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Texas Instrument’s fork of the Apache Tensor Virtual Machine (TVM) enables support for the
TDA4 family of processors. These processors use C7x DSPs and Matrix Multiplication Accelera-
tors (MMA) to accelerate inference-making by machine learning models. For additional informa-
tion about TDA4x processors and TI’s Edge AI ecosystem, refer to the Edge AI page on ti.com.

The TI Deep Learning library (TIDL) contains highly optimized implementations of common lay-
ers on C7x/MMA. If a model contains layers that are not implemented by TIDL, TVM can be used
to run these layers on Arm (Cortex-A) cores or the C7x DSP core.

This user’s guide documents the TI TVM Compiler and its usage.

CONTENTS 1
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CHAPTER

ONE

GETTING STARTED

Note: The TI Edge AI Cloud is a free online service used to evaluate and benchmark accelerated
deep learning inference on TDA4 family processors. TVM is one of the frameworks supported
by the TI Edge AI Cloud. If you are interested in evaluating TVM without having to install any
software or purchase an evaluation board, you can use this service.

This chapter lists the steps required to install the TVM framework, compile models, and run infer-
ence on a TI evaluation board (EVM).

1.1 Installation Instructions

Follow the instructions linked below to install the TVM compiler framework on a Linux PC. The
instructions also cover how to install EVM-specific dependencies required for inference.

EVM Instructions
J721E EVM J721E link
TDA4VM processor starter kit TDA4VM SK link

1.2 Model Basics

Machine learning models usually take input data in tensor (multi-dimensional array) format and
produce output data in tensor format. Before compiling and inferencing a model using TVM, it is
recommended that you understand the basic requirements for your model:

• model semantics, including the meanings of input and output

• input name, shape

• output shape
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• sample of input data

• expected output data corresponding to the sample input data

Experimenting with pre-processing input data, running inference, and post-processing input data
can be accomplished even without a TVM setup and TI devices. For example, if you have an
ONNX model, you can write a Python script like the following to import the onnxruntime
package, pre-process input data, run inferencing, post-process output data, and verify the results.

import onnxruntime
model_file = ...
input_name = ...
input_data = ...
sess = onnxruntime.InferenceSession(model_file)
output = sess.run([], {input_name : input_data})

In the topics that follow, we assume you understand the basics of your model, so we focus on
TVM-related aspects. Although we show data pre-processing, model input names and shapes, and
data post-processing in our examples, the details about these steps are likely to be different for
your model, so it is your responsibility to set them correctly.

1.3 Compiling Models

TI TVM supports two options for compiling models with TIDL offload. The distinction is based
on where layers that are not supported by TIDL are executed during inference:

1. Executing unsupported layers on Arm (See flow in Figure 1).

2. Executing unsupported layers on C7x (See flow in Figure 2). This option frees up the Arm
device to run other aspects of the application. It can also improve overall inference perfor-
mance by minimizing communication across the Arm and C7x.

The following figures show components added by TIDL and the TI TVM fork outlined in red.

1.3. Compiling Models 3
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Table 1.1: Model compilation with unsupported layers

Figure 1: Mapped
to Arm

Figure 2: Mapped
to C7x

See Compilation Explained for further details about TI TVM compilation.

1.3.1 Compiling for TIDL Offload

TVM compilation is typically performed using a Python compilation script. Example scripts are
provided in the TI edgeai-tidl-tools and TI TVM fork Git repositories. You can use these examples
as templates to modify for your own use cases.

An overview of TI Open Source Runtime and compilation options are provided in the TI edgeai-
tidl-tools overview.

The following Python functions are used in the examples provided by the TI TVM fork.

compile_model

The compile_model function encapsulates the steps required to compile a model with TIDL
offload.

relay.ti_tests.compile_model.compile_model(model_name: str, platform: str,
compile_for_device: bool,
enable_tidl_offload: bool,
enable_c7x_codegen: bool,
batch_size: int = 0)

1.3. Compiling Models 4
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Compile a model based on the parameters specified.

Parameters

• model_name – name of the model as specified in models.py (E.g.
mv2_onnx).

• platform – in [“J7”, “J721S2””, “AM62A”]

• compile_for_device – True => Compile module for inference on
device (aarch64). False => Compile module for inference on host (x86).

• enable_tidl_offload – Set to True to enable TIDL offload.

• enable_c7x_codegen – True => Enable c7x code generation for
layers not offloaded to TIDL. i.e. entire network runs on the C7x. False
=> Enable Arm code generation for layers not offloaded to TIDL. i.e.
Unsupported layers are run on Arm (aarch64).

• batch_size – 0: use the batch size that comes with the model other-
wise: override the default batch size

Return type
True for success, False for failure.

Listing 1.1 shows the key functions called from compile_model.

Listing 1.1: Compiling a model with TIDL offload

1 os.environ["TIDL_RELAY_MAX_BATCH_SIZE"] = str(batch_size)
2

3 # Obtain model and convert to Relay
4 mod, params = get_relay_model(model_name, batch_size)
5

6 # Get inputs to use for calibraton (required for TIDL offload)
7 calibration_input_list = get_calib_inputs(model_name, batch_

→˓size)
8

9 # Generate a name for the artifacts folder based on the model
→˓and other parameters

10 artifacts_folder = get_artifacts_folder(model_name, platform,
→˓compile_for_device,

11 enable_tidl_offload,
→˓enable_c7x_codegen,

12 batch_size)
13

14 # Compile the model using TVM and place the output in the
→˓artifacts_folder

(continues on next page)
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(continued from previous page)

15 result = compile.compile_relay(mod, params, calibration_input_
→˓list, platform, compile_for_device,

After a successful compile, the artifacts required to deploy the model are stored in the arti-
facts_folder.

compile_relay

The compile_relay function uses the TIDLCompiler class to partition the relay graph for
offload subgraphs to TIDL.

tvm.contrib.tidl.compile.compile_relay(mod: IRModule, params: Dict[str,
NDArray], calibration_input_list:
List[Dict[str, NDArray]], platform:
str, compile_for_device: bool,
enable_tidl_offload: bool,
enable_c7x_codegen: bool,
artifacts_folder: str, tidl_tensor_bits:
int = 8)→ bool

Compile Relay IR module based on the parameters specified

Parameters

• mod – Input Relay IR module.

• params – The parameter dict used by Relay.

• platform – in [“J7”, “J721S2”, “AM62A”]

• calibration_input_list – A dictionary where the key is input
name and the value is input tensor.

• compile_for_device – True => Compile module for inference on
device (aarch64). False => Compile module for inference on host (x86).

• enable_tidl_offload – Set to True to enable TIDL offload.

• enable_c7x_codegen – True => Enable c7x code generation for
layers not offloaded to TIDL. i.e. entire network runs on the C7x. False
=> Enable Arm code generation for layers not offloaded to TIDL. Un-
supported layers are run on Arm (aarch64).

• tidl_tensor_bits – Number of bits used to represent TIDL tensors
and weights.

Return type
True for success, False for failure.

1.3. Compiling Models 6
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1.4 Running Inference

TVM inference can be run using a Python script or a C/C++ application. Examples are provided
in the TI edgeai-tidl-tools and TI TVM fork repositories on Github. You can use these examples
as templates to modify for your own use cases.

The default runtime setup used by edgeai-tidl is DLR (Deep Learning Runtime from Amazon
AWS). For the purpose of running TVM compiled models with the DLR runtime, DLR is simply
a wrapper around the TVM runtime.

See Inference Explained for further details about TVM inference.

The following Python functions and C++ code are used in the examples provided in the TI TVM
fork.

1.4.1 Python

The run_model function shows how to run inference with the DLR or the TVM Runtime.

relay.ti_tests.infer_model.run_model(artifacts_folder: str, input_dict, use_dlr:
bool)

Run model with given input using DLR or TVM Runtime.

Parameters

• artifacts_folder – Folder containing compilation artifacts.

• input_dict – Dictionary of input name (str) to input data
(numpy.ndarray).

• use_dlr – If True, use DLR. If False, use the TVM runtime directly.

Returns
results

Return type
List of result tensors.

1.4.2 C++

Listing 1.2 shows how to use the C++ and TVM Runtime APIs to (relay_mul example in TI TVM
repo)

• Load compilation artifacts (shared library, parameter file, and JSON representation of the
network graph)

• Create a TVM Graph Executor

1.4. Running Inference 7
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• Set up inputs to the Graph Executor

• Run inference on the Graph Executor

• Extract outputs from the Graph Executor

Listing 1.2: Running inference using C++ and the TVM
Runtime

1 void DeployGraphExecutor() {
2 const std::string artifacts_folder("artifacts_relay_mul_c7x_

→˓target/");
3

4 // load in the library
5 DLDevice dev{kDLCPU, 0};
6 tvm::runtime::Module loaded_lib =

→˓tvm::runtime::Module::LoadFromFile(artifacts_folder + "deploy_
→˓lib.so");

7

8 // Load JSON
9 std::ifstream loaded_json(artifacts_folder + "deploy_graph.json

→˓");
10 std::string json_data((std::istreambuf_iterator<char>(loaded_

→˓json)), std::istreambuf_iterator<char>());
11 loaded_json.close();
12

13 // Load params from file
14 std::ifstream loaded_params(artifacts_folder + "deploy_param.

→˓params", std::ios::binary);
15 std::string params_data((std::istreambuf_iterator<char>(loaded_

→˓params)), std::istreambuf_iterator<char>());
16 loaded_params.close();
17 TVMByteArray params_arr;
18 params_arr.data = params_data.c_str();
19 params_arr.size = params_data.length();
20

21 LOG(INFO) << "Creating graph executor...";
22 // Create the graph executor module
23 int device_type = dev.device_type; // Need an int, the

→˓DLDeviceType enum
24 // results in an ambiguity

→˓for TVMArgsSetter.
25

26 tvm::runtime::Module mod =
27 (*tvm::runtime::Registry::Get("tvm.graph_executor.create

(continues on next page)

1.4. Running Inference 8
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(continued from previous page)

→˓"))(json_data,
28

→˓loaded_lib,
29

→˓device_type,
30

→˓dev.device_id);
31

32 // Load params into Graph Executor
33 LOG(INFO) << "Loading params ...";
34 tvm::runtime::PackedFunc load_params = mod.GetFunction("load_

→˓params");
35 load_params(params_arr);
36

37 tvm::runtime::PackedFunc set_input = mod.GetFunction(
→˓"set_input");

38 tvm::runtime::PackedFunc get_output = mod.GetFunction(
→˓"get_output");

39 tvm::runtime::PackedFunc run = mod.GetFunction(
→˓"run");

40

41 LOG(INFO) << "Initializing inputs ...";
42 auto f32 = tvm::runtime::DataType::Float(32);
43 tvm::runtime::NDArray a = tvm::runtime::NDArray::Empty({672,

→˓14, 14}, f32, dev);
44 tvm::runtime::NDArray b = tvm::runtime::NDArray::Empty({672, 1,

→˓ 1}, f32, dev);
45 tvm::runtime::NDArray c = tvm::runtime::NDArray::Empty({672,

→˓14, 14}, f32, dev);
46

47 for (int i = 0; i < 672; ++i)
48 static_cast<float*>(b->data)[i] = 4;
49

50 for (int i = 0; i < 672*14*14; ++i)
51 static_cast<float*>(a->data)[i] = i;
52

53 set_input("a", a);
54 set_input("b", b);
55

56 // run the code
57 LOG(INFO) << "Running ...";
58 run();

(continues on next page)
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(continued from previous page)

59

60 // get the output
61 get_output(0, c);
62

63 for (int i = 0; i < 672*14*14; ++i)
64 ICHECK_EQ(static_cast<float*>(c->data)[i], i * 4);
65

66 LOG(INFO) << "Pass";
67 }

Listing 1.3 shows how to use the C++ and DLR Runtime APIs to run inference (test_dlr_cpp
example in TI TVM repo).

Listing 1.3: Running inference using C++ and the DLR Run-
time

1 // Step 1: Create DLR model from compiled model artifacts
2 DLRModelHandle model;
3 const char *model_path = "../artifacts/mv2_onnx_J7_target_tidl_

→˓c7x";
4 if (argc > 1) model_path = argv[1];
5 status = CreateDLRModel(&model, model_path, 1, 0);
6 check_status(status, &model, "CreateDLRModel");
7

8 // Step 2: Set input tensor
9 const char *model_input_name = "data";

10 int64_t shape[4] = {1, 3, 224, 224};
11 DLTensor in_tensor = { (void*) airshow,
12 {kDLCPU, 0},
13 4,
14 {kDLFloat, 32, 1},
15 shape,
16 NULL,
17 0
18 };
19 status = SetDLRInputTensorZeroCopy(&model, model_input_name, &

→˓in_tensor);
20 check_status(status, &model, "SetDLRInputTensorZeroCopy");
21

22 // Step 3: Run inference
23 status = RunDLRModel(&model);
24 check_status(status, &model, "RunDLRModel");
25

(continues on next page)
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(continued from previous page)

26 // Step 4: Get output
27 float *probs;
28 status = GetDLROutputPtr(&model, 0, (const void**) &probs);
29 check_status(status, &model, "GetDLROutputPtr");
30

31 int64_t size;
32 int dim;
33 int64_t out_shape[8];
34 char* type_name;
35 status = GetDLROutputSizeDim(&model, 0, &size, &dim);
36 check_status(status, &model, "GetDLROutputSizeDim");
37 status = GetDLROutputShape(&model, 0, out_shape);
38 check_status(status, &model, "GetDLROutputShape");
39 status = GetDLROutputType(&model, 0, (const char**) &type_

→˓name);
40 check_status(status, &model, "GetDLROutputType");
41

42 printf("\nModel output 0 size=%" PRId64 ", dim=%d\n", size,
→˓dim);

43 printf("Model output 0 shape: ");
44 for (int i = 0; i < dim; i++) printf("%" PRId64 "x", out_

→˓shape[i]);
45 printf("\n");
46 printf("Model output 0 type: %s\n", type_name);
47

48 // Step 5: Interpret results
49 int imax = 0;
50 for (int i = 0; i < size; i++)
51 if (probs[i] > probs[imax])
52 imax = i;
53 printf("Top 1 index = %d, probability = %f\n\n", imax,

→˓probs[imax]);
54

55 // Step 6: Tear down
56 status = DeleteDLRModel(&model);
57 check_status(status, NULL, "DeleteDLRModel");

1.4. Running Inference 11



CHAPTER

TWO

COMPILATION EXPLAINED

This section explains TI TVM compilation in more detail. An introduction to this topic is provided
in Compiling Models.

2.1 Environment Setup

If they have not already been set up by Edgeai, the following three environment variables are
required before running the compilation script.

• TIDL_TOOLS_PATH: Point to installed /processor_sdk_rtos/tidl_release/tidl_tools.

• ARM64_GCC_PATH: Point to installed /gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-
gnu.

• CGT7X_ROOT: Point to installed TI C7x C/C++ compiler 3.1.0.LTS in the Processor SDK
package or from ti.com.

2.2 Frontends

TVM can accept machine learning models in many formats, including Tensorflow/TFLite, Keras,
Core ML, MXNet, ONNX, and PyTorch. As the first step of compilation, these formats are all
imported into TVM’s internal common representation, Relay IR, using different frontends in TVM.

TI TVM provides additional examples beyond those provided by Apache TVM in tests/
python/relay/ti_tests/models.py to show how to import machine learning models
in different network formats into Relay IR.

12
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2.3 Calibration Data

After partitioning layers into subgraphs that can be offloaded to TIDL, these subgraphs need to
be imported to TIDL. Because TIDL runs inference with quantized fixed-point values, the TIDL
import process requires calibration data so that each layer’s dynamic range can be estimated and
the scaling factor for converting between floating point and fixed point can be computed.

You only need to provide calibration data for the whole model. The TVM+TIDL compilation flow
automatically obtains the corresponding tensor values at the TIDL subgraph boundaries and feeds
those values into the TIDL import process for calibration. The calibration data you provide should
represent typical input for the model.

2.4 Artifacts

2.4.1 Deployable module

After a successful TVM+TIDL compilation, a deployable module consists of 3 files that are saved
in the <artifacts_folder>.

• .json: A JSON file describing the compiled graph through information about nodes, alloca-
tion, etc.

• .so: The shared library containing code to run nodes in the compiled graph. This is a fat
binary. Imported TIDL subgraph artifacts and generated C7x code are embedded in this fat
binary.

• .params: Contains weights associated with the nodes in the compiled graph.

At inference time, DLR/TVM runtime read these 3 files and create a runtime instance to run infer-
ence.

Hint: During development, you may export the x86_64 Linux filesystem where you run com-
pilation, and mount the filesystem on your EVM so that you do not need to copy the deployable
module.

For deploying onto your EVM, the deployable module is all that is needed. During compilation,
TI TVM saves intermediate results in the <artifacts_folder>/tempDir directory. These
results may help you understand and debug the compilation. The following subsections describe
some of the intermediate artifacts.

2.3. Calibration Data 13
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2.4.2 Relay graphs

• relay_graph.orig.txt: The original relay graph from the TVM frontend.

• relay_graph.prepared.txt: The relay graph after transformations that prepare for TIDL
offload.

• relay_graph.annotated.txt: The relay graph annotated for TIDL offload.

• relay_graph.partitioned.txt: The relay graph partitioned for TIDL offload.

• relay_graph.import.txt: The relay graph used to import into TIDL.

• relay_graph.boundary.txt: The relay graph used to obtain calibration data at TIDL sub-
graph boundaries.

• relay_graph.optimized.txt: The optimized relay graph for code generation.

• relay_graph.wrapper.txt: The wrapper relay graph on the Arm side for dispatching the
graph to C7x.

For example, you may examine relay_graph.import.txt to see how many TIDL sub-
graphs are created and which layers are not offloaded to TIDL.

2.4.3 Imported TIDL artifacts

TIDL subgraphs are imported into TIDL artifacts in TIDL-specific formats. These artifacts are
embedded into the .so fat binary in the deployable module. The DLR/TVM runtime retrieves
TIDL artifacts and invokes the TIDL runtime at inference time.

• relay.gv.svg: A graphical view of the whole network and where the TIDL subgraphs are
located.

• subgraph<n>_net.bin.svg: A graphical view of TIDL subgraphs.

2.4.4 Generated C7x code

When c7x_codegen is set to 1 in the compilation script, TI TVM generates C7x code for layers
not offloaded to TIDL. This C7x code is compiled and embedded into the .so fat binary in the
deployable module. The DLR/TVM runtime retrieves the C7x code and dispatches it to the C7x
for execution.

• model_<n>.c: Contains generated code either to run a TIDL subgraph or non-TIDL layers.

2.4. Artifacts 14



TI TVM User’s Guide, Release TIDL_PSDK_8.6.0

2.5 Debugging Compilation

TI TVM uses the TIDL_RELAY_IMPORT_DEBUG environment variable to help debug the
TVM+TIDL compilation flow. The available settings are as follows.

2.5.1 TIDL_RELAY_IMPORT_DEBUG=1

When set to 1, verbose output at the terminal provides more information about the TIDL import.
This includes whether a node is supported by TIDL, relay node to TIDL node conversion, imported
TIDL subgraphs, optimized TIDL subgraphs, and calibration processes. For example:

RelayImportDebug: In TIDL_relayAllowNode:
RelayImportDebug: name: nn.conv2d
RelayImportDebug: In TIDL_relayAllowNode:
RelayImportDebug: name: nn.batch_norm

2.5.2 TIDL_RELAY_IMPORT_DEBUG=2, 3

When set to 2 or 3, verbose information about importing TIDL subgraphs is provided in addition
to the information provided when the setting is 1.

2.5.3 TIDL_RELAY_IMPORT_DEBUG=4

When set to 4, the TIDL import generates output for each TIDL layer in
the imported TIDL subgraph using calibration inputs. This output is stored
in the auto-generated tempDir/tidl_import_subgraph<subgraph_id>.
txt<layer_id><dimensions>_float.bin files.

The compilation also generates corresponding output from running the original model on
x86_64 hosts using TVM code generation for x86_64. This is stored in the tempDir/
tidl_<subgraph_id>_layer<layer_id>.npy files.

A script, python/tvm/contrib/tidl/compare_tensors.py is provided to compare
the two results with a graphical view. You can run the script as follows:

# in tests/python/relay/ti_tests/
TIDL_RELAY_IMPORT_DEBUG=4 python3 ./compile_model.py mv1_tf --

→˓target --tidl --c7x
# compare_tensors.py <artifacts_folder> <subgraph_id> <layer_id>
python3 $TVM_HOME/python/tvm/contrib/tidl/compare_tensors.py

→˓artifacts/mv1_tf_J7_target_tidl_c7x 0 2

2.5. Debugging Compilation 15
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CHAPTER

THREE

INFERENCE EXPLAINED

This section explains more details about running and debugging TVM inference. An introduction
to this topic is provided in Running Inference.

There are two inference scenarios:

• Running TIDL unsupported layers on Arm

• Running TIDL unsupported layers on C7x

These correspond to compiling the model with c7x_codegen=0 or c7x_codegen=1. The
same inference script or application can be used for both scenarios.

3.1 Running Unsupported Layers on Arm

When running unsupported layers on Arm, TI TVM graph runtime on Arm looks at each node in
the graph (.json).

• If it is a TIDL subgraph, it is dispatched to C7x for execution (via OpenVX).

• If it is a non-TIDL node, it is executed with TVM-generated Arm code.

Fig. 3.1: Model inference with unsupported layers mapped to Arm

17
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3.2 Running Unsupported Layers on C7x

When running unsupported layers on C7x, TI TVM graph runtime on Arm looks at the single node
in the wrapper graph (.json), ‘tidl_tvm_0’, and dispatches the whole graph to C7x (via OpenVX).

TI TVM graph runtime on C7x looks at each node in the graph.

• If it is a TIDL subgraph, it is executed with the TIDL library.

• If it is a non-TIDL node, it is executed with TVM-generated C7x code.

Fig. 3.2: Model inference with unsupported layers mapped to C7x

3.3 Debugging Inference

TIDL uses the TIDL_RT_DEBUG environment variable to help debug the TVM+TIDL inference
flow.

3.3.1 Vision apps “printf” terminal

First, you need to open a “printf” terminal, where debug “printf” output from C7x core is shown.

Open a terminal on your EVM, and run the following commands.

# if using EdgeAI Start Kit SDK
root@tda4vm-sk:~# /opt/vx_app_arm_remote_log.out

# if using J721E SDK
root@j7-evm:~# cd /opt/vision_apps/
root@j7-evm:/opt/vision_apps# source ./vision_apps_init.sh

Then, run the inference in a different terminal.

3.2. Running Unsupported Layers on C7x 18
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3.3.2 Debugging TIDL subgraphs

The available settings for the TIDL_RT_DEBUG environment variable are as follows.

TIDL_RT_DEBUG=1

When set to 1, TIDL subgraph performance information is printed out during inference, either on
the “printf” terminal or on the terminal where inference is running. For example:

[C7x_1 ] 1851913.287814 s: Layer, Layer Cycles,
→˓kernelOnlyCycles, coreLoopCycles,LayerSetupCycles,
→˓dmaPipeupCycles, dmaPipeDownCycles, PrefetchCycles,
→˓copyKerCoeffCycles,LayerDeinitCycles,LastBlockCycles,
→˓paddingTrigger, paddingWait,LayerWithoutPad,LayerHandleCopy,
→˓ BackupCycles, RestoreCycles,
[C7x_1 ] 1851913.287889 s: 0, 201247,

→˓171496, 173177, 1021, 9371,
→˓ 20, 0, 0, 375,
→˓ 41487, 6392, 51, 191300,
→˓ 0, 0, 0,
[C7x_1 ] 1851913.287956 s: 1, 44208,

→˓17603, 18221, 4170, 2679,
→˓ 18, 0, 0, 662,
→˓ 17603, 7720, 454, 33530,
→˓ 2096, 0, 0,
... ... ...

TIDL_RT_DEBUG=2, 3

When set to 2 or 3, more verbose information about TIDL subgraphs is provided in addition to the
information provided when the setting is 1. For example:

[C7x_1 ] 1852081.872134 s: Alg Alloc for Layer # - 0
[C7x_1 ] 1852081.872160 s: Alg Alloc for Layer # - 1
... ... ...
[C7x_1 ] 1852081.873059 s: TIDL Memory requirement
[C7x_1 ] 1852081.873087 s: MemRecNum , Space , Attribute ,

→˓ SizeinBytes
[C7x_1 ] 1852081.873117 s: 0 , DDR , Persistent,

→˓ 15208
[C7x_1 ] 1852081.873145 s: 1 , DDR , Persistent,

→˓ 136
(continues on next page)
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... ... ...
[C7x_1 ] 1852081.874400 s: Alg Init for Layer # - 2 out of

→˓32
[C7x_1 ] 1852081.874470 s: Alg Init for Layer # - 3 out of

→˓32
... ... ...
[C7x_1 ] 1852081.911120 s: Starting Layer # - 1
[C7x_1 ] 1852081.911145 s: Processing Layer # - 1
[C7x_1 ] 1852081.911375 s: End of Layer # - 1 with outPtrs[0]

→˓= 7002001e
[C7x_1 ] 1852081.911400 s: Starting Layer # - 2
[C7x_1 ] 1852081.911422 s: Processing Layer # - 2
[C7x_1 ] 1852081.911493 s: End of Layer # - 2 with outPtrs[0]

→˓= 7004550e
... ...

TIDL_RT_DEBUG=4, 5

Setting this environment variable to 4 or 5 is supported only when running TIDL
unsupported layers on Arm. When set to 4 or 5, tensor output from each layer
in the TIDL subgraph is dumped into the Arm Linux file system, with filenames
tidl_trace_subgraph_<subgraph_id>_<layer_id>_<tensor_shape>.y for
raw data and tidl_trace_subgraph_<subgraph_id>_<layer_id>_<tensor_shape>_float.
bin for converted float data.

3.3.3 Debugging TVM nodes

The TVM_RT_DEBUG, TVM_RT_TRACE_NODE, TVM_RT_TRACE_SIZE, and
TVM_TRACE_NODE environment variables can be used as follows to aid in debugging
TVM nodes.

TVM_RT_DEBUG=1

When set to 1, TVM runtime on Arm collects performance statistics for each node in the graph
and saves into the Arm Linux file system, with the filename tvm_arm.trace. You can use the
python/tvm/contrib/tidl/dump_tvm_trace.py script to dump the details.

When TIDL unsupported layers are run on Arm, the tvm_arm.trace file includes the execution
time for TIDL nodes and layers running on Arm. For example:

3.3. Debugging Inference 20
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# python3 $TVM_HOME/python/tvm/contrib/tidl/dump_tvm_trace.py
→˓tvm_arm.trace
Trace size: 633 version: 0x20220728 device: J7 core: Arm
node 1: tidl_8 1520.9 microseconds
node 2: tvmgen_default_fused_multiply 436.81 microseconds
node 3: tidl_7 993.62 microseconds
node 4: tvmgen_default_fused_multiply_1 149.11 microseconds
node 5: tidl_6 1162.075 microseconds
node 6: tvmgen_default_fused_multiply_11 176.68 microseconds
node 7: tidl_5 2233.29 microseconds
node 8: tvmgen_default_fused_multiply_2 120.095 microseconds
node 9: tidl_4 1503.91 microseconds
node 10: tvmgen_default_fused_multiply_3 163.83 microseconds
node 11: tidl_3 1381.615 microseconds
node 12: tvmgen_default_fused_multiply_4 61.94 microseconds
node 13: tidl_2 1195.17 microseconds
node 14: tvmgen_default_fused_multiply_5 70.53 microseconds
node 15: tidl_1 1311.9 microseconds
node 16: tvmgen_default_fused_multiply_51 71.32 microseconds
node 17: tidl_0 1279.285 microseconds
node 4294967295: Graph 13856.93 microseconds

When TIDL unsupported layers are running on C7x, tvm_arm.trace includes only the execu-
tion time for a single node representing the whole graph. For example:

# python3 $TVM_HOME/python/tvm/contrib/tidl/dump_tvm_trace.py
→˓tvm_arm.trace
Trace size: 69 version: 0x20220728 device: J7 core: Arm
node 1: tidl_tvm_0 9126.275 microseconds
node 4294967295: Graph 9129.92 microseconds

TVM_RT_DEBUG=2

When set to 2, in addition to the information provided when the TVM_RT_DEBUG setting is 1,
TVM runtime on C7x also collects performance statistics for each node in the graph on the C7x
and saves them to the Arm Linux file system, with the filename tvm_c7x.trace. You can use
the python/tvm/contrib/tidl/dump_tvm_trace.py script to dump the details. For
example:

# python3 $TVM_HOME/python/tvm/contrib/tidl/dump_tvm_trace.py
→˓tvm_c7x.trace
Trace size: 631 version: 0x20220728 device: J7 core: C7x
node 1: tidl_8 909.002 microseconds

(continues on next page)
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node 2: tvmgen_default_fused_multiply 62.201 microseconds
node 3: tidl_7 378.24 microseconds
node 4: tvmgen_default_fused_multiply_1 83.055 microseconds
node 5: tidl_6 445.359 microseconds
node 6: tvmgen_default_fused_multiply_1 83.433 microseconds
node 7: tidl_5 1590.525 microseconds
node 8: tvmgen_default_fused_multiply_2 82.979 microseconds
node 9: tidl_4 809.138 microseconds
node 10: tvmgen_default_fused_multiply_3 110.202 microseconds
node 11: tidl_3 802.037 microseconds
node 12: tvmgen_default_fused_multiply_4 46.95 microseconds
node 13: tidl_2 848.143 microseconds
node 14: tvmgen_default_fused_multiply_5 55.662 microseconds
node 15: tidl_1 908.129 microseconds
node 16: tvmgen_default_fused_multiply_5 54.628 microseconds
node 17: tidl_0 990.953 microseconds
node 4294967295: Graph 8283.967 microseconds

The tvm_c7x.trace output is available only if the model was compiled with
c7x_codegen=1.

TVM_RT_DEBUG=3

When set to 3, in addition to the information provided when the setting is 1 or 2, TVM runtime on
Arm and C7x collects output tensor statistics for each layer and saves it to the trace files. Collected
statistics include minimum, maximum, sum, and the sum of the first half of the tensor.

Please ignore performance numbers obtained in this mode; there is overhead when collecting tensor
statistics.

# python3 $TVM_HOME/python/tvm/contrib/tidl/dump_tvm_trace.py
→˓tvm_arm.trace
Trace size: 1833 version: 0x20220728 device: J7 core: Arm
node 1: tidl_8 1527.845 microseconds

output 0: ndim=4 type_code=2 elem_bytes=4 num_elements=56448
min=0.0 max=21.715360641479492 sum=234286.71875 fh_

→˓sum=110520.9296875
output 1: ndim=4 type_code=2 elem_bytes=4 num_elements=72

min=0.73150634765625 max=0.999969482421875 sum=68.
→˓35482788085938 fh_sum=34.87158203125
node 2: tvmgen_default_fused_multiply 416.19 microseconds

output 0: ndim=4 type_code=2 elem_bytes=4 num_elements=56448
min=0.0 max=21.439014434814453 sum=226814.515625 fh_

(continues on next page)
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→˓sum=106811.2890625
... ... ...

# python3 $TVM_HOME/python/tvm/contrib/tidl/dump_tvm_trace.py
→˓tvm_c7x.trace
Trace size: 1831 version: 0x20220728 device: J7 core: C7x
node 1: tidl_8 934.738 microseconds

output 0: ndim=4 type_code=2 elem_bytes=4 num_elements=56448
min=0.0 max=21.715360641479492 sum=234286.71875 fh_

→˓sum=110520.9296875
output 1: ndim=4 type_code=2 elem_bytes=4 num_elements=72

min=0.73150634765625 max=0.999969482421875 sum=68.
→˓35482788085938 fh_sum=34.87158203125
node 2: tvmgen_default_fused_multiply 64.704 microseconds

output 0: ndim=4 type_code=2 elem_bytes=4 num_elements=56448
min=0.0 max=21.439014434814453 sum=226814.515625 fh_

→˓sum=106811.2890625
... ... ...

TVM_RT_DEBUG=4

When set to 4, TVM runtime on Arm and C7x prints out information about each node when each
node is being executed, either on the terminal where inference is run or the “printf” terminal. This
mode can be helpful for debugging the model’s execution.

TVM_RT_TRACE_NODE=<node_id> TVM_RT_DEBUG=3, 4

When these settings are used, TVM runtime on Arm and C7x also saves the tensor outputs of the
specified node into the trace file. The dump_trace.py script saves the tensor outputs into the
Arm Linux file system as numpy files, with the filename n<node_id>_o<output_id>.npy.
For example, see the tensor values saved in messages in the following example.

Tensor outputs are saved as float values in the trace.

# TVM_RT_TRACE_NODE=1 TVM_RT_DEBUG=4 python3 ./infer_model.py ...
→˓ ...
... ...
# python3 $TVM_HOME/python/tvm/contrib/tidl/dump_tvm_trace.py

→˓tvm_c7x.trace
Trace size: 227911 version: 0x20220728 device: J7 core: C7x
node 1: tidl_8 912.196 microseconds

(continues on next page)
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output 0: ndim=4 type_code=2 elem_bytes=4 num_elements=56448
min=0.0 max=21.715360641479492 sum=234286.71875 fh_

→˓sum=110520.9296875
tensor values saved in n1_o0.npy

output 1: ndim=4 type_code=2 elem_bytes=4 num_elements=72
min=0.73150634765625 max=0.999969482421875 sum=68.

→˓35482788085938 fh_sum=34.87158203125
tensor values saved in n1_o1.npy

node 2: tvmgen_default_fused_multiply 65.955 microseconds
output 0: ndim=4 type_code=2 elem_bytes=4 num_elements=56448

min=0.0 max=21.439014434814453 sum=226814.515625 fh_
→˓sum=106811.2890625
node 3: tidl_7 388.9 microseconds

TVM_RT_TRACE_SIZE=<new_size> TVM_TRACE_NODE=<node_id>
TVM_RT_DEBUG=3, 4

If you see a Not enough trace memory for dumping output <node_id> mes-
sage in the verbose output for a node, you can use TVM_RT_TRACE_SIZE to increase the size of
the trace buffer that stores the trace. The default is 2*1024*1024 (2MB) bytes.
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FOUR

RECOMMENDED DEVELOPMENT FLOW

This section describes the recommended development flow for using TVM to compile and infer a
model.

4.1 Step 1: Model Selection

You may have already developed and trained a model. But if you are using a model downloaded
from public domain, we recommend you look at TI EdgeAI ModelZoo first. TI EdgeAI ModelZoo
contains models that have been tweaked and optimized for inference speed on TI SoCs.

4.2 Step 2: Compile with c7x_codegen=0

Adapt the example compilation scripts in TI edgeai-tidl-tools for use with your model. Additional
examples are provided in the TVM Git repository.

See the Compilation Explained section for more about the compilation process and compiled arti-
facts.

When troubleshooting and optimizing, check the following:

• Have all layers been offloaded to TIDL?

• If not, which layers are not offloaded?

• How many TIDL subgraphs are there?
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4.3 Step 3: Inference and Performance Profiling

Adapt the example inference scripts in TI edgeai-tidl-tools for your model. Additional examples
are provided in the TVM Git repository.

First, get the compiled model artifacts (TVM deployable module) to run on the EVM. Then check
to make sure the inference results match the expected outputs for the given inputs.

After the model is running correctly on the EVM, use the performance profiling method described
in the Inference Explained section to see if performance matches expectations.

4.4 Step 4: Compile with c7x_codegen=1

If there are TIDL unsupported layers in the model, you may also try running them on the C7x.
Running layers on the C7x can help save the overhead between C7x TIDL subgraphs and layers
on Arm. This can also lead to better performance with either TVM auto-generated C7x code or
user-written C7x code for the TIDL unsupported layers.

4.5 Step 5: Inference and Performance Profiling

Once the model is compiled successfully with c7x_codegen=1, run it on the EVM and check to
make sure the inference results still match the expected outputs for the given inputs.

After the model is running correctly on the EVM, use the performance profiling method described
in the Inference Explained section to see if performance matches expectations.

4.6 Step 6: Performance Tuning

If the performance of TIDL unsupported layers does not match expectations, try the following:

• Work around issues by rewriting Relay IR code.

• Optimize the C7x code (either TVM-generated or user-written)

See the Extending TVM section for examples. Feedback on TI E2E forum is welcome (see the
Support section).
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FIVE

EXTENDING TVM

This section explains how to extend TVM to help improve the inference performance of a model.
These extensions should not require a rebuild of TVM.

5.1 Transforming Relay IR

After a model is converted into TVM’s Relay IR format, it is possible to rewrite Relay IR into
another equivalent Relay IR for various reasons such as: simplifying arithmetic, removing identity
ops, or maximizing TIDL offload. The python/tvm/relay/backend/contrib/tidl/
prepare.py script contains the transformations run before TIDL partitioning and C7x code
generation. These transformations are Python based, straightforward to understand, and easy to
write.

The following example shows how transforming Relay IR can help maximize TIDL of-
fload. The example is available in the tests/python/relay/ti_tests/unit_tests/
conv2d_1x2_stride.py script. The input for this example has a convolution layer with 3x3
kernel size and a 1x2 stride, as shown in the below Relay IR.

%0 = nn.conv2d(%i0, %w1, strides=[1, 2], padding=[1, 1, 1, 1],
→˓kernel_size=[3, 3]);

However, TIDL does not support such a kernel size and stride combination. TIDL does support the
combination of 3x3 kernel size and 1x1 stride. Using the ConvertConvStride transformation,
you can rewrite the original convolution as a convolution with 3x3 kernel size and 1x1 stride,
followed by maxpooling with 1x1 pool size and 1x2 stride, as shown in the below Relay IR.

%0 = nn.conv2d(%i0, meta[relay.Constant][0] /* ty=Tensor[(16, 8,
→˓3, 3), float32] */,

Tensor[(1, 8, 224, 224), float32], Tensor[(16, 8, 3, 3),
→˓float32],

padding=[1, 1, 1, 1], kernel_size=[3, 3]) /* ty=Tensor[(1,
→˓16, 224, 224), float32] */;

(continues on next page)
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%1 = nn.max_pool2d(%0, Tensor[(1, 16, 224, 224), float32], pool_
→˓size=[1, 1], strides=[1, 2],

padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 16, 224, 112),
→˓float32] */;

After the transformation, the convolution layer can be offloaded to TIDL and can benefit from
the performance boost offered by TIDL on C7x/MMA. The max pooling layer with a 1x1 pool
size and 1x2 stride is still not supported by TIDL, but the computation is much simpler and we
can use TVM C7x code generation to generate code for this layer. Although this transformation
doubles the amount of computation from what was originally required, the overall performance
still is better than running the original convolution layer on Arm or C7x.

5.2 Customizing Compute and Schedule

TVM uses strategies to turn each operator into code. An operator can have many strategies associ-
ated with it. A strategy consists of two parts, the compute and the schedule.

• The compute specifies what this operator does and is defined as a math formula.

• The schedule specifies how to realize the computation via loop nests and data movement.

For each operator, you can customize the compute, the schedule, or both in order to generate better
performing code on C7x. The following subsection provide some examples.

5.2.1 Customizing compute

The python/tvm/topi/c7x/resize.py script makes a copy of the default tvm.relay.
op.image._image.compute_resize2d and simplifies the index computation so that the
generated code can be software pipelined on C7x devices.

The python/tvm/relay/op/strategy/c7x.py script overrides the default strategy for
resize2d on C7x with the updated compute and schedule.

5.2.2 Customizing schedule

The python/tvm/topi/c7x/injective.py script uses a customized schedule for C7x
injective operators. It transforms loop nests, applies DMA with double buffering, and vectorizes
the innermost loop for C7x.
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5.2.3 Customizing compute and schedule only for a special case

Significantly simplified computation is possible if all of the following are true:

• Pool size is 1x1.

• Data layout is “NCHW”.

• Dilation is 1x1.

• No padding is used.

The python/tvm/relay/op/strategy/c7x.py script customizes the strategy for
max_pool2d only in this special case. The simplified computation is defined in the
compute_max_pool2d_1x1_pool_size function in the python/tvm/topi/c7x/
pooling.py, which treats the operator as an injective operator to use the C7x injective schedule.

For all other cases, the default strategy is used.

5.2.4 Customizing compute and schedule in compilation script

It is also possible to customize the strategy for a relay operator in your compilation
script. The tests/python/relay/ti_tests/unit_tests/resize_nchw_1x2.
py script shows how to overwrite the default resize2d strategy for C7x in the
add_c7x_resize_strategy function.

5.2.5 Customizing a relay operator to call into an external library

If the resize2d operator has a 1x2 upscaling factor on NCHW float data, the same script
used in the previous section, tests/python/relay/ti_tests/unit_tests/
resize_nchw_1x2.py customizes the compute to call an external function,
resize_nchw_1x2, in an external library.

The resize_nchw_1x2.cpp C++ file contains the function definition. Tensors are passed
in a DLTensor data structure from TVM runtime to the C/C++ function. The definition of
DLTensor can be found in the 3rdparty/dlpack/include/dlpack/dlpack.h header file.

The V1 version of the code shows a naive implementation of resize2d with a 1x2 upscaling factor.
The V2 version of the code optimizes the implementation using the C7x streaming engine (SE)
feature.

The C++ file is compiled into a library and linked into the C7x deployable module for the
model. As shown in the example, build_and_set_ext_lib function in the unit_utils.
py script, the CGT7X_EXT_LIBS environment variable specifies additional libraries that can be
linked into the C7x deployable module. For example:
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CGT7X_EXT_LIBS="-l /path/to/lib1 -l /path/to/lib2"

Note: resize_nchw_1x2.cpp is not a generic implementation for all resize2d cases with an
upscaling factor 1x2. This file handles only float data in “NCHW” layout.

5.2. Customizing Compute and Schedule 30



CHAPTER

SIX

BUILDING PACKAGES

6.1 Building TVM

Note: These steps described here are required only if you intend to modify the TI TVM package.
Refer to Getting Started for instructions on using the prebuilt packages from TI.

The TVM Install from Source page provides instructions on installing the dependencies required
for building TVM from source.

The sections below specify additional dependencies required to build TI’s tidl-j7 branch.

Note: The TI TVM package builds on Linux only. MacOS and Windows builds are not currently
supported.

TI’s TVM releases are synchronized with TI’s Processor SDK RTOS releases. The following table
lists the PSDK RTOS releases and the corresponding TVM tag that is compatible with each one.

PSDK release TVM release tag
8.6 TIDL_PSDK_8.6.0
8.5 TIDL_PSDK_8.5.0, TIDL_PSDK_8.5.1
8.4 TIDL_PSDK_8.4
8.2 TIDL_PSDK_8.2
8.1 TIDL_PSDK_8.1
8.0 TIDL_PSDK_8.0
7.3 TIDL_PSDK_7.3
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6.1.1 Prerequisites

PSDK RTOS

• Download and install the Processor SDK RTOS release corresponding to the TVM release
tag you plan to use.

• Set the PSDKR_PATH environment variable to point to the installation. For example:

export PSDKR_PATH=/path/to/ti-processor-sdk-rtos-j721e-evm-
→˓08_06_zz_ww

Clang/LLVM

• Download and install clang+llvm-10.0.0-x86_64-linux-gnu-ubuntu-18.04 from the LLVM
Git repository.

Arm GCC

• If you are building the aarch64 TVM runtime and DLR packages, download and install
the x86_64 Linux hosted cross compiler for AArch64 GNU/Linux from the Arm GNU
Toolchain download page.

• Set the ARM64_GCC_PATH environment variable to point to the installation directory. For
example:

export ARM64_GCC_PATH=/path/to/gcc-arm-9.2-2019.12-x86_64-
→˓aarch64-none-linux-gnu

6.1.2 TVM compiler and runtime for x86_64

The steps below outline building the TVM compiler and creating the Python package for x86_64.

git clone https://github.com/TexasInstruments/tvm.git; cd tvm
git checkout <corresponding_tag>
git submodule update --init --recursive

mkdir build_x86; cd build_x86
cmake -DUSE_MICRO=ON -DUSE_SORT=ON -DUSE_TIDL=ON -DUSE_LLVM="/

→˓path/to/clang+llvm-10.0.0-x86_64-linux-gnu-ubuntu-18.04/bin/
→˓llvm-config --link-static" -DHIDE_PRIVATE_SYMBOLS=ON -DUSE_
→˓TIDL_RT_PATH=$(ls -d ${PSDKR_PATH}/tidl_j7*/arm-tidl/rt) -DUSE_

(continues on next page)
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→˓TIDL_PSDKR_PATH=${PSDKR_PATH} ..
make clean; make

# Build python package in $TVM_HOME/python/dist
cd ..; rm -fr build; ln -s build_x86 build
cd python; python3 ./setup.py bdist_wheel; ls dist

Note: Building the TVM compiler for AArch64 is not supported.

6.1.3 TVM runtime for AArch64

The TVM Runtime is an alternative to using the DLR for running inference. It provides C and
Python APIs to load and run models compiled by TVM. The steps below outline building just the
TVM runtime for AArch64.

mkdir build_aarch64; cd build_aarch64
cmake -DUSE_SORT=ON -DUSE_TIDL=ON -DUSE_TIDL_RT_PATH=$(ls -d $

→˓{PSDKR_PATH}/tidl_j7*/arm-tidl/rt) -DUSE_TIDL_PSDKR_PATH=$
→˓{PSDKR_PATH} -DCMAKE_TOOLCHAIN_FILE=../cmake/modules/contrib/
→˓ti-aarch64-linux-gcc-toolchain.cmake ..
make clean; make runtime

6.2 Building DLR

The Neo-AI Deep Learning Runtime (DLR) is used for inference, that is, to load and run models
compiled by TVM. DLR can be built for x86_64 to enable host emulation, that is, to run a model
with TIDL offload on a x86_64 PC. DLR can also be built AArch64 and used for inference on the
device.

6.2.1 x86_64 package

git clone https://github.com/TexasInstruments/neo-ai-dlr.git; cd
→˓neo-ai-dlr
git checkout <corresponding_tag>
git submodule update --init --recursive

mkdir build_x86; cd build_x86
(continues on next page)
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(continued from previous page)

cmake -DUSE_TIDL=ON -DUSE_TIDL_RT_PATH=$(ls -d ${PSDKR_PATH}/
→˓tidl_j7*/arm-tidl/rt) -DDLR_BUILD_TESTS=OFF ..
make clean; make

# Build python package in $DLR_HOME/python/dist
cd ..; rm -f build; ln -s build_x86 build
cd python; python3 ./setup.py bdist_wheel; ls dist

6.2.2 AArch64 package

git clone <this_repo>; cd neo-ai-dlr
git checkout <corresponding_tag>
git submodule update --init --recursive

mkdir build_aarch64; cd build_aarch64
cmake -DUSE_TIDL=ON -DUSE_TIDL_RT_PATH=$(ls -d ${PSDKR_PATH}/

→˓tidl_j7*/arm-tidl/rt) -DDLR_BUILD_TESTS=OFF -DCMAKE_TOOLCHAIN_
→˓FILE=../cmake/ti-aarch64-linux-gcc-toolchain.cmake ..
make clean; make -j$(nproc)

# build python package in $DLR_HOME/python/dist
cd ..; rm -f build; ln -s build_aarch64 build
cd python; python3 ./setup.py bdist_wheel; ls dist

6.3 Rebuilding C7x Firmware

In some cases, you may want to rebuild the C7x firmware when using the TVM+TIDL flow. For
example to increase the number of subgraphs or the heap size as described below. Please refer to
the official user guide on rebuilding firmware for more details.

6.3.1 Increase allowed number of TIDL subgraphs

When using C7x to run the TIDL unsupported layers, the maximum number of TIDL subgraphs
is 16 by default. If you have a model that has more than 16 TIDL subgraphs, this limit can be
increased by rebuilding the TIDL library and the C7x firmware. Information on the number of
TIDL subgraphs are available in the output messages shown during compilation. For example,
“TIDL import of 41 Relay IR subgraphs succeeded.”

First, set up the PSDK RTOS build.
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$ export PSDK_INSTALL_PATH=/path/to/ti-processor-sdk-rtos-<SOC>-
→˓evm-<xx>_<yy>_<zz>_<ww>
$ cd ${PSDK_INSTALL_PATH}
$ ./psdk_rtos/scripts/setup_psdk_rtos.sh

Next, edit ${PSDK_INSTALL_PATH}/tidl_<SOC>_<xx>_<yy>_<zz>_<ww>/ti_dl/inc/itidl_ti.h
header file. Increase TIDL_MAX_OBJECTS_PER_LEVEL to match the number of TIDL sub-
graphs in your model. Then rebuild the tidl_algo.lib library.

$ cd ${PSDK_INSTALL_PATH}/tidl_<SOC>_<xx>_<yy>_<zz>_<ww>
$ vi ti_dl/inc/itidl_ti.h
$ make tidl_algo

Finally, rebuild the C7x firmware and copy it to your EVM.

$ cd ${PSDK_INSTALL_PATH}/vision_apps
$ make firmware
$ scp out/<SOC>/C7<XYZ>/FREERTOS/release/vx_app_rtos_linux_c7x_1.

→˓out root@evm:/lib/firmware/vision_apps_evm (or vision_apps_
→˓eaik)

Note: Rebuilding C7x firmware alone does not work if layers unsupported by TIDL are executed
on the Arm, because the maximum number of TIDL subgraphs is also subject to the OpenVX
environment setup.

6.3.2 Increase allocated C7x DDR Heap Size

The default C7x firmware comes with a default allocation for C7x local heap, which is used by
TVM runtime to run TIDL subgraphs and unsupported layers. If your model requires more mem-
ory, you can increase the allocated C7x local heap size and rebuild the C7x firmware. Please refer
to the official developer notes on updating SDK memory map for details.
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SEVEN

ADDITIONAL DOCUMENTATION AND LINKS

See the following documentation for related information.

• Apache TVM documentation

• TI Deep Learning library (TIDL) User Guide

• Edge AI page on ti.com

• TI Edgeai TIDL Tools and Examples Git repository

• TI TVM fork Git repository

• C7000 Code Generation Tools technical documentation

• Arm Code Generation Tools technical documentation
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EIGHT

GLOSSARY

Apache TVM
An open source machine learning compiler framework for CPUs, GPUs, and other devices.
It enables running and optimization of machine learning computations on such hardware.

compute
A mathematical formula that specifies what an operator does.

DLR
Deep Learning Runtime from Amazon AWS. For the purpose of running TVM compiled
models with the DLR runtime, DLR is simply a wrapper around the TVM runtime.

inference
Inferencing is the act of using a trained deep learning network to output a prediction about
incoming data.

MMA
The Matrix Multiplication Accelerator (MMA) is a key hardware accelerator on TDA4 pro-
cessors. The MMA provides highly parallel deep learning instructions. It is architected to
optimize data flow management for deep learning, while minimizing power and external
memory devices. The MMA is accessed as an extension of the C71x instruction set, and
leverages the same highly parallel data path as the C71x.

Relay IR
TVM’s internal common representation for machine learning models.

schedule
Learning rate schedules allow you to optimize the training of a machine learning network.
Such optimization is possible because increased performance and faster training can be
achieved using a learning rate that changes during training. Common learning rate schedules
include time-based decay, step decay, and exponential decay.

subgraphs
In machine learning, a graph is a data structure that consists of nodes (also called vertices)
and edges that connect these nodes. A subgraph is a subset of these nodes and edges. Sub-
graphs can be useful in machine learning for purposes such as identifying patterns or rela-
tionships within the data or for simplifying a complex graph.
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TDA4 family
The TDA4VM family includes dual Arm Cortex-A72 SoC and C7x DSPs. It is designed for
applications in deep-learning, vision and multimedia.

TIDL
TI Deep Learning library is TI’s software ecosystem for deep learning algorithm (CNN)
acceleration. It contains highly optimized implementations of common layers on C7x/MMA.
TI TVM can offload some of its computations to TIDL.

TVM
Tensor Virtual Machine (TVM) is a compiler stack used to compile various deep learning
models from different frameworks to specialized CPU, GPU or other accelerator architec-
tures.
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NINE

RELEASE NOTES

9.1 TIDL_PSDK_8.6

• New devices

– Support AM62A - To compile model for AM62A, set platform argument to
“AM62A”, see Compiling Models for details.

• Bug fixes in C7x code generation

– Fix DMAPass src on/off chip check

– Fix scatter_nd code generation

9.2 TIDL_PSDK_8.5

• Bug fixes in C7x code generation

– Support non-contiguous access pattern in DMA

– Support strided access pattern in SE

– Support odd number of DMA blocks and iterations

– Simplify resize2d index computation

– Optimize maxpool2d with 1x1 pool size

• TIDL offload

– Rewrite broadcast 1D “add” as “bias_add” and offload to TIDL

– Do not offload resize2d with asymmetric or non-power-of-2 scaling factor

– Enabled TIDL batch processing

– Rewrite conv2d with 1x2 strides as conv2d with 1x1 strides followed by maxpool2d
with 1x2 strides
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– Offload sigmoid to TIDL

• TVM extension

– Support calling external function with DLTensor args

– Demonstrate overwriting default TVM strategy for an operator

– Demonstrate overwriting default TVM strategy for an operator for a special case

9.3 TIDL_PSDK_8.4

• Bug fixes in C7x code generation

– Fix streaming engine pass for loops containing multiple accesses to same tensor

– Add nop() function to support Reshape op in TVM C runtime

– Avoid overriding generic op strategy in “hls.py” (back-ported from upstream TVM)

– Add C7x strategy for concatenate instead of using generic strategy

– Do not vectorize inner loop with iterations less than vector length

– Do not vectorize if loop body contains call

– Fix vectorization factor to use largest data type in computation

– Add 64-bit integer support in streaming engine config

– Fix TVM C runtime to support more than 255 functions/layers

– Return tvm runtime create failure to OpenVX node

– Apply tiling and dma schedule only to broadcast ops in injective.py

• J721S2 support

• Merge with upstream neo-ai tvm 1.11.2

• Tensor debug support for TVM Arm runtime and TVM C7x runtime

9.4 TIDL_PSDK_8.2

• Initial release of C7x code generation support

• Merge with neo-ai-tvm 1.10.0
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SUPPORT

Post questions about TI TVM to the TI E2E™ design community forum and select the TI device
being used.
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IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DE-
SIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DE-
SIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS
IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND
IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF
THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely
responsible for (1) selecting the appropriate TI products for your application, (2) designing, vali-
dating and testing your application, and (3) ensuring your application meets applicable standards,
and any other safety, security, or other requirements. These resources are subject to change without
notice. TI grants you permission to use these resources only for development of an application that
uses the TI products described in the resource. Other reproduction and display of these resources
is prohibited. No license is granted to any other TI intellectual property right or to any third party
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its
representatives against, any claims, damages, costs, losses, and liabilities arising out of your use
of these resources.

TI’s products are provided subject to TI’s Terms of Sale
(https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does
not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
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