

Template Version 1.2

Version <1.00> Page 1 of 19 Texas Instruments Proprietary Information

DESIGN DOCUMENT

DSP/BIOS™ LINK

Configurable TSK and SWI approach

LNK 207 DES

Version <1.00>

Page 2 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

This page has been intentionally left blank.

Page 3 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

This page has been intentionally left blank.

Page 5 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

TABLE OF CONTENTS

1 Introduction ... 6
1.1 Purpose & Scope ... 6
1.2 Terms & Abbreviations ... 6
1.3 References ... 6
1.4 Overview.. 6

2 Requirements ... 6

3 Assumptions... 7

4 Constraints ... 7

5 Low Level Design.. 8
5.1 Following functionality added to support TSK mode:- 8
5.2 Initializes the semaphore object .. 9
5.3 Wait and signal a semaphore ...10
5.4 ZCPYMQT and ZCPYDATA in TSK context ...11
5.5 Delete a task (TSK_delete) ..13
5.6 Configuration and make system changes...13

6 Typedefs & Data Structures.. 15
6.1 ZCPYMQT_State ...15

7 API Definition... 16
7.1 ZCPYMQT_tskFxn ...16
7.2 ZCPYDATA_TSK..16

8 Impact and Backward Compatibility:.. 18

Page 6 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

1 Introduction

1.1 Purpose & Scope
This document describes the design to configure the TSK or SWI mode for the

existing SWI functions of ZCPYMQT and ZCPYDATA. If MPCS protection is TSK-base,

then DSPLink MSGQ and CHNL drivers will use TSK Mode on DSP-side. If MPCS

protection is SWI-base, then DSPLink MSGQ and CHNL drivers will use SWI Mode. So

that systems are fully TSK-based or SWI based.

1.2 Terms & Abbreviations
DSPLINK DSP/BIOS™ LINK

SWI Software interrupt manager

TSK Task manager

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

1.3 References
1. Spru404n.pdf TMS320C55x DSP/BIOS 5.32 Application Programming

Interface (API) Reference Guide

2. LNK_041_DES.pdf ZERO COPY LINK DRIVER

1.4 Overview
DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit

that simplifies the development of embedded applications in which a general-purpose

microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK

provides control and communication paths between GPP OS threads and DSP/BIOS™

tasks, along with analysis instrumentation and tools.

This document gives an overview of the SWI and TSK mode detailed design for

DSPLINK.

2 Requirements
DSPLN00001021:- DSPLink should use configurable TSK-Sem or SWI-enable and

SWI-disable approach for MPCS.

Presently, DSPLINK MSGQ and CHNL components work in SWI mode only. For TSK

mode the components should work in context of a Task.

To support this feature following changes are required within DSPLink:

• Select the mode while configure the DSPLINK.

Mode can be SWI or TSK (DSP_SWI_MODE or DSP_TSK_MODE).

• Handle the components properly for both modes.

Don’t disable the scheduler by calling TSK_disable. Use semaphore SEM_pend

and SEM_post.

Page 7 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

3 Assumptions
The MPCS design makes the following assumptions:

1. The hardware allows provision of a buffer pool, to which both the GPP and the

DSP have access.

4 Constraints
The MPCS object must be allocated and freed through POOL APIs provided by

DSPLINK. Elements allocated through the POOL API can be accessed by multiple

processors. Any other means for memory allocation (for example: standard OS calls)

will fail as the elements cannot be accessed across processors.

The user has to use unique identifier to identify individual MPCS objects across the

system.

Page 8 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

5 Low Level Design
The zero-copy driver provides a fast physical link between the GPP and the DSP,

based on the concept of pointer exchange between the GPP and DSP applications.

For data transfer, the link driver manages a configurable number of logical channels.

The IPS component manages the transfer of data and messages across the two

processors. For this, it uses the shared memory control structure and interrupts

between the processors to inform about any changes in status of buffer/message

availability on the channels.

The IPS component shall maintain lists of messages, which are shared between the

GPP and the DSP. There shall be two unidirectional lists of messages, for messages

to and from the DSP. Similar lists shall also be used for data transfer. To protect

these shared lists, the IPS component shall utilize the services of a generic

component that shall provide critical section protection between the two processors.

In a multiprocessor system having shared access to a memory region, a

multiprocessor critical section between GPP and DSP can be implemented. This MPCS

object can be used by applications to provide mutually exclusive access to a shared

region between multiple processors, and multiple processes on each processor.

5.1 Following functionality added to support TSK mo de:-
1. Create a task to execute (Using TSK_create call).

2. Initialize the semaphore object.

3. Wait and signal a semaphore (Using SEM_pend and SEM_post).

4. Use the functionality in ZCPYMQT and ZCPYDATA functions in TSK context.

5. Delete the task (Using TSK_delete call).

6. Configuration and make system changes.

5.1.1 Create a task to execute (Using TSK_create ca ll)
The TSK objects are created during the ZCPYMQT_open phase for TSK mode by

calling TSK_Create. Create the task in the initial ZCPYMQT_open function.

Static Int ZCPYMQT_open (MSGQ_TransportHandle mqtHa ndle)
{
.
.
#if defined (USE_TSK)
tskAttrs. priority =15 ;
mqtState->tskHandle = TSK_create(ZCPYMQT_tskFxn, &t skAttrs,0) ;
if (mqtState->swiHandle == NULL) {
 status = SYS_EALLOC ;
 SET_FAILURE_REASON (status) ;
}
#endif

Create the static TSK objects for ZCPYDATA, use the following steps.

var ZCPYLINK_TSK_OBJ= bios.TSK.create("ZCPYLINK_TSK _OBJ");
/* To create a TSK object*/
ZCPYLINK_TSK_OBJ.comment = " This TSK handles the d ata transfer in
DSPLINK";

Page 9 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

ZCPYLINK_TSK_OBJ.autoAllocateStack = true;
/* Check this box if you want the task’s private st ack space to be
allocated automatically */
ZCPYLINK_TSK_OBJ.priority = 15;
/* The priority level for this task. */
ZCPYLINK_TSK_OBJ.fxn = prog.extern("ZCPYDATA_TSK");
/* The function to be executed when the task runs. */
ZCPYLINK_TSK_OBJ.arg0 = 0;
/* Task function argument 0-7 */

5.2 Initializes the semaphore object
SEM_new () initializes the semaphore object pointed to by sem with count. The

function should be used on a statically created semaphore for initialization purposes

only.

Create and initialize the semaphore for MPCS:-

Int
MPCS_create (IN Uint16 procId,
 IN Char * name,
 IN OPT MPCS_ShObj * mpcsObj,
 IN MPCS_Attrs * attrs)
{
.
.
#if defined (USE_TSK)
 SEM_Obj mpcsSem ;
 #if defined (USE_TSK)
 SEM_new (&mpcsSem, 0) ;
 #endif
#endif
}

Create and initialize the semaphore for ZCPYMQT:-

Static Int ZCPYMQT_open (MSGQ_TransportHandle mqtHa ndle)
{
.
.
#if defined (USE_TSK)
 SEM_Obj zcpyMqtSem ;
 #if defined (USE_TSK)
 SEM_new (&zcpyMqtSem, 0) ;
 #endif
#endif
}

Create and initialize the semaphore for ZCPYDATA:-

Void
ZCPYDATA_init ()
{
.
.
#if defined (USE_TSK)
 SEM_Obj zcpyDataSem ;

Page 10 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

 #if defined (USE_TSK)
 SEM_new (&zcpyDataSem, 0) ;
 #endif
#endif
}

5.3 Wait and signal a semaphore
In case of TSK context. SEM_pend and SEM_post will control the task processing.

Initially it calls SEM_pend to acquire the semaphore if it is available and tries to get

the multiprocessor lock. SEM_pend and SEM_post are use with counting

semaphores, which keep track of the number of times the semaphore has been

posted.

The MPCS component in TSK context:-

MPCS_enter calls SEM_pend to acquire the semaphore.

Int MPCS_enter (IN MPCS_Handle mpcsHandle)
{
 Int status = SYS_OK ;
#if defined (DDSP_PROFILE)
 Bool conflictFlag = FALSE ;
#endif
 DBC_require (mpcsHandle != NULL) ;
 if (mpcsHandle == NULL) {
 status = SYS_EINVAL ;
 SET_FAILURE_REASON (status) ;
 }
 else {
#if defined (USE_TSK)
 While(1) {
 SEM_pend(&mpcsSem, SYS_FOREVER) ;
 .
 .
 .
 }
#endif

MPCS_leave will call SEM_post to post the semaphore to allow the others that are

waiting or blocked in MPCS_enter.

Int MPCS_leave (IN MPCS_Handle mpcsHandle)
{
 Int status = SYS_OK ;
 DBC_require (mpcsHandle != NULL) ;
 if (mpcsHandle == NULL) {
 status = SYS_EINVAL ;
 SET_FAILURE_REASON (status) ;
 }
 else {

 /* Check if DSP side is using the resource i.e. there has
been * a corresponding MPCS_enter.

Page 11 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

 */
 if (mpcsHandle->dspMpcsObj.flag == (Uint16) MPCS_BUSY) {
 /* Release the resource. */
 mpcsHandle->dspMpcsObj.flag = (Uint16) MPCS_FREE ;

 HAL_cacheWbInv ((Ptr) &(mpcsHandle->dsp MpcsObj),
 sizeof (MPCS_ProcObj)) ;
#if defined (USE_TSK)
 SEM_post(mpcsSem) ;
#endif
.
.
.
}

5.4 ZCPYMQT and ZCPYDATA in TSK context
When either the GPP or DSP is ready to send a message to the other processor, it

sends the notification to the IPS component. On receiving a message from the other

processor, the IPS component makes a call back to the ZCPY MQT and DATA

component, which places the received message onto the appropriate local message

queue.

The callback functions (ZCPYDATA_callback and ZCPYMQT_callback) are registered

with IPS component. These callback functions will call SEM_post to post the

semaphore to allow the others that are waiting or blocked in ZCPYMQT_tskFxn and

ZCPYDATA_tskFxn.

In case of ZCPYMQT :-

Static Void ZCPYMQT_callback (Uint32 eventNo, Ptr a rg, Ptr info)
{
 ZCPYMQT_State * mqtState = (ZCPYMQT_State *) ar g ;
 (void) eventNo ;
 (void) info ;
 DBC_assert (mqtState != NULL) ;
#if defined (USE_TSK)
 SEM_post(zcpyMqtSem) ;
#endif
#if defined (USE_SWI)
 SWI_post (mqtState->swiHandle) ;
#endif
}

In case of ZCPYDATA :-

Static Void ZCPYDATA_callback (Uint32 eventNo, Ptr arg, Ptr info)
{
 (void) eventNo ;
 (void) arg ;
 (void) info ;
#if defined (USE_TSK)
 SEM_post((&ZCPYDATA_TSK_OBJ) ;
#endif
#if defined (USE_SWI)

Page 12 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

 SWI_inc (&ZCPYDATA_SWI_OBJ) ;
#endif
}

ZCPYMQT_tskFxn and ZCPYDATA_TSK are register for TSK mode and both functions

will call the SEM_pend to wait the semaphore.

In case of ZCPYMQT :-

static
Void
ZCPYMQT_swiFxn (Arg arg0, Arg arg1)
{
 Int status = SYS_OK ;
.
.
 DBC_require (arg0 != NULL) ;

 (Void) arg1 ;
 mqtState = (ZCPYMQT_State *) arg0 ;
.
 HAL_cacheInv ((Ptr) &(ctrlPtr->toDspList), size of (ctrlPtr-
>toDspList)) ;

#if defined (USE_TSK)
 While(1) {
 SEM_pend(&zcpyMqtSem, SYS_FOREVER) ;
 .
 }
.
#endif

In case of ZCPYDATA :-

Void ZCPYDATA_TSK (Arg arg0, Arg arg1)
{
 ZCPYDATA_DevObject * dev = (ZCPYDATA_De vObject *) arg0 ;
.
.
 (Void) arg1 ;

 DBC_require (dev != NULL) ;
#if defined (USE_TSK)
 While(1) {
 SEM_pend(&zcpyDataSem, SYS_FOREVER) ;
 .
 }
.
#endif
}

Page 13 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

5.5 Delete a task (TSK_delete)
The TSK and SWI objects are deleted by calling SWI_delete and TSK_delete. When

ZCPYMQT_close is called delete the objects. ZCPYMQT_close Closes the ZCPY MQT,

and cleans up its state object.

In case of ZCPYMQT:-

static
Int
ZCPYMQT_close (MSGQ_TransportHandle mqtHandle)
{
 Int status = SYS_OK ;
 QUE_Handle queHandle ;
 ZCPYMQT_State * mqtState ;
 MSGQ_Msg msg ;

 DBC_require (mqtHandle != NULL) ;
.
.
#if defined (USE_SWI)
 if (mqtState->swiHandle != NULL) {
 SWI_delete (mqtState->swiHandle) ;
 }
#endif /* if defined (USE_SWI) */

#if defined (USE_TSK)
if (mqtState->tskHandle != NULL) {
 TSK_delete (mqtState->tskHandle) ;
}
#endif

5.6 Configuration and make system changes
To make it configurable need to export the mode e.g DSP_SWI_MODE or

DSP_TSK_MODE. Using dsplinkcfg.pl mode can be exported For e.g.

****************** ADVICE !!! ***************************

To enable TSK mode select: --DspTskMode=1

Provided:

Assuming SWI mode enable and continuing...

===

perl dsplinkcfg.pl --platform=DAVINCIHD --nodsp=1 --

dspcfg_0=DM6467GEMSHMEM --dspos_0=DSPBIOS5XX --gppos=MVL5G --

comps=ponslrmc --DspTskMode=1

or

perl dsplinkcfg.pl --platform=DAVINCIHD --nodsp=1 --

Page 14 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

dspcfg_0=DM6467GEMSHMEM --dspos_0=DSPBIOS5XX --gppos=MVL5G --

comps=ponslrmc

In case of TSK Mode the CURRENTCFG.mk :-

#===

DSP SWI/TSK MODE SPECIFIC DEFINES

===

export TI_DSPLINK_DM6467GEM_MODE := DSP_TSK_MODE

#===

DSP SPECIFIC DEFINES

#===

export TI_DSPLINK_DSP0_DEFINES := PROCID=0 OMAP2530

OMAP2530_INTERFACE=SHMEM_INTERFACE PHYINTERFACE=SHMEM_INTERFACE

DSP_TSK_MODE

In case of SWI Mode the CURRENTCFG.mk :-

export TI_DSPLINK_DSP_MODE := DSP_SWI_MODE

#===

DSP SPECIFIC DEFINES

#===

export TI_DSPLINK_DSP0_DEFINES := PROCID=0 OMAP2530

OMAP2530_INTERFACE=SHMEM_INTERFACE PHYINTERFACE=SHMEM_INTERFACE

DSP_SWI_MODE

Page 15 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

6 Typedefs & Data Structures

6.1 ZCPYMQT_State
This structure defines the ZCPYMQT state object, which contains all the component-

specific information.

Definition
typedef struct ZCPYMQT_State_tag {
 Uint16 poolId ;
 QUE_Obj ackMsgQueue ;
 Uint32 ipsId ;
 Uint32 ipsEventNo ;

 ZCPYMQT_Ctrl * ctrlPtr ;
#if defined (USE_SWI)
 SWI_Handle swiHandle ;
#endif /* if defined (USE_SWI) */
#if defined (USE_TSK)
 TSK_Handle tskHandle ;
#endif /* if defined (USE_TSK) */

} ZCPYMQT_State ;

Fields

poolId Pool ID used for allocating control messages. This pool is also

used in case the ID within the message received from the

DSP is invalid. This can occur in case of a mismatch between
pools configured on the GPP and the DSP.

ackMsgQueue Queue of locateAck messages received from the GPP.

ipsId

IPS ID associated with MQT.

ipsEventNo IPS Event no associated with MQT.

swiHandle SWI for processing of locate functionality in non-ISR context.

Only defined if callback processing is to be performed within

a SWI instead of interrupt context.

tskHandle Only defined if callback processing is to be performed within
a TSK context.

Comments
An instance of this object is created and initialized during ZCPYMQT_open () , and its
handle is returned to the caller. It contains all information required for maintaining

the state of the MQT.

Constraints
None.

See Also
ZCPYMQT_open ()

Page 16 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

7 API Definition

7.1 ZCPYMQT_tskFxn
Implements the TSK function for the ZCPYMQT.

Syntax
Static Void ZCPYMQT_tskFxn (Arg arg0, Arg arg1) ;

Arguments

IN Arg arg0 ;

ZCPYMQT state object, which contains all the component-specific

information.

Return Value

void

Comments
Make locate request to remote MQT by sending event to SHMIPS containing control

message. If the locate call is synchronous, wait for receiving locate

acknowledgement message from remote MQT as an SHMIPS event containing control

message. If the locate call is asynchronous, return from the function without

blocking. When the locate acknowledgement arrives from the remote processor,

allocate and send an asynchronous locate message to the reply message queue

specified by the caller.

Constraints
None.

See Also
None.

7.2 ZCPYDATA_TSK
TSK function for data transfer in DSPLINK..

Syntax
Static Void ZCPYDATA_TSK (Arg arg0, Arg arg1) ;

Arguments

IN Arg arg0 ;

Pointer to LINK device structure.

Return Value

void

Comments
Functionality will remain same as ZCPYDATA_SWI. Only the change is waiting for
semaphore.

Page 17 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

Constraints
None.

See Also
None.

Page 18 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

8 Impact and Backward Compatibility:

By default, the DSP-side of DSPLink uses SWIs for MSGQ and CHNL physical

transports for communication with the peer transports on the GPP-side. Accordingly,

the MPCS (Multi-processor critical section) protection uses SWI_disable/SWI_enable

to protect from other local threads, since the DSPLink APIs need to be callable from

SWI context.

In pure TSK-only systems, this release now supports applications that wish to reduce

the scheduler disable latency. For this, the MPCS implementation supports usage of

semaphore for protection from other local threads. Accordingly, the MSGQ and CHNL

modules use TSK based servers instead of SWIs for communication with the peer

transport on GPP. With this change, the scheduler disable latency gets reduced;

however applications must not make any DSPLink calls from SWI context.

In both modes, DSPLink calls from HWI context continue to not be supported. The

choice of whether TSK mode or SWI mode is to be used, is selectable for each DSP in

the system from the DSPLink static build configuration script dsplinkcfg.pl.”

If application writer is using the DSPLink build system and the DSPLink shipped tci

files, the application writer can look at the <sample_tsk> files for reference

The changes that application needs to make to move from the default SWI mode to

task mode are as follows:

• Remove static creation of SWI related configuration from application TCF file

 i.e. the code shown below.

 var dsplink = prog.module("UDEV").create("dsplink");
 dsplink.params = prog.decl("DSPLINK_DEV_PARA MS");
 dsplink.initFxn = prog.decl("DSPLINK_init");
 dsplink.fxnTable = prog.decl("DSPLINK_FXNS");
 dsplink.fxnTableType = "IOM_Fxns";
 dsplink.comment = "DSP/BIOS LINK - IOM Drive r";

 var ZCPYLINK_SWI_OBJ =
prog.module("SWI").create("ZCPYDATA_SWI_OBJ");
 ZCPYLINK_SWI_OBJ.comment = "This swi handles the data transfer in
DSPLINK";
 ZCPYLINK_SWI_OBJ.fxn = prog.decl("ZCPYDATA_ SWI");
 ZCPYLINK_SWI_OBJ.priority = 14;
 ZCPYLINK_SWI_OBJ.arg0 = prog.decl("ZCPYDATA_ devObj");

• Add the following TSK mode related code in the application TCF file for CHNL

 component

 var dsplink = prog.module("UDEV").create("dsplin k");
 dsplink.initFxn = prog.decl("ZCPYDATA_init") ;
 dsplink.fxnTable = prog.decl("ZCPYDATA_FXNS") ;

Page 19 of 19 Version <1.00>

DSP/BIOS™ LINK

LNK 207 DES

Configurable TSK and SWI approach

Texas Instruments Proprietary Information

 dsplink.fxnTableType = "IOM_Fxns";
 dsplink.comment = "DSP/BIOS LINK - IOM Driv er";

 var ZCPYLINK_TSK_OBJ = bios.TSK.create("ZCPY LINK_TSK_OBJ");
 ZCPYLINK_TSK_OBJ.comment = "This tsk handles the data transfer in
DSPLINK";
 ZCPYLINK_TSK_OBJ.autoAllocateStack = true;
 ZCPYLINK_TSK_OBJ.priority = 15;
 ZCPYLINK_TSK_OBJ.fxn = prog.extern("ZCPYDATA_tskF xn");
 ZCPYLINK_TSK_OBJ.arg0 = prog.decl("ZCPYDATA_ devObj");

• Ensure that the creation of the DIO driver remains unchanged in the

 application TCF file

var dio_dsplink = prog.module("DIO").create("dio_ds plink");
dio_dsplink.comment = "DSP/BIOS LINK - DIO Driver" ;
dio_dsplink.deviceName = prog.get("dsplink");

• Update priorities of the ZCPYMQT and ZCPYDATA task as per application

 integrator and system requirements.

• The application writer may need to set the STACKSEG for dynamic

TSK_create calls in the application TCF file.

bios.TSK.STACKSEG = <some memory seg>; // for dy namic TSK stacks

• Ensure that the applications do not call DSPLink API’s from ISR or SWI

 context.

In TSK mode, it is not permitted to call DSPLink APIs from ISR or SWI context. In

default SWI mode, it is not permitted to call DSPLink APIs from ISR context.

Calling DSPLink API’s from ISR or SWI context could lead to system deadlock

System deadlock could occur when:

• DSP-side executing in a task, takes an MPCS lock (through DSPLink API call),

gets preempted by a SWI, which also tries to take an MPCS lock by calling a

DSPLink API (not allowed)

• DSP-side executing in a task, takes an MPCS lock (through DSPLink API call),

gets preempted by an ISR, which also tries to take an MPCS lock by calling a

DSPLink API (not allowed)

• DSP-side executing in a SWI, takes an MPCS lock (through DSPLink API call),

gets preempted by an ISR, which also tries to take an MPCS lock by calling a

DSPLink API (not allowed)

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Requirements
	Assumptions
	Constraints
	Low Level Design
	Following functionality added to support TSK mode:-
	Create a task to execute (Using TSK_create call)

	Initializes the semaphore object
	Wait and signal a semaphore
	ZCPYMQT and ZCPYDATA in TSK context
	Delete a task (TSK_delete)
	Configuration and make system changes

	Typedefs & Data Structures
	ZCPYMQT_State

	API Definition
	ZCPYMQT_tskFxn
	ZCPYDATA_TSK

	Impact and Backward Compatibility:

