I3 TEXAS
INSTRUMENTS

Application Report
SLAA547—-August 2012

C Implementation of Cryptographic Algorithms

Jace H. Hall

ABSTRACT

This application report discusses the implementations of the AES, DES, TDES, and SHA-2 cryptographic
algorithms written in the C programming language. These software cryptographic solutions were made for
devices without hardware acceleration for these algorithms. This document does not go into common
methods or practices using these algorithms; however, it does describe how to use the algorithms in
program code as well as the nature of the algorithms themselves.

NOTE: This document may be subject to the export control policies of the local government.

a b wWwNBE

©O© 00 N O U1 A WN P

e e =
U D WDN RO

o O WN P

Contents
Y001V LE TN 21T ol . =T 2
L] To I o] = 20 0 o1 o1 3
Overview Of Library FUNCHONSuieiiiiit it sesiaee e sessntee s saaanee s s eannnessaannnesssannnesssnnnnnessnnnnnes 8
Cryptographic Standard DefinitioNSeeeeiiieteeiiiirii s sair s ssaaa s saaanesaaanes 12
S =T 1= 0= 27

F ST A o o TS 1 (1 o) U1 13
Structure of the Key and the State ... eiii i e s s r e s a s aanns 14
Y0 o] 0 LTSI @] o T=T - 1o o 14
BT 01T AT =T =1 1T 15
Y Tp oo [N T T K@ 07T = 14 o) o N 15
WX (o (01U o 1= VA @ 0 1= = L1 [N 16
Expanding First Column of NexXt ROUNG KEYuuiiiiuiiiisiiiieiiseiieriss s s raasssnnns e sannneans 17
Expanding Other Columns of Next ROUNA KEY.......uiiiiiiiiiiiii i i s e nne e 17
DES AlQOIthm SITUCTUIE .+ttt tieie e sesieee s e essnee s s s aanneessaanneessaannnessaannnesssannnnessssnnneesssnnnnessnn 19
[S 0 o 1T T 2] oY 20
Key Schedule FUNCLION DIagram iseessrnasessssaaseessaaaase s saaassesssannessaaannnssssannnssssannsnsssnn 21
3DES Encoding and Decoding AlgOrithmS ... uueesiiii i e i e s i s s e s ssanne s s snnnneesaaannnesaannnnes 22
DES Encode and Decode in CBC MOuuuiiuteiiseinstissssasesasssasssssssssssanssassssannssasssannssans 23
Example of MeSSage Paddingccu.eeeiiiiieiiiiiteiiiite s rre s srase s saain e s s saanr s s e s s ranrrenaas 24
Visualization of the Hasing LOOP Of SHA-256ceiiiiiiiiiiiii i saaineeessaannressaanseessaanneessnnnns 25

List of Tables

Optimization Settings in IAR for Benchmark TeStNgeeuiiiiiiiiiii i i a e 2
Benchmarks for AES Library Functions Encrypting One 16 Byte BIOCKcvveeiiiiiiiiiiii i e eenes 2
DES Code Size BENCMAIKS ...t s e e et e et s e et s ane e s aaan e e s saanne e s sannnensaannes 2
Performance of Several DES MOOES ... ittt st s s saa e s sa s s s s saann e s ssannnassaannes 2
Benchmarks for SHA-256 Library FUNCHON. ...uuiiiieii it eie e seisee s sesne e s ssannne e ssannneessannneessannns 3
MINIMUM SIZES OF M]ttt s r s e n s e e e ranes 7

All trademarks are the property of their respective owners.

SLAA547-August 2012 C Implementation of Cryptographic Algorithms 1
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS

INSTRUMENTS

Software Benchmarks www.ti.com
7 o SR 22 < T = o] L= 0 | @0 1 =T) 8

8 DES and 3DES Table Of CONBNES. .ttt tttttttieeieeeseeteennasaesseresennnssassresrnnnnsssssrsssesennnssssesrresnnnns 9

9 SHA-256 and SHA-224 Table Of CONENIS .. uuittiittiiieiies s ettaaaeasseeeettnasssesssssernnnnsssssssreennnnsssnns 12

1 Software Benchmarks

All code was tested and benchmarked on the MSP430 platform using IAR as the compiler tool. The
optimization columns in the benchmark tables indicate the type of optimization used in IAR. Table 1
describes the settings used.

Table 1. Optimization Settings in IAR for Benchmark Testing

Optimized for: Optimization Level Aggressive Unrolling Aggressive In-Lining
Size High => Size No No
Speed High => Speed Yes Yes

1.1 AES Benchmarks

Table 2. Benchmarks for AES Library Functions Encrypting One 16 Byte Block

Optimization Optimization
AES (ENC/DES Function) Speed Size AES (ENC Only Function) Speed Size
RAM (B) 34 34 RAM (B) 34 34
Memory (kB) | Const 0.55 0.55 Memory (kB) Const 0.29 0.29
Code 1 0.83 Code 0.67 0.51
Clock Cycles (kilo-cycles) 79 12.3 Clock Cycles (kilo-cycles) 7.3 11.3

1.2 DES Benchmarks

Table 3. DES Code Size Benchmarks

Optimization
DES Code Size Speed Size
RAM (B) 288 288
Const (kB) 2.3 2.3
Code (kB) 3.3 2.17

Table 4. Performance of Several DES Modes

Optimization
DES Clock Cycle Count (kilo-cycles) Speed Size
DES (FULL) (One Data Block) 41 42.6
3DES (FULL) (One Data Block) 135.6 143.1
DES Key Scheduler (ENO or DE1 modes) 34.7 36
DES Key Scheduler (ENDE mode) 69 72
DES Encode/Decode (One Data Block) 2.7 3.8
DES CBC Encode/Decode (2-block chain) 55 7.7
3DES CBC Encode/Decode (2-block chain) 139 149.7
2 C Implementation of Cryptographic Algorithms SLAA547—August 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

www.ti.com Using Library Functions

1.3 SHA-2 Benchmarks

Table 5. Benchmarks for SHA-256 Library Function

Optimization
SHA-256 (Data < 448 bits) @ Speed Size
RAM 0.328 0.328
Memory (kB) Const 0.264 0.328
Code 3.72 1.87
Clock Cycles (kilo cycles) 34.1 (67) 44.3 (86.7)

@ Values in () indicate a hashing of 448 bits < Data< 960 bits or 2 blocks of data.

2 Using Library Functions
The algorithms were implemented using C. The following sections show how an encryption or decryption
can be calculated using the functions provided in this application report.

21 AES 128

211 Encrypting With AES 128
The following code example shows how an AES encryption can be performed.

#i ncl ude "nmsp430xxxx. h"
#i nclude "TI _aes. h"
/1 #include “Tl _aes_encr_only.h” //Alternative nethod

int main(void)
{

unsi gned char state[]

{ O0x69, Oxc4, Oxe0, 0xd8, Ox6a, 0x7b, 0x04, 0x30, 0xd8, Oxcd, Oxb7,
0x80, 0x70, Oxb4, O0xc5, O0x5a};
unsi gned char key[] = {0x00, O0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0Oa, 0xOb, 0xOc, 0x0d, 0x0e, O0xOf};
aes_enc_dec(state, key, 0); // "0" indicates Encryption
// aes_encrypt(state, key); //Aternative Method of Encryption
return O;

This short program defines two arrays of the type unsigned character. Each array is 16 bytes long. The
first one contains the plaintext and the other one the key for the AES encryption.

After the function aes_enc_dec() returns, the encryption result is available in the array state.

SLAA547—-August 2012 C Implementation of Cryptographic Algorithms 3

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

Using Library Functions www.ti.com

21.2 Decrypting With AES 128

Decryption can be done in a similar way to encryption. First, two arrays are defined. When a decryption
needs to be performed, one array contains the key and the other one the cipher text.

After the function aes_enc_dec() returns, the decryption result is available in the array state.

#i ncl ude "nmsp430xxxx. h"
#i ncl ude "Tl _aes. h"

int main(void)

{

unsi gned char state[] = { 0x69, Oxc4, Oxe0, 0xd8, Ox6a, Ox7b, 0x04, 0x30,
0xd8, Oxcd, 0xb7, 0x80, 0x70, O0xb4, 0xc5, 0x5a};

{0x00, 0x01, 0x02, 0x03, 0x04, 05, 0x06, 0xO07,
0x08, 0x0, 0x0a, 0xOb, 0x0c, 0x0d, OxOe, OxOf};

aes_enc_dec(state, key, 1); // “1" indicates Decryption

return O;

}

unsi gned char key[]

2.2 DES

221 Setting the Key Schedule for DES

The following code example shows how to set the key schedule for DES encryption or decryption rounds.
This step must be performed before encryption or decryption can begin.

#i ncl ude "nmsp430xxxx. h"
#i ncl ude "TI _DES. h"

int main(void)
{ des_ctx dcl; // Key schedule structure
des_ctx dc2; // Key schedule structure

unsi gned char key[8] = {0x01, 0x23, 0x45, 0x67, 0x89, Oxab, Oxcd, Oxfe};
Des_Key(&dcl, key, ENO); // Sets up key schedule for Encryption only
Des_Key(&dcl, key, DE1l); [/ Sets up key schedule for Decryption only
Des_Key(&dc2, key, ENDE); // Sets up key schedule for Encryption and Decryption

return O;

}

4 C Implementation of Cryptographic Algorithms SLAA547—August 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

www.ti.com Using Library Functions

222 Encrypting and Decryption With DES

The following code example shows a full encryption then decryption process on a single block of data. The
key scheduler is set to populate both key schedules. The results of the operations are stored in the
original data array.

#i ncl ude "nmsp430xxxx. h"
#i ncl ude "TI _DES. h"

int main(void)

{
des_ctx dcl; // Key schedule structure
unsi gned char *cp;
unsi gned char data[] = {0x69, Oxc4, Oxe0, O0xd8, Ox6a, Ox7b, 0xd4, 0x30};
unsi gned char key[8] = {0x01, 0x23, 0x45, 0x67, 0x89, Oxab, Oxcd, Oxfe};
cp = data;
Des_Key(&dcl, key, ENDE); // Sets up key schedule for Encryption and
Decryption
Des_Enc(&dc, cp, 1); //Encrypt Data, Result is stored back into Data
Des_Dec(&dc, cp, 1); //Decrypt Data, Result is stored back into Data
return O;
}

2.2.3 Encryption and Decryption With DES CBC Mode

The following code example shows a full encryption then decryption process on multiple blocks of data
using Cipher-Block Chaining (CBC). The key scheduler is set to populate both key schedules. The results
of the operations are stored in the original data array.

#i ncl ude "nsp430xxxx. h"
#i ncl ude "TI _DES. h"

int main(void)
{
des_ctx dcl; // Key schedule structure
unsi gned char *cp;
unsi gned char data[] = { 0x69, Oxc4, Oxe0, 0xd8, Ox6a, Ox7b, 0x04, 0x30,
0xd8, Oxcd, O0xb7, 0x80, 0x70, Oxb4, 0xc5, 0x5a};
unsi gned char key[8] = {0x01, 0x23, 0x45, 0x67, 0x89, Oxab, Oxcd, Oxfe};
cp = data;
Des_Key(&dcl, key, ENDE); // Sets up key schedule for Encryption and
Decryption
DES_Enc_CBC(&dc, cp, 2); //Encrypt Data, Result is stored back into Data
DES Dec_CBC(&dc, cp, 2); //Decrypt Data, Result is stored back into Data
return O;

}

SLAA547—-August 2012 C Implementation of Cryptographic Algorithms 5
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

Using Library Functions

13 TEXAS
INSTRUMENTS

www.ti.com

2.3 3DES

23.1

Encrypting and Decrypting With Triple DES

The following code example shows the encryption and decryption process using 3DES with and without
CBC. The key scheduler is set to populate both key schedules. The results of the operations are stored in
the original data array.

#i ncl ude "nsp430xxxx. h"
#i ncl ude "TI _DES. h"

int main(void)

{
des_ctx dcl; // Key schedule structure
unsi gned char *cp;
unsi gned char dataf] = {0x69, Oxc4, Oxe0, 0xd8, Ox6a, O0x7b, 0x04, 0x30, 0xd8,
Oxcd, Oxb7, 0x80, 0x70, Oxb4, 0xc5, O0x5a};
unsi gned char key[8] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07} ;
unsi gned char keyl[8] = {0x01, 0x23, 0x45, 0x67, 0x89, Oxab, Oxcd, Oxf e} ;
unsi gned char key2[8] = {0x01, 0x23, 0x45, 0x67, 0x89, Oxab, Oxdc, Oxf e};
cp = data;
/l1lFirst 8 bytes of Data will be Encrypted then Decrypted
Tri pl eDES_ENC(&dc, cp, 1, key, keyl, key2); /1 3DES Encrypt
Tri pl eDES_DEC(&dc, cp, 1, key, keyl, key2); /1 3DES Decrypt
/11 Al 16 Bytes of Data will be Encrypted then Decrypted with CBC
Tri pl eDES_ENC CBC(&dc, cp, 2, key, keyl, key2); // 3DES Encrypt
Tri pl eDES_DEC _CBC(&dc, cp, 2, key, keyl, key2); // 3DES Decrypt
return O;
}
24 SHA-2
2.4.1 Hashing With SHA-256
The following code example shows an example of a data hash using SHA-256.
#i ncl ude "nsp430xxxx. h"
#i ncl ude "TI _SHA2. h"
uint32_t M32]; //Message array to be hashed
uint64_t L = 0x0000000000000000; //Bit Length of nessage to be hashed
uint32_t Ha[8]; // Hash Array to be used during calculation and to store result
int main(void)
{
M 0] =0x41424344; |/ Data
M 1] =0x45464748; [//Data
M 2] =0x494A4BAC; //Data
L = 0x0000000000000060 //Length == 96 bits or 0x60 bits
SHA 256(M L, Ha, 1); // “1” indicates SHA-256 node
return O,
}
6 C Implementation of Cryptographic Algorithms SLAA547—August 2012

Copyright © 2012, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

www.ti.com

Using Library Functions

Although this example does not show full initialization of the array M[], all relevant values have been
populated with meaningful data. M[] must be initialized to sizes equal to a 512-bit block of data or hashing
block. If the message to be hashed exceeds 448 bits within a hashing block, then an additional hashing
block must be reserved. Table 6 explains minimum sizes of M[] according to message size.

Table 6. Minimum Sizes of M[]

Message Size x (bits)

Minimum Size of Array M[]

x < 448 M[16]
448 < x <512 M[32]
512 < x < 960 M[32]
960 < x < 1024 M[48]

24.2 Hashing With SHA-224

The following code example shows a hashing of a message using SHA-224. Although an array of eight
32-bit words are used for the hashing process, only the first seven 32-bit words are used as the hash

result.

#i ncl ude "nmsp430x26x. h"
#i ncl ude " Tl _SHA2. h"

uint32_t M32]; //Mssage array to be hashed
/1Bit Length of nmessage to be hashed

uint64_t L = 0x0000000000000000;

uint32_t Ha[8]; // Hash Array to be used during calculation and to store result

int main(void)

{
M 0] =0x41424344; |/ Data
M 1] =0x45464748; //Data
M 2] =0x494A4B4C, //Data

L = 0x0000000000000060 //Length == 96 bits or 0x60 bits

SHA 256(M L, Ha, 0); // “0” indicates SHA-224 node.

return O;

}

SLAA547—August 2012
Submit Documentation Feedback

C Implementation of Cryptographic Algorithms 7

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

Overview of Library Functions www.ti.com

3 Overview of Library Functions

The following sections describe all modes of operation and parameters for the Software Cryptography
Library.

3.1 AES 128

Software implementation is of 128-bit AES encryption. This means the algorithm uses a 128-bit key in
order to encrypt 128-bit blocks of data. The library was optimized for memory usage (Flash and RAM).
There are two functions available from the library: aes_enc_dec() and aes_encrypt(). Both functions
overwrite the data block given with its encrypted value.

Table 7. AES 128 Table of Contents

Title Page
3.1.1 aes_enc_dec —(unsigned char *state, unsigned char *key, unsigned char dir);ccooviiiiiiiiiiiiiiiiiiiiiens 8
3.1.2 aes_encrypt —(unsigned char *state, unsigned Char *KEY);uuee i si i s rrre s aaanee e s ananneaaanns 8

3.1.1 aes_enc_dec (unsigned char *state, unsigned char *key, unsigned char dir);

This function can encrypt or decrypt a message using AES. Use this function if both
modes are needed. Data must be in hex form. Function does not convert ASCII text.
Inputs

» Unsigned char *state — Pointer to data block to be encrypted

» Unsigned char *key — Pointer to 128-bit key

* Unsigned char dir — Value that dictates Encryption (‘0’) or Decryption (‘1")

3.1.2 aes_encrypt (unsigned char *state, unsigned char *key);

This function only performs AES encryption. Data must be in hex form. Function does
not convert ASCII text. It is possible to decrypt messages while only using the encrypt
function. This can be done by encrypting a plain text message with an AES decrypt
action, then feeding that cipher text to the AES encryption function.

NOTE: A separate header and code file are made specifically for this function;
this is intended for code size sensitive applications.

Inputs
» Unsigned char *state — Pointer to data block to be encrypted
» Unsigned char *key — Pointer to 128-hit key

8 C Implementation of Cryptographic Algorithms SLAA547—August 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS

INSTRUMENTS
www.ti.com 3.2.1 Des_Key — (des_ctx *(Key Structure), unsigned char *pucKey, short sMode);
3.2 DES and 3DES
Software implementation uses a 64-bit key in order to encipher 64-bit blocks. The DES takes in a 64-bit
key, where every eighth bit is used for parity. Therefore, the effective key length is 56 bits. 3DES uses
three 64-bit keys and, therefore, has an effective key length of 168-bits.
The DES library functions make use of key structure of type des_ctx defined in the helper file. This
structure stores the key schedule for both encrypt and decrypt functions.
Table 8. DES and 3DES Table of Contents
Title Page
3.2.1 Des_Key —(des_ctx *(Key Structure), unsigned char *pucKey, short SMode);vcvveriiiiiiieriiiieriiiineesennns 9
3.2.2 Des_Enc —(des_ctx *(Key Structure),unsigned char *pucData, short SBIOCKS);vueiiiiiiiiiiiiiiiiiiiiiaans 9
3.2.3 Des_Dec —(ddes_ctx *(Key Structure), unsigned char *pucData, short SBIOCKS); ...cvvviiieiniiiiiiniiiiiineinnns 10
3.2.4 DES_ENC_CBC —(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *puclV);... 10
3.2.5 DES_DEC_CBC —(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *puclV);... 10
3.2.6 TripleDES_ENC —(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *pucKey1,
unsigned char *pucKey2, unsigned char *PUCKEY3); ... uuereiiiiieiiiaie e riainressaaere s raanre s sranressaaanneess 10
3.2.7 TripleDES_DEC —(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *pucKeyl1,
unsigned char *pucKey2, unsigned char *PUCKEY3) ;... uueeiiiiiiiiiiiee st sraasre s srasne s saaanneess 11
3.2.8 TripleDES_ENC_CBC —(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char
*pucKeyl, unsigned char *pucKey?2, unsigned char *pucKey3, unsigned char *puclV);cccevviiiiiiieiinnnnns 11
3.2.9 TripleDES_DEC_CBC —(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char
*pucKeyl, unsigned char *pucKey?2, unsigned char *pucKey3, unsigned char *puclV);ccoeevviiiiinennnnnnns 11

3.2.1 Des_Key (des_ctx *(Key Structure), unsigned char *pucKey, short sMode);

This function is the key scheduler for the DES. This step must be performed before
calling the encrypt or decrypt function. Key must be in hex form. Function does not
convert ASCII text.

Inputs
» des_ctx *Ks -- Pointer to structure that will store the key schedule
« unsigned char *pucKey — Pointer to start of key array in need of scheduling
» short sMode -- Sets operation mode for the key scheduler
— sMode = ENO : Mode is set to schedule key for encryption
— sMode = DE1: Mode is set to schedule key for decryption
— sMode = ENDE: Mode is set to schedule for both encryption and decryption

3.2.2 Des_Enc (des_ctx *(Key Structure),unsigned char *pucData, short sBlocks);

This function performs a DES encryption process on data. Key schedules must be
created before use. Data must be in hex form. Function does not convert ASCII text.

Inputs

» des_ctx *Ks -- Pointer to structure containing scheduled keys

» unsigned char *pucData — Pointer to start of data array that will be enciphered
» short sBlocks — Value indicating how many 64-bit blocks need to be enciphered

SLAA547—-August 2012 C Implementation of Cryptographic Algorithms 9
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

3.2.3 Des_Dec — (ddes_ctx *(Key Structure), unsigned char *pucData, short sBlocks); www.ti.com

3.2.3 Des_Dec

(ddes_ctx *(Key Structure), unsigned char *pucData, short sBlocks);

This function performs a DES decryption process on data. Key schedules must be
created before use. Data must be in hex form. Function does not convert ASCII text.

Inputs

» des_ctx *Ks -- Pointer to structure containing scheduled keys

» unsigned char *pucData — Pointer to start of data array that will be deciphered
» short sBlocks — Value indicating how many 64-bit blocks need to be deciphered

3.2.4 DES _ENC _CBC (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned

char *puclV);

This function performs a DES encryption process with CBC mode. Key schedule must
be created before use. Data must be in hex form. Function does not convert ASCII text.
Updated IV vector is stored starting at location puclV.

Inputs

e des_ctx *Ks -- Pointer to structure containing scheduled keys

» unsigned char *pucData — Pointer to start of data array that will be enciphered
» short sBlocks — Value indicating how many 64-bit blocks need to be enciphered
» unsigned char *puclV — Pointer to start of array of Initialization Vector (V)

3.2.5 DES _DEC_CBC (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned

char *puclV);

This function performs a DES decryption process with CBC mode. Key schedule must
be created before use. Data must be in hex form. Function does not convert ASCII text.
Updated IV is stored starting at location puclV.

Inputs

» des_ctx *Ks -- Pointer to structure containing scheduled keys.

» unsigned char *pucData — Pointer to start of data array that will be deciphered

» short sBlocks — Value indicating how many 64-bit blocks need to be deciphered

» unsigned char *puclV — Pointer to start of array of Initialization Vector (IV)

3.2.6 TripleDES_ENC (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned

char *pucKeyl, unsigned char *pucKey?2, unsigned char *pucKey3);

This function performs a 3DES encryption process in the form: ENc .,(DEC yeyo(ENC 4 (
Data))). Data and keys must be in hex form. Function does not convert ASCII text.

Inputs

e des_ctx *Ks -- Pointer to structure that will store the key scheduler

» unsigned char *pucData — Pointer to start of data array that will be enciphered
» short sBlocks — Value indicating how many 64-bit blocks need to be enciphered
» unsigned char *pucKeyl — Pointer to the first key array location

» unsigned char *pucKey?2 — Pointer to the second key array location

» unsigned char *pucKey3 — Pointer to the third key array location

10 C Implementation of Cryptographic Algorithms SLAA547—August 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS

INSTRUMENTS

www.ti.com 3.2.7 TripleDES_DEC — (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char

*pucKeyl, unsigned char *pucKey2, unsigned char *pucKey3);

3.2.7 TripleDES_DEC (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned

char *pucKeyl, unsigned char *pucKey2, unsignhed char *pucKey3);

This function performs a 3DES encryption process in the form:
Declkey1](Enc[key2](Dec[key3](Data))). Data and keys must be in hex form. Function
does not convert ASCII text.

Inputs

» des_ctx *Ks -- Pointer to structure that will store the key scheduler.

» unsigned char *pucData — Pointer to start of data array that will be deciphered.

» short sBlocks — Value indicating how many 64-bit blocks need to be deciphered.

» unsigned char *pucKeyl — Pointer to the first key location.

* unsigned char *pucKey2 — Pointer to the second key location.

« unsigned char *pucKey3 — Pointer to the third key location.

3.2.8 TripleDES_ENC_CBC (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks,

unsigned char *pucKeyl, unsigned char *pucKey?2, unsigned char *pucKey3,
unsigned char *puclV);

This function performs a 3DES encryption process in the form: ENc .,5(DEC yeyo(ENC iy (
Data))) with CBC mode enabled. Data and keys must be in hex form. Function does
not convert ASCII text. Updated IV is stored starting at location puclV.

Inputs

» des_ctx *Ks -- Pointer to structure that will store the key scheduler

» unsigned char *pucData — Pointer to start of data array that will be enciphered

» short sBlocks — Value indicating how many 64-bit blocks need to be enciphered

» unsigned char *pucKeyl — Pointer to the first key array location

» unsigned char *pucKey2 — Pointer to the second key array location

» unsigned char *pucKey3 — Pointer to the third key array location

» unsigned char *puclV — Pointer to start of array of Initialization Vector (IV)

3.2.9 TripleDES_DEC_CBC (des_ctx *(Key Structure), unsigned char *pucData, short sBlocks,

unsigned char *pucKeyl, unsigned char *pucKey?2, unsigned char *pucKey3,
unsigned char *puclV);

This function performs a 3DES encryption process in the form
Declkeyl1](Enc[key2](Dec[key3](Data))) with CBC mode enabled. Data and keys must be
in hex form. Function does not convert ASCII text.

Inputs

» des_ctx *Ks -- Pointer to structure that will store the key scheduler

» unsigned char *pucData — Pointer to start of data array that will be deciphered

» short sBlocks — Value indicating how many 64-bit blocks need to be deciphered
» unsigned char *pucKeyl — Pointer to the first key location

e unsigned char *pucKey2 — Pointer to the second key location

» unsigned char *pucKey3 — Pointer to the second key location

» unsigned char *puclV — Pointer to start of array of Initialization Vector (V)

SLAA547—-August 2012

C Implementation of Cryptographic Algorithms 11

Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS

INSTRUMENTS
3.3.1 SHA_256 — (uint32_t *Message, uint64_t Mbit_Length, uint32_t *Hash, short sMode); www.ti.com
3.3 SHA-256 and SHA-224
The software implementation uses a 256-bit hash to hash, a hashing block of 512 bits as described in the
document FIBS PUB 180-3. Data to be hashed must be in hex form. Function does not convert ASCII text.
Message array must be a multiple of a hashing block with array elements being 32 bits in length. Function
is written in C99 notation for portability reasons.
Table 9. SHA-256 and SHA-224 Table of Contents
Title Page
3.3.1 SHA_256 —(uint32_t *Message, uint64_t Mbit_Length, uint32_t *Hash, short sMode);..........ccovieviiiiinnnnnnnns 12
3.3.1 SHA 256 (uint32_t *Message, uint64_t Mbit_Length, uint32_t *Hash, short sMode);
Inputs
» uint32_t *Message — Pointer to array of 32-bit longs to be hashed. Size of array must
be a multiple of a hashing block (512 bits or sixteen 32-bit longs).
* uint64_t Mbit_length -- 64-bit value containing the precise number of bits to be
hashed within the Message array.
NOTE: If Mbit_Length %(mod) 512 >= 448 bits, then an additional hashing block
is needed. You must allocate the additional 512 bits.
* uint32_t *Hash — Pointer to array of eight 32-bit longs. The final hash value is stored
here.
* short sMode — Determines if the algorithm run is SHA-224 or SHA-256.
— Mode is equal to “False”, SHA-224 is used. Final Hash == Hash[0-6].
— Mode is equal to “True”, SHA-256 is used. Final Hash == Hash[0-7].
4 Cryptographic Standard Definitions
4.1 AES
The Advanced Encryption Standard (AES) was announced by the National Institute of Standards and
Technology (NIST) in November 2001. It is the successor of Data Encryption Standard (DES), which
cannot be considered as safe any longer, because of its short key with a length of only 56 bits.
To determine which algorithm would follow DES, NIST called for different algorithm proposals in a sort of
competition. The best of all suggestions would become the new AES. In the final round of this competition
the algorithm Rijndael, named after its Belgian inventors Joan Daemen and Vincent Rijmen, won because
of its security, ease of implementation, and low memory requirements.
There are three different versions of AES. All of them have a block length of 128 bits, whereas, the key
length is allowed to be 128, 192, or 256 bits. In this application report, only a key length of 128 bits is
discussed.
4.1.1 Basic Concept of Algorithm
The AES algorithm consists of ten rounds of encryption, as can be seen in Figure 1. First the 128-bit key
is expanded into eleven so-called round keys, each of them 128 bits in size. Each round includes a
transformation using the corresponding cipher key to ensure the security of the encryption.
12 C Implementation of Cryptographic Algorithms SLAA547—August 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

www.ti.com Cryptographic Standard Definitions

Ciphrer Key Plain Text Block
128 i 128
Round Key 0
128

Round Key 1 P> Round 1
: v
B Round Key 2 > Round 2
% ¥
o
X
w
>
Q - - - -
4

Round Key 10 P Round 10

%

Cipher Text Block

Figure 1. AES Algorithm Structure

After an initial round, during which the first round key is XORed to the plain text (Add roundkey operation),
nine equally structured rounds follow. Each round consists of the following operations:

» Substitute bytes
» Shift rows

* Mix columns

e Add round key

The tenth round is similar to rounds one to nine, but the Mix columns step is omitted. In the following
sections, these four operations are explained.

SLAA547-August 2012 C Implementation of Cryptographic Algorithms 13

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

Cryptographic Standard Definitions www.ti.com

41.2 Structure of Key and Input Data

Both the key and the input data (also referred to as the state) are structured in a 4x4 matrix of bytes.
Figure 2 shows how the 128-bit key and input data are distributed into the byte matrices.

The State The Key

Qp | 94 | Ag Ay Ko | ks | Kg | Ky
|85 | a9 |ay3 Ki| ks | ko Kq3
Ay | Qg |Qq9 A4y Ky | Kg [Kig| Kig
Q3 | a7 Q49 | Q45 Ky | K7 [Kyq | Kys

Figure 2. Structure of the Key and the State

4.1.3 Substitute Bytes (Subbytes Operation)

The Subbytes operation is a nonlinear substitution. This is a major reason for the security of the AES.
There are different ways of interpreting the Subbytes operation. In this application report, it is sufficient to
consider the Subbytes step as a lookup in a table. With the help of this lookup table, the 16 bytes of the
state (the input data) are substituted by the corresponding values found in the table (see Figure 3).

a, | a |a;|a, b. | b, b; | b,,
4 35 b

a'; , Ay S-box —g b, | b,,
a, | a, |a, a, » (table lookup) b, | b, |b, b,
a3 a7 a11 a15 b3 b7 b11 b15

Figure 3. Subbytes Operation

41.4 Shift Rows (Shiftrows Operation)

As implied by its name, the Shiftrows operation processes different rows. A simple rotate with a different
rotate width is performed. The second row of the 4x4 byte input data (the state) is shifted one byte
position to the left in the matrix, the third row is shifted two byte positions to the left, and the fourth row is
shifted three byte positions to the left. The first row is not changed.

14 C Implementation of Cryptographic Algorithms SLAA547—August 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

www.ti.com Cryptographic Standard Definitions

Figure 4 illustrates the working of Shiftrows.

40,0|90,1|30,2| 90,3
A0 Q0,0
—— a0,1 a0,2 a0,3 . a0,1 aO,? a"'*
a0 aqo(a1,1|@12|3813 a0
N A Az | Ay q \ QAo | Ay a«:_
920 15 la.la a, |a, 20 5
2,1 2,2 2,3 2,0 2." 1 2,3
N A0|a21 (322|323 [—_—
%0 3 la,|a v a, ™0 |a,|a
3,1 32 | A33
3, 3,2 3,3
aznlasqlasxo|a
3,0(93,1|332|233

Figure 4. Shiftrows Operation

4.1.5 Mix Columns (Mixcolumns Operation)

Probably the most complex operation from a software implementation perspective is the Mixcolumns step.
The working method of Mixcolumns can be seen in Figure 5.

— a — b
0,1 0,1
o | Qo2 Qg3 bo,tﬁ bo,z bo,s
—a — 02 03 01 01 — b
1,1 1,1
a a,, | a 01 02 03 01 b1< b12 b13
—a,, —> X by, [
a a1 a..la 01 01 02 03 b. 221 b |b
2,(ﬁ 2,2 2,3 03 01 01 02 2,1ﬁ 2,2 2,3
CER bs 4
a;. 7 [(Q;,|a;; b3,1 ’ b3,2 b3,3
A«

Figure 5. Mixcolumns Operation

Opposed to the Shiftrows operation, which works on rows in the 4x4 state matrix, the Mixcolumns
operation processes columns.

In principle, only a matrix multiplication needs to be executed. To make this operation reversible, the usual
addition and multiplication are not used. In AES, Galois field operations are used. This document does not
go into the mathematical details, it is only important to know that in a Galois field, an addition corresponds
to an XOR and a multiplication to a more complex equivalent.

The fact that there are many instances of 01 in the multiplication matrix of the Mixcolumns operation
makes this step easily computable.

SLAA547-August 2012 C Implementation of Cryptographic Algorithms 15

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

Cryptographic Standard Definitions www.ti.com

4.1.6 Add Round Key (Addroundkey Operation)

The Addroundkey operation is simple. The corresponding bytes of the input data and the expanded key
are XORed (see Figure 6).

aO a4 a8 a12

a3 a7 a11 a15 bO b4 b8 b12
b
N\ 8, Bs b, b,
—

-/ b, | b, | by, | b,
kO k4 k8 k12
[k b3 b7 b11 b15
k1 S k9 k13

h_
k2 k6 k10 k14
k3 k7 k11 k15
Figure 6. Addroundkey Operation
16 C Implementation of Cryptographic Algorithms SLAA547—August 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

I

TEXAS
INSTRUMENTS

www.ti.com

Cryptographic Standard Definitions

4.1.7

4.2

Key Expansion (Keyexpansion Operation)

As previously mentioned, Keyexpansion refers to the process in which the 128 bits of the original key are
expanded into eleven 128-bit round keys.

To compute round key (n+1) from round key (n) these steps are performed:
1. Compute the new first column of the next round key as shown in Figure 7:

RK(n) RK(n+1)
Koo' Kk kos Koa
T» 0,1/%0,2 . .
Y0 1k qky " <
k T kya K
20 K, 4[kyp 22 20 -
kap [0 v kes K
3,0
3’0‘»k3,1 ks,z 33‘
1
Rotate
to3 t RC
y tO,j 1,3 & 1
t t 00
S-Box b b 23
> > —> :) -
S (kij) t3 t2,] t33 00
N C) B
t33 t3 to3 00
" _—_—

Figure 7. Expanding First Column of Next Round Key

First all the bytes of the old fourth column have to be substituted using the Subbytes operation. These
four bytes are shifted vertically by one byte position and then XORed to the old first column. The result
of these operations is the new first column.

2. Calculate columns 2 to 4 of the new round key as shown:

(a) [new second column] = [new first column] XOR [old second column]
(b) [new third column] = [new second column] XOR J[old third column]
(c) [new fourth column] = [new third column] XOR [old fourth column]
Figure 8 illustrates the calculation of columns 2-4 of the new round key.

RK(n+1)

RK(n)

—_— ko,o —
Kod Koz
k 1,0 kt2
k2,2

3,0
k3,(ks,z

ko ko5
0,3

L Kkia ks
Kis ,

Koy k
K, 2,4 K25

k“ k3,4 k3,5

Figure 8. Expanding Other Columns of Next Round Key

DES and 3DES

The Data Encryption Standard (DES) was developed in the 1970s by IBM and adopted as a standard by
NIST by 1976. The DES algorithm itself has since then been declared insecure by NIST; however, it is

believed to be reasonably secure in the form of Triple DES.

SLAA547—August 2012
Submit Documentation Feedback

C Implementation of Cryptographic Algorithms

Copyright © 2012, Texas Instruments Incorporated

17

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

Cryptographic Standard Definitions www.ti.com

The DES algorithm consists of 16 rounds of data manipulation preceded by an initial permutation and
followed by the inverse of the initial permutation. Figure 9 has a visual description of the algorithm
structure. After the initial permutation, the data block is split in half into left and right blocks. The right
block is sent through a function block with a round key and then is used as the left block for the next
round. The left block is XOR’d with the result of the function block, the result of which is used as the right
block in the next round. This is continued until the last round where the left and right blocks do not switch

sides. At this point, the data is put through the inverse of the initial permutation resulting in the wanted
cipher text.

18 C Implementation of Cryptographic Algorithms SLAA547—August 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

www.ti.com Cryptographic Standard Definitions

421 DES Algorithm Structure

[Left 32 Bits,]

I I)\

| Fllok) =R 1

K
#‘_ Flxk i) :
L L L J

| :
— - _— n q- n _i KN i
é‘ F(x,k |) llllllllll‘- ———————
L L | L] L] E
I Elllllllllllll')
llllll:ll:lli_ R15

Figure 9. DES Algorithm Structure

SLAA547-August 2012 C Implementation of Cryptographic Algorithms 19
Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS

INSTRUMENTS
Cryptographic Standard Definitions www.ti.com
4.2.2 The Function Block
The function block begins by expanding a 32-bit half block to 48 bits as shown in Figure 10.
Half Block
Round
. 48 Bits
Expansion Box key
48 Bits /r
6 Bits
S1 S2 S3 S4 S5 S6 S7 S8

4 Bits

Permutation Box

32 Bits

Figure 10. DES Function Block

The expanded block is then XOR'd with the round key. The resultant is the split into 6-bit increments and
passed through eight S-boxes, with the six MSb going through S1 and the six LSb through S8. The S-
boxes give 4-bit results which are concatenated (S1+S2+S3+S4+S5+S6+S7+S8) and sent through a 32-
bit permutation box.

4.2.3 Key Schedule

The key schedule for all sixteen rounds of the DES algorithm must be calculated before encryption or
decryption can occur. The key schedule process in this library is the most CPU intensive component of the
algorithm. System speed can be increased by limiting the number of keys to be scheduled. Figure 11
describes how the key schedule is calculated. First, the 64-bit key is sent through a permutation box that
reduces the bit count to 56. The result is split evenly and left rotated by 1-2 bits depending on the round.
The rotate results are fed into a second permutation box that gives the round key used in the DES
Function block.

20 C Implementation of Cryptographic Algorithms SLAA547—August 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS

INSTRUMENTS
www.ti.com Cryptographic Standard Definitions
64 Bit Key
P1 Box
Left 28 Bits - ' Right 28 Bits

48 Bits 56 Bits

KN Vv
< P2 Box 4 Left Rotate, N ‘

<llllllll

.

<lllll

K16 Vv
— P2 Box 4———__left Rotate, 16 ‘

T~

Figure 11. Key Schedule Function Diagram

SLAA547-August 2012 C Implementation of Cryptographic Algorithms 21

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

Cryptographic Standard Definitions

13 TEXAS
INSTRUMENTS

www.ti.com

4.2.4 Triple DES

Triple DES is a more secure form DES that implements three keys with a series of encodes and decodes.
Figure 12 illustrates Triple DES Encoding and Decoding. In Triple DES, plain text is run through three
alternating rounds of DES encoding and decoding with each round using a different key.

3DES Encode

Plain Text

v

Keyl wp Encode

Y

Key2 == Decode

'

Key 3 =i Encode

y

Cipher Text

3DES Decode

Cipher Text

v

Key3 wmp Decode

Y

Key2 iy Encode

{

Keyl =i Decode

{

Plain Text

Figure 12. 3DES Encoding and Decoding Algorithms

22 C Implementation of Cryptographic Algorithms

SLAA547—-August 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

www.ti.com Cryptographic Standard Definitions

4.2.5 Cipher Block Chaining (CBC) Mode

CBC is a common method to cipher multiple blocks of data. The mode introduces pseudo-randomness
between cipher blocks in order to obscure data patterns between plaintext blocks. Figure 13 describes
DES CBC modes for encryption and decryption.

Plain Text
Block N

Plain Text Plain Text
Block 1 Block 2

]
[}
i :l
IV Block H" Jw :""’v IV Block
0
v , 20 B
§ Y :
DES DES 0 DES n
Encode Encode i Encode :
] 0 n
qa 0 ™
* (]
]
Cipher Text Cipher Text Cipher Text 4 o _:
Block 1 Block 2 Block N
Cipher Text Cipher Text Cipher Text _ _ __ .
Block 1 Block 2 Block N n
s -
....E * :
DES DES H DES .
Decode Decode H Decode :
s : v
s \ 4
IV Block H Y A g...*‘. IV Block
A | 4 T v
[}
v v
Plain Text Plain Text Plain Text
Block 1 Block 2 Block N

Figure 13. DES Encode and Decode in CBC Mode

Encoding in CBC modes begins with an XOR of the IV block and the first Plain text box. The result is
encrypted to give the first block of Cipher text. This cipher text is then XOR'd with the next block of plaint
text, which is then encoded. This process repeats until all data blocks are enciphered. The IV block is then
updated to equal the last enciphered block.

SLAA547-August 2012 C Implementation of Cryptographic Algorithms 23

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

Cryptographic Standard Definitions www.ti.com

4.3

43.1

4.3.2

Decoding in CBC happens in a similar way. In decoding, however, the XOR step happens after the
decoding process. The first cipher text block is decoded then XOR'd with IV block to get the plain text.
Continuing blocks are XOR'd with the previous cipher block after decoding, and the last cipher block is
taken as the updated IV.

Triple DES with CBC works in the same way as DES with CBC. In Figure 13, replace the DES Encode
module with 3DES Encode and the DES Decode module with 3DES Decode in order to have a
visualization of the mode.

SHA-256 and SHA-224

Secure Hash Standard (SHA) 2 is a set of hashing algorithms developed by NIST in order to replace SHA-
1. SHA-2 is a family of algorithms with message digests of 224, 256, 384 and 512 bits. The 224 and 384
variants are subsets of the 256 and 512, respectively. This library only implements SHA-256 and SHA-
224.

Message Padding and Parsing

In order for a hash to be computed, the message must be padded to a multiple of a 512-bit hashing block.
The last 64-bits of the last block is reserved for the bit count of the message. Figure 14 shows how
padding is implemented. At the end of the message to be hashed a single “1” bit is appended followed by
zeros. The zeroes continue until Message + Message Length + “1” + “00...00” = 512 bhits.

/ 512 -bit \

Message < 448 bits “1” “00......00” 64 -bit Length

Message >= 448 bits “1” “00......00” 64 -bit Length

N AN J

512 -bit 512 -bit

Figure 14. Example of Message Padding

SHA-256 Algorithm

The algorithm starts with an initialization vector of eight 32-bit words. These values are loaded into temp
variables labeled A — H. A set of equations govern how these variables are combined and manipulated.
The algorithm also calls for an array of hash constants (K,), a message schedule (W,), and the functions
Ch, Ma, >0, and > 1. The equations and functions are given in Section 4.3.3. Figure 15 gives a
visualization of the hashing loop. This loop is repeated 64 times until the end of the message schedule.
One message schedule covers only one hashing block of the full message. Once the loop is completed,
the resulting temp variables are XOR'd with the initialization variables to form the current message digest
HO-7. If other message blocks are to be processed, the temp values are loaded with the current message
digest. At the end of the loop, the current results are XOR'd with the previous message digest. A full
explanation of the algorithm can be found in FIPS PUB 180-3.

24

C Implementation of Cryptographic Algorithms SLAA547—-August 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

i3 TEXAS
INSTRUMENTS

www.ti.com Cryptographic Standard Definitions

lllllll—’==-—|

> Ch
=

A
w
A

\A A/

| <

QU

4n . 4h
wTw

Figure 15. Visualization of the Hasing Loop of SHA-256

,[

4.3.3 Equations Found in SHA-256 Algorithm
Symbols in Equations:

® = Bitwise XOR

& = Bitwise AND

A = Bitwise Compliment of A

>> = Shift Right

>>> = Rotate Right (1)
SLAA547-August 2012 C Implementation of Cryptographic Algorithms 25

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS

INSTRUMENTS
Cryptographic Standard Definitions www.ti.com
Functions:
ch(x,y,z2) =(x &y) ® (X' & 2)
Ma(X,y,2) =(X&Y) D (X&2) D (y&2)
0o(X)
ch(xy,z)=(x&y)® (x'&z)
Ma(x,y,z)=(x&y)® (x&z)®(y&z)
oo (x)=(x>>>7)® (A>>>18)® (x >> 3)
c1(x)=(x>>>17)® (A >>>19)® (x >>10)
Yo (A)=(A>>>2)®(A>>>13)® (A >>>22)
>1(E)=(E>>>6)®(A>>>11)® (A >>>25)
{M(i), 0<t<15
Wy =W, =11
gy (W;_2)® W,_;® 0y (W;_y5)® W,_s, 16<t<15 @
Loop Equations:
T,=hoK;® W, ® L,(E)©® Ch(e f.g)
T, =Ma(a,b,c)®X (A)
h=g
g=f
f=e
d=c
c=b
b=a

4.3.4 SHA-224

SHA-224 is a subset of SHA-256 with a message digest of 224-bits. The algorithm is the same with the
exception of different Hash initialization values. Also, only the first seven 32-bit (224-bits) words of the final
message digest are used.

26 C Implementation of Cryptographic Algorithms SLAA547—August 2012

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

13 TEXAS
INSTRUMENTS

www.ti.com References

5 References
» Announcing the Advanced Encryption Standard (FIPS PUB 197)
» Data Encryption Standard (DES) (FIPS PUB 46-3)
» Security Hash Standard (SHS) (FIPS PUB 180-3)
» AES128 — A C Implementation for Encryption and Decryption (SLAA397)
« DES Modes of Operation (FIPS PUB 81)

e Schneier, Bruce; Applied Cryptography; John Wiley & Sons; 1996 (http://www.scheier.com/book-
applied.html)

SLAA547-August 2012 C Implementation of Cryptographic Algorithms 27

Submit Documentation Feedback
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAA397
http://ww5.scheier.com/book-applied.html
http://ww5.scheier.com/book-applied.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA547

	C Implementation of Cryptographic Algorithms
	1 Software Benchmarks
	1.1 AES Benchmarks
	1.2 DES Benchmarks
	1.3 SHA-2 Benchmarks

	2 Using Library Functions
	2.1 AES 128
	2.1.1 Encrypting With AES 128
	2.1.2 Decrypting With AES 128

	2.2 DES
	2.2.1 Setting the Key Schedule for DES
	2.2.2 Encrypting and Decryption With DES
	2.2.3 Encryption and Decryption With DES CBC Mode

	2.3 3DES
	2.3.1 Encrypting and Decrypting With Triple DES

	2.4 SHA-2
	2.4.1 Hashing With SHA-256
	2.4.2 Hashing With SHA-224

	3 Overview of Library Functions
	3.1 AES 128
	3.2 DES and 3DES
	3.3 SHA-256 and SHA-224

	4 Cryptographic Standard Definitions
	4.1 AES
	4.1.1 Basic Concept of Algorithm
	4.1.2 Structure of Key and Input Data
	4.1.3 Substitute Bytes (Subbytes Operation)
	4.1.4 Shift Rows (Shiftrows Operation)
	4.1.5 Mix Columns (Mixcolumns Operation)
	4.1.6 Add Round Key (Addroundkey Operation)
	4.1.7 Key Expansion (Keyexpansion Operation)

	4.2 DES and 3DES
	4.2.1 DES Algorithm Structure
	4.2.2 The Function Block
	4.2.3 Key Schedule
	4.2.4 Triple DES
	4.2.5 Cipher Block Chaining (CBC) Mode

	4.3 SHA-256 and SHA-224
	4.3.1 Message Padding and Parsing
	4.3.2 SHA-256 Algorithm
	4.3.3 Equations Found in SHA-256 Algorithm
	4.3.4 SHA-224

	5 References

