

Template Version 1.2

Version 1.65 Page 1 of 77

PROGRAMMER’S GUIDE

DSP/BIOS™ LINK

PROGRAMMER’S GUIDE

LNK 161 USR

Version 1.65

Page 2 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

This page has been intentionally left blank.

Page 3 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make
corrections, modifications, enhancements, improvements, and other changes to its products
and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should
verify that such information is current and complete. All products are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is
not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers
are responsible for their products and applications using TI components. To minimize the
risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted
under any TI patent right, copyright, mask work right, or other TI intellectual property right
relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third–party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other
intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if
reproduction is without alteration and is accompanied by all associated warranties,
conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered
documentation.

Resale of TI products or services with statements different from or beyond the parameters
stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

This page has been intentionally left blank.

Page 5 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

TABLE OF CONTENTS

1 Introduction ...8
1.1 Purpose & Scope..8
1.2 Terms & Abbreviations..8
1.3 References..8
1.4 Overview ..8

2 Getting started with writing applications..8
2.1 Generic information.. 8
2.2 Static buffer system with minimal control communication with the DSP 11
2.3 Dynamic buffer system with minimal control communication with the

DSP ... 12
2.4 Multiple buffers to be sent between GPP and DSP 14

3 PROC...15
3.1 Overview .. 15
3.2 Configuration and changing system memory map 16
3.3 Dsplinkcfg script .. 19
3.4 Support for symbol stripped DSP executables.. 20
3.5 Support for multiple DSP boot modes ... 21
3.6 Support for multiple types of COFF based loaders 37
3.7 Concepts .. 40

4 POOL...41
4.1 Overview .. 41
4.2 Configuration .. 42
4.3 POOL requirements for different DSP/BIOS™ LINK components................. 45
4.4 POOL setup for multi process applications... 47

5 RingIO ..50
5.1 Overview .. 50
5.2 Generic features .. 51
5.3 Acquiring and releasing data ... 52
5.4 Attributes ... 54
5.5 Foot-buffer.. 56
5.6 Notification ... 59

6 Multi-DSP support...69
6.2 Features ... 69

7 Multi-application and multi-process support...73
7.1 Overview .. 73
7.2 Features ... 73

Page 6 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

8 Dos and Don’t’s for writing applications using DSP/BIOS LINK..................77
8.1 Dos .. 77
8.2 Don'ts .. 77

Page 7 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

 TABLE OF FIGURES

Figure 1. App scenario: Static buffer system with minimal control

communication with the DSP... 12
Figure 2. App scenario: Dynamic buffer system with minimal control

communication with the DSP... 13
Figure 3. App scenario: Multiple buffers to be sent between GPP and DSP 15
Figure 4. Normal Boot Mode ... 22
Figure 5. External Load Mode.. 25
Figure 6. External Load And Start Mode ... 30
Figure 7. RingIO overview .. 50
Figure 8. Foot-buffer Use-Case Scenario 1.. 57
Figure 9. Foot-buffer Use Case Scenario 2 .. 58

Page 8 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

1 Introduction

1.1 Purpose & Scope
This document is a Programmer’s Guide for DSP/BIOS™ LINK. It gives information
about the various concepts and components in DSP/BIOS™ LINK along with their
features, concepts and programming tips.

The document is targeted at the application developers of DSP/BIOS™ LINK.

1.2 Terms & Abbreviations
DSPLINK DSP/BIOS™ LINK

O This bullet indicates important information.

Please read such text carefully.

q This bullet indicates additional information.

1.3 References
1. UserGuide DSP/BIOS™ LINK User Guide

1.4 Overview
DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit
that simplifies the development of embedded applications in which a general-purpose
microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK
provides control and communication paths between GPP OS threads and DSP/BIOS™
tasks, along with analysis instrumentation and tools.

2 Getting started with writing applications
To write applications using DSP/BIOS™ LINK, it is important to select the most
appropriate DSPLINK modules to be used as per the system and application
design. Based on the application’s requirements, all or a subset of the features
provided by DSPLINK can be used.

The following section describes simple application scenarios. This information can be
used to select the modules providing the most optimum performance and footprint
for the system, while still giving the simplest application design.

2.1 Generic information
1. PROC component is always required for all applications using DSP/BIOS LINK.

This component provides the basic functionality to setup, boot-load, control and
communicate with the processors in the system.

2. To understand how the APIs for each component are used, the GPP and DSP-side
of the sample applications provided with each DSPLINK release can be used as
reference.

3. In addition, a description of the setup, execution and shutdown control flow for
each component is given within the User Guide. The designs of the sample
applications are also detailed in the User Guide.

Page 9 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

2.1.1 Component features
Te following information may be useful to decide which DSPLINK component is best
suited to meet the application’s messaging and data transfer requirements:

NOTIFY

NOTIFY component may be used for messaging/data transfer if:

1. Only 32-bit information needs to be sent between the processors.

2. Prioritization of notifications is required. For example, one low priority event
(e.g. 30) can be used for sending buffer pointers. A higher priority event (e.g.
5) can be used to send commands.

3. The notification is to be sent infrequently. If multiple notifications for the
same event are sent very quickly in succession, each attempt to send a
specific event spins, waiting till the previous event has been read by the other
processor. This may result in inefficiency.

4. Multiple clients need to be able to register for the same notification event.
When the event notification is received, the same notification with payload is
broadcast to all clients registered for that event.

MSGQ

MSGQ component may be used for messaging/data transfer if:

1. Application requires single reader and multiple writers.

2. More than 32-bit information needs to be sent between the processors using
application-defined message structures.

3. Variable sized messages are required.

4. Reader and writer operate on the same buffer sizes.

5. Messages need to be sent frequently. In this case, the messages are queued
and there is no spin-wait for the previous event to be cleared.

6. The ability to wait when the queue is empty is desired. This is inbuilt within
the MSGQ protocol, and no extra application code is required. If MSGQ_get ()
is called on an empty queue, it waits till a message is received. If NOTIFY is
used, the application must register the callback, or wait on a semaphore that
is posted by the application’s notification callback function.

7. It is desired to have the ability to move the Message Queue between
processors. In this case, the MSGQ_locate () on other processors internally
takes care of locating the queue, and the application code sending messages
to this queue does not need to change.

8. It is desired to also have DSP-DSP communication. In this case, Message
Queue component in DSP/BIOS allows usage of different Message Queue
Transport modules independent of DSPLINK to communicate between DSPs.

MPLIST

MPLIST component may be used for messaging/data transfer if:

1. Application requires multiple writers and multiple readers.

2. The application wishes to perform out-of-order processing on received
packets. This is not possible with MSGQ or with NOTIFY. With MPLIST, the

Page 10 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

reader may traverse the shared list and choose any buffer within the list to be
removed.

3. Making a specific buffer as high priority is desired. The sender to an MPLIST
can make a specific buffer/message as high priority by pushing it to the head
of the queue instead of placing it at the end of the queue. APIs are provided
to traverse the list and insert element before any specified element in the
queue.

4. Inbuilt notification is not required. If the application desires flexibility in when
notification is to be sent/received, MPLIST module can be used. The
application may use NOTIFY module to send & receive notifications as per its
specific requirements. This may result in better performance and lesser
number of interrupts, tuned to application’s requirements. However, the
disadvantage is that additional application code needs to be written for
notification, which is present inherently within MSGQ component.

5. Reader and writer operate on the same buffer sizes.

6. More than 32-bit information needs to be sent between the processors using
application-defined message structures.

7. Variable sized messages/data buffers are required.

8. Messages/data buffers need to be sent frequently. In this case, the messages
are queued directly. No notification/spin-wait for notification is performed.

CHNL

CHNL component may be used for data transfer if:

1. Single reader and single writer are required.

2. Fixed size data buffers are required.

3. Reader and writer operate on the same buffer sizes.

4. Existing SIO drivers for other peripherals are to be used in conjunction with
the DSPLINK driver for GPP-DSP communication. In such scenarios, SIO
provides a standard means of communication and inter-operability.

5. Simple synchronized data streaming is required. For such requirements, CHNL
module provides a simple issue-reclaim protocol. The application only needs
to issue empty/full buffers on both processors, and these get exchanged
when buffers are available on both processors on the same channel. If buffer
is not available, inbuilt wait & notification is available when attempt is made
to reclaim the buffer.

6. Multiple buffers can be easily queued for better performance.

RingIO

RingIO component may be used for messaging & data transfer if:

1. Single reader and single writer are required.

2. Data, as well as attributes/messages associated with data are to be sent &
received.

3. Writer and reader need to execute independently of each other. The size of
buffer used by writer may be different from the buffer size needed by reader.

Page 11 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

4. The buffer sizes for acquire and release for writer & reader do not need to
match. Writer/reader may choose to release lesser buffer size than was
acquired, or may choose to acquire more data before releasing any data.

5. Applications have different notification needs. The application can minimize
interrupts by choosing the most appropriate type of notification based on
watermark.

6. It is desired to have the capability to cancel unused data that was acquired
but not released.

7. It is desired to flush the contents of the ring buffer to clear the ring buffer of
released data. For example, when ongoing media file play is stopped and new
media file is to be streamed and decoded.

The following sections give examples of possible application scenarios and suggest
design and DSPLINK components to be used for each.

2.2 Static buffer system with minimal control communication with the DSP

2.2.1 Application requirements:
1. Boot-load the DSP

2. Statically reserve a region of memory to be shared with DSP. The complete
system is static.

3. GPP and DSP may need to infrequently ping each other with some control
information.

Page 12 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

2.2.2 Suggested design

Figure 1. App scenario: Static buffer system with minimal control
communication with the DSP

1. PROC module is used to boot-load the DSP. The DSP executable is present in
the GPP file system.

2. Two regions of memory can be statically reserved (at compile time) through
the DSPLINK dynamic configuration file (CFG_<PLATFORM>.c). On DSP-side, a
similar configuration needs to be done within TCF file to reserve the memory.
One region of memory can be used for GPP->DSP transfers, and the other for
DSP->GPP transfers. Since the memory is statically reserved, both GPP and
DSP are aware of their start addresses and sizes.

3. NOTIFY module can be used to send 32-bit control messages between the
GPP and DSP.

2.2.3 DSP/BIOS LINK components used
1. PROC

2. NOTIFY

2.3 Dynamic buffer system with minimal control communication with the DSP

2.3.1 Application requirements:
1. Boot-load the DSP

2. Be able to dynamically allocate and free regions of memory to be shared with
DSP. For example, this may be needed if same DSP executable is to be used with
different GPP applications having different buffer size requirements.

GPP

GPP->DSP
region

DSP->GPP
region

Shared Memory

DSP

GppApp DspApp

NOTIFY_notify

PROC_write

PROC_read

Direct
memory
reads &
writes

Page 13 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

3. Buffer requirements for each application are limited. For example, each
application just needs to allocate one or two buffers during setup phase, and
after this, the same buffers are used directly by GPP and DSP.

4. GPP and DSP may need to infrequently ping each other with some control
information.

2.3.2 Suggested design

Figure 2. App scenario: Dynamic buffer system with minimal control
communication with the DSP

1. PROC module is used to boot-load the DSP. The DSP executable is present in
the GPP file system.

2. A POOL is opened with a configuration of the sizes of buffers to be shared
between the GPP and DSP.

3. Buffers are allocated from the POOL as required by the GPP or DSP during
setup phase of the application.

4. If allocated on GPP, the buffer address received from POOL_alloc can be
translated to DSP address space to get the corresponding DSP address of the
same buffer using POOL_translateAddr.

5. NOTIFY module can be used to send the 32-bit buffer addresses (or other 32-
bit control information) between the GPP and DSP.

6. If the buffer is allocated on DSP-side, the DSP address received on the GPP
can be translated using POOL_translateAddr.

GPP

POOL

Shared Memory

DSP

GppApp DspApp

NOTIFY_notify

POOL_alloc

Direct memory
reads & writes

POOL_free

POOL_translateAddr

Page 14 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

7. The buffers are now used by GPP and DSP for sending/receiving data. NOTIFY
module can be used to inform the processors when data is available/freed in
the buffers.

8. If both GPP and DSP may have to simultaneously access the pool buffers, and
mutually exclusive access is to be provided to the buffers, the MPCS module
can be optionally used to protect access to the buffers.

2.3.3 DSP/BIOS LINK components used
1. PROC

2. NOTIFY

3. POOL

4. MPCS (optional)

2.4 Multiple buffers to be sent between GPP and DSP

2.4.1 Application requirements:
1. Boot-load the DSP

2. Be able to dynamically allocate and free regions of memory to be shared with
DSP.

3. Multiple buffers are required by each application. The buffers may be allocated
and freed at run-time. The buffers need to be sent between GPP and DSP during
execution phase.

2.4.2 Suggested design

MPLIST

GPP

POOL

Shared Memory

DSP

GppApp DspApp

NOTIFY_notify

POOL_alloc

POOL_free

POOL_translateAddr

POOL_alloc

POOL_free

MSGQ MSGQ

OR OR

Page 15 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

Figure 3. App scenario: Multiple buffers to be sent between GPP and
DSP

1. PROC module is used to boot-load the DSP. The DSP executable is present in
the GPP file system.

2. A POOL is opened with a configuration of the sizes of buffers to be shared
between the GPP and DSP.

3. Buffers are allocated from the POOL as required by the GPP or DSP.

4. If allocated on GPP, the buffer addresses received from POOL_alloc can be
translated to DSP address space to get the corresponding DSP addresses of
the same buffers using POOL_translateAddr.

5. If the buffers are to be sent infrequently, the NOTIFY module can be used to
send the 32-bit buffer addresses (or other 32-bit control information)
between the GPP and DSP. If one processor may need to send multiple
buffers to the other processor in one shot, either MSGQ or MPLIST module
can be used. If additional information (e.g. buffer attributes) is required to be
associated with the data buffer, a message structure can be defined that has
these attributes, and MSGQ or MPLIST component can be used to send the
message to the other processor.

6. If the buffers are allocated on DSP-side, the DSP addresses received on the
GPP can be translated using POOL_translateAddr.

2.4.3 DSP/BIOS LINK components used
1. PROC

2. NOTIFY / MSGQ / MPLIST

3. POOL

3 PROC

3.1 Overview
The PROC module provides functionality to setup, boot-load, control, and
communicate with the processors in the system. The master processor in the system
is responsible for all control activities on the slave processors in the system. For
example, in an SoC such as Davinci, the ARM processor is the master and the DSP is
the slave.

The specific services provided by the PROC module are:

1. Setup and destroy the DSP/BIOS LINK driver.

2. Attach to and detach from a specific processor. Every process in the system
wishing to communicate with a specific processor must do this to gain access to
the processor.

3. Load a DSP executable on the target processor. This executable is present within
the GPP file system.

4. Start execution of the DSP executable on the target processor.

5. Stop execution of the target processor

6. Write to and read from DSP memory

Page 16 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

7. Get the current state of the PROC component. This indicates the last successful
state transition for the DSP. It does not return the actual run-time state of the
DSP.

8. Perform platform-specific control activities with the target processor.

3.2 Configuration and changing system memory map
The PROC module can be configured as part of the dynamic configuration.

• Instances of the LINKCFG_Dsp object contain all configuration information for
each DSP in the system. The following information in this object most often
needs to be customized by the system developer:

o Number of memory entries in the memory map for DSP, which is
visible to the GPP.

o In case the CPU frequency for the DSP on the user platform is different
from the BIOS-set value, this needs to be set as part of this object. On
platforms like OMAP3530 and DM6467, the LSP allows querying of DSP
clock rate. In these platforms, the LSP is queried to get the default
DSP clock rate when default -1 is specified.

o If the DSP address of the reset-vector memory entry has been
changed, this needs to be reflected in the DSP object as well. The
resume address is some number of bytes after the reset vector, and
hence this needs to be changed as well.

• The memory map of the platform needs to be configured as part of the
LINKCFG_MemEntry memory table.

o By default, DSPLINK configures 1 MB of shared memory and 1MB of
memory for loading the DSP code/data. If the system requires more
memory, this needs to be modified/added in the memory table.

o If the application wishes to reserve any additional memory to be used
with PROC_read and PROC_write APIs to read from and write into DSP
memory, this must be done by making additional memory entries
within the memory table.

o As per your application requirement, you can either add or remove
memory entries. The number of memory entries must be
correspondingly updated in LINKCFG_dspObject: field MEMENTRIES
which indicates number of configured memory entries.

o The fields in the memory entry that are usually changed are the
physical address, DSP virtual address and size of the memory region.

o To match the changes in the memory table, the DSP-side application’s
TCF file must be modified to indicate this information to DSP/BIOS
configuration.

o This information also needs to be conveyed to the GPP-side operating
system to ensure that it does not place any of its code/data in this
reserved region. On MVL Linux, this is done by specifying MEM=<>
parameter in the boot args. The method to do this varies based on the
GPP-side operating system. For more information on this, please refer
to the platform-specific Install guide document available with the
release.

Page 17 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

o The shared field is used to decide whether mapping is required for
ARM-side. If ARM-side mapping is required, set the shared field to
TRUE. For example: In case of pool, shared memory etc. shared field
should be TRUE. If ARM-side mapping is not required, set the shared
field to FALSE. For example: In case of internal DSP regions (e.g. L4
core of OMAP2530 and OMAP3530), ARM-side mapping is not required.
So set the shared field to FALSE. If any mappings are unnecessarily
enabled, ARM-side can run out of virtual memory space.

• The physical interrupts to be used by the system for IPC and application use
are configured within the LINKCFG_Ips instance.

o The default configuration contains IPS configuration for one or more
IPS instances. If the number of IPS instances is modified, this needs to
be updated within the corresponding LINKCFG_LinkDrv instance.

o The DSP-side interrupt vector number to be used for the ARM->DSP
interrupts can be configured as per the system requirements to ensure
that it does not clash with the other system usage.

o The poll value indicates the number of cycles for which the IPS polls
waiting for previous event to be cleared. If specified as -1, this wait is
infinite. By specifying a value tuned to the application’s requirements,
error handling for DSP crash/block scenarios can be done by the
application.

o An IPS can be configured to work either in both GPP->DSP and DSP-
>GPP directions, or in one of the two. This can be configured based on
availability of physical interrupts between the GPP and DSP.

3.2.1 Making configuration changes
For making configuration changes, it is very simple to update existing default
configuration, instead of keeping the application’s own copy of the configuration. This
can be done by updating existing configuration prior to PROC_setup call. Using this
method allows the application to remain independent of changes in configuration,
and makes it easier to have platform-independent application code.

Example of runtime change of existing configuration:

/* Extern declaration to default configuration object in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

/* Increase maximum Message Queues to 32. */
LINKCFG_config.gppObject->maxMsgqs = 32 ;

 ...
 ...

/* Initialize and configure the DSPLink driver */
status = PROC_setup (&LINKCFG_config) ;

3.2.2 Making configuration changes to set the task priority and stack size
DSP/BIOS Link supports the task mode where the application can be configured for
the TSK or SWI mode for the existing SWI functions of ZCPYMQT and ZCPYDATA. If

Page 18 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

MPCS protection is TSK-base, then DSPLink MSGQ and CHNL drivers will use tasks
on DSP-side.

In TSK based systems, application writer can set the task priority and the task stack
size for ZCPYMQT task. This can be done by updating

• Argument 1 for Task priority

• Argument 2 FOR Task stack size

STATIC LINKCFG_Mqt LINKCFG_mqtObjects [] =
 {
 "ZCPYMQT", /* NAME : Name of the Message Queue
Transport */
 …
 …
 …
 12, /* ARGUMENT1 : First MQT-specific
argument */
 0x2048 /* ARGUMENT2 : Second MQT-specific
argument */
 }
}

In TSK based systems, application writer can set the task priority for the statically
created ZCPYDATA task.

This can be done by updating

• Argument 1 for Task priority
STATIC LINKCFG_DataDrv LINKCFG_dataTable_00 [] =
{
 {
 "ZCPYDATA", /* NAME : Name of the data driver */
 …
 …
 …
 14 , /* ARGUMENT1 : First data driver specific
argument */
 0x0 /* ARGUMENT2 : Second data driver
specific argument */
 }
} ;

Page 19 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

3.3 Dsplinkcfg script

3.3.1 Support for legacy content in DSPLink 1.6x stream
DSPLink 1.6x releases added support for multiple DSPs connected to GPP in star-
topology. In context of this change, certain API signature’s changed between 1.5x
streams and 1.6x streams.

The --legacy option is provided if application writer wants to use the DSPLink API’s
exactly the same as what they were in DSPLink 1.5x. If application writer has legacy
content which they do not want to change, configure DSPLink using the --legacy
option in the dsplinkcfg script.

If application developer does not have existing content, do not use this option; Start
using API’s as present in the latest 1.6x release.

3.3.2 Support for TSK mode and SWI mode

A command line option is provided in dsplinkcfg.pl static configuration script to
enable TSK mode instead SWI mode. To enable TSK mode, pass –DspTskMode = 1
option to dsplinkcfg.pl script during DSPLink build configuration. This is an optional
argument. If not provided, the current default of DSP SWI mode is assumed.

How does application writer choose between TSK mode or SWI mode?
Whenever any of our modules use MPCS for multi-processor protection of shared
structures, SWI_disable is called on the DSP-side to protect locally i.e. no other tasks
or SWI’s are allowed to execute, and scheduler was disabled. While this would give
better performance for DSPLink APIs (since you are making sure it runs to
completion), it holds up any other tasks or SWI’s that may want to execute even non
DSPLink work, till the MPCS lock is released. Also, the time for which the DSP keeps
spinning to get the lock with scheduler disabled can become high if the ARM thread
has taken the lock and got preempted. MSGQ and CHNL modules drivers on the DSP-
side also used SWI’s for doing actual processing on receiving the IPC interrupt.
Similarly, other applications could use DSPLink APIs from SWI context.

In DspTskMode, the behavior of MPCS is changed to have MPCS block on a
semaphore instead of disabling scheduler. This ensures that only tasks that are
actually using DSPLink would block waiting for the semaphore lock to be released.
Other non DSPLink tasks and SWI’s would continue executing. To enable this, MSGQ
and CHNL drivers have to create server tasks to receive and handle the IPC
interrupts. Another impact of this is that in DspTskMode, DSPLink APIs cannot be
called from SWI context, and can be called only from TSK context, since they
internally call MPCS which would block on a semaphore. This mode would give better
latency and enable other tasks/SWI’s to run even though DSPLink is blocked, but
potentially the DSPLink API could take longer to run to completion, and hence give
worse throughput for DSPLink.

Depending on the application need, choose the relevant mode.

Page 20 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

3.4 Support for symbol stripped DSP executables
DSP/BIOS Link supports application writers wishing to use a DSP executable from
which the symbol table has been stripped out. This is done to reduce the size of the
DSP executable.

The size of the DSP side executable can be reduced by the following ways:

3.4.1 Remove debug information
The debug information can be reduced using post-processing utility provided within
the DSP CGTOOLS. For example, for C6x based devices, strip6x utility is used. When
strip6x utility is used with default options, no change in applications using DSP/BIOS
Link needs to be made. However source level debugging is not possible.

3.4.2 Remove the full symbol table
The size of the DSP side executable can be reduced by using the –s option in the
linker. Entire symbol table can be removed by using the –s option. If strip6x utility is
used with -p option, it has the similar effect, and the DSP executable size is reduced
further. Applications using this feature must set the value of the
.data:DSPLINK_shmBaseAddress section in the application specific linker command
file to the start of shared memory.

q If a non-symbol stripped DSP executable is used, or an executable from which
only debug information is removed, but symbol table is still present, the
below steps are not required. In this case, DSPLink internally determines the
address of the _DSPLINK_shmBaseAddress symbol using the symbol table on
the GPP-side and uses it to fill the DSP-side section with the right address.

3.4.2.1 Example
For example, the application linker command file must contain a directive similar to
the following:

SECTIONS {
.data:DSPLINK_shmBaseAddress: fill=0x8FE05000 {} > DDR
}

The fill value should be the start address of the shared memory used for the DRV
component and varies with the devices and memory configuration used.

Please refer to the configuration file CFG_<platform.c> for the start of the DRV
component.

3.4.2.2 Determining the location of the DRV component
The DRV component is present at the very start of shared memory assigned to it
through the DSPLink dynamic configuration file CFG_<platform.c>. For most
devices, this is the start of the DSPLINKMEM/DSPLINKMEM1 memory region, depending
on which memory region is used for placement of the LINKCFG_LinkDrv sub-module.

Page 21 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

3.5 Support for multiple DSP boot modes

3.5.1 Overview
Multiple applications/processes on the GPP may wish to use the services provided by
DSPLink to control and communicate with the DSP. DSPLink supports multiple boot
modes to enable different use cases.

DSPLink PROC module supports three different scenarios for DSP boot-loading:

• Normal Boot Mode: DSPLink loads and starts the DSP running
o DSP_BootMode_Boot_NoPwr
o DSP_BootMode_Boot_PwrDefault

• External Load Mode: DSPLink only starts the DSP running
o DSP_BootMode_NoLoad_NoPwr
o DSP_BootMode_NoLoad_Pwr

• External Load and Start Mode: DSPLink does not load or start the DSP
running

o DSP_BootMode_NoBoot
In all modes, the application calls all DSPLink APIs for PROC module. DSPLink
internally checks the boot mode and accordingly determines the correct action to be
taken for each API. For example, APIs PROC_load, PROC_start, PROC_stop need to
be called even in External Load or External Load and Start mode.

3.5.2 Normal Boot Mode
In this boot mode:

• GPP boots first
• Uses DSPLink to load the DSP
• Uses DSPLink to start the DSP running

Page 22 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

Figure 4. Normal Boot Mode

3.5.2.1 DSP_BootMode_Boot_NoPwr
In this boot mode, DSPLink does not do power management of DSP.

• PROC_attach places the DSP in local reset. It does not power up the DSP.
• PROC_load loads the DSP executable into DSP memory.
• PROC_start sets entry point for DSP i.e. c_int00 and release DSP from reset.
• PROC_stop places DSP in local reset.
• PROC_detach does not power down the DSP.

Application changes to support this boot mode

The default DSPLink configuration, or application configuration passed to DSPLink in
PROC_setup needs to be updated.

The configuration can be changed to use the DSP_BootMode_Boot_NoPwr boot mode
in one of two possible ways:

3.5.2.1.1 Statically changing application-specific configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 DSP_BootMode_Boot_NoPwr, /* DODSPCTRL : Type of boot mode */

GPP

PROC_setup

PROC_attach

PROC_load

PROC_start

PROC_stop

PROC_detach

Other operations

PROC_destroy

DSP starts running

DSP is loaded

DSPLINK_init

DSP is reset

Receive ISR
Reset the DSP. Can

DSP

Call
from
main

Page 23 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

 ...
}

3.5.2.1.2 Changing default configuration file at run-time
/* Extern declaration to default configuration object in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...

 /* Change dynamic configuration for boot mode */
 LINKCFG_config.dspConfigs [processorId]->dspObject->doDspCtrl =
DSP_BootMode_Boot_NoPwr ;

3.5.2.2 DSP_BootMode_Boot_Pwr
In this boot mode, DSPLink does power management of DSP.

• PROC_attach places the DSP in local reset. It powers up the DSP.
• PROC_load loads the DSP executable into DSP memory.
• PROC_start sets entry point for DSP i.e. c_int00 and release DSP from reset.
• PROC_stop places DSP in local reset.
• PROC_detach powers down the DSP.

Application changes to support this boot mode

The default DSPLink configuration, or application configuration passed to DSPLink in
PROC_setup needs to be updated.

The configuration can be changed to use the DSP_BootMode_Boot_Pwr boot mode in
one of two possible ways:

3.5.2.2.1 Statically changing application-specific configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 DSP_BootMode_Boot_Pwr, /* DODSPCTRL : Type of boot mode */
 ...
}

3.5.2.2.2 Changing default configuration file at run-time
/* Extern declaration to default configuration object in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

 /* Change dynamic configuration for boot mode */
 LINKCFG_config.dspConfigs [processorId]->dspObject->doDspCtrl =
DSP_BootMode_Boot_Pwr ;

3.5.2.2.3 Application changes to support this boot mode
The default DSPLink configuration, or application configuration passed to DSPLink in
PROC_setup needs to be updated.

Example of application configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 DSP_BootMode_Boot_Pwr, /* DODSPCTRL : Type of boot mode */

Page 24 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

 ...
}

Page 25 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

3.5.3 External Load Mode
In this boot mode:

• GPP boots first
• Application/GPP boot-loader pre-loads the DSP
• Uses DSPLink to optionally power up the DSP
• Uses DSPLink to start the DSP running

Figure 5. External Load Mode

3.5.3.1 DSP_BootMode_NoLoad_NoPwr
• PROC_attach places the DSP in local reset. It does not power up the DSP.
• PROC_load does not load the DSP executable into DSP memory.
• PROC_start sets entry point for DSP i.e. c_int00 and release DSP from reset.
• PROC_stop places DSP in local reset.
• PROC_detach does not power down the DSP.

Application changes to support this boot mode

1. The default DSPLink configuration, or application configuration passed to DSPLink
in PROC_setup needs to be updated.

2. Parameters passed to PROC_load API change to support the NOLOADER.

GPP

PROC_setup

PROC_attach

PROC_load

PROC_start

PROC_stop

PROC_detach

Other operations

PROC_destroy

DSP starts running

DSP is loaded

DSPLINK_init

DSP is reset

Other operations

DSP

Call
from
main

Does not actually load the DSP

Reset the DSP. Can be restarted
if external loader reloads the
DSP

Page 26 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

3.5.3.1.1 Step 1: Update DSPLink configuration
The configuration can be changed to use the DSP_BootMode_NoLoad_NoPwr boot
mode in one of two possible ways:

3.5.3.1.1.1 Statically changing application-specific configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 "NOLOADER", /* LOADERNAME : Name of the DSP executable loader */
 ...
 DSP_BootMode_NoLoad_NoPwr, /* DODSPCTRL : Type of boot mode */
 ...
}

3.5.3.1.1.2 Changing default configuration file at run-time
/* Extern declaration to default configuration object in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

 /* Change dynamic configuration for boot mode */
 LINKCFG_config.dspConfigs [processorId]->dspObject->doDspCtrl =
DSP_BootMode_NoLoad_NoPwr ;
 strcpy (LINKCFG_config.dspConfigs [processorId]->dspObject->loaderName, "
NOLOADER") ;

3.5.3.1.2 Step 2: Call PROC_load with different parameters for NOLOADER
The NOLOADER requires additional information to enable DSPLink to successfully
start the DSP. These are present as part of the NOLOADER_ImageInfo structure. This
is passed to PROC_load instead of the DSP executable path.

In External Load boot modes, application can still use DSPLink to pass arguments to
the DSP main function (if required).

#include <loaderdefs.h>
 ...

 NOLOADER_ImageInfo image ;
 image.dspRunAddr = 0x8FF2C780 ; /* Address of the symbol c_int00 */
 image.shmBaseAddr = 0x8FF2EF00; /* Address of the symbol
 DSPLINK_shmBaseAddress from DSP COFF
 Executable */
 image.argsAddr = 0x8ff30278 ; /* Address of the .args section */
 image.argsSize = 0x10 ; /* Size of the .args section */

 ...

 status = PROC_load (ID_PROCESSOR, (Char8 *) &image, argc, argv) ;

O The addresses mentioned above will be different based on the device and
memory configuration used. They can be obtained using the ofd tool for the
respective device. For example, for C6x based devices, the command to
obtain the address of DSPLINK_shmBaseAddress is:

Page 27 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

ofd6x.exe -v <dsp executable> | grep -rn A 2 DSPLINK_shmBaseAddress

O The value of argc i.e. number of arguments and argv i.e. arguments buffer is
application dependent

The application may not need to pass arguments in .args buffer. In such cases,
argc and argv can be passed as 0 and NULL respectively:

#include <loaderdefs.h>
 ...

 NOLOADER_ImageInfo image ;
 image.dspRunAddr = 0x8FF2C780; /* Address of the symbol c_int00 */
 image.shmBaseAddr = 0x8FF2EF00 ; /* Address of the symbol
 DSPLINK_shmBaseAddress from DSP COFF
 Executable */
 image.argsAddr = NULL ;
 image.argsSize = 0x0 ;
 ...

 status = PROC_load (ID_PROCESSOR, (Char8 *) &image, 0 , NULL) ;

O The addresses mentioned above will be different based on the device and
memory configuration used. They can be obtained using the ofd tool for the
respective device. For example, for C6x based devices, the command to
obtain the address of DSPLINK_shmBaseAddress is:

ofd6x.exe -v <dsp executable> | grep -rn A 2 DSPLINK_shmBaseAddress

3.5.3.2 DSP_BootMode_NoLoad_Pwr
• PROC_attach places the DSP in local reset. It powers up the DSP.
• PROC_load does not load the DSP executable into DSP memory.
• PROC_start sets entry point for DSP i.e. c_int00 and release DSP from reset.
• PROC_stop places DSP in local reset.
• PROC_detach powers down the DSP.

Application changes to support this boot mode

1. The default DSPLink configuration, or application configuration passed to DSPLink
in PROC_setup needs to be updated.

2. Parameters passed to PROC_load API change to support the NOLOADER.

3.5.3.2.1 Step 1: Update DSPLink configuration
The configuration can be changed to use the DSP_BootMode_NoLoad_Pwr boot mode
in one of two possible ways:

3.5.3.2.1.1 Statically changing application-specific configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 "NOLOADER", /* LOADERNAME : Name of the DSP executable loader */
 ...
 DSP_BootMode_NoLoad_Pwr, /* DODSPCTRL : Type of boot mode */
 ...
}

Page 28 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

3.5.3.2.1.2 Changing default configuration file at run-time
/* Extern declaration to default configuration object in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

 /* Change dynamic configuration for boot mode */
 LINKCFG_config.dspConfigs [processorId]->dspObject->doDspCtrl =
DSP_BootMode_NoLoad_Pwr ;
 strcpy (LINKCFG_config.dspConfigs [processorId]->dspObject->loaderName, "
NOLOADER") ;

3.5.3.2.2 Step 2: Call PROC_load with different parameters for NOLOADER
The NOLOADER requires additional information to enable DSPLink to successfully
start the DSP. These are present as part of the NOLOADER_ImageInfo structure. This
is passed to PROC_load instead of the DSP executable path.

In External Load boot modes, application can still use DSPLink to pass arguments to
the DSP main function (if required).

#include <loaderdefs.h>
 ...

 NOLOADER_ImageInfo image ;
 image.dspRunAddr = 0x8FF2C780 ; /* Address of the symbol c_int00 */
 image.shmBaseAddr = 0x8FF2EF00; /* Address of the symbol
 DSPLINK_shmBaseAddress from DSP COFF
 Executable */
 image.argsAddr = 0x8ff30278 ; /* Address of the .args section */
 image.argsSize = 0x10 ; /* Size of the .args section */

 ...

 status = PROC_load (ID_PROCESSOR, (Char8 *) &image, argc, argv) ;

O The addresses mentioned above will be different based on the device and
memory configuration used. They can be obtained using the ofd tool for the
respective device. For example, for C6x based devices, the command to
obtain the address of DSPLINK_shmBaseAddress is:

ofd6x.exe -v <dsp executable> | grep -rn A 2 DSPLINK_shmBaseAddress

O The value of argc i.e. number of arguments and argv i.e. arguments buffer is
application dependent

The application may not need to pass arguments in .args buffer. In such cases,
argc and argv can be passed as 0 and NULL respectively:

#include <loaderdefs.h>
 ...

 NOLOADER_ImageInfo image ;
 image.dspRunAddr = 0x8FF2C780; /* Address of the symbol c_int00 */
 image.shmBaseAddr = 0x8FF2EF00 ; /* Address of the symbol
 DSPLINK_shmBaseAddress from DSP COFF
 Executable */
 image.argsAddr = NULL ;

Page 29 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

 image.argsSize = 0x0 ;
 ...

 status = PROC_load (ID_PROCESSOR, (Char8 *) &image, 0 , NULL) ;

O The addresses mentioned above will be different based on the device and
memory configuration used. They can be obtained using the ofd tool for the
respective device. For example, for C6x based devices, the command to
obtain the address of DSPLINK_shmBaseAddress is:

ofd6x.exe -v <dsp executable> | grep -rn A 2 DSPLINK_shmBaseAddress

Page 30 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

3.5.4 External Load and Start Mode
There are two scenarios to be supported for this boot mode:

• GPP-based load
1. GPP boots first
2. Application/GPP boot-loader pre-loads the DSP
3. Application/GPP boot-loader starts the DSP running
4. Uses DSPLink only for IPC with the DSP

 OR
• DSP-based load

5. DSP boots first, starts running an application
6. ARM comes up later and sets up DSPLink, which initializes shared

memory
7. DSPLink is not used to load or start the DSP
8. Uses DSPLink only for IPC with the DSP

Figure 6. External Load And Start Mode

Only NoPwr based mode is supported when NoBoot mode is selected.

3.5.4.1 DSP_BootMode_NoBoot
• PROC_attach does not place the DSP in local reset. It does not power up the

DSP.

GPP

PROC_setup

PROC_attach

PROC_load

PROC_start

PROC_stop

PROC_detach

Other operations

PROC_destroy

DSP starts running

DSP is loaded

DSPLINK_init

Other operations

DSP

Call from
TSK after
ISR
received

Does not actually load the DSP

No capability to stop/ reload/
restart the DSP

Does not actually start the DSP
Send an interrupt to DSP to
indicate GPP init done

Register app ISR (can
be done statically)

Receive ISR
Reset the DSP. Can

Page 31 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

• PROC_load does not load the DSP executable into DSP memory.
• PROC_start does not set entry point for DSP i.e. c_int00 and does not

release DSP from reset.
• PROC_stop does not place DSP in local reset.
• PROC_detach does not power down the DSP.

Application changes to support this boot mode

1. The default DSPLink configuration, or application configuration passed to DSPLink
in PROC_setup needs to be updated.

2. Parameters passed to PROC_load API change. PROC_load must be called. The
parameters will not be used.

3. Changes on DSP-side to call DSPLINK_init after main i.e. in a TSK
• Creation of DSPLink IOM driver must be changed from static to dynamic if

CHNL component is configured in DSPLink
• All DSPLink SMA Pools must be initialized after DSPLINK_init call in the TSK.
• The MSGQ transport between GPP and DSP must be opened after

DSPLINK_init call in the TSK.
• DSPLink_init internally polls for the value of DSPLINK_shmBaseAddress to be

a non-NULL value. One of the two below methods can be used for this:
1. If the application uses the default polling mode, this variable must be set

to NULL using the linker command file.
2. DSPLink also supports a non-polling interrupt based mode for

synchronization between the GPP and DSP

3.5.4.1.1 Step 1: Update DSPLink configuration
The configuration can be changed to use the DSP_BootMode_NoBoot boot mode in
one of two possible ways:

3.5.4.1.1.1 Statically changing application-specific configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 "NOLOADER", /* LOADERNAME : Name of the DSP executable loader */
 ...
 DSP_BootMode_NoBoot, /* DODSPCTRL : Type of boot mode */
 ...
}

3.5.4.1.1.2 Changing default configuration file at run-time
/* Extern declaration to default configuration object in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

 /* Change dynamic configuration for boot mode */
 LINKCFG_config.dspConfigs [processorId]->dspObject->doDspCtrl =
DSP_BootMode_NoBoot ;
 strcpy (LINKCFG_config.dspConfigs [processorId]->dspObject->loaderName, "
NOLOADER") ;

3.5.4.1.2 Step 2: Call PROC_load with different parameters for NOLOADER

Page 32 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

The NOLOADER may require additional information to enable DSPLink to successfully
start the DSP. These are present as part of the NOLOADER_ImageInfo structure. This
is passed to PROC_load instead of the DSP executable path.

In External Load & Start boot mode, application cannot use DSPLink to pass
arguments to the DSP main function, because the DSP may already be running and
main function completed, by the time DSPLink comes up.

#include <loaderdefs.h>
 ...

 NOLOADER_ImageInfo image ;
 image.dspRunAddr = NULL ; /* Address of the symbol c_int00 */
 image.shmBaseAddr = 0x8FF2EF00; /* Address of the symbol
 DSPLINK_shmBaseAddress from DSP COFF
 Executable */
 image.argsAddr = NULL ; /* Address of the .args section */
 image.argsSize = 0 ; /* Size of the .args section */

 ...

 status = PROC_load (ID_PROCESSOR, (Char8 *) &image, 0, NULL) ;

O The address mentioned above will be different based on the device and
memory configuration used. It can be obtained using the ofd tool for the
respective device. For example, for C6x based devices, the command to
obtain the address of DSPLINK_shmBaseAddress is:

ofd6x.exe -v <dsp executable> | grep -rn A 2 DSPLINK_shmBaseAddress

O dspRunAddr does not need to be provided, since DSPLink is not responsible
for starting the DSP in this boot mode.

In case the user does not wish to specify the shmBaseAddr from ARM-side, the DSP-
side can be built with the information about the shmBaseAddr. In this case, it is not
required to specify the value to the NOLOADER, and the ARM-side application can
become fully independent of the DSP-side build. In this case, the approach used for
symbol stripped executables needs to be used, as described in section 3.2.2 in this
document.

#include <loaderdefs.h>
 ...

 image.dspRunAddr = NULL ; /* Address of the symbol c_int00 */
 image.shmBaseAddr = NULL ; /* Address of the symbol
 DSPLINK_shmBaseAddress from DSP COFF
 Executable */
 image.argsAddr = NULL ; /* Address of the .args section */
 image.argsSize = 0 ; /* Size of the .args section */
 ...

 status = PROC_load (ID_PROCESSOR, (Char8 *) &image, 0 , NULL) ;

3.5.4.1.3 Step 3: Make changes on DSP-side to call DSPLINK_init from task instead of main
Creation of DSP-side IOM driver dynamically

Page 33 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

If CHNL module is not enabled in the build, this step is not applicable.

By default, the application will usually create the DSP-side DSPLink driver statically,
by including the following two TCI files within the application’s TCF configuration file:

• DSPLink IOM driver: dsplink-iom.tci
• DSPLink DIO adapter for usage with SIO: dsplink-dio.tci

The IOM and DIO drivers need to be created dynamically for this boot-mode.

For dynamic creation of IOM driver:

• Comment out the static creation of the dsplink IOM driver in dsplink-
iom.tci in the application TCF

• The creation of ZCPYLINK_SWI_OBJ can still be done statically.
/* ===
 * UDEV : DSP/BIOS LINK
 * ===
 */
/*var dsplink = prog.module("UDEV").create("dsplink");
dsplink.initFxn = prog.decl("ZCPYDATA_init");
dsplink.fxnTable = prog.decl("ZCPYDATA_FXNS");
dsplink.fxnTableType = "IOM_Fxns";
dsplink.comment = "DSP/BIOS LINK - IOM Driver";*/

/* ===
 * SWI : ZCPYLINK_SWI_OBJ
 * ===
 */
var ZCPYLINK_SWI_OBJ = prog.module("SWI").create("ZCPYDATA_SWI_OBJ");
ZCPYLINK_SWI_OBJ.comment = "This swi handles the data transfer in DSPLINK";
ZCPYLINK_SWI_OBJ.fxn = prog.decl("ZCPYDATA_SWI");
ZCPYLINK_SWI_OBJ.priority = 14;
ZCPYLINK_SWI_OBJ.arg0 = $externPtr("ZCPYDATA_devObj");

For dynamic creation of DIO adapter:

• Do not include dsplink-dio.tci in the application TCF file

The code given below can be used as reference to create the IOM and DIO drivers
dynamically.

extern IOM_Fxns ZCPYDATA_FXNS ;
extern Void ZCPYDATA_init (Void) ;

DIO_Params dioAttrs = {
 "/dsplink",
 NULL
} ;

DEV_Attrs devAttrs = {
 0, /* devId */
 0, /* dsplink deviceParams */
 DEV_IOMTYPE, /* dsplink driver type */
 0 /* dsplink devp */
} ;

DEV_Attrs dioDevAttrs = {
 0, /* devId */
 &dioAttrs, /* DIO deviceParams */
 DEV_SIOTYPE, /* DIO type */

Page 34 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

 0 /* devp */
} ;

 ...

 /* Create IOM driver dynamically */
 status = DEV_createDevice("/dsplink", &ZCPYDATA_FXNS, (Fxn)
&ZCPYDATA_init, &devAttrs) ;

 /* Create DIO adapter dynamically */
 status = DEV_createDevice("/dio_dsplink", &DIO_tskDynamicFxns, NULL,
&dioDevAttrs);

Calling POOL_open in a task

Dummy configuration needs to be defined for the POOL so that DSP/BIOS will not
internally call DSPLink SMAPOOL initialization functions.

/* Dummy base configuration for POOLs */
POOL_Obj MESSAGE_Pools [NUM_POOLS] =
{
 POOL_NOENTRY,
 POOL_NOENTRY
} ;

/* POOL_config variable as needed by DSP/BIOS */
POOL_Config POOL_config = {MESSAGE_Pools, NUM_POOLS} ;

In the application task after DSPLINK_init is called, the actual POOL configuration
must be updated into the POOL configuration structure, and a call made to
POOL_open.

/* Define actual global SMAPOOL parameters */
SMAPOOL_Params MESSAGE_PoolParams [NUM_POOLS] ;

 /* Declare temporary local pool object for opening the pool */
 POOL_Obj poolObj ;

 ...

 /* Setup SMAPOOL parameters */
 MESSAGE_PoolParams [0].poolId = 0 ;
 MESSAGE_PoolParams [0].exactMatchReq = TRUE ;

 /* Populate the global POOL configuration structure with actual POOL
configuration.*/
 poolObj.initFxn = SMAPOOL_init ;
 poolObj.fxns = (POOL_Fxns *) &SMAPOOL_FXNS ;
 poolObj.params = &(MESSAGE_PoolParams [0]) ;
 poolObj.object = NULL ;

 /* Open the POOL dynamically */
 status = POOL_open (0, &poolObj) ;

Calling MSGQ_transportOpen in a task

Dummy configuration needs to be defined for the Message Queue transport so that
DSP/BIOS will not internally call DSPLink MQT initialization functions.

/* Dummy base configuration for MQT */

Page 35 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

MSGQ_TransportObj MESSAGE_Transports [MAX_PROCESSORS] =
{
 MSGQ_NOTRANSPORT, /* Represents the local processor */
 MSGQ_NOTRANSPORT /* Dummy transport for DSPLink */
}

/* MSGQ_config variable as needed by DSP/BIOS */
MSGQ_Config MSGQ_config =
{
 MESSAGE_MsgQueues,
 MESSAGE_Transports,
 NUM_MSG_QUEUES,
 MAX_PROCESSORS,
 0,
 MSGQ_INVALIDMSGQ,
 POOL_INVALIDID
} ;

In the application task after DSPLINK_init is called, the actual MQT configuration
must be updated into the MSGQ configuration structure, and a call made to
MSGQ_transportOpen.

/* Define actual global ZCPYMQT parameters */
ZCPYMQT_Params MESSAGE_MqtParams ;

 /* Declare temporary local transport object for opening the transport */
 MSGQ_TransportObj transport ;

 /* Initialize the transport object for ZCPYMQT */
 transport.initFxn = ZCPYMQT_init ; /* Init Function */
 transport.fxns = (MSGQ_TransportFxns *) &ZCPYMQT_FXNS ; /* Transport
interface functions */
 transport.params = &MESSAGE_MqtParams ; /* Transport params */
 transport.object = NULL ; /* Filled in by transport */
 transport.procId = ID_GPP ; /* Processor Id */

 /* Open the Message Queue Transport dynamically. */
 status = MSGQ_transportOpen (ID_GPP, &transport) ;

Calling DSPLINK_init from TSK

DSPLink_init internally polls for the value of DSPLINK_shmBaseAddress to be a non-
NULL value. One of the two below methods can be used for this:

1. Polling Mode: This variable must be set to NULL using the linker command file.
2. Non-polling Mode: Use interrupt based synchronization between the GPP and DSP

1. Polling mode: Application linker command file update

A command needs to be added in the application linker command file to initialize the
DSPLINK_shmBaseAddress value to NULL.

/* Set the contents of DSPLINK_shmBaseAddress to NULL. */
SECTIONS {
 .data:DSPLINK_shmBaseAddress: fill=0x00000000 {} > DDR
}

2. Non-Polling mode: Interrupt-based synchronization

1. The application can register for the DSPLink interrupt for IPS ID 0 using
DSP/BIOS HWI APIs, or static configuration. In this case, as soon as DSPLink

Page 36 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

GPP-side has completed configuration of shared memory, it sends an interrupt to
the DSP.

2. The application-registered ISR shall get called, which can post a semaphore to
wake-up a task that was blocked on the semaphore.

3. The task then calls DSPLink_init and opens the POOLs and MQT dynamically.
4. Once this is done, DSP-side application can start using DSPLink for IPC between

the GPP and DSP.

Page 37 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

3.6 Support for multiple types of COFF based loaders

3.6.1 Overview
DSPLink supports loading of COFF executable in DSP memory using PROC_load API.
The COFF file can be loaded in DSP memory from a file or from memory. DSPLink
supports multiple types of COFF loaders for different system needs. This section
details the types of loaders and how they are used.

3.6.2 PROC_load using a COFF file
This is the default usage of PROC_load. The DSP executable is generated using the
required tools and is present in the target file system.

Example of application configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 "COFF", /* LOADERNAME : Name of DSP executable loader */
 ...
}
Example of PROC_load API call
 #define DSP_EXECUTABLE “/opt/message.out”

 status = PROC_load (ID_PROCESSOR, DSP_EXECUTABLE, argc, argv) ;

O The value of argc i.e. number of arguments and argv i.e. arguments will be
application dependant. If not required, they can be passed as 0 and NULL
respectively.

3.6.3 PROC_load using optimized COFF loader on shared memory based platforms like
DM6446, DRA44x etc
This is the optimized usage of the default COFF loader. In this loader the section data
is directly copied to the DSP memory. This is possible because DSP memory is
directly accessible for shared memory based devices. The DSP executable is
generated using the required tools and is present in the target file system.

The configuration can be changed to use the COFFSHM loader in one of two possible
ways:

3.6.3.1 Statically changing application-specific configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 "COFFSHM", /* LOADERNAME : Name of DSP executable loader */
 ...
}

3.6.3.2 Changing default configuration file at run-time
/* Extern declaration to default configuration object in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

Page 38 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

 /* Change dynamic configuration to use COFFSHM loader */
 strcpy (LINKCFG_config.dspConfigs [processorId]->dspObject->loaderName,
"COFFSHM") ;

Example of PROC_load API call
 #define DSP_EXECUTABLE “/opt/message.out”

 status = PROC_load (ID_PROCESSOR, DSP_EXECUTABLE, argc, argv) ;

O The value of argc i.e. number of arguments and argv i.e. arguments will be
application dependant. If not required, they can be passed as 0 and NULL
respectively.

3.6.4 PROC_load using a COFF file present in ARM memory
In certain application scenarios, the COFF file can be loaded into a memory buffer
outside DSPLink. The DSP executable is loaded in DSP memory by reading the buffer
contents. This type of loader is useful, if, for example, there is no file system on the
ARM side.

The configuration can be changed to use the COFFMEM loader in one of two possible
ways:

3.6.4.1 Statically changing application-specific configuration file
STATIC LINKCFG_Dsp LINKCFG_dspObject =
{
 ...
 "COFFMEM", /* LOADERNAME : Name of DSP executable loader */
 ...
}

3.6.4.2 Changing default configuration file at run-time
/* Extern declaration to default configuration object in (CFG_<PLATFORM>.c) */
extern LINKCFG_Object LINKCFG_config ;
 ...
 ...

 /* Change dynamic configuration to use COFFMEM loader */
 strcpy (LINKCFG_config.dspConfigs [processorId]->dspObject->loaderName,
"COFFMEM") ;

DSPLink COFFMEM loader expects the file to be pre-loaded into a memory buffer.
This may be done by applications in multiple possible ways.

The user needs to ensure that the buffer used for loading the file is physically
contiguous in non-cacheable memory, and its physical address is known.

Example of PROC_load API call using POOL buffer for loading the file
 #include <loaderdefs.h>

 ...
 COFFLOADER_ImageInfo image ;

 ...
 /* Size of files in bytes */
 image.size = size_of_file_in_bytes ;

Page 39 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

 /* Physical address of memory where COFF file is present. */
 image.fileAddr = bufAddr ;

 /* Load the buffer into DSP memory. */
 status = PROC_load (ID_PROCESSOR, (Char8 *) &image, argc, argv) ;

O The value of argc i.e. number of arguments and argv i.e. arguments will be
application dependant. If not required, they can be passed as 0 and NULL
respectively.

An example usage where a POOL is used to allocate the buffer used for loading the
file is shown below. Using a POOL buffer ensures that the buffer is physically
contiguous, and also enables the user to translate the buffer address to a physical
address.

Example of PROC_load API call using POOL buffer for loading the file
 #include <loaderdefs.h>

 ...
 SAMPLE_POOL_ID = POOL_makePoolId (ID_PROCESSOR, 0) ; /* 0 is the
 Zeroth pool id of the DSP processor
 Identified by ID_PROCESSOR .*/

 COFFLOADER_ImageInfo image ;

 ...

 /* Configure pool for the file size. */
 SamplePoolAttrs.numBufPools = 1 ;
 SampleNumBuffers [0] = 1 ;
 SampleBufSizes [0] = DSPLINK_ALIGN (size_of_file_in_bytes,
 DSPLINK_BUF_ALIGN) ;

 /* If approximate file size is used, change line below to use
 * exactMatchReq as FALSE
 */
 SamplePoolAttrs.exactMatchReq = TRUE ;

 /* Open the pool. */
 status = POOL_open (SAMPLE_POOL_ID, &SamplePoolAttrs) ;
 if (DSP_SUCCEEDED (status)) {
 status = POOL_alloc (SAMPLE_POOL_ID,
 (Pvoid *) &srcAddr
 (SampleBufSizes [0)) ;
 }

 /* --
 * <Code to read the full contents of file to be loaded, into the
 * buffer.>
 * --
 */

 /* Get physical address of the user buffer */
 if (DSP_SUCCEEDED (status)) {
 status = POOL_translateAddr (SAMPLE_POOL_ID ,
 &dstAddr,
 AddrType_Phy,

Page 40 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

 srcAddr,
 AddrType_Usr) ;
 }

 if (DSP_SUCCEEDED (status)) {
 /* Size of files in bytes */
 image.size = size_of_file_in_bytes ;

 /* Physical address of memory where COFF file is present. */
 image.fileAddr = dstAddr ;

 /* Load the buffer into DSP memory. */
 status = PROC_load (ID_PROCESSOR, (Char8 *) &image, argc, argv) ;
 }

 ...

 /* Start the DSP running */
 if (DSP_SUCCEEDED (status)) {
 status = PROC_start (ID_PROCESSOR) ;
 }

 ...

 /* Now POOL can be closed to free up the shared memory, so that POOL
 * can be reopened (if needed) with different parameters.
 */
 if (DSP_SUCCEEDED (status)) {
 tmpStatus = POOL_close (SAMPLE_POOL_ID) ;
 }

O The value of argc i.e. number of arguments and argv i.e. arguments will be
application dependant. If not required, they can be passed as 0 and NULL
respectively.

O The POOL can be opened initially with all the shared memory requirements or
first the POOL can be opened with only the file size requirement, closed after
PROC_start and then re-opened with the shared memory requirements.

3.7 Concepts

3.7.1 Cleanup of the kernel driver
On operating system such as Linux, multiple processes and threads may use
DSP/BIOS™ LINK to communicate with the DSP. It may happen that one or more of
the processes may crash due to a user-space application issue or invalid state. In
such cases, it is desirable to restore the kernel state for the DSPLINK driver such
that applications may be able to restart and use the DSPLINK driver for further
communication with the DSP.

In addition, if an application process is unable to perform the required shutdown calls
corresponding to the startup calls made by it, the kernel state must still be restored
to a state such that it does not affect the execution of other (possibly independent)
application processes.

This is done using two mechanisms on Linux. A similar mechanism may be
implemented on other GPP operating system having this support.

Page 41 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

3.7.1.1 Signal handling on Linux
To support cleanup after an application crash or Ctrl C to terminate the process, the
DSPLINK driver needs to cleanup the kernel resources used by it and restore the
kernel driver to a consistent state. This is done using signals.

1. By default, DSPLINK registers signal handlers for process termination signals.
Within the signal handler, DSPLINK cleans up the kernel driver. It also frees as
many kernel resources as is possible.

2. If the application wishes to perform its own cleanup and does not wish DSPLINK
to register signal handlers for the process termination signals, it can disable the
signal handling through the OS-specific dynamic configuration file
(CFG_<GPPOS>.c). In this case, it is the application’s prerogative to ensure that
it also makes the required DSPLINK shutdown calls within its signal handler.

3. If the system design requires some specific behavior for certain process
termination signals, the specific signals to be handled by DSPLINK is also
dynamically configurable within the GPP OS-specific dynamic configuration file.
Note that if the number of signals within the array is modified, this needs to be
reflected in the NUMSIGNALS field within the LINKCFG_gppOsObject object.

3.7.1.2 Automatic cleanup on process exit in normal process termination
To support the scenario where an application process is unable to perform the
required shutdown calls corresponding to the startup calls made by it, atexit
handler is registered by default by DSPLINK with Linux for each process. This handler
performs all shutdown APIs for that process and gets called automatically when the
process terminates.

Applications are also free to register their atexit handlers for their own usage. The
atexit handlers are executed on a first-registered-last-executed basis.

Registration of the atexit handler is not made dynamically configurable to ensure
that processes are not allowed to corrupt the system state.

q It is a good practice for applications to always make all shutdown calls
corresponding to the startup calls. The atexit feature should not be relied
upon by applications, because this may not be available on other operating
systems, and affects the portability of the applications.

4 POOL

4.1 Overview
The POOL component provides APIs for configuring shared memory regions across
processors.

These buffers are used by other modules from DSP/BIOS Link for providing inter-
processor communication functionality.

The specific services provided by this module are:

• Configure the shared memory region through open & close calls.

• Allocate and free buffers from the shared memory region.

• Translate address of a buffer allocated to different address spaces (e.g. GPP
to DSP)

Page 42 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

• Synchronize contents of memory as seen by the different CPU cores.

This component is responsible for providing a uniform view of different memory pool
implementations, which may be specific to the hardware architecture or OS on which
DSP/BIOS™ LINK is ported. This component is based on the POOL interface in
DSP/BIOS™.

The DSP/BIOS LINK POOL is not a heap-based pool. It is a fixed-size buffer pool. It
requires the specific configuration of number of buffers and sizes as will be used by
the application. The exactMatchReq property only allows users the flexibility of
configuring an approximate size for each buffer. However, the maximum number of
buffers still must be configured.

4.2 Configuration

4.2.1 Configuration parameters
The POOL_open () call is used to configure the shared memory requirement for the
application. Since the pool is shared between DSP and GPP, the sizes of the buffers
must be cache aligned. DSP/BIOS LINK provides an API DSPLINK_ALIGN which can
be used to get the cache aligned size.

For SMA Pool, we need to configure a parameter of type SMAPOOL_Attrs in the
POOL_open call. The POOL_open call takes a structure of type SMAPOOL_Attrs for the
POOL_open call. The elements in the structure are:

• numBufPools: Number of buffer pools.
• bufSizes: Array of sizes of the buffers in each buffer pools. The buffer sizes

must be cache aligned.
• numBuffers: Array of number of buffers in each buffer pools.
• exactMatchReq: Flag indicating whether requested size is to be rounded to

nearest available larger size in Pools or exact match has to be performed.

4.2.2 Exact match required
1. exactMatchReq specified as TRUE: With this configuration, error is returned if the

exact size is not found configured.
2. exactMatchReq specified as FALSE: With this configuration, the highest buffer

size next closest in size to the specified size to be allocated is returned. If the
nearest higher size buffers are exhausted, POOL_alloc () call will return with
DSP_EMEMORY or memory allocation failure.
1. You can set exactMatchReq field in the SMAPOOL_Attrs while opening the pool

to FALSE, and use a large buffer size for the configuring the pool (all
allocations must be less than this size).

2. Please note that the disadvantage of using exactMatchReq as FALSE is
possible wastage of memory, since even a buffer of size 128 bytes may result
in an allocation of size 1024 bytes if only buffers of 1024 bytes are configured
in the pool.

4.2.3 Buffer configuration
To set the pool attributes, you need to know how many buffers that you need in the
shared memory as well as their size. Depending on your application needs, you
configure your pool according to the size and the number of the buffers required. You
can also configure the pool to return the buffer only if an exact match size is
configured or to return a buffer with a size which fits best to what has been asked.

Page 43 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

4.2.4 Example
If you want to configure the pool (with exact match TRUE) to allocate 10 buffers of
size 128, 10 buffers of size 512 and 10 buffers of size 2048 you may configure the
pool as follows.

#define NUM_BUF_SIZES 3 /* 3 buffer sizes to be configured */
#define SAMPLE_POOL_NO 0 /* Pool no as in the config CFG_<PLATFORM>.c.

Uint32 numBufs [NUM_BUF_SIZES] ;
Uint32 size [NUM_BUF_SIZES] ;
SMAPOOL_Attrs poolAttrs ;

 . . .

if (DSP_SUCCEEDED (status)) {
 size [0] = 128 ;
 numBufs [0] = 10 ;

 size [1] = 512 ;
 numBufs [1] = 15 ;

 size [2] = 2048 ;
 numBufs [2] = 5 ;

 poolAttrs.bufSizes = (Uint32 *) &size ;
 poolAttrs.numBuffers = (Uint32 *) &numBufs ;
 poolAttrs.numBufPools = NUM_BUF_SIZES ;
 poolAttrs.exactMatchReq = TRUE ;

 /* Make the pool id from pool no and dsp processor id . Applicable
 * GPP side only
 */
 poolId = POOL_makePoolId (ID_PROCESSOR ,SAMPLE_POOL_NO) ;
 status = POOL_open (poolId, &poolAttrs) ;
 if (DSP_FAILED (status)) {
 APP_Print ("POOL_open () failed. Status = [0x%x]\n", status) ;
 }
}

q The above is just a dummy representation of how to configure the POOL. In
real world applications, this is more tuned to the application buffer size
requirements.

In the above example:
1. Consider a scenario where exactMatchReq is TRUE. The application can

successfully allocate 10 buffers of size 128, 15 buffers of size 512, and 5 buffers
of size 2048. If you want to allocate a buffer of size 256, the above configuration
will not support it and POOL_alloc will return error.

2. Consider a scenario where exactMatchReq is FALSE. The application can
successfully allocate 10 buffers of size 128, 15 buffers of size 512, and 5 buffers
of size 2048. as before. However, the difference is that an attempt to allocate a
buffer of size 256 will result in the POOL_alloc () call returning a buffer of next
larger size i.e. 512 if available. If buffer of size 512 is not available it will return
DSP_EMEMORY or memory allocation failure.

Page 44 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

4.2.5 Configuring multiple pools

4.2.5.1 GPP side
CFG_<platform>.c needs to be updated for multiple POOLS on GPP side. The
parameters to be updated are:

1. Add other ‘n’ entries in LINKCFG_poolTable_00 with the same name.
MEMENTRY i.e. the memory entry from which the pool will be configured and
the POOLSIZE i.e. the size of the second pool can be configured as desired by
the application.

STATIC CONST LINKCFG_Pool LINKCFG_poolTable_00 [] =
{
 {
 "SMAPOOL", /* NAME : Name of the pool */
 (Uint32) 1, /* MEMENTRY: Mem entry ID (-1 if not needed)*/
 (Uint32) 0x35000, /* POOLSIZE: Size of pool (-1 if not needed)*/
 (Uint32) -1, /* IPSID : ID of the IPS used */
 (Uint32) -1, /* IPSEVENTNO: IPS Event number for POOL */
 0x0, /* ARGUMENT1 : First Pool-specific argument */
 0x0 /* ARGUMENT2 : Second Pool-specific argument*/
 },
 {
 "SMAPOOL", /* NAME */
 (Uint32) 1, /* MEMENTRY */
 (Uint32) 0x35000, /* POOLSIZE */
 (Uint32) -1, /* IPSID */
 (Uint32) -1, /* IPSEVENTNO */
 0x0, /* ARGUMENT1 */
 0x0 /* ARGUMENT2 */
 }
}

2. Update NUMPOOLS in LINKCFG_linkDrvObjects to ‘n’.

STATIC CONST LINKCFG_LinkDrv LINKCFG_linkDrvObjects [] =
{
 {
 "SHMDRV", /* NAME: Name of the link driver */
 (Uint32) 100000000, /* HSHKPOLLCOUNT : Poll value for which */
 * handshake waits (-1 if infinite) */
 (Uint32) 1, /* MEMENTRY: Mem entry ID (-1 if not needed)*/
 0, /* IPSTABLEID : ID of the IPS table used */
 2, /* IPSENTRIES : Number of IPS supported */
 0, /* POOLTABLEID : ID of the POOL table */
 2, /* NUMPOOLS : Number of POOLs supported */
 0, /* DATATABLEID : ID of data driver table */
 1, /* NUMDATADRV : Number of data drivers */
 0, /* MQTID : ID of the MQT */
 0, /* RINGIOTABLEID: RingIO Table Id */
 0, /* MPLISTTABLEID: MpList Table Id */
 0 /* MPCSTABLEID : MPCS Table ID */
 }
} ;

q After configuring the pools, if application is using dynamic configuration, the
GPP-side application must be rebuilt. If dynamic configuration is not used, the

Page 45 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

DSP/BIOS™ LINK API library must be rebuilt, followed by the application
rebuild.

4.2.5.2 DSP side
With BIOS 5.xx:

1. The global variable POOL_config must be configured as required by DSP/BIOS™.
POOL_Config POOL_config = {MESSAGE_Pools, 2} ;

2. The pools must be configured as required by DSP/BIOS™.
POOL_Obj MESSAGE_Pools [NUM_POOLS] =
{
 {
 &SMAPOOL_init, /* Init Function */
 (POOL_Fxns *) &SMAPOOL_FXNS, /* Pool interface functions */
 &MESSAGE_PoolParams [0], /* Pool params */
 NULL /* Pool object: Set in pool impl. */
 },
 {
 &SMAPOOL_init, /* Init Function */
 (POOL_Fxns *) &SMAPOOL_FXNS, /* Pool interface functions */
 &MESSAGE_PoolParams [1], /* Pool params */
 NULL /* Pool object: Set in pool impl. */
 }
}

q After configuring the pools, the DSP-side application must be rebuilt to
generate the DSP executable.

4.3 POOL requirements for different DSP/BIOS™ LINK components

4.3.1 PROC
PROC component has no POOL requirements.

4.3.2 NOTIFY
NOTIFY component has no POOL requirements.

4.3.3 MPCS
Each MPCS has the following buffer requirements:

1. MPCS_ShObj: MPCS control structure size
Along with this, application must configure buffers as required according to
application need for the protocol that uses MPCS.

4.3.4 MSGQ
One pool must be reserved for Message Queue transport. This pool is used by all
applications that use MSGQ. This pool must configured messages as given below:

1. ZCPYMQT_CTRLMSG_SIZE: MSGQ control structure size. The number of buffers
of this size required varies depending on the frequency with which
MSGQ_locate is performed by the application. This message size is required
for the MSGQ transport. The POOL ID configured for the MSGQ transport
must have this buffer size configured.

The same or different pool(s) as used for the MQT can be used to satisfy the
following other buffer requirements for messaging:

Page 46 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

1. MSGQ_AsyncLocateMsg: MSGQ ASYNC locate call message size requirement,
one for each ASYNC locate call. The number of buffers of this size required
varies depending on the frequency with which MSGQ_locateAsync is
performed by the application. This size is not required to be configured if
application is not using MSGQ_locateAsync. The pool ID to be used internally
for allocating these messages is provided within the MSGQ_LocateAsyncAttrs
passed to the MSGQ_locateAsync call.

2. MSGQ_AsyncErrorMsg: MSGQ ASYNC error buffer size required if application
wishes to handle asynchronous error messages by setting error handler
MSGQ through the API MSGQ_setErrorHandler (). When an asynchronous
error occurs within the MSGQ module, if the application has registered an
error handler, an error message of this size is allocated, filled with async error
details, and sent to the registered MSGQ. If no error handling MSGQ is
registered, this size does not need to be configured. The pool ID to be used
for this is passed to the MSGQ_setErrorHandler () call. Currently, the
DSP/BIOS LINK MQT does not send any asynchronous error messages, since
the shared physical link is lossless. However, this may be required for MQTs
built over certain other possibly lossy physical connections.

Along with this, the application must configure message buffers according to
application need. The considerations for allocating and reserving memory for
message buffers are:

1. Each message buffer used by the application must have the fixed size
MSGQ_MsgHeader as the first field in the message. The size of this structure
must be included in the message size to be allocated by the application.

2. The sizes of the message buffers (including fixed header) must be a multiple
of cache line size (if applicable for the platform). For example, for Davinci, the
size of message buffer must be a multiple of 128 bytes.

3. The MSGQ_alloc () call takes the pool ID to be used for allocating the
message buffers. The corresponding pool must be configured to support
allocation of the required numbers of message buffers.

4. Message buffers of different sizes can be used within the same application as
long as the generic constraints mentioned above are followed.

4.3.5 RingIO
Each RingIO has the following buffer requirements:

1. Data buffer: This size should be cache aligned. If foot buffer is configured,
then the size required is (data buffer size + foot buffer size).

2. Attribute size buffer (if configured): This size should be cache aligned.
3. RingIO_ControlStruct: RingIO control structure size
4. MPCS_ShObj: MPCS control structure size

4.3.6 MPLIST
 Each MPLIST has the following buffer requirements:

1. MPLIST_List: MPLIST control structure size.

Along with this, the application must configure buffers which will be the list elements
according to application need. The considerations for allocating and reserving
memory for buffers to be used with MPLIST are:

Page 47 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

1. Each buffer used by the application on the MPLIST must have the fixed size
MPLIST_Header as the first field in the message. The size of this structure
must be included in the buffer size to be allocated by the application.

2. The sizes of the buffers (including fixed header) must be a multiple of cache
line size (if applicable for the platform). For example, for Davinci, the size of
buffer must be a multiple of 128 bytes.

3. Buffers of different sizes can be used within the same application with MPLIST
as long as the generic constraints mentioned above are followed.

4.3.7 CHNL
The application needs to configure buffers for data transfer according to application
need.

The considerations for allocating and reserving memory for data transfer buffers are:

1. The size of the data transfer buffers must be a multiple of cache line size (if
applicable for the platform). For example, for Davinci, the size of data
transfer buffer must be a multiple of 128 bytes.

2. The pool ID to be used for allocating the buffers is configured within the
CFG_<PLATFORM>.c file within the LINKCFG_DataDrv object (field POOLID).
This pool ID gets used internally when the buffers used for data transfer are
allocated using the CHNL_allocateBuffer () API. One or more buffers may
be allocated for each channel using the CHNL_allocateBuffer () API.

3. For each channel, buffers of a fixed size are used. Different channels can have
different buffer sizes as long as they are less than the maximum buffer size
supported by the data transfer driver.

4. The POOL configuration for the data driver must take buffer requirements for
all channels into account.

4.4 POOL setup for multi process applications
There are two ways in which POOL can be configured for multi process applications

4.4.1 Opening all pools at system initialization time
The main process needs to understand the POOL requirements for the complete
application and configure the POOL using POOL_open () call accordingly.

In each other process which attaches to use DSPLINK, the application can call
POOL_open () with params as NULL. Any parameters that are provided are ignored
for all calls subsequent to the first one for each pool ID. The application need not call
POOL_open () if it is not doing anything that uses a pool (RingIO, MSGQ,
POOL_alloc () etc.).

4.4.2 Opening pools dynamically
In this method, each application may open its own pool as required. All pools need
not be opened at system initialization time, and the system integrator does not need
to know pool requirements of all applications.

One pool must be reserved for Message Queue transport. This pool must be opened
statically before PROC_start () to ensure correct behavior on the DSP-side. All

Page 48 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

applications using MSGQ must call POOL_open () for this pool ID to be allowed to
use messaging.

To open pools dynamically, following procedure must be followed:

1. On the DSP-side, instead of specifying the actual pool configuration, use a
dummy configuration. This ensures that BIOS boot-up in POOL module
initialization does not hang waiting for the GPP-side pool to be opened.

/** ===
 * @name MESSAGE_DummyPoolFxns
 *
 * @desc Dummy pool functions to allow dynamic pool open as required
 * ===
 */
POOL_Fxns MESSAGE_DummyPoolFxns =
{
 (POOL_Open) SYS_zero, /* return 0 so POOL_init will not fail */
 (POOL_Close) FXN_F_nop, /* have close do nothing */
 (POOL_Alloc) SYS_one, /* have alloc return non-zero */
 (POOL_Free) FXN_F_nop /* have free do nothing */
} ;

/** ===
 * @name MESSAGE_Pools
 *
 * @desc Array of pools.
 * ===
 */
POOL_Obj MESSAGE_Pools [NUM_POOLS] =
{
 {
 &FXN_F_nop, /* Init Function */
 &MESSAGE_DummyPoolFxns, /* Pool interface functions */
 NULL, /* Pool params */
 NULL /* Pool obj: Set in pool impl. */
 }
} ;

2. After the GPP-side pool is opened (which may be after PROC_start ()), the
application can notify the DSP-side (possibly through NOTIFY_notify (),
since NOTIFY module does not require any pool). Note that the application
must ensure that it does not attempt to use the POOL either directly or
indirectly before the pool is opened on both GPP and DSP-sides.

3. When the notification is received from GPP that the pool has been opened, the
DSP-side application can now provide the actual configuration parameters and
open the pool. This is to ensure that the DSP-side application does not spin
waiting for the pool to be opened by GPP-side. With this method, the DSP-
side can simply wait on a semaphore for the GPP-side pool to be opened, and
the notification callback posts this semaphore. The pool can be opened on
DSP-side by:

SMAPOOL_Params MESSAGE_PoolParams [NUM_POOLS] ;

MESSAGE_PoolParams [poolId].poolId = poolId ;
MESSAGE_PoolParams [poolId].exactMatchReq = TRUE ;

Page 49 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

MESSAGE_Pools [poolId].initFxn = SMAPOOL_init ;
MESSAGE_Pools [poolId].fxns = (POOL_Fxns *) &SMAPOOL_FXNS ;
MESSAGE_Pools [poolId].params = &(MESSAGE_PoolParams [poolId]) ;
MESSAGE_Pools [poolId].object = NULL ;

status = POOL_open (poolId, &(MESSAGE_PoolParams [poolId])) ;
q The code given above is only indicative. Similar changes would need to be

done in the application to open pools dynamically.

Page 50 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

5 RingIO

5.1 Overview
The RingIO component provides Ring Buffer based data streaming.

Figure 7. RingIO overview

The specific services provided by this module are:

1. Create a ring buffer created within the shared memory. The RingIO is identified
by a unique name. The reader and writer of the ring buffer can be on different
processors.

2. Writer and reader can open a handle to the RingIO in a specific mode, which can
be used for all further accesses to the RingIO.

3. Writer can acquire empty regions of memory within the data buffer. The contents
of the acquired region are committed to memory when the data buffer is released
by the writer.

4. Reader can acquire regions of memory within the data buffer with valid data
within them. On releasing the acquired region, the contents of this region are
marked as invalid.

5. Writer and reader can operate completely asynchronously with each other.

6. The buffers are acquired in sequence. The size of released data need not match
the sizes in which the data was acquired. Data is released to the buffer by
specifying only the size to be released. The buffer pointer is not specified.

7. Attributes can be synchronous transferred with data. End of Stream (EOS), Time
Stamps, Stream offset etc. are examples of such attributes and these can be
associated with offsets in the ring buffer. Writer sets attributes, and reader gets
the attributes. The attributes may be fixed or of variable size.

8. Cancel the acquired buffer.

9. Flush the contents of the ring buffer. The behavior of flush is different based on
whether writer or reader is flushing the data/attributes, and also depends on the
type of flush requested.

10. Writer and/or reader can register for notification with a callback function. The
notification is received when certain specific conditions as required by the
different notification types are met.

11. Helper functions to get information about the current state of the RingIO.

Reader Acquired Buffer Start

Writer Acquired Buffer Start

Valid Data in Buffer

Reader Acquired Buffer End

Writer Acquired Buffer End

Empty Buffer

Page 51 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

5.2 Generic features
§ A client using RingIO is a single unit of execution. It may be a process or

thread on the GPP or the DSP.

§ The RingIO instance can be created between a client on the ARM and a client
on the DSP or between two DSP clients.

§ Either the reader or writer can create or delete the RingIO instance.

§ The RingIO instance should be created in a shared memory region which can
be accessed directly by both the reader and the writer.

§ Both the reader and the writer need to open the RingIO instance and get a
handle. Any data access on the RingIO instance should be made using these
handles.

§ Each RingIO can have a single writer client and a single reader client. A
RingIO handle may not be shared between multiple clients on the GPP or
DSP. For example, the following scenario is not permitted: One thread
acquires from the RingIO, passes the buffer pointer to another thread, which
then releases the buffer. This scenario is a multi-reader/writer scenario,
which is not supported.

§ Each RingIO instance is associated with a unique RingIO name. This RingIO
name is specified while creating, opening and deleting the RingIO.

§ The RingIO client can be closed only if there is no currently acquired data or
attributes. If there is any unreleased data or attributes, they must be
released or cancelled before the RingIO client can be closed.

§ The RingIO can be deleted only when both reader and writer clients have
successfully closed their RingIO clients.

§ Each RingIO instance has an associated footer area, if configured. The foot-
buffer can be configured to be of zero size if not required.

§ The RingIO data and attribute buffer sizes must comply with any constraints
imposed by the pool that they are specified to be allocated from. For
example, for the Shared Memory Pool, the buffer sizes must be aligned to
DSP cache line.

5.2.1 RingIO buffers
There are three types of RingIO buffers:

§ Data buffer

§ Attribute buffer

§ Foot buffer

The size of the RingIO buffers depends on the application’s need. The size of the
buffers is specified while creating the RingIO, as part of RingIO creation attributes:
ringIOAttrs.dataBufSize = 0x40000 ;
ringIOAttrs.attrBufSize = 0x1000 ;
ringIOAttrs.footBufSize = 0x100 ;
q The RingIO footbuffer is required to be physically contiguous with the data

buffer. Hence when specifying pool requirements for the buffers, a size of
(dataBufSize + footBufSize) must be configured.

Page 52 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

5.2.2 DSP cache-related information
§ On the DSP-side, cache-related flags are provided to the writer and reader

clients while opening the RingIO. These flags enable the user to get the
maximum performance from the system and customize it for their own use.
Separate cache flags are available for:

o Control structures

o Data buffer

o Attribute buffer

§ These flags indicate whether cache coherence is to be performed for the
RingIO control structures, data buffer or attribute buffer. The flags need not
be specified when opening the RingIO for the following application scenarios:

o DSP-DSP RingIO

o If RingIO control structures are specified to be placed into an internal
memory pool, cache flag need not be specified for control structures.

o If the RingIO data buffer is specified to be placed into an internal
memory pool, cache flag need not be specified for data buffer.

o If the RingIO attribute buffer is specified to be placed into an internal
memory pool, cache flag need not be specified for attribute buffer.

5.3 Acquiring and releasing data
§ The writer/reader client can acquire data buffers of any arbitrary size. RingIO

does not maintain the acquired data as separate buffers, but as the complete
acquired size.

o Each buffer received from the acquire call is guaranteed to be a
contiguous data buffer.

o However, buffers received from multiple consecutive acquire calls may
not be contiguous.

o No assumption should be made that consecutively acquired buffers
are contiguous in memory.

o The writer/reader client can acquire multiple buffers and release the
size completely, or in smaller chunks of varying sizes.

§ The data is released into the RingIO by specifying the size to be released.
Buffer pointers are not provided to the release call.

§ As long as the size to be released does not exceed the total acquired size,
the data can be released in any granularity. The sequence of release calls
does not need to match the acquire calls.

§ Cancel: Any acquired data that is not required can be cancelled back to the
RingIO through the RingIO_cancel () API.

o The cancel call removes all acquired but un-released data from the
RingIO for the calling client.

o In case of writer, any attributes that were set within this acquired but
un-released region are also removed.

o In case of reader, any attributes that were removed within the
acquired region are replaced back into the RingIO.

Page 53 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

5.3.1 Writer
§ The writer writes data into the RingIO data buffer by first acquiring a

contiguous data buffer, writing data into the acquired buffer, and then
releasing the filled up data to the RingIO.

§ The behavior of acquire varies depending on the NEED_EXACT_SIZE
specified while opening the writer client. The NEED_EXACT_SIZE flag
indicates whether the writer always needs buffers only of a specific size, and
buffers of lesser size are not acceptable.

o NEED_EXACT_SIZE is TRUE

§ If the requested empty size is not available within the RingIO
as a contiguous data buffer, error is returned.

§ If the requested empty size is not available till the end of the
RingIO buffer, but is available from the top of the buffer, a
wraparound occurs, and a contiguous buffer is returned from
the top of data buffer.

o NEED_EXACT_SIZE is FALSE: If the requested buffer size is not
available, RingIO returns the amount of empty contiguous data buffer
that is available till the end of the data buffer, with a status code
indicating this.

§ Five different types of notification mechanisms are supported. Details of the
notification types are present in later sections.

§ The writer can flush the data that it has written into the RingIO in two
different modes. In the case of hard-flush, all data and associated attributes
present in the RingIO will be removed. In the case of soft-flush, all data and
associated attributes after the first readable attribute will be flushed, and the
attribute is also removed.

5.3.2 Reader
§ The reader reads data from the RingIO data buffer by first acquiring a

contiguous data buffer, reading data from the acquired buffer, and then
releasing the empty buffer to the RingIO.

§ The behavior of acquire varies depending on the NEED_EXACT_SIZE
specified while opening the reader client. The NEED_EXACT_SIZE flag
indicates whether the reader always needs buffers only of a specific size.,
and buffers of lesser size are not acceptable.

o NEED_EXACT_SIZE is TRUE

§ If the requested valid size is not available within the RingIO as
a contiguous data buffer, error is returned.

§ If the requested empty size is not available till the end of the
RingIO buffer, but is available from the top of the buffer, the
behavior varies depending on whether a foot-buffer has been
configured.

• If non-zero size foot-buffer is configured, the required
amount of valid data is copied from the top of the data
buffer into the foot-buffer (assuming foot-buffer size is
sufficient). A contiguous data buffer is then returned to
the user as requested. Further acquires will happen

Page 54 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

from the specific offset from the top of the buffer. If
foot-buffer size is not sufficient to return a contiguous
data buffer of specified size, error is returned.

• If foot-buffer is not configured, error is returned in this
case.

o NEED_EXACT_SIZE is FALSE: If the requested buffer size is not
available, RingIO returns the amount of valid contiguous data buffer
that is available till the end of the data buffer, with a status code
indicating this. Foot-buffer is not used in this scenario.

§ Five different types of notification mechanisms are supported. Details of the
notification types are present in later sections.

§ The reader can flush the data that is available from the RingIO in two
different modes. In the case of hard-flush, all data and associated attributes
present in the RingIO will be removed. In the case of soft flush, all data and
associated attributes before the first readable attribute will be flushed

5.4 Attributes

5.4.1 Generic information
§ Attributes are used to communicate in-band information from the writer to

the reader.

§ Typical attributes could be the EOS marker at the end of the stream that’s
being written, or an attribute to indicate changes in the stream’s status.

§ Attributes can be of two types

o Fixed attributes: Fixed attributes have an attribute type and an
optional parameter

o Variable attributes: Variable attributes can be provided a data buffer
as payload data in addition to the attribute type and the optional
parameter. The attributes are copy-based. The information in writer-
provided buffer is copied into the attribute buffer. The size of provided
buffer in variable attributes must be a multiple of 4 bytes.

5.4.2 Setting attributes
§ Attributes can be set by the writer only on a data buffer that has been

acquired. This means that, if the writer has acquired a buffer of size x,
attributes can be set at any of offset position between 0 and x (inclusive).

§ The only exception to the above rule is if the writer wishes to set an attribute
when no data has been acquired. In this case, the writer can set attributes at
the next write location i.e. offset 0 in the buffer that is going to be acquired.
Attempts to set attributes at any other offset are ignored, and the attributes
get set at offset 0.

§ When the writer writes attributes for the data buffer it has acquired, it should
set attributes in the increasing order of buffer offsets. Setting attributes in
any arbitrary order can lead to undefined behavior.

§ The writer commits attributes to the attribute buffer when the associated
write buffer is released. Any attributes set when writer has no acquired data
are released immediately.

Page 55 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

5.4.3 Getting attributes
§ The attributes written by the writer should be “read” before the reader can

read any more data after the offset at which the attribute is set.

§ If the reader could not read data due to presence of attributes at the current
read location, an error code mentioning the presence of an attribute is
returned.

§ When a variable attribute is being read, a valid buffer must be provided to the
getAttribute function. The attribute information is copied into this application
buffer.

§ Attributes are removed from the attribute buffer when the reader releases the
data buffer that contains the associated attributes or the writer flushes valid
data which will clear associated attributes.

§ Fixed and Variable attributes can be set and received using different APIs. In
case a fixed attribute get function is called when a variable attribute is
present, an error code is returned informing of the presence of the variable
attribute.

5.4.4 Constraints
Setting attributes when RingIO is in an incorrect state

An attempt to set an attribute shall fail with error RINGIO_EWRONGSTATE, if setting the
attribute would fall into the reader region. This can happen for the following
scenarios:

• The buffer is completely full. In this case, attribute can only be set at offset 0.
But offset 0 falls into reader region.

• The buffer is completely acquired by the writer. Part or none of this buffer
may have be released. Writer is attempting to set an attribute at the end of
its acquired range. In this case, end of writer buffer is the same as beginning
of reader buffer.

If the reader has acquired and released some data, resulting in its moving further
such that its acquire start is not at the same location where writer may be able to set
an attribute, the above conditions do not hold true, and the attribute is allowed to be
set.

Ensuring the constraint:

If such a scenario occurs, the application must wait/poll till the reader moves ahead
so that the attribute would not fall in its region. This can be done in two ways:

1. Wait on a semaphore for notification that it is safe to set the attribute: For this
constraint, the reader release data is the trigger point. So if the writer can set
notifier to be notified when reader releases data, writer can have a semaphore
wait that gets posted when the notification comes.

• Watermark needs to be set at 1 byte, since that's the minimum that's
needed for reader to move forward.

• Notification type must be RINGIO_NOTIFICATION_HDWRFIFO_ONCE,
RINGIO_NOTIFICATION_ALWAYS or
RINGIO_NOTIFICATION_HDWRFIFO_ALWAYS. This may interfere with any
other notification mechanisms, since application may have a different
threshold or notification type for the other generic activities. So it may

Page 56 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

not be always possible to implement this type of notification
mechanism for attribute buffer. If this method is not possible, then
polling type of notification must be used.

2. Poll till RingIO_setAttribute/RingIO_setvAttribute returns success: It is
preferable to have a small sleep in between successive calls to the setattribute
APIs to ensure that the CPU is not loaded and other threads get a chance to run.

5.5 Foot-buffer
1. A foot-buffer is a buffer that is configured during creation of the RingIO. The size

of the foot-buffer to be used, if any, is mentioned in the RingIO attributes
specified while creating the RingIO.

2. The foot-buffer memory is reserved, contiguously starting from the end of the
RingIO data buffer.

3. The foot-buffer comes into the picture only for RingIO reader. It is not
used/written into by the RingIO writer.

4. For a RingIO reader, the following scenario causes foot-buffer to be used:

§ Reader attempts to acquire a buffer size that is more than the contiguous
size available till the end of the RingIO data buffer.

§ Valid size is present from the top of the RingIO data buffer

§ Foot-buffer is configured to be of a non-zero size.

§ In this scenario, the RingIO_acquire call for reader decides the size of
contiguous valid buffer available as a minimum of:

- Total valid size

- Contiguous buffer size available -- size till the end of RingIO data
buffer + early end buffer (if any) + foot-buffer

- Size till the first attribute that can be read by the reader

Based on this, there is a memory copy from the top of the RingIO data buffer
into the early end buffer & foot-buffer, and the pointer to the contiguous
buffer is returned to the reader.

After this, the reader acquire pointer will be reset to within the RingIO data
buffer (from top), and subsequent acquires will be made from within the
RingIO data buffer.

5. Without foot-buffer, application design in certain scenarios may get complicated.
This is elaborated below in the use-case scenario.

Page 57 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

5.5.1 Use Case Scenarios

5.5.1.1 Scenario 1

Figure 8. Foot-buffer Use-Case Scenario 1

Without foot-buffer
Consider a RingIO configured with data buffer size 1024K. No foot-buffer is
configured.

1. Reader requires 384 bytes frame size. Note that 1024K is not a multiple of 384.

2. Writer acquires and releases large chunks of data as it is available, and fills up
the data buffer.

3. The reader acquires and releases 384 bytes at a time.

4. When the reader reaches the end of the buffer, it has already used up 1048320
bytes (1024K – 256).

5. Now the reader needs another 384 bytes. However, only 256 bytes are available
at the end of the buffer as a contiguous buffer.

6. The 256 bytes at the end of the data buffer cannot be ignored. The Reader needs
to now allocate its own 384 byte buffer, acquire the 256 bytes from the RingIO
data buffer, copy the 256 bytes into its own buffer. Then acquire another 128
bytes from the top of the data buffer, and copy it after the existing 256 bytes
into its own buffer. This gives it the required 384 bytes.

7. This special implementation needs to be done by the application writer to ensure
correct behavior.

With foot-buffer

1024
Kbytes

RingIO
data buffer

RingIO_acquire
RingIO_release

 384 bytes

lastBuf

tskRingIO

tskRingIO

 Foot-buffer

RingIO_acquire
RingIO_release

 384 bytes

Not required when foot-
buffer is present.

Copy from end

Copy from top

Page 58 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

When foot-buffer is copied, the complete special application implementation in step 6
above can be avoided.

In step 6:

The reader still makes a request for 384 bytes. Since only 256 bytes are available at
the end, RingIO internally copies 128 bytes from the top of the buffer into the foot-
buffer and provides a contiguous buffer to the reader.

When the reader releases the buffer, the internal RingIO data structures are updated
to ensure that the next request goes to the start of the buffer (with 128 byte offset)
instead of continuing into the foot-buffer.

Due to this, a minimal foot-buffer size of 128 bytes only is sufficient to ensure
application simplicity.

Points to be considered
Only the required foot-buffer size of 128 bytes should be configured in above case.
Configuring a larger foot-buffer will not result in additional efficiency. It will result in
memory wastage.

5.5.1.2 Scenario 2

Figure 9. Foot-buffer Use Case Scenario 2

Without foot-buffer
Consider a RingIO data buffer of size 1024K. No foot-buffer is configured.

1. A task (tskRingIO) interacts with RingIO in reader mode to acquire and release
buffers. It attempts to always acquire 256K buffers (ringIOBuf) with
NEED_EXACT_SIZE false.

1024
Kbytes

RingIO
data buffer

RingIO_acquire

256 Kbytes

tskRingIO

tsk1
GetBuffer

1030 bytes

RingIO_cancel

Page 59 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

Other tasks (tsk1) interact with tskRingIO to satisfy their buffer needs. For
example, tsk1 always asks for fixed size 1030 byte buffers. tsk1 does not interact
with RingIO.

2. The tskRingIO buffer ringIOBuf provides a simple size management for its
acquired buffer size. The size available within ringIOBuf is reduced whenever it
provides a buffer to tsk1. When the size reduces to less than 1030 (e.g. 524) and
tsk1 buffer get fails, tskRingIO releases the used buffer (size 261620) and
cancels the remaining unused part (size 524) to the RingIO.

3. This works fine for the first few times tskRingIO acquires the 256K buffers, till it
reaches the end of RingIO data buffer. Consider that the last cancel has now
cancelled 524 bytes to the RingIO buffer, resulting in the reader’s acquire start
being at 524 bytes above its physical end. Now if tskRingIO attempts to acquire
256K, it will get only 524 bytes again of contiguous buffer till the end of RingIO
data buffer, even though valid data may be available from the top of RingIO
buffer.

4. The tsk1 buffer get again fails (524 < 1030), tskRingIO again cancels the buffer
to RingIO, and this keeps happening in a loop, stalling the system.

With foot-buffer
In this scenario, foot-buffer is very useful. By configuring the foot-buffer of size
1030, this situation can be avoided.

In step 2, if tskRingIO cancels 524 to the RingIO data buffer, and sufficient valid size
is available at the top of RingIO data buffer, RingIO_acquire for tskRingIO will result
in copying valid data of size 1030 from top of buffer into foot-buffer. Then this buffer
of size 1554 is returned to tskRingIO.

tsk1 buffer get passes, and tskRingIO cancels remaining amount (524) to the
RingIO.

However, since the RingIO data buffer end boundary has now been crossed, the
reader acquire start has been reset to 524 bytes from top of RingIO data buffer, and
next acquire will return data from the top of the buffer.

Points to be considered
The following issues are seen if applications unnecessarily use a large foot-buffer:

The foot-buffer size to be used must be tuned to the application’s needs. Using a
larger foot-buffer size will not give any additional advantages to the system. On the
other hand, it will degrade the system performance.

For example, if a 256K foot-buffer is used, assuming sufficient valid size, it will result
in entire 256K buffer being copied from top of RingIO data buffer into the foot-buffer.
This is unnecessary, and will degrade the performance, and zero-copy behavior is
lost.

5.6 Notification
The notification mechanism as well as other configuration parameters for the
notification can be set by the reader or writer through an API call to set the notifier.
Parameters that can be configured include the notification type, watermark, callback
function, and fixed parameter to the callback function.

Five different types of notification are supported:

Page 60 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

5.6.1 RINGIO_NOTIFICATION_NONE
No notification is required.

5.6.2 RINGIO_NOTIFICATION_ALWAYS

5.6.2.1 Description
§ The notification is enabled when an attempt to acquire data by the client

has failed.

§ Once enabled, the notification remains enabled till:

o For writer client, empty data size falls below the watermark.

o For reader client, valid data size falls below the watermark.

At this point, the notification is disabled again. Only a RingIO_release call
will disable the notification. RingIO_cancel and RingIO_flush will not
disable the notification.

§ Notifications are sent each time when the other client releases data, as
long as the data size is above the watermark:

o Empty data size for writer – This condition can be met in the
functions RingIO_release and RingIO_flush.

o Valid data size for reader

§ Cancel call does not enable or disable notification.

§ Flush call does not enable or disable notification. Flush called by the
reader client may cause empty data size to fall above the watermark and
cause a notification to be sent to the writer client.

5.6.2.2 Examples

Scenario 1: Reader notification
RingIO data buffer size = 1MB

Application requirements:

1. RingIO reader needs at least 16K valid buffer size to be able to start/continue
its processing.

2. RingIO reader does not need to be notified as long as it is not acquiring any
data. Writer may continue to release data, but only when reader has started
acquiring data and has failed once, it needs to be notified. Till then, it is not
interested in writer's data releases.

3. Once the reader's acquire has failed, it needs to be notified for each writer
release as long as the valid buffer size is above its watermark.

Scenario:

1. Initial state is RingIO is empty.

2. RingIO reader sets notification for 16K watermark with
RINGIO_NOTIFICATION_ALWAYS type.

3. Writer starts releasing data. 64K valid data is available in the RingIO. No
notification is received for reader.

Page 61 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

4. At some point, reader starts acquiring data. The initial acquires pass (e.g.
56K).

5. RingIO reader attempts acquire (e.g. 16K). Acquire fails. Notification gets
enabled.

6. RingIO reader now waits for notification.

7. RingIO writer releases 16K. Notification is sent to reader.

8. RingIO reader wakes up and can now acquire data.

9. Writer releases another 8K. Notification is again sent to reader (valid data =
24K is above reader watermark of 16K).

10. Writer releases another 8K. Notification is again sent to reader (valid data =
32K is above reader watermark of 16K).

11. Reader acquires 16K. Valid data = 16K. Notification is still enabled. If writer
releases any data, reader will get notified.

12. Reader acquires 8K. Valid data = 8K, which is below reader watermark of
16K. Notification gets disabled.

13. Writer releases 16K. Notification is not sent to reader (valid data = 24K is
above reader watermark of 16K, but notification is disabled).

14. Now, notification gets enabled again only if reader attempt to acquire data
fails. For example, if reader attempts to acquire 32K.

Scenario 2: Writer notification
RingIO data buffer size = 1MB

Application requirements:

§ RingIO writer needs at least 64K empty buffer size to be able to continue
filling the RingIO buffer with valid data.

§ RingIO writer does not need to be notified as long as it is able to succesfully
acquire any empty buffer. Reader may continue to release empty buffer, but
only when writer acquire fails, it needs to be notified. Till then, it is not
interested in reader's buffer releases.

§ Once the writer's acquire has failed, it needs to be notified for each reader
release as long as the empty buffer size is above its watermark.

Scenario:

1. RingIO writer sets notification for 64K watermark with
RINGIO_NOTIFICATION_ALWAYS type.

2. Writer and reader are acquiring and releasing data at their own processing
speeds.

3. Writer is faster than reader. At some point, the RingIO data buffer gets filled
up such that the empty buffer size falls below the 64K watermark set by
writer.

4. Writer attempts acquire. Acquire fails. Notification gets enabled.

5. RingIO writer now waits for notification.

Page 62 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

6. RingIO reader releases 64K buffer such that the empty buffer size goes above
the 64K watermark set by writer. Notification is sent to writer. Empty buffer
size = 64K.

7. RingIO writer wakes up and can now acquire empty buffer.

8. Reader releases another 8K. Notification is again sent to writer (empty buffer
= 72K is above writer watermark of 64K).

9. Reader releases another 8K. Notification is again sent to writer (empty buffer
= 80K is above writer watermark of 64K).

10. Writer acquires 16K. Empty buffer = 64K. Notification is still enabled. If
reader releases any buffer, writer will get notified.

11. Writer acquires 8K. Empty buffer = 56K, which is below writer watermark of
64K. Notification gets disabled.

12. Reader releases 16K. Notification is not sent to reader (empty buffer = 72K is
above writer watermark of 64K, but notification is disabled).

13. Now, notification gets enabled again only if writer attempt to acquire data
fails. For example, if writer attempts to acquire 80K.

5.6.3 RINGIO_NOTIFICATION_ONCE

5.6.3.1 Description
§ The notification is enabled when an attempt to acquire data by the client

has failed.

§ The notification is sent when the other client releases data, when the
below condition is true:

o For writer client, empty data size is above the watermark – This
condition can be met in the functions RingIO_release and
RingIO_flush.

o For reader client, valid data size is above the watermark.

As soon as the notification is sent, it is disabled.

§ The notification is re-enabled, only when the first condition is met again
(acquire attempt fails).

§ Cancel call does not enable or disable notification.

§ The notification is disabled only once the notification is sent by the other
client.

§ Flush call does not enable or disable notification. Flush called by the
reader client may cause empty data size to fall above the watermark and
cause a notification to be sent to the writer client.

5.6.3.2 Examples

Scenario 1: Reader notification
RingIO data buffer size = 1MB

Application requirements:

§ RingIO reader needs at least 16K valid buffer size to be able to start/continue
its processing.

Page 63 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

§ RingIO reader does not require notification as long as valid data is above
watermark. It needs notification only if its attempt to get required amount of
data fails.

Scenario:

1. Initial state is RingIO is empty.

2. RingIO reader sets notification for 16K watermark with
RINGIO_NOTIFICATION_ONCE type. Valid data size = 0K.

3. RingIO reader attempts acquire. Acquire fails. Notification gets enabled.

4. RingIO reader now waits for notification.

5. RingIO writer releases 64K. Notification is sent to reader. Valid data size =
64K.

6. RingIO reader wakes up and can now acquire data.

7. Reader acquires 16K data. Notification gets disabled because the acquire is
successful. Valid data size = 48K.

8. Writer releases 8K data. Notification is not sent to reader because notification
is disabled. This is even though valid data size = 64K is above reader
watermark of 16K.

9. Reader acquires 56K buffer. Acquire is successful. Valid data size = 8K.

10. Reader attempts to acquire 16K buffer. Acquire fails. Notification is re-
enabled.

11. Now if writer releases 8K buffer, valid data size = 16K matches reader
watermark, and notification is sent to reader.

12. This continues ... On subsequent writer releases, notification will not be sent
to reader. If reader acquire fails, then it can wait for notification again. It will
get notified if writer releases enough buffer to go above the reader watermark
for valid data size.

Scenario 2: Writer notification
RingIO data buffer size = 1MB

Application requirements:

§ RingIO writer needs at least 64K empty buffer size to be able to continue
filling the RingIO buffer with valid data.

§ RingIO writer does not require notification as long as valid data is above
watermark. It needs notification only if its attempt to get required amount of
data fails.

Scenario:

1. RingIO writer sets notification for 64K watermark with
RINGIO_NOTIFICATION_ONCE type.

2. Writer and reader are acquiring and releasing data at their own processing
speeds.

3. Writer does not receive notification from reader even though empty buffer
size is above watermark (64K).

Page 64 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

4. Writer is faster than reader. At some point, the RingIO data buffer gets filled
up such that the empty buffer size falls below the 64K watermark set by
writer.

5. Writer attempts acquire. Acquire fails. Notification gets enabled.

6. RingIO writer now waits for notification.

7. RingIO reader releases 128K buffer. Notification is sent to writer. Empty
buffer size = 128K.

8. RingIO writer wakes up and can now acquire empty buffer.

9. Writer acquires 32K buffer. Notification gets disabled because the acquire is
successful. Empty buffer size = 96K.

10. Reader releases 8K data. Notification is not sent to reader because
notification is disabled. This is even though empty buffer size = 104K is above
writer watermark of 64K.

11. Writer acquires 48K buffer. Acquire is successful. Empty buffer size = 48K.

12. Writer attempts to acquire 64K buffer. Acquire fails. Notification is re-enabled.

13. Now if reader releases 16K buffer, empty buffer size = 64K matches writer
watermark, and notification is sent to writer.

14. This continues ... On subsequent reader releases, notification will not be sent
to writer. If writer acquire fails, then it can wait for notification again. It will
get notified if reader releases enough buffer to go above the writer watermark
for empty buffer size.

5.6.4 RINGIO_NOTIFICATION_HDWRFIFO_ALWAYS

5.6.4.1 Description
§ Notifications are sent each time when the other client releases data, as

long as the data size is above the watermark:

o Empty data size for writer - This condition can be met in the
function RingIO_release and RingIO_flush.

o Valid data size for reader

§ This notification is always enabled. Unlike
RINGIO_NOTIFICATION_ALWAYS, this notification does not require buffer
to get full/empty or acquire to fail to get enabled.

§ Cancel call does not enable or disable notification.

§ Flush call does not enable or disable notification. Flush called by the
reader client may cause empty data size to fall above the watermark and
cause a notification to be sent to the writer client.

5.6.4.2 Examples

Scenario 1: Reader notification
RingIO data buffer size = 1MB

Application requirements:

§ RingIO reader needs at least 16K valid buffer size to be able to start/continue
its processing.

Page 65 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

§ RingIO reader needs to be notified for each writer release as long as the valid
buffer size is above its watermark.

Scenario:

1. Initial state is RingIO is empty.

2. RingIO reader sets notification for 16K watermark with
RINGIO_NOTIFICATION_HDWRFIFO_ALWAYS type.

3. Writer releases 8K valid data. Notification is not sent to reader because valid
data size = 8K is less than reader's watermark (16K).

4. Writer releases another 8K valid data. Notification is sent to reader because
valid data size = 16K matches reader's watermark.

5. Writer releases another 16K valid data. Notification is sent to reader because
valid data size = 32K is more than reader's watermark.

6. Reader starts acquiring data. Reader acquires 24K. Valid data size = 8K falls
below reader's watermark. Notification gets disabled.

7. Writer releases 4K valid data. Notification is not sent to reader because valid
data size = 12K is less than reader's watermark.

8. Writer releases 8K valid data. Notification is sent to reader because valid data
size = 24K is more than reader's watermark.

9. This continues ... as long as valid data size is equal or more than reader's
watermark, every writer release sends notification to reader. Writer releases
do not send notification to reader if valid data size is below reader's
watermark even after the writer release.

Scenario 2: Writer notification
RingIO data buffer size = 1MB

Application requirements:

§ RingIO writer needs at least 64K empty buffer size to be able to continue
filling the RingIO buffer with valid data.

§ RingIO writer needs to be notified for each reader release as long as the
empty buffer size is above its watermark.

Scenario:

1. RingIO writer sets notification for 64K watermark with
RINGIO_NOTIFICATION_HDWRFIFO_ALWAYS type.

2. Writer and reader are acquiring and releasing data at their own processing
speeds.

3. Empty buffer size = 128K.

4. Reader releases 8K empty buffer. Notification is sent to writer because empty
buffer size = 132K is more than writer's watermark (64K).

5. Writer is faster than reader. At some point, the RingIO data buffer gets filled
up such that the empty buffer size falls below the 64K watermark set by
writer. Empty buffer size = 32K.

Page 66 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

6. Reader releases 8K empty buffer. Notification is not sent to reader because
empty buffer size = 40K is less than writer's watermark.

7. Reader releases 24K empty buffer. Notification is sent to writer because valid
data size = 64K matches the writer's watermark.

8. Reader releases another 8K empty buffer. Notification is sent to writer
because valid data size = 72K is more than writer's watermark.

9. Writer starts acquiring the buffer. Writer acquires 24K. Empty buffer size =
48K falls below writer's watermark. Notification gets disabled.

10. Reader releases 8K empty buffer. Notification is not sent to writer because
empty buffer size = 56K is less than writer's watermark.

11. Reader releases 16K empty buffer. Notification is sent to writer because
empty buffer size = 72K is more than writer's watermark.

12. This continues ... as long as empty buffer size is equal or more than writer's
watermark, every reader release sends notification to writer. Reader releases
do not send notification to writer if empty buffer size is below writer's
watermark even after the reader release.

5.6.5 RINGIO_NOTIFICATION_HDWRFIFO_ONCE

5.6.5.1 Description
This notification type will send a notification only once when a low watermark
condition is satisfied and then it is disabled.

§ Unlike RINGIO_NOTIFICATION_ONCE, this notification does not require
buffer to get full/empty or acquire to fail to get enabled.

§ The notification is sent when the other client releases data, when the
below condition is true:

o For writer client, empty data size is above the watermark - This
condition can be met in the function RingIO_release and
RingIO_flush.

o For reader client, valid data size is above the watermark.

As soon as the notification is sent, it is disabled.

§ The notification is re-enabled when the data size crosses the watermark:

o For writer client, empty data size falls below the watermark.

o For reader client, valid data size falls below the watermark.

§ Cancel call will affect the notification state. If the notification has been
enabled earlier either because of a failed acquire call or a low watermark
condition is satisfied, this notification will be disabled if the low watermark
condition is no longer true.

o The notification will be disabled when the data size crosses the
watermark:

1. For writer client, empty data size falls above the watermark.

2. For reader client, valid data size falls above the watermark.

§ Flush call will affect the notification state.

Page 67 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

o For writer client, the notification will be disabled when the data size
falls above the watermark i.e. empty data size is greater than the
watermark.

o For reader client, the notification will be enabled when the data
size falls below the watermark i.e. valid data size is lesser than the
watermark.

5.6.5.2 Examples

Scenario 1: Reader notification
RingIO data buffer size = 1MB

Application requirements:

§ RingIO reader needs at least 16K valid buffer size to be able to start/continue
its processing.

§ RingIO reader does not require notification as long as valid data is above
watermark. It needs notification only if the valid data size falls below its
watermark level.

Scenario:

1. Initial state is RingIO is empty.

2. RingIO reader sets notification for 16K watermark with
RINGIO_NOTIFICATION_HDWRFIFO_ONCE type. Valid data size = 0K.

3. RingIO writer releases 8K valid data. Notification is not sent to reader. Valid
data size = 8K.

4. Writer releases another 8K valid data. Notification is not sent to reader even
though valid data size = 16K matches reader's watermark.

5. Writer releases another 16K valid data. Notification is not sent to reader even
though valid data size = 32K is more than reader's watermark.

6. Reader starts acquiring data. Reader acquires 24K. Valid data size = 8K falls
below reader's watermark. Notification gets enabled.

7. Writer releases 4K valid data. Notification is not sent to reader because valid
data size = 12K is less than reader's watermark.

8. Writer releases 8K valid data. Notification is sent to reader because valid data
size = 24K is more than reader's watermark. Then notification gets disabled.

9. This continues ... On subsequent writer releases, notification will not be sent
to reader as long as the valid data size remains above the reader's
watermark. When reader acquires results in valid data size falling below
watermark, notification gets enabled again. As soon as one notification is sent
to reader, it gets disabled again.

Scenario 2: Writer notification
RingIO data buffer size = 1MB

Application requirements:

§ RingIO writer needs at least 64K empty buffer size to be able to continue
filling the RingIO buffer with valid data.

Page 68 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

§ RingIO writer does not require notification as long as empty buffer size is
above watermark. It needs notification only if the empty buffer size falls
below its watermark level.

Scenario:

1. RingIO writer sets notification for 64K watermark with
RINGIO_NOTIFICATION_HDWRFIFO_ONCE type.

2. Writer and reader are acquiring and releasing data at their own processing
speeds.

3. Writer does not receive notification from reader even though empty buffer
size is above watermark (64K).

4. Writer is faster than reader. At some point, the RingIO data buffer gets filled
up such that the empty buffer size falls below the 64K watermark set by
writer. At this point, notification gets enabled. Empty buffer size = 32K.

5. Reader releases 8K empty buffer. Notification is not sent to reader because
empty buffer size = 40K is below reader's watermark.

6. Reader releases 32K empty buffer. Notification is sent to reader because
empty buffer size = 72K is more than reader's watermark. Then notification is
disabled.

7. Reader releases another 16K valid data. Notification is not sent to reader
even though empty buffer size = 88K is more than reader's watermark.

8. Writer starts acquiring data. Writer acquires 48K. Empty buffer size = 40K
falls below writer's watermark. Notification gets enabled.

9. Reader releases 16K valid data. Notification is not sent to reader because
empty buffer size = 56K is less than writer's watermark.

10. Reader releases 8K valid data. Notification is sent to reader because empty
buffer size = 64K matches the writer's watermark. Then notification gets
disabled.

11. This continues ... On subsequent reader releases, notification will not be sent
to writer as long as the empty buffer size remains above the writer's
watermark. When writer acquire results in empty buffer size falling below
watermark, notification gets enabled again. As soon as one notification is sent
to writer, it gets disabled again.

Page 69 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

6 Multi-DSP support

6.1.1 Overview
DSPLink supports multiple DSPs connected to the master GPP processor. With this
feature, GPP side process/application can communicate with the multiple DSPs
connected to the GPP over heterogeneous physical links. Example reference ports
have also be included for multi-DSP configurations

1. Linux PC connected to two DM6437 devices over PCI

2. DRA44x connected to external DM6437 over VLYNQ

6.2 Features

6.2.1 Configuration of DSPLink for Multi-DSP.
DSPLink static build configuration allows users to configure the DSPLINK for multi
DSP usage. With the static build configuration, users can select the number of DSPs,
supported OS on each DSP etc. Refer to user guide for the details.

6.2.2 Linux PC connected to multiple DM6437 devices over PCI
DSPLink provides support for Linux PC connected to multiple DM6437devices over
PCI.

Application on GPP can communicate with all the DSPs or any DSP that is configured
in the system. Application on any DSP can communicate with GPP and also can
communicate with the other DSPs via GPP. Note that DSP side application can not
directly communicate the other DSPs but it can send the information to GPP and GPP
can transfer the information to other DSP.

6.2.3 DRA44x connected to external DM6437 over VLYNQ
DSPLink provides support for DRA44x connected to DM6437 device over VLYNQ.

Application on GPP can communicate with all the DSPs (DM6437GEM and
DRA44xGEM) or any DSP that is configured in the system. Application on any DSP
can communicate with GPP and also can communicate with the other DSPs via GPP.
Note that DSP side application can not directly communicate the other DSPs but it
can send the information to GPP and GPP can transfer the information to other DSP.

6.2.4 Configuration changes

6.2.4.1 Dynamic configuration
New dynamic configuration files

The dynamic configuration has been enhanced for multi-DSP support. Previously,
only two dynamic configuration files were required for each platform:

o CFG_<PLATFORM>.c
o CFG_<GPPOS>.c

With multi-DSP support, this has now changed into a need for four or more dynamic
configuration files. The current CFG_<PLATFORM>.c file has been split up into
separate configuration files for the GPP and DSP:

o CFG_<GPP>.c

Page 70 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

o CFG_<DSPn>_<PHYLINK>.c (These files may be one or more based on the
number of DSPs to be used in the system configuration)

o CFG_system.c: This file contains the current configured system architecture,
and is generated by the static build configuration script.

o CFG_<GPPOS>.c: This file contains the GPP OS related configurations i.e.
signal that needs to handled by link. This file is unchanged from previous
release.

The CFG_system.c file is generated within the GPP temporary folder. If a temporary
folder location is not specified when running the build configuration script, the default
location is the same as in previous releases.

Macros for easier modifications to dynamic configuration

To enable users to easily modify the DSPLink dynamic configuration for most
commonly changed fields, the following enhancements have been made:

1. On changes in number of entries in any table, the corresponding value for
number of entries in the configuration now gets automatically updated. For
example, on adding a new memory table entry, the MEMENTRIES field in DSP
object gets updated automatically.

2. Macros have been provided for most commonly changed fields such as base
addresses of memory sections, memory entry IDs and handshake poll count
(set to -1 during debugging of DSP-side for infinite wait).

3. Even if ordering of the memory entries is changed (due to moving them or
adding/removing new entries), the memory entry ID used by DSPLink
modules for their control needs remains current by modification only in the
macro for shared memory entries number.

Change in name of top-level configuration object for DSP

The top-level configuration structure LINKCFG_Config is now a generated structure,
and includes configurations for the GPP as well as all DSPs. When using dynamic
configuration, applications must only create DSP and GPP configurations, but the
system configuration must get generated only through the static build configuration
script, since it will get overwritten whenever the dsplinkcfg.pl script is run.

6.2.5 Build changes
For legacy single-DSP users, there is no change in build process for GPP or DSP.
Refer user guide to user guide to use the DSPLINK in legacy mode.

6.2.5.1 Common
Path for generated files

It is now possible to maintain a golden DSPLink installation by providing a different
path for all generated files. This path can be specified while running the static build
configuration script dsplinkcfg.pl. If a path is not specified, files are generated in the
same folders as in previous releases.

Removal of platform variant concept

Page 71 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

Variant concept has been removed from DSPLink. All devices are now mentioned by
their full names. This has been done to ensure that porting to a different device in
DSPLink will not require any changes in generic DSPLink, such as moving a header
from generic platform folder into variant-specific folder.

Also, all zero-copy and dma-copy implementations have been moved out of platform-
specific folders. Due to this, device porting effort is now limited to specific folders
within the DSPLink directory tree.

6.2.5.2 GPP-side
None.

6.2.5.3 DSP-side

Scripts for multi-DSP build

For multi-DSP configurations, multimake.bat and multimake.sh scripts are
generated during the static build configuration step. These script files can be used to
build DSP executables for all DSPs in the system in a single step. The files get
generated into $(DSPLINK)/etc/host/scripts/[Linux | msdos].

Generated DSP executable name

The DSP executable is now generated in a folder having the processor ID of the DSP
appended to it.

6.2.6 GPP-side changes

6.2.6.1 Changes in applications
If using single-DSP configuration, applications need to take the following into
consideration:

• If passing PROC_Attrs to PROC_attach (), the dspCfgPtr field must be set to
NULL. A garbage (un-initialized) value in this field shall no longer be accepted
and can cause a system crash. If NULL is being passed as attributes to
PROC_attach (), no change is required.

• If dynamic configuration is to be used in multi-processing/multi-application
scenario, PROC_setup () (and correspondingly PROC_destroy ()) must now
be called in all processes to pass the new dynamic configuration information.
If this is not done, the other processes shall only get default configuration
information, and updated dynamic configuration shall not be available in their
user space. This may cause non-deterministic results.

• POOL_getPoolId () API signature has been changed to take an additional
procId as the first parameter.

If using multi-DSP configuration, applications must ensure the following:

• DSP dynamic configuration for each DSP must be provided to DSPLink as part
of PROC_Attrs provided to PROC_attach () API for that DSP. This ensures
that it becomes possible to reconfigure one of the executing DSPs by
detaching & attaching to it with a different dynamic configuration. This can be
done without disturbing the execution of the other DSP.

Page 72 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

• The GPP-side POOL IDs used for communication with the DSP must now be
generated using a new API: POOL_makePoolId. By default, a single DSP
configuration is used, and processor ID of 0 is assumed for the DSP. Hence, in
single-DSP configuration, this change is not needed. However, in multi-DSP
configuration, it is essential to identify the DSP with which the POOL is
shared. Hence, the POOL_makePoolId macro can be used to generate the ID
which is to be used for all POOL operations.

6.2.6.2 Include path changes
The include paths for GPP-side have been modified to include two folders:

o sys: Contains all system and device specific header files

o usr: Contains all user include files, which are device-independent

Most applications would only need to include header files in the usr folder. The
generated <COMPONENT>_includes.TXT file would now contain the updated include
paths. This file can be used by any users that are not using the DSPLink build system
for their applications.

6.2.6.3 New compiler defines
The <COMPONENT>_defines.TXT file generated during build would contain all new
compiler defines to be used for building DSPLink and applications. This can be used
as a reference if a non-DSPLink based build system is being used.

6.2.7 DSP-side application changes
The DSP-side of DSPLink is fully backward compatible with the previous release. No
changes are required to applications.

Application configuration in multi-DSP configuration must ensure that Message
Queue transports are created as needed considering IDs of all processors in the
system. This is not specific to DSPLink, but a basic DSP/BIOS MSGQ configuration
requirement for multi-DSP usage.

Page 73 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

7 Multi-application and multi-process support

7.1 Overview
Multiple applications/processes on the GPP may wish to use the services provided by
DSPLINK to control and communicate with the DSP. A few possible methods are
available to support multiple processes or multiple applications using DSP/BIOS™
LINK. This is applicable for operating systems such as Linux that support multi-
processing.

3. Multiple independent applications using DSP/BIOS™ LINK services

4. Multiple processes within a single application.

5. Multiple threads within the processes

7.2 Features

7.2.1 Multiple independent applications
Multi-application support with DSP/BIOS™ LINK has the following features:

1. An application can be written to execute singly using DSPLINK to control
and communicate with the DSP.

2. The same application can be used without any changes in the applications
source code, to run simultaneously along with another application also
using DSPLINK. The only consideration to be used while writing the
application, is that the DSPLINK resources (e.g RingIO/MSGQ names)
used by the applications must be unique for the system.

3. The applications use the same integrated DSP executable containing DSP-
side content required for all the co-existing GPP-side applications.

4. If multiple different applications using DSPLINK are running on the target
processor, a crash in one of these does not affect the execution of the
other application.

q When multiple applications use DSPLINK, they must ensure that they pass the
same dynamic configuration pointer during PROC_setup. They must also
ensure that they use the same DSP executable to be loaded with PROC_load.

7.2.1.1 Example
Two applications contain source as follows:

PROC_setup (...) ;
PROC_attach (...) ;
POOL_open (poolId, poolParams) ;
PROC_load (..., dspExec, ...) ;
PROC_start (...) ;
MSGQ_transportOpen (...) ;

/* Application-specific code */

MSGQ_transportClose (...) ;
PROC_stop (...) ;
POOL_close (...) ;
PROC_detach (...) ;

Page 74 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

PROC_destroy (...) ;

Both the applications can start-up and run independently if run singly. They can also
start-up and run independently if run at the same time.

The behavior seen by the applications shall be the same irrespective of the sequence
in which the calls actually get made to DSPLINK. An overview of the activities
occurring in each API, depending on the sequence in which it gets called, is given
below. It may not be necessary that the first occurrence for all APIs occurs only for
the first application.

API First occurrence Second occurrence
PROC_setup Sets up GPP-side of

DSPLINK
No activity. Does not result in
actually allocating any
resources for DSPLINK.

PROC_attach Performs all activities
required to be able to
access the DSP resources
from this process.

Performs all activities required
to be able to access the DSP
resources from this process.

POOL_open Configures the specified
pool with the specified
parameters

If the same pool is opened, it
is made available to the
process. No change is made in
the pool configuration and the
parameters are ignored.

PROC_load Loads the specified DSP
executable on the DSP.

If the same DSP executable is
specified, the DSP state is not
changed, and the executable
is not actually loaded on the
DSP.

PROC_start Starts the DSP executing
from its entry point.

The DSP state is not changed,
and this call does not result in
actually starting the DSP
execution.

MSGQ_transportOpen Opens the MSGQ
transport

The MSGQ transport is not
actually opened.

MSGQ_transportClose Does not actually close
the MSGQ transport

The MSGQ transport is closed.

PROC_stop Does not actually stop the
execution of the DSP,
since it is still being used
by the second application.

Stops execution of the DSP
and places it in reset.

POOL_close Does not result in actually
closing the pool. Only
makes the pool
unavailable to this
process.

Closes the pool and makes it
unavailable to any
process/DSP.

PROC_detach Releases all resources that
were acquired for this

Releases all resources that
were acquired for this process

Page 75 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

process in PROC_attach. in PROC_attach.
PROC_destroy No activity. Does not

result in freeing any
resources in DSPLINK.

Releases all allocated
resources on the GPP-side of
DSPLINK. Following this, no
further calls can be made to
DSPLINK APIs.

q For additional information about return codes from PROC APIs and the
behavior of each API, please refer to the enhanced multi-process support
design document (LNK_157_DES) available with the release.

7.2.2 Multiple processes within a single application
When multiple processes are used within a single application, the following are the
salient features of this scenario:

1. There is one system integration application, which initially sets up
DSPLINK. It opens all pools as are required by the system. It also loads
and starts execution of the DSP executable.

2. This application forks out different processes that perform different
independent activities.

3. Each process that needs to use DSPLINK attaches to the required DSP
using PROC_attach ().

4. Each process also indicates the pool that it wishes to use by calling
POOL_open. It may pass NULL as the pool parameters, since the pool was
already opened by the system integrator.

5. Each process may also open additional pools as required only for that
process.

6. The process may perform data transfers with the DSP using any DSPLINK
components as required.

7. When it has completed its processing, it closes its handle to the pools it
had opened by calling POOL_close.

8. It also detaches from the DSP by calling PROC_detach.

9. Only after all processes have completed their activities, the system
integrator performs system shutdown by stopping the DSP execution,
performing final close of the POOLs and destroying the DSPLINK driver.

7.2.3 Multiple threads within the processes
When multiple threads are used within the processes, the following are the salient
features of this scenario:

1. The setup of DSPLINK is done by the processes as required. This is similar to
both scenarios 1 and 2.

2. Each thread that needs to use DSPLINK can directly start using the DSPLINK
component services as required. It must not call PROC_attach or POOL_open.

3. It can open and use any MSGQs, CHNLs, or other resources as required.

4. When the thread has finished processing, it can close the resources that it had
allocated, and simply exit. It does not need to call POOL_close or PROC_detach.

Page 76 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

5. On Linux, if signals are being used for cleanup processing, all threads that do not
wish to catch the termination signals must mask the signals to ensure that they
do not die.

Page 77 of 77 Version 1.65

DSP/BIOS™ LINK
LNK 161 USR

PROGRAMMER’S GUIDE

8 Dos and Don’t’s for writing applications using DSP/BIOS LINK

8.1 Dos

8.1.1 Always check the return status of any DSPLink API call.
DSP/BIOS Link provides macros like DSP_SUCCEEDED and DSP_FAILED which can
be used to determine if the API has succeeded or failed.

These API’s can be used to check or return status for all protocols except RingIO. In
RingIO the user needs to check each status return type explicitly as the application
might need to interpret and evaluate application behavior between different success
code.

This macro cannot be used in the following manner
if (DSP_SUCCEEDED (MSGQ_Open (msgqName, &msgq, NULL))) {
 ...
}

Though the argument ‘x’ is used only once in the statement as it appears in the
program, the macro expansion can result in invoking ‘x’ multiple times, if it is a
function.

Here, MSGQ_Open () may get invoked multiple times, resulting in undesired
behavior. Hence, this usage must be replaced by the following:

status = MSGQ_Open (msgqName, &msgq, NULL) ;
if (DSP_SUCCEEDED (status)) {
 ...
}

8.1.2 Use the software dependencies with correct versions as stated in release notes.
Each DSP/BIOS Link release documents the dependencies against which it has been
validated. Some of the features required by DSPLink may depend on the versions of
the dependencies. The behavior of DSPLink may not be as expected if the
dependencies are incorrect.

8.2 Don'ts

8.2.1 Do not use names with size equal or greater than 32 characters.
DSP/BIOS Link stores all names for e.g. RingIO names, MSGQ names in an array
with size as 32 characters. If you name your MSGQ or RingIO with a size equal or
larger than 32 characters width it might lead to system issues.

8.2.2 Do not call any DSP/BIOS Link API from a registered callback function
No DSP/BIOS Link API should be called from a callback function registered through
the RingIO or NOTIFY module. On DSP-side or on operating systems such as PrOS,
the callback functions are run from ISR context and must not perform any operations
that may take a lock or block, which is done by most DSPLink APIs. Minimum
functionality must be used in the callback functions, most often limited to posting a
semaphore on which application is waiting, posting SWI etc.

