2 Login/ create account

Getting started with [UNIVERSAL

Getting started with [UNIVERSAL

= (G Search for an article here:

| stom Sea |[Search]

Contents [hide]
1 Introduction
2 Additional Background Info
3 Procedure for Making DSP Algorithms that are callable from the ARM
3.1 Step 1: Invoke GenCodecPkg
3.2 Step 2: Generate IUNIVERSAL starterware
3.3 Step 3: Build
3.4 Step 4: Customizing the Code to Fit Your Algorithm
341 Edits to =module=_=vendor=_priv.h
242 Edits to =module=_=vendor=_h
2.4 .3 Edits to =module>.c
3.5 Step 5: Creating a "server” that integrates your algorithm plus any others
3.6 Step 6: Invoking the DSP Code from the ARM
3.7 Step 7: Debug
4 IUNIVERSAL Examples
4.1 Source Code
4 2 Reference Examples
5 See Also

Introduction

Tl sells many system on chip (SeC) devices that feature both an ARM and a DSP. Typically T provides an executable which runs on the DSP but is callable from the ARM to provide multimedia
capabilities (e.g. H.264 encode/decode, etc). Tl customers frequently would like to have their own algorithm also capable of running on the DSP. Codec Engine provides a framework to enable
customers to run their code on the D3P and to call it seamlessly from the ARM. The UNIVERSAL interface provides a method for customers to plug in any algerithm into this framework and take
advantage of the dual core architecture.

This article intends to provide Tl SoC users a process of writing algorithms which utilize the UNIVERSAL interface and Codec Engine framework to quickly get their code running on the DSP
through function calls from the ARM.

Additional Background Info

[Skip this section if you're already familiar with VISA, XDM, XDAIS, RTSC]

If you're not quite sure what this all means, let's take a few steps back: in the beginning, we wanted to be able to run multiple algorithms from multiple developers on a single DSP, so Tl created
a standard to ensure the algonthms didn't steal resources from each other, had unique namespaces, and could "play nice" together in general. There are a number of app notes and docs on this,
so check out XDAIS Documentation. If you leamn better by example, go to XDAIS Sample Algorithm. There's even a clever tool to make sure you've got it right: QualiTl.

Since most of the algorithms were strictly multimedia, Tl then extended XDAIS to create a standard AP| [called XDM) specifically designed for multimedia codecs. These codecs are frequently
referred to as VISA (for video, imaging. speech, and audio). Check out the XDM Users Guide. When combined with Codec Engine, we then have a nice way to simply "plug and play” our VISA
codecs.

\We then started getting questions like, "How can | get my face detection algerithm to work with Codec Engine?” One solution is to create adaptors as described here to make your algorithm look
like a multimedia codec, and this worked well for a number of folks. But surely there should be another (possibly easier) way to get your algorithm to run — thus we get the introduction of the
IUNIVERSAL API.

If you want a crash course on the above (XDAIS, XDM, RTSC Packaging, etc. but not [UNIVERSAL in particular), check out the freely available OMAP and DaVinci Software for Dummies book 2.

Procedure for Making DSP Algorithms that are callable from the ARM

Step 1: Invoke GenCodecPkg
The first thing to do is launch the wizard!

Step 2: Generate IUNIVERSAL starterware
Screen 1

1. Click 3rd option, "l want to create an algerithm from scratch”
2. The XDAIS directory should already point to your XDAIS directory (frequently the ${CE_INSTALL_DIR)/cetonls/packages directory if you're not using a

DVSDK).
3. Point to the root of the compiler installation (i.e. one above the "hin" directory).
4. Click Next.
Screen 2
In the "Module” field enter the name of the algorithm you're creating e o

1

2. In the "Vendor” field enter your company name.
3. Under "Base Interface” choose "IUNIVERSAL". :
4. For "Target” choose CB4P for 64x+ devices or choose CE74 for 674x devices (floating point). —— _—
Crmen a AUM AGOEEE 80 Lo Picuige

g

. The output repesitory is where the generated files will be placed.
6. Click Finish to generate the starter files. o i

Generated Qutput i

The generated files will reside at <output_repository=/<vendor=/<module.

Step 3: Build Screen 2 &

Before making any changes, you should be able to build the generated package as is.

Step 4: Customizing the Code to Fit Your Algorithm On 0 3 0% 012 4T # 4 o com

Edits

The object definition for <MCDULE> <VENDCR>_ Cbj is the instance object for your algorithm. The instance object is considered "private” in the sense that it
is utilized internally by your algorithm. It should contain the state of each instance of your algorithm. In an FIR filter example this might consist of a pointer to
the history buffer, a pointer to the filter coefficients, and the length of the filter. In this way each new filter that is created can have its own associated filter

to <module>_<vendor>_priv.h :

Output Files &

coeficients and history. Memory acquired during the alloc phase of the algorithm would likely have a parameter in this structure for use by the algorithm.

Edits
1.

@y o B s

Edits
1.

Step
Codec

to <module>_<vendor>.h

Define commands for use in the control() function.

= Look for #define I<MODULE> USERCMDO

= Change USERCMDO to something more meaningful, e.g. CHANGE VOLUME.
= Remove the #ifdef 0O from around the commands in order to use them.

. Extend the I<MODULE> Params as needed. This structure defines only parameters used at the time of instance creation. The I<MODULE>_ DynamicParams structure we see later is

what will be passed to the contral () function.

. Extend the I<MCDULE> InRArgs structure as needed. These are the input arguments that will be passed to your process () function.

. Extend the I<MODULE>_ OutZrgs structure as needed. This structure is used by the process () function to return info back to the application.

. Bxtend the T<MODULE>_ DynamicParams structure as need. This structure is passed along with a command to the control () function.

. Extend the I<MODULE> Status structure as necessary. This structure gets filled in by the control () function to provide status info back to the application.

to <module>.c

const I<MODULE> Params I<MCDULE> PARARMS

= This code defines default parameters for instance creation.
= When creating an algorithm instance the application has the option of passing a MULL handle for the T<MCDULE> Params. In that case the algorithm uses the default parameters
which you define here.

. «MODULE> <VENDOR> alloc()

= This is the process by which you request memaory for your algorithm. XDAIS algorithms never malloc() their own memaory. They request it from the application through this function. This
allows the system integrator to have better control over how memery is being given out.

= By default it requests memory to contain your instance ohject. Any other memory needed (working buffers, etc.) should be requested here.

= Each memTab entry tells size, alignment. internal/external, and persistent/scratch/write-once.

= This function returns the number of entries it filled in. If you add any entries make sure you increment the return value accordingly.

. «MCDULE> <VENDOR> free()

= Mormally this can just utilize the allac () function.

= You only need to do something here if your initial memory request in alloc () was dependent upon the T<MODULE> Params passed into the function.

- «MODULE> <VENDOR_1initObj ()

= This function gets called after the application has granted memory requests based on your allec () function.

= The rest of the memTab has now been filled out by the application with the corresponding pointers to the memory you requested.
= Those pointers should be assigned to corresponding members of your instance object for use during run-time.

. <MODULE> <VENDOR> process|()

= This is where the actual algorithm goes! Add your algorithm code here.
= IMPORTANT: For the purpose of cache coherence it's important to tell the framework about how the CPU (not DMA if you're using ACPY1) has accessed the buffers.
= You must tell the application if you have read from or written to any of the buffers. This is achieved by using the accessMask fields associated with each and every buffer.

. «MODULE> <VENDOR> control()

= By default this function already supports the required command XDM_GETWVERSION.
= There is an $ifdef 0o that you can get rid of to add handling for any cormmands that you defined in <module=_<vendor=_h.

5: Creating a "server" that integrates your algorithm plus any others

Engine supports running any IUNIWVERSAL-compliant algorithm ‘locally’ (on the same processor as your app) or remotely’ (on a slave processor, like the C64P of an OMAP3 device). See

the Codec Engine GenServer Wizard FAQ for details on creating a server that integrates your GenCodecPkg-generated IUNIVERSAL algorithm into a DSP Server.

Step

6: Invoking the DSP Code from the ARM

= Tips for ARM side (Engine_open, etc.)

Step

7: Debug

