and interacts with the remote

MQTs to locate the MSGQ as specified by the user. If not found locally, the call

passes down to the remote MQTs.

Constraints

The LDRV_MSGQ component must be initialized.

queueName must be valid.

msgqQueue must be a valid pointer.

See Also
MSGQ_Queue
MSGQ_LocateAttrs
LDRV_MSGQ_put ()
LDRV_MSGQ_release ()

Page 120 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.8 LDRV_MSGQ_locateAsync

This function asynchronously locates the message queue identified by the specified

MSGQ name. An attempt is made to asynchronously locate the message queue. If

the message queue is found, an MSGQ_AsyncLocateMsg message is sent to the

specified reply message queue.

Syntax
DSP_STATUS LDRV_MSGQ_locateAsync (Pstr queueName,
 MSGQ_Queue replyQueue,
 MSGQ_LocateAsyncA ttrs * attrs) ;

Arguments

IN Pstr queueName

Name of the message queue to be located.

IN MSGQ_Queue replyQueue

Location to store the handle to the located message queue.

IN MSGQ_LocateAsyncAttrs * attrs

Optional attributes for location of the MSGQ.

Return Value

DSP_SOK The message queue has been successfully located.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This function first searches within its own list of MSGQs. If not found locally, it sends

an asynchronous locate request to all the remote MQTs. The remote MQT that is able

to successfully locate the message queue sends an MSGQ_AsyncLocateMsg message

to the reply message queue specified by the user. If the message queue was not

found in the system, no message is sent to the reply message queue.

Constraints

The LDRV_MSGQ component must be initialized.

queueName must be valid.

replyQueue must be valid.

attrs must be valid.

See Also
MSGQ_Queue
MSGQ_LocateAsyncAttrs
LDRV_MSGQ_put ()
LDRV_MSGQ_release ()

Page 121 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.9 LDRV_MSGQ_release

This function releases the message queue identified by the MSGQ handle that was

located earlier.

Syntax
DSP_STATUS LDRV_MSGQ_release (MSGQ_Queue msgqQueue) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the message queue to be released.

Return Value

DSP_SOK The message queue has been successfully released.

DSP_ENOTFOUND The message queue was not previously located.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This function releases the MSGQ as specified by the user. If not local, the call passes

down to the remote MQTs.

Constraints

The LDRV_MSGQ component must be initialized.

msgqQueue must be valid.

See Also
MSGQ_Queue
LDRV_MSGQ_locate ()

Page 122 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.10 LDRV_MSGQ_alloc

This function allocates a message, and returns the pointer to the user.

Syntax
DSP_STATUS LDRV_MSGQ_alloc (PoolId poolId,
 Uint16 size,
 MSGQ_Msg * msg) ;

Arguments

IN PoolId poolId

ID of the Pool to be used for allocating this message.

IN Uint16 size

Size (in bytes) of the message to be allocated.

OUT MSGQ_Msg * msg

Location to receive the allocated message.

 Return Value

DSP_SOK The message has been successfully allocated.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function interacts with the specified pool to allocate a message of specified size.

Constraints

The LDRV_MSGQ component must be initialized.

msg must be a valid pointer.

size must be greater than size of MSGQ_MsgHeader.

See Also
MSGQ_MsgHeader
LDRV_MSGQ_put ()
LDRV_MSGQ_free ()

Page 123 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.11 LDRV_MSGQ_free

This function frees a message.

Syntax
DSP_STATUS LDRV_MSGQ_free (MSGQ_Msg msg) ;

Arguments

IN MSGQ_Msg msg

Pointer to the message to be freed.

Return Value

DSP_SOK The message has been successfully freed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function interacts with the MQA to free the specified message. The MQA to be

used, and all other information required for freeing the message, such as size of the

message, are obtained from the message header.

Constraints

The LDRV_MSGQ component must be initialized.

msg must be valid.

See Also
MSGQ_MsgHeader
LDRV_MSGQ_get ()
LDRV_MSGQ_alloc ()

Page 124 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.12 LDRV_MSGQ_put

This function sends a message to the specified MSGQ.

Syntax
DSP_STATUS LDRV_MSGQ_put (MSGQ_Queue msgqQueue, MSGQ_Msg msg) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the destination MSGQ.

IN MSGQ_Msg msg

Pointer to the message to be sent to the destination MSGQ.

Return Value

DSP_SOK The message has been successfully sent.

DSP_ENOTFOUND The message queue does not exist.

DSP_EFAIL General failure.

Comments

This function sends the message to the destination MSGQ. If the MSGQ is not local,

the call passes down to the remote MQTs.

Constraints

The LDRV_MSGQ component must be initialized.

msgqQueue must be valid.

msg must be valid.

See Also
MSGQ_Queue
MSGQ_MsgHeader
LDRV_MSGQ_get ()

Page 125 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.13 LDRV_MSGQ_get

This function receives a message on the specified MSGQ.

Syntax
DSP_STATUS LDRV_MSGQ_get (MSGQ_Queue msgqQueue,
 Uint32 timeout,
 MSGQ_Msg * msg) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the MSGQ on which the message is to be received.

IN Uint32 timeout

Timeout value to wait for the message (in milliseconds).

OUT MSGQ_Msg * msg

Location to receive the message.

Return Value

DSP_SOK The message has been successfully received.

DSP_ETIMEOUT Timeout occurred while receiving the message.

DSP_ENOTCOMPLETE Operation not complete when WAIT_NONE was specified
as timeout.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Comments

This function queues up the received message on the appropriate MSGQ.

Constraints

The LDRV_MSGQ component must be initialized.

msgqQueue must be valid.

msg must be a valid pointer.

See Also
MSGQ_Queue
MSGQ_MsgHeader
LDRV_MSGQ_put ()

Page 126 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.14 LDRV_MSGQ_count

This function returns the count of the number of messages in a local message queue.

Syntax
DSP_STATUS PMGR_MSGQ_count (MSGQ_Queue msgqQueue, Uint16 * count) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the MSGQ for which the count is to be retrieved.

OUT Uint16 * count

Location to receive the message count.

Return Value

DSP_SOK The count has been successfully retrieved.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL General failure.

Comments

This function traverses the list within the Message Queue object and returns the

count of the number of messages queued within the list to the caller.

Constraints

LDRV MSGQ component must be initialized before calling this function.

msgqQueue must be valid.

count must be a valid pointer.

See Also
MSGQ_Queue

Page 127 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.15 LDRV_MSGQ_setErrorHandler

This function allows the user to designate a MSGQ as an error-handler MSGQ to

receive asynchronous error messages from the transports.

Syntax
DSP_STATUS LDRV_MSGQ_setErrorHandler (MSGQ_Queue e rrorQueue,
 PoolId p oolId) ;

Arguments

IN MSGQ_Queue errorQueue

Handle to the message queue to receive the error messages.

IN PoolId poolId

ID indicating the pool to be used for allocating the error messages.

Return Value

DSP_SOK The error handler has been successfully set.

DSP_EFAIL General failure.

Comments

This function registers the error handler MSGQ within its state object. After the error

handler MSGQ has been set, the MSGQ component responds to

LDRV_MSGQ_sendErrorMsg () calls from the transport by allocating and sending the

appropriate asynchronous error message to the error handler MSGQ.

Constraints

The error handler MSGQ must be created before this API can be called.

The LDRV_MSGQ component must be initialized.

errorQueue must be valid.

See Also
MSGQ_AsyncErrorMsg
LDRV_MSGQ_sendErrorMsg ()

Page 128 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.16 LDRV_MSGQ_instrument

This function gets the instrumentation information related to the specified message

queue.

Syntax
DSP_STATUS LDRV_MSGQ_instrument (MSGQ_Queue msgqQueue,
 MSGQ_Instrument * retVal) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the message queue.

OUT MSGQ_Instrument * retVal

Location to retrieve the instrumentation information.

Return Value

DSP_SOK The instrumentation information has been successfully

retrieved.

DSP_EFAIL General failure.

Comments

None.

Constraints

This function is defined only if profiling is enabled within DSPLINK.

The LDRV_MSGQ component must be initialized.

msgqQueue must be valid.

retVal must be a valid pointer.

See Also
MSGQ_Instrument

Page 129 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.17 LDRV_MSGQ_debug

This function prints the status of the MSGQ subcomponent.

Syntax
Void LDRV_MSGQ_debug (MSGQ_Queue msgqQueue) ;

Arguments

IN MSGQ_Queue msgqQueue

Handle to the message queue.

Return Value

None.

Comments

None.

Constraints

This function is defined only for debug builds.

msgqQueue must be valid.

See Also
None.

Page 130 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.18 LDRV_MSGQ_locateLocal

This function locates a local message queue identified by the specified MSGQ name

and returns a handle to the located message queue if found.

Syntax
DSP_STATUS LDRV_MSGQ_locateLocal (Pstr queu eName,
 MSGQ_Queue * msgq Queue) ;

Arguments

IN Pstr queueName

Name of the message queue to be located.

OUT MSGQ_Queue * msgqQueue

Location to store the handle to the located message queue.

Return Value

DSP_SOK The specified message queue was successfully

located.

DSP_ENOTFOUND The specified message queue could not be located.

DSP_EFAIL General failure.

Comments

This function searches within the local MSGQ list for the specified message queue

identified by its name.

This function is called internally by the LDRV MSGQ component and the transports.

Constraints

queueName must be valid.

msgqQueue must be valid.

See Also
MSGQ_Queue

Page 131 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.19 LDRV_MSGQ_sendErrorMsg

This function sends an asynchronous error message of a particular type to the user-

defined error handler MSGQ.

Syntax
DSP_STATUS LDRV_MSGQ_sendErrorMsg (MSGQ_MqtError e rrorType,
 Pvoid a rg1,
 Pvoid a rg2) ;

Arguments

IN MSGQ_MqtError errorType

Type of the error.

IN Pvoid arg1

First argument dependent on the error type.

IN Pvoid arg2

Second argument dependent on the error type.

Return Value

DSP_SOK The error message has been successfully sent.

DSP_EINVALIDARG Invalid argument.

DSP_EFAIL General failure.

Comments

This function sends an error message to the user-defined error handler MSGQ. It is

called by the transports on occurrence of any of a set of predefined asynchronous

errors.

This function is called internally by the transports.

Constraints

This function sends an error message only if the user has registered an error handler

MSGQ through a call to the MSGQ_setErrorHandler () function.

See Also
MSGQ_MqtError
MSGQ_AsyncErrorMsg
LDRV_MSGQ_setErrorHandler ()

Page 132 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

9.2.20 LDRV_MSGQ_NotImpl

Represents a function that is not implemented and returns status accordingly.

Syntax
DSP_STATUS LDRV_MSGQ_NotImpl () ;

Arguments

None.

Return Value

DSP_ENOTIMPL This function is not implemented.

Comments

This function should be used in interface tables where some functions are not being

implemented.

Constraints

None.

See Also
MQT_Interface

Page 133 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

10 Internal Discussions
The following sections were added to this document during the initial stages of the

design. They shall not be updated further, and may not be consistent with the rest of

the document.

10.1 Design Alternatives

10.1.1 DSP side

DSPLINK currently implements the link driver as an IOM driver. The MQT for the

messaging component shall integrate into the DSP system, utilizing the services

provided by this driver.

There are a few possible alternatives for the MQT hierarchy within the DSP system.

10.1.1.1 Alternative 1: MQT shall use SHM services from an SHM abstraction layer.

Details:

The existing IOM driver shall be structured to separate out the SHM services into an

SHM abstraction layer. This layer shall provide all the low-level services required by

both data & messaging for the SHM protocol. The IOM driver shall manage the data

transport, whereas the MQT shall manage the messaging transport. Both shall make

calls into the SHM abstraction layer.

The hierarchy of the MQT shall be as follows:

Figure 20. MQT using SHM services from an SHM abstraction laye r

Advantages:

Since the messaging shall bypass the IOM layer and directly use SHM services, it

may be more efficient. It would allow implementation of a separate protocol for

messaging, which may be faster.

Disadvantages:

If a different driver needs to be used, such as HPI, the effort to port it to allow

messaging could be much higher. An IOM driver for HPI cannot directly replace the

one for SHM. Underlying HPI abstraction would be required (similar to the SHM

abstraction), which could be used directly by the MQT.

10.1.1.2 Alternative 2: MQT shall use the services provided by the IOM driver.

Details:

The IOM driver shall implement the hardware-specific transport functionality that is

required by the MQT. The MQT shall implement the MQT protocol & functions

expected by the MSGQ. The MQT shall not use services of an SHM abstraction layer,

but directly make calls into the IOM driver.

SIO & DIO adapter MSGQ

SHM services (abstracted out)

Data IOM (existing) DSPLINK MQT

Page 134 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

The current IOM driver implementation shall need to be modified to separately

handle messaging, so that the messaging could have a separate protocol within the

driver itself. However, this could involve usage of IOM_USER command codes for

messaging commands, and not the default four (IOM_READ, IOM_WRITE,

IOM_FLUSH and IOM_ABORT).

In addition, the MQT implementation shall also include code for the class driver

functionality of buffer management and synchronization.

The hierarchy of the MQT shall be as follows:

Figure 21. MQT using services provided by the IOM driver

Advantages:

This approach allows replacement of the IOM driver for SHM by any other available

IOM driver such as HPI. It increases the portability, and reduces the effort for writing

a messaging transport for a new driver.

Disadvantages:

Since messaging shall use the IOM services, the efficiency of messaging may be

reduced, since it would need to pass through the additional IOM layer.

This design may also not be fully portable, since any new driver would also need to

implement additional commands for messaging (which they may not do currently).

The MQT shall not be responsible only for the MQT protocol, but would also need to

implement the class driver functionality for usage of the IOM driver functions.

10.1.1.3 Alternative 3: MQT shall use the services provided by IOM driver through GIO API calls.

Details:

The MQT shall directly utilize the services provided by the IOM driver, through GIO

API calls. The MQT shall not implement the class driver functionality, but shall use

the functionality provided by the GIO class driver.

The existing SHM IOM driver shall not be modified to implement additional

commands for messaging. The MQT shall treat the driver as a low-level driver, which

provides the READ & WRITE functionality.

The IOM driver shall not need to understand the contents of the packet that is sent

to it. It shall only transfer the packet on the specified channel. The complete protocol

for the messaging shall be present within the MQT. In this case, two channels

(outgoing & incoming) shall be reserved for the messaging path.

The hierarchy of the MQT shall be as follows:

SIO MSGQ

DSPLINK MQT

SHM IOM driver (includes SHM services)

DIO adapter

Page 135 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

Figure 22. MQT using services provided by IOM driver using GIO
API calls

Advantages:

This approach provides the highest portability, since the IOM driver shall be agnostic

of the messaging protocol. The IOM driver does not need to be modified, and all the

protocol required is only within the MQT.

It also allows for a simpler MQT, which shall only need to implement the MQT

protocol, and shall not need to implement class driver functionality of buffer

management and synchronization.

This alternative is also highly suited for transport links such as HPI, for which it may

not be possible to have a separate physical-layer protocol for messaging.

Disadvantages:

The major disadvantage of this alternative is that the MQT shifts in the hierarchy, to

go above the GIO API level. The efficiency of the messaging would further decrease

due to this. In addition, it implies that the MQT is at the application level. With the

MSGQ above MQT in hierarchy, it does not seem to indicate that the MSGQ is a

DSP/BIOS™ module.

Two data channels need to be reserved for messaging. Due to this, this alternative

does not directly allow for higher priority for messaging over data. One way to give

higher priority to messaging would be to always check the messaging channels first

for data availability, and the data channels separately in round-robin fashion. But

this involves a small change in the IOM driver, slightly reducing the portability.

10.1.1.4 Other alternatives

Currently, the IOM driver model does not address the 'messaging' type of data

transfer. Due to this, design alternatives that leverage the services provided by the

IOM drivers may have low messaging efficiency.

As a long-term solution, the IOM model could be modified to provide a support for

messaging. In that case, any new drivers written for LINK would automatically

implement the messaging commands, and it would result in an efficient and portable

messaging design.

10.1.1.5 Chosen Alternative

Based on analysis of advantages and disadvantages of each alternative, the

Alternative 3 has been chosen for designing the DSP-side of the DSPLINK messaging

component. This alternative provides the maximum portability, simplicity in the

design, and a modular design.

SIO GIO class driver

SHM IOM driver (includes SHM services)

DIO adapter

MSGQ

DSPLINK MQT

Page 136 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

10.1.2 GPP side

DSPLINK currently implements data transfer through the CHNL component, which

uses the shared memory driver. Within the link driver, the messaging component

shall reserve two channels for transfer of messages. This implies that the messaging

depends on the CHNL component. However, messaging is intended to be a scalable

component of DSPLINK similar to the CHNL component. A design alternative must be

chosen, that allows this scalability, while still allowing maximum code reuse, and

least code duplication.

There are two alternatives for the interaction of messaging with the CHNL component

on the GPP-side.

10.1.2.1 Alternative 1: LDRV MSGQ shall directly us e LDRV CHNL services.

Details:

The LDRV MSGQ subcomponent (LDRV_MSGQ + MQT + MQA) shall directly utilize

the services provided by the existing LDRV CHNL (LDRV_CHNL) subcomponent. The

existing implementation shall be modified to allow two channels reserved for

messaging, in addition to the existing data channels. This shall be transparent to the

user, and shall also provide required portability of existing applications using all 16

allowed data channels.

In addition, there shall be a direct connection of the SHM interface to the LDRV

MSGQ subcomponent, to allow callbacks from the DPC to LDRV MSGQ.

The hierarchy shall be as follows:

Figure 23. LDRV MSGQ directly using LDRV CHNL services

Advantages:

This design allows for maximum reuse of the existing LDRV CHNL code. It also

prevents duplication of existing code within LDRV CHNL, since LDRV MSGQ does not

need to implement the buffer management and synchronization for the messaging

channels. This also allows for a simpler design.

Disadvantages:

Scalability of the messaging and data transfer extends upto the limit of the API and

PMGR layers only. The CHNL component at the LDRV layer shall be required for

messaging also, and cannot be scaled out, even if the data transfer features are not

required.

10.1.2.2 Alternative 2: LDRV CHNL shall be separate d into CHNL-specific functionality, and that
common with MSGQ.

Details:

The LDRV MSGQ subcomponent shall not directly utilize the services provided by the

existing LDRV CHNL subcomponent. The existing implementation of the LDRV CHNL

LDRV MSGQ

SHM interface

LDRV CHNL

Page 137 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

subcomponent shall be modified to separate it out into functionality specific to data

transfer features, and that common with MSGQ.

In addition, there shall be a direct connection of the SHM interface to the LDRV

MSGQ subcomponent, to allow callbacks from the DPC to LDRV MSGQ.

The hierarchy shall be as follows:

Figure 24. LDRV CHNL modified to separate out common
functionality between CHNL & MSGQ.

Advantages:

This design allows for better scalability of the messaging and data transfer. The

LDRV CHNL subcomponent can be scaled out if data transfer features are not

required.

Disadvantages:

Separating out the common buffer management and synchronization functionality

between from the LDRV CHNL subcomponent may not gain much in scalability, since

the major functionality of the LDRV CHNL lies in this. This design might result in

LDRV CHNL being a simple dummy interface over the common code, which

implements the major functionality.

The effort in making this change might not be worth the advantages achieved.

10.1.2.3 Chosen Alternative

Based on analysis of advantages and disadvantages of each alternative, the

Alternative 1 has been chosen for designing the GPP-side of the DSPLINK messaging

component. This alternative provides the simplest design with the required

functionality, maximum code reuse, and minimum code duplication.

LDRV MSGQ

SHM interface

Common buffer management and
synchronization functionality

LDRV CHNL

Page 138 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

10.2 Open Issues

10.2.1 DSP side

1. During MSGQ_delete () , the remote MQT can do notification to its counterparts

on the remote processors. However, this needs to be supported by the MSGQ

module, by making a call into the remote MQTs when a MSGQ is deleted on a

local processor. This call could be a counterpart to the ‘locate’ call made for

location of a queue. It would result in the remote MQT marking the information

about the located queues as invalid.

If error handling is implemented within the MQT, it would need to maintain status

of remote MSGQs, and on receiving a message from the remote processor that a

MSGQ has been deleted, set the status accordingly. This status would then be

checked whenever any MSGQ_put () call is made.

Status: Open. Such notification for deletion of a MSGQ is not currently supported.

2. The remote MQTs may require control messages for exchanging information. A

fixed ID could be reserved for this purpose (for example ID_MQTDSPLINK_CTRL),
and used by the MQTs as the destination ID in the message header. Should this

be standardized within the MSGQ module itself, or kept specific to each MQT?

Status: Closed. Keep the ID specific to the MQT, since it can be resolved at the
MQT level itself, and does not need to go into the MSGQ. Each MQT may have its

own protocol for communication with other MQTs. The MSGQ module provides a

range of valid IDs to be used by the MQTs.

3. During mqtLocate () , how does the remote MQT set the MQT function table in

the newly created MSGQ object for the remote MSGQ? It does not have access to

the transport object, which is maintained within the MSGQ module. Should the

MSGQ module fill in these fields for the object after receiving the handle to the

MSGQ object? However, this needs to be done for the remote MQT only, since the

local MSGQ objects would be filled with the required information during

MSGQ_create () itself.

Status: Closed. Design change resulted in this no longer being an issue.

10.2.2 GPP side

1. We do not allow users to specify the notification functions (because of user-side

kernel-side issues). But should we allow users to specify the notify handles

(semaphore handle?) only? It might enable them to wait on multiple message

queues, as supported on the DSP-side. Feasibility needs to be analyzed.

Otherwise we can add an API on the GPP-side to allow users to wait on multiple

MSGQs (MSGQ_select () similar to SIO_select () ?).

Status: Open

2. Do we need to maintain the MSGQ name on the GPP-side as part of the MSGQ

object at all? We can always pass the ID between the GPP and the DSP, and only

have the name generated and maintained on the DSP. Or do we need to maintain

it on the GPP-side also for debugging reasons?

Status: Closed. Do not keep the name as part of the MSGQ object, but generate

the appropriate name and print within LDRV_MSGQ_debug () and the debug

functions for the MQTs.

Page 139 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

10.3 DSP/BIOS™ Bridge compatibility
According to a generic DSPLINK requirement, design of all components within

DSPLINK must be done with an additional consideration of compatibility with

DSP/BIOS™ Bridge (henceforth referred to as DSPBRIDGE).

This section discusses the challenges in adding the DSPBRIDGE messaging over the

one in DSPLINK, and ways in which the conflicts can be reconciled.

10.3.1 Comparison

This section describes the various differences between the messaging design in

DSPBRIDGE and DSPLINK. It also discusses the ways to reconcile these differences

through changes in design and usage of DSPBRIDGE and DSPLINK messaging.

No. DSP/BIOS™ Bridge DSP/BIOS™ LINK Possible solution

1 The messaging is

node-to-node.

The messaging is

between any

applications on the GPP

and DSP.

A node-to-node

messaging framework

can be built up over

DSPLINK as part of the

DSPBRIDGE layer.

2 Message queues are

created internally, one

per node. These

queues are used for

receiving messages. A

common message pool

is used for queuing up

messages to be sent to

the remote processor.

MSGQs are created on

the receiver side.

There is no common

pool of messages for

sending messages to

the remote processor.

At the DSPBRIDGE level,

the node can still create

a message queue for

receiving messages.

DSPLINK shall internally

manage the remote

MSGQs as part of its

messaging

implementation.

3 When a message is

sent, a copy is made

inside DSPBRIDGE. The

user can free the

message after the ‘Put’

API returns.

After a message is

sent, the receiver owns

it. The sender must not

free the message after

the ‘Put’ API returns.

The DSPBRIDGE

messaging users must

modify their applications

to conform to the

message pointer passing

mechanism used within

the MSGQ design.

4 NODE_PutMessage ()

is a blocking API call,

and waits till the

message transfer is

complete.

MSGQ_put () is a non-

blocking and

deterministic API call.

Successful completion

of the API does not

imply successful

transfer over the

physical link, which

may happen at a later

time. The user is not

intimated when the

actual transfer is

complete.

When used with

DSPLINK, the

DSPBRIDGE API to send

a message cannot block

for completion of the

transfer. There are two

options to resolve this:

1. The NODE_PutMessage
() API definition shall be

changed to indicate that

it is a non-blocking and

deterministic API.

2. The DSPLINK

messaging design shall

Page 140 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

No. DSP/BIOS™ Bridge DSP/BIOS™ LINK Possible solution

be modified to allow the

user to get asynchronous

notification of the

message transfer

completion. In that case,

the NODE_PutMessage ()
API can be built on top of

the DSPLINK API and

made to block until the

completion notification is

received.

5 The message is

allocated directly

through standard OS

calls. Additional APIs

are not provided for

allocation/freeing of

messages.

For zero-copy

messaging, buffers are

allocated through

special APIs.

For all types of

messaging, message

allocation/freeing must

be done through APIs

provided as part of the

messaging component.

The DSPBRIDGE

messaging users must

modify their applications

to make API calls within

DSPBRIDGE to allocate

and free the messages.

Standard OS calls can no

longer be used for

memory allocation and

freeing.

This change would also

make the DSPBRIDGE

messaging design more

consistent by having a

single method of usage

for standard & zero-copy

messages.

6 An API NODE_wait ()
on the DSP-side can be

used for waiting on

messages as well as

multiple streams.

Messaging and data

transfer are two

separate components,

and there is no single

API connecting them,

both on the GPP-side

and the DSP-side.

The DSPBRIDGE

NODE_wait () API can be

built up over the MSGQ &

SIO APIs using a

combination of MSGQ_get

() and SIO_select () .

7 On the DSP-side,

messaging is currently

implemented as part of

the RMS.

On the DSP-side,

messaging shall be

implemented as part of

the MSGQ module.

Some rework of the

DSPBRIDGE messaging

implementation is

required in order to use

the MSGQ

implementation. The

node messaging

functionality shall be built

up over the basic MSGQ

provided as part of

DSP/BIOS™ and

DSPLINK.

Page 141 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

10.4 Implementation notes
This section provides details of additional changes required to the implementation of

DSPLINK. These details specify delta changes from a particular baseline

implementation of DSPLINK.

� The contents of this section refer to changes from the CLEARCASE baseline:

/main/BASE_110.

10.4.1 DSP side

10.4.1.1 SHM link

1. Messaging channels

As part of the DSP configuration, there shall be two values available to the link.

These are the maximum channels in the system, and the base channel ID &

maximum channels for each link.

The messaging channels shall be created as the next two channel IDs following

the maximum channels for a particular link.

2. SHM_Control structure

The SHM control structure shall be updated to add two fields for messaging.

These shall be used in a similar way to dspFreeMask and gppFreeMask , to

indicate availability of a message on the messaging channel.

/** === =================
 * ...
 * @field dspFreeMsg
 * Indicates whether a free message is available on the
 * DSP. (written by DSP/read by GPP)
 * @field gppFreeMsg
 * Indicates whether a free message is available on the
 * GPP. (written by GPP/read by DSP)
 * === =================
 */
typedef struct SHM_Control_tag {
 ...
 volatile Uns dspFreeMsg;
 volatile Uns gppFreeMsg;
} SHM_Control;

3. SHM_FieldId enumeration

The SHM field ID enumeration shall be updated to include the two fields for

accessing the messaging fields within the SHM control structure.

In addition, two fields need to be added for argv and resv so that the two

messaging fields can be accessed through correct values.

/** === =================
 * ...
 * @field argv
 * reserved
 * @field resv
 * reserved
 * @field dspFreeMsg
 * If set, indicates that a free messa ge is available
 * on the DSP.

Page 142 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

 * @field gppFreeMsg
 * If set, indicates that a free messa ge is available
 * on the GPP.
 * === =================
 */
typedef enum {
 ...
 SHM_argv,
 SHM_resv,
 SHM_dspFreeMsg,
 SHM_gppFreeMsg
} SHM_FieldId;

4. LINK_DevObject structure

The device object structure shall be updated to include a field indicating available

output on the messaging channel. This shall be analogous to the corresponding

field dspDataMask for the data channels.

/** === =================
 * ...
 * @field outputMsg
 * Indicates whether a message is avai lable on the DSP
 * to be sent to the GPP.
 * === =================
 */
typedef struct LINK_DevObject_tag {
 ...
 Uns outputMsg;
} LINK_DevObject;

5. MAX_SHM_FIELDS

The value of MAX_SHM_FIELDS shall be updated to reflect the two new fields
added into the SHM control structure.

#define MAX_SHM_FIELDS 14

6. SHM_CONTROL_LEN

The value of SHM_CONTROL_LEN shall be updated to reflect the two new fields
added into the SHM control structure.

const LgUns SHM_CONTROL_LEN = 14 ;

7. Updates for modifying additional fields in the S HM_Control structure

The existing API SHM_init () shall be updated for initialization of the additional

fields added for messaging in the SHM field map.

8. IOM driver functions

The IOM driver functions and data structures shall be updated to operate on the

two additional channels required for messaging. When data is received on a

particular channel from the GPP, the channel ID shall also indicate whether the

channel is a data channel or a messaging channel. The channel ID indicates a

messaging channel if its value is >= the maximum channels in the system. In

that case, the channel ID value shall be adjusted to index within the channel

object array to get the messaging channel object.

9. selectOutputChannel

Page 143 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

selectOutputChannel () shall be updated to check for any available output on

the messaging channel before checking the data channels. Messaging shall thus

be prioritized over data transfer.

10.4.2 GPP side

10.4.2.1 PMGR

1. DRV_CallApi ()

This function invokes the APIs through IOCTL. The existing API is updated to pass

on the MSGQ calls to the appropriate PMGR functions.

2. CMD_Args structure

The CMD_Args structure is updated to include structures for passing the

parameters for the MSGQ APIs from the API to the PMGR layer.

10.4.2.2 SHM link

1. SHM_IS_GPPBUFFERFREE

Add a new macro to check whether a free buffer is available on any of the GPP

channels for this link. This includes data channels as well as messaging channels.

#define SHM_IS_GPPBUFFERFREE(ctrl, chnlId)
 ((TEST_BIT (ctrl->gppFre eMask, chnlId))
 || (ctrl->gppFreeMsg == 1))

This macro is used for checking whether data is available on any one of the

channels of the link. It is used within the DPC to check whether any further

operations are required for getting data from the DSP.

2. SHM_Control structure

The SHM control structure shall be updated to add two fields for messaging.

These shall be used in a similar way to dspFreeMask and gppFreeMask , to

indicate availability of a message on the messaging channel.

/** === =================
 * ...
 * @field dspFreeMsg
 * Indicates whether a free message is available on the
 * DSP. (written by DSP/read by GPP)
 * @field gppFreeMsg
 * Indicates whether a free message is available on the
 * GPP. (written by GPP/read by DSP)
 * === =================
 */
typedef struct SHM_Control_tag {
 ...
 volatile Uint16 dspFreeMsg ;
 volatile Uint16 gppFreeMsg ;
} SHM_Control ;

3. SHM_DriverInfo structure

The SHM driver information structure shall be updated to include a field indicating

available output on the messaging channel. This shall be analogous to the

corresponding field outputMask for the data channels.

/** === =================
 * ...

Page 144 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

 * @field outputMsg
 * Indicates whether a message is avai lable on the GPP
 * to be sent to the DSP.
 * === =================
 */
typedef struct SHM_DriverInfo_tag {
 ...
 Uint32 outputMsg ;
} SHM_DriverInfo ;

4. Updates for modifying additional fields in SHM_C ontrol & SHM_DriverInfo structures

The existing APIs SHM_Initialize () and SHM_Finalize () shall be updated for

initialization and clearing of the additional fields added for messaging in the SHM

control structure and the SHM driver information structure.

SHM_OpenChannel () , SHM_CloseChannel () and SHM_CancelIO () shall be

updated to set/reset the required fields for messaging analogous to the ones for

data channels.

SHM_IO_Request () shall be updated to indicate a request on the messaging

channel in addition to the data channels.

SHM_GetData () and SHM_PutData () shall display a different behavior for

messaging, to operate on the newly added fields.

SHM_Debug () shall be updated to print additional fields for messaging.

5. Updates for callbacks to LDRV_MSGQ on completion of an IO request.

SHM_PutData () shall be updated to make a callback to the LDRV_MSGQ
subcomponent after successfully transferring the message to the DSP.

SHM_GetData () shall be updated to make a callback to the LDRV_MSGQ
subcomponent after receiving a message from the DSP.

The callback functions shall be registered by the remote MQT with the LDRV_MSGQ
subcomponent as part of its function table.

6. GetNextOutputChannel

GetNextOutputChannel () shall be updated to check for any available output on

the messaging channel before checking the data channels. Messaging shall thus

be prioritized over data transfer.

10.4.2.3 Other updates

1. BUF

BUF shall be a generic buffer allocation module placed into the gpp\src\gen

directory.

2. OSAL SYNC changes

The OSAL SYNC subcomponent shall be modified to include APIs for semaphore

handling. APIs SYNC_CreateSEM () ,SYNC_DeleteSEM () ,SYNC_WaitSEM () and

SYNC_SignalSEM () shall be added. Counting as well as binary semaphores shall

be supported. A field within the semaphore object shall identify whether the

semaphore shall be a binary semaphore or a counting semaphore.

3. GEN LIST changes

Page 145 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

The GEN LIST subcomponent shall be modified to remove the ‘self’ field from

the ListElement structure.

This shall allow direct usage of the ‘prev’ and ‘next’ fields in the message

header structure for list manipulation using the LIST subcomponent.

4. LDRV_Object changes

The LDRV_Object structure shall be updated to contain MSGQ information

obtained from the CFG.

It shall also contain profiling information for the MSGQ component.

typedef struct LDRV_Object_tag {
 ...
#if defined (MSGQ_COMPONENT)
 Uint32 numMqas ;
 Uint32 numMqts ;
 MqaObject * mqaObjects ;
 LDRV_MQT_Config * mqtObjects ;
#if defined (DDSP_PROFILE)
 MSGQ_Stats msgqStats ;
#endif /* #if defined (DDSP_PROFILE) */
#endif /* #if defined (MSGQ_COMPONENT) */
} LDRV_Object ;

5. LDRV_Initialize and LDRV_Finalize changes

LDRV_Initialize () shall be updated to also extract information from CFG for

messaging. LDRV_Finalize () shall be updated to finalize the component for

messaging.

6. DspObject changes

The DspObject structure shall be updated to also include information about the

MQT used for messaging with that DSP.

typedef struct DspObject_tag {
 ...
#if defined (MSGQ_COMPONENT)
 Uint32 mqtId ;
#endif
} DspObject ;

7. CFG changes

The CFG structures CFG_Driver and CFG_Dsp shall be updated with the new fields
for messaging.

typedef struct CFG_Driver_tag {
 ...
 Uint32 numMqas ;
 Uint32 numMqts ;
} CFG_Driver ;

typedef struct CFG_Dsp_tag {
 ...
 Uint32 mqtId ;
} CFG_Dsp ;

Corresponding to these changes and the addition of two new CFG objects for the

MQA and MQT, the cfg2c.pl script shall also be updated to generate the objects

for these CFG configuration structures.

Page 146 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

8. LDRV_IO changes

The LDRV_IO functions shall be modified to handle messaging channels in a

different way. Based on the processor ID, information about the MQT to be used

for the processor shall be obtained. This includes information on the link used by

the messaging channels for the MQT.

Based on this information, and the channel ID on which the functions operate,

the link to use shall be identified within the LDRV_IO_GetLinkId () function. If

the channel ID is either MAX_CHANNELS or (MAX_CHANNELS + 1) , the channels are
messaging channels.

9. LDRV_CHNL changes

� LDRV_CHNL_Initialize () shall be modified to ensure that the

initialization is done only once, even when it is called multiple times. When

both data transfer and messaging are used, this function is called from

PMGR_CHNL_Initialize () as well as RMQT_Initialize () .

� LDRV_CHNL_Finalize () shall be modified to ensure that the initialization

is done only once, even when it is called multiple times. When both data

transfer and messaging are used, this function is called from

PMGR_CHNL_Finalize () as well as RMQT_Finalize () .

� The declaration of LDRV_CHNL_Object shall be modified to allow two

channels for messaging. These channels shall be in addition to the ones

configured as the maximum in the system.

STATIC
LDRVChnlObject *
 LDRV_CHNL_Object [MAX_PROCESSORS][MAX_CHANN ELS+2] ;

� Wherever a check is being made for valid channel ID, there shall also be a

check for valid messaging channel ID.

� LDRVChnlIOInfo object shall be updated to include a field for an optional

callback function to be called when the IO request is complete. This

callback function field can be set as NULL if no callback is desired.

typedef struct LDRVChnlIOInfo_tag {
 ...
 FnLdrvChnlCallback callback ;
} LDRVChnlIOInfo ;

� A new function pointer type shall be defined for the callback function:

typedef
DSP_STATUS (*FnLdrvChnlCallback) (IN ProcessorId procId,
 IN DSP_STATUS statusOfIo,
 IN Uint8 * buffer,
 IN Uint32 size,
 IN Pvoid arg) ;

Page 147 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

7. History
V0.10 AUG 04, 2003 Mugdha Kamoolkar

Original version. Includes the DSP-side design alternatives.

V0.20 AUG 07, 2003 Mugdha Kamoolkar

Added high level design details and sequence diagrams for the

selected DSP-side design alternative.

V0.30 AUG 12, 2003 Mugdha Kamoolkar

Added low-level design details for the DSP-side.

V0.40 AUG 21, 2003 Mugdha Kamoolkar

Added design alternatives, high-level design details and sequence

diagrams for the GPP-side.

V0.50 SEP 02, 2003 Mugdha Kamoolkar

Added low-level design details for the GPP-side.

V0.60 SEP 11, 2003 Mugdha Kamoolkar

Incorporated initial design review comments.

V0.70 SEP 16, 2003 Mugdha Kamoolkar

Moved from DSP/BIOS™ MSGQ design v0.92 to v0.93. Added profiling

and debugging APIs and BUF module design. Incorporated second

design review comments.

V0.90 SEP 30, 2003 Mugdha Kamoolkar

Moved from DSP/BIOS™ MSGQ design v0.93 to v0.94.

V1.00 OCT 13, 2003 Mugdha Kamoolkar

Created the baseline version.

V1.05 NOV 06, 2003 Mugdha Kamoolkar

Moved from DSP/BIOS™ MSGQ design v0.94 to v1.00.

V1.06 NOV 27, 2003 Mugdha Kamoolkar

Incorporated third design review comments.

V1.07 DEC 25, 2003 Mugdha Kamoolkar

Moved the GPP-side design from DSP/BIOS™ MSGQ design v1.00 to

the product version.

V1.08 DEC 30, 2003 Todd Mullanix

Moved the DSP-side design from DSP/BIOS™ MSGQ design v1.00 to

the product version.

V1.09 Jan 11, 2004 Todd Mullanix

Removed size field from GPP’s MqaBufAttrs, RmqtAttrs and LmqtAttrs.

Added processorId into the DSPLINK_DSPMSGQ_NAME definition

Page 148 of

148
Version 1.30

DSP/BIOS™ LINK

LNK 031 DES

MESSAGING COMPONENT

Texas Instruments Proprietary Information

V1.10 Jan 22, 2004 Mugdha Kamoolkar

Incorporated design review comments.

V1.11 Aug 09, 2004 Mugdha Kamoolkar

Updated for the new design.

V1.12 Dec 06, 2004 Mugdha Kamoolkar

Incorporated review comments for REVIEW_0084_REQ.

V1.20 Oct 19, 2005 Mugdha Kamoolkar

Added support for MSGQ_count () API.

V1.30 Sep 17, 2005 Mugdha Kamoolkar

Updated for dynamic configuration and enhanced multi-application

support.

««« § »»»

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Requirements
	Assumptions
	Constraints
	High Level Design
	Overview
	DSP side
	Component interaction
	Overview
	Details

	GPP side
	Component interaction
	Overview
	API
	PMGR
	LDRV
	Others

	Details

	Sequence Diagrams
	Initialization
	MSGQ
	Transport Open

	Finalization
	MSGQ
	Transport Close

	MSGQ_open ()
	MSGQ_close ()
	MSGQ_locate ()
	LDRV_MSGQ_locateAsync
	MSGQ_release ()
	MSGQ_alloc ()
	MSGQ_free ()
	MSGQ_put ()
	MSGQ_get ()
	MSGQ_setErrorHandler ()
	MSGQ_count ()

	API
	Constants & Enumerations
	MSGQ_INVALIDMSGQ
	MSGQ_INVALIDPROCID
	MSGQ_INTERNALIDSSTART
	MSGQ_ASYNCLOCATEMSGID
	MSGQ_ASYNCERRORMSGID
	MSGQ_INTERNALIDSEND
	MSGQ_MQTMSGIDSSTART
	MSGQ_MQTMSGIDSEND
	MSGQ_INVALIDMSGID
	MSGQ_MQTERROREXIT
	MSGQ_MQTFAILEDPUT
	MSG_HEADER_RESERVED_SIZE
	IS_VALID_MSGQ
	MSGQ_getMsgId
	MSGQ_getMsgSize
	MSGQ_setMsgId
	MSGQ_getDstQueue
	MSGQ_setSrcQueue
	MSGQ_isLocalQueue

	Typedefs & Data Structures
	MSGQ_MqtError
	MSGQ_Id
	MSGQ_Queue
	MSGQ_Attrs
	MSGQ_LocateAttrs
	MSGQ_LocateAsyncAttrs
	MSGQ_MsgHeader
	MSGQ_AsyncLocateMsg
	MSGQ_AsyncErrorMsg
	MSGQ_Instrument
	MSGQ_Stats

	API Definition
	MSGQ_transportOpen
	MSGQ_transportClose
	MSGQ_open
	MSGQ_close
	MSGQ_locate
	MSGQ_locateAsync
	MSGQ_release
	MSGQ_alloc
	MSGQ_free
	MSGQ_put
	MSGQ_get
	MSGQ_getSrcQueue
	MSGQ_count
	MSGQ_setErrorHandler
	MSGQ_instrument
	MSGQ_debug

	PMGR
	API Definition
	PMGR_MSGQ_setup
	PMGR_MSGQ_destroy
	PMGR_MSGQ_transportOpen
	PMGR_MSGQ_transportClose
	PMGR_MSGQ_open
	PMGR_MSGQ_close
	PMGR_MSGQ_locate
	PMGR_MSGQ_locateAsync
	PMGR_MSGQ_release
	PMGR_MSGQ_alloc
	PMGR_MSGQ_free
	PMGR_MSGQ_put
	PMGR_MSGQ_get
	PMGR_MSGQ_count
	PMGR_MSGQ_setErrorHandler
	PMGR_MSGQ_instrument
	PMGR_MSGQ_debug

	LDRV MSGQ
	Typedefs & Data Structures
	FnMqtInitialize
	FnMqtFinalize
	FnMqtOpen
	FnMqtClose
	FnMqtLocate
	FnMqtRelease
	FnMqtPut
	FnMqtDebug
	LDRV_MSGQ_State
	LDRV_MSGQ_Object
	LDRV_MSGQ_TransportObj
	MQT_Interface
	LDRV_MQT_Config

	API Definition
	LDRV_MSGQ_setup
	LDRV_MSGQ_destroy
	LDRV_MSGQ_transportOpen
	LDRV_MSGQ_transportClose
	LDRV_MSGQ_open
	LDRV_MSGQ_close
	LDRV_MSGQ_locate
	LDRV_MSGQ_locateAsync
	LDRV_MSGQ_release
	LDRV_MSGQ_alloc
	LDRV_MSGQ_free
	LDRV_MSGQ_put
	LDRV_MSGQ_get
	LDRV_MSGQ_count
	LDRV_MSGQ_setErrorHandler
	LDRV_MSGQ_instrument
	LDRV_MSGQ_debug
	LDRV_MSGQ_locateLocal
	LDRV_MSGQ_sendErrorMsg
	LDRV_MSGQ_NotImpl

	Internal Discussions
	Design Alternatives
	DSP side
	Alternative 1: MQT shall use SHM services from an SHM abstraction layer.
	Alternative 2: MQT shall use the services provided by the IOM driver.
	Alternative 3: MQT shall use the services provided by IOM driver through GIO API calls.
	Other alternatives
	Chosen Alternative

	GPP side
	Alternative 1: LDRV MSGQ shall directly use LDRV CHNL services.
	Alternative 2: LDRV CHNL shall be separated into CHNL-specific functionality, and that common with MSGQ.
	Chosen Alternative

	Open Issues
	DSP side
	GPP side

	DSP/BIOS™ Bridge compatibility
	Comparison

	Implementation notes
	DSP side
	SHM link

	GPP side
	PMGR
	SHM link
	Other updates

	History

