Lab05 – Using Eclipse (CCSv5)

Lab05 – Using Eclipse (CCSv5)

Lab02 – Debugging with Code Composer Studio
This last lab exercise explores using CCSv5 (i.e. Eclipse) for building and debugging our Linux applications. First, we’ll install CCSv5; then set our project and remote debugging; then finally run/debug our program.
In the case of Linux applications, it’s often convenient to use the GDB (Gnu DeBugger) protocol – running over Ethernet (TCP/IP) – for connecting between the host (CCSv5/Eclipse) and the target (Linux application running on the ARM). We’ll find the gdb executable along with our build tools from Code Sourcery.

Here are a couple good references that you may want to refer to in the future:

CCSv5 wiki: http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v5
Linux Debug in CCSv5: http://processors.wiki.ti.com/index.php/Linux_Debug_in_CCSv5
CCSv5 Installation
Note: To save 10-15 minutes time, we have already installed CCSv5 for you.

We’ve installed CCSv5 into the /home/user/CCSv5 folder and configured the default workspace location to use /home/user/workspace.
[image: image20.png]

Create Project

1. Start CCSv5 from the Ubuntu desktop.
2. Create a new project using the ezSDK Decode_Display example.
Eclipse provides many different types of projects. Most CCSv5 users choose one of two types:

· [image: image21.png]*

Code Composer
Studio v5

CCS Project – uses Eclipse’s managed make capability, which builds and maintains the make file for you as you add/subtract items and settings from the GUI
· Standard Make Project – uses your own makefile; while this leaves the work of building and maintaining your own makefiles, it gives you absolute control over your builds

The Decode_Display example contains a makefile for rebuilding the application. While it would certainly be possible to create a CCS Project (wherein eclipse uses an eclipse-managed makefile to rebuild the application) and place the Decode_Display source files into this project, this would require us to enter various search paths, compiler options etc. Since a tested makefile already exists, it’s simpler for us to use the standard make project.
[image: image1.png]<3 Applications Places System @ [#

k3

| Edit View Source Refactor Navigate Search Project Tools Run Scripts
CCS Project

OpenFile...

Source File
Header File

crl
shift+Ctri

Clos

Clo:

[image: image2.png]New Project

Select a wizard
Creates a new Makefile project in a directory containing existing cod

Wizards:

type filter text

b @& General

v & CCH

C Project

C+ Project

Makefile Project with Existing Code
b & ccs

b & RTSC Wizards

[Show All Wizards.

3. Import your existing makefile project.

[image: image3.png]Import Existing Code

Import Existing Code
Create a new Makefile project from existing code in that same directory

Project Name
[1ab2 |

Existing Code Location
[Iomepuserti-ezsdk_dma16x-evm 5 01 01 80jomx 05 01 01 80jpackagesfijomx/demos/decode_display/src | -

Languages
@C @

Toolchain for Indexer Settings
<none>
Cygwin GCC
Linux GCC
MacOSX GCC
MinGW GCC
Solaris GCC
Tl Code Generation Tools
‘com.ti.ccstudio.buildDefinitions.C2000.exe.Release.ToolchainPlaceholder

i

Click Finish, when done.

Show, Setup, and use the Make Target View

4. Show the Make Target view.

By default, the Make Target view is buried within Eclipse. This view allows to easily build any target within our makefile – although, (in the next step) we’ll have to set it up first.
[image: image4.png]ser Studio

VL] Help
New Window
New Editor

Open Perspective

=8

C/C++ Projects

Customize Perspective...
Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives.

Navigation

Console Shift+AIt+QZ
Ermor Log Shift+Alt+
Navigator

outline Shift+AIt+d
Problems Shift+AIt+Q,
Scripting Console ShiquIH}
Target Configurations

Refresh Debug Views
Preferences

Shift+Alt+Q

L ————

[image: image5.png][type filter text 4]

b & General 2|
b e Analysis Views
b e cicH+
b & Debug
b & Help
v & Make

b & Profiling
b & Team

C o | ey

As a little challenge, figure out how to add the Make Target view to the Show View menu.
5. (Optional) Setup Custom Make Targets for top-level SDK makefile.
Eclipse expects the makefile for a makefile project to be located at the top level of the project directory and for it to contain targets ‘all’ and ‘clean.’ If the makefile used to build the project is actually at another location or if it uses other targets, then those targets have to be added into the eclipse project manually.
In the next step we will write a small makefile at the top level of the application directory to define these targets, so this step is optional, but some users may prefer this method. If you add these custom make targets, you can build them by selecting the target in the ‘Make Target’ window and then either clicking the hammer icon or right-clicking and selecting ‘Build Target’
[image: image22.png]Create Make Target

Target name

: [omx_decode_display |

Make Target
@ Same as the target name

Make target: |omx_decode o

Build Command
Use builder settings

Build command: [nake -C /home/userfti-ezsdk_dm816x-evm_5_01_01 80

Build Settings
Stop on first build error

@ Run all project builders

First, click the New Make Target button on the toolbar:

Fill in the dialog

as shown:
Then, add some other
targets:
· omx_decode_display_clean

· omx_install

6. Create ‘all’ and ‘clean’ rules in project directory makefile.

This method is presented as the preferred method since the ‘all’ and ‘clean’ rules defined in this way will automatically be tied into the Project(Build All (ctrl-B) and Project(Clean drop down options

Begin by selecting File(New(Source file from the eclipse drop-down window and fill in the dialogue box as follows:
[image: image6.png]New Source File

Source Fil

4 File name is discouraged. File extension does not correspond to known
source file types.

Source folder: [src || Browse.. |

Source file: [makefile |

@ = R —cT—

Then press Finish. A file named ‘makefile’should now appear in the Project Explorer window. Double-click the file to open it and and type the following into the custom makefile:

[image: image7.png]_phony: all .
all:
make -C /home/user/ti-ezsdk dn8l6x-evm 5 01 01 80 omx_decode display omx install

.phony: clean
clean:
make -C /home/user/ti-ezsdk dn8l6x-evm 5 01 01 80 omx_decode display clean

1

Don’t forget to save the file when you are done!

7. Build your program and install the executable.
You can select Project(Build All or simply press the ‘Ctrl-B’ hotkey.
You should see the build feedback show in the Console window. A successful build will end as shown below.
[image: image8.png][Problems | ¢ Tasks | B Console 3¢ | & Properties| O & BEEG ot Evriv °O0

C-Build [src]

+ Lite//arn-none-linux-gnueabi/1ib -0 /home/user/ti-ezsdk_dng16x-evm 5 01 01 80/
omx_05_61_61_80/rebuilt-binaries/decode_display/bin/ti816x-evn/

decode _display ashost_debug.xvsT

#

/home/user/ti-ezsdk_dn816x-evn 5 01 01 80/omx 5 01 01 80/rebuilt-binaries/
decode_display/bin/ti816x-evm/decode display ashost debug.xvsT created.

#

make[2]: Leaving directory ' /home/user/ti-ezsdk_dn816x-evm 5 01 @1 8/omx 5 01 01 8/
packages/ti/omx/denos/decode _display’

make[1]: Leaving directory '/home/user/ti-ezsdk dn816x-evm 5 01 @1 8/omx 5 01 01 89/
packages*

make: Leaving directory °/home/user/ti-ezsdk dmgl6x-evm 5 61 01 80"

Start Program on ARM – waiting for GDB Debugger
8. Go over to your ARM/Linux terminal (i.e. Tera Term) and navigate to the omx subdirectory of our examples execute directory: /home/root/dm816x-evm/omx
9. Start your program running in GDB debug mode.

The format to execute the gdb server is:

gdbserver <host IP>:10000 <program> <program parameters>
For our application, you will want to type:

gdbserver ubuntu:10000 decode_display_a8host_debug.xv5T
 -w 1920 –h 1080 –f 60 –i
 /usr/share/ti/data/videos/dm816x_1080p_demo.264
(Above is single typed line without carriage return)
At this point, you shouldn’t see much happen, yet.
[image: image9.png]rootfamslex-evmi~/dn3léx-evn/omx# gdbserver ubuntu:l0000 decode display ashost d
ebug.xvST —w 1220 -h 1080 -f 60 -i /usz/share/ti/data/videcs/dn3l6x_1020p_demo.2
&

Process decode_display_ashost_debug.xvsT created; pid
Listening on porc 10000

1122

You actually haven’t run your program; rather, you’ve run the gdbserver program. The debug server will actually control your program as directed by a gdb client program – such as CCSv5. Next, we’ll configure CCS to be a gdb client and talk over our IP address to port 10000.
Note: The number “10000” represents a networking port number. You can actually use any port number, but 10,000 is a common one since it’s unlikely to be in use already.
Setup CCCv5 For Remote GDB Debugging
IMPORTANT! By default CCS does not enable "C/C++ Application" configurations.
10. Enable the C/C++ Application configurations so that we can access GDB debugging from CCSv5.

 Open the Capabilities tab in the CCSv5 Preferences dialog.

Window -> Preferences -> Capabilities
[image: image10.png]type filter text Capabilities @ S o

v fe :eml (JC3 Ant Tools Enables GDB debugging with CDT-
D e
mpare/patd [Classic Update
Content Types.)
b Edit [0 €3 Debug Perspective
o [3 Debug View toolbar buttons
(3 DVT Project
b Network Connec: !
" [C3 EDC Project
Perspectives
Search)3 Java Development
- 0153 Memory View
b Security
b startup and Shut [€3 Menu Items -
- (0] C3 Mylyn Project (===
Web Browser
[€3 PDE Tools
b Workspace)
b e+ (3 Resource Navigator
> ccs (03 RSE Project
0 Team

Enable CDT GDB Debugging, and then click OK.
11. Create a new C/C++ debug configuration.

Bring up the Debug Configurations dialog:

Run → Debug Configurations

Select "C/C++ Application" and create a new configuration.

[image: image11.png]kd

Debug Configurations.

Create, manage, and run configurations. ﬁ\

FERCES
/1 New launch configuration|

| C/C++ Application

[E] C/C++ Attach to Application
[€]C/C++ Postmortem Debuggel
& Code Composer Studio - Devi
&% Code Composer Studio - 0S D
[€] GDB Hardware Debugging

& Launch Group

(T—)
Filter matched 7 of 7 items

Configure launch settings from this dialog:

[- Press the 'New' button to create a configuration of the selected type.
- Press the ‘Duplicate’ button to copy the selected configuration.

% - Press the ‘Delete’ button to remove the selected configuration.

& - Press the ‘Filter' button to configure filtering options.
- Edit or view an existing configuration by selecting it.

Configure launch perspective settings from the Perspectives preference page.

@

12. Setup the configuration:

Use the following settings:

· Name:

app_gdb

· Project:
lab2
· C/C++ App:
/home/user/ti-ezsdk_dm816x-evm_5_01_01_80/omx_05_01_01_80/rebuilt-binaries/decode_display/bin/ti816x-evm/decode_display_a8host_debug.xv5T
· Disable the auto-build option (there is currently a bug in this beta version of CCSv5 that will force a full rebuild every time you go to debug if this is checked).
· … but don’t close the dialog, we’re not done yet …

[image: image12.png]CEx

B v

Name: |app_gdb|

type filter text

= [l c/c++ Application

&) Main| %> Debugger| &/ Source| = Common|
C/C++ Application:

R T —

[E] C/C++ Attach to Application
[€]C/C++ Postmortem Debugger
&9 Code Composer Studio - Device |
&% Code Composer Studio - OS Debt
[€] GDB Hardware Debugging

& Launch Group

Pl e—— S
Filter matched 8 of 8 items

[/homeuserti-ezsdk_dme16x-evm_
Project:

01_01_80/omx_05_01_01_80jrebuilt-binaries/decode_display/bintig16x-evm/decode_display_aghd _ _
[1ab2

Build (if required) before launching

@ Disable auto build
Configure Workspace Setting:

Build configuratior

Enable auto build
) Use workspace settings

Using GDB (DSF) Remote System Process Launcher - Select other...

13. Tell CCS that we want to use remote GDB debugging.
· Click the link "Select other..." to select a different launcher

· Select the "GDB (DSF) Remote System Process Launcher"

· Click OK

[image: image13.png]Using GDB (DSF) Create Process Launcher - Select other

N

[image: image14.png]Select Preferred Launcher x

“This dialog allows you to specify which launcher to use when
multiple launchers are available for a configuration and launch
mode.

Change Workspace
* Settings...

Use configuration specific setti

Launchers:

Standard Create Process Launcher
GDB (DSF) Create Process Launcher

GDB (DSF) Remote System Process Launcher

Description
| tart new appication on a remote system under contro or

@) Ccancel | oK.

14. On the Debugger Main tab, specify the GDB debugger.

We are using the GDB debugger from Code Sourcery, so browse for the correct gdb client executable.

/home/user/CodeSourcery/Sourcery_G++_Lite/bin/arm-none-linux-gnueabi-gdb
[image: image15.png]Nam [app,gdh

Main %5 Debugger] & Source| = Common|

Stop on startup at:
Main | shared Libraries | Connection |

Debugger Options-
igging oo - "
o GDB debugger: [/home/user/CodeSourcery/Sourcery_G++_Lite/bin/arm-none-linux-gnueabi-gdb][Browse.. |

GDB command file: |][Browse.. |

(Warning: Some commands in this file may interfere with the startup operation of the debugger, for example "run®.)
[Non-stop mode (Note: Requires non-stop GDB)

[Enable Reverse Debugging at startup (Note: Requires Reverse GDB)
[Force thread list update on suspend

Using GDB (DSF) Remote System Process Launcher - Select other...

15. On the Debugger Connection tab, specify the board’s IP address (you can use the hostname dm816x-evm) and port of the GDB server running on the target.

[image: image16.png]) Main |35 Debugger] &/ Source| & Common|

& Stop on startup at:
(Connection |

Debugger Options

voe.)
Host name or IP address: |dm816x-evm

Port number:

16. Launch the debug configuration by clicking the Debug button.

CCSv5 will launch the GDB debugger to connect to the GDB server.

After the connection is established, you can step, set breakpoints and view the memory,
registers and variables of the "hello world" process running on the target.

[image: image17.png]S ——_—"

LI Main | %5 Debugger! %/ Source I Common

Stop on startup at: [main

Debugger Options

Main | Shared Libraries. Connection |

TP

Type:

Host name or IP address: [+ 1%

Port number: 10000

Using GDB (DSF) Remote System Process Launcher - Select other... A .
N

Close

(==

After clicking Debug, the IDE will switch into the Debug Perspective. It will then load the program and execute until it reaches main().
[image: image18.png]@ ccs bebug

src/main.c - Code Composer Studio

Jrﬁv @J ngjajw 9,%]_4 JQ\V‘@\V @y = ©
%5 Debug 32 ‘ = B | w=Variables 3 ‘ Expressions = B | % Breakpoints 3 =8
v B € v e
[] ENY i & Value ® N ®BE
int 1074009480
~ [E] src Default [C/C++ Application] i s
p . |+ > argv | chare oxo
= & decode_display_aghost_debug.xvsT O
+ @a
= P Thread [1] <main> (Suspended : Breakpoint) R
= main() at main.c:136 0xa980 .
+ g Thread [2] 1125 (Suspended : Container)
& adb M
[8 main.c 53 = 0| R Tr.. |ECo.. | 3Pro.. DPr.. =0
133 4| |src Default [C/C++ Application] gdb
136 parse args(arge, argy, Gargs); - Be o BE e
#1306 printf (" Decoder-Display example \n"); GDB will be unable to debug shared lia
137 printf (n"); and track explicitly loaded dynamic g
138 ing: .dynamic section for "/lib/
139 printf ("\nStarting threads\n"); fflush(stdout); B _dynamic section for */lib/
140 warning: difference appears to be ca
141 /* This is required to run the threads, when they are created, else threads ing: .dypamic section for "/1ib/
142 will be in wait condition */ . “afbanic section for */lib/
143 Thread start(NULL); Error while mapping shared library s
144 printf ("\nThreads started. Starting platforn init\n"); fflush(stdout); || Lib/1d Vinuc. s6.3: o such fite or o
145 ~ || [New Thread 1125] .
146 /* Initializing shared regions, osal */ .
0 J Unlicensed J J Read-Only Smart Insert

Fix Library References

The warnings we saw when starting our debug session are due to Eclipse incorrectly referencing standard Linux libraries. By default, it’s expecting to debug a native environment, rather than remotely debugging an ARM application. In the next few steps, we’ll point Eclipse to the proper to the location where our ARM/Linux libraries reside.
17. Halt the CCSv5 debug session

Run(Terminate, or you can press the red square icon

18. Create a new file called .gdbinit containing a reference to our target’s filesystem.
You can perform this step from within CCSv5 or from the command line. It doesn’t really matter. (We chose the latter method since it’s easier to describe textually.)

Similarly, it doesn’t really matter where you place this file. In our case, and for no specific reason, we’re placing it in the elcipse default workspace directory, /home/user/workspace.
cd /home/user/workspace
gedit .gdbinit &

Add the following text to the file, then save and close the file:

set solib-absolute-prefix /home/user/targetfs

19. Add reference to .gdbinit to your Debug Configuration.

If your Debug Configuration is closed, reopen it from the Run menu.

Add the .gdbinit reference to the GDB command file (wherever you located it) to the dialog, as shown.

[image: image19.png]Main |5 Debugger] % Source| = Common|

& Stop on startup at:

Debugger Options

Main

GDB debugger: [/homefuser/CodeSourcery/Sourcery_G++_Lite/bin/arm-none-linux-gnueabi-gdb] _

GDB command file: [/nome/userworkspace/.gdbini{] _

(Wamning: Some commands in this file may interfere with the startup operation of the debugger, for example "run".)
"1 Non-stop mode (Note: Requires non-stop GDB)

"~ Enable Reverse Debugging at startup (Note: Requires Reverse GDB)
@ Force thread list update on suspend

20. Go ahead and Apply, then restart the debugger
Note: It is not generally necessary, but in some cases you may need to exit CCSv5 and restart in order for this change to take effect.

21. Set some breakpoints, single step, view some variables

You can set a breakpoint by right-clicking on the line and selecting Run(Toggle Breakpoint, or by pressing (Ctrl-Shift-B). You can also double-click the area just to the left of the code line in the display window.
You can step over with Run(Step Over (F6), or by pressing the step-over icon.

You can run to the next breakpoint with Run(Run (Ctrl+F11) or by pressing the run icon.

→

This doesn’t look good! These errors are occurring because eclipse can’t find the proper Linux shared libraries.

dm816x-evm

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake
Lab 05 - 1
Lab 05 - 16
DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake
DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake
Lab 05 - 15

