Lab05 – Using Eclipse (CCSv5)

Lab05 – Using Eclipse (CCSv5)

Lab02 – Debugging with Code Composer Studio
This last lab exercise explores using CCSv5 (i.e. Eclipse) for building and debugging our Linux applications. First, we’ll install CCSv5; then set our project and remote debugging; then finally run/debug our program.
In the case of Linux applications, it’s often convenient to use the GDB (Gnu DeBugger) protocol – running over Ethernet (TCP/IP) – for connecting between the host (CCSv5/Eclipse) and the target (Linux application running on the ARM). We’ll find the gdb executable along with our build tools from Code Sourcery.

Here are a couple good references that you may want to refer to in the future:

CCSv5 wiki: http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v5
Linux Debug in CCSv5: http://processors.wiki.ti.com/index.php/Linux_Debug_in_CCSv5
CCSv5 Installation
Note: To save 10-15 minutes time, we have already installed CCSv5 for you.

We’ve installed CCSv5 into the /home/user/CCSv5 folder and configured the default workspace location to use /home/user/workspace.
[image: image20.png]
Create Project

1. Start CCSv5 from the Ubuntu desktop.
2. Create a new project using the ezSDK Decode_Display example.
Eclipse provides many different types of projects. Most CCSv5 users choose one of two types:

· [image: image21.png]CCS Project – uses Eclipse’s managed make capability, which builds and maintains the make file for you as you add/subtract items and settings from the GUI
· Standard Make Project – uses your own makefile; while this leaves the work of building and maintaining your own makefiles, it gives you absolute control over your builds

The Decode_Display example contains a makefile for rebuilding the application. While it would certainly be possible to create a CCS Project (wherein eclipse uses an eclipse-managed makefile to rebuild the application) and place the Decode_Display source files into this project, this would require us to enter various search paths, compiler options etc. Since a tested makefile already exists, it’s simpler for us to use the standard make project.
[image: image1.png]
[image: image2.png]
3. Import your existing makefile project.

[image: image3.png]
Click Finish, when done.

Show, Setup, and use the Make Target View

4. Show the Make Target view.

By default, the Make Target view is buried within Eclipse. This view allows to easily build any target within our makefile – although, (in the next step) we’ll have to set it up first.
[image: image4.png]
[image: image5.png]
As a little challenge, figure out how to add the Make Target view to the Show View menu.
5. (Optional) Setup Custom Make Targets for top-level SDK makefile.
Eclipse expects the makefile for a makefile project to be located at the top level of the project directory and for it to contain targets ‘all’ and ‘clean.’ If the makefile used to build the project is actually at another location or if it uses other targets, then those targets have to be added into the eclipse project manually.
In the next step we will write a small makefile at the top level of the application directory to define these targets, so this step is optional, but some users may prefer this method. If you add these custom make targets, you can build them by selecting the target in the ‘Make Target’ window and then either clicking the hammer icon or right-clicking and selecting ‘Build Target’
[image: image22.png]First, click the New Make Target button on the toolbar:

Fill in the dialog

as shown:
Then, add some other
targets:
· omx_decode_display_clean

· omx_install

6. Create ‘all’ and ‘clean’ rules in project directory makefile.

This method is presented as the preferred method since the ‘all’ and ‘clean’ rules defined in this way will automatically be tied into the Project(Build All (ctrl-B) and Project(Clean drop down options

Begin by selecting File(New(Source file from the eclipse drop-down window and fill in the dialogue box as follows:
[image: image6.png]
Then press Finish. A file named ‘makefile’should now appear in the Project Explorer window. Double-click the file to open it and and type the following into the custom makefile:

[image: image7.png]
Don’t forget to save the file when you are done!

7. Build your program and install the executable.
You can select Project(Build All or simply press the ‘Ctrl-B’ hotkey.
You should see the build feedback show in the Console window. A successful build will end as shown below.
[image: image8.png]
Start Program on ARM – waiting for GDB Debugger
8. Go over to your ARM/Linux terminal (i.e. Tera Term) and navigate to the omx subdirectory of our examples execute directory: /home/root/dm816x-evm/omx
9. Start your program running in GDB debug mode.

The format to execute the gdb server is:

gdbserver <host IP>:10000 <program> <program parameters>
For our application, you will want to type:

gdbserver ubuntu:10000 decode_display_a8host_debug.xv5T
 -w 1920 –h 1080 –f 60 –i
 /usr/share/ti/data/videos/dm816x_1080p_demo.264
(Above is single typed line without carriage return)
At this point, you shouldn’t see much happen, yet.
[image: image9.png]
You actually haven’t run your program; rather, you’ve run the gdbserver program. The debug server will actually control your program as directed by a gdb client program – such as CCSv5. Next, we’ll configure CCS to be a gdb client and talk over our IP address to port 10000.
Note: The number “10000” represents a networking port number. You can actually use any port number, but 10,000 is a common one since it’s unlikely to be in use already.
Setup CCCv5 For Remote GDB Debugging
IMPORTANT! By default CCS does not enable "C/C++ Application" configurations.
10. Enable the C/C++ Application configurations so that we can access GDB debugging from CCSv5.

 Open the Capabilities tab in the CCSv5 Preferences dialog.

Window -> Preferences -> Capabilities
[image: image10.png]
Enable CDT GDB Debugging, and then click OK.
11. Create a new C/C++ debug configuration.

Bring up the Debug Configurations dialog:

Run → Debug Configurations

Select "C/C++ Application" and create a new configuration.

[image: image11.png]
12. Setup the configuration:

Use the following settings:

· Name:

app_gdb

· Project:
lab2
· C/C++ App:
/home/user/ti-ezsdk_dm816x-evm_5_01_01_80/omx_05_01_01_80/rebuilt-binaries/decode_display/bin/ti816x-evm/decode_display_a8host_debug.xv5T
· Disable the auto-build option (there is currently a bug in this beta version of CCSv5 that will force a full rebuild every time you go to debug if this is checked).
· … but don’t close the dialog, we’re not done yet …

[image: image12.png]
13. Tell CCS that we want to use remote GDB debugging.
· Click the link "Select other..." to select a different launcher

· Select the "GDB (DSF) Remote System Process Launcher"

· Click OK

[image: image13.png]
[image: image14.png]
14. On the Debugger Main tab, specify the GDB debugger.

We are using the GDB debugger from Code Sourcery, so browse for the correct gdb client executable.

/home/user/CodeSourcery/Sourcery_G++_Lite/bin/arm-none-linux-gnueabi-gdb
[image: image15.png]
15. On the Debugger Connection tab, specify the board’s IP address (you can use the hostname dm816x-evm) and port of the GDB server running on the target.

[image: image16.png]
16. Launch the debug configuration by clicking the Debug button.

CCSv5 will launch the GDB debugger to connect to the GDB server.

After the connection is established, you can step, set breakpoints and view the memory,
registers and variables of the "hello world" process running on the target.

[image: image17.png]
After clicking Debug, the IDE will switch into the Debug Perspective. It will then load the program and execute until it reaches main().
[image: image18.png]
Fix Library References

The warnings we saw when starting our debug session are due to Eclipse incorrectly referencing standard Linux libraries. By default, it’s expecting to debug a native environment, rather than remotely debugging an ARM application. In the next few steps, we’ll point Eclipse to the proper to the location where our ARM/Linux libraries reside.
17. Halt the CCSv5 debug session

Run(Terminate, or you can press the red square icon

18. Create a new file called .gdbinit containing a reference to our target’s filesystem.
You can perform this step from within CCSv5 or from the command line. It doesn’t really matter. (We chose the latter method since it’s easier to describe textually.)

Similarly, it doesn’t really matter where you place this file. In our case, and for no specific reason, we’re placing it in the elcipse default workspace directory, /home/user/workspace.
cd /home/user/workspace
gedit .gdbinit &

Add the following text to the file, then save and close the file:

set solib-absolute-prefix /home/user/targetfs

19. Add reference to .gdbinit to your Debug Configuration.

If your Debug Configuration is closed, reopen it from the Run menu.

Add the .gdbinit reference to the GDB command file (wherever you located it) to the dialog, as shown.

[image: image19.png]
20. Go ahead and Apply, then restart the debugger
Note: It is not generally necessary, but in some cases you may need to exit CCSv5 and restart in order for this change to take effect.

21. Set some breakpoints, single step, view some variables

You can set a breakpoint by right-clicking on the line and selecting Run(Toggle Breakpoint, or by pressing (Ctrl-Shift-B). You can also double-click the area just to the left of the code line in the display window.
You can step over with Run(Step Over (F6), or by pressing the step-over icon.

You can run to the next breakpoint with Run(Run (Ctrl+F11) or by pressing the run icon.

→

This doesn’t look good! These errors are occurring because eclipse can’t find the proper Linux shared libraries.

dm816x-evm

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake
Lab 05 - 1
Lab 05 - 16
DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake
DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake
Lab 05 - 15

