Error! No text of specified style in document.
	Error! No text of specified style in document.
[bookmark: _Toc300668379]Lab3 – Exploring SDK Demos

This lab exercise will walk you through the setup for executing the various SDK demos.

A. sysV Startup Settings
Probably the most difficult requirement for running the various demos that are released with the SDK is understanding what firmware and firmware configuration each demo requires and what firmware is currently loaded onto the system and how it is currently configured.
The majority of the firmware required will most likely be loaded by the sysV (“System Five”) initialization scripts under Linux. SysV is a common startup methodology across various Linux distributions. Much information is available on the internet for those wishing to learn more.

1. [bookmark: _Ref301962292]Boot the Board via TFTP/NFS
You may wish to create a bootable MMC for the purpose of running demos. If so, please see the final section of this document, “Create Bootable MMC.” For now we will use a TFTP/NFS boot procedure.
2. Log in via Serial Terminal
Once Arago boots, the matrix gui demo should already be running. You can still log into the system via the Linux console while the gui is running. To do so use:
	Username: root
	Password:  (none)
3. Verify startup configuration
The DM8168 is comprised of three primary subsystems: the Digital Signal Processor (DSP), the Video and Imaging Coprocessor (VICP) and the Video Port Subsystem (VPSS). Linux startup scripts are provided in the Arago distribution to load firmware into the VICP and VPSS subsystems and load the corresponding drivers into the running Linux kernel. 
Lets take a quick look at the startup scripts, located at /etc/init.d, via:
root@dm816x-evm:~# more /etc/init.d/load-hdvpss-firmware.sh
and
root@dm816x-evm:~# more /etc/init.d/load-hdvicp2-firmware.sh
These scripts show which commands have been executed in order to configure the VPSS and VICP subsystems. Note that not all scripts which exist in the /etc/init.d folder are executed at runtime. Only those scripts in /etc/rc5.d (usually these are links to scripts in /etc/init.d) will be run. Let’s verify that the scripts we are executing are:
root@dm816x-evm:~# ls /etc/rc5.d
S02dbus-1                    		S20syslog
S10load-hdvicp2-firmware.sh  	S20thttpd
S10telnetd                   		S99matrix-gui-e
S15load-hdvpss-firmware.sh	S99rmnologin
S30pvr-init
4. Verify dynamic kernel modules.
The startup scripts examined in step 24 load various modules into the running Linux kernel. You can verify with:
	root@dm816x-evm:~# lsmod
	Module                  	Size  		Used by
TI81xx_hdmi 	11226 	 	0
ti81xxfb               	20355  		0
vpss                   	59536  		1 ti81xxfb
syslink              	1096481  	1 vpss
ipv6                  	209879  	12
5. Explore the Matrix GUI demo.
You will need a USB mouse to navigate the various icons.
6. Change to the /user/root/dm816x-evm/ examples directory and list the contents
# cd ~/dm816x-evm
# ls
This is the demo install directory as set in the SDK. These directories were created by the “make install” command executed at the top level of the sdk. Some of them are support directories, but most contain demo programs. All of these programs (and support directories) were built from the sdk, so you have access to source code for all of these applications.
You will see the following directories:
boot – this directory contains rebuilt MLO, u-boot and uImage (Linux kernel with u-boot header) that have been tested with these applications.
c6accel – contains demos for the c6accel software package
cmem – contains the cmemk.ko Linux kernel module. This is not an application, but a kernel module used by some demos that allocates contiguous memory. This should match what has already been built intot the distribution. 
lib – linux modules used by some of the demos that have been tested with them. As will those files in the boot directory, these should already match what is built into the distribution.
matrix—the matrix gui demo that was previously autostarted by the /etc/rc5.d/S99matrix-gui-e script.
omtb—the Omap Test Bench files. 
omx—the openmax demos
open-gl demos—the standalone applications for the open-gl demos that are included in the matrix-gui.
signal-analyzer—the standalone application for the signal analyzer demo that is included in the matrix gui
syslink—the syslink kernel module that has been tested with these demos. As will files in the boot, cmem and lib directories, this should match what has already been built into the distribution.
usr—contains the c6run apps (directory contents could be copied into the /usr directory of any distribution.)
Of the various demos listed here, only the OMTB and OMX examples contain content that is unavailable from the matrix gui launcher, so only those will be specifically addressed in the following sections.
B. OpenMax Decode_Display Example
7. Halt the Matrix GUI demo
# /etc/init.d/matrix-gui-e stop
The scripts that are used in sysV startup typically support three commands: start, stop and restart. Any script referenced in one of the /etc/rcX.d directories automatically issues the start command for the given boot profile, but you can also run the scripts from the terminal at any time as shown above.
8. [bookmark: _Ref305978619]Remove the “matrix-gui-e” and “pvr-init” scripts from level 5 boot configuration
# rm /etc/rc5.d/S30pvr-init /etc/rc5.d/S99matrix-gui-e
The openmax examples will not run in conjunction with the matrix gui demo, and they conflict with the pvr module as configured by the S30pvr-init startup script.
 
Aside:
If you wish to re-enable the matrix gui for startup, it is as simple as adding these links back in (do not do until finished with this lab exercise!)
# ln –s /etc/init.d/pvr-init /etc/rc5.d/S30pvr-init
# ln –s /etc/init.d/matrix-gui-e /etc/rc5.d/S99matrix-gui-e


9. Reboot the EVM for the changes of step 8 to be reflected in the system 
10. On the host computer, navigate to distributed OpenMAX package
Within a Linux terminal on the virtual machine, navigate to openmax Decode_Display source code.
# cd /home/user/ti-ezsdk_dm816x-evm_5_02_02_60/component-sources/omx_05_02_00_15/packages/ti/omx/domx
Hint:  Don’t forget the autofill feature in Linux. For each directory, you can type the directory name in partially and press <tab> to autofill. (If more than one directory matches what you have entered, tab will do nothing, but pressing tab twice will give you a listing of all directories that match what you have typed so far.)
11. Verify that distributed OpenMAX has been configured *not* to load firmware
# gedit domx_cfg.h
Inside gedit, find the “DOMX_CORE_DOPROCINIT” preprocessor define using searchfind… (ctrl-f).  You should see the following:
#ifdef _LOCAL_CORE_a8host_
  		#ifndef DOMX_CORE_DOPROCINIT
    		#define DOMX_CORE_DOPROCINIT       (0)
  		#endif
#endif
	This code will configure the application to *not* load syslink, VPSS/VICP firmware, or other DOMX firmware. Because this firmware was already loaded by the initialization scripts shown previously, errors will occur if the application attempts to reload the firmware. 
	Even though this has already been configured properly (you don’t need to make any change) it is important to understand where this compiler switch is located and verify its setting. As previously mentioned, the main issue with getting any of the demos to work is making sure that the firmware is properly loaded and configured and it is therefore vital to understand whether the application or the Linux startup scripts is handling this job (and to make sure that they are not both trying to do so and creating a conflict).


	Note:  Do not do the below!  Listed just for reference.
Had this setting needed to be changed, you could do so and then rebuild and re-install the omx package and examples via:
# cd /home/user/ti-ezsdk_dm816x-evm_5_02_02_60/
# make omx
# make omx_install


12. Return to the TerraTerm console to complete the remainder of the section on the EVM
It is easy to get confused between the Linux console on the host x86 platform (inside the VMware) and the terminal which is logged into the EVM!  The remainder of this section is completed on the evm.
13. Execute the decode_display example
# cd /home/root/dm816x-evm/omx
# decode_display_a8host_debug.xv5T –w 1920 –h 1080 –f 60 
       -I /usr/share/ti/data/videos/dm816x_1080p_demo.264
14. Power cycle the board when you are ready to exit the application
Currently the cleanup code for this example is not correctly implemented, so the only way to exit the application is by power cycling the board.

C. OpenMax Test Bench (OMTB) Examples
15. Reboot the EVM via nfs/tftp (if necessary)
16. Change to the OMTB demo directory
# cd /home/root/dm816x-evm/omtb
17. View a test bench script
# more decode_scale_display.oms
Hint:  If you would like to view this file in an editor, you can view it on the host PC from within the /home/user/targetfs directory using your favorite graphical editor such as gedit.
18. Execute a test bench script 


D. (Optional) Create Bootable MMC
19. Insert 4GB MMC into SD/MMC cardreader and plug cardreader into PC USB slot. If you have focus inside the virtual machine, the USB should mount into your virtual machine instead of the host PC. 
20. Verify SD/MMC cardreader is mounted into virtual machine using 
VMRemovable Devices(Cardreader name). If the device has mounted into the virtual machine, it will have a checkmark next to the name. If it does not have a checkmark, you can select “connect” from the options available under the (Cardreader name) subfolder.
21. [bookmark: _Ref300568137]Determine the Small Computer Systems Interface (SCSI) device-node mapping of your SD/MMC cardreader
# sudo sg_map –i
You should see something similar to the following output to the terminal:
/dev/sg0  /dev/scd0  NECVMWar  VMware IDE CDR10  1.00
/dev/sg1  /dev/sda  VMware,   VMware Virtual S  1.0 
/dev/sg2  /dev/sdb  USB 2.0   SD/MMC Reader
In the above example, the SD/MMC Reader has been mapped to the /dev/sdb device node.

sg_map is part of the sg3-utils package available through Ubuntu’s Aptitude package manager. It has already been installed for you on this virtual machine, but if you are running these labs on a different Linux computer, you can install the utility by typing:
# sudo apt-get install sg3-utils
22. Change into the ti-ezsdk_dm816x-evm_5_01_01_80/bin/ directory
# cd ti-ezsdk_dm816x-evm_5_01_01_80/bin/
23. IMPORTANT: The next step can potentially erase your system’s harddrive, so be sure to read the entire step before typing the command
24. [bookmark: _Ref300568472]Execute the mksdboot.sh shell script, being sure to use the MMC/SD cardreader device node determined in step 29
This step will take a long time, so we will let the MMC card be written while the next lecture proceeds.
# sudo ./mksdboot.sh --device /dev/sdb --sdk ..
You will see the following warning:
************************************************************
*         THIS WILL DELETE ALL THE DATA ON /dev/sdb        *
*                                                          *
*         WARNING! Make sure your computer does not go     *
*                  in to idle mode while this script is    *
*                  running. The script will complete,      *
*                  but your SD card may be corrupted.      *
*                                                          *
*         Press <ENTER> to confirm....                     *
************************************************************
This is your last opportunity to cancel. If you are certain that you have correctly entered the SCSI device node as determined in step 29, you may press enter to proceed.
25. After ./mksdboot completes, power off the DM816x EVM.
26. Remove the MMC card created in step 32 from the SD/MMC cardreader and insert it into the SD/MMC slot of the DM816x EVM (P9)
27. Change the S3 switch on the DM816x EVM Board to: 
SW3: 	11101 00000
28. (Optional) Unplug the Ethernet cable from DM816x EVM (J10)
This will verify that the board is boot ing from MMC and not the network boot previously configured.
29. Power on the DM816x EVM.
30. When you are finished, re-insert the Ethernet cable into DM8168 EVM RJ-45 slot (J10) and return the S3 switch on the DM816x EVM Board to network boot: 
SW3: 	11100 00000
(BTM0-2 are On, BTM3-4 are Off as labeled on PCB)
Lab exercises 2 and 3 assume that you boot Linux via the TFTP/NFS method.

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake	Lab 05 - 1
Lab 05 - 2	DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake
DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake	Lab 05 - 3
