
C29x Clang Compiler Tools User’s Guide
v1.0

Copyright © 2024, Texas Instruments Incorporated

Online HTML version available here

https://software-dl.ti.com/codegen/docs/tiarmclang/compiler_tools_user_guide/index.html

CONTENTS

i

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The C29x code generation tools support application development for next-generation TI C29x
processors from Texas Instruments. This is the only compiler toolchain for C29x processors.

This user’s guide documents the TI C29x Clang C/C++ Compiler Tools. The c29clang compiler
is based on the open source LLVM compiler infrastructure and its Clang front-end. c29clang uses
the TI Linker and C runtime, which provide additional benefits for stability and reduced code size.

Benefits of c29clang include:

• Excellent C/ standards support (default C17)

• Excellent C++ standards support (default C++17)

• Source-based code coverage

• Support for migration from TI’s C28x compiler (cl2000)

• Compiler security support with stack smashing detection

• C29x security support to protect individual calls and frames

• Ease of use with fast compiles and expressive diagnostic messages

• GCC compatibility

• Supported by CMake (3.29)

CONTENTS 1

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Comprehensive documentation: Getting Started Guide, Migration Guide and Compiler Tools
User Manual

Benefits of using the TI linker and C runtime include:

• Stability and flexibility, facilitating ongoing embedded differentiation for TI devices

• Pairs with C runtime library, which is optimized for reduced code size

• Linker portability – the same TI linker and linker command files are used for C28x and C29x

• Function specialization, minimizing code size on common functions, including printf , mem-
cpy, and memset

• Support for C preprocessing directives in TI linker command files, such as #define, #include,
and #if/#endif

• Copy Table support, allowing automatic copying of code/data during runtime

• Initialized Data and Copy Table compression, reducing code size

• Security features such as ECC and CRC

• Segmented memory spaces, allowing section placement into multiple ranges as well as split
placement

CONTENTS 2

CHAPTER

ONE

C29CLANG GETTING STARTED GUIDE

This Getting Started Guide provides an introduction to the TI C29x Compiler toolchain, along with
examples that demonstrate how to use the c29clang compiler to compile and link source files to
create a simple application that can run on a C29x processor.

1.1 The c29clang Compiler Toolchain

The TI C29x Compiler Toolchain (c29clang) is Texas Instruments’ compiler for the next-
generation C29x processors. You can use the c29clang compiler toolchain to build applications
from C or C++ source files to be loaded and run on the C29x processors supported by the toolchain.

1.1.1 Toolchain Components

The c29clang compiler toolchain consists of many components. A brief description of the major
components is provided in the subsections below.

Essential Tools

• c29clang

The C/C++ compiler, c29clang, is used to compile C and C++ source files. By default, it automat-
ically invokes the TI linker, c29lnk, which combines object files generated by the compiler with
object libraries to create an executable program that can be loaded and run on a C29x processor.

The c29clang compiler is derived from the open source Clang compiler and its supporting LLVM
infrastructure. You can find more details about Clang and LLVM at The LLVM Compiler Infras-
tructure site.

• c29lnk

The linker, c29lnk, is the proprietary linker provided by Texas Instruments. It combines object
files that are either compiler-generated or have been archived into one or more object libraries to

3

http://llvm.org/
http://llvm.org/

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

create executable programs that can be loaded and run on a C29x processor. It is typically invoked
from the c29clang command line so that c29clang can implicitly set up the object library search
path and implicitly include runtime libraries in the link.

This is the same linker used by the TI C28x code generation tools, so linker command files used
for C28x applications are easy to migrate to use for C29x processors.

• c29ar

The archiver, c29ar, can be used to collect object files together into an object library or archive that
can be specified as input to the linker to provide definitions of functions or data objects that are not
otherwise available in the compiler generated object files that are input to the link. For example,
the standard C runtime library is an example of an object library that collects pre-built object files
that contain definitions of C runtime functions that are required by the language standard to be
provided with a C compiler toolchain like c29clang.

The archiver also provides a convenient way to collect logically related object files into an object
library that can be distributed as a product to provide capability for use in the development of
customer C29x applications.

Runtime Libraries

• libc

The libc library provides an implementation of the C standard runtime features and capabilities
that are to be provided as part of a C compiler toolchain.

• libc++abi and libc++

The libc++ library provides an implementation of the standard C++ library and depends on the
libc++abi library to provide implementations of low-level language features.

• compiler-rt

The compiler-rt runtime library helps to support the code coverage features in the c29clang com-
piler as well as providing an implementation of low-level target-specific functions that can be used
in compiler generated code.

Code Coverage Utilities

• c29cov

The c29cov tool shows code coverage information for programs that have been instrumented to
emit profile data.

• c29profdata

1.1. The c29clang Compiler Toolchain 4

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The profile data tool, c29profdata, is used to merge multiple profile data files generated by profile-
guided optimization instrumentation and merges them together into a single indexed profile data
file.

Object File Editing and Information Utilities

• c29dem

The C++ name demangler, c29dem, is a debugging aid that converts names that have been mangled
by the compiler back to their original names as declared in the C++ source code. The c29dem tool
can be used on a linker-generated map file that contains instances of C++ mangled names.

• c29libinfo

The c29libinfo command allows you to collect multiple versions of the same object file library,
each version built with a different set of command-line options, into a single index library file.
This index library file can then be used at link-time as a proxy for the actual object file library.

• c29nm

The name utility, c29nm, prints the list of symbol names defined and referenced in an object file,
executable file, or object library. It also prints the symbol values and an indication of each symbol’s
kind.

• c29objcopy

The object copying and editing tool, c29objcopy, can make a semantic copy of an input object
file to an output object file, but command-line options are available that allow parts of the input
object file to be edited before writing the result of the edit to the output file. For example, the
--strip-debug option can be used to remove all debug sections from the output.

• c29objdump

The object file dumper utility, c29objdump, can be used to print the contents of an object file. It is
commonly used to print out specific parts of the input object file using one of its available options.
For example, its -d option disassembles all text sections found in the input object file. For more
details about available options use c29objdump’s --help option.

• c29ofd

Like c29objdump, the object file display utility, c29ofd, can be used to print the contents of object
files, executable files, and object libraries. The output can be in text format or in XML. There
are also c29ofd options available to alter how text output is displayed and whether DWARF debug
information is to be included in the output.

• c29readelf

The GNU-style ELF object reader, c29readelf, can be used to display low-level format-specific
information about one or more object files. Like c29objdump and c29ofd, c29readelf provides

1.1. The c29clang Compiler Toolchain 5

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

command-line options to allow you to display certain pieces of information from an object file like
relocation entries or section headers.

• c29size

The GNU-style size information utility, c29size, prints size information for binary files. The output
displayed will show the total size for text sections, for bss sections, and data section as well as a
grand total.

• c29strip

The c29strip tool can be used to strip sections and symbols from object files.

1.1.2 Software Development Flow

The source code for your application consists of some combination of:

• C source files (.c extension)

• C++ source files (.C or .cpp extension)

The compile and link part of your development flow will look something like this:

Figure 1.1: Software Development Flow

Note that:

• c29clang interprets files with a .c extension as C source, invoking the compiler

• c29clang interprets files with a .C or .cpp extension as C++ source, invoking the compiler

All of the object files generated (.o extension) are then combined by the linker and linked against
any applicable runtime libraries to create an executable output file that can be loaded and run on a
TI C29x processor.

1.1. The c29clang Compiler Toolchain 6

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

1.2 Using the c29clang Compiler and Linker

1.2.1 Using the Compiler and Linker

Both the TI C29x Clang (c29clang) Compiler Tools’ compiler and linker can be invoked from
the c29clang command-line. The following subsections describe the basics of how to manage the
compile and link steps of building an application from the c29clang command-line.

Compiling and Linking

The default behavior of the c29clang compiler is to compile specified C and C++ source files into
temporary object files, and then pass those object files along with any explicitly specified object
files and any specified linker options to the linker.

c29clang [options] [source file names] [object file names] [-Wl,
→˓<linker options>]

In the following example, assume that the C code in file1.c references a data object that is defined
in an object file named file2.o. The specified c29clang command compiles file1.c into a temporary
object file. That object file, along with file2.o and a linker command file, link_test.cmd, are sent
to the linker and linked with applicable object files from the c29clang runtime libraries to create
an executable output file named test.out:

c29clang -mcpu=c29.c0 file1.c file2.o -o test.out -Wl,link_test.
→˓cmd

Note that there is no mention of the c29clang runtime libraries on the c29clang command-line
or inside the link_test.cmd linker command file. When the linker is invoked from the c29clang
command-line, the c29clang compiler implicitly tells the linker where to find applicable runtime
libraries, such as the C runtime library (libc.a).

In the above c29clang command-line, the -Wl, prefix in front of the specification of the
link_test.cmd file name indicates to the compiler that the link_test.cmd file should be sent di-
rectly to the TI linker (you can also use the -Xlinker prefix for this purpose).

Compiling and Linking with Verbose Linker Output

If you add the verbose (-v) option to the above c29clang command, you will see exactly how the
linker (c29lnk) is invoked and with what options. For example, this command:

c29clang -mcpu=c29.c0 -v file1.c file2.o -o test.out -Wl,link_
→˓test.cmd

shows the following with regards to how the c29lnk command is invoked by the c29clang compiler:

1.2. Using the c29clang Compiler and Linker 7

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

<install directory>/bin/c29lnk -I<install directory>/lib
-o test.out /tmp/file1-98472f.o file2.o link_test.cmd
--start-group -llibc++.a -llibc++abi.a -llibc.a -llibsys.a
-llibsysbm.a -llibclang_rt.builtins.a -llibclang_rt.profile.a --

→˓end-group

In the above invocation of the linker, the compiler inserts a -I<install directory>/lib option, which
tells the linker where to find the c29clang runtime libraries. The compiler also inserts the --
start_group/--end_group option list, which specifies exactly which runtime libraries to incorporate
into the link.

Compiling Only

You can avoid invoking the linker by specifying the -c option on the c29clang command-line.

c29clang -c [options] [source file names]

The following example generates object files file1.o and file2.o from the C files file1.c and file2.c,
respectively:

c29clang -c -mcpu=c29.c0 file1.c file2.c

Link-Only Using c29clang

When only object files are specified as input to the c29clang compiler command, the compiler au-
tomatically passes those files to the linker along with any other specified options that are applicable
to the link.

c29clang [options] [object file names] [-Wl,<linker options>]

As in the default case of “Compiling and Linking” described above, a -Wl, or -Xlinker prefix must
be specified in front of options that are intended for the linker. This example c29clang command:

c29clang -mcpu=c29.c0 file1.o file2.o -o test.out -Wl,link_test.
→˓cmd

invokes the linker as follows:

<install directory>/bin/c29lnk -I<install directory>/lib
-o test.out file1.o file2.o link_test.cmd
--start-group -llibc++.a -llibc++abi.a -llibc.a -llibsys.a
-llibsysbm.a -llibclang_rt.builtins.a -llibclang_rt.profile.a --

→˓end-group

1.2. Using the c29clang Compiler and Linker 8

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

As in the “Compiling and Linking” case, the compiler inserts a -I<install directory>/lib option
that tells the linker where to find the c29clang runtime libraries. The compiler also inserts the --
start_group/--end_group option list that specifies exactly which runtime libraries are incorporated
into the link.

1.2.2 Useful Compiler Options

The commonly used options listed in the subsections below are available on the c29clang compiler
command-line.

Processor Options

• -mcpu - select the target processor version

The c29clang compiler supports the following C29x processor variant:

• -mcpu=c29.c0

If an -mcpu variant is not specified on the c29clang command-line, the compiler assumes a default
of -mcpu=c29.c0.

Endianness

C29x devices are little-endian.

Floating-Point Support Options

Native support for 32-bit floating-point operations is always provided for C29x. Optionally, you
can also enable 64-bit hardware instructions for floating-point operations using the -mfpu option,
which can have either of the following settings:

• -mfpu=none - Use native 32-bit floating-point hardware operations, but emulate 64-bit
floating-point operations in software.

• -mfpu=f64 - Use native 32-bit and 64-bit floating-point hardware operations.

1.2. Using the c29clang Compiler and Linker 9

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Include Options

The c29clang compiler utilizes the include file directory search path to locate header files that are
included by a C/C++ source file via #include preprocessor directives. The c29clang compiler im-
plicitly defines an initial include file directory search path to contain directories relative to the tools
installation area where C/C++ standard header files can be found. These C/C++ standard header
files are considered part of the c29clang compiler package and should be used in combination with
linker and the runtime libraries that are included in the c29clang compiler tools installation.

• -I<dir>

The -I option allows you to add your own directories to the include file directory path,
allowing user-created header files to be easily accessible during compilation.

Predefined Symbol Options

In addition to the pre-defined macro symbols that the c29clang compiler defines depending on
which processor options are selected, you can also manage your own symbols at compile-time
using the -D and -U options. These options are useful when the source code is configured to
behave differently based on whether a compile-time symbol is defined and/or what value it has.

• -D<name>[=<value>]

A user-created pre-defined compile symbol can be defined and given a value using the -D
option. In the following example, MySym is defined and given a value 123 at compile-time.
MySym will then be available for use during the compilation of the test.c source file.

c29clang -mcpu=c29.c0 -DMySym=123 -c test.c

• -U<name>

The -U option can be used to cancel a previous definition of a specified <name> whether it
was pre-defined implicitly by the compiler or with a prior -D option.

Optimization Options

To enable optimization passes in the c29clang compiler, select a level of optimization from among
the following -O[0|1|2|3|fast|g|s|z] options. In general, the options below represent various levels
of optimization with some options designed to favor smaller compiler-generated code size over
performance, while others favor performance at the cost of increased compiler-generated code
size.

Among the options listed below, -Oz is recommended as the optimization option to use if small
compiler-generated code size is a priority for an application. Using -Oz retains performance gains
from many of the -O2 level optimizations that are performed.

1.2. Using the c29clang Compiler and Linker 10

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• -O0 - No optimization. This setting is not recommended, because it can make debugging
difficult.

• -O1 or -O - Restricted optimizations, providing a good trade-off between code size and
debuggability.

• -O2 - Most optimizations enabled; some optimizations that require significant additional
compile time are disabled.

• -O3 - All optimizations available at -O2 plus others that require additional compile time to
perform.

• -Ofast - All optimizations available at -O3 plus additional aggressive optimizations with
potential for additional performance gains, but also not guaranteed to be in strict compliance
with language standards.

• -Og - Restricted optimizations while preserving debuggability. All optimizations available
at -O1 are performed with the addition of some optimizations from -O2.

• -Os - All optimizations available at -O2 plus additional optimizations that are designed to
reduce code size while mitigating negative impacts on performance.

• -Oz - All optimizations available at -O2 plus additional optimizations to further reduce code
size with the risk of sacrificing performance.

Note: Optimization Option Recommendations:

• The -O1 option is recommended for maximum debuggability.

• The -Oz option is recommended for optimizing code size.

• The -O3 option is recommended for optimizing performance, but it is likely to increase
compiler-generated code size.

Debug Options

The c29clang compiler generates DWARF debug information when the -g or -gdwarf-3 option is
selected.

• -g or -gdwarf-3 - emit DWARF version 3 debug information

1.2. Using the c29clang Compiler and Linker 11

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Control Options

Some c29clang compiler options can be used to halt compilation at different stages:

• -c - stop compilation after emitting compiler-generated object files; do not call linker

• -E - stop compilation after the pre-processing phase of the compiler; this option can be used
in conjunction with several other options that provide further control over the pre-processor
output:

– -dD - print macro definitions in addition to normal preprocessor output

– -dI - print include directives in addition to normal preprocessor output

– -dM - print macro symbol definitions instead of normal preprocessor output

• -S - stop compilations after emitting compiler-generated assembly files; do not call assembler
or linker

Compiler Output Option

• -o<file>

The -o option names the output file that results from a c29clang command. If c29clang is
used to compile and link an executable output file, then the -o option’s <file> argument
names that output file. If no -o option is specified in a compile and link invocation of
c29clang then the linker will produce an executable output file named a.out.

If the compiler is used to process a single source file, then the -o option will name the output
of the compilation. This is sometimes useful in case there is a need to name the output file
from the compiler something other than what the compiler will produce by default. In the
following example, the output object file from the compilation of C source file task_42.c is
named task.o by the -o option, replacing the task_42.o that would normally be generated by
the compiler:

c29clang -mcpu=c29.c0 -c task_42.c -o task.o

Source File Interpretation Option

The c29clang compiler interprets source files with a recognized file extension in a predictable
manner. The recognized file extensions include:

• .c - C source file

• .C or .cpp - C++ source file

The c29clang compiler also supports a -x <language> option that permits you to dictate how
subsequent input files on the command-line are to be treated by the compiler. This can be used

1.2. Using the c29clang Compiler and Linker 12

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

to override default file extension interpretations or to instruct the compiler how to interpret a file
extension that is not automatically recognized by the compiler. The following <language> types
are available with the -x option:

• -x none - reset compiler to default file extension interpretation

• -x c - interpret subsequent input files as C source files

• -x c++ - interpret subsequent input files as C++ source files

Note: The -x<language> option is position-dependent. A given -x option on the c29clang
command-line will be in effect until the end of the command-line or until a subsequent -x op-
tion is encountered on the command-line.

1.2.3 Linker Options

Link-Step File Search Path Options

Similar to the way that the c29clang compiler utilizes the include file directory search path to locate
a header files during compilation, the linker uses the object file directory search path to help locate
object libraries and object files that are input to the link step. As mentioned above, the c29clang
compiler implicitly defines an initial object file directory search path to contain directories relative
to the tools installation area where runtime libraries can be found. The following options can be
used to help users manage where and how user-created object files and libraries are managed in
the link step:

• --search_path=<dir> or -I<dir> - add specified directory path to the object file directory
search path

• --library=<file> or -l<file> - use object file directory search path to locate specified object
library or object file

Basic Linker Options

Listed below are some of the basic options that are commonly used when invoking the linker.
They can be specified on the command-line or inside of a linker command file. The c29clang
tool’s linker is nearly identical to the linker in the proprietary TI compiler toolchain. You can find
more information about linker options in Linker Options.

• --map_file=<file> or -m<file> - emit information about the result of a link into the specified
map <file>

• --output_file=<file> or -o<file> - emit linked output to specified <file>

1.2. Using the c29clang Compiler and Linker 13

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• --args_size=<size> or --args=<size> - reserve <size> bytes of space to store command-line
arguments that are passed to the linked application

• --heap_size=<size> or --heap=<size> - reserve <size> bytes of heap space to be used for
dynamically allocated memory

• --stack_size=<size> or --stack=<size> - reserve <size> bytes of stack space for the run-time
execution of the linked application

Specifying Linker Options on the c29clang Command-Line

As noted in a few of the above examples, when invoking the linker from the c29clang com-
mand, options that are to be passed directly to the linker must be preceded with a -Wl, (note
that the comma is required) or -Xlinker prefix. In this example, the c29clang compiler passes the
link_test.cmd linker command file directly to the linker:

c29clang -mcpu=c29.c0 file1.c file2.o -o test.out -Wl,link_test.
→˓cmd

The c29clang command line provides the following ways to pass options to the linker:

• The -Wl, option passes a comma-separated list of options to the linker. (A comma after -Wl
is required.)

• The -Xlinker option passes a single option to the linker and can be used multiple times on
the same command line.

• A linker command file can specify options to pass to the linker.

For example, the following command line passes several linker options using the -Wl, option:

c29clang -mcpu=c29.c0 hello.c -o a.out -Wl,-stack=0x8000,--ram_
→˓model,link_test.cmd

The following command line passes the same linker options using the -Xlinker option instead:

c29clang -mcpu=c29.c0 hello.c -o a.out -Xlinker -stack=0x8000 -
→˓Xlinker --ram_model -Xlinker link_test.cmd

The following lines from a linker command file, pass the same linker options to the linker:

/
→˓***/
→˓

/* Example Linker Command File
→˓ */
/

→˓***/
→˓

(continues on next page)

1.2. Using the c29clang Compiler and Linker 14

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

-stack 0x8000 /* SOFTWARE STACK SIZE
→˓ */
--ram_model /* INITIALIZE VARIABLES AT LOAD

→˓TIME */

1.2.4 Runtime Support

Predefined Macro Symbols

The c29clang compiler pre-defines compile-time macro symbols for use in source to help distin-
guish code written particularly for C29x, for a specific C29x processor variant, or to be compiled
by the c29clang compiler (as opposed to other C29x compilers) from other source code.

The c29clang compiler pre-defines several TI-specific and C29-specific pre-defined macro symbols
that can be used to distinguish the use of the c29clang compiler from other C29x compilers. These
include:

__ti__ 1 - identify compiler vendor as TI
__ti_major__ 1 - identify major version number
__ti_minor__ 0 - identify minor version number
__ti_patchlevel__ 0 - identify patch version number
__ti_version__ 10000 - (__ti_major__*10000)+(__ti_minor__

→˓*100)+__ti_patchlevel
__C29_ARCH__ 0
__C29_C0__ 1
__C29_OPTF64__ 1
__C29__ 1
__c29__ 1

For a complete list of pre-defined macro symbols that are defined by the c29clang compiler for a
given compilation, the processor options can be combined with the -E -dM preprocessor option
combination. This will instruct the compiler to run only the preprocessor pass of the compilation
and emit the list of pre-defined macro symbols that are defined along with their values to stdout.

1.2. Using the c29clang Compiler and Linker 15

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Header Files

The header files provided with the installation of the c29clang compiler tools must be used when
using functions from any of the runtime libraries provided with the tools installation. These include
the C and C++ standard header files. The c29clang compiler implicitly defines the initial include
file directory search path so that these header files are accessible during a compilation.

Runtime Libraries

When linking an application containing object files that were generated by the c29clang compiler,
the appropriate c29clang runtime libraries must be included in the link so that references to func-
tions and data objects that are defined in the runtime libraries can be properly resolved at link
time.

When the c29clang command is used to invoke the linker, the compiler implicitly defines the
initial object file directory search path to contain directories relative to the tools installation area
where runtime libraries can be found. The c29clang compiler also implicitly adds the following
--start-group/--end-group option list to the linker invocation:

--start-group -llibc++.a -llibc++abi.a -llibc.a -llibsys.a
-llibsysbm.a -llibclang_rt.builtins.a -llibclang_rt.profile.a --

→˓end-group

This option list instructs the linker to search among the list of specified runtime libraries for defini-
tions of unresolved symbol references. When a definition of a function or data object that resolves
a previously unresolved reference is encountered, the section containing the definition is pulled
into the link from the runtime library where it is defined. If new unresolved symbol references
are introduced while this process is in progress, the libraries are re-read until no further needed
definitions can be found among the --start_group/--end_group list of runtime libraries.

There are several different runtime library configurations supported in the c29clang compiler
toolchain. An application built using the c29clang compiler tools must use a combination of target
options that is compatible with one of the following configurations:

1.3 Creating a Simple Application with the c29clang Com-
piler Tools

This section of the Getting Started Guide provides an example of how to build a simple application
using the c29clang command-line interface. In addition, it provides a walk-through of how to build
a simple application in a Code Composer Studio project that uses the c29clang compiler.

1.3. Creating a Simple Application with the c29clang Compiler Tools 16

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

1.3.1 Source Files

The subsections below describe how to build a simple “Hello World!” program using either the
c29clang command-line interface or the Code Composer Studio (CCS) development environment.
For the purposes of these tutorial examples, it is assumed that you have a C source file containing
the following C code:

1 #include <stdio.h>
2

3 int main() {
4 printf("Hello World\n");
5 return 0;
6 }

It is also assumed that you have at your disposal a linker command file that provides a specification
of the available memory and how to place compiler/linker generated output sections in that mem-
ory. For example, in the tutorials below, the following linker command file, named lnkme.cmd,
could be used:

/
→˓**/
→˓

/* lnk.cmd - V1.00 Command file for linking C29 programs
→˓ */
/

→˓**/
→˓

/* This linker command file assumes C/C++ model
→˓ */
/

→˓**/
→˓

-c
-stack 0x8000 /* Software stack

→˓size */
-heap 0x2000 /* Heap area size

→˓ */

/* Specify the system memory map */
MEMORY
{

ROM : org = 0x00000020 len = 0x2FFFE0 /* 1.25 GB */
FLASH : org = 0x10000000 len = 0x300000 /* 1.25 GB */
RAM : org = 0x18000000 len = 0x300000 /* 1.25 GB */

(continues on next page)

1.3. Creating a Simple Application with the c29clang Compiler Tools 17

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

}
#define RO_CODE FLASH
#define RO_DATA FLASH
#define RW_DATA RAM

/* Specify the sections allocation into memory */

SECTIONS
{

.text : {} > RO_CODE /* Code
→˓ */

.cinit : {} > RO_DATA /* Initialization tables
→˓ */

.const : {} > RO_DATA /* Constant data
→˓ */

.pinit : {} > RO_DATA /* C++ Constructor tables
→˓ */

.data : {} > RW_DATA /* Initialized variables
→˓ */

.bss : {} > RW_DATA /* Uninitialized
→˓variables */

.stack : {} > RW_DATA /* Software system stack
→˓ */

.sysmem : {} > RW_DATA /* Dynamic memory
→˓allocation area */
}

1.3.2 Compile and Link Using Command-Line

You can use a single command line to compile your source files and link against C/C++ runtime
libraries to create an executable file. By default, the c29clang compiler will compile and attempt
to link compiler generated object files with runtime libraries. If you only want to compile your
source files into object files without linking, the c29clang -c option can be added to the command
line.

If you were building the “Hello World!” example program, you could use the a command like the
following:

%> c29clang -mcpu=c29.c0 hello.c -o hello_world.out -Xlinker -
→˓llnkme.cmd -Xlinker -mhello_world.map

When the c29clang compiler runs, it implicitly adds the directories where the C/C++ runtime

1.3. Creating a Simple Application with the c29clang Compiler Tools 18

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

header files are installed to the include file directory search path. Likewise, when the linker is
invoked by c29clang, it implicitly adds the directories where the C/C++ runtime libraries are in-
stalled to your library file directory search path. In addition, the linker implicitly includes the list of
applicable C/C++ runtime libraries into a link to resolve references to C/C++ runtime and built-in
functions and data objects.

The above command produces an executable file, hello_world.out, which can be loaded and run on
the appropriate C29x processor.

1.3.3 Compile and Link Using Build Automation Tools

You can use build systems to automate the command line compilation and linking steps. Supported
build systems include GNU Make and CMake (v3.29 or higher).

For example, the following CMakeLists.txt file contains the directives required to use CMake to
build a sample c29clang application:

cmake_minimum_required(VERSION 3.29) # Minimum version for
→˓c29clang support

#--
→˓--------------
Set up cross compiling with TI clang compiler
#--

→˓--------------
set(CMAKE_SYSTEM_NAME Generic) # Inform cmake of cross-compiling

find c29clang in execution path
find_program(CMAKE_C_COMPILER c29clang)

or set path to c29clang explicity
#set(CMAKE_C_COMPILER /Users/ti/ti-cgt-c29_1.2.0.LTS/bin/

→˓c29clang)
#--

→˓--------------
project(DDREyeFirmware C)

add_executable(app
main.c
lib/uart_lib/src/uartConsole.c
lib/uart_lib/src/uartStdio.c
lib/uart_lib/src/uart.c
lib/pattern_gen_lib/src/pattern_gen_lib.c)

(continues on next page)

1.3. Creating a Simple Application with the c29clang Compiler Tools 19

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

add_compile_options(-mcpu=c29.c0)
add_compile_options(-Oz -g)

include_directories(lib/uart_lib/inc)
include_directories(lib/uart_lib/src)
include_directories(lib/pattern_gen_lib/inc)
include_directories(lib/pattern_gen_lib/src)

add_link_options(LINKER:--ram_model)
add_link_options(LINKER:--warn_sections)
add_link_options(${CMAKE_SOURCE_DIR}/linker.cmd)

1.3.4 Compile and Link Using Code Composer Studio

If you use CCS as your development environment, the compiler and linker option are automatically
set for you when you create a project. The build settings that are created when the project is created
determine which compiler and linker command-line options are used to build the project and can
be adjusted as needed.

To create and build the “Hello World!” example as a CCS project, follow these steps:

1) Create a project

1.1) Choose File > New > CCS Project from the “File” tab

1.2) In the “New CCS Project” wizard, if you are compiling for a specific TI C29x
processor, then you can select the processor from the Target drop-down menus.
For the purposes of this tutorial, the “C29 Device” setting was selected in the
right-hand side Target drop-down menu.

1.3) In the Project name field, type a name for the project. For the purposes of
this tutorial, we’ll refer to the project name “hello_world”.

1.4) In the Compiler version drop-down menu, select the c29clang compiler that
you have installed.

1.5) Expand the Project type and tool-chain section, then select the device endi-
anness. For this tutorial, a little-endian device is assumed.

1.6) Expand the Project templates and examples section, then select a template
for your project. For this tutorial, the “Empty Project” template is assumed.

1.7) Click Finish. A new project, “hello_world”, will be added to your current
workspace.

2) Add source files

1.3. Creating a Simple Application with the c29clang Compiler Tools 20

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

2.1) Left click on the “hello_world” project in the current workspace to make it
the active project.

2.2) Right-click on the “hello_world” project, then select Add Files. . . ” from the
drop-down menu. You can then browse to find a C source file containing the code
described in “Source Files” subsection above. When the source file is found and
selected in the Add files to hello_world pop-up browser, clock on Open and then
copy the file into the project. For this tutorial, the source file name is assumed to
be “hello.c”.

2.3) Repeat step 2.3 to find and copy an appropriate linker command file to be
used in the project. For this tutorial, a linker command file named “lnkme.cmd”
is assumed.

3) Open and adjust project build settings as needed

3.1) Right-click on the “hello_world” project, then select Show Build Settings. . .
or Properties from the drop-down menu.

3.2) In the Properties for hello_world pop-up dialog box, walk through the cat-
egories along the left-hand side of the dialog and make necessary adjustments in
each category:

3.2.1) In the General category, check that the proper compiler version,
Device endianness, and Linker command file are selected

3.2.2) In the C29 Compiler > Processor Options category, select the
appropriate options from each of the drop-down menus in the Processor
Options window.

3.2.3) Further adjustments to other categories are not necessary for the
purposes of this tutorial.

3.2.4) When adjustments to the Properties for hello_world are com-
plete, click on Apply and Close

4) Build the project

4.1) Right-click on the “hello_world” project, then select Build Project from the
drop-down menu.

4.2) As CCS runs the compiler and linker commands, the project build progress
will appear in the CCS Console window, with a resulting output file named
“hello_world.out”. This .out file can then be loaded and run on an appropriate
TI C29x processor. The resulting .out file can be loaded and run on the appropri-
ate TI C29x processor.

1.3. Creating a Simple Application with the c29clang Compiler Tools 21

CHAPTER

TWO

TI C28X TO C29CLANG MIGRATION GUIDE

This Migration Guide addresses tasks required and issues encountered when porting your existing
TI C28x (cl2000) application to c29clang.

The following components of a TI C28x application need modification when migrating to
c29clang:

• CCS project (see Migrating cl2000 CCS Projects to c29clang)

• Build options (see Migrating Command-Line Options)

• C/C++ source code for cl2000 compiler (see Migrating C and C++ Source Code)

• C/C++ source code for CLA compiler (see Migrating CLA Code)

• Linker command file (see Migrating Linker Command Files for Use With c29clang)

• TI C28x assembly code (see Migrating Assembly Language Source Code)

Note: COFF to EABI Migration: Only EABI output is supported for TI C29x. If your TI C28x
application has COFF output files, you should first migrate from TI C28x COFF output to TI C28x
EABI output before migrating to TI C29x. For information, see C2000 Migration from COFF to
EABI.

The following migration aids can help you address issues when converting an existing cl2000
project to use the c29clang compiler:

• Clang-Tidy Tool: The c29clang-tidy tool diagnoses changes that need to be made to ap-
plication code in order to migrate it from TI C28x to c29clang. The c29clang-tidy tool
is a clang-based utility for diagnosing and fixing issues in a C/C++ application. It can be
run from the command line or from within CCS. For more about using c29clang-tidy, see
Migrating Source Code with Clang-Tidy.

• C/C++ Source Code Diagnostics: The c29clang compiler diagnostics can help you find
proprietary TI pre-defined macro symbols, pragmas, and intrinsics that need to be converted.
For more information, see C/C++ Source Migration Aid Diagnostics.

22

https://software-dl.ti.com/ccs/esd/documents/C2000_c28x_migration_from_coff_to_eabi.html
https://software-dl.ti.com/ccs/esd/documents/C2000_c28x_migration_from_coff_to_eabi.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• CCS Project Migration: For help converting the build options for an existing cl2000 CCS
project to use the c29clang compiler, see Migrating cl2000 CCS Projects to c29clang.

Contents:

2.1 Main Differences Between cl2000 and c29clang

This section of the Migration Guide describes the primary differences between the cl2000 compiler
tools and the TI C29x Clang (c29clang) Compiler Tools.

For more information about the differences introduced below, see the following subsections:

2.1.1 C/C++ and Assembly Language Differences

The TI C29x Clang (c29clang) Compiler Tools do not support proprietary TI-specific C/C++ mech-
anisms that the TI C28x compiler (cl2000) did. This section provides further details about the
c29clang compiler’s behavior regarding proprietary TI-specific C/C++ mechanisms.

C/C++ Source Code: Macro Symbols, Pragmas, and Intrinsics

The c29clang compiler does not support many of the proprietary TI pre-defined macro symbols,
pragmas, or intrinsics that are supported in the TI C28x compiler. Use of such proprietary pre-
defined macro symbols and intrinsics should be replaced by a functionally equivalent alternative.

Rather than using proprietary TI-specific pragmas (such as CODE_SECTION, DATA_SECTION,
and LOCATION), you should use function, variable, and type attributes where applicable. For
example, instead of defining a function in a specially named section using the CODE_SECTION
pragma:

#pragma CODE_SECTION(my_func, ".text:myfunc")
void my_func(void) {

<code>
}

you can use a section attribute instead:

void my_func(void) __attribute__((section(".text:my_func"))) {
<code>

}

Please see the C/C++ Source Migration Aid Diagnostics section in the Migrating C and C++
Source Code chapter for details on how instances of these proprietary TI mechanisms can be found
and converted into a portable form that the c29clang compiler does support.

2.1. Main Differences Between cl2000 and c29clang 23

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

CLA Source Code

The TI C29x Clang (c29clang) Compiler Tools do not have a separate CLA compiler. Convert code
intended for the TI C28x CLA compiler to regular C code. See Migrating CLA Code for details.

Assembly Source Code

Use of assembly language is discouraged for c29clang, except for assembly code embedded in
C/C++ source files via asm() statements, which are processed inline by the c29clang integrated
GNU-syntax assembler.

For more information on migrating assembly source code from proprietary applications, please see
the Migrating Assembly Language Source Code chapter of this migration guide.

2.1.2 Development Flow Differences

There are a few significant differences in terms of development flow behavior when migrating from
the TI C28x compiler to the c29clang compiler. These include the following:

• The linker is invoked automatically by default by the compiler.

The c29clang compiler invokes the linker automatically by default, whereas the TI C28x
compiler must be told to invoke the linker via the cl2000’s --run_linker (-z) option. Further
details about how to manage the linker invocation from the c29clang command-line can
be found in the Using the c29clang Compiler and Linker section of the c29clang Getting
Started Guide.

• The interlist option is not supported on the compiler command line.

Unlike the TI C28x compiler, which provides -s, -ss, and -os options to instruct the com-
piler to generate an interlisted assembly source file, the c29clang does not support an in-
terlisting option on the compiler command-line. Instead, when a C/C++ source file is com-
piled with debug enabled, the c29objdump utility can be used with its -S option on the
compiler-generated object file to produce disassembled object code with C/C++ source lines
interlisted.

• Altering the file extension of generated files is not supported on the compiler command
line.

The c29clang compiler does not support options to alter the file extension of compiler-
generated files. For more details about which TI C28x options do not have analogous
c29clang options, please see the Migrating Command-Line Options chapter of this migration
guide.

• Compilation stops after generating assembly source if the -S option is specified.

2.1. Main Differences Between cl2000 and c29clang 24

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The c29clang compiler supports a -S option that allows you to keep the compiler-generated
assembly file, but unlike the cl2000’s -k option, the c29clang’s -S option causes the compiler
to halt immediately after generating the assembly file. When -S is used, an object file is not
created by the compiler.

2.1.3 Binary Utility Differences

There are several differences in the behavior of the asm() statement and binary utilities used for
C++ name demangling, symbol name listing, and disassembly. These differences are described
here.

Inlining Functions that Contain asm() Statements

The c29clang compiler allows a function containing an asm() statement to be considered for inlin-
ing. The TI C28x compiler does not allow a function containing an asm() statement to be inlined.

If an asm() statement in a function contains the definition of a symbol, then you should strongly
consider applying a noinline attribute to the function that contains such an asm() statement.

For example, consider the following function definition:

void func_a() {
...
asm("a_label:\n");
...

}

The above function contains a definition of a_label. The TI C28x compiler does not allow any
function that contains an asm() statement to be inlined. Thus, in the above example, the TI C28x
compiler would not attempt to inline func_a in any other function that references func_a.

The c29clang compiler behavior with respect to functions that contain asm() statements is different
from the TI C28x compiler. The c29clang compiler allows functions containing asm() statements
to be considered for inlining where those functions are referenced. If a function contains an asm()
statement that defines a symbol and is inlined multiple times in the same compilation unit, this can
cause the c29clang compiler to emit a “symbol multiply defined” error diagnostic.

Consider that the above definition of func_a is in the same compilation unit as another function,
func_b:

void func_b() {
...
func_a();
...
func_a();

(continues on next page)

2.1. Main Differences Between cl2000 and c29clang 25

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

...
}

If the c29clang compiler decides that it is beneficial to inline func_a where that function is refer-
enced in func_b, the result is multiple definitions of the label a_label and the c29clang compiler
emits an error diagnostic.

You can prevent the c29clang compiler from inlining a function by applying a noinline attribute to
the function in question. For example, you could rewrite func_a as follows:

__attribute__((noinline))
void func_a() {

...
asm("a_label:\n");
...

}

This adjustment to the definition of func_a prevents func_a from being inlined anywhere where it
is referenced and avoid any potential of defining a_label multiple times in the same compilation
unit.

Updated C++ Name Demangler Utility (c29dem)

The TI C29x Clang (c29clang) Compiler Tools include an LLVM-based version of the C++ Name
Demangler Utility (c29dem). While the LLVM-based version of this utility is functionally equiv-
alent to the TI C28x compiler tools’ version, the command-line interface for the new version is
different from the TI C28x version.

The C++ name demangler (c29dem) is a debugging aid that translates C++ mangled names to their
original name found in the relevant C++ source code. The c29dem utility reads in input, looking
for mangled names. All unmangled text is copied to output unaltered. All mangled names are
demangled before being copied to output.

The syntax for invoking the C++ name demangler provided with c29clang is:

c29dem [options] <mangled names ...>

• options - affect how the name demangler behaves. The c29dem utility is derived from the
LLVM project’s llvm-cxxfilt tool. To display a list of available options, use the help option
(-h), c29dem -h. You can also refer to the LLVM project’s llvm-cxxfilt page for more
information.

• mangled names . . . - if no names are specified on the command-line, names are read inter-
actively from the standard input stream.

2.1. Main Differences Between cl2000 and c29clang 26

https://llvm.org/docs/CommandGuide/llvm-cxxfilt.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

By default, the C++ name demangler writes output to stdout. You can pipe the output to a file if
desired.

Differences between the TI C28x version of the C++ name demangler and the c29clang version of
the C++ name demangler are as follows.

Processing Text Input

Unlike the TI C28x version of the C++ name demangler, the c29clang version of c29dem does not
process a text file specified as an argument to c29dem. Assuming that test.s is a compiler generated
assembly file, you cannot specify test.s as an argument to c29dem. Instead, you can pipe the text
file as input to the c29dem utility as follows:

c29dem < test.s

or

cat test.s | c29dem

Saving Output to a File

The TI C28x version of the C++ name demangler supported an “--output-file” option that allowed
you to write the output of the c29dem utility to a file. The c29clang version of c29dem does not
support a --output option. Instead, the output can be redirected to a file like so:

cat test.s | c29dem > c29demout

No ABI Option Needed

The TI C28x version of the C++ name demangler required that an --abi=eabi option be specified in
order to demangle C++ names that are generated by the c29clang compiler. The c29clang version
of c29dem assumes EABI and no ABI option is needed to process c29clang compiler generated
C++ mangled names.

2.1. Main Differences Between cl2000 and c29clang 27

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Updated Name Utility (c29nm)

The TI C29x Clang (c29clang) Compiler Tools include an LLVM-based version of the Name Util-
ity (c29nm). While the LLVM-based version of this utility is functionally equivalent to the TI
C28x compiler tools’ version, the command-line interface for the new version is different from the
TI C28x version.

The name utility (c29nm) prints the list of symbol names defined and referenced in an object file,
executable file, or object library. It also prints the symbol value and an indication of the symbol’s
kind.

The syntax for invoking the name utility is:

c29nm [options] <input files>

• options - affect how the name utility behaves. The c29nm utility is derived from the LLVM
project’s llvm-nm tool. To display a list of available options, use the help option (-h), c29nm
-h. You can also refer to the LLVM project’s llvm-nm page for more information.

• input files - an input file can be an object file, an executable file, or an object library

The output of the name utility is written to stdout. You can also elect to pipe the output to a file or
as input to the C++ name demangler.

Differences between the TI C28x version of the C++ name utility and the c29clang version of the
C++ name utility are as follows.

Symbol Kind Annotations

In the output from the c29nm utility, symbol names are annotated with an indication of their kind.
The c29clang version of the c29nm utility uses the following list of annotation characters to repre-
sent the different symbol kinds:

• a, A - absolute symbol

• b, B - uninitialized data (bss) object

• C - common symbol

• d, D - writable data object

• n - local symbol from a non-alloc section

• N - debug symbol or global symbol from a non-alloc section

• r, R - read-only data object

• t, T - code (text) object

• u - GNU unique symbol

2.1. Main Differences Between cl2000 and c29clang 28

https://llvm.org/docs/CommandGuide/llvm-cxxfilt.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• U - named object is undefined in this file

• v - undefined weak object symbol

• V - defined weak object symbol

• ? - something unrecognizable

Debug Symbol Names

The TI C28x version of the name utility would include debug symbol names in the output. How-
ever, to include debug symbols in the output of the c29clang version of c29nm, you must specify
the c29nm’s --debug-syms option on the command-line.

Functionally Equivalent Option Mappings

Several of the options available in the TI C28x version of the name utility now have functionally
equivalent options with different syntax in the c29clang version of the c29nm utility. Below is a list
of option mappings where the TI C28x’s nm2000 option syntax is specified first and the c29clang’s
c29nm option syntax is specified second:

KEY: TI C28x nm2000 option syntax -> TI C29x c29nm option syntax - description

• --all -> --debug-syms - print all symbols

• --prep_fname -> --print-file-name - prepend file name to each symbol

• --undefined -> --undefined-only - only print undefined symbols

• --sort:value -> --numeric-sort - sort symbols numerically rather than alphabetically

• --sort:reverse -> --reverse-sort - sort symbols in reverse order

• --global -> --externs-only - print only global symbols

• --sort:none -> --no-sort - don’t sort any symbols

Options No Longer Supported

The TI C28x version of the name utility supported several command-line options that are no longer
supported in the c29clang version of the c29nm utility. These include:

• --format:long - produce detailed listing of symbol information

• --output - write output to a specified file

• --quiet - suppress banner and progress information

2.1. Main Differences Between cl2000 and c29clang 29

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Symbol Kind Annotations

The TI C28x version of the name utility annotates some symbols with kind information differently
than the c29clang version of the c29nm utility. One of the known differences is that the previous
version of the name utility uses ‘d’ to annotate debug symbols, whereas the new version of c29nm
uses ‘N’. There may be other differences. Please consult the above list of symbol kind annotations
for the c29nm utility for more information.

Saving Output to a File

As indicated above, the TI C28x version of the name utility supports a command-line option to
write the output to a specified file, but the c29clang version of the c29nm utility does not support
such a command-line option. Instead, you can elect to pipe the output of c29nm to a file:

c29nm test.o > c29nmout

or to the C++ name demangler utility, for example:

c29nm test.o | c29dem > c29demout

An Example Using the Name Utility (c29nm) and the Name Demangler Utility
(c29dem)

Consider the following source file (test.cpp):

int g_my_num;
namespace NS { int ns_my_num = 2; }
int f() { return g_my_num + NS::ns_my_num; }
int main() { return f(); }

If the above test.cpp is compiled:

c29clang -mcpu=c29.c0 -c test.cpp

We can then use the c29nm utility to write out the symbol names in test.o:

%> c29nm test.o
00000000 T _Z1fv
00000000 D _ZN2NS9ns_my_numE
00000000 B g_my_num
00000000 T main

and we could pass the output of c29nm to c29dem to demangle the mangled names that are present
in the c29nm output:

2.1. Main Differences Between cl2000 and c29clang 30

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

%> c29nm test.o | c29dem
00000000 T f()
00000000 D NS::ns_my_num
00000000 B g_my_num
00000000 T main

Disassembling Object Files

The c29clang compiler toolchain provides a utility that can be used to disassemble TI C29x object
files: c29objdump.

When invoked with the --disassemble (or -d) command, c29objdump emits disassembled output
for a C29x object file. If a C29x object file contains C/C++ source debug information, then the
--source (or -S) option can be used to emit interlisted C/C++ source with the disassembled output.

c29objdump –disassemble [options] filename

See the c29objdump - Object File Dumper section for more information about the c29objdump
utility.

The dis2000 utility that is provided with the proprietary TI C29x C/C++ compiler toolchain
(cl2000) has no equivalent in the c29clang compiler toolchain. Use the c29objdump utility in-
stead.

Language Support For C/C++ and Assembly Differences

• C/C++: There is no support for proprietary TI predefined macro symbols, pragmas, and
intrinsics. Functionally equivalent alternatives should be used in their place.

• CLA: There is no separate CLA compiler. Convert code intended for the CLA compiler to
regular C code.

• Assembly: Use of assembly language is discouraged for c29clang, except for assembly code
that is embedded in C/C++ source files via asm() statements, which are processed inline by
the c29clang integrated GNU-syntax assembler. Assembly language source files should be
rewritten in C/C++.

For more information, see C/C++ and Assembly Language Differences.

Development Flow Related Differences

• The c29clang compiler invokes the linker by default, whereas the user must specify cl2000’s
-run_linker option to invoked the linker from the cl2000 command-line. However, the --
rom_model (-c) linker option is not set by default by the c29clang compiler when running
the linker. Therefore, the --rom_model (-c) or --ram_model (-cr) option must be passed to
the linker on the c29clang command line or in the linker command file.

• The c29clang compiler does not support a C/C++ interlist option from the compiler
command-line.

2.1. Main Differences Between cl2000 and c29clang 31

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The c29clang compiler ends compilation after emitting assembly output when using the -S
option.

• The c29clang compiler does not support altering the file extension of compiler generated
files.

For more information, see Development Flow Differences.

Differences in Behavior of Binary Utilities

• Only EABI output is supported for TI C29x. If your TI C28x application has COFF output
files, you should first migrate from TI C28x COFF output to TI C28x EABI output before
migrating to TI C29x. For information, see C2000 Migration from COFF to EABI.

• The cl2000 compiler does not attempt to inline a function that contains an asm() statement,
but the c29clang compiler inlines a function containing an asm() statement if it is beneficial
to do so.

• The command-line interface for the c29clang versions of the C++ Name Demangler Utility
(c29dem) and the Name Utility (c29nm) behave differently than the cl2000 versions of
dem2000 and nm2000.

For more information, see Binary Utility Differences.

Differences in Type Aliasing Assumptions

• When optimizing memory accesses, c29clang assumes that pointers of different types cannot
refer to the same memory. This means that if a pointer to an object is cast to a pointer of a
different type, the compiler will treat the two pointers as not referencing the same memory.
A user access of either pointer with the assumption that they refer to the same memory is
undefined behavior. The C standard allows compilers to make a less conservative assumption
about strict type aliasing in order to better optimize code to yield better performance. This
behavior is consistent with that of other compilers, but it is different from cl2000, which
makes a more conservative assumption while sacrificing optimization.

• Users with code for which this poses problems should disable strict type aliasing by using
the -fno-strict-aliasing compiler option.

For more information, see Controlling Optimization.

2.2 Migrating cl2000 CCS Projects to c29clang

One of the challenges you may face when transitioning an existing TI C28x application in order to
build the application with the c29clang compiler is in mapping cl2000 compiler options into their
corresponding c29clang compiler options. If your TI C28x application exists as a CCS project,
then CCS can help with the mapping of cl2000 compiler options to c29clang options.

The process of migrating an cl2000 CCS project to use the c29clang compiler is relatively straight-
forward:

2.2. Migrating cl2000 CCS Projects to c29clang 32

https://software-dl.ti.com/ccs/esd/documents/C2000_c28x_migration_from_coff_to_eabi.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

1. Import the cl2000 CCS project into a CCS workspace.

2. In the Explorer window, right-click on the cl2000 project name and select Properties.

3. You will then see a Properties pop-up dialog box for the cl2000 project.

2.2. Migrating cl2000 CCS Projects to c29clang 33

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Before migrating the cl2000 project to use the c29clang compiler, you can check the cl2000 option
settings. In this example, the Optimization options show that the -O3 and -mf3 options have been
selected:

2.2. Migrating cl2000 CCS Projects to c29clang 34

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

4. Click on the General category along the left-hand side of the dialog box, then change the
Compiler from the current cl2000 compiler to the c29clang compiler (may be denoted as
“TI Clang <version string>”):

2.2. Migrating cl2000 CCS Projects to c29clang 35

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

5. Click on Save and Close at the bottom of the dialog box. CCS will create a new build
configuration with the migrated compiler options.

Unless all cl2000 compiler options were migrated flawlessly to their c29clang compiler counter-
parts, you will see a pop-up dialog box explaining that some issues were encountered when creating
the new build configuration:

You can then click Open Log and proceed to view the project.log file in the CCS source file
window.

The project.log file provides details about each of the cl2000 to c29clang option mappings that
were enacted during the migration step. The cl2000 compiler options that CCS was not able to
migrate into a functionally equivalent c29clang compiler option will be listed with a !WARNING
message in the project.log file. You will want to review the mappings listed in the project.log file
to ensure that each cl2000 compiler option was mapped to a c29clang option as you expected.

2.2. Migrating cl2000 CCS Projects to c29clang 36

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

For this tutorial we can see that the cl2000 -O3 and -mf3 options were mapped to the c29clang -Os
option:

To further ensure that the cl2000 options were properly converted to c29clang options, you can
check the build settings for the newly created TICLANG configuration of your project. Right-
click on the project name and select Properties to bring up the Properties dialog box associated
with the TICLANG configuration of your project. For this tutorial, we can see the Optimization
options for the c29clang compiler show that -Os option has been selected, as expected:

2.2. Migrating cl2000 CCS Projects to c29clang 37

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

During migration, CCS will also enable a few Clang-Tidy checks that can help you update your
TI C28x application source code so that it can be built using the c29clang compiler. To view or
modify the enabled Clang-Tidy checks, click on Clang-Tidy in the Properties dialog:

2.2. Migrating cl2000 CCS Projects to c29clang 38

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

For more information about Clang-Tidy and a list of the available checks, see Migrating Source
Code with Clang-Tidy.

Further details about mapping cl2000 compiler options to c29clang compiler options are provided
in the remainder of this chapter.

2.3 Migrating Command-Line Options

In this chapter of the Migration Guide, information is presented to help you map cl2000 command-
line options to an appropriate c29clang command-line option, if a mapping is available. There are
some cl2000 command-line options, like the -s interlisting options, that do not have a functional
counterpart in the c29clang compiler. Such cases are clearly indicated in the tables in this chapter.

In several of this chapter’s sub-sections, cl2000 options are shown side-by-side with one or more
functionally relevant c29clang options in table form. These tables are often accompanied by a brief
commentary discussing further details about the option mapping, including differences in behavior
between the cl2000 and c29clang compiler with regards to the options under consideration.

Please note that while this chapter tries to account for all the options provided by the cl2000
compiler, it does not list all the c29clang command-line options that are available. If you cannot
find a c29clang option that you are looking for in this chapter, refer to the Clang Compiler User’s

2.3. Migrating Command-Line Options 39

https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Manual for additional command-line options.

2.3.1 Managing Compiler Build Steps

By default, the c29clang compiler performs the following steps:

1. Preprocess the C/C++ source file

2. Compile the C/C++ source file(s) into temporary object file(s)

3. Automatically call the linker to produce an executable image

The following command-line options control the build-process steps performed by c29clang.

cl2000 Option (and alias) c29clang Option
--compile_only (-c) -c

Preprocess and compile source files, but do not link object files. The output is one
object file for each source file.

cl2000 Option (and alias) c29clang Option
--preproc_only (-ppo) -E

Run only the preprocessor. The cl2000 compiler saves the preprocessed output in a
.pp file, but the preprocessed output from c29clang is streamed to stdout.

cl2000 Option (and alias) c29clang Option
--skip_assembler (-n) -S

Halt compilation after code generation. Both the cl2000 and c29clang compilers halt
after processing a C/C++ source file and before assembling the generated code into an
object file. After halting, an assembly source file containing the generated code will
be present in the current working directory. For the cl2000 compiler, the default file
extension for a compiler generated assembly file is ‘.asm’. For the c29clang compiler,
the file extension for a compiler generated assembly file is ‘.s’.

cl2000 Option (and alias) c29clang Option
--run_linker (-z) linker is invoked by default

The cl2000 compiler does not run the linker unless you use the --run_linker (-z) op-
tion. By default, the c29clang compiler automatically invokes the linker after compil-
ing source files into object files. To see details about what command is used by the
c29clang compiler to invoke the linker, you can specify the ‘-v’ option on the c29clang
command- line.

You can prevent c29clang from running the linker using one of these options:

2.3. Migrating Command-Line Options 40

https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The -S option stops the compiler after generating an assembly file for each C/C++
source file on the command line.

• The -c option stops the compiler after generating an object file for each C/C++
source.

cl2000 Option (and
alias)

c29clang Option

-z <linker options> -Xlinker <linker option>
-Wl,<comma-separated list of linker options>

Any options specified after the -z option using cl2000 are passed to the linker.

To pass options to the linker from the c29clang command-line, use either -Xlinker or
-Wl. The c29clang compiler inserts these options into the list of options used when
the linker is invoked after the compilation step. The -Xlinker option can be used to
specify a single linker option (with no intervening spaces). The -Wl option accepts a
comma-separated list of linker options.

Note that the --rom_model (-c) linker option, which is the default for cl2000, is not
set by default by the c29clang compiler when running the linker. Therefore, either the
-rom_model (-c) or --ram_model (-cr) option must be passed to the linker using either
-Xlinker or -Wl on the c29clang command line (or specified in the linker command
file).

cl2000 Option (and alias) c29clang Option
--help (-h) -help (-h)

Display list of command-line options available.

2.3.2 Specifying the Compilation Target

The following command-line options specify the device being used and other characteristics about
the hardware environment that the compiler should assume during compilation. These options
determine which instruction set is used by the compiler and whether or not the compiler can assume
the availability of floating-point hardware.

cl2000 Option (and alias) c29clang Option
--silicon_version=28 (-v28) -mcpu=<processor variant>

The cl2000 compiler supports only the “28” value for the --silicon_version command-
line option. For the c29clang compiler, use the -mcpu=c29.c0 option, which is also
the default.

2.3. Migrating Command-Line Options 41

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

cl2000 Option c29clang Option
--float_support=<float hardware ID> -mfpu=<float hardware ID>

The cl2000 compiler uses the --float_support option to indicate whether floating-point hardware is
available and if it is available, which floating-point hardware it is.

Native support for 32-bit floating-point operations is always provided for C29x. Optionally, you
can also enable 64-bit hardware instructions for floating-point operations using the -mfpu option,
which can have either of the following settings:

• -mfpu=none - Use native 32-bit floating-point hardware operations, but emulate 64-bit
floating-point operations in software.

• -mfpu=f64 - Use native 32-bit and 64-bit floating-point hardware operations.

For additional information about options that can be used to manage compiler behavior with respect
to floating-point support, please see Managing Floating Point Support.

cl2000 Option (and alias) c29clang Option
--abi={coffabi|eabi} only EABI is supported

The COFF ABI output format, which is supported by the proprietary TI C28x com-
piler, is not supported for TI C29x targets. The C29x Embedded Application Binary
Interface (EABI) is always used.

cl2000 Option (and alias) c29clang Option
--cla_support Not supported

The TI C29x CPU provides improved processing performance, so separate hardware
accelerators are not needed. See Migrating CLA Code for information about migrating
C code that was intended for use with the CLA compiler.

cl2000 Option (and alias) c29clang Option
--idiv_support Not supported

The TI C29x CPU provides improved processing performance, so separate hardware
accelerators are not needed.

cl2000 Option (and alias) c29clang Option
--tmu_support Not supported

The TI C29x CPU provides improved processing performance, so separate hardware
accelerators are not needed.

2.3. Migrating Command-Line Options 42

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

cl2000 Option (and alias) c29clang Option
--vcu_support Not supported

The TI C29x CPU provides improved processing performance, so separate hardware
accelerators are not needed.

cl2000 Option (and alias) c29clang Option
--lfu_reference_elf=path Not supported
-lfu_default[=none | preserve] Not supported

Live Firmware Updates are not currently supported for TI C29x.

2.3.3 Specifying Source Language and Specific Language Character-
istics

The following command-line options specify the language standards the compiler should expect
C/C++ source code to comply with and also what assumptions to make regarding particular data
types.

cl2000 Option c29clang Option
--c89
--c99
--c11

-std=<C standard identification>

The c29clang -std option can be used to instruct the compiler to process C files in
accordance with the indicated ANSI/ISO C language standard. For the c29clang com-
piler, the available -std option arguments for C are:

• c89, c90, iso9899:1990 (ISO C 1990)

• c99, c9x, iso9899:1999 (ISO C 1999)

• c11, c1x, iso9899:2011 (ISO C 2011)

• c17, c18, iso9899:2017 (ISO C 2017)

• iso9899:199409 (ISO C 1990 with amendment 1)

• gnu89, gnu90 (ISO C 1990 with GNU extensions)

• gnu99, gnu9x (ISO C 1999 with GNU extensions)

• gnu11, gnu1x (ISO C 2011 with GNU extensions)

• gnu17, gnu18 (ISO C 2017 with GNU extensions)

If no -std option is specified when compiling a C source file, gnu17 is assumed by
default.

2.3. Migrating Command-Line Options 43

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

By default, source files with a ‘.c’ extension are interpreted as C source files. The -x
c option can be specified on the command-line to force a source file that does not have
a ‘.c’ extension to be interpreted as a C source file.

The c29clang compiler can handle a mix of C and C++ source files on a single invoca-
tion of the compiler. To interpret a file, regardless of its extension, as a C file, the -x
c option should be specified before that file on the c29clang command. All source files
that follow the -x c option are interpreted as C source files until another -x option
is encountered on the command-line.

cl2000 Option c29clang Option
--c++03
--c++11
--c++14
--c++17

-std=<C++ standard identification>

The c29clang -std option can (also) be used to instruct the compiler to process C++
source files in accordance with the indicated ANSI/ISO C++ language standard. For
the c29clang compiler, the available supported -std option arguments for C++ are:

• c++98, c++03 (IS0 C++ 1998 with amendments)

• c++11 (ISO C++ 2011 with amendments)

• c++14 (ISO C++ 2014 with amendments)

• c++17 (ISO C++ 2017 with amendments)

• gnu++98, gnu++03 (ISO C++ 1998 with amendments and GNU extensions)

• gnu++11 (ISO 2011 with amendments and GNU extensions)

• gnu++14 (ISO C++ 2014 with amendments and GNU extensions)

• gnu++17 (ISA C++ 2017 with amendments and GNU extensions)

If no -std option is specified when compiling a C++ source file, gnu++17 is assumed
by default.

By default, source files with a ‘.cpp’ extension are interpreted as C++ source files. The
-x c++ option can be specified on the command-line to force a source file that does
not have a ‘.cpp’ extension to be interpreted as a C++ source file.

The c29clang compiler can handle a mix of C and C++ source files on a single invo-
cation of the compiler. To interpret a file, regardless of its extension, as a C++ file,
the -x c++ option should be specified before that file on the c29clang command. All
source files that follow the -x c++ option are interpreted as C++ source files until
another -x option is encountered on the command-line.

Note: C++ support is based on a library that is focused on support for C++17. If you specify an

2.3. Migrating Command-Line Options 44

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

earlier version of the C++ standard, it is not guaranteed that features that were not required by that
standard will be unsupported.

cl2000 Option (and alias) c29clang Option
--cpp_default (-fg) -x c++

--language=c++

The cl2000 compiler provides a --cpp_default option that tells the compiler to process
all source files with a ‘.c’ extension as C++ source files.

The c29clang compiler’s -x c++ option provides similar support, but whereas
cl2000’s -fg option applies only to source files with ‘.c’ extensions, the c29clang com-
piler’s -x c++ option applies to any source file that is specified after the -x c++
option on the c29clang command-line up until another -x option is encountered.

cl2000 Option c29clang Option
-x <language type>
--language=<language type>

The c29clang compiler’s -x or --language option provides a way to indicate how source
files that are specified after the option are to be interpreted. There are four valid option
arguments:

• c++ - source files specified after the -x c++ option are interpreted as C++ source files

• c - source files specified after the -x c option are interpreted as C source files

For example, suppose you have two source files, t1.cpp and t2.c. Assuming t2.c is C++ compatible,
one could then invoke the c29clang compiler with:

%> c29clang ... t1.cpp -x c++ t2.c t3.S ... -o t.out ...

to ensure that t2.c is interpreted as a C++ source file so that its object is compatible with t1.o.

cl2000 Option c29clang Option
--cla_background_task not supported
--cla_default not supported
--cla_signed_compare_workaround not supported

The cl2000 compiler supports these options to control the behavior of the CLA com-
piler.

The Control Law Accelerator (CLA) is not needed when using TI C29x devices be-
cause of their improved performance over TI C28x devices. For this reason, these
options are not supported by the c29clang compiler.

See Migrating CLA Code for further information.

2.3. Migrating Command-Line Options 45

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

cl2000 Option c29clang Option
--exceptions not supported
--extern_c_can_throw not supported

The c29clang compiler currently does not support C++ exception handling and the
-fexceptions compiler option.

cl2000 Option (and alias) c29clang Option
--gen_cross_reference_listing (-px) not supported

The cl2000 compiler supports the -px option, which causes the compiler to emit a .crl
file, which contains a listing of where symbols are referenced and defined.

The c29clang compiler does not support an analogous option.

cl2000 Option c29clang Option
--gen_preprocessor_listing not supported

The cl2000 compiler supports the --gen_preprocessor_listing option, which causes the
compiler to emit a listing of the pre-processing output to an .rl file.

The c29clang compiler does not support an analogous option.

cl2000 Option c29clang Option
--pending_instantiations=#

The cl2000 compiler supports these options to specify the number of template instan-
tiations that may be in progress at any given time.

cl2000 Option (and alias) c29clang Option
--relaxed_ansi (-pr) -std=gnu<90|99|11|17>

The cl2000 compiler supports GNU extensions to the C language if its -pr option is
selected. To enable support of GNU extensions in the c29clang compiler, use one of
the GNU settings (gnu90, gnu99, gnu11, gnu17) as the argument to c29clang’s -std
option.

cl2000 Option c29clang Option
--rtti -fno-rtti (default)

-frtti

The cl2000 compiler does not allow the inclusion of Run-Time Type Information
(RTTI) to be disabled. RTTI is included if a C++ application may need to refer to
a class’ type_info object.

2.3. Migrating Command-Line Options 46

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The c29clang compiler has RTTI support disabled by default. Use the -frtti option to
allow C++ RTTI to be generated.

cl2000 Option (and alias) c29clang Option
--strict_ansi (-ps) -std=c<90|99|11|17>

The cl2000 compiler provides the -ps option to allow you to disable support for GNU C
extensions to the C standard. To disable support for GNU extensions in the c29clang
compiler and approximate the behavior of cl2000’s -ps option, use one of the non-
GNU language settings (c90, c99, c11, c17) as the argument to c29clang’s -std option.

All c29clang “-std=c<XX>” C language variants define the __STRICT_ANSI__ pre-
defined macro symbol.

You can combine “-std=c<XX>” with c29clang’s -pedantic option, which causes
warnings to be issued for any conflicts with ISO C and ISO C++. The c29clang com-
piler’s -pedantic-errors option causes errors instead of warnings to be issued for such
conflicts.

2.3.4 Controlling Optimization

The following command-line options control optimization behavior.

cl2000 Option (and alias) c29clang Option
--opt_level=<off|0|1|2|3> (-
O<off|0|1|2|3>

-O<0|1|2|3|fast|g|s|z>

--opt_level=4 (-O4) Not available; link-time
optimization not supported

The cl2000 compiler supports several levels of optimization beginning with --opt_level=off, or “no
optimization,” up to -O4, which enables cl2000’s link time program optimization capability.

The c29clang compiler supports a variety of different optimization options, including:

• -O0 - no optimization; generates code that is debug-friendly.

• -O1 or -O - restricted optimizations, providing a good trade-off between code size and de-
buggability.

• -O2 - most optimizations enabled with an eye towards preserving a reasonable compile-time.

• -O3 - in addition to optimizations available at -O2, -O3 enables optimizations that take longer
to perform, trading an increase in compile-time for potential performance improvements.

2.3. Migrating Command-Line Options 47

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• -Ofast - enables all optimizations from -O3 along with other aggressive optimizations that
may realize additional performance gains, but also may violate strict compliance with lan-
guage standards.

• -Og - enables most optimizations from -O1, but may disable some optimizations to improve
debuggability.

• -Os - enables all optimizations from -O2 plus some additional optimizations intended to
reduce code size while mitigating negative effects on performance.

• -Oz - enables all optimizations from -Os plus additional optimizations to further reduce code
size with the risk of sacrificing performance.

The ability to debug a program becomes more challenging at higher levels of optimization.

cl2000 Option (and alias) c29clang Option
--opt_for_speed=<0|1|2|3|4|5>
(-mf=<0|1|2|3|4|5>)

-O<z|s|3|fast>

--opt_level=4 (-O4)
--opt_for_speed=<0|1|2|3|4|5>
(-mf=<0|1|2|3|4|5>)

Not available; link-time
optimization not supported

The cl2000 compiler supports an --opt_for_speed option, which allows you to select a code size
versus performance “trade-off” level, n, which informs the compiler about how aggressive it can be
when optimizing for improved performance at the risk of increasing code size. The available values
for n range from 0, which favors optimizations geared towards reducing code size with a high risk
of degrading performance, to 5, which favors optimizations intended to improve performance with
a high risk of increasing code size.

Some of the c29clang compiler’s optimization options roughly correspond to the intended code size
vs. performance trade-off that is embodied in the use of cl2000’s --opt_for_speed and --opt_level
options. The following is an approximate mapping:

• -Oz - resembles using cl2000’s --opt_for_speed=0-1 in combination with --opt_level=2-3
since it favors code size reducing optimizations even if performance is degraded.

• -Os - resembles using cl2000’s --opt_for_speed=2-3 in combination with --opt_level=2-3
since it favors code size reducing optimizations, but tries to preserve performance while
doing so.

• -O3 - resembles using cl2000’s --opt_for_speed=3-4 in combination with --opt_level=2-3
since it favors optimizations intended for improving performance, but tries to avoid increases
in code size while doing so.

• -Ofast - resembles using cl2000’s --opt_for_speed=4-5 in combination with --opt_level=2-3
since it favors optimizations intended for improving performance even if code size increases
(Caution: the use of -Ofast may violate strict compliance with language standards).

2.3. Migrating Command-Line Options 48

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

cl2000 Option (and alias) c29clang Option
--opt_for_space=<0|1|2|3> -O<1|s|z>

The cl2000 compiler supports an --opt_for_space option, which is an older option for
controlling code space.

The c29clang compiler reduces code size to different degrees when you use the -O,
-Os, and -Oz options.

cl2000 Option c29clang Option
--sat_reassoc=off (default) --sat_reassoc=on not supported

The cl2000 compiler provides a --sat_reassoc option to enable or disable reassociation
of saturating arithmetic. It is off by default.

The c29clang compiler does not support an analogous option.

cl2000 Option (and alias) c29clang Option
--auto_inline=<size> (-oi<size> -finline-limit=<size>

The cl2000 compiler provides the --auto_inline option, which, when used in combina-
tion with --opt_level=3, allows you to specify a size threshold for automatic inlining
of functions that are not explicitly declared as “inline.”

The c29clang compiler supports an analogous option, -finline-limit, which allows you
to specify a size threshold for functions that can be inlined, where <size> is the number
of pseudo instructions.

The c29clang compiler also supports the always_inline (“__at-
tribute__((always_inline))”) and noinline (“__attribute__((noinline))”) function
attributes that provide a means for you to control inlining on a function-specific
basis. The c29clang compiler’s -fno-inline-functions option can be used to disable all
inlining.

cl2000 Option (and alias) c29clang Option
--disable_inlining -fno-inline-functions

The cl2000 compiler provides the --disable_inlining option, which allows you prevent
any inlining from being performed.

To prevent inlining with the c29clang compiler, use the -fno-inline-functions option.

cl2000 Option (and alias) c29clang Option
--call_assumptions=<n> (-op<n>) not supported

2.3. Migrating Command-Line Options 49

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The cl2000 compiler provides the --call_assumptions option, which, when used in
combination with --program_level_compile and --opt_level=3, allows you to provide
additional information to the compiler about whether the functions defined in a given
module are called from other modules and whether global variable definitions in a
given module are referenced from other modules.

cl2000 Option (and
alias)

c29clang Option

--
gen_opt_info=<0|1|2>
(-on=<0|1|2>

-fsave-optimization-record
-foptimization-record-file=<filename>
-Rpass=<expr>
-Rpass-missed=<expr>
-Rpass-analysis=<expr>

The cl2000 compiler provides the --gen_opt_info option, which, when used in combi-
nation with --opt_level=3, causes the compiler to emit a human-readable optimization
information file. The higher the value of the argument specified, the more verbose the
optimization information provided will be.

The c29clang compiler does not provide an option that matches the exact behavior
of cl2000’s --gen_opt_info, but c29clang reports optimization information via the fol-
lowing available options:

• -fsave-optimization-record - writes optimization remarks to a YAML file

• -foptimization-record-file - identifies the name of the YAML file written when
using the -fsave-optimization-record option

• -Rpass - given a regular expression string argument to identify the optimization
pass(es) that you want information about, the -Rpass option writes informative
remarks to stdout during compilation about when a specified optimization pass
makes a transformation

• -Rpass-missed - given a regular expression string argument to identify the op-
timization pass(es) that you want information about, the -Rpass-missed option
writes informative remarks to stdout during compilation about when a specified
optimization pass fails to make a transformation

• -Rpass-analysis - given a regular expression string argument to identify the op-
timization pass(es) that you want information about, the -Rpass-analysis option
writes informative remarks to stdout during compilation about why a specified
optimization pass does or doesn’t perform a transformation

cl2000 Option (and alias) c29clang Option
--optimizer_interlist (-os) not supported

The cl2000 compiler provides the --optimizer_interlist option, which tells the compiler

2.3. Migrating Command-Line Options 50

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

to keep an compiler-generated intermediate assembly source file that is annotated with
interlisted comments corresponding C/C++ source code optimizations to the assembly
code generated by the compiler.

The c29clang compiler does not provide an analogous option. However, you can use
c29clang’s -Rpass, -Rpass-missed, and -Rpass-analysis options to gain more insight
into which optimizations were performed and potential optimizations that were ruled
out during compilation.

cl2000 Option (and alias) c29clang Option
--program_level_compile (-pm) not supported

The cl2000 compiler’s --program_level_compile option combines source files into a
single compilation unit to enable the compiler’s program-level optimizations.

The c29clang compiler does not support link-time optimization.

cl2000 Option (and alias) c29clang Option
--aliased_variables (-ma) not supported

The cl2000 compiler’s -aliased_variables option instructs the compiler to assume that
called functions are capable of creating hidden aliases. As a result, the compiler must
assume worst-case aliasing. For example, the optimizer cannot assume that it knows
the value stored in a local object if that local object might be accessed via a separate
pointer.

The c29clang compiler does not provide an analogous option. However, c29clang’s
-fstrict-aliasing and -fno-strict-aliasing options can be used to enable or disable op-
timizations based on type based alias analysis, but they don’t allow the compiler to
violate the aliasing rules of C. Some aliasing behavior can also be controlled via
c29clang’s optimization options.

cl2000 Option (and alias) c29clang Option
--isr_save_vcu_regs={on|off} not supported

The cl2000 compiler provides the --isr_save_vcu_regs compiler option, which generates instruc-
tions to save and restore VCU registers using the stack when interrupt service routines occur. This
allows VCU code to be re-entrant. If an ISR interrupts a VCU computation, it will not impact
results if this option is used.

The c29clang compiler does not provide an analogous option, because C29x devices do not contain
VCU registers.

2.3. Migrating Command-Line Options 51

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

2.3.5 Managing Floating Point Support

Assuming that a floating-point ABI has been selected with the -mfloat-abi option and, if floating-
point hardware is available, it has been made known to the compiler via the -mfpu option, then the
following command-line options can be used to further refine the compiler’s assumptions about
what floating-point characteristics are enabled.

cl2000 Option c29clang Option
--float_operations_allowed=<all|none|32|64> not supported

The cl2000 compiler supports a --float_operations_allowed option, which allows
you to indicate to the compiler the maximum floating-point precision that can be
assumed for a floating-point type data object. For example, you can specify ‘--
float_operations_allowed=32’, causing the cl2000 compiler to flag an error if an at-
tempt is made to use a floating-point type whose size is greater than 32-bits.

The c29clang compiler does not provide a mechanism to restrict the use of floating-
point types by type size. The c29clang compiler assumes that all legal floating-point
types are supported. This matches the cl2000 compiler’s default behavior (e.g. --
float_operations_allowed=all).

cl2000 Option c29clang Option
--fp_mode=<relaxed|strict> -ffp-model=<precise|strict|fast>

-ffast-math
-fno-fast-math
-ffp_contract=[on|off]
-frounding-math
-fno-rounding-math
-ffp-exception-behavior=<ignore>

By default, the cl2000 compiler supports ‘strict’ conformance to the IEEE-754
floating-point standard, but you can also use the ‘--fp_mode=relaxed’ option to al-
low the compiler to be more aggressive about using floating-point hardware instruc-
tions, allow floating-point arithmetic reassociation, and aggressively convert double-
precision floating-point terms in an expression to single-precision when the result type
is single-precision.

The c29clang compiler provides an ‘-ffp-model’ option that allows you to instruct the
compiler to assume a general set of rules for generating code that implements floating-
point math. Each of the available arguments to the ‘-ffp-model’ option will effect the
settings for other, single-purpose, floating-point options.

The available arguments to the -ffp-model option are:

• precise - If no ‘-ffp-model’ option is explicitly specified on the c29clang
command-line, then the compiler will assume the ‘precise’ floating-point model

2.3. Migrating Command-Line Options 52

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

by default.

‘-ffp-model=precise’ is the recommended c29clang compiler option to be used
in place of cl2000’s ‘--fp_mode=strict’ option.

When the ‘precise’ floating-point model is in effect, all optimizations that are not
value-safe on floating-point data are disabled. However, if the indicated C29x
processor’s floating-point unit (FPU) supports a fused multiply and add (FMA)
instruction, then the compiler will assume that any floating-point contraction op-
timizations are safe (-ffp-contract=on).

• strict - Specifying ‘strict’ as the argument to the -ffp-model option enables
floating-point rounding (-frounding-math). However, floating-point contraction
optimizations are disabled (-ffp-contract=off). Also, no ‘fast-math’ optimiza-
tions are enabled (-fno-fast-math).

• fast - Specifying ‘fast’ as the argument to the -ffp_model option will enable
all ‘fast math’ optimizations (-ffast-math) and it will enable more aggressive
floating-point contraction optimizations (-fp-contract=fast).

The c29clang ‘-ffp-model=fast’ option is the most functionally similar to the
cl2000 ‘--fp_mode=relaxed’ option among the available arguments to the ‘-ffp-
model’ option.

For more detailed information about the separate, single purpose floating-point options
mentioned here, please see the Floating-Point Arithmetic section of the Optimization
Options chapter.

cl2000 Option c29clang Option
--fp_reassoc not supported

The c29clang compiler does not provide an option that controls whether reassociation
is allowed in floating-point operations. Instead, the c29clang’s -ffp-mode=std option
can be used to disallow reassociation (the default), and c29clang’s -ffp-mode=fast op-
tion can be used to allow reassociation.

cl2000 Option c29clang Option
--fp_single_precision_constant -cl-single-precision-constant

The cl2000 compiler supports a --fp_single_precision_constant option, which causes all unsuffixed
floating-point constants to be treated as single-precision values instead of as double-precision con-
stants.

The -cl-single-precision-constant option can be used with the c29clang compiler to treat double
precision floating-point constants as single precision constants.

2.3. Migrating Command-Line Options 53

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

2.3.6 Controlling the Runtime Model

The following options can be used to dictate compiler behavior with regards to how code and data
is organized in compiler generated object files, generating code to monitor stack usage at run-time,
constraints on pointer alignment when generating code to access memory, and enabling a link-time
dead-code removal optimization.

cl2000 Option c29clang Option
--gen_func_subsections=on (default)
--gen_func_subsections=off

-ffunction-sections (default)
-fno-function-sections

The cl2000 compiler’s --gen_func_subsections option, which is on by default, places
each function definition into a separate subsection.

The analogous c29clang option is -ffunction-sections, also on by default, which gener-
ates each function definition into its own section. You can further control section place-
ment with the section function attribute, __attribute__((section(“<section name>”))),
which can be added to the definition of a function to place it in a particular section.

Placing every function definition in its own section will enable the linker to remove
unreferenced functions from the linked output file. As this can prove to have a signif-
icant impact on reducing the code size of a program without any impact on run-time
performance, it is recommended that the default setting of -ffunction-sections be left
intact.

cl2000 Option c29clang Option
--gen_data_subsections=on (default)
--gen_data_subsections=off

-fdata-sections (default)
-fno-data-sections

The cl2000 compiler’s --gen_data_subsections option, which is on by default, places
aggregate data (arrays, structs, and unions) into separate subsections.

The analogous c29clang option is -fdata-sections, also on by default, which gener-
ates a separate section for each variable, including non-aggregate variables. You
can further control section placement with the section variable attribute, __at-
tribute__((section(“<section name>”))), which can be added to the definition of a par-
ticular data object to place it in a particular section.

Placing every variable definition in its own section will enable the linker to remove
unreferenced data objects from the linked output file. As this can prove to have a
significant impact on reducing the amount of space allocated for variables in a program
without impacting run-time performance, it is recommended that the default setting of
-fdata-sections be left intact.

cl2000 Option (and alias) c29clang Option
--no_rpt (-mi) not supported

2.3. Migrating Command-Line Options 54

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The cl2000 provides this option to prevent the compiler from generating repeat (RPT)
instructions. By default, repeat instructions are generated for certain memcpy, divi-
sion, and multiply-accumulate operations. However, repeat instructions are not inter-
ruptible.

The c29clang compiler does not provide an analogous option.

cl2000 Option c29clang Option
--printf_support=<nofloat|full|minimal> automatic

The cl2000’s --printf_support option allows you to limit the printf and scanf support
required in the standard C runtime library. For example, if the you know that an
application will never pass a floating-point value to be formatted by a printf- or scanf-
family function, then using the --printf_support=nofloat option instructs the compiler
to use a customized version of the printf- or scanf-family C/C++ runtime function that
does not support floating-point and is therefore much smaller than a printf- or scanf-
family function that provides full support for floating-point.

The c29clang compiler tools embed metadata in compiler-generated object code to
help the linker automatically determine whether a smaller implementation of the printf
support function can be used in the link step of an application build.

See Printf Support Optimization (no option) for additional information about this be-
havior.

cl2000 Option (and alias) c29clang Option
--protect_volatile (-mv) not supported

The cl2000 provides this option to enable volatile reference protection. Pipeline con-
flicts may occur between non-local variables that have been declared volatile. A con-
flict can occur between a write to one volatile variable that is followed by a read from
a different volatile variable. The –protect_volatile option allows instructions to be
placed between volatile references to ensure the write occurs before the read.

The c29clang compiler does not provide an analogous option.

cl2000 Option c29clang Option
--ramfunc=off (default)
--ramfunc=on

not supported

The cl2000 compiler’s --ramfunc option, when it is on (default behavior is off), in-
structs the compiler to generate the code for the functions defined in a compilation
unit into a special “.TI.ramfunc” section, which can then be placed in RAM memory
at link time.

The c29clang compiler does not provide an analogous option. However, the code
generated for a function can be directed into a specific section using a section function

2.3. Migrating Command-Line Options 55

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

attribute, such as __attribute__((section(“<section name>”))), attached to the function
definition in the C/C++ source file where it is defined.

cl2000 Option (and alias) c29clang Option
--rpt_threshold=k not supported

The cl2000 provides this option to set a maximum value on the number of times gen-
erated repeat (RPT) loops, which are not interruptible, may iterate.

The c29clang compiler does not provide an analogous option.

2.3.7 Defining the Include File Directory Search Path

In C/C++, an #include preprocessor directive tells the compiler to read C/C++ source statements
from another file. When specifying the file, you can enclose the filename in double quotes or in
angle brackets. The filename can be a complete pathname, a relative pathname, or a filename with
no path information.

When searching for the specified include file, the compiler will incorporate the notion of an include
file directory search path into the search.

cl2000 Include File Directory Search Path

The cl2000 compiler supports the notion of an include file search path directory. It can make use
of environment variables to help extend the include file directory search path.

Using the cl2000 compiler, the include file directory search path is defined in one of two ways:

• If you enclose the file specification in double quotes (” “), the compiler searches for the file
in the following directories in this order:

1. The directory of the file that contains the #include preprocessor directive

2. Directories named in one or more --include_path options in the order in which the
options are specified in the compiler invocation

3. Directories listed in the C2000_C_DIR environment variable definition

• If you enclose the file specification in angle brackets (< >), the compiler searches for the file
in the following directories in this order:

1. Directories named in one or more --include_file options in the order in which the op-
tions are specified in the compiler invocation

2. Directories listed in the C2000_C_DIR environment variable definition

By default, the cl2000 compiler begins with an empty include file directory search path. The
recommended environment variable that serves as a sort of baseline definition of the include file

2.3. Migrating Command-Line Options 56

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

directory search path is C2000_C_DIR, but the cl2000 compiler also honors the cl2000 environ-
ment variable C_DIR. In addition, the cl2000 compiler allows the C2000_C_OPTION environment
variable to define a set of compiler options to be used as if they were on the command line.

c29clang Include File Directory Search Path

The c29clang compiler also has a notion of an include file search path directory and it can also make
use of environment variables to help extend the include file directory search path. However, the
c29clang’s definition of the include file directory search path incorporates a builtin clang include
file directory and standard system directories that contain C and C++ runtime header files.

When using the c29clang compiler to process an #include preprocessor directive, the include file
directory search path is defined in one of two ways:

• If you enclose the file specification in double quotes (” “), the compiler searches for the file
in the following directories in this order:

1. The directory of the file that contains the #include preprocessor directive

2. Directories named in one or more -I options in the order in which the options are
specified in the compiler invocation

3. Directories listed in an applicable environment variable definition

4. C++ runtime header file directory (if compiling a C++ source file)

5. Compiler builtin include directory

6. Standard system include directories

• If you enclose the file specification in angle brackets (< >), the compiler searches for the file
in the following directories in this order:

1. Directories named in one or more -I options in the order in which the options are
specified in the compiler invocation

2. Directories listed in an applicable environment variable definition

3. C++ runtime header file directory (if compiling a C++ source file)

4. Compiler builtin include directory

5. Standard system include directories

By default, the c29clang compiler populates the include file directory search path with the builtin
include directory and the standard system include directories that are set up when the c29clang
compiler tools are installed. For example, the following include file directories are installed with
the c29clang 1.0.0-alpha.1 compiler tools:

• C++ runtime header file directory: <install area>/lib/generic/include/c++/v1

• Compiler builtin include directory: <install area>/lib/clang/10.0.0/include

2.3. Migrating Command-Line Options 57

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Standard system include directory: <install area>/lib/generic/include/c

The following command-line options are available in the c29clang compiler to manage whether or
not these installed include directories are incorporated into a given compilation:

• -nostdinc - do not incorporate the C++ runtime header file directory, the compiler builtin
include directory, or the standard system include directory in the default definition of the
include file directory search path

• -nostdlibinc - do not incorporate the C++ runtime header file directory or the standard sys-
tem include directory into the include file directory search path, but do incorporate the com-
piler’s builtin include directory

• -nobuiltininc - do not incorporate the compiler’s builtin include directory into the include
file directory search path, but do incorporate the C++ runtime header file directory and the
standard system include directory

You may also control the include file directory search path through definitions of the CPATH,
C_INCLUDE_PATH (C source files only), or CPLUS_INCLUDE_PATH (C++ source files only)
environment variables.

The C2000_C_DIR, C_DIR, and C2000_C_OPTION environment variables are not supported by
the c29clang compiler, and should be migrated as appropriate.

Adding to the Include File Directory Search Paths with Command-Line Options

As indicated above, the include file directory search path can be controlled using the compiler
command-line.

cl2000 Option (and alias) c29clang Option
--include_path=<dir>
(-I=<dir>)
(-i=<dir>)

-I

When using the cl2000 compiler, the --include_path option allows a user to specify
a semi-colon separated list of one or more directory paths in which the compiler will
search for an include file in accordance with the rules indicated in the above “cl2000
Include File Directory Search Path” section.

Likewise, using the c29clang compiler, the -I option allows a user to specify a semi-
colon separated list of one or more directory paths in which the compiler will search for
an include file in accordance with the rules indicated in the above “c29clang Include
File Directory Search Path” section.

Also see migration of the --preinclude option in Specifying Source Files and File Extensions.

2.3. Migrating Command-Line Options 58

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

2.3.8 Defining the Object/Library File Directory Search Path

At link time, a collection of object files, that either have been freshly generated by the compiler or
reside in an existing object library, are combined together to form a linked output file. In typical
cases, the linked output file is a static executable, but the linker is also capable of generating a
partially linked output file in which relocation entries are preserved and which may be combined
with other object files in a subsequent link.

Object/Library File Directory Search Path

Within a given linker invocation, an object or library file can be specified explicitly or with a ‘-l’
prefix. Such a specification can be indicated on a command-line invocation of the linker or within
a linker command file that is incorporated into a link. If a ‘-l’ prefix is used in an object or library
file specification, then the linker will locate the specified file or library using an object/library file
directory search path.

The concept is similar to the notion of an include file directory search path in the case where the
include file is enclosed in angle brackets (< >).

Specifically, when a ‘-l’ prefix is indicated in an object or library file specification, the linker will
search for the specified file in the following locations in this order:

1. Directories named in -L compiler options in the order in which the options are specified in
the c29clang invocation.

2. Standard system lib directory.

3. Directories named in -Xlinker --search_path options in the order in which the options are
specified in the c29clang invocation.

4. Directories listed in the C2000_C_DIR environment variable definition.

By default, the cl2000 compiler begins with an empty object/library file directory search path. The
recommended environment variable that serves as a sort of baseline definition of the object/library
file directory search path is C2000_C_DIR, but the cl2000 compiler also honors the cl2000 en-
vironment variable C_DIR. In addition, the cl2000 compiler allows the C2000_C_OPTION envi-
ronment variable to define a set of compiler options to be used as if they were on the command
line.

Unlike the cl2000 compiler, the c29clang compiler populates the object/library file directory search
path with the standard system lib directory, <install area>/lib/generic, that is set up when the
c29clang compiler tools are installed.

You may also control the object/library file directory search path using the C2000_C_DIR environ-
ment variable when the linker is invoked with either the cl2000 or c29clang compiler. The linker
also honors the cl2000 environment variable C_DIR. Use of the C2000_C_OPTION environment
variable should be migrated to command line options and environment variables that are supported
by the c29clang compiler.

2.3. Migrating Command-Line Options 59

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Please note that while the c29lnk linker that is provided with the c29clang compiler tools is iden-
tical to the lnk linker that is provided with the cl2000 compiler tools with respect to these environ-
ment variables, the two linker executables are not functionally equivalent in other ways. Some of
the significant differences between the executables are discussed in the Main Differences Between
cl2000 and c29clang chapter.

Adding to the Object/Library File Directory Search Path with Compiler Command-
Line Options

As indicated above, the definition of the object/library file directory search path can be controlled
using the compiler command-line.

cl2000 Option (and alias) c29clang Option
--include_path=<dir list>
(-I=<dir list>)
(-i=<dir list>)

-L <dir>

When using the cl2000 compiler, the --include_path option allows a user to specify
a semi-colon separated list of one or more directory paths that is converted into a --
search_path linker option when the cl2000 compiler is made to invoke the linker. The
linker will then follow the rules indicated in the above “Object/Library File Directory
Search Path” section when searching for an object or library file that is specified as a
linker option on the cl2000 compiler command-line or within a linker command file
using a ‘-l’ prefix.

The c29clang compiler’s -L option is functionally equivalent to the cl2000 compiler’s
--include_path option except that the -L option allows only a single directory path to be
specified for each -L option on the c29clang command-line. However, you can specify
more than one -L option on the c29clang command-line to add additional directories
to the object/library file directory search path. When multiple -L options are specified,
they will be translated into multiple --search_path linker options in the order in which
they are specified.

You can also pass explicit --search_path options directly to the linker from the compiler command-
line.

cl2000 Option c29clang Option
-z . . . --search_path=<dir list> -Xlinker --search_path=<dir> -Wl,–search_path,<dir>

When the linker is invoked from the cl2000 compiler command-line, all options that
are specified after the -z (or --run_linker) option are passed directly to the linker. In
this manner, a user can add one or more directories to the object/library file directory
search path.

When invoking the linker from the c29clang compiler command-line, options that are

2.3. Migrating Command-Line Options 60

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

intended as input to the linker invocation should be preceded by -Xlinker. You may
also pass an option to the linker using the -Wl, option mechanism. For example, if
you have a directory called “myobj” under the work directory that you are invoking
the compiler from, you can append the ./myobj sub-directory to the object/ library file
directory search path with the following option:

-Wl,–search_path,./myobj

As is the case with the c29clang compiler’s -L option, only one directory path may
be specified to the --search_path option when passed to the linker from the c29clang
compiler command-line.

2.3.9 Specifying Temp Directories

The cl2000 compiler provides several options that allow you to control where a temporary file is
written during a given compilation. However, the c29clang compiler does not provide an analogous
capability for controlling the location of the temporary files that are generated during a compilation.

In most, if not all, cases, the c29clang compiler places temporary files in the current working
directory (that is, whichever directory the c29clang executable was invoked from). Ordinarily,
temporary files are removed when they are no longer needed by the c29clang compiler. However,
like the cl2000 compiler, the c29clang compiler does support command-line options that keep one
or more of the temporary files that are generated during a given compilation.

cl2000 Option (and alias) c29clang Option
--abs_directory=<dir> (-fb) not supported

The cl2000 compiler supports an absolute listing capability (-abs), which is not pro-
vided in the c29clang toolset. Thus the c29clang compiler does not provide an option
to control where an absolute listing file would be written.

cl2000 Option (and alias) c29clang Option
--asm_directory=<dir> (-fs) -S

-save-temps

The cl2000 compiler allows you to indicate where a temporary compiler-generated
assembly file should be written, but the c29clang compiler does not provide this capa-
bility. The c29clang compiler’s -S option instructs the compiler to write the compiler-
generated assembly file to the current working directory and then stop the compiler
before actually assembling the file into an object file.

The c29clang compiler’s -save-temps option keeps all temporary files generated during
compilation and linking without halting either the compiler or the linker. The typical
temporary files that are generated during compilation and linking include: an interme-
diate file (.i extension), a bitcode intermediate file (non-readable with .bc extension), a

2.3. Migrating Command-Line Options 61

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

compiler-generated assembly file (.s extension), and an object file generated from the
c29clang assembler (.o extension).

Note that the use of assembly language is discouraged for c29clang, except for as-
sembly code that is embedded in C/C++ source files via asm() statements, which are
processed inline by the c29clang integrated GNU-syntax assembler. Assembly lan-
guage source files should be rewritten in C/C++. See Migrating Assembly Language
Source Code for more information.

cl2000 Option (and alias) c29clang Option
--list_directory=<dir> (-ff) not supported

The cl2000 tools support the capability to generate an assembly listing file, which
displays the encoded object code alongside the assembly language source that was
either generated by the compiler or was provided in an assembly language source file.
The cl2000’s --list_directory option allows you to indicate where to write the assembly
listing file during the compilation.

The c29clang compiler does not provide the analogous capability to generate an as-
sembly listing file. Thus, there is no need for an option to direct where an assembly
listing file is to be written.

cl2000 Option (and alias) c29clang Option
--obj_directory=<dir> (-fr) -c

-save-temps

The cl2000 compiler allows you to indicate where a temporary assembler-generated
object file should be written, but the c29clang compiler does not provide this capa-
bility. The c29clang compiler’s -c option instructs the compiler to write the compiler-
generated object file to the current working directory and then stop the compiler before
actually linking the file into an application.

The c29clang compiler’s -save-temps option keeps all temporary files generated during
compilation and linking without halting either the compiler or the linker. The typical
temporary files that are generated during compilation and linking include: an interme-
diate file (.i extension), a bitcode intermediate file (non-readable with .bc extension), a
compiler-generated assembly file (.s extension), and an object file generated from the
c29clang assembler (.o extension).

cl2000 Option (and alias) c29clang Option
--output_file=<file> (-o) -o <file>

Both the cl2000 and c29clang compilers support a -o option, which allows you to
specify the name and location of the linked output file.

2.3. Migrating Command-Line Options 62

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

cl2000 Option c29clang Option
--pp_directory=<dir> -E

The cl2000 compiler supports generating a pre-processor file that is emitted after the
parser portion of the compiler completes processing of all pre-processing directives
(using the -ppo option, for example). The cl2000’s --pp_directory option allows you
to specify where to write the pre-processor file (.pp extension) during a given compi-
lation.

Whereas the cl2000 compiler can be made to generate a pre-processor file with a
.pp extension, the c29clang compiler supports the -E option, which writes the pre-
processor output to stdout. You can direct c29clang’s pre-processor output to a file
using the appropriate UNIX or MS-DOS “pipe” command notation.

cl2000 Option (and alias) c29clang Option
--temp_directory=<dir> (-ft) not supported

The cl2000 compiler provides the --temp_directory option to allow you to specify an
alternate directory (from the current work directory) where temporary files are to be
written.

The c29clang compiler writes temporary files to the current working directory (where
c29clang is invoked from). Normally, temporary files are automatically removed dur-
ing the compilation process when the compiler no longer needs a given temporary file,
but you can keep all of the temporary files generated during a given compilation by
specifying c29clang’s -save-temps option. The c29clang compiler does not provide an
option to write temporary files to an alternate directory.

2.3.10 Specifying Source Files and File Extensions

The following command-line options specify source file type treatment and extensions.

cl2000 Option (and alias) c29clang Option
--asm_file=<file> (-fa=<file>) -x assembler

-x assembler-with-cpp

Note: Use of assembly language is discouraged for c29clang, except for assembly
code that is embedded in C/C++ source files via asm() statements, which are processed
inline by the c29clang integrated GNU-syntax assembler. Assembly language source
files should be rewritten in C/C++. See Migrating Assembly Language Source Code
for more information.

The cl2000 compiler provides the --asm_file option to identify a specific file as an
assembly source file regardless of its extension.

2.3. Migrating Command-Line Options 63

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The c29clang compiler processes source files specified on the command line after the
‘-x <type>’ option as source files of an indicated type. For assembly source files, there
are 3 different <type> arguments that can be specified for the -x option:

• assembler - assume that source files that follow the ‘-x assembler’ option contain
GNU-style assembly source.

• assembler-with-cpp - assume that source files that follow the ‘-x assembler-
with-cpp’ option contain GNU-style assembly source that contains pre-
processing directives that must be processed before the GNU-style assembler
is invoked on the GNU-style assembly source.

Note that like other instances of the c29clang compiler’s -x option, the source file type
indicated by a given -x option will determine how source files which follow that -x
option are interpreted until another -x option that specifies a different source file type
is encountered.

cl2000 Option (and alias) c29clang Option
--c_file=<file> (-fc=<file>) -x c

The cl2000 compiler provides the --c_file option to identify a specific file as a C source
file regardless of its extension.

The c29clang compiler processes source files specified on the command line after the
‘-x c’ option as C source files. Like other instances of the c29clang compiler’s -x
option, the source file type indicated by a given -x option will determine how source
files which follow that -x option are interpreted until another -x option that specifies a
different source file type is encountered.

cl2000 Option (and alias) c29clang Option
--cpp_default (-fg) -x c++
--cpp_file=<file> (-fp=<file>)

The cl2000 compiler provides the --cpp_default file option to indicate that C files (with
‘.c’ file extension) should be interpreted as C++ source files. The cl2000 compiler also
provides the --cpp_file option to identify a specific file as a C++ source file regardless
of its extension.

The c29clang compiler processes source files specified on the command line after the
‘-x c++’ option as C source files. Like other instances of the c29clang compiler’s -x
option, the source file type indicated by a given -x option will determine how source
files which follow that -x option are interpreted until another -x option that specifies a
different source file type is encountered.

cl2000 Option (and alias) c29clang Option
--obj_file=<file> (-fo=<file>) not supported

2.3. Migrating Command-Line Options 64

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The cl2000 compiler provides the --obj_file option to identify a specific file as an
object file regardless of its extension.

The c29clang compiler does not provide an explicit option to tell the compiler to inter-
pret a given file as an object file, regardless of extension. However, provided there are
no -x options preceding an object file specification on the c29clang command- line,
the c29clang compiler will detect that the specified file contains object code and pass
the file along to be included in the link step.

Alternatively, if there are -x options on the c29clang command- line that would in-
terfere with the proper interpretation of an object files specification, you may precede
the object file specification with a -Xlinker option to indicate that the object file is
intended as input to the linker.

cl2000 Option c29clang Option
--preinclude=<file> -include <file>

The cl2000 compiler provides the --preinclude option to include a source file at the
beginning of compilation.

The c29clang compiler’s -include option provides the same functionality.

cl2000 Option (and alias) c29clang Option
--asm_extension=<ext> (-ea=<ext>) not supported

Note: Use of assembly language is discouraged for c29clang, except for assembly
code that is embedded in C/C++ source files via asm() statements, which are processed
inline by the c29clang integrated GNU-syntax assembler. Assembly language source
files should be rewritten in C/C++. See Migrating Assembly Language Source Code
for more information.

The cl2000 compiler provides the --asm_extension option to indicate that files with the
specified extension (<ext>) should be interpreted as assembly source files. In addition,
assembly files that are generated by the compiler will have the specified extension.

The c29clang compiler does not provide support for changing default file extensions.
Files with an .s (lower-case) extension are treated as GNU-style assembly source. The
.S (upper-case) extension indicates that a GNU-style assembly source file requires
preprocessing.

cl2000 Option (and alias) c29clang Option
--c_extension=<ext> (-ec=<ext>) not supported

The cl2000 compiler provides the --c_extension option to indicate that files with the
specified extension (<ext>) should be interpreted as C source files.

The c29clang compiler does not provide support for changing default file extensions.

2.3. Migrating Command-Line Options 65

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Files with the .c extension are compiled as C.

cl2000 Option (and alias) c29clang Option
--cpp_extension=<ext> (-ep=<ext>) not supported

The cl2000 compiler provides the --cpp_extension option to indicate that files with the
specified extension (<ext>) should be interpreted as C++ source files.

The c29clang compiler does not provide support for changing default file extensions.
Files with the .cpp, .cxx, .c+, .cc, and .CC extensions are compiled as C++. You may
also use the -x c++ option to indicate that any source file that follows the -x c++ option
should be interpreted as a C++ source file (until another -x option is encountered on
the c29clang command-line).

cl2000 Option (and alias) c29clang Option
--listing_extension=<ext> (-es=<ext>) not supported

The cl2000 compiler provides the --listing_extension option to indicate that assem-
bly listing files that are generated by the compiler will have the specified extension
(<ext>).

The c29clang compiler does not provide support for generating assembly listing files.
Instead you may choose to use one of the available binary utilities to display the con-
tent of an object file.

cl2000 Option (and alias) c29clang Option
--obj_extension=<ext> (-eo=<ext>) not supported

The cl2000 compiler provides the --obj_extension option to indicate that files with the
specified extension (<ext>) should be interpreted as object files. In addition, object
files that are generated by the compiler will have the specified extension.

The c29clang compiler does not provide support for changing default file extensions.
The c29clang compiler will attach a ‘.o’ extension to regular object files. The -o option
can be used to specify the name of the linked output file.

There are some exceptions to this. For example, the c29clang compiler will interpret
‘.c’ file extensions as C source files, ‘.cpp’ file extensions as C++ source files, and ‘.s’
file extensions as GNU-style assembly source files.

2.3. Migrating Command-Line Options 66

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

2.3.11 Preprocessor Options

The following command-line options control the preprocessor.

cl2000 Option (and alias) c29clang Option
--define=<name>[=<value>] (-D=<name>[=<value>]) -D<name>[=<value>]

The cl2000 compiler provides the --define option to predefine a preprocessor macro.
The macro symbol can be given a value if an assignment to the optional value argument
is included.

The c29clang compiler’s -D option provides the same functionality. The c29clang
compiler also provides the ability to append a macro parameter list in order to define
function-style macros.

For both compilers, if the assignment to value argument is omitted, then the predefined
symbol’s value is set to 1.

cl2000 Option (and alias) c29clang Option
--undefine=<name> (-U=<name>) -U<name>

The cl2000 compiler provides the --undefine option to undefine a preprocessor macro.

The c29clang compiler’s -U option provides the same functionality.

cl2000 Option (and alias) c29clang Option
--preproc_dependency[=<file>] (-ppd[=<file>]) -M

The cl2000 compiler provides the --preproc_dependency option, which produces a list
of dependency rules for use by a make utility. This list includes both system and user
header files. When this option is used, the compiler executes only the preprocessor
step of the compilation. Unless a filename is specified, the preprocessed output is sent
to a file with an extension of .pp.

The c29clang compiler’s -M option provides the same functionality. However, the
preprocessed output is sent to stdout by default.

cl2000 Option (and alias) c29clang Option
--preproc_includes[=<file>] (-ppi[=<file>]) -MM

The cl2000 compiler provides the --preproc_includes option, which produces a list
of dependency rules for use by a make utility. This list includes only user header
files. When this option is used, the compiler executes only the preprocessor step of the
compilation. Unless a filename is specified, the preprocessed output is sent to a file
with an extension of .pp.

2.3. Migrating Command-Line Options 67

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The c29clang compiler’s -MM option provides the same functionality. However, the
preprocessed output is sent to stdout by default.

cl2000 Option (and alias) c29clang Option
--preproc_only (-ppo) -E

The cl2000 compiler provides the --preproc_only option, which causes the compiler
to execute only the preprocessor step of the compilation. The preprocessed output is
sent to a file with an extension of .pp.

The c29clang compiler’s -E option provides the same functionality. However, the
preprocessed output is sent to stdout by default.

cl2000 Option (and alias) c29clang Option
--preproc_macros{=<file>] (-ppm{=<file>]) -E -dM

The cl2000 compiler provides the --preproc_macros option, which produces a list of
predefined and user-defined macros. When this option is used, the compiler executes
only the preprocessor step of the compilation. Unless a filename is specified, the
preprocessed output is sent to a file with an extension of .pp.

The c29clang compiler’s -E and -dM options used together provide the same function-
ality. However, the preprocessed output is sent to stdout by default.

cl2000 Option (and alias) c29clang Option
--preproc_with_comment (-ppc) -E -C

The cl2000 compiler provides the --preproc_with_comment option, which causes the
compiler to execute only the preprocessor step of the compilation. It keeps the com-
ments instead of discarding them as is done with the --preproc_only option. The pre-
processed output is sent to a file with an extension of .pp.

The c29clang compiler’s -E and -C options used together provide the same function-
ality. However, output is sent to stdout by default.

cl2000 Option (and alias) c29clang Option
--preproc_with_compile (-ppa) not supported

The cl2000 compiler provides the --preproc_with_compile option, which causes the
compiler to continue after executing one of the --preproc_* options that produce pre-
processor output files.

The c29clang compiler does not support continuing compilation after generating pre-
processor output with the -E option.

2.3. Migrating Command-Line Options 68

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

cl2000 Option (and alias) c29clang Option
--preproc_with_line (-ppl) -E

The cl2000 compiler provides the --preproc_with_line option, which causes the com-
piler to execute only the preprocessor step of the compilation. It adds line-control
information (#line directives) to the output. Output is sent to a file with an extension
of .pp.

The c29clang compiler’s -E option stops the compiler after the preprocessing stage.
The preprocessed source code is emitted to stdout containing line-control informa-
tion. The c29clang does not provide an option to disable the output of line-control
information in the preprocessed output.

2.3.12 Controlling Entry/Exit Hooks

The c29clang compiler tools do not support entry/exit hooks in the same way as the cl2000 com-
piler. However, c29clang does support an -finstrument-functions option, which inserts calls to
__cyg_profile_func_enter() and __cyg_profile_func_exit() at the entry and exit of each function.
This feature has not been adequately tested and may be problematic for C++ applications.

cl2000 Option c29clang Option
--entry_hook=<func> -finstrument_functions

The cl2000 compiler’s --entry_hook option allows you to specify the name of a func-
tion to be called on entry.

The c29clang compiler provides the capability to instrument functions via its -
finstrument-functions option, inserting a call to __cyg_profile_func_enter() at the en-
try of each function defined in a compilation unit. While the c29clang compiler
does not provide an option to allow you to name the entry function, the definition
of __cyg_profile_func_enter() can be customized to serve as an entry hook function.

The c29clang compiler tools package does not provide an implementation of the
__cyg_profile_func_enter(). If you specify the -finstrument_functions option on the
command-line, you will need to supply a definition of the __cyg_profile_func_enter()
function to be linked with your application.

See Function Entry/Exit Hook Options for more information about c29clang’s -
finstrument-functions option.

cl2000 Option c29clang Option
--entry_parm=<none|name|address> not supported

When using entry hook functions with the cl2000 compiler, you can pass the name or
the address of the calling function as an argument to the entry hook function.

2.3. Migrating Command-Line Options 69

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The c29clang compiler does not support an analogous capability.

cl2000 Option c29clang Option
--exit_hook=<func> -finstrument_functions

The cl2000 compiler’s --exit_hook option allows you to specify the name of a function
to be called before exiting.

The c29clang compiler provides the capability to instrument functions via its -
finstrument-functions option, inserting a call to __cyg_profile_func_exit() prior to ex-
iting from each function defined in a compilation unit. While the c29clang compiler
does not provide an option to allow you to name the entry function, the definition of
__cyg_profile_func_exit() can be customized.

The c29clang compiler tools package does not provide an implementation of the
__cyg_profile_func_exit(). If you specify the -finstrument_functions option on the
command-line, you will need to supply a definition of the __cyg_profile_func_exit()
function to be linked with your application.

See Function Entry/Exit Hook Options for more information about c29clang’s -
finstrument-functions option.

cl2000 Option c29clang Option
--exit_parm=<none|name|address> not supported

When using exit hook functions with the cl2000 compiler, you can pass the name or
the address of the calling function as an argument to the exit hook function.

The c29clang compiler does not support an analogous capability.

cl2000 Option c29clang Option
--remove_hooks_when_inlining not supported

If the cl2000 compiler inlines a function, the --remove_hooks_when_inlining option
can be used to remove entry/exit hook function calls from the inlined function.

The c29clang compiler does not provide an analogous option.

2.3.13 Controlling DWARF Debug Information

The following command-line options control what form of debug information, if any, is generated
by the compiler and is propagated to a linked executable file.

cl2000 Option (and alias) c29clang Option
--symdebug:dwarf (-g) -g

2.3. Migrating Command-Line Options 70

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The -g option causes both the cl2000 and c29clang compilers generate debug infor-
mation for a compilation unit in accordance with the DWARF standard. When the
-g option is specified, the cl2000 compiler generates DWARF version 3 debug infor-
mation by default. The c29clang compiler also generates DWARF version 3 debug
information by default when the -g option is specified on the compiler command-line.

However, please note that in the c29clang 1.0.0+sts compiler tools, the use of -gdwarf-
4 may introduce debug information discontinuities with the CCS debugger. It is rec-
ommended that until these issues are addressed that you should use -gdwarf-3 for
debugging.

cl2000 Option c29clang Option
--symdebug:dwarf_version=<version> -gdwarf-<version>

-gdwarf-3

The cl2000 compiler provides the --symdebug:dwarf_version option to allow you to
select what version of DWARF debug information will be generated by the compiler.
The c29clang compiler currently only generates DWARF version 3 debug information.
Support for generating DWARF version 4 and version 5 will be added in a future
release of the c29clang compiler tools.

The c29clang compiler provides the analogous -gdwarf-<version> option, allowing
you to select between DWARF versions 2, 3 (the c29clang default), or 4.

cl2000 Option (and alias) c29clang Option
--symdebug:none (default)

Even if the -g option is not specified on the command-line, the cl2000 compiler still
generates DWARF version 3 debug information by default. The cl2000 compiler’s
--symdebug:none option allows you to instruct the compiler to avoid generating any
debug information for a compilation unit.

The default behavior for the c29clang compiler is to not generate any DWARF debug
information unless the -g or the -gdwarf-<version> option is specified on the c29clang
command-line.

2.3.14 Diagnostic Message Options

Whereas the cl2000 compiler identifies diagnostics by number, the c29clang compiler identifies
diagnostics by name. The following table explains how cl2000 diagnostics are managed via the
cl2000 compiler and how certain diagnostic-related functionality in the cl2000 compiler might
translate into a relevant c29clang option.

cl2000 Option c29clang Option
--compiler_revision --version-string

2.3. Migrating Command-Line Options 71

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The cl2000 compiler supports a hidden option, --compiler_revision that prints only the
version number string itself as opposed to the additional information that is emitted
with the -version option.

Likewise, the c29clang compiler’s --version-string option emits only a string repre-
sentation of the compiler version number without the additional information that is
emitted when the --version option is specified.

cl2000 Option c29clang Option
--tool_version (-version) --version

Both the cl2000 and c29clang compilers support an option to print out version informa-
tion about the compiler to stdout. The cl2000 compiler also supports a -version option,
which lists the version information associated with each of the executable components
in the cl2000 compiler tools package.

The c29clang compiler’s --version option prints the compiler version number and some
additional information, including:

• identity of source branches used to build compiler,

• the version of the LLVM open source repository that compiler’s source code base
is derived from,

• the target “triple” identifier,

• the relevant thread model, and

• the location where the compiler is installed.

cl2000 Option (and alias) c29clang Option
--diag_error=<number> (-pdse=<number>) -Weverything

-Werror=<category>
--diag_remark=<number> (-pdsr=<number>)

-W<category>
--diag_suppress=<number> (-pds=<number>) -Wno-<category>
--diag_warning=<number> (-pdsw=<number>)

The cl2000 compiler provides options that allow a diagnostic identified by a spe-
cific number (<number>) to be treated as an error, warning, or remark using the -
-diag_[error|warning|remark] options. You can also suppress a specified diagnostic
from being emitted by the compiler using the --diag_suppress option.

The c29clang compiler provides several options that are similar to the cl2000 --
diag_[error|remark|warning|suppress] options, but there are subtle differences in func-
tionality:

• -Weverything - enables all warning diagnostics

2.3. Migrating Command-Line Options 72

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• -Werror=category - indicates that a specific category of warning diagnostics is to
be interpreted as errors

• -Wcategory - enables a specific category of warning diagnostics

• -Wno-category - disables a specific category of warning diagnostics

cl2000 Option c29clang Option
--diag_wrap=<on|off> not supported

The cl2000’s --diag_wrap option, which is on by default, tells the compiler to wrap
diagnostic messages at 79 columns.

The c29clang compiler does not provide this capability.

cl2000 Option (and alias) c29clang Option
--display_error_number (-pden) -fdiagnostics-show-option (default)

-fno-diagnostics-show-option

In order to determine the identity of a particular diagnostic, the cl2000 compiler pro-
vides the --display_error_number option. Once the identity of a diagnostic has been
determined, you can then specify the number associated with the diagnostic to one of
cl2000’s diagnostic control options such as --diag_suppress, for example.

Similarly, the c29clang compiler enables you to discover the category name associ-
ated with a given diagnostic by using the -fdiagnostics-show-option (which is on by
default). Once a warning category name has been identified, you can specify the
category name as an argument to one of c29clang’s diagnostic control options (like
-Werror=<category>, for example, which treats warnings that are flagged by the spec-
ified <category> as errors).

cl2000 Option (and alias) c29clang Option
--emit_warnings_as_errors (-pdew) -Werror[=<category>]

-Wno-error=<category>

The cl2000 compiler’s option --emit_warnings_as_errors functionally maps to
c29clang’s -Werror option. The use of this option instructs the compiler to interpret
all warning diagnostics as errors.

An optional <category> argument can also be specified with the -Werror option to
indicate that only warnings in the specified category should be treated as errors.

The c29clang compiler’s -Wno-error=<category> option provides a mechanism by
which you can identify a particular category of warning to continue being interpreted
as a warning even if the -Werror option is used on the same command-line.

2.3. Migrating Command-Line Options 73

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

cl2000 Option c29clang Option
--flash_prefetch_warn not supported

The cl2000 compiler provides the --flash_prefetch_warn to display warnings about a specific se-
quence of instructions that may cause a prefetch buffer overflow. This case does not apply to C29x
devices.

The c29clang compiler does not provide an analogous option.

cl2000 Option (and alias) c29clang Option
--issue_remarks (-pdr) not supported

The cl2000 compiler can be made to emit remark diagnostics (non-serious warnings)
during a compilation when the --issue_remarks option is specified.

While the c29clang compiler does not explicitly support issuing remarks in general,
it does provide capability through other options (like the -Rpass option, for example)
to enable the compiler to emit remarks related to a specific topic (like optimization
transformations that are performed during compilation in the case of -Rpass).

cl2000 Option (and alias) c29clang Option
--no_warnings (-pdw) -w

Both the cl2000 and c29clang compilers support an option to disable the reporting
of all warning diagnostics. On the cl2000 compiler, this option is --no_warnings (or
-pdw). On c29clang, it is simply -w. Lower case ‘w’ is essentially the opposite of
upper case ‘W’, which enables all diagnostic warnings.)

cl2000 Option (and alias) c29clang Option
--quiet (-q) (default)

The cl2000 compiler emits nominal progress and status information by default when
compiling more than one source file during an invocation, but this can be suppressed
with cl2000’s -q option.

The c29clang compiler does not generate progress or status information even while
compiling more than one file, so there is no need for a -q option.

cl2000 Option (and alias) c29clang Option
--set_error_limit=<number> (-pdel=<number>) -ferror-limit=<number>

Both the cl2000 and c29clang compilers provide an option that allows you to indicate
the number of errors to be detected / reported before a compilation attempt is aborted.
The cl2000 compiler uses the --set_error_limit option for this purpose. The c29clang
compiler’s -ferror-limit serves the same purpose.

2.3. Migrating Command-Line Options 74

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

By default, the cl2000 compiler abandons compilation after 100 errors are detected /
reported. The default error limit for c29clang is 20. You can disable the error limit by
specifying a <number> of 0 as the option argument.

cl2000 Option c29clang Option
--super_quiet (-q) No supported exactly

The cl2000 –super_quiet option disables non-diagnostic output, but allows remarks,
errors, and warnings.

You may decide to migrate this option to the clang c29clang -w option, which disables
non-diagnostic output but also suppresses all warnings. Note that the two options are
not equivalent for this reason.

cl2000 Option c29clang Option
--verbose -v

Both cl2000 and c29clang support an option to display verbose progress and status
information during the compilation of one or more source files. The c29clang com-
piler’s -v option emits information about the include file directory search path as well
as details about how different executables are invoked during a compilation.

cl2000 Option (and alias) c29clang Option
--verbose_diagnostics (-pdv) -fdiagnostics-. . .

If the --verbose_diagnostics option is specified on the cl2000 command-line, the com-
piler provides a more verbose diagnostic message with a given error, warning, or re-
mark if a more verbose message is available.

The c29clang compiler can be made to annotate diagnostics with extra information
that is gathered by the compiler during a given compilation. For example, c29clang’s
-fdiagnostics-fixit-info, which is on by default, allows the compiler to annotate diag-
nostics with information about how to resolve a problem if the fix is known to the
compiler.

More details about available -fdiagnostics-. . . options can be found in the online Clang
Compiler User’s Manual.

cl2000 Option (and alias) c29clang Option
--write_diagnostics_file (-pdf) not supported

You can redirect the diagnostics reported by the cl2000 compiler to a file using the
--write_diagnostics_file option. The name of the generated diagnostics file will be the
name of the source file provided to the compiler with its file extension replaced by an
‘.err’ extension.

2.3. Migrating Command-Line Options 75

https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/docs/UsersManual.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The c29clang compiler does not provide an analogous option.

2.3.15 Compiler Feedback Options

The following table provides information about feedback directed optimization options that are
available in the cl2000 compiler. The c29clang compiler does not currently support profile guided
optimizations, although the c29clang compiler does provide some support for generating code
coverage information. Support for profile guided optimizations may be considered in future version
of the c29clang compiler tools.

cl2000 Option c29clang Option
--analyze=codecov -fprofile-instr-generate

-fcoverage-mapping

The cl2000 compiler can be made to generate code coverage analysis information from
profile data. This option must be used in combination with --use_profile_info.

The c29clang compiler can be made to generate linked output files that have been in-
strumented with code coverage information using the -fprofile-instr-generate option in
combination with the -fcoverage-mapping option. Please see the Source-Based Code
Coverage in c29clang section in the c29clang Compiler User Manual for more in-
formation on what code coverage capabilities are available in the c29clang compiler
tools.

cl2000 Option c29clang Option
--analyze_only -fprofile-instr-generate

-fcoverage-mapping

The cl2000 compiler can be made to generate only a code coverage information file.
This option must be used in combination with --use_profile_info. To instruct the com-
piler to perform code coverage analysis of an instrumented application, you must spec-
ify --analyze=codecov, --analyze_only, and --use_profile_info.

Please refer to the Source-Based Code Coverage in c29clang section in the c29clang
Compiler User Manual for more information on what code coverage capabilities are
available in the c29clang compiler tools.

cl2000 Option c29clang Option
--gen_profile_info -fprofile-instr-generate

-fcoverage-mapping

The cl2000 compiler can be made to append compiled code with instrumentation that
can collect profile data information when the instrumented application is run.

2.3. Migrating Command-Line Options 76

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Please refer to the Source-Based Code Coverage in c29clang section in the c29clang
Compiler User Manual for more information on what code coverage capabilities are
available in the c29clang compiler tools.

cl2000 Option c29clang Option
--use_profile_info=<file1>[,<file2>,. . .] not supported

The cl2000 compiler can be made to read profile data information from the list of files
that are specified as arguments to the --use_profile_info option and use this informa-
tion to inform optimization choices and/or the generation of code coverage informa-
tion.

The c29clang compiler tools include executables such as c29profdata and c29cov to
help view code coverage information that has been generated when an instrumented
linked output file is run.

Please refer to the Source-Based Code Coverage in c29clang section in the c29clang
Compiler User Manual for more information on what code coverage capabilities are
available in the c29clang compiler tools.

2.3.16 Assembler Options

Applications developed with the cl2000 compiler tools may include some source code written in
assembly language.

Use of assembly language is discouraged for c29clang, except for assembly code embedded in
C/C++ source files via asm() statements, which are processed inline by the c29clang integrated
GNU-syntax assembler. For this reason, the TI C29x assembly language syntax is not documented.

When migrating a TI C28x application that contains assembly language source files to a TI C29x
application, it is recommended that you convert assembly language code to C/C++ code.

cl2000 Option (and alias) c29clang Option
--keep_asm (-k) -S

The cl2000 compiler’s --keep_asm option causes the assembly language output from
the compiler or the assembly optimizer to be kept.

The c29clang compiler allows you to keep the assembly language output from the
compiler, but only if you use the -S option to stop the compiler after the assembly
files are emitted, preventing the compiler from generating object files or invoking the
linker.

2.3. Migrating Command-Line Options 77

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

2.3.17 Command File Option

Sometimes the list of command-line options that are used during the invocation of a compiler can
become unwieldy. The @ option described below provides a mechanism for collecting command-
line options and input file specifications into a text file that can be fed into the compiler as a sort of
extension of the compiler invocation command.

cl2000 Option (and alias) c29clang Option
--cmd_file=<file> (-@=<file>) @<file>

Both the cl2000 and c29clang compilers provide an option that allows the use of a the
specified <file>’s contents as an extension for the command-line used to invoke the
compiler. The c29clang version of the option should not be preceded with a hyphen.

2.3.18 ULP Advisor Options

The c29clang compiler does not support the ULP Advisor options.

cl2000 Option c29clang Option
--advice:performance[=all|none] not supported

2.4 Migrating C and C++ Source Code

The process of converting the C/C++ source code for an existing TI C28x application that is built
with the cl2000 compiler so that it can be built using the c29clang compiler can be thought of as
the process of making your C/C++ source code portable. The cl2000 compiler supports the use of
proprietary TI-specific versions of many predefined macro symbols, intrinsics, and pragmas that
are not supported by other compilers. The use of such proprietary TI mechanisms will render a
program unbuildable by other compilers, including the c29clang compiler.

2.4.1 Migrating Source Code with Clang-Tidy

To aid the migration process from the cl2000 compiler to the c29clang compiler, you can use the
c29clang-tidy utility either from the command line or within Code Composer Studio (CCS) Theia.
This tool performs various checks of your source code and identifies code that uses cl2000-specific
syntax that should be modified.

The general procedure for using the c29clang-tidy utility is as follows:

1. Make initial code changes to reduce the number of compiler errors and false positives that
will occur when running c29clang-tidy. These code changes should include:

2.4. Migrating C and C++ Source Code 78

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Remove any definitions of the fixed width types int8_t and uint8_t.

• Remove any extern declarations of C28x builtin functions.

• Change any use of C28-only macros such as __TMS320C28XX__ to C29-macros
such as __C29__.

2. Run the c29clang-tidy utility using either the command line (see Running the c29clang-tidy
Utility from the Command Line) or CCS Theia (see Running the c29clang-tidy Utility from
CCS Theia).

3. Make changes to your code based on the diagnostics provided.

4. Run the c29clang-tidy utility iteratively as needed.

Running the c29clang-tidy Utility from the Command Line

The c29clang-tidy command line is similar to the c29clang command line.

For example, suppose your c29clang command line is as follows:

c29clang file.c -I./include -mcpu=c29.c0

The corresponding c29clang-tidy command line would be as follows:

c29clang-tidy --checks=-*,c29migration* -header-filter=.* file.c
→˓-- -I./include -mcpu=c29.c0

• Everything on the command line after -- is treated as a normal compiler argument. Those
options can be moved and duplicated as-is.

• The --checks determines which checks are disabled and/or enabled. In this example, the
initial -* turns off all checks. This is followed by c29migration*, which enables all
checks that begin with “c29migration”, which includes the C28x-C29x migration checks.

• The -header-filter option tells clang-tidy which header files to check. By default, it
checks none of them. In this example, .* says to check all header files using regex.

You can use the -list-checks option to list all the enabled checks. For example:

c29clang-tidy -list-checks \\ list default
→˓checks
c29clang-tidy -list-checks --checks=-*,c29* \\ list all C29x

→˓checks
c29clang-tidy -list-checks --checks=* \\ list all

→˓available checks

2.4. Migrating C and C++ Source Code 79

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

See the Clang-Tidy documentation for additional command line options that may be supported by
c29clang-tidy. The -fix flag is not supported. You may use a .clang-tidy file as described in that
documentation to configure the actions performed by c29clang-tidy.

Running the c29clang-tidy Utility from CCS Theia

To run the c29clang-tidy utility within CCS Theia, follow these steps:

1. Make initial code changes to reduce the number of compiler errors and false positives that
will occur when running c29clang-tidy. These code changes should include:

• Remove any definitions of the fixed width types int8_t and uint8_t.

• Remove any extern declarations of C28x builtin functions.

• Change any use of C28-only macros such as __TMS320C28XX__ to C29-macros
such as __C29__.

2. The c29clang-tidy utility runs in the background for actions such as project creation, project
import, and file modification. By default, the c29migration-c28-builtins, c29migration-c28-
pragmas, and c29migration-c28-stdlib checks are run.

3. A list of diagnostics found by the c29clang-tidy utility is shown in the Problems view. For
example:

4. Make changes to your code based on the diagnostics provided.

Limitations

• The c29clang-tidy utility does not analyze assembly code (.asm or inline asm() directives)

• As with all static analyzers, false positives are possible and expected. You will need to
inspect the code that results in a diagnostic message to determine whether it is a real issue.

2.4. Migrating C and C++ Source Code 80

https://clang.llvm.org/extra/clang-tidy/

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Checks Performed

By default, the following checks are performed:

• c29migration-c28-builtins

• c29migration-c28-pragmas

• c29migration-c28-stdlib

The other c29migration checkers require knowledge of the intent of the code. They may suggest
updates that change the behavior of the program if not applied carefully. Therefore, they are treated
as advanced migration aids and are not run by default.

The c29clang-tidy utility provides the following checks:

c29migration-c28-builtins

This check looks for use of C28x intrinsics such as __fmax and __byte. It suggests alternatives if
they are available. For example:

void test___add(int * m, int b) {
__add(m, b);

}

The diagnostic warning states that the call to __add is a C28x intrinsic, which is not supported by
this compiler. It suggests that you refer to the C29x intrinsic documentation to find an equivalent.
In this case, it suggests using __builtin_c29_i32_add32_rm_d(b, m).

In order to use this check, you must pre-include the c28_builtins.h file on the command line.

Builtin functions are declared internally. Since they are only declared for C28x, these builtin func-
tions are treated as undefined identifiers by the C29x compiler. This is not an issue using the C89
standard, but causes errors with C99 and later and with all C++ standards. To resolve this issue, the
compiler tools supply a header file that declares all C28x builtins. This file, c28-builtins.h,
can be pre-included by clang-tidy. Using the command line above, add the --include option as
follows:

c29clang-tidy --checks=-*,c29migration* -header-filter=.* file.c
→˓-- -I./include -mcpu=c29.c0 --include c28-builtins.h

This check is performed by default by CCS Theia when migrating projects from C28 to C29.

2.4. Migrating C and C++ Source Code 81

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

c29migration-c28-char-range

This check detects operations on char typed expressions that would be out of range for an 8-bit
type. Because the char and unsigned char types are 16 bits on C28x and 8 bits on C29x,
overflows may occur. For example:

int ret_pos_cast(char x) {
return (char)(x + 10000);

}

The diagnostic warning states that the cast to ‘char’ receives an out-of-range value from code that
may assume a 16-bit byte type. It notes that the result of the expression is calculated as 10000.

To correct this issue, either: * Choose the C28x behavior by using a fixed-width 16-bit type instead
of char (int16_t) * Accept the new C29x behavior, adjust the calculation to fit within an 8-bit type,
and optionally use a fixed-width 8-bit type (int8_t).

This check is not performed by default by CCS Theia when migrating projects from C28 to C29
because it requires understanding the intent of the program that is not evident in the code itself.

c29migration-c28-int-decls

This check suggests replacing the int and unsigned int types with int16_t and
uint16_t types. For example:

void foo(int x) { int y; }

The diagnostic warning states that you should consider using a fixed-width 16-bit type to avoid
issues with the increased width of int on C29x devices.

A fix-it is available that replaces int/unsigned int types with int16_t/uint16_t types and includes
<stdint.h> if it is not already included.

This check is not performed by default by CCS Theia when migrating projects from C28 to C29
because it suggests a major change to the application.

c29migration-c28-pragmas

This check looks for use of C28x pragmas such as #pragma DATA_SECTION. It suggests alterna-
tives if they are available. For example:

#pragma WEAK(weakx)
int weakx;

2.4. Migrating C and C++ Source Code 82

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The diagnostic warning states that the WEAK pragma is a legacy TI pragma that is not supported
by this compiler. It suggests that you use __attribute__((weak)) instead.

This check is performed by default by CCS Theia when migrating projects from C28 to C29.

c29migration-c28-stdlib

This check looks for calls to library functions that take a number of bytes argument where the
argument is not scaled by a sizeof expression. For example:

void malloc_c_pos() {
malloc((1+23));

}

The diagnostic warning states that the call to malloc has a byte-size argument without a sizeof
expression. It suggests that you scale the size of the argument by a factor of ‘sizeof’ to avoid issues
with changing byte sizes between C28x and C29x.

Calls to the following library functions are checked:

• aligned_alloc

• calloc

• malloc

• realloc

• memccpy

• memchr

• memcmp

• memcpy

• memmove

• memset

• strncmp

• strncpy

• fread

• fwrite

This check is performed by default by CCS Theia when migrating projects from C28 to C29. Be
aware that sufficiently complex sizeof expressions with multiple terms may not be correctly
diagnosed.

2.4. Migrating C and C++ Source Code 83

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

c29migration-c28-suspicious-dereference

This check detects dereferences (*) of pointers, where the source expression is integer-typed and
contains an additive operation, which is commonly used to access memory-mapped values. For
example:

int main() {

(int)(x + 10) = 12;
}

The diagnostic warning states that the pointer cast has a suspicious integer expression incremented
by bytes, which are 16 bits on C28x and 8 bits on C29x. It suggests that you inspect the intent of
the address and scale it accordingly if needed.

This check is not performed by default by CCS Theia when migrating projects from C28 to C29.
Complex expressions with multiple casts to and from pointer types may cause this checker to fail
to diagnose an issue.

c29migration-c28-types

This check detects pointer arithmetic on char/int-based pointers, whose bit stride changes between
C28x to C29x. For example:

extern void foo(char *);
void test_plus(char *x) {

foo(x + 2);
}

The diagnostic warning states that pointer arithmetic is performed on an expression with type
‘char’. Since ‘char’ is 16 bits on C28x and 8 bits on C29x, you should choose either C28x behavior
by using a fixed-width 16-bit type (here, int16_t), or accept C29x behavior and use a fixed-width
8-bit type (here, int8_t).

This check is not performed by default by CCS Theia when migrating projects from C28 to C29.
All matches should be individually vetted for intent and behavior:

• Code that accesses characters of a string should remain char/unsigned char.

• Code that accesses any other type through a char* pointer should be updated in one of two
ways:

1. The char* pointer should be changed to the type of the object being accessed.

2. The offset should be scaled by the size of the object being accessed.

2.4. Migrating C and C++ Source Code 84

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

2.4.2 C/C++ Source Migration Aid Diagnostics

When migrating a C29x C/C++ application project from using the TI C28x compiler to using the
c29clang compiler you may have instances of TI-specific pragmas, pre-defined macro symbols, or
intrinsics that are supported by the cl2000 compiler, but not the c29clang compiler.

To make your C/C++ source code more portable, you will need to locate instances of TI-specific
pragmas, pre-defined macro symbols, and intrinsics in your source code and convert them into
supported counterparts.

To help with this process, the c29clang compiler emits a diagnostic when it encounters the use of
a proprietary TI pre-defined macro symbol, pragma, or intrinsic and provides information about
how that use can be safely transformed into a functionally equivalent alternative, if one exists. In
cases where there is no functionally equivalent alternative to replace an instance of a proprietary
TI pre-defined macro symbol, pragma, or intrinsic, the c29clang compiler emits a diagnostic to
inform you about the presence of that proprietary TI mechanism.

Let’s consider a couple of examples . . .

Proprietary TI Pragmas

The proprietary TI pragma FUNC_CANNOT_INLINE has a valid alternative, so if the c29clang
compiler encounters the following line of code:

#pragma FUNC_CANNOT_INLINE

The c29clang compiler will emit the following diagnostic:

warning: pragma FUNC_CANNOT_INLINE is a legacy TI pragma and not
supported in clang compilers. use '__attribute__((always_inline))

→˓'
instead

For more information about how many of the commonly occurring proprietary TI pragmas can be
converted into attribute form, please see the Pragmas and Attributes section.

Proprietary TI Pre-Defined Macro Symbols

The proprietary TI pre-defined macro symbol __TMS320C28XX__ is an example of a pre-defined
macro symbol that can be used to configure C29x-specific code in an application, but this pre-
defined macro symbol is not supported by c29clang and needs to be replaced by a functionally
equivalent expression. Specifically, when the following line of code is encountered by the c29clang
compiler:

2.4. Migrating C and C++ Source Code 85

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

#if defined(__TMS320C28XX__)
...
#endif

the c29clang compiler will emit the following diagnostic:

warning: __TMS320C28XX__ is a legacy TI macro that is not defined
in clang compilers and will evaluate to 0, use '(__C29_ARCH == 0)
instead [-Wti-macros]

The warning can then be averted by replacing the __TMS320C28XX__ symbol reference with the
following:

#if (__C29_ARCH == 1)

However, there are other proprietary TI pre-defined macro symbols, like
__TMS320C28XX_VCRC__ , that do not have a viable alternative, so the following code:

#if defined(__TMS320C28XX_VCRC__)

yields the following diagnostic when encountered by the c29clang compiler:

warning: '__TMS320C28XX_VCRC__ ' is a legacy TI macro and not
→˓supported in clang
compilers

For more information about how many of the proprietary TI pre-defined macro symbols can be
converted into their functionally equivalent form, please refer to the Pre-Defined Macro Symbols
section.

Proprietary TI Intrinsics

The proprietary TI intrinsic “__lmin” is an example of an cl2000 compiler intrinsic that has a
viable alternative form, so when the c29clang compiler encounters the following function:

long __lmin(long dst, long src)

The c29clang compiler does not provide diagnostics. However, the diagnostic checks provided by
the c29clang-tidy utility suggest converting this intrinsic to the following:

int __builtin_c29_i32_min32_d(int, int)

int c29_min(int a, int b) {
return __builtin_c29_i32_min32_d(a, b);

}

2.4. Migrating C and C++ Source Code 86

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Not all cl2000 intrinsics are as easy as “__lmin” to migrate to a functionally equivalent c29clang
form. For more details on how specific cl2000 intrinsics can be migrated, please refer to the
Intrinsics and Built-in Functions section.

Turning Off the Migration Aid Diagnostics

The migration aid diagnostics for use of proprietary TI macro symbols, pragmas, and intrinsics
are enabled by default in the c29clang compiler. The following c29clang compiler options can be
specified to selectively turn off the migration aid diagnostic categories:

• -Wno-ti-pragmas : to suppress migration aid diagnostics for proprietary TI pragmas

• -Wno-ti-macros : to suppress migration aid diagnostics for proprietary TI pre-defined macro
symbols

• -Wno-ti-intrinsics : to suppress migration aid diagnostics for proprietary TI intrinsics

2.4.3 Pre-Defined Macro Symbols

Many applications support a variety of configurations that are often administered via the use of
pre-defined macro symbols.

While several pre-defined macro symbols supported by the cl2000 compiler are also supported by
the c29clang compiler, many are not. For a given cl2000 pre-defined macro symbol that is not
supported by the c29clang compiler, there are ways one can successfully transition the use of such
a pre-defined symbol to be compatible with the c29clang compiler.

This section of the “Migrating C and C++ Source Code” chapter of the migration guide lists each
of the pre-defined macro symbols that are supported in the cl2000 compiler and, if conversion
is needed, explains how to modify the C/C++ source to make it compatible with the c29clang
compiler.

For details about macro symbols that are pre-defined by the c29clang compiler, see Generic Com-
piler Pre-Defined Macro Symbols.

Pre-Defined Macro Symbols that are Available in Both cl2000 and c29clang

Some pre-defined macro symbols supported by the cl2000 compiler are also supported by the
c29clang compiler. The following table identifies those pre-defined macro symbols that are sup-
ported by both compilers and require no conversion when migrating an application from cl2000 to
c29clang:

2.4. Migrating C and C++ Source Code 87

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Macro
Sym-
bol

Description / Comments

__COUNTER__References to the __COUNTER__ macro symbol expand to an
integer value starting from 0. This symbol can be used
in conjunction with a “##” operator in C/C++ source code
to create unique symbol names.

__cplus-
plus

The __cplusplus symbol is defined if the cl2000 or
c29clang compiler is invoked to process a C++ source
file. If the source file in question is an obvious C++
source file with a .cpp extension, then both compilers
define __cplusplus when processing such a file. The
user can also force __cplusplus to be defined via the
cl2000 -fg option or the c29clang -x c++ option. These
instruct the compiler to process a source file, whether
it is a C++ or C file, as a C++ file.

__DATE__References to the __DATE__ macro symbol expand to a
string representing the date on which the compiler was
invoked. The date is displayed in the form: mmm dd yyyy.

__ELF__The __ELF__ macro symbol is defined by both the cl2000 and
c29clang compilers, since both generate ELF object format.

__FILE__References to the __FILE__ macro symbol expand to a string
representation of the name of the source file being compiled.

_IN-
LINE

Defined if some level of optimization is specified when the compiler is in-
voked.
The cl2000 compiler allows C/C++ source code to undefine the
_INLINE symbol to disable some optimization while processing C/C++
source.
The c29clang compiler does not support turning off inlining by
undefining macros. The c29clang compiler additionally supports the
the __GNUC_GNU_INLINE__, __GNUC_STDC_INLINE__, and
__NO_INLINE__ macros, so that
code can test to see what type of inlining is enabled.

__LINE__References to the __LINE__ macro symbol expand to an
integer constant indicating the current source line in
the source file. The value of the integer constant
depends on which source line the macro symbol is referenced.

__STDC__Both the cl2000 and c29clang compilers define the
__STDC__ macro symbol to indicate compliance with the
ISO C standard. Please refer to the TI C28x Optimizing C/C++
Compiler User’s Guide for exceptions to ISO C compliance
that apply to the cl2000 compiler. Exceptions to ISO C
compliance in the c29clang compiler can be found in
the TI C29x Clang Compiler User Guide.

__STDC_HOSTED__The __STDC_HOSTED__ macro symbol is always defined to 1 to indicate
that the
target is a hosted environment, meaning the standard C library is available.

__STDC_NO_THREADS__The __STDC_NO_THREADS__ macro symbol is not defined.
The compiler does not support C11 threads and does not provide
the threads.h file.

__STDC_VERSION__The __STDC_VERSION__ macro symbol expands to an integer
constant that indicates the ISO C standard that the
compiler conforms to.

__TIME__References to the __TIME__ macro symbol expand to a
string representation of the time at which the compiler
is invoked. The time is displayed in the form: hh:mm:ss.

__TIMES-
TAMP__

References to the __TIMESTAMP__ macro symbol expand to a
string representation of the date and time at which the
compiler was invoked. The date and time are displayed in
the form: dow mmm dd hh:mm:ss yyyy (dow is “day of the week”).

__VER-
SION__

The __VERSION__ macro symbol provides information about
which version of the C/C++ parser is used by the compiler.
The cl2000 compiler uses some version of the EDG
gcc-compatible parser, whereas the c29clang compiler’s
parser uses a version of the LLVM and Clang source base.

2.4. Migrating C and C++ Source Code 88

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Converting cl2000 Pre-Defined Macro Symbols to c29clang Compatible Form

Several cl2000 pre-defined macro symbols are not supported by c29clang, but these macro symbols
can often be re-written in terms of GCC pre-defined macro symbols that c29clang does support.
The following table lists cl2000 pre-defined macro symbols that are not supported by the c29clang
compiler, and how they may be converted to a form that is supported by c29clang:

cl2000 Macro Symbol c29clang Equivalent
__little_endian__ defined(_LITTLE_ENDIAN_)

The cl2000 compiler defines the __little_endian__ macro symbol to indicate that the
compiler uses little-endian mode. References to __little_endian__ can safely be re-
placed with a test that evaluates to True, since the C29x architecture does not support
big-endian mode.

The c29clang compiler defines the _LITTLE_ENDIAN_ macro symbol in all cases,
because only little-endian mode is supported.

cl2000 Macro Symbol c29clang Equivalent
__PTRDIFF_T_TYPE__ __PTRDIFF_TYPE__

The cl2000 compiler defines the __PTRDIFF_T_TYPE__ macro symbol to indicate
the equivalent base type associated with the ptrdiff_t type.

The c29clang compiler defines __PTRDIFF_TYPE__ to reflect the underlying type
for the ptrdiff_t typedef.

cl2000 Macro Symbol c29clang Equivalent
__SIZE_T_TYPE__ __SIZE_TYPE__

The cl2000 compiler defines the __SIZE_T_TYPE__ macro symbol to indicate the
equivalent base type associated with the size_t type.

The c29clang compiler defines __SIZE_TYPE__ to reflect the underlying type for the
size_t typedef.

cl2000 Macro Symbol c29clang Equivalent
__TI_COMPILER_VERSION__ __ti_version__

The cl2000 compiler defines the __TI_COMPILER_VERSION__ macro symbol to a
7-9 digit integer, depending on if X has 1, 2, or 3 digits. The number does not contain
a decimal. For example, version 3.2.1 is represented as 3002001. The leading zeros
are dropped to prevent the number being interpreted as an octal.

The c29clang compiler defines __ti_version__ to encode the major, minor, and patch
version number values associated with the current release, where:

2.4. Migrating C and C++ Source Code 89

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

<encoding> = <major> * 10000
<minor> * 100
<patch>

For 3.2.1.LTS, for example, the value of <encoding> would be 30201.

cl2000 Macro Symbol c29clang Equivalent
__TI_EABI__ defined(__ELF__)

Both the cl2000 and c29clang compilers support the generation of ELF object format
code only. Consequently, the cl2000 __TI_EABI__ macro symbol is always defined
when the cl2000 compiler is invoked.

c29clang does not support __TI_EABI__, but it does support the __ELF__ macro
symbol which is also supported by cl2000. Therefore, references to __TI_EABI__ in
the C/C++ source can be safely replaced by __ELF__.

cl2000 Macro Symbol c29clang Equivalent
__TI_GNU_ATTRIBUTE_SUPPORT__ defined(__clang__)

The cl2000 compiler defines the __TI_GNU_ATTRIBUTE_SUPPORT__ macro sym-
bol to indicate that a C/C++ dialect mode where generic attributes is supported.
c29clang does not support an analogous macro symbol, but generic attributes are sup-
ported by c29clang, nonetheless.

cl2000 Macro Symbol c29clang Equivalent
__TI_STRICT_ANSI_MODE__ __STRICT_ANSI__

The cl2000 compiler defines the __TI_STRICT_ANSI_MODE__ macro symbol to 1
if the cl2000 compiler is invoked with the --strict_ansi option. The cl2000 compiler
defines __TI_STRICT_ANSI_MODE__ with a value of 0 by default to indicate that
the compiler does not enforce strict conformance to the ANSI C standard.

The c29clang compiler defines the __STRICT_ANSI__ macro symbol if any of the --
std=<spec> options are specified on the c29clang command-line (where spec indicates
the identity of a C or C++ language standard).

cl2000 Macro Symbol c29clang Equivalent
__TMS320C2000__ __C29__

The cl2000 compiler defines the __TMS320C2000__ macro symbol to true to indi-
cated the application is compiled for the TI C28x architecture.

The c29clang compiler defines __C29__ to 1 if the application is compiled for a C29x
target. See TI C29x-Specific Pre-Defined Macro Symbols for related macro symbols.

2.4. Migrating C and C++ Source Code 90

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

cl2000 Macro Symbol c29clang Equivalent
__WCHAR_T_TYPE__ __WCHAR_TYPE__

The cl2000 compiler defines the __WCHAR_T_TYPE__ macro symbol to indicate
the equivalent base type associated with the wchar_t type.

The c29clang compiler supports the analogous GCC __WCHAR_TYPE__ macro
symbol to indicate the underlying type for the wchar_t typedef.

Pre-Defined Macro Symbols in cl2000 that are Not Applicable in c29clang

There are several pre-defined macro symbols that are supported by the cl2000 compiler that are
either not applicable for c29clang or are simply not supported.

For example, the __TMS320C28XX__ pre-defined macro symbol indicates support for TI C28x,
which does not apply for C29x applications.

2.4. Migrating C and C++ Source Code 91

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

cl2000 Macro
Symbol

Description / Comments

__TMS320C28XX__The cl2000 __TMS320C28XX__ macro symbol is not
applicable since c29clang does not support the
TI C28x architecture.

__TMS320C28XX_CLA__
__TMS320C28XX_CLA0__
__TMS320C28XX_CLA1__
__TMS320C28XX_CLA2__

The cl2000 __TMS320C28XX_CLAn__ macro symbols are
not applicable since c29clang does not support the
Control Law Accelerator (CLA) or the CLA compiler.

__TMS320C28XX_FPU32__
__TMS320C28XX_FPU64__

The cl2000 __TMS320C28XX_FPUnn__ macro symbols are
not applicable since c29clang does not support the
Floating Point Unit (FPU).

__TMS320C28XX_IDIV__The cl2000 __TMS320C28XX_IDIV__ macro symbol are
not applicable since c29clang does not support the
IDIV intrinsics.

__TMS320C28XX_TMU__
__TMS320C28XX_TMU0__
__TMS320C28XX_TMU1__

The cl2000 __TMS320C28XX_TMUn__ macro symbols are
not applicable since c29clang does not support the
Trigonometric Math Unit (TMU).

__TMS320C28XX_VCU0__
__TMS320C28XX_VCU2__
__TMS320C28XX_VCRC__

The cl2000 __TMS320C28XX_VCUn__ macro symbols are
not applicable since c29clang does not support the
Viterbi, Complex Math and CRC Unit (VCU).

__TI_STRICT_FP_MODE__The cl2000 __TI_STRICT_FP_MODE__ macro symbol is
defined to 1 by default to indicate that the
compiler is to be strict about floating-point
math (adherence to the IEEE-754 standard for
floating-point arithmetic). This reflects the
default argument for the --fp_mode option (i.e.
--fp_mode=strict). To instruct the compiler to be
more relaxed about floating-point math, the
--fp_mode=relaxed option can be specified, which
will cause __TI_STRICT_FP_MODE__ to be defined
with a value of 0.

Additional Pre-Defined Macro Symbols Supported in c29clang

The following pre-defined macro symbols are provided by the c29clang but not by the cl2000
compiler.

The c29clang compiler defines specific GNU macro symbols that are included in the table below.
These macro symbols are not meant to distinguish GCC as a compiler; instead, they indicate code
compatibility with GCC.

2.4. Migrating C and C++ Source Code 92

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

c29clang Macro Symbol | Description / Comments
__clang__An invocation of c29clang will always define

the __clang__ macro symbol.
__EX-
CEP-
TIONS

The c29clang compiler would define the __EXCEPTIONS
macro symbol if -fexceptions were specified when
compiling a C++ source file. However, exceptions are
not currently supported by the c29clang compiler.

__GNUC__The __GNUC__ macro symbol indicates that the
compiler’s C pre-processor is compatible with a
major version of the GNU C pre-processor. The
c29clang compiler’s C pre-processor is
compatible with version 3 of the GNU C
pre-processor.

__GNUC_GNU_INLINE__The c29clang compiler defines the
__GNUC_GNU_INLINE__ macro symbol if optimization
is turned on and functions declared inline are
handled in GCC’s traditional gnu90 mode. Object
files will contain externally visible definitions
of all functions declared inline without extern
or static. They will not contain any definitions
of any functions declared extern inline.

__GNUC_STDC_INLINE__The c29clang compiler defines the
__GNUC_STDC_INLINE__ macro symbol if optimization
is turned on and functions that are declared
inline are handled according to the ISO C99 (or
later) C language standard. Object files will
contain externally visible definitions of all
functions declared extern inline. They will not
contain definitions of any functions declared
inline without extern.

__IN-
CLUDE_LEVEL__

The c29clang compiler defines the
__INCLUDE_LEVEL__ macro symbol as an integer
constant indicating the current include level.
For example, if file f1.c includes f2.h and f2.h
contains a reference to __INCLUDE_LEVEL__, then
that reference to __INCLUDE_LEVEL__ would
evaluate to 1.

__INT-
MAX_TYPE__

The c29clang compiler defines __INTMAX_TYPE__
to reflect the underlying type for the intmax_t
typedef.

__NO_INLINE__If no optimization level is specified on the
c29clang command-line, then c29clang defines
the __NO_INLINE__ macro symbol to indicate that
compilation mode.

__OP-
TI-
MIZE__

If an optimization level is specified via the -O
option on the c29clang command-line, then
c29clang defines the __OPTIMIZE__ macro symbol
to indicate that optimization is enabled for the
current compilation.

__OP-
TI-
MIZE_SIZE__

If the -Os or -Oz option is specified on the
c29clang command-line, then c29clang defines
the __OPTIMIZE_SIZE__ macro symbol to indicate
that optimizations that do not typically increase
code size and optimizations that are designed to
reduce code size are enabled for the current
compilation.

__UINT-
MAX_TYPE__

The c29clang compiler defines __UINTMAX_TYPE__
to reflect the underlying type for the uintmax_t
typedef.

__WCHAR_UNSIGNED__The c29clang compiler defined the
__WCHAR_UNSIGNED__ macro symbol to indicate that
the wchar_t type assumed when compiling a C++
source file is unsigned.

__WINT_TYPE__The c29clang compiler defines __WINT_TYPE__ to
reflect the underlying type for the wint_t
typedef.

2.4. Migrating C and C++ Source Code 93

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

2.4.4 Intrinsics and Built-in Functions

The compiler intrinsics supported by the cl2000 compiler are fully detailed in the TMS320C28x
Optimizing C/C++ Compiler User’s Guide in Section 7.6.

For a list of builtin intrinsics supported by the cl2000 compiler, see the C2000 C29x CPU and
Instruction Set User’s Guide (SPRUIY2), which is available through your TI Field Application
Engineer.

2.4.5 Pragmas and Attributes

Pragmas

While the c29clang compiler does support some of the same pragma directives that the cl2000
compiler supports, there are several pragma directives supported by cl2000 that are not supported
by c29clang. Some of these can be converted into their functionally equivalent attribute or pragma
forms while others may be supported in an indirect way or not supported at all. This section walks
through all of the pragma directives that are supported in the cl2000 compiler, providing guidance
on how to transition each pragma directive for a project to be built with the c29clang compiler.

In general, if there is a c29clang functionally equivalent attribute or pragma form for an cl2000
pragma directive, these should be converted to attribute or pragma form. The use of GNU-like
attributes and pragmas in C/C++ source code is very likely to be portable between cl2000 and
c29clang.

cl2000 Pragmas to be Converted to Attribute or Pragma Form

Listed below are several commonly occurring cl2000 pragmas that, when converted to attribute
form, are supported by the c29clang compiler.

• CODE_ALIGN pragma -> aligned attribute

cl2000 pragma:

#pragma CODE_ALIGN(func_name, n)

c29clang functionally equivalent attribute:

__attribute__((aligned(n)))

The CODE_ALIGN pragma aligns the function along the specified alignment
boundary. The alignment constant must be a power of 2. The CODE_ALIGN
pragma is useful if you have functions that you want to start at a certain boundary.

• CODE_SECTION pragma -> section attribute

2.4. Migrating C and C++ Source Code 94

http://www.ti.com/lit/pdf/spru514
http://www.ti.com/lit/pdf/spru514

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

cl2000 pragma:

#pragma CODE_SECTION(func_name, "scn_name")

c29clang functionally equivalent attribute:

__attribute__((section("scn_name")))

The section attribute can be used to instruct the compiler to generate code associ-
ated with a function into a section called scn_name.

• DATA_ALIGN pragma -> aligned attribute

cl2000 pragma:

#pragma DATA_ALIGN("sym_name", alignment)

c29clang functionally equivalent attribute:

__attribute__((aligned(alignment)))

The aligned attribute instructs the compiler to align the address where the data ob-
ject that the attribute is associated with is defined to a specified alignment bound-
ary (where alignment is indicated in bytes and must be a power of two).

• DATA_SECTION pragma -> section attribute

cl2000 pragma:

#pragma DATA_SECTION(sym_name, "scn_name")

c29clang functionally equivalent attribute:

__attribute__((section("scn_name")))

The section attribute can be used to instruct the compiler to generate the definition
of a data object into a section called scn_name.

• FORCEINLINE pragma -> [[clang::always_inline]] statement attribute

cl2000 pragma:

#pragma FORCEINLINE

c29clang functionally equivalent attribute:

[[clang::always_inline]] *statement*;

The [[clang::always_inline]] statement attribute can be used before a statement to
cause any function calls made in that statement to be inlined. It has no effect on

2.4. Migrating C and C++ Source Code 95

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

other calls to the same functions. It cannot be used as a prefix for a declaration
statement, even if that statement calls a function. For example:

[[clang::always_inline]] myFunc1(); // attempts to
→˓inline myFunc1
[[clang::always_inline]] i = myFunc2(); // attempts

→˓to inline myFunc2

The [[clang::always_inline]] attribute is part of the C23 and C++11 standards.

This attribute does not force inline substitution to occur. The compiler only in-
lines a function if it is legal to inline the function. Functions are never inlined
if the compiler is invoked with the -O0 or -fno-inline-functions option. If the -
finline-functions or -O2 (or higher) option is used, the compiler attempts to inline
functions even if they are not called with the [[clang::always_inline]] attribute.
See Optimization Options for more about inlining.

• FUNC_ALWAYS_INLINE pragma -> always_inline function attribute

cl2000 pragma:

#pragma FUNC_ALWAYS_INLINE(func_name)

c29clang functionally equivalent attribute:

__attribute__((always_inline))

The always_inline attribute instructs the compiler to inline the definition of the
function the attribute precedes wherever it is referenced in the C/C++ source code
for an application.

• FUNC_CANNOT_INLINE pragma -> noinline attribute

cl2000 pragma:

#pragma FUNC_CANNOT_INLINE(func_name)

c29clang functionally equivalent attribute:

__attribute__((noinline))

The noinline function attribute indicates to the compiler that it should not attempt
to inline the function the attribute is associated with (func_name).

• LOCATION pragma -> location attribute

cl2000 pragma:

2.4. Migrating C and C++ Source Code 96

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

#pragma LOCATION(address)

c29clang functionally equivalent attribute:

__attribute__((location(address)))

The location attribute can be used to instruct the compiler to generate information
for the linker to dictate the specific memory address where the data object the
attribute is associated with (sym_name) is to be placed.

• NOINIT pragma -> noinit attribute

cl2000 pragma:

#pragma NOINIT(sym_name)

c29clang functionally equivalent attribute:

__attribute__((noinit))

The noinit attribute instructs the compiler to pass instructions to the linker to
ensure that a global or static data object that the attribute is associated with
(sym_name) does not get initialized at startup or reset.

• NOINLINE pragma -> [[clang::noinline]] statement attribute

cl2000 pragma:

#pragma NOINLINE

c29clang functionally equivalent attribute:

[[clang::noinline]] *statement*;

The [[clang::noinline]] statement attribute can be used before a statement to pre-
vent any function calls made in that statement from being inlined. It has no effect
on other calls to the same functions. It cannot be used as a prefix for a declaration
statement, even if that statement calls a function. For example:

[[clang::noinline]] myFunc1(); // prevents inlining
→˓of myFunc1
[[clang::noinline]] i = myFunc2(); // prevents

→˓inlining of myFunc2

The [[clang::noinline]] attribute is part of the C23 and C++11 standards.

See Optimization Options for more about inlining.

• PERSISTENT pragma -> persistent attribute

2.4. Migrating C and C++ Source Code 97

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

cl2000 pragma:

#pragma PERSISTENT(sym_name)

c29clang functionally equivalent attribute:

__attribute__((persistent))

The persistent attribute can be applied to a statically initialized data object to
indicate to the compiler that the data object that the attribute is associated with
(sym_name) need not be initialized at startup. The data object sym_name will
be given an initial value when the application is loaded, but it is never again
initialized.

• RETAIN pragma -> retain or used attribute

cl2000 pragma:

#pragma RETAIN(sym_name)

c29clang functionally equivalent attribute:

__attribute__((retain))
__attribute__((used))

The retain or used attribute, when applied to a function or a data object, indi-
cates to the linker that the section in which the function or data object is defined
must be included in the linked application, even if there are no references to the
function/data object.

• SET_CODE_SECTION pragma -> clang section text pragma

cl2000 pragma:

#pragma SET_CODE_SECTION("scn_name")

c29clang functionally equivalent pragma:

#pragma clang section text="scn_name"

This pragma will place enclosed functions within a named section, which can
then be placed with the linker using a linker command file. Note that use of the
section attribute will take priority over this pragma, and using the pragma means
that enclosed functions will not be placed in individual subsections.

The pragma can be reset by using

#pragma clang section text=""

2.4. Migrating C and C++ Source Code 98

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• SET_DATA_SECTION pragma -> clang section data pragma

cl2000 pragma:

#pragma SET_DATA_SECTION("scn_name")

c29clang functionally equivalent pragma:

#pragma clang section data="scn_name"

This pragma will place enclosed variables within a named section, which can
then be placed with the linker using a linker command file. Note that use of the
section attribute will take priority over this pragma, and using the pragma means
that enclosed variables will not be placed in individual subsections.

The pragma can be reset by using

#pragma clang section data=""

• UNROLL pragma -> clang loop unroll pragma

cl2000 pragma:

#pragma UNROLL(n)

c29clang functionally equivalent pragmas:

#pragma clang loop unroll_count(n)

The c29clang compiler supports a clang loop unroll_count(n) pragma, where n is
a positive integer indicating the number of times to unroll the loop in question. If
the specified value for n is greater than the loop trip count, then the loop will be
fully unrolled.

• WEAK pragma -> weak attribute

cl2000 pragma:

#pragma #pragma WEAK(sym_name)

c29clang functionally equivalent attribute:

__attribute__((weak))

The weak attribute can be used to mark a symbol definition as having weak
binding. If a strong definition of the symbol the attribute is associated with
(sym_name) is available from an input object file at link time, it will preempt
this weak definition. However, if a strong definition of sym_name is available in

2.4. Migrating C and C++ Source Code 99

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

a referenced archive file, then the linker will not automatically pull in the strong
definition from the archive file to preempt the weak definition.

cl2000 Pragmas That Are Not Available in c29clang

The following cl2000 pragma directives are not supported by the c29clang compiler and don’t have
a functionally equivalent attribute form:

• CLINK

#pragma CLINK(sym_name)

• FORCEINLINE_RECURSIVE

#pragma FORCEINLINE_RECURSIVE)

• FUNC_EXT_CALLED

#pragma FUNC_EXT_CALLED(func_name)

• FUNCTION_OPTIONS

#pragma FUNCTION_OPTIONS(func_name, "added_opts")

• MUST_ITERATE

#pragma MUST_ITERATE(min[, max[, multiple]])

• NO_HOOKS

#pragma NO_HOOKS(func_name)

For more information about these pragmas and how they function, please refer to the TMS320C28x
Optimizing C/C++ Compiler User’s Guide (Section 6.9).

Attributes

Both the cl2000 and c29clang compilers support the notion of attributes that can be applied to
functions, variables, or types. The attributes supported in cl2000 and c29clang follow the guide-
lines for attributes that can be found in the Extensions to the C Language Family section of the
GNU Compiler Collection user guide.

This section provides details of which function, variable, and type attributes are supported in both
the cl2000 and c29clang compilers. This section also provides details about which attributes are
supported in the cl2000 compiler, but not the c29clang compiler. References to these attributes

2.4. Migrating C and C++ Source Code 100

http://www.ti.com/lit/pdf/spru514
http://www.ti.com/lit/pdf/spru514

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

in your application’s source code will need to be addressed in some way before attempting to
compile your application with the c29clang compiler. Finally, this section provides information on
additional attributes that are supported in the c29clang compiler, but not the cl2000 compiler.

Function Attributes

The function attributes listed below are supported in both the cl2000 and c29clang compilers.
Please consult the Declaring Attributes of Functions page of the GNU Compiler Collection for
more details about what they do.

• alias

__attribute__((alias("target_fcn"))

Declare function to be an alias of “target_fcn”.

• always_inline

__attribute__((always_inline))

Compiler should inline the definition of this function wherever it is referenced in the
application’s source code.

• const

__attribute__((const))

Function has no effect except to compute the return value.

• constructor

__attribute__((constructor))

This function needs to be called/executed before main().

• format

__attribute__((format(archetype, string_index, first_to_check)))

Function takes printf, scanf, strftime, or strfmon style arguments which should be type-
checked against a format string. The string_index argument indicates which function
argument is the format string. The first_to_check argument indicates the first function
argument that is to be checked against the format string.

• format_arg

__attribute__((format_arg(string_index)))

2.4. Migrating C and C++ Source Code 101

https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The function argument indicated by string_index is to be interpreted as a format string
when passed to a printf, scanf, strftime, or strfmon function that is called from the
function that the format_arg attribute is applied to.

• interrupt

__attribute__((interrupt("int_kind")))

In cl2000, the available “int_kind”s are: DABT, FIQ, IRQ, PABT, RESET, or UNDEF.
In c29clang, “int_kind” can be: IRQ, FIQ, SWI, ABORT, or UNDEF.

• malloc

__attribute__((malloc))

Function may be treated by the compiler as if it were a malloc function.

• naked

__attribute__((naked))

Function is to be treated as an embedded assembly function.

• noinline

__attribute__((noinline))

Compiler should not attempt to inline this function.

• noreturn

__attribute__((noreturn))

Calls to this function will never return to their caller.

• pure

__attribute__((pure))

This function has no effect except to compute the return value which is dependent only
on the arguments passed into the function and/or global variables.

• section

__attribute__((section("scn_name"))

Generate code for the definition of this function into a section named “scn_name”.

• unused

2.4. Migrating C and C++ Source Code 102

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

__attribute__((unused))

This function might not be used by an application. The attribute can be useful in that
the compiler knows not to generate a warning when the function is in fact not used.

• used

__attribute__((used))
__attribute-_((retain))

Generate code for this function even if the compiler knows that there are no refer-
ences to the function. This attribute is also a synonym for c29clang’s retain attribute
which tells the linker to include this function in the link whether or not it is referenced
elsewhere in the application.

• warn_unused_result

__attribute__((warn_unused_result))

Compiler will generate a warning if any callers to this function do not use the func-
tion’s return value.

• weak

__attribute__((warn_unused_result))

The definition of this function is considered “weak” meaning that it will be preempted
if a strong definition of the function is encountered among the object files specified
to the linker. Note, however, that if a strong definition of the function is contained in
a referenced archive, it will not automatically be pulled into the link to preempt the
weak definition of the function.

The following list of cl2000 function attributes are not supported in the c29clang compiler:

• aligned

• calls

• deprecated

• ramfunc

2.4. Migrating C and C++ Source Code 103

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Variable Attributes

The variable attributes listed below are supported in both the cl2000 and c29clang compilers.
Please consult the Specifying Attributes of Variables page of the GNU Compiler Collection for
more details about what they do.

• aligned

__attribute__((aligned(alignment)))

Align this data object to a minimum of the specified alignment argument. The align-
ment argument must be a power of 2.

• deprecated

__attribute__((deprecated))

If there are references to this data object in the current application, then the compiler
should generate a warning about remaining references to this data object which has
been marked deprecated.

• location

__attribute__((location(address)))

The compiler will instruct the linker to place this data object at a specific address at
link time.

• noinit

__attribute__((noinit))

The compiler will not auto-initialize this data object.

• packed

__attribute__((packed))

The packed attribute can be applied to individual fields within a struct or union. This
tells the compiler to relax alignment constraints for a struct or union member that may
be larger than a byte in size. A packed member of a struct or union will be aligned on
a byte boundary and may require an unaligned load or store instruction to be properly
accessed.

• persistent

__attribute__((persistent))

2.4. Migrating C and C++ Source Code 104

https://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

This data object is initialized once and is not re-initialized again in the event of a
processor reset.

• section

__attribute__((section("scn_name")))

Generate the definition of this data object into a section named “scn_name”.

• transparent_union

__attribute__((transparent_union))

The transparent_union attribute may be applied to the specification of a union type. If
a function is declared with a parameter of this union type, then the argument type at
the call site to the function determines which member of the union is initialized. A
transparent union can accept an argument of any type that matches that of one of its
members without an explicit cast.

Transparent unions are not supported in C++.

• unused

__attribute__((unused))

Avoid generating a diagnostic at compile time if this data object is not referenced.

• used

__attribute__((retain))
__attribute__((used))

Retain the definition of this static data object even if it is not referenced in the com-
pilation unit where it is defined. In the c29clang compiler the used attribute acts as
a synonym for the c29clang’s retain attribute which instructs the linker to include the
definition of this data object in the link even if it is not referenced elsewhere in the
application.

• weak

__attribute__((weak))

The weak attribute marks the definition of the variable that it is being applied to as
a “weak” definition, meaning that if a strong definition of the same variable is pro-
vided to the link in another input object file, then that definition will preempt the weak
definition of the variable. Note, however, that if a strong definition is present in a ref-
erenced archive file, the linker will not automatically pull in the strong definition of
the variable from the archive to preempt the weak definition.

2.4. Migrating C and C++ Source Code 105

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The following list of cl2000 variable attributes are not supported in the c29clang compiler:

• aligned

• blocked

• mode

• noblocked

• preserve

• update

Type Attributes

• aligned

__attribute__((aligned(alignment)))

The aligned attribute, when applied to a type, instructs the compiler to align the address
where a data object is defined of that type to a minimum of the specified alignment
argument. The alignment argument must be an integer constant that is a power of 2.

• deprecated

__attribute__((deprecated))

The deprecated attribute instructs the compiler to emit warnings for any references to
a type with this attribute. This is useful for finding remaining references to a type that
should no longer be used by an application.

• packed

__attribute__((packed))

The packed attribute may be applied to a struct or union type definition. Members
of a packed data structure are stored as closely to one another as possible, omitting
additional bytes of padding between fields that would have been necessary to preserve
alignment of a member within a structure. The packed attribute can only be applied to
the original definition of a struct or union type. It cannot be applied with a typedef to
a non-packed data structure type that has already been defined, nor can it be applied to
the declaration of a struct or union data object.

• transparent_union

__attribute__((transparent_union))

2.4. Migrating C and C++ Source Code 106

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The transparent_union attribute may be applied to the specification of a union type. If
a function is declared with a parameter of this union type, then the argument type at
the call site to the function determines which member of the union is initialized. A
transparent union can accept an argument of any type that matches that of one of its
members without an explicit cast.

Transparent unions are not supported in C++.

• unused

__attribute__((unused))

Avoid generating a diagnostic at compile time if this type is not referenced.

The following list of cl2000 type attributes are not supported in the c29clang compiler:

• byte_peripheral

For Loop Attributes

• TI::unroll for loop attribute -> clang loop unroll pragma

cl2000 attribute:

[[TI::unroll(4)]]
for (...)
{

...
}

c29clang functionally equivalent pragma:

#pragma unroll 4
for (...)
{

...
}

The following cl2000 for loop attributes are not supported in the c29clang compiler:

• TI::must_iterate

2.4. Migrating C and C++ Source Code 107

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

2.4.6 Migrating CLA Code

The TI C28x (cl2000) compiler also compiles for the Control Law Accelerator (CLA). This accel-
erator is not needed when using TI C29x devices because of their improved performance over TI
C28x devices.

In TI C28x applications, files with a .cla file extension and files compiled using the --cla_default
command-line option use the CLA compiler. The CLA compiler can be used only with C source
files, not with C++ source files.

When migrating C code that was compiled with CLA compiler, examine your code to see if
changes are needed. In general, the CLA compiler is more restrictive than the general cl2000
compiler. For this reason, few changes are needed to migrate code that was compiled with the
CLA compiler.

Look for the following CLA-specific code and make changes as needed:

• CLA intrinsics: See Table 10-2 in the TMS320C28x Optimizing C/C++ Compiler User’s
Guide (Section 10.2.2) for a list of intrinsics that were recognized only by the CLA compiler.
Find an equivalent c29clang intrisic or write C/C++ code to accomplish the desired behavior.

• Int sizes: The int size for CLA is 32 bits, which is the same size used for c29clang, but
different from the TI C28x int size of 16 bits.

• Pointer sizes: Pointer sizes for CLA are 16 bits, but for c29clang are 32 bits.

• Section names: Sections called .bss_cla and .const_cla are specific to the CLA compiler and
should be changed to .bss and .const. The .scratchpad section was used in place of a system
stack.

You may also want to simplify code that was written in a more compilcated way to work around
CLA limitations. Some of the CLA compiler limitations, which are not present for the c29clang
compiler, were as follows:

• Global and static data were not supported.

• CLA code could not call C28x functions.

• Recursive function calls were not supported.

• Function pointers were not supported.

• C standard libraries were not supported.

• There was no C system heap, because there was no support for the malloc() function.

• Data shared between C28x and CLA compilers had to be defined in the C28x code.

• CLA0 and CLA1 did not support background tasks.

2.4. Migrating C and C++ Source Code 108

http://www.ti.com/lit/pdf/spru514
http://www.ti.com/lit/pdf/spru514

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

2.5 Migrating Linker Command Files for Use With
c29clang

To a large extent, linker command files for C29x applications that manage the placement of code
and data generated by the cl2000 compiler will also work with object files that are generated by
the c29clang compiler. However, a few adjustments may be needed to make your linker command
file c29clang-friendly.

2.5.1 Explicit Specification of Compiler-Generated Object Files and
Libraries

If your linker command file refers to specific object files, you may need to adjust how those files
are referenced. There are two significant differences that you are likely to run into:

• When compiling and linking in a single step, the c29clang compiler creates temporary names
for compiler-generated object files. For example, given a C source file named xyz.c, the
c29clang compiler generates a temporary object file called xyz-<auto generated number se-
quence>.o that you might want to reference from your linker command file. You should
reference such an object file using a wild-card, ‘xyz*.o’.

• The c29clang compiler generates object files with a ‘.o’ file extension, whereas the default
file extension for an cl2000-generated object file is ‘.obj’. You will need to update references
to specific object files in your linker command file to use the ‘.o’ file extension instead of the
‘.obj’ file extension.

2.5.2 Compiler-Generated Section Names

Both the c29clang and cl2000 compilers generate code and data into object file sections. However,
there are some differences to be aware of:

Compiler-Generated Section Names:

Section Description cl2000 Generated Section c29clang Generated Section
function definitions / code .text .text
const data .const .const, .rodata
initialization tables .cinit .cinit
initialized data .data .data
uninitialized data .bss .bss

As you will notice, the difference is that the c29clang compiler-generated string constants and
some other constants into the .rodata section. In the linker command file, you may need to account
for the placement of .rodata sections.

2.5. Migrating Linker Command Files for Use With c29clang 109

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Other sections that you typically find in a C29x application are typically defined in the C/C++
runtime libraries and underlying run-time operating system layer.

RTS or RTOS Defined Section Names:

Section Description cl2000 Generated Section c29clang Generated Section
arguments (argc/argv) .args .args
stack space .stack .stack
heap space .sysmem .sysmem

2.5.3 Linker Options

The --rom_model (-c) linker option, which is the default for cl2000, is not set by default by the
c29clang compiler when running the linker. Therefore, either the -rom_model (-c) or --ram_model
(-cr) option must be passed to the linker using either -Xlinker or -Wl on the c29clang command
line or must be specified in the linker command file.

2.6 Migrating Assembly Language Source Code

Applications developed with the cl2000 compiler tools may include some source code written in
assembly language.

Use of assembly language is discouraged for c29clang, except for assembly code embedded in
C/C++ source files via asm() statements, which are processed inline by the c29clang integrated
GNU-syntax assembler. For this reason, the TI C29x assembly language syntax is not documented.

When migrating a TI C28x application that contains assembly language source files to a TI C29x
application, it is recommended that you convert assembly language to C/C++ code.

2.6.1 Converting Proprietary TI C29x asm() Statements Embedded in
C/C++ Source

Embedded in the C/C++ source code for your TI C29x application, you may be making use of
asm() statements. In general, asm() statements are used to insert literal assembly language code
into the compiler generated code for a given compilation unit. The cl2000 compiler supports
a no-frills implementation of asm() statements; what you specify in the string argument to the
asm() statement is exactly what will be inserted into the compiler generated code. The cl2000’s
implementation of asm() statements does not support the notion of C expression operands, for
example.

2.6. Migrating Assembly Language Source Code 110

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The c29clang compiler supports the GCC-style asm() statements that allows for specifying C ex-
pression operands. For example, the following definition of add() contains an example of an em-
bedded GCC-style asm() statement:

int add(int i, int j) {
int res;
asm("\tADD %0, %1, %2\n"

: "=r" (res)
: "r" (i), "r" (j));

return res;
}

where (res) is an output operand and (i) and (j) are input operands. If compiled with optimization
(-O1 option), the c29clang compiler will generate the following instructions for the above function:

add:
add r0, r1
bx lr

For more information about using GCC-style asm() statements, please refer to How to Use Inline
Assembly Language in C Code in the C Extensions part of Using the GNU Compiler Collection
(GCC) online documentation.

Note: Use Caution When Defining Symbols Inside an asm() Statement

Inlining a function that contains an asm() statement that contains a symbol definition when com-
piling with the c29clang compiler can cause a “symbol multiply defined” error.

Please see Inlining Functions that Contain asm() Statements for more details.

2.6. Migrating Assembly Language Source Code 111

https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc/Using-Assembly-Language-with-C.html#Using-Assembly-Language-with-C
https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc/Using-Assembly-Language-with-C.html#Using-Assembly-Language-with-C
https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc/index.html
https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc/index.html

CHAPTER

THREE

C29CLANG COMPILER USER MANUAL

The TI C29x Clang Compiler Tools, commonly referred to in this user guide as c29clang, support
the development of software applications intended to run on a C29x processor.

This section of the documentation provides a detailed description of each of the parts of the
c29clang compiler toolchain. It provides guidance on how these tools can be used to develop
C29x applications.

Contents:

3.1 Using the C/C++ Compiler

This section of the c29clang Compiler User Manual describes the c29clang compiler, the compiler
options that can be specified on the c29clang command-line, and how the compiler works with the
linker to produce static executables that can be loaded and run on a C29x processor.

Contents:

3.1.1 About the Compiler

The TI C29x Clang Compiler (c29clang) lets you compile, optimize, and link an application in one
step. The compiler performs the following steps on one or more source modules:

• The c29clang compiler compiles one or more of the following types of input files:

– C source files (with .c file extension)

– C++ source files (with .C and/or .cpp file extensions)

Note: The -x option can be used on the c29clang command line to instruct the compiler how to
interpret input files if the default file extension interpretation is not appropriate for your application.
For more information about the -x option, see Using -x Option to Control Input File Interpretation.

112

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Internally, the c29clang compiler generates assembly code and assembles the assembly files
to create object modules. But, you do not need to be concerned with assembly code when
using the C29x code generation tools.

• By default, the c29clang compiler then invokes the linker to create a static executable file
from the object modules that were generated in the compile/assemble step. (The linker is
also available using the c29lnk command line.)

Note: The link step can be disabled using the -c option on the c29clang command line. See Stop
Compiler After Object File Output (Omit Linking)

3.1.2 Invoking the Compiler

Usage

To invoke the c29clang compiler, enter:

c29clang [options] [filenames]

• c29clang - Command that runs the compiler and other tools (the linker, for example).

• options - Options that affect the way that the compiler tools process input files. These may
include:

– c29clang options - affect the behavior of the C/C++ compiler. These are described in
more detail in the Compiler Options section.

– Linker options - are prefixed with either the -Wl, or -Xlinker option indicating that the
option that follows should be passed directly to the linker. Linker options are described
in more detail in Linker Options. See Passing Linker Options: -Wl, and -Xlinker for
more about passing options to the linker.

Note: The linker is invoked by default from a c29clang command line, but you can
disable the link step by specifying the -c option on the c29clang command line. You
can invoke the linker by itself using the c29lnk command line.

• filenames - One or more input files. These may include:

– C source files - by default, an input file with a .c file extension is interpreted as a C
source file. You may also use the -x c option to instruct c29clang to interpret subsequent
input files as C source files.

– C++ source files - by default, an input file with a .C or .cpp file extension is interpreted
as a C++ source file. You may also use the -x c++ option to instruct c29clang to
interpret subsequent input files as C++ source files.

3.1. Using the C/C++ Compiler 113

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

– ELF object files - by default, an input file with a .o file extension is interpreted as an
ELF object file.

Note: For more information about the c29clang -x option and controlling how c29clang interprets
input files, see the Using -x Option to Control Input File Interpretation section.

Example

The following simple example shows how the c29clang command can be used to build an ELF
format static executable file that can be loaded and run on a C29x processor.

Source Files There are two input files to specify on the c29clang command line.

The C file print_global.c references a global variable that is defined in a second C file def_global.c
and prints out the value of that global variable.

Contents of print_global.c:

1 #include <stdio.h>
2

3 extern int a_global;
4

5 int main() {
6 printf("a_global: %d\n", a_global);
7 return 0;
8 }

Contents of def_global.c:

1 #ifdef __ti_version__
2 #define a_global 12345
3 #else
4 #error "a_global is not defined"
5 #endif /* __ti_version__ */

In addition, the linker command file lnkme.cmd is stored in the current working directory. This
linker command file provides a specification of the available memory and how to place com-
piler/linker generated output sections in that memory.

Contents of lnkme.cmd:

/
→˓**/
→˓

(continues on next page)

3.1. Using the C/C++ Compiler 114

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

/* lnk.cmd - V1.00 Command file for linking C29 programs
→˓ */
/

→˓**/
→˓

/* This linker command file assumes C/C++ model
→˓ */
/

→˓**/
→˓

-c
-stack 0x8000 /* Software stack

→˓size */
-heap 0x2000 /* Heap area size

→˓ */

/* Specify the system memory map */
MEMORY
{

ROM : org = 0x00000020 len = 0x2FFFE0 /* 1.25 GB */
FLASH : org = 0x10000000 len = 0x300000 /* 1.25 GB */
RAM : org = 0x18000000 len = 0x300000 /* 1.25 GB */

}
#define RO_CODE FLASH
#define RO_DATA FLASH
#define RW_DATA RAM

/* Specify the sections allocation into memory */

SECTIONS
{

.text : {} > RO_CODE /* Code
→˓ */

.cinit : {} > RO_DATA /* Initialization tables
→˓ */

.const : {} > RO_DATA /* Constant data
→˓ */

.pinit : {} > RO_DATA /* C++ Constructor tables
→˓ */

.data : {} > RW_DATA /* Initialized variables
→˓ */

(continues on next page)

3.1. Using the C/C++ Compiler 115

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

.bss : {} > RW_DATA /* Uninitialized
→˓variables */

.stack : {} > RW_DATA /* Software system stack
→˓ */

.sysmem : {} > RW_DATA /* Dynamic memory
→˓allocation area */
}

Compile and Link Steps Explained The following c29clang command compiles and links the
input files to create a static executable file called a.out:

%> c29clang -mcpu=c29.c0 print_global.c def_global.c -o a.out -
→˓Xlinker lnkme.cmd

The above c29clang command performs the following actions during the process of building the
static executable file a.out:

Compile and Link (Default Operation)

The default behavior of the c29clang compiler is to compile the specified source files into tempo-
rary object files, and then pass those object files along with any explicitly specified object files and
any specified linker options to the linker.

In the following example, assume that the C code in file1.c references a data object that is defined
in an object file named file2.o. The specified c29clang command compiles file1.c into a temporary
object file. That object file, along with file2.o and a linker command file, link_test.cmd, is input
to the linker and linked with applicable object files from the c29clang runtime libraries to create
an executable output file named test.out:

c29clang -mcpu=c29.c0 file1.c file2.o -o test.out -Wl,link_test.
→˓cmd

More About Invoking the Linker With c29clang

Note that there is no mention of the c29clang runtime libraries on the c29clang command line or
inside of the link_test.cmd linker command file. When the linker is invoked from the c29clang
command line, the c29clang compiler implicitly tells the linker where to find applicable runtime
libraries like the C runtime library (libc.a).

More specifically, the following options are implicitly passed from c29clang directly to the linker:

3.1. Using the C/C++ Compiler 116

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-I<install directory>/lib
--start-group -llibc++.a -llibc++abi.a -llibc.a -llibsys.a \

-llibsysbm.a -llibclang_rt.builtins.a \
-llibclang_rt.profile.a --end-group

• -I <install directory>/lib - tells the linker where to find the c29clang runtime libraries

• --start_group/--end_group - specifies exactly which runtime libraries are incorporated into
the link

In the above c29clang command line, the -Wl, prefix in front of the specification of the
link_test.cmd file name indicates to the compiler that the link_test.cmd file should be input di-
rectly into the linker (you can also use the -Xlinker prefix for this purpose).

Run Preprocesser Only

The -E option causes the compiler to halt after running the C preprocessor and send the prepro-
cessed output to the output location.

c29clang -E [options] [filenames]

If no other options on the command line specify an output location, the preprocessed output is sent
to stdout. If, for example, the -E option is used in combination with the -o option, the preprocessed
output is sent to the file specified with the -o option. In this case, the file that would normally be a
binary object file instead contains text.

The -E option is often combined with other preprocessor options like -dD, -dI, or -dM to further
regulate the behavior of the C preprocessor. In the following example, the -E option is combined
with -dD to print macro definitions in addition to normal preprocessor output:

c29clang -mcpu=c29.c0 -E -dD file1.c

For more information about preprocessor options, see the Preprocessor Options section.

Run Preprocesser and Syntax-Checking Only

The -fsyntax-only option instructs c29clang to run the C preprocessor, parse the C/C++ input file
to check for syntax errors, and perform type checking before halting compilation.

c29clang -fsyntax-only [options] [filenames]

The -fsyntax-only option can be useful for finding simple syntax and type usage errors in the
C/C++ source without incurring additional compile time early on in the development of newly
written code.

3.1. Using the C/C++ Compiler 117

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Stop Compiler After Assembly Output

Note: Internally, the c29clang compiler normally generates assembly code and assembles the
assembly code to create object modules. You do not need to be concerned with assembly code
when using the C29x code generation tools. The assembly syntax for C29x is undocumented; it
may change without notice in future versions.

Using the -S option causes the compiler to generate assembly files from C or C++ source files
that are specified on the command line. When -S is specified on the command line, compilation
stops after the assembly files are emitted, preventing the compiler from generating object files or
invoking the linker.

c29clang -S [options] [filenames]

The following example generates assembly files, file1.s and file2.s, each containing compiler-
generated GNU-syntax C29x assembly language directives and instructions:

c29clang -S -mcpu=c29.c0 file1.c file2.c

Stop Compiler After Object File Output (Omit Linking)

You can avoid invoking the linker by specifying the -c option on the c29clang command line.

c29clang -c [options] [filenames]

The following example generates object files file1.o and file2.o from the C files file1.c and file2.c,
respectively:

c29clang -c -mcpu=c29.c0 file1.c file2.c

3.1.3 Compiler Options

This section of the c29clang Compiler User Manual serves as a reference guide for the available
command-line options that affect the behavior of the c29clang executable.

Contents:

3.1. Using the C/C++ Compiler 118

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Commonly Used Options

The commonly used options listed in the subsections below are available on the c29clang compiler
command line.

• Processor Options

• Include Options

• Predefined Symbol Options

• Optimization Options

• Debug Options

• Control Options

• Compiler Output Option

Processor Options

Select a Target C29x Processor

-mcpu=<processor>

Select the target <processor> version.

The c29clang compiler currently supports only the following C29x processor variant:

• -mcpu=c29.c0 - C29x instructions

If the -mcpu option is not specified on the c29clang command-line, the compiler assumes a default
of -mcpu=c29.c0.

Endianness

C29x devices are always little-endian. No command-line options are provide to specify or change
this.

3.1. Using the C/C++ Compiler 119

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Floating-Point Support Options

The C29x CPU can perform native 32-bit and 64-bit floating-point hardware operations on the
CPU, without sending data to a separate FPU for processing.

-mfpu=<arg>

Native support for 32-bit floating-point operations is always provided for C29x. Optionally, you
can also enable 64-bit hardware instructions for floating-point operations using the -mfpu option,
which can have either of the following settings:

• -mfpu=none - Use native 32-bit floating-point hardware operations, but emulate 64-bit
floating-point operations in software.

• -mfpu=f64 - Use native 32-bit and 64-bit floating-point hardware operations.

Include Options

The c29clang compiler utilizes the include file directory search path to locate a header file that is
included by a C/C++ source file via an #include preprocessor directive. The c29clang compiler im-
plicitly defines an initial include file directory search path to contain directories relative to the tools
installation area where C/C++ standard header files can be found. These C/C++ standard header
files are considered part of the c29clang compiler package and should be used in combination with
linker and the runtime libraries that are included in the c29clang compiler tools installation.

-I<dir>

The -I option lets you add your own directories to the include file directory path, allowing
user-created header files to be easily accessible during compilation.

Predefined Symbol Options

In addition to the pre-defined macro symbols that the c29clang compiler defines depending on
which processor options are selected, you can also manage your own symbols at compile-time
using the -D and -U options. These options are useful when the source code is configured to
behave differently based on whether a compile-time symbol is defined and/or what value it has.

-D<name>[=<value>]

A user-created pre-defined compile symbol can be defined and given a value using the -D
option. In the following example, MySym will be defined and given a value 123 at compile-
time. MySym will then be available for use during the compilation of the test.c source
file.

c29clang -mcpu=c29.c0 -DMySym=123 -c test.c

3.1. Using the C/C++ Compiler 120

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-U<name>

The -U option can be used to cancel a previous definition of a specified <name> whether it
was pre-defined implicitly by the compiler or with a prior -D option.

Optimization Options

To enable optimization passes in the c29clang compiler, select a level of optimization from among
the following -O[0|1|2|3|fast|g|s|z] options. In general, the options below represent various levels
of optimization with some options designed to favor smaller compiler generated code size over
performance, while others favor performance at the cost of increased compiler generated code
size.

Among the options listed below, -Oz is recommended as the optimization option to use if small
compiler generated code size is a priority for an application. Using -Oz retains performance gains
from many of the -O2 level optimizations that are performed.

-O0

No optimization. This setting is not recommended, because it can make debugging difficult.

-O1 or -O

Restricted optimizations, providing a good trade-off between code size and debug-ability.

-O2

Most optimizations enabled; some optimizations that require significantly additional compile
time are disabled.

-O3

All optimizations available at -O2 plus others that require additional compile time to per-
form.

-Ofast

All optimizations available at -O3 plus additional aggressive optimizations with potential
for additional performance gains, but also not guaranteed to be in strict compliance with
language standards.

-Og

Restricted optimizations while preserving debuggability. All optimizations available at -O1
are performed with the addition of some optimizations from -O2.

-Os

All optimizations available at -O2 plus additional optimizations that are designed to reduce
code size while mitigating negative impacts on performance.

-Oz

All optimizations available at -O2 plus additional optimizations to further reduce code size
with the risk of sacrificing performance.

3.1. Using the C/C++ Compiler 121

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Note: Optimization Option Recommendations:

• The -O1 option is recommended for maximum debuggability.

• The -Oz option is recommended for optimizing code size.

• The -O3 option is recommended for optimizing performance, but it is likely to increase
compiler generated code size.

Debug Options

The c29clang compiler generates DWARF debug information if the -g or -gdwarf-3 option is
selected.

-g or -gdwarf-3

Emit DWARF version 3 debug information

Control Options

The default behavior of the c29clang compiler is to compile the specified source files into tempo-
rary object files, then pass those object files along with any explicitly specified object files and any
specified linker options to the linker.

Several c29clang compiler options can be used to change this behavior and halt compilation at
different stages:

-c

Stop compilation after emitting compiler-generated object files; do not call linker.

-E

Stop compilation after the pre-processing phase of the compiler; this option can be used in
conjunction with several other options that provide further control over the pre-processor
output:

• -dD - Print macro definitions in addition to normal preprocessor output.

• -dI - Print include directives in addition to normal preprocessor output.

• -dM - Print macro symbol definitions instead of normal preprocessor output.

-S

Stop compilation after emitting compiler-generated assembly files; do not call assembler or
linker.

See Invoking the Compiler for examples.

3.1. Using the C/C++ Compiler 122

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Compiler Output Option

-o<file>

The -o option names the output file that results from a c29clang command. If c29clang
is used to compile and link an executable output file, then the -o option’s <file> argu-
ment names that output file. If no -o option is specified in a compile and link invocation
of c29clang, then the linker produces an executable output file named a.out.

If the compiler is used to process a single source file, then the -o option names the output
of the compilation. This is sometimes useful in case there is a need to name the output file
from the compiler something other than what the compiler produces by default.

In the following example, the output object file from the compilation of C source file
task_42.c is named task.o by the -o option, replacing the task_42.o file that would normally
be generated by the compiler:

c29clang -mcpu=c29.c0 -c task_42.c -o task.o

Processor Options

• Select Processor

• Select Floating-Point Code Generated

• Select Endianness

Select Processor

-mcpu=<arg>

Instruct the compiler to generate code for the C29x processor variant indicated by <arg>, where
<arg> can be:

• c29.c0

Since only one C29x option is currently recognized, this setting is the default. The -mcpu option
is not required.

3.1. Using the C/C++ Compiler 123

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Select Floating-Point Code Generated

The C29x CPU can perform native 32-bit and 64-bit floating-point hardware operations on the
CPU, without sending data to a separate FPU for processing.

-mfpu=<arg>

Native support for 32-bit floating-point operations is always provided for C29x. Optionally, you
can also enable 64-bit hardware instructions for floating-point operations using the -mfpu option,
which can have either of the following settings:

• -mfpu=none - Use native 32-bit floating-point hardware operations, but emulate 64-bit
floating-point operations in software.

• -mfpu=f64 - Use native 32-bit and 64-bit floating-point hardware operations.

Select Endianness

C29x devices are always little-endian. No command-line options are provide to specify or change
this.

C/C++ Language Options

The c29clang compiler’s -std option allows you to specify which C or C++ language standard the
compiler should adhere to when processing C or C++ source files.

The supported C and C++ language variants are described below.

Note: Default C/C++ Language Standard

If no -std option is specified on the c29clang command line, then -std=gnu17 is assumed for C
source files and -std=gnu++17 is assumed for C++ source files.

C Language Variants (-std)

For C <language-variants> of the form cNN, the compiler pre-defines the __STRICT_ANSI__
macro symbol to 1.

-std=c89, -std=c90

C as defined in the ISO C 1990 standard

-std=c99, -std=c9x

C as defined in the ISO C 1999 standard

3.1. Using the C/C++ Compiler 124

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-std=c11, -std=c1x

C as defined in the ISO C 2011 standard

-std=c17, -std=c18

C as defined in the ISO C 2017 standard, which addressed C11 defects without adding any
new features

For C <language-variants> of the form gnuNN, GNU C language extensions are supported and
the compiler does not define the __STRICT_ANSI__ macro symbol.

-std=gnu89, -std=gnu90

C as defined in the ISO C 1990 standard with GNU extensions

-std=gnu99, -std=gnu9x

C as defined in the ISO C 1999 standard with GNU extensions

-std=gnu11, -std=gnu1x

C as defined in the ISO C 2011 standard with GNU extensions

-std=gnu17, -std=gnu18

C as defined in the ISO C 2017 standard with GNU extensions. This is the default for C files
if no -std option is defined.

C++ Language Variants (-std)

For C++ <language-variants> of the form c++NN, the compiler pre-defines the
__STRICT_ANSI__ macro symbol to 1.

-std=c++98, -std=c++03

C++ as defined in the ISO C++ 1998 standard with amendments

-std=c++11

C++ as defined in the ISO C++ 2011 standard with amendments

-std=c++14

C++ as defined in the ISO C++ 2014 standard with amendments

-std=c++17

C++ as defined in the ISO C++ 2017 standard with amendments

Note: C++ support is based on a library that is focused on support for C++17. If you specify an
earlier version of the C++ standard, it is not guaranteed that features that were not required by that
standard will be unsupported.

For C++ <language-variants> of the form gnuNN, GNU C language extensions are supported and
the compiler does not define the __STRICT_ANSI__ macro symbol.

3.1. Using the C/C++ Compiler 125

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-std=gnu++98, -std=gnu++03

C++ as defined in the ISO C++ 1998 standard with amendments and GNU extensions

-std=gnu++11

C++ as defined in the ISO C++ 2011 standard with amendments and GNU extensions

-std=gnu++14

C++ as defined in the ISO C++ 2014 standard with amendments and GNU extensions

-std=gnu++17

C++ as defined in the ISO C++ 2017 standard with amendments and GNU extensions. This
is the default for C++ files if no -std option is defined.

See Characteristics and Implementation of C29x C++ for details about C++ 2017 support.

C/C++ Run-Time Standard Header and Library Options

-nostdlib, --no-standard-libraries

Avoid linking in the C/C++ standard libraries. This is useful when partially linking an appli-
cation, or when you want to link against your own standards-compliant libraries.

-nostdinc, --no-standard-includes

Do not incorporate the C/C++ runtime header file directory, the compiler builtin include
directory, or the standard system include directory in the default definition of the include file
directory search path.

-nostdlibinc

Do not incorporate the C/C++ runtime header file directory or the standard system include
directory into the include file directory search path, but do incorporate the compiler’s builtin
include directory.

Run-Time Type Information (RTTI) Options

-frtti, -fno-rtti

The c29clang compiler allows you to support Run-Time Type Information (RTTI) features,
such as the dynamic_cast operator, the typeid operator, and the type_info class.

By default RTTI support is disabled, which is equivalent to using the -fno-rtti option.
When RTTI support is disabled, use of the typeid operator causes an error. Use of
dynamic_case causes an error only in certain situations.

To explicitly enable RTTI support, use the -frtti option.

3.1. Using the C/C++ Compiler 126

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Runtime Model Options

-fcommon, -fno-common

The -fcommon option is disabled by default.

For C source code, enabling this option causes uninitialized global variable definitions to
be treated as tentative definitions. If the -fcommon option is enabled, uninitialized global
variables are placed in a common block. The linker then resolves all tentative definitions of
the same global variable in different compilation units to a single data object definition.

-fdata-sections, -fno-data-sections

The -fdata-sections option is enabled by default and instructs the c29clang compiler to gen-
erate code for the definition of a data object into its own section. This default behavior can
be overridden by specifying the fno-datasections on the c29clang command line. You can
also dictate what section the data object will be defined in by attaching a section attribute to
the data object in the C/C++ source code.

-ffunction-sections, -fno-function-sections

The -ffunction-sections option is enabled by default and instructs the c29clang compiler to
generate code for a function definition into its own section. This default behavior can be
overridden by specifying the fno-function-sections on the c29clang command line. You can
also dictate what section the compiler will generate code for a function definition into by
attaching a section attribute to the function in the C/C++ source code.

-fshort-enums, -fno-short-enums

The -fshort-enums option instructs the compiler to only allocate as much space for an enum
type data object as is needed to represent the declared range of possible values. This is the
default behavior assumed by the c29clang behavior. You can override this default behavior
using the -fno-short-enums option that allocates 4 bytes for an enum type data object even if
the range of values for a given enum type data object can be represented with fewer bytes.

-fshort-wchar, -fno-short-wchar

The default size for the wchar_t type is 32-bits, which is analogous to the fno-short-wchar
option. The runtime libraries provided with the c29clang toolchain installation are all built
assuming a wchar_t type size of 32-bits. If you compile a C/C++ source file with the -
fshort-wchar option to indicate that the wchar_t type size should be assumed to be 16-bits,
you will encounter a link-time warning indicating that the newly compiled object file is not
compatible with object files in the runtime libraries.

-funsigned-char, -fsigned-char or -fno-unsigned-char

A plain char type is treated as unsigned char by default in the c29clang compiler. This
matches the semantics for the -funsigned-char option. This behavior can be overridden with
the use of the -fsigned-char or -fno-unsigned-char option, which indicates that a plain char
type is to be interpreted as signed char.

3.1. Using the C/C++ Compiler 127

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Symbol Management Options

Define/Undefine Symbols

You can define or undefine a symbol on the c29clang command line with the -D and -U options.
These can be useful for selecting a particular configuration of your source code from the command
line.

-D<symbol>[=<value>]

Define a <symbol> with the specified <value>. If no <value> argument is provided, then
the <symbol>’s value will be set to 1. A symbol defined on the command line via the -D
option is equivalent to a pre-defined macro symbol.

-U<symbol>

Undefine an existing pre-defined macro <symbol>.

Symbol Visibility

An important part of creating shared objects is managing which symbols defined within a shared
object are available to be linked against from outside the shared object.

-fvisibility=<visibility_kind>

Set the default ELF image symbol visibility to the specified <visibility_kind>. All sym-
bols are marked with the specified <visibility_kind> unless explicitly overridden within the
C/C++ source code.

Symbols that are declared extern are not affected by the use of the -fvisibility option.

The available <visibility kind> settings are:

• default - Indicates that symbols have public visibility by default and can be linked
against from outside a shared object. Global and weak symbols with public visibility
can be preempted by definitions of a symbol with the same name from an object outside
of the shared object.

• hidden - Indicates that symbols are not available to be linked against from outside a
shared object by default.

• protected - Indicates that symbols defined in a shared object are visible outside of the
shared object, but cannot be preempted. A reference to a protected symbol from within
the shared object in which it is defined must be resolved by the definition in that shared
object.

3.1. Using the C/C++ Compiler 128

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Preprocessor Options

With the -E option, you can instruct the c29clang compiler to stop after the preprocessor phase of
compilation:

-E, --preprocess

Halt compilation after running the C preprocessor.

Preprocessor Options

c29clang options that control the behavior of the C preprocessor:

-C, --comments

Include comments in preprocessed output.

-CC, --comments-in-macros

Include comments from within macros in preprocessed output.

-D<macro>=<value>

Define <macro> symbol to <value> (or 1 if <value> omitted).

-H, --trace-includes

Show header includes and nesting depth.

-P, --no-line-commands

Disable linemarker output in -E mode.

-U<macro>

Undefine <macro> symbol.

-Wp,<arg1>,<arg2>...

Pass the comma separated arguments in <argN> to the preprocessor.

-Xpreprocessor <option>

Pass <option> to the preprocessor.

Dependency File Generation

c29clang options that control generation of a dependency file for make-like build systems.

-M, --dependencies

Like -MD, but also implies -E and writes to stdout by default.

-MD, --write-dependencies

Write a dependency file containing user and system headers.

3.1. Using the C/C++ Compiler 129

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-MF<file>

Write dependency file output from -MMD, -MD, -MM, or -M to specified <file>.

-MG, --print-missing-file-dependencies

Add missing headers to dependency file.

-MJ<arg>

Write a compilation database entry per input.

-MM, --user-dependencies

Like -MMD, but also implies -E and writes to stdout by default.

-MMD, --write-user-dependencies

Write a dependency file containing user headers.

-MP

Create phony target for each dependency (other than main file).

-MQ<arg>

Specify name of main file output to quote in dependency file.

-MT<arg>

Specify name of main file output in dependency file

Dumping Preprocessor State

c29clang options that allow the state of the preprocessor to be dumped in various ways.

-dD

Print macro definitions in -E mode in addition to normal output.

-dI

Print include directives in -E mode in addition to normal output.

-dM

Print macro definitions in -E mode instead of normal output.

Optimization Options

To enable optimization passes in the c29clang compiler, select a level of optimization from among
the following -O[0|1|2|3|fast|g|s|z] options. In general, the options below represent various levels
of optimization with some options designed to favor smaller compiler generated code size over
performance, while others favor performance at the cost of increased compiler generated code
size.

3.1. Using the C/C++ Compiler 130

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Optimization Level Options

Note: Optimization Option Recommendations

• The -O0 option is not recommended.

• The -O1 option is recommended for maximum debuggability.

• The -Oz option is recommended if small compiler generated code size is a priority.

• The -O3 option is recommended for optimizing performance, but it is likely to increase
compiler-generated code size.

-O0

Performs no optimization.

This optimization level is not recommended for C29x devices; when no optimization is
performed, operations are inefficient and runtime behavior is significantly degraded. Use at
least the -O1 optimization level.

-O1, -O

Enables restricted optimizations, providing a good trade-off between code size and debug-
gability. This option is recommended for maximum debuggability.

-O2

Enables most optimizations, but some optimizations that require significant additional com-
pile time are disabled.

-O3

Enables all optimizations available at -O2 plus others that require additional compile time to
perform. This option is recommended for optimizing performance, but it is likely to increase
compiler-generated code size.

This optimization level enables software pipelining.

-Ofast

Enables all optimizations available at -O3 plus additional aggressive optimizations that have
the potential for additional performance gains, but are not guaranteed to be in strict compli-
ance with language standards.

-Og

Enables restricted optimizations while preserving debuggability. All optimizations available
at -O1 are performed with the addition of some optimizations from -O2.

-Os

Enables all optimizations available at -O2 plus additional optimizations that are designed to
reduce code size while mitigating negative impacts on performance.

3.1. Using the C/C++ Compiler 131

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-Oz

Enables all optimizations available at -O2 plus additional optimizations to further reduce
code size with the risk of sacrificing performance. Using -Oz retains performance gains
from many of the -O2 level optimizations that are performed. This optimization setting is
recommended if small code size is a priority.

More Specialized Optimization Options

Floating-Point Arithmetic

-ffast-math, -fno-fast-math

Enable or disable ‘fast-math’ mode during compilation. By default, the ‘fast-math’ mode is
disabled. Enabling ‘fast-math’ mode allows the compiler to perform aggressive, not neces-
sarily value-safe, assumptions about floating-point math, such as:

• Assume floating-point math is consistent with regular algebraic rules for real numbers
(e.g. addition and multiplication are associative, x/y == x * 1/y, and (a + b) * c == a *
c + b * c).

• Operands to floating-point operations are never NaNs or Inf values.

• +0 and -0 are interchangeable.

Enabling the -ffast-math option also causes the following options to be set:

• -ffp-contract=fast

• -fno-honor-nans

• -ffp-model=fast

• -fno-rounding-math

• -fno-signed-zeros

Use of the ‘fast-math’ mode also instructs the compiler to predefine the __FAST_MATH__
macro symbol.

-ffp-model=<precise|strict|fast>

-ffp-model is an umbrella option that is used to establish a model of floating-point semantics
that the compiler will operate under. The available arguments to the -ffp-model option will
imply settings for the other, single-purpose floating-point options, including -ffast-math,
-ffp-contract, and frounding-math (described below).

The available arguments to the -ffp-model option are:

• precise - With the exception of floating-point contraction optimizations, all other op-
timizations that are not value-safe on floating-point data are disabled (ffp-contract=on

3.1. Using the C/C++ Compiler 132

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

and -fno-fast-math). The c29clang compiler assumes this floating-point model by de-
fault.

• strict - Disables floating-point contraction optimizations (-ffp-contract=off), honors
dynamically-set floating-point rounding modes (-frounding-math), and disables all
‘fast-math’ floating-point optimizations (-fno-fast-math).

• fast - Enables all ‘fast-math’ floating-point optimizations (-ffast-math) and enables
floating-point contraction optimizations across C/C++ statements (-ffp-contract=fast).

-ffp-contract=<fast|on|off|fast-honor-pragmas>

Instruct the compiler whether and to what degree it is allowed to form fused floating-point
operations, such as floating-point multiply and add (FMA) instructions. This optimization
is also known as floating-point contraction. Fused floating-point operations are permitted
to produce more precise results than would be otherwise computed if the operations were
performed separately.

The available arguments to the -ffp-contract option are:

• fast - Allows fusing of floating-point operations across C/C++ statements, and ignores
any FP_CONTRACT or clang fp contract pragmas that would otherwise affect the
compiler’s ability to apply floating-point contraction optimizations.

• on - Allows floating-point contraction within a given C/C++ statement. The floating-
point contraction behavior can be affected by the use of FP_CONTRACT or clang fp
contract pragmas.

• off - Disables all floating-point contraction optimizations.

• fast-honor-pragma - Same as the fast argument, but the user can alter the behavior via
the use of the FP_CONTRACT and/or clang fp contract pragmas.

-fhonor-nans, -fno-honor-nans

Instructs the compiler to check for and properly handle floating-point NaN values. Use of
the -fno-honor-nans can improve code if the compiler can assume that it doesn’t need to
check for and enforce the proper handling of floating-point NaN values.

-frounding-math, -fno-rounding-math

By default, the compiler assumes that the -fno-rounding-mode option is in effect. This
instructs the compiler to always round-to-nearest for floating-point operations.

The C standard runtime library provides functions such as fesetround and fesetenv that allow
you to dynamically alter the floating-point rounding mode. If the -frounding-math option
is specified, the compiler honors any dynamically-set floating-point rounding mode. This
can be used to prevent optimizations that may affect the result of a floating-point operation
if the current rounding mode has changed or is different from the default (round-to-nearest).
For example, floating-point constant folding may be inhibited if the result is not exactly
representable.

3.1. Using the C/C++ Compiler 133

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-fsigned-zeros, -fno-signed-zeros

Assumes the presence of signed floating-point zero values. Use of the -fno-signed-zeros
option can improve code if the compiler can assume that it doesn’t need to account for the
presence of signed floating-point zero values.

Inlining and Outlining

Function inlining is supported by the C29x compiler; however, function outlining is not currently
supported.

-finline-functions, -fno-inline-functions

Inline suitable functions. The -fno-inline-functions option disables this optimization.

-finline-hint-functions

Inline functions that are explicitly or implicitly marked as inline.

Loop Unrolling

-funroll-loops, -fno-unroll-loops

Enable optimizer to unroll loops. The -fno-unroll-loops option disables this optimization.

Using -x Option to Control Input File Interpretation

The c29clang compiler interprets source files with a recognized file extension in a predictable
manner. The recognized file extensions include:

• .c - C source file

• .C or .cpp - C++ source file

• .o - object file to be forwarded on to the linker

The c29clang compiler also supports a -x option that permits you to dictate how an input file is to
be interpreted by the compiler. This can be used to override default file extension interpretations
or to instruct the compiler how to interpret a file extension that is not automatically recognized by
the compiler.

-x <language>

Interpret subsequent input files on the command line as <language> type files.

The following <language> types are available to the -x option:

• -x none - Reset compiler to default file extension interpretation.

• -x c - Interpret subsequent input files as C source files.

• -x c++ - Interpret subsequent input files as C++ source files.

3.1. Using the C/C++ Compiler 134

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Note:

The -x<language> option is position-dependent. A given -x option on the c29clang
command line is in effect until the end of the command line or until a subsequent -x
option is encountered on the command line.

The following example uses input files with missing or non-standard file extensions. In this case,
the -x options serve to inform c29clang how each input file is to be interpreted:

c29clang -mcpu=c29.c0 -c -x c file1 -x c++ file2.cxx

Passing Options to Other Tools from c29clang

This section of the c29clang Compiler User Manual describes how the c29clang’s -W<x>, and
-X<y> options can be used to pass options from c29clang to other tools in the compiler toolchain.

Passing Linker Options: -Wl, and -Xlinker

While the -Wl, (W + lowercase L + comma) option allows you to pass multiple linker options from
c29clang to the linker using a single instance of the -Wl, option, the -Xlinker alternative may be
useful when you want to explicitly control each particular linker option in a c29clang command
line.

Using the -Wl, Option

The c29clang -Wl, option can be used to identify one or more linker command line options to be
forwarded from c29clang to the linker when the linker is invoked from the c29clang command
line.

c29clang [options] [filenames] -Wl,*<opt-list>*

• -Wl, - is the c29clang option that prefixes a list of linker options

• <opt-list> - is a comma-separated list of one or more linker options

In the following example, the -Wl, option passes both the --rom_model linker option and the
lnkme.cmd linker command file directly to the linker:

c29clang -mcpu=c29.c0 hello.c -o a.out -Wl,--rom_model,lnkme.cmd

3.1. Using the C/C++ Compiler 135

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Using -Xlinker Options

Alternatively, you can use the c29clang -Xlinker option to identify a single linker command line
option to be forwarded from c29clang to the linker when the linker is invoked from the c29clang
command line.

c29clang [options] [filenames] -Xlinker <option>

• -Xlinker - is the c29clang option that prefixes a single linker option

• <option> - is the linker option to be passed to the linker

The example command for the -Wl, option could also be written using the -Xlinker option as
follows:

c29clang -mcpu=c29.c0 hello.c -o a.out -Xlinker --rom_model -
→˓Xlinker lnkme.cmd

You can find more information about linker options in the Linker Options section.

Passing Preprocessor Options: -Wp, and -Xpreprocessor

See Preprocessor Options for a list of options that can be used to control the preprocessor.

-Wp,<arg1>,<arg2>...

Pass the comma separated arguments in <argN> to the preprocessor.

-Xpreprocessor <option>

Pass <option> to the preprocessor.

Diagnostic Options

Controlling Error, Warning, and Remark Diagnostics

The c29clang compiler provides the following options to assist with controlling what errors, warn-
ings, and remarks are emitted during compilation:

-R<remark>

Enable the specified remark category.

-Wall

Enable most warning categories.

-Werror

Treat detected warnings as errors.

3.1. Using the C/C++ Compiler 136

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-Werror=<warning-category>

Treat detected warnings in the specified category as errors.

-W<warning-category>

Enable the specified warning category.

-Wno-<warning-category>

Disable the specified warning category.

Optimization Feedback Options

The following options can be used to instruct the c29clang compiler to emit information about the
different optimizations and code transformations that are performed during compilation:

-Rpass-analysis=<arg>

Report transformation analysis from optimization passes whose name matches the given
POSIX regular expression.

-Rpass-missed=<arg>

Report missed transformations by optimization passes whose name matches the given
POSIX regular expression.

-Rpass=<arg>

Report transformations performed by optimization passes whose name matches the given
POSIX regular expression.

Debug Options

The c29clang compiler supports the following command-line option to facilitate generation of
C/C++ source debug information:

-g, -gdwarf

Generate source-level debug information with the default DWARF version (3)

-gdwarf-2

Generate source-level debug information with DWARF version 2

-gdwarf-3

Generate source-level debug information with DWARF version 3

-gdwarf-4

The c29clang compiler does not support generating DWARF version 4 debug information
yet. If the -gdwarf-4 option is specified, the compiler will emit a warning diagnostic and
emit DWARF version 3 instead.

3.1. Using the C/C++ Compiler 137

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-gdwarf-5

The c29clang compiler does not support generating DWARF version 5 debug information
yet. If the -gdwarf-5 option is specified, the compiler will emit a warning diagnostic and
emit DWARF version 3 instead.

Instrumentation Options

Stack Smashing Detection Options

The compiler provides the capability to instrument protection for stack smashing attacks.

See Stack Smashing Detection.

Function Entry/Exit Hook Options

The compiler provides the capability to instrument functions with entry and exit hook function
calls using the -finstrument-functions option:

-finstrument-functions

For each function being compiled, instruct the compiler to generate a call to the entry hook
function, __cyg_profile_func_enter, just after entry to a given function, and a call to exit
hook function, __cyg_profile_func_exit, just prior to exit from a given function.

The compiler also calls __cyg_profile_func_enter and __cyg_profile_func_exit on behalf of
a function that is inlined into another function. This means that an addressable version of an
inlined function must be available in the linked application to facilitate lookup of the inlined
function symbol. If all uses of a function are inlined, the definition of the inlined function
may incur some growth in code size for the linked application.

Enabling Use of Function Entry/Exit Hooks

To enable the use of function entry/exit hooks in your application, you need to provide definitions
of:

• __cyg_profile_func_entry

The signature of the __cyg_profile_func_enter function is as follows:

void __cyg_profile_func_entry(void *this_fcn, void *call_site);

An example definition of this function might look like this:

3.1. Using the C/C++ Compiler 138

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

#include "func_timer.h"

extern "C" {

// Entry Hook Function
__attribute__((no_instrument_function))
void __cyg_profile_func_enter(void *this_fcn, void *call_site) {

// Non-NULL function address is required
if (!this_fcn) return;

// Find function address in function timer map;
// If this is the first call to the specified function,
// then create a timer record for it and insert record into map
auto func_iter = func_timer_map.find((unsigned long)this_fcn);
func_timer_record *func_timer;
if (func_iter == func_timer_map.end()) {
func_timer = new func_timer_record((unsigned long)this_fcn);
func_timer_map[(unsigned long)this_fcn] = func_timer;

}
else {
func_timer = func_iter->second;

}

// If function is not already on the call stack, start the
→˓clock
if (func_timer->recur_level == 0) {

func_timer->clock_start = clock();
}
else {
func_timer->recur_level++;

}
}

} /* extern "C" */

• __cyg_profile_func_exit

The signature of the __cyg_profile_func_exit function is as follows:

void __cyg_profile_func_exit(void *this_fcn, void *call_site);

An example definition of this function might look like this:

3.1. Using the C/C++ Compiler 139

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

#include "func_timer.h"

extern "C" {

// Function Exit Hook
__attribute__((no_instrument_function))
void __cyg_profile_func_exit(void *this_fcn, void *call_site) {

// Non-NULL function address is required
if (!this_fcn) return;

// Find function in function timer map; error if not found
auto func_iter = func_timer_map.find((unsigned long)this_fcn);
func_timer_record *func_timer;
if (func_iter == func_timer_map.end()) {
printf("ERROR: expected function in func_timer_map\n");
return;

}

func_timer = func_iter->second;

// If we're about to remove the function from the call stack,
// add elapsed time to total accumulated time for this function
if (func_timer->recur_level == 1) {
func_timer->acc_func_time += (long)(clock() - func_timer->

→˓clock_start);
}

func_timer->recur_level--;
}

} /* extern "C" */

For both of the above functions, the first argument, this_fcn, is the address of the start of the current
function, which can be looked up in the symbol table, and the second argument, call_site, is the
return address of the current function that can be used to determine where the current function was
called from.

Note: Define __cyg_profile_func_enter and __cyg_profile_func_exit as “C” Symbols

When using the -finstrument-functions option with a C++ source file, the c29clang compiler in-
struments a given function with calls to __cyg_profile_func_enter and __cyg_profile_func_exit
using the “C” names of those function symbols. Consequently, when you define the
__cyg_profile_func_enter and __cyg_profile_func_exit functions for use in a C++ application, you
must enclose the definitions of these functions in an extern “C” construct, as indicated in the

3.1. Using the C/C++ Compiler 140

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

examples above.

Disabling Instrumentation with no_instrument_function Attribute

While applying the -finstument-functions option to an application, there may be some func-
tions that you may want to exclude from being instrumented, such as the definitions of
__cyg_profile_func_enter and __cyg_profile_func_exit described above. In such cases, the
no_instrument_function function attribute can be applied to prevent calls to the entry and exit
hooks from being generated for a given function.

The above definition of __cyg_profile_func_enter contains an example of how to apply the
no_instrument_function attribute to a function:

__attribute__((no_instrument_function))
void __cyg_profile_func_enter(void *this_fcn, void *call_site) {

...
}

Function Entry/Exit Hooks Example

One useful application of function entry and exit hook functions is to gather profile data
for the functions in an application. The above definitions of __cyg_profile_func_enter and
__cyg_profile_func_exit collect the accumulated time spent in each instrumented function in an
application.

The profile data is collected and recorded in a map of function_timer_record objects as detailed in
func_timer.h:

#include <stdio.h>
#include <time.h>
#include <map>

class func_timer_record {
public:
unsigned long func_address;
unsigned int recur_level;
clock_t clock_start;
long acc_func_time;

func_timer_record(unsigned long func_addr) :
func_address(func_addr),
recur_level(0),

(continues on next page)

3.1. Using the C/C++ Compiler 141

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

clock_start(0),
acc_func_time(0) { }

~func_timer_record() { }
} func_timer_record;

extern std::map<unsigned long, func_timer_record *> func_timer_
→˓map;

__attribute__((no_instrument_function)) void report_function_
→˓times(void);

In this simplistic example, it is anticipated that the application being profiled will call re-
port_function_times that writes out a comma-separated list of the function addresses and their
corresponding recorded execution times:

#include "func_timer.h"
#include <list>

std::map<unsigned long, func_timer_record *> func_timer_map;

__attribute__((no_instrument_function)) void report_function_
→˓times(void) {
// Print CSV output of function addresses and corresponding

→˓times
std::list<function_timer_record *> curr_func_list;
for (auto it = func_timer_map.begin(); it != func_timer_map.

→˓end(); ++it) {
unsigned long curr_func_addr = it->first;
unsigned long curr_func_time = (it->second)->acc_func_time;
printf("func_address: 0x%08lx, cumulative time in function:

→˓%ld\n",
curr_func_addr, curr_func_time);

}
}

The application to be profiled can then be compiled with the -finstrument-functions option:

%> c29clang -mcpu=c29.c0 -finstrument-functions <app source
→˓files> \
func_timer.cpp func_enter.cpp func_exit.cpp -o app.out ...

While the functions defined in the application source files will be instrumented, the instrumentation
functions themselves will not since they have been annotated with the no_instrument_function
attribute.

3.1. Using the C/C++ Compiler 142

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

When loaded and run, app.out produces the function time statistics that can then be analyzed and
processed by a program that has access to the app.out file’s symbol table.

3.2 C/C++ Language Implementation

Contents:

3.2.1 Data Types

Scalar Data Types

The table below lists the size and range of each scalar type as supported in the c29clang compiler.
Many of the minimum and maximum values for each range are available as standard macros in the
C standard header file limits.h.

The storage and alignment of data types is described in Object Representation.

Type Size Min Value Max Value
signed char 8 bits -128 127
char, unsigned char, bool 8 bits 0 255
short, signed short 16

bits
-32768 32767

unsigned short 16
bits

0 65535

int, signed int, long, signed long 32
bits

-2147483648 2147483647

enum packed -2147483648 2147483647
unsigned int, unsigned long,
wchar_t

32
bits

0 4294967295

long long, signed long long 64
bits

-
9223372036854775808

9223372036854775807

unsigned long long 64
bits

0 18446744073709551615

float 32
bits

1.175494e-38 3.40282346e+38

double, long double 64
bits

2.22507385e-308 1.79769313e+308

pointers, references, data member
ptrs

32
bits

0 0xFFFFFFFF

Notes:

3.2. C/C++ Language Implementation 143

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The “plain” char type has the same representation as either signed char or unsigned char.
The -fsigned-char and -funsigned-char options control whether “plain” char is signed or
unsigned. The default is unsigned.

• The wchar_t type has the same representation as unsigned int. The c29clang runtime li-
braries do not support a 16-bit wchar_t type. Attempts to use the c29clang -fshort-wchar
option may cause issues when linked with the c29clang runtime libraries.

• Further discussion about the size of enum types can be found below in the Enum Type Stor-
age.

• Specified minimum values for floating-point types in the table above indicate the smallest
precision value > 0.

• Negative values for signed types are represented using two’s complement.

• 64-bit data types are aligned to 64-bit (8-byte) boundaries.

• Both 32-bit pointers and 64-bit pointers are aligned to 32-bit (4-byte) boundaries.

• Data and registers on C29x devices are always stored in little-endian format.

Enum Type Storage

The type of the storage container for an enumerated type is the smallest integer type that contains
all the enumerated values. The container types for enumerators are shown in the following table:

Lower Bound Range Upper Bound Range Enumera-
tor Type

0 to 255 0 to 255 unsigned
char

-128 to 1 -128 to 127 signed char
0 to 65535 256 to 65535 unsigned

short
-128 to 1, -32768 to -129 128 to 32767, -32768 to 32767 signed

short
0 to 4294967295 2147483648 to 4294967295 unsigned

int
-32768 to -1,
-2147483648 to -32769,
0 to 2147483647

32767 to 2147483647,
-2147483648 to 2147483647,
65536 to 2147483647

signed int

The compiler determines the type based on the range of the lowest and highest elements of the
enumerator.

For example, the following code results in an enumerator type of int:

3.2. C/C++ Language Implementation 144

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

enum COLORS {
green = -200,
blue = 1,
yellow = 2,
red = 60000

};

The following code results in an enumerator type of short:

enum COLORS {
green = -200,
blue = 1,
yellow = 2,
red = 30000

};

Enum Type Size

An enum type is represented by an underlying integer type. The size of the integer type and
whether it is signed is based on the range of values of the enumerated constants.

By default, the c29clang uses the smallest possible byte size for the enumeration type. The under-
lying type is the first type in the following list in which all the enumerated constant values can be
represented: signed char, unsigned char, short, unsigned short, int, unsigned int, long, unsigned
long, long long, unsigned long long. This default behavior is equivalent to the effect of using the
c29clang -fshort-enums option.

In strict c89/c99/c11 mode, the compiler will limit enumeration constants to those values that fit in
int or unsigned int.

For C++ and gnuXX C dialects (relaxed c89/c99/c11), the compiler allows enumeration constants
up to the largest integral type (64 bits).

You can alter the default compiler behavior using the -fno-short-enums option. When the -fno-
short-enums option is used in strict c89/c99/c11 mode, the enumeration type used to represent an
enum will be int, even if the values of the enumeration constants fit into a smaller integer type.

When the fno-short-enums option is used with C++ or gnuXX C dialects, the underlying enumera-
tion type will be the first type in the following list in which all the enumerated constant values can
be represented: int, unsigned int, long, unsigned long, long long, unsigned long long.

The following enum uses 8 bits instead of 32 bits by default (since -fshort-enums option behavior
is in effect):

enum example_enum {
first = -128,

(continues on next page)

3.2. C/C++ Language Implementation 145

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

second = 0,
third = 127

};

The following enum fits into 16 bits instead of 32 by default:

enum a_short_enum {
bottom = -32768,
middle = 0,
top = 32767

};

Note: Do not link object files compiled with the -fno-short-enums option with object files that
were compiled without it. If you use the -fno-short-enums option, you must use it with all of your
C/C++ files; otherwise, you will encounter errors that cannot be detected until run time.

3.2.2 Characteristics of C29x C

Please see C Language Variants (-std) for supported C language variants as well as the options that
control the language standard used, including GNU language extensions.

The ANSI/ISO standard identifies some features of the C language that may be affected by char-
acteristics of the target processor, run-time environment, or host environment. This set of features
can differ among standard compilers. Please see C29x C Implementation-Defined Behavior.

The following C library features are not currently supported for TI C29x:

• The run-time library includes the header file <locale.h>, but with a minimal implementation.
The only supported locale is the C locale. That is, library behavior that is specified to vary
by locale is hardcoded to the behavior of the C locale, and attempting to install a different
locale by way of a call to setlocale() will return NULL.

• Some run-time functions and features in the C99/C11 specifications are not supported. See
Library Functions (J.3.12) for more details.

• C11 atomic operations are not supported.

• Threads and threads.h, which are optional in the C11 specification. The
__STDC_NO_THREADS__ macro is not defined.

In addition to support for the C language standard, the compiler supports many extensions that are
commonly supported by C language compilers. See C Language Extensions.

3.2. C/C++ Language Implementation 146

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.2.3 C Language Extensions

The c29clang compiler supports a number of extended C language features that are commonly
provided by other compilers.

Extensions supported in c29clang include pre-defined macro symbols, attributes, and intrinsics.
Standard Clang language extensions, such as those described in the Clang documentation in the
Clang Language Extensions section of the Clang documentation, are generally supported.

A description of selected extensions is provided in the following sections of this user guide:

Pre-Defined Macro Symbols
Attributes
Built-In Functions and Intrinsics

3.2.4 C29x C Implementation-Defined Behavior

The C standard requires that conforming implementations provide documentation on how the com-
piler handles instances of implementation-defined behavior.

The TI C29x Clang compiler officially supports a freestanding environment. The C standard does
not require a freestanding environment to supply every C feature; in particular the library need not
be complete. However, the TI compiler strives to provide most features of a hosted environment.

The section numbers in the lists that follow correspond to section numbers in Appendix J of the
C99 standard and Appendix J of the C11 standard. The numbers in parentheses at the end of each
item are sections in each standard that discuss the topic. Certain items listed in Appendix J of the
C99 standard have been omitted from this list.

Translation (J.3.1)

• The compiler and related tools emit diagnostic messages with several distinct formats. The
more common form is the following:

source-file:line-number:char-number: description [diagnostic-flag]

Where ‘description’ is a text description of the error, and ‘diagnostic-flag’ is an option flag
of the form -Wflag for messages that can be suppressed. (1.3.6)

• Diagnostic messages are emitted to stderr; any text on stderr may be assumed to be a di-
agnostic. If any errors are present, the tool will exit with an exit status indicating failure
(non-zero). (C99/C11 3.10, 5.1.1.3)

• Each whitespace sequence is collapsed to a single space. For aesthetic reasons, the first token
on each non-directive line of output is preceded with sufficient spaces that it appears in the
same column as it did in the original source file. (C99/C11 5.1.1.2)

3.2. C/C++ Language Implementation 147

https://clang.llvm.org/docs/LanguageExtensions.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Environment (J.3.2)

• The compiler interprets the physical source file multibyte characters as UTF-8.

Wide character (wchar_t) types and operations are supported by the compiler. However,
wide character strings may not contain characters beyond 7-bit ASCII. The encoding of wide
characters is 7-bit ASCII, 0 extended to the width of the wchar_t type. (C99/C11 5.1.1.2)

• The name of the function called at program startup is “main.” Its parameter list may be
“(void)” or “(int argc, char *argv[]).” (C99/C11 5.1.2.1)

• Program termination does not affect the environment; there is no way to return an exit code
to the environment. By default, the program is known to have halted when execution reaches
the special C$$EXIT label. (C99/C11 5.1.2.1)

• In relaxed ANSI mode, the compiler accepts “void main(void)” and “void main(int argc,
char *argv[])” as alternate definitions of main. The alternate definitions are rejected in strict
ANSI mode. (C99/C11 5.1.2.2.1)

• If space is provided for program arguments at link time with the --args option and the
program is run under a system that can populate the .args section (such as CCS), argv[0]
will contain the filename of the executable, argv[1] through argv[argc-1] will contain the
command-line arguments to the program, and argv[argc] will be NULL. Otherwise, the value
of argv and argc are undefined. (C99/C11 5.1.2.2.1)

• Interactive devices include stdin, stdout, and stderr (when attached to a system that honors
CIO requests). Interactive devices are not limited to those output locations; the program may
access hardware peripherals that interact with the external state. (C99/C11 5.1.2.3)

• Signals are not supported. The function signal is not supported. (C99/C11 7.14, 7.14.1.1)

• The library function getenv is implemented through the CIO interface. If the program is
run under a system that supports CIO, the system performs getenv calls on the host system
and passes the result back to the program. Otherwise the operation of getenv is undefined.
No method of changing the environment from inside the target program is provided. (C99
7.20.4.5, C11 7.22.4.6)

• The system function is not supported. (C99 7.20.4.6, C11 7.22.4.8)

Identifiers (J.3.3)

• Multibyte characters are allowed in identifiers whose UTF-8 decoded value is within the
allowed ranges specified in Appendix D of ISO/IEC 9899:2011. The ‘$’ character is allowed
in identifiers.

• The number of significant initial characters in an identifier is unlimited. (C99/C11 5.2.4.1,
6.4.2)

3.2. C/C++ Language Implementation 148

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Characters (J.3.4)

• The number of bits in a byte (CHAR_BIT) is 8. (C99/C11 3.6)

• The execution character set is the same as the basic execution character set: plain ASCII.
Characters in the ISO 8859 extended character set are not supported. (C99/C11 5.2.1)

• The values produced for the standard alphabetic escape sequences are as follows: (C99/C11
5.2.2)

Escape Sequence ASCII Meaning Integer Value
\a BEL (bell) 7
\b BS (backspace) 8
\f FF (form feed) 12
\n LF (line feed) 10
\r CR (carriage return) 13
\t HT (horizontal tab) 9
\v VT (vertical tab) 11

• The value of a char object into which any character other than a member of the basic execu-
tion character set has been stored is the ASCII value of that character. (C99/C11 6.2.5)

• Plain char is identical to unsigned char, but can be changed to signed char with the -fsigned-
char option. (C99/C11 6.2.5, 6.3.1.1)

• The source character set and execution character set are identical. (C99/C11 6.4.4.4, 5.1.1.2)

• The value of an integer character constant containing more than one character is the same
as the last source character. The compiler will emit a warning when an integer character
constant containing more than one character is used. There are no characters or escape
sequences that do not map to a single-byte execution character. (C99/C11 6.4.4.4)

• The compiler does not support multibyte characters in wide character constants. There are
no wide characters or escape sequences that do not map to a single wide execution character.
(C99/C11 6.4.4.4)

• The compiler currently supports only one locale, “C”. (C99/C11 6.4.4.4)

• The compiler currently supports only one locale, “C”. (C99/C11 6.4.5)

• The compiler does not support multibyte characters in string literals. There are no escape
sequences that do not map to a single execution character. (C99/C11 6.4.5)

• The wchar_t type is 32-bits wide and is equivalent to the uint32_t type (unsigned int).

3.2. C/C++ Language Implementation 149

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Integers (J.3.5)

• No extended integer types are supported. (C99/C11 6.2.5)

• Negative values for signed integer types are represented as two’s complement, and there are
no trap representations. (C99/C11 6.2.6.2)

• No extended integer types are supported, so there is no change to the integer ranks. (C99/C11
6.3.1.1)

• When an integer is converted to a signed integer type which cannot represent the value, the
value is truncated (without raising a signal) by discarding the bits which cannot be stored in
the destination type; the lowest bits are not modified. (C99/C11 6.3.1.3)

• Right shift of a signed integer value performs an arithmetic (signed) shift. The bitwise
operations other than right shift operate on the bits in exactly the same way as on an unsigned
value. That is, after the usual arithmetic conversions, the bitwise operation is performed
without regard to the format of the integer type, in particular the sign bit. (C99/C11 6.5)

Floating Point (J.3.6)

• The accuracy of floating-point operations (+ - * /) is bit-exact. The accuracy of library
functions that return floating-point results is not specified. (C99/C11 5.2.4.2.2)

• The compiler does not provide non-standard values for FLT_ROUNDS (C99/C11 5.2.4.2.2)

• The compiler does not provide non-standard negative values of FLT_EVAL_METHOD
(C99/C11 5.2.4.2.2)

• The rounding direction when an integer is converted to a floating-point number is IEEE-754
“round to nearest”. (C99/C11 6.3.1.4)

• The rounding direction when a floating-point number is converted to a narrower floating-
point number is IEEE-754 “round to even”. (C99/C11 6.3.1.5)

• For floating-point constants that are not exactly representable, the implementation uses the
nearest representable value. (C99/C11 6.4.4.2)

• The compiler does not contract float expressions, except when -ffast-math is used. (C99/C11
6.5)

• The default state for the FENV_ACCESS pragma is off. (C99/C11 7.6.1)

• The compiler does not define any additional float exceptions (C99/C11 7.6, 7.12)

• The default state for the FP_CONTRACT pragma is off. (C99/C11 7.12.2)

• The “inexact” floating-point exception cannot be raised if the rounded result equals the math-
ematical result. (F.9)

3.2. C/C++ Language Implementation 150

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The “underflow” and “inexact” floating-point exceptions cannot be raised if the result is tiny
but not inexact. (F.9)

Arrays and Pointers (J.3.7)

• When converting a pointer to an integer or vice versa, the pointer is considered an unsigned
integer of the same size, and the normal integer conversion rules apply. If the bitwise repre-
sentation of the destination can hold all of the bits in the bitwise representation of the source,
the bits are copied exactly. (C99/C11 6.3.2.3)

• The size of the result of subtracting two pointers to elements of the same array is the size of
ptrdiff_t, which is 4 bytes. (C99/C11 6.5.6)

Hints (J.3.8)

• When the optimizer is used, the register storage-class specifier is ignored. When the opti-
mizer is not used, the compiler will preferentially place register storage class objects into
registers to the extent possible. The compiler reserves the right to place any register storage
class object somewhere other than a register. (C99/C11 6.7.1)

• The inline function specifier is ignored unless the optimizer is used. For other restrictions
on inlining, as well as ways to control inlining behavior, see the compiler manual. (C99/C11
6.7.4)

Structures, unions, enumerations, and bit-fields (J.3.9)

• A “plain” int bit-field is treated as an unsigned int bit-field. (C99/C11 6.7.2, 6.7.2.1)

• In addition to _Bool, signed int, and unsigned int, the compiler allows char, signed char,
unsigned char, signed short, unsigned short, signed long, unsigned long, signed long long,
unsigned long long, and enum types as bit-field types. (C99/C11 6.7.2.1)

• Atomic types are not allowed as bit-field types

• Bit-fields may not straddle a storage-unit boundary. (C99/C11 6.7.2.1)

• Bit-fields are allocated in endianness order within a unit. See the compiler manual for details.
(C99/C11 6.7.2.1)

• Non-bit-field members of structures are aligned as required by the type of the member. There
are user controls to override this behavior; see the compiler manual for details. (C99/C11
6.7.2.1)

• The integer type underlying each enumerated type is described in the compiler manual.
(C99/C11 6.7.2.2)

3.2. C/C++ Language Implementation 151

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Qualifiers (J.3.10)

• The compiler does not shrink or grow volatile accesses. It is the user’s responsibility to make
sure the access size is appropriate for devices that only tolerate accesses of certain widths.

– The compiler does not change the number of accesses to a volatile variable unless
absolutely necessary. In some cases, the compiler will be forced to use two accesses,
one for the read and one for the write, it is not guaranteed that the compiler will be
able to map such expressions to an instruction with a single memory operand. It is not
guaranteed that the memory system will lock that memory location for the duration of
the instruction.

– The compiler will not reorder two volatile accesses, but it may reorder a volatile and
a non-volatile access, so volatile cannot be used to create a critical section. Use some
sort of lock if you need to create a critical section. (C98/C11 6.7.3)

Preprocessing directives (J.3.11)

• The compiler does not support pragmas that refer to headers. (C11 6.4, 6.4.7)

• The sequences are mapped to external source file names in both forms of the #include direc-
tive (C11 6.4.7)

• The value of a character constant in a constant expression that controls conditional inclusion
matches the value of the same character constant in the execution character set (both are
plain ASCII). (C99/C11 6.10.1)

• Single-character constants in a constant expression that controls conditional inclusion have
a non-negative value. (C11 6.10.1)

• Include directives may have one of two forms, < > or ” “. For both forms, the compiler will
look for a real file on-disk by that name using the “system” or “user” include file search path.
See the compiler manual for details on how the system and user include file search path can
be controlled with environment variables and command-line options. (C99/C11 6.4.7)

– The compiler uses the “system” include file search path to search for an included < >
delimited header file. See the compiler manual for details on how the system and user
include file search path can be controlled with environment variables and command-
line options. (C99/C11 6.10.2)

– The compiler uses the “user” include file search path to search for an included ” ”
delimited header file. See the compiler manual for details on how the system and user
include file search path can be controlled with environment variables and command-
line options. (C99/C11 6.10.2)

• As a result of macro replacement, the sequence of tokens should be either a single string
literal or a sequence of preprocessing tokens, starting with < and ending with >. Sequences
of whitespace characters are replaced by a single space. (C99/C11 6.10.2)

3.2. C/C++ Language Implementation 152

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• There is no arbitrary nesting limit for #include processing. (C99/C11 6.10.2)

• The # operator inserts a \ character before the \ character that begins a universal character
name. (C11 6.10.3.2)

• See the compiler manual for a description of the recognized non-standard pragmas.
(C99/C11 6.10.6)

• The date and time of translation are always available from the host. (C99 6.10.8, C11
6.10.8.1)

Library Functions (J.3.12)

• Almost all of the library functions required for a hosted implementation are provided by the
TI library. (C99/C11 5.1.2.1)

– However, the following list of run-time functions and features are not implemented or
fully supported:

* fenv.h

· Floating-point exception functions

* inttypes.h

· wcstoimax() / wcstoumax()

* stdio.h

· The %e specifier may produce “-0” when “0” is expected by the standard
snprintf() does not properly pad with spaces when writing to a wide character
array

* stdlib.h

· vfscanf() / vscanf() / vsscanf() return value on floating point matching failure
is incorrect

* wchar.h

· fgetws() / fputws()

· mbrlen()

· mbsrtowcs()

· wcscat()

· wcschr()

· wcscmp() / wcsncmp()

· wcscpy() / wcsncpy()

3.2. C/C++ Language Implementation 153

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

· wcsftime()

· wcsrtombs()

· wcsstr()

· wcstok()

· wcsxfrm()

· Wide character print / scan functions

· Wide character conversion functions

* signal.h

· signal()

· raise()

• The format of the diagnostic printed by the assert macro is “Assertion failed: (assertion
macro argument) in function: function”. (C99/C11 7.2.1.1)

• The feraiseexcept function is not supported. (C11 7.6.2.3)

• No strings other than “C” and “” may be passed as the second argument to the setlocale
function (C99/C11 7.11.1.1)

• The types defined for float_t and double_t when the value of the FLT_EVAL_METHOD
macro is less than 0 or greater than 2 are float and double, respectively. (C99/C11 7.12)

• On underflow range errors, the mathematics functions return 0.0 and the errno is set to
ERANGE. Floating-point exceptions raised using the feraiseexcept function are not sup-
ported. (C99/C11 7.12.1)

• The base-2 logarithm of the modulus used by the remquo functions in reducing the quotient
is 31. The last 31bits of the quotient are returned (values up to 2^{31}). (C99/C11 7.12.10.3)

• No signal handling is supported. (C99/C11 7.14.1.1)

• The +INF, -INF, +inf, -inf, NAN, and nan styles can be used to print an infinity or NaN. (C99
7.19.6.1, 7.24.2.1; C11 7.21.6.1, 7.29.2.1)

• The output for %p conversion in the fprintf or fwprintf function is the same as %x of the
appropriate size. (C99 7.19.6.1, 7.24.2.1; C11 7.21.6.1, 7.29.2.1)

• Any n-char or n-wchar sequence in a string, representing a NaN, that is converted by the
strtod, strtof, or strtold functions, is ignored. The wcstod, wcstof, and wcstold functions are
not supported. (C99 7.20.1.3, 7.24.4.1.1; C11 7.22.1.3, 7.29.4.1.1)

• The strtod, strtof, or strtold functions set errno to ERANGE when underflow occurs. The
wcstod, wcstof, and wcstold functions are not supported. (C99 7.20.1.3, 7.24.4.1.1; C11
7.22.1.3, 7.29.4.1.1)

3.2. C/C++ Language Implementation 154

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Open streams with unwritten buffered data are flushed, open streams are closed, and tempo-
rary files are removed when the _Exit function is called. The function abort does not close
or flush open streams nor does it remove temporary files when it is called. (C99 7.20.4.1,
7.20.4.4, C11 7.22.4.1, 7.22.4.5)

• The termination status returned to the host environment by the abort, exit, _Exit, or quickexit
function is not returned to the host environment. (C99 7.20.4.1, 7.20.4.3, 7.20.4.4, C11
7.22.4.1, 7.22.4.4, 7.22.4.5, 7.22.4.7)

• The system function is not supported. (C99 7.20.4.6, C11 7.22.4.8)

Architecture (J.3.13)

• The values or expressions assigned to the macros specified in the headers float.h, limits.h,
and stdint.h are described along with the sizes and format of integer types in the compiler
manual. (C99 5.2.4.2, 7.18.2, 7.18.3; C11 5.2.4.2, 7.20.2, 7.20.3)

• Thread storage is not supported. (C11 6.2.4)

• The number, order, and encoding of bytes in any object are described in the compiler manual.
(C99/C11 6.2.6.1)

• Valid alignments as well as extended alignments up to 2^{28} bytes are supported. (C11
6.2.8)

• The value of the result of the sizeof and _Alignof operators is the storage size for each type,
in terms of bytes. See the compiler manual (C99/C11 6.5.3.4)

Locale-specific behavior (J.4)

• The behavior of these points is dependent on the implementation of the C library. The
compiler currently supports only one locale, “C”.

3.2.5 Characteristics and Implementation of C29x C++

The c29clang compiler supports C++ as defined in the ANSI/ISO/IEC 14882:2017 standard
(C++17), including these features:

• Complete C++ standard library support, with exceptions noted below.

• C++ Templates

• Run-time type information (RTTI), which can be enabled with the -frtti compiler option.

The following features are not implemented or fully supported:

• Exception handling and the -fexceptions compiler option

3.2. C/C++ Language Implementation 155

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Features related to threads and concurrency, such as:

– std::thread

– std::unique_lock

– std::shared_mutex

– std::execution

– C++ atomic operations

– thread-local storage

• Some features related to memory management, such as:

– std::pmr::memory_resource

– std::align_val_t

• The Filesystem library

• The C++17 Mathematical Special Functions library

Please see C++ Language Variants (-std) for supported C++ language variants as well as the
options that control the language standard used.

C++ Exception Handling

The c29clang compiler does not currently support the C++ exception handling features defined by
the ANSI/ISO 14882 C++ Standard. The -fexceptions command-line option is not supported.

3.2.6 Pre-Defined Macro Symbols

The c29clang compiler supports the use of pre-defined macro symbols. These are compile-time
symbols that are defined with a value based on how the compiler is invoked.

Note: Viewing the List of Pre-Defined Macro Symbols for a Given Compilation

To view the pre-defined macro symbols that are defined for a given c29clang option combination,
you can compile using the -E and -dM options. For example,

%> c29clang -mcpu=c29.c0 -E -dM test.c

emits to stdout the list of pre-defined macro symbols that are defined when compiling with the
-mcpu=c29.c0 option.

The following sub-sections contain tables listing the various pre-defined macro symbols that are
created by the c29clang compiler:

3.2. C/C++ Language Implementation 156

https://en.cppreference.com/w/cpp/numeric/special_functions

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

TI-Specific Pre-Defined Macro Symbols

The c29clang compiler pre-defines the following TI-specific macro symbols, which can be used
when configuring source code to be compiled on the basis of the compiler vendor identification or
on the basis of the c29clang compiler version being used:

TI-Specific Compiler Predefined Macro Symbols

Symbol Value Kind Value / Description
__ti__ <constant> Defined to 1 if TI is the com-

piler vendor.
__ti_major__ <version> Identifies major version num-

ber.
__ti_minor__ <version> Identifies minor version num-

ber.
__ti_patchlevel__ <version> Identifies patch version num-

ber.
__ti_version__ <encoding> Encoding of major, minor,

and patch
version number values associ-
ated
with the current release,
where:
<encoding> = <major>

→˓ * 10000
<minor>

→˓ * 100
<patch>

For 1.3.2.LTS, for example,
the
value of <encoding> would be
10302.

__TI_EABI__ 1 Indicates the output format is
EABI.

TI C29x-Specific Pre-Defined Macro Symbols

The c29clang compiler pre-defined macro symbols to identify the target processor. The following
table summarizes such pre-defined macros:

3.2. C/C++ Language Implementation 157

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Symbol Value
Kind

Value / Description

__C29__ <con-
stant>

Defined to 1 if target is a C29x

__c29__ <con-
stant>

Defined to 1 if target is a C29x

__C29_ARCH <ver-
sion>

Identifies the C29x architecture version being
compiled for. Currently, the only value used is 0.

__C29_C0__ <con-
stant>

Defined to 1 if the -mcpu=c29.c0 option is
defined either on the command line or by default.

__C29_OPTF64__<con-
stant>

Defined to 1 if the -mfpu option is set to
f64 either on the command line or by default.

Generic Compiler Pre-Defined Macro Symbols

Version-Related Predefined Macro Symbols

Symbol Value
Kind

Value / Description

__clang__ <con-
stant>

Defined to 1 if compiler uses Clang- based front-end.

__clang_major__ <ver-
sion>

Identifies major version number of Clang front-end.

__clang_minor__ <ver-
sion>

Identifies minor version number of Clang front-end.

__clang_patchlevel__ <ver-
sion>

Identifies patch number of Clang front-end.

__clang_version__ <string> String representation of Clang front-end version identi-
fication.

__GNUC_MINOR__ <ver-
sion>

2

__GNUC_PATCHLEVEL__<ver-
sion>

1

__GNUC__ <ver-
sion>

4

__GXX_ABI_VERSION__<ver-
sion>

1002

__llvm__ <con-
stant>

Defined to 1 if compiler uses LLVM back-end.

__VERSION__ <string> Full string representation of Clang front-end version
identification.

3.2. C/C++ Language Implementation 158

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

C Language-Related Predefined Macro Symbols

Symbol Value
Kind

Value / Description

__GNUC_GNU_INLINE__<con-
stant>

Defined to 1 if functions declared inline are defined and externally
visible in compiler generated object files if such functions are not
declared static or extern.

__GNUC_STDC_INLINE__<con-
stant>

Defined to 1 if functions declared inline are defined and externally
visible in compiler generated object files only if such functions are
declared extern.

__STDC__ <con-
stant>

Defined to 1 if the compiler conforms to ISO Standard C.

__STDC_HOSTED__<con-
stant>

Defined to 1 if the target of the compiler is a hosted environment in
which the compiler package supplies standard C runtime libraries.

__STDC_UTF_16__<con-
stant>

Defined to 1 if char16_t type values are UTF-16 encoded.

__STDC_UTF_32__<con-
stant>

Defined to 1 if char32_t type values are UTF-32 encoded.

__STDC_VERSION__<ver-
sion>

Defined to the C Standard being applied for a given compilation based
on the -std=<language> option. By default, c29clang assumes
“-std=gnu17” for C source files (<version>=201710L). *

__STRICT_ANSI__<con-
stant>

Defined to 1 if a strictly-conforming C language variant is specified as
the argument to the -std option (c89/90/99/9x/11/1x/17/18).

• See Pre-defined Compiler Macros for a list of definitions of __STDC_VERSION__ that
correspond to versions of the C language standards.

C++ Language Standard Predefined Macro Symbol (__cplusplus)

Symbol Value Kind Value / Description
__cplusplus <standard> Indicates the C++ <standard>

that is in effect for a given
compilation, where <stan-
dard> is one of the following
values:
value => C++

→˓Standard
------- ---------

→˓---
199711L C++98
199711L C++03
201103L C++11
201402L C++14
201703L C++17

3.2. C/C++ Language Implementation 159

https://sourceforge.net/p/predef/wiki/Standards/

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• See Pre-defined Compiler Macros for a list of definitions of __cplusplus that correspond to
versions of the C++ language standards.

C++ Language Feature Test Predefined Macro Symbols

Symbol / Feature Available Value / Adoption
__cpp_aggregate_bases C++17 201603L
__cpp_aggregate_nsdmi C++14 201304L
__cpp_alias_templates C++11 200704L
__cpp_aligned_new C++17 201606L
__cpp_attributes C++11 200809L
__cpp_binary_literals C++14 201304L
__cpp_capture_star_this C++17 201603L
__cpp_constexpr C++11 C++14 C++17 200704L 201304L 201603L
__cpp_contexpr_in_decltype C++11 201711L
__cpp_decltype C++11 200707L
__cpp_decltype_auto C++14 201304L
__cpp_deduction_guides C++17 201703L
__cpp_delegating_constructors C++11 200604L
__cpp_digit_separators C++14 201309L
__cpp_enumerator_attributes C++17 201411L
__cpp_fold_expressions C++17 201603L
__cpp_generic_lambdas C++14 201304L
__cpp_guaranteed_copy_elision C++17 201606L
__cpp_hex_float C++17 201603L
__cpp_if_constexpr C++17 201606L
__cpp_impl_destroying_delete C++98 201806L
__cpp_inheriting_constructors C++11 201511L
__cpp_init_captures C++14 201304L
__cpp_initializer_lists C++11 200806L
__cpp_inline_variables C++17 201606L
__cpp_lambdas C++11 200907L
__cpp_namespace_attributes C++17 201411L
__cpp_nested_namespace_definitions C++17 201411L
__cpp_noexcept_function_type C++17 201510L
__cpp_nontype_template_args C++17 201411L
__cpp_nontype_template_parameter_auto C++17 201606L
__cpp_nsdmi C++11 200809L
__cpp_range_based_for C++11 C++17 200907L 201603L
__cpp_raw_strings C++11 200710L
__cpp_ref_qualifiers C++11 200710L
__cpp_return_type_deduction C++14 201304L
__cpp_rvalue_references C++11 200610L

continues on next page

3.2. C/C++ Language Implementation 160

https://sourceforge.net/p/predef/wiki/Standards/

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Table 3.1 – continued from previous page
Symbol / Feature Available Value / Adoption

__cpp_static_assert C++11 C++17 200410L 201411L
__cpp_structured_bindings C++17 201606L
__cpp_template_auto C++17 201606L
__cpp_threadsafe_static_init C++98 200806L
__cpp_unicode_characters C++11 200704L
__cpp_unicode_literals C++11 200710L
__cpp_user_defined_literals C++11 200809L
__cpp_variable_templates C++14 201304L
__cpp_variadic_templates C++11 200704L
__cpp_variadic_using C++17 201611L

Compiler Generated Object Format (__ELF__)

Sym-
bol

Value
Kind

Value / Description

__ELF__<con-
stant>

Defined to 1 if compiler generates object code that conforms to the
ELF object file format (default).

Predefined Macro Symbols Related to Endian-ness

Symbol Value
Kind

Value / Description

__BIG_ENDIAN__ <con-
stant>

Never defined for C29x.

__LIT-
TLE_ENDIAN__

<con-
stant>

Always defined to 1 for C29x.

__BYTE_ORDER__ <con-
stant>

Always matches the value of __OR-
DER_LITTLE_ENDIAN__ (1234)
for C29x.

__OR-
DER_BIG_ENDIAN__

<con-
stant>

4321

__OR-
DER_LITTLE_ENDIAN__

<con-
stant>

1234

Predefined Macro Symbols Related to Optimization

3.2. C/C++ Language Implementation 161

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Symbol Value
Kind

Value / Description

__FAST_MATH__<con-
stant>

Defined to 1 if the -ffast-math or -ffp-mode=fast option is enabled
(-ffast-math is implied when the -Ofast optimization level is
specified on the compiler command- line).

_INLINE <con-
stant>

Defined to 1 if automatic inlining optimizations are enabled.

__NO_INLINE__<con-
stant>

Defined to 1 if automatic inlining optimizations are disabled.

__OPTI-
MIZE__

<con-
stant>

Defined to 1 if optimization is in use (-O[123fastszg]).

__OPTI-
MIZE_SIZE__

<con-
stant>

Defined to 1 if optimizations intended to reduce compiler-
generated code size are in use (-Os or -Oz option).

Predefined Macro Symbols Related to Scalar Types

Symbol Value Kind Value / Description
__BIGGEST_ALIGNMENT__ <bytes> Indicates the largest align-

ment in <bytes> ever used for
any data
type on the C29x processor.
This value is 8.

__CHAR16_TYPE__ <type> unsigned short
__CHAR32_TYPE__ <type> unsigned int
__CHAR_BIT__ <bits> 8
__CHAR_UNSIGNED__ <constant> Defined to 1 if “plain” char

types (not qualified with a
“signed” or
“unsigned” keyword) are in-
terpreted by the compiler to be
unsigned.

__INT8_FMTd__ <string> “hhd”
__INT8_FMTi__ <string> “hhi”
__INT8_MAX__ <constant> 127
__INT8_TYPE__ <type> signed char
__UINT8_FMTX__ <string> “hhX”
__UINT8_FMTo__ <string> “hho”
__UINT8_FMTu__ <string> “hhu”
__UINT8_FMTx__ <string> “hhx”
__UINT8_MAX__ <constant> 255
__UINT8_TYPE__ <type> unsigned char
__SCHAR_MAX__ <constant> 127

continues on next page

3.2. C/C++ Language Implementation 162

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Table 3.2 – continued from previous page
Symbol Value Kind Value / Description
__INT_FAST8_FMTd__ <string> “hhd”
__INT_FAST8_FMTi__ <string> “hhi”
__INT_FAST8_MAX__ <constant> 127
__INT_FAST8_TYPE__ <type> signed char
__INT_FAST8_WIDTH__ <constant> 8
__UINT_FAST8_FMTX__ <string> “hhX”
__UINT_FAST8_FMTo__ <string> “hho”
__UINT_FAST8_FMTu__ <string> “hhu”
__UINT_FAST8_FMTx__ <string> “hhx”
__UINT_FAST8_MAX__ <constant> 255
__UINT_FAST8_TYPE__ <type> unsigned char
__INT_LEAST8_FMTd__ <string> “hhd”
__INT_LEAST8_FMTi__ <string> “hhi”
__INT_LEAST8_MAX__ <constant> 127
__INT_LEAST8_TYPE__ <type> signed char
__INT_LEAST8_WIDTH__ <constant> 8
__UINT_LEAST8_FMTX__ <string> “hhX”
__UINT_LEAST8_FMTo__ <string> “hho”
__UINT_LEAST8_FMTu__ <string> “hhu”
__UINT_LEAST8_FMTx__ <string> “hhx”
__UINT_LEAST8_MAX__ <constant> 255
__UINT_LEAST8_TYPE__ <type> unsigned char
__INT16_FMTd__ <string> “hd”
__INT16_FMTi__ <string> “hi”
__INT16_MAX__ <constant> 32767
__INT16_TYPE__ <type> short
__UINT16_FMTX__ <string> “hX”
__UINT16_FMTo__ <string> “ho”
__UINT16_FMTu__ <string> “hu”
__UINT16_FMTx__ <string> “hx”
__UINT16_MAX__ <constant> 65535
__UINT16_TYPE__ <type> unsigned short
__SHRT_MAX__ <constant> 32767
__SIZEOF_SHORT__ <bytes> 4
__SHRT_WIDTH__ <constant> 16
__INT_FAST16_FMTd__ <string> “hd”
__INT_FAST16_FMTi__ <string> “hi”
__INT_FAST16_MAX__ <constant> 32767
__INT_FAST16_TYPE__ <type> short
__INT_FAST16_WIDTH__ <constant> 16

continues on next page

3.2. C/C++ Language Implementation 163

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Table 3.2 – continued from previous page
Symbol Value Kind Value / Description
__UINT_FAST16_FMTX__ <string> “hX”
__UINT_FAST16_FMTo__ <string> “ho”
__UINT_FAST16_FMTu__ <string> “hu”
__UINT_FAST16_FMTx__ <string> “hx”
__UINT_FAST16_MAX__ <constant> 65535
__UINT_FAST16_TYPE__ <type> unsigned short
__INT_LEAST16_FMTd__ <string> “hd”
__INT_LEAST16_FMTi__ <string> “hi”
__INT_LEAST16_MAX__ <constant> 32767
__INT_LEAST16_TYPE__ <type> short
__INT_LEAST16_WIDTH__ <constant> 16
__UINT_LEAST16_FMTX__ <string> “hX”
__UINT_LEAST16_FMTo__ <string> “ho”
__UINT_LEAST16_FMTu__ <string> “hu”
__UINT_LEAST16_FMTx__ <string> “hx”
__UINT_LEAST16_MAX__ <constant> 65535
__UINT_LEAST16_TYPE__ <type> unsigned short
__INT32_FMTd__ <string> “d”
__INT32_FMTi__ <string> “i”
__INT32_MAX__ <constant> 2147483647
__INT32_TYPE__ <type> int
__UINT32_C_SUFFIX__ <text> U
__UINT32_FMTX__ <string> “X”
__UINT32_FMTo__ <string> “o”
__UINT32_FMTu__ <string> “u”
__UINT32_FMTx__ <string> “x”
__UINT32_MAX__ <constant> 4294967295U
__UINT32_TYPE__ <type> unsigned int
__INT_MAX__ <constant> 2147483647
__SIZEOF_INT__ <bytes> 4
__INT_WIDTH__ <constant> 32
__LONG_MAX__ <constant> 2147483647
__SIZEOF_LONG__ <bytes> 4
__LONG_WIDTH__ <constant> 32
__INT_FAST32_FMTd__ <string> “d”
__INT_FAST32_FMTi__ <string> “i”
__INT_FAST32_MAX__ <constant> 2147483647
__INT_FAST32_TYPE__ <type> int
__INT_FAST32_WIDTH__ <constant> 32
__UINT_FAST32_FMTX__ <string> “X”

continues on next page

3.2. C/C++ Language Implementation 164

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Table 3.2 – continued from previous page
Symbol Value Kind Value / Description
__UINT_FAST32_FMTo__ <string> “o”
__UINT_FAST32_FMTu__ <string> “u”
__UINT_FAST32_FMTx__ <string> “x”
__UINT_FAST32_MAX__ <constant> 4294967295U
__UINT32_TYPE__ <type> unsigned int
__INT_LEAST32_FMTd__ <string> “d”
__INT_LEAST32_FMTi__ <string> “i”
__INT_LEAST32_MAX__ <constant> 2147483647
__INT_LEAST32_TYPE__ <type> int
__INT_LEAST32_WIDTH__ <constant> 32
__UINT_LEAST32_FMTX__ <string> “X”
__UINT_LEAST32_FMTo__ <string> “o”
__UINT_LEAST32_FMTu__ <string> “u”
__UINT_LEAST32_FMTx__ <string> “x”
__UINT_LEAST32_MAX__ <constant> 4294967295U
__UINT_LEAST32_TYPE__ <type> unsigned int
__INT64_C_SUFFIX__ <text> LL
__INT64_FMTd__ <string> “lld”
__INT64_FMTi__ <string> “lli”
__INT64_MAX__ <constant> 9223372036854775807LL
__INT64_TYPE__ <type> long long int
__UINT64_C_SUFFIX__ <text> ULL
__UINT64_FMTX__ <string> “llX”
__UINT64_FMTo__ <string> “llo”
__UINT64_FMTu__ <string> “llu”
__UINT64_FMTx__ <string> “llx”
__UINT64_MAX__ <constant> 18446744073709551615ULL
__UINT64_TYPE__ <type> long long unsigned int
__LONG_LONG_MAX__ <constant> 9223372036854775807LL
__SIZEOF_LONG_LONG__ <bytes> 8
__INT_FAST64_FMTd__ <string> “lld”
__INT_FAST64_FMTi__ <string> “lli”
__INT_FAST64_MAX__ <constant> 9223372036854775807LL
__INT_FAST64_TYPE__ <type> long long int
__INT_FAST64_WIDTH__ <constant> 64
__UINT_FAST64_FMTX__ <string> “llX”
__UINT_FAST64_FMTo__ <string> “llo”
__UINT_FAST64_FMTu__ <string> “llu”
__UINT_FAST64_FMTx__ <string> “llx”
__UINT_FAST64_MAX__ <constant> 18446744073709551615ULL

continues on next page

3.2. C/C++ Language Implementation 165

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Table 3.2 – continued from previous page
Symbol Value Kind Value / Description
__UINT_FAST64_TYPE__ <type> long long unsigned int
__INT_LEAST64_FMTd__ <string> “lld”
__INT_LEAST64_FMTi__ <string> “lli”
__INT_LEAST64_MAX__ <constant> 9223372036854775807LL
__INT_LEAST64_TYPE__ <type> long long int
__INT_LEAST64_WIDTH__ <constant> 64
__UINT_LEAST64_FMTX__ <string> “llX”
__UINT_LEAST64_FMTo__ <string> “llo”
__UINT_LEAST64_FMTu__ <string> “llu”
__UINT_LEAST64_FMTx__ <string> “llx”
__UINT_LEAST64_MAX__ <constant> 18446744073709551615ULL
__UINT_LEAST64_TYPE__ <type> long long unsigned int
__INTMAX_C_SUFFIX__ <text> LL
__INTMAX_FMTd__ <string> “lld”
__INTMAX_FMTi__ <string> “lli”
__INTMAX_MAX__ <constant> 9223372036854775807LL
__INTMAX_TYPE__ <type> long long int
__INTMAX_WIDTH__ <bits> 64
__UINTMAX_C_SUFFIX__ <text> ULL
__UINTMAX_FMTX__ <string> “llX”
__UINTMAX_FMTo__ <string> “llo”
__UINTMAX_FMTu__ <string> “llu”
__UINTMAX_FMTx__ <string> “llx”
__UINTMAX_MAX__ <constant> 18446744073709551615ULL
__UINTMAX_TYPE__ <type> long long unsigned int
__UINTMAX_WIDTH__ <constant> 64
__INTPTR_FMTd__ <string> “d”
__INTPTR_FMTi__ <string> “i”
__INTPTR_MAX__ <constant> 2147483647
__INTPTR_TYPE__ <type> int
__INTPTR_WIDTH__ <bits> 32
__UINTPTR_FMTX__ <string> “X”
__UINTPTR_FMTo__ <string> “o”
__UINTPTR_FMTu__ <string> “u”
__UINTPTR_FMTx__ <string> “x”
__UINTPTR_MAX__ <constant> 4294967295U
__UINTPTR_TYPE__ <type> unsigned int
__UINTPTR_WIDTH__ <constant> 32
__POINTER_WIDTH__ <constant> 32

continues on next page

3.2. C/C++ Language Implementation 166

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Table 3.2 – continued from previous page
Symbol Value Kind Value / Description
_ILP32 <constant> Defined to 1 if pointer type

width and long type width is
32-bits.

__ILP32__ <constant> Defined to 1 if pointer type
width and long type width is
32-bits.

__SIZEOF_POINTER__ <bytes> 4
__PTRDIFF_FMTd__ <string> “d”
__PTRDIFF_FMTi__ <string> “i”
__PTRDIFF_MAX__ <constant> 2147483647
__PTRDIFF_TYPE__ <type> int
__PTRDIFF_WIDTH__ <bits> 32
__SIZEOF_PTRDIFF_T__ <bytes> 4
__SIZE_FMTX__ <string> “X”
__SIZE_FMTo__ <string> “o”
__SIZE_FMTu__ <string> “u”
__SIZE_FMTx__ <string> “x”
__SIZE_MAX__ <constant> 4294967295U
__SIZE_TYPE__ <type> unsigned int
__SIZE_WIDTH__ <bits> 32
__SIZEOF_SIZE_T__ <bytes> 4
__WCHAR_MAX__ <constant> 2147483647
__WCHAR_MIN__ <constant> (-2147483647-1)
__WCHAR_TYPE__ <constant> int
__WCHAR_WIDTH__ <bits> 32
__SIZEOF_WCHAR_T__ <bytes> 4
__WINT_MAX__ <constant> 4294967295
__WINT_TYPE__ <constant> unsigned int
__WINT_WIDTH__ <bits> 32
__WINT_UNSIGNED__ <constant> 1
__SIZEOF_WINT_T__ <bytes> 4
__FLT_DECIMAL_DIG__ <digits> 9
__FLT_DENORM_MIN__ <constant> 1.40129846e-45F
__FLT_DIG__ <digits> 6
__FLT_EPSILON__ <constant> 1.19209290e-7F
__FLT_MANT_DIG__ <bits> 24
__FLT_MAX_10_EXP__ <constant> 38
__FLT_MAX_EXP__ <constant> 128
__FLT_MAX__ <constant> 3.40282347e+38F
__FLT_MIN_10_EXP__ <constant> -37
__FLT_MIN_EXP__ <constant> -125

continues on next page

3.2. C/C++ Language Implementation 167

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Table 3.2 – continued from previous page
Symbol Value Kind Value / Description
__FLT_MIN__ <constant> 1.17549435e-38F
__FLT_RADIX__ <constant> 2
__SIZEOF_FLOAT__ <bytes> 4
__DBL_DECIMAL_DIG__ <digits> 17
__DBL_DENORM_MIN__ <constant> 4.9406564584124654e-324
__DBL_DIG__ <digits> 15
__DBL_EPSILON__ <constant> 2.2204460492503131e-16
__DBL_MANT_DIG__ <bits> 53
__DBL_MAX_10_EXP__ <constant> 308
__DBL_MAX_EXP__ <constant> 1024
__DBL_MAX__ <constant> 1.7976931348623157e+308
__DBL_MIN_10_EXP__ <constant> -307
__DBL_MIN_EXP__ <constant> -1021
__DBL_MIN__ <constant> 2.2250738585072014e-308
__DECIMAL_DIG__ <constant> __LDBL_DECIMAL_DIG__
__LDBL_DECIMAL_DIG__ <digits> 17
__LDBL_DENORM_MIN__ <constant> 4.9406564584124654e-324L
__LDBL_DIG__ <digits> 15
__LDBL_EPSILON__ <constant> 2.2204460492503131e-16L
__LDBL_MANT_DIG__ <bits> 53
__LDBL_MAX_10_EXP__ <constant> 308
__LDBL_MAX_EXP__ <constant> 1024
__LDBL_MAX__ <constant> 1.7976931348623157e+308L
__LDBL_MIN_10_EXP__ <constant> -307
__LDBL_MIN_EXP__ <constant> -1021
__LDBL_MIN__ <constant> 2.2250738585072014e-308L

3.2.7 Attributes

Contents:

Attribute Syntax

There are three different kinds of attributes supported by the c29clang compiler:

• Function Attributes

• Variable Attributes

• Type Attributes

3.2. C/C++ Language Implementation 168

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

General Syntax

In general, an attribute can be applied to a function, variable, or type in the following ways:

attribute-specifier <function, variable, or type>

<function, variable, or type> attribute=specifier

where an attribute-specifier consists of the following parts:

__attribute__((attribute-list))

An attribute-list consists of zero or more comma-separated attributes where each attribute can be:

• an attribute name that takes no arguments (like noinit or persistent),

• an attribute name that expects a list of arguments enclosed in parentheses (like aligned or
section). Further details about argument requirements are provided in the descriptions of
those attributes that take arguments, or

• empty, in which case the attribute-specifier is ignored.

Examples

• An attribute-specifier can precede a variable definition:

__attribute__((section("my_sect"))) int my_var;

• An attribute-specifier can be specified at the end of an uninitialized variable declaration:

int my_var __attribute__((section("my_sect")));

• An attribute-specifier can be applied to an initialized variable:

int my_var __attribute__((section("my_sect"))) = 5;

The attribute-specifier in this case must precede the initializer.

• An attribute-specifier can be applied to a structure member:

struct {
char m1;
int m2 __attribute__((packed));
int m3;

} packed_struct = { 10, 20, 30 };

In this case, struct member m2 is aligned on a 1-byte boundary relative to the beginning of
the struct due to the packed attribute, but m3 is aligned on a 4-byte boundary relative to the
beginning of the struct.

3.2. C/C++ Language Implementation 169

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• An attribute-specifier applied to a struct type can apply to all members of the struct:

struct __attribute__((packed)) {
char m1;
int m2;
int m3;

} packed_struct = { 10, 20, 30 };

In this case, all members of the struct are aligned on a 1-byte boundary relative to the begin-
ning of the struct due to the packed attribute.

• Multiple attributes can be applied in a single attribute-specifier:

__attribute__((noinit,location(0x100))) int noinit_location_
→˓global;

• An attribute-specifier that precedes a list of function declarations applied to all of the decla-
rations in the same statement:

_attribute__((noreturn)) void d0 (void),
__attribute__((format(printf, 1, 2))) d1 (const char *, ..

→˓.),
d2 (void);

In this case, the noreturn attribute applies to all the declared functions, but the format at-
tribute only applies to d1.

Function Attributes

The following function attributes are supported by the compiler:

• alias

• aligned

• always_inline

• const

• constructor

• deprecated

• format

• format_arg

• fully_populate_jump_tables

• interrupt

3.2. C/C++ Language Implementation 170

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• location

• malloc

• naked

• noinline

• nomerge

• nonnull

• noreturn

• optnone

• pure

• section

• used/retain

• visibility

• weak

• weakref

See C29x Security Model for information about protected calls and use of the
c29_protected_call function attribute.

Note: Function Attribute Syntax

A function attribute specification can appear at the beginning or end of a function declaration
statement:

<function declaration> __attribute__((<attribute-list>));

or

__attribute__((<attribute-list>)) <function declaration>;

However, when a function attribute is specified with the function definition, if it appears between
the function specification and the opening curly brace that indicates the start of the function body,
the compiler will emit a warning diagnostic. For example,

// always_inline_function_attr.c
...
void emit_msg(void) __attribute__((always_inline)) {

printf("this is call #%d\n", ++counter);
}
...

3.2. C/C++ Language Implementation 171

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

%> c29clang -mcpu=c29.c0 -c always_inline_function_attr.c
always_inline_function_attr.c:8:36: warning: GCC does not allow
'always_inline' attribute in this position on a function
definition [-Wgcc-compat]
void emit_msg(void) __attribute__((always_inline)) {

^
1 warning generated.

The warning can be disabled using the -Wgcc-compat option or by moving the function attribute
specification before the function specification.

alias

The alias function attribute can be applied to a function declaration to instruct the compiler to
interpret the function symbol being declared as an alias for another function symbol that is defined
in the same compilation unit.

Syntax

<return type> source symbol (<arguments>) __attribute__((alias(target symbol)));

• source symbol - is the subject of the function declaration that will become an
alias of the target symbol.

• target symbol - is a function symbol defined in the same compilation unit as the
declaration of source symbol, to which references to source symbol will resolve
to.

Example

In the following C code, both a weak and an alias attribute are applied to the declaration of
event_handler so that calls to event_handler will be resolved by default_handler unless a strong
definition of event_handler overrides the weak definition at link-time:

// alias_func_attr.c
#include <stdio.h>

void default_handler() {
printf("This is the default handler\n");

}

void event_handler(void) __attribute__((weak, alias("default_
→˓handler")));

(continues on next page)

3.2. C/C++ Language Implementation 172

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

int main() {
event_handler();
return 0;

}

If the above code is compiled and linked and run, the output reveals that the reference to
event_handler resolves to a call to default_handler:

%> c29clang -mcpu=c29.c0 alias_func_attr.c -o a.out -Wl,-llnk.
→˓cmd,-ma.map

The output when the program is loaded and run is as follows:

This is the default handler

If we add a strong definition of event_handler to the build, then the reference to event_handler will
be resolved by the strong function definition of event_handler:

#include <stdio.h>

void event_handler() {
printf("This is the event handler implementation\n");

}

%> c29clang -mcpu=c29.c0 alias_func_attr.c event_handler_impl.c -
→˓o a.out -Wl,-llnk.cmd,-ma.map

The output when the program is loaded and run is as follows:

This is the event handler implementation

aligned

The aligned function attribute can be applied to a function in order to set a minimum byte-
alignment constraint on the target memory address where the function symbol is defined.

Syntax

<return type> symbol (<arguments>) __attribute__((aligned(alignment)));

• alignment - is the minimum byte-alignment for the definition of the symbol. The
alignment value must be a power of 2. The default alignment for a symbol is
4-bytes.

3.2. C/C++ Language Implementation 173

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Example

The following example shows a program that calls a function with an aligned attribute applied to
it:

#include <stdio.h>

__attribute__((aligned(64))) void aligned_func() {
printf("This functions address is: 0x%08lx\n",

(unsigned long)&aligned_func);
}

int main() {
aligned_func();
return 0;

}

When compiled and linked and run, the output of the program shows that the effective
address of aligned_func is on a 64-byte boundary (the 1 in the LS bit of the printed
address indicates the code state for the function):

%> c29clang -mcpu=c29.c0 aligned_func_attr.c -o a.out -Wl,-llnk.
→˓cmd,-ma.map

The output when the program is loaded and run is as follows:

This function's address is: 0x00001981

always_inline

The always_inline function attribute can be applied to a function to instruct the compiler that the
function is to be inlined at any call sites, even if no optimization is specified on the c29clang
command line.

Syntax

<return type> symbol (<arguments>) __attribute__((always_inline));

Example

The following use of the always_inline function attribute will cause the body of emit_msg to be
inlined where main calls emit_msg:

#include <stdio.h>

int counter = 0;
(continues on next page)

3.2. C/C++ Language Implementation 174

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

__attribute__((always_inline)) void emit_msg() {
printf("this is call #%d\n", ++counter);

}

int main() {
emit_msg();
emit_msg();
emit_msg();

}

The compiler-generated assembly source for the above C code inlines the body of emit_msg, even
though no optimization was specified on the command line:

The compiler-generated assembly code also contains the definition of the emit_msg function, but
when the program is compiled and linked, the section containing the definition of emit_msg will
not be included in the link since all of the references to it have been inlined.

const

The const function attribute applied to a function declaration informs the compiler that the function
has no side effects except for the value it returns. The function will not examine any values outside
its body with the exception of arguments that are passed into it. It does not access any global data.

Note that if the function has a pointer argument and it accesses memory via that pointer, then the
const attribute should not be applied to its declaration. Also, the const attribute should not be
applied to a function which calls a non-const function.

Syntax

<return type> symbol (<arguments>) __attribute__((const));

Example

The following C code is a simple example of the use of the const attribute:

#include <stdio.h>

float square_flt(float a_flt) __attribute__((const));
float square_flt(float a_flt) {
return (a_flt * a_flt);

}

float tot_flt = 0.0;

(continues on next page)

3.2. C/C++ Language Implementation 175

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

int main(void) {
int i;
for (i = 0; i < 10; i++)
{

tot_flt += square_flt(i);
printf ("iter #%d, tot_flt is: %f\n", i, tot_flt);

}
}

constructor

Applying a constructor attribute to a function causes the function to be called prior to executing
the code in main. Use of this attribute provides a means of initializing data that is used implicitly
during the execution of a program.

Syntax

void constructor function name () __attribute__((constructor[(priority)]));

• priority - is an optional integer argument used to indicate the order in which
this constructor function is to be called relative to other functions that have been
annotated with the constructor attribute. If no priority argument is specified, then
constructor-annotated functions that do not have priority arguments will be called
in the order in which they are encountered in the compilation unit. If a priority
argument is specified, then a constructor-annotated function with a lower priority
value will be called before a constructor-annotated function with a higher priority
value or no priority argument.

Example

Consider the following C program containing 4 functions that have been annotated with a con-
structor attribute:

#include <stdio.h>

__attribute__((constructor)) void init2() {
printf("run init2\n");

}

__attribute__((constructor)) void init1() {
printf("run init1\n");

}

__attribute__((constructor(5))) void init3() {
(continues on next page)

3.2. C/C++ Language Implementation 176

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

printf("run init3\n");
}

__attribute__((constructor(50))) void init4() {
printf("run init4\n");

}

int main() {
printf("run main\n");
return 0;

}

When compiled and linked and run, the output of the program shows the order in which the
constructor-annotated functions are called:

%> c29clang -mcpu=c29.c0 constructor_function_attr.c -o a.out -
→˓Wl,-llnk.cmd,-ma.map

The output when the program is loaded and run is as follows:

run init3
run init4
run init2
run init1
run main

The iniit3 constructor is run first since its priority value is lower than init4. The init2 and init1
constructors are run after init4 because they don’t have a priority argument. Finally, init2 is run
before init1 since it is encountered before init1 in the compilation unit.

deprecated

The deprecated function attribute can be applied to a function to mark it as deprecated so that the
compiler will emit a warning when it sees a reference to the function in its compilation unit. This
can be useful during program development when trying to remove references to a function whose
definition will eventually be removed.

Syntax

<return type> symbol (<arguments>) __attribute__((deprecated));

Example

In this example, the function dep_func has been marked with a deprecated attribute, but main
contains a call to the function:

3.2. C/C++ Language Implementation 177

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

#include <stdio.h>

__attribute__((deprecated)) void dep_func(void) {
printf("this function has been deprecated\n");

}

int main() {
dep_func();
printf("run main\n");
return 0;

}

When compiled, c29clang will emit a warning diagnostic to indicate a reference to the deprecated
function dep_func has been encountered:

%> c29clang -mcpu=c29.c0 deprecated_function_attr.c -o a.out -Wl,
→˓-llnk.cmd,-ma.map
deprecated_function_attr.c:9:3: warning: 'dep_func' is

→˓deprecated [-Wdeprecated-declarations]
dep_func();
^

deprecated_function_attr.c:4:16: note: 'dep_func' has been
→˓explicitly marked deprecated here
__attribute__((deprecated)) void dep_func(void) {

^
1 warning generated.

format

The format function attribute can be applied to a function to indicate that the function accepts
a printf or scanf -like format string and corresponding arguments or a va_list that contains these
arguments.

The c29clang compiler performs two kinds of checks with this attribute.

1. The compiler will check that the function is called with a format string that uses format
specifiers that are allowed, and that arguments match the format string. If the compiler
encounters an issue with this check, a warning diagnostic will be emitted at compile-time.

2. If the format-nonliteral warning category is enabled (off by default), then the compiler will
emit a warning if the format string argument is not a literal string.

Syntax

<return type> symbol (<arguments>) __attribute__((format(archtype, string-index,

3.2. C/C++ Language Implementation 178

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

first-to-check)));

• archtype - identifies the runtime library function that informs the compiler how
to interpret the format string argument. The compiler will accept printf, scanf,
and strftime as valid archtype argument values.

• string-index - is an integer value identifying which argument in the argument list
is the format string argument. Index numbering starts with the integer 1.

• first-to-check - is an integer value identifying the first argument to check against
the format string. Index numbering starts with the integer 1. For format functions
where the arguments are not available to be checked, the first-to-check argument
for the format attribute should be zero.

Example

Consider the following C code that uses a wrapper function for printf called my_printf that has
been declared with a format attribute:

#include <stdio.h>

__attribute__((format(printf, 2, 3)))
int my_printf(int n, const char* fmt, ...);

int main() {
my_printf(10, "call with int: %d\n", 20);
my_printf(30, "wrong number of args: %d\n", 40, 50);

return 0;
}

When the above code is compiled, c29clang reports a warning diagnostic about the second call
to my_printf since the call provides more arguments than can be handled by the specified format
string.

%> c29clang -mcpu=c29.c0 -c format_function_attr.c
format_function_attr.c:9:51: warning: data argument not used by

→˓format string [-Wformat-extra-args]
my_printf(30, "wrong number of args: %d\n", 40, 50);

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^
1 warning generated.

3.2. C/C++ Language Implementation 179



C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

format_arg

The format_arg function attribute can be applied to a function that takes a format string as an
argument and returns a potentially updated version of the format string that is to be used as a
format string argument for a printf-style function (like printf, scanf, strftime, etc.). The format_arg
attribute enables the compiler to perform a type check between the format specifiers in the format
string and the other arguments that are passed to the printf-style function.

Syntax

<return type> symbol (<arguments>) __attribute__((format_arg(string-index)));

Example

In the following C code, the my_format function is declared with a format_arg attribute, identifying
the index of the format string argument in the my_format function interface. The main function
then contains a series of calls to printf where the format string to the printf call is the return value
of the my_format function. The compiler will check the format string passed to my_format against
the other arguments that are passed to printf in each case:

#include <stdio.h>

char *my_format(int n, const char *fmt) __attribute__((format_
→˓arg(2)));

extern int i1, i2;
extern float f1, f2;

int main() {
printf(my_format(10, "one int: %d\n"), i1);
printf(my_format(20, "too many ints: %d\n"), i1, i2);
printf(my_format(20, "wrong type: %d %f\n"), f1, f2);
return 0;

}

When the above code is compiled, c29clang reports warning diagnostics about the incorrect num-
ber of arguments in the second call to printf and the argument type mismatch in the third call to
printf.

%> c29clang -mcpu=c29.c0 -c format_arg_function_attr.c
%format_arg_function_attr.c:11:52: warning: data argument not

→˓used by format string [-Wformat-extra-args]
%printf(my_format(20, "too many ints: %d\n"), i1, i2);

%~~~~~~~~~~~~~~~~~~~~~ ^
%format_arg_function_attr.c:12:48: warning: format specifies

→˓type 'int' but the argument has type 'float' [-Wformat]
(continues on next page)

3.2. C/C++ Language Implementation 180



C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

%printf(my_format(20, "wrong type: %d %f\n"), f1, f2);
%~~ ^~
%%f

%2 warnings generated.

fully_populate_jump_tables

The fully_populate_jump_tables function attribute will allow a function’s switch statements to use
fully populated jump tables (if possible) with no minimum density up to a maximum range limit of
100 entries. This capability can eliminate non-deterministic control flow and is useful in embedded
systems that require ISRs to execute with deterministic timing.

Note: This attribute may negatively impact code size depending on the size of the jump table

interrupt

The interrupt function attribute can be applied to a function definition to identify it as an interrupt
function so that the compiler can generate additional code on function entry and exit to preserve
the system state. The function can then be used to handle errors that led to function exits.

Syntax

__attribute__((interrupt)) <return type> symbol (<arguments>) { . . . }

__attribute__((interrupt[(”interrupt-type”)])) void symbol () { . . . }

• interrupt-type - is the optional string literal argument that indicates the type of interrupt being
defined. The c29clang compiler supports the following interrupt-type identifiers:

– __attribute__((interrupt("RTINT")))

– __attribute__((interrupt("INT")))

You can generate a Realtime Interrupt (RTINT) or maskable interrupt (INT) from C using the
__attribute__((interrupt())) function attribute. For example:

void my_high_priority interrupt() __attribute__((interrupt("RTINT
→˓")));
void my_low_priority interrupt() __attribute__((interrupt("INT

→˓")));

__attribute__((interrupt("RTINT"))) void int2() {
(continues on next page)

3.2. C/C++ Language Implementation 181



C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

do_something2();
}
__attribute__((interrupt("INT"))) void int3() {

do_something3();
}

An interrupt is responsible for saving any and all registers that may be used, so as to preserve the
state of the registers as they were before the interrupt was called. An interrupt containing a call
will save a large number of registers, which degrades code size and speed.

See C29x Security Model for information about protected calls and use of the
c29_protected_call function attribute.

In addition, built-in C29x interrupt intrinsics can be used to disable/enable INT interrupts and
block RTINT/INT interrupts. See Built-In Functions and Intrinsics for details.

location

The location function attribute can be used to specify a function’s run-time address from within
the C/C++ source. The c29clang compiler will embed linker instructions within a given compiler-
generated object file that will dictate where in target memory the function definition will be placed
at link-time.

Syntax

<return type> symbol (<arguments>) __attribute__((location(address)));

• address - is the run-time target memory address where the definition of the func-
tion symbol is to be placed at link-time.

Example

In the following example, the location attribute is applied to main using an address argument of
0x2001 to place the definition of main at target address 0x2000.

#include <stdio.h>

__attribute__((location(0x2001))) int main() {
printf("Good morning, Dave.\n");
return 0;

}

%> c29clang -mcpu=c29.c0 location_function_atr.c -o a.out -Wl,-
→˓llnk.cmd,-ma.map
%> cat a.map

(continues on next page)

3.2. C/C++ Language Implementation 182



C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
-------- ---- ---------- ---------- ----------------
...
.text.main

* 0 00002000 0000002c
00002000 0000001c location_function_

→˓attr-9108ac.o (.text.main)
...

malloc

The malloc function attribute can be applied to a function to inform the compiler that the function
performs dynamic memory allocation. This information will then be incorporated into associated
optimizations that the compiler may perform. For example, the compiler can assume that the
pointer returned by the function that is annotated with a malloc attribute cannot alias any other
pointer that is valid at the time the function returns. The compiler can also assume that no other
pointer to a valid object has access to any storage that was allocated by the malloc-like function.

Syntax

<object type> * symbol (<arguments>) __attribute__((malloc));

Example

The following C code is an example of a function that is designated as malloc-like with the appli-
cation of the malloc attribute:

char *alloc_buffer(int sz) __attribute__((malloc));

naked

When a naked function attribute is applied to a function, it informs the compiler that the function
is written entirely in GNU-syntax C29x assembly language via the use of asm() statements. The
compiler will not generate function prologue or epilogue code for such functions.

Note that only simple asm() statements can be used to compose the assembly language content of a
naked function, and the content must adhere to the applicable C/C++ calling conventions in terms
of how arguments are passed into the function and how the return value is placed in the proper
return register (for a function with a non-void return type).

Syntax

3.2. C/C++ Language Implementation 183



C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

<return type> symbol (<arguments>) __attribute__((naked));

Example

Here is a simple example of a naked function:

__attribute__((naked)) int sub(int arg1, int arg2) {
__asm(" SUB D0, D0, D1");

}

noinline

The noinline function attribute will suppress the inlining of the function that it applies to at any
function call sites in the same compilation unit.

Syntax

<return type> symbol (<arguments>) __attribute__((noinline));

Example

Consider the following program in which incr_counter is marked with a noinline attribute so that
it cannot be inlined at the site of main’s call to the function, even with optimization enabled:

#include <stdio.h>

int my_counter = 0;

__attribute__((noinline)) void incr_counter(void) { ++my_counter;
→˓ }

int main() {
int i;
for (i = 0; i < 10; i++) {

incr_counter();
}

printf("my counter is: %d\n", my_counter);
}

When compiled with -O2 optimization, the compiler generates assembly instructions for main
that do not inline incr_counter. However, the loop is unrolled to eliminate the loop control flow
overhead.

3.2. C/C++ Language Implementation 184



C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

nomerge

When a nomerge attribute is applied to a function, the compiler will be prevented from merging
calls to the function. The nomerge attribute will not affect indirect calls to the function.

Syntax

<return type> symbol (<arguments>) __attribute__((nomerge));

Example

Consider the following C code containing an if block and an else block both of which call
callee_func with slightly different arguments. If the nomerge attribute is not applied to the
callee_func declaration, the compiler will tail-merge the calls into a single call when using op-
timization. However, the use of the nomerge attribute prevents the calls to callee_func from being
merged:

void callee_func(const char *str) __attribute__((nomerge));

int caller_func(int n) {

if (n < 10) {
callee_func("string for return 1");
return 1;

}

else {
callee_func("string for return 2");
return 2;

}

return 0;
}

The compiler generates assembly instructions for the definition of caller_func that do not merge
calls to callee_func.

nonnull

The nonnull function attribute can be applied to a function to inform the compiler that pointer
arguments to the function should not be null pointers. The compiler will emit a warning diagnostic
if it detects an incoming null pointer argument.

Syntax

<return type> symbol (<arguments>) __attribute__((nonull));

3.2. C/C++ Language Implementation 185



C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Example

In the following C code, when the declaration of callee_func is annotated with a nonnull attribute,
it enables the compiler to emit a warning diagnostic when it detects a NULL pointer being passed
as an argument at one of the call sites for callee_func:

void callee_func(int n, int *p) __attribute__((nonnull));

void caller_func(int n) {
callee_func(n, &n);
callee_func(n, (int *)0);

}

%> c29clang -mcpu=c29.c0 -c nonnull_function_attr.c
nonnull_function_attr.c:6:26: warning: null passed to a callee

→˓that requires a non-null argument [-Wnonnull]
callee_func(n, (int *)0);

~~~~~~~~^
1 warning generated.

noreturn

The noreturn function attribute can be used to identify a function that should not return to its
caller. With noreturn applied to a function, the compiler will generate a warning diagnostic if a
return from the function is detected.

The noreturn attribute cannot be applied to a function pointer.

Syntax

void symbol (<arguments>) __attribute__((noreturn));

Example

The following example, when compiled, will emit a warning since fake_return contains a return
statement:

__attribute__((noreturn)) void fake_noreturn() { return; }

%> c29clang -mcpu=c29.c0 -c noreturn_warn.c
noreturn_warn.c:2:50: warning: function 'fake_noreturn' declared

→˓'noreturn' should not return [-Winvalid-noreturn]
__attribute__((noreturn)) void fake_noreturn() { return; }

^
1 warning generated.

3.2. C/C++ Language Implementation 186

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

optnone

The optnone function attribute can be applied to a function to instruct the compiler not to apply
non-trivial optimizations in the generation of code for the function.

Syntax

<return type> symbol (<arguments>) __attribute__((optnone));

Example

In the following C example, the park_and_wait function contains an empty while loop that the
compiler would optimize away and remove references to the function if not for the application of
the optnone attribute to park_and_wait:

void check_peripheral();
__attribute__((optnone)) void park_and_wait();

void run_a_check_on_peripheral(void) {
check_peripheral();

}

void check_peripheral() {
if (*((unsigned long *)(268612608)) != 286529877) {

park_and_wait();
}

}

__attribute__((optnone)) void park_and_wait() {
while(1) {
;

}
}

The compiler generates assembly instructions that reference park_and_wait even though the
-O2 optimization option was specified. If the optnone attribute had not been applied to
the park_and_wait function, the optimizer would have detected the empty while loop in
park_and_wait and removed the reference to it in check_peripheral.

3.2. C/C++ Language Implementation 187

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

pure

The pure function attribute can be applied to a function that is known to have no other observable
effects on the state of a program other than to return a value. This information is useful to the
compiler in performing optimizations such as common subexpression elimination.

Syntax

<return type> symbol (<arguments>) __attribute__((pure));

Example

Here is a simple example of applying the pure attribute to a function:

int decode(const char *str) __attribute__((pure));

The implication is that decode computes a value based on the string pointed to by str without
modifying any other part of the program state.

section

The section function attribute can be used to instruct the compiler to place the definition of a
function in a specific section. This is useful if you’d like to place specific functions separately
from their default sections (e.g. .text).

Syntax

<return type> symbol (<arguments>) __attribute__((section(”section name”)));

Example

In this program, main will get defined in a section called main_section:

#include <stdio.h>

__attribute__((section("main_section"))) int main() {
printf("hello\n");
return 0;

}

When compiled and linked, the linker-generated map file shows that the symbol main is defined at
address 0x22e1, which corresponds to the location of the main_section:

%> c29clang -mcpu=c29.c0 section_function_attr.c -o a.out -Wl,-
→˓llnk.cmd,-ma.map
%> cat a.map
...

(continues on next page)

3.2. C/C++ Language Implementation 188

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
-------- ---- ---------- ---------- ----------------
...
main_section

* 0 000022e0 0000001c
000022e0 0000001c section_function_attr-

→˓2eb101.o (main_section)
...
GLOBAL SYMBOLS: SORTED ALPHABETICALLY BY Name

address name
------- ----
...
000022e1 main
...

used/retain

The used or retain function attribute, when applied, will instruct the c29clang compiler to embed
information in the compiler-generated code to instruct the linker to include the definition of the
function in the link of a given application, even if it is not referenced elsewhere in the application.

Syntax

<return type> symbol (<arguments>) __attribute__((used));

<return type> symbol (<arguments>) __attribute__((retain));

Example

In the following program, the retain attribute is applied to gb so that its definition is kept in the
link even though it is not called:

#include <stdio.h>

void __attribute__((retain)) gb(void) {
printf("goodbye\n");

}

int main() {
printf("hello\n");

(continues on next page)

3.2. C/C++ Language Implementation 189

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

return 0;
}

When compiled and linked, the linker-generated map file a.map shows that space has been allo-
cated in target memory for the section where gb is defined:

%> c29clang -mcpu=c29.c0 retain_global_func.c -o a.out -Wl,-llnk.
→˓cmd,-ma.map
%> cat a.map
...
SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
-------- ---- ---------- ---------- ----------------
.text 0 00000020 000012b4
...

0000125c 00000010 retain_global_func-
→˓242de9.o (.text.gb)
...

visibility

The visibility function attribute provides a way for you to dictate what visibility setting is to be
associated with a function in the compiler-generated ELF symbol table. Visibility is particularly
applicable for applications that make use of dynamic linking.

Syntax

<return type> symbol (<arguments>) __attribute__((visibility(”visibility-kind”)));

• visibility-kind indicates the visibility setting to be written into the symbol table
entry for symbol in the compiler-generated ELF object file. The specified visi-
bility kind will override the visibility setting that the compiler would otherwise
assign to the symbol. The specified visibility-kind must be one of the following:

– default - external linkage; symbol will be included in the dynamic symbol
table, if applicable, and can be accessed from other dynamic objects in the
same application. This is the default visibility if no visibility-kind argument
is specified with the visibility attribute.

– hidden - not included in the dynamic symbol table; symbol cannot be di-
rectly accessed from outside the current object, but may be accessed via an
indirect pointer.

3.2. C/C++ Language Implementation 190

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

– protected - the symbol is included in the dynamic symbol table; references
from within the same dynamic module will bind to the symbol and other
dynamic modules cannot override the symbol.

Example

In the following C code, the visibility attribute is applied to my_func to mark it as protected:

#include <stdio.h>

int my_func(int n) __attribute__((visibility("protected")));

void print_result(int n) {
printf("my func returns: %d\n", my_func(n));

}

When compiled to an object file, the visibility setting for the my_func symbol is set to
STV_PROTECTED in the symbol table:

%> c29clang -mcpu=c29.c0 -c visibility_function_attr.c
%> c29ofd -v visibility_function_attr.o
...
Symbol Table ".symtab"
...

<6> "my_func"
Value: 0x00000000 Kind: undefined
Binding: global Type: none
Size: 0x0 Visibility: STV_PROTECTED

...

weak

The weak function attribute causes the c29clang compiler to emit a weak symbol to the symbol
table for the function symbol’s declaration. At link-time, if a strong definition of a function symbol
with the same name is included in the link, then the strong definition of the function will override
the weak definition.

Syntax

<return type> symbol (<arguments>) __attribute__((weak));

Example

Consider the following program with weak_func_attr.c:

3.2. C/C++ Language Implementation 191

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

#include <stdio.h>

extern const char *my_func();

int main() {
printf("my_func is: %s\n", my_func());
return 0;

}

and weak_func_def.c:

__attribute__((weak)) const char *my_func() {
return "this is a weak definition of my_func\n";

}

and strong_func_def.c:

const char *my_func() {
return "this is a strong definition of my_func\n";

}

If the program is compiled and linked without strong_func_def.c, then the weak definition of
my_func will be chosen by the linker to resolve the reference to it in weak_func_attr.c:

%> c29clang -mcpu=c29.c0 weak_func_attr.c weak_func_def.c -o a.
→˓out -Wl,-llnk.cmd,-ma.map

The output when the program is loaded and run is as follows:

my_func is: this is a weak definition of my_func

If both weak_func_def.c and strong_func_def.c are included in the program build, then the linker
will choose the strong definition of my_func to resolve the reference to it in weak_func_attr.c:

%> c29clang -mcpu=c29.c0 weak_func_attr.c weak_func_def.c strong_
→˓func_def.c -o a.out -Wl,-llnk.cmd,-ma.map

The output when the program is loaded and run is as follows:

my_func is: this is a strong definition of my_func

Note: Strong vs. Weak and Object Libraries

At link-time, if a weak definition of a symbol is available in the object files that are input to the
linker and a strong definition of the symbol exists in an object library that is made available to

3.2. C/C++ Language Implementation 192

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

the link, then the linker will not use the strong definition of the symbol since the reference to the
symbol has already been resolved.

weakref

The weakref function attribute can be used to mark a declaration of a static function as a weak
reference. The function symbol that the attribute applies to is interpreted as an alias of a target
symbol, and also indicates that a definition of the target symbol is not required.

Syntax

<return type> symbol (<arguments>) __attribute__((weakref(”target symbol)));

<return type> symbol (<arguments>) __attribute__((weakref, alias(”target symbol”)));

• target symbol - identifies the name of a function that the symbol being declared
is to be treated as an alias for. If a target symbol argument is provided with
the weakref attribute, then symbol is interpreted as an alias of target symbol.
Otherwise, an alias attribute must be combined with the weakref attribute to
identify the target symbol.

Example

Consider the following program with weakref_func_attr.c:

#include <stdio.h>

extern const char *my_func();
static const char *my_alias() __attribute__((weakref("my_func

→˓")));

int main(void) {
printf("my_alias returns %s", my_alias());
return 0;

}

and weak_func_def.c:

__attribute__((weak)) const char *my_func() {
return "this is a weak definition of my_func\n";

}

and strong_func_def.c:

3.2. C/C++ Language Implementation 193

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

const char *my_func() {
return "this is a strong definition of my_func\n";

}

If the above program is compiled and linked without strong_def.c, the linker will choose the weak
definition of my_func to resolve the call to my_func that goes through the my_alias weakref symbol:

%> c29clang -mcpu=c29.c0 weakref_func_attr.c weak_func_def.c -o
→˓a.out -Wl,-llnk.cmd,-ma.map

The output when the program is loaded and run is as follows:

my_alias returns this is a weak definition of my_func

If strong_func_def.c is included in the program build, the my_alias will resolve to the strong defi-
nition of my_func:

%> c29clang -mcpu=c29.c0 weakref_func_attr.c weak_func_def.c
→˓strong_func_def.c -o a.out -Wl,-llnk.cmd,-ma.map

The output when the program is loaded and run is as follows:

my_alias returns this is a strong definition of my_func

Variable Attributes

The following variable attributes are supported by the c29clang compiler:

• alias

• aligned

• deprecated

• location

• noinit

• packed

• persistent

• section

• unused

• used/retain

• visibility

3.2. C/C++ Language Implementation 194

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• weak

• weakref

alias

The alias variable attribute allows you to create multiple symbol aliases that effectively refer to the
same definition of a data object. However, an alias must be declared in the same compilation unit
as the definition of the data object that it is an alias for. Furthermore, you cannot declare aliases
to local variables. The c29clang compiler interprets an alias declared in a local block as a local
variable, ignoring the alias attribute in such cases.

Syntax

<type> new symbol __attribute((alias(”old symbol”)));

• new symbol - is the name of the alias.

• old symbol - is the name of the variable to be aliased.

Example

Consider the following C code:

#include <stdio.h>

int red_fish = 10;
extern int blue_fish __attribute__((alias("red_fish")));

int main() {
printf("blue_fish: %d\n", blue_fish);
return 0;

}

The compiler generates assembly instructions for the above code that defines the global variable
red_fish and creates a symbolic link from blue_fish to red_fish so that any references to blue_fish
are resolved by the definition of red_fish.

aligned

The aligned attribute can be used to specify a minimum alignment for a given data object, where
the alignment boundary is specified in bytes.

Syntax

<type> symbol __attribute((aligned(alignment)));

3.2. C/C++ Language Implementation 195

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• symbol - is the variable/data object that is subject to the specified minimum align-
ment.

• alignment - is the minimum alignment (in bytes) relative to the section that sym-
bol is defined in. If an alignment value is not specified, then the compiler assumes
default alignment based on the type of the data object.

Example

Consider the C source code below (align_var_attr.c):

int var1 __attribute__((aligned(8))) = 5;

unsigned char var2[10] __attribute__((aligned(16))) = { 15, 25,
→˓35 };

struct {
int m1;
short m2;
char m3 __attribute__((aligned(4)));
short m4;

} var3 = { 10, 20, 30, 40 };

short var4[3] __attribute__((aligned)) = { 100, 200, 300 };

The compiler generates assembly instructions for the above code that do the following:

• Align var1 to an 8-byte boundary.

• Align var2 to a 16-byte boundary.

• Align var3’s char type member, m3, by padding the start of m3 to a 4-byte boundary relative
to the start of the structure.

• The aligned attribute associated with var4 does not take an alignment argument, so the
compiler assumes default alignment for an array of short, 8-bytes.

deprecated

The deprecated variable attribute can be used to mark a symbol as deprecated to enable the com-
piler to detect and report warnings on uses of a symbol whose definition is known to be deprecated.

Syntax

<type> symbol __attribute__((deprecated));

• symbol - identifies the name of the variable being marked as deprecated.

Example

3.2. C/C++ Language Implementation 196

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Consider the following C code (deprecated_var_attr.c):

extern int dep_var __attribute__((deprecated));
void foo() {
dep_var = 5;

}

When compiled, the compiler emits the following diagnostic information:

%> c29clang -mcpu=c29.c0 -c deprecated_var_attr.c
deprecated_var_attr.c:4:3: warning: 'dep_var' is deprecated [-

→˓Wdeprecated-declarations]
dep_var = 5;
^

deprecated_var_attr.c:2:35: note: 'dep_var' has been explicitly
→˓marked deprecated here
extern int dep_var __attribute__((deprecated));

^
1 warning generated.

The deprecated attribute can be particularly useful in a large C/C++ source file when trying to find
all the references to a deprecated symbol that need to be modified.

location

The location variable attribute can be used to specify a variable’s run-time address from within
the C/C++ source. The c29clang compiler embeds linker instructions within a given compiler-
generated object file that dictates where in target memory the variable definition are placed at
link-time.

Syntax

<type> symbol __attribute__((location(address)));

• address - is the run-time target memory address where the definition of symbol
is to be placed at link-time.

Example

Consider the following C source where a location attribute applied to a global variable (loca-
tion_var_attr.c):

#include <stdio.h>

int xyz __attribute__((location(0x30000000))) = 10;

(continues on next page)

3.2. C/C++ Language Implementation 197

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

int main()
{

printf("address of xyz is 0x%lx\n", (unsigned long)&xyz);
return 0;

}

The compiler defines xyz in a special .TI.bound:xyz section. It also emits symbol metadata infor-
mation to instruct the linker to place xyz at target memory address 0x30000000 (805306368 in
decimal) at link-time.

...
.hidden xyz @ @xyz
.type xyz,%object
.section ".TI.bound:xyz","aw",%progbits
.globl xyz
.p2align 2

xyz:
.long 10 @ 0xa
.size xyz, 4
.sym_meta_info xyz, "location", 805306368

If the above program is compiled and linked, the linker-generated map file, a.map, reveals that the
run-time address of xyz is indeed 0x30000000:

%> c29clang -mcpu=c29.c0 location_var_attr.c -o a.out -Wl,-llnk.
→˓cmd,-ma.map
%> cat a.map

**
C29 Clang Linker Unix v1.2.0

**
>> Linked Tue Jan 19 18:49:47 2024

OUTPUT FILE NAME: <a.out>
ENTRY POINT SYMBOL: "_c_int00" address: 0000187d

...
SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
-------- ---- ---------- ---------- ----------------
...
.TI.bound:xyz

(continues on next page)

3.2. C/C++ Language Implementation 198

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

* 0 30000000 00000004 UNINITIALIZED
30000000 00000004 location_var_attr-

→˓baf510.o (.TI.bound:xyz)
...

noinit

The noinit variable attribute is especially useful in applications where non-volatile memory is in
use. The noinit attribute identifies a global or static variable that should not be initialized at startup
or reset (typically, global and static variables that aren’t explicitly initialized in the source code are
zero-initialized at startup and reset).

The noinit attribute can be used in conjunction with the location attribute to specify the placement
of variables at special target memory locations, like memory-mapped registers, without generating
unwanted writes.

The noinit attribute may only be used with uninitialized variables.

Syntax

<type> symbol __attribute__((noinit));

Example

Consider the following C source (noinit_var_attr.c):

#include <stdio.h>

extern void usei(int *x);

__attribute__((noinit)) int noinit_global;
__attribute__((noinit,location(0x100))) int noinit_location_

→˓global;

int main() {
usei(&noinit_global);
usei(&noinit_location_global);
return 0;

}

The compiler generates assembly instructions for the above code that do the following:

• Defines noinit_global in a special section, .TI.noinit, to keep such data objects apart from
other variable definitions that will be initialized.

3.2. C/C++ Language Implementation 199

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Emits symbol metadata information along with the definition of noinit_global to indicate
that the section where noinit_global is defined is not to be initialized.

• Defines noinit_location_global in a special section, .TI.bound:noinit_location_global, that
the linker will consider for placement early in the link-step.

• Two pieces of symbol metadata information are emitted by the compiler with the defini-
tion of noinit_location_global. The first instructs the linker to place the section where non-
init_location_global is defined at target memory address 0x100 (256 decimal), and the sec-
ond indicates to the linker that the section where noinit_location_global is defined is not to
be initialized

packed

If the program in question is being built for a C29x processor variant that has support for unaligned
memory accesses, then the packed variable attribute can be used to compress data layout.

The packed attribute specifies that a variable or structure field should have the smallest possible
alignment - one byte for a variable, and one bit for a bit field - unless a larger alignment requirement
is indicated with an aligned attribute.

Syntax

<type> symbol __attribute__((packed));

Example

Consider the following C code in which a packed attribute is applied to a struct member:

struct _stag {
char m1;
int m2 __attribute__((packed));

} my_struct = { 10, 20 };

In this case, the m2 member of my_struct is aligned to a 1 byte boundary. Support for unaligned
memory accesses need to be in effect for code to access the content of m2.

Note that when accessing a packed member of a struct, the member should be accessed via a
reference through the base of the structure itself (e.g. “my_struct.m2”) or via an offset from a
pointer that has been set to the base of the struct (e.g. “struct _stag *ps = &my_struct; ps->m2 =
30;”).

3.2. C/C++ Language Implementation 200

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

persistent

The persistent variable attribute is especially useful in applications where non-volatile memory
is in use. The persistent attribute identifies a global or static variable that is to be initialized at
load-time, but should not be re-initialized at reset.

The persistent attribute can be used in conjunction with the location attribute to specify the place-
ment of variables at special target memory locations, like memory-mapped registers, without gen-
erating unwanted writes.

The persistent attribute may only be used with statically initialized variables.

Syntax

<type> symbol __attribute__((persistent);

Example

If you are using non-volatile RAM, you can define a persistent variable with an initial value of zero
loaded into RAM. The program can increment that variable over time as a counter, and that count
does not disappear if the device loses power and restarts, because the memory is non-volatile and
the boot routines do not initialize it back to zero.

For example, compiling the following C code:

extern void run_init(void);
extern void run_actions(int n);
extern void delay(unsigned int cycles);

__attribute__((persistent, location(0xC200))) int x = 0;

void main() {
run_init();
while (1) {

run_actions(x);
delay(1000000);
x++;

}
}

generates a definition of x that is directly initialized in the initialized section where x is defined.
Symbol metadata for x is embedded in the compiler-generated code to instruct the linker to place
the section where x is defined at address 0xC200 (49664 decimal), and to not initialize the definition
of x on reset.

3.2. C/C++ Language Implementation 201

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

section

The section variable attribute can be used to instruct the compiler to place the definition of a data
object in a specific section. This is useful if you’d like to place specific data objects separately
from their default sections (e.g. .bss, .rodata, .data).

Syntax

<type> symbol __attribute__((section(”section_name”)));

• section name - is the name of the section where symbol will be defined. It must
be specified as a string argument in the section attribute specification. used to
instruct the compiler to place the definition of a data object in a spec

Example

The following C code uses the section attribute to generate the definition of bufferB into a different
section from bufferA:

char bufferA[512];
__attribute__((section("my_sect"))) char bufferB[512];

The compiler generates assembly instructions that define bufferA in a common block, whereas
bufferB is defined in the my_sect section.

unused

When the unused-variable category of warning diagnostics is enabled, the c29clang compiler gen-
erates a warning if a variable is declared in a compilation unit, but never referenced in the same
compilation unit. The unused variable attribute can be applied to a variable declaration to disable
the unused-variable warning with respect to that variable.

Syntax

<type> symbol __attribute__((unused));

Example

In the following C code, a_var is marked as unused:

void foo()
{

static int my_stat = 0;
int a_var __attribute__((unused));
int b_var;
my_stat;

}

3.2. C/C++ Language Implementation 202

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

When compiled with unused-variable warnings enabled (via -Wall option in this case), c29clang
emits a warning about unused variable b_var, but not a_var.

%> c29clang -mcpu=c29.c0 -Wall -c unused_var_attr.c
unused_var_attr.c:6:3: warning: expression result unused [-

→˓Wunused-value]
my_stat;
^~~~~~~

unused_var_attr.c:5:7: warning: unused variable 'b_var' [-
→˓Wunused-variable]
int b_var;

^
2 warnings generated

used/retain

The used or retain variable attribute, when applied, instructs the c29clang compiler to embed
information in the compiler-generated code to instruct the linker to include the definition of the
variable in the link of a given application, even if it is not referenced elsewhere in the application.

Syntax

<type> symbol __attribute__((used));

<type> symbol __attribute__((retain));

Example

In the following C code example, the c29clang compiler generates a definition of the file static data
object keep_this even though it is not referenced elsewhere in the compilation unit:

static int lose_this = 1;
static int keep_this __attribute__((used)) = 2; // retained in

→˓object file

The compiler-generated code also includes a .no_dead_strip directive that instructs the linker to
include the definition of the keep_this in a link that includes the compiler generated object file from
the above code:

...
.type keep_this,%object @ @keep_this
.section .data.keep_this,"aw",%progbits
.p2align 2

keep_this:
.long 2 @ 0x2
.size keep_this, 4

(continues on next page)

3.2. C/C++ Language Implementation 203

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

.no_dead_strip keep_this
...

The compiler does not produce a definition of lose_this.

The example below shows a variable used_varX that is annotated with a retain attribute:

#include <stdio.h>

int used_varX __attribute__((retain)) = 10;

int main()
{

printf("hello\n");
return 0;

}

After compiling and linking with the following command:

%> c29clang -mcpu=c29.c0 retain_init_global_var.c -o a.out -Wl,-
→˓llnk.cmd,-ma.map

The contents of a.map reveals that used_varX was retained in the linked program:

%> cat a.map
...
SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
-------- ---- ---------- ---------- ----------------
.text 0 00000020 000012a0
...
.data 0 2000a020 000001d1 UNINITIALIZED

2000a020 000000f0 libc.a : defs.c.obj (.
→˓data._ftable)

...
2000a1ec 00000004 retain_init_global_

→˓var-d1e7b9.o (.data.used_varX)
...

3.2. C/C++ Language Implementation 204

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

visibility

The visibility variable attribute provides a way for you to dictate what visibility setting is to be
associated with a variable in the compiler-generated ELF symbol table. Visibility is particularly
applicable for applications that make use of dynamic linking.

Syntax

<type> symbol __attribute__((visibility(”visibility-kind)));

• visibility-kind indicates the visibility setting to be written into the symbol table
entry for symbol in the compiler-generated ELF object file. The specified visibil-
ity kind overrides the visibility setting that the compiler would otherwise assign
to the symbol. The specified visibility-kind must be one of the following:

– default - external linkage; symbol ise included in the dynamic symbol table,
if applicable, and can be accessed from other dynamic objects in the same
application. This is the default visibility if no visibility-kind argument is
specified with the visibility attribute.

– hidden - not included in the dynamic symbol table; symbol cannot be di-
rectly accessed from outside the current object, but may be accessed via an
indirect pointer.

– protected - the symbol is included in the dynamic symbol table; references
from within the same dynamic module bind to the symbol and other dynamic
modules cannot override the symbol.

Example

The following use of the visibility attribute sets the visibility of my_var to protected:

int my_var __attribute__((visibility("protected"))) = 1;

When compiled to an object file, the symbol table entry for my_var reflects that it has a protected
visibility kind:

%> c29clang -mcpu=c29.c0 -c visibility_var_attr.c
%> c29ofd -v visibility_var_attr.o
...
Symbol Table ".symtab"

<0> ""
Value: 0x00000000 Kind: undefined
Binding: local Type: none
Size: 0x0 Visibility: STV_DEFAULT

<1> "visibility_var_attr.c"
(continues on next page)

3.2. C/C++ Language Implementation 205

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

Value: 0x00000000 Kind: absolute
Binding: local Type: file
Size: 0x0 Visibility: STV_DEFAULT

<2> "my_var" (defined in section ".data.my_var" (3))
Value: 0x00000000 Kind: defined
Binding: global Type: object
Size: 0x4 Visibility: STV_PROTECTED

...

weak

The weak variable attribute causes the c29clang compiler to emit a weak symbol to the symbol
table for the symbol’s declaration. At link-time, if a strong definition of a symbol with the same
name is included in the link, then the strong definition of the symbol overrides the weak definition.

Syntax

<type> symbol __attribute__((weak));

Example

Consider the following program with weak_var_attr.c:

#include <stdio.h>

extern int my_var;

int main() {
printf("my_var is: %d\n", my_var);
return 0;

}

weak_def.c:

int my_var __attribute__((weak)) = 5;

and strong_def.c:

int my_var = 10;

If the program is compiled without strong_def.c, then the weak definition of my_var is chosen by
the linker to resolve the reference to it in weak_var_attr.c:

3.2. C/C++ Language Implementation 206

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

%> c29clang -mcpu=c29.c0 weak_var_attr.c weak_def.c -o a.out -Wl,
→˓-llnk.cmd,-ma.map

The output when the program is loaded and run is as follows:

my_var is: 5

If both weak_def.c and strong_def.c are included in the program build, then the linker chooses the
strong definition of my_var to resolve the reference to it in weak_var_attr.c:

%> c29clang -mcpu=c29.c0 weak_var_attr.c weak_def.c strong_def.c
→˓-o a.out -Wl,-llnk.cmd,-ma.map

The output when the program is loaded and run is as follows:

my_var is: 10

Note: Strong vs. Weak and Object Libraries

At link-time, if a weak definition of a symbol is available in the object files that are input to the
linker and a strong definition of the symbol exists in an object library that is made available to
the link, then the linker does not use the strong definition of the symbol since the reference to the
symbol has already been resolved.

weakref

The weakref variable attribute can be used to mark a declaration of a static variable as a weak
reference. The symbol that the attribute applies to is interpreted as an alias of a target symbol, and
also indicates that a definition of the target symbol is not required.

Syntax

<type> symbol __attribute__((weakref(”target symbol)));

<type> symbol __attribute__((weakref, alias(”target symbol”)));

• target symbol - identifies the name of a variable that the symbol being declared
is to be treated as an alias for. If a target symbol argument is provided with
the weakref attribute, then symbol is interpreted as an alias of target symbol.
Otherwise, an alias attribute must be combined with the weakref attribute to
identify the target symbol.

Example

Consider the following program with weakref_var_attr.c:

3.2. C/C++ Language Implementation 207

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

#include <stdio.h>

extern int my_var;
static int a_sym __attribute__((weakref("my_var")));

int main(void) {
int my_loc = a_sym;

printf("my_loc is %d\n", my_loc);
return 0;

}

and strong_def.c:

int my_var = 10;

If the above program is compiled and linked without strong_def.c, the build succeeds, but the
run-time behavior will be unpredictable as there will be a reference to an undefined symbol:

%> c29clang -mcpu=c29.c0 weakref_var_attr.c -o a.out -Wl,-llnk.
→˓cmd,-ma.map

The output when the program is loaded and run is as follows:

Data fetch: 00000000 is outside configured memory

However, if we include strong_def.c in the link, then the reference to a_sym resolves to the defini-
tion of my_var via the weakref attribute:

%> c29clang -mcpu=c29.c0 weakref_var_attr.c strong_def.c -o a.
→˓out -Wl,-llnk.cmd,-ma.map

The output when the program is loaded and run is as follows:

my_loc is 10

If we were to replace the weakref attribute with an alias attribute in weakref_var_attr.c:

#include <stdio.h>

extern int my_var;
// static int a_sym __attribute__((weakref("my_var")));
static int a_sym __attribute__((alias("my_var")));

int main(void) {
(continues on next page)

3.2. C/C++ Language Implementation 208

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

int my_loc = a_sym;

printf("my_loc is %d\n", my_loc);
return 0;

}

and strong_def.c was not included in the build, then c29clang reports an unresolved symbol refer-
ence:

%> c29clang -mcpu=c29.c0 weakref_var_attr.c -o a.out -Wl,-llnk.
→˓cmd,-ma.map

weakref_var_attr.c:6:33: error: alias must point to a defined
→˓variable or function
static int a_sym __attribute__((alias("my_var")));

^
1 error generated.

Type Attributes

The c29clang compiler supports the application of type attributes to enum, struct, or union dec-
larations or definitions. Type attributes can also be applied to a type that is defined via typedef
declarations.

The following type attributes are supported by the c29clang compiler:

• aligned

• packed

aligned

The aligned type attribute indicates a minimum byte boundary alignment for variables of the spec-
ified type. This attribute is especially useful for overriding the default compiler-imposed constraint
on a particular data object, especially when a more restrictive alignment requirement is warranted.

Syntax

<type specification> __attribute__((aligned(alignment)));

• alignment - the minimum alignment for the indicated type, specified in bytes.
The alignment value must be an integer power of two. The compiler imposes the
maximum of the default alignment for the type and the specified alignment on
data objects of the type.

3.2. C/C++ Language Implementation 209

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Examples

• An aligned attribute applied to a typedef :

typedef short a_short_type __attribute__((aligned(4)));

Use of the a_short_type in C source code forces the definition of any data objects of that
type to be placed on a 4-byte boundary.

• An aligned attribute applied to a struct type:

struct myS {
char m1;
int m2
int m3
char m4;
short m5;

} __attribute__((aligned(8)));

In this case, the myS struct is aligned to an 8-byte boundary instead of what the compiler
would impose by default (4-byte boundary).

• An aligned attribute applied to a union within a struct:

#include <stdio.h>

typedef struct {
char m1;
union {

short m2_u_m1;
int m2_u_m2;
char m2_u_m3;

} m2_u __attribute__((aligned(16)));
} myS;

myS myS_obj;

int main() {
printf("address of myS_obj: 0x%08lx\n", (unsigned long)&

→˓myS_obj);
printf("address of m2_u_m1: 0x%08lx\n",

(unsigned long)&myS_obj.m2_u.m2_u_m1);
return 0;

}

When compiled and linked and run, the output reveals that the target memory location where
the first member of the m2_u union resides in memory is on a 16-byte boundary relative to

3.2. C/C++ Language Implementation 210

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

the start of the struct myS_obj:

%> c29clang -mcpu=c29.c0 aligned_type_attr.c -o a.out -Wl,-
→˓llnk.cmd,-ma.map

The output is:

address of myS_obj: 0x2000a1e0
address of m2_u_m1: 0x2000a1f0

Note that the myS type alignment is also 16-bytes since the alignment of the struct is de-
termined by the struct member with the most restrictive alignment constraint (m2_u in this
case).

packed

The packed type attribute can be applied to struct or union types to indicate that each member of a
given struct or union is placed on a 1-byte boundary.

Syntax

<type specification> __attribute__((packed));

Examples

Consider the following C code in which a packed attribute is applied to a struct type:

struct __attribute__((packed)) {
char m1;
int m2;

} packed_struct = { 10, 20 };

In this case, the size of packed_struct is 5 bytes, whereas without the packed attribute
the int type member m2 would have been aligned to a 4-byte boundary causing the
size of the struct to be 8 bytes.

3.2.8 Pragmas

The following pragmas are supported by the c29clang compiler:

• clang section text

• clang section data

• clang section bss

• clang section rodata

3.2. C/C++ Language Implementation 211

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

clang section text

The clang section text pragma places enclosed functions within a named section, which can then
be placed with the linker using a linker command file.

Syntax

#pragma clang section text=”scn_name”

The setting is reset to the default section name using

#pragma clang section text=””

Example

The following use of the clang section text pragma causes the enclosed function to be included in
a section called .text.functions

#include <stdio.h>

#pragma clang section text=".text.functions"

int main() {
emit_msg();
emit_msg();
emit_msg();

}

#pragma clang section text=""

clang section data

The clang section data pragma places enclosed variables within a named section, which can then
be placed with the linker using a linker command file.

Syntax

#pragma clang section data=”scn_name”

The setting is reset to the default section name using

#pragma clang section data=””

Example

The following use of the clang section data pragma causes the enclosed variables to be included
in a section called .data.variables

3.2. C/C++ Language Implementation 212

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

#include <stdio.h>

#pragma clang section data=".data.variables"

int var1 = 39;
char *myString = "this is a test";

#pragma clang section data=""

extern void func(int, char*);

int main() {
func(var1, myString);

}

Note: Variables that are not initialized with a constant expression are not defined in .data

For example, in the above example, if either of the var1 or myString definitions were uninitialized,
then they would not be defined in .data.variables. They would instead be defined in .bss.var1
and/or .bss.myString”.

clang section bss

The clang section bss pragma places enclosed variables within a named section, which can then be
placed with the linker using a linker command file.

Syntax

#pragma clang section bss=”scn_name”

The setting is reset to the default section name using

#pragma clang section bss=””

Example

The following use of the clang section bss pragma causes the definition of myString to be included
in a section called .bss.variables

#include <stdio.h>

#pragma clang section bss=".bss.variables"

int var1 = 39;
(continues on next page)

3.2. C/C++ Language Implementation 213

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

char *myString;

#pragma clang section bss=""

extern void init_myString(const char*);
extern void func(int, char*);

int main() {
init_myString("hello world");
func(var1, myString);

}

Note: Variables that are initialized with a constant expression are not defined in .bss

For example, in the above example, myString is defined in .bss.variables, but var1 is defined in
.data.var1 since it is initialized with a constant expression.

clang section rodata

The clang section rodata pragma places enclosed variables within a named section, which can then
be placed with the linker using a linker command file.

Syntax

#pragma clang section rodata=”scn_name”

The setting is reset to the default section name using

#pragma clang section rodata=””

Example

The following use of the clang section rodata pragma causes the enclosed const qualified data
object definitions to be included in a section called MyRodata

#include <stdio.h>

#pragma clang section rodata="MyRodata"

const int var1 = 39;
const char *myString = "this is a test";

#pragma clang section rodata=""

(continues on next page)

3.2. C/C++ Language Implementation 214

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

extern void func(const int, const char*);

int main() {
func(var1, myString);

}

Note: A General Note About clang section Pragmas

In general, only variable definitions that match the type of the preceding #pragma clang section
<type>=”scn_name” are affected by that clang section pragma.

You can specify more than one section type in a clang section pragma. For example,

#pragma clang section bss="myBSS" data="myData" rodata="myRodata"
int x2 = 5; // Goes in myData section.
int y2; // Goes in myBss section.
const int z2 = 42; // Goes in myRodata section.

If you were to turn off the clang section rodata between definitions of const qualified data objects:

#pragma clang section bss="myBSS" data="myData" rodata="myRodata"
int x2 = 5; // Goes in myData section.
int y2; // Goes in myBss section.
const int z2 = 42; // Goes in myRodata section.

#pragma clang section rodata="" // Use default name for rodata
→˓section.
int x3 = 5; // Goes in myData section.
int y3; // Goes in myBss section.
const int z3 = 42; // Goes in .rodata section

Note that z3 is not defined in myBSS or myData because it does not match the bss or data type
specified in the first clang section pragma.

3.2.9 Built-In Functions and Intrinsics

The C29x compiler has many intrinsic functions (also called “built-in functions”) that provide
built-in access from C/C++ to assembly instructions or sequences of instructions. All intrinsic
functions begin with the prefix __builtin_c29_.

Note: This page describes only some of the intrinsics that are available. For a list of builtin
intrinsics supported by the C29x compiler, see the C2000 C29x CPU and Instruction Set User’s

3.2. C/C++ Language Implementation 215

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Guide (SPRUIY2), which is available through your TI Field Application Engineer. Search for
__builtin in that guide.

Note that you can use the __has_builtin function-like preprocessor macro to test for the
existence of a built-in function. This, and other preprocessor macros are extensions provided by
Clang. It evaluates to 1 if the function is supported or 0 if not. It can be used like this:

#if __has_builtin(__builtin_c29_fast_strlen)
mystrlen __builtin_c29_fast_strlen(mystr);

#else
abort();

#endif

See the Clang Language Extensions section of the Clang documentation for details and additional
macros and extensions.

3.2. C/C++ Language Implementation 216

https://clang.llvm.org/docs/LanguageExtensions.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Interrupt Control Intrinsics

Table 3.3: Interrupt Control Intrinsics
Intrinsic syntax Description
unsigned int __builtin_c29_disable_INT() Disable INT interrupts
unsigned int __builtin_c29_enable_INT() Enable INT interrupts

void __builtin_c29_restore_INT(
unsigned int ui0)

Restore previous INT interrupt enable/disable
setting as stored in ui0

void __builtin_c29_atomic_enter()

Interrupts are blocked until ATOMIC counter
reaches 0 or ATOMIC_END
instruction is executed. NMI interrupts are not
blocked.

void __builtin_c29_atomic_mem_enter()

Interrupts are blocked until ATOMIC counter
reaches 0 or ATOMIC_END
instruction is executed. NMI interrupts not
blocked. Generate side
band strobes to indicate that this is a window
of mutually exclusive
(MUTEX) memory operations.

void __builtin_c29_atomic_leave()

Clears ATOMIC counter set by
__builtin_c29_atomic_enter()
or __builtin_c29_atomic_mem_enter(.)

3.2. C/C++ Language Implementation 217

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

String and Memory Intrinsics

Table 3.4: String and Memory Intrinsics
Intrinsic syntax Description

void __builtin_c29_fast_memcpy(
void *dest,
const void * src,
size_t numBytes)

Optimized instruction sequence for memcpy()
function. This has the
same signature as its associated C library
function.

int __builtin_c29_fast_strcmp(
const char* str1,
const char* str2)

Optimized instruction sequence for strcmp()
function. This has the
same signature as its associated C library
function. It requires
4 bytes of post-padding.

size_t __builtin_c29_fast_strlen(
const char* str)

Optimized instruction sequence for strlen()
function. This has the
same signature as its associated C library
function. It requires
up to 60 bytes of post-padding.

Arithmetic Intrinsics

The C2000 C29x CPU and Instruction Set User’s Guide (SPRUIY2), which is available through
your TI Field Application Engineer, describes the arithmetic instructions available for C29x pro-
cessors. For each instruction that has a corresponding intrinsic function that can be called from
C/C++, the syntax is provided. The arithmetic intrinsics include intrinsics to perform:

• Integer addition, subtraction, multiplication, and division

• Absolute and negative value operations

• Integer comparisons

• Increment/decrement operations

• Logarithmic operations

• Trigonometric operations

3.2. C/C++ Language Implementation 218

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Square root and inverse power operations

• Bit counting and searching

• Bitwise AND, ANDOR, OR, and XOR operations

• Left and right shifts

• Cyclic Redundancy Checks (CRC)

Separate versions of the intrinsics operate on various registers and datatypes and/or perform vari-
ants such as signed or unsigned integer saturation.

For division operations, the following intrinsics return the quotient and remainder in *quot* and
*rem. These functions fall into the following variant categories:

• Unsigned division: div

• Traditional (truncated) signed division: tdiv

• Euclidean signed division: ediv

• Modulo (floored) signed division: mdiv

void __builtin_c29_div_u32_u32(unsigned *quot, unsigned *rem,
→˓unsigned a, unsigned b)
void __builtin_c29_div_u64_u32(unsigned long long *quot,

→˓unsigned *rem,
unsigned long long a, unsigned b)

void __builtin_c29_div_u64_u64(unsigned long long *quot,
→˓unsigned long long *rem,

unsigned long long a, unsigned
→˓long long b)

void __builtin_c29_tdiv_s32_u32(int *quot, int *rem, int a,
→˓unsigned b)
void __builtin_c29_tdiv_s32_s32(int *quot, int *rem, int a, int

→˓b)
void __builtin_c29_tdiv_s64_u32(long long *quot, int *rem, long

→˓long a, unsigned b)
void __builtin_c29_tdiv_s64_s32(long long *quot, int *rem, long

→˓long a, int b)
void __builtin_c29_tdiv_s64_s64(long long *quot, long long *rem,

→˓long long a, long long b)

void __builtin_c29_ediv_s64_s32(long long *quot, int *rem, long
→˓long a, int b)
void __builtin_c29_ediv_s32_s32(int *quot, int *rem, int a, int

→˓b)
(continues on next page)

3.2. C/C++ Language Implementation 219

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

void __builtin_c29_ediv_s64_s64(long long *quot, long long *rem,
→˓long long a, long long b)

void __builtin_c29_mdiv_s64_s32(long long *quot, int *rem, long
→˓long a, int b)
void __builtin_c29_mdiv_s32_s32(int *quot, int *rem, int a, int

→˓b)
void __builtin_c29_mdiv_s64_s64(long long *quot, long long *rem,

→˓long long a, long long b)

Floating-Point Arithmetic Intrinsics

The C2000 C29x CPU and Instruction Set User’s Guide (SPRUIY2), which is available through
your TI Field Application Engineer, describes the floating-point arithmetic instructions available
for C29x processors. For each instruction that has a corresponding intrinsic function that can
be called from C/C++, the syntax is provided. The floating-point arithmetic intrinsics provided
include intrinsics to perform:

• Floating-point addition, subtraction, and multiplication

• Floating-point comparisons

• Absolute value and negation operations

• Fractional portion extraction

Note: The following intrinsics expand to a sequence of instructions. This is in contrast to other
intrinsics listed on this page, which generally correspond to a single instruction. The purpose of
the following two intrinsics is to perform more accurate floating point division than the provided
floating point division instructions, such as DIVF32.

The following intrinsics return the quotient of the floating point division a/b.

float __builtin_c29_div_f32(float a, float b)

double __builtin_c29_div_f64(double a, double b)

3.2. C/C++ Language Implementation 220

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Conversion Intrinsics

The C2000 C29x CPU and Instruction Set User’s Guide (SPRUIY2), which is available through
your TI Field Application Engineer, describes the conversion instructions available for C29x pro-
cessors. For each instruction that has a corresponding intrinsic that can be called from C/C++, the
syntax is provided. The conversion intrinsics provided include intrinsics to perform:

• Convert between 16-bit signed integer and 32-bit float formats

• Convert between 16-bit unsigned integer and 32-bit float formats

Co-Processor Interface (CPI) Intrinsics

The C2000 C29x CPU and Instruction Set User’s Guide (SPRUIY2), which is available through
your TI Field Application Engineer, describes the CPI instructions available for C29x processors.
For each instruction that has a corresponding intrinsic function that can be called from C/C++, the
syntax is provided. The CPI intrinsics provided include intrinsics to perform:

• Copy values between registers on the CPU to registers on the CPI Interface port (CIDy)

• Generate a tag value to be used for data logging.

Other Control Flow Intrinsics

The C2000 C29x CPU and Instruction Set User’s Guide (SPRUIY2), which is available through
your TI Field Application Engineer, describes the control flow instructions available for C29x
processors. For each instruction that has a corresponding intrinsic function that can be called from
C/C++, the syntax is provided. The control flow intrinsics provided include intrinsics to perform:

• Copy and conditional copy from register to register

• Test a bit position in a register

• Perform integer comparison; set flags based on results

• Perform floating-point comparison; set flags based on results

Load, Store, and Move Intrinsics

The C2000 C29x CPU and Instruction Set User’s Guide (SPRUIY2), which is available through
your TI Field Application Engineer, describes the load, store, and move instructions available
for C29x processors. For each instruction that has a corresponding intrinsic function that can be
called from C/C++, the syntax is provided. The load, store, and move intrinsics provided include
intrinsics to perform:

• Load from memory location

• Store to memory location

3.2. C/C++ Language Implementation 221

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Copy from memory location to memory location/register

• Modify memory location

• Add to memory location and load

• Subtract from memory location and load

• Sign extension

• Zero extension

• Swap bit(s)

• Swap byte

• Split register

• Zero masking

3.2.10 Keywords

The c29clang compiler supports C and C++ language keywords defined in the relevant language
standards. You can find information about these keywords in an up-to-date version of the C and
C++ language standards. The C++ reference web site is also a very useful resource for information
about elements of the C and C++ programming languages.

const Keyword

The const keyword is part of the C standard. The c29clang compiler supports this keyword in all
language modes (see C/C++ Language Options),

This keyword gives you greater optimization and control over allocation for certain data objects.
You can apply the const qualifier to the definition of any variable or array to ensure that its value
is not altered.

Global objects qualified as const are placed in the .rodata section. The linker allocates the .ro-
data section from ROM or FLASH, which are typically more plentiful than RAM. The const data
storage allocation rule has the following exceptions:

• If the object has automatic storage (function scope).

• If the object is a C++ object with a “mutable” member.

• If the object is initialized with a value that is not known at compile time (such as the value
of another variable).

In these cases, the storage for the object is the same as if the const keyword were not used.

3.2. C/C++ Language Implementation 222

https://en.cppreference.com/w/

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The placement of the const keyword is important. For example, the first statement below defines
a constant pointer p to a modifiable int. The second statement defines a modifiable pointer q to a
constant int:

int * const p = &x;
const int * q = &x;

Using the const keyword, you can define large constant tables and allocate them into system ROM.
For example, to allocate a ROM table, you could use the following definition:

const int digits[] = {0,1,2,3,4,5,6,7,8,9};

inline Keyword

The inline keyword is part of the C standard beginning with C99. The c29clang compiler
supports inlining on a per-function basis in all language modes (see C/C++ Language Options).
However, if you are using -std=c89, which requires the compiler to follow the C89 standard strictly,
use the __inline keyword instead.

The compiler inlines a function only if it is legal to do so. Functions are never inlined if the
compiler is invoked with the -O0 option or the -fno-inline-functions option.

A function may be inlined even if the function is not declared with the inline keyword. The
c29clang compiler inlines functions with the inline keyword and some library functions when
the -O1 optimization option is used. It performs additional inlining when the -O2 option is used
and aggressive inlining when the -O3 option is used. A function mayn be inlined even if the
compiler is not invoked with any -O command-line option. The -Og and -Os options reduce
inlining.

restrict Keyword

The restrict keyword is part of the C standard beginning with C99. The c29clang compiler
supports specifying restricted access to pointers, references, and arrays in all language modes (see
C/C++ Language Options). However, if you are using -std=c89, which requires the compiler to
follow the C89 standard strictly, use the __restrict keyword instead.

To help the compiler determine memory dependencies, you can qualify a pointer, reference, or
array with the restrict keyword. The restrict keyword is a type qualifier that can be applied to
pointers, references, and arrays. Its use represents a guarantee by you, the programmer, that within
the scope of the pointer declaration the object pointed to can be accessed only by that pointer.
Any violation of this guarantee renders the program undefined. This practice helps the compiler
optimize certain sections of code because aliasing information can be more easily determined.

The following example uses the restrict keyword to tell the compiler that the function func1
is never called with the pointers a and b pointing to objects that overlap in memory. You are

3.2. C/C++ Language Implementation 223

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

promising that accesses through a and b will never conflict; therefore, a write through one pointer
cannot affect a read from any other pointers. The precise semantics of the restrict keyword are
described in the 1999 version of the ANSI/ISO C Standard.

void func1(int * restrict a, int * restrict b)
{

/* func1's code here */
}

The following example uses the restrict keyword when passing arrays to a function. Here, the
arrays c and d must not overlap, nor may c and d point to the same array.

void func2(int c[restrict], int d[restrict])
{

int i;
for(i = 0; i < 64; i++)
{

c[i] += d[i];
d[i] += 1;

}
}

volatile Keyword

The volatile keyword is part of the C standard. The c29clang compiler supports this keyword
in all language modes (see C/C++ Language Options).

The volatile keyword indicates to the compiler that there is something about how the variable is
accessed that requires that the compiler not use overly-clever optimization on expressions involving
that variable. For example, the variable may also be accessed by an external program, an interrupt,
another thread, or a peripheral device.

The compiler eliminates redundant memory accesses whenever possible, using data flow analysis
to figure out when it is legal. However, some memory accesses may be special in some way that the
compiler cannot see, and in such cases you should use the volatile keyword to prevent the compiler
from optimizing away something important. The compiler does not optimize out any accesses to
variables declared volatile. The number of volatile reads and writes will be exactly as they appear
in the C/C++ code, no more and no less and in the same order.

Any variable that might be modified by something external to the obvious control flow of the
program (such as an interrupt service routine) must be declared volatile. This tells the compiler
that an interrupt function might modify the value at any time, so the compiler should not perform
optimizations which will change the number or order of accesses of that variable. This is the
primary purpose of the volatile keyword. In the following example, the loop intends to wait for a
location to be read as 0xFF:

3.2. C/C++ Language Implementation 224

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

unsigned int *ctrl;
while (*ctrl !=0xFF);

However, in this example, *ctrl is a loop-invariant expression, so the loop is optimized down to
a single-memory read. To get the desired result, define ctrl as:

volatile unsigned int *ctrl;

Here the *ctrl pointer is intended to reference a hardware location, such as an interrupt flag.

The volatile keyword must also be used when accessing memory locations that represent memory-
mapped peripheral devices. Such memory locations might change value in ways that the compiler
cannot predict. These locations might change if accessed, or when some other memory location is
accessed, or when some signal occurs.

Volatile must also be used for local variables in a function that calls setjmp, if the value of the local
variables needs to remain valid if a longjmp occurs.

#include <stdlib.h>
jmp_buf context;

void function()
{

volatile int x = 3;
switch(setjmp(context))
{

case 0: setup(); break;
default:
{

/* We only reach here if longjmp occurs. Because x's
→˓lifetime begins before setjmp

and lasts through longjmp, the C standard requires x
→˓be declared "volatile". */

printf("x == %d\n", x);
break;

}
}

}

3.2. C/C++ Language Implementation 225

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.3 Run-Time Environment

This chapter describes the C/C++ run-time environment. To ensure successful execution of C/C++
programs, it is critical that all run-time code maintain this environment. It is also important to
follow the guidelines in this chapter if you write assembly language functions that interface with
C/C++ code.

3.3.1 Memory Model

The compiler treats memory as a single linear block that is partitioned into subblocks of code
and data. Each subblock of code or data generated by a C program is placed in its own continuous
memory space. The compiler assumes that a full 32-bit address space is available in target memory.

Note: The Linker Defines the Memory Map

The linker, not the compiler, defines the memory map and allocates code and data into target
memory. The compiler assumes nothing about the types of memory available, about any locations
not available for code or data (holes), or about any locations reserved for I/O or control purposes.
The compiler produces relocatable code that allows the linker to allocate code and data into the
appropriate memory spaces. For example, you can use the linker to allocate global variables into
on-chip RAM or to allocate executable code into external ROM. You can allocate each block of
code or data individually into memory, but this is not a general practice (an exception to this is
memory-mapped I/O, although you can access physical memory locations with C/C++ pointer
types).

Sections

The compiler produces relocatable blocks of code and data called sections. The sections are allo-
cated into memory in a variety of ways to conform to a variety of system configurations. For more
information about sections and allocating them, see Introduction to Object Modules.

There are two basic types of sections:

• Initialized sections contain data or executable code. Initialized sections are usually, but not
always, read-only. The C/C++ compiler creates the following initialized sections:

– The .binit section contains linker-generated boot time copy tables. This is a read-only
section. For details on BINIT, see Boot-Time Copy Tables.

– The .cinit section contains auto-initialization records for global variables. See Auto-
matic Initialization of Variables for more information. The .cinit section is read-only.

3.3. Run-Time Environment 226

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

– The .pinit section contains a table of pointers to global constructor functions to be run
at system boot time. See Automatic Initialization of Variables for more information.
The .pinit section is read-only.

– The .init_array section contains a table of pointers to global constructor functions for
a dynamic shared object. This section is a read-only section.

– The .fini_array section contains a table of pointers to global destructor functions for a
dynamic shared object. This section is read-only.

– The .ovly section contains linker-generated copy tables for unions in which different
sections have the same run address. See Linker-Generated Copy Table Sections and
Symbols for an example of copy tables used in conjunction with a UNION in a linker
command file. The .ovly section is read-only.

– The .data section contains initialized non-const global and static variables. This .data
section is read-write.

– The .rodata section contains read-only data, typically string constants and static-
scoped objects defined with the C/C++ qualifier const. Note that not all static-scoped
objects marked with const are placed in the .rodata section (see const Keyword).

– The .text section contains all the executable code. It also contains string literals, switch
tables, and compiler-generated constants. This section is usually read-only. Note that
some string literals may instead be placed in .rodata.str sections.

– The .TI.crctab section contains CRC checking tables. This is a read-only section.

• Uninitialized sections reserve space in memory (usually RAM). A program can use this
space at run time to create and store variables. The compiler creates the following uninitial-
ized sections:

– The .bss section reserves space for uninitialized global and static variables. Uninitial-
ized variables that are also unused are usually created as common symbols (unless you
specify --common=off) instead of being placed in .bss so that they can be excluded
from the resulting application.

– The .stack section reserves memory for the C/C++ software stack.

– The .sysmem section reserves space for dynamic memory allocation. This space is
used by dynamic memory allocation routines, such as malloc(), calloc(), realloc(), or
new().

You can instruct the compiler to create additional sections by using the section function and vari-
able attributes.

The linker takes the individual sections from different object files and combines sections that have
the same name. The resulting output sections and the appropriate placement in memory for each
section are listed in the following table. You can place these output sections anywhere in the
address space as needed to meet system requirements.

Summary of Sections and Memory Placement

3.3. Run-Time Environment 227

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Section Type of Memory Section Type of Memory
.bss RAM .fini_array ROM or RAM
.cinit ROM or RAM .pinit ROM or RAM
.rodata ROM or RAM .stack RAM
.data RAM .sysmem RAM
.init_array ROM or RAM .text ROM or RAM

You can use the SECTIONS directive in the linker command file to customize the section-
allocation process. For more information about allocating sections into memory, see Linker De-
scription.

C/C++ System Stack

The C/C++ compiler uses a stack to:

• Allocate local variables

• Pass arguments to functions

• Save register contents

The run-time stack grows from the high addresses to the low addresses.

The compiler uses the A15 register to manage this stack. A15 is the stack pointer (SP), which
points to the next unused location on the stack.

The linker sets the stack size, creates a global symbol, __TI_STACK_SIZE, and assigns it a value
equal to the stack size in bytes. The default stack size is 2048 bytes. You can change the stack size
at link time by using the --stack_size option with the c29lnk command (use -Wl, or -Xlinker prefix
for the linker option if invoking the linker from c29clang, e.g. -Wl,--stack_size=256). For more
information on the --stack_size option, see Linker Description.

At system initialization, SP is set to a designated address for the top of the stack. This address is
the first location past the end of the .stack section. Since the position of the stack depends on
where the .stack section is allocated, the actual address of the stack is determined at link time.

The C/C++ environment automatically decrements SP at the entry to a function to reserve all the
space necessary for the execution of that function. The stack pointer is incremented at the exit
of the function to restore the stack to the state before the function was entered. If you interface
assembly language routines to C/C++ programs, be sure to restore the stack pointer to the same
state it was in before the function was entered.

To debug issues related to the stack size, we recommend using the CCS Stack Usage view to see
the static stack usage of each function in the application. See Stack Usage View in CCS for more
information. Using the Stack Usage View requires that source code be built with debug enabled.
This feature relies on the –call_graph capability provided by the c29ofd - Object File Display
Utility.

3.3. Run-Time Environment 228

https://software-dl.ti.com/ccs/esd/documents/ccs_stack_usage_view.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Note: Stack Overflow and Stack Smashing Detection

A stack overflow disrupts the run-time environment, causing your program to fail. Be sure to allow
enough space for the stack to grow. You can use the -finstrument-functions option to add code to
the beginning of each function to check for stack overflow. See Function Entry/Exit Hook Options
for more information.

Stack smashing occurs when a given function writes past the stack space that has been allocated for
it. You can use the fstack-protector option to enable stack smashing detection for your application.
See Stack Smashing Detection Options for more information.

Dynamic Memory Allocation

The run-time-support library supplied with the compiler contains several functions (such as malloc,
calloc, and realloc) that allow you to allocate memory dynamically for variables at run time.

Memory is allocated from a global pool, or heap, that is defined in the .sysmem section. You
can set the size of the .sysmem section by using the --heap_size=<n> option with the c29lnk
command ((use -Wl, or -Xlinker prefix for the linker option if invoking the linker from c29clang,
e.g. -Wl,--heap_size=1024). The linker also creates a global symbol, __TI_SYSMEM_SIZE, and
assigns it a value equal to the size of the heap in bytes. The default size is 2048 bytes. For more
information on the --heap_size option, see Linker Description.

If you use any C I/O function (e.g. printf), the RTS library allocates an I/O buffer for each file you
access. This buffer will be a bit larger than BUFSIZ, which is defined in stdio.h and defaults to
256. Make sure you allocate a heap large enough for these buffers or use setvbuf() to change the
buffer to a statically-allocated buffer.

Dynamically allocated objects are not addressed directly (they are always accessed with pointers)
and the memory pool is in a separate section (.sysmem); therefore, the dynamic memory pool
can have a size limited only by the amount of available memory in your system. To conserve space
in the .bss section, you can allocate large arrays from the heap instead of defining them as global
or static. For example, instead of a definition such as:

struct big table[100];

Use a pointer and call the malloc function:

struct big *table;
table = (struct big *)malloc(100*sizeof(struct big));

Warning: When allocating from a heap, make sure the size of the heap is large enough for
the allocation. This is particularly important when allocating variable-length arrays.

3.3. Run-Time Environment 229

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.3.2 Object Representation

For general information about data types, see Data Types. This section explains how various data
objects are sized, aligned, and accessed.

Data Type Storage

The following table lists register and memory storage for various data types:

Data Representation in Registers and Memory

3.3. Run-Time Environment 230

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Data
Type

Register Stor-
age

Memory Storage

char,
signed
char

Bits 0-7 of reg-
ister
(Note 1 below)

8 bits aligned to 8-bit boundary

un-
signed
char,
bool

Bits 0-7 of reg-
ister

8 bits aligned to 8-bit boundary

short,
signed
short

Bits 0-15 of
register
(Note 1 below)

16 bits aligned to 16-bit (halfword) boundary

un-
signed
short,
wchar_t

Bits 0-15 of
register

16 bits aligned to 16-bit (halfword) boundary

int,
signed
int

Bits 0-31 of
register

32 bits aligned to 32-bit (word) boundary

un-
signed
int

Bits 0-31 of
register

32 bits aligned to 32-bit (word) boundary

long,
signed
long

Bits 0-31 of
register

32 bits aligned to 32-bit (word) boundary

un-
signed
long

Bits 0-31 of
register

32 bits aligned to 32-bit (word) boundary

long
long

Even/odd regis-
ter pair

64 bits aligned to 64-bit boundary
(Note 2 below)

un-
signed
long
long

Even/odd regis-
ter pair

64 bits aligned to 64-bit boundary
(Note 2 below)

float Bits 0-31 of
register

32 bits aligned to 32-bit (word) boundary

double Register pair 64 bits aligned to 64-bit boundary
(Note 2 below)

long
double

Register pair 64 bits aligned to 64-bit boundary
(Note 2 below)

struct Members are
stored as their
individual types
require.

Members are stored as their
individual types require;
aligned according to the member
with the most restrictive alignment
requirement.

array Members are
stored as their
individual types
require.

Members are stored as their
individual types require;
aligned to 32-bit (word) boundary.
All arrays inside a structure are
aligned according to the type of each
element in the array.

pointer
to data
member

Bits 0-31 of
register

32 bits aligned to 32-bit (word) boundary

pointer
to
member
func-
tion

Components
stored as their
individual types
require

64 bits aligned to 32-bit (word) boundary
(Note 2 below)

3.3. Run-Time Environment 231

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Note 1) Negative values are sign-extended to bit 31.

Note 2) 64-bit data is aligned on a 64-bit boundary. 64-bit pointers are aligned to a 32-bit bound-
aries.

For details about the size of an enum type, see Enum Type Storage.

char and short Data Types (signed and unsigned)

The char and unsigned char data types are stored in memory as a single byte and are loaded to and
stored from bits 0-7 of a register (see the following figure). Objects defined as short or unsigned
short are stored in memory as two bytes at a halfword (2 byte) aligned address and they are loaded
to and stored from bits 0-15 of a register.

Figure 3.1: Char and Short Data Storage Format

float, int, and long Data Types (signed and unsigned)

The int, unsigned int, float, long and unsigned long data types are stored in memory as 32-bit
objects at word (4 byte) aligned addresses. Objects of these types are loaded to and stored from
bits 0-31 of a register, as shown in the following figure.

Because the C29x is always in little-endian mode, 4-byte objects are loaded to registers by moving
the first byte (that is, the lower address) of memory to bits 0-7 of the register, moving the second
byte to bits 8-15, moving the third byte to bits 16-23, and moving the fourth byte to bits 24-31.

3.3. Run-Time Environment 232

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Figure 3.2: 32-Bit Data Storage Format

double, long double, and long long Data Types (signed and unsigned)

Double, long double, long long and unsigned long long data types are stored in memory in a pair
of registers and are always referenced as a pair. These types are stored as 64-bit objects at 64-
bit aligned addresses. For FPA mode, the word at the lowest address contains the sign bit, the
exponent, and the most significant part of the mantissa. The word at the higher address contains
the least significant part of the mantissa.

Objects of this type are loaded into and stored in register pairs, as shown in the following figure.
The most significant memory word contains the sign bit, exponent, and the most significant part of
the mantissa. The least significant memory word contains the least significant part of the mantissa.

Figure 3.3: Double-Precision Floating-Point Data Storage Format

3.3. Run-Time Environment 233

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Pointer to Data Member Types

Pointer to data member objects are stored in memory like an unsigned int (32 bit) integral type.
Its value is the byte offset to the data member in the class, plus 1. The zero value is reserved to
represent the NULL pointer to the data member.

Pointer to Member Function Types

Pointer to member function objects are stored as a structure with three members, and the layout is
equivalent to:

struct {
short int d;
short int i;
union {

void (f) ();
long 0; }

};

The parameter d is the offset to be added to the beginning of the class object for this pointer. The
parameter I is the index into the virtual function table, offset by 1. The index enables the NULL
pointer to be represented. Its value is -1 if the function is non-virtual. The parameter f is the pointer
to the member function if it is non-virtual, when I is 0. The 0 is the offset to the virtual function
pointer within the class object.

Structure and Array Alignment

Structures are aligned according to the member with the most restrictive alignment requirement.
Structures are padded so that the size of the structure is a multiple of its alignment. Arrays are
always word aligned. Elements of arrays are stored in the same manner as if they were individual
objects.

Bit Fields

Bit fields are the only objects that are packed within a byte. That is, two bit fields can be stored in
the same byte. Bit fields can range in size from 1 to 32 bits, but they never span a 4-byte boundary.

Because the C29x is always in little-endian mode, bit fields are packed into registers from the least
significant bit (LSB) to the most significant bit (MSB) in the order in which they are defined, and
packed in memory from least significant byte (LSbyte) to most significant byte (MSbyte).

Here are some details about how bit fields are handled:

3.3. Run-Time Environment 234

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Plain int bit fields are unsigned. Consider the following C code, where bar() is never called,
since bit field ‘a’ is unsigned. Use signed int if you need a signed bit field.

struct st
{

int a:5;
} S;

foo()
{

if (S.a < 0)
bar();

}

• Bit fields of type long long are supported.

• Bit fields are treated as the declared type.

• The size and alignment of the struct containing the bit field depends on the declared type
of the bit field. For example, consider the struct, which uses up 4 bytes and is aligned at 4
bytes:

struct st {int a:4};

• Unnamed bit fields affect the alignment of the struct or union. For example, consider the
struct, which uses 4 bytes and is aligned at a 4-byte boundary:

struct st{char a:4; int :22;};

• Bit fields declared volatile are accessed according to the bit field’s declared type. A volatile
bit field reference generates exactly one reference to its storage; multiple volatile bit field
accesses are not merged.

The following figure illustrates bit-field packing, using the following bit field definitions:

struct{
int A:7
int B:10
int C:3
int D:2
int E:9

}x;

A0 represents the least significant bit of the field A; A1 represents the next least significant bit, etc.
Again, storage of bit fields in memory is done with a byte-by-byte, rather than bit-by-bit, transfer.

3.3. Run-Time Environment 235

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Figure 3.4: Bit-Field Packing in Little-Endian Format

Character String Constants

In C, a character string constant is used in one of the following ways:

To initialize an array of characters. For example:

char s[] = "abc";

When a string is used as an initializer, it is simply treated as an initialized array; each character is
a separate initializer. For more information about initialization, see System Initialization.

In an expression. For example:

strcpy (s, "abc");

When a string is used in an expression, the string itself is defined in the .const section, along with
a unique label that points to the string; the terminating 0 byte is included.

String labels have the form SLn, where n is a number assigned by the compiler to make the label
unique. The number begins at 0 and is increased by 1 for each string defined. All strings used in a
source module are defined at the end of the compiled module.

The label SLn represents the address of the string constant. The compiler uses this label to refer-
ence the string expression.

Because strings are stored in the .const section (possibly in ROM) and shared, it is bad practice for
a program to modify a string constant. The following code is an example of incorrect string use:

const char *a = "abc"
a[1] = 'x'; /* Incorrect! undefined behavior */

3.3. Run-Time Environment 236

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.3.3 Function Structure and Calling Conventions

The C/C++ compiler imposes a strict set of rules on function calls. Except for special run-time
support functions, any function that calls or is called by a C/C++ function must follow these rules.
Failure to adhere to these rules can disrupt the C/C++ environment and cause a program to fail.

There are a few things to be aware of when working with stack memory on TI C29x devices:

• A15 is used as the stack pointer (SP). The SP points to the next empty location.

• The stack grows “down” (from low to high addresses).

• The stack is 64-bit aligned on function entry/exit.

This document uses the following terminology to describe the function-calling conventions of the
C/C++ compiler:

• Argument block: The part of the local frame used to pass arguments to other functions.
This block is allocated to the largest size required of all calls in the function. It is allocated
on function entry and deallocated on function exit. It is populated by moves or copies of
values prior to the function call. (This is different from other targets, which push/pop onto
the stack on-demand.)

• Register save area: The part of the local frame into which caller-saved registers are copied
when the program calls a function and from which values are restored to registers when the
program returns control to the caller.

• Caller-saved (alternately, save-on-call) registers: The callee function does not preserve
values in these registers; therefore, the caller function must save them, potentially to the
register save area if their values need to be preserved.

• Callee-saved (alternately, save-on-entry) registers: The callee function must preserve the
values in these registers. If the callee function modifies these registers, it saves the value to
the stack and restores the value when it returns control to the caller.

• Calling Convention: A calling convention is a description of how arguments are passed
from caller to callee, and how values are returned from callee back to caller.

Due to the TI C29x security subsystem, there are multiple calling conventions:

• Unprotected Calls

– Caller-saved registers:

* D0 - D9, XD0 - XD8

* A0 - A9, XA0 - XA8

* M0 - M25, XM0 - XM24

* TA0-TA4, TDM0-TDM4

– Callee-saved registers:

3.3. Run-Time Environment 237

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

* D10 - D15, XD10 - XD14

* A10 - A14, XA10 - XA12

* M26 - M31, XM26 - XM30

– Argument registers:

* A4-A9

* D0-D7, XD0-XD4

* M0-M7, XM0-XM6

* The stack may be used to store arguments beyond the above available registers
listed, see Arguments below.

– Return registers:

* A4

* D0, XD0

* M0, XM0

• Protected Calls

– Caller-saved registers:

* All registers live across a protected call are caller-saved

– Callee-saved registers:

* No registers are saved by the callee

– Argument registers:

* A4-A9

* D0-D7, XD0-XD4

* M0-M7, XM0-XM6

* The stack may not be used to store arguments beyond the above available registers,
see Arguments below.

– Return registers:

* A4

* D0, XD0

* M0, XM0

The following figure shows stack usage before and after a typical function call.

3.3. Run-Time Environment 238

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Figure 3.5: Use of the Stack During a Function Call

Note:

• The A15 register is used as the stack pointer (SP); SP points to the next empty location.

• Stack grows from low to high addresses.

• Stack is 64-bit aligned.

Arguments

Values passed from caller to callee follow a strict set of rules. A single unique location is assigned
for each argument; this location does not vary program-to-program. See Examples 1 and 2.

• Arguments are assigned from first to last, and are assigned to the first valid and available
register.

• Pointer arguments are assigned to A4-A9, in increasing order.

3.3. Run-Time Environment 239

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Integer arguments are assigned to D0-D7, in increasing order. A 64-bit integer is assigned to
a pair of registers.

• Floating-point arguments are assigned to M0-M7, similar to integer arguments.

Example 1:

void foo(int a, long long b, int c, int d, int e)

• a, a 32-bit integer, is assigned to D0.

• b, a 64-bit integer, must be assigned to a pair. The next available pair is XD2, so b is assigned
to XD2 and D1 is left open.

• c, a 32-bit integer, is assigned to the next free 32-bit register, D1.

• d and e, 32-bit integers, are assigned to the next available registers. D2 and D3 are already
assigned, so they are placed in D4 and D5, respectively.

Example 2:

void bar(int x, long long y, double z, char *h)

• x, a 32-bit integer, is assigned to D0.

• y, a 64-bit integer, is assigned to XD2, as above.

• z, a 64-bit float, is assigned to the first available floating-point register pair, XM0.

• h, a 32-bit pointer, is assigned to the first available pointer register, A4.

Variadic arguments (ellipsis “. . . ”): Variadic arguments, such as those accepted by functions like
printf(), are accessed via macros such as va_start, va_end, and va_arg. (See Variadic functions.)
Every argument passed as part of a set of variadic arguments skips the register assignment phase.
Instead it is assigned to the caller’s argument block as if there were no valid registers remaining.

Other types: Types that do not fit into the above classifications–such as classes, structures, or
union types–are assigned locations in the caller’s argument block. Each is 8-byte-aligned, and
values are copied into the block on call.

Running out of registers: Functions may have more arguments than there are available registers.
In this case, such arguments are assign to locations in the caller’s argument block. See Examples
3 and 4.

Example 3:

void baz(int *a, int *b, int *c, int *d, int *e, int *f, int *g)

• Arguments a through f are all 32-bit pointers and are assigned to A4-A9, respectively

• Argument g does not have a valid register in A4-A9. It is instead treated like a 32-bit integer
and assigned to D0.

3.3. Run-Time Environment 240

https://en.cppreference.com/w/c/variadic

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Example 4:

void fizz(long long x, long long y, long long z, long long h)

• Arguments x, y, and z, 64-bit integers, are assigned to XD0, XD2, and XD4, respectively

• Argument h, a 32-bit integer, has no valid register remaining. It is passed as the first 4 bytes
on the caller’s argument block.

Returned Values

Values returned from callee to caller follow a strict set of rules. A single unique location is assigned
for the function’s returned value and does not vary program-to-program.

• Pointer values are returned in A4.

• 32-bit integer values are returned in D0.

• 64-bit integer values are returned in XD0.

• 32-bit floating point values are returned in M0.

• 64-bit floating point values are returned in XM0.

Other types: Functions that return a type that does not fit into one of the above classifications–such
as structures–allocate space on the caller’s argument block into which the callee copies the returned
value. In the following example, the returned structure is treated as a leading pointer argument in
the function’s argument list and is no longer treated as a returned value.

struct X foo(int a, char *b)

An equivalently handled call would be:

void foo(struct X *ptr, int a, char *b)

• The ptr argument, a 32-bit pointer, is assigned to the first available pointer register, A4.

• The a argument, a 32-bit integer, is assigned to D0.

• The b argument, a 32-bit pointer, is assigned to A5, not A4 as it would be normally.

The callee writes to this pointer argument, which the caller can read from on return to extract the
value.

3.3. Run-Time Environment 241

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

How a Function Makes a Call

A parent function) performs the following tasks when it calls another function (child function).

1. The call instruction pushes the 4-byte RPC onto the stack and increments the SP by 8 bytes,
not by 4 bytes. This is so the stack remains 8-byte aligned. The RPC being saved is the
return address of the caller.

2. The call instruction then sets RPC to the new return address (the return address of the callee).

3. The caller function is responsible for saving and restoring caller-saved registers whose values
must be preserved across the call.

4. The caller copies arguments to registers and stack locations, as detailed in Arguments.

5. The caller issues a call instruction and transfers control to the callee.

How a Callee Function Responds

A function (callee function) must perform the following tasks in response to being called:

1. The callee function allocates memory for the local variables and argument block by adding
a constant to the SP. This constant is the sum of:

• The size of the register save area for callee-saved registers.

• The size of the local variables whose lifetimes have not been optimized to be entirely
in-register.

• The maximum size of all the argument blocks for each function called by the callee.

• Any extra size required to align to an 8-byte boundary.

2. The callee function saves each callee-saved register that it uses/modifies to the stack. This
list can vary based on optimization.

3. The callee function executes the code for the function.

4. The callee function assigns the return value to a register or copies the value onto the stack,
as detailed in Returned Values.

5. The callee function restores all registers that were saved in step 2.

6. The callee function deallocates the frame and argument block by subtracting the constant
computed in step 1. Deallocation can occur either separate from the return instruction via
subtraction of the constant from A15 or as part of the return instruction using the ADDR1
addressing mode. If the return instruction is the variant that does not adjust the SP after
popping RPC, 8 is added to the constant computed in step 2.

7. The return instruction loads the program counter (PC) with the return address in the RPC
register before loading the previous return address (saved to the stack by the call instruction)
from the stack into the RPC register.

3.3. Run-Time Environment 242

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.3.4 Accessing Linker Symbols in C and C++

See Using Linker Symbols in C/C++ Applications for information about referring to linker symbols
in C/C++ code.

3.3.5 Interfacing C and C++ With Assembly Language

The following are ways to use assembly language with C/C++ code:

• Use separate modules of assembled code and link them with compiled C/C++ modules (see
Using Assembly Language Modules With C/C++ Code).

• Use assembly language variables and constants in C/C++ source (see Accessing Assembly
Language Variables From C/C++).

• Use inline assembly language embedded directly in the C/C++ source (see Using Inline
Assembly Language).

• Modify the assembly language code that the compiler produces (see Modifying Compiler
Output).

Using Assembly Language Modules With C/C++ Code

C/C++ code can access variables and call functions defined in assembly language, and assembly
code can access C/C++ variables and call C/C++ functions.

Follow these guidelines to interface assembly language and C:

• You must preserve any dedicated registers modified by a function. Dedicated registers in-
clude:

– Save-on-entry registers

– Stack pointer (SP or A15)

If the stack pointer is used normally, it does not need to be explicitly preserved. In other
words, the assembly function is free to use the stack as long as anything that is pushed onto
the stack is popped back off before the function returns (thus preserving the stack pointer).

Any register that is not dedicated can be used freely without first being saved.

• Interrupt routines must save all the registers they use. For more information, see Interrupt
Handling.

• When you call a C/C++ function from assembly language, load the designated registers with
arguments and push the remaining arguments onto the stack.

3.3. Run-Time Environment 243

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Remember that a function can alter any register not designated as being preserved without
having to restore it. If the contents of any of these registers must be preserved across the
call, you must explicitly save them.

• Functions must return values correctly according to their C/C++ declarations.

• No assembly module should use the .cinit section for any purpose other than autoinitializa-
tion of global variables. The C/C++ startup routine assumes that the .cinit section consists
entirely of initialization tables. Disrupting the tables by putting other information in .cinit
can cause unpredictable results.

• The compiler assigns linknames to all external objects. Thus, when you write assembly
language code, you must use the same linknames as those assigned by the compiler. See
Disable Name Demangling (--no_demangle) for details.

• Any object or function declared in assembly language that is accessed or called from C/C++
must be declared with the .def or .global directive in the assembly language modifier. This
declares the symbol as external and allows the linker to resolve references to it.

Likewise, to access a C/C++ function or object from assembly language, declare the C/C++ object
with the .ref or .global directive in the assembly language module. This creates an undeclared
external reference that the linker resolves.

Accessing Assembly Language Functions From C/C++

Functions defined in C++ that will be called from assembly should be defined as extern “C” in the
C++ file. Functions defined in assembly that will be called from C++ must be prototyped as extern
“C” in C++.

Example 1 below illustrates a C++ function called main(), which calls an assembly language func-
tion called asmfunc, which is shown in Example 2. The asmfunc function takes its single argument,
adds it to the C++ global variable called gvar, and returns the result.

Example 1: Calling an Assembly Language Function From a C/C++ Program

extern "C" {
extern int asmfunc(int a); /* declare external asm function */
int gvar = 0; /* define global variable */
}

void main()
{

int I = 5;

I = asmfunc(I); /* call function normally */
}

Example 2: Assembly Language Program Called by Example 1

3.3. Run-Time Environment 244

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

.global asmfunc

.global gvar
asmfunc:

LDR r1, gvar_a
LDR r2, [r1, #0]
ADD r0, r0, r2
STR r0, [r1, #0]
MOV pc, lr

gvar_a .field gvar, 32

In the C++ program in Example 1, the extern “C” declaration tells the compiler to use C naming
conventions (that is, no name mangling). When the linker resolves the .global _asmfunc reference,
the corresponding definition in the assembly file will match.

The parameter i is passed in R0, and the result is returned in R0. R1 holds the address of the global
gvar. R2 holds the value of gvar before adding the value i to it.

Accessing Assembly Language Variables From C/C++

It is sometimes useful for a C/C++ program to access variables or constants defined in assembly
language. There are several methods that you can use to accomplish this, depending on where and
how the item is defined: a variable defined in the .bss section, a variable not defined in the .bss
section, or a linker symbol.

Accessing Assembly Language Global Variables

Accessing variables from the .bss section or a section named with .usect is straightforward:

1. Use the .bss or .usect directive to define the variable.

2. Use the .def or .global directive to make the definition external.

3. Use the appropriate linkname in assembly language.

4. In C/C++, declare the variable as extern and access it normally.

Example 3 and Example 4 show how you can access a variable defined in .bss.

Example 3: Assembly Language Variable Program

.bss var,4,4 ; Define the variable

.global var ; Declare the variable as external

Example 4: C Program to Access Assembly Language From Example 3

3.3. Run-Time Environment 245

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

extern int var; /* External variable */
var = 1; /* Use the variable */

Accessing Assembly Language Constants

You can define global constants in assembly language by using the .set directive in combination
with either the .def or .global directive, or you can define them in a linker command file using
a linker assignment statement. These constants are accessible from C/C++ only with the use of
special operators.

For variables defined in C/C++ or assembly language, the symbol table contains the address of
the value contained by the variable. When you access an assembly variable by name from C/C++,
the compiler gets the value using the address in the symbol table.

For assembly constants, however, the symbol table contains the actual value of the constant. The
compiler cannot tell which items in the symbol table are addresses and which are values. If you
access an assembly (or linker) constant by name, the compiler tries to use the value in the symbol
table as an address to fetch a value. To prevent this behavior, you must use the & (address of)
operator to get the value. In other words, if x is an assembly language constant, its value in C/C++
is &x. See Using Linker Symbols in C/C++ Applications for more examples.

For more about symbols and the symbol table, refer to Symbols.

You can use casts and #defines to ease the use of these symbols in your program, as in Example 5
and Example 6.

Example 5: Accessing an Assembly Language Constant From C

extern int table_size; /*external ref */
#define TABLE_SIZE ((int) (&table_size))

. /* use cast to hide address-of */

.

.
for (I=0; i<TABLE_SIZE; ++I) /* use like normal symbol */

Example 6: Assembly Language Program for Example 5

_table_size .set10000 ; define the constant
.global _table_size ; make it global

Because you are referencing only the symbol’s value as stored in the symbol table, the symbol’s
declared type is unimportant. In Example 5, int is used. You can reference linker-defined symbols
in a similar manner.

3.3. Run-Time Environment 246

accessing-an-assembly-language-constant-from-c-stdz0547360.html#STDZ0547360
assembly-language-program-for-stdz0543264.html#STDZ0543264

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Sharing C/C++ Header Files With Assembly Source

Sharing C/C++ header files with assembly source is not supported.

Using Inline Assembly Language

Within a C/C++ program, you can use the asm statement to insert a single line of assembly lan-
guage into the assembly language file created by the compiler. A series of asm statements places
sequential lines of assembly language into the compiler output with no intervening code. For more
information, see naked.

The asm statement is useful for inserting comments in the compiler output. Simply start the as-
sembly code string with a semicolon (;) as shown below:

asm(";*** this is an assembly language comment");

Note: Using the asm Statement Keep the following in mind when using the asm statement:

• Be extremely careful not to disrupt the C/C++ environment. The compiler does not check or
analyze the inserted instructions.

• Avoid inserting jumps or labels into C/C++ code because they can produce unpredictable
results by confusing the register-tracking algorithms that the code generator uses.

• Do not change the value of a C/C++ variable when using an asm statement. This is because
the compiler does not verify such statements. They are inserted as is into the assembly code,
and potentially can cause problems if you are not sure of their effect.

• Do not use the asm statement to insert assembler directives that change the assembly envi-
ronment.

• Avoid creating assembly macros in C code and compiling with the --symdebug:dwarf (or -g)
option. The C environment’s debug information and the assembly macro expansion are not
compatible.

Modifying Compiler Output

You can inspect and change the compiler’s assembly language output by compiling the source and
then editing the assembly output file before assembling it. Specify the -S option on the compiler
command line to capture the compiler generated assembly.

3.3. Run-Time Environment 247

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.3.6 Interrupt Handling

As long as you follow the guidelines in this section, you can interrupt and return to C/C++ code
without disrupting the C/C++ environment. When the C/C++ environment is initialized, the startup
routine does not enable or disable interrupts. If the system is initialized by way of a hardware reset,
interrupts are disabled. If your system uses interrupts, you must handle any required enabling or
masking of interrupts. Such operations have no effect on the C/C++ environment and are easily
incorporated with asm statements or calling an assembly language function.

Saving Registers During Interrupts

When C/C++ code is interrupted, the interrupt routine must preserve the contents of all machine
registers that are used by the routine or by any functions called by the routine. With the exception
of banked registers, register preservation must be explicitly handled by the interrupt routine.

All banked registers are automatically preserved by the hardware (except for interrupts that are
reentrant. If you write interrupt routines that are reentrant, you must add code that preserves the
interrupt’s banked registers.) Each interrupt type has a set of banked registers. For information
about interrupt types, see interrupt.

Using C/C++ Interrupt Routines

When C/C++ code is interrupted, the interrupt routine must preserve the contents of all machine
registers that are used by the routine or by any functions called by the routine. Register preservation
must be explicitly handled by the interrupt routine.

__interrupt void example (void)
{

...
}

If a C/C++ interrupt routine does not call any other functions, only those registers that the interrupt
handler uses are saved and restored. However, if a C/C++ interrupt routine does call other func-
tions, these functions can modify unknown registers that the interrupt handler does not use. For
this reason, the routine saves all the save-on-call registers if any other functions are called. (This
excludes banked registers.) Do not call interrupt handling functions directly.

Interrupts can be handled directly with C/C++ functions by using the __interrupt keyword. For
information, see interrupt.

3.3. Run-Time Environment 248

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Using Assembly Language Interrupt Routines

You can handle interrupts with assembly language code as long as you follow the same register
conventions the compiler does. Like all assembly functions, interrupt routines can use the stack,
access global C/C++ variables, and call C/C++ functions normally. When calling C/C++ functions,
be sure that any save-on-call registers are preserved before the call because the C/C++ function
can modify any of these registers. You do not need to save save-on-entry registers because they are
preserved by the called C/C++ function.

How to Map Interrupt Routines to Interrupt Vectors

To map interrupt routines to interrupt vectors you need to include a intvecs.asm file. This file
will contain assembly language directives that can be used to set up C29x interrupt vectors with
branches to your interrupt routines. Follow these steps to use this file:

1. Create intvecs.asm and include your interrupt routines. For each routine:

a. At the beginning of the file, add a .global directive that names the routine.

b. Modify the appropriate .word directive to create a branch to the name of your routine.

2. Assemble and link intvecs.asm with your applications code and with the compiler’s linker
control file (lnk16.cmd or lnk32.cmd). The control file contains a SECTIONS directive that
maps the .intvecs section into a specific memory location.

Using Software Interrupts

A software interrupt (SWI) is a synchronous exception generated by the execution of a particular
instruction. Applications use software interrupts to request services from a protected system, such
as an operating system, which can perform the services only while in a supervisor mode.

Since a call to the software interrupt function represents an invocation of the software interrupt,
passing and returning data to and from a software interrupt is specified as normal function param-
eter passing with the following restriction:

All arguments passed to a software interrupt must reside in the four argument registers. No ar-
guments can be passed by way of a software stack. Thus, only four arguments can be passed
unless:

• Floating-point doubles are passed, in which case each double occupies two registers.

• Structures are returned, in which case the address of the returned structure occupies the first
argument register.

The C/C++ compiler also treats the register usage of a called software interrupt the same as a called
function. It assumes that all save-on-entry registers () are preserved by the software interrupt and
that save-on-call registers (the remainder of the registers) can be altered by the software interrupt.

3.3. Run-Time Environment 249

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Other Interrupt Information

An interrupt routine can perform any task performed by any other function, including accessing
global variables, allocating local variables, and calling other functions.

When you write interrupt routines, keep the following points in mind:

• It is your responsibility to handle any special masking of interrupts.

• A C/C++ interrupt routine cannot be called directly from C/C++ code.

• In a system reset interrupt, such as c_int00, you cannot assume that the run-time environment
is set up; therefore, you cannot allocate local variables, and you cannot save any information
on the run-time stack.

• In assembly language, remember to precede the name of a C/C++ interrupt with the appro-
priate linkname. For example, refer to c_int00 as _c_int00.

• The FIQ, supervisor, abort, IRQ, and undefined modes have separate stacks that are not
automatically set up by the C/C++ run-time environment. If you have interrupt routines in
one of these modes, you must set up the software stack for that mode.

• Interrupt routines are not reentrant. If an interrupt routine enables interrupts of its type, it
must save a copy of the return address and SPSR (the saved program status register) before
doing so.

• Because a software interrupt is synchronous, the register saving conventions discussed in
Saving Registers During Interrupts can be less restrictive as long as the system is designed
for this. A software interrupt routine generated by the compiler, however, follows the con-
ventions in Saving Registers During Interrupts.

3.3.7 Built-In Functions

Built-in functions are predefined by the compiler. They can be called like a regular function, but
they do not require a prototype or definition. The compiler supplies the proper prototype and
definition.

The c29clang compiler supports the following built-in functions:

• The __curpc function, which returns the value of the program counter where it is called. The
syntax of the function is:

void *__curpc(void);

• The __run_address_check function, which returns TRUE if the code performing the call is
located at its run-time address, as assigned by the linker. Otherwise, FALSE is returned. The
syntax of the function is:

3.3. Run-Time Environment 250

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

int __run_address_check(void);

3.3.8 System Initialization

Before you can run a C/C++ program, you must create the C/C++ run-time environment. The
C/C++ boot routine performs this task using a function called c_int00 (or _c_int00). The run-time-
support source library, rts.src, contains the source to this routine in a module named boot.c (or
boot.asm).

To begin running the system, the c_int00 function can be called by reset hardware. You must
link the c_int00 function with the other object files. This occurs automatically when you use the
--rom_model or --ram_model link option and include a standard run-time-support library as one of
the linker input files.

When C/C++ programs are linked, the linker sets the entry point value in the executable output file
to the symbol c_int00.

The c_int00 function performs the following tasks to initialize the environment:

1. Switches to the appropriate mode, reserves space for the run-time stack, and sets up the
initial value of the stack pointer (SP). The stack is aligned on a 64-bit boundary.

2. Calls the function _ _TI_auto_init to perform the C/C++ autoinitialization.

The _ _TI_auto_init function does the following tasks:

• Processes the binit copy table, if present.

• Performs C autoinitialization of global/static variables. For more information, see Au-
tomatic Initialization of Variables.

• Calls C++ initialization routines for file scope construction from the global constructor
table. For more information, see Global Constructors.

3. Calls the main() function to run the C/C++ program.

You can replace or modify the boot routine to meet your system requirements. However, the boot
routine must perform the operations listed above to correctly initialize the C/C++ environment.

3.3. Run-Time Environment 251

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Boot Hook Functions for System Pre-Initialization

Boot hooks are points at which you may insert application functions into the C/C++ boot process.
Default boot hook functions are provided with the run-time support (RTS) library. However, you
can implement customized versions of these boot hook functions, which override the default boot
hook functions in the RTS library if they are linked before the run-time library. Such functions
can perform any application-specific initialization before continuing with the C/C++ environment
setup.

If customized boot hook functions are defined in a user library, then in addition to linking the
library before the run-time library, you may also need to use the --priority link option to ensure that
unresolved symbol references to the boot functions are resolved by the first library that contains
a symbol definition. This will prevent references to the boot functions from being resolved by
the default implementations defined by the compiler run-time library. See Exhaustively Read and
Search Libraries (--reread_libs and --priority Options).

Note that RTOS kernels may use custom versions of the boot hook functions for system setup, so
you should be careful about overriding these functions if you are using an RTOS.

The following boot hook functions are available:

__mpu_init(): This function provides an interface for initializing the MPU, if MPU support is
included. The __mpu_init() function is called after the stack pointer is initialized but before any
C/C++ environment setup is performed. This function should not return a value.

_system_pre_init(): This function provides a place to perform application-specific initialization.
It is invoked after the stack pointer is initialized but before any C/C++ environment setup is per-
formed. For targets that include MPU support, this function is called after __mpu_init().By default,
_system_pre_init() should return a non-zero value. The default C/C++ environment setup is by-
passed if _system_pre_init() returns 0.

_system_post_cinit(): This function is invoked during C/C++ environment setup, after C/C++
global data is initialized but before any C++ constructors are called. This function should not
return a value.

The _c_int00() initialization routine also provides a mechanism for an application to perform the
setup (set I/O registers, enable/disable timers, etc.) before the C/C++ environment is initialized.

Run-Time Stack

The run-time stack is allocated in a single continuous block of memory and grows down from high
addresses to lower addresses. The SP points to the top of the stack.

The code does not check to see if the run-time stack overflows. Stack overflow occurs when the
stack grows beyond the limits of the memory space that was allocated for it. Be sure to allocate
adequate memory for the stack.

3.3. Run-Time Environment 252

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The stack size can be changed at link time by using the --stack_size link option on the linker
command line and specifying the stack size as a constant directly after the option.

The C/C++ boot routine shipped with the compiler sets up the user/thread mode run-time stack.
If your program uses a run-time stack when it is in other operating modes, you must also allocate
space and set up the run-time stack corresponding to those modes.

EABI requires that 64-bit data (type long long and long double) be aligned at 64-bits. This requires
that the stack be aligned at a 64-bit boundary at function entry so that local 64-bit variables are
allocated in the stack with correct alignment. The boot routine aligns the stack at a 64-bit boundary.

Automatic Initialization of Variables

Any global variables declared as preinitialized must have initial values assigned to them before a
C/C++ program starts running. The process of retrieving these variables’ data and initializing the
variables with the data is called autoinitialization. Internally, the compiler and linker coordinate to
produce compressed initialization tables. Your code should not access the initialization table.

Zero Initializing Variables

In ANSI C, global and static variables that are not explicitly initialized must be set to 0 before
program execution. The C/C++ compiler supports preinitialization of uninitialized variables by
default. This can be turned off by specifying the linker option --zero_init=off.

Zero initialization takes place only if the --rom_model linker option, which causes autoinitializa-
tion to occur, is used. If you use the --ram_model option for linking, the linker does not generate
initialization records, and the loader must handle both data and zero initialization.

Direct Initialization

The compiler uses direct initialization to initialize global variables. For example, consider the
following C code:

int i = 23;
int a[5] = { 1, 2, 3, 4, 5 };

The compiler allocates the variables ‘i’ and ‘a[] to .data section and the initial values are placed
directly.

.global i

.data
.align 4

i:
(continues on next page)

3.3. Run-Time Environment 253

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

.field 23,32 ; i @ 0

.global a

.data

.align 4
a:

.field 1,32 ; a[0] @ 0

.field 2,32 ; a[1] @ 32

.field 3,32 ; a[2] @ 64

.field 4,32 ; a[3] @ 96

.field 5,32 ; a[4] @ 128

Each compiled module that defines static or global variables contains these .data sections. The
linker treats the .data section like any other initialized section and creates an output section. In the
load-time initialization model, the sections are loaded into memory and used by the program. See
Initialization of Variables at Load Time.

In the run-time initialization model, the linker uses the data in these sections to create initialization
data and an additional compressed initialization table. The boot routine processes the initialization
table to copy data from load addresses to run addresses. See Autoinitialization of Variables at Run
Time.

Autoinitialization of Variables at Run Time

Autoinitializing variables at run time is the most common method of autoinitialization. To use this
method, invoke the linker with the --rom_model option.

Using this method, the linker creates a compressed initialization table and initialization data from
the direct initialized sections in the compiled module. The table and data are used by the C/C++
boot routine to initialize variables in RAM using the table and data in ROM.

The following figure illustrates autoinitialization at run time. Use this method in any system where
your application runs from code burned into ROM.

3.3. Run-Time Environment 254

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Figure 3.6: Autoinitialization at Run Time

Autoinitialization Tables

The compiled object files do not have initialization tables. The variables are initialized directly.
The linker, when the --rom_model option is specified, creates C auto initialization table and the
initialization data. The linker creates both the table and the initialization data in an output section
named .cinit.

The autoinitialization table has the following format:

Figure 3.7: Autoinitialization Table Format

The linker defined symbols __TI_CINIT_Base and __TI_CINIT_Limit point to the start and end
of the table, respectively. Each entry in this table corresponds to one output section that needs
to be initialized. The initialization data for each output section could be encoded using different
encoding.

The load address in the C auto initialization record points to initialization data with the following
format:

3.3. Run-Time Environment 255

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Figure 3.8: Load Address Format

The first 8-bits of the initialization data is the handler index. It indexes into a handler table to get
the address of a handler function that knows how to decode the following data.

The handler table is a list of 32-bit function pointers.

Figure 3.9: Handler Table Format

The encoded data that follows the 8-bit index can be in one of the following format types. For
clarity the 8-bit index is also depicted for each format.

Length Followed by Data Format

Figure 3.10: Encoded Data in Length Followed by Data Format

The compiler uses 24-bit padding to align the length field to a 32-bit boundary. The 32-bit length
field encodes the length of the initialization data in bytes (N). N byte initialization data is not
compressed and is copied to the run address as is.

The run-time support library has a function __TI_zero_init() to process this type of initialization
data. The first argument to this function is the address pointing to the byte after the 8-bit index.
The second argument is the run address from the C auto initialization record.

3.3. Run-Time Environment 256

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Zero Initialization Format

Figure 3.11: Encoded Data in Zero Initialization Format

The compiler uses 24-bit padding to align the length field to a 32-bit boundary. The 32-bit length
field encodes the number of bytes to be zero initialized.

The run-time support library has a function __TI_zero_init() to process the zero initialization. The
first argument to this function is the address pointing to the byte after the 8-bit index. The second
argument is the run address from the C auto initialization record.

Run Length Encoded (RLE) Format

Figure 3.12: Encoded Data in RLE Format

The data following the 8-bit index is compressed using Run Length Encoded (RLE) format. uses
a simple run length encoding that can be decompressed using the following algorithm:

1. Read the first byte, Delimiter (D).

2. Read the next byte (B).

3. If B != D, copy B to the output buffer and go to step 2.

4. Read the next byte (L).

a. If L == 0, then length is either a 16-bit, a 24-bit value, or we’ve reached the end of the
data, read next byte (L).

1. If L == 0, length is a 24-bit value or the end of the data is reached, read next byte
(L).

a. If L == 0, the end of the data is reached, go to step 7.

b. Else L <<= 16, read next two bytes into lower 16 bits of L to complete 24-bit
value for L.

2. Else L <<= 8, read next byte into lower 8 bits of L to complete 16-bit value for L.

b. Else if L > 0 and L < 4, copy D to the output buffer L times. Go to step 2.

c. Else, length is 8-bit value (L).

3.3. Run-Time Environment 257

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

5. Read the next byte (C); C is the repeat character.

6. Write C to the output buffer L times; go to step 2.

7. End of processing.

The run-time support library has a routine __TI_decompress_rle24() to decompress data com-
pressed using RLE. The first argument to this function is the address pointing to the byte after the
8-bit index. The second argument is the run address from the C auto initialization record.

Note: RLE Decompression Routine The previous decompression routine,
__TI_decompress_rle(), is included in the run-time-support library for decompressing RLE
encodings generated by older versions of the linker.

Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format

Figure 3.13: Encoded Data in LZSS Format

The data following the 8-bit index is compressed using LZSS compression. The run-time support
library has the routine __TI_decompress_lzss() to decompress the data compressed using LZSS.
The first argument to this function is the address pointing to the byte after the 8-bit index. The
second argument is the run address from the C auto initialization record.

Sample C Code to Process the C Autoinitialization Table

The run-time support boot routine has code to process the C autoinitialization table. The following
C code illustrates how the autoinitialization table can be processed on the target.

Example: Processing the C Autoinitialization Table

typedef void (*handler_fptr)(const unsigned char *in,
unsigned char *out);

#define HANDLER_TABLE __TI_Handler_Table_Base
#pragma WEAK(HANDLER_TABLE)
extern unsigned int HANDLER_TABLE;
extern unsigned char *__TI_CINIT_Base;
extern unsigned char *__TI_CINIT_Limit;

(continues on next page)

3.3. Run-Time Environment 258

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

void auto_initialize()
{

unsigned char **table_ptr;
unsigned char **table_limit;

/*---
→˓---*/

/* Check if Handler table has entries.
→˓ */

/*---
→˓---*/

if (&__TI_Handler_Table_Base >= &__TI_Handler_Table_Limit)
return;

/*---
→˓----*/

/* Get the Start and End of the CINIT Table.
→˓ */

/*---
→˓----*/

table_ptr = (unsigned char **)&__TI_CINIT_Base;
table_limit = (unsigned char **)&__TI_CINIT_Limit;
while (table_ptr < table_limit)
{

/*---
→˓------*/

/* 1. Get the Load and Run address.
→˓ */

/* 2. Read the 8-bit index from the load address.
→˓ */

/* 3. Get the handler function pointer using the index
→˓from */

/* handler table.
→˓ */

/*---
→˓------*/

unsigned char *load_addr = *table_ptr++;
unsigned char *run_addr = *table_ptr++;
unsigned char handler_idx = *load_addr++;
handler_fptr handler =

(handler_fptr)(&HANDLER_
→˓TABLE)[handler_idx];

(continues on next page)

3.3. Run-Time Environment 259

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

/*---
→˓------*/

/* 4. Call the handler and pass the pointer to the load
→˓data */

/* after index and the run address.
→˓ */

/*---
→˓------*/

(*handler)((const unsigned char *)load_addr, run_addr);
}

}

Initialization of Variables at Load Time

Initialization of variables at load time enhances performance by reducing boot time and by saving
the memory used by the initialization tables. To use this method, invoke the linker with the --
ram_model option.

When you use the --ram_model link option, the linker does not generate C autoinitialization tables
and data. The direct initialized sections (.data) in the compiled object files are combined according
to the linker command file to generate initialized output sections. The loader loads the initialized
output sections into memory. After the load, the variables are assigned their initial values.

Since the linker does not generate the C autoinitialization tables, no boot time initialization is
performed.

The following figure illustrates the initialization of variables at load time.

Figure 3.14: Initialization of Variables at Load Time

3.3. Run-Time Environment 260

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Global Constructors

All global C++ variables that have constructors must have their constructor called before main().
The compiler builds a table of global constructor addresses that must be called, in order, before
main() in a section called .init_array. The linker combines the .init_array section form each input
file to form a single table in the .init_array section. The boot routine uses this table to execute the
constructors. The linker defines two symbols to identify the combined .init_array table as shown
below. This table is not null terminated by the linker.

Figure 3.15: Global Constructor Address Table

3.4 Using Run-Time-Support Functions and Building Li-
braries

Some of the features of C/C++ (such as I/O, dynamic memory allocation, string operations, and
trigonometric functions) are provided as an ANSI/ISO C/C++ standard library, rather than as part
of the compiler itself. The TI implementation of this library is the run-time-support library (RTS).
The C/C++ compiler implements the ISO standard library except for those facilities that handle ex-
ception conditions, signal and locale issues (properties that depend on local language, nationality,
or culture). Using the ANSI/ISO standard library ensures a consistent set of functions that provide
for greater portability.

In addition to the ANSI/ISO-specified functions, the run-time-support library includes routines that
give you processor-specific commands and direct C language I/O requests. These are detailed in C
and C++ Run-Time Support Libraries and The C I/O Functions.

3.4. Using Run-Time-Support Functions and Building Libraries 261

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.4.1 C and C++ Run-Time Support Libraries

The TI C29x compiler installation includes pre-built run-time support (RTS) libraries that provide
all the standard capabilities. Separate libraries are provided for each supported variant. See Library
Naming Conventions for information on the library file names and paths.

The run-time-support library contains the following:

• ANSI/ISO C/C++ standard library

• C I/O library

• Low-level support functions that provide I/O to the host operating system

• Fundamental arithmetic routines

• System startup routine, _c_int00

• Time routines

• Compiler helper functions (to support language features that are not directly efficiently ex-
pressible in C/C++)

The run-time-support libraries do not contain functions involving signals and locale issues.

The C++ library supports wide chars, in that template functions and classes that are defined for
char are also available for wide char. For example, wide char stream classes wios, wiostream,
wstreambuf and so on (corresponding to char classes ios, iostream, streambuf) are implemented.
However, there is no low-level file I/O for wide chars. Also, the C library interface to wide char
support (through the C++ headers <cwchar> and <cwctype>) is limited as described in C/C++
Language Options.

TI does not provide documentation that covers the functionality of the C++ library. TI suggests
referring to one of the following sources:

• The Standard C++ Library: A Tutorial and Reference, Nicolai M. Josuttis, Addison-Wesley,
ISBN 0-201-37926-0

• The C++ Programming Language (Third or Special Editions), Bjarne Stroustrup, Addison-
Wesley, ISBN 0-201-88954-4 or 0-201-70073-5

Note: You can avoid linking with the C and C++ Run-Time Support Libraries by using the -
nostdlib compiler option. See C/C++ Run-Time Standard Header and Library Options for more
information.

3.4. Using Run-Time-Support Functions and Building Libraries 262

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Linking Code With the Object Library

When you link your program, you must specify the object library as one of the linker input files
so that references to the I/O and run-time-support functions can be resolved. You can either spec-
ify the library or allow the compiler to select one for you. See Automatic Library Selection (--
disable_auto_rts Option) for further information.

When a library is linked, the linker includes only those library members required to resolve unde-
fined references. For more information about linking, see Linker Description.

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-
support functions and variables that can be called and referenced from both C and C++ will have
the same linkage.

Header Files

You must use the header files provided with the compiler run-time support when using functions
from C/C++ standard library.

The following header files provide TI extensions to the C standard:

• cpy_tbl.h – Declares the copy_in() RTS function, which is used to move code or data from a
load location to a separate run location at run-time. This function helps manage overlays.

• file.h – Declares functions used by low-level I/O functions in the RTS library.

• _lock.h – Used when declaring system-wide mutex locks. This header file is deprecated; use
_reg_mutex_api.h and _mutex.h instead.

• memory.h – Provides the memalign() function, which is not required by the C standard.

• _mutex.h – Declares functions used by the RTS library to help facilitate mutexes for specific
resources that are owned by the RTS. For example, these functions are used for heap or file
table allocation.

• _pthread.h – Declares low-level mutex infrastructure functions and provides support for re-
cursive mutexes.

• _reg_mutex_api.h – Declares a function that can be used by an RTOS to register an under-
lying lock mechanism and/or thread ID mechanism that is implemented in the RTOS but is
called indirectly by the RTS’ _mutex.h functions.

• _reg_synch_api.h – Declares a function that can be used by an RTOS to register an un-
derlying cache synchronization mechanism that is implemented in the RTOS but is called
indirectly by the RTS’ _data_synch.h functions.

• strings.h – Provides additional string functions, including bcmp(), bcopy(), bzero(), ffs(),
index(), rindex(), strcasecmp(), and strncasecmp().

3.4. Using Run-Time-Support Functions and Building Libraries 263

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Support for String and Character Handling

The library includes the header files <string.h>, <strings.h>, and <wchar.h>, which provide the
following functions for string handling beyond those required.

• string.h

– memcpy(), which copies memory from one location to another

– memcmp(), which compares sections of memory

– strcmp() and strncmp(), which perform case-sensitive string comparisons

– strdup(), which duplicates a string by dynamically allocating memory and copying the
string to this allocated memory

– strlen_s(), which is the same as the strlen() function, except that it provides check-
ing for null pointers or strings that are not null-terminated. This function is avail-
able only if you are using C11/C++11 or later and if you have used #define to set
__STDC_WANT_LIB_EXT1__ to the integer constant 1 prior to the #include state-
ment for string.h.

• strings.h

– bcmp(), which is equivalent to memcmp()

– bcopy(), which is equivalent to memmove()

– bzero(), which is equivalent to memset(.., 0, . . .);

– ffs(), which finds the first bit set and returns the index of that bit

– index(), which is equivalent to strchr()

– rindex(), which is equivalent to strrchr()

– strcasecmp() and strncasecmp(), which perform case-insensitive string comparisons

• wchar.h

– wcsnlen_s(), which is the same as the wcsnlen() function, except that it provides check-
ing for null pointers or strings that are not null-terminated. This function is avail-
able only if you are using C11/C++11 or later and if you have used #define to set
__STDC_WANT_LIB_EXT1__ to the integer constant 1 prior to the #include state-
ment for wchar.h.

3.4. Using Run-Time-Support Functions and Building Libraries 264

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Support for time.h and time_t

The library includes the header file <time.h>, which provides the following functions for time
handling beyond those required:

• asctime(), which returns a pointer to a string representing the day and time

• clock(), which returns the processor clock time

• ctime(), which returns a string representing the localtime

• difftime(), which returns the difference in seconds between two times

• gmtime(), which expresses the time value expressed in Greenwich Mean Time (GMT)

• localtime(), which returns the time value expressed in the local time zone

• mktime(), which converts the given time structure into a time_t value

• strftime(), which formats the time according to given format rules

• time(), which calculates the current calendar time and returns it as time_t

The library defines time_t by default as a POSIX-compatible signed 64-bit value using the POSIX
epoch of January 1, 1970. This is different from the TI C28x compiler, which defines time_t as an
unsigned 32-bit value using a TI-defined epoch of January 1, 1900. You do not need to take any
special steps or define any macros to use the time_t implementation, just be sure to #include time.h
and use the standard C time functions, which automatically map to 64-bit implementations.

Leveraging the Unsigned 32-bit Representation of time_t

You may also activate the unsigned 32-bit representation of time_t by setting the macro
__TI_TIME_USES_64=0.

As long as variables of type time_t aren’t used globally, you may freely link object files built using
__TI_TIME_USES_64=0 with those that do not since the actual time functions in the RTS are not
changed.

Minimal Support for Internationalization

The library includes the header files <locale.h>, <wchar.h>, and <wctype.h>, which provide APIs
to support non-ASCII character sets and conventions. Our implementation of these APIs is limited
in the following ways:

• The library has minimal support for wide and multibyte characters. The type wchar_t is
implemented as int. The wide character set is equivalent to the set of values of type char.
The library includes the header files <wchar.h> and <wctype.h> but does not include all the
functions specified in the standard. See Generic Compiler Pre-Defined Macro Symbols for
more information about extended character sets.

3.4. Using Run-Time-Support Functions and Building Libraries 265

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The C library includes the header file <locale.h> but with a minimal implementation. The
only supported locale is the C locale. That is, library behavior that is specified to vary by
locale is hard-coded to the behavior of the C locale, and attempting to install a different
locale via a call to setlocale() returns NULL.

Allowable Number of Open Files

In the <stdio.h> header file, the value for the macro FOPEN_MAX has the value of the macro
_NFILE, which is set to 10. The impact is that you can only have 10 files simultaneously open at
one time (including the pre-defined streams stdin, stdout, and stderr).

The C standard requires that the minimum value for the FOPEN_MAX macro is 8. The macro
determines the maximum number of files that can be opened at one time. The macro is defined
in the stdio.h header file and can be modified by changing the value of the _NFILE macro and
recompiling the library.

Nonstandard Header Files in the Source Tree

The source code in the lib/src subdirectory of the compiler installation contains these non-ANSI
include files that are used to build the library:

• The file.h file includes macros and definitions used for low-level I/O functions.

• The format.h file includes structures and macros used in printf and scanf.

• The trgcio.h file includes low-level, target-specific C I/O macro definitions. If necessary,
you can customize trgcio.h.

Library Naming Conventions

By default, which run-time-support library (see Invoking the Compiler) to link with is determined
based on the command-line options used to compile your application, and you do not need to
specify the RTS library to the linker.

The pre-built run-time support (RTS) libraries are as follows:

• libc.a: C Standard

• libc++.a: C++ Standard

• libc++abi.a: C++ Support

• libsys.a: Common system-level library, such as file IO and time.

• libsysbm.a: Common system-level library, such as file IO and time. You may provide
your own copy of libsysbm.a to override the default IO and time functions. See Contents
of the libsysbm.a Library for details.

3.4. Using Run-Time-Support Functions and Building Libraries 266

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• libclang_rt.builtins.a: Compiler support

• libclang_rt.profile.a: Instrumentation (code coverage)

The RTS libraries in the <root>/lib directory of the c29clang installation point to a library
variant using the following path naming convention:

/lib/c29<subtarget> -ti-none-eabi<variant>

where the subtargets and variants are as follows:

• <subtarget>: .c0 is currently the only subtarget.

• <variant>: /f64 is added to the directory path if the -mfpu=f64 option is used, which
causes native 32-bit and 64-bit floating-point hardware operations to be used. If no -mfpu
option or -mfpu=none is used, no variant is added to the path; native 32-bit floating-point
hardware operations are used, and 64-bit floating-point operations are emulated in software.

Variants of the libclang_rt.builtins.a and libclang_rt.profile.a libraries have
/lib/clang/<version> added prior to this path, where <version> is currently “19”.

For example, if you use no -mfpu option or the -mfpu=none option, the RTS libraries in the
following locations are used:

• /lib/c29.c0-ti-none-eabi/c/libc.a

• /lib/c29.c0-ti-none-eabi/c/libsysbm.a

• /lib/c29.c0-ti-none-eabi/libc++.a

• /lib/c29.c0-ti-none-eabi/libc++abi.a

• /lib/clang/<version>/lib/c29.c0-ti-none-eabi/libclang_rt.
builtins.a

• /lib/clang/<version>/lib/c29.c0-ti-none-eabi/libclang_rt.
profile.a

If you instead use the -mfpu=f64 option, the RTS libraries in the following locations are used:

• /lib/c29.c0-ti-none-eabi/f64/c/libc.a

• /lib/c29.c0-ti-none-eabi/f64/c/libsysbm.a

• /lib/c29.c0-ti-none-eabi/f64/libc++.a

• /lib/c29.c0-ti-none-eabi/f64/libc++abi.a

• /lib/clang/<version>/lib/c29.c0-ti-none-eabi/f64/libclang_rt.
builtins.a

• /lib/clang/<version>/lib/c29.c0-ti-none-eabi/f64/libclang_rt.
profile.a

3.4. Using Run-Time-Support Functions and Building Libraries 267

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Contents of the libsysbm.a Library

The files in the <root>/lib/src directory contain the source code for functions that may be
overridden. By default, libsysbm.a contains functions from the following source files:

• add_device.c

• close.c

• host_device.c

• hostclock.c

• hostclose.c

• hostgetenv.c

• hostlseek.c

• hostopen.c

• hostread.c

• hostrename.c

• hosttime.c

• hostunlink.c

• hostwrite.c

• lseek.c

• open.c

• read.c

• remove.c

• remove_device.c

• rename.c

• time.c

• time64.c

• trgmsg.c

• unlink.c

• write.c

3.4. Using Run-Time-Support Functions and Building Libraries 268

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.4.2 The C I/O Functions

The C I/O functions make it possible to access the host’s operating system to perform I/O. The
capability to perform I/O on the host gives you more options when debugging and testing code.

The I/O functions are logically divided into layers: high level, low level, and device-driver level.

With properly written device drivers, the C-standard high-level I/O functions can be used to per-
form I/O on custom user-defined devices. This provides an easy way to use the sophisticated
buffering of the high-level I/O functions on an arbitrary device.

The formatting rules for long long data types require ll (lowercase LL) in the format string. For
example:

printf("%lld", 0x0011223344556677);
printf("llx", 0x0011223344556677);

Note: Debugger Required for Default HOST For the default HOST device to work, there must
be a debugger to handle the C I/O requests; the default HOST device cannot work by itself in an
embedded system. To work in an embedded system, you need to provide an appropriate driver for
your system.

Note: C I/O Mysteriously Fails If there is not enough space on the heap for a C I/O buffer,
operations on the file will silently fail. If a call to printf() mysteriously fails, this may be the
reason. The heap needs to be at least large enough to allocate a block of size BUFSIZ (defined in
stdio.h) for every file on which I/O is performed, including stdout, stdin, and stderr, plus allocations
performed by the user’s code, plus allocation bookkeeping overhead. Alternately, declare a char
array of size BUFSIZ and pass it to setvbuf to avoid dynamic allocation. To set the heap size, use
the --heap_size option when linking (refer to Linker Description).

Note: Open Mysteriously Fails The run-time support limits the total number of open files to
a small number relative to general-purpose processors. If you attempt to open more files than
the maximum, you may find that the open will mysteriously fail. You can increase the number of
open files by extracting the source code from rts.src and editing the constants controlling the size of
some of the C I/O data structures. The macro _NFILE controls how many FILE (fopen) objects can
be open at one time (stdin, stdout, and stderr count against this total). (See also FOPEN_MAX.)
The macro _NSTREAM controls how many low-level file descriptors can be open at one time (the
low-level files underlying stdin, stdout, and stderr count against this total). The macro _NDEVICE
controls how many device drivers are installed at one time (the HOST device counts against this
total).

3.4. Using Run-Time-Support Functions and Building Libraries 269

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

High-Level I/O Functions

The high-level functions are the standard C library of stream I/O routines (printf, scanf, fopen,
getchar, and so on). These functions call one or more low-level I/O functions to carry out the
high-level I/O request. The high-level I/O routines operate on FILE pointers, also called streams.

Portable applications should use only the high-level I/O functions.

To use the high-level I/O functions:

• Include the header file stdio.h for each module that references a function.

• Allow for 320 bytes of heap space for each I/O stream used in your program. A stream
is a source or destination of data that is associated with a peripheral, such as a terminal or
keyboard. Streams are buffered using dynamically allocated memory that is taken from the
heap. More heap space may be required to support programs that use additional amounts of
dynamically allocated memory (calls to malloc()). To set the heap size, use the --heap_size
option when linking; see Define Heap Size (--heap_size Option).

For example, given the following C program in a file named main.c:

#include <stdio.h>

void main()
{

FILE *fid;

fid = fopen("myfile","w");
fprintf(fid,"Hello, world\n");
fclose(fid);

printf("Hello again, world\n");
}

Issuing the following compiler command compiles, links, and creates the file main.out using the
appropriate version of the run-time-support library:

c29clang main.c -Xlinker --heap_size=400 -Xlinker --output_
→˓file=main.out

Executing main.out results in:

Hello, world

being output to a file and

Hello again, world

3.4. Using Run-Time-Support Functions and Building Libraries 270

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

being output to your host’s stdout window.

Formatting and the Format Conversion Buffer

The internal routine behind the C I/O functions—such as printf(), vsnprintf(), and
snprintf()—reserves stack space for a format conversion buffer. The buffer size is set by the macro
FORMAT_CONVERSION_BUFSIZE, which is defined in format.h. Consider the following is-
sues before reducing the size of this buffer:

• The default buffer size is 510 bytes. If MINIMAL is defined, the size is set to 32, which
allows integer values without width specifiers to be printed.

• Each conversion specified with %xxxx (except %s) must fit in FOR-
MAT_CONVERSION_BUFSIZE. This means any individual formatted float or integer
value, accounting for width and precision specifiers, needs to fit in the buffer. Since the
actual value of any representable number should easily fit, the main concern is ensuring the
width and/or precision size meets the constraints.

• The length of converted strings using %s are unaffected by any change in FOR-
MAT_CONVERSION_BUFSIZE. For example, you can specify printf("%s value
is %d",some_really_long_string,intval) without a problem.

• The constraint is for each individual item being converted. For example, a format string
of %d item1 %f item2 %e item3 does not need to fit in the buffer. Instead, each
converted item specified with a % format must fit.

• There is no buffer overrun check.

Overview of Low-Level I/O Implementation

The low-level functions are comprised of seven basic I/O functions: open, read, write, close, lseek,
rename, and unlink. These low-level routines provide the interface between the high-level func-
tions and the device-level drivers that actually perform the I/O command on the specified device.

The low-level functions are designed to be appropriate for all I/O methods, even those which are
not actually disk files. Abstractly, all I/O channels can be treated as files, although some operations
(such as lseek) may not be appropriate. See Device-Driver Level I/O Functions for more details.

The low-level functions are inspired by, but not identical to, the POSIX functions of the same
names.

The low-level functions operate on file descriptors. A file descriptor is an integer returned by open,
representing an opened file. Multiple file descriptors may be associated with a file; each has its
own independent file position indicator.

3.4. Using Run-Time-Support Functions and Building Libraries 271

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

open – Open File for I/O

Syntax

#include <file.h>

int open (const char * path,
unsigned flags,
int file_descriptor);

Description The open function opens the file specified by path and prepares it for I/O.

• The path is the filename of the file to be opened, including an optional directory path and an
optional device specifier (see The device Prefix).

• The flags are attributes that specify how the file is manipulated. Low-level I/O routines allow
or disallow some operations depending on the flags used when the file was opened. Some
flags may not be meaningful for some devices, depending on how the device implements
files. The flags are specified using the following symbols:

O_RDONLY (0x0000) /* open for reading */
O_WRONLY (0x0001) /* open for writing */
O_RDWR (0x0002) /* open for read & write */
O_APPEND (0x0008) /* append on each write */
O_CREAT (0x0200) /* open with file create */
O_TRUNC (0x0400) /* open with truncation */
O_BINARY (0x8000) /* open in binary mode */

• The file_descriptor is assigned by open to an opened file. The next available file descriptor
is assigned to each new file opened.

Return Value The function returns one of the following values:

• non-negative value is file descriptor if successful

• -1 on failure

close – Close File for I/O

Syntax

#include <file.h>

int close (int file_descriptor);

Description The close function closes the file associated with file_descriptor. The file_descriptor
is the number assigned by open to an opened file.

3.4. Using Run-Time-Support Functions and Building Libraries 272

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Return Value The return value is one of the following:

• 0 if successful

• -1 on failure

read – Read Characters from a File

Syntax

#include <file.h>

int read (int file_descriptor,
char * buffer,
unsigned count);

Description The read function reads count characters into the buffer from the file associated with
file_descriptor.

• The file_descriptor is the number assigned by open to an opened file.

• The buffer is where the read characters are placed.

• The count is the number of characters to read from the file.

Return Value The function returns one of the following values:

• 0 if EOF was encountered before any characters were read

• positive value to indicate number of characters read (may be less than count)

• -1 on failure

write – Write Characters to a File

Syntax

#include <file.h>

int write (int file_descriptor,
const char * buffer,
unsigned count);

Description The write function writes the number of characters specified by count from the buffer
to the file associated with file_descriptor.

• The file_descriptor is the number assigned by open to an opened file.

• The buffer is where the characters to be written are located.

3.4. Using Run-Time-Support Functions and Building Libraries 273

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The count is the number of characters to write to the file.

Return Value The function returns one of the following values:

• positive value to indicate number of characters written if successful (may be less than count)

• -1 on failure

lseek – Set File Position Indicator

Syntax for C

#include <file.h>

off_t lseek (int file_descriptor,
off_t offset,
int origin);

Description The lseek function sets the file position indicator for the given file to a location relative
to the specified origin. The file position indicator measures the position in characters from the
beginning of the file.

• The file_descriptor is the number assigned by open to an opened file.

• The offset indicates the relative offset from the origin in characters.

• The origin is used to indicate which of the base locations the offset is measured from. The
origin must be one of the following macros:

– SEEK_SET (0x0000) Beginning of file

– SEEK_CUR (0x0001) Current value of the file position indicator

– SEEK_END (0x0002) End of file

Return Value The return value is one of the following:

• positive value to indicate new value of the file position indicator if successful

• (off_t)-1 on failure

unlink – Delete File

Syntax

#include <file.h>

int unlink (const char * path);

3.4. Using Run-Time-Support Functions and Building Libraries 274

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Description The unlink function deletes the file specified by path. Depending on the device, a
deleted file may still remain until all file descriptors which have been opened for that file have
been closed. See Device-Driver Level I/O Functions.

The path is the filename of the file, including path information and optional device prefix. (See
The device Prefix.)

Return Value The function returns one of the following values:

• 0 if successful

• -1 on failure

rename – Rename File

Syntax for C

#include {<stdio.h> \| <file.h>}

int rename (const char * old_name,
const char * new_name);

Syntax for C++

#include {<cstdio> \| <file.h>}

int std::rename (const char * old_name,
const char * new_name);

Description The rename function changes the name of a file.

• The old_name is the current name of the file.

• The new_name is the new name for the file.

Note: The optional device specified in the new name must match the device of the old name. If
they do not match, a file copy would be required to perform the rename, and rename is not capable
of this action.

Return Value The function returns one of the following values:

• 0 if successful

• -1 on failure

3.4. Using Run-Time-Support Functions and Building Libraries 275

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Note: Although rename is a low-level function, it is defined by the C standard and can be used by
portable applications.

Device-Driver Level I/O Functions

At the next level are the device-level drivers. They map directly to the low-level I/O functions. The
default device driver is the HOST device driver, which uses the debugger to perform file operations.
The HOST device driver is automatically used for the default C streams stdin, stdout, and stderr.

The HOST device driver shares a special protocol with the debugger running on a host system so
that the host can perform the C I/O requested by the program. Instructions for C I/O operations
that the program wants to perform are encoded in a special buffer named _CIOBUF_ in the .cio
section. The debugger halts the program at a special breakpoint (C$$IO$$), reads and decodes the
target memory, and performs the requested operation. The result is encoded into _CIOBUF_, the
program is resumed, and the target decodes the result.

The HOST device is implemented with seven functions, HOSTopen, HOSTclose, HOSTread,
HOSTwrite, HOSTlseek, HOSTunlink, and HOSTrename, which perform the encoding. Each
function is called from the low-level I/O function with a similar name.

A device driver is composed of seven required functions. Not all function need to be meaningful
for all devices, but all seven must be defined. Here we show the names of all seven functions as
starting with DEV, but you may choose any name except for HOST.

DEV_open – Open File for I/O

Syntax

int DEV_open (const char * path,
unsigned flags ,
int llv_fd);

Description This function finds a file matching path and opens it for I/O as requested by flags.

• The path is the filename of the file to be opened. If the name of a file passed to open has a
device prefix, the device prefix will be stripped by open, so DEV_open will not see it. (See
The device Prefix for details on the device prefix.)

• The flags are attributes that specify how the file is manipulated. See POSIX for further
explanation of the flags. The flags are specified using the following symbols:

O_RDONLY (0x0000) /* open for reading */
O_WRONLY (0x0001) /* open for writing */

(continues on next page)

3.4. Using Run-Time-Support Functions and Building Libraries 276

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

O_RDWR (0x0002) /* open for read & write */
O_APPEND (0x0008) /* append on each write */
O_CREAT (0x0200) /* open with file create */
O_TRUNC (0x0400) /* open with truncation */
O_BINARY (0x8000) /* open in binary mode */

• The llv_fd is treated as a suggested low-level file descriptor. This is a historical artifact;
newly-defined device drivers should ignore this argument. This differs from the low-level
I/O open function.

This function must arrange for information to be saved for each file descriptor, typically including
a file position indicator and any significant flags. For the HOST version, all the bookkeeping is
handled by the debugger running on the host machine. If the device uses an internal buffer, the
buffer can be created when a file is opened, or the buffer can be created during a read or write.

Return Value This function must return -1 to indicate an error if for some reason the file could not
be opened; such as the file does not exist, could not be created, or there are too many files open.
The value of errno may optionally be set to indicate the exact error (the HOST device does not set
errno). Some devices might have special failure conditions; for instance, if a device is read-only, a
file cannot be opened O_WRONLY.

On success, this function must return a non-negative file descriptor unique among all open files
handled by the specific device. The file descriptor need not be unique across devices. The device
file descriptor is used only by low-level functions when calling the device-driver-level functions.
The low-level function open allocates its own unique file descriptor for the high-level functions
to call the low-level functions. Code that uses only high-level I/O functions need not be aware of
these file descriptors.

DEV_close – Close File for I/O

Syntax

int DEV_close (int dev_fd);

Description This function closes a valid open file descriptor.

On some devices, DEV_close may need to be responsible for checking if this is the last file de-
scriptor pointing to a file that was unlinked. If so, it is responsible for ensuring that the file is
actually removed from the device and the resources reclaimed, if appropriate.

Return Value This function should return -1 to indicate an error if the file descriptor is invalid in
some way, such as being out of range or already closed, but this is not required. The user should
not call close() with an invalid file descriptor.

3.4. Using Run-Time-Support Functions and Building Libraries 277

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

DEV_read – Read Characters from a File

Syntax

int DEV_read (int dev_fd ,
char * buf ,
unsigned count);

Description The read function reads count bytes from the input file associated with dev_fd.

• The dev_fd is the number assigned by open to an opened file.

• The buf is where the read characters are placed.

• The count is the number of characters to read from the file.

Return Value This function must return -1 to indicate an error if for some reason no bytes could
be read from the file. This could be because of an attempt to read from a O_WRONLY file, or for
device-specific reasons.

If count is 0, no bytes are read and this function returns 0.

This function returns the number of bytes read, from 0 to count. 0 indicates that EOF was reached
before any bytes were read. It is not an error to read less than count bytes; this is common if there
are not enough bytes left in the file or the request was larger than an internal device buffer size.

DEV_write – Write Characters to a File

Syntax

int DEV_write (int dev_fd ,
const char * buf ,
unsigned count);

Description This function writes count bytes to the output file.

• The dev_fd is the number assigned by open to an opened file.

• The buffer is where the write characters are placed.

• The count is the number of characters to write to the file.

Return Value This function must return -1 to indicate an error if for some reason no bytes could
be written to the file. This could be because of an attempt to read from a O_RDONLY file, or for
device-specific reasons.

3.4. Using Run-Time-Support Functions and Building Libraries 278

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

DEV_lseek – Set File Position Indicator

Syntax

off_t DEV_lseek (int dev_fd,
off_t offset,
int origin);

Description This function sets the file’s position indicator for this file descriptor as lseek – Set File
Position Indicator.

If lseek is supported, it should not allow a seek to before the beginning of the file, but it should
support seeking past the end of the file. Such seeks do not change the size of the file, but if it is
followed by a write, the file size increases.

Return Value If successful, this function returns the new value of the file position indicator.

This function must return -1 to indicate an error if for some reason no bytes could be written to the
file. For many devices, the lseek operation is nonsensical (e.g. a computer monitor).

DEV_unlink – Delete File

Syntax

int DEV_unlink (const char * path);

Description Remove the association of the pathname with the file. This means that the file may
no longer be opened using this name, but the file may not actually be immediately removed.

Depending on the device, the file may be immediately removed, but for a device that allows open
file descriptors to point to unlinked files, the file is not actually deleted until the last file descriptor
is closed. See Device-Driver Level I/O Functions.

Return Value This function must return -1 to indicate an error if for some reason the file could not
be unlinked (delayed removal does not count as a failure to unlink.)

If successful, this function returns 0.

DEV_rename – Rename File

Syntax

int DEV_rename (const char * old_name,
const char * new_name);

Description This function changes the name associated with the file.

3.4. Using Run-Time-Support Functions and Building Libraries 279

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The old_name is the current name of the file.

• The new_name is the new name for the file.

Return Value This function must return -1 to indicate an error if for some reason the file could not
be renamed, such as the file doesn’t exist, or the new name already exists.

Note: It is inadvisable to allow renaming a file so that it is on a different device. In general this
would require a whole file copy, which may be more expensive than you expect.

If successful, this function returns 0.

Adding a User-Defined Device Driver for C I/O

The function add_device allows you to add and use a device. When a device is registered with
add_device, the high-level I/O routines can be used for I/O on that device.

You can use a different protocol to communicate with any desired device and install that protocol
using add_device; however, the HOST functions should not be modified. The default streams
stdin, stdout, and stderr can be remapped to a file on a user-defined device instead of HOST by
using freopen() as in the following example. If the default streams are reopened in this way, the
buffering mode changes to _IOFBF (fully buffered). To restore the default buffering behavior, call
setvbuf on each reopened file with the appropriate value (_IOLBF for stdin and stdout, _IONBF
for stderr).

The default streams stdin, stdout, and stderr can be mapped to a file on a user-defined device
instead of HOST by using freopen() as shown in the following example. Each function must set up
and maintain its own data structures as needed. Some function definitions perform no action and
should just return.

#include <stdio.h>
#include <file.h>
#include "mydevice.h"

void main()
{

add_device("mydevice", _MSA,
MYDEVICE_open, MYDEVICE_close,
MYDEVICE_read, MYDEVICE_write,
MYDEVICE_lseek, MYDEVICE_unlink, MYDEVICE_

→˓rename);

/*---
→˓------------*/

(continues on next page)

3.4. Using Run-Time-Support Functions and Building Libraries 280

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

/* Re-open stderr as a MYDEVICE file */
/*---

→˓------------*/
if (!freopen("mydevice:stderrfile", "w", stderr))
{

puts("Failed to freopen stderr");
exit(EXIT_FAILURE);

}

/*---
→˓--------*/
/* stderr should not be fully buffered; we want errors to be

→˓seen as */
/* soon as possible. Normally stderr is line-buffered, but this

→˓example */
/* doesn't buffer stderr at all. This means that there will be

→˓one call */
/* to write() for each character in the message. */
/*---

→˓--------*/
if (setvbuf(stderr, NULL, _IONBF, 0))
{

puts("Failed to setvbuf stderr");
exit(EXIT_FAILURE);

}

/*---
→˓--------*/
/* Try it out! */
/*---

→˓--------*/
printf("This goes to stdout\n");
fprintf(stderr, "This goes to stderr\n"); }

Note: Use Unique Function Names The function names open, read, write, close, lseek, rename,
and unlink are used by the low-level routines. Use other names for the device-level functions that
you write.

Use the low-level function add_device() to add your device to the device_table. The device table
is a statically defined array that supports n devices, where n is defined by the macro _NDEVICE
found in stdio.h/cstdio.

3.4. Using Run-Time-Support Functions and Building Libraries 281

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The first entry in the device table is predefined to be the host device on which the debugger is
running. The low-level routine add_device() finds the first empty position in the device table
and initializes the device fields with the passed-in arguments. For a complete description, see
add_device – Add Device to Device Table.

The device Prefix

A file can be opened to a user-defined device driver by using a device prefix in the pathname. The
device prefix is the device name used in the call to add_device followed by a colon. For example:

FILE *fptr = fopen("mydevice:file1", "r");
int fd = open("mydevice:file2, O_RDONLY, 0);

If no device prefix is used, the HOST device is used to open the file.

add_device – Add Device to Device Table

Syntax for C

#include <file.h>

int add_device(
char * name,
unsigned flags,
int (* dopen)(const char *path, unsigned flags, int

→˓llv_fd),
int (* dclose)(int dev_fd),
int (* dread)(int dev_fd, char *buf, unsigned count),
int (* dwrite)(int dev_fd, const char *buf, unsigned

→˓count),
off_t (* dlseek)(int dev_fd, off_t ioffset, int origin),
int (* dunlink)(const char * path),
int (* drename)(const char *old_name, const char *new_

→˓name));

Defined in lowlev.c (in the lib/src subdirectory of the compiler installation)

Description The add_device function adds a device record to the device table allowing that device
to be used for I/O from C. The first entry in the device table is predefined to be the HOST device
on which the debugger is running. The function add_device() finds the first empty position in the
device table and initializes the fields of the structure that represent a device.

To open a stream on a newly added device use fopen() with a string of the format device-
name:filename as the first argument.

3.4. Using Run-Time-Support Functions and Building Libraries 282

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The name is a character string denoting the device name. The name is limited to 8 characters.

• The flags are device characteristics. The defined flags are as follows, and more flags can be
added by defining them in file.h:

– _SSA Denotes that the device supports only one open stream at a time

– _MSA Denotes that the device supports multiple open streams

• The dopen, dclose, dread, dwrite, dlseek, dunlink, and drename specifiers are function point-
ers to the functions in the device driver that are called by the low-level functions to perform
I/O on the specified device. You must declare these functions with the interface specified in
Overview of Low-Level I/O Implementation. The device driver for the HOST that the C29x
debugger is run on are included in the C I/O library.

Return Value The function returns one of the following values:

• 0 if successful

• -1 on failure

Example The following example illustrates adding and using a device for C I/O. It does the fol-
lowing:

• Adds the device mydevice to the device table

• Opens a file named test on that device and associates it with the FILE pointer fid

• Writes the string Hello, world into the file

• Closes the file

#include <file.h>
#include <stdio.h>
/

→˓**/
→˓

/* Declarations of the user-defined device drivers */
/

→˓**/
→˓

extern int MYDEVICE_open(const char *path, unsigned flags, int
→˓fno);
extern int MYDEVICE_close(int fno);
extern int MYDEVICE_read(int fno, char *buffer, unsigned count);
extern int MYDEVICE_write(int fno, const char *buffer, unsigned

→˓count);
extern off_t MYDEVICE_lseek(int fno, off_t offset, int origin);
extern int MYDEVICE_unlink(const char *path);
extern int MYDEVICE_rename(const char *old_name, char *new_name);

(continues on next page)

3.4. Using Run-Time-Support Functions and Building Libraries 283

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

main()
{

FILE *fid;
add_device("mydevice", _MSA, MYDEVICE_open, MYDEVICE_close,

→˓MYDEVICE_read,
MYDEVICE_write, MYDEVICE_lseek, MYDEVICE_unlink,

→˓MYDEVICE_rename);
fid = fopen("mydevice:test","w");
fprintf(fid,"Hello, world\n");
fclose(fid);

}

3.4.3 Handling Reentrancy (_register_lock() and _register_unlock()
Functions)

The C standard assumes only one thread of execution, with the only exception being extremely
narrow support for signal handlers. The issue of reentrancy is avoided by not allowing you to
do much of anything in a signal handler. However, multi-threaded systems, such as systems that
integrate an RTOS, may have multiple threads that need to modify the same global program state,
such as the CIO buffer, so reentrancy is a concern.

Part of the problem of reentrancy remains your responsibility, but the run-time-support environ-
ment does provide rudimentary support for multi-threaded reentrancy by providing support for
critical sections. This implementation does not protect you from reentrancy issues such as calling
run-time-support functions from inside interrupts; this remains your responsibility.

The run-time-support environment provides hooks to install critical section primitives. By default,
a single-threaded model is assumed, and the critical section primitives are not employed. In a
multi-threaded system, the kernel arranges to install semaphore lock primitive functions in these
hooks, which are then called when the run-time-support enters code that needs to be protected by
a critical section.

Throughout the run-time-support environment where a global state is accessed, and thus needs to
be protected with a critical section, there are calls to the function _lock(). This calls the provided
primitive, if installed, and acquires the semaphore before proceeding. Once the critical section is
finished, _unlock() is called to release the semaphore.

Usually a kernel is responsible for creating and installing the primitives, so you do not need to take
any action. However, this mechanism can be used in multi-threaded applications that use other
locking mechanisms.

You should not define the functions _lock() and _unlock() functions directly; instead, the installa-
tion functions are called to instruct the run-time-support environment to use these new primitives:

3.4. Using Run-Time-Support Functions and Building Libraries 284

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

void _register_lock (void (*lock)());

void _register_unlock(void (*unlock)());

The arguments to _register_lock() and _register_unlock() should be functions which take no argu-
ments and return no values, and which implement some sort of global semaphore locking:

extern volatile sig_atomic_t *sema = SHARED_SEMAPHORE_LOCATION;
static int sema_depth = 0;
static void my_lock(void)
{

while (ATOMIC_TEST_AND_SET(sema, MY_UNIQUE_ID) != MY_UNIQUE_
→˓ID);

sema_depth++;
}
static void my_unlock(void)
{

if (!--sema_depth) ATOMIC_CLEAR(sema);
}

The run-time-support nests calls to _lock(), so the primitives must keep track of the nesting level.

3.5 Introduction to Object Modules

The compiler creates object modules from C/C++ code (with assembly code used internally), and
the linker creates executable object files from object modules. These executable object files can be
executed by an C29x device.

Object modules make modular programming easier because they encourage you to think in terms
of blocks of code and data when you create an application. These blocks are known as sections.
The linker provides directives that allow you to create and manipulate sections.

This chapter focuses on the concept and use of sections.

3.5.1 Object File Format Specifications

The object files created by the linker conform to the ELF (Executable and Linking Format) binary
format, which is used by the Embedded Application Binary Interface (EABI).

The ELF object files generated by the linker conform to the December 17, 2003 snapshot of the
System V generic ABI (or gABI). This specification is currently maintained by SCO.

3.5. Introduction to Object Modules 285

http://sco.com/developers/gabi/

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.5.2 Executable Object Files

The linker produces executable object modules. An executable object module has the same format
as object files that are used as linker input. The sections in an executable object module, however,
have been combined and placed in target memory, and the relocations are all resolved.

To run a program, the data in the executable object module must be transferred, or loaded, into
target system memory. See Program Loading and Running for details about loading and running
programs.

3.5.3 Introduction to Sections

The smallest unit of an object file is a section. A section is a block of code or data that occupies
contiguous space in the memory map. Each section of an object file is separate and distinct.

ELF format executable object files contain segments. An ELF segment is a meta-section. It rep-
resents a contiguous region of target memory. It is a collection of sections that have the same
property, such as writeable or readable. An ELF loader needs the segment information, but does
not need the section information. The ELF standard allows the linker to omit ELF section infor-
mation entirely from the executable object file.

Object files usually contain three default sections:

.text section Contains executable code

.data section Usually contains initialized data

.bss Usually reserves space for uninitialized variables

Some targets allow content other than text, such as constants, in .text sections.

The linker allows you to create, name, and link other kinds of sections. The .text, .data, and .bss
sections are archetypes for how sections are handled.

There are two basic types of sections:

• Initialized sections: Contain data or code. The .text and .data sections are initialized.

• Uninitialized sections: Reserve space in the memory map for uninitialized data. The .bss
section is uninitialized.

One of the linker’s functions is to relocate sections into the target system’s memory map; this func-
tion is called placement. Because most systems contain several types of memory, using sections
can help you use target memory more efficiently. All sections are independently relocatable; you
can place any section into any allocated block of target memory. For example, you can define a
section that contains an initialization routine and then allocate the routine in a portion of the mem-
ory map that contains ROM. For information on section placement, see Section Allocation and
Placement.

3.5. Introduction to Object Modules 286

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The figure below shows the relationship between sections in an object file and a hypothetical target
memory. ROM may be EEPROM, FLASH or some other type of physical memory in an actual
system.

Figure 3.16: Sections in Object File and in Memory

Special Section Names

You can use the .sect and .usect directives to create any section name you like, but certain sections
are treated in a special manner by the linker and the compiler’s run-time support library. If you
create a section with the same name as a special section, you should take care to follow the rules
for that special section.

A few common special sections are:

• .text – Used for program code.

• .data – Used for initialized non-const objects (global variables).

• .bss – Used for uninitialized objects (global variables).

• .const – Used for initialized const objects (variables declared const).

• .rodata – Used for initialized const objects (string constants).

• .cinit – Used to initialize C global variables at startup.

• .stack – Used for the function call stack.

• .sysmem – Used for the dynamic memory allocation pool.

For more information on sections, see Section Allocation and Placement.

3.5. Introduction to Object Modules 287

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.5.4 How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that belong in a given
section. The assembler has the following directives that support this function:

• .bss

• .data

• .sect

• .text

• .usect

The .bss and .usect directives create uninitialized sections; the .text, .data, and .sect directives
create initialized sections.

You can create subsections of any section to give you tighter control of the memory map. Sub-
sections are created using the .sect and .usect directives. Subsections are identified with the base
section name and a subsection name separated by a colon; see Subsections.

Note: If you do not use a section directive, the assembler assembles everything into the .text
section.

Uninitialized Sections

Uninitialized sections reserve space in C29x memory; they are usually placed in RAM. These
sections have no actual contents in the object file; they simply reserve memory. A program can use
this space at run time for creating and storing variables.

Uninitialized data areas are built by using the following assembler directives.

• The .bss directive reserves space in the .bss section.

• The .usect directive reserves space in a specific uninitialized user-named section.

Each time you invoke the .bss or .usect directive, the assembler reserves additional space in the
.bss or the user-named section. The syntax is:

.bss symbol,size in bytes[, alignment [, bank offset]]
symbol .usect “section name“,size in bytes[, alignment[, bank offset]]

• symbol points to the first byte reserved by this invocation of the .bss or .usect directive. The
symbol corresponds to the name of the variable for which you are reserving space. It can be
referenced by any other section and can also be declared as a global symbol (with the .global
directive).

3.5. Introduction to Object Modules 288

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• size in bytes is an absolute expression. The .bss directive reserves size in bytes bytes in
the .bss section. The .usect directive reserves size in bytes bytes in section name. For both
directives, you must specify a size; there is no default value.

• alignment is an optional parameter. It specifies the minimum alignment in bytes required by
the space allocated. The default value is byte aligned; this option is represented by the value
1. The value must be a power of 2.

• bank offset is an optional parameter. It ensures that the space allocated to the symbol occurs
on a specific memory bank boundary. The bank offset measures the number of bytes to offset
from the alignment specified before assigning the symbol to that location.

• section name specifies the user-named section in which to reserve space. See User-Named
Sections.

Initialized section directives (.text, .data, and .sect) change which section is considered the current
section (see Current Section). However, the .bss and .usect directives do not change the current
section; they simply escape from the current section temporarily. Immediately after a .bss or
.usect directive, the assembler resumes assembling into whatever the current section was before
the directive. The .bss and .usect directives can appear anywhere in an initialized section without
affecting its contents. For an example, see Using Sections Directives.

The .usect directive can also be used to create uninitialized subsections. See Subsections for more
information on creating subsections.

The .common directive is similar to directives that create uninitialized data sections, except that
common symbols are created by the linker instead.

Initialized Sections

Initialized sections contain executable code or initialized data. The contents of these sections are
stored in the object file and placed in C29x memory when the program is loaded. Each initialized
section is independently relocatable and may reference symbols that are defined in other sections.
The linker automatically resolves these references. The following directives tell the assembler to
place code or data into a section. The syntaxes for these directives are:

.text

.data

.sect “section name“

The .sect directive can also be used to create initialized subsections. See Subsections, for more
information on creating subsections.

3.5. Introduction to Object Modules 289

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

User-Named Sections

User-named sections are sections that you create. You can use them like the default .text, .data, and
.bss sections, but each section with a distinct name is kept distinct during assembly.

For example, repeated use of the .text directive builds up a single .text section in the object file.
This .text section is allocated in memory as a single unit. Suppose there is a portion of executable
code (perhaps an initialization routine) that you want the linker to place in a different location than
the rest of .text. If you assemble this segment of code into a user-named section, it is assembled
separately from .text, and you can use the linker to allocate it into memory separately. You can
also assemble initialized data that is separate from the .data section, and you can reserve space for
uninitialized variables that is separate from the .bss section.

These directives let you create user-named sections:

• The .usect directive creates uninitialized sections that are used like the .bss section. These
sections reserve space in RAM for variables.

• The .sect directive creates initialized sections, like the default .text and .data sections, that
can contain code or data. The .sect directive creates user-named sections with relocatable
addresses.

The syntaxes for these directives are:

symbol .usect “section name“, size in bytes[, alignment[, bank offset]]
.sect “section name“

The maximum number of sections is 232-1 (4294967295).

The section name parameter is the name of the section. For the .usect and .sect directives, a section
name can refer to a subsection; see Subsections for details.

Each time you invoke one of these directives with a new name, you create a new user-named
section. Each time you invoke one of these directives with a name that was already used, the
assembler resumes assembling code or data (or reserves space) into the section with that name.
You cannot use the same names with different directives. That is, you cannot create a section with
the .usect directive and then try to use the same section with .sect.

Current Section

The assembler adds code or data to one section at a time. The section the assembler is currently fill-
ing is the current section. The .text, .data, and .sect directives change which section is considered
the current section. When the assembler encounters one of these directives, it stops assembling
into the current section (acting as an implied end of current section command). The assembler sets
the designated section as the current section and assembles subsequent code into the designated
section until it encounters another .text, .data, or .sect directive.

3.5. Introduction to Object Modules 290

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

If one of these directives sets the current section to a section that already has code or data in it from
earlier in the file, the assembler resumes adding to the end of that section. The assembler generates
only one contiguous section for each given section name. This section is formed by concatenating
all of the code or data which was placed in that section.

Section Program Counters

The assembler maintains a separate program counter for each section. These program counters are
known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data. Initially, the assembler
sets each SPC to 0. As the assembler fills a section with code or data, it increments the appropriate
SPC. If you resume assembling into a section, the assembler remembers the appropriate SPC’s
previous value and continues incrementing the SPC from that value.

The assembler treats each section as if it began at address 0; the linker relocates the symbols in
each section according to the final address of the section in which that symbol is defined. See
Symbolic Relocations for information on relocation.

Subsections

A subsection is created by creating a section with a colon or period in its name. Subsections are
logical subdivisions of larger sections. Subsections are themselves sections and can be manipulated
by the assembler and linker.

The assembler has no internal concept of subsections; to the assembler, a colon or period in the
name is not special. Subsections named .text:rts and .text.rts are different sections and are con-
sidered completely unrelated to the parent section .text. The assembler does not combine such
subsections with their parent sections.

In contrast, the linker recognizes both colons and periods as subsection delimiters. To the linker,
both .text:rts and .text.rts reference the same subsection of the .text section. See Using Multi-Level
Subsections.

Subsections are used to keep parts of a section as distinct sections so that they can be separately
manipulated. For instance, by placing each function and object in a uniquely-named subsection,
the linker gets a finer-grained view of the section for memory placement and unused-function
elimination.

By default, when the linker sees a SECTION directive in the linker command file like “.text”, it
gathers .text and all subsections of .text into one large output section named “.text”. You can instead
use the SECTION directive to control the subsection independently. See SECTIONS Directive
Syntax for an example.

You can create subsections in the same way you create other user-named sections: by using the
.sect or .usect directive.

3.5. Introduction to Object Modules 291

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The syntaxes for a subsection name are:

symbol .usect “section_name:subsection_name“, size in bytes[, alignment[, bank offset]]
.sect “section_name:subsection_name“

A subsection is identified by the base section name followed by a colon or period and the name of
the subsection. The subsection name may not contain any spaces.

A subsection can be allocated separately or grouped with other sections using the same base name.
For example, you create a subsection called _func within the .text section:

.sect ".text:_func"

Using the linker’s SECTIONS directive, you can allocate .text:_func separately, or with all the .text
sections.

You can create two types of subsections:

• Uninitialized subsections are created using the .usect directive. See Uninitialized Sections.

• Initialized subsections are created using the .sect directive. See Initialized Sections.

Subsections are placed in the same manner as sections. See The SECTIONS Directive for informa-
tion on the SECTIONS directive.

Using Sections Directives

The example below shows how you can build sections incrementally, using the sections directives
to swap back and forth between the different sections. You can use sections directives to begin
assembling into a section for the first time, or to continue assembling into a section that already
contains code. In the latter case, the assembler simply appends the new code to the code that is
already in the section.

The format shown below is a listing file. The example shows how the SPCs are modified during
assembly. A line in a listing file has four fields:

Field 1 contains the source code line counter.
Field 2 contains the section program counter.
Field 3 contains the object code.
Field 4 contains the original source statement.

3.5. Introduction to Object Modules 292

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Figure 3.17: Using Sections Directives

As the figure below shows, the file in the example above creates five sections:

.text contains six 32-bit words of object code.

.data contains seven 32-bit words of initialized data.
vec-
tors

is a user-named section created with the .sect directive; it contains two 32-bit words
of initialized data.

.bss reserves ten bytes in memory.
new-
vars

is a user-named section created with the .usect directive; it reserves eight bytes in
memory.

3.5. Introduction to Object Modules 293

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The second column shows the object code that is assembled into these sections; the first column
shows the source statements that generated the object code.

Figure 3.18: Object Code Generated by the Above Assembly Code

3.5.5 How the Linker Handles Sections

The linker has two main functions related to sections. First, the linker uses the sections in object
files as building blocks; it combines input sections to create output sections in an executable out-
put module. Second, the linker chooses memory addresses for the output sections; this is called
placement. Two linker directives support these functions:

• The MEMORY directive allows you to define the memory map of a target system. You can
name portions of memory and specify their starting addresses and their lengths.

• The SECTIONS directive tells the linker how to combine input sections into output sections
and where to place these output sections in memory.

Subsections let you manipulate the placement of sections with greater precision. You can specify
the location of each subsection with the linker’s SECTIONS directive. If you do not specify a
subsection, the subsection is combined with the other sections with the same base section name.
See SECTIONS Directive Syntax.

It is not always necessary to use linker directives. If you do not use them, the linker uses the target
processor’s default placement algorithm described in Default Placement Algorithm. When you do
use linker directives, you must specify them in a linker command file.

3.5. Introduction to Object Modules 294

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Refer to the following sections for more information about linker command files and linker direc-
tives:

• Linker Command Files

• The MEMORY Directive

• The SECTIONS Directive

• Default Placement Algorithm

Combining Input Sections

The following figure provides a simplified example of the process of linking two files together.
Since this is a simplified example, it does not show all the sections that will be created or the
actual sequence of the sections. See Default Placement Algorithm for the actual default memory
placement map for C29x.

Figure 3.19: Combining Input Sections to Form an Executable Object Module

In the above figure, file1.o and file2.o are object files that are used as linker input. Each contains
the .text, .data, and .bss default sections; in addition, each contains a user-named section. The
executable object module shows the combined sections. The linker combines the .text section
from file1.o and the .text section from file2.o to form one .text section, then combines the two
.data sections and the two .bss sections, and finally places the user-named sections at the end. The
memory map shows the combined sections to be placed into memory.

3.5. Introduction to Object Modules 295

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Placing Sections

The previous figure illustrates the linker’s default method for combining sections. Sometimes you
may not want to use the default setup. For example, you may not want all of the .text sections to
be combined into a single .text section. Or you may want a user-named section placed where the
.data section would normally be allocated. Most memory maps contain various types of memory
(RAM, ROM, EEPROM, FLASH, etc.) in varying amounts; you may want to place a section in a
specific type of memory.

For further explanation of section placement within the memory map, see the discussions in The
MEMORY Directive and The SECTIONS Directive. See Default Placement Algorithm for the actual
default memory allocation map for C29x.

3.5.6 Symbols

An object file contains a symbol table that stores information about symbols in the object file. The
linker uses this table when it performs relocation. See Symbolic Relocations.

An object file symbol is a named 32-bit integer value, usually representing an address. A symbol
can represent such things as the starting address of a function, variable, section, or an absolute
integer (such as the size of the stack).

Symbols have a binding, which is similar to the C standard concept of linkage. ELF files may
contain symbols bound as local symbols, global symbols, and weak symbols.

• Global symbols are visible to the entire program. The linker does not allow more than one
global definition of a particular symbol; it issues a multiple-definition error if a global symbol
is defined more than once. A reference to a global symbol from any object file refers to the
one and only allowed global definition of that symbol. (See Global (External) Symbols.)

• Local symbols are visible only within one object file; each object file that uses a symbol
needs its own local definition. References to local symbols in an object file are entirely
unrelated to local symbols of the same name in another object file. By default, a symbol is
local. (See Local Symbols.)

• Weak symbols are symbols that may be used but not defined in the current module. They
may or may not be defined in another module. A weak symbol is intended to be overridden
by a strong (non-weak) global symbol definition of the same name in another object file.
If a strong definition is available, the weak symbol is replaced by the strong symbol. If no
definition is available (that is, if the weak symbol is unresolved), no error is generated, but
the weak variable’s address is considered to be null (0). For this reason, application code that
accesses a weak variable must check that its address is not zero before attempting to access
the variable. (See Weak Symbols.)

Absolute symbols are symbols that have a numeric value. They may be constants. To the linker,
such symbols are unsigned values, but the integer may be treated as signed or unsigned depending

3.5. Introduction to Object Modules 296

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

on how it is used. The range of legal values for an absolute integer is 0 to 2^32-1 for unsigned
treatment and -2^31 to 2^31-1 for signed treatment.

In general, common symbols are preferred over weak symbols.

Global (External) Symbols

Global symbols are symbols that are either accessed in the current module but defined in another
(an external symbol) or defined in the current module and accessed in another. Such symbols are
visible across object modules.

The linker attempts to match all references with corresponding definitions. If the linker cannot find
a symbol’s definition, it prints an error message about the unresolved reference. This type of error
prevents the linker from creating an executable object module.

An error also occurs if the same symbol is defined more than once.

Local Symbols

Local symbols are visible within a single object file. Each object file may have its own local defi-
nition for a particular symbol. References to local symbols in an object file are entirely unrelated
to local symbols of the same name in another object file.

By default, a symbol is local.

Weak Symbols

Weak symbols are symbols that may or may not be defined.

The linker processes symbols that are defined with a “weak” binding differently from symbols that
are defined with global binding. Instead of including a weak symbol in the object file’s symbol
table (as it would for a global symbol), the linker only includes a weak symbol in the output of a
“final” link if the symbol is required to resolve an otherwise unresolved reference.

This allows the linker to minimize the number of symbols it includes in the output file’s symbol
table by omitting those that are not needed to resolve references. Reducing the size of the output
file’s symbol table reduces the time required to link, especially if there are a large number of
pre-loaded symbols to link against.

You can define a weak symbol using the “weak” operator in the linker command file.

• Using the Linker Command File: To define a weak symbol in a linker command file, use
the “weak” operator in an assignment expression to designate that the symbol as eligible for
removal from the output file’s symbol table if it is not referenced. In a linker command file,
an assignment expression outside a MEMORY or SECTIONS directive can be used to define
a weak linker-defined symbol. For example, you can define “ext_addr_sym” as follows.

3.5. Introduction to Object Modules 297

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

weak(ext_addr_sym) = 0x12345678;

If the linker command file is used to perform the final link, then “ext_addr_sym” is
presented to the linker as a weak symbol; it is not included in the resulting output file
if the symbol is not referenced. See Declaring Weak Symbols.

• Using C/C++ code: See weak for information about the weak GCC-style variable attribute.

If there are multiple definitions of the same symbol, the linker uses certain rules to determine which
definition takes precedence. Some definitions may have weak binding and others may have strong
binding. “Strong” in this context means that the symbol has not been given a weak binding as
described above.

The linker uses the following guidelines to determine which definition is used when resolving
references to a symbol:

• A strongly bound symbol always takes precedence over a weakly bound symbol.

• If two symbols are both strongly bound or both weakly bound, a symbol defined in a linker
command file takes precedence over a symbol defined in an input object file.

• If two symbols are both strongly bound and both are defined in an input object file, the linker
provides a symbol redefinition error and halts the link process.

The Symbol Table

Entries with global (external) binding are generated in the symbol table for the beginning of each
section.

Entries with local binding are generated in the symbol table for each locally-available function.

For informational purposes, there are also entries in the symbol table for each symbol in a program.

3.5.7 Symbolic Relocations

The assembler treats each section as if it began at address 0. Of course, all sections cannot actually
begin at address 0 in memory, so the linker must relocate sections. Relocations are symbol-relative
rather than section-relative.

The linker can relocate sections by:

• Allocating them into the memory map so that they begin at the appropriate address as defined
with the linker’s MEMORY directive

• Adjusting symbol values to correspond to the new section addresses

• Adjusting references to relocated symbols to reflect the adjusted symbol values

3.5. Introduction to Object Modules 298

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The linker uses relocation entries to adjust references to symbol values. The assembler creates a
relocation entry each time a relocatable symbol is referenced. The linker then uses these entries
to patch the references after the symbols are relocated. The following example contains a code
fragment for a C29x device for which the assembler generates relocation entries.

Example: Code That Generates Relocation Entries

1
→˓***
2 ** Generating Relocation Entries
→˓**
3
→˓***
4 .ref X
5 .def Y
6 00000000 .text
7 00000000 E0921003 ADDS R1, R2, R3
8 00000004 0A000001 BEQ Y
9 00000008 E1C410BE STRH R1, [R4, #14]
10 0000000c EAFFFFFB! B X ; generates a

→˓relocation entry
11 00000010 E0821003 Y: ADD R1, R2, R3

In this example, both symbols X and Y are relocatable. Y is defined in the .text section of this
module; X is defined in another module. When the code is assembled, X has a value of 0 (the
assembler assumes all undefined external symbols have values of 0), and Y has a value of 16
(relative to address 0 in the .text section). The assembler generates two relocation entries: one
for X and one for Y. The reference to X is an external reference (indicated by the ! character in
the listing). The reference to Y is to an internally defined relocatable symbol (indicated by the ‘
character in the listing).

After the code is linked, suppose that X is relocated to address 0x10014. Suppose also that the .text
section is relocated to begin at address 0x10000; Y now has a relocated value of 0x10010. The
linker uses the relocation entry for the reference to X to patch the branch instruction in the object
code:

EAFFFFFB! B X becomes EA000000

3.5. Introduction to Object Modules 299

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.5.8 Loading a Program

The linker creates an executable object file which can be loaded in several ways, depending on
your execution environment. These methods include using Code Composer Studio. For details,
see Loading.

3.6 Program Loading and Running

Even after a program is written, compiled, and linked into an executable object file, there are still
many tasks that need to be performed before the program does its job. The program must be loaded
onto the target, memory and registers must be initialized, and the program must be set to running.

Some of these tasks need to be built into the program itself. Bootstrapping is the process of a
program performing some of its own initialization. Many of the necessary tasks are handled for
you by the compiler and linker, but if you need more control over these tasks, it helps to understand
how the pieces are expected to fit together.

This chapter introduces you to the concepts involved in program loading, initialization, and startup.

This chapter does not cover dynamic loading.

This chapter currently provides examples for the C6000 device family. Refer to your device docu-
mentation for various device-specific aspects of bootstrapping.

3.6.1 Loading

A program needs to be placed into the target device’s memory before it may be executed. Load-
ing is the process of preparing a program for execution by initializing device memory with the
program’s code and data. A loader might be another program on the device, an external agent
(for example, a debugger), or the device might initialize itself after power-on, which is known as
bootstrap loading, or bootloading.

The loader is responsible for constructing the load image in memory before the program starts. The
load image is the program’s code and data in memory before execution. What exactly constitutes
loading depends on the environment, such as whether an operating system is present. This section
describes several loading schemes for bare-metal devices. This section is not exhaustive.

A program may be loaded in the following ways:

• A debugger running on a connected host workstation. In a typical embedded develop-
ment setup, the device is subordinate to a host running a debugger such as Code Composer
Studio (CCS). The device is connected with a communication channel such as a JTAG inter-
face. CCS reads the program and writes the load image directly to target memory through
the communications interface.

• “Burning” the load image onto an EPROM module.

3.6. Program Loading and Running 300

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Bootstrap loading from a dedicated peripheral, such as an I2C peripheral. The device
may require a small program called a bootloader to perform the loading from the peripheral.

• Another program running on the device. The running program can create the load image
and transfer control to the loaded program. If an operating system is present, it may have the
ability to load and run programs.

Note: Use the c29objcopy utility to assist with program loading. See c29objcopy - Object Copying
and Editing Tool for details.

Load and Run Addresses

Consider an embedded device for which the program’s load image is burned onto EPROM/ROM.
Variable data in the program must be writable, and so must be located in writable memory, typically
RAM. However, RAM is volatile, meaning it will lose its contents when the power goes out. If this
data must have an initial value, that initial value must be stored somewhere else in the load image,
or it would be lost when power is cycled. The initial value must be copied from the non-volatile
ROM to its run-time location in RAM before it is used. See Using Linker-Generated Copy Tables
for ways this is done.

The load address is the location of an object in the load image.

The run address is the location of the object as it exists during program execution.

An object is a chunk of memory. It represents a section, segment, function, or data.

The load and run addresses for an object may be the same. This is commonly the case for program
code and read-only data, such as the .const section. In this case, the program can read the data
directly from the load address. Sections that have no initial value, such as the .bss section, do not
have load data and are considered to have load and run addresses that are the same. If you specify
different load and run addresses for an uninitialized section, the linker provides a warning and
ignores the load address.

The load and run addresses for an object may be different. This is commonly the case for writable
data, such as the .data section. The .data section’s starting contents are placed in ROM and copied
to RAM. This often occurs during program startup, but depending on the needs of the object, it
may be deferred to sometime later in the program as described in Run-Time Relocation.

Symbols in object files almost always refer to the run address. When you look at an address in
the program, you are almost always looking at the run address. The load address is rarely used for
anything but initialization.

The load and run addresses for a section are controlled by the linker command file and are recorded
in the object file metadata.

The load address determines where a loader places the raw data for the section. Any references
to the section (such as references to labels in it) refer to its run address. The application must

3.6. Program Loading and Running 301

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

copy the section from its load address to its run address before the first reference of the symbol is
encountered at run time; this does not happen automatically simply because you specify a separate
run address. For examples that specify load and run addresses, see Specifying Load and Run
Addresses.

For an example that illustrates how to move a block of code at run time, see the example in Refer-
ring to the Load Address by Using the .label Directive. To create a symbol that lets you refer to
the load-time address, rather than the run-time address, see the Referring to the Load Address by
Using the .label Directive. To use copy tables to copy objects from load-space to run-space at boot
time, see Using Linker-Generated Copy Tables.

ELF format executable object files contain segments. See Introduction to Sections for information
about sections and segments.

Bootstrap Loading

The details of bootstrap loading (bootloading) vary a great deal between devices. Not every device
supports every bootloading mode, and using the bootloader is optional. This section discusses
various bootloading schemes to help you understand how they work. Refer to your device’s data
sheet to see which bootloading schemes are available and how to use them.

A typical embedded system uses bootloading to initialize the device. The program code and data
may be stored in ROM or FLASH memory. At power-on, an on-chip bootloader (the primary
bootloader) built into the device hardware starts automatically.

Figure 3.20: Bootloading Sequence (Simplified)

The primary bootloader is typically very small and copies a limited amount of memory from a

3.6. Program Loading and Running 302

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

dedicated location in ROM to a dedicated location in RAM. (Some bootloaders support copying the
program from an I/O peripheral.) After the copy is completed, it transfers control to the program.

For many programs, the primary bootloader is not capable of loading the entire program, so these
programs supply a more capable secondary bootloader. The primary bootloader loads the sec-
ondary bootloader and transfers control to it. Then, the secondary bootloader loads the rest of the
program and transfers control to it. There can be any number of layers of bootloaders, each loading
a more capable bootloader to which it transfers control.

Figure 3.21: Bootloading Sequence with Secondary Bootloader

Boot, Load, and Run Addresses

The boot address of a bootloaded object is where its raw data exists in ROM before power-on.

The boot, load, and run addresses for an object may all be the same; this is commonly the case for
.const data. If they are different, the object’s contents must be copied to the correct location before
the object may be used.

The boot address may be different than the load address. The bootloader is responsible for copying
the raw data to the load address.

The boot address is not controlled by the linker command file or recorded in the object file; it is
strictly a convention shared by the bootloader and the program.

3.6. Program Loading and Running 303

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Primary Bootloader

The detailed operation of the primary bootloader is device-specific. Some devices have complex
capabilities such as booting from an I/O peripheral or configuring memory controller parameters.

Boot Table

The input for the model secondary bootloader is the boot table. The boot table contains records
that instruct the secondary bootloader to copy blocks of data contained in the table to specified
destination addresses.

The boot table is target-specific. For C6000, the format of the boot table is simple. A header record
contains a 4-byte field that indicates where the boot loader should branch after it has completed
copying data. After the header, each section that is to be included in the boot table has the following
contents:

• 4-byte field containing the size of the section

• 4-byte field containing the destination address for the copy

• the raw data

• 0 to 3 bytes of trailing padding to make the next field aligned to 4 bytes

More than one section can be entered; a termination block containing an all-zero 4-byte field
follows the last section.

Bootloader Routine

The bootloader routine is a normal function, except that it executes before the C environment is
set up. For this reason, it can’t use the C stack, and it can’t call any functions that have yet to be
loaded!

The following sample code is for C6000 and is from Creating a Second-Level Bootloader for
FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio (SPRA999).

Example: Sample Secondary Bootloader Routine

; ======== boot_c671x.s62 ========

; global EMIF symbols defined for the c671x family
.include boot_c671x.h62
.sect ".boot_load"
.global _boot

_boot:
(continues on next page)

3.6. Program Loading and Running 304

http://www.ti.com/lit/pdf/SPRA999

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

;
→˓**
;* DEBUG LOOP COMMENT OUT B FOR NORMAL OPERATION
;

→˓**
zero B1
_myloop: ; [!B1] B _myloop

nop 5
_myloopend: nop
;

→˓**
;* CONFIGURE EMIF
;

→˓**
;

→˓**
; *EMIF_GCTL = EMIF_GCTL_V;
;

→˓**
mvkl EMIF_GCTL,A4

|| mvkl EMIF_GCTL_V,B4
mvkh EMIF_GCTL,A4

|| mvkh EMIF_GCTL_V,B4
stw B4,*A4

;
→˓**

; *EMIF_CE0 = EMIF_CE0_V
;

→˓**
mvkl EMIF_CE0,A4

|| mvkl EMIF_CE0_V,B4
mvkh EMIF_CE0,A4

|| mvkh EMIF_CE0_V,B4
stw B4,*A4

;
→˓**

; *EMIF_CE1 = EMIF_CE1_V (setup for 8bit async)
;

→˓**
mvkl EMIF_CE1,A4

|| mvkl EMIF_CE1_V,B4
mvkh EMIF_CE1,A4

(continues on next page)

3.6. Program Loading and Running 305

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

|| mvkh EMIF_CE1_V,B4
stw B4,*A4

;
→˓**

; *EMIF_CE2 = EMIF_CE2_V (setup for 32bit async)
;

→˓**
mvkl EMIF_CE2,A4

|| mvkl EMIF_CE2_V,B4
mvkh EMIF_CE2,A4

|| mvkh EMIF_CE2_V,B4
stw B4,*A4

;
→˓**

; *EMIF_CE3 = EMIF_CE3_V (setup for 32bit async)
;

→˓**
|| mvkl EMIF_CE3,A4
|| mvkl EMIF_CE3_V,B4 ;

mvkh EMIF_CE3,A4
|| mvkh EMIF_CE3_V,B4

stw B4,*A4
;

→˓**
; *EMIF_SDRAMCTL = EMIF_SDRAMCTL_V
;

→˓**
|| mvkl EMIF_SDRAMCTL,A4
|| mvkl EMIF_SDRAMCTL_V,B4 ;

mvkh EMIF_SDRAMCTL,A4
|| mvkh EMIF_SDRAMCTL_V,B4

stw B4,*A4
;

→˓**
; *EMIF_SDRAMTIM = EMIF_SDRAMTIM_V
;

→˓**
|| mvkl EMIF_SDRAMTIM,A4
|| mvkl EMIF_SDRAMTIM_V,B4 ;

mvkh EMIF_SDRAMTIM,A4
|| mvkh EMIF_SDRAMTIM_V,B4

stw B4,*A4

(continues on next page)

3.6. Program Loading and Running 306

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

;
→˓**

; *EMIF_SDRAMEXT = EMIF_SDRAMEXT_V
;

→˓**
|| mvkl EMIF_SDRAMEXT,A4
|| mvkl EMIF_SDRAMEXT_V,B4 ;

mvkh EMIF_SDRAMEXT,A4
|| mvkh EMIF_SDRAMEXT_V,B4

stw B4,*A4
;

→˓**
; copy sections
;

→˓**
mvkl COPY_TABLE, a3 ; load table pointer
mvkh COPY_TABLE, a3
ldw *a3++, b1 ; Load entry point

copy_section_top:
ldw *a3++, b0 ; byte count
ldw *a3++, a4 ; ram start address
nop 3

[!b0] b copy_done ; have we copied all sections?
nop 5

copy_loop:
ldb *a3++,b5
sub b0,1,b0 ; decrement counter

[b0] b copy_loop ; setup branch if not done
[!b0] b copy_section_top

zero a1
[!b0] and 3,a3,a1

stb b5,*a4++
[!b0] and 4,a3,a5 ; round address up to next

→˓multiple of 4
[a1] add 4,a5,a3 ; round address up to next

→˓multiple of 4
;

→˓**
; jump to entry point
;

→˓**
copy_done:

(continues on next page)

3.6. Program Loading and Running 307

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

b .S2 b1
nop 5

3.6.2 Entry Point

The entry point is the address at which the execution of the program begins. This is the address
of the startup routine. The startup routine is responsible for initializing and calling the rest of the
program. For a C/C++ program, the startup routine is usually named _c_int00 (see The _c_int00
Function). After the program is loaded, the value of the entry point is placed in the PC register and
the CPU is allowed to run.

The object file has an entry point field. For a C/C++ program, the linker fills in _c_int00 by default.
You can select a custom entry point; see Define an Entry Point (--entry_point Option). The device
itself cannot read the entry point field from the object file, so it has to be encoded in the program
somewhere.

• If you are using a bootloader, the boot table includes an entry point field. When it finishes
running, the bootloader branches to the entry point.

• If you are using an interrupt vector, the entry point is installed as the RESET interrupt han-
dler. When RESET is applied, the startup routine is invoked.

• If you are using a hosted debugger, such as CCS, the debugger may explicitly set the program
counter (PC) to the value of the entry point.

3.6.3 Run-Time Initialization

After the load image is in place, the program can run. The subsections that follow describe boot-
strap initialization of a C/C++ program.

The _c_int00 Function

The function _c_int00 is the startup routine (also called the boot routine) for C/C++ programs. It
performs all the steps necessary for a C/C++ program to initialize itself.

The name _c_int00 means that it is the interrupt handler for interrupt number 0, RESET, and that
it sets up the C environment. Its name need not be exactly _c_int00, but the linker sets _c_int00
as the entry point for C programs by default. The compiler’s run-time-support library provides a
default implementation of _c_int00.

The startup routine is responsible for performing the following actions:

1. Switch to user mode and sets up the user mode stack

3.6. Program Loading and Running 308

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

2. Set up status and configuration registers

3. Set up the stack

4. Process special binit copy table, if present.

5. Process the run-time initialization table to autoinitialize global variables (when using the
--rom_model option)

6. Call all global constructors

7. Call the function main

8. Call exit when main returns

RAM Model vs. ROM Model

Choose a startup model based on the needs of your application. The ROM model performs more
work during the boot routine. The RAM model performs more work while loading the application.

If your application is likely to need frequent RESETs or is a standalone application, the ROM
model may be a better choice, because the boot routine has all the data it needs to initialize RAM
variables. However, for a system with an operating system, it may be better to use the RAM model.

In the EABI ROM model, the C boot routine copies data from the .cinit section to the run-time
location of the variables to be initialized.

In the EABI RAM model, no .cinit records are generated at startup.

Note that no default startup model is specified to the linker when the c29clang compiler runs the
linker. Therefore, either the --rom_model (-c) or --ram_model (-cr) option must be passed
to the linker on the c29clang command line or in the linker command file. For example:

c29clang -mcpu=c29.c0 hello.c -o hello.out -Wl,-c,-llnk.cmd,-
→˓mhello.map

If neither the -c or -cr option is specified to c29clang when running the linker, the linker expects
an entry point for the linked application to be identified (using the -e=<symbol> linker option).
If -c or -cr is specified, then the linker assumes that the program entry point is _c_int00, which
performs any needed auto-initialization and system setup, then calls the user’s main() function.

3.6. Program Loading and Running 309

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Autoinitializing Variables at Run Time (--rom_model)

Autoinitializing variables at run time is the most common method of autoinitialization. To use this
method, invoke the linker with the --rom_model option.

The ROM model allows initialization data to be stored in slow non-volatile memory and copied to
fast memory each time the program is reset. Use this method if your application runs from code
burned into slow memory or needs to survive a reset.

For the ROM model, the .cinit section is loaded into memory along with all the other initialized
sections. The linker defines a special symbol called __TI_CINIT_Base that points to the beginning
of the initialization tables in memory. When the program begins running, the C boot routine copies
data from the tables (pointed to by .cinit) into the run-time location of the variables.

The following figure illustrates autoinitialization at run time using the ROM model.

Figure 3.22: Autoinitialization at Run Time

Initializing Variables at Load Time (--ram_model)

The RAM model Initializes variables at load time. To use this method, invoke the linker with the
--ram_model option.

This model may reduce boot time and save memory used by the initialization tables.

When you use the --ram_model linker option, the linker sets the STYP_COPY bit in the .cinit
section’s header. This tells the loader not to load the .cinit section into memory. (The .cinit section
occupies no space in the memory map.)

The linker sets __TI_CINIT_Base equal to __TI_CINIT_Limit to indicate there are no .cinit
records.

3.6. Program Loading and Running 310

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The loader copies values directly from the .data section to memory.

The following figure illustrates the initialization of variables at load time.

Figure 3.23: Initialization at Load Time

The --rom_model and --ram_model Linker Options

The following list outlines what happens when you invoke the linker with the --ram_model or
--rom_model option.

• The symbol _c_int00 is defined as the program entry point. The _c_int00 symbol is the
start of the C boot routine in boot.c.o. Referencing _c_int00 ensures that boot.c.o is
automatically linked in from the appropriate run-time-support library.

• If you use the ROM model to autoinitialize at run time (--rom_model option), the linker
defines a special symbol, __TI_CINIT_Base, to point to the beginning of the initialization
tables in memory. When the program begins running, the C boot routine copies data from
the tables (pointed to by .cinit) into the run-time location of the variables.

• If you use the RAM model to initialize at load time (--ram_model option), the linker sets
__TI_CINIT_Base equal to __TI_CINIT_Limit to indicate there are no .cinit records.

3.6. Program Loading and Running 311

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

About Linker-Generated Copy Tables

The RTS function copy_in can be used at run-time to move code and data around, usually from its
load address to its run address. This function reads size and location information from copy tables.
The linker automatically generates several kinds of copy tables. Refer to Using Linker-Generated
Copy Tables.

You can create and control code overlays with copy tables. See Generating Copy Tables With the
table() Operator for details and examples.

Copy tables can be used by the linker to implement run-time relocations as described in Run-Time
Relocation, however copy tables require a specific table format.

BINIT

The BINIT (boot-time initialization) copy table is special in that the target automatically performs
the copying at auto-initialization time. Refer to Boot-Time Copy Tables for more about the BINIT
copy table name. The BINIT copy table is copied before .cinit processing.

CINIT

EABI .cinit tables are special kinds of copy tables. Refer to Autoinitializing Variables at Run
Time (--rom_model) for more about using the .cinit section with the ROM model and Initializing
Variables at Load Time (--ram_model) for more using it with the RAM model.

3.6.4 Arguments to main

Some programs expect arguments to main (argc, argv) to be valid. Normally this isn’t possible
for an embedded program, but the TI runtime does provide a way to do it. The user must allocate
an .args section of an appropriate size using the --args linker option. It is the responsibility of the
loader to populate the .args section. It is not specified how the loader determines which arguments
to pass to the target. The format of the arguments is the same as an array of pointers to char on the
target.

See Allocate Memory for Use by the Loader to Pass Arguments (–arg_size Option) for information
about allocating memory for argument passing.

3.6. Program Loading and Running 312

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.6.5 Run-Time Relocation

At times you may want to load code into one area of memory and move it to another area before
running it. For example, you may have performance-critical code in an external-memory-based
system. The code must be loaded into external memory, but it would run faster in internal mem-
ory. Because internal memory is limited, you might swap in different speed-critical functions at
different times.

The linker provides a way to handle this. Using the SECTIONS directive, you can optionally direct
the linker to allocate a section twice: first to set its load address and again to set its run address.
Use the load keyword for the load address and the run keyword for the run address. See Load
and Run Addresses for more about load and run addresses. If a section is assigned two addresses
at link time, all labels defined in the section are relocated to refer to the run-time address so that
references to the section (such as branches) are correct when the code runs.

If you provide only one allocation (either load or run) for a section, the section is allocated only
once and loads and runs at the same address. If you provide both allocations, the section is actually
allocated as if it were two separate sections. The two sections are the same size if the load section
is not compressed.

Uninitialized sections (such as .bss) are not loaded, so the only significant address is the run ad-
dress. The linker allocates uninitialized sections only once; if you specify both run and load
addresses, the linker warns you and ignores the load address.

For a complete description of run-time relocation, see Placing a Section at Different Load and Run
Addresses.

3.6.6 Additional Information

See the following sections and documents for additional information:

• Allocate Memory for Use by the Loader to Pass Arguments (–arg_size Option)

• Define an Entry Point (--entry_point Option)

• Specifying Load and Run Addresses

• Using Linker-Generated Copy Tables

• Linking for Run-Time Initialization

• Run-Time Initialization

• System Initialization

3.6. Program Loading and Running 313

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.7 Archiver Description

The archiver (c29ar) lets you combine several individual files into a single archive file. For exam-
ple, you can use c29ar to collect a group of object files into an object library. When this library is
specified as part of the link step of an application build, the linker includes members of the object
library that resolve external symbol references during the link.

Since there are several different C29x processor variants supported by the c29clang compiler tools,
it is desirable to have multiple versions of the same object file libraries, each built with different
build options. When several versions of the same library are available, the c29libinfo library
information archiver can be used to create an index library of all the object file library versions.
This index library can be used in the link step in place of a particular version of your object
library. At link time, the linker finds the version of your object library whose build options are
most compatible with the other object files specified as input to the link.

This section of the compiler manual provides details about the usage and available options for the
c29ar and c29libinfo utilities.

Contents:

3.7.1 c29ar - Archiver

The c29ar command can be used to collect several files, such as object files and LLVM bitcode
files, into a single archive library that can be linked into a program. By default, c29ar generates a
symbol table that can be consulted at link-time to aid the linker in determining whether a member
of the archive can be pulled into the link to resolve a reference to an unresolved symbol.

When the c29ar command is used to create an archive of LLVM bitcode files, the archive’s symbol
table will contain both native and bitcode symbols.

Usage

c29ar [-] <operation> [<modifier>] {<relpos>] {<count>] <archive> [<files> . . .]

• <operation> - is an option identifying a single basic operation to be performed on the spec-
ified <archive>.

• <modifier> - is an option that is applicable to the specified <operation> and indicates what
available modifiers are to applied during the specified <operation>.

• <relpos> - indicates position in an existing <archive> where a file is to be moved or inserted.
This argument is only applicable when using the a, b, or i operation-specific <modifier>
arguments.

3.7. Archiver Description 314

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• <count> - identify an instance of a specified file that the specified <operation> applies
to. This argument is only applicable in combination with the d <operation> and the N
<modifier>.

• <archive> - identifies the archive file for c29ar to operate on.

• <files> - optionally identifies a list of one of more files to be considered as input when
operating on the specified <archive> file. if no <files> are specified, this generally refers to
“none” or “all” of the <archive> members being the subject of the specified <operation>.

The minimal set of arguments to the c29ar command includes at least one <operation> and the
name of the <archive> file.

Operations/Modifiers

d[NT]

Delete specified <files> from the <archive>. If a specified file does not appear in the
<archive>, it is simply ignored. If no <files> are specified, then the <archive> is not modi-
fied.

Operation-Specific Modifiers

• N - when there are multiple instances of a specified file in the <archive>, the N <mod-
ifier> can be used to identify which instance of a specified file to delete from the
<archive> via the <count> argument, where a <count> value of 1 indicates the first
instance of the file in the <archive>. If the N <modifier> is not specified, then the
d <operation> removes the first instance of a specified file to be deleted. If the N
<modifier> is used without a <count> argument, then the d <operation> fails.

• T - when the T <modifier> is used, the <archive> that is created or modified as a result
of the <operation> will be thin. By default, this behavior is disabled. In the absence
of the T <modifier>, a newly created archive is always regular, and a modified thin
archive will be converted to regular.

m[abi]

Move <files> from one location in the archive> to another. The specified <files> are moved
to the location indicated by the specified <modifier> options. If no <modifier> options are
specified, then the specified <files> are moved to the end of the <archive>. If no <files>
are specified, then the <archive> is not modified.

Operation-Specific Modifiers

• a - when the a <modifier> is used in combination with the m <operation>, the desti-
nation of the file to be moved is indicated as after the member file identified via the
<relpos> argument. If a <relpos> argument is not specified, then the new file is placed
at the end of the <archive>.

• b - when the b <modifier> is used in combination with the m <operation>, the desti-
nation of the file to be moved is indicated as before the member file identified via the

3.7. Archiver Description 315

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

<relpos> argument. If a <relpos> argument is not specified, then the new file is placed
at the end of the <archive>.

• i - the i <modifier> is a synonym for the b <modifier>.

p[v]

Print specified <files> to the standard output stream. If no <files> are specified, the entire
archive is printed. The p <operation> does not modify the specified <archive>.

Operation-Specific Modifiers

• v - print the name of each file in the list of specified <files> in addition to the files
themselves.

q[LT]

Append specified <files. to the end of the <archive> without removing duplicate files. If no
<files> are specified, then the <archive> is not modified.

The L and T modifiers may come into play when using the q <operation> to append one
archive to another:

• Appending a regular archive to a regular archive appends the archive file. If the L
modifier is specified, the members are appended instead.

• Appending a regular archive to a thin archive requires the T modifier and appends the
archive file. The L modifier is not supported for this use case.

• Appending a thin archive to a regular archive appends the archive file. If the L modifier
is specified, the members are appended instead.

• Appending a thin archive to a thin archive always appends its members.

Operation-Specific Modifiers

• L - when the L <modifier> is used while appending one archive to another, instead of
appending the indicated archive, append that archive’s members.

• T - when the T <modifier> is used, the <archive> that is created or modified as a result
of the <operation> will be thin. By default, this behavior is disabled. In the absence
of the T <modifier>, a newly created archive is always regular, and a modified thin
archive will be converted to regular.

r[abTu]

Replace existing <files> or insert them at the end of the <archive> if they do not exist. If
no <files> are specified, the <archive> is not modified.

Operation-Specific Modifiers

• a - when the a <modifier> is used in combination with the r <operation>, the desti-
nation of the new file is indicated as after the member file identified via the <relpos>
argument. If a <relpos> argument is not specified, then the new file is placed at the
end of the <archive>.

3.7. Archiver Description 316

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• b - when the b <modifier> is used in combination with the r <operation>, the destina-
tion of the new file is indicated as before the member file identified via the <relpos>
argument. If a <relpos> argument is not specified, then the new file is placed at the
end of the <archive>.

• T - when the T <modifier> is used, the <archive> that is created or modified as a result
of the <operation> will be thin. By default, this behavior is disabled. In the absence
of the T <modifier>, a newly created archive is always regular, and a modified thin
archive will be converted to regular.

t[vO]

Print the table of contents for the specified <archive> file. Without any modifiers, this
operation prints the names of the <archive> members to stdout. If any <files> are specified,
the operation only applies for those files that are present in the <archive>. If no <files> are
specified, then c29ar prints the table of contents for the entire <archive>.

Operation-Specific Modifiers

• v - with this modifier applied to the t <operation>, c29ar prints additional information
about the members of the <archive> that the operation applies to (e.g. file type, file
permissions, file size, and timestamp).

• O - with this modifier applied to the t “<operation>, c29ar prints <archive> member
offsets in addition to the names of the <files>.

x[oP]

Extract <archive> members back to <files>. This operation retrieves the specified <files>
from an existing <archive> and writes the contents of those files to the operating system’s
file system. If no <files> are specified, then the entire <archive> is extracted.

Operation-Specific Modifiers

• o - when extracting <files>, use the timestamp of the specified <files> as they exist
in the <archive>. Without this modifier, an extracted file is marked with a timestamp
corresponding to the time of extraction.

Generic Modifiers

The following <modifier> arguments can be applied to any operation:

c

Normally, c29ar prints a warning message indicating that an <archive> is being created if it
doesn’t already exist. Use of the c modifier suppresses this warning.

D

Use zero for timestamps and UIDs/GIDs. This is enabled by default.

3.7. Archiver Description 317

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

P

Use full paths when matching <archive> member names rather than just the file name.

s

Request that a symbol table (or archive index) be added to the <archive>. The symbol table
will contain all externally visible functions and global variables defined by all the members
of the <archive>. This behavior is enabled by default. The s generic modifier can also be
used as an <operation> for an archive that doesn’t already contain a symbol table.

S

Disable generation of the <archive> symbol table.

u

Only update <archive> members with <files> that have more recent timestamps.

U

Use actual timestamps and UIDs/GIDs. This overrides the default D modifier.

Other Options

-h, --help

Print a summary of c29ar usage information to stdout.

V, --version

Display the version of the c29ar executable.

@<file>

Read command-line options and commands from specified <file>.

Examples

• Creating an object file library:

Assuming you have the following object files available in your current working directory:
sin.o, cos.o, and tan.o, you can create an object file library containing those files with the
following command:

%> c29ar rc functions.lib sine.o cos.o tan.o

The r option instructs the archiver to replace or insert the specified object files into the specified
archive file. The c option prevents the archiver from printing a warning when creating the archive
file.

• Listing the contents of a library:

You can then list the contents of functions.lib using the following command:

3.7. Archiver Description 318

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

%> c29ar tv functions.lib
rw-r--r-- 0/0 1648 Dec 31 18:00 1969 sin.o
rw-r--r-- 0/0 1732 Dec 31 18:00 1969 cos.o
rw-r--r-- 0/0 1716 Dec 31 18:00 1969 tan.o

Without the v (verbose) option, the above command simply lists the names of the object files
contained in functions.lib.

• Adding files to a library:

Assuming you have additional object files in your current working directory that you want to add
to the functions.lib object file library, you can do this with the following command:

%> c29ar r functions.lib asin.o acos.o atan.o

Now verify the updated contents of functions.lib:

%> c29ar t functions.lib
sin.o
cos.o
tan.o
asin.o
acos.o
atan.o

• Replacing an existing library member:

Suppose you’ve made some improvements to the sin.c file that was used as the source for the
compiler generated sin.o file. You can then re-compile the updated source file and replace the
previous version of sin.o in the object file library with the new one:

%> c29clang -mcpu=c29.c0 -c sin.c
%> c29ar r functions.lib sin.o

Exit Status

If c29ar execution is successful, it exits with a zero return code. If an error occurs during execution,
c29ar exits with a non-zero return code.

3.7. Archiver Description 319

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.7.2 c29libinfo - Library Information Archiver

The c29libinfo command allows you to collect multiple versions of the same object file library,
each version built with a different set of command-line options, into a single index library file.
This index library file can then be used at link-time as a proxy for the actual object file library.
The linker considers the build options used to create the input object files to a link and find the
matching object file library from among those included in the index library. If successful, the
linker incorporates the matching object file library into the link.

Usage

c29libinfo [<options>] -o = <index_library> <archive1>[, <archive2>, . . .]

• <options> - can be used to modify the default behavior.

• -o= <index_library> - identify the index library file to be created or updated

• <archiveN> - identify a list of one or more object file libraries, each of which is given an
entry in the <index_library> that is created or updated.

Options

-h, --help

Print usage information summary to stdout.

-o=<index_library>, --output=<index_library>

Identify the <index_library> file to be created or updated.

-u, --update

Update existing information in the specified <index_library> file. This option can be used
to replace an existing object file library entry in the index_library> instead of adding what
may be a duplicate.

Example

1 Creating object file libraries

Compiling each version of lib_oper.c and creating an object file library for each con-
taining a single member, lib_oper.o:

As an exploration of how to build up an index library from scratch, consider a simple
example where there is a different version of the source file lib_oper.c for compiling
with either the -mfpu=none option or the -mfpu=f64 option. Each version con-
tains a definition of a global variable, bit_oper, that is initialized differently depending
on the C29x processor option used to compile lib_oper.c.

3.7. Archiver Description 320

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

%> c29clang <build option> -c lib_oper.c
%> c29ar r <object library name> lib_oper.o

results in the following list of libraries:

Target bit_oper
value

<build op-
tion>

<object library
name>

Emulated 64-bit opera-
tions

0 -mfpu=none c29_nofpu_def.a

Native 64-bit operations 1 -mfpu=f64 c29_fpu64_def.a

2 Creating an index library:

An index library called def.a can then be constructed with the following command:

%> c29libinfo -o def.a c29_nofpu_def.a c29_fpu64_def.a

The contents of the def.a index library can then be checked via the following c29ar
command:

%> c29ar t def.a c29_nofpu_def.a.libinfo c29_fpu64_def.a.
→˓libinfo __TI_$$LIBINFO

3 Using an index library in the link step:

A source file, print_bit_oper.c, containing a reference to the global variable bit_oper
can then be linked with the index library def.a.

%> c29clang -mcpu=c29.c0 -mfpu=f64 print_bit_oper.c -o
→˓print_lib.out -Wl,-llnk.cmd,def.a,-mprint_lib.map

At link-time, the linker selects the object file library in def.a that is most compatible
with the object file generated by the compiler for print_bit_oper.c. In the above case,
the linker should pull in the lib_oper.o file from the c29_fpu64_def.a object file library
and the contents of the linker-generated print_lib.map file reveal that this is indeed the
case:

**
C29 Clang Linker Unix v1.2.0

**
>> Linked Fri Mar 15 15:06:50 2024

OUTPUT FILE NAME: <print_lib.out>
ENTRY POINT SYMBOL: "_c_int00" address: 00000e89

(continues on next page)

3.7. Archiver Description 321

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

...

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
-------- ---- ---------- ---------- ----------------
...
.data 0 2000a020 000001d1 UNINITIALIZED

2000a1ec 00000004 c29_fpu64_def.
→˓a : lib_oper.o (.data.bit_oper)
...

If a different -mfpu option had been specified on the above c29clang command line,
then the linker would pull in the lib_oper.o from a different, appropriate, version of
the object file library that matches the specified -mfpu option.

Exit Status

If c29libinfo execution is successful, it exits with a zero return code. If an error occurs during
execution, c29libinfo exits with a non-zero return code.

3.8 Linker Description

The C29x linker creates executable modules by combining object modules. This chapter describes
the linker options, directives, and statements used to create executable modules. Object libraries,
command files, and other key concepts are discussed as well.

The concept of sections is basic to linker operation; see the Introduction to Object Modules section
for a detailed discussion of sections.

Contents:

3.8.1 Linker Overview

The C29x linker, c29lnk, is the proprietary linker provided by Texas Instruments.

This is the same proprietary linker use for the Texas Instruments C28x compiler. Linker commands
files that were created for applications on C28x devices can generally be adapted easily for use on
C29x devices.

3.8. Linker Description 322

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The linker allows you to allocate output sections efficiently in the memory map. As the linker
combines object files, it performs the following tasks:

• Allocates sections into the target system’s configured memory

• Relocates symbols and sections to assign them to final addresses

• Resolves undefined external references between input files

The linker command language controls memory configuration, output section definition, and ad-
dress binding. The language supports expression assignment and evaluation. You configure sys-
tem memory by defining and creating a memory model that you design. Two powerful directives,
MEMORY and SECTIONS, allow you to:

• Allocate sections into specific areas of memory

• Combine object file sections

• Define or redefine global symbols at link time

3.8.2 The Linker’s Role in the Software Development Flow

The following figure illustrates the linker’s role in the software development process. The linker
accepts several types of files as input, including object files, command files, libraries, and partially
linked files. The linker creates an executable object module that can be downloaded to one of
several development tools or executed by an C29x device.

Figure 3.24: Linker’s Role in Development Flow

3.8. Linker Description 323

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.8.3 Invoking the Linker

The default behavior of the c29clang compiler is to compile the specified C and/or C++ source
files into temporary object files and then pass those object files along with any explicitly specified
object files and any specified linker options to the linker.

Alternately, if you specify only object files as input to the c29clang compiler, the compiler passes
those files to the linker along with any specified options that are applicable to the link.

• Compile and Link

• Link-Only Using c29clang

• Passing Options to the Linker

• File and Path Names Containing Special Characters

• Wildcards in File, Section, and Symbol Patterns

• Specifying C/C++ Symbols with Linker Options

Compile and Link

The general syntax for invoking the compiler and linker together is:

c29clang [options] [source file names] [object file names] [-Wl,
→˓<linker options>]

In the following example, assume that the C code in file1.c references a data object that is defined
in an object file named file2.o. The specified c29clang command compiles file1.c into a temporary
object file. That object file, along with file2.o and a linker command file, link_test.cmd, is input
to the linker and linked with applicable object files from the c29clang runtime libraries to create
an executable output file named test.out:

c29clang -mcpu=c29.c0 file1.c file2.o -o test.out -Wl,link_test.
→˓cmd

Note that there is no mention of the c29clang runtime libraries on the c29clang command line
or inside the link_test.cmd linker command file. When the linker is invoked from the c29clang
command line, the c29clang compiler implicitly tells the linker where to find applicable runtime
libraries like the C runtime library (libc.a). In the above c29clang command line, the -Wl, pre-
fix in front of the specification of the link_test.cmd file name indicates to the compiler that the
link_test.cmd file should be input directly into the linker. (You can also use the -Xlinker prefix
for this purpose.)

If you add the verbose (-v) option to the above c29clang command, the output shows exactly how
the linker (c29lnk) was invoked and with what options. For example, this command:

3.8. Linker Description 324

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

c29clang -mcpu=c29.c0 -v file1.c file2.o -o test.out -Wl,link_
→˓test.cmd

shows the following with regards to how c29lnk is invoked by the c29clang compiler:

<install directory>/bin/c29lnk -I<install directory>/lib
-o test.out /tmp/file1-98472f.o file2.o link_test.cmd
--start-group -llibc++.a -llibc++abi.a -llibc.a -llibsys.a
-llibsysbm.a -llibclang_rt.builtins.a -llibclang_rt.profile.a --

→˓end-group

In the above invocation of the linker, the compiler inserts a -I<install directory>/lib option that tells
the linker where to find the c29clang runtime libraries. The compiler also inserts the --start_group/-
-end_group options to specify which runtime libraries are incorporated into the link.

Link-Only Using c29clang

When only object files are specified as input to the c29clang compiler command, the compiler
passes those files to the linker along with any other specified options that are applicable to the link.

c29clang [options] [object file names] [-Wl,<linker options>]

As in the default case of “Compile and Link” described above, a -Wl, or -Xlinker prefix must be
specified in front of options that are intended for the linker. For example, this c29clang command:

c29clang -mcpu=c29.c0 file1.o file2.o -o test.out -Wl,link_test.
→˓cmd

invokes the linker as follows:

<install directory>/bin/c29lnk -I<install directory>/lib
-o test.out file1.o file2.o link_test.cmd
--start-group -llibc++.a -llibc++abi.a -llibc.a -llibsys.a
-llibsysbm.a -llibclang_rt.builtins.a -llibclang_rt.profile.a --

→˓end-group

As in the “Compile and Link” case, the compiler inserts a -I<install directory>/lib option that tells
the linker where to find the c29clang runtime libraries. The compiler also inserts the --start_group/-
-end_group option list that specifies exactly which runtime libraries are incorporated into the link.

3.8. Linker Description 325

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Passing Options to the Linker

The c29clang command line provides the following ways to pass options to the linker:

• The -Wl option passes a comma-separated list of options to the linker.

• The -Xlinker option passes a single option to the linker and can be used multiple times on
the same command line.

• A linker command file can specify options to pass to the linker.

For example, the following command line passes several linker options using the -Wl option:

c29clang -mcpu=c29.c0 hello.c -o a.out -Wl,-stack=0x8000,--ram_
→˓model,link_test.cmd

The following command line passes the same linker options using the -Xlinker option:

c29clang -mcpu=c29.c0 hello.c -o a.out -Xlinker -stack=0x8000 -
→˓Xlinker --ram_model -Xlinker link_test.cmd

The following lines from a linker command file, pass the same linker options to the linker:

/
→˓***/
→˓

/* Example Linker Command File
→˓ */
/

→˓***/
→˓

-stack 0x8000 /* SOFTWARE STACK SIZE
→˓ */
--ram_model /* INITIALIZE VARIABLES AT LOAD

→˓TIME */

File and Path Names Containing Special Characters

A reference to a normal file name, such as file.o in a link command line or in a linker command
file is handled as expected by the linker. You can also specify path information or include special
characters, like hyphens, in a file name specification. In most cases, a file name specification con-
taining path information should be properly interpreted by the linker, but in some cases, especially
when a file name specification contains a special character, like a hyphen, you should enclose the
file name specification in double-quotes to ensure that it is properly interpreted.

Specifically in the case of a hyphen, the reason that a file name specification containing a hy-
phen must be enclosed in double-quotes is because a hyphen can be legitimately interpreted as a

3.8. Linker Description 326

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

subtraction operator.

For example, file or library names containing hyphens referenced in a linker command file without
enclosing double-quotes cause problems at link time:

SECTIONS
{

....

.mytext1 : { lib-with-dashes.lib(.text) } > 0x00010000

.mytext2 : { name-with-dashes.o(.text) } > 0x10000000

...
}

%> c29lnk.cmd -mcpu=c29.c0 name-with-dashes.o -o a.out -Wl,
→˓badlnk.cmd,-ma.map
"badlnk.cmd", line 24: error: cannot find file "lib"
"badlnk.cmd", line 24: error: -l must specify a filename
"badlnk.cmd", line 24: error: cannot find file "with"
"badlnk.cmd", line 24: error: cannot find file "dashes.lib"
"badlnk.cmd", line 25: error: cannot find file "name"
"badlnk.cmd", line 25: error: -l must specify a filename
"badlnk.cmd", line 25: error: cannot find file "with"
"badlnk.cmd", line 25: error: cannot find file "dashes.o"
"badlnk.cmd", line 24: warning: no matching section
"badlnk.cmd", line 25: warning: no matching section
"badlnk.cmd", line 24: warning: no matching section
"badlnk.cmd", line 24: warning: no matching section
"badlnk.cmd", line 25: warning: no matching section
"badlnk.cmd", line 25: warning: no matching section

undefined first referenced
symbol in file
--------- ----------------
my_func name-with-dashes.o

error: unresolved symbols remain
error: errors encountered during linking; "a.out" not built

If the referenced file names are enclosed in double-quotes, the link succeeds:

SECTIONS
{

....
(continues on next page)

3.8. Linker Description 327

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

.mytext1 : { "lib-with-dashes.lib"(.text) } > 0x00010000

.mytext2 : { "name-with-dashes.o"(.text) } > 0x10000000

...
}

%> c29lnk.cmd -mcpu=c29.c0 name-with-dashes.o -o a.out -Wl,
→˓goodlnk.cmd,-ma.map
%> cat a.map
...
SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
-------- ---- ---------- ---------- ----------------
...

.mytext1 0 00010000 00000018
00010000 00000010 lib-with-dashes.lib :

→˓my-func.o (.text.my_func)
00010010 00000008 libc.a : printf.c.obj

→˓(.tramp.printf.1)

.mytext2 0 10000000 0000001c
10000000 00000014 name-with-dashes.o (.

→˓text.main)
10000014 00000008 lib-with-dashes.lib :

→˓my-func.o (.tramp.my_func.1)

It is recommended that if your file name specification contains unusual or special characters that
might not be interpreted by the linker as an obvious part of a file or path name, then you should try
enclosing your file name specification in double-quotes to ensure that it is properly interpreted.

Wildcards in File, Section, and Symbol Patterns

The linker allows file, section, and symbol names to be specified using the asterisk (*) and question
mark (?) wildcards. Using * matches any number of characters. Using ? matches a single character.
Wildcards can make it easier to handle related objects, provided they follow a suitable naming
convention.

For example:

3.8. Linker Description 328

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

mp3*.o /* matches anything .o that begins with mp3 */
task?.o* /* matches task1.o, task2.c.o, taskX.o55, etc. */

SECTIONS
{

.fast_code: { *.o(*fast*) } > FAST_MEM

.vectors : { vectors.c.o(.vector:part1:*) > 0xFFFFFF00

.str_code : { rts*.lib<str*.c.o>(.text) } > S1ROM
}

Specifying C/C++ Symbols with Linker Options

The link-time symbol is the same as the high-level language name.

For more information on symbol names, see c29nm - Name Utility. For information specifically
about C++ symbol naming, see c29dem - C++ Name Demangler Utility. See Using Linker Symbols
in C/C++ Applications for information about referring to linker symbols in C/C++ code.

3.8.4 Linker Options

Linker options control linking operations. They can be placed on the command line or in a com-
mand file. Linker options must be preceded by a hyphen (-). Options can be separated from
arguments (if they have them) by an optional space.

Contents:

Basic Options

The options listed in the subsections below control basic linker behavior. On the c29clang com-
mand line, they should be passed to the linker using the -Wl or -Xlinker option as described in
Passing Options to the Linker.

• Option Summary

• Name an Output Module (--output_file Option)

• Create a Map File (--map_file Option)

• Define Stack Size (--stack_size Option)

• Define Heap Size (--heap_size Option)

3.8. Linker Description 329

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Option Summary

--output_file (-o)

Names the executable output module. The default filename is a.out. See Name an Output
Module (--output_file Option).

--map_file (-m)

Produces a map or listing of the input and output sections, including holes, and places the
listing in filename. See Create a Map File (--map_file Option).

--stack_size (-stack)

Sets C system stack size to size bytes and defines a global symbol that specifies the stack
size. Default = 2K bytes. See Define Stack Size (--stack_size Option).

--heap_size (-heap)

Sets heap size (for the dynamic memory allocation in C) to size bytes and defines a global
symbol that specifies the heap size. Default = 2K bytes. See Define Heap Size (--heap_size
Option).

Name an Output Module (--output_file Option)

The linker creates an output module when no errors are encountered. If you do not specify a
filename for the output module, the linker gives it the default name a.out. If you want to write
the output module to a different file, use the --output_file option. The syntax for the --output_file
option is:

--output_file=filename

The filename is the new output module name.

This example links file1.c.o and file2.c.o and creates an output module named run.out:

c29clang -Wl,--output_file=run.out file1.c.o file2.c.o

Create a Map File (--map_file Option)

The syntax for the --map_file option is:

--map_file=filename

The linker map describes:

• Memory configuration

• Input and output section allocation

• Linker-generated copy tables

3.8. Linker Description 330

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The addresses of external symbols after they have been relocated

• Hidden and localized symbols

The map file contains the name of the output module and the entry point; it can also contain up to
three tables:

• A table showing the new memory configuration if any non-default memory is specified
(memory configuration). This information is generated on the basis of the information in
the MEMORY directive in the linker command file. For more about the MEMORY direc-
tive, see The MEMORY Directive. The table has the following columns;

– Name. This is the name of the memory range specified with the MEMORY directive.

– Origin. This specifies the starting address of a memory range.

– Length. This specifies the length of a memory range.

– Unused. This specifies the total amount of unused (available) memory in that memory
area.

– Attributes. This specifies one to four attributes associated with the named range:

* R specifies that the memory can be read.

* W specifies that the memory can be written to.

* X specifies that the memory can contain executable code.

* I specifies that the memory can be initialized.

• A table showing the linked addresses of each output section and the input sections that make
up the output sections (section placement map). This information is generated on the basis of
the information in the SECTIONS directive in the linker command file. For more about the
SECTIONS directive, see The SECTIONS Directive. This table has the following columns:

– Output section. This is the name of the output section specified with the SECTIONS
directive.

– Origin. The first origin listed for each output section is the starting address of that
output section. The indented origin value is the starting address of that portion of the
output section.

– Length. The first length listed for each output section is the length of that output
section. The indented length value is the length of that portion of the output section.

– Attributes/input sections. This lists the input file or value associated with an output
section. If the input section could not be allocated, the map file indicates this with
“FAILED TO ALLOCATE”.

• A table showing each external symbol and its address sorted by symbol name.

• A table showing each external symbol and its address sorted by symbol address.

The following example links file1.c.o and file2.c.o and creates a map file called map.out:

3.8. Linker Description 331

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

c29clang file1.c.o file2.c.o -Wl,--map_file=a.map

Linker Example shows an example of a map file.

Define Stack Size (--stack_size Option)

The C29x C/C++ compiler uses an uninitialized section, .stack, to allocate space for the run-time
stack. You can set the size of this section in bytes at link time with the --stack_size option. The
syntax for the --stack_size option is:

--stack_size=size

The size must be a constant and is in bytes. This example defines a 4K byte stack:

c29clang -Wl,--stack_size=0x1000 /* defines a 4K heap (.stack
→˓section)*/

If you specified a different stack size in an input section, the input section stack size is ignored.
Any symbols defined in the input section remain valid; only the stack size is different.

When the linker defines the .stack section, it also defines a global symbol, __TI_STACK_SIZE,
and assigns it a value equal to the size of the section. The default software stack size is 2K bytes.
See Using Linker Symbols in C/C++ Applications for information about referring to linker symbols
in C/C++ code.

To debug issues related to the stack size, we recommend using the CCS Stack Usage view to see
the static stack usage of each function in the application. See Stack Usage View in CCS for more
information. Using the Stack Usage View requires that source code be built with debug enabled.
This feature relies on the –call_graph capability provided by the c29ofd - Object File Display
Utility.

Define Heap Size (--heap_size Option)

The C/C++ compiler uses an uninitialized section called .sysmem for the C run-time memory pool
used by malloc(). You can set the size of this memory pool at link time by using the --heap_size
option. The syntax for the --heap_size option is:

--heap_size=size

The size must be a constant. This example defines a 4K byte heap:

c29clang -Wl,--heap_size=0x1000 /* defines a 4k heap (.sysmem
→˓section)*/

The linker creates the .sysmem section only if there is a .sysmem section in an input file.

3.8. Linker Description 332

https://software-dl.ti.com/ccs/esd/documents/ccs_stack_usage_view.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The linker also creates a global symbol, __TI_SYSMEM_SIZE, and assigns it a value equal to the
size of the heap. The default size is 2K bytes. See Using Linker Symbols in C/C++ Applications
for information about referring to linker symbols in C/C++ code.

File Search Path Options

The options listed in the subsections below control how the linker locates files, such as object
libraries. On the c29clang command line they should be passed to the linker using the -Wl or
-Xlinker option as described in Passing Options to the Linker.

• Option Summary

• Alter the Library Search Algorithm (--library, --search_path)

– Name an Alternate Library Directory (--search_path Option)

– Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

• Automatic Library Selection (--disable_auto_rts Option)

Option Summary

--library (-l)

Names an archive library or link command filename as linker input. See Alter the Library
Search Algorithm (--library, --search_path).

--disable_auto_rts

Disables the automatic selection of a run-time-support library. See Automatic Library Selec-
tion (--disable_auto_rts Option).

--priority (-priority)

Satisfies unresolved references by the first library that contains a definition for that symbol.
See Exhaustively Read and Search Libraries (--reread_libs and --priority Options).

--reread_libs (-x)

Forces rereading of libraries, which resolves back references. See Exhaustively Read and
Search Libraries (--reread_libs and --priority Options).

--search_path (-i)

Alters library-search algorithms to look in a directory named with pathname before looking
in the default location. This option must appear before the --library option. See Name an
Alternate Library Directory (--search_path Option).

3.8. Linker Description 333

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Alter the Library Search Algorithm (--library, --search_path)

Usually, when you want to specify a file as linker input, you simply enter the filename; the linker
looks for the file in the current directory. For example, suppose the current directory contains the
library object.lib. If this library defines symbols that are referenced in the file file1.c.o, this is how
you link the files:

c29clang file1.c.o object.lib

If you want to use a file that is not in the current directory, use the --library linker option. The
--library option’s short form is -l. The syntax for this option is:

--library=[pathname] filename

The filename is the name of an archive, an object file, or linker command file. You can specify up
to 128 search paths.

The --library option is not required when one or more members of an object library are specified for
input to an output section. For more information about allocating archive members, see Specifying
Library or Archive Members as Input to Output Sections.

You can adjust the linker’s directory search algorithm using the --search_path linker option. When
the --library option is applied to a file name specification, the linker searches for object files, object
libraries, and linker command files in this order:

1. It searches directories named with the --search_path linker option. The --search_path option
must appear before the --library option on the command line or in a command file.

2. It searches the current directory.

For example, let’s suppose you have an object library named my.lib in the current work directory,
and another version of the library with the same name in a sub-directory called old_libs. We can
choose which version of my.lib is used in a link with the help of the --search_path (-I) and --library
(-l) options.

In the following c29clang command, the my.lib in the current work directory is incorporated in the
link since the reference to my.lib is not prefixed with the --library or -l option:

%> c29clang -mcpu=c29.c0 use_my_lib.c -o a.out -Wl,-I./old_libs,
→˓my.lib,-llnk.cmd

If the -l option is used as a prefix to the reference to my.lib, the linker finds and uses the version of
my.lib from the old_lib directory in the link:

%> c29clang -mcpu=c29.c0 use_my_lib.c -o a.out -Wl,-I./old_libs,-
→˓lmy.lib,-llnk.cmd

3.8. Linker Description 334

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Name an Alternate Library Directory (--search_path Option)

The --search_path option names an alternate directory that contains input files. The --search_path
option’s short form is -I. The syntax for this option is:

--search_path=pathname

The pathname names a directory that contains input files.

When the linker is searching for input files named with the --library option, it searches through
directories named with --search_path first. Each --search_path option specifies only one directory,
but you can have several --search_path options per invocation. When you use the --search_path
option to name an alternate directory, it must precede any --library option used on the command
line or in a command file.

For example, assume that there are two archive libraries called r.lib and lib2.lib that reside in ld
and ld2 directories. The command below shows the directories that r.lib and lib2.lib reside in and
how to use both libraries during a link. (Note that directory paths with forward slashes (/) can be
used on both Unix and Windows c29clang command lines.)

c29clang f1.c.o f2.c.o -Wl,--search_path=/ld,--search_path=/ld2,-
→˓-library=r.lib,--library=lib2.lib

Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

There are two ways to exhaustively search for unresolved symbols:

• Reread libraries if you cannot resolve a symbol reference (--reread_libs).

• Search libraries in the order that they are specified (--priority).

The linker normally reads input files, including archive libraries, only once when they are encoun-
tered on the command line or in the command file. When an archive is read, any members that
resolve references to undefined symbols are included in the link. If an input file later references a
symbol defined in a previously read archive library, the reference is not resolved.

With the --reread_libs option, you can force the linker to reread all libraries. The linker rereads
libraries until no more references can be resolved. Linking using --reread_libs may be slower, so
you should use it only as needed. For example, if a.lib contains a reference to a symbol defined
in b.lib, and b.lib contains a reference to a symbol defined in a.lib, you can resolve the mutual
dependencies by listing one of the libraries twice, as in:

c29clang -Wl,--library=a.lib,--library=b.lib,--library=a.lib

or you can force the linker to do it for you.

The --priority option provides an alternate search mechanism for libraries. Using --priority causes
each unresolved reference to be satisfied by the first library that contains a definition for that

3.8. Linker Description 335

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

symbol. For example:

objfile references A
lib1 defines B
lib2 defines A, B; obj defining A references B

% c29clang objfile lib1 lib2

Under the existing model, objfile resolves its reference to A in lib2, pulling in a reference to B,
which resolves to the B in lib2.

Under --priority, objfile resolves its reference to A in lib2, pulling in a reference to B, but now B
is resolved by searching the libraries in order and resolves B to the first definition it finds, namely
the one in lib1.

The --priority option is useful for libraries that provide overriding definitions for related sets of
functions in other libraries without having to provide a complete version of the whole library.

For example, suppose you want to override versions of malloc and free defined in the libc.a without
providing a full replacement for libc.a. Using --priority and linking your new library before libc.a
guarantees that all references to malloc and free resolve to the new library.

The --priority option supports linking programs with a Runtime Operating System (RTOS) where
situations like the one illustrated above occur.

Automatic Library Selection (--disable_auto_rts Option)

The --disable_auto_rts option disables the automatic selection of a run-time-support (RTS) library.
See Invoking the Compiler for more on the automatic selection process.

Command File Preprocessing Options

The options listed in the subsections below control how the linker preprocesses linker command
files. On the c29clang command line they should be passed to the linker using the -Wl or -Xlinker
option as described in Passing Options to the Linker.

• Option Summary

• Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)

3.8. Linker Description 336

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Option Summary

--define

Predefines name as a preprocessor macro. See Linker Command File Preprocessing (--
disable_pp, --define and --undefine Options).

--undefine

Removes the preprocessor macro name. See Linker Command File Preprocessing (--
disable_pp, --define and --undefine Options).

--disable_pp

Disables preprocessing for command files. See Linker Command File Preprocessing (--
disable_pp, --define and --undefine Options).

--honor_cmdfile_order

Specify the order of output sections according to the order listed in a linker command file.
This also caused other placement constraints, such as placement to a specific memory ad-
dress, to be honored before falling back to command file order.

Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)

The linker preprocesses linker command files using a standard C preprocessor. Therefore, the
command files can contain well-known preprocessing directives such as #define, #include, and #if
/ #endif.

Three linker options control the preprocessor:

• --disable_pp - Disables preprocessing for command files

• --define=name[=val] - Predefines &name* as a preprocessor macro

• --undefine=name - Removes the macro name

The compiler has --define and --undefine options with the same meanings. However, the linker
options are distinct; only --define and --undefine options passed to the linker with -Wl or -Xlinker
affect linker preprocessing. For example:

c29clang --define=FOO=1 main.c -Wl,--define=BAR=2 lnk.cmd

The linker sees only the --define for BAR; the compiler only sees the --define for FOO.

When one command file #includes another, preprocessing context is carried from parent to child
in the usual way (that is, macros defined in the parent are visible in the child). However, when a
command file is invoked other than through #include, either on the command line or by the typical
way of being named in another command file, preprocessing context is not carried into the nested
file. The exception to this is --define and --undefine options, which apply globally from the point
they are encountered. For example:

3.8. Linker Description 337

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--define GLOBAL
#define LOCAL

#include "incfile.cmd" /* sees GLOBAL and LOCAL */
nestfile.cmd /* only sees GLOBAL */

Two cautions apply to the use of --define and --undefine in command files. First, they have global
effect as mentioned above. Second, since they are not actually preprocessing directives themselves,
they are subject to macro substitution, probably with unintended consequences. This effect can be
defeated by quoting the symbol name. For example:

--define MYSYM=123
--undefine MYSYM /* expands to --undefine 123 (!) */
--undefine "MYSYM" /* ahh, that's better */

The linker uses the same search paths to find #include files as it does to find libraries. That is,
#include files are searched in the following places:

1. If the #include file name is in quotes (rather than <brackets>), in the directory of the current
file

2. In the list of directories specified with --search_path options or environment variables (see
Alter the Library Search Algorithm (--library, --search_path)).

There are two exceptions: relative pathnames (such as “../name”) always search the current direc-
tory; and absolute pathnames (such as “/usr/tools/name”) bypass search paths entirely.

The linker provides the built-in macro definitions in the following list. The availability of these
macros within the linker is determined by the command-line options used, not the build attributes of
the files being linked. If these macros are not set as expected, confirm that your project’s command
line uses the correct compiler option settings.

• __DATE__ Expands to the compilation date in the form “mmm dd yyyy”

• __FILE__ Expands to the current source filename

• __TI_COMPILER_VERSION__ Defined to a 7-9 digit integer, depending on if X has 1, 2,
or 3 digits. The number does not contain a decimal. For example, version 3.2.1 is represented
as 3002001. The leading zeros are dropped to prevent the number being interpreted as an
octal.

• __TI_EABI__ Defined to 1 if EABI is enabled; otherwise, it is undefined.

• __TIME__ Expands to the compilation time in the form “hh:mm:ss”

• __C29__ Always defined to 1.

• __c29__ Always defined to 1.

3.8. Linker Description 338

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• __C29_ARCH__ Identifies the C29x architecture version being compiled for. Currently,
always defined to 0.

• __C29_C0__ Defined to 1 if the -mcpu=c29.c0 option was used when compiling.

• __C29_OPTF64__ Defined to 1 if the -mfpu option was set to f64 when compiling.

Diagnostic Options

The options listed in the subsections below control how the linker generates diagnostic messages.
On the c29clang command line they should be passed to the linker using the -Wl or -Xlinker option
as described in Passing Options to the Linker.

• Option Summary

• Control Linker Diagnostics

• Disable Name Demangling (--no_demangle)

• Display a Message When an Undefined Output Section Is Created (--warn_sections)

Option Summary

--diag_error

Categorizes the diagnostic identified by num as an error. See Control Linker Diagnostics.

--diag_remark

Categorizes the diagnostic identified by num as a remark. See Control Linker Diagnostics.

--diag_suppress

Suppresses the diagnostic identified by num. See Control Linker Diagnostics.

--diag_warning

Categorizes the diagnostic identified by num as a warning. See Control Linker Diagnostics.

--display_error_number

Displays a diagnostic’s identifiers along with its text. See Control Linker Diagnostics.

--emit_references:file[=\ *file*]

Emits a file containing section information. The information includes section size, symbols
defined, and references to symbols. See Control Linker Diagnostics.

--emit_warnings_as_errors (-pdew)

Treats warnings as errors. See Control Linker Diagnostics.

3.8. Linker Description 339

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--issue_remarks

Issues remarks (non-serious warnings). See Control Linker Diagnostics.

--no_demangle

Disables demangling of symbol names in diagnostics. See Disable Name Demangling (--
no_demangle).

--no_warnings

Suppresses warning diagnostics (errors are still issued). See Control Linker Diagnostics.

--set_error_limit

Sets the error limit to num. The linker abandons linking after this number of errors. (The
default is 100.) See Control Linker Diagnostics.

--verbose_diagnostics

Provides verbose diagnostics that display the original source with line-wrap. See Control
Linker Diagnostics.

--warn_sections (-w)

Displays a message when an undefined output section is created. See Display a Message
When an Undefined Output Section Is Created (--warn_sections).

Control Linker Diagnostics

The linker honors certain C/C++ compiler options to control linker-generated diagnostics. The
diagnostic options must be specified without passing them directly to the linker with -Wl or -
Xlinker.

--diag_error=num

Categorize the diagnostic identified by num as an error. To find the numeric identifier of a
diagnostic message, use the --display_error_number option first in a separate link. Then use
--diag_error=num to recategorize the diagnostic as an error. You can only alter the severity
of discretionary diagnostics.

--diag_remark=num

Categorize the diagnostic identified by num as a remark. To find the numeric identifier of
a diagnostic message, use the --display_error_number option first in a separate link. Then
use --diag_remark=num to recategorize the diagnostic as a remark. You can only alter the
severity of discretionary diagnostics.

--diag_suppress=num

Suppress the diagnostic identified by num. To find the numeric identifier of a diagnos-
tic message, use the --display_error_number option first in a separate link. Then use --
diag_suppress=num to suppress the diagnostic. You can only suppress discretionary diag-
nostics.

3.8. Linker Description 340

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--diag_warning=num

Categorize the diagnostic identified by num as a warning. To find the numeric identifier of
a diagnostic message, use the --display_error_number option first in a separate link. Then
use --diag_warning=num to recategorize the diagnostic as a warning. You can only alter the
severity of discretionary diagnostics.

--display_error_number

Display a diagnostic message’s numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic suppression options (-
-diag_suppress, --diag_error, --diag_remark, and --diag_warning). This option also indi-
cates whether a diagnostic is discretionary. A discretionary diagnostic is one whose severity
can be overridden. A discretionary diagnostic includes the suffix “-D”; otherwise, no suffix
is present. See Diagnostic Options for more information on controlling diagnostic messages.

--emit_references:file[=filename]

Emits a file containing section information. The information includes section size, symbols
defined, and references to symbols. This information allows you to determine why each sec-
tion is included in the linked application. The output file is a simple ASCII text file. The file-
name is used as the base name of a file created. For example, --emit_references:file=myfile
generates a file named myfile.txt in the current directory.

--emit_warnings_as_errors

Treat all warnings as errors. This option cannot be used with the --no_warnings option. The
--diag_remark option takes precedence over this option. This option takes precedence over
the --diag_warning option.

--issue_remarks

Issue remarks (non-serious warnings), which are suppressed by default.

--no_warnings

Suppress warning diagnostics (errors are still issued).

--set_error_limit=num

Set the error limit to num, which can be any decimal value. The linker abandons linking after
this number of errors. (The default is 100.)

--verbose_diagnostics

Provide verbose diagnostics that display the original source with line-wrap and indicate the
position of the error in the source line.

3.8. Linker Description 341

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Disable Name Demangling (--no_demangle)

By default, the linker uses demangled symbol names in diagnostics. For example:

undefined symbol first referenced in file
ANewClass::getValue() test.cpp.o

The --no_demangle option instead shows the linkname for symbols in diagnostics. For example:

undefined symbol first referenced in file
_ZN9ANewClass8getValueEv test.cpp.o

For information on referencing symbol names, see c29nm - Name Utility. For information specifi-
cally about C++ symbol naming, see c29dem - C++ Name Demangler Utility.

Display a Message When an Undefined Output Section Is Created (--warn_sections)

In a linker command file, you can set up a SECTIONS directive that describes how input sections
are combined into output sections. However, if the linker encounters one or more input sections
that do not have a corresponding output section defined in the SECTIONS directive, the linker
combines the input sections that have the same name into an output section with that name. By
default, the linker does not display a message to tell you that this occurred.

You can use the --warn_sections option to cause the linker to display a message when it creates a
new output section.

For more information about the SECTIONS directive, see The SECTIONS Directive. For more
information about the default actions of the linker, see Default Placement Algorithm.

Linker Output Options

The options listed in the subsections below control how the linker generates output. On the
c29clang command line they should be passed to the linker using the -Wl or -Xlinker option as
described in Passing Options to the Linker.

• Option Summary

• Relocation Capabilities (--absolute_exe and --relocatable Options)

– Producing an Absolute Output Module (--absolute_exe option)

– Producing a Relocatable Output Module (--relocatable option)

– Producing an Executable, Relocatable Output Module (-ar Option)

3.8. Linker Description 342

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Error Correcting Code Testing (--ecc Options)

• Managing Map File Contents (--mapfile_contents Option)

• Generate XML Link Information File (--xml_link_info Option)

• Generate XML Function Hash Table (--gen_xml_func_hash)

Option Summary

--absolute_exe (-a)

Produces an absolute, executable module. This is the default; if neither --absolute_exe nor
--relocatable is specified, the linker acts as if --absolute_exe were specified. See Producing
an Absolute Output Module (--absolute_exe option).

--ecc={ on \| off }

Enable linker-generated Error Correcting Codes (ECC). The default is off. See Error Cor-
recting Code Testing (--ecc Options) and Configuring Error Correcting Code (ECC) with the
Linker.

--ecc:data_error

Inject the specified errors into the output file for testing. See Error Correcting Code Testing
(--ecc Options) and Configuring Error Correcting Code (ECC) with the Linker.

--ecc:ecc_error

Inject the specified errors into the Error Correcting Code (ECC) for testing. See Error Cor-
recting Code Testing (--ecc Options) and Configuring Error Correcting Code (ECC) with the
Linker.

--mapfile_contents

Controls the information that appears in the map file. See Managing Map File Contents
(--mapfile_contents Option).

--relocatable (-r)

Produces a nonexecutable, relocatable output module. See Producing a Relocatable Output
Module (--relocatable option).

--xml_link_info

Generates a well-formed XML file containing detailed information about the result of a link.
See Generate XML Link Information File (--xml_link_info Option).

--gen_xml_func_hash

When the –gen_xml_func_hash linker option is combined with the –xml_link_info linker
option, the linker includes a function hash table in the –xml_link_info output. See Generate
XML Function Hash Table (--gen_xml_func_hash).

3.8. Linker Description 343

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Relocation Capabilities (--absolute_exe and --relocatable Options)

The linker performs relocation, which is the process of adjusting all references to a symbol when
the symbol’s address changes (Symbolic Relocations).

The linker supports two options (--absolute_exe and --relocatable) that allow you to produce an
absolute or a relocatable output module. The linker also supports a third option (-ar) that allows
you to produce an executable, relocatable output module.

When the linker encounters a file that contains no relocation or symbol table information, it issues
a warning message (but continues executing). Relinking an absolute file can be successful only
if each input file contains no information that needs to be relocated (that is, each file has no un-
resolved references and is bound to the same virtual address that it was bound to when the linker
created it).

Producing an Absolute Output Module (--absolute_exe option)

When you use the --absolute_exe option without the --relocatable option, the linker produces an
absolute, executable output module. Absolute files contain no relocation information. Executable
files contain the following:

• Special symbols defined by the linker (see Symbols Automatically Defined by the Linker)

• A header that describes information such as the program entry point

• No unresolved references

The following example links file1.c.o and file2.c.o and creates an absolute output module called
a.out:

c29clang -Wl,--absolute_exe file1.c.o file2.c.o

Note: If you do not use the --absolute_exe or the --relocatable option, the linker acts as if you
specified --absolute_exe.

Producing a Relocatable Output Module (--relocatable option)

When you use the --relocatable option, the linker retains relocation entries in the output module.
If the output module is relocated (at load time) or relinked (by another linker execution), use --
relocatable to retain the relocation entries.

The linker produces a file that is not executable when you use the --relocatable option without the
--absolute_exe option. A file that is not executable does not contain special linker symbols or an

3.8. Linker Description 344

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

optional header. The file can contain unresolved references, but these references do not prevent
creation of an output module.

This example links file1.c.o and file2.c.o and creates a relocatable output module called a.out:

c29clang -Wl,--relocatable file1.c.o file2.c.o

The output file a.out can be relinked with other object files or relocated at load time. (Linking a
file that will be relinked with other files is called partial linking. For more information, see Partial
(Incremental) Linking.)

Producing an Executable, Relocatable Output Module (-ar Option)

If you invoke the linker with both the --absolute_exe and --relocatable options, the linker produces
an executable, relocatable object module. The output file contains the special linker symbols,
an optional header, and all resolved symbol references; however, the relocation information is
retained.

This example links file1.c.o and file2.c.o to create an executable, relocatable output module called
xr.out:

c29clang -Wl,-ar,--output_file=xr.out file1.c.o file2.c.o

Error Correcting Code Testing (--ecc Options)

Error Correcting Codes (ECC) can be generated and placed in separate sections through the linker
command file.

To enable ECC support, include --ecc=on as a linker option on the command line. By default ECC
generation is off, even if the ECC directive and ECC specifiers are used in the linker command file.
This allows you to fully configure ECC in the linker command file while still being able to quickly
turn the code generation on and off via the command line. See Configuring Error Correcting Code
(ECC) with the Linker for details on linker command file syntax to configure ECC support.

ECC uses extra bits to allow errors to be detected and/or corrected by a device. The ECC support
provided by the linker is compatible with the ECC support in TI Flash memory on various TI
devices. TI Flash memory uses a modified Hamming(72,64) code, which uses 8 parity bits for
every 64 bits. Check the documentation for your Flash memory to see if ECC is supported. (ECC
for read-write memory is handled completely in hardware at run time.)

After enabling ECC with the --ecc=on option, you can use the following command-line options
to test ECC by injecting bit errors into the linked executable. These options let you specify an
address where an error should appear and a bitmask of bits in the code/data at that address to flip.
You can specify the address of the error absolutely or as an offset from a symbol. When a data
error is injected, the ECC parity bits for the data are calculated as if the error were not present.

3.8. Linker Description 345

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

This simulates bit errors that might actually occur and tests ECC’s ability to correct different levels
of errors.

The --ecc:data_error option injects errors into the load image at the specified location. The syntax
is:

--ecc:data_error=(symbol+offset|address)[,page],bitmask

The address is the location of the minimum addressable unit where the error is to be injected. A
symbol+offset can be used to specify the location of the error to be injected with a signed offset
from that symbol. The page number is needed to make the location non-ambiguous if the address
occurs on multiple memory pages. The bitmask is a mask of the bits to flip; its width should be the
width of an addressable unit.

For example, the following command line flips the least-significant bit in the byte at the address
0x100, making it inconsistent with the ECC parity bits for that byte:

c29clang test.c -Xlinker --ecc:data_error=0x100,0x01 -Xlinker -
→˓o=test.out

The following command flips two bits in the third byte of the code for main():

c29clang test.c -Xlinker --ecc:data_error=main+2,0x42 -Xlinker -
→˓o=test.out

The --ecc:ecc_error option injects errors into the ECC parity bits that correspond to the specified
location. Note that the ecc_error option can therefore only specify locations inside ECC input
ranges, whereas the data_error option can also specify errors in the ECC output memory ranges.
The syntax is:

--ecc:ecc_error=(symbol+offset|address)[,page],bitmask

The parameters for this option are the same as for --ecc:data_error, except that the bitmask must
be exactly 8 bits. Mirrored copies of the affected ECC byte also contain the same injected error.

An error injected into an ECC byte with --ecc:ecc_error may cause errors to be detected at run
time in any of the 8 data bytes covered by that ECC byte.

For example, the following command flips every bit in the ECC byte that contains the parity infor-
mation for the byte at 0x200:

c29clang test.c -Xlinker --ecc:ecc_error=0x200,0xff -Xlinker -
→˓o=test.out

The linker disallows injecting errors into memory ranges that are neither an ECC range nor the
input range for an ECC range. The compiler can only inject errors into initialized sections.

3.8. Linker Description 346

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Managing Map File Contents (--mapfile_contents Option)

The --mapfile_contents option assists with managing the content of linker-generated map files. The
syntax for the --mapfile_contents option is:

--mapfile_contents=filter[, filter]

When the --map_file option is specified, the linker produces a map file containing information
about memory usage, placement information about sections that were created during a link, details
about linker-generated copy tables, and symbol values.

The --mapfile_contents option provides a mechanism for you to control what information is in-
cluded in or excluded from a map file. When you specify --mapfile_contents=help from the com-
mand line, a help screen listing available filter options is displayed. The following filter options
are available:

Attribute Description Default State
crctables CRC tables On
copytables Copy tables On
entry Entry point On
load_addr Display load addresses Off
memory Memory ranges On
modules Module view On
sections Sections On
sym_defs Defined symbols per file Off
sym_dp Symbols sorted by data page On
sym_name Symbols sorted by name On
sym_runaddr Symbols sorted by run address On
all Enables all attributes

none Disables all attributes

The --mapfile_contents option controls display filter settings by specifying a comma-delimited list
of display attributes. When prefixed with the word no, an attribute is disabled instead of enabled.
For example:

--mapfile_contents=copytables,noentry
--mapfile_contents=all,nocopytables
--mapfile_contents=none,entry

By default, those sections that are currently included in the map file when the --map_file option
is specified are included. The filters specified in the --mapfile_contents options are processed in
the order that they appear in the command line. In the third example above, the first filter, none,
clears all map file content. The second filter, entry, then enables information about entry points to

3.8. Linker Description 347

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

be included in the generated map file. That is, when --mapfile_contents=none,entry is specified,
the map file contains only information about entry points.

The load_addr and sym_defs attributes are both disabled by default.

If you turn on the load_addr filter, the map file includes the load address of symbols that are
included in the symbol list in addition to the run address (if the load address is different from the
run address).

You can use the sym_defs filter to include information sorted on a file by file basis. You may find
it useful to replace the sym_name, sym_dp, and sym_runaddr sections of the map file with the
sym_defs section by specifying the following --mapfile_contents option:

--mapfile_contents=nosym_name,nosym_dp,nosym_runaddr,sym_defs

By default, information about global symbols defined in an application are included in tables sorted
by name, data page, and run address. If you use the --mapfile_contents=sym_defs option, static
variables are also listed.

Generate XML Link Information File (--xml_link_info Option)

The linker supports the generation of an XML link information file through the --xml_link_info=file
option. This option causes the linker to generate a well-formed XML file containing detailed
information about the result of a link. The information included in this file includes all of the
information that is currently produced in a linker generated map file.

See XML Link Information File Description for details about the contents of the XML link infor-
mation file.

Generate XML Function Hash Table (--gen_xml_func_hash)

In the Sitara OpTI-Flash multicore context, the ability to identify common functions across multi-
ple executables is desired in order to allow users to abstract these functions out and place them in
shared memory in order reduce individual executable size. This is also known as “OpTI-SHARE”.
In order to identify common functions in a meaningful way (where function name and size are not
enough), the c29clang linker can generate an MD5 hash based on the function’s raw data prior to
relocation and emit it within a table of function symbols in the linker-generated XML link info file.

The linker also generates a list of referenced data sections from each global function uniquely
identified by their object component IDs. Common read-only data sections can also be allocated in
shared memory. However, writes to read-write data sections from common code must be managed
through hardware address translation available on the device (aka “RAT”). These referenced data
section lists can also be used in conjunction with “Smart Placement” where fast data access from
frequently executed functions is desired.

3.8. Linker Description 348

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

When linking an application, the aforementioned table and referenced section lists are gener-
ated when the -–xml_link_info option is used in conjunction with --gen_xml_func_hash. The –-
xml_link_info option can be given a specified file name to use for the output.

The generated table is designated by a func_symbol_table XML tag, with each global func-
tion represented by a symbol tag. The associated MD5 hash is indicated by a value tag and the
referenced data section lists indicated in refd_ro_sections and refd_rw_sections tags
for read-only (constant) data and read-write data, respectively. For example:

<func_symbol_table>
<symbol>

<name>func0</name>
<sectname>.text.main</sectname>
<value>b6e5b51736000aef4da6e8afb91846e4</value>

</symbol>
<symbol>

<name>func1</name>
<sectname>.text.foo</sectname>
<value>b1b9d95dd364df1b53f4e8c571ddaf68</value>

</symbol>
<symbol>

<name>func2</name>
<refd_ro_sections>
<object_component_ref idref="oc-92"/>
<object_component_ref idref="oc-99"/>

</refd_ro_sections>
<refd_rw_sections>
<object_component_ref idref="oc-94"/>
<object_component_ref idref="oc-96"/>
<object_component_ref idref="oc-97"/>
<object_component_ref idref="oc-98"/>

</refd_rw_sections>
</symbol>

</func_symbol_table>

See XML Link Information File Description for details about the contents of the XML link infor-
mation file.

3.8. Linker Description 349

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Symbol Management Options

The options listed in the subsections below control how the linker manages symbols. On the
c29clang command line, they should be passed to the linker using the -Wl or -Xlinker option as
described in Passing Options to the Linker.

• Option Summary

• Define an Entry Point (--entry_point Option)

• Change Symbol Localization (--globalize and --localize options)

• Make All Global Symbols Static (--make_static Option)

• Hiding Symbols (--hide and --unhide options)

• Disable Merging of Symbolic Debugging Information (--no_sym_merge Option)

• Strip Symbolic Information (--no_symtable Option)

• Retain Discarded Sections (--retain Option)

• Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries Option)

• Mapping of Symbols (--symbol_map Option)

• Introduce an Unresolved Symbol (--undef_sym Option)

Option Summary

--entry_point (-e)

Defines a global symbol that specifies the primary entry point for the output module. See
Define an Entry Point (--entry_point Option).

--globalize

Changes the symbol linkage to global for symbols that match pattern. See Hiding Symbols
(--hide and --unhide options).

--hide

Hides global symbols that match pattern. See Hiding Symbols (--hide and --unhide options).

--localize

Changes the symbol linkage to local for symbols that match pattern. See Change Symbol
Localization (--globalize and --localize options).

--make_global (-g)

Makes symbol global (overrides -h). See Make All Global Symbols Static (--make_static
Option).

3.8. Linker Description 350

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--make_static (-h)

Makes all global symbols static. See Make All Global Symbols Static (--make_static Option).

--no_sym_merge (-s)

Disables merging of symbolic debugging information. See Disable Merging of Symbolic
Debugging Information (--no_sym_merge Option).

--no_symtable (-s)

Strips symbol table information and line number entries from the output module. See Strip
Symbolic Information (--no_symtable Option).

--retain

Retains a list of sections that otherwise would be discarded. See Retain Discarded Sections
(--retain Option).

--scan_libraries (-scanlibs)

Scans all libraries for duplicate symbol definitions. See Scan All Libraries for Duplicate
Symbol Definitions (--scan_libraries Option).

--symbol_map

Maps symbol references to a symbol definition of a different name. See Mapping of Symbols
(--symbol_map Option).

--undef_sym (-u)

Places an unresolved external symbol into the output module’s symbol table. See Introduce
an Unresolved Symbol (--undef_sym Option).

--unhide

Reveals (un-hides) global symbols that match pattern. See Hiding Symbols (--hide and --
unhide options).

Define an Entry Point (--entry_point Option)

The memory address at which a program begins executing is called the entry point. When a loader
loads a program into target memory, the program counter (PC) must be initialized to the entry
point; the PC then points to the beginning of the program.

The linker can assign one of four values to the entry point. These values are listed below in the
order in which the linker tries to use them. If you use one of the first three values, it must be an
external symbol in the symbol table.

• The value specified by the --entry_point option. The syntax is --entry_point=global_symbol
where global_symbol defines the entry point and must be defined as an external symbol of
the input files. The external symbol name of C or C++ objects may be different than the
name as declared in the source language. See Entry Point.

3.8. Linker Description 351

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The value of symbol _c_int00 (if present). The _c_int00 symbol must be the entry point if
you are linking code produced by the C compiler.

• The value of symbol _main (if present)

• 0 (default value)

This example links file1.c.o and file2.c.o. The symbol begin is the entry point; begin must be
defined as external in file1 or file2.

c29clang -Wl,--entry_point=begin file1.c.o file2.c.o

See Using Linker Symbols in C/C++ Applications for information about referring to linker symbols
in C/C++ code.

Change Symbol Localization (--globalize and --localize options)

Symbol localization changes symbol linkage from global to local (static). This is used to obscure
global symbols that should not be widely visible, but must be global because they are accessed by
several modules in the library. The linker supports symbol localization through the --localize and
--globalize linker options.

The syntax for these options are:

--localize='pattern'

--globalize='pattern'

The pattern is a “glob” (a string with optional ? or * wildcards). Use ? to match a single character.
Use * to match zero or more characters.

The --localize option changes the symbol linkage to local for symbols matching the pattern.

The --globalize option changes the symbol linkage to global for symbols matching the pattern. The
--globalize option only affects symbols that are localized by the --localize option. The --globalize
option excludes symbols that match the pattern from symbol localization, provided the pattern
defined by --globalize is more restrictive than the pattern defined by --localize.

See Specifying C/C++ Symbols with Linker Options for information about using C/C++ identifiers
in linker options such as --localize and --globalize.

These options have the following properties:

• The --localize and --globalize options can be specified more than once on the command line.

• The order of --localize and --globalize options has no significance.

• A symbol is matched by only one pattern defined by either --localize or --globalize.

• A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive
than Pattern B, if Pattern A matches a narrower set than Pattern B.

3.8. Linker Description 352

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• It is an error if a symbol matches patterns from --localize and --globalize and if one does
not supersede other. Pattern A supersedes pattern B if A can match everything B can, and
some more. If Pattern A supersedes Pattern B, then Pattern B is said to more restrictive than
Pattern A.

• These options affect final and partial linking.

In map files these symbols are listed under the Localized Symbols heading.

Make All Global Symbols Static (--make_static Option)

The --make_static option makes all global symbols static. Static symbols are not visible to ex-
ternally linked modules. By making global symbols static, global symbols are essentially hidden.
This allows external symbols with the same name (in different files) to be treated as unique.

The --make_static option effectively causes all symbols to become local to the module in which
they are defined, so no external references are possible. For example, assume file1.c.o and file2.c.o
both define global symbols called EXT. By using the --make_static option, you can link these files
without conflict. The symbol EXT defined in file1.c.o is treated separately from the symbol EXT
defined in file2.c.o.

c29clang -Wl,--make_static file1.c.o file2.c.o

The --make_static option makes all global symbols static. If you have a symbol that you want to
remain global and you use the --make_static option, you can use the --make_global option to de-
clare that symbol to be global. The --make_global option overrides the effect of the --make_static
option for the symbol that you specify. The syntax for the --make_global option is:

--make_global=global_symbol

Hiding Symbols (--hide and --unhide options)

Symbol hiding prevents the symbol from being listed in the output file’s symbol table. While
localization is used to prevent name space clashes in a link unit (see Change Symbol Localization
(--globalize and --localize options)), symbol hiding is used to obscure symbols that should not be
visible outside a link unit. Such symbol names appear only as empty strings or “no name” in object
file readers. The linker supports symbol hiding through the --hide and --unhide options.

The syntax for these options are:

--hide='pattern'

--unhide='pattern'

The pattern is a “glob” (a string with optional ? or * wildcards). Use ? to match a single character.
Use * to match zero or more characters.

3.8. Linker Description 353

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The --hide option hides global symbols with a linkname matching the pattern. It hides symbols
matching the pattern by changing the name to an empty string. A global symbol that is hidden is
also localized.

The --unhide option reveals (un-hides) global symbols that match the pattern that are hidden by
the --hide option. The --unhide option excludes symbols that match pattern from symbol hiding
provided the pattern defined by --unhide is more restrictive than the pattern defined by --hide.

These options have the following properties:

• The --hide and --unhide options can be specified more than once on the command line.

• The order of --hide and --unhide has no significance.

• A symbol is matched by only one pattern defined by either --hide or --unhide.

• A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive
than Pattern B, if Pattern A matches a narrower set than Pattern B.

• It is an error if a symbol matches patterns from --hide and --unhide and one does not super-
sede the other. Pattern A supersedes pattern B if A can match everything B can and more. If
Pattern A supersedes Pattern B, then Pattern B is said to more restrictive than Pattern A.

• These options affect final and partial linking.

In map files these symbols are listed under the Hidden Symbols heading.

Disable Merging of Symbolic Debugging Information (--no_sym_merge Option)

By default, the linker eliminates duplicate entries of symbolic debugging information. Such du-
plicate information is commonly generated when a C program is compiled for debugging. For
example:

-[header.h]-
typedef struct
{

<define some structure members>
} XYZ;

-[f1.c]-
#include "header.h"
...

-[f2.c]-
#include "header.h"
...

3.8. Linker Description 354

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

When these files are compiled for debugging, both f1.c.o and f2.c.o have symbolic debugging
entries to describe type XYZ. For the final output file, only one set of these entries is necessary.
The linker eliminates the duplicate entries automatically.

Strip Symbolic Information (--no_symtable Option)

The --no_symtable option creates a smaller output module by omitting symbol table information
and line number entries. The --no_symtable option is useful for production applications when you
do not want to disclose symbolic information to the consumer.

This example links file1.c.o and file2.c.o and creates an output module, stripped of line numbers
and symbol table information, named nosym.out:

c29clang -Wl,--output_file=nosym.out,--no_symtable file1.c.o
→˓file2.c.o

Using the --no_symtable option limits later use of a symbolic debugger.

Note: Stripping Symbolic Information The --no_symtable option is deprecated. To remove
symbol table information, use the c29strip utility as described in c29strip - Object File Stripping
Tool.

Retain Discarded Sections (--retain Option)

When --unused_section_elimination is on, the ELF linker does not include a section in the final
link if it is not needed in the executable to resolve references. The --retain option tells the linker to
retain a list of sections that would otherwise not be retained. This option accepts the wildcards *
and ?. When wildcards are used, the argument should be in quotes. The syntax for this option is:

--retain=sym_or_scn_spec

The --retain option takes one of the following forms:

--retain=symbol_spec

Specifying the symbol format retains sections that define symbol_spec. For example, this
code retains sections that define symbols that start with init:

--retain="init*"

You cannot specify --retain=”*”.

--retain=file_spec(scn_spec[, scn_spec, ...])

3.8. Linker Description 355

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Specifying the file format retains sections that match one or more scn_spec from files
matching the file_spec. For example, this code retains .intvec sections from all input
files:

--retain="*(.int*)"

You can specify --retain=”*(*)” to retain all sections from all input files. However,
this does not prevent sections from library members from being optimized out.

--retain=ar_spec<mem_spec, [mem_spec, ...>(scn_spec[, scn_spec, .
..])

Specifying the archive format retains sections matching one or more scn_spec from members
matching one or more mem_spec from archive files matching ar_spec. For example, this
code retains the .text sections from printf.c.o in the libc.a library:

--retain=-llibc.a<printf.c.o>(.text)

If the library is specified with the --library or -l option (-llibc.a) the library search path
is used to search for the library.

Note: Using “*<*>(scn_spec)” or “*<*>(*)” as the argument to --retain will be ignored

You cannot specify “*<*>(scn_spec)” or “*<*>(*)” as the argument to a --retain option. Either
of these arguments are detected and ignored with a warning diagnostic by the linker. If allowed, the
linker would try to scan all object file members of all libraries referenced in the linker invocation,
including any that are mentioned in linker command files that are referenced. This would also
include all C++, C, and compiler runtime libraries that are implicitly referenced from the c29clang
command line during a link.

Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries Option)

The --scan_libraries option scans all libraries during a link looking for duplicate symbol defini-
tions to those symbols that are actually included in the link. The scan does not consider absolute
symbols or symbols defined in COMDAT sections. The --scan_libraries option helps determine
those symbols that were actually chosen by the linker over other existing definitions of the same
symbol in a library.

The library scanning feature can be used to check against unintended resolution of a symbol refer-
ence to a definition when multiple definitions are available in the libraries.

3.8. Linker Description 356

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Mapping of Symbols (--symbol_map Option)

Symbol mapping allows a symbol reference to be resolved by a symbol with a different name.
Symbol mapping allows functions to be overridden with alternate definitions. This feature can be
used to patch in alternate implementations, which provide patches (bug fixes) or alternate func-
tionality. The syntax for the --symbol_map option is:

--symbol_map=refname=defname

For example, the following code makes the linker resolve any references to foo by the definition
foo_patch:

--symbol_map=foo=foo_patch

The string passed with the --symbol_map option should contain no spaces and not be surrounded
by quotes. This allows the same linker option syntax to work on the command line, in a linker
command file, and in an options file.

Introduce an Unresolved Symbol (--undef_sym Option)

The --undef_sym option introduces the linkname for an unresolved symbol into the linker’s symbol
table. This forces the linker to search a library and include the member that defines the symbol.
The linker must encounter the --undef_sym option before it links in the member that defines the
symbol. The syntax for the --undef_sym option is:

--undef_sym=symbol

For example, suppose a library named rtsv4_A_be_eabi.lib contains a member that defines the
symbol symtab; none of the object files being linked reference symtab. However, suppose you plan
to relink the output module and you want to include the library member that defines symtab in this
link. Using the --undef_sym option as shown below forces the linker to search rtsv4_A_be_eabi.lib
for the member that defines symtab and to link in the member.

c29clang -Wl,--undef_sym=symtab file1.c.o file2.c.o rtsv4_A_be_
→˓eabi.lib

If you do not use --undef_sym, this member is not included, because there is no explicit reference
to it in file1.c.o or file2.c.o.

3.8. Linker Description 357

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Run-Time Environment Options

The options listed in the subsections below control how the linker manages the run-time environ-
ment. See Linking for Run-Time Initialization for more about the run-time environment.

On the c29clang command line they should be passed to the linker using the -Wl or -Xlinker option
as described in Passing Options to the Linker.

• Option Summary

• Allocate Memory for Use by the Loader to Pass Arguments (–arg_size Option)

• Set Default Fill Value (--fill_value Option)

• C Language Options (--ram_model and --rom_model Options)

Option Summary

--arg_size (--args)

Allocates memory to be used by the loader to pass arguments. See Allocate Memory for Use
by the Loader to Pass Arguments (–arg_size Option).

--cinit_hold_wdt={on|off}

Hold (on) or do not hold (off) watchdog timer during cinit auto-initialization. See Initializa-
tion of Cinit and Watchdog Timer Hold.

--fill_value (-f)

Sets default fill values for holes within output sections; fill_value is a 32-bit constant. See
Set Default Fill Value (--fill_value Option).

--ram_model (-cr)

Initializes variables at load time. See C Language Options (--ram_model and --rom_model
Options).

--rom_model (-c)

Autoinitializes variables at run time. See C Language Options (--ram_model and --
rom_model Options).

3.8. Linker Description 358

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Allocate Memory for Use by the Loader to Pass Arguments (–arg_size Option)

The --arg_size option instructs the linker to allocate memory to be used by the loader to pass
arguments from the command line of the loader to the program. The syntax of the --arg_size
option is:

--arg_size = size

The size is the number of bytes to be allocated in target memory for command-line options.

By default, the linker creates the __c_args__ symbol and sets it to -1. When you specify --arg_size
= size, the following occur:

• The linker creates an uninitialized section named .args of size bytes.

• The __c_args__ symbol contains the address of the .args section.

The loader and the target boot code use the .args section and the __c_args__ symbol to determine
whether and how to pass arguments from the host to the target program. See Arguments to main
for more information.

Set Default Fill Value (--fill_value Option)

The --fill_value option fills the holes formed within output sections. The syntax for the option is:

--fill_value=value

The argument value is a 32-bit constant (up to eight hexadecimal digits). If you do not use --
fill_value, the linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCDABCD:

c29clang -Wl,--fill_value=0xABCDABCD file1.c.o file2.c.o

C Language Options (--ram_model and --rom_model Options)

The --ram_model and --rom_model options cause the linker to use linking conventions that are
required by the C compiler. Both options inform the linker that the program is a C program and
requires a boot routine.

• The --ram_model option tells the linker to initialize variables at load time.

• The --rom_model option tells the linker to autoinitialize variables at run time.

No default startup model is specified to the linker when the c29clang compiler runs the linker.
Therefore, either the --rom_model (-c) or --ram_model (-cr) option must be passed to
the linker on the c29clang command line using the -Wl or -Xlinker option or in the linker
command file. For example:

3.8. Linker Description 359

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

c29clang -mcpu=c29.c0 hello.c -o hello.out -Wl,-c,-llnk.cmd,-
→˓mhello.map

If neither the -c or -cr option is specified to c29clang when running the linker, the linker expects
an entry point for the linked application to be identified (using the -e=<symbol> linker option).
If -c or -cr is specified, then the linker assumes that the program entry point is _c_int00, which
performs any needed auto-initialization and system setup, then calls the user’s main() function.

For more information, see Linking C/C++ Code, Autoinitializing Variables at Run Time (--
rom_model), and Initializing Variables at Load Time (--ram_model).

Link-Time Compression and Specialization Options

The options listed in the subsections below control how the linker handles optimization. On the
c29clang command line they should be passed to the linker using the -Wl or -Xlinker option as
described in Passing Options to the Linker.

• Option Summary

• Compression (--cinit_compression and --copy_compression Option)

• Compress DWARF Information (--compress_dwarf Option)

• RTS Optimization (--use_memcpy and --use_memset Options)

• Printf Support Optimization (no option)

• Do Not Remove Unused Sections (--unused_section_elimination Option)

Option Summary

--cinit_compression [=compression_kind]

Specifies the type of compression to apply to the C auto initialization data. The default if
this option is used with no kind specified is lzss for Lempel-Ziv-Storer-Szymanski compres-
sion. Alternately, specify --cinit_compression=rle to use Run Length Encoded compression,
which generally provides less efficient compression. See Compression (--cinit_compression
and --copy_compression Option).

--compress_dwarf

Aggressively reduces the size of DWARF information from input object files. See Compress
DWARF Information (--compress_dwarf Option).

--copy_compression [=compression_kind]

Compresses data copied by linker copy tables. See Compression (--cinit_compression and
--copy_compression Option).

3.8. Linker Description 360

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--use_memcpy [=small | fast]

Select the optimization goal for the RTS memcpy() function. See RTS Optimization (--
use_memcpy and --use_memset Options).

--use_memset [=small | fast]

Select the optimization goal for the RTS memset() function. See RTS Optimization (--
use_memcpy and --use_memset Options).

--unused_section_elimination

Eliminates sections that are not needed in the executable module; on by default. See Do Not
Remove Unused Sections (--unused_section_elimination Option).

In addition, the version of the C RTS printf function used is optimized at link-time based on the
format strings used in the application. See Printf Support Optimization (no option).

Compression (--cinit_compression and --copy_compression Option)

By default, the linker does not compress copy table (About Linker-Generated Copy Tables and
Using Linker-Generated Copy Tables) source data sections. The --cinit_compression and --
copy_compression options specify compression through the linker.

The --cinit_compression option specifies the compression type the linker applies to the C autoini-
tialization copy table source data sections. The default is lzss.

Overlays can be managed by using linker-generated copy tables. To save ROM space the linker
can compress the data copied by the copy tables. The compressed data is decompressed during
copy. The --copy_compression option controls the compression of the copy data tables.

The syntax for the options are:

--cinit_compression[=compression_kind]

--copy_compression[=compression_kind]

The compression_kind can be one of the following types:

• off. Don’t compress the data.

• rle. Compress data using Run Length Encoding.

• lzss. Compress data using Lempel-Ziv-Storer-Szymanski compression(the default if no com-
pression_kind is specified).

Compressed sections within initialization tables are byte aligned in order to reduce the occurrence
of holes in the .cinit table.

See Compression for more information about compression.

3.8. Linker Description 361

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Compress DWARF Information (--compress_dwarf Option)

The --compress_dwarf option aggressively reduces the size of DWARF information by eliminating
duplicate information from input object files.

For ELF object files, which are used with EABI, the --compress_dwarf option eliminates duplicate
information that could not be removed through the use of ELF COMDAT groups. (See the ELF
specification for information on COMDAT groups.)

RTS Optimization (--use_memcpy and --use_memset Options)

There are two versions of the memcpy and memset functions available in the C RTS library. One
version is designed for efficient performance in terms of speed. The other version is much smaller
than the first, but slower in comparison, especially if large blocks of data are to be handled by the
memcpy or memset functions. The linker chooses one of these two versions of the C RTS memcpy
and memset functions according to the optimization goals of the application.

The c29clang command line influences the selection of the memcpy and memset function imple-
mentations used. If the specified optimization option favors generating smaller code (as with the
-Oz option), the linker chooses the smaller implementation of memcpy and memset. If the speci-
fied optimization option favors generating faster code (as with the -O3 option), the linker chooses
the faster implementations.

The selection of the memcpy and memset function implementations can also be set explicitly using
the following linker options:

• -–use_memcpy={small|fast}

• -–use_memset={small|fast}

These options override any influence that the optimization option has on link-time selection of the
memcpy or memset implementation. If neither the -–use_memcpy/-–use_memset options nor an
optimization option is specified, then the linker selects the smaller implementation of the memcpy
and memset functions by default.

Printf Support Optimization (no option)

There are three different versions of the __TI_printfi function in the C RTS library. This function
supports processing of format strings and format specifiers for the C RTS family of printf-like
functions (printf, sprintf, fprintf, etc.).

Each version of __TI_printfi provides a different level of support for processing format strings.
The linker chooses the smallest version of the underlying printf support function to that meets the
needs of the application. This choice is based on what format specifiers are used in format strings
in the application.

3.8. Linker Description 362

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The three version of the function can then be characterized in terms of the format specifiers they
support:

• minimal. The smallest version of __TI_printfi is chosen if there are no calls to any variation
of printf with format strings that contain any of the following format specifiers: l, u, p, x,
field width with precision, h, i, a, A, g, G, e, E, f, F, and L.

• nofloat. This version of __TI_printfi is larger than the minimal version, but still quite a bit
smaller than the full version of __TI_printfi. It is chosen if there are no calls to any variation
of printf with format strings that contain any of the floating-point related format specifiers:
a, A, g, G, e, E, f, F, and L.

• full. This version of __TI_printfi is chosen if any calls are made to any variation of printf
with format strings that contain any of the floating-point format specifier: a, A, g, G, e, E,
f, F, or L. Additionally, if the linker is unable to determine whether a smaller version of
__TI_printfi can be safely used, the full version of __TI_printfi is included in the link by
default.

If your application uses printf-style functions from the C RTS library, but it does not use format
specifiers that require more involved code to support, then you may realize a code size savings if
the linker can determine it is safe to use a smaller version of __TI_printfi.

Do Not Remove Unused Sections (--unused_section_elimination Option)

To minimize the footprint, the ELF linker does not include sections that are not needed to re-
solve any references in the final executable. Use --unused_section_elimination=off to disable this
optimization. The linker default behavior is equivalent to --unused_section_elimination=on.

Miscellaneous Options

The options listed in the subsections below control how the linker handles other behaviors. On the
c29clang command line they should be passed to the linker using the -Wl or -Xlinker option as
described in Passing Options to the Linker.

• Option Summary

• Prioritizing Function Placement (--preferred_order Option)

• Zero Initialization (--zero_init Option)

3.8. Linker Description 363

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Option Summary

--linker_help (-help)

Displays information about syntax and available options.

--preferred_order

Prioritizes placement of functions. See Prioritizing Function Placement (--preferred_order
Option).

--zero_init

Controls preinitialization of uninitialized variables. Default is on. Always off if --ram_model
is used. See Zero Initialization (--zero_init Option).

Prioritizing Function Placement (--preferred_order Option)

The compiler prioritizes the placement of a function relative to others based on the order in which
--preferred_order options are encountered during the linker invocation. The syntax is:

--preferred_order=function specification

Zero Initialization (--zero_init Option)

The C and C++ standards require that global and static variables that are not explicitly initialized
must be set to 0 before program execution. The C/C++ compiler supports preinitialization of
uninitialized variables by default. To turn this off, specify the linker option --zero_init=off.

The syntax for the --zero_init option is:

--zero_init[={on|off }]

Zero initialization takes place only if the --rom_model linker option, which causes autoinitializa-
tion to occur, is used. If you use the --ram_model option for linking, the linker does not generate
initialization records, and the loader must handle both data and zero initialization.

Note: Disabling Zero Initialization Not Recommended In general, disabling zero initialization
is not recommended. If you turn off zero initialization, automatic initialization of uninitialized
global and static objects to zero will not occur. You are then expected to initialize these variables
to zero in some other manner.

3.8. Linker Description 364

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.8.5 Linker Command Files

Linker command files allow you to put linker options and directives in a file; this is useful when
you invoke the linker often with the same options and directives. Linker command files are also
useful because they allow you to use the MEMORY and SECTIONS directives to customize your
application. You must use these directives in a command file; you cannot use them on the command
line.

Linker command files are ASCII files that contain one or more of the following:

• Input filenames, which specify object files, archive libraries, or other command files. (If a
command file calls another command file as input, this statement must be the last statement
in the calling command file. The linker does not return from called command files.)

• Linker options, which can be used in the command file in the same manner that they are used
on the command line.

• The MEMORY and SECTIONS linker directives. The MEMORY directive defines the target
memory configuration (see The MEMORY Directive). The SECTIONS directive controls
how sections are built and allocated (see The SECTIONS Directive).

• Assignment statements, which define and assign values to global symbols.

To invoke the linker with a command file, enter the c29clang command and follow it with the name
of the command file:

c29clang command_filename

The linker processes input files in the order that it encounters them. If the linker recognizes a file
as an object file, it links the file. Otherwise, it assumes that a file is a command file and begins
reading and processing commands from it. Command filenames are case sensitive, regardless of
the system used.

The following sample linker command file, link.cmd, specifies two object files to link and two
command line options to use:

a.c.o /* First input filename */
b.c.o /* Second input filename */
--output_file=prog.out /* Option to specify output file */
--map_file=prog.map /* Option to specify map file */

This sample linker command file contains only filenames and options. (You can place comments
in a command file by delimiting them with /* and */.) To invoke the linker with this command file,
enter:

c29clang link.cmd

You can place other parameters on the command line when you use a command file:

3.8. Linker Description 365

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

c29clang -Wl,--relocatable link.cmd x.c.o y.c.o

The linker processes the command file as soon as it encounters the filename, so a.c.o and b.c.o are
linked into the output module before x.c.o and y.c.o.

You can specify multiple command files. If, for example, you have a file called names.lst that
contains filenames and another file called dir.cmd that contains linker directives, you could enter:

c29clang names.lst dir.cmd

One command file can call another command file; this type of nesting is limited to 16 levels. If a
command file calls another command file as input, this statement must be the last statement in the
calling command file.

Blanks and blank lines are insignificant in a command file except as delimiters. This also applies
to the format of linker directives in a command file. The following example linker command file
that contains linker directives.

a.o b.o c.o /* Input filenames */
--output_file=prog.out /* Options */
--map_file=prog.map

MEMORY /* MEMORY directive */
{

FAST_MEM: origin = 0x0100 length = 0x0100
SLOW_MEM: origin = 0x7000 length = 0x1000

}

SECTIONS /* SECTIONS directive */
{

.text: > SLOW_MEM

.data: > SLOW_MEM

.bss: > FAST_MEM
}

For more information, see The MEMORY Directive for the MEMORY directive, and The SEC-
TIONS Directive for the SECTIONS directive.

Contents:

3.8. Linker Description 366

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Reserved Names in Linker Command Files

The following names (in both uppercase and lowercase) are reserved as keywords for linker direc-
tives. Do not use them as symbol or section names in a command file.

• ADDRESS_MASK

• ALGORITHM

• ALIAS

• ALIGN

• ATTR

• BLOCK

• COMPRESSION

• COPY

• CRC_TABLE

• DSECT

• ECC

• END

• f

• FILL

• GROUP

• HAMMING_MASK

• HIGH

• INPUT_PAGE

• INPUT_RANGE

• l (lowercase L)

• LAST

• LEN

• LENGTH

• LOAD

• LOAD_END

• LOAD_SIZE

• LOAD_START

3.8. Linker Description 367

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• MEMORY

• MIRRORING

• NOINIT

• NOLOAD

• o

• ORG

• ORIGIN

• PAGE

• PALIGN

• PARITY_MASK

• RUN

• RUN_END

• RUN_SIZE

• RUN_START

• SECTIONS

• SIZE

• START

• TABLE

• TYPE

• UNION

• UNORDERED

• VFILL

In addition, any section names used by the TI tools are reserved from being used as the prefix for
other names, unless the section will be a subsection of the section name used by the TI tools. For
example, section names may not begin with .debug.

3.8. Linker Description 368

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Constants in Linker Command Files

You can specify constants with either of two syntax schemes: the scheme used for specifying
decimal, octal, or hexadecimal constants (but not binary constants) used internally by the assembler
or the scheme used for integer constants in C syntax.

Examples:

Format Decimal Octal Hexadecimal
Assembler format 32 40q 020h
C format 32 040 0x20

Accessing Files and Libraries from a Linker Command File

Many applications use custom linker command files (or LCFs) to control the placement of code
and data in target memory. For example, you may want to place a specific data object from a
specific file into a specific location in target memory. This is simple to do using the available LCF
syntax to reference the desired object file or library. However, a problem that many developers run
into when they try to do this is a linker generated “file not found” error when accessing an object
file or library from inside the LCF that has been specified earlier in the command-line invocation
of the linker. Most often, this error occurs because the syntax used to access the file on the linker
command line does not match the syntax that is used to access the same file in the LCF.

Consider a simple example. Imagine that you have an application that requires a table of con-
stants called “app_coeffs” to be defined in a memory area called “DDR”. Assume also that the
“app_coeffs” data object is defined in a .data section that resides in an object file, app_coeffs.c.o.
The app_coeffs.c.o file is then included in the object file library app_data.lib. In your LCF, you
can control the placement of the “app_coeffs” data object as follows:

SECTIONS
{

...

.coeffs: { app_data.lib<app_coeffs.c.o>(.data) } > DDR

...
}

Now assume that the app_data.lib object library resides in a sub-directory called “lib” relative to
where you are building the application. In order to gain access to app_data.lib from the build
command line, you can use a combination of the –i and –l options to set up a directory search path
which the linker can use to find the app_data.lib library:

%> c29clang <compile options/files> -Wl,-i=./lib,-lapp_data.lib
→˓mylnk.cmd <link files>

3.8. Linker Description 369

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The –i option adds the lib sub-directory to the directory search path and the –l option instructs the
linker to look through the directories in the directory search path to find the app_data.lib library.
However, if you do not update the reference to app_data.lib in mylnk.cmd, the linker fails to find
the app_data.lib library and generate a “file not found” error. The reason is that when the linker
encounters the reference to app_data.lib inside the SECTIONS directive, there is no –l option
preceding the reference. Therefore, the linker tries to open app_data.lib in the current working
directory.

In essence, the linker has a few different ways of opening files:

• If there is a path specified, the linker looks for the file in the specified location. For an
absolute path, the linker tries to open the file in the specified directory. For a relative path,
the linker follows the specified path starting from the current working directory and try to
open the file at that location.

• If there is no path specified, the linker tries to open the file in the current working directory.

• If a –l option precedes the file reference, then the linker tries to find and open the referenced
file in one of the directories in the directory search path. The directory search path is set up
via –i options.

As long as a file is referenced in a consistent manner on the command line and throughout any
applicable LCFs, the linker is able to find and open your object files and libraries.

Returning to the earlier example, you can insert a –l option in front of the reference to app_data.lib
in mylnk.cmd to ensure that the linker can find and open the app_data.lib library when the appli-
cation is built:

SECTIONS
{

...

.coeffs: { -l app_data.lib<app_coeffs.c.o>(.data) } > DDR

...
}

Another benefit to using the –l option when referencing a file from within an LCF is that if the
location of the referenced file changes, you can modify the directory search path to incorporate
the new location of the file (using –i option on the command line, for example) without having to
modify the LCF.

3.8. Linker Description 370

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The MEMORY Directive

The linker determines where output sections are allocated into memory; it must have a model of
target memory to accomplish this. The MEMORY directive allows you to specify a model of target
memory so that you can define the types of memory your system contains and the address ranges
they occupy. The linker maintains the model as it allocates output sections and uses it to determine
which memory locations can be used for object code.

The memory configurations of C29x systems differ from application to application. The MEM-
ORY directive allows you to specify a variety of configurations. After you use MEMORY to
define a memory model, you can use the SECTIONS directive to allocate output sections into
defined memory.

For more information, see How the Linker Handles Sections.

• Default Memory Model

• MEMORY Directive Syntax

• Expressions and Address Operators

Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory model that is based
on the C29x architecture. This model assumes that the full 32-bit address space (232 locations) is
present in the system and available for use. For more information about the default memory model,
see Default Placement Algorithm.

MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically present in the target sys-
tem and can be used by a program. Each range has several characteristics:

• Name

• Starting address

• Length

• Optional set of attributes

• Optional fill specification

The MEMORY directive also allows you to use the GROUP keyword to create logical groups
of memory ranges for use with Cyclic Redundancy Checks (CRC). See Using the crc_table()

3.8. Linker Description 371

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Operator in the MEMORY Directive for how to compute CRCs over memory ranges using the
GROUP syntax.

When you use the MEMORY directive, be sure to identify all memory ranges that are available for
the program to access at run time. Memory defined by the MEMORY directive is configured; any
memory that you do not explicitly account for with MEMORY is unconfigured. The linker does
not place any part of a program into unconfigured memory. You can represent nonexistent memory
spaces by simply not including an address range in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY (uppercase), fol-
lowed by a list of memory range specifications enclosed in braces. The MEMORY directive in
the following example defines a system that has 4K bytes of fast external memory at address
0x00000000, 2K bytes of slow external memory at address 0x00001000 and 4K bytes of slow ex-
ternal memory at address 0x10000000. It also demonstrates the use of memory range expressions
as well as start/end/size address operators (see Expressions and Address Operators).

/**/
/* Sample command file with MEMORY directive */
/**/
file1.c.o file2.c.o /* Input files */
--output_file=prog.out /* Options */

MEMORY
{

FAST_MEM (RX): origin = 0x00000000 length = 0x00001000
SLOW_MEM (RW): origin = 0x00001000 length = 0x00000800
EXT_MEM (RX): origin = 0x10000000 length = 0x00001000

The general syntax for the MEMORY directive is:

MEMORY
{

name_1 [(attr)] : origin = expr, length = expr [, fill =
→˓constant] [LAST(sym)]

...

...
name_n [(attr)] : origin = expr, length = expr [, fill =

→˓constant] [LAST(sym)]
}

• name names a memory range. A memory name can be one to 64 characters; valid characters
include A-Z, a-z, $, ., and _. The names have no special significance to the linker; they
simply identify memory ranges. Memory range names are internal to the linker and are not
retained in the output file or in the symbol table. All memory ranges must have unique names
and must not overlap.

• attr specifies one to four attributes associated with the named range. Attributes are optional;

3.8. Linker Description 372

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

when used, they must be enclosed in parentheses. Attributes restrict the allocation of output
sections into certain memory ranges. If you do not use any attributes, you can allocate any
output section into any range with no restrictions. Any memory for which no attributes are
specified (including all memory in the default model) has all four attributes. Valid attributes
are:

– R specifies that the memory can be read.

– W specifies that the memory can be written to.

– X specifies that the memory can contain executable code.

– I specifies that the memory can be initialized.

• origin specifies the starting address of a memory range; enter as origin, org, or o. The value,
specified in bytes, is a 32-bit integer constant expression, which can be decimal, octal, or
hexadecimal.

• length specifies the length of a memory range; enter as length, len, or l. The value, specified
in bytes, is a 32-bit integer constant expression, which can be decimal, octal, or hexadecimal.

• fill specifies a fill character for the memory range; enter as fill or f. Fills are optional. The
value is an integer constant and can be decimal, octal, or hexadecimal. The fill value is
used to fill areas of the memory range that are not allocated to a section. (See Using the
VFILL Specifier in the Memory Map for virtual filling of memory ranges when using Error
Correcting Code (ECC).)

• LAST optionally specifies a symbol that can be used at run-time to find the address of the
last allocated byte in the memory range. See LAST Operator.

Note: Filling Memory Ranges

If you specify fill values for large memory ranges, your output file will be very large because
filling a memory range (even with 0s) causes raw data to be generated for all unallocated blocks of
memory in the range.

The following example specifies a memory range with the R and W attributes and a fill constant of
0FFFFFFFFh:

MEMORY
{

RFILE (RW) : o = 0x0020, l = 0x1000, f = 0xFFFF
}

You normally use the MEMORY directive in conjunction with the SECTIONS directive to con-
trol placement of output sections. For more information about the SECTIONS directive, see The
SECTIONS Directive.

3.8. Linker Description 373

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Expressions and Address Operators

Memory range origin and length can use expressions of integer constants with the following oper-
ators:

Type Operators
Binary operators: * / % + - << >> == = < <= > >= & | && ||
Unary operators: - ~ !

Expressions are evaluated using standard C operator precedence rules.

No checking is done for overflow or underflow, however, expressions are evaluated using a larger
integer type.

Preprocess directive #define constants can be used in place of integer constants. Global symbols
cannot be used in Memory Directive expressions.

Three address operators reference memory range properties from prior memory range entries:

Operators Description
START(MR) Returns start address for previously defined memory range MR.
SIZE(MR) Returns size of previously defined memory range MR.
END(MR) Returns end address for previously defined memory range MR.

The following example uses an expression to specify an origin and a length:

/**/
/* Sample command file with MEMORY directive */
/**/
file1.c.o file2.c.o /* Input files */
--output_file=prog.out /* Options */
#define ORIGIN 0x00000000
#define BUFFER 0x00000200
#define CACHE 0x0001000

MEMORY
{

FAST_MEM (RX): origin = ORIGIN + CACHE length = 0x00001000 +
→˓BUFFER

SLOW_MEM (RW): origin = end(FAST_MEM) length = 0x00001800 -
→˓size(FAST_MEM)

EXT_MEM (RX): origin = 0x10000000 length = size(FAST_
→˓MEM) - CACHE
}

3.8. Linker Description 374

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The SECTIONS Directive

After you use MEMORY to specify the target system’s memory model, you can use SECTIONS
to allocate output sections into specific named memory ranges or into memory that has spe-
cific attributes. For example, you could allocate the .text and .data sections into the area named
FAST_MEM and allocate the .bss section into the area named SLOW_MEM.

The SECTIONS directive controls your sections in the following ways:

• Describes how input sections are combined into output sections

• Defines output sections in the executable program

• Allows you to control where output sections are placed in memory in relation to each other
and to the entire memory space (Note that the memory placement order is not simply the se-
quence in which sections occur in the SECTIONS directive unless the –honor_cmdfile_order
option is used.)

• Permits renaming of output sections

For more information, see How the Linker Handles Sections, Symbolic Relocations, and Subsec-
tions. Subsections allow you to manipulate sections with greater precision.

If you do not specify a SECTIONS directive, the linker uses a default algorithm for combining and
allocating the sections. Default Placement Algorithm describes this algorithm in detail.

• SECTIONS Directive Syntax

• Section Allocation and Placement

– Binding

– Named Memory

– Controlling Placement Using The HIGH Location Specifier

– Alignment and Blocking

– Alignment With Padding

• Specifying Input Sections

• Using Multi-Level Subsections

• Specifying Library or Archive Members as Input to Output Sections

• Allocation Using Multiple Memory Ranges

• Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

3.8. Linker Description 375

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SECTIONS (uppercase),
followed by a list of output section specifications enclosed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS
{

name : [property [, property] [, property] ...]
name : [property [, property] [, property] ...]
name : [property [, property] [, property] ...]

}

Each section specification, beginning with name, defines an output section. (An output section is
a section in the output file.) Section names can refer to sections, subsections, or archive library
members. (See Using Multi-Level Subsections for information on multi-level subsections.) After
the section name is a list of properties that define the section’s contents and how the section is
allocated. The properties can be separated by optional commas. Possible properties for a section
are as follows:

Load allocation

Defines where in memory the section is to be loaded. See Run-Time Relocation, Load and Run
Addresses, and Placing a Section at Different Load and Run Addresses.

Syntax:

load = allocation
or

> allocation

Run allocation

Defines where in memory the section is to be run.

Syntax:

run = allocation
or

run > allocation

Input sections

Defines the input sections (object files) that constitute the output section. See Specifying Input
Sections.

Syntax:

3.8. Linker Description 376

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

{ input_sections }

Section type

Defines flags for special section types. See Special Section Types (DSECT, COPY, NOLOAD, and
NOINIT).

Syntax:

type = COPY
or

type = DSECT
or

type = NOLOAD

Fill value

Defines the value used to fill uninitialized holes. See Creating and Filling Holes.

Syntax:

fill = value

The following example shows a SECTIONS directive in a sample linker command file.

/**/
/* Sample command file with SECTIONS directive */
/**/
file1.c.o file2.c.o /* Input files */
--output_file=prog.out /* Options */

SECTIONS
{

.text: load = EXT_MEM, run = 0x00000800

.const: load = FAST_MEM

.rodata: load = FAST_MEM

.bss: load = SLOW_MEM

.vectors: load = 0x00000000
{

t1.c.o(.intvec1)
t2.c.o(.intvec2)
endvec = .;

}
.data:alpha: align = 16
.data:beta: align = 16

}

3.8. Linker Description 377

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The following figure shows the output sections defined by the SECTIONS directive in the previous
example (.vectors, .text, .const, .rodata, .bss, .data:alpha, and .data:beta) and shows how these sec-
tions are allocated in memory using the MEMORY directive given in MEMORY Directive Syntax.

Figure 3.25: Output Sections Defined by the SECTIONS Directive

Variable-width fill operator

Defines the value used to fill uninitialized holes. Unlike, the fill = value mechanism described
above, the variable-width fill operator syntax is similar to a function call that takes one or two
arguments, the first being the fill value, and the optional second indicating the width of the fill
value.

Syntax:

fill(value[, width])

where:

• value - is a required unsigned integer that can be represented in 32-bits or less. If value does
not fit in the specified width, the linker will emit a warning and truncate the value to the
indicated width.

• width - is an optional argument indicating the size, in bits, in which the value must fit. If the
width argument is not specified, the linker assumes a width of 32-bits. If the width argument

3.8. Linker Description 378

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

is specified, it must be a power-of-two integer value, such that 8 <= width <= 32. Otherwise,
the linker will emit a warning and assume a default width for the value of 32.

Consider a simple application defined as follows:

#include <stdio.h>

void func(void);

int main() {
func();
return 0;

}

__attribute__((section(".text:func")))
void func(void) {

printf("Bring on the funk!\n");
}

The above application is compiled and linked using a linker command file that contains a fill()
operator applied to the “.func” output section:

SECTIONS
{

...

/* fill() operator uses 16-bit fill width */
.func : { .+=0x0008; *(.text:func) } fill(0xfffe,0x10) > MEM

...
}

In this case, an 8-word gap was inserted at the front of the “.func” output section. The fill operator
applied the “.func” output section indicates a value of 0xfffe with a size argument of 16 to instruct
the linker to interpret the value as having a size of 16-bits. At link time, the 8-word gap will then
be encoded with eight instances of the 16-bit value 0xfffe as shown in the following disassembly
output:

%> c29clang -mcpu=c0 -c basic_fcn.c
%> c29clang -mcpu=c0 basic_fcn.o -o a.out -Wl,c29_16bit_fill.cmd,

→˓-ma.map
%> c29objdump -d -S a.out
...
Disassembly of section .func:

(continues on next page)

3.8. Linker Description 379

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

10002280 <.func>:
10002280: fffe <unknown>
10002282: fffe <unknown>
10002284: fffe <unknown>
10002286: fffe <unknown>
10002288: fffe <unknown>
1000228a: fffe <unknown>
1000228c: fffe <unknown>
1000228e: fffe <unknown>

10002290 <func>:
10002290: 0a44 0140 0000 MV A4,#0x140
10002296: 0fa8 fded ffff CALL @printf
1000229c: 7a08 RET
...

Section Allocation and Placement

The linker assigns each output section two locations in target memory: the location where the
section will be loaded and the location where it will be run. Usually, these are the same, and you
can think of each section as having only a single address. The process of locating the output section
in the target’s memory and assigning its address(es) is called placement. For more information
about using separate load and run placement, see Placing a Section at Different Load and Run
Addresses.

If you do not tell the linker how a section is to be allocated, it uses a default algorithm to place
the section. Generally, the linker puts sections wherever they fit into configured memory. You
can override this default placement for a section by defining it within a SECTIONS directive and
providing instructions on how to allocate it.

You control placement by specifying one or more allocation parameters. Each parameter consists
of a keyword, an optional equal sign or greater-than sign, and a value optionally enclosed in paren-
theses. If load and run placement are separate, all parameters following the keyword LOAD apply
to load placement, and those following the keyword RUN apply to run placement. The allocation
parameters are:

3.8. Linker Description 380

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Bind-
ing

allocates a section at a specific address. .text: load = 0x1000

Named
mem-
ory

allocates the section into a range defined in the MEMORY directive with the specified
name (like SLOW_MEM) or attributes. .text: load > SLOW_MEM

Align-
ment

uses the align or palign keyword to specify the section must start on an address bound-
ary. .text: align = 0x100

Block-
ing

uses the block keyword to specify the section must fit between two address aligned to
the blocking factor. If a section is too large, it starts on an address boundary. .text:
block(0x100)

For the load (usually the only) allocation, use a greater-than sign and omit the load keyword:

.text: > SLOW_MEM.text: {...} > SLOW_MEM .text: > 0x4000

If more than one parameter is used, you can string them together as follows:

.text: > SLOW_MEM align 16

Or if you prefer, use parentheses for readability:

.text: load = (SLOW_MEM align(16))

You can also use an input section specification to identify the sections from input files that are
combined to form an output section. See Specifying Input Sections.

Binding

You can set the starting address for an output section by following the section name with an address:

.text: 0x00001000

This example specifies that the .text section must begin at location 0x1000. The binding address
must be a 32-bit constant.

Output sections can be bound anywhere in configured memory (assuming there is enough space),
but they cannot overlap. If there is not enough space to bind a section to a specified address, the
linker issues an error message.

Note: Binding is Incompatible With Alignment and Named Memory You cannot bind a
section to an address if you use alignment or named memory. If you try to do this, the linker issues
an error message.

3.8. Linker Description 381

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Named Memory

You can allocate a section into a memory range that is defined by the MEMORY directive (see The
MEMORY Directive). This example names ranges and links sections into them:

MEMORY
{

SLOW_MEM (RIX) : origin = 0x00000000, length = 0x00001000
FAST_MEM (RWIX) : origin = 0x03000000, length = 0x00000300

}

SECTIONS
{

.text :> SLOW_MEM

.data :> FAST_MEM ALIGN(128)

.bss:> FAST_MEM
}

In this example, the linker places .text into the area called SLOW_MEM. The .data and .bss output
sections are allocated into FAST_MEM. You can align a section within a named memory range;
the .data section is aligned on a 128-byte boundary within the FAST_MEM range.

Similarly, you can link a section into an area of memory that has particular attributes. To do this,
specify a set of attributes (enclosed in parentheses) instead of a memory name. Using the same
MEMORY directive declaration, you can specify:

SECTIONS
{

.text: > (X) /* .text --> executable memory*/

.data: > (RI) /* .data --> read or init memory */

.bss : > (RW) /* .bss --> read or write memory */
}

In this example, the .text output section can be linked into either the SLOW_MEM or FAST_MEM
area because both areas have the X attribute. The .data section can also go into either SLOW_MEM
or FAST_MEM because both areas have the R and I attributes. The .bss output section, however,
must go into the FAST_MEM area because only FAST_MEM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated, although the linker uses
lower memory addresses first and avoids fragmentation when possible. In the preceding examples,
assuming no conflicting assignments exist, the .text section starts at address 0. If a section must
start on a specific address, use binding instead of named memory.

3.8. Linker Description 382

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Controlling Placement Using The HIGH Location Specifier

The linker allocates output sections from low to high addresses within a designated memory range
by default. Alternatively, you can cause the linker to allocate a section from high to low addresses
within a memory range by using the HIGH location specifier in the SECTION directive declaration.
You might use the HIGH location specifier in order to keep RTS code separate from application
code, so that small changes in the application do not cause large changes to the memory map.

For example, given this MEMORY directive:

MEMORY
{

RAM : origin = 0x0200, length = 0x0800
FLASH : origin = 0x1100, length = 0xEEE0
VECTORS : origin = 0xFFE0, length = 0x001E
RESET : origin = 0xFFFE, length = 0x000

}

and an accompanying SECTIONS directive:

SECTIONS
{

.bss : {} > RAM

.sysmem : {} > RAM

.stack : {} > RAM (HIGH)
}

The HIGH specifier used on the .stack section placement causes the linker to attempt to allocate
.stack into the higher addresses within the RAM memory range. The .bss and .sysmem sections
are allocated into the lower addresses within RAM. The following example shows a portion of a
map file that shows where the given sections are allocated within RAM for a typical program.

.bss 0 00000200 00000270 UNINITIALIZED
00000200 0000011a rtsxxx.lib : defs.

→˓c.o (.bss)
0000031a 00000088 :

→˓trgdrv.c.o (.bss)
000003a2 00000078 :

→˓lowlev.c.o (.bss)
0000041a 00000046 : exit.

→˓c.o (.bss)
00000460 00000008 :

→˓memory.c.o (.bss)
00000468 00000004 : _lock.

→˓c.o (.bss)
(continues on next page)

3.8. Linker Description 383

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

0000046c 00000002 : fopen.
→˓c.o (.bss)

0000046e 00000002 hello.c.o (.bss)

.sysmem 0 00000470 00000120 UNINITIALIZED
00000470 00000004 rtsxxx .lib :

→˓memory.c.o (.sysmem)

.stack 0 000008c0 00000140 UNINITIALIZED
000008c0 00000002 rtsxxx .lib :

→˓boot.c.o (.stack)

As shown in the previous example, the .bss and .sysmem sections are allocated at the lower ad-
dresses of RAM (0x0200 - 0x0590) and the .stack section is allocated at address 0x08c0, even
though lower addresses are available.

Without using the HIGH specifier, the linker allocation would result in the code shown in the
following map file contents. The HIGH specifier is ignored if it is used with specific address
binding or automatic section splitting (>> operator).

.bss 0 00000200 00000270 UNINITIALIZED
00000200 0000011a rtsxxx.lib : defs.

→˓c.o (.bss)
0000031a 00000088 :

→˓trgdrv.c.o (.bss)
000003a2 00000078 :

→˓lowlev.c.o (.bss)
0000041a 00000046 : exit.

→˓c.o (.bss)
00000460 00000008 :

→˓memory.c.o (.bss)
00000468 00000004 : _lock.

→˓c.o (.bss)
0000046c 00000002 : fopen.

→˓c.o (.bss)
0000046e 00000002 hello.c.o (.bss)

.stack 0 00000470 00000140 UNINITIALIZED
00000470 00000002 rtsxxx .lib :

→˓boot.c.o (.stack)

.sysmem 0 000005b0 00000120 UNINITIALIZED
000005b0 00000004 rtsxxx .lib :

→˓memory.c.o (.sysmem)

3.8. Linker Description 384

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Alignment and Blocking

align(n) operator

You can tell the linker to place an output section at an address that falls on an n-byte boundary,
where n is a power of 2, by using the align keyword. For example, the following code allocates
.text so that it falls on a 32-byte boundary:

.text: load = align(32)

align(power2) operator

The align operator can also take the power2 keyword as a parameter. This parameter tells the linker
to align a section to the next power of two boundary that is equal to or greater than the section’s
size. For example, consider the following section specification:

.mytext: align(power2) {} > PMEM

Assume that the size of the .mytext section is 120 bytes and PMEM starts at address 0x10020. After
applying the align(power2) operator, the .mytext output section will have the following properties:

name addr size align
------- ---------- ----- -----
.mytext 0x00010080 0x78 128

block(n) operator

Blocking is a weaker form of alignment that allocates a section anywhere within a block of size n.
The specified block size must be a power of 2. For example, the following code allocates .bss so
that the entire section is contained in a single 128-byte block or begins on that boundary:

.bss: load = block(0x0080)

You can use alignment or blocking alone or in conjunction with a memory area, but alignment and
blocking cannot be used together.

Alignment With Padding

palign(n) operator

As with align, you can tell the linker to place an output section at an address that falls on an n-byte
boundary, where n is a power of 2, by using the palign keyword. In addition, palign ensures that
the size of the section is a multiple of its placement alignment restrictions, padding the section size
up to such a boundary, as needed.

3.8. Linker Description 385

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

For example, the following code lines allocate .text on a 2-byte boundary within the PMEM area.
The .text section size is guaranteed to be a multiple of 2 bytes. Both statements are equivalent:

.text: palign(2) {} > PMEM

.text: palign = 2 {} > PMEM

If the linker adds padding to an initialized output section then the padding space is also initialized.
By default, padding space is filled with a value of 0 (zero). However, if a fill value is specified for
the output section then any padding for the section is also filled with that fill value. For example,
consider the following section specification:

.mytext: palign(8), fill = 0xffffffff {} > PMEM

In this example, the length of the .mytext section is 6 bytes before the palign operator is applied.
The contents of .mytext are as follows:

addr content
---- -------
0000 0x1234
0002 0x1234
0004 0x1234

After the palign operator is applied, the length of .mytext is 8 bytes, and its contents are as follows:

addr content
---- -------
0000 0x1234
0002 0x1234
0004 0x1234
0006 0xffff

The size of .mytext has been bumped to a multiple of 8 bytes and the padding created by the linker
has been filled with 0xff.

The fill value specified in the linker command file is interpreted as a 16-bit constant. If you specify
this code:

.mytext: palign(8), fill = 0xff {} > PMEM

The fill value assumed by the linker is 0x00ff, and .mytext will then have the following contents:

addr content
---- -------
0000 0x1234
0002 0x1234

(continues on next page)

3.8. Linker Description 386

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

0004 0x1234
0006 0x00ff

If the palign operator is applied to an uninitialized section, then the size of the section is bumped
to the appropriate boundary, as needed, but any padding created is not initialized.

palign(power2) operator

The palign operator can also take the power2 keyword as a parameter. This parameter tells the
linker to add padding to increase the section’s size to the next power of two boundary. In addition,
the section is aligned on that power of 2 as well. For example, consider the following section
specification:

.mytext: palign(power2) {} > PMEM

Assume that the size of the .mytext section is 120 bytes and PMEM starts at address 0x10020.
After applying the palign(power2) operator, the .mytext output section will have the following
properties:

name addr size align
------- ---------- ----- -----
.mytext 0x00010080 0x80 128

Specifying Input Sections

An input section specification identifies the sections from input files that are combined to form an
output section. In general, the linker combines input sections by concatenating them in the order
in which they are specified. However, if alignment or blocking is specified for an input section, all
of the input sections within the output section are ordered as follows:

• All aligned sections, from largest to smallest

• All blocked sections, from largest to smallest

• All other sections, from largest to smallest

The size of an output section is the sum of the sizes of the input sections that it comprises.

The following example shows the most common type of section specification; note that no input
sections are listed.

SECTIONS
{

.text:

.data:
(continues on next page)

3.8. Linker Description 387

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

.bss:
}

In the example above, the linker takes all the .text sections from the input files and combines them
into the .text output section. The linker concatenates the .text input sections in the order that it
encounters them in the input files. The linker performs similar operations with the .data and .bss
sections. You can use this type of specification for any output section.

You can explicitly specify the input sections that form an output section. Each input section is
identified by its filename and section name. If the filename is hyphenated (or contains special
characters), enclose it within quotes:

SECTIONS {
.text : /* Build .text output section

→˓ */
{

f1.c.o(.text) /* Link .text section from f1.c.o
→˓ */ f2.c.o(sec1) /* Link sec1 section
→˓from f2.c.o */ "f3-new.c.o" /*
→˓Link ALL sections from f3-new.c.o */ f4.c.
→˓o(.text,sec2) /* Link .text and sec2 from f4.c.o
→˓ */ f5.c.o(.task??) /* Link .task00, .task01, .taskXX,
→˓ etc. from f5.c.o */

f6.c.o(*_ctable) /* Link sections ending in "_ctable"
→˓from f6.c.o */

X*.c.o(.text) /* Link .text section for all files
→˓starting with */

/* "X" and ending in ".
→˓c.o" */

}
}

It is not necessary for input sections to have the same name as each other or as the output section
they become part of. If a file is listed with no sections, all of its sections are included in the
output section. If any additional input sections have the same name as an output section but are
not explicitly specified by the SECTIONS directive, they are automatically linked in at the end of
the output section. For example, if the linker found more .text sections in the preceding example
and these .text sections were not specified anywhere in the SECTIONS directive, the linker would
concatenate these extra sections after f4.c.o(sec2).

The specifications in the first example above are actually a shorthand method for the following:

SECTIONS
{

(continues on next page)

3.8. Linker Description 388

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

.text: { *(.text) }

.data: { *(.data) }

.bss: { *(.bss) }
}

The specification *(.text) means the unallocated .text sections from all input files. This format is
useful if:

• You want the output section to contain all input sections that have a specified name, but the
output section name is different from the input sections’ name.

• You want the linker to allocate the input sections before it processes additional input sections
or commands within the braces.

The following example illustrates the two purposes above:

SECTIONS
{

.text : {
abc.c.o(xqt)

*(.text)
}

.data : {

*(.data)
fil.c.o(table)

}
}

In this example, the .text output section contains a named section xqt from file abc.c.o, which is
followed by all the .text input sections. The .data section contains all the .data input sections,
followed by a named section table from the file fil.c.o. This method includes all the unallocated
sections. For example, if one of the .text input sections was already included in another output
section when the linker encountered *(.text), the linker could not include that first .text input section
in the second output section.

Each input section acts as a prefix and gathers longer-named sections. For example, the pattern
*(.data) matches .dataspecial. This mechanism enables the use of subsections, which are described
in the following section.

3.8. Linker Description 389

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Using Multi-Level Subsections

Subsections can be identified with the base section name and one or more subsection names sep-
arated by colons or periods. For example, A:B and A:B:C name subsections of the base section
A. Likewise, A.B and A.B.C name the same subsections of the base section A. In certain places
in a linker command file specifying a base name, such as A, selects the section A as well as any
subsections of A, such as A:B or A:C:D.

A name such as A:B can specify a (sub)section of that name as well as any (multi-level) subsections
beginning with that name, such as A:B:C, A:B:OTHER, etc. All subsections of A:B are also
subsections of A. A and A:B are supersections of A:B:C. Among a group of supersections of
a subsection, the nearest supersection is the supersection with the longest name. Thus, among
{A, A:B} the nearest supersection of A:B:C:D is A:B. With multiple levels of subsections, the
constraints are the following:

1. When specifying input sections within a file (or library unit) the section name selects an
input section of the same name and any subsections of that name.

2. Input sections that are not explicitly allocated are allocated in an existing output section
of the same name or in the nearest existing supersection of such an output section. An
exception to this rule is that during a partial link (specified by the --relocatable linker option)
a subsection is allocated only to an existing output section of the same name.

3. If no such output section described in 2) is defined, the input section is put in a newly created
output section with the same name as the base name of the input section

Consider linking input sections with the following names:

• europe:north:norway

• europe:central:france

• europe:south:spain

• europe:north:sweden

• europe:central:germany

• europe:south:italy

• europe:north:finland

• europe:central:denmark

• europe:south:malta

• europe:north:iceland

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTIONS
{

(continues on next page)

3.8. Linker Description 390

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

nordic: {*(europe:north)
(europe:central:denmark)} / the nordic

→˓countries */
central: {*(europe:central)} /* france, germany

→˓*/
therest: {*(europe)} /* spain, italy, malta

→˓*/
}

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTIONS
{

islands: {*(europe:south:malta)
(europe:north:iceland)} / malta, iceland */

europe:north:finland : {} /* finland */
europe:north : {} /* norway, sweden */
europe:central : {} /* germany, denmark */
europe:central:france: {} /* france */

/* (italy, spain) go into a linker-generated output section
→˓"europe" */
}

Note: Upward Compatibility of Multi-Level Subsections

Existing linker commands that use the existing single-level subsection features and which do not
contain section names containing multiple colon characters continue to behave as before. However,
if section names in a linker command file or in the input sections supplied to the linker contain mul-
tiple colon characters, some change in behavior could be possible. You should carefully consider
the impact of the rules for multiple levels to see if it affects a particular system link.

Specifying Library or Archive Members as Input to Output Sections

You can specify one or more members of an object library or archive for input to an output section.
Consider this SECTIONS directive:

SECTIONS
{

boot > BOOT1
{

(continues on next page)

3.8. Linker Description 391

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

-l rtsXX.lib<boot.c.o> (.text)
-l rtsXX.lib<exit.c.o strcpy.c.o> (.text)

}

.rts > BOOT2
{

-l rtsXX.lib (.text)
}

.text > RAM
{

* (.text)
}

}

In Example 9, the .text sections of boot.c.o, exit.c.o, and strcpy.c.o are extracted from the run-
time-support library and placed in the .boot output section. The remainder of the run-time-support
library object that is referenced is allocated to the .rts output section. Finally, the remainder of all
other .text sections are to be placed in section .text.

An archive member or a list of members is specified by surrounding the member name(s) with
angle brackets < and > after the library name. Any object files separated by commas or spaces
from the specified archive file are legal within the angle brackets.

The --library option (which normally implies a library path search be made for the named file
following the option) listed before each library in Example 9 is optional when listing specific
archive members inside < >. Using < > implies that you are referring to a library.

To collect a set of the input sections from a library in one place, use the --library option
within the SECTIONS directive. For example, the following collects all the .text sections from
rtsv4_A_be_eabi.lib into the .rtstest section:

SECTIONS
{

.rtstest { -l rtsv4_A_be_eabi.lib(.text) } > RAM
}

Note: SECTIONS Directive Effect on --priority

Specifying a library in a SECTIONS directive causes that library to be entered in the list of libraries
that the linker searches to resolve references. If you use the --priority option, the first library
specified in the command file will be searched first.

3.8. Linker Description 392

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Allocation Using Multiple Memory Ranges

The linker allows you to specify an explicit list of memory ranges into which an output section can
be allocated. Consider the following example:

MEMORY
{

P_MEM1 : origin = 0x02000, length = 0x01000
P_MEM2 : origin = 0x04000, length = 0x01000
P_MEM3 : origin = 0x06000, length = 0x01000
P_MEM4 : origin = 0x08000, length = 0x01000

}
SECTIONS
{

.text : { } > P_MEM1 | P_MEM2 | P_MEM4
}

The | operator is used to specify the multiple memory ranges. The .text output section is allocated
as a whole into the first memory range in which it fits. The memory ranges are accessed in the
order specified. In this example, the linker first tries to allocate the section in P_MEM1. If that
attempt fails, the linker tries to place the section into P_MEM2, and so on. If the output section is
not successfully allocated in any of the named memory ranges, the linker issues an error message.

With this type of SECTIONS directive specification, the linker can seamlessly handle an output
section that grows beyond the available space of the memory range in which it is originally allo-
cated. Instead of modifying the linker command file, you can let the linker move the section into
one of the other areas.

Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

The linker can split output sections among multiple memory ranges for efficient allocation. Use the
>> operator to indicate that an output section can be split, if necessary, into the specified memory
ranges:

MEMORY
{

P_MEM1 : origin = 0x2000, length = 0x1000
P_MEM2 : origin = 0x4000, length = 0x1000
P_MEM3 : origin = 0x6000, length = 0x1000
P_MEM4 : origin = 0x8000, length = 0x1000

}

SECTIONS
{

(continues on next page)

3.8. Linker Description 393

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

.text: { *(.text) } >> P_MEM1 | P_MEM2 | P_MEM3 | P_MEM4
}

In this example, the >> operator indicates that the .text output section can be split among any of
the listed memory areas. If the .text section grows beyond the available memory in P_MEM1, it is
split on an input section boundary, and the remainder of the output section is allocated to P_MEM2
| P_MEM3 | P_MEM4.

The | operator is used to specify the list of multiple memory ranges.

You can also use the >> operator to indicate that an output section can be split within a single
memory range. This functionality is useful when several output sections must be allocated into
the same memory range, but the restrictions of one output section cause the memory range to be
partitioned. Consider the following example:

MEMORY
{

RAM : origin = 0x1000, length = 0x8000
}

SECTIONS
{

.special: { f1.c.o(.text) } load = 0x4000

.text: { *(.text) } >> RAM
}

The .special output section is allocated near the middle of the RAM memory range. This leaves
two unused areas in RAM: from 0x1000 to 0x4000, and from the end of f1.c.o(.text) to 0x8000.
The specification for the .text section allows the linker to split the .text section around the .special
section and use the available space in RAM on either side of .special.

The >> operator can also be used to split an output section among all memory ranges that match a
specified attribute combination. For example:

MEMORY
{

P_MEM1 (RWX) : origin = 0x1000, length = 0x2000
P_MEM2 (RWI) : origin = 0x4000, length = 0x1000

}

SECTIONS
{

.text: { *(.text) } >> (RW)
}

3.8. Linker Description 394

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The linker attempts to allocate all or part of the output section into any memory range whose
attributes match the attributes specified in the SECTIONS directive.

This SECTIONS directive has the same effect as:

SECTIONS
{

.text: { *(.text) } >> P_MEM1 | P_MEM2}
}

Certain sections should not be split:

• Certain sections created by the compiler, including:

– The .cinit section, which contains the auto-initialization table for C/C++ programs

– The .pinit section, which contains the list of global constructors for C++ programs

• An output section with an input section specification that includes an expression to be eval-
uated. The expression may define a symbol that is used in the program to manage the output
section at run time.

• An output section that has a START(), END(), OR SIZE() operator applied to it. These
operators provide information about a section’s load or run address, and size. Splitting the
section may compromise the integrity of the operation.

• The run allocation of a UNION. (Splitting the load allocation of a UNION is allowed.)

If you use the >> operator on any of these sections, the linker issues a warning and ignores the
operator.

Using a SECURE_GROUP to Place Protected Calls

The linker accepts the SECURE_GROUP attribute in the SECTIONS directive to define a section
to contain protected calls. See Linker Support for Protected Calls for details and examples.

Placing a Section at Different Load and Run Addresses

At times, you may want to load code into one area of memory and run it in another. For example,
you may have performance-critical code in slow external memory. The code must be loaded into
slow external memory, but it would run faster in fast external memory.

The linker provides a simple way to accomplish this. You can use the SECTIONS directive to
direct the linker to allocate a section twice: once to set its load address and again to set its run
address. For example:

.fir: load = SLOW_MEM, run = FAST_MEM

3.8. Linker Description 395

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Use the load keyword for the load address and the run keyword for the run address.

See Run-Time Relocation for an overview on run-time relocation.

The application must copy the section from its load address to its run address; this does not happen
automatically when you specify a separate run address. (The TABLE operator instructs the linker
to produce a copy table; see The table() Operator.)

• Specifying Load and Run Addresses

Specifying Load and Run Addresses

The load address determines where a loader places the raw data for the section. Any references
to the section (such as labels in it) refer to its run address. See Load and Run Addresses for an
overview of load and run addresses.

If you provide only one allocation (either load or run) for a section, the section is allocated only
once and loads and runs at the same address. If you provide both allocations, the section is allocated
as if it were two sections of the same size. This means that both allocations occupy space in the
memory map and cannot overlay each other or other sections. (The UNION directive provides a
way to overlay sections; see Overlaying Sections With the UNION Statement.)

If either the load or run address has additional parameters, such as alignment or blocking, list
them after the appropriate keyword. Everything related to allocation after the keyword load affects
the load address until the keyword run is seen, after which, everything affects the run address.
The load and run allocations are completely independent, so any qualification of one (such as
alignment) has no effect on the other. You can also specify run first, then load. Use parentheses to
improve readability.

The examples that follow specify load and run addresses.

In this example, align applies only to load:

.data: load = SLOW_MEM, align = 32, run = FAST_MEM

The following example uses parentheses, but has effects that are identical to the previous example:

.data: load = (SLOW_MEM align 32), run = FAST_MEM

The following example aligns FAST_MEM to 32 bits for run allocations and aligns all load allo-
cations to 16 bits:

.data: run = FAST_MEM, align 32, load = align 16

For more information on run-time relocation see Run-Time Relocation.

3.8. Linker Description 396

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Uninitialized sections (such as .bss) are not loaded, so their only significant address is the run
address. The linker allocates uninitialized sections only once: if you specify both run and load
addresses, the linker warns you and ignores the load address. Otherwise, if you specify only one
address, the linker treats it as a run address, regardless of whether you call it load or run.

This example specifies load and run addresses for an uninitialized section:

.bss: load = 0x1000, run = FAST_MEM

A warning is issued, load is ignored, and space is allocated in FAST_MEM. All of the following
examples have the same effect. The .bss section is allocated in FAST_MEM.

.dbss: load = FAST_MEM

.bss: run = FAST_MEM

.bss: > FAST_MEM

See Using Linker Symbols in C/C++ Applications for information about referring to linker symbols
in C/C++ code.

Using GROUP and UNION Statements

Two SECTIONS statements allow you to organize or conserve memory: GROUP and UNION.
Grouping sections causes the linker to allocate them contiguously in memory. Unioning sections
causes the linker to allocate them to the same run address.

• Grouping Output Sections Together

• Overlaying Sections With the UNION Statement

• Using Memory for Multiple Purposes

• Nesting UNIONs and GROUPs

• Checking the Consistency of Allocators

• Naming UNIONs and GROUPs

Grouping Output Sections Together

The SECTIONS directive’s GROUP option forces several output sections to be allocated contigu-
ously and in the order listed, unless the UNORDERED operator is used. For example, assume that
a section named term_rec contains a termination record for a table in the .data section. You can
force the linker to allocate .data and term_rec together:

3.8. Linker Description 397

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

SECTIONS
{

.text /* Normal output section */

.bss /* Normal output section */
GROUP 0x00001000 : /* Specify a group of sections */
{

.data /* First section in the group */
term_rec /* Allocated immediately after .data */

}
}

You can use binding, alignment, or named memory to allocate a GROUP in the same manner as
a single output section. In the preceding example, the GROUP is bound to address 0x1000. This
means that .data is allocated at 0x1000, and term_rec follows it in memory.

Note: You Cannot Specify Addresses for Sections Within a GROUP

When you use the GROUP option, binding, alignment, or allocation into named memory can be
specified for the group only. You cannot use binding, named memory, or alignment for sections
within a group.

The MEMORY directive also allows you to use the GROUP keyword to create logical groups
of memory ranges for use with Cyclic Redundancy Checks (CRC). See Using the crc_table()
Operator in the MEMORY Directive for how to compute CRCs over memory ranges using the
GROUP syntax.

Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section that occupies the same
address during run time. For example, you may have several routines you want in fast external
memory at different stages of execution. Or you may want several data objects that are not active
at the same time to share a block of memory. The UNION statement within the SECTIONS
directive provides a way to allocate several sections at the same run-time address.

In the following example, the .bss sections from file1.c.o and file2.c.o are allocated at the same
address in FAST_MEM. In the memory map, the union occupies as much space as its largest
component. The components of a union remain independent sections; they are simply allocated
together as a unit.

SECTIONS
{

.text: load = SLOW_MEM
UNION: run = FAST_MEM

(continues on next page)

3.8. Linker Description 398

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

{
.bss:part1: { file1.c.o(.bss) }
.bss:part2: { file2.c.o(.bss) }

}
.bss:part3: run = FAST_MEM { globals.c.o(.bss) }

}

Allocation of a section as part of a union affects only its run address. Under no circumstances
can sections be overlaid for loading. If an initialized section is a union member (an initialized
section, such as .text, has raw data), its load allocation must be separately specified as shown in the
following example. (There is an exception to this rule when combining an initialized section with
uninitialized sections; see Using Memory for Multiple Purposes.)

UNION run = FAST_MEM
{

.text:part1: load = SLOW_MEM, { file1.c.o(.text) }

.text:part2: load = SLOW_MEM, { file2.c.o(.text) }
}

The following figure shows the memory allocation for the first example above (left) and the second
example above (right)

Figure 3.26: Memory Allocation for First (left) and Second (right) Examples

3.8. Linker Description 399

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Since the .text sections contain raw data, they cannot load as a union, although they can be run as a
union. Therefore, each requires its own load address. If you fail to provide a load allocation for an
initialized section within a UNION, the linker issues a warning and allocates load space anywhere
it can in configured memory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is meaningless to specify a
load address for the union itself. For purposes of allocation, the union is treated as an uninitialized
section: any one allocation specified is considered a run address, and if both run and load addresses
are specified, the linker issues a warning and ignores the load address.

Using Memory for Multiple Purposes

One way to reduce an application’s memory requirement is to use the same range of memory for
multiple purposes. You can first use a range of memory for system initialization and startup. Once
that phase is complete, the same memory can be repurposed as a collection of uninitialized data
variables or a heap. To implement this scheme, use the following variation of the UNION statement
to allow one section to be initialized and the remaining sections to be uninitialized.

Generally, an initialized section (one with raw data, such as .text) in a union must have its load
allocation specified separately. However, one and only one initialized section in a union can be
allocated at the union’s run address. By listing it in the UNION statement with no load allocation
at all, it will use the union’s run address as its own load address.

For example:

UNION run = FAST_MEM { .cinit .bss }

In this example, the .cinit section is an initialized section. It will be loaded into FAST_MEM at
the run address of the union. In contrast, .bss is an uninitialized section. Its run address will also
be that of the union.

Nesting UNIONs and GROUPs

The linker allows arbitrary nesting of GROUP and UNION statements with the SECTIONS di-
rective. By nesting GROUP and UNION statements, you can express hierarchical overlays and
groupings of sections. The following example shows how two overlays can be grouped together.

SECTIONS
{

GROUP 0x1000 : run = FAST_MEM
{

UNION:
(continues on next page)

3.8. Linker Description 400

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

{
mysect1: load = SLOW_MEM
mysect2: load = SLOW_MEM

}
UNION:
{

mysect3: load = SLOW_MEM
mysect4: load = SLOW_MEM

}
}

}

For this example, the linker performs the following allocations:

• The four sections (mysect1, mysect2, mysect3, mysect4) are assigned unique, non-
overlapping load addresses. The name you defined with the .label directive is used in the
SLOW_MEM memory region. This assignment is determined by the particular load alloca-
tions given for each section.

• Sections mysect1 and mysect2 are assigned the same run address in FAST_MEM.

• Sections mysect3 and mysect4 are assigned the same run address in FAST_MEM.

• The run addresses of mysect1/mysect2 and mysect3/mysect4 are allocated contiguously, as
directed by the GROUP statement (subject to alignment and blocking restrictions).

To refer to groups and unions, linker diagnostic messages use the notation:

GROUP_n UNION_n

where n is a sequential number (beginning at 1) that represents the lexical ordering of the group or
union in the linker control file without regard to nesting. Groups and unions each have their own
counter.

Checking the Consistency of Allocators

The linker checks the consistency of load and run allocations specified for unions, groups, and
sections. The following rules are used:

• Run allocations are only allowed for top-level sections, groups, or unions (sections, groups,
or unions that are not nested under any other groups or unions). The linker uses the run
address of the top-level structure to compute the run addresses of the components within
groups and unions.

• The linker does not accept a load allocation for UNIONs.

• The linker does not accept a load allocation for uninitialized sections.

3.8. Linker Description 401

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• In most cases, you must provide a load allocation for an initialized section. However, the
linker does not accept a load allocation for an initialized section that is located within a group
that already defines a load allocator.

• As a shortcut, you can specify a load allocation for an entire group, to determine the load
allocations for every initialized section or subgroup nested within the group. However, a
load allocation is accepted for an entire group only if all of the following conditions are true:

– The group is initialized (that is, it has at least one initialized member).

– The group is not nested inside another group that has a load allocator.

– The group does not contain a union containing initialized sections.

• If the group contains a union with initialized sections, it is necessary to specify the load allo-
cation for each initialized section nested within the group. Consider the following example:

SECTIONS
{

GROUP: load = SLOW_MEM, run = SLOW_MEM
{

.text1:
UNION:
{

.text2:

.text3:
}

}
}

The load allocator given for the group does not uniquely specify the load allocation for the elements
within the union: .text2 and .text3. In this case, the linker issues a diagnostic message to request
that these load allocations be specified explicitly.

Naming UNIONs and GROUPs

You can give a name to a UNION or GROUP by entering the name in parentheses after the decla-
ration. For example:

GROUP(BSS_SYSMEM_STACK_GROUP)
{

.bss :{}

.sysmem :{}

.stack :{}
} load=D_MEM, run=D_MEM

3.8. Linker Description 402

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The name you defined is used in diagnostics for easy identification of the problem LCF area. For
example:

warning: LOAD placement ignored for "BSS_SYSMEM_STACK_GROUP":
→˓object is uninitialized

UNION(TEXT_CINIT_UNION)
{

.const :{}load=D_MEM, table(table1)

.rodata :{}load=D_MEM, table(table1)

.pinit :{}load=D_MEM, table(table1)
}run=P_MEM

warning:table(table1) operator ignored: table(table1) has
→˓already been applied to a section
in the "UNION(TEXT_CINIT_UNION)" in which ".pinit" is a

→˓descendant

Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)

You can assign the following special types to output sections: DSECT, COPY, NOLOAD, and
NOINIT. These types affect the way that the program is treated when it is linked and loaded. You
can assign a type to a section by placing the type after the section definition. For example:

SECTIONS
{

sec1: load = 0x00002000, type = DSECT {f1.c.o}
sec2: load = 0x00004000, type = COPY {f2.c.o}
sec3: load = 0x00006000, type = NOLOAD {f3.c.o}
sec4: load = 0x00008000, type = NOINIT {f4.c.o}

}

• The DSECT type creates a dummy section with the following characteristics:

– It is not included in the output section memory allocation. It takes up no memory and
is not included in the memory map listing.

– It can overlay other output sections, other DSECTs, and unconfigured memory.

– Global symbols defined in a dummy section are relocated normally. They appear in the
output module’s symbol table with the same value they would have if the DSECT had
actually been loaded. These symbols can be referenced by other input sections.

– Undefined external symbols found in a DSECT cause specified archive libraries to be
searched.

3.8. Linker Description 403

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

– The section’s contents, relocation information, and line number information are not
placed in the output module.

In the preceding example, none of the sections from f1.c.obj are allocated, but all the symbols
are relocated as though the sections were linked at address 0x2000. The other sections can
refer to any of the global symbols in sec1.

• A COPY section is similar to a DSECT section, except that its contents and associated
information are written to the output module. The .cinit section that contains initialization
tables for the C29x C/C++ compiler has this attribute under the run-time initialization model.

• A NOLOAD section differs from a normal output section in one respect: the section’s con-
tents, relocation information, and line number information are not placed in the output mod-
ule. The linker allocates space for the section, and it appears in the memory map listing.

• A NOINIT section is not C auto-initialized by the linker. It is your responsibility to initialize
this section as needed.

Configuring Error Correcting Code (ECC) with the Linker

Error Correcting Codes (ECC) can be generated and placed in separate sections through the linker
command file. ECC uses extra bits to allow errors to be detected and/or corrected by a device. To
enable ECC generation, you must include --ecc=on as a linker option on the command line. By
default ECC generation is off, even if the ECC directive and ECC specifiers are used in the linker
command file. This allows you to fully configure ECC in the linker command file while still being
able to quickly turn the code generation on and off via the command line.

The ECC support provided by the linker is compatible with the ECC support in TI Flash memory
on various TI devices. TI Flash memory uses a modified Hamming(72,64) code, which uses 8
parity bits for every 64 bits. Check the documentation for your Flash memory to see if ECC is
supported. (ECC for read-write memory is handled completely in hardware at run time.)

You can control the details of ECC generation using the ECC specifier in the memory map (Using
the ECC Specifier in the Memory Map) and the ECC directive (Using the ECC Directive).

See Error Correcting Code Testing (--ecc Options) for command-line options that introduce bit
errors into code that has a corresponding ECC section or into the ECC parity bits themselves. Use
these options to test ECC error handling code.

ECC can be generated during linking. The ECC data is included in the resulting object file, along-
side code and data, as a data section located at the appropriate address. No extra ECC generation
step is required after compilation, and the ECC can be uploaded to the device along with everything
else.

• Using the ECC Specifier in the Memory Map

• Using the ECC Directive

3.8. Linker Description 404

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Using the VFILL Specifier in the Memory Map

Using the ECC Specifier in the Memory Map

To generate ECC, add a separate memory range to your memory map to hold ECC data and to
indicate which memory range contains the Flash data that corresponds to this ECC data. If you
have multiple memory ranges for Flash data, you should add a separate ECC memory range for
each Flash data range.

The definition of an ECC memory range can also provide parameters for how to generate the ECC
data.

The memory map for a device supporting Flash ECC may look something like this:

MEMORY {
VECTORS : origin=0x00000000 length=0x000020
FLASH0 : origin=0x00000020 length=0x17FFE0
FLASH1 : origin=0x00180000 length=0x180000
STACKS : origin=0x08000000 length=0x000500
RAM : origin=0x08000500 length=0x03FB00
ECC_VEC : origin=0xf0400000 length=0x000004 ECC={ input_

→˓range=VECTORS }
ECC_FLA0 : origin=0xf0400004 length=0x02FFFC ECC={ input_

→˓range=FLASH0 }
ECC_FLA1 : origin=0xf0430000 length=0x030000 ECC={ input_

→˓range=FLASH1 }
}

The specification syntax for ECC memory ranges is as follows:

MEMORY {
<memory specifier1> : <memory attributes> [vfill=<fill

→˓value>]
<memory specifier2> : <memory attributes> ECC = {

input_range = <memory specifier1>
[algorithm = <algorithm name>]
[fill = [true, false]]

}
}

The “ECC” specifier attached to the ECC memory ranges indicates the data memory range that the
ECC range covers. The ECC specifier supports the following parameters:

3.8. Linker Description 405

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

in-
put_range
=
<range>

The data memory range covered by this ECC data range. Required.

algo-
rithm =
<ECC
alg
name>

The name of an ECC algorithm defined later in the command file using the ECC
directive. Optional if only one algorithm is defined. (See Using the ECC Directive).

fill =
true |
false

Whether to generate ECC data for holes in the initialized data of the input range.
The default is “true”. Using fill=false produces behavior similar to the nowECC
tool. The input range can be filled normally or using a virtual fill (see Using the
VFILL Specifier in the Memory Map).

Using the ECC Directive

In addition to specifying ECC memory ranges in the memory map, the linker command file must
specify parameters for the algorithm that generates ECC data. You might need multiple ECC
algorithm specifications if you have multiple Flash devices.

Each TI device supporting Flash ECC has exactly one set of valid values for these parameters. The
linker command files provided with Code Composer Studio include the ECC parameters necessary
for ECC support on the Flash memory accessible by the device. Documentation is provided here
for completeness.

You specify algorithm parameters with the top-level ECC directive in the linker command file. The
specification syntax is as follows:

ECC {
<algorithm name> : parity_mask = <8-bit integer>

mirroring = [F021, F035]
address_mask = <32-bit mask>

}

For example:

MEMORY {
FLASH0 : origin=0x00000020 length=0x17FFE0
ECC_FLA0 : origin=0xf0400004 length=0x02FFFC ECC={ input_

→˓range=FLASH0 algorithm=F021 }
}

ECC { F021 : parity_mask = 0xfc
mirroring = F021 }

3.8. Linker Description 406

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

This ECC directive accepts the following attributes:

algo-
rithm_name

Specify the name you would like to use for referencing the algorithm.

ad-
dress_mask
= <32-
bit
mask>

This mask determines which bits of the address of each 64-bit piece of memory are
used in the calculation of the ECC byte for that memory. Default is 0xffffffff, so that
all bits of the address are used. (Note that the ECC algorithm itself ignores the lowest
bits, which are always zero for a correctly-aligned input block.)

par-
ity_mask
= <8-bit
mask>

This mask determines which ECC bits encode even parity and which bits encode odd
parity. Default is 0, meaning that all bits encode even parity.

mirror-
ing =
F021 |
F035

This setting determines the order of the ECC bytes and their duplication pattern for
redundancy. Default is F021.

Using the VFILL Specifier in the Memory Map

Normally, specifying a fill value for a MEMORY range creates initialized data sections to cover
any previously uninitialized areas of memory. To generate ECC data for an entire memory range,
the linker either needs to have initialized data in the entire range, or needs to know what value
uninitialized memory areas will have at run time.

In cases where you want to generate ECC for an entire memory range, but do not want to initialize
the entire range by specifying a fill value, you can use the “vfill” specifier instead of a “fill” specifier
to virtually fill the range:

MEMORY {
FLASH : origin=0x0000 length=0x4000 vfill=0xffffffff

}

The vfill specifier is functionally equivalent to omitting a fill specifier, except that it allows ECC
data to be generated for areas of the input memory range that remain uninitialized. This has the
benefit of reducing the size of the resulting object file.

The vfill specifier has no effect other than in ECC data generation. It cannot be specified along
with a fill specifier, since that would introduce ambiguity.

If fill is specified in the ECC specifier, but vfill is not specified, vfill defaults to 0xff.

3.8. Linker Description 407

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols and assign values
to them at link time. You can use this feature to initialize a variable or pointer to an allocation-
dependent value. See Using Linker Symbols in C/C++ Applications for information about referring
to linker symbols in C/C++ code.

• Syntax of Assignment Statements

• Assigning the SPC to a Symbol

• Assignment Expressions

• Symbols Automatically Defined by the Linker

• Assigning Exact Start, End, and Size Values of a Section to a Symbol

• Why the Dot Operator Does Not Always Work

• Address and Dimension Operators

– Input Items

– Output Section

– GROUPs

– UNIONs

• LAST Operator

Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of assignment statements in the
C language:

Assignment Statement Syntax in Linker Command Files

symbol = expression; assigns the value of expression to symbol
symbol += expression; adds the value of expression to symbol
symbol -= expression; subtracts the value of expression from symbol
symbol *= expression; multiplies symbol by expression
symbol /= expression; divides symbol by expression

The symbol should be defined externally. If it is not, the linker defines a new symbol and enters
it into the symbol table. The expression must follow the rules defined in Assignment Expressions.
Assignment statements must terminate with a semicolon.

3.8. Linker Description 408

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The linker processes assignment statements after it allocates all the output sections. Therefore, if
an expression contains a symbol, the address used for that symbol reflects the symbol’s address in
the executable output file.

For example, suppose a program reads data from one of two tables identified by two external
symbols, Table1 and Table2. The program uses the symbol cur_tab as the address of the current
table. The cur_tab symbol must point to either Table1 or Table2. You can accomplish this by using
a linker assignment statement to assign cur_tab at link time:

prog.c.o /* Input file */
cur_tab = Table1; /* Assign cur_tab to one of the tables */

Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the section program counter
(SPC) during allocation. The SPC keeps track of the current location within a section. The linker’s
. symbol can be used only in assignment statements within a SECTIONS directive because .
is meaningful only during allocation and SECTIONS controls the allocation process. (See The
SECTIONS Directive.)

The . symbol refers to the current run address, not the current load address, of the section.

For example, suppose a program needs to know the address of the beginning of the .data section. By
using the .global directive (see Global (External) Symbols), you can create an external undefined
variable called Dstart in the program. Then, assign the value of . to Dstart:

SECTIONS
{

.text: {}

.data: {Dstart = .;}

.bss : {}
}

This defines Dstart to be the first linked address of the .data section. (Dstart is assigned before
.data is allocated.) The linker relocates all references to Dstart.

A special type of assignment assigns a value to the . symbol. This adjusts the SPC within an output
section and creates a hole between two input sections. Any value assigned to . to create a hole is
relative to the beginning of the section, not to the address actually represented by the . symbol.
Holes and assignments to . are described in Creating and Filling Holes.

3.8. Linker Description 409

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Assignment Expressions

These rules apply to linker expressions:

• Expressions can contain global symbols, constants, and the C language operators listed in
the table below.

• All numbers are treated as long (32-bit) integers.

• Numbers are recognized as decimal constants unless they have a suffix (H or h for hexadec-
imal and Q or q for octal). C language prefixes are also recognized (0 for octal and 0x for
hex). Hexadecimal constants must begin with a digit. No binary constants are allowed.

• Symbols within an expression have only the value of the symbol’s address. No type-
checking is performed.

• Linker expressions can be absolute or relocatable. If an expression contains any relocatable
symbols (and 0 or more constants or absolute symbols), it is relocatable. Otherwise, the
expression is absolute. If a symbol is assigned the value of a relocatable expression, it is
relocatable; if it is assigned the value of an absolute expression, it is absolute.

The linker supports the C language operators listed in the following table in order of precedence.
Operators in the same group have the same precedence. Besides the operators listed in this table,
the linker also has an align operator that allows a symbol to be aligned on an n-byte boundary
within an output section (n is a power of 2). For example, the following expression aligns the SPC
within the current section on the next 16-byte boundary. Because the align operator is a function
of the current SPC, it can be used only in the same context as . —that is, within a SECTIONS
directive.

. = align(16);

Groups of Operators Used in Expressions for highest to lowest precedence:

Precedence Group Operator Description
Group 1 ! Logical NOT

~ Bitwise NOT
- Negation

Group 2 * Multiplication
/ Division
% Modulus

Group 3 + Addition
- Subtraction

Group 4 >> Arithmetic right shift
continues on next page

3.8. Linker Description 410

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Table 3.5 – continued from previous page
Precedence Group Operator Description

<< Arithmetic left shift

Group 5 == Equal to
!= Not equal to
> Greater than
< Less than
<= Less than or equal to
>= Greater than or equal to

Group 6 & Bitwise AND

Group 7 | Bitwise OR

Group 8 && Logical AND

Group 9 || Logical OR

Group 10 = Assignment
+= A += B is equivalent to A = A + B
-= A -= B is equivalent to A = A - B
*= A *= B is equivalent to A = A * B
/= A /= B is equivalent to A = A / B

Symbols Automatically Defined by the Linker

The linker automatically defines the following symbols:

• .text is assigned the first address of the .text output section. (It marks the beginning of
executable code.)

• etext is assigned the first address following the .text output section. (It marks the end of
executable code.)

• .data is assigned the first address of the .data output section. (It marks the beginning of
initialized data tables.)

• edata is assigned the first address following the .data output section. (It marks the end of
initialized data tables.)

• .bss is assigned the first address of the .bss output section. (It marks the beginning of unini-
tialized data.)

3.8. Linker Description 411

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• end is assigned the first address following the .bss output section. (It marks the end of
uninitialized data.)

The linker automatically defines the following symbols for C/C++ support when the --ram_model
or --rom_model option is used.

__TI_STACK_SIZE is assigned the size of the .stack section.
__TI_STACK_END is assigned the end of the .stack section.
__TI_SYSMEM_SIZE is assigned the size of the .sysmem section.

See Using Linker Symbols in C/C++ Applications for information about referring to linker symbols
in C/C++ code.

Assigning Exact Start, End, and Size Values of a Section to a Symbol

The code generation tools currently support the ability to load program code in one area of (slow)
memory and run it in another (faster) area. This is done by specifying separate load and run
addresses for an output section or group in the linker command file. Then execute a sequence of
instructions (the copying code in Referring to the Load Address by Using the .label Directive) that
moves the program code from its load area to its run area before it is needed.

There are several responsibilities that a programmer must take on when setting up a system with
this feature. One of these responsibilities is to determine the size and run-time address of the
program code to be moved. The current mechanisms to do this involve use of the .label directives
in the copying code. A simple example is illustrated in Referring to the Load Address by Using the
.label Directive.

This method of specifying the size and load address of the program code has limitations. While
it works fine for an individual input section that is contained entirely within one source file, this
method becomes more complicated if the program code is spread over several source files or if the
programmer wants to copy an entire output section from load space to run space.

Why the Dot Operator Does Not Always Work

The dot operator (.) is used to define symbols at link-time with a particular address inside of an
output section. It is interpreted like a PC. Whatever the current offset within the current section
is, that is the value associated with the dot. Consider an output section specification within a
SECTIONS directive:

outsect:
{

s1.c.o(.text)
end_of_s1 = .;

(continues on next page)

3.8. Linker Description 412

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

start_of_s2 = .;
s2.c.o(.text)
end_of_s2 = .;

}

This statement creates three symbols:

• end_of_s1—the end address of .text in s1.c.o

• start_of_s2—the start address of .text in s2.c.o

• end_of_s2—the end address of .text in s2.c.o

Suppose there is padding between s1.c.o and s2.c.o created as a result of alignment. Then
start_of_s2 is not really the start address of the .text section in s2.c.o, but it is the address before the
padding needed to align the .text section in s2.c.o. This is due to the linker’s interpretation of the
dot operator as the current PC. It is also true because the dot operator is evaluated independently
of the input sections around it.

Another potential problem in the above example is that end_of_s2 may not account for any padding
that was required at the end of the output section. You cannot reliably use end_of_s2 as the end
address of the output section. One way to get around this problem is to create a dummy section
immediately after the output section in question. For example:

GROUP
{

outsect:
{

start_of_outsect = .;
...

}
dummy: { size_of_outsect = . - start_of_outsect; }

}

3.8. Linker Description 413

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Address and Dimension Operators

Six operators allow you to define symbols for load-time and run-time addresses and sizes:

LOAD_START(sym)
START(sym)

Defines sym with the load-time start address of related allocation
unit

LOAD_END(sym)
END(sym)

Defines sym with the load-time end address of related allocation
unit

LOAD_SIZE(sym)
SIZE(sym)

Defines sym with the load-time size of related allocation unit

RUN_START(sym) Defines sym with the run-time start address of related allocation
unit

RUN_END(sym) Defines sym with the run-time end address of related allocation unit
RUN_SIZE(sym) Defines sym with the run-time size of related allocation unit
LAST(sym) Defines sym with the run-time address of the last allocated byte in

the related memory range.

Note: Linker Command File Operator Equivalencies: LOAD_START() and START() are
equivalent, as are LOAD_END()/END() and LOAD_SIZE()/SIZE(). The LOAD names are rec-
ommended for clarity.

These address and dimension operators can be associated with several different kinds of allocation
units, including input items, output sections, GROUPs, and UNIONs. The following sections
provide some examples of how the operators can be used in each case.

Symbols defined by the linker can be accessed in C/C++ code using various techniques. See Using
Linker Symbols in C/C++ Applications for more information about referring to linker symbols in
C/C++ code.

Input Items

Consider an output section specification within a SECTIONS directive:

outsect:
{

s1.c.o(.text)
end_of_s1 = .;
start_of_s2 = .;
s2.c.o(.text)
end_of_s2 = .;

}

3.8. Linker Description 414

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

This can be rewritten using the START and END operators as follows:

outsect:
{

s1.c.o(.text) { END(end_of_s1) }
.c.o(.text) { START(start_of_s2), END(end_of_s2) }

}

The values of end_of_s1 and end_of_s2 will be the same as if you had used the dot operator in the
original example, but start_of_s2 would be defined after any necessary padding that needs to be
added between the two .text sections. Remember that the dot operator would cause start_of_s2 to
be defined before any necessary padding is inserted between the two input sections.

The syntax for using these operators in association with input sections calls for braces { } to enclose
the operator list. The operators in the list are applied to the input item that occurs immediately
before the list.

Output Section

The START, END, and SIZE operators can also be associated with an output section. Here is an
example:

outsect: START(start_of_outsect), SIZE(size_of_outsect)
{

<list of input items>
}

In this case, the SIZE operator defines size_of_outsect to incorporate any padding that is required
in the output section to conform to any alignment requirements that are imposed.

The syntax for specifying the operators with an output section does not require braces to enclose
the operator list. The operator list is simply included as part of the allocation specification for an
output section.

GROUPs

Here is another use of the START and SIZE operators in the context of a GROUP specification:

GROUP
{

outsect1: { ... }
outsect2: { ... }

} load = ROM, run = RAM, START(group_start), SIZE(group_size);

3.8. Linker Description 415

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

This can be useful if the whole GROUP is to be loaded in one location and run in another. The
copying code can use group_start and group_size as parameters for where to copy from and how
much is to be copied. This makes the use of .label in the source code unnecessary.

UNIONs

The RUN_SIZE and LOAD_SIZE operators provide a mechanism to distinguish between the size
of a UNION’s load space and the size of the space where its constituents are going to be copied
before they are run. Here is an example:

UNION: run = RAM, LOAD_START(union_load_addr),
LOAD_SIZE(union_ld_sz), RUN_SIZE(union_run_sz)

{
.text1: load = ROM, SIZE(text1_size) { f1.c.o(.text) }
.text2: load = ROM, SIZE(text2_size) { f2.c.o(.text) }

}

Here union_ld_sz is going to be equal to the sum of the sizes of all output sections placed in the
union. The union_run_sz value is equivalent to the largest output section in the union. Both of
these symbols incorporate any padding due to blocking or alignment requirements.

LAST Operator

The LAST operator is similar to the START and END operators that were described previously.
However, LAST applies to a memory range rather than to a section. You can use it in a MEMORY
directive to define a symbol that can be used at run-time to learn how much memory was allocated
when linking the program. See MEMORY Directive Syntax for syntax details.

For example, a memory range might be defined as follows:

D_MEM : org = 0x20000020 len = 0x20000000 LAST(dmem_end)

Your C/C++ code can then access this symbol at runtime as described in Using Linker Symbols in
C/C++ Applications.

Creating and Filling Holes

The linker provides you with the ability to create areas within output sections that have nothing
linked into them. These areas are called holes. In special cases, uninitialized sections can also be
treated as holes. This section describes how the linker handles holes and how you can fill holes
(and uninitialized sections) with values.

3.8. Linker Description 416

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Initialized and Uninitialized Sections

• Creating Holes

• Filling Holes

• Explicit Initialization of Uninitialized Sections

Initialized and Uninitialized Sections

There are two rules to remember about the contents of output sections. An output section contains
either:

• Raw data for the entire section

• No raw data

A section that has raw data is referred to as initialized. This means that the object file contains the
actual memory image contents of the section. When the section is loaded, this image is loaded into
memory at the section’s specified starting address. The .text and .data sections always have raw
data if anything was placed in them.

By default, the .bss section (see Uninitialized Sections) has no raw data (it is uninitialized). It
occupies space in the memory map but has no actual contents. Uninitialized sections typically
reserve space in fast external memory for variables. In the object file, an uninitialized section has
a normal section header and can have symbols defined in it; no memory image, however, is stored
in the section.

Creating Holes

You can create a hole in an initialized output section. A hole is created when you force the linker
to leave extra space between input sections within an output section. When such a hole is created,
the linker must supply raw data for the hole.

Holes can be created only within output sections. Space can exist between output sections, but
such space is not a hole. To fill the space between output sections, see MEMORY Directive Syntax.

To create a hole in an output section, you must use a special type of linker assignment statement
within an output section definition. The assignment statement modifies the SPC (denoted by .) by
adding to it assigning a greater value to it, or aligning it on an address boundary. The operators,
expressions, an syntaxes of assignment statements are described in Assigning Symbols at Link
Time.

The following example uses assignment statements to create holes in output sections:

3.8. Linker Description 417

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

SECTIONS
{

outsect:
{

file1.c.o(.text)
. += 0x0100 /* Create a hole with size 0x0100 */
file2.c.o(.text)
. = align(16); /* Create a hole to align the SPC */
file3.c.o(.text)

}
}

The output section outsect is built as follows:

1. The .text section from file1.c.o is linked in.

2. The linker creates a 256-byte hole.

3. The .text section from file2.c.o is linked in after the hole.

4. The linker creates another hole by aligning the SPC on a 16-byte boundary.

5. Finally, the .text section from file3.c.o is linked in.

All values assigned to the . symbol within a section refer to the relative address within the section.
The linker handles assignments to the . symbol as if the section started at address 0 (even if you
have specified a binding address). Consider the statement . = align(16) in the example. This
statement effectively aligns the file3.c.o .text section to start on a 16-byte boundary within outsect.
If outsect is ultimately allocated to start on an address that is not aligned, the file3.c.o .text section
will not be aligned either.

The . symbol refers to the current run address, not the current load address, of the section.

Expressions that decrement the . symbol are illegal. For example, it is invalid to use the -= operator
in an assignment to the . symbol. The most common operators used in assignments to the . symbol
are += and align.

If an output section contains all input sections of a certain type (such as .text), you can use the
following statements to create a hole at the beginning or end of the output section.

.text: { .+= 0x0100; } /* Hole at the beginning */

.data: { *(.data)
. += 0x0100; } /* Hole at the end */

Another way to create a hole in an output section is to combine an uninitialized section with an
initialized section to form a single output section. In this case, the linker treats the uninitialized
section as a hole and supplies data for it. The following example illustrates this method:

3.8. Linker Description 418

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

SECTIONS
{

outsect:
{

file1.c.o(.text)
file1.c.o(.bss) /* This becomes a hole */

}
}

Because the .text section has raw data, all of outsect must also contain raw data. Therefore, the
uninitialized .bss section becomes a hole.

Uninitialized sections become holes only when they are combined with initialized sections. If
several uninitialized sections are linked together, the resulting output section is also uninitialized.

Filling Holes

When a hole exists in an initialized output section, the linker must supply raw data to fill it. The
linker fills holes with a 32-bit fill value that is replicated through memory until it fills the hole. The
linker determines the fill value as follows:

1. If the hole is formed by combining an uninitialized section with an initialized section, you
can specify a fill value for the uninitialized section. Follow the section name with an = sign
and a 32-bit constant. For example:

SECTIONS
{ outsect:

{
file1.c.o(.text)
file2.c.o(.bss)= 0xFF00FF00 /* Fill this hole with

→˓0xFF00FF00 */
}

}

2. You can also specify a fill value for all the holes in an output section by supplying the fill
value after the section definition:

SECTIONS
{ outsect:fill = 0xFF00FF00 /* Fills holes with 0xFF00FF00 */

{
. += 0x0010; /* This creates a hole */
file1.c.o(.text)
file1.c.o(.bss) /* This creates another hole */

(continues on next page)

3.8. Linker Description 419

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

}
}

3. If you do not specify an initialization value for a hole, the linker fills the hole with the value
specified with the --fill_value option (see Set Default Fill Value (--fill_value Option)). For
example, suppose the command file link.cmd contains the following SECTIONS directive:

SECTIONS { .text: { .= 0x0100; } /* Create a 100 word hole */
→˓ }

Now invoke the linker with the --fill_value option:

c29clang -Wl,--fill_value=0xFFFFFFFF link.cmd

This fills the hole with 0xFFFFFFFF.

4. If you do not invoke the linker with the --fill_value option or otherwise specify a fill value,
the linker fills holes with 0s.

Whenever a hole is created and filled in an initialized output section, the hole is identified in the
link map along with the value the linker uses to fill it.

Explicit Initialization of Uninitialized Sections

You can force the linker to initialize an uninitialized section by specifying an explicit fill value for
it in the SECTIONS directive. This causes the entire section to have raw data (the fill value). For
example:

SECTIONS
{

.bss: fill = 0x12341234 /* Fills .bss with 0x12341234 */
}

Note: Filling Sections

Because filling a section (even with 0s) causes raw data to be generated for the entire section in the
output file, your output file will be very large if you specify fill values for large sections or holes.

3.8. Linker Description 420

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.8.6 Linker Symbols

This section provides information about using and resolving linker symbols.

Contents:

Using Linker Symbols in C/C++ Applications

Linker symbols have a name and a value. The value is a 32-bit unsigned integer, even if it represents
a pointer value on a target that has pointers smaller than 32 bits.

The most common kind of symbol is generated by the compiler for each function and variable.
The value represents the target address where that function or variable is located. When you refer
to the symbol by name in the linker command file, you get that 32-bit integer value.

However, in C and C++ names mean something different. If you have a variable named x that
contains the value Y, and you use the name “x” in your C program, you are actually referring to
the contents of variable x. If “x” is used on the right-hand side of an expression, the compiler
fetches the value Y. To realize this variable, the compiler generates a linker symbol named x with
the value &x. Even though the C/C++ variable and the linker symbol have the same name, they
don’t represent the same thing. In C, x is a variable name with the address &x and content Y. For
linker symbols, x is an address, and that address contains the value Y.

Because of this difference, there are some tricks to referring to linker symbols in C code. The basic
technique is to cause the compiler to create a “fake” C variable or function and take its address.
The details differ depending on the type of linker symbol.

Linker symbols that represent a function address: In C code, declare the function as an extern
function. Then, refer to the value of the linker symbol using the same name. This works because
function pointers “decay” to their address value when used without adornment. For example:

extern void _c_int00(void);

printf("_c_int00 %lx\n", (unsigned long)&_c_int00);

Suppose your linker command file defines the following linker symbol:

func_sym=printf+100;

Your C application can refer to this symbol as follows:

extern void func_sym(void);

printf("func_sym %lx\n", (unsigned long)&func_sym);

Linker symbols that represent a data address: In C code, declare the variable as an extern
variable. Then, refer to the value of the linker symbol using the & operator. Because the variable

3.8. Linker Description 421

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

is at a valid data address, we know that a data pointer can represent the value.

Suppose your linker command file defines the following linker symbols:

data_sym=.data+100; xyz=12345

Your C application can refer to these symbols as follows:

extern char data_sym;
extern int xyz;

printf("data_sym %p\n", &data_sym); myvar = &xyz;

Linker symbols for an arbitrary address: In C code, declare the linker symbol as an extern
symbol. The type does not matter. If you are using GCC extensions, declare it as “extern void”. If
you are not using GCC extensions, declare it as “extern char”. Then, refer to the value of the linker
symbol mySymbol as &mySymbol.

Suppose your linker command file defines the following linker symbol:

abs_sym=0x12345678;

Your C application can refer to this symbol as follows:

extern char abs_sym;

printf("abs_sym %lx\n", &abs_sym);

Note: This technique assumes that the pointer to the symbol is 32 bits, which matches the 32-bit
value of the linker symbol.

Declaring Weak Symbols

In a linker command file, an assignment expression outside a MEMORY or SECTIONS directive
can be used to define a linker-defined symbol. To define a weak symbol in a linker command file,
use the “weak” operator in an assignment expression to designate that the symbol as eligible for
removal from the output file’s symbol table if it is not referenced. For example, you can define
“ext_addr_sym” as follows:

weak(ext_addr_sym) = 0x12345678;

When the linker command file is used to perform the final link, then “ext_addr_sym” is presented
to the linker as a weak absolute symbol; it will not be included in the resulting output file if the
symbol is not referenced.

3.8. Linker Description 422

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

See Weak Symbols for details about how weak symbols are handled by the linker.

Resolving Symbols with Object Libraries

An object library is a partitioned archive file that contains object files as members. Usually, a
group of related modules are grouped together into a library. When you specify an object library
as linker input, the linker includes any members of the library that define existing unresolved
symbol references. You can use the archiver to build and maintain libraries. Archiver Description
contains more information about the archiver.

Using object libraries can reduce link time and the size of the executable module. Normally, if an
object file that contains a function is specified at link time, the file is linked whether the function is
used or not; however, if that same function is placed in an archive library, the file is included only
if the function is referenced.

The order in which libraries are specified is important, because the linker includes only those
members that resolve symbols that are undefined at the time the library is searched. The same
library can be specified as often as necessary; it is searched each time it is included. Alternatively,
you can use the --reread_libs option to reread libraries until no more references can be resolved
(see Exhaustively Read and Search Libraries (--reread_libs and --priority Options). A library has
a table that lists all external symbols defined in the library; the linker searches through the table
until it determines that it cannot use the library to resolve any more references.

The following examples link several files and libraries, using these assumptions:

• Input files f1.c.o and f2.c.o both reference an external function named clrscr.

• Input file f1.c.o references the symbol origin.

• Input file f2.c.o references the symbol fillclr.

• Member 0 of library libc.lib contains a definition of origin.

• Member 3 of library liba.lib contains a definition of fillclr.

• Member 1 of both libraries defines clrscr.

If you enter:

c29clang f1.c.o f2.c.o liba.lib libc.lib

then:

• Member 1 of liba.lib satisfies the f1.c.o and f2.c.o references to clrscr because the library is
searched and the definition of clrscr is found.

• Member 0 of libc.lib satisfies the reference to origin.

• Member 3 of liba.lib satisfies the reference to fillclr.

If, however, you enter:

3.8. Linker Description 423

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

c29clang f1.c.o f2.c.o libc.lib liba.lib

then the references to clrscr are satisfied by member 1 of libc.lib.

If none of the linked files reference symbols defined in a library, you can use the --undef_sym
option to force the linker to include a library member. (See Introduce an Unresolved Symbol (--
undef_sym Option).) The next example creates an undefined symbol rout1 in the linker’s global
symbol table:

c29clang -Wl,--undef_sym=rout1 libc.lib

If any member of libc.lib defines rout1, the linker includes that member.

Library members are allocated according to the SECTIONS directive default allocation algorithm;
see The SECTIONS Directive.

Alter the Library Search Algorithm (--library, --search_path) describes methods for specifying
directories that contain object libraries.

3.8.7 Default Placement Algorithm

The MEMORY and SECTIONS directives provide flexible methods for building, combining, and
allocating sections. However, any memory locations or sections you choose not to specify must still
be handled by the linker. The linker uses algorithms to build and allocate sections in coordination
with any specifications you do supply.

If you do not use the MEMORY and SECTIONS directives, the linker allocates output sections as
though the memory map and section definitions shown in the following example were specified.

{
RAM : origin = 0x00000000, length = 0xFFFFFFFF

}

SECTIONS
{

.text : ALIGN(4) {} > RAM

.const: ALIGN(4) {} > RAM

.rodata: ALIGN(4) {} > RAM

.data : ALIGN(4) {} > RAM

.bss : ALIGN(4) {} > RAM

.cinit: ALIGN(4) {} > RAM /* -c option only */

.pinit: ALIGN(4) {} > RAM /* -c option only */
}

See Combining Input Sections for information about default memory allocation.

3.8. Linker Description 424

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

All .text input sections are concatenated to form a .text output section in the executable output file,
and all .data input sections are combined to form a .data output section.

If you use a SECTIONS directive, the linker performs no part of this default allocation. Instead,
allocation is performed according to the rules specified by the SECTIONS directive and the general
algorithm described next in How the Allocation Algorithm Creates Output Sections.

Contents:

How the Allocation Algorithm Creates Output Sections

An output section can be formed in one of two ways:

• Method 1: As the result of a SECTIONS directive definition.

• Method 2: By combining input sections with the same name into an output section that is
not defined in a SECTIONS directive.

If an output section is formed as a result of a SECTIONS directive, this definition completely
determines the section’s contents. (See The SECTIONS Directive for examples of how to define an
output section’s content.)

If an output section is formed by combining input sections not specified by a SECTIONS directive,
the linker combines all such input sections that have the same name into an output section with that
name. For example, suppose the files f1.c.o and f2.c.o both contain named sections called Vectors
and that the SECTIONS directive does not define an output section for them. The linker combines
the two Vectors sections from the input files into a single output section named Vectors, allocates
it into memory, and includes it in the output file.

By default, the linker does not display a message when it creates an output section that is not
defined in the SECTIONS directive. You can use the --warn_sections linker option (see Display a
Message When an Undefined Output Section Is Created (--warn_sections)) to cause the linker to
display a message when it creates a new output section.

After the linker determines the composition of all output sections, it must allocate them into con-
figured memory. The MEMORY directive specifies which portions of memory are configured.
If there is no MEMORY directive, the linker uses the default configuration as shown in Default
Placement Algorithm. (See The MEMORY Directive for more information on configuring mem-
ory.)

3.8. Linker Description 425

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Reducing Memory Fragmentation

The linker’s allocation algorithm attempts to minimize memory fragmentation. This allows mem-
ory to be used more efficiently and increases the probability that your program will fit into memory.
The algorithm comprises these steps:

1. Each output section for which you supply a specific binding address is placed in memory at
that address.

2. Each output section that is included in a specific, named memory range or that has mem-
ory attribute restrictions is allocated. Each output section is placed into the first avail-
able space within the named area, considering alignment where necessary, unless the
–honor_cmdfile_order option is used, in which case the output section is placed with re-
spect to its sequence order as defined by the linker command file.

3. Any remaining sections are allocated in the order in which they are defined. Sections not
defined in a SECTIONS directive are allocated in the order in which they are encountered.
Each output section is placed into the first available memory space, considering alignment
where necessary.

3.8.8 Using Linker-Generated Copy Tables

The linker supports extensions to the linker command file syntax that enable the following:

• Make it easier for you to copy objects from load-space to run-space at boot time

• Make it easier for you to manage memory overlays at run time

• Allow you to split GROUPs and output sections that have separate load and run addresses

For an introduction to copy tables and their use, see About Linker-Generated Copy Tables.

Contents:

Using Copy Tables for Boot Loading

In some embedded applications, there is a need to copy or download code and/or data from one
location to another at boot time before the application actually begins its main execution thread.
For example, an application may have its code and/or data in FLASH memory and need to copy it
into on-chip memory before the application begins execution.

One way to develop such an application is to create a copy table in assembly code that contains
three elements for each block of code or data that needs to be moved from FLASH to on-chip
memory at boot time:

• The load address

• The run address

3.8. Linker Description 426

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The size

The process you follow to develop such an application might look like this:

1. Build the application to produce a .map file that contains the load and run addresses of each
section that has a separate load and run placement.

2. Edit the copy table (used by the boot loader) to correct the load and run addresses as well as
the size of each block of code or data that needs to be moved at boot time.

3. Build the application again, incorporating the updated copy table.

4. Run the application.

This process puts a heavy burden on you to maintain the copy table (by hand, no less). Each time
a piece of code or data is added or removed from the application, you must repeat the process in
order to keep the contents of the copy table up to date.

Using Built-in Link Operators in Copy Tables

You can avoid some of this maintenance burden by using the LOAD_START(), RUN_START(),
and SIZE() operators that are already part of the linker command file syntax . For example, instead
of building the application to generate a .map file, the linker command file can be annotated:

SECTIONS
{

.flashcode: { app_tasks.c.o(.text) }
load = FLASH, run = PMEM,
LOAD_START(_flash_code_ld_start),
RUN_START(_flash_code_rn_start),
SIZE(_flash_code_size)

...
}

In this example, the LOAD_START(), RUN_START(), and SIZE() operators instruct the linker to
create three symbols:

Symbol Description
_flash_code_ld_start Load address of .flashcode section
_flash_code_rn_start Run address of .flashcode section
_flash_code_size Size of .flashcode section

These symbols can then be referenced from the copy table. The actual data in the copy table will
be updated automatically each time the application is linked. This approach removes step 1 of the
process described in Using Copy Tables for Boot Loading.

3.8. Linker Description 427

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

While maintenance of the copy table is reduced markedly, you must still carry the burden of keep-
ing the copy table contents in sync with the symbols that are defined in the linker command file.
Ideally, the linker would generate the boot copy table automatically. This would avoid having to
build the application twice and free you from having to explicitly manage the contents of the boot
copy table.

For more information on the LOAD_START(), RUN_START(), and SIZE() operators, see Address
and Dimension Operators.

Overlay Management Example

Consider an application that contains a memory overlay that must be managed at run time. The
memory overlay is defined using a UNION in the linker command file as illustrated in the following
example:

SECTIONS
{

...
UNION
{

GROUP
{

.task1: { task1.c.o(.text) }

.task2: { task2.c.o(.text) }
} load = ROM, LOAD_START(_task12_load_start), SIZE(_

→˓task12_size)

GROUP
{

.task3: { task3.c.o(.text) }

.task4: { task4.c.o(.text) }
} load = ROM, LOAD_START(_task34_load_start), SIZE(_task_

→˓34_size)
} run = RAM, RUN_START(_task_run_start)
...

}

The application must manage the contents of the memory overlay at run time. That is, whenever
any services from .task1 or .task2 are needed, the application must first ensure that .task1 and .task2
are resident in the memory overlay. Similarly for .task3 and .task4.

To affect a copy of .task1 and .task2 from ROM to RAM at run time, the application must first gain
access to the load address of the tasks (_task12_load_start), the run address (_task_run_start), and
the size (_task12_size). Then this information is used to perform the actual code copy.

3.8. Linker Description 428

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Generating Copy Tables With the table() Operator

The linker supports extensions to the linker command file syntax that enable you to do the follow-
ing:

• Identify any object components that may need to be copied from load space to run space at
some point during the run of an application

• Instruct the linker to automatically generate a copy table that contains (at least) the load
address, run address, and size of the component that needs to be copied

• Instruct the linker to generate a symbol specified by you that provides the address of a linker-
generated copy table.

For instance, Overlay Management Example can be written as shown in the following example:

SECTIONS
{

...
UNION
{

GROUP
{

.task1: { task1.c.o(.text) }

.task2: { task2.c.o(.text) }
} load = ROM, table(_task12_copy_table)

GROUP
{

.task3: { task3.c.o(.text) }

.task4: { task4.c.o(.text) }
} load = ROM, table(_task34_copy_table)

} run = RAM
...

}

Using the SECTIONS directive from this example linker command file, the linker generates
two copy tables named: _task12_copy_table and _task34_copy_table. Each copy table provides
the load address, run address, and size of the GROUP that is associated with the copy table.
This information is accessible from application source code using the linker-generated symbols,
_task12_copy_table and _task34_copy_table, which provide the addresses of the two copy tables,
respectively.

Using this method, you need not worry about the creation or maintenance of a copy table. You can
reference the address of any copy table generated by the linker in C/C++ source code, passing that
value to a general-purpose copy routine, which will process the copy table and affect the actual
copy.

3.8. Linker Description 429

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The table() Operator

• Boot-Time Copy Tables

• Using the table() Operator to Manage Object Components

• Linker-Generated Copy Table Sections and Symbols

• Splitting Object Components and Overlay Management

The table() Operator

You can use the table() operator to instruct the linker to produce a copy table. A table() operator
can be applied to an output section, a GROUP, or a UNION member. The copy table generated for
a particular table() specification can be accessed through a symbol specified by you that is provided
as an argument to the table() operator. The linker creates a symbol with this name and assigns it
the address of the copy table as the value of the symbol. The copy table can then be accessed from
the application using the linker-generated symbol.

Each table() specification you apply to members of a given UNION must contain a unique name. If
a table() operator is applied to a GROUP, then none of that GROUP’s members may be marked with
a table() specification. The linker detects violations of these rules and reports them as warnings,
ignoring each offending use of the table() specification. The linker does not generate a copy table
for erroneous table() operator specifications.

Copy tables can be generated automatically; see Generating Copy Tables With the table() Operator.
The table operator can be used with compression; see Compression.

Boot-Time Copy Tables

The linker supports a special copy table name, BINIT (or binit), that you can use to create a boot-
time copy table. This table is handled before the .cinit section is used to initialize variables at
startup. For example, the linker command file for the boot-loaded application described in Using
Built-in Link Operators in Copy Tables can be rewritten as follows:

SECTIONS
{

.flashcode: { app_tasks.c.o(.text) }
load = FLASH, run = PMEM,

table(BINIT)
...

}

3.8. Linker Description 430

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

For this example, the linker creates a copy table that can be accessed through a special linker-
generated symbol, __binit__, which contains the list of all object components that need to be
copied from their load location to their run location at boot-time. If a linker command file does not
contain any uses of table(BINIT), then the __binit__ symbol is given a value of -1 to indicate that
a boot-time copy table does not exist for a particular application.

You can apply the table(BINIT) specification to an output section, GROUP, or UNION member.
If used in the context of a UNION, only one member of the UNION can be designated with ta-
ble(BINIT). If applied to a GROUP, then none of that GROUP’s members may be marked with
table(BINIT). The linker detects violations of these rules and reports them as warnings, ignoring
each offending use of the table(BINIT) specification.

Using the table() Operator to Manage Object Components

If you have several pieces of code that need to be managed together, then you can apply the same
table() operator to several different object components. In addition, if you want to manage a
particular object component in multiple ways, you can apply more than one table() operator to it.
Consider the linker command file excerpt in the following example:

SECTIONS
{

UNION
{

.first: { a1.c.o(.text), b1.c.o(.text), c1.c.o(.text) }
load = EMEM, run = PMEM, table(BINIT), table(_first_

→˓ctbl)
.second: { a2.c.o(.text), b2.c.o(.text) }

load = EMEM, run = PMEM, table(_second_ctbl)
}
.extra: load = EMEM, run = PMEM, table(BINIT)
...

}

In this example, the output sections .first and .extra are copied from external memory (EMEM)
into program memory (PMEM) at boot time while processing the BINIT copy table. After the
application has started executing its main thread, it can then manage the contents of the overlay
using the two overlay copy tables named: _first_ctbl and _second_ctbl.

3.8. Linker Description 431

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Linker-Generated Copy Table Sections and Symbols

The linker creates and allocates a separate input section for each copy table that it generates.
Each copy table symbol is defined with the address value of the input section that contains the
corresponding copy table.

The linker generates a unique name for each overlay copy table input section. For example,
table(_first_ctbl) would place the copy table for the .first section into an input section called
.ovly:_first_ctbl. The linker creates a single input section, .binit, to contain the entire boot-time
copy table.

The following example shows how you can control the placement of the linker-generated copy
table sections using the input section names in the linker command file.

SECTIONS
{

UNION
{

.first: { a1.c.o(.text), b1.c.o(.text), c1.c.o(.text) }
load = EMEM, run = PMEM, table(BINIT), table(_first_

→˓ctbl)
.second: { a2.c.o(.text), b2.c.o(.text) }

load = EMEM, run = PMEM, table(_second_ctbl)
}
.extra: load = EMEM, run = PMEM, table(BINIT)
...
.ovly: { } > BMEM
.binit: { } > BMEM

}

For the linker command file in this example, the boot-time copy table is generated into a .binit
input section, which is collected into the .binit output section, which is mapped to an address in the
BMEM memory area. The _first_ctbl is generated into the .ovly:_first_ctbl input section and the
_second_ctbl is generated into the .ovly:_second_ctbl input section. Since the base names of these
input sections match the name of the .ovly output section, the input sections are collected into the
.ovly output section, which is then mapped to an address in the BMEM memory area.

If you do not provide explicit placement instructions for the linker-generated copy table sections,
they are allocated according to the linker’s default placement algorithm.

The linker does not allow other types of input sections to be combined with a copy table input
section in the same output section. The linker does not allow a copy table section that was created
from a partial link session to be used as input to a succeeding link session.

3.8. Linker Description 432

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Splitting Object Components and Overlay Management

It is possible to split sections that have separate load and run placement instructions. The linker
can access both the load address and run address of every piece of a split object component. Using
the table() operator, you can tell the linker to generate this information into a copy table. The linker
gives each piece of the split object component a COPY_RECORD entry in the copy table object.

For example, consider an application which has seven tasks. Tasks 1 through 3 are overlaid with
tasks 4 through 7 (using a UNION directive). The load placement of all of the tasks is split among
four different memory areas (LMEM1, LMEM2, LMEM3, and LMEM4). The overlay is defined
as part of memory area PMEM. You must move each set of tasks into the overlay at run time before
any services from the set are used.

You can use table() operators in combination with splitting operators, >>, to create copy tables that
have all the information needed to move either group of tasks into the memory overlay as shown
the following example:

SECTIONS
{

UNION
{

.task1to3: { *(.task1), *(.task2), *(.task3) }
load >> LMEM1 | LMEM2 | LMEM4, table(_task13_ctbl)

GROUP
{

.task4: { *(.task4) }

.task5: { *(.task5) }

.task6: { *(.task6) }

.task7: { *(.task7) }
} load >> LMEM1 | LMEM3 | LMEM4, table(_task47_ctbl)

} run = PMEM
...
.ovly: > LMEM4

}

The following example illustrates a possible driver for such an application.

#include <cpy_tbl.h>

extern far COPY_TABLE task13_ctbl;
extern far COPY_TABLE task47_ctbl;

extern void task1(void);
...

(continues on next page)

3.8. Linker Description 433

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

extern void task7(void);

main() {
...
copy_in(&task13_ctbl);
task1();
task2();
task3();
...

copy_in(&task47_ctbl);
task4();
task5();
task6();
task7();
...

}

You must declare a COPY_TABLE object as far to allow the overlay copy table section placement
to be independent from the other sections containing data objects (such as .bss).

The contents of the .task1to3 section are split in the section’s load space and contiguous in its run
space. The linker-generated copy table, _task13_ctbl, contains a separate COPY_RECORD for
each piece of the split section .task1to3. When the address of _task13_ctbl is passed to copy_in(),
each piece of .task1to3 is copied from its load location into the run location.

The contents of the GROUP containing tasks 4 through 7 are also split in load space. The linker
performs the GROUP split by applying the split operator to each member of the GROUP in order.
The copy table for the GROUP then contains a COPY_RECORD entry for every piece of every
member of the GROUP. These pieces are copied into the memory overlay when the _task47_ctbl
is processed by copy_in().

The split operator can be applied to an output section, GROUP, or the load placement of a UNION
or UNION member. The linker does not permit a split operator to be applied to the run placement
of either a UNION or of a UNION member. The linker detects such violations, emits a warning,
and ignores the offending split operator usage.

3.8. Linker Description 434

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Compression

When automatically generating copy tables, the linker provides a way to compress the load-space
data. This can reduce the read-only memory foot print. This compressed data can be decompressed
while copying the data from load space to run space.

You can specify compression in two ways:

• The linker command line option --copy_compression= compression_kind can be used to
apply the specified compression to any output section that has a table() operator applied to
it.

• The table() operator accepts an optional compression parameter. The syntax is:

table(name, compression=compression_kind)

The compression_kind can be one of the following types:

• off. Don’t compress the data.

• rle. Compress data using Run Length Encoding.

• lzss. Compress data using Lempel-Ziv-Storer-Szymanski compression.

A table() operator without the compression keyword uses the compression kind specified using the
command line option --copy_compression.

When you choose compression, it is not guaranteed that the linker will compress the load data.
The linker compresses load data only when such compression reduces the overall size of the load
space. In some cases even if the compression results in smaller load section size the linker does
not compress the data if the decompression routine offsets for the savings.

For example, assume RLE compression reduces the size of section1 by 30 bytes. Also assume the
RLE decompression routine takes up 40 bytes in load space. By choosing to compress section1
the load space is increased by 10 bytes. Therefore, the linker will not compress section1. On the
other hand, if there is another section (say section2) that can benefit by more than 10 bytes from
applying the same compression then both sections can be compressed and the overall load space is
reduced. In such cases the linker compresses both the sections.

You cannot force the linker to compress the data when doing so does not result in savings.

You cannot compress the decompression routines or any member of a GROUP containing .cinit.

• Compressed Copy Table Format

• Compressed Section Representation in the Object File

• Compressed Data Layout

• Run-Time Decompression

• Compression Algorithms

3.8. Linker Description 435

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Compressed Copy Table Format

The copy table format is the same irrespective of the compression_kind. The size field of the copy
record is overloaded to support compression. The following figure shows the compressed copy
table layout.

Figure 3.27: Compressed Copy Table Layout

If the rec_size in the copy record is non-zero it represents the size of the data to be copied, and also
means that the size of the load data is the same as the run data. When the size is 0, it means that
the load data is compressed.

Compressed Section Representation in the Object File

The linker creates a separate input section to hold the compressed data. Consider the following
table() operation in the linker command file.

SECTIONS
{

.task1: load = ROM, run = RAM, table(_task1_table)
}

The output object file has one output section named .task1 which has different load and run ad-
dresses. This is possible because the load space and run space have identical data when the section
is not compressed.

Alternatively, consider the following:

SECTIONS
{

.task1: load = ROM, run = RAM, table(_task1_table,
→˓compression=rle)
}

If the linker compresses the .task1 section then the load space data and the run space data are
different. The linker creates the following two sections:

• .task1: This section is uninitialized. This output section represents the run space image of
section task1.

• .task1.load: This section is initialized. This output section represents the load space image
of the section task1. This section usually is considerably smaller in size than .task1 output
section.

3.8. Linker Description 436

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The linker allocates load space for the .task1.load input section in the memory area that was spec-
ified for load placement for the .task1 section. There is only a single load section to represent the
load placement of .task1 - .task1.load. If the .task1 data had not been compressed, there would
be two allocations for the .task1 input section: one for its load placement and another for its run
placement.

Compressed Data Layout

The compressed load data has the following layout:

8-bit index : compressed data

The first 8 bits of the load data are the handler index. This handler index is used to index into
a handler table to get the address of a handler function that knows how to decode the data that
follows. The handler table is a list of 32-bit function pointers as shown in the following figure:

Figure 3.28: Handler Table

The linker creates a separate output section for the load and run space. For example, if .task1.load
is compressed using RLE, the handler index points to an entry in the handler table that has the
address of the run-time-support routine __TI_decompress_rle().

Run-Time Decompression

During run time you call the run-time-support routine copy_in() to copy the data from load space
to run space. The address of the copy table is passed to this routine. First the routine reads the
record count. Then it repeats the following steps for each record:

1. Read load address, run address and size from record.

2. If size is zero go to step 5.

3. Call memcpy passing the run address, load address and size.

4. Go to step 1 if there are more records to read.

5. Read the first byte from the load address. Call this index.

6. Read the handler address from (&__TI_Handler_Base)[index].

3.8. Linker Description 437

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

7. Call the handler and pass load address + 1 and run address.

8. Go to step 1 if there are more records to read.

The routines to handle the decompression of load data are provided in the run-time-support library.

Compression Algorithms

The following subsections provide information about decompression algorithms for the RLE and
LZSS formats. To see example decompression algorithms, refer to the following functions in the
Run-Time Support library:

• RLE: The __TI_decompress_rle() function in the copy_decompress_rle.c file.

• LZSS: The __TI_decompress_lzss() function in the copy_decompress_lzss.c file.

Run Length Encoding (RLE):

8-bit index : Initialization data compressed using RLE

The data following the 8-bit index is compressed using run length encoded (RLE) format. C29x
uses a simple run length encoding that can be decompressed using the following algorithm. See
copy_decompress_rle.c for details.

1. Read the first byte, Delimiter (D).

2. Read the next byte (B).

3. If B != D, copy B to the output buffer and go to step 2.

4. Read the next byte (L).

a. If L == 0, then length is either a 16-bit or 24-bit value or we’ve reached the end of the
data, read the next byte (L).

1. If L == 0, length is a 24-bit value or the end of the data is reached, read next byte
(L).

a. If L == 0, the end of the data is reached, go to step 7.

b. Else L <<= 16, read next two bytes into lower 16 bits of L to complete 24-bit
value for L.

2. Else L <<= 8, read next byte into lower 8 bits of L to complete 16-bit value for L.

b. Else if L > 0 and L < 4, copy D to the output buffer L times. Go to step 2.

c. Else, length is 8-bit value (L).

5. Read the next byte (C); C is the repeat character.

6. Write C to the output buffer L times; go to step 2.

7. End of processing.

3.8. Linker Description 438

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The C29x run-time support library has a routine __TI_decompress_rle24() to decompress data
compressed using RLE. The first argument to this function is the address pointing to the byte after
the 8-bit index. The second argument is the run address from the C auto initialization record.

Note: RLE Decompression Routine The previous decompression routine,
__TI_decompress_rle(), is included in the run-time-support library for decompressing RLE
encodings that are generated by older versions of the linker.

Lempel-Ziv-Storer-Szymanski Compression (LZSS):

8-bit index Data compressed using LZSS

The data following the 8-bit index is compressed using LZSS compression. The C29x run-time-
support library has the routine __TI_decompress_lzss() to decompress the data compressed using
LZSS. The first argument to this function is the address pointing to the byte after the 8-bit Index,
and the second argument is the run address from the C auto initialization record.

See copy_decompress_lzss.c for details on the LZSS algorithm.

Copy Table Contents

To use a copy table generated by the linker, you must know the contents of the copy table. This
information is included in a run-time-support library header file, cpy_tbl.h, which contains a C
source representation of the copy table data structure that is generated by the linker. The following
example shows the copy table header file.

/
→˓***/
→˓

/* cpy_tbl.h v#####
→˓ */
/* Copyright (c) 2003 Texas Instruments Incorporated

→˓ */
/*

→˓ */
/* Specification of copy table data structures which can be

→˓automatically */
/* generated by the linker (using the table() operator in the

→˓LCF). */
/

→˓***/
→˓

#ifndef _CPY_TBL
(continues on next page)

3.8. Linker Description 439

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

#define _CPY_TBL

#ifdef __cplusplus
extern "C" namespace std {
#endif /* __cplusplus */

/
→˓***/
→˓

/* Copy Record Data Structure
→˓ */
/

→˓***/
→˓

typedef struct copy_record
{

unsigned int load_addr;
unsigned int run_addr;
unsigned int size;

} COPY_RECORD;

/
→˓***/
→˓

/* Copy Table Data Structure
→˓ */
/

→˓***/
→˓

typedef struct copy_table
{

unsigned short rec_size;
unsigned short num_recs;
COPY_RECORD recs[1];

} COPY_TABLE;

/
→˓***/
→˓

/* Prototype for general-purpose copy routine.
→˓ */
/

→˓***/
→˓

(continues on next page)

3.8. Linker Description 440

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

extern void copy_in(COPY_TABLE *tp);

#ifdef __cplusplus
} /* extern "C" namespace std */

#ifndef _CPP_STYLE_HEADER
using std::COPY_RECORD;
using std::COPY_TABLE;
using std::copy_in;
#endif /* _CPP_STYLE_HEADER */
#endif /* __cplusplus */
#endif /* !_CPY_TBL */

For each object component that is marked for a copy, the linker creates a COPY_RECORD object
for it. Each COPY_RECORD contains at least the following information for the object component:

• The load address

• The run address

• The size

The linker collects all COPY_RECORDs that are associated with the same copy table into a
COPY_TABLE object. The COPY_TABLE object contains the size of a given COPY_RECORD,
the number of COPY_RECORDs in the table, and the array of COPY_RECORDs in the table. For
instance, in the BINIT example in Boot-Time Copy Tables, the .first and .extra output sections will
each have their own COPY_RECORD entries in the BINIT copy table. The BINIT copy table will
then look like this:

COPY_TABLE __binit__ = { 12, 2,
{ <load address of .first>,

<run address of .first>,
<size of .first> },

{ <load address of .extra>,
<run address of .extra>,
<size of .extra> } };

3.8. Linker Description 441

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

General-Purpose Copy Routine

The cpy_tbl.h file in Copy Table Contents also contains a prototype for a general-purpose copy
routine, copy_in(), which is provided as part of the run-time-support library. The copy_in() routine
takes a single argument: the address of a linker-generated copy table. The routine then processes
the copy table data object and performs the copy of each object component specified in the copy
table.

The copy_in() function definition is provided in the cpy_tbl.c run-time-support source file shown
in the following example.

/
→˓***/
→˓

/* cpy_tbl.c v#####
→˓ */
/*

→˓ */
/* General-purpose copy routine. Given the address of a linker-

→˓generated */
/* COPY_TABLE data structure, effect the copy of all object

→˓components */
/* that are designated for copy via the corresponding LCF

→˓table() operator. */
/

→˓***/
→˓

#include <cpy_tbl.h>
#include <string.h>

typedef void (*handler_fptr)(const unsigned char *in, unsigned
→˓char *out)

/
→˓***/
→˓

/* COPY_IN()
→˓ */
/

→˓***/
→˓

void copy_in(COPY_TABLE *tp)
{

unsigned short I;
(continues on next page)

3.8. Linker Description 442

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

for (I = 0; I < tp->num_recs; I++)
{

COPY_RECORD crp = tp->recs[i];
unsigned char *ld_addr = (unsigned char *)crp.load_addr;
unsigned char *rn_addr = (unsigned char *)crp.run_addr;

if (crp.size)
{

/*---
→˓---------------*/

/* Copy record has a non-zero size so the data is
→˓not compressed. */

/* Just copy the data.
→˓ */

/*---
→˓---------------*/

memcpy(rn_addr, ld_addr, crp.size);
}

}
}

3.8.9 Linker-Generated CRC Tables and CRC Over Memory Ranges

The linker supports an extension to the linker command file syntax that enables the verification of
code or data by means of Cyclic Redundancy Code (CRC). The linker computes a CRC value for
the specified region at link time, and stores that value in target memory such that it is accessible at
boot or run time. The application code can then compute the CRC for that region and ensure that
the value matches the linker-computed value.

In a linker command file, you can cause CRC values to be generated for the following:

• CRC for a section: Use the crc_table() operator within the SECTIONS directive. See Using
the crc_table() Operator in the SECTIONS Directive.

• CRC for memory range: Use the crc() operator for a GROUP in a MEMORY directive.
See Using the crc_table() Operator in the MEMORY Directive.

The run-time-support library does not supply a routine to calculate CRC values at boot or run
time. Examples that perform cyclic redundancy checking using linker-generated CRC tables are
provided in the Tools Insider blog in TI’s E2E community.

Contents:

3.8. Linker Description 443

https://e2e.ti.com/blogs_/b/toolsinsider/archive/2017/02/27/from-the-experts-perform-cyclic-redundancy-checking-using-linker-generated-crc-tables

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Using the crc_table() Operator in the SECTIONS Directive

For any section that should be verified with a CRC, the linker command file must be modified to
include the crc_table() operator. The specification of a CRC algorithm is optional. The syntax is:

crc_table(user_specified_table_name[, algorithm=xxx])

The linker uses the CRC algorithm from any specification given in a crc_table() operator. If that
specification is omitted, the TMS570_CRC64_ISO algorithm is used. The linker includes CRC
table information in the map file. This includes the CRC value as well as the algorithm used for
the calculation.

The CRC table generated for a particular crc_table() instance can be accessed through the table
name provided as an argument to the crc_table() operator. The linker creates a symbol with this
name and assigns the address of the CRC table as the value of the symbol. The CRC table can then
be accessed from the application using the linker-generated symbol.

The crc_table() operator can be applied to an output section, a GROUP, a GROUP member, a
UNION, or a UNION member. In a GROUP or UNION, the operator is applied to each member.

You can include calls in your application to a routine that will verify CRC values for relevant
sections. You must provide this routine. See below for more details on the data structures and
suggested interface.

Restrictions when using the crc_table() Operator

It is important to note that the CRC generator used by the linker is parameterized as described in the
crc_tbl.h header file (see Interface When Using the crc_table() Operator). Any CRC calculation
routine employed outside of the linker must function in the same way to ensure matching CRC
values. The linker cannot detect a mismatch in the parameters. To understand these parameters,
see A Painless Guide to CRC Error Detection Algorithms by Ross Williams.

Only CRC algorithm names and identifiers in crc_tbl.h are supported. All other names and ID
values are reserved for future use. Systems may not include built-in hardware that computes these
CRC algorithms. Consult documentation for your hardware for details. These CRC algorithms are
supported:

• CRC8_PRIME

• CRC16_ALT

• CRC16_802_15_4

• CRC_CCITT

• CRC24_FLEXRAY

• CRC32_PRIME

• CRC32_C

3.8. Linker Description 444

https://zlib.net/crc_v3.txt

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• CRC64_ISO

The default is the TMS570_CRC64_ISO algorithm, which has an initial value of 0. Additional
information about the algorithm can be found in A Note on the TMS570_CRC64_ISO Algorithm.

There are also restrictions that will be enforced by the linker:

• CRC can only be requested at final link time.

• CRC can only be applied to initialized sections.

• CRC can be requested for load addresses only.

• Certain restrictions also apply to CRC table names. For example, BINIT may not be used as
a CRC table name.

Examples When Using the crc_table() Operator

The crc_table() operator is similar in syntax to the table() operator used for copy tables. A few
simple examples of linker command files follow.

The following example defines a section named “.section_to_be_verified”, which contains the .text
data from the a1.c.o file. The crc_table() operator requests that the linker compute the CRC value
for the .text data and store that value in a table named “my_crc_table_for_a1”.

SECTIONS
{

...

.section_to_be_verified: {a1.c.o(.text)} crc_table(_my_crc_
→˓table_for_a1)
}

This table will contain all the information needed to invoke a user-supplied CRC calculation rou-
tine, and verify that the CRC calculated at run time matches the linker-generated CRC. The table
can be accessed from application code using the symbol my_crc_table_for_a1, which should be
declared of type “extern CRC_TABLE”. This symbol will be defined by the linker. The application
code might resemble the following.

#include "crc_tbl.h"

extern CRC_TABLE my_crc_table_for_a1;

verify_a1_text_contents()
{

...
/* Verify CRC value for .text sections of a1.c.o. */

(continues on next page)

3.8. Linker Description 445

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

if (my_check_CRC(&my_crc_table_for_a1)) puts("OK");
}

The my_check_CRC() routine is shown in detail in Interface When Using the crc_table() Operator.

In the following example, the CRC algorithm is specified in the crc_table() operator. The specified
algorithm is used to compute the CRC of the text data from b1.c.o. The CRC tables generated
by the linker are created in the special section .TI.crctab, which can be placed in the same man-
ner as other sections. In this case, the CRC table _my_crc_table_for_b1 is created in section
.TI.crctab:_my_crc_table_for_b1, and that section is placed in the CRCMEM memory region.

SECTIONS
{

...

.section_to_be_verified_2: {b1.c.o(.text)} load=SLOW_MEM,
→˓run=FAST_MEM,

crc_table(_my_crc_table_for_b1, algorithm=TMS570_CRC64_
→˓ISO)

.TI.crctab: > CRCMEM
}

In the following example, the same identifier, _my_crc_table_for_a1_and_c1, is specified for both
a1.c.o and c1.c.o. The linker creates a single table that contains entries for both text sections.
Multiple CRC algorithms can occur in a single table. In this case, _my_crc_table_for_a1_and_c1
contains an entry for the text data from a1.c.obj using the default CRC algorithm, and an entry for
the text data from c1.c.obj using the TMS570_CRC64_ISO algorithm. The order of the entries is
unspecified.

SECTIONS
{

.section_to_be_verified_1: {a1.c.o(.text)}
crc_table(_my_crc_table_for_a1_and_c1)

.section_to_be_verified_3: {c1.c.o(.text)}
crc_table(_my_crc_table_for_a1_and_c1, algorithm=TMS570_

→˓CRC64_ISO)
}

When the crc_table() operator is applied to a GROUP or a UNION, the linker applies the table
specification to the members of the GROUP or UNION.

In the following example, the linker creates two CRC tables, table1 and table2. table1 contains one
entry for section1. Because both sections are members of the UNION, table2 contains entries for
section1 and section2. The order of the entries in table2 is unspecified.

3.8. Linker Description 446

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

SECTIONS
{

UNION
{

section1: {} crc_table(table1)
section2:

} crc_table(table2)
}

Interface When Using the crc_table() Operator

The CRC generation function uses a mechanism similar to the copy table functionality. Using
the syntax shown above in the linker command file allows specification of code/data sections that
have CRC values computed and stored in the run time image. This section describes the table data
structures created by the linker, and how to access this information from application code.

The CRC tables contain entries as detailed in the run-time-support header file crc_tbl.h, as shown
in the following figure:

Figure 3.29: CRC Table Format

The crc_tbl.h header file is included below. This file specifies the C structures created by the linker
to manage CRC information. It also includes the specifications of the supported CRC algorithms.
A full discussion of CRC algorithms is beyond the scope of this document, and the interested
reader should consult the referenced document for a description of the fields shown in the table.
The following fields are relevant to this document.

• Name – text identifier of the algorithm, used by the programmer in the linker command file.

3.8. Linker Description 447

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• ID – the numeric identifier of the algorithm, stored by the linker in the crc_alg_ID member
of each table entry.

• Order – the number of bits used by the CRC calculation.

• Polynomial – used by the CRC computation engine.

• Initial Value – the initial value given to the CRC computation engine.

/
→˓***/
→˓

/* crc_tbl.h
→˓ */
/*

→˓ */
/* Specification of CRC table data structures which can be

→˓automatically */
/* generated by the linker (using the crc_table() operator in

→˓the linker */
/* command file).

→˓ */
/

→˓***/
→˓

/*
→˓ */
/* The CRC generator used by the linker is based on concepts

→˓from the */
/* document:

→˓ */
/* "A Painless Guide to CRC Error Detection Algorithms"

→˓ */
/*

→˓ */
/* Author : Ross Williams (ross@guest.adelaide.edu.au.).

→˓ */
/* Date : 3 June 1993.

→˓ */
/* Status : Public domain (C code).

→˓ */
/*

→˓ */
/* Description : For more information on the Rocksoft^tm Model

→˓CRC */
/* Algorithm, see the document titled "A Painless Guide to CRC

→˓Error */
(continues on next page)

3.8. Linker Description 448

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

/* Detection Algorithms" by Ross Williams (ross@guest.adelaide.
→˓edu.au.). */
/

→˓***/
→˓

#include <stdint.h> /* For uintXX_t */

/
→˓***/
→˓

/* CRC Algorithm Specifiers
→˓ */
/*

→˓ */
/* The following specifications, based on the above cited

→˓document, are used */
/* by the linker to generate CRC values.

→˓ */
/*
ID Name Order Polynomial Initial Ref Ref
→˓CRC XOR Zero

Value In Out
→˓Value Pad

→˓-------------
10 "TMS570_CRC64_ISO", 64, 0x0000001b, 0x00000000, 0, 0,
→˓0x00000000, 1

→˓ */
/* Users should specify the name, such as TMS570_CRC64_ISO, in

→˓the linker */
/* command file. The resulting CRC_RECORD structure will contain

→˓the */
/* corresponding ID value in the crc_alg_ID field.

→˓ */
/

→˓***/
→˓

#define TMS570_CRC64_ISO 10

/***/
/* CRC Record Data Structure */

(continues on next page)

3.8. Linker Description 449

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

/* NOTE: The list of fields and the size of each field */
/* varies by target and memory model. */
/***/
typedef struct crc_record
{

uint64_t crc_value;
uint32_t crc_alg_ID; /* CRC algorithm ID */
uint32_t addr; /* Starting address */
uint32_t size; /* size of data in bytes */
uint32_t padding; /* explicit padding so layout is the

→˓same for ELF */
} CRC_RECORD;

In the CRC_TABLE struct, the array recs[1] is dynamically sized by the linker to accommodate
the number of records contained in the table (num_recs). A user-supplied routine to verify CRC
values should take a table name and check the CRC values for all entries in the table. An outline
of such a routine is shown in the following example:

/**/
/* General-purpose CRC check routine. Given the address of a */
/* linker-generated CRC_TABLE data structure, verify the CRC */
/* of all object components that are designated with the */
/* corresponding LCF crc_table() operator. */
/**/
#include <crc_tbl.h>

/***/
/* MY_CHECK_CRC() - returns 1 if CRCs match, 0 otherwise */
/***/
unsigned int my_check_CRC(CRC_TABLE *tp)
{

int i;

for (i = 0; i < tp-> num_recs; i++)
{

CRC_RECORD crc_rec = tp->recs[i];

/**/
/* COMPUTE CRC OF DATA STARTING AT crc_rec.addr */
/* FOR crc_rec.size UNITS. USE */
/* crc_rec.crc_alg_ID to select algorithm. */
/* COMPARE COMPUTED VALUE TO crc_rec.crc_value. */
/**/

(continues on next page)

3.8. Linker Description 450

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

}
if all CRCs match, return 1;
else return 0;

}

Using the crc_table() Operator in the MEMORY Directive

Along with generating CRC Tables, the linker can also generate CRCs over memory ranges as
well. To do this, instead of using the crc_table() operator in a SECTIONS directive, you use the
crc() operator in a MEMORY directive. Within the MEMORY directive, you specify a GROUP
of memory regions to have a CRC value computed. The memory ranges in the GROUP must be
continuous.

The syntax is as follows:

MEMORY
{

GROUP(FLASH)
{

RANGE1 :...
RANGE2 :...

} crc(_table_name, algorithm=xxx)
}

This syntax causes the linker to compute a single CRC over both RANGE1 and RANGE2. The
CRC is based on the algorithm specified, taking into account all output sections that have been
placed in those ranges. The result is stored in a table in the format described in Interface When
Using the crc() Operator. This table is placed in an output section called .TI.memcrc, which is
accessible through the table name as a linker symbol.

The algorithm argument for crc() may be any algorithm listed in Restrictions when using the
crc_table() Operator. The algorithm is required in the current version, and linking will fail without
it. In future releases, the algorithm specification will be optional, and the default is specified. If no
algorithm is specified, the default algorithm will be chosen, which is TMS570_CRC64_ISO.

Specifying the GROUP name is optional. For example:

MEMORY
{

GROUP
{

RANGE1 :...
RANGE2 :...

(continues on next page)

3.8. Linker Description 451

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

} crc(_table_name, algorithm=CRC8_PRIME)
}

When GROUP is used inside a MEMORY block, the syntax options are limited to the functionality
described here and in the subsections that follow. The full functionality described in Using GROUP
and UNION Statements for GROUP within the SECTIONS directive is not available within the
MEMORY directive.

Restrictions when Using the crc() Operator

The crc() operator can only be applied to a GROUP within a MEMORY directive. It cannot be
applied to individual memory ranges in a MEMORY directive or to groups in the SECTIONS
directive.

Along with the restrictions described in Restrictions when using the crc_table() Operator, the
following additional restrictions apply:

• Memory range groups cannot contain any gaps between the ranges.

• All of the memory ranges must be on the same page.

• Memory ranges that contain sections that would not otherwise be eligible for CRC table
generation cannot have a CRC computed. That is, memory ranges for which a CRC value is
generated must correspond only to load addresses of initialized sections.

• The .TI.memcrc section may not be placed in a range that itself is having a CRC value
computed. This would result in a circular reference; the CRC result would depend upon the
result of the CRC. See Generate CRC for Most or All of Flash Memory for ways to generate
CRCs for most or all of Flash memory without violating this restriction.

Using the VFILL Specifier within a GROUP

In addition to specifying the origin and length of a memory range within a GROUP, you can also
use the VFILL specifier, as described in Using the VFILL Specifier in the Memory Map, to allow
ECC data to be generated for areas of the input memory range that remain uninitialized.

The load image will have gaps between output sections, and how these bits are set depends on your
device. Most devices count empty spaces as 0x1 values, but if your device counts empty space as
0x0 values, the result of the CRC will be different. Thus, if the CRC result does not line up, make
sure that you specify the empty space byte with the VFILL parameter, as shown in the following
example:

MEMORY
{

(continues on next page)

3.8. Linker Description 452

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

GROUP
{

FLASH : origin = 0x0000, length = 0x1000,
VFILL = 0x0 /* Fill gaps with zeroes */

} crc(_table_name, CRC8_PRIME)
}

If no VFILL parameter is specified, it defaults to 0x1, which fills everything with ones. Remember
to update every memory range that has a fill value other than 0x1 for CRCs.

Generate CRC for Most or All of Flash Memory

If you are trying to generate a CRC value for the entire FLASH memory, place the table in a
separate memory range, which .TI.memcrc will be placed in by default. For example:

MEMORY
{

/* Carve out a section of FLASH to store the CRC result */
CRC_PRELUDE : origin=0x0, length=0x10
GROUP
{

FLASH : origin=0x10, length=0xFFFF
} crc(_flash_crc, algorithm=CRC8_PRIME)
/* Other memory ranges... */

}
SECTION
{

.TI.memcrc > CRC_PRELUDE
}

In the above example, a small section of flash has been cut out of the whole, to allow the
.TI.memcrc section to reside there, while everything else that is eligible for CRC generation is
placed in FLASH. This avoids placing the CRC result in the CRC range.

In some cases, you may want to generate a CRC for all of Flash memory and read back the CRC
result via the linker-generated map file (see Create a Map File (--map_file Option)). However,
there is no memory location to place the CRC result for the memory range covering all of Flash
memory. If you place it in Flash, then you violate the rule that the result cannot be placed within
the input range. Thus, if there’s no good place to put the CRC result, you can mark the .TI.memcrc
section as a COPY section like so:

.TI.memcrc : type=COPY

3.8. Linker Description 453

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

This prevents the CRC result for a memory range from being placed anywhere. Marking
.TI.memcrc as a DSECT section has the same result.

Computing CRCs for Both Memory Ranges and Sections

You can run a CRC on both memory ranges and output sections together. In the following example,
a CRC is computed over the memory range FLASH2, which is used only by the .text section. A
CRC table is also generated for only the .text output section, which does not include the rest of the
memory range.

MEMORY
{

FLASH1 : origin = 0x0000, length = 0x1000
GROUP
{

FLASH2 : origin = 0x1000, length=0x1000
} crc(_memrange_flash_crc, algorithm=CRC8_PRIME)

}
SECTION
{

.TI.memcrc > CRC_PRELUDE

.text > FLASH2, crc_table(_crc_table, algorithm=CRC8_PRIME)
}

Example Specifying Memory Range CRCs

Here is a full linker command file that uses the crc() operator to generate a memory range CRC:

-c /* Use C linking conventions: auto-init vars at
→˓runtime */
-stack 0x1400 /* Stack size */
-heap 0x0c00 /* Heap size */

MEMORY
{

GROUP(FLASH)
{

MEM(RW) : origin = 0x1200, length = 0x9DE0, VFILL
→˓= 0x0

} crc(_ext_memrange_crc, algorithm=CRC32_PRIME)

MEM2 : origin = 0xAFE0, length = 0x5000
(continues on next page)

3.8. Linker Description 454

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

VECTORS(R) : origin = 0xFFE0, length = 0x001E
RESET : origin = 0xFFFE, length = 0x0002

}

SECTIONS
{

.intvecs : {} > VECTORS

/* These sections are uninitialized */
.bss : {} > MEM2
.sysmem : {} > MEM2
.stack : {} > MEM2

/* These sections will be CRC'd */
.text : {} > MEM
.const : {} > MEM
.rodata : {} > MEM
.cinit : {} > MEM
.switch : {} > MEM

.reset : > RESET
}

Interface When Using the crc() Operator

CRCs over memory ranges are stored in a table format similar to that shown in Interface When
Using the crc_table() Operator for the CRCs over sections. However, the table format is different
than that of CRC tables.

The following figure shows the storage format for CRCs over memory ranges with example values:

3.8. Linker Description 455

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Figure 3.30: CRC Storage Format

The table header stores the record count and size, as well as the algorithm type and the CRC result.
Each table entry encodes the start address and length of a memory range that was used to compute
the CRC.

The following header file excerpt shows the C structures the linker creates to manage the CRC
information:

typedef struct memrange_crc_record {
uintptr_t addr; /* Starting address */

#if defined(__LARGE_CODE_MODEL__) || defined(__LARGE_DATA_MODEL__
→˓)

uint32_t size; /* size of data in 8-bit
→˓addressable units */
#else

uint16_t size; /* size of data in 8-bit
→˓addressable units */
#endif
} MEMRANGE_CRC_RECORD;
typedef struct memrange_crc_table {

uint16_t rec_size; /* 8-bit addressable units
→˓*/

uint16_t num_recs; /* how many records are in
→˓the table */

uint16_t crc_alg_ID; /* CRC algorithm ID */
uint32_t crc_value; /* result of crc */
MEMRANGE_CRC_RECORD recs[1];

} MEMRANGE_CRC_TABLE;

3.8. Linker Description 456

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

A Note on the TMS570_CRC64_ISO Algorithm

The MCRC module calculates CRCs on 64-bit chunks of data. This is accomplished by writing
a long long value to two memory mapped registers. In C this looks like a normal write of a long
long to memory. The code generated to read/write a long long to memory is something like the
following, where R2 contains the most significant word and R3 contains the least significant word.
So the most significant word is written to the low address and the least significant word is written
to the high address:

LDM R0, {R2, R3}
STM R1, {R2, R3}

The CRC memory mapped registers are in the reverse order from how the compiler performs the
store. The least significant word is mapped to the low address and the most significant word is
mapped to the high address.

This means that the words are actually swapped before performing the CRC calculation. It also
means that the calculated CRC value has the words swapped. The TMS570_CRC64_ISO algo-
rithm takes these issues into consideration and performs the swap when calculating the CRC value.
The computed CRC value stored in the table has the words swapped so the value is the same as it
is in memory.

For the end user, these details should be transparent. If the run-time CRC routine is written in C,
the long long loads and stores will be generated correctly. The DMA mode of the MCRC module
will also work correctly.

Another issue with the algorithm is that it requires the run-time CRC calculation to be done with
64-bit chunks. The MCRC module allows smaller chunks of data, but the values are padded to
64-bits. The TMS570_CRC64_ISO algorithm does not perform any padding, so all CRC compu-
tations must be done with 64-bit values. The algorithm will automatically pad the end of the data
with zeros if it does not end on a 64-bit boundary.

3.8.10 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules. This is known
as partial linking or incremental linking. Partial linking allows you to partition large applications,
link each part separately, and then link all the parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

• The intermediate files produced by the linker must have relocation information. Use the --
relocatable option when you link the file the first time. (See Producing a Relocatable Output
Module (--relocatable option).)

• Intermediate files must have symbolic information. By default, the linker retains symbolic
information in its output. Do not use the --no_sym_table option if you plan to relink a file,

3.8. Linker Description 457

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

because --no_sym_table strips symbolic information from the output module. (See Strip
Symbolic Information (--no_symtable Option).)

• Intermediate link operations should be concerned only with the formation of output sec-
tions and not with allocation. All allocation, binding, and MEMORY directives should be
performed in the final link.

• If the intermediate files have global symbols that have the same name as global symbols in
other files and you want them to be treated as static (visible only within the intermediate
file), you must link the files with the --make_static option (see Make All Global Symbols
Static (--make_static Option)).

• If you are linking C code, do not use --ram_model or --rom_model until the final link. Every
time you invoke the linker with the --ram_model or --rom_model option, the linker attempts
to create an entry point. (See C Language Options (--ram_model and --rom_model Options),
Autoinitializing Variables at Run Time (--rom_model), and Initializing Variables at Load
Time (--ram_model).)

The following example shows how you can use partial linking:

Step 1: Link the file file1.com; use the --relocatable option to retain relocation information in the
output file tempout1.out.

c29clang -Wl,--relocatable,--output_file=tempout1 file1.com

file1.com contains:

SECTIONS
{

ss1: {
f1.c.o
f2.c.o
.
.
.
fn.c.o

}
}

Step 2: Link the file file2.com; use the --relocatable option to retain relocation information in the
output file tempout2.out.

c29clang -Wl,--relocatable,--output_file=tempout2 file2.com

file2.com contains:

3.8. Linker Description 458

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

SECTIONS
{

ss2: {
g1.c.o
g2.c.o
.
.
.
gn.c.o

}
}

Step 3: Link tempout1.out and tempout2.out.

c29clang -Wl,--map_file=final.map,--output_file=final.out
→˓tempout1.out tempout2.out

3.8.11 Linking C/C++ Code

The C/C++ compiler produces object files that can be linked. For example, a C program consisting
of modules prog1, prog2, etc., can be linked to produce an executable file called prog.out:

c29clang -Wl,--rom_model,--output_file=prog.out prog1.c.o prog2.
→˓c.o ...

The --rom_model option tells the linker to use special conventions that are defined by the C/C++
environment.

The archive libraries shipped by TI contain C/C++ run-time-support functions and are brought it
automatically.

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-
support functions and variables that can be called and referenced from both C and C++ have the
same linkage.

For more information about the C29x C/C++ language, including the run-time environment and
run-time-support functions, see C/C++ Language Implementation.

Contents:

3.8. Linker Description 459

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Linking for Run-Time Initialization

All C/C++ programs must be linked with code to initialize and execute the program, called a
bootstrap routine, also known as the boot.c.o object module. The symbol _c_int00 is defined as the
program entry point and is the start of the C boot routine in boot.c.o; referencing _c_int00 ensures
that boot.c.o is automatically linked in from the run-time-support library. When a program begins
running, it executes boot.c.o first. The boot.c.o symbol contains code and data for initializing the
run-time environment and performs the following tasks:

• Changes from system mode to user mode

• Sets up the user mode stack

• Processes the run-time .cinit initialization table and autoinitializes global variables (when
the linker is invoked with the --rom_model option)

• Calls main

The run-time-support object libraries contain boot.c.o. You can:

• Use the archiver to extract boot.c.o from the library and then link the module in directly.

• Include the appropriate run-time-support library as an input file (the linker automatically
extracts boot.c.o when you use the --ram_model or --rom_model option).

Object Libraries and Run-Time Support

The Built-In Functions section describes additional built-in functions that are predefined by the
compiler. If your program uses any of these functions, you must link the appropriate run-time-
support library with your object files. See also Library Naming Conventions.

You can also create your own object libraries and link them. The linker includes and links only
those library members that resolve undefined references.

Setting the Size of the Stack and Heap Sections

The C/C++ language uses two uninitialized sections called .sysmem and .stack for the memory
pool used by the malloc() functions and the run-time stacks, respectively. You can set the size
of these by using the --heap_size or --stack_size option and specifying the size of the section as
a 4-byte constant immediately after the option. If the options are not used, the default size of the
heap is 2K bytes and the default size of the stack is 2K bytes.

See Define Heap Size (--heap_size Option) for setting heap sizes and Define Stack Size (--stack_size
Option) for setting stack sizes.

To debug issues related to the stack size, we recommend using the CCS Stack Usage view to see
the static stack usage of each function in the application. See Stack Usage View in CCS for more
information. Using the Stack Usage View requires that source code be built with debug enabled.

3.8. Linker Description 460

https://software-dl.ti.com/ccs/esd/documents/ccs_stack_usage_view.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

This feature relies on the –call_graph capability provided by the c29ofd - Object File Display
Utility.

Initializing and AutoInitializing Variables at Run Time

Autoinitializing variables at run time is the typical method of autoinitialization. To use this method,
invoke the linker with the --rom_model option. See Autoinitializing Variables at Run Time (--
rom_model) for details.

Initialization of variables at load time enhances performance by reducing boot time and by saving
the memory used by the initialization tables. To use this method, invoke the linker with the --
ram_model option. See Initializing Variables at Load Time (--ram_model) for details.

See The --rom_model and --ram_model Linker Options for information about the steps that are
performed when you invoke the linker with the --ram_model or --rom_model option. See RAM
Model vs. ROM Model for further information.

Initialization of Cinit and Watchdog Timer Hold

You can use the --cinit_hold_wdt option on some devices to specify whether the watchdog timer
should be held (on) or not held (off) during cinit auto-initialization. Setting this option causes an
RTS auto-initialization routine to be linked in with the program to handle the desired watchdog
timer behavior.

3.8.12 Linker Example

This example links three object files named demo.c.o, ctrl.c.o, and tables.c.o and creates a program
called demo.out.

Assume that target memory has the following program memory configuration:

Address Range Contents
0x00000000 to 0x00001000 SLOW_MEM
0x00001000 to 0x00002000 FAST_MEM
0x08000000 to 0x08000400 EEPROM

The output sections are constructed in the following manner:

• Executable code, contained in the .text sections of demo.c.o, ctrl.c.o, and tables.c.o, must be
linked into FAST_MEM.

• A set of interrupt vectors, contained in the .intvecs section of tables.c.o, must be linked at
address FAST_MEM.

3.8. Linker Description 461

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• A table of coefficients, contained in the .data section of tables.c.o, must be linked into EEP-
ROM. The remainder of block FLASH must be initialized to the value 0xFF00FF00.

• A set of variables, contained in the .bss section of ctrl.c.o, must be linked into SLOW_MEM
and preinitialized to 0x00000100.

• The .bss sections of demo.c.o and tables.c.o must be linked into SLOW_MEM.

The following example shows the linker command file for this example. After the linker command
file, the map file is shown.

/
→˓***/
→˓

/*** Specify Link Options ***/
/

→˓***/
→˓

--entry_point SETUP /* Define the program entry point */
--output_file=demo.out /* Name the output file */
--map_file=demo.map /* Create an output map file */
/

→˓***/
→˓

/*** Specify the Input Files ***/
/

→˓***/
→˓

demo.c.o
ctrl.c.o
tables.c.o
/

→˓***/
→˓

/*** Specify the Memory Configurations ***/
/

→˓***/
→˓

MEMORY
{

FAST_MEM : org = 0x00000000 len = 0x00001000 /* PROGRAM
→˓MEMORY (ROM) */

SLOW_MEM : org = 0x00001000 len = 0x00001000 /* DATA MEMORY
→˓(RAM) */

EEPROM : org = 0x08000000 len = 0x00000400 /* COEFFICIENTS
→˓(EEPROM) */

(continues on next page)

3.8. Linker Description 462

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

}
/

→˓***/
→˓

/* Specify the Output Sections */
/

→˓***/
→˓

SECTIONS
{

.text : {} > FAST_MEM /* Link all .text sections into ROM */

.intvecs : {} > 0x0 /* Link interrupt vectors at 0x0 */

.data : /* Link .data sections */
{

tables.c.o(.data)
. = 0x400; /* Create hole at end of block */

} > EEPROM, fill = 0xFF00FF00 /* Fill and link into EEPROM */
ctrl_vars: /* Create new sections for ctrl variables */
{

ctrl.c.o(.bss)
} > SLOW_MEM, fill = 0x00000100 /* Fill with 0x100 and link

→˓into RAM */
.bss : {} > SLOW_MEM /* Link remaining .bss sections into

→˓RAM */
}
/

→˓***/
→˓

/*** End of Command File ***/
/

→˓***/
→˓

Invoke the linker by entering the following command:

c29clang demo.cmd

This creates the following map file and an output file called demo.out that can be run on an C29x
device.

OUTPUT FILE NAME: <demo.out>
ENTRY POINT SYMBOL: "SETUP" address: 000000d4
MEMORY CONFIGURATION

(continues on next page)

3.8. Linker Description 463

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

name origin length attributes fill
-------- -------- --------- ---------- --------
FAST_MEM 00000000 000001000 RWIX
SLOW_MEM 00001000 000001000 RWIX
EEPROM 08000000 000000400 RWIX

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections
-------- ---- ---------- ---------- ----------------
.text 0 00000020 00000138

00000020 000000a0 ctrl.c.o (.text)
000000c0 00000000 tables.c.o (.text)
000000c0 00000098 demo.c.o (.text)

.intvecs 0 00000000 00000020
00000000 00000020 tables.c.o (.intvecs)

.data 0 08000000 00000400
08000000 00000168 tables.c.o (.data)
08000168 00000298 --HOLE-- [fill =

→˓ff00ff00]
08000400 00000000 ctrl.c.o (.data)
08000400 00000000 demo.c.o (.data)

ctrl_var 0 00001000 00000500
00001000 00000500 ctrl.c.o (.bss) [fill

→˓= 00000100]

.bss 0 00001500 00000100 UNINITIALIZED
00001500 00000100 demo.c.o (.bss)
00001600 00000000 tables.c.o (.bss)

GLOBAL SYMBOLS
address name address name
-------- ---- -------- ----
000000d4 SETUP 00000020 clear
00000020 clear 000000b8 set
000000b8 set 000000c0 x42
000000c0 x42 000000d4 SETUP

(continues on next page)

3.8. Linker Description 464

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

[4 symbols]

3.8.13 XML Link Information File Description

The linker supports the generation of an XML link information file via the --xml_link_info file
option. This option causes the linker to generate a well-formed XML file containing detailed
information about the result of a link. The information in this file includes all of the information
that is produced in a linker-generated map file.

See Generate XML Link Information File (--xml_link_info Option) for information about using the
--xml_link_info option.

XML Information File Element Types

These types of elements are generated by the linker:

• Container elements represent an object that contains other elements that describe the object.
Container elements have an id attribute that makes them accessible from other elements.

• String elements contain a string representation of their value.

• Constant elements contain a 64-bit unsigned long representation of their value (with a 0x
prefix).

• Reference elements are empty elements that contain an idref attribute that specifies a link
to another container element.

Document Elements

The root element, also called the document element, is <link_info>. All other elements contained
in the XML link information file are children of the <link_info> element.

The following sections describe the elements that an XML information file can contain. In the
following sections, the data type of each element value is specified in parentheses following the
element description. For example: The <address> is the entry point address (constant).

3.8. Linker Description 465

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Header Elements

Within the <link_info> element, the first elements in the XML link information file provide general
information about the linker and the link session:

• The <banner> element lists the name of the executable and the version information (string).

• The <copyright> element lists the TI copyright information (string).

• The <link_time> is a timestamp representation of the link time (unsigned 32-bit int).

• The <output_file> element lists the absolute path and name of the linked output file gener-
ated (string).

• The <entry_point> element specifies the program entry point, as determined by the linker
(container) with two entries:

– The <name> is the entry point symbol name, if any (string).

– The <address> is the entry point address (constant).

Example Header Elements in the hi.out Output File

<banner>Linker Version x.xx (Mar 15 2024)</banner>
<copyright>Copyright (c) 1996-2024 Texas Instruments Incorporated

→˓</copyright>
<link_time>0x65f8a4ec</link_time>
<output_file>/usr/mycode/hi.out</output_file>
<entry_point>

<name>_c_int00</name>
<address>0xaf80</address>

</entry_point>

Input File List

After the header elements, the next section in the XML link information file is the input file list,
which is delimited with an <input_file_list> container element. The <input_file_list> can contain
any number of <input_file> elements.

Each <input_file> instance specifies the input file involved in the link. Each <input_file> has
an id attribute that can be referenced by other elements, such as an <object_component>. An
<input_file> is a container element enclosing the following elements:

• The <path> element names an absolute directory path, if applicable (string).

• The <kind> element specifies a file type, either archive or object (string).

• The <file> element specifies an archive name or filename (string).

• The <name> element specifies an object file name, or archive member name (string).

3.8. Linker Description 466

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Input File List for the hi.out Output File

<input_file_list>
<input_file id="fl-1">

<kind>object</kind>
<file>hi.obj</file>
<name>hi.obj</name>

</input_file>
<input_file id="fl-2">

<path>/usr/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>boot.obj</name>

</input_file>
<input_file id="fl-3">

<path>/usr/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>exit.obj</name>

</input_file>
<input_file id="fl-4">

<path>/usr/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>printf.obj</name>

</input_file>
...

</input_file_list>

Object Component List

The next section of the XML link information file contains a specification of all of the object
components that are involved in the link. An example of an object component is an input section.
In general, an object component is the smallest piece of object that can be manipulated by the
linker.

The <object_component_list> is a container element enclosing any number of <ob-
ject_component> elements.

Each <object_component> specifies a single object component. Each <object_component> has
an id attribute so that it can be referenced directly from other elements, such as a <logical_group>.
An <object_component> is a container element enclosing the following elements:

• The <name> element names the object component (string).

3.8. Linker Description 467

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The <load_address> element specifies the load-time address of the object component (con-
stant).

• The <run_address> element specifies the run-time address of the object component (con-
stant).

• The <alignment> element specifies the alignment of the object component (unsigned int).

• The <size> element specifies the size of the object component (constant).

• The <executable> element specifies whether the object component allows execute access
(string). If an object has executable access, it cannot also have read-write access. While
“false” is a valid value, the linker emits this element only if it is “true” for this object com-
ponent.

• The <readonly> element specifies whether the object component allows read-only access
(string). If an object has read-only access, it cannot also have read-write access. While
“false” is a valid value, the linker emits this element only if it is “true” for this object com-
ponent.

• The <readwrite> element specifies whether the object component allows read-write access
(string). If an object has read-write access, it cannot also have read-only access or executable
access. While “false” is a valid value, the linker emits this element only if it is “true” for this
object component.

• The <uninitialized> element specifies whether the object component is initialized (string).
While “false” is a valid value, the linker emits this element only if it is “true” for this object
component.

• The <input_file_ref> element specifies the source file where the object component origi-
nated (reference).

Object Component List for the fl-4 Input File

<object_component id="oc-20">
<name>.text</name>
<load_address>0xac00</load_address>
<run_address>0xac00</run_address>
<alignment>0x1</alignment>
<size>0xc0</size>
<readonly>true</readonly>
<executable>false</executable>
<input_file_ref idref="fl-4"/>

</object_component>
<object_component id="oc-21">

<name>.data</name>
<load_address>0x80000000</load_address>
<run_address>0x80000000</run_address>

(continues on next page)

3.8. Linker Description 468

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

<alignment>0x1</alignment>
<size>0x0</size>
<readwrite>true</readwrite>
<input_file_ref idref="fl-4"/>

</object_component>
<object_component id="oc-22">

<name>.bss</name>
<load_address>0x80000000</load_address>
<run_address>0x80000000</run_address>
<alignment>0x1</alignment>
<size>0x0</size>
<readwrite>true</readwrite>
<uninitialized>true</uninitialized>
<input_file_ref idref="fl-4"/>

</object_component>

Logical Group List

The <logical_group_list> section of the XML link information file is similar to the output section
listing in a linker-generated map file. However, the XML link information file contains a specifi-
cation of GROUP and UNION output sections, which are not represented in a map file. There are
several kinds of list items that can occur in a <logical_group_list>:

• The <logical_group> is the specification of a section or GROUP that contains a list of object
components or logical group members. Each <logical_group> element is given an id so that
it may be referenced from other elements. Each <logical_group> is a container element
enclosing the following elements:

– The <name> element names the logical group (string).

– The <load_address> element specifies the load-time address of the logical group (con-
stant).

– The <run_address> element specifies the run-time address of the logical group (con-
stant).

– The <size> element specifies the size of the logical group (constant).

– The <output_section_group> specifies whether the logical group is a GROUP of out-
put sections (string). While “false” is a valid value, the linker emits this element only
if it is “true” for this logical group.

– The <contents> element lists elements contained in this logical group (container).
These elements refer to each of the member objects contained in this logical group:

3.8. Linker Description 469

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

* The <object_component_ref> is an object component that is contained in this
logical group (reference).

* The <logical_group_ref> is a logical group that is contained in this logical group
(reference).

• The <overlay> is a special kind of logical group that represents a UNION, or a set of objects
that share the same memory space (container). Each <overlay> element is given an id so
that it may be referenced from other elements (like from an <allocated_space> element in
the placement map). Each <overlay> contains the following elements:

– The <name> element names the overlay (string).

– The <run_address> element specifies the run-time address of overlay (constant).

– The <size> element specifies the size of logical group (constant).

– The <contents> container element lists elements contained in this overlay. These ele-
ments refer to each of the member objects contained in this logical group:

* The <object_component_ref> is an object component that is contained in this
logical group (reference).

* The <logical_group_ref> is a logical group that is contained in this logical group
(reference).

• The <split_section> is another special kind of logical group that represents a collection of
logical groups that is split among multiple memory areas. Each <split_section> element is
given an id so that it may be referenced from other elements. Each <<split_section> contains
the following elements:

– The <name> element names the split section (string).

– The <contents> container element lists elements contained in this split section. The
<logical_group_ref> elements refer to each of the member objects contained in this
split section, and each element referenced is a logical group that is contained in this
split section (reference).

Logical Group List for the fl-4 Input File

<logical_group_list>
...
<logical_group id="lg-7">

<name>.text</name>
<output_section_group>true</output_section_group>
<load_address>0x20</load_address>
<run_address>0x20</run_address>
<size>0xb240</size>
<contents>

<object_component_ref idref="oc-34"/>
(continues on next page)

3.8. Linker Description 470

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

<object_component_ref idref="oc-108"/>
<object_component_ref idref="oc-e2"/>
...

</contents>
</logical_group>
...
<overlay id="lg-b">

<name>UNION_1</name>
<run_address>0xb600</run_address>
<size>0xc0</size>
<contents>

<object_component_ref idref="oc-45"/>
<logical_group_ref idref="lg-8"/>

</contents>
</overlay>
...
<split_section id="lg-12">

<name>.task_scn</name>
<size>0x120</size>
<contents>

<logical_group_ref idref="lg-10"/>
<logical_group_ref idref="lg-11"/>

</contents>
</split_section>
...
</logical_group_list>

Placement Map

The <placement_map> element describes the memory placement details of all named memory
areas in the application, including unused spaces between logical groups that have been placed in
a particular memory area.

The <memory_area> is a description of the placement details within a named memory area (con-
tainer). The description consists of these items:

• The <name> names the memory area (string).

• The <page_id> gives the id of the memory page in which this memory area is defined (con-
stant).

• The <origin> specifies the beginning address of the memory area (constant).

• The <length> specifies the length of the memory area (constant).

3.8. Linker Description 471

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• The <used_space> specifies the amount of allocated space in this area (constant).

• The <unused_space> specifies the amount of available space in this area (constant).

• The <attributes> lists the RWXI attributes that are associated with this area, if any (string).

• The <fill_value> specifies the fill value that is to be placed in unused space, if the fill direc-
tive is specified with the memory area (constant).

• The <usage_details> lists details of each allocated or available fragment in this memory
area. If the fragment is allocated to a logical group, then a <logical_group_ref> element is
provided to facilitate access to the details of that logical group. All fragment specifications
include <start_address> and <size> elements.

– The <allocated_space> element provides details of an allocated fragment within this
memory area (container):

* The <start_address> specifies the address of the fragment (constant).

* The <size> specifies the size of the fragment (constant).

* The <logical_group_ref> provides a reference to the logical group that is allo-
cated to this fragment (reference).

• The <available_space> element provides details of an available fragment within this mem-
ory area (container):

– The <start_address> specifies the address of the fragment (constant).

– The <size> specifies the size of the fragment (constant).

Placement Map for the fl-4 Input File

<placement_map>
<memory_area>

<name>PMEM</name>
<page_id>0x0</page_id>
<origin>0x20</origin>
<length>0x100000</length>
<used_space>0xb240</used_space>
<unused_space>0xf4dc0</unused_space>
<attributes>RWXI</attributes>
<usage_details>

<allocated_space>
<start_address>0x20</start_address>
<size>0xb240</size>
<logical_group_ref idref="lg-7"/>

</allocated_space>
<available_space>

<start_address>0xb260</start_address>
(continues on next page)

3.8. Linker Description 472

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

<size>0xf4dc0</size>
</available_space>

</usage_details>
</memory_area>
...

</placement_map>

Symbol Table

The <symbol_table> contains a list of all of the global symbols that are included in the link. The
list provides information about a symbol’s name and value. In the future, the symbol_table list
may provide type information, the object component in which the symbol is defined, storage class,
etc.

The <symbol> is a container element that specifies the name and value of a symbol with these
elements:

• The <name> element specifies the symbol name (string).

• The <value> element specifies the symbol value (constant).

• The <local> element specifies whether the symbol has local binding (string). While “false”
is a valid value, the linker emits this element only if it is “true” for this symbol.

Symbol Table for the fl-4 Input File

<symbol_table>
<symbol>

<name>_c_int00</name>
<value>0xaf80</value>

</symbol>
<symbol>

<name>_main</name>
<value>0xb1e0</value>

</symbol>
<symbol>

<name>_printf</name>
<value>0xac00</value>
<local>true</local>

</symbol>
...

</symbol_table>

3.8. Linker Description 473

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.9 Code Coverage

Contents:

3.9.1 Source-Based Code Coverage in c29clang

The TI C29x Clang Compiler Tools (c29clang) support Source-Based Code Coverage that is par-
ticularly suited for embedded applications. In addition to being generally useful for thorough
application development, code coverage is required by internal and external developers in the In-
dustrial and Automotive markets for Functional Safety.

The following forms of Code Coverage are supported:

• Function coverage is the percentage of functions which have been executed at least once. A
function is considered to be executed if any of its instantiations are executed.

– Instantiation coverage is the percentage of function instantiations which have been
executed at least once. Template functions and static inline functions from headers are
two kinds of functions which may have multiple instantiations.

• Line coverage is the percentage of code lines which have been executed at least once. Only
executable lines within function bodies are considered to be code lines.

• Region coverage is the percentage of code regions which have been executed at least once.
A code region may span multiple lines (e.g in a large function body with no control flow).
However, it is also possible for a single line to contain multiple code regions (e.g in “return x
|| y && z”). Region coverage is equivalent to Statement coverage provided by other vendors.

– Call Region coverage is the percentage of code regions containing function calls which
have been executed at least once. A code region may contain multiple function calls
when there is no control flow. This metric is a subset of Region coverage. Call Region
coverage is equivalent to Call coverage provided by other vendors.

• Branch coverage is the percentage of source-condition-based branches that have been taken
at least once. The new c29clang tools’ support for Branch coverage (also known as Branch
Condition coverage) provides a finer level of coverage than that which is provided by other
vendors, allowing users to track “True/False” execution coverage across leaf-level Boolean
expressions used in conditional statements. This makes it much more informative and useful
than Decision coverage that some other vendors support, which only tracks execution counts
for a single control flow decision point, which may be a Boolean expression comprised of
conditions and zero or more Boolean logical operators.

• Modified Condition/Decision Coverage (MC/DC) is the percentage of all single condition
outcomes that independently affect a decision outcome that have been exercised in the con-
trol flow. MC/DC builds on top of branch coverage, and as such, it too requires that all
code blocks and all execution paths have been tested. MC/DC pertains to complex Boolean

3.9. Code Coverage 474

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

expressions involving more than one single condition where each condition has been shown
to affect that decision outcome independently.

Note: Coverage across Function Instantiations

If a function has multiple instantiations, as in the case of C++ function templates, the instantiation
reflecting the maximum coverage of lines, regions, or branches is used for the final coverage tally.
In other words, a function definition is considered fully covered if any one of its instantiations is
fully covered with respect to lines, regions, or branches.

Support for Embedded Use Cases

The c29clang compiler tools minimize the data size requirements of Code Coverage by allocating
memory space for only the counters and keeping all other coverage related information in non-
allocatable sections preserved in the object file itself. This ensures that target memory is only
utilized for incrementing counters. In addition, the runtime support only supports writing counters
to a file as part of a “bare-metal” profiling model and nothing else. Support for writing a full raw
profile file, merging counters, etc., is not included as part of c29clang.

Note that instrumentation that is inserted to track the counters will introduce cycle performance and
codesize overhead, depending on the size of the program. This is due to the additional instructions
needed, number of counters needed, and impact to existing code optimization. Reducing the size
of counters will be addressed as a future enhancement for the compiler to decrease the memory
footprint introduced by code coverage to better mitigate the codesize overhead.

Effects of Code Optimization

The c29clang compiler derives instruction-to-source mappings through the Abstract Syntax Trees
during the compilation’s Code Generation (CodeGen) phase that are eventually lowered to an inter-
mediate representation, which is where counter instrumentation occurs. Counter instrumentation
is completed prior to optimization passes that operate on the intermediate representation, so this
means that coverage data is very accurate with respect to the source code. Counter increments
that would have occurred in an unoptimized program occur in the optimized variant. For example,
counter mapping regions for an inlined function are created with instrumentation prior to inlining.
If inlining is performed, the instrumentation is inlined along with it. The resulting execution counts
map back to the original source as though the function had never been inlined.

While counter instrumentation is not obstructed by optimization, the presence of counter instru-
mentation may inhibit certain optimizations

3.9. Code Coverage 475

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Tool Usage

In addition to the c29clang compiler, which is used to produce counter instrumentation, the tools
used to produce and visualize code coverage data are c29profdata and c29cov.

Useful Coverage Profile Merging Options (c29profdata)

USAGE: c29profdata merge [options] <filename ...>

Format of output profile

• --binary - binary encoding (default)

• --text - output in text mode

Profile kind

• --instr - instrumentation profile (default)

• --obj-file=<string> - object file

• --output=<file> - output file

• --remapping-file=<file> - symbol remapping file

• --sparse - generate a sparse profile (only meaningful for --instr)

Useful Coverage Visualization Options (c29cov)

USAGE: c29cov {subcommand} [OPTION]... --sources [SOURCES]...

Subcommands

• export - Export instrprof file to structured format either as text (JSON) or as LCOV.

– JSON: c29cov export --format=text

– LCOV: c29cov export --format=lcov

– CSV: c29cov export --format=csv

• report - Summarize instrprof style coverage information.

• show - Annotate source files using instrprof style coverage.

Function Filtering Options

• --filename-allowlist=<file> - Show code coverage only for files that match a regular expres-
sion listed in the given file.

3.9. Code Coverage 476

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• --ignore-filename-regex=<string> - Skip source code files with file paths that match the
given regular expression.

• --line-coverage-gt=<number> - Show code coverage only for functions with line coverage
greater than the given threshold.

• --line-coverage-lt=<number> - Show code coverage only for functions with line coverage
less than the given threshold.

• --name=<string> - Show code coverage only for functions with the given name.

• --name-regex=<string> - Show code coverage only for functions that match the given reg-
ular expression.

• --name-allowlist=<file> - Show code coverage only for functions listed in the given file.

• --region-coverage-gt=<number> - Show code coverage only for functions with region cov-
erage greater than the given threshold.

• --region-coverage-lt=<number> - Show code coverage only for functions with region cov-
erage less than the given threshold.

• --sources [SOURCES] Show code coverage only for specified source files.

General Options

• --instr-profile=<string> - File with the profile data obtained after an instrumented run.

• --num-threads=<uint> - Number of merge threads to use (default: autodetect).

• --object=<string> - Coverage executable or object file.

• --output-dir=<string> - Directory in which coverage information is written out.

• --path-equivalence=<string> - <from>,<to> Map coverage data paths to local source file
paths.

• --project-title=<string> - Set project title for the coverage report.

• --show-mcdc-summary - Show MC/DC condition statistics in summary table. Data will
only appear if code was compiled with the -fmcdc option.

• --show-branch-summary - Show branch condition statistics in summary table.

• --show-instantiation-summary - Show instantiation statistics in summary table.

• --show-region-summary - Show region statistics in summary table.

• --show-call-region-summary - Show call region statistics in summary table.

• --summary-only - Export only summary information for each source file.

Source-Based Viewing Options (for “c29cov show”)

• --show-mcdc - Show coverage for MC/DC conditions in each Boolean expression. Data will
only appear if code was compiled with the -fmcdc option.

3.9. Code Coverage 477

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• --show-branches=<value> - Show coverage for branch conditions.

– =count - show True/False counts

– =percent - show True/False percent

• --show-expansions - Show expanded source regions.

• --show-instantiations - Show function instantiations.

• --show-branches=<value> - Show coverage for branch conditions.

• --show-line-counts-or-regions - Show the execution counts for each line, or the execution
counts for each region on lines that have multiple regions.

• --show-regions - Show the execution counts for each region.

• --show-functions - Show coverage summaries for each function.

Generating Instrumented Binaries

Source code must be built using c29clang with -fprofile-instr-generate -fcoverage-mapping op-
tions. The -fmcdc option may be used if measuring MC/DC is desired (if MC/DC-level coverage
is not desired, please do not use -fmcdc in order to minimize the level of instrumentation required).
For example:

c29clang -fprofile-instr-generate -fcoverage-mapping {-fmcdc}
→˓foo.cc -o foo

Note: Instrumented binaries comprised of object files instrumented using version 1.3.x.LTS
of the compiler tools aren’t supported

Due to format changes added after version 1.3.x.LTS of the compiler tools, instrumented binaries
that include object files instrumented with version 1.3.x.LTS of the compiler should not be linked
with binaries built using version 2.1.x.LTS (or later) of the compiler tools.

The following options are available to help reduce the size of the instrumentation code and data
footprint that is added to an application build to enable computation and visualization of code
coverage information.

Reduce Size of Profile Counter

-fprofile-counter-size=[64|32]

The default size for the compiler generated profile counters that annotate an application when
code coverage is enabled is 64-bits. using the option with -fprofile-counter-size=32 instructs the
compiler to use 32-bit integer values to record the execution count associated with a basic block

3.9. Code Coverage 478

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(a sequence of executable code that can potentially be the destination of a call or branch) where
applicable.

Limit Generation of Code Coverage Information to Functions

-ffunction-coverage-only

Normally when compiler generated code coverage is enabled in c29clang, the compiler will anno-
tate an application with execution counters for basic blocks. This option can be used to reduce the
code coverage instrumentation footprint by limiting compiler generated code coverage information
to function entry execution counts.

Use Profile Function Groups to Limit Coverage Overhead

-fprofile-function-groups=N
-fprofile-selected-function-group=i

Reduce instrumented size overhead by spreading the overhead across ‘N’ total executable builds,
where ‘i’ refers to an individual executable build between ‘0’ and ‘N-1’. Raw profiles from differ-
ent groups can be merged as described below: Merging Multiple Indexed Profile Data Files from
Multiple Executables.

Retrieving the Counters From Memory

Once the executable has been loaded and executed one or more times, the counters should be
retrieved from memory and written to a raw profile data file on the host. Counters are stored in an
allocated memory section named __llvm_prf_cnts, and this section is demarcated with the start
and stop symbols, __start___llvm_prf_cnts and __stop___llvm_prf_cnts, which can allow the
target memory to be read from the host.

The data retrieved in memory should be saved to a file, and this file is the raw profile counter file.

If MC/DC-level coverage is enabled using -fmcdc at compile-time, additional coverage data is
stored in an allocated memory section named __llvm_prf_bits, and this section is demarcated
with the start and stop symbols, __start___llvm_prf_bits and __stop___llvm_prf_bits. This
data must be saved in the same raw profile counter file immediately following the counter data.
This data must be read as bytes!

Note: It is critically important that these sections used to track coverage counters
(__llvm_prf_cnts and __llvm_prf_bits) be placed in memory that is writable during runtime
(“RAM” instead of “FLASH”). By default, the linker will attempt to place the sections next to
the .bss section, but users may also manually place the sections using a linker command file.

3.9. Code Coverage 479

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Retrieving Counters Using the CCS Scripting Console

Retrieving counters from memory can be done in Code Composer Studio (CCS) using the follow-
ing example script, which can be pasted into the CCS scripting console:

1 var scriptEnv = Packages.com.ti.ccstudio.scripting.environment.
→˓ScriptingEnvironment.instance();

2 var server = scriptEnv.getServer("DebugServer.1");
3 var session = server.openSession("Texas Instruments USB

→˓DebugProbe_0");
4

5 var cntStart = session.symbol.getAddress("__start___llvm_prf_cnts
→˓");

6 var cntStop = session.symbol.getAddress("__stop___llvm_prf_cnts
→˓");

7

8 var cntContent = session.memory.readData(0, cntStart, 8, cntStop
→˓- cntStart);

9

10 var executable = session.symbol.getSymbolFileName();
11 var outFile = new Packages.java.io.RandomAccessFile(executable +

→˓".cnt" , "rw");
12

13 outFile.setLength(0);
14 for each (var val in cntContent) {
15 outFile.writeByte(Number(val));
16 }
17

18 var mcdcStart = session.symbol.getAddress("__start___llvm_prf_
→˓bits");

19 var mcdcStop = session.symbol.getAddress("__stop___llvm_prf_bits
→˓");

20

21 var mcdcContent = session.memory.readData(0, mcdcStart, 8,
→˓mcdcStop - mcdcStart);

22 for each (var val in mcdcContent) {
23 outFile.writeByte(Number(val));
24 }
25 outFile.close();

This example script produces a raw profile counter file named after the executable using the “.cnt”
suffix.

3.9. Code Coverage 480

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Retrieving Counters Using Compiler Runtime Support

Alternatively, the counter data can also be retrieved from memory using a function that is pro-
vided as part of the compiler runtime support, __llvm_profile_write_file(). This function writes
the counters from the target to the host using runtime routines (fwrite()). Any other means of
downloading the data may also be used. This produces a raw profile counter file using the default
filename default.profraw.

int test_main(int argc, const char *argv[]) {
// Call into an important routine
important_func1();

// Call into an important routine
important_func2();

// Write out counter details to file
__llvm_profile_write_file();

// Exit
return 0;

→˓ }

Processing the Raw Profile Counter Data Into an Indexed Profile Data File

An indexed profile data file should be produced for each executable that is run; it is produced
based on a raw profile counter file that has the runtime counter data retrieved from memory (see
Retrieving the Counters From Memory section above).

This is done by invoking the c29profdata utility and indicating the raw profile counter file as
well as the executable used to produce it. This is required since in order to support embedded
use cases, pertinent code coverage information must be extracted from non-allocatable sections in
the executable. The result is an indexed profile data file. In the example below, the raw profile
counter files used as input are app1.profcnts, app2.profcnts, and app3.profcnts. The resulting
indexed profile data file produced for each is app1.profdata, app2.profdata, and app3.profdata,
respectively.

c29profdata merge -sparse -obj-file=app1.out app1.profcnts -o
→˓app1.profdata
c29profdata merge -sparse -obj-file=app2.out app2.profcnts -o

→˓app2.profdata
c29profdata merge -sparse -obj-file=app3.out app3.profcnts -o

→˓app3.profdata

3.9. Code Coverage 481

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Merging Multiple Indexed Profile Data Files from Multiple Executables

An indexed profile data file for each executable must be produced before any profile data from
multiple executables can be merged. If multiple executables have been run based on the same
source code base, the corresponding indexed profile data files for each of the executables can then
be merged into a single indexed profile data file.

c29profdata merge -sparse app1.profdata app2.profdata app3.
→˓profdata -o app_merged.profdata

Wildcards can be used to identify the range of indexed profile data files used as input.

Visualization

In order to visualize the code coverage, the single merged indexed profile data file along with each
of the corresponding executables must be given as input to the c29cov visualization tool. The
visualization tool can be used to generate a dump of the source file along with a summary report
in either HTML or Text format. The names of each executable must be specified individually by
name using the --object=<executable> option.

HTML Format

When generating HTML output, a summary coverage report is also generated at the root of a
directory tree that contains coverage data for each of the files. For the source-based coverage
views, it is recommended to use --show-expansions and --show-instantiations options to see the
full view of all macro expansions and function template instantiations, respectively. In addition,
branch coverage information can be included in the source-based view, and it can be represented
in terms of execution count or percentage.

If you need to focus on code coverage for specific source files, you may list the source files follow-
ing the --sources option.

The following example visualizes coverage in HTML with macros and templates expanded; it also
includes detailed branch coverage in terms of execution count.

c29cov show --format=html --show-expansions --show-
→˓instantiations --show-branches=count

--object=./app1.out --object=./app2.out --object=./app3.out -
→˓instr-profile=app-merged.profdata --sources demo.c

--output-dir=/example/directory

3.9. Code Coverage 482

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.9. Code Coverage 483

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.9. Code Coverage 484

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.9. Code Coverage 485

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Figure 3.31: Code Coverage HTML Output Format

When generating HTML output with --show-mcdc-summary, the summary coverage report in-
cludes an additional column with the MC/DC coverage data.

Figure 3.32: Code Coverage HTML Summary Report

Text Format

When generating Text output, the summary coverage report is generated using a separate c29cov
report option. For example, to view the source-based coverage view:

c29cov show --show-expansions --show-branches=count --object=./
→˓app1.out --object=./app2.out --object=./app3.out -instr-
→˓profile=app-merged.profdata

Text Format Output Example

2| |
(continues on next page)

3.9. Code Coverage 486

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

2| |#include <stdio.h>
3| |#include <stdlib.h>
4| |
5| |#ifdef __clang__
6| |extern void __llvm_profile_write_file(void);
7| |#endif
8| |
9| 2|#define BRANCH_MACRO(x, y) (x == y)
10| |
11| |int main(int argc, char *argv[])
12| 3|{
13| 3| if (argc == 1)

| Branch (13:9): [True: 1, False: 2]

14| 1| {
15| 1|#ifdef __clang__
16| 1| __llvm_profile_write_file();
17| 1|#endif
18| 1| return 0;
19| 1| }
20| 2|
21| 2| int arg1 = atoi(argv[1]);
22| 2| int arg2 = atoi(argv[2]);
23| 2| int cnt = atoi(argv[3]);
24| 2|
25| 2| int x = arg2 == 0 || arg1 == 0;

| Branch (25:13): [True: 0, False: 2]
| Branch (25:26): [True: 1, False: 1]

26| 2|
27| 2| printf("Hello, World! %u\n", x);
28| 2|
29| 2| int i;
30| 22| for (i = 0; i < cnt; i++)

| Branch (30:17): [True: 20, False: 2]

31| 20| {
32| 20| if (arg1 == 0 || arg2 == 2 || arg2 == 34)

(continues on next page)

3.9. Code Coverage 487

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

| Branch (32:13): [True: 10, False: 10]
| Branch (32:26): [True: 10, False: 0]
| Branch (32:39): [True: 0, False: 0]

33| 20| {
34| 20| printf("Hello from the loop!\n");
35| 20| }
36| 20| }
37| 2|
38| 2| if ((arg1 == 3) && 1)

| Branch (38:9): [True: 0, False: 2]
| Branch (38:24): [Folded - Ignored]

39| 0| printf("This never executes\n");
40| 2|
41| 2| if (BRANCH_MACRO(arg1, arg1))

| | 9| 2|#define BRANCH_MACRO(x, y) (x == y)
| | ------------------
| | | Branch (9:28): [True: 2, False: 0]
| | ------------------

42| 2| printf("This executes on a macro expansion\n

→˓");
43| 2|
44| 2| // Explicit Default Case
45| 2| switch (arg2) {
46| 1| case 1: printf("Case 1\n");

| Branch (46:7): [True: 1, False: 1]

47| 1| break;
48| 1| case 2: printf("Case 2\n");

| Branch (48:7): [True: 1, False: 1]

49| 1| break;
50| 0| default: break;

| Branch (50:7): [True: 0, False: 2]

(continues on next page)

3.9. Code Coverage 488

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

51| 2| }
52| 2|
53| 2| // Implicit Default Case
54| 2| switch (arg2) {

| Branch (54:13): [True: 0, False: 2]

55| 1| case 1: printf("Case 1\n");

| Branch (55:7): [True: 1, False: 1]

56| 1| break;
57| 1| case 2: printf("Case 2\n");

| Branch (57:7): [True: 1, False: 1]

58| 1| break;
59| 2| }
60| 2|
61| 2|#ifdef __clang__
62| 2| __llvm_profile_write_file();
63| 2|#endif
64| 2|
65| 2| return 0;
66| 2|}

To view the report:

c29cov report --object=./app1.out --object=./app2.out --object=./
→˓app3.out -instr-profile=app-merged.profdata

File '/scratch/aphipps/llvmtest/cov/demo/demo.c':
Name Regions Miss Cover Lines

→˓Miss Cover Branches Miss Cover

→˓--------------------------------------
main 28 4 85.71% 55

→˓ 2 96.36% 30 8 73.33%

→˓--------------------------------------
TOTAL 28 4 85.71% 55

→˓ 2 96.36% 30 8 73.33%

3.9. Code Coverage 489

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The overall MC/DC coverage percentage is also shown as part of the report if --show-mcdc-
summary is used when generating it:

c29cov report --show-mcdc-summary --object=./app1.out --object=./
→˓app2.out --object=./app3.out -instr-profile=app-merged.profdata

File '/scratch/aphipps/llvmtest/cov/demo/demo.c':
Name Regions Miss Cover Lines

→˓Miss Cover Branches Miss Cover MC/DC Conditions
→˓Miss Cover

→˓---
→˓-----------
main 28 4 85.71% 55

→˓ 2 96.36% 30 8 73.33% 6
→˓ 5 16.67%

→˓---
→˓-----------
TOTAL 28 4 85.71% 55

→˓ 2 96.36% 30 8 73.33% 6
→˓ 5 16.67%

Visualization as TI CSV for Excel

The visualization capability supports exporting the data as a TI-specific CSV format that contains
an aggregation of data corresponding to the TI-specified Dynamic Analysis Guidelines.

c29cov export --format=csv --object=./multidemo.out -instr-
→˓profile=default.profdata --sources c-main.c c-gen1.c c-gen2.c
→˓c-gen3.c c-gen4.c c-gen5.c > multidemo.csv

The output can be imported and saved as an Excel spreadsheet where it can be manually adjusted:

3.9. Code Coverage 490

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

This corresponds to the TI-specified Coverage Report Excel Template (Dynamic Analysis Sum-
mary) produced by LDRA:

Because a CSV is generated, all of the metric categories are produced on the same sheet. This is
different from the TI Excel template which separates data out across multiple sheets.

Important Considerations for MC/DC

• Boolean expressions with more than six individual conditions are not supported and will
result in a compilation error when -fmcdc is used. This restriction is intended to keep the
instrumentation footprint optimal.

• Boolean expressions that include statements with additional nested Boolean expressions
are not supported and will result in a compilation error when -fmcdc is used. For example,
the Boolean expression “(x > 3) && my_func((y > 3) || (y < 10))” contains a nested Boolean
expression as an argument to the function call to my_func() and is not supported.

• Boolean expressions containing strongly-coupled conditions are not handled in a special

3.9. Code Coverage 491

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

manner. Each strongly-coupled condition is treated as an independent condition and must be
rewritten in order to achieve full MC/DC. For example, “((x > 3) && (y > 2)) || ((x > 3) &&
(y < 10))” is a Boolean expression that is comprised of a condition “(x > 3)” that is strongly
coupled. In order to achieve full MC/DC, the Boolean expression must be rewritten as “(x >
3) && ((y > 2) || (y < 10))”

• Foldable constant conditions that comprise Boolean expressions are not counted as measur-
able conditions for MC/DC and are effectively ignored. Note that a condition that is always
true or always false may impact your ability to achieve full MC/DC for other conditions that
are not constant.

• Some conditions may be unevaluatable due to short-circuit language semantics and don’t
actually affect the decision outcome. They are masked by the tooling in the test vector and
are considered to have an effective Boolean value of either True or False when compared
against other test vectors.

• When showing MC/DC data using --show-mcdc, each Boolean expression is annotated in a
similar way to the example below. Each leaf-level condition is mapped to a “C” condition
name (e.g. C1, C2, etc) for the purposes of visualizing the test vectors, and if it can be
shown for a condition that changing its value independently affects the decision outcome
while holding all other conditions fixed, the Independence Pair of test vectors that cover the
condition is shown. Unevaluatable, short-circuited conditions are rendered using ‘ - ‘ in the
test vector.

12| 5| if ((a && b) || (c && d))
|---> MC/DC Decision Region (12:7) to (12:27)
|
| Number of Conditions: 4
| Condition C1 --> (12:8)
| Condition C2 --> (12:13)
| Condition C3 --> (12:20)
| Condition C4 --> (12:25)
|
| Executed MC/DC Test Vectors:
|
| C1, C2, C3, C4 Result
| 1 { F, -, F, - = F }
| 2 { T, F, F, - = F }
| 3 { T, F, T, F = F }
| 4 { T, T, -, - = T }
| 5 { T, F, T, T = T }
|
| C1-Pair: covered: (1,4)
| C2-Pair: covered: (2,4)
| C3-Pair: covered: (2,5)
| C4-Pair: covered: (3,5)

(continues on next page)

3.9. Code Coverage 492

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

| MC/DC Coverage for Decision: 100.00%
|

Important Considerations for Branch Coverage

• Some other vendors define Branch Coverage as only covering Decisions that may include
one or more logical operators. However, Branch Coverage in the c29clang compiler supports
coverage for all leaf-level Boolean expressions (expressions that cannot be broken down into
simpler Boolean expressions). For example, “x = (y == 2) || (z < 10)” is a Boolean expression
that is comprised of two conditions, each of which evaluates to either TRUE or FALSE. This
support is functionally closer to GCC GCOV/LCOV support.

• When showing branch coverage, each TRUE and FALSE condition represents a branch that
is tied to how many times its corresponding condition evaluated to TRUE or FALSE. This
can also be shown in terms of percentage.

44| 3| if ((VAR1 == 0 && VAR2 == 2) || VAR3 == 34 ||
→˓VAR1 == VAR3)

| Branch (44:10): [True: 1, False: 2]
| Branch (44:20): [True: 0, False: 1]
| Branch (44:31): [True: 0, False: 3]
| Branch (44:42): [True: 0, False: 3]

• When viewing branch coverage details in a source-based visualization, it is recommended
that users show all macro expansions (using option --show-expansions), particularly since
macros may contain hidden Boolean expressions. In addition, macro expansions can be
nested (macros are often defined in terms of other macros), as demonstrated in the follow-
ing example. The coverage summary report always includes these macro-based Boolean
expressions in the overall branch coverage count for a function or source file.

58| 3| MACRO2;

| | 7| 5|#define MACRO2(MACRO)
| | ------------------
| | | | 6| 2|#define MACRO (MACRO_CONDITION ? VAR2 :

→˓VAR1)
| | | | ------------------
| | | | | | 5| 2|#define MACRO_CONDITION (VAR1 != 9)
| | | | | | ------------------

(continues on next page)

3.9. Code Coverage 493

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

| | | | | | | Branch (5:16): [True: 2, False: 0]
| | | | | | ------------------
| | | | ------------------
| | ------------------
| | | Branch (7:17): [True: 2, False: 0]
| | ------------------

• Coverage is not tracked for branch conditions that the compiler can fold to TRUE or FALSE
since for these cases, branches are not generated. This matches the behavior of other code
coverage vendors. In the source-based visualization, these branches are displayed as [Folded
- Ignored], so that users are informed about what happened.

38| 2| if ((VAR1 == 3) && TRUE)

| Branch (38:9): [True: 0, False: 2]
| Branch (38:24): [Folded - Ignored]

• Branch coverage is tied directly to branch-generating conditions in the source code. As such
(unlike with GCOV), users should not see hidden branches that aren’t actually tied to the
source code.

• For switch statements, a branch region is generated for each switch case, including the de-
fault case. If there is no explicitly defined default case, a branch region is generated to
correspond to the implicit default case that is generated by the compiler. The implicit branch
region is tied to the line and column number of the switch statement condition (since no
source code for the implicit case exists). In the example below, no explicit default case ex-
ists, and so a corresponding branch region for the implicit default case is created and tied to
the switch condition on line 65.

65| 3| switch (condition)

| Branch (65:13): [True: 2, False: 1]

66| 3| {
67| 1| case 0:

| Branch (67:9): [True: 1, False: 2]

68| 1| printf("case0\n"); // fallthrough
69| 1| case 2:

| Branch (69:9): [True: 0, False: 3]

(continues on next page)

3.9. Code Coverage 494

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

70| 1| // fallthrough
71| 1|
72| 1| case 3:

| Branch (72:9): [True: 0, False: 3]

73| 1| printf("case3\n"); // fallthrough
74| 3|
75| 3| }

Known Limitations

• Counter Initialization After Some Startup Routines

– For functions that are part of special boot/reset routines that get called prior to C run-
time initialization, counter information for these functions are clobbered. If code cover-
age data is needed for functions like these, a special startup sequence may be required in
your system to ensure the counters are properly initialized to zero and not re-initialized
later unless the counter data can be extracted first.

• Code Composer Studio Integration

– Presently, CCS doesn’t have direct support for c29clang compiler Code Coverage,
though support will be added soon. This support will make it very straightforward
for users to build projects for code coverage, download counter data from memory, and
visualize the data.

• Counter Size

– Counters are 64bits in size, which may be too large for some embedded use cases.

– Counter size can be reduced to 32bits by compiling with -fprofile-counter-size=32.

– Counters that have large counts may overflow either during execution or when counter
data is merged together by the c29profdata tool. When the counter data is merged,
c29profdata uses saturating addition, so the final value reflects the largest possible
value. This affects the accuracy of the visualization.

• Unexpected Function Instantiations of the Same Function

– The c29cov tool uses a function hash to distinguish between functions. This hash is
based on the function name, source filename, as well as all included header filenames as
well as their filepaths. For functions that have the same name across multiple binaries,
if any of the filepaths are different, then a different function hash is used, and functions
that have the same name are treated by c29cov as separate function instantiations of

3.9. Code Coverage 495

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

the same function. In the source-based visualization, these instantiations show up as
subviews preceded by a general summary view of the function.

– If a build system regenerates the constituent header files for a source file across dif-
ferent builds such that the header filepaths end up being different from build to build,
then even if the header files are identical across builds, the function is represented as
multiple instantiations of the same function. If these functions are actually identical,
then there will only exist one final set of merged counters for the function, and the
coverage will be identical across all instantiations. This will not negatively impact the
final coverage summary of covered lines, regions, or branches.

• Line Coverage Summary Report shows more Executable Lines than are Actually Executable

– Header files that define static inline functions are counted as separate function instan-
tiations of those functions. If a header file is included and one or more of its static
inline functions are not invoked, they will show up in the code coverage report as an
unexecuted instantiation of the function. Because these functions are not invoked, they
won’t be instrumented, and so the code coverage tooling only knows that they exist and
how many lines in size they are. The c29cov tool will therefore assume that all lines
in the function are potentially executable, even though they may contain blank lines or
lines with comments that cannot be executed.

– Because of this, an unexecuted instantiation that has blank lines and comments may
appear to the coverage reporting tools as having more lines to cover than an executed
instantiation has, and the line coverage will report less than 100%. While all that is
necessary to cover a static inline function is a single executed instantiation, the presence
of unexecuted instantiations can make it seem like a subset of lines are uncovered. Note
that this is only true for line coverage and not region coverage, branch coverage, or
MC/DC.

– When this happens, the recommendation is to document the line coverage gap but ig-
nore it, focusing on ensuring that function coverage, region coverage, branch coverage,
and MC/DC (if applicable) are covered.

• Function Differences

– Different function definitions across multiple executables that have the same function
name will likely be reported as having “mismatched data”. This is a known issue in
code coverage for common function names like main(). Care should be taken to filter
out cases like this using the c29cov filtering mechanism since each instance clearly
represents a different function.

– Two or more functions that have the same code base but built different such that they
contain different macro expansions will be visualized as multiple instantiations of the
same function. This doesn’t impede coverage.

• Visualization Tool unable to find Source Code

– When a project is built with code coverage enabled, paths to the source code are em-
bedded within the executable file and are extracted by the c29cov visualization tool in

3.9. Code Coverage 496

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

order to locate the source files. If the system or machine used to build the project is
different from what is used to run the visualization tool, the tool will not be able to
locate the source files, and it will behave as though no source code is specified.

– You can change the embedded source code paths using the --path-
equivalence=<from>,<to> option, which will enable the visualization tool to
find the source files are a new location. This option allows you to map the paths in the
coverage data to local source file paths. This allows you to generate the coverage data
on one machine, and then use c29cov on a different machine where you have the same
files on a different path.

• Source Filtering

– The source filtering facility implemented by c29cov isn’t as fully featured as it is for
other vendors, like LCOV. Specifically, embedded filter tags aren’t supported (e.g.
LCOV_EXCL_[START|STOP]). Please see the filtering options for more information
(c29cov --help).

• Branch Coverage

– Future compiler enhancements will likely be implemented to minimize the number
of counters actually used in nested Boolean expressions like “((A || B) && C)”, for
example.

3.9.2 c29profdata - Profile Data Tool

The c29profdata tool can be used to work with profile data files.

Usage

c29profdata command [options] <filenames>

• c29profdata - Command to invoke the profile data tool.

• command - One of the available c29profdata modes of operation: merge or show

• options - one or more options arguments appropriate for the specified command mode

• <filenames> - one or more input profile data files

3.9. Code Coverage 497

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Commands

merge

The c29profdata merge command takes several profile data files generated by c29clang instru-
mentation options and merges them together into a single indexed profile data file.

By default profile data is merged without modification. This means that the relative importance
of each input file is proportional to the number of samples or counts it contains. In general, the
input from a longer training run will be interpreted as relatively more important than a shorter run.
Depending on the nature of the training runs it may be useful to adjust the weight given to each
input file by using the -weighted-input option.

Profiles passed in via -weighted-input, -input-files, or via positional arguments are processed once
for each time they are seen.

Options

-help

Print a summary of command line options.

-output=<filename>, -o=<filename>

Specify the output <filename>.

-weighted-input=<weight>,<filename>

Specify an input <filename> along with a <weight>. The profile counts of the supplied
<filename> will be scaled (multiplied) by the supplied <weight>, where <weight> is an
integer >= 1. Input files specified with using this option are assigned a default <weight> of
1.

-input-files=<path>, -f=<path>

Specify a file which contains a list of files to merge. The entries in this file are newline-
separated. Lines starting with ‘#’ are skipped. Entries may be of the form <filename> or
<weight>,<filename>.

-remapping-file=<path>, -r=<path>

Specify a file which contains a remapping from symbol names in the input profile to the
symbol names that should be used in the output profile. The file should consist of lines
of the form <input-symbol> <output-symbol>. Blank lines and lines starting with ‘#’ are
skipped.

The llvm-cxxmap tool can be used to generate the symbol remapping file.

-instr

Specify that the input profile is an instrumentation-based profile (default).

-sample

Specify that the input profile is a sample-based profile.

3.9. Code Coverage 498

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The format of the output file can be generated in one of three ways:

-binary (default)

Emit the profile using a binary encoding. For instrumentation-based profile the output format
is the indexed binary format.

-extbinary

Emit the profile using an extensible binary encoding. This option can only be used with
sample-based profile. The extensible binary encoding can be more compact with compres-
sion enabled and can be loaded faster than the default binary encoding.

-text

Emit the profile in text mode. This option can also be used with both sample-based and
instrumentation-based profile. When this option is used the profile will be dumped in the
text format that is parsable by the profile reader.

-sparse=[true|false]

Do not emit function records with 0 execution count. This can only be used in conjunction
with the -instr option. Defaults to false, since it can inhibit compiler optimization during
profile guided optimization.

-num-threads=<N>, -j=<N>

Use <N> threads to perform profile merging. When <N>=0, c29profdata auto-detects an
appropriate number of threads to use. This is the default.

-failure-mode=[any|all]

Set the failure mode. There are two options:

• any causes the merge command to fail if any profiles are invalid, and

• all causes the merge command to fail only if all profiles are invalid.

If all is set, information from any invalid profiles is excluded from the final merged product.
The default failure mode is any.

-prof-sym-list=<path>

Specify a file which contains a list of symbols to generate profile symbol list in the profile.
This option can only be used with sample-based profile in extensible binary format. The
entries in this file are newline-separated.

-compress-all-sections=[true|false]

Compress all sections when writing the profile. This option can only be used with sample-
based profile in extensible binary format.

-use-md5=[true|false]

Use MD5 to represent string in name table when writing the profile. This option can only be
used with sample-based profile in extensible binary format.

3.9. Code Coverage 499

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-gen-partial-profile=[true|false]

Mark the profile to be a partial profile which only provides partial profile coverage for the
optimized target. This option can only be used with sample-based profile in extensible binary
format.

-supplement-instr-with-sample=<path to sample profile>

Supplement an instrumentation profile with sample profile. The sample profile is the input
of the flag. Output will be in instrumentation format (this only works in combination with
the -instr option).

show

The c29profdata show command takes a profile data file and displays the information about the
profile counters for the specified input file and for any of the specified functions.

If the input file is omitted or is ‘-’, then c29profdata show reads its input from standard input.

Options

-all-functions

Print details for every function.

-counts

Print the counter values for the displayed functions.

-function=<string>

Print details for a function if the function’s name contains the given <string>.

-help

Print a summary of command line options.

-output=<filename>, -o=<filename>

Specify the output <filename>. If <filename> is ‘-’ or it is not specified, then the output is
sent to standard output.

-instr

Specify that the input profile is an instrumentation-based profile.

-text

Instruct the profile dumper to show profile counts in the text format of the instrumentation-
based profile data representation. By default, the profile information is dumped in a more
human readable form (also in text) with annotations.

-topn=<n>

Instruct the profile dumper to show the top <n> functions with the hottest basic blocks in the
summary section. By default, the topn functions are not dumped.

3.9. Code Coverage 500

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-sample

Specify that the input profile is a sample-based profile.

-memop-sizes

Show the profiled sizes of the memory intrinsic calls for shown functions.

-value-cutoff=<n>

Show only those functions whose max count values are greater or equal to <n>. By default,
the value-cutoff is set to 0.

-list-below-cutoff

Only output names of functions whose max count value are below the cutoff value.

-showcs

Only show context sensitive profile counts. The default is to filter all context sensitive profile
counts.

-show-prof-sym-list=[true|false]

Show profile symbol list if it exists in the profile. This option is only meaningful for sample-
based profile in extensible binary format.

-show-sec-info-only=[true|false]

Show basic information about each section in the profile. This option is only meaningful for
sample-based profile in extensible binary format.

Exit Status

c29profdata returns 1 if the command is omitted or is invalid, if it cannot read input files, or if
there is a mismatch between their data.

3.9.3 c29cov - Emit Coverage Information

The c29cov tool is used to show code coverage information for programs that are instrumented to
emit profile data.

Usage

c29cov command [arguments]

• c29cov - Command used to invoke the code coverage display tool.

• command - One of the available c29cov modes of operation: show, report, or export

• arguments

3.9. Code Coverage 501

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Commands

show

c29cov show [options] -instr-profile profile binary --sources [sources]

The c29cov show command shows line by line coverage of one or more binary files using the
profile data file. It can optionally be filtered to only show the coverage for the files listed in sources
using the --sources option.

A binary can be an executable, an object file, or an archive.

To use c29cov show, you need a program that is compiled with instrumentation to emit profile
and coverage data. To build such a program with c29clang use the -fprofile-instr-generate and -
fcoverage-mapping flags. If linking with using the c29clang command, the -fprofile-instr-generate
option will be passed to the linker to make sure the necessary runtime libraries are linked in.

The coverage information is stored in the built executable or library itself, and this is what you
should pass to c29cov show as a binary argument. The profile data is generated by running this in-
strumented program normally. When the program exits it will write out a raw profile file, typically
called default.profraw, which can be converted to a format that is suitable for the profile argument
using the c29profdata merge tool.

Options

-show-line-counts

Show the execution counts for each line. Defaults to true, unless another -show option is
used.

-show-expansions

Expand inclusions, such as preprocessor macros or textual inclusions, inline in the display
of the source file. Defaults to false.

-show-instantiations

For source regions that are instantiated multiple times, such as templates in C++, show each
instantiation separately as well as the combined summary. Defaults to true.

-show-regions

Show the execution counts for each region by displaying a caret that points to the character
where the region starts. Defaults to false.

-show-line-counts-or-regions

Show the execution counts for each line if there is only one region on the line, but show the
individual regions if there are multiple on the line. Defaults to false.

-use-color

Enable or disable color output. By default this is autodetected.

3.9. Code Coverage 502

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-arch=[*names*]

Specify a list of architectures such that the Nth entry in the list corresponds to the Nth
specified binary. If the covered object is a universal binary, this specifies the architecture to
use. It is an error to specify an architecture that is not included in the universal binary or to
use an architecture that does not match a non-universal binary.

-name=*<function>*
Show code coverage only for named function

-name-allowlist=*<file>*
Show code coverage only for functions listed in the given <file>. Each line in the file should
start with “allowlist_fun:”, immediately followed by the name of the function to accept. This
name can be a wildcard expression.

-filename-allowlist=*<file>*
Show code coverage only for files that match a regular expression listed in the given <file>.
Each line in the file should start with “allowlist_file:”.

-name-regex=*<pattern>*
Show code coverage only for functions that match the given regular expression <pattern>.

-ignore-filename-regex=*<pattern>*
Skip source code files with file paths that match the given regular expression <pattern>.

-format=*<format>*
Use the specified output <format>. The supported formats are: text or html.

-tab-size=*<size>*
Replace tabs with <size> spaces when preparing reports. Currently, this is only supported
for the html format.

-output-dir=*<path>*
Specify a directory <path> to write coverage reports into. If the directory does
not exist, it is created. When used in function view mode (i.e when -name
or -name-regex are used to select specific functions), the report is written to
<path>/functions.EXTENSION. When used in file view mode, a report for each file is writ-
ten to <path>/REL_PATH_TO_FILE.EXTENSION.

-Xdemangler=*<tool>*|*<tool-option>*
Specify a symbol demangler. This can be used to make reports more human-readable. This
option can be specified multiple times to supply arguments to the demangler. The demangler
is expected to read a newline-separated list of symbols from stdin and write a newline-
separated list of the same length to stdout.

-num-threads=*<N>*, -j=*<N>*
Use <N> threads to write file reports (only applicable when -output-dir is specified). When
N=0, c29cov auto-detects an appropriate number of threads to use. This is the default.

3.9. Code Coverage 503

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-line-coverage-gt=*<N>*
Show code coverage only for functions with line coverage greater than the given threshold
<N>.

-line-coverage-lt=*<N>*
Show code coverage only for functions with line coverage less than the given threshold <N>.

-region-coverage-gt=*<N>*
Show code coverage only for functions with region coverage greater than the given threshold
<N>.

-region-coverage-lt=*<N>*
Show code coverage only for functions with region coverage less than the given threshold
<N>.

-path-equivalence=*<from>*,*<to>*
Map the paths in the coverage data to local source file paths. This allows you to generate the
coverage data on one machine, and then use c29cov on a different machine where you have
the same files on a different path.

report

c29cov report [options] -instr-profile profile binary --sources [sources]

The c29cov report command displays a summary of the coverage of one or more binary files,
using the profile data profile. It can optionally be filtered to only show the coverage for the files
listed in sources using the --sources option.

A binary may be an executable, an object file, or an archive.

If no source files are provided, a summary line is printed for each file in the coverage data. If
any files are provided, summaries can be shown for each function in the listed files if the -show-
functions option is enabled.

Options

-use-color[=*<value>*]

Enable or disable color output. By default this is autodetected.

-arch=*<name>*
If the covered binary is a universal binary, select the architecture to use. It is an error to
specify an architecture that is not included in the universal binary or to use an architecture
that does not match a non-universal binary.

-show-functions

Show coverage summaries for each function. Defaults to false.

3.9. Code Coverage 504

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-show-instantiation-summary

Show statistics for all function instantiations. Defaults to false.

-show-call-region-summary

Show statistics for all regions containing function calls instantiations. Defaults to false.

-ignore-filename-regex=*<pattern>*
Skip source code files with file paths that match the given regular expression <pattern>.

export

c29cov export [options] -instr-profile profile binary --sources [sources]

The c29cov export command exports coverage data of one or more binary files, using the profile
data profile in either JSON, csv, or lcov trace file format.

When exporting JSON, the regions, functions, expansions, and summaries of the coverage data
will be exported. When exporting an lcov trace file, the line-based coverage and summaries will
be exported. When exporting a csv trace file, an aggregation of data, including summaries as well
as individual file and function metrics will be generated.

The exported data can optionally be filtered to only export the coverage for the files listed in sources
using the --sources option.

Options

-arch=*<name>*
If the covered binary is a universal binary, select the architecture to use. It is an error to
specify an architecture that is not included in the universal binary or to use an architecture
that does not match a non-universal binary.

-format=*<format>*
Use the specified output <format>. The supported formats are: text, csv, or lcov. The csv
format generates an aggregation of data in a comma-separated format that can be easily
imported as an Excel document and saved to correspond with a TI-specific Code Coverage
report format.

-summary-only

Export only summary information for each file in the coverage data. This mode will not
export coverage information for smaller units such as individual functions or regions. The
result will contain the same information as produced by the c29cov report command, but
presented in JSON or lcov format rather than text.

-ignore-filename-regex=*<pattern>*
Skip source code files with file paths that match the given regular expression <pattern>.

3.9. Code Coverage 505

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

-skip-expansions

Skip exporting macro expansion coverage data.

-skip-functions

Skip exporting per-function coverage data.

-num-threads=*<N>*, -j=*<N>*
Use <N> threads to export coverage data. When N=0, c29cov auto-detects an appropriate
number of threads to use. This is the default.

Exit Status

c29cov returns 1 if the command is omitted or is invalid, if it cannot read input files, or if there is
a mismatch between their data.

3.9.4 Code Coverage for Functional Safety

The TI C29x Clang Compiler can be used for functional safety development as a tool for generating
and collecting structural code coverage as required by functional safety standards by applying the
TI Compiler Qualification Kit.

The Code Coverage capability supports statement coverage, call coverage, branch coverage, and
MC/DC (Modified Condition/Decision Coverage), as documented in the user guide: Source-Based
Code Coverage in c29clang.

For more information:

• How to apply the TI Compiler Qualification Kit for functional safety development (TI App
Note)

3.10 Compiler Security

Contents:

3.10.1 Stack Smashing Detection

• Introduction

• Stack Smashing Detection Options

– Enabling Stack Smashing Detection

3.10. Compiler Security 506

https://software-dl.ti.com/ccs/esd/documents/application_notes/appnote-codegen_qualificationkit.html
https://software-dl.ti.com/ccs/esd/documents/application_notes/appnote-codegen_qualificationkit.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

– Stack Smashing Detection Example

Introduction

The TI C29x Clang Compiler Tools (c29clang) support options to instrument protection against
stack smashing attacks like buffer overflows.

Stack Smashing Detection Options

-fstack-protector

Instructs the compiler to emit extra code to check for buffer overflows, such as stack-
smashing attacks. This is done by adding a guard variable to vulnerable functions that con-
tain certain types of objects. The guards are initialized when a function is entered and then
checked when the function exits. If a guard check fails, an error handling function is called.
The error handling function can be made to indicate the error in some way and exit the pro-
gram. Only variables that are actually allocated on the stack are considered, optimized away
variables or variables allocated in registers are not considered.

Vulnerable functions for this setting are:

• Functions with buffers or arrays larger than 8 bytes

• Functions that call alloca() with parameters larger than 8 bytes

-fstack-protector-strong

Instructs the compiler to behave as if -fstack-protector were specified, except that the vul-
nerable functions for which the compiler emits stack buffer overflow checking code are:

• Functions that contain any array

• Functions with any local variable that has its address taken

• Functions that call to alloca()

-fstack-protector-all

Instructs the compiler to behave as if -fstack-protector were specified, except that the com-
piler emits stack buffer overflow checking code for all functions instead of limiting protec-
tion as -fstack-protector and -fstack-protector-strong do.

3.10. Compiler Security 507

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Enabling Stack Smashing Detection

To enable stack smashing detection in your application, you need to provide definitions of:

__stack_chk_fail() - This function is called from an instrumented function when a check against
the stack guard value, __stack_chk_guard, fails. A simple definition of this function might look
like this:

void __stack_chk_fail(void) {
printf("__stack_chk_guard has been corrupted\n");
exit(0);

}

__stack_chk_guard - This is a globally visible symbol whose value can be copied into a location
at the boundary of a function’s allocated stack on entry into the function, and loaded just prior to
function exit to perform a check that the local copy of the __stack_chk_guard value has not been
overwritten. A simple definition of this symbol might look like this:

unsigned long __stack_chk_guard = 0xbadeebad;

You can then compile a file containing both of these definitions to produce an object file that can
be linked into an application that is instrumented for stack smashing detection.

Stack Smashing Detection Example

Here is a simple example to summarize and demonstrate how the stack smashing detection capa-
bility can be used:

• The first source file presents the definitions of __stack_chk_fail() and __stack_chk_guard
(stack_check.c):

#include <stdlib.h>
#include <stdio.h>

void __stack_chk_fail(void);
unsigned long __stack_chk_guard = 0xbadeebad;

void __stack_chk_fail(void) {
printf("ERROR: __stack_chk_guard has been corrupted\n");
eixit(0);

}

• The second source file presents a use case where a function, foo, writes past the end of a
local buffer (stack_smash.c):

3.10. Compiler Security 508

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

#include <string.h>

void foo(void);

int main() {
foo();
return 0;

}

void foo(void) {
char buffer[3];
strcpy(buffer, "Oi! I am smashing your stack");

}

The stack_check.c source can then be compiled to generate stack_check.o:

%> c29clang -mcpu=c29.c0 -c stack_check.c

and the stack_smash.c source file is compiled and linked with stack smashing detection enabled
via the use of the -fstack-protector-all option:

%> c29clang -mcpu=c29.c0 -fstack-protector-all stack_smash.c
→˓stack_check.o -o stack_smash.out -Wl,-llnk.cmd

When loaded and run, the following error message is emitted, and the program exits when the stack
check fails before returning from foo:

ERROR: __stack_chk_guard has been corrupted

3.10.2 C11 Secure Functions in C Runtime Support Library

• C11 Secure Function Constraint Violations

• Setting Up a Constraint Violation Handler Function

• Enabling Use of Secure Functions via __STDC_WANT_LIB_EXT1__ Definition

• Example

• The Secure Functions

The TI C29x Clang Compiler Tools (c29clang) provides an implementation of a subset of the
“secure” functions that were introduced as optional extensions to the C11 language standard. You
can find a full description of the C11 secure functions in Annex K of a recent C Language Standard.

3.10. Compiler Security 509

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The following C11 secure functions are supported in the c29clang compiler tools (annotated with
the C11 language standard section number where function is described):

• abort_handler_s() - K.3.6.1.2

• gets_s() - K.3.5.4.1

• ignore_handler_s() - K.3.6.1.3

• memcpy_s() - K.3.7.1.1

• memmove_s() - K.3.7.1.2

• memset_s() - K.3.7.4.1

• set_constraint_handler_s() - K.3.6.1.1

• strcat_s() - K.3.7.2.1

• strcpy_s() - K.3.7.1.3

• strncat_s() - K.3.7.2.2

• strncpy_s() - K.3.7.1.4

• strnlen_s() - K.3.7.4.4

The Annex K C11 secure functions that are not supported in the c29clang sre listed in alphabetical
order below (annotated with C11 language standard section number where function is described):

• asctime_h() - K.3.8.2.1

• bsearch_s() - K.3.6.3.1

• ctime_s() - K.3.8.2.2

• fopen_s() - K.3.5.2.1

• fprintf_s() - K.3.5.3.1

• freopen_s() - K.3.5.2.2

• fscanf_s() - K.3.5.3.2

• fwprintf_s() - K.3.9.1.1

• fwscanf_s() - K.3.9.1.2

• getenv_s() - K.3.6.2.1

• gmtime_s() - K.3.8.2.3

• localtime_s() - K.3.8.2.4

• mbrsrtowcs_s() - K.3.9.3.2.1

• mbstowcs_s() - K.3.6.5.1

• printf_s() - K.3.5.3.3

3.10. Compiler Security 510

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• qsort_s() - K.3.6.3.2

• scanf_s() - K.3.5.3.4

• snprintf_s() - K.3.5.3.5

• snwprintf_s() - K.3.9.1.3

• sprintf_s() - K.3.5.3.6

• sscanf_s() - K.3.5.3.7

• strerror_s() - K.3.7.4.2

• strerrorlen_s() - K.3.7.4.3

• strtok_s() - K.3.7.3.1

• swprintf_s() - K.3.9.1.4

• swscanf_s() - K.3.9.1.5

• tmpfile_s() - K.3.5.1.1

• tmpnam_s() - K.3.5.1.2

• vfprintf_s() - K.3.5.3.8

• vfscanf_s() - K.3.5.3.9

• vfwprintf_s() - K.3.9.1.6

• vfwscanf_s() - K.3.9.1.7

• vprintf_s() - K.3.5.3.10

• vscanf_s() - K.3.5.3.11

• vsnprintf_s() - K.3.5.3.12

• vsnwprintf_s() - K.3.9.1.8

• vsprintf_s() - K.3.5.3.13

• vsscanf_s() - K.3.5.3.14

• vswprintf_s() - K.3.9.1.9

• vswscanf_s() - K.3.9.1.10

• vwprintf_s() - K.3.9.1.11

• vwscanf_s() - K.3.9.1.12

• wcrtomb_s() - K.3.9.3.1.1

• wcscat_s() - K.3.9.2.2.1

• wcscpy_s() - K.3.9.2.1.1

3.10. Compiler Security 511

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• wcsncat_s() - K.3.9.2.2.2

• wcsncpy_s() - K.3.9.2.1.2

• wcsnlen_s() - K.3.9.2.4.1

• wcsrtombs_s() - K.3.9.3.2.2

• wcstok_s() - K.3.9.2.3.1

• wcstombs_s() - K.3.6.5.2

• wctomb_s() - K.3.6.4.1

• wmemcpy_s() - K.3.9.2.1.3

• wmemmove_s() - K.3.9.2.1.4

• wprintf_s() - K.3.9.1.13

• wscanf_s() - K.3.9.1.14

C11 Secure Function Constraint Violations

The intent behind the “Bounds-checking interfaces” described in Annex K of the C language stan-
dard is to provide a means for a developer to detect, at run-time, unintended behavior in C runtime
library functions that write to memory.

For example, consider the memcpy() C runtime library function:

void *memcpy(void *dest, const void *src, size_t count);

A typical C runtime library implementation of the memcpy() function is optimized to execute as
efficiently as possible. Most likely, the memcpy() implementation does not check the validity of
the dest and src arguments before attempting the copy. There is also no information available to
memcpy() about the size of the buffer pointed to by dest, and therefore, there is no way to check
whether the copy may write past the end of the dest buffer. Consequently, an issue like writing past
the end of the buffer that the dest points to goes undetected and could lead to run-time behavior
that is difficult to debug.

The c29clang compiler tools provide the C11 secure version of the memcpy() function, mem-
cpy_s(),

errno_t memcpy_s(void *dest, rsize_t destsz, const void *src,
→˓rsize_t count);

which is implemented as follows:

3.10. Compiler Security 512

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

/
→˓**/
→˓

/* memcpy_s.c
→˓ */
/*

→˓ */
/* Copyright (c) 2024 Texas Instruments Incorporated

→˓ */
/* http://www.ti.com/

→˓ */
/*

→˓ */
/* Redistribution and use in source and binary forms, with

→˓or without */
/* modification, are permitted provided that the following

→˓conditions */
/* are met:

→˓ */
/*

→˓ */
/* Redistributions of source code must retain the above

→˓copyright */
/* notice, this list of conditions and the following

→˓disclaimer. */
/*

→˓ */
/* Redistributions in binary form must reproduce the above

→˓copyright */
/* notice, this list of conditions and the following

→˓disclaimer in */
/* the documentation and/or other materials provided

→˓with the */
/* distribution.

→˓ */
/*

→˓ */
/* Neither the name of Texas Instruments Incorporated nor

→˓the names */
/* of its contributors may be used to endorse or promote

→˓products */
/* derived from this software without specific prior

→˓ written */

(continues on next page)

3.10. Compiler Security 513

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

/* permission.
→˓ */
/*

→˓ */
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

→˓CONTRIBUTORS */
/* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,

→˓ BUT NOT */
/* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

→˓FITNESS FOR */
/* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

→˓COPYRIGHT */
/* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

→˓INCIDENTAL, */
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

→˓BUT NOT */
/* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

→˓LOSS OF USE, */
/* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

→˓AND ON ANY */
/* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

→˓ OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

→˓OF THE USE */
/* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

→˓DAMAGE. */
/*

→˓ */
/

→˓**/
→˓

#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include "_c11_secure_private.h"

/
→˓**/
→˓

/* MEMCPY_S()
→˓ */

(continues on next page)

3.10. Compiler Security 514

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

/* Read count characters from a source buffer and write them
→˓to a */
/* destination buffer. The C11 secure version of memcpy will

→˓enforce */
/* security constraints as prescribed by the C11 standard.

→˓Details of */
/* the constraints to be enforced are described in the

→˓comments below. */
/

→˓**/
→˓

#define MAX_EMSG_SZ 100
errno_t
memcpy_s(void * __restrict dest, rsize_t destsz,

const void * __restrict src, rsize_t count)
{

char emsg[MAX_EMSG_SZ] = "memcpy_s : ";

/*---
→˓-----------*/
/* Destination buffer pointer cannot be NULL.

→˓ */
/*---

→˓-----------*/
if (dest == NULL)
strcat(emsg, "dest is NULL");

/*---
→˓-----------*/
/* Source buffer pointer cannot be NULL.

→˓ */
/*---

→˓-----------*/
else if (src == NULL)

strcat(emsg, "src is NULL");

/*---
→˓-----------*/
/* Indicated destination buffer size cannot be > RSIZE_MAX.

→˓ */
/*---

→˓-----------*/

(continues on next page)

3.10. Compiler Security 515

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

else if (destsz > RSIZE_MAX)
strcat(emsg, "destsz > RSIZE_MAX");

/*---
→˓-----------*/
/* Indicated count cannot be > RSIZE_MAX.

→˓ */
/*---

→˓-----------*/
else if (count > RSIZE_MAX)

strcat(emsg, "count > RSIZE_MAX");

/*---
→˓-----------*/
/* Indicated count cannot be > indicated destination buffer

→˓size. */
/*---

→˓-----------*/
else if (count > destsz)

strcat(emsg, "count > destsz");

/*---
→˓-----------*/
/* Source and destination buffers may not overlap.

→˓ */
/*---

→˓-----------*/
else if ((((unsigned char *)src >= (unsigned char *)dest) &&

((unsigned char *)src < ((unsigned char *)dest +
→˓destsz))) ||

(((unsigned char *)src <= (unsigned char *)dest) &&
((unsigned char *)dest < ((unsigned char *)src +

→˓count))))
strcat(emsg, "src and dest overlap");

/*---
→˓-----------*/
/* All constraint violation checks have been cleared. Do the

→˓copy. */
/*---

→˓-----------*/
else {

(continues on next page)

3.10. Compiler Security 516

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

memcpy(dest, src, count);
return (0);

}

/*---
→˓-----------*/
/* If any constraint violations are detected, the C11 standard

→˓prescribes */
/* that zeroes are written to dest[0] through dest[destsz-1].

→˓ */
/*---

→˓-----------*/
if (dest && (destsz <= RSIZE_MAX))
memset(dest, 0, destsz);

__throw_constraint_handler_s(emsg, EINVAL);
return (EINVAL);

}

In contrast to a typical memcpy() implementation, the memcpy_s() implementation performs sev-
eral run-time checks on the validity of the arguments, including:

• Neither the dest, nor the src pointers may be NULL

• Both the destsz and the count arguments must be less then RSIZE_MAX

• The count argument must be less than or equal to the destsz argument

• The src buffer must not overlap with the dest buffer

A failure of any of these run-time checks constitutes a constraint violation, in which case, the
memcpy_s() implementation does not perform the copy operation. Instead, the first destsz bytes
of the dest buffer is filled with zero, and the type of the constraint violation is communicated to a
constraint handler function. Also, in the event of a constraint violation, the memcpy_s() function
returns a non-zero error type value to indicate to the calling function that a constraint violation has
been detected.

Setting Up a Constraint Violation Handler Function

Included with the C11 secure functions themselves, the C runtime support library API provides
a function that allows a developer to designate their own function as the one to be called when a
constraint violation is detected by one of the implemented secure functions.

set_constraint_handler_s <stdlib.h>

3.10. Compiler Security 517

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

constraint_handler_t set_constraint_handler_s(constraint_
→˓handler_t handler);

where the constraint_handler_t type is defined in stdlib.h as follows:

typedef typedef void (*constraint_handler_t)(const char *,
→˓void *, errno_t);

and the errno_t type is also defined in stdlib.h as follows:

typedef int errno_t;

The constraint handler registration helper function registers a custom constraint handler
function to be called when a constraint violation is detected, set_constraint_handler_s() must
be called with a pointer to the constraint handler function that is to be called when a violation
is detected.

A custom implementation of a constraint handler function must match the signature as spec-
ified in the definition of the constraint_handler_t type. That is,

void <name of constraint handler function>(const char *,
→˓void *, errno_t);

Two example constraint handler function implementations are provided in the C Runtime
Support Library:

• abort_handler_s() - a constraint violation causes the application to abort

• ignore_handler_s() - a constraint violation goes unreported

If set_constraint_handler_s() is not called before the first constraint violation is detected,
then ignore_handler_s() is assumed to be the default constraint handler.

Enabling Use of Secure Functions via __STDC_WANT_LIB_EXT1__ Definition

In the c29clang C runtime library header files, all C11 secure function prototypes are guarded by
a pre-processor directive. In order for a given C11 secure function prototype to be made known to
the compiler before encountering a call to the secure function in the C source file, the following
conditions must be true:

• The compiler must be invoked assuming the C11 (or later) language standard. The compiler
assumes a C language standard of C17 with GNU extensions (-std=gnu17) by default.

• The C source file must define __STDC_WANT_LIB_EXT1__ to “1” prior to including the
header file that contains the prototype of the secure function to be called.

• The C source file must include the C runtime support library header file that contains the
prototype of the secure function to be called.

3.10. Compiler Security 518

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Please see the example below for further details.

Note: __STDC_WANT_LIB_EXT1__ must be defined to “1” when using C11 secure func-
tions

An attempt to call a C11 secure function without defining the __STDC_WANT_LIB_EXT1__
compile-time symbol to 1 is likely to cause unpredictable behavior if the linked application is
loaded and run. If no appropriate prototype of the C11 secure function is provided prior to a call
to that function, the compiler emits a warning diagnostic like this:

ex_n.c:17:3: warning: call to undeclared function 'strcat_s';
→˓ISO C99 and later do not support implicit function
→˓declarations [-Wimplicit-function-declaration]

17 | strcat_s(dest_string, 10, source_string);
|

1 warning generated.

Consider using the -Werror=implicit-function-declaration option to instruct the c29clang compiler
to interpret a call to an undeclared function as an error instead of a warning.

Example

To summarize the different aspects of using a C11 secure function properly, consider a function
that declares a char buffer of fixed length and then attempts to concatenate the string from an
incoming buffer to the string that currently exists in the fixed length local buffer. To guard against
several unintended effects, the strcat_s() function could be used as follows:

/
→˓***/
→˓

/* safe_strcat_ex.c
→˓ */
/*

→˓ */
/* Example of proper setup and use of strcat_s() C11 secure

→˓function. */
/*

→˓ */
/

→˓***/
→˓

#define __STDC_WANT_LIB_EXT1__ 1

(continues on next page)

3.10. Compiler Security 519

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>

/
→˓***/
→˓

/* dump_error_msg() - a custom constraint handler function.
→˓ */
/

→˓***/
→˓

void dump_error_msg(const char * __restrict emsg,
void * __restrict ptr,
errno_t eval)

{
printf("Constraint violation detected:\n");
printf("\t%s\n", emsg);

}

/
→˓***/
→˓

/* safe_strcat()
→˓ */
/

→˓***/
→˓

errnot_t safe_strcat(const char *source_string) {
errno_t ret_val = 0;
char dest_string[10] = "aaa";

/*---
→˓------------*/
/* Register custom constraint handler function.

→˓ */
/*---

→˓------------*/
set_constraint_handler_s((constraint_handler_t)&dump_error_

→˓msg);

(continues on next page)

3.10. Compiler Security 520

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

/*---
→˓------------*/
/* Concatenate source_string buffer contents to end of dest_

→˓string buffer */
/* contents with safety checks.

→˓ */
/*---

→˓------------*/
return ret_val = strcat_s(dest_string, 10, source_string);

}

Observations of note include:

• The __STDC_WANT_LIB_EXT1__ compile-time symbol is defined to “1” prior to inclu-
sion of any of the C runtime support header files, making C11 secure function prototypes
that are declared in any of the following include files visible to the compiler.

• The C source file includes an implementation of a constraint hander function,
dump_error_msg(), whose signature matches the constraint_handler_t type that is defined
in stdlib.h.

• The set_constraint_handler_s() function is called to register dump_error_msg() as the con-
straint handler function to be called when a constraint violation is detected.

• The call to the strcat_s() C11 secure function returns a non-zero errno_t type value to the
caller to indicate whether a constraint violation is detected.

• In the definition of strcat_s(), there are a few constraint violations that may occur depending
on the value of the source_string argument that is passed into the safe_strcat() function,
including:

– if the value of source_string is NULL,

– if the buffer pointed to by source_string contains a string > 7 bytes long, which would
cause the concatenation operation to write past the end of the dest_string buffer, or

– if the value of source_string happened to be an address that falls within the bounds of
the dest_string buffer.

• If a constraint violation is detected in the execution of strcat_s(), then the dump_error_msg()
constraint handler function would be called to print the type of the violation out to stdout.

3.10. Compiler Security 521

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The Secure Functions

Included below is a summary description of each of the C11 secure functions that are implemented
in the c29clang C runtime library. In the majority of cases, the C11 secure functions takes an extra
destsz argument – or _size in the case of gets_s() – with which the caller indicates the total size of
the buffer that data is being written into.

gets_s <stdio.h>

char *gets_s(char *_ptr, rsize_t _size);

Writes input from stdin to _ptr buffer. The following constraint violations are detected and
reported:

• storage buffer pointer _ptr is NULL

• specified _size is 0

• specified _size is > RSIZE_MAX

• input from stdin is truncated

memcpy_s <string,h>

errno_t memcpy_s(void *dest, rsize_t destsz, const void *src,
→˓ rsize_t count);

Copy count bytes from src buffer to dest buffer. The following constraint violations are
detected and reported:

• src or dest pointer is NULL

• specified destsz > RSIZE_MAX

• specified count > RSIZE_MAX

• specified count > specified destsz

• src and dest buffers overlap

memmove_s <string.h>

errno_t memmove_s(void *dest, rsize_t destsz, const void
→˓*src, rsize_t count);

Copy count bytes from src to dest. The following constraint violations are detected and
reported:

• src or dest pointer is NULL

• specified destsz > RSIZE_MAX

3.10. Compiler Security 522

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• specified count > RSIZE_MAX

• specified count > specified destsz

memset_s <string.h>

errno_t memset_s(void *dest, rsize_t destsz, int ch, rsize_t
→˓count);

Write count instances of specified character ch to dest. The following constraint violations
are detected and reported:

• dest pointer is NULL

• specified destsz > RSIZE_MAX

• specified count > RSIZE_MAX

• specified count > specified destsz

strcat_s <string.h>

errno_t strcat_s(char *dest, rsize_t destsz, const char
→˓*src);

Concatenate contents of src to the end of the dest buffer. The following constraint violations
are detected and reported:

• src or dest pointer is NULL

• specified destsz is 0 or > RSIZE_MAX

• no null terminator character is present in the first destsz bytes of the dest buffer

• the contents from src are truncated

• src and dest buffers overlap

strcpy_s <string.h>

errno_t strcpy_s(char *dest, rsize_t destsz, const char
→˓*src);

Copy contents of src buffer into dest buffer. The following constraint violations are detected
and reported:

• src or dest pointer is NULL

• specified destsz is 0 or > RSIZE_MAX

• the contents from src are truncated

• src and dest buffers overlap

3.10. Compiler Security 523

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

strncat_s <string.h>

errno_t strncat_s(char *dest, rsize_t destsz, const char
→˓*src, rsize_t count);

Concatenate a maximum of count characters from the src buffer to the end of the content in
the dest buffer. The following constraint violations are detected and reported:

• src or dest pointer is NULL

• specified destsz is 0 or > RSIZE_MAX

• specified count > RSIZE_MAX

• no null terminator character is present in the first destsz bytes of the dest buffer

• the contents from src are truncated

• src and dest buffers overlap

strncpy_s <string.h>

errno_t strncpy_s(char *dest, rsize_t destsz, const char
→˓*src, rsize_t count);

Copy a maximum of count characters from the src buffer into the dest buffer. The following
constraint violations are detected and reported:

• src or dest pointer is NULL

• specified destsz is 0 or > RSIZE_MAX

• specified count > RSIZE_MAX

• the contents from src are truncated

• src and dest buffers overlap

In addition, the following C11 security-related helper function is included in the C runtime support
library (libc.a):

strnlen_s <string.h>

size_t strnlen_s(const char *string, size_t maxLen);

A variation on the strlen() function. In this case, if the length of string is longer than the
specified maxLen, then strnlen_s() returns maxLen instead of the actual length of string.

3.10. Compiler Security 524

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.11 C29x Security Model

The TI C29x provides the ability to protect individual calls and frames. At the assembly level,
protected calls use a separate CALL.PROT opcode, as opposed to CALL, which is used for unpro-
tected calls. Protected frames must end with a RET.PROT instruction, as opposed to RET, which
is used by unprotected returns.

Protected calls behave as follows:

• All registers (including the stack pointer) are zeroed out, except those denoted by a PRE-
SERVE instruction that can occur in parallel (for call arguments).

• A context containing the current stack pointer is pushed onto a hardware stack.

• The call cannot be delayed.

Protected frames behave as follows:

• All registers are zeroed out, except those denoted by a PRESERVE instruction that can occur
in parallel (return values).

• Pops the context that was pushed by a protected call.

• The return cannot be delayed.

3.11.1 Compiler Support for Protected Calls

C/C++ functions can be declared/defined using the c29_protected_call function attribute.
This attribute causes the c29clang compiler to act as if calls to that function or function type cross a
security STACK. At the assembly level, such calls CALL.PROT, RET.PROT, and their associated
handshake instructions. See Function Attributes for more about function attributes.

For example:

void my_function() __attribute__((c29_protected_call));

void normal_function();
void (*protected_fn_ptr)() __attribute__((c29_protected_call)) =

→˓&normal_function; // Suppressible warning in C

// Be aware: This call will use CALL.PROT
// If normal_function is defined in C, it will not have the

→˓required handshake instructions at its start.
protected_fn_ptr();

The c29clang compiler identifies and produced an error for any protected function that cannot
be called due to stack requirements. Example causes for such errors include passing excessive

3.11. C29x Security Model 525

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

numbers of integer, pointer, or floating-point arguments in registers, returning a structure type by
value, and use of variadic arguments.

3.11.2 Linker Support for Protected Calls

The linker accepts the SECURE_GROUP attribute in the SECTIONS directive to define a section
to contain protected calls. The syntax is as follows:

SECURE_GROUP (name [, (public|private)])

The following example causes the .text_caller section to contain the protected calls:

SECTIONS {
.text_caller : SECURE_GROUP(CALLER_GROUP) { *(.text.caller) }

→˓ > RO_CODE
}

The following example creates a public SECURE_GROUP instead of a private SECURE_GROUP:

SECTIONS {
.text_caller : SECURE_GROUP(CALLER_GROUP, public) { *(.text.

→˓caller) } > RO_CODE
}

By default, SECURE_GROUPs are private. Output sections without a SECURE_GROUP are
assumed to be callable by any code in the application.

The linker emits an error if it encounters any of the following cases:

• The caller and callee are in different SECURE_GROUPs, and the caller is not a protected
call.

• The caller and callee are in different SECURE_GROUPs, and the callee does not have a
protected frame.

• The caller and callee are in the same SECURE_GROUPs, but they do not agree with regards
to call protection.

To correct these errors, mark both the caller and callee with the c29_protected_call function
call attribute.

The linker avoids these errors if the callee SECURE_GROUP is marked public, unless the callee
requires the stack for any of its arguments.

3.11. C29x Security Model 526

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.12 Name and C++ Name Demangler Utilities

The compiler tools include the name utility, c29nm, and the C++ name demangling utility,
c29dem. The c29nm utility is useful for listing the symbols referenced and defined within a file,
and the c29dem utility can translate mangled C++ symbol and type names into human-readable
form.

Contents:

3.12.1 c29nm - Name Utility

The c29nm utility can be used to print a list of the names of symbols from c29clang compiler-
generated bitcode files, object files, object file libraries, or static executables.

Usage

c29nm [options] [input files]

• options - affect how the c29nm utility behaves in processing any specified input files.

• input files - a list of one or more c29clang compiler-generated bitcode files, object files,
object file libraries, or static executables. If there is no input files list specified, c29nm
attempts to read a.out as an input file. If - is specified in place of the input files argument,
then c29nm expects a user-specified input file from stdin.

Output Format

The c29nm utility outputs a list of symbols including the symbol name along with some simple
information about its provenance. The default output format from c29nm is the traditional BSD
nm output format. Each such output record consists of an (optional) 8-digit hexadecimal address,
followed by a type code character to indicate the symbol’s kind, followed by a name, for each
symbol. One record is printed per line; fields are separated by spaces. When the address field is
omitted, it is replaced by 8 spaces.

Because compiler-generated bitcode files typically contain objects that are not considered to have
addresses until they are linked into an executable image or dynamically compiled “just-in-time”,
c29nm does not print an address for any symbol in an bitcode file, even symbols which are defined
in the bitcode file.

Symbol Kind Annotations

As mentioned above, each symbol output record is annotated with a single character that indicates
a symbol’s type or kind.

3.12. Name and C++ Name Demangler Utilities 527

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The supported symbol kind characters are listed in the table below. Both lower and upper case
versions of the a given character are interpreted with the same meaning with respect to a given
symbol’s kind, but lower-case characters are used for local symbols and upper-case characters are
used for global symbols.

Kind
Char-
acters

Meaning

a,A Absolute symbol.
b,B Uninitialized data (.bss) symbol.
C Common symbol. Multiple definitions link together into one definition.
d,D Writable data object.
n Local symbol from unallocated section.
N Debug symbol or global symbol from unallocated section.
r,R Read-only data object.
t,T Code (.text) object.
u GNU unique symbol.
U Named object is undefined in this file.
v Undefined weak object. It is not a link failure if the object is not defined.
V Defined weak object symbol. This definition will only be used if no regular definitions

exist in a link. If multiple weak definitions and no regular definitions exist, then one
of the weak definitions will be used.

? Something unrecognizable.

Options

-B

Use BSD output format. This is an alias for the --format=bsd option.

--debug-syms, -a

Show all symbols, including those that are usually suppressed.

--defined-only, -U

Print only symbols defined in this file.

--demangle, -C

Demangle symbol names.

--dynamic, -D

Display dynamic symbols instead of normal symbols.

--extern-only, -g

Print only symbols whose definitions are externally accessible.

3.12. Name and C++ Name Demangler Utilities 528

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--format=<format>, -f=<format>

Select an output <format>. Supported values for the <format> argument include:

• sysv

• posix

• darwin

• bsd (default)

--help, -h

Print a summary of the command-line options and their meanings.

--help-list

Print an uncategorized summary of command-line options and their meanings.

--just-symbol-name, -j

Print only the symbol names.

-m

Use darwin output format. This is an alias for the --format=darwin option.

--no-demangle

Don’t demangle symbol names. This option is enabled by default.

--no-llvm-bc

Disable the bitcode reader.

--no-sort, -p

Show symbols in the order encountered.

--no-weak, -W

Don’t print weak symbols.

--numeric-sort, -n, -v

Sort symbols by address.

--portability, -P

Use POSIX.2 output format. This is an alias for the --format=posix option.

--print-armap, -M

Print the archive symbol table, in addition to the symbols.

--print-file-name, -A, -o

Precede each symbol record with the file that it came from.

--print-size, -S

Show symbol size as well as address.

3.12. Name and C++ Name Demangler Utilities 529

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--radix=<radix>, -t=<radix>

Specify the <radix> of the symbol addresses. Values accepted include:

• d - decimal

• x - hexadecimal

• o - octal

--reverse-sort, -r

Sort symbols in reverse order.

--size-sort

Sort symbols by size.

--special-syms

Do not filter special symbols from the output.

--undefined-only, -u

Print only undefined symbols.

--version

Display the version of the c29nm executable. This option causes c29nm to immediately
return without reading any specified input files to print the symbols in those files.

--without-aliases

Exclude aliases from the output.

@<file>

Read command-line options from specified <file>.

Examples

• Simple C++ “Hello World” example:

Consider the following source file (hello.cpp):

#include <iostream>
using namespace std;

int main ()
{

int i;
cout << "Please enter an integer value: ";
cin >> i;
cout << "The value you entered is " << i;
cout << " and its double is " << i*2 << ".\n";

(continues on next page)

3.12. Name and C++ Name Demangler Utilities 530

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

return 0;
}

If we then compile hello.cpp to an object file:

%> c29clang -mcpu=c29.c0 -c hello.cpp

We can output the list of symbols in the symbol table for hello.o:

%> c29nm hello.o
00000000 W _ZNKSt3__112basic_stringIcNS_11char_traitsIcEENS_

→˓9allocatorIcEEE13__get_pointerEv
00000000 W _ZNKSt3__112basic_stringIcNS_11char_traitsIcEENS_

→˓9allocatorIcEEE18__get_long_pointerEv
...
00000000 W _ZNSt3__19use_facetINS_5ctypeIcEEEERKT_RKNS_

→˓6localeE
00000000 W _ZNSt3__1lsINS_11char_traitsIcEEEERNS_13basic_

→˓ostreamIcT_EES6_PKc
00000000 T main

U strlen

We could also filter the c29nm output to only include symbols that are not defined in hello.o:

%> c29nm -u hello.o
U _ZNKSt3__16locale9use_facetERNS0_2idE
U _ZNKSt3__18ios_base6getlocEv
U _ZNSt3__112basic_stringIcNS_11char_traitsIcEENS_

→˓9allocatorIcEEE6__initEjc
U _ZNSt3__112basic_stringIcNS_11char_traitsIcEENS_

→˓9allocatorIcEEED1Ev
U _ZNSt3__113basic_istreamIcNS_11char_

→˓traitsIcEEErsERi
U _ZNSt3__113basic_ostreamIcNS_11char_

→˓traitsIcEEE6sentryC1ERS3_
U _ZNSt3__113basic_ostreamIcNS_11char_

→˓traitsIcEEE6sentryD1Ev
U _ZNSt3__113basic_ostreamIcNS_11char_

→˓traitsIcEEElsEi
U _ZNSt3__13cinE
U _ZNSt3__14coutE
U _ZNSt3__15ctypeIcE2idE
U _ZNSt3__16localeD1Ev

(continues on next page)

3.12. Name and C++ Name Demangler Utilities 531

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

U _ZNSt3__18ios_base5clearEj
U strlen

Now if we build a static executable for hello.cpp:

%> c29clang -mcpu=c29.c0 hello.cpp -o hello.out -Wl,-llnk.
→˓cmd,-mhello.map

We can now see addresses assigned for some of the symbols that were referenced, but not
defined in hello.o:

%> c29nm hello.out
...
00026e54 T _ZNKSt3__16locale9use_facetERNS0_2idE
...
00028e1c T _ZNKSt3__18ios_base6getlocEv
...
00027198 W _ZNSt3__112basic_stringIcNS_11char_traitsIcEENS_

→˓9allocatorIcEEE6__initEjc
...
2000b024 B _ZNSt3__13cinE
...
2000b17c B _ZNSt3__14coutE
...
00028b5a T strlen

• Piping output of c29nm as input to c29dem:

Consider the following source file (test.cpp):

int g_my_num;
namespace NS { int ns_my_num = 2; }
int f() { return g_my_num + NS::ns_my_num; }
int main() { return f(); }

If the above test.cpp is compiled:

c29clang -mcpu=c29.c0 -c test.cpp

We can then use the c29nm utility to write out the symbol names in test.o:

%> c29nm test.o
00000000 T _Z1fv
00000000 D _ZN2NS9ns_my_numE

(continues on next page)

3.12. Name and C++ Name Demangler Utilities 532

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

00000000 B g_my_num
00000000 T main

and we could pass the output of c29nm to c29dem to demangle the mangled names that are
present in the c29nm output:

%> c29nm test.o | c29dem
00000000 T f()
00000000 D NS::ns_my_num
00000000 B g_my_num
00000000 T main

Incidentally, we could get the same result without using c29dem by just using the --demangle
option or the -C option with c29nm to instruct c29nm to demangle the symbol names that it
prints out:

%> c29nm --demangle test.o
00000000 T f()
00000000 D NS::ns_my_num
00000000 B g_my_num
00000000 T main

Exit Status

The c29nm utility should exit with a return code of zero.

3.12.2 c29dem - C++ Name Demangler Utility

The c29dem utility can read a series of C++ mangled symbol names and print their demangled
form to stdout. If a name cannot be demangled, it is simply printed as is.

Usage

c29dem [options] [mangled names]

• options - affect how the c29dem utility behaves in processing any specified mangled names.

• mangled names - a list of one or more symbol names that are presumed to be potentially C++
symbol names. If no mangled names are specified as input to the c29dem utility, then c29dem
reads any input symbol names from stdin. When reading symbol names from standard input,
each input line is split on characters that are not part of valid Itanium name manglings, i.e.
characters that are not alphanumeric, ‘.’, ‘$’, or ‘_’. Separators between names are copied

3.12. Name and C++ Name Demangler Utilities 533

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

to the output as is. A common use case for feeding symbol names as input to the c29dem
utility is to pipe the output of the c29nm name utility to a c29dem command invocation.

Options

--format=<scheme>, -S=<scheme>

Select a mangled <scheme> to assume. Supported values for the <scheme> argument in-
clude:

• auto (default)

• gnu

--help, -h

Print a summary of the command-line options and their meanings.

--help-list

Print an uncategorized summary of command-line options and their meanings.

--no-strip-underscore, -n

Do not strip leading underscore. This option is enabled by default.

--strip-underscore, -_

Strip a leading underscore, if present, from each input symbol name before demangling.

--types, -t

Attempt to demangle symbol names as type names as well as function names.

--version

Display the version of the c29dem executable.

@<file>

Read command-line options from specified <file>.

Examples

• Specifying mangled names on the command line:

Symbol names can be specified as input to the c29dem C++ name demangler utility on the
command line as in the following:

%> c29dem _Z3foov _Z3bari not_mangled
foo()
bar(int)
not_mangled

3.12. Name and C++ Name Demangler Utilities 534

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• Specifying mangled names in a text file:

Symbol names can be specified on separate lines in a text file:

%> cat sym_names.txt
_Z3foov
_Z3bari
not_mangled

The text file can then be specified as input to c29dem as follows:

%> c29dem < sym_names.txt
foo()
bar(int)
not_mangled

• Piping output of c29nm as input to c29dem:

Consider the following source file (test.cpp):

int g_my_num;
namespace NS { int ns_my_num = 2; }
int f() { return g_my_num + NS::ns_my_num; }
int main() { return f(); }

If the above test.cpp is compiled:

c29lang -mcpu=c29.c0 -c test.cpp

We can then use the c29nm utility to write out the symbol names in test.o:

%> c29nm test.o
00000000 T _Z1fv
00000000 D _ZN2NS9ns_my_numE
00000000 B g_my_num
00000000 T main

and we could pass the output of c29nm to c29dem to demangle the mangled names that are
present in the c29nm output:

%> c29nm test.o | c29dem
00000000 T f()
00000000 D NS::ns_my_num
00000000 B g_my_num
00000000 T main

3.12. Name and C++ Name Demangler Utilities 535

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Exit Status

The c29dem utility returns 0 unless it encounters a user error, in which case a non-zero exit code
is returned.

3.13 Object File Utilities

Several object file utilities are included with the c29clang compiler toolchain installation. Some
of these, specifically c29objcopy and c29strip, can be used to edit the content of an ELF object
file. Others, like c29objdump and c29ofd, are useful for displaying or inspecting the content of
an ELF object file.

More information about each of the object file utilities that are provided with the c29clang instal-
lation can be found in the sections listed below.

Contents:

3.13.1 c29objcopy - Object Copying and Editing Tool

The c29objcopy tool can be used to copy and manipulate object files. In basic usage, it makes a
semantic copy of the input to the output. If any options are specified, the output may be modified
along the way (e.g. by removing sections).

Usage

c29objcopy [options] input file [output file]

• c29objcopy - is the command that invokes the object copying and editing tool.

• options - affect the behavior of c29objcopy.

• input file - identifies an object file or archive of object files. If - is specified as the input file
argument, then c29objcopy takes its input from stdin. If the input file is an archive, then any
requested operations are applied to each archive member individually.

• output file - specifies where the c29objcopy output is written. This is typically a file name,
where the named file is created or overwritten with the c29objcopy output. If no output file
argument is specified, then the input file is modified in-place. If - is specified for the output
file argument, then the c29objcopy output is written to stdout.

3.13. Object File Utilities 536

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Options

The following c29objcopy options are either agnostic of the object file format, or apply to multiple
file formats:

--add-section <section>=<file>

Add a section named <section> with the contents of <file> to the output. If the specified
<section> name starts with “.note”, then the type of the <section> (indicated in the ELF
section header) is SHT_NOTE. Otherwise, the <section> type is <SHT_PROGBITS.

The --add_section option can be specified multiple times on the c29objcopy command line
to add multiple sections.

--discard-all, -x

Remove most local symbols from the output. File and section symbols are not discarded
from ELF object files.

--dump-section <section>=<file>

Dump the contents of the specified <section> into the specified <file>. This option can be
specified multiple times to dump multiple sections to different files. The indicated <file>
argument is unrelated to the input and output files provided to c29objcopy and as such the
normal copying and editing operations are still performed. No operations are performed on
the specified sections prior to dumping them.

--help, -h

Print a summary of command line options.

--only-keep-debug

Produce a debug file as the output that only preserves contents of sections useful for debug-
ging purposes.

For ELF object files, this removes the contents of SHF_ALLOC sections that are not
SHT_NOTE type by making them SHT_NOBITS type and shrinking the program headers
where possible.

--only-section <section>, -j <section>

Remove all sections from the output, except for specified <sections>. This option can be
specified multiple times to keep multiple sections.

--redefine-sym <old symbol>=<new symbol>

Rename symbols called <old symbol> to <new symbol> in the output. This option can be
specified multiple times to rename multiple symbols.

--redefine-syms <file>

Rename symbols in the output as described in the specified <file>. Each line in the <file>
represents a single symbol to rename, with the old symbol name and new symbol name sep-
arated by whitespace. Leading and trailing whitespace is ignored, as is anything following a
#. This option can be specified multiple times to read names from multiple files.

3.13. Object File Utilities 537

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--remove-section <section>, -R <section>

Remove the specified <section> from the output. Can be specified multiple times to remove
multiple sections simultaneously.

--set-section-alignment <section>=<align>

Set the alignment of specified <section> to <align>. This option can be specified multiple
times to update multiple sections.

--set-section-flags <section>=<flag>[,<flag>,...]

Set section properties in the output of a <section> based on the specified <flag> values.
This option can be specified multiple times to update multiple sections.

Supported <flag> names include:

• alloc - Add the SHF_ALLOC flag.

• load - If the section has SHT_NOBITS type, mark it as a SHT_PROGBITS section.

• readonly - If this flag is not specified, add the SHF_WRITE flag.

• exclude - Add the SHF_EXCLUDE flag.

• code - Add the SHF_EXECINSTR flag.

• merge - Add the SHF_MERGE flag.

• strings - Add the SHF_STRINGS flag.

• contents - If the section has SHT_NOBITS type, mark it as a SHT_PROGBITS section.

--strip-all, -S

Remove from the output all symbols and non-alloc sections not within segments, except for
the section name table.

--strip-debug, -g

Remove all debug sections from the output.

--strip-symbol <symbol>, -N <symbol>

Remove specified <symbol> from the output. This option can be specified multiple times to
remove multiple symbols.

--strip-symbols <file>

Remove all symbols whose names appear in the specified <file> from the output. Each line
in the <file> represents a single symbol name, with leading and trailing whitespace ignored,
as is anything following a #. This option can be specified multiple times to read names from
multiple files.

--strip-unneeded-symbol <symbol>

Remove from the output all symbols named <symbol> that are local or undefined and are
not required by any relocation.

3.13. Object File Utilities 538

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--strip-unneeded-symbols <file>

Remove all symbols whose names appear in the specified <file> from the output, if they are
local or undefined and are not required by any relocation. Each line in the <file> represents
a single symbol name, with leading and trailing whitespace ignored, as is anything following
a #. This option can be specified multiple times to read names from multiple files.

--strip-unneeded

Remove from the output all local or undefined symbols that are not required by relocations.
Also remove all debug sections.

--version, -V

Display the version of the c29objcopy executable.

--wildcard, -w

Allow wildcards (like “*” and “?”) for symbol-related option arguments. Wildcards are
available for section-related option arguments by default.

@<file>

Read command-line options and commands from specified <file>.

--add-symbol <name>=[<section>:]<value>[,<flags>]

Add a new symbol called <name> to the output symbol table in the specified <section>,
defined with the given <value>. If <section> is not specified, the symbol is added as an
absolute symbol. The <flags> affect the symbol properties.

Accepted values for <flags> include:

• global - The symbol will have global binding.

• local - The symbol will have local binding.

• weak - The symbol will have weak binding.

• default - The symbol will have default visibility.

• hidden - The symbol will have hidden visibility.

• protected - The symbol will have protected visibility.

• file - The symbol will be an STT_FILE symbol.

• section - The symbol will be an STT_SECTION symbol.

• object - The symbol will be an STT_OBJECT symbol.

• function - The symbol will be an STT_FUNC symbol.

This option can be specified multiple times to add multiple symbols.

--allow-broken-links

Allow c29objcopy to remove sections even if it would leave invalid section references. Any
invalid sh_link fields in the section header table are set to zero.

3.13. Object File Utilities 539

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--change-start <incr>, --adjust-start <incr>

Add <incr> to the program’s start address. This option can be specified multiple times, in
which case the <incr> values are applied cumulatively.

--compress-debug-sections [<style>]

Compress DWARF debug sections in the output, using the specified <style>. Supported
styles are zlib-gnu and zlib. If <style> is not specified, zlib is assumed by default.

--decompress-debug-sections

Decompress any compressed DWARF debug sections in the output.

--discard-locals, -X

Remove local symbols starting with “.L” from the output.

--extract-dwo

Remove all sections that are not DWARF .dwo sections from the output.

--extract-main-partition

Extract the main partition from the output.

--extract-partition <name>

Extract the <name> partition from the output.

--globalize-symbol <symbol>

Mark any defined symbols named <symbol> as global symbols in the output. This option
can be specified multiple times to mark multiple symbols.

--globalize-symbols <file>

Read a list of names from the specified <file> and mark defined symbols with those names
as global in the output. Each line in the <file> represents a single symbol, with leading
and trailing whitespace ignored, as is anything following a #. This option can be specified
multiple times to read names from multiple files.

--input-target <format>, -I

Read the input as the specified <format>. See the Supported Target Formats section below
for a list of valid <format> values. If unspecified, c29objcopy attempts to determine the
format automatically.

--keep-file-symbols

Keep symbols of type STT_FILE, even if they would otherwise be stripped.

--keep-global-symbol <symbol>

Make all symbols local in the output, except for symbols with the name <symbol>. This
option can be specified multiple times to ignore multiple symbols.

--keep-global-symbols <file>

Make all symbols local in the output, except for symbols named in the specified <file>. Each
line in the <file> represents a single symbol, with leading and trailing whitespace ignored,

3.13. Object File Utilities 540

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

as is anything following a #. This option can be specified multiple times to read names from
multiple files.

--keep-section <section>

When removing sections from the output, do not remove sections named <section>. This
option can be specified multiple times to keep multiple sections.

--keep-symbol <symbol>, -K <symbol>

When removing symbols from the output, do not remove symbols named <symbol>. This
option can be specified multiple times to keep multiple symbols.

--keep-symbols <file>

When removing symbols from the output do not remove symbols named in the specified
<file>. Each line in the <file> represents a single symbol, with leading and trailing whites-
pace ignored, as is anything following a #. This option can be specified multiple times to
read names from multiple files.

--localize-hidden

Make all symbols with hidden or internal visibility local in the output.

--localize-symbol <symbol>, -L <symbol>

Mark any defined non-common symbol named <symbol> as a local symbol in the output.
This option can be specified multiple times to mark multiple symbols as local.

--localize-symbols <file>

Read a list of names from the specified <file> and mark defined non-common symbols with
those names as local in the output. Each line in the <file> represents a single symbol, with
leading and trailing whitespace ignored, as is anything following a #. This option can be
specified multiple times to read names from multiple files.

--new-symbol-visibility <visibility_kind>

Specify the <visibility_kind> of the symbols automatically created when using binary input
or the --add-symbol option. Valid <visibility_kind> argument values are:

• default

• hidden

• protected

An automatically created symbol gets default visibility unless otherwise specified with the
--new-symbol-visibility option.

--output-target <format>, -O <format>

Write the output as the specified <format>. See the Supported Target Formats section below
for a list of valid <format> values. If a <format> argument is not specified, the output format
is assumed to be the same as the value specified for --input-target or the input file’s format
if that option is also unspecified.

3.13. Object File Utilities 541

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--prefix-alloc-sections <prefix>

Add <prefix> to the front of the names of all allocatable sections in the output.

--prefix-symbols <prefix>

Add <prefix> to the front of every symbol name in the output.

--preserve-dates, -p

Preserve access and modification timestamps in the output.

--rename-section <old section>=<new section>[,<flag>,...]

Rename sections called <old section> to <new section> in the output, and apply any spec-
ified <flag> values. See the --set-section-flags option description for a list of supported
<flag> values. This option can be specified multiple times to rename multiple sections.

--set-start-addr <addr>

Set the start address of the output to <addr>. This option overrides any previously specified
--change-start or --adjust-start options.

--split-dwo <dwo-file>

Equivalent to running c29objcopy with the --extract-dwo option and <dwo-file> as the out-
put file and no other options, and then with the --strip-dwo option on the input file.

--strip-dwo

Remove all DWARF .dwo sections from the output.

--strip-non-alloc

Remove from the output all non-allocatable sections that are not within segments.

--strip-sections

Remove from the output all section headers and all section data not within segments. Note
that many tools are not able to use an object without section headers.

--target <format>, -F <format>

Equivalent to using the --input-target and --output-target for the specified <format>. See
the Supported Target Formats for a list of valid <format> values.

--weaken-symbol <symbol>, -W <symbol>

Mark any global symbol named <symbol> as a weak symbol in the output. This option can
be specified multiple times to mark multiple symbols as weak.

--weaken-symbols <file>

Read a list of names from the specified <file> and mark global symbols with those names
as weak in the output. Each line in the <file> represents a single symbol, with leading
and trailing whitespace ignored, as is anything following a #. This option can be specified
multiple times to read names from multiple files.

--weaken

Mark all defined global symbols as weak in the output.

3.13. Object File Utilities 542

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Supported Target Formats

The following values are supported by c29objcopy for the <format> argument to the --input-target,
--output-target, and --target options.

• binary

• elf32-c29

• ihex

• ti-txt

Note: There is currently a known issue with --input-target and --target causing only binary and
ihex <format> values to have any effect. Other <format> values are ignored and c29objcopy
attempts to guess the input format.

Binary Input and Output

If binary is used as the <format> value for the --input-target option, the input file is embedded
as a data section in an ELF relocatable object, with symbols _binary_<file_name>_start, _bi-
nary_<file_name>_end, and _binary_<file_name>_size representing the start, end and size of the
data, where <file_name> is the path of the input file as specified on the command line with non-
alphanumeric characters converted to _.

If binary is used as the <format> value for --the output-target, the output is a raw binary file,
containing the memory image of the input file. Symbols and relocation information are discarded.
The image starts at the address of the first loadable section in the output.

ihex Object Format

The ihex (Intel HEX) object format supports 16-bit addresses and 32-bit extended addresses. Intel
format consists of a 9-character (4-field) prefix (which defines the start of record, byte count, load
address, and record type), the data, and a 2-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description
00 Data record
01 End-of-file record
04 Extended linear address record

Record type 00, the data record, begins with a colon (:) and is followed by the byte count, the
address of the first data byte, the record type (00), and the checksum. The address is the least

3.13. Object File Utilities 543

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

significant 16 bits of a 32-bit address; this value is concatenated with the value from the most
recent 04 (extended linear address) record to create a full 32-bit address. The checksum is the 2s
complement (in binary form) of the preceding bytes in the record, including byte count, address,
and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed by the byte count,
the address, the record type (01), and the checksum.

Record type 04, the extended linear address record, specifies the upper 16 address bits. It begins
with a colon (:), followed by the byte count, a dummy address of 0h, the record type (04), the
most significant 16 bits of the address, and the checksum. The subsequent address fields in the
data records contain the least significant bytes of the address.

The following figure illustrates the Intel hexadecimal object format.

Figure: Intel Hexadecimal Object Format

ti-txt Format

The ti-txt format supports 8-bit hexadecimal data. It consists of section start addresses, data byte,
and an end-of-file character. The following restrictions apply:

• The number of sections is unlimited.

• Each hexadecimal start address must be even.

• Each line must have 8 data bytes, except the last line of a section.

• Data bytes are separated by a single space.

• The end-of-file termination tag q is mandatory.

The data record contains the following information:

Item Description
@ADDR Hexadecimal start address of a section
DATAn Hexadecimal data byte
q End-of-file termination character

3.13. Object File Utilities 544

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Figure: TI-TXT Object Format

Example: TI-TXT Object Format

@F000
31 40 00 03 B2 40 80 5A 20 01 D2 D3 22 00 D2 E3
21 00 3F 40 E8 FD 1F 83 FE 23 F9 3F
@FFFE
00 F0
Q

Exit Status

The c29objcopy utility exits with a non-zero exit code if there is an error. Otherwise, it exits with
code 0.

3.13. Object File Utilities 545

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.13.2 c29objdump - Object File Dumper

The c29objdump utility can be used to print the contents of object files and linker output files that
are named on the c29objdump command line.

Usage

c29objdump [commands] [options] [filenames . . .]

• c29objdump - is the command used to invoke the object file dumper utility.

• commands - are option-like commands that dictate the c29objdump mode of operation.

• options - affect the behavior of c29objdump in a particular mode of operation.

• filenames - identify one or more input object files. If no input file is specified, then
c29objdump attempts to read from a.out. If - is used as an input file name, c29objdump
processes a file on its standard input stream.

Commands

At least one of the following commands are required, and some commands can be combined with
other commands:

-a, --archive-headers

Display the information contained within an archive’s headers.

-d, --disassemble

Disassemble all text sections found in the input files.

-D, --disassemble-all

Disassemble all sections found in the input files.

--disassemble-symbols=<symbol1>[,<symbol2>,...]

Disassemble only the specified <symbolN> arguments. This command will accept deman-
gled C++ symbol names when the --demangle option is specified. Otherwise this command
will accept mangled C++ symbol names. The --disassemble-symbols command implies the
--disassemble command.

--dwarf=<value>

Dump the specified DWARF debug sections. The supported <value> arguments are:

• frames - .debug_frame

-f, --file-headers

Display the contents of the overall file header.

3.13. Object File Utilities 546

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--fault-map-section

Display the content of the fault map section.

-h, --headers, --section-headers

Display summaries of the headers for each section.

--help

Display usage information and exit. This command will prevent other commands from exe-
cuting.

-p, --private-headers

Display format-specific file headers.

-r, --reloc

Display the relocation entries encoded in the input file.

-R, --dynamic-reloc

Display the dynamic relocation entries encoded in the input file.

--raw-clang-ast

Dump the raw binary contents of the clang AST section.

-s, --full-contents

Display the contents of each section.

-t, --syms

Display the symbol table.

-T, --dynamic-syms

Display the contents of the dynamic symbol table.

-u, --unwind-info

Display the unwind information associated with the input file(s).

--version

Display the version of the c29objdump executable. This command will prevent other com-
mands from executing.

-x, --all-headers

Display all available header information. Equivalent to specifying a combination of the
following commands:

• –archive-headers

• –file-headers

• –private-headers

• –reloc

• –section-headers

3.13. Object File Utilities 547

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

• –syms

Options

The c29objdump utility supports the following options:

--adjust-vma=<offset>

Increase the displayed address in disassembly or section header printing by the specified
<offset>.

--arch-name=<string>

Specify the target architecture with a <string> argument when disassembling. Use the --
version option for a list of available targets.

-C, --demangle

Demangle C++ symbol names in the output.

--debug-vars=<format>

Print the locations (in registers or memory) of source-level variables alongside disassembly.
The <format> argument may be unicode or ascii, defaulting to unicode if omitted.

--debug-vars-indent=<width>

The distance to indent the source-level variable display relative to the start of the disassembly
is indicated by the value of the <width> argument. The default value for <width> is 40
characters.

-j, --section=<section1>[,<section2>,...]

Perform commands on the specified sections only.

-l, --line-numbers

When disassembling, display source line numbers. The use of this option implies the use of
the --disassemble command.

-M, --disassembler-options=<opt1>[,<opt2>,...]

Pass target-specific disassembler options. Available options are reg-names-std and reg-
names-raw.

--mcpu=<cpu-name>

Target a specific CPU with <cpu-name> argument for disassembly. Specify --mcpu=help to
display available values for <cpu-name>.

--mattr=<attr1>,+<attr2>,-<attr3>,...

Enable/disable target-specific attributes. Specify --mattr=help to display the available at-
tributes.

--no-leading-addr

When disassembling, do not print leading addresses.

3.13. Object File Utilities 548

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--no-show-raw-insn

When disassembling, do not print the raw bytes of each instruction.

--prefix=<prefix>

When disassembling with the --source option, prepend <prefix> to absolute paths.

--print-imm-hex

Use hex format when printing immediate values in disassembly output.

-S, --source

When disassembling, display source interleaved with the disassembly. Use of this option
implies the use of the --disassemble command.

--show-lma

Display the LMA (section load address) column when dumping ELF section headers. By
default, this option is disabled unless a section has different VMA (virtual memory address)
and LMAs.

--start-address=<address>

When disassembling, only disassemble from the specified <address>.

When printing relocations, only print the relocations patching offsets from at least <ad-
dress>.

When printing symbols, only print symbols with a value of at least <address>.

--stop-address=<address>

When disassembling, only disassemble up to, but not including the specified <address>.

When printing relocations, only print the relocations patching offsets up to <address>.

When printing symbols, only print symbols with a value up to <address>.

--triple=<string>

Target triple to disassemble for, see description of --version option for a list of available
target triple <string> values.

-z, --disassemble-zeroes

Do not skip blocks of zeroes when disassembling.

@<file>

Read command-line options and commands from specified <file>.

3.13. Object File Utilities 549

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Exit Status

c29objdump returns 1 if the command is omitted or is invalid, if it cannot read input files, or if
there is a mismatch between their data.

3.13.3 c29ofd - Object File Display Utility

The object file display utility, c29ofd, can be used to print the contents of object files, executable
files, and/or archive libraries in both text and XML formats.

Usage

c29ofd [options] filename

• c29ofd - is the command used to invoke the object file display utility.

• options - affect the behavior of c29ofd.

• filename - identifies an ELF input object file to be read by c29ofd. If an archive file is
specified as an input file, then c29ofd processes each object file member of the archive as if
it was passed on the command line. The object files are processed in the order in which they
appear in the archive file.

If the -o option is not used to identify a file to write the c29ofd output into, then the output is
written to stdout.

Note: Object File Display Format

The object file display utility produces data in a text format by default. This data is not intended
to be used as input to programs for further processing of the information. Use the -x option to
generate output in XML format that is appropriate for mechanical processing.

Options

--call_graph, -cg

Print function stack usage and callee information in XML format. While the XML output
may be accessed by a developer, the function stack usage and callee information XML output
was designed to be used by tools such as Code Composer Studio to display an application’s
worst case stack usage. See Stack Usage View in CCS for more information.

Note: This feature requires that source code be built with debug enabled.

3.13. Object File Utilities 550

https://software-dl.ti.com/ccs/esd/documents/ccs_stack_usage_view.html

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--diag_wrap[=on|off]

Wrap diagnostic messages in the output display. This option is enabled by default.

--dwarf, -g

Append DWARF debug information to the c29ofd output.

--dwarf_display=<attr1>[,<attr2>, ...]

The DWARF display settings can be controlled by specifying a comma-separated list of one
or more <attrN> arguments. A list of the available <attrN> values that can be specified are
displayed if you invoke c29ofd with the --dwarf_display=help option.

For the following <attrN> values, when prefixed with the word no, the specified attribute is
disabled:

• dabbrev - display .debug_abbrev section information (on by default)

• daranges - display .debug_aranges section information (on by default)

• dframe - display .debug_frame section information (on by default)

• dinfo - display .debug_info section information (on by default)

• dline - display .debug_line section information (on by default)

• dloc - display .debug_loc section information (on by default)

• dmacinfo - display .debug_macinfo section information (on by default)

• dpubnames - display .debug_pubnames section information (on by default)

• dpubtypes - display .debug_pubtypes section information (on by default)

• dranges - display .debug_ranges section information (on by default)

• dstr - display .debug_str section information (on by default)

• dtypes - display .debug_types section information (on by default)

• regtable - display register table information (on by default)

• types - display type information (on by default)

The following attribute values can be used to help manage the overall state of the DWARF
display attributes:

• all - enable all attributes

• none - disable all attributes

Examples

In this example, the dabbrev attribute is enabled and the daranges attribute is disabled:

--dwarf_display=dabbrev,nodaranges

3.13. Object File Utilities 551

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

In this example, all of the DWARF debug display attributes are enabled except for the dab-
brev attribute:

--dwarf_display=all,nodabbrev

In this example, all DWARF debug attributes are disabled except for the daranges attribute:

--dwarf_display=none,daranges

--dynamic_info

Display dynamic linking information.

--emit_warnings_as_errors, -pdew

Treat warnings as errors.

--func_info

Display function information.

--help, -h

Display summary of c29ofd usage and options information.

--obj_display=<attr1>[,<attr2>, ...]

The object file display settings can be controlled by specifying a comma-separated list of
one or more <attrN> arguments. A list of the available <attrN> values that can be specified
are displayed if you invoke c29ofd with the --obj_display=help option.

For the following <attrN> values, when prefixed with the word no, the specified attribute is
disabled:

• battrs - display information about build attributes (on by default)

• dynamic - display .dynamic section information (on by default)

• groups - display information about ELF groups (on by default)

• header - display file header information (on by default)

• rawdata - display section raw data (off by default)

• relocs - display information about relocation entries (on by default)

• sections - display section information (on by default)

• segments - display information about ELF segments (on by default)

• strings - display string table information (on by default)

• symbols - display symbol table information (on by default)

• symhash - display information about ELF symbol hash table (on by default)

• symver - display symbol version information (on by default)

3.13. Object File Utilities 552

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

The following attribute values can be used to help manage the overall state of the object file
display attributes:

• all - enable all attributes

• none - disable all attributes

Examples

In this example, the battrs attribute is enabled and the dynamic attribute is disabled:

--obj_display=battrs,nodynamic

In this example, all of the object file display attributes are enabled except for the battrs
attribute:

--obj_display=all,nobattrs

In this example, all object file display attributes are disabled except for the symbols attribute:

--obj_display=none,symbols

--output=<file>, -o=<file>

Write c29ofd output to specified <file>.

--verbose, -v

Print verbose text output.

--xml, -x

Display output in XML format.

--xml_indent=<N>

Set the number of spaces, <N>, to indent nested XML tags.

Exit Status

c29ofd returns 1 if the command is omitted or is invalid, if it cannot read input files, or if there is
a mismatch between their data.

3.13.4 c29readelf - Object File Reader

The c29readelf utility displays low-level, format-specific information about one or more object
files.

3.13. Object File Utilities 553

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

Usage

c29readelf [options] [filenames . . .]

• c29readelf - is the command used to invoke the object file reader.

• options - affect the behavior of c29readelf.

• filenames - identifies one or more ELF object files as input to c29readelf. If - is specified as
the input file, c29readelf reads its input from stdin.

Options

--all

Equivalent to specifying all the main display options.

--addrsig

Display the address-significance table.

--arch-specific, -A

Display architecture-specific information.

--color

Use colors in the output for warnings and errors.

--demangle, -C

Display demangled C++ symbol names in the output.

--dyn-relocations

Display the dynamic relocation entries.

--dyn-symbols, --dyn-syms

Display the dynamic symbol table.

--dynamic-table, --dynamic, -d

Display the dynamic table.

--cg-profile

Display the callgraph profile section.

--elf-hash-histogram, --histogram, -I

Display a bucket list histogram for dynamic symbol hash tables.

--elf-linker-options

Display the linker options section.

--elf-section-groups, --section-groups, -g

Display section groups.

3.13. Object File Utilities 554

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--expand-relocs

When used with the --relocations option, the --expand-relocs option causes c29readelf to
display each relocation in an expanded multi-line format.

--file-headers, -h

Display file headers.

--hash-symbols

Display the expanded hash table with dynamic symbol data.

--hash-table

Display the hash table for dynamic symbols.

--headers, -e

Equivalent to combining the --file-headers, --program-headers, and --sections options.

--help

Display a summary of command line options.

--help-list

Display an uncategorized summary of command line options.

--hex-dump=<section1>[,<section2>,...], -x

Display the specified <sectionN> as hexadecimal bytes. A given <sectionN> argument may
be a section index or section name.

--needed-libs

Display the needed libraries.

--notes, -n

Display all notes.

--program-headers, --segments, -l

Display the program headers.

--raw-relr

Do not decode relocations in RELR relocation sections when displaying them.

--relocations, --relocs, -r

Display the relocation entries in the file.

--sections, --section-headers, -S

Display all sections.

--section-data

When used with the --sections option, this option causes c29readelf to display section data
for each section shown.

3.13. Object File Utilities 555

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--section-details, -t

Display all section details. Used as an alternative to the --sections option.

--section-mapping

Display the section to segment mapping.

--section-relocations

When used with the --sections option, this option causes c29readelf to display relocations
for each section shown.

--section-symbols

When used with the --sections option, the --section-symbols option causes c29readelf to
display symbols for each section shown.

--stackmap

Display contents of the stackmap section.

--string-dump=<section1>[,<section2>,...], -p

Display the specified <sectionN> as a list of strings. <sectionN> may be a section index or
section name.

--symbols, --syms, -s

Display the symbol table.

--unwind, -u

Display stack unwinding information.

--version

Display the version of the c29readelf executable.

--version-info, -V

Display version sections.

@<file>

Read command-line options from specified <file>.

Exit Status

The c29readelf utility returns 0 under normal operation. It returns a non-zero exit code if there
were any errors.

3.13. Object File Utilities 556

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

3.13.5 c29size - Print Size Information

The c29size tool prints size information for binary files.

Usage

c29size [options] [input . . .]

• c29size - is the command used to invoke the tool.

• options - affect the behavior of the c29size tool.

• input - identify one or more input object files, for which c29size prints the size information
for each input file specified. If no input is specified, c29size attempts to print size information
for a.out. If - is specified as an input file, c29size reads a file from the standard input stream.
If an input is an archive, size information is displayed for all its members.

The c29size output is written to stdout.

Options

-A

Equivalent to the --format=sysv option.

-B

Equivalent to the --format=berkeley option.

--common

Include ELF common symbol sizes in .bss section size for berkeley output format, or as a
separate section entry for sysv output. If the --common option is not specified, these symbols
are ignored.

-d

Equivalent to the --radix=10 option.

--format=<format>

Set the output format to the specified <format>. Available <format> argument values are:

• berkeley (the default)

• sysv

Berkeley output summarizes text, data and bss sizes in each file, as shown below for a typical
pair of ELF files:

3.13. Object File Utilities 557

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

$ c29size --format=berkeley test.out ref_global.o def_global.
→˓o

text data bss dec hex filename
4968 4096 41885 50949 c705 test.out

62 0 0 62 3e ref_global.o
0 4 0 4 4 def_global.o

Sysv output displays size and address information for most sections, with each file being
listed separately:

$ c29size --format=sysv test.out ref_global.o def_global.o
test.out :
section size addr
.intvecs 0 0
.bss 460 536912372
.data 465 536911904
.sysmem 8192 536903712
.stack 32768 536870944
.text 4788 32
.cinit 128 8968
.const 0 0
.rodata 52 4820
.init_array 0 0
.TI.ramfunc 0 0
.TI.noinit 0 0
.TI.persistent 0 0
__llvm_prf_cnts 0 536870944
.binit 0 32
Veneer$$CMSE 0 0
.args 4096 4872
.C29.attributes 83 0
.TI.section.flags 26 0
.symtab_meta 173 0
Total 51231

ref_global.o :
section size addr
.text 0 0
.text.main 36 0
.rodata.str1.1 18 0
.comment 121 0
.note.GNU-stack 0 0
.C29.attributes 65 0

(continues on next page)

3.13. Object File Utilities 558

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

.symtab_meta 5 0

.llvm_addrsig 2 0
Total 255

def_global.o :
section size addr
.text 0 0
.data 4 0
Total 4

--help, -h

Display a summary of command line options.

--help-list

Display an uncategorized summary of command line options.

-o

Equivalent to the --radix=8 option.

--radix=<value>

Display size information in the specified radix indicated by the <value> argument. Permitted
values are 8, 10 (the default) and 16 for octal, decimal and hexadecimal output, respectively.

Example:

$ c29size --radix=8 ref_global.o
text data bss oct hex filename
076 0 0 76 3e ref_global.o

$ c29size --radix=10 ref_global.o
text data bss dec hex filename
62 0 0 62 3e ref_global.o

$ c29size --radix=16 ref_global.o
text data bss dec hex filename
0x3e 0 0 62 3e ref_global.o

--totals, -t

Applies only to berkeley output format. Display the totals for all listed fields, in addition to
the individual file listings.

Example:

$ llvm-size --totals ref_global.o def_global.o
text data bss dec hex filename

(continues on next page)

3.13. Object File Utilities 559

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

(continued from previous page)

62 0 0 62 3e ref_global.o
0 4 0 4 4 def_global.o

62 4 0 66 42 (TOTALS)

--version

Display the version of the c29size executable.

-x

Equivalent to the --radix=16 option.

@<file>

Read command-line options from specified <file>.

Exit Status

The c29size utility exits with a non-zero exit code if there is an error. Otherwise, it exits with code
0.

3.13.6 c29strip - Object File Stripping Tool

The c29strip tool removes the symbol table and debugging information from object and executable
files. To invoke the c29strip tool, use the following command line:

c29strip [options] filename [filename]

• c29strip - is the command that invokes the object file stripping tool.

• options - control the behavior of the c29strip tool. Options are not case sensitive and can
appear before or after the files to be stripped. Precede each option with a hyphen (-).

• filename - identify one or more object files (.obj) or executable files (.out) to be processed by
c29strip. By default, the files are modified in-place.

Options

--buffer_diagnostics,-pdb

Line buffer diagnostic output

--diag_wrap[=on,off]

Wrap diagnostic messages (argument optional, defaults to on)

--emit_warnings_as_errors,-pdew

Treat warnings as errors

3.13. Object File Utilities 560

C29 Clang Compiler Tools User Guide, Release v1.0.0.LTS

--help,-h

Display help information

--outfile,-o=file

Write the stripped output to the specified new file. When the strip utility is invoked without
the -o option, the input object files are replaced with the stripped version.

--postlink,-p

Remove all information not required for execution. This option causes more information
to be removed than the default behavior, but the object file is left in a state that cannot be
linked. This option should be used only with static executable files.

--rom

Strip readonly sections and segments.

Exit Status

The c29strip utility exits with a non-zero exit code if there is an error. Otherwise, it exits with code
0.

3.13. Object File Utilities 561

CHAPTER

FOUR

NOTE ON LINUX INSTALLATIONS

4.1 c29clang Shared Library File Dependencies

It is useful to be aware of the shared library files that c29clang depends on when trying to figure
out which ones may be missing.

You can list the shared library file dependencies using the ldd command. For example:

%> ldd /path/to/installation/bin/c29clang

On the Ubuntu OS that was used to generate this example, the list of shared library files emitted
by the ldd command is as follows:

linux-vdso.so.1 => (0x00007ffd0cb3f000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0

→˓(0x00007f3565388000)
librt.so.1 => /lib/x86_64-linux-gnu/librt.so.1

→˓(0x00007f3565180000)
libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2

→˓(0x00007f3564f7c000)
libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f3564c76000)
libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1

→˓(0x00007f3564835000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f356446c000)
/lib64/ld-linux-x86-64.so.2 (0x00007f35655a6000)

562

CHAPTER

FIVE

ADDITIONAL MATERIAL

See the following additional documentation for more about the TI C29x processors from Texas
Instruments and the TI C29x code generation tools.

• C2000 C29x CPU and Instruction Set User’s Guide (SPRUIY2), which is available through
your TI Field Application Engineer

Generic Clang and LLVM Documentation

• Clang Compiler User’s Manual

• Clang Overview

• The LLVM Compiler Infrastructure

563

https://clang.llvm.org/docs/UsersManual.html
https://clang.llvm.org/
http://llvm.org/

CHAPTER

SIX

SUPPORT

Post compiler-related questions to the TI E2E™ design community forum and select the TI device
being used.

564

https://e2e.ti.com

CHAPTER

SEVEN

VERSION HISTORY

Ver-
sion

Date Summary

v0.1 February
2024

Initial documentation draft.

v0.1.0.STSJuly 22,
2024

Documentation updated to include
Getting Started Guide, Migration Guide
and Compiler Tools User Manual.

v1.0.0.LTSOctober
2024

Documentation updated for LTS release.

565

CHAPTER

EIGHT

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DE-
SIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DE-
SIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS
IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND
IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF
THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely
responsible for (1) selecting the appropriate TI products for your application, (2) designing, vali-
dating and testing your application, and (3) ensuring your application meets applicable standards,
and any other safety, security, or other requirements. These resources are subject to change without
notice. TI grants you permission to use these resources only for development of an application that
uses the TI products described in the resource. Other reproduction and display of these resources
is prohibited. No license is granted to any other TI intellectual property right or to any third party
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its
representatives against, any claims, damages, costs, losses, and liabilities arising out of your use
of these resources.

TI’s products are provided subject to TI’s Terms of Sale
(https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does
not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

For offline use, a PDF version of the guide is available here: TI C29x Clang C/C++ Compiler Tools
User’s Guide

566

https://www.ti.com/legal/termsofsale.html
https://software-dl.ti.com/codegen/docs/c29clang/compiler_tools_user_guide/latex/C29_Clang_Compiler_Tools_User_Guide.pdf
https://software-dl.ti.com/codegen/docs/c29clang/compiler_tools_user_guide/latex/C29_Clang_Compiler_Tools_User_Guide.pdf

