

ti

Linux Embedded System Design Workshop
Designing with Texas Instruments ARM and ARM+DSP Systems

Lab Exercises Guide

Workshop Lab Exercises
Revision 3.05
January 2011

Technical Training Organization

Lab Exercises Outline

0 - 2 OMAP3530 Lab Exercises - Introduction

Notice
Creation of derivative works unless agreed to in writing by the copyright owner is forbidden. No
portion of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the
prior written permission from the copyright holder.

Texas Instruments reserves the right to update this Guide to reflect the most current product
information for the spectrum of users. If there are any differences between this Guide and a
technical reference manual, references should always be made to the most current reference
manual. Information contained in this publication is believed to be accurate and reliable.
However, responsibility is assumed neither for its use nor any infringement of patents or rights of
others that may result from its use. No license is granted by implication or otherwise under any
patent or patent right of Texas Instruments or others.

Copyright © 2006 - 2011 by Texas Instruments Incorporated.
All rights reserved.

Training Technical Organization

Texas Instruments, Incorporated
6500 Chase Oaks Blvd, MS 8437
Plano, TX 75023
(214) 567-0973

Revision History
October 2006, Version 0.80 (alpha)
December 2006, Versions 0.90/0.91 (alpha2)
January 2007, Version 0.92 (beta)
February 2007, Version 0.95
March 2008, Versions 0.96 (errata)
April 2008, Version 0.98 (chapter rewrites & errata)
September 2008, Version 1.30 (beta 1 & 2)
October 2008, Version 1.30 (beta 3)
February 2010, Version 2.00
August 2010, Version 2.10
October 2010, Version 3.00 / 3.03
December 2010, Version 3.04
January 2011, Version 3.05

 Lab Exercises Outline

OMAP3530 Lab Exercises - Introduction 0 - 3

Lab Exercises Outline

Copyright © 2011 Texas Instruments. All rights reserved.

Lab Exercises
Introduction 3. Configure U-Boot and boot the DVEVM
Application 5. Building programs with GMAKE (and Configuro)
Programming 6. Given: File ? Audio; Build: Audio In ? Audio Out

7. Setup an On-Screen Display (scrolling banner)
Video In ? Video Out

8. Concurrently run audio and video loop-thru programs
Using the 9. Use a provided Engine (containing local codecs)
Codec Engine 10. Build an Engine (given local codecs)

11. Use remote codecs (using a provided DSP Server)
Swap out video_copy codec for real H.264 codec

12. Build a DSP Server (given DSP-based codecs)

Algorithms 13. Build a DSP algorithm and test it in CCS (in Windows),
then put your algo into a DSP server and call it from Linux

D SP
TEXAS INSTRUMENTS

TECHNOLOGY

OMAP3530 Lab Exercises - Introduction 0 - 4

Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot 3 - 1

Lab3 - Experimenting with Linux and U-Boot

NFS Boot

Windows
PC

Linux “Tools”
PC

(VMware)

EVM
eth0 Ethernet provides physical

connection for booting
U-Boot loads Kernel from
“Tools” PC into DDR2
memory using TFTP
Filesystem is accessed via
NFS protocol

RS-232

Tera Term
or

Hyper Term

U-Boot
RS-232 is physical
connection to U-Boot
Use to interrupt DVEVM
standalone boot
Configure U-Boot modes
by setting/saving
environment variables

Ethernet

Most development for a Linux based target devices, such as the ARM CPU’s on the
OMAP/Sitara/DaVinci, is done on Linux-based host machines. Developers with Linux PCs can
therefore work directly in this environment, but authors using Windows based PCs need either to
obtain a new PC running Linux, or employ software that can simulate the Linux environment on
top of Windows. In this workshop, VMware is used to create a 'virtual machine' on a windows
PC, inside which the Ubuntu operating system can run. In this portion of the lab, the steps to
configure Ubuntu on VMware will be implemented. In this lab, the following steps will be taken
to set up the software development environment:

Chapter Outline
Lab3 - Experimenting with Linux and U-Boot ... 3-1

Lab03a – Start/Configure VMware and Ubuntu Linux... 3-2
Lab03b – Install Workshop Lab Files (for your board).. 3-6
Lab03c – Image SD/MMC card (to boot EVM) .. 3-9
Lab03d – Talking to the EVM..3-12
Lab03e – Configure U-Boot and Boot the EVM ..3-14
(Optional) Lab03f – Try Other Boot & VM Options..3-18

Lab03a – Start/Configure VMware and Ubuntu Linux

3 - 2 Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot

Lab03a – Start/Configure VMware and Ubuntu Linux

VMware
1. Launch VMware.

 On the Windows desktop, double click the VMware icon.

2. Open the TTO workshop VMware image.

 In the VMware Workstation window Home tab,

Click on the Open Existing VM or Team Icon

 Open the VMware image file (the name you see might be similar but not exact):

C:\vm_images\tto_vm_child_image_(v3.01)\tto_vm_child_v3.01.vmx

Notes:
• It’s possible your instructor has already started VMware for you. If so, then you may skip this

step.

• VM image version v3.01 was current at the time of this writing.

• In USA classrooms, the VMware image is broken into two parts:

1. Child image (~30MB) (C:\vm_images\tto_vm_child_image_(v3.01)\tto_vm_child_v3.01.vmx)
2. Parent image (~20GB) (E:\tto_workshop_v3.00\vm_parent\TTO_vm_parent _(v3.00)

The child image, specified in this step, depends upon the parent in order to work. Breaking the image into
two parts allows us to re-image the C:\ drive being required to reload the entire 20GB for each class.

 Lab03a – Start/Configure VMware and Ubuntu Linux

Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot 3 - 3

3. Verify the Linux networking options are set to ‘bridged’ mode.

 This option tells VMware to access the network and obtain its own IP address (other choices
involve the Windows PC acting as a router). If not set to ‘bridged’

 If you have opened VMware application and the TTO image, you should see the Ethernet
setting in the middle of the VMware screen as shown here:

 If you happened to get a little ahead of our instructions and already started the VMware

image (which we do in step 6), the easiest way to see this is in the status bar. Just hover over
the Ethernet board icon and read the popup message:

Note: If you are using the VMware player, this information is easily found via the top toolbar. In USA
classrooms, we use the full version of VMware, though, as opposed to the limited Player version.

Lab03a – Start/Configure VMware and Ubuntu Linux

3 - 4 Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot

4. Define which of the Ethernet ports on the PC Linux we will use.

 (Note, this step is required for USA TI classrooms, but may not be needed when using laptops
within the USA or for other non-USA locations. Please check with your instructor if you are
not sure if this applies to you.)

 From the VMware Workstation menus, select Edit | Virtual Network Editor… In the
Virtual Network Editor dialog box that appears, go to the Host Virtual Network Mapping
tab. In the drop box for VMnet0, select the Broadcom NetXtreme Gigabit Ethernet
Packet Scheduler Miniport adaptor, as depicted below:

 Lab03a – Start/Configure VMware and Ubuntu Linux

Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot 3 - 5

5. To improve system speed, disable the VMware snapshot feature.
 Under Edit | Preferences, go to the Priority tab, and uncheck the Snapshots feature. Close the

window by clicking on the OK button. (If using the VM Player, this option does not apply to you.)

6. Start Ubuntu Linux.

 Click on the green ‘Play’ arrow in the icon bar near the top of the VMware window.
(Another way to start the Linux session is to select Start the Virtual Machine in the
Commands area). Wait for the boot process to complete (which may take between 2-5
minutes), as indicated by the appearance of the Log On dialog box. (If using VM Player,
the image is automatically started when opening the VMware Image file.)

 Ubuntu will automatically log you into Linux with a user account. At this point, you
will simply see a blank desktop and you can move on to the next step.

 FYI – Ubuntu automagically logged you into the following account – no login required by
you at this time:

Ubuntu Userid: user
Password: none required

7. Open a terminal window.

 The easiest way to open the terminal is to click it’s icon on the panel toolbar. You can also
find it on the “Applications” menu, but we’ve placed icons to the three most-used tools onto
the toolbar panel.

Note:
Your instructor

may already have
booted your

Ubuntu image (in
VMware) and left

it hibernated
(paused). If so,

steps 6& 0 might
act slightly
different.

Terminal
gedit

(text editor)

Nautilus
(file explorer)

Lab03b – Install Workshop Lab Files (for your board)

3 - 6 Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot

Lab03b – Install Workshop Lab Files (for your board)
We have installed the appropriate software for your EVM board.

That is, we have worked thru the Getting Started Guides (GSG) for each of the boards
(OMAP3530 and AM3517) into the same VMware image, because they both use the same
DVSDK/SDK (software development kit) and version of community Linux.

Since the DM6446 uses a different DVSDK, we chose to install its software libraries (and
MontaVista Linux) into a separate VMware image.

In this part, you will install the workshop labs/solutions files per the board you have chosen to
work on during class. Additionally, we will configure/verify a couple of environment settings.

Installing Workshop Labs and Solutions Files
8. Verify the shared folder is enabled.

 Let’s try simply listing the files in the shared folder. If there aren’t any files, we may need to
enable this VMware feature.

ls –l /mnt/hgfs/shared

If this doesn’t work, shared folders are not enabled. Continue with the next step to enable
shared folders.

9. If needed, enable shared folders.

 If VMware Workstation is running (and it probably is, at this point), go to “options” view by
clicking on the Options toolbar button:

 Click on Edit Virtual machine settings:

 And then …

 When finished enabling shared folders, simply click the “Console View” button in VMware
to get back to the command line.

b. Console View a. Options View

 Lab03b – Install Workshop Lab Files (for your board)

Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot 3 - 7

Make sure that Shared Folders are Always enabled:

10. Copy lab files from Windows/VMware shared directory.

 To keep things simple, for the OMAP3530 and AM3517 VMware image, everything but the
lab files have been installed. Rather than putting lab files for both target boards in the user
folder, we have provided you two tar files.

cd /home/user
cp /mnt/hgfs/shared/TTO_Linux_SOC_Workshop_labs_omap35_v3.xx.tar.gz .

Options:
• For the AM3517 choose: TTO_Linux_SOC_Workshop_labs_am3517_v3.xx.tar.gz
• Rather than seeing a file with v3.xx, choose the latest revision available; e.g., v3.03.
• DM6446 users can ignore this step.

11. Untar the lab files into the /home/user folder.

 In the steps below, make sure you use the file you copied in the previous step.

cd /home/user
tar –xzf TTO_Linux_SOC_Workshop_labs_omap35_v3.xx.tar.gz

 After unzipping, you should have two new folders in your /home/user folder. If not, please
consult with your instructor.

/home/user/labs
/home/user/solutions

Device
Specific

Lab03b – Install Workshop Lab Files (for your board)

3 - 8 Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot

12. Verify you have installed the correct files for your EVM platform.
 (You can skip this step if you are following the DM6446 labs.)

 Check that the readme file exists in your new labs (and/or solutions) folder. We use the
readme file to confirm the platform supported – along with the workshop labs/solutions
version number.

/home/user/labs

Readme_omap35_labs_v3.xx.txt

or Readme_am3517_labs_v3.xx.txt

13. Add symbolic link to targetfs directory. (You can skip this step if you are doing the DM6446 labs.)

 Finally, we need to add a Linux symbolic link for our targetfs directory.

ln -s /home/user/psp_rebuild_omap3/linux_filesys /home/user/targetfs

 or
ln -s /home/user/psp_rebuild_am3517/linux_filesys /home/user/targetfs

 This Linux command (small LN) creates a symbolic link, similar in some ways to a Windows
shortcut. With this link, we can now refer to the /home/user/targetfs directory in our
workshop instructions and the correct folders/files will be referenced on each of your
systems, no matter which EVM you are using.

 This is also the directory we are “exporting” (i.e. network sharing). We already set this up for
you in Linux by editing the /etc/exports file. This was required because since this is the folder
used as the nfspath – that is, we will use this folder (via the network) as the root filesystem for
our EVM.

Installing kernel modules to the targetfs
14. Install the kernel modules and loadmodules.sh script to the target filesystem.

 We have conveniently placed the kernel modules and scripts into the lab00 folder. All you
need to do is run the install script located in that folder.

cd /home/user/labs/lab00_install_scripts

./install.sh

 This will copy the files contained in this folder over to our workshop directory in the target
filesystem (/home/user/targetfs/opt/workshop). Later on we’ll discuss what these files
are used for; for now, we just want to copy them into place so they’ll be there when we need
them.

Device
Specific

Device
Specific

 Lab03c – Image SD/MMC card (to boot EVM)

Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot 3 - 9

Lab03c – Image SD/MMC card (to boot EVM)
15. Plug USB Flash SD/MMC Card reader into a USB port on your computer.

 You may see a dialogue box talking about “Removable Devices” – just click OK and
continue.

16. Connect the SD/MMC flash card reader to the Ubuntu virtual machine.

 If USB Flash Card reader is mapped to Windows host, select:

VM Removable Devices <Your Flash Reader> Connect…

Note: Your SD/MMC card reader may show up as a slightly different name, depending
upon the brand of reader you are using

17. Open a terminal window in Ubuntu (if one is not already open).

18. Move to the Lab03a directory.

cd ~/labs/lab03_build_sd

Lab03c – Image SD/MMC card (to boot EVM)

3 - 10 Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot

19. Determine SCSI device node for USB SD card reader

(user@ubuntu) # sudo sg_map –i

When prompted for sudo password, (press enter)

 You should see a table similar to the following:
 /dev/sg0 /dev/scd0 NECVMWar VMware IDE CDR10 1.00
 /dev/sg1 /dev/sda VMware, VMware Virtual S 1.0
 /dev/sg2 /dev/sdb USB 2.0 SD/MMC Reader 1.0

 Depending on the SD/MMC Reader used, it may appear differently, but will likely be the last
device on the list.

 Write down the Linux device node (i.e. virtual file name) for the card reader:

 Your device node: ______________________________________ (most likely, /dev/sdb)

20. Insert a 2GB SD/MMC card into the USB Flash reader (if not already done).

 Read the following step and comments very carefully, specifying the wrong /dev/sdx
device node could cause permanent damage to your system!

21. Take a VMware snapshot. (Only full version of VMware Workstation supports snapshots.)

 Because this step could erase the wrong drive in your system, let’s make a snapshot copy of
our virtual hard drive. This can be done many ways, but we suggest this simple 3-step
procedure – which uses three different VM toolbar buttons:

 1. Pause your Linux VMware PC.

 2. Take a snapshot.

 3. Un-pause (that is, Run) your Linux VM, again.

Caution

1. Pause

3. Run

2. Take Snapshot

 Lab03c – Image SD/MMC card (to boot EVM)

Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot 3 - 11

22. Execute the build_sd.sh script.

 Run the build script using the device node from step 19 (page 3-10). If prompted for a sudo
password, simply press enter (blank password).

(user@ubuntu): SCSI_DEV=/dev/sdb ./build_boot_sd.sh

 When asked to “confirm”, press “y” and [ENTER].

 It should take less than a minute for the script to complete. The script automates these steps:
− Un-mounts partitions (if any) that Ubuntu automatically mounts to the desktop
− Reformats and formats the SD/MMC card for two partitions

(though we’ll only use one, for now)
− Temporarily mounts new partitions and copies three files onto the 1st partition:

MLO (X-loader – 2nd level bootloader)
u-boot.bin (uboot – 3rd level Linux bootloader)
uImage (Linux kernel)

 In the next part of the lab, we’ll use the MMC card to boot the EVM.

Lab03d – Talking to the EVM

3 - 12 Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot

Lab03d – Talking to the EVM
23. Start TeraTerm.

 On the Windows desktop, double click on the TeraTerm icon.
The TeraTerm serial configuration file dvevm.ini, in the TeraTerm program folder
has already been set up with the following necessary configuration states:

Bits per Second: 115200
Data Bits: 8
Parity: None
Stop Bits: 1
Flow Control: None

24. Insert the SD/MMC card into the EVM.

 If you haven’t already done so, remove the SD/MMC card you formatted in step 22 from the
card reader.

Insert the card in the EVM’s SD/MMC card slot

 The card should go into the slot “label up” – SD card “pins” down. On new boards, the slot is
tight, so you need to make sure and line it up very straight as you slide the card into it.

25. Connect RS-232 serial cable.

 If not already done, please connect the serial cable. (If unsure how to do this, please as your
instructor (or refer the EVM Quick Start Guide).

Connect RS-232 cable between the EVM and PC RS-232 port

Note: For OMAP3530 EVM, please use the UART1/2 connector.

26. Verify EVM Hardware Configuration
• Is the EVM powered off?
• Verify the switch settings (for proper

booting) of the EVM - where does board
find MLO and uboot.bin?

OMAP3530 EVM switch S4
SD/MMC card: 0010 0111

On-board NAND: xxxx xxxx

 (AM3517 switch settings continued on next page.)

Device
Specific

 Lab03d – Talking to the EVM

Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot 3 - 13

AM3517 EVM switch S7
SD/MMC card: 0000 1001

 Setting the first and fourth switches on, while the others are off, tells the board to boot using
the MMC card.

sw 7-1: on
sw 7-2: off
sw 7-3: off
sw 7-4: on
sw 7-5: off
sw 7-6: off
sw 7-7: off
sw 7-8: off

 These switches modify the boot
mode pins on the AM3517,
which are used by the ROM
bootloader (1st stage) to use the
XLOADER (2nd stage
bootloader) found on the first
partition of the MMC card. If all switches are off, the device will boot using the XLOADER
found in the EVM’s onboard NAND flash.

 To learn more about the switches (and configuration) of the AM3517 board, visit:

http://processors.wiki.ti.com/index.php/GSG:_AM35x_EVM_Hardware_Setup

27. Start the EVM – by plugging in the Power cable. (You may also need to toggle switch next
to power cord.)

 Power on the EVM board and press any key to interrupt U-Boot's boot sequence.

Press any key (to stop Linux from booting)

 At this point, the EVM U-Boot terminal prompt (DaVinci EVM#, OMAP3#, AM3517#) should
be visible in the TeraTerm session window.

In a few minutes we’ll setup U-boot and get the board running …

Lab03e – Verify Networking and Record IP Addresses

3 - 14 Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot

Lab03e – Verify Networking and Record IP Addresses
Connecting to the Network
28. Make sure the Ethernet cable is connected between your EVM and the PC where you’re

running VMware.
 If you’re direct connecting the VMware image to the target EVM, then make sure the SD/MMC card

you just programmed is inserted into the EVM and then power-on the EVM board (we don’t care what
it does at this point – that will be handled in the next section).

 On the other hand, if you’re using a switch or router, simply make sure that the swtch is up-and-
running and connected to the EVM and PC.

29. Record the Windows Ethernet address.
 This information will be used to test the Linux Ethernet connection in the next step. In the Windows

system tray (right side of the Windows task bar) double click on the Local Area Connection 2 icon:

 From the Support tab of the dialog box that popped up, write the noted values below. Close the
window when done recording this value.

IP Address _________________________
 Note, If there are two wired LAN icons in the Windows taskbar, you should choose the one with the IP

address: 192.168.1.39

30. Determine the Ubuntu Ethernet address.
 You must have the Ethernet cable plugged in to the EVM and the board powered on or you will

get an error during this step. (You should have connected the Ethernet cable in step 28.)

 In the terminal window, run ifconfig by typing: /sbin/ifconfig ↵ and transcribe the IP address
below. (Alternatively, we’ve set our $PATH statement so that you can just type ifconfig.)

IP Address _____________________ (Note, it will be called “inet” in the Linux response)

31. Test the Linux Ethernet port:
 Ping the Windows Ethernet port to verify that both are working. In the terminal, type:

ping <IP_Address>

 Where IP_address is the value recorded in step 29 above. The response should look like:

 In Linux, you need to halt the ping command using:

 <Ctrl> C to halt the pinging

 These are the IP addresses we plan to use in this workshop:

Windows PC: 192.168.1.39

Ubuntu Linux: 192.168.1.1

EVM target: 192.168.1.41 dynamically set

 Lab03f – Configure U-Boot and Boot the EVM

Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot 3 - 15

Lab03f – Configure U-Boot and Boot the EVM
32. Return to Windows and TeraTerm.

 Since VMware implements a complete virtual PC when the cursor is within its borders, it is
necessary to move the cursor outside the VMware frame so that the use of Alt + Tab will
invoke the underlying Windows OS and allow control to pass from the VMware application
to another Windows program. Then, hold down the Alt key and repeatedly pressing Tab until
the TeraTerm application is selected.
Release the Alt key to complete the selection.

 Based on where we left things earlier in the lab, you should be at the U-Boot prompt. If this is
not the case, power-cycle the board and then stop U-Boot from booting into Linux by hitting
any key.

33. Run the TeraTerm macro to setup the EVM’s U-Boot mode.

 From TeraTerm, select Control | Macro. From directory
C:\Program Files\TTERMPRO select the file associated to your board:

DM6446 DVEVM: tto_uboot_setup.ttl
OMAP3530 EVM: tto_uboot_setup_3530.ttl
AM3517 EVM: tto_uboot_setup_3517.ttl

If the macro pauses, simply hit [ENTER] in the terminal window to continue with the
questions below:

 As the macro runs, make the following selections:

• Use Default NFS Server IP Address: 192.168.1.1 Yes
• Boot Static or Dynamic? [Yes= Dynamic (dhcp), No=Static)] Yes
• Root Filesystem from NFS or MMC? (Yes=NFS, No=MMC) Yes
• Use default NFS path? (/home/user/targetfs) Yes
• Kernel from TFTP or Flash/MMC? (Yes=TFTP, No=Flash/MMC) Yes
• For TFTP boot, use the default Kernel image filename? Yes
• Save bootargs? Yes
• Boot Linux now? (No, we’ll do this manually) No

34. Test network connection from EVM to Ubuntu VMware image.

 This is a good thing to check, since we plan to boot the EVM across the network – that is, we
plan to get the root filesystem (and maybe the Linux Kernel) for the EVM from our Ubuntu
Linux VM image.

 Run the ping command from Uboot.:
ping 192.168.1.1

 It should respond with: Connection is alive

Device
Specific

Lab03f – Configure U-Boot and Boot the EVM

3 - 16 Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot

35. Examine the EVM’s Linux environment.

 The printenv ↵ reports the current state of the U-Boot variables. You should be able to see
the changes we made with our interactive TeraTerm script.

36. Save the new U-Boot settings.

 Changes to the environment must be saved to the Flash to remain active after power-cycling
the EVM hardware. This is done automatically by the macro when you answer Yes to the
‘save bootargs’ question.

 To manually preserve the bootargs, type:

save ↵

37. Take Home exercise…

 Review the macro by opening the file in any text editor. While not commented in detail its
code should be easy to understand if one knows the U-Boot options in general.

38. Boot / Reboot the EVM.

 Power-cycle the DVEVM or type boot ↵ to restart the EVM with the new environment
settings. When boot completes (you can watch it in Tera Term – should take a few minutes),
log in as root user; no password is needed. Note: if during bootup “kernel panic” is
reported, ask the instructor for assistance.

 Your Windows terminal (i.e. Tera Term) is now connected to the “target” Linux running on
the EVM’s ARM processor.

Sidebar
It is common practice to log into a host Linux PC as a user (i.e. not as the root user). Conversely,
it is also common practice to log into a development board, like the EVM using the root user. In
embedded applications, there often only exists a single user (root).

 Lab03f – Configure U-Boot and Boot the EVM

Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot 3 - 17

39. Verify shared file system between Ubuntu and EVM.

 Since any file change to the root directory of our EVM board will be reflected in Ubuntu
Linux, let’s give it a try by creating a new file (or updating its timestamp) using the Linux
“touch” command.

 From Tera Term (which is now logged into the EVM board):

root@omap3evm:~# cd / moves you to root
root@omap3evm:~# touch putfileatroot.txt create a new empty file at root

 Now, let’s look for this file on the NFS source directory; that is, in the target filesystem on
our Ubuntu PC. To do this, list the files of the target filesystem from the Ubuntu terminal
session (note: be careful to be in the correct window, as there are two that can be easily
mistaken for each other) you started earlier:

[user@localhost user]# cd /home/user/targetfs
[user@localhost user]# ls -la

 You should see the putfileatroot.txt in your listing, with the current date and time stamp (you
could always try the Linux date command if you’d like to change it to your time zone). Note,
you can see the same directory (and file) from both environments. Similarly, when we create
new app’s within Ubuntu Linux, if they are created (or copied to) our target filesystem folder,
they’re immediately available at our NFS mounted EVM target.

Review
 To summarize, the root path of the EVM is set to a path inside the User’s home directory.

Fill in the box below indicating the path within Ubuntu Linux where the EVM board’s root
path is associated.

EVM Board
“Target” Ubuntu Linux

“VMware Image”

/ =

How did this association get made? ___

 __

 What is the advantage using an NFS (networked) mounted filesystem versus using the hard
drive (or flash drive) built into the DaVinci board? _________________________________

 __

(Optional) Lab03g – Try Other Boot & VM Options

3 - 18 Sitara/DaVinci/OMAP Workshop - Lab3 - Experimenting with Linux and U-Boot

(Optional) Lab03g – Try Other Boot & VM Options
a. Arrange your Desktop windows to show both terminals side-by-side. This might make it

easier to keep from confusing one terminal versus another. (Doesn’t really work well on small
laptop computer screens, but works great with larger monitors.)

b. Try booting up the board with other combinations of options:

• If you have a router, you could try dynamic IP addresses (vs Static IP).
• On DM6446 DVEVM, try … Kernel/Root filesystem: tftp/nfs, tftp/hdd, flash/hdd,

flash/nfs. (Note, though, you will need to update the flash on the board, first.)
• On the OMAP35 or AM35 EVM’s:

MLO
(i.e. xloader) u-boot Kernel Filesystem Comments

 1 mmc mmc tftp nfs This was lab Lab03e.
 2 mmc mmc mmc nfs Re-run TeraTerm setup macro to choose these options.
 3 flash flash tftp nfs
 4 flash flash flash nfs

Need to program the flash first, see Software Dev’l Guide
instructions. Then, re-run the TeraTerm setup macro.

 5 mmc mmc mmc mmc Later we’ll examine copying the filesystem to SD/MMC.

Device
Specific

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 1

Lab 5 - Building Programs with gMake

Goal
Welcome to the compulsory “Hello World!” lab exercise. Here we will begin our exploration of
Sitara\DaVinci\OMAP software programming tools. In this lab, you will:
• Create a simple X86 makefile for building a specific program (“Hello World”).
• Write the makefile code to consume a “package” delivered by TI (Configuro)
• Explore and analyze a more complex, generic makefile that will be used throughout the rest

of this workshop.
• Execute the “Hello world!” application on both the x86-based Linux host system and the

ARM-based target system using Linux terminals.

Outline
Lab 5 – Makefiles and Configuro

Part A – Building a Simple Makefile

Part B – Using Built-in and User-defined Variables

Part C – Using Configuro to Consume a Package

Part D – Using the Final DaVinci Workshop Makefiles

Optional
Part E – Analyzing the Final DaVinci Workshop Makefiles

Time: 60-75 minutes

Lab 5 - Building Programs with gMake .. 5-1

Lab05ab_basic_make ... 5-2
Big Picture .. 5-2
Procedure.. 5-2
Part A – Using the Command Line and Creating a Simple Makefile .. 5-3
Part B – Using Built-in and User-Defined Variables ... 5-8

Lab05c_x86_configuro ..5-11
Lab05d_standard_make...5-17
Lab05e_optional_challenge...5-20

makefile (i.e. “parent” makefile) ...5-21
makefile_profile.mak (i.e. ”child” makefile)...5-23

Lab05ab_basic_make

Lab 05 - 2 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

Lab05ab_basic_make

Big Picture
In part A of the lab, you will build your first basic makefile – basically turning command line
execution into gMake rules. In Part B, you will increase the usability of your makefile by adding
built-in variables and user-defined variables. This will provide you with a fundamental
understanding of how makefiles work.

Procedure
Lab Prep – Examine the directory contents and app.c

1. Open a terminal in the Linux Host Computer.

 Log into the Linux Host (i.e. desktop) Computer. Open a terminal window clicking on the
“Terminal” toolbar icon.

 You will begin in the /home/user directory (the home directory of the user named “user”),
also represented by the tilde (~) symbol.

2. Locate the labs directory and list its contents.

 Descend into to the /home/user/labs directory using the “cd” command. (“cd” is short for
“change directory”).

 Use the “ls” (lower case “LS”) command to list the contents of this directory:

ls

 At any time, if you’re curious about which directory you are in, use the Linux “pwd”
command. This stands for “path working directory”:

pwd

 The labs directory is the working directory for the lab exercises and contains all the starter
files needed for this workshop. (Note, solutions for each lab can be found at
/home/user/solutions).

 In addition to all of the lab folders, one of the additional files at this level is named
setpaths.mak, which you will use later in this lab. setpaths.mak contains absolute paths for
the locations of various tools and packages that will be used to build projects throughout the
workshop. More on this later.

 For this workshop, the proper file paths have already been configured for you. However,
when you take your labs and solutions home to work on them further, you may need to
modify setpaths.mak in order to build correctly on your system. (Note, the DVSDK uses the
file named Rules.make for the same purpose as our setpaths.mak.)

 Lab05ab_basic_make

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 3

3. Examine the contents of the lab05abc_basic_make directory.

cd ~/labs/lab05ab_basic_make

 - or -

cd /home/user/labs/lab05ab_basic_make

- or, since you’re probably already in the labs directory -

cd lab05ab_basic_make

 List the contents of this directory. The lab05ab_basic_make folder contains only one
directory, /app. (Later, as our lab exercises become more complex, some projects will have
multiple directories at this level.)

4. Examine app.c in the lab05ab_basic_make/app directory.

 Descend into the app directory. Examine the C source file app.c which prints the string
“Hello World” to standard output.

cd app

gedit app.c

Part A – Using the Command Line and Creating a Simple Makefile
In this part, we will simply use the GNU compiler (gcc) from the command line to build the
“Hello World” example and run it. Then, we’ll place these commands into a basic makefile and
run the makefile. In the next part, we’ll use built-in and user-defined variables.

5. Build and run “Hello World” from the command line.

 Make sure you are in lab05ab_basic_make/app folder.

 To compile app.c, type the following command:

gcc –g –c app.c –o app.o

gcc = GNU C compiler (command)
–g = symbolic debug (compiler option)
–c = (fill in answer below)
app.c = file to compile (kind of “dependency” or “prerequisite”)
-o = output filename is next (compiler option)
app.o = output file (the “target”)

 In the above gcc command, can you name the target, dependency and command?

 Target = _______________

 Dependency = ________________

 Command = __________________

Lab05ab_basic_make

Lab 05 - 4 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

6. Use the “man” command to look up gcc.

 To find the parameters for any standard C functions or Linux commands, you can use the
“man” (short for “manual”) command. Let’s try it on gcc:

man gcc

 What does the –c option (from step 5) tell the compiler to do?

 To quit the man page, type “q” at least once (depending on where you are in the page, you
might need to type “q” multiple times).

7. Link the object file and produce the final executable.

 Next, link the object file (app.o) to create the executable app.x86U:

gcc –g app.o –o app.x86U

 Now run the executable:

./app.x86U

 You should see “Hello World” displayed in the command window.

 The extension used for the output file (.x86U) indicates we are building for the x86 (or host
PC). In the future, we will build for the ARM target on the EVM and it will have a different
extension (more on this later).

Note: For those of you who know Linux well, you can skip this explanation. For the rest …

 ./ before the name of an executable tells Linux to look for the program
 in the current directory.

We use this as it is the proper way to specify the path of the file to be run. Just in case
you make a mistake and forget to include the ./, we added it to our Linux $PATH
environment variable, so Linux will still be able to find your program.

8. “Clean” the existing executable (.x86U) and intermediate (.o) files.

 Type the following to remove the files generated by the gcc commands you executed:

rm –rf app.x86U

rm –rf app.o

 This removal of files mirrors what a “clean” macro or rule might do. We’ll actually add a rule
shortly to accomplish this in our makefile.

 Lab05ab_basic_make

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 5

9. Examine “starter” makefile.

 The current makefile in the lab05ab_basic_make/app directory simply contains comments
and placeholders for the code you will write. Using your favorite editor, open the makefile.
For example:

gedit makefile

10. Create rules for app.x86U and app.o in your makefile.

 Remember, a rule is made up of a target, dependency(ies) and command(s). For example:

 target : dependency
 CMD

 Also note that the commands are tabbed over (at least one tab).

 Create the rule for app.o in the area of the makefile with the header comments specifying
the intermediate (.o) rule (as shown below). We’ll help you with the rule for app.o, but
app.x86U is up to you. If you get stuck, look back at the chapter material, ask the instructor
for help or peek at the solution.

 For app.o, type in the following rule. We will use the absolute path of gcc for now and later
turn it into a variable:

------ intermeditate object files rule (.o) -------

app.o : app.c
 /usr/bin/gcc –g –c app.c –o app.o

app.o = target
app.c = dependency
/usr/bin/gcc -g … = command

11. Type in the rule for .x.

 Next, type in the rule for app.x86U ABOVE the rule for app.o in the area specified for the
(.x) rule. Make sure you use the –g compiler option in the .x rule.

12. Test your makefile.

 Close makefile and type the following:

make

 After running make, list the current directory.

ls

 Do you see a new app.x86U executable? Run it:

./app.x86U

 Do you see “Hello World”? If so, your rules work. Next, let’s add a few more rules…

Lab05ab_basic_make

Lab 05 - 6 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

13. Open makefile in a different Linux process.

 Stop. Before you open makefile again, try opening it in a different Linux process by typing
in the following:

gedit makefile &

 The “&” tells Linux to open the makefile in a separate process (window). When you edit a
file, you can simply click Save, then click inside the terminal window and run it without
having to re-open the makefile. Handy – and could save you some time.

14. Create a “clean” rule in your makefile

 Whenever you run gMake, it will search and note the timestamps of the source files and
executables and won’t run if everything is up to date. So, it is common to create a “clean”
rule that removes the intermediate and executable files prior to the next build.

 In the makefile (underneath the comment header for “clean all”), add the following .PHONY
rule for “clean” (these are the same commands you used earlier on the command line):

 .PHONY : clean
 clean :
 rm –rf ___.x86U

 rm –rf _______

 .PHONY tells gMake to NOT search for a file named “clean” because this is a phony target
(i.e. it is not a file that needs to be searched for or created). In a large and complex makefile,
this actually saves some compile time (plus, it is just good practice to use .PHONY when the
target is not an actual file). The two files are the final executable and the intermediate object
file.

15. Create an “all” rule in your makefile.

 When gMake runs without any rules specified (i.e. you just type “make” on the command
line), it will make (by default) the first rule in the makefile. Therefore, it is common to
create an “all” rule that is placed first in the makefile. Our example only has one final target
(app.x86U), so “all” doesn’t make as much sense now. However, when we move to the
makefile for the ARM target on the EVM, we’ll have multiple targets to build and it will be
more useful.

 In the makefile (under the comment header for “make all”), add the following .PHONY rule
for “all”:

 .PHONY : all
 all : app.x86U

 Close makefile and let’s run it…

 Lab05ab_basic_make

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 7

16. Run gMake to create the executable app.x86U.

 On the command line, type in the following:

make

 gMake will probably tell you that the files are “up to date” and there is nothing to do. So, you
must run “clean” before you build again. Type:

make clean

 and then:
make

 or:
make all

 gMake runs the first rule in the makefile which is the “all” rule. This should successfully
build the app.x86U executable.

Note: gMake assumes the name of the make file is makefile or Makefile. gMake also looks
for the FIRST makefile it finds. So, to be safe, you might want to capitalize Makefile
because capital “M” comes before lower-case “m” alphabetically. You can also use a
different name for the makefile – e.g. my_makefile.mak. In this case, you need to use the
following command to “force” the use of a different make file name:

 make –f my_makefile.mak

17. Run app.x86U.

 You should see “Hello World” again. Ok, now that we have the simple makefile done, let’s
turn it up a few notches…

18. Review the different ways to run gMake.

 As a review, you can run gMake in several ways:

make (makes the first rule in the make file named makefile or Makefile)

make <rule> (makes the rule specified with <rule>, e.g. “make clean”)

make –f my_makefile (forces the use of a make file named my_makefile)

Lab05ab_basic_make

Lab 05 - 8 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

Part B – Using Built-in and User-Defined Variables
In this part, we will add some user-defined variables and built-in variables to simplify and help
the makefile more readable. You will also have a chance to build a “test’ rule to help debug your
makefile.

19. Add CC (user-defined variable) to your makefile.

 Right now, our x86 makefile is “hard coded”. Over the next few steps, we’ll attempt to make
it more generic. Variables make your code more readable and maintainable over time. With a
large, complex makefile, you will only want to change variables in one spot vs. changing
them everywhere in the code.

 Add the following variable in the section of your makefile labeled “user-defined vars”:

CC := $(LINUX86_GCC)

 CC specifies the path and name of the compiler being used. Notice that CC is based on
another variable named LINUX86_GCC. Where does this name come from? It comes from
an include file named path.mak.

 Open path.mak and view its contents. Notice the use of LINUX86_GCC variable and
what it is set to.

 Whenever you use a variable (like CC) in a rule, you must place it inside $() for gMake to
recognize it – for example, $(CC).

 After adding this variable, use it in the two rules (.x and .o). For example, the command for
the .x rule changes from:

gcc –g app.o –o app.x86U

 - to this -

$(CC) -g app.o –o app.x86U

20. Apply this same concept to the .o rule.

21. Add include for path.mak.

 In the “include” area of the makefile, add the following statement:

-include ./path.mak

22. Test your makefile: clean, make and then run the executable.

 Lab05ab_basic_make

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 9

23. Add CFLAGS and LINKER_FLAGS variables to your makefile.

 Add the following variables in the section of your makefile labeled “user-defined vars”:

CFLAGS := -g
LINKER_FLAGS := -lstdc++

 CFLAGS specifies the compiler options – in this case, -g (symbolic debug).
LINKER_FLAGS will tell the linker to include this standard library during build.
(The example option –lstd++ specifies the linker should include the standard C++ libraries.)

 Use these new variables in the .x and .o rules in your makefile.

24. Test your makefile.

25. Add built-in variables to your .o rule.

 As discussed in the chapter, gMake contains some built in variables for targets ($@),
dependencies ($^ or $<) and wildcards (%). Modify the .o rule to use these built-in
variables.

 The .o rule changes from:

 app.o : app.c
 $(CC) $(CFLAGS) –c app.c –o app.o

 – to –
 %.o : %.c
 $(CC) $(CFLAGS) –c _____ -o _____

 Because we only have ONE dependency, use the $< to indicate the first dependency only.
Later on, if we add more dependencies, we might have to change this built-in symbol. % is a
special type of gMake substitution for targets and dependencies. The %.o rule will not run
unless a “filename.o” is a dependency to another rule (and, in our case, app.o is a
dependency to the .x rule – so it works).

26. Add built-in variables to your .x rule.

 The .x rule changes from:

 app.x86U : app.o
 $(CC) $(CFLAGS) app.o -o app.x86U

 - to -
 app.x86U : app.o
 $(CC) $(CFLAGS) $(LINKER_FLAGS) _____ -o _____

27. Don’t forget to add the add’l LINKER_FLAGS to the .x rule.

28. Test makefile.

Lab05ab_basic_make

Lab 05 - 10 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

29. Add a comment to your .x rule.

 Comments can be printed to standard I/O by using the echo command. In the .x rule, add a
second command line as follows:

 @echo; echo $@ successfully created; echo

 The @echo command tells gMake to echo “nothing” and don’t echo the word “echo”. So,
effectively, this is a line return (just like the echo at the end of the line). Because built-in
variables are valid for the entire rule, we can use the $@ to indicate the target name.

 Test makefile and observe the echo commands. Did they work? As usual, you might need to
run “make clean” before “make” so that gMake builds the executable.

30. Add “test” rule to help debug your makefile.

 Near the bottom of makefile, you’ll see a commented area named “basic debug for
makefile”. Add the following .PHONY rule beneath the comments:

 .PHONY : test
 test:
 @echo CC = $(CC)

 This will echo the path and name of the compiler used. Try it. Does it work?

 You can also add other echo statements for CFLAGS and LINUX86_GCC. This is a handy
method to debug your makefile.

 Close your makefile when finished.

 Lab05c_x86_configuro

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 11

Lab05c_x86_configuro
Part C – Using Configuro ….

In this part, we will use the Configuro tool to consume a package delivered by TI. This package
will allow us to use the System_printf() command found in app.c. Because content is delivered
by TI and 3rd parties as “packages”, it is important to understand the basics of using Configuro.

31. Copy makefile from your previous lab directory to the new lab directory.

 From the lab05ab_basic_make/app directory, type:

cp makefile ../../lab05c_x86_configuro/app

 This should copy your makefile to the next lab’s directory.

32. Change directories to /labs/lab05c_x86_configuro/app directory.

 This is the working directory for Part C of the lab. Do a listing of this directory. You’ll see
the following files:
• app.c – updated to use System_printf()
• app_cfg.cfg – config file used by Configuro
• app.h – a header file that app.c depends on
• COPY_AND_PASTE.mak – where you will copy/paste some items from
• makefile – the makefile you copied from the previous lab
• ../../setpaths.mak – this file specifies all of the tools paths; it’s located

 two levels above your current working directory

33. Open app.c and study its contents.

 app.c contains a header file (app.h) that provides us with the “year” – just a little concoction
to use a header file. Also, notice the use of System_printf() and the include of the
runtime system header file. Close app.c.

34. Open app_cfg.cfg.

 This is the config file used by Configuro. Notice that it has one line of code that uses the
xdc.useModule to specify the module and package we want to consume. Close
app_cfg.cfg.

35. Open app.h.

 This simple header file creates an integer variable for the current year (int YYYY) which
prints into stdout when we run the application.

Lab05c_x86_configuro

Lab 05 - 12 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

36. Open setpaths.mak and browse the contents.

 Migrate up two levels to the labs directory. Open setpaths.mak and browse the
contents. Notice all of the specific path names for all of the tools. This is a similar file that
you will need in your application – although some paths may need to change depending on
your configuration.

 What is the variable name of the path to the Linux 86 gcc compiler? ___________________

 What is the variable name of the path where the Linux 86 tools are installed? ___________

 Close the file and return back to lab05c_x86_configuro/app directory.

37. Add setpaths.mak and CC_ROOT to your makefile.

 Near the top of your makefile, change the –include to the following:

–include ../../setpaths.mak

 Remove or comment out the reference to path.mak.

 Configuro will need the ROOT path to where the Linux 86 tools are installed. Under the
heading for “user-defined vars”, add the following variable:

CC_ROOT := $(LINUX86_DIR)

38. Add the Configuro variables to your makefile.

 Open COPY_AND_PASTE.mak file in your favorite editor and also open your makefile
in the same editor. In COPY_AND_PASTE.mak, find the first comment field for “Configuro
vars”. Copy this whole section (including the comments) and paste it into your makefile
just beneath the section titled “User-defined Vars”.

 Let’s briefly review what each of these variables are used for:
• CONFIG : output directory for files generated by Configuro, e.g. compiler.opt:

also, used to specify part of .cfg filename
• XDCROOT : root directory for where XDC tools are installed
• CONFIGURO : location of the Configuro tool
• XDCPATH : path containing all packages we want to consume;

export makes this variable available to commands run in the shell, for
example, Configuro

• TARGET : specifies the target, e.g. Linux86 in this case
• PLATFORM : specifies the platform – in our case, the PC – later it will be the

DM6446, OMAP, or AM3517 target boards

Device
Specific

 Lab05c_x86_configuro

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 13

39. Add rule to delete implicit compilation rules.

 Copy “deletion of implicit rules for object file” section and paste it into your makefile
just beneath “Configuro Vars” (what you just copied in the previous step.)

 The code we’re copying is:
 %.o : %.c

 When this code is used by itself, it erases the previously defined rule for building .o files. It
seems that make won’t read our .o rule correctly (further down in the file) if we don’t erase
the implicit rule for it.

Sidebar – Implicit Rules
 From gnu.org:

 Implicit rules tell make how to use customary techniques so that you do not have to specify them in detail
when you want to use them.

 Since we have created our own customized .o rule, we don’t want a conflict with the implicit
rule. In fact, many users so dislike implicit rules that they cancel them all. The method we
used here works well for cancelling a rule or two, but to eliminate them all, the
 ‘-r’ or ‘--no-builtin-rules’ option cancels all predefined rules.

40. Add .PRECIOUS directive to prevent removal of intermediate files.

 By default, gMake will remove intermediate files it uses during the build process. Well,
Configuro creates compiler.opt and linker.cmd files and places them in a directory.
We don’t want gMake to erase these files (because we might want to inspect them later).

 .PRECIOUS directive tells gMake NOT to remove these files. In COPY_AND_PASTE.mak,
copy the section named “always keep these intermediate files” and paste it into your
makefile just beneath “deletion of implicit rules for object file”.

41. Add linker.cmd and compiler.opt to the .x and .o rules.

 Configuro creates two files: compiler.opt and linker.cmd as inputs to the compiler
and linker respectively. These files need to be added to the .x and .o rules along with the
$(CONFIG) directory (that’s where Configuro put them).

 In the .x rule of your makefile, add the following dependency:

$(CONFIG)/linker.cmd

 In the .o rule, add the following dependency:

$(CONFIG)/compiler.opt

 Also, in the .o rule, just before the “-c” on the command line, we need to add the following:

$(shell cat $(CONFIG)/compiler.opt)

 This command places the contents of compiler.opt on the command line.

Lab05c_x86_configuro

Lab 05 - 14 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

42. A little quiz to keep things interesting (and to break the flow a little…)

 Study the .o rule for a moment. Look at the command that contains $(CC). Just after the –c
on this line, you should see a $< to indicate first dependency only. And, if you use $^ to
indicate both dependencies, gMake will fail. Explain:

 Now look at the .x rule. Study the command that contains $(CC). Notice that this time we
use $^ (or you should have from before based on the discussion material) to indicate both
dependencies. If you use $<, gMake will not produce the proper output. Explain:

 Lab05c_x86_configuro

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 15

43. Add the Configuro Rule.

 Well, we’re almost done. We now need to add the rule for Configuro to create the
linker.cmd and compiler.opt files based on the input file app_cfg.cfg.

 In COPY_AND_PASTE.mak, copy the section named “Configuro Rule (.cfg)” and paste it
into your makefile just above the clean rule.

 Let’s examine what each line of code does:

%/linker.cmd %/compiler.opt : %.cfg

 There are two targets in this rule – linker.cmd and compiler.opt (which will be
located in the /app_cfg directory). These targets depend on a config file (.cfg). The
pattern substitution symbol (%) is used to represent “app_cfg”.

 The command line of this rule runs the Configuro tool with all of the necessary inputs as
described in the discussion material.

 The last little rule (%.cfg) is there just in case a .cfg file is missing. If so, gMake would
crash. So, if it doesn’t exist, we create an empty file so gMake won’t crash. Your output
won’t work, but at least gMake won’t bomb.

 Add one more step to the “clean” rule to remove Configuro’s intermediate files.

 In your makefile, add the following command to your clean rule:

rm –rf $(CONFIG)

44. Time to test your new makefile.

 Run gMake by typing: make

 You might see a warning of some kind – just ignore this for now. Run the executable. Did it
work? If not, debug your problem and re-build/run.

 The only two other rules are “clean” and “test”. Try them both.

45. What other functions are in the system package?

 Open the header file to see what other functions are provided in the system package:

$(XDC_INSTALL_DIR)/packages/xdc/runtime/System.h

Where XDC_INSTALL_DIR is:

DM6446: /home/user/dvsdk_2_00_00_22/xdctools_3_10_03
OMAP35x: /home/user/ti-dvsdk_omap3530-evm_4_00_00_17/xdctools_3_16_03_36
AM3517: /home/user/ti-dvsdk_omap3530-evm_4_00_00_17/xdctools_3_16_03_36

 As many of you experienced programmers already know, the appropriate header file is a good
place to find this type of information.

Device
Specific

Lab05c_x86_configuro

Lab 05 - 16 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

Page left intentionally blank.

 Lab05d_standard_make

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 17

Lab05d_standard_make
Part D – Analyzing TI’s Standard Makefile

The authors of this workshop have developed a “one size fits all” makefile for generating
executables for the rest of the workshop. Of course, if you adopt this makefile back at work, you
might have to change paths (in setpaths.mak), or alter some of the options (such as the targets or
platforms) all depending on what you’re doing. However, this solution is a pretty robust.

46. Introducing the parent and child makefiles.

 We have actually developed a set of two makefiles (the parent – called makefile; and the
child – called makefile_profile.mak). Here are just a few highlights of the overall
capabilities of these makefiles:
• They can build using two different profiles: debug and release
• These makefiles build for the ARM target on the EVM. An install rule exists that

automatically copies the executables to the proper directory on the EVM so that you can
run via the Tera Term terminal.

• Full “clean” rule is provided.
• They handle dependencies (i.e. header files) from all .c files and any consumed packages.
• The parent takes the input from the command line and invokes the child with the proper

profile and settings.
• There are also a few debug features built in to help find make script errors.
• The child does most all of the work - dependencies, configuro, .x and .o rules.

 In this section (Part D), we only cover the use of these files. The next section (Part E –
Challenge) encourages you to open up these files and learn more about their mechanics – but
only if time permits.

47. Change to the lab05d_standard_make/app directory and list the files.

 Everything should look very similar – same .c and .h files, app_cfg.cfg, etc. However,
there are two makefiles: makefile is the PARENT; makefile_profile.mak is the CHILD.
When you run make, makefile calls makefile_profile.mak. The main reason for having
two files is to handle different profiles – debug and release. Otherwise, there would be a ton
of duplicated code.

cd ~/labs/lab05d_standard_make/app

Lab05d_standard_make

Lab 05 - 18 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

48. Let’s see some of the features of these make files by running them.

 Let’s start out easy and just make the debug profile:

make debug

 Watch the screen. There is a LOT of information NOT being displayed. By designing the
files the way we did, we tried to make the output look simple and uncluttered. We’ll see how
to turn on ALL the info in a few steps. List the contents of the directory again. Do you see
app_debug.xv5T? If so, make worked. (To repeat ourselves once again, in the next
(optional) section – time permitting – you will open these files and browse their contents.)

Note: Our executable programs use file extensions to differentiate between different target
processors. While Linux doesn’t require file extensions, this is a convenient way to allow
several to co-exist, as well as just simply tell them apart.

.x86U - Linux x86
.x470MV - DM6446 ARM9 (using MontaVista toolchain)
.xv5T - OMAP35x/AM35x (using Code Sourcery toolchain)

49. Perform a “make clean” and observe the messages on the screen.

50. Using “help”.

 The authors built in some “help” information. Try:

make help

 Peruse what just flashed before your eyes. These tips help you understand HOW to run this
make file properly.

51. Make “all”.

 Type:

make all

 The all rule builds both the release and debug versions of the application. When gMake is
done, you should see two executables: app_debug.xv5T and app_release.xv5T. You can’t
run these on an x86 PC, but next we will install them to the EVM so that we can run them to
test if they are working properly.

52. Make “install”.

 Run a “make clean” first, then try:

make install

 Executing just the install rule will automatically create the debug version of the application
and install them to /opt/workshop directory on the EVM (which is
/home/user/targetfs/opt/workshop within Ubuntu Linux). If you don’t have a terminal
open, open a terminal to the EVM using Tera Term. Log in as “root” and change to the
/opt/workshop directory. Do you see the two executables?

Device
Specific

Device
Specific

 Lab05d_standard_make

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 19

53. Run the debug executable.

 Verify the debug executable works. You will need a “./” in front of the filename for the
target board’s Linux to recognize the filenames.

ll (lowercase LL – is an alias for ls –l)

./app_debug.xv5T

54. Let’s turn on some debug stuff…

 The parent makefile allows you to specify debugging commands on the command line. Let’s
try two of the built-in “TELL ME EVERYTHING” switches.

 First, do a “make clean”. Then, to allow gMake to echo each command it is asked to execute
set “AT=” nothing on the command line:

make clean

make debug AT=

 Looks different, eh? Well, when (and if) you should NEED to view that information, this
trick overrides the AT variable which is normally set to @.

 Do another “clean”. There is also a “DUMP” switch that will output what each variable is set
to (using gMake’s $(warning) function), along with some other debug information. Trying it:

make clean

make debug DUMP=1

55. Check to verify that the dependencies rule is working correctly.

 To verify the dependencies rule is working, first ensure everything is up-to-date by building
with debug once again; then touch app.h, then try building again. If it runs the compiler the
second time, it’s working properly.

make debug

touch app.h

make debug

 Did gMake run gcc after app.h was touched (i.e. changed)? __________________________

 __

Device
Specific

Lab05e_optional_challenge

Lab 05 - 20 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

Lab05e_optional_challenge
Part E – OPTIONAL – CHALLENGE – Analyzing the Details of the Makefiles

This optional lab takes you through some of the details of the two makefiles. At some point, if
you decide to use these makefiles for your own builds, you’ll need the information below. There
are also some excellent references online to help you learn more about gMake.

Some great resources are:
http://www.gnu.org/software/make/manual/make.html
http://www.delorie.com/gnu/docs/make/make_toc.html
www.nso.edu/general/computing/TeX/local/texinfo/gmake/Top.html

And there are many many more – just Google gmake and see what pops up.

56. Browse the contents of the parent makefile: lab05d_standard_make/app/makefile.

 Open makefile with a text editor:

gedit makefile &

 We decided to use two makefiles to handle different profiles – these being “debug” or
“release”. If we only used one file to handle both profiles (and you could have more profiles
than just two), you would end up repeating many of the rules and commands for each profile.
So, instead of repeating this code over and over, we chose to let the parent (makefile) to call
the child (makefile_profile.mak) with the appropriate profile setting. Thus, the parent
makefile formats the users request, then passes it onto the child makefile which contains the
script to execute the detailed commands.

 You’ll also notice that the parent makefile contains a lot of echos/warnings to provide help as
well as make gMake progress look clean and useful. You may or may not like the fancy
syntax – and can change it to suit your needs if you apply it to your own projects back home.

 Let’s take a brief look at the parent makefile (named makefile) – from top to bottom.
A. The AT variable helps us turn on/off echos from gMake. The default is to NOT echo all

the commands that gMake spits out. You can leave this as is for a cleaner output – you
can change it to “AT := “ in makefile – or, on the command line, use “make debug
AT = “ to change its value. As you go down into the file, you’ll see how “AT” is used.

B. gMake’s filter function determines if you added “install” on the a command line, if so,
then it’s passed to the child makefile via the $(INSTALL) variable.

C. Being the 1st rule found, the “all” rule runs if no target is specified on the command line.
D. If no targets are specified along with “install”, we build both debug and release profiles.
E. Under the “Rules” heading, look at debug and release. We use the –f to call the child

makefile (makefile_profile.mak), the INSTALL variable, and the profile (debug or
release).

F. The “clean” rule sends the child the “clean” goal along with the profile.
G. The rest of the file contains the “help” rule – that tells you how to use this makefile.

 Lab05e_optional_challenge

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 21

makefile (i.e. “parent” makefile)
--
makefile Version 1.0 Date: SEPT-29-2008 (edited to fit this page)

Use:
- this is the PARENT makefile to makefile_profile.mak. You can specify any
child and run gMake with the proper options.
--

AT: Used for debug purposes, it hides commands for a prettier output.
When debugging, you can set this to nothing on the make command line.

AT := @

--------- INSTALL: See description from 'help' below ----------

ifeq ($(filter install,$(MAKECMDGOALS)),install)
 INSTALL := install
else
 INSTALL :=
endif

----------------- Rules ----------------------

.PHONY : all debug release clean install help

all : debug release

ifeq ($(MAKECMDGOALS),install)
 install : debug release
 @echo "Install was called without other targets, so both 'debug' and 'release' were built"
else
 install :
 @echo
endif

debug :
 $(AT) make -f makefile_profile.mak $(INSTALL) PROFILE=DEBUG | grep –v -F make[1]
 @echo "Done building 'debug'" ; echo
release :
 $(AT) make -f makefile_profile.mak $(INSTALL) PROFILE=RELEASE | grep -v -F make[1]
 @echo "Done building 'release'" ; echo
clean :
 @ echo "---- Cleaning up files for $(firstword $(MAKEFILE_LIST)) -----"
 $(AT) make -f makefile_profile.mak clean PROFILE=DEBUG | grep -v -F make[1]
 $(AT) make -f makefile_profile.mak clean PROFILE=RELEASE | grep -v -F make[1]
help :
 @echo "This makefile serves as a 'parent' (or master) makefile. That is, it calls another makefile
 @echo "called 'makefile_profile.mak'. If the child makefile is called directly, it will build only
 @echo "one profile (by default, it builds the 'DEBUG' profile). This parent makefile allows
 @echo "you to easily build for multiple profiles with a single invocation.
 @echo
 @echo "The goals allowed by this makefile are: all, debug, release, clean, install, help
 @echo
 @echo " debug: calls the child makefile with the "DEBUG" profile “
 @echo "release: calls the child makefile with the "RELEASE" profile “
 @echo " all: calls the child makefile twice, once with "DEBUG", then with "RELEASE”
 @echo " clean: calls the child makefile twice to clean both debug and release “
 @echo "install: adds the 'install' goal to the child makefile's target, then calls child. Install”
 @echo " will make BOTH profiles (release and debug) and install them to the DVEVM “
 @echo
 @echo "To DUMP additonal makefile variables, use 'DUMP=1' when you run make."

Overall, the parent simply handles the profiles and calls the child based on the goals listed
when you invoke make. The child really does all the work to build the executables.

Step 56b

If “install” is specified on
the command line, then
we set the INSTALL

variable, otherwise leave
it blank.

Step 56a

Debug variable AT. By
default, it’s set to “@”.

It is used to prevent
commands being echoed

Step 56d

If only “install” is
specified as a target,
then both debug and

release are built (similar
to call “all install”.

Step 56e and f

Step 56g

Step 56c

“all” rule – first in line
makes it the default rule

Note:
The makefile shown in print is the one included with
the DM6446 lab exercises. There are a few minor
differences in the OMAP/AM35 makefiles.

Lab05e_optional_challenge

Lab 05 - 22 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

57. Open the child (makefile_profile.mak) which is called by the parent (makefile).

 Makefile_profile.mak builds for the ARM9 target – however, other targets could easily be
supported (with a little tweaking). The parent makefile passes the “PROFILE” (release and/or
debug) and “INSTALL” variables to the child make file which performs the appropriate
commands based on these parameters. All dependencies (e.g. header files) are handled by the
dependency rule. The child uses Configuro to consume packages delivered by TI or 3rd
parties (similar to how you wrote a previous part of this lab). All tools paths are specified in
setpaths.mak, which is located in the labs directory (two levels above app).

 In the following steps, we’ll look at the main pieces of the child makefile to understand how
it works. We’ll do this chronologically from the top of the file to the bottom. Not every piece
will be covered in detail, so referencing the links provided earlier may help you understand
gMake even better.

gedit makefile_profile.mak &

58. “Early” Include file – setpaths.mak.

 Near the top of profile_makefile.mak, you’ll notice we included setpaths.mak. If you
don’t remember what is contained in this file, feel free to open it up and view its contents.

 Files are included in two spots in this make script: early and late. In our case, we need the
paths defined early on, otherwise a number of references would fail.

 Conversely, if we include dependency (.d) files right away, that generates an error; therefore,
we include these towards the end of the file.

59. User-defined variables – for the Compiler.

 Under the comment banner“User-defined Variables”, you’ll see the standard variable types
that we used earlier, but notice that there are now two versions of compiler flags:

− debug (e.g. DEBUG_CFLAGS)
− release (e.g. RELEASE_CFLAGS)

 Again, the parent passes the value of $(PROFILE) to the child at which point it’s the child’s
responsibility is to build the executable program. You’ll notice we need two sets of CFLAGS
– one for each profile.

 The standard CFLAGS and LINKER_FLAGS variables have been modified to appropriate
flags needed to build ARM9 programs.

Note: If makefile_profile.mak was called without defining PROFILE, then it defaults to
debug. A little later in this file we actually set PROFILE:=DEBUG to defines its default
value.

 Lab05e_optional_challenge

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 23

makefile_profile.mak (i.e. ”child” makefile)
**

makefile_profile.mak Version 1.0 Date: SEPT-29-2008

Revisions:
- (v0.80) First "standard" GNU makefile for DaVinci Workshop
used in workshop versions 1.30 (beta's 1 & 2)
- (v1.00) Used for DaVinci Workshop (production version 1.30)

Use:
- Called by parent makefile named "makefile"
- Can be called directly using gMake's -f option; refer to the syntax used
by the "parent" makefile to invoke this make file
- Currently builds for ARM9 target, however other targets can be supported.
- User can specify PROFILE (either debug
or release or all) when invoking the parent makefile
- All dependencies (e.g. header files) are handled by the dependency rule
- Uses Configuro to consume packages delivered by TI
- All tools paths are specified in setpaths.mak located two levels above /app

**

(Early) Include files

setpaths.mak includes all absolute paths for DaVinci tools
and is located two levels above the /app directory.

-include ../../setpaths.mak

User-defined vars

AT: - Used for debug, it hides commands for a prettier output
- When debugging, you may want to set this variable to nothing by
setting it to "" below, or on the command line

AT := @

Location and build option flags for gcc build tools
- MONTAVISTA_DEVKIT is defined in setpaths.mak
- CC_ROOT is passed to configuro for building with gcc
- CC is used to invoke gcc compiler
- CFLAGS, LINKER_FLAGS are generic gcc build options
- DEBUG/RELEASE FLAGS are profile specific options

CC_ROOT := $(MONTAVISTA_DEVKIT)/arm/v5t_le
CC := $(CC_ROOT)/bin/arm_v5t_le-gcc

CFLAGS := -Wall -fno-strict-aliasing -march=armv5t -D_REENTRANT \
 -I$(MONTAVISTA_DEVKIT)/arm/v5t_le/include
LINKER_FLAGS := -lpthread

DEBUG_CFLAGS := -g -D_DEBUG_
RELEASE_CFLAGS := -O2

Step 59

Along with the build flags
for ARM9 gcc, we see
there are two sets of

flags associated with our
“profile” choices (debug,

and release).

Step 58

Need to include our tool
paths. They are defined in
setpaths.mak and located

such that this file is
common for all labs.

Lab05e_optional_challenge

Lab 05 - 24 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

60. Creating arrays of C, object and dependency files.

 Inspect the five lines of code that start with C_SRCS. The goal here is to create an array of
object files and dependency files based on the existing C files in the current directory. So, we
first create an array of .c files (C_SRCS) using gMake’s wildcard function. Once we have this
array, we can create a corresponding array of object files – C_OBJS – use two additional
gMake functions (subst and addprefix). Similarly, we also use C_SRCS to create the array of
dependency files – C_DEPS.

 Note, you’ll see these variables being used further down in the child makefile.

61. Inspecting the Configuro variables.

 The next section should look familiar. You either wrote or copied this code in a previous part
of this lab. To review, these are the variables that will be used in the Configuro rule later in
the child makefile.

62. Project specific variables.

 Rather than hardcoding the program name, configuration filename, and profile, they have
been created as variables. This should make it easier to adapt the makefile’s for other
programs/projects.

63. Understanding PRECIOUS.

 Scroll down a small amount and find the directive .PRECIOUS. This might be new to you, so
let’s explain it briefly. gMake, by default, deletes intermediate files unless you tell gMake not
to. So, for instance if file1.c is used to build file2.o which is used in the final step to build
file3.x470MV, then gMake may delete file2.o UNLESS you tell it not to. In our case, we
don’t want gMake to remove the C_OBJS array or the linker.cmd and compiler.opt files that
Configuro creates. So, we use the .PRECIOUS directive to say “please DO NOT delete these
files”.

64. Deleting implicit rules for object files.

 gMake has implicit rules – i.e. if you don’t tell it exactly what to do, it performs its own
implicit rules. You could create a makefile with no rules, or rules with no commands, etc. So,
we are just being a bit conservative here and telling gMake NOT to use any implicit rules for
.o files. If you want to learn more about implicit rules, commands, etc., refer to the links
provided earlier.

 Lab05e_optional_challenge

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 25

makefile_profile.mak (cont’d 2)

C_SRCS used to build two arrays:
- C_OBJS is used as dependencies for executable build rule
- C_DEPS is '-included' below; .d files are build in rule #3 below

Three functions are used to create these arrays
- Wildcard
- Substitution
- Add prefix

C_SRCS := $(wildcard *.c)

OBJS := $(subst .c,.o,$(C_SRCS))
C_OBJS = $(addprefix $(PROFILE)/,$(OBJS))

DEPS := $(subst .c,.d,$(C_SRCS))
C_DEPS = $(addprefix $(PROFILE)/,$(DEPS))

Configuro related variables

- XDCROOT is defined in setpaths.mak
- CONFIGURO is where the XDC configuration tool is located
- Configuro searches for packages (i.e. smart libraries) along the
path specified in XDCPATH; it is exported so that it's available
when Configuro runs
- Configuro requires that the TARGET and PLATFORM are specified
- Here are some additional target/platform choices
TARGET := ti.targets.C64
PLATFORM := ti.platforms.evmEM6446
TARGET := gnu.targets.Linux86
PLATFORM := host.platforms.PC

XDCROOT := $(XDC_INSTALL_DIR)
CONFIGURO := $(XDCROOT)/xs xdc.tools.configuro
export XDCPATH:=/home/user/rtsc_primer/examples;$(XDCROOT)
TARGET := gnu.targets.MVArm9
PLATFORM := ti.platforms.evmDM6446

Project related variables

PROGNAME defines the name of the program to be built
CONFIG: - defines the name of the configuration file
- the actual config file name would be $(CONFIG).cfg
- also defines the name of the folder Configuro outputs to
PROFILE: - defines which set of build flags to use (debug or release)
- output files are put into a $(PROFILE) subdirectory
- set to "debug" by default; override via the command line

PROGNAME := app
CONFIG := app_cfg
PROFILE := DEBUG

----- always keep these intermediate files ------

.PRECIOUS : $(C_OBJS)
.PRECIOUS : $(PROFILE)/$(CONFIG)/linker.cmd $(PROFILE)/$(CONFIG)/compiler.opt

--- delete the implicit rules for object files --

%.o : %.c

Step 61

Configuro related
variables: 2 tool paths;

search path; and,
target/platform def’s

Step 60

Array of source files to
build; plus the object and
dependency files derived
from the C files in this

directory

Step 62

Name of program to build

Name of Configuro .cfg
file

Default profile name

Step 64

FWIW, we like
explicit rules

Step 63is Precious

Lab05e_optional_challenge

Lab 05 - 26 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

65. Default rule.

 Being the first rule listed in the file, Default_Rule becomes the, ahem, default rule. Notice,
this rule depends upon the ARM executable program we really want to build.

 When this rule runs, it generates a single, empty line (from the echo command). Therefore,
even when all the dependencies are up-to-date and nothing needs to be built, this makefile
will generate at least one blank line. This may seem like an odd point, but the parent makefile
would show an error if there wasn’t anything written to stdio.

66. Build executable.

 The next rule builds the final executable – either the DEBUG profile, the RELEASE profile.
This part should look pretty familiar to you based on previous sections of this lab.

 Notice the use of PROFILE as a variable. If we’re building both debug and release, we’ll do
this rule twice in order to build both executables. (That is, both can be built, but only by the
parent makefile calling makefile_profile.mak for each profile.)

 Having to manage PROFILES (debug and release) is made much easier by using two
makefiles. Otherwise, you have a lot of duplicate code in a single makefile. (Actually, our
first attempt was to do it in one file – and it was VERY long – intimidating – so, we decided
to have one makefile call another – and, in a way, it taught us the concept of multiple –
recursive – makefiles.)

 As a side-note, we found it helpful to see a “count down” in the build output to the finish.
What does that mean? In the echo statements, you’ll see a “1. ----- …”, “2. ---- …” etc, that
provides an indication of how far gMake still has to go until it is finished. So, the last step –
building the executable – is actually “1”. The first step is actually “4”. So, when you build
using these makefiles, you’ll see the echo statements reflect 4…3…2…1… and then it
finishes. This is not necessary for the build – it just makes the information output to the
stdout window easier to read.

67. Object File Rule.

 The .o rule should also look familiar. Nothing new here except for the PROFILE variable.

 The PROFILE variable here represents the subfolder we are placing our intermediate files
into. This is done so that we don’t overwrite our debug variables when building release, and
vice-versa.

 The key to understanding this target:dependency rule is to follow the %:

$(PROFILE)/%.o : %.c $(PROFILE)/$(CONFIG)/compiler.opt

 That is, just remember that % represents a substitution symbol. So, if I have a source file
named:

bar.c

 Then (when building for debug) I’ll end up with a target object file named:

DEBUG/bar.o

 While this might be obvious so many of you, it’s a common question we get asked regarding
this rule.

 Lab05e_optional_challenge

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 27

makefile_profile.mak (cont’d 3)

Targets and Build Rules

--
Default Rule

- When called by the "parent" makefile, being the first rule in this
file, this rule always runs
- Depends upon ARM executable program
- Echo's linefeed when complete; this target was added to
prevent the parent makefile from generating an error if the
ARM executable is already built and nothing needs to be done
--
Default_Rule : $(PROGNAME)_$(PROFILE).x470MV
 @echo

--
1. Build Executable Rule (.x)

- For reading convenience, we called this rule #1
- The actual ARM executable to be built
- Built using the object files compiled from all the C files in
the current directory
- linker.cmd is the other dependency, built by Configuro
--
$(PROGNAME)_$(PROFILE).x470MV : $(C_OBJS) $(PROFILE)/$(CONFIG)/linker.cmd
 @echo; echo "1. ----- Need to generate executable file: $@ "
 $(AT) $(CC) $(CFLAGS) $(LINKER_FLAGS) $^ -o $@
 @echo "Successfully created executable : $@ "

--
2. Object File Rule (.o)

- This was called rule #2
- Pattern matching rule builds .o file from it's associated .c file
- Since .o file is placed in $(PROFILE) directory, the rule includes
a command to make the directory, just in case it doesn't exist
- Unlike the TI DSP Compiler, gcc does not accept build options via
a file; therefore, the options created by Configuro (in .opt file)
must be included into the build command via the shell's 'cat' command
--
$(PROFILE)/%.o : %.c $(PROFILE)/$(CONFIG)/compiler.opt
 @echo "2. ----- Need to generate: $@ (due to: $(wordlist 1,1,$?) ...)"
 $(AT) mkdir -p $(dir $@)
 $(AT) $(CC) $(CFLAGS) $($(PROFILE)_CFLAGS) \
 $(shell cat $(PROFILE)/$(CONFIG)/compiler.opt) -c $< -o $@
 @echo "Successfully created: $@ "

Step 66

An executable rule,
similar to early parts of

this lab.

We’ve only added profile
(i.e. path) variables (and
a few comments) to the

.x rule

Step 65

Default_Rule is the
default rule … wait do I

hear an @echo here?

Step 67

Similar to the .x rule,
we’ve added profile/path

vars to the .o rule

Lab05e_optional_challenge

Lab 05 - 28 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

68. Handling C File Dependencies.

 This part of the makefile may be new to you. We discussed it in the chapter, but not in full
detail.

 This rule uses the compiler to create a dependency (.d for dependency) file which
corresponds to each .c file in the current directory. What does the .d file contain? A list of
dependencies (i.e. header files) referenced by the .c file.

 These .d files helps gMake do what it’s good at, trigger the rule to run if any of the dependent
files are newer than the target. It is common to miss including header files as dependencies
for .c targets; using the compile to generate this information is a great solution to the
problem.

 The -MM gcc option is used to tell the compiler to capture this dependency information, rather
than compiling the file. We still provide it the same flags and files, though, just as if we were
compiling the file.

 In our rule, we pipe the outputs of the gcc –MM command into a file. We then format the
compiler’s output using a gMake macro (format_d). We adapted a set of commands – found
on various gMake related websites – that reformat this list of dependency files into a gMake
rule. For example, app.o depends on app.h (along with any other header file listed in app.c).

 When gMake runs these rules, it checks the dates on the header files to see if any are newer
than the corresponding .o file.

 In the format_d macro (found near the bottom of the file), you’ll see its command uses a
string “reformatting” tool – sed – which stands for “stream editor”. Sed is a convenient –
albeit cryptic - way to process text strings.

69. Config Rule(s).

 The Configuro rule should look familiar. Except for the PROFILE path, this should be nearly
what you added to your makefile in a previous part of the lab to run Configuro; and thus,
consume a package (e.g. for consuming the system_printf() function in app.c) .

 The only other change we made was to alter the information output when running Configuro.
We have made the Configuro output into a sort of quiet mode by piping them into a log file.
If, on the other hand, you want to see this information, you can set DUMP=1 on the
command line and all Configuro’s verbosity will be displayed.

 Finally, we added one last Configuro related command to prevent an error in the case where
our specified .cfg file doesn’t exist. The following command:

touch $(CONFIG).cfg

 prevents this error condition. If Configuro attempts to run without a .cfg file, an error causes
gMake to stop. So, when/if that case occurs, we create an empty config file using touch. This
shouldn’t hurt anything (unless you just forgot to provide the .cfg file), because Configuro
fires up, sees that you haven’t included any packaged content, and exits. Since we did not
specify .cfg files as PRECIOUS, this temporary, intermediate file is deleted by gMake (as per
it’s standard operating procedure).

 Lab05e_optional_challenge

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 29

makefile_profile.mak (cont’d 4)
--
3. Dependency Rule (.d)

- Called rule #3 since it runs between rules 2 and 4
- Created by the gcc compiler when using the -MM option
- Lists all files that the .c file depends upon; most often, these
are the header files #included into the .c file
- Once again, we make the subdirectory it will be written to, just
in case it doesn't already exist
- For ease of use, the output of the -MM option is piped into the
.d file, then formatted, and finally included (along with all
the .d files) into this make script
- We put the formatting commands into a make file macro, which is
found towards the end of this file
--
$(PROFILE)/%.d : %.c $(PROFILE)/$(CONFIG)/compiler.opt
 @echo "3. ----- Need to generate dep info for: $< "
 @echo " Generating dependency file : $@ "
 $(AT) mkdir -p $(PROFILE)
 $(AT) $(CC) -MM $(CFLAGS) $($(PROFILE)_CFLAGS) \
 $(shell cat $(PROFILE)/$(CONFIG)/compiler.opt) $< > $@

 @echo "Formatting dependency file: $@ "
 $(AT) $(call format_d ,$@,$(PROFILE)/)
 @echo "Dependency file successfully created: $@ " ; echo

--
4. Configuro Rule (.cfg)

- The TI configuro tool can read (i.e. consume) RTSC packages
- Many TI and 3rd Party libraries are packaged as Real Time Software
Components (RTSC) - which includes metadata along with the library
- To improve readability of this scripts feedback, the Configuro's
feedback is piped into a a results log file
- In the case where no .cfg file exists, this script makes an empty
one using the shell's 'touch' command; in the case where this
occurs, gMake will delete the file when the build is complete as
is the case for all intermediate build files (note, we used the
precious command earlier to keep certain intermediate files from
being removed - this allows us to review them after the build)
--
$(PROFILE)/%/linker.cmd $(PROFILE)/%/compiler.opt : %.cfg
 @echo "4. -- Starting Configuro for $^ (note, this may take a minute)"
 ifdef DUMP
 $(AT) $(CONFIGURO) -c $(CC_ROOT) -t $(TARGET) -p $(PLATFORM) \
 -r $(PROFILE) -o $(PROFILE)/$(CONFIG) $<
 else
 $(AT) mkdir -p $(PROFILE)/$(CONFIG)
 $(AT) $(CONFIGURO) -c $(CC_ROOT) -t $(TARGET) -p $(PLATFORM) \
 -r $(PROFILE) -o $(PROFILE)/$(CONFIG) $< \
 > $(PROFILE)/$(CONFIG)_results.log
 endif
 @echo "Configuro has completed; it's results are in $(CONFIG) " ; echo

--
The "no" .cfg rule

- This additional rule creates an empty config file if one doesn't
already exist
- See the Configuro rule comments above for more details
--
%.cfg :
 $(AT) touch $(CONFIG).cfg

Step 68

We’re depending on this
rule to make sure no
changes are missed

Step 69

Configuro, Configuro,
where art thou Configuro

The ifdef DUMP is used
to ‘quiet’ its output

The touch command
prevents an error for

programs that don’t need
a .cfg file (i.e. aren’t
using RTSC packaged

content)

Lab05e_optional_challenge

Lab 05 - 30 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

70. Build, clean and Install.

 Nothing here should surprise you. We could’ve just phoned this in.

 All we did here was to add echo’s to provide a bit more feedback during build.

 Lab05e_optional_challenge

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 31

makefile_profile.mak (cont’d 5)

"Phony" Rules

"all" Rule

- Provided in case the a user calls the commonly found "all" target
- Called a Phony rule since the target (i.e. "all") doesn't exist
and shouldn't be searched for by gMake

.PHONY : all
all : $(PROGNAME)_$(PROFILE).x470MV
 @echo ; echo "The target ($<) has been built."
 @echo

"clean" Rule

- Cleans all files associated with the $(PROFILE) specified above or
via the command line
- Cleans the associated files in the containing folder, as well as
the ARM executable files copied by the "install" rule
- EXEC_DIR is specified in the included 'setpaths.mak' file
- Called a Phony rule since the target (i.e. "clean") doesn't exist
and shouldn't be searched for by gMake

.PHONY : clean
clean :
 @echo ; echo "--------- Cleaning up files for $(PROFILE) -----"
 rm -rf $(PROFILE)
 rm -rf $(PROGNAME)_$(PROFILE).x470MV
 rm -rf $(EXEC_DIR)/$(PROGNAME)_$(PROFILE).x470MV
 rm -rf $(C_DEPS)
 rm -rf $(C_OBJS)
 @echo

"install" Rule

- The install target is a common name for the rule used to copy the
executable file from the build directory, to the location it is
to be executed from
- Once again, a phony rule since we don't have an actual target file
named 'install' -- so, we don't want gMake searching for one
- This rule depends upon the ARM executable file (what we need to
copy), therefore, it is the rule's dependency
- We make the execute directory just in case it doesn't already
exist (otherwise we might get an error)
- EXEC_DIR is specified in the included 'setpaths.mak' file; in our
target system (i.e. the DVEVM board), we will use /opt/workshop as
the directory we'll run our programs from

.PHONY : install
install : $(PROGNAME)_$(PROFILE).x470MV
 @echo
 @echo "0. -- Install $(PROGNAME)_$(PROFILE).x470MV to 'Exec Dir' --"
 @echo " Execution Directory: $(EXEC_DIR)"
 $(AT) mkdir -p $(EXEC_DIR)
 $(AT) cp $^ $(EXEC_DIR)
 @echo " Install (i.e. copy) has completed" ; echo

all, clean, install

A common set of phony
rules.

What does .PHONY
mean? Only that these

target names don’t
represent real filenames.

Phony just tells gMake
not to go looking for any
files named: all, clean, or

install.

Lab05e_optional_challenge

Lab 05 - 32 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

71. Macro: format_d

 As stated before, this macro reformats the list of dependency files (created by running the
compiler with the –MM option) into gMake rules. This allows make to verify that the
dependent files (i.e. header file) timestamps are not later than the .o files created from the .c
files that reference them. (Whew, that’s a mouthful.) In other words, when a header file gets
modified, you want the object (.o) file to be rebuilt.

 Here, as we’ve seen elsewhere, we use the DUMP variable to inject additional debugging
information. If DUMP exists, then we embed a $(warning) function into each .d file; this
warning shouts out whenever the .d file is read by gMake. You probably won’t need this, but
it helped us track down a bug or two.

72. Including C_DEPS.

 We include our .d files at the end of our make script, rather than the beginning. If we included
them at the same time that setpaths.mak was included, we would receive an error; this error
happens because we are including the array of files specified by C_DEPS, but that variable
wasn’t defined before setpaths.mak was included. Therefore, we’ve put it at the end of our
make file.

 As we’ve seen elsewhere gMake supports ifeq/endif conditional statements. The conditional
statement says, include all the .d files unless the MAKE GOALS include clean. (We don’t
need the dependency files when cleaning, as our clean rule doesn’t delete source files.)

 Since make will try to read the .d files on the first pass, before be build any of the targets, the
first time this include is run will likely result in an error. We can tell make to ignore this error
by using the “-“ symbol.

include foo # don’t ignore an error
-include foo # ignore an error if it occurs when running this command

 An odd, but handy aspect of gMake is that when an included file is updated during its
execution, it forces gMake to re-run the entire make script over from the beginning. So, even
if we get an (ignored) error the first time we run this include, once the .d files are created (by
our .d rule), the make file will be re-executed and our include should work this time around.

 One last little item to point out. The command:

-include $(C_DEPS)

 is run recursively. If you were to look back how C_DEPS was defined, you’ll notice we used
“=” rather than “:=”. This tells make we want this to be a recursive variable. This include
statement is a perfect example of why we want this. In most cases C_DEPS will hold a string
of filenames, e.g. “app.d foo.d … bar.d”. Due to the nature of recursive variables, our
single include command will end up acting like:

-include app.d
-include foo.d
…
-include bar.d

 Pretty darn handy, huh?

 Lab05e_optional_challenge

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake Lab 05 - 33

makefile_profile.mak (cont’d 6)

Macros

format_d

- This macro is called by the Dependency (.d) file rule (rule #3)
- The macro copies the dependency information into a temp file,
then reformats the data via SED commands
- Two variations of the rule are provided
(a) If DUMP was specified on the command line (and thus exists),
then a warning command is embed into the top of the .d file;
this warning just lets us know when/if this .d file is read
(b) If DUMP doesn't exist, then we build the .d file without
the extra make file debug information

ifdef DUMP
 define format_d
 @# echo " Formatting dependency file: $@ "
 @# echo " This macro has two parameters: "
 @# echo " Dependency File (.d): $1 "
 @# echo " Profile: $2 "
 @mv -f $1 $1.tmp
 @echo '$$(warning --- Reading from included file: $1 ---)' > $1
 @sed -e 's|.*:|2*.o:|' < $1.tmp >> $1
 @rm -f $1.tmp
 endef
else
 define format_d
 @# echo " Formatting dependency file: $@ "
 @# echo " This macro has two parameters: "
 @# echo " Dependency File (.d): $1 "
 @# echo " Profile: $2 "
 @mv -f $1 $1.tmp
 @sed -e 's|.*:|2*.o:|' < $1.tmp > $1
 @rm -f $1.tmp
 endef
endif

(Late) Include files

Include dependency files

- Only include the dependency (.d) files if "clean" is not specified
as a target -- this avoids an unnecessary warning from gMake
- C_DEPS, which was created near the top of this script, includes a
.d file for every .c file in the project folder
- With C_DEPS being defined recursively via the "=" operator, this
command iterates over the entire array of .d files

ifneq ($(filter clean,$(MAKECMDGOALS)),clean)
 -include $(C_DEPS)
endif

Step 71

If we sed it before, we’ll
say it again. We created

this macro to encapsulate
the formatting of the

file dependency info spit
out by gcc’s –MM option.

Sure, we could’ve just
put these lines of script
straight into our .d rule,

but: (1) it would have
looked messier; and (2)

we wouldn’t have had the
chance to try out gMake

macros …

Step 72

Lately, we’ve been making
some pretty mean .d files.

Seriously, here’s how our .d
files get included into our

build.

If we’re cleaning, we’re not
going to include them.

No worries if the .d files
don’t exist by the time we
execute this statement.

This is actually to be
expected. So, by adding
the “-“ before include,

we’re just telling make to
ignore any errors caused by

our “–include”

Lab05e_optional_challenge

Lab 05 - 34 DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake

makefile_profile.mak (cont’d 7)

Additional Debug Information

Prints out build & variable definitions
--
- While not exhaustive, these commands print out a number of
variables created by gMake, or within this script
- Can be useful information when debugging script errors
- As described in the 2nd warning below, set DUMP=1 on the command
line to have this debug info printed out for you
- The $(warning) gMake function is used for this rule; this allows
almost anything to be printed out - in our case, variables

ifdef DUMP
 $(warning To view build commands, invoke make with argument 'AT= ')
 $(warning To view build variables, invoke make with 'DUMP=1')

 $(warning Source Files: $(C_SRCS))
 $(warning Object Files: $(C_OBJS))
 $(warning Depend Files: $(C_DEPS))

 $(warning Base program name : $(PROGNAME))
 $(warning Configuration file: $(CONFIG))
 $(warning Make Goals : $(MAKECMDGOALS))

 $(warning Xdcpath : $(XDCPATH))
 $(warning Target : $(TARGET))
 $(warning Platform: $(PLATFORM))
endif

73. Print out build information.

 In the last part of the child make file, you’ll see a bunch of $(warning) statements. This is a
handy way to print out some information on gMake variables, which could make debugging
make easier. Looking at the file, you’ll see these warnings will only show up if you have
“DUMP=1” on the command line. (Alternatively, you could add the DUMP variable to the
make file itself, but since we shouldn’t need to debug this file anymore, defaulting to off is
probably better.)

DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver 6 - 1

Lab 6 - Using the ALSA Driver

Introduction
In Lab 6, we will inspect the first two labs (recorder and playback) and then stitch the input driver
to the output driver to create the loopthru application.

The labs demonstrate the Linux ALSA driver as well as basic file I/O. Labs 06a and 06b are
inspection labs. While Lab06c requires you to combine the previous two parts.
• Lab06a analyze the function calls necessary to record audio from line input to a file.
• Lab06b examines the function calls necessary to playback audio from a recorded audio file.
• Lab06c combines Lab06a and Lab06b into a single application that loops the audio from

input to output (i.e. audio loop-thru) without recording to a file. For an extra challenge,
advanced users may want to try to build lab06c without referring to the procedure.

Outline
Lab 6 - Using the ALSA Driver.. 6-1

Lab06a_audio_record... 6-2
File Management .. 6-2
File Inspection .. 6-3

main.c... 6-3
audio_thread.c .. 6-3
app_cfg.cfg... 6-4

Build and Run the application .. 6-5
DBG vs ERR .. 6-6

Lab06b_audio_playback... 6-7
File Inspection .. 6-7

audio_thread.c .. 6-7
Build and Run the Application ... 6-8
Questions about: audio_thread.c .. 6-9

Lab06c_audio_loopthru...6-10
What do we need to change? ...6-11
File Management ...6-13
Modify audio_thread.c...6-13
Build and Test..6-17

Lab06a_audio_record

6 - 2 DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver

Lab06a_audio_record
lab06a_audio_record

audio_thread.c

main.c

ALSA audio fprintf() to
/tmp/audio.raw

1. Inspect the source files in this application.
2. Build and run the application: Result: capture audio into a file: audio.raw.
3. Add a new DBG() statement and inspect how DBG/ERR macros work in the system.

Goal: Analyze the function calls necessary to record audio from
a line input to a file.
Inspection lab only.

Sound_read()

File Management
1. In VMware (Ubuntu), change to the following directory:

/home/user/labs/lab06a_audio_record/app

2. List the files used to build this application:

 __

 __

 __

 __

 Lab06a_audio_record

DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver 6 - 3

File Inspection
3. Use a text editor to examine the new files in this application.

 A number of text editors are available to you in Linux. You should use what you are
comfortable with. Probably the most user-friendly is gedit, invoked as:

gedit main.c

 Other popular editors are emacs and gvim.

main.c
 This is the entry point for the application. main() does the following:

• Creates a signal handler to trap the Ctrl-C signal (also called SIGINT, the interrupt
signal). When this signal is sent to the application, the audioEnv.quit global variable
is set to true to signal the audio thread to exit its main loop and begin cleanup.

• Calls the audio_thread_fxn() function to enter into the audio function.

• Upon completion of this function, the main routine checks – and reports – success or
failure returned from the audio function.

audio_thread.c

audio_thread_fxn()
 audio_thread_fxn() encapsulates the code required to run the audio recorder. The

lab06a_audio_recorder application is single-threaded, so the motivation for encapsulation
in this manner may not be initially obvious. We will see in labs 8a and 8b – when combining
audio and video in a multi-threaded program – why declaring this function (as opposed to
running everything from main) is useful.

 audio_thread_fxn utilizes the following:

• setup: DMAI method Sound_create() opens and configures the audio input driver.
Buffer_create allocates a RAM buffer to store the audio input, fopen() opens a file
(audio.raw) for recording.

• System(): In the thread create phase, you will see two system() calls that run amixer.
When you first use DMAI and do a Sound_create, you would think that this function
would turn on the LINE IN inputs. Well, after a week or so of struggling, the author
figured out that “you won’t get audio unless you run these two system commands”. So,
this is one piece that is NOT done by DMAI for you – there, you are forewarned. ☺

• while(): will execute until the envPtr->quit global variable is set to true.

• Inside the while() loop, Sound_read() is used to read data from the audio input driver
(ALSA) and fwrite() is used to write the data into a file.

• When the envPtr->quit variable is set to true (occurs when the user presses Ctrl-C in
the terminal) this capture (record) process exits and the application proceeds to the
cleanup phase before exiting.

Lab06a_audio_record

6 - 4 DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver

initMask
 It goes without saying, writing robust code – and debugging it – can be a tedious chore; it is

further exasperated when using printf() statements as the primary means of providing debug
information back to the programmer. To this end, we have employed an initMask to help keep
track of resources opened (and closed) during the program.

 The audio_thread_fxn() uses an initialization mask (initMask) to keep track of how many
resources have been opened and initialized. Each bit in the mask corresponds to a resource;
the bit positions in the initMask variable are #defined towards the top of the file.

/* The levels of initialization for initMask */
#define ALSA_INITIALIZED 0x1
#define INPUT_BUFFER_ALLOCATED 0x2
#define OUTPUT_FILE_OPENED 0x4

/* Only used to cleanup items that were initialized */
 unsigned int initMask = 0x0;

 When you OR the initMask with a #define'd value, the associated bit will get set in the
initMask variable. For example,

initMask = initMask | ALSA_INITITALIZED; // sets bit0 in mask variable

 initMask

 … 1

bit 31 bit 3 bit 2 bit 1 bit 0

 OUTPUT_FILE_OPENED INPUT_BUFFER_ALLOCATED

 This is useful so that if an error occurs, the application will not attempt to close or free
resources that were never opened or allocated. If you look down at the cleanup part of our
audio_thread.c, you’ll see how we used the initMask variable to accomplish this.

app_cfg.cfg
 This is the eXpress DSP Component (XDC) tool configuration file for the application. It

imports the Operating System Abstraction Layer (OSAL) module (required by DMAI) and
configures it for a Linux-only system.

 Lab06a_audio_record

DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver 6 - 5

Build and Run the application
4. Build and install the application using gMake, i.e. “make all install”.

 Make sure you are in the /app directory when you type “make…”.

5. Open a terminal to the EVM board. Log in and use the following terminal commands
to test your audio connection:

amixer cset name=’Analog Left AUXL Capture Switch’ 1

amixer cset name=’Analog Right AUXR Capture Switch’ 1

arecord –f cd | aplay –f cd

 The first two commands use the amixer (“ALSA mixer”) utility to enable left and right
channel capture. The final command uses the arecord (“ALSA recorder”) utility to capture
audio and, instead of sending to a file, uses a Linux process pipe to send the data to the aplay
(“ALSA player”) application. This will loop audio through the board. If you have a working
audio input and the board is connected to a speaker, you should hear the audio play over the
speakers. Press ctrl-c to quit.

 On arecord and aplay, the –f option lets you change the format:

Quality # Channels Bits Rate

default mono 8-bit 8 KHZ

cd stereo 16-bit 44.1 KHz

6. Execute loadmodules.sh.

 Navigate to /opt/workshop on the EVM board.

 Remember, loadmodules is a script that will insert some additional modules into the Linux
kernel – for example, CMEM.

7. Execute the ./app_DEBUG.xv5T application.

 The application is hard-coded (using a #define statement in audio_thread.c) to save the
audio data to the file /tmp/audio.raw.

 Execute the application.

8. Press Ctrl-C to exit the application.

 After a suitable amount of time press Ctrl-C in the terminal to exit from the application. You
can list the /tmp/audio.raw file with the –lsa options to see the size of the file and verify
that it has recorded properly:

ls –lsa /tmp/audio.raw

 Recall that a signal handler was placed in main.c to trap the SIGINT (Ctrl-C) signal. When
Ctrl-C is placed, this signal handler will execute, signaling the audio thread to exit its main
loop, proceed to cleanup, and then exit.

Lab06a_audio_record

6 - 6 DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver

9. Use the Linux aplay utility to confirm successful recording.

 Because this application saves the audio as a raw stream you may also check that the record
has operated properly using the aplay utility. On the EVM (i.e. in Tera Term):

aplay –c 2 –f S16_LE –r 44100 /tmp/audio.raw

DBG vs ERR
Let’s explore the debugging features we’re using in our lab files. We are using two macros
defined in the file debug.h. They are DBG() and ERR() – essentially, they are wrapper functions
around an fprintf() function.

10. Add a new debug statement to your file.

 In main.c, immediately after the signal handler function, add a DBG() statement:

// Set the signal callback for Ctrl-C

signal(SIGINT, signal_handler);

DBG("Registered SIGINT signal handler.\n");

11. Build (using “make all install”) and run both debug and release profiles on the
development board (EVM), comparing their outputs.

 Does your new statement show up in the terminal when you execute the program?

 Debug profile: Yes No ___

 Release profile: Yes No ___

12. Switch from DBG() to ERR(), then once again, build, run and compare both profiles.

 What is the difference between DBG and ERR? ___________________________________

 __

13. Either Delete the new ERR() statement, or switch it back to DBG().

 We don’t really need this statement, so feel free to remove it. On the other hand, if you want
to leave the new debugging statement, we recommend that you, at the very least, change it
back to a DBG() statement.

 Lab06b_audio_playback

DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver 6 - 7

Lab06b_audio_playback
lab06b_audio_playback

audio_thread.c

main.c

fscanf() from
/tmp/audio.raw ALSA audio

1. Inspect audio_thread.c and the associated helper functions.
Sound_write() from DMAI library writes audio buffer to audio driver.

2. Build and run the application.
3. Result: Audio in audio.raw is sent to the audio driver.

Goal: Analyze the function calls necessary to play back audio from
a recorded file to the driver.
Inspection lab only.

Sound_write()

File Inspection
audio_thread.c
14. In Ubuntu Linux (VMware PC), change to the directory:

/home/user/labs/lab06b_audio_playback/app

15. Use a text editor to examine audio_thread.c.

 Only audio_thread.c has changed from the lab06a_audio_record application. The other
files are unchanged. Let’s look at some of the differences:
• The ‘create’ part of the audio_thread_fxn() utilizes DMAI to:

− Uses the fopen() function call to open a file for playback.
− Sound_create and configure the audio output driver.
− The Buffer_create() function allocates a RAM buffer to store the audio data from the

input file before it is written to the audio driver.
• Inside the while() loop:

− fread() method is used to read audio data from the input file (/tmp/audio.raw)
− Sound_write() method is used to write the data to the ALSA driver.
− When the envPtr->quit variable is set to true, the loop exits. (This occurs when the

user presses Ctrl-C in the terminal.)
• Finally, review the “cleanup” phase, which runs right before exiting. (This basically

undo’s the steps in the create/setup phase).

Lab06b_audio_playback

6 - 8 DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver

Build and Run the Application
16. Build and install the application using gMake.

make debug install

 or

make install

17. Make sure that audio.raw was created properly.

 Navigate to /opt/workshop in the EVM board’s filesystem and list the contents of the /tmp
directory with the “-lsa” flags setting to verify that /tmp/audio.raw exists and has a greater
than zero filesize.

 The application is hard coded (using a #define statement in audio_thread.c) to read data
from the file /tmp/audio.raw. Note that the /tmp directory is located in the board’s
RAM. (All other directories reside on the host computer and are tied to the board’s filesystem
via the nfs file-sharing protocol.)

Note: If the EVM is reset or powered-off after running the lab6a_audio_record application,
the /tmp/audio.raw file will be erased from RAM memory.

If this happens, run “make install” again from the lab06a_audio_record directory to re-
install the audio recorder. Then run it once in either debug or release mode to re-record
the /tmp/audio.raw file

Finally, you can return to lab06b_audio_playback and run gMake to re-install the
playback utility.

18. Execute the ./app_DEBUG.xv5T application.

 The application should play back the audio that was recorded in lab06a_audio_record and
then exit. If you do not wish to hear all of the audio, press Ctrl-C to exit.

 Lab06b_audio_playback

DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver 6 - 9

Questions about: audio_thread.c

1. Which C structure (variable type and variable name) is used to set the audio input driver to
stereo, 44100 kHz using the ALSA driver?

 __

2. Which function call is used in the while() loop to read audio data from the EVM line input via
the ALSA driver? __

 __

3. In the while() loop there is an fread() function (similar to fwrite() function, lab06a).

For the file read (or write) function, a FILE pointer is the last parameter passed. What is the
purpose of the FILE pointer, and where does it come from? (In other words, what function is
used to generate valid FILE pointers from which read and write operations can be made?)

 __

 __

4. (Advanced) The Buffer_create() function call, by default, allocates a physically contiguous
DDR2 memory buffer. This is not the behavior of a standard malloc() call – which only
allocates virtually contiguous memory.

Which Linux module is used to provide the physically contiguous memory segments
allocated by this function call?

 __

 __

5. (Advanced) The Buffer_create() function call uses the above-mentioned Linux module to
allocate contiguous memory on a Linux system. On a DSP/BIOS system, the Buffer_create()
function would use DSP/BIOS MEM_alloc() function call instead of the aforementioned
Linux function.

How does the Buffer_create() function call know which of these function calls to make?
(Hint: How was the DMAI module imported into this project? Try looking in that file.)

 __

 (Note: While DSP/BIOS is not covered in this class, we added this question to show both the
versatality of the Codec Engine, as well as the ease-of-use configurability of RTSC modules).

Lab06c_audio_loopthru

6 - 10 DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver

Lab06c_audio_loopthru

In this lab, you will combine labs 06a and 06b into a single loopthru application. For an extra
challenge, advanced students may wish to see if they can accomplish this lab without
referring to the procedure.

lab06c_audio_loopthru

audio_thread.c

main.c

ALSA audio

Sound_read()

ALSA audio

1. Answer a few questions about the big picture (covered in the next few slides…)
2. Copy files from lab06b (playback) to lab06c (loopthru)
3. Make code modifications to stitch the record to the playback (covered in the

next few slides…).
4. Build, run. Result: audio is recorded (from ALSA input), copied from in ? out buffer,

then played back (to ALSA output).

Goal: Combine the record (lab06a) and playback (lab06b) into an
audio loopthru application.
Hey – YOU get to do this yourself (no more inspection stuff…)

Sound_write()

 Lab06c_audio_loopthru

DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver 6 - 11

What do we need to change?
Before we start copying, cutting, and pasting files and code, let’s think about what must be done
to get the loopthru lab to work.

• In Lab06a_audio_record, we used fwrite() to PUT (write) the audio data to the audio.raw
file. Which function was used to GET (read) the video data from the ALSA driver?

 GET audio data: __

 PUT audio data: fwrite() inputBuffer -> audio.raw ________

 Similarly, in Lab06b_audio_playback, we used the function listed below to PUT (write) the
data to the ALSA driver. Which function was used to GET (read) the audio data?

 GET audio data: __

 PUT audio data: Sound_write() outputBuffer -> hSound ______

• In this lab exercise, which two functions should be used to read/write data to the input/output

ALSA driver?

 Get audio data: __

 Put audio data: __

Lab06c_audio_loopthru

6 - 12 DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver

lab06a_audio_record
audio_thread.c

ALSA fwrite()

lab06b_audio_playback
audio_thread.c

fread() ALSA

lab06c_audio_loopthru

audio.raw audio.raw

Lab 6a
Which function gets an audio buffer?
Get data:

Put data:
fwrite() inputBuffer ? outFile

Lab 6b
Which function puts to the ALSA driver?
Get data:

fread() inputFile ? outputBuffer

Put Data:

lab06a_audio_record
audio_thread.c

ALSA fwrite()

lab06b_audio_playback
audio_thread.c

fread() ALSA

Lab 6a
Which function gets an audio buffer?
Get data:

Sound_read() inputFd ? inputBuffer

Put data:
fwrite() inputBuffer ? outFile

Lab 6b
Which function puts to the ALSA driver?
Get data:

fread() inputFile ? outputBuffer

Put Data:
Sound_write() outputBuffer ? outputFd

lab06c_audio_loopthru

audio.raw audio.raw

Lab 6a
Which function gets an audio buffer?
Get data:

Sound_read() inputFd ? inputBuffer

Put data:
fwrite() inputBuffer ? outFile

Lab 6b
Which function puts to the ALSA driver?
Get data:

fread() inputFile ? outputBuffer

Put Data:
Sound_write() outputBuffer ? outputFd

lab06a_audio_record
audio_thread.c

ALSA fwrite()

lab06b_audio_playback
audio_thread.c

fread() ALSA

lab06c_audio_loopthru

audio.raw audio.raw

For Lab06c:
Take the code from lab06b and copy to Lab06c.
Replace the fread() in Lab06b with the read() from Lab06a.

 Lab06c_audio_loopthru

DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver 6 - 13

File Management
18. Begin by copying all files from lab06b_audio_playback into lab06c_audio_loopthru

with the following:

cd /home/user/labs

mkdir –p lab06c_audio_loopthru

cp –R –f lab06b_audio_playback/* lab06c_audio_loopthru

 The mkdir “–p” option prevents an error if the directory already exists.

 The cp “-R” options says to recurse directories, while the “-f” option forces over write if the
file already exists.

Note: Since lab06c is a combination of lab06a and lab06b (and only file that differs between
them is audio_thread.c) , you could have copied the other directory over first, then
made changes to it. But, even so, we highly recommend you follow the directions above
so that the next steps are consistent with your files/directories.

Modify audio_thread.c
19. Open audio_thread.c in a text editor.

 Navigate to lab06c_audio_loopthru/app/.

 Numerous editors are available to you depending on what you are most comfortable with.
Some common options are:

gedit audio_thread.c &

20. Begin by removing the #define statement that sets INPUTFILE.

 While not absolutely necessary, we might as well clean up anything that will not be used
later, and removing it here will help us catch any errors if we forget to remove some file-
related commands. (In the place of the #define INPUTFILE, in the next step we’ll add the
proper command needed for the ALSA driver.)

21. In audio_thread_fxn() in the declarations, modify the #define bit settings for the
initMask to have three initialization states:

• ALSA_DRIVER_INITIALIZED
• INPUT_BUFFER_ALLOCATED
• OUTPUT_BUFFER_ALLOCATED

 It doesn’t matter which bit you allocate to each, as long as they are each independent bits in
the mask, i.e. 0x1, 0x2, 0x4, 0x8, etc.

Lab06c_audio_loopthru

6 - 14 DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver

22. Remove the input file initialization code
• Remove the following code section in audio_thread_fxn() of audio_thread.c:

/* Open input file */
...

And this one, too:
/* Record that input file was opened in initialization bitmask */
...

23. Modify the mode field of the sound device attributes to enable bidirectional operation.

Before editing the sAttrs.mode variable, let’s first check what options are available in DMAI:

The easiest way to do this is to look directly inside of the DMAI header file: Sound.h

DVSDK 4.0: cd /home/user/ti-dvsdk_omap3530-evm_4_00_00_17/dmai_2_05_00_18

 then: gedit packages/ti/sdo/dmai/Sound.h

 Within this file you will find the Sound_Mode enumerated type definition (around line 95).
What is the enumeration value for bidirectional operation (i.e. full duplex)?

 Bidirectional operation mode enumeration: _______________________________________

Finally, edit the variable in your program:

sAttrs.mode =

24. Declare a new Buffer_Handle hBufIn and initialize it to NULL.

 Since we’re doing a pass through application we could get by with a single buffer; reading
into it using Sound_read(), then writing it back out with Sound_write().

 However, when we add our audio processing to this thread, it will be helpful to have separate
input and output buffers. So, in this lab we’ll go ahead and create a separate input buffer. Add
the new buffer handle next to the one already allocated for hBufOut.

Buffer_Handle hBufIn

 (Note: In place of audio processing – which we’ll add in a later lab exercise – in step 28
we’ll use the memcpy() function to copy the data from the input buffer to the output buffer.)

 Lab06c_audio_loopthru

DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver 6 - 15

25. Allocate an audio input buffer.

 Because we copied lab06b (audio playback) into lab06c, we already have a section of code
that creates the audio output buffer. Inspect the code after the following banner:

/* Initialize the output audio buffer */

We still need this code. However, we need to add the INPUT side and INPUT audio buffer.

The simplest way to do this is to copy this section of code (thru and including setting the
initMask bit) from lab06a. When pasting, place it BEFORE the output section and modify it
appropriately for the INPUT audio buffer.

Copy the entire section from:

/* Initialize the output audio buffer */

…TO…

initMask |= OUTPUT_BUFFER_ALLOCATED;

INCLUSIVE. Then, paste it right ABOVE the output section.

Change the hBufOut handle in the copied section to hBufIn and …

… change the INITMASK bitmask to INPUT_BUFFER_ALLOCATED.

26. Prime the Pump using Sound_read() rather than fread().

 You’ll find the call that needs to be changed in the “// Prime the Pump” section just before
the while() loop.

 As earlier in step 23, you canmcheck the Sound.h header file for the Sound_read() prototype.
For convenience, we’ve reprinted here:

Int Sound_read (Sound_Handle hSound, Buffer_Handle hBuf)

 Also, don’t forget to change the DBG() statement that follows to reference hBufIn, instead of
inputfile.

Note: Following the Prime-thePump Sound_read(), you’ll notice two single writes. These
writes avoid any potential underflow condition on the output driver and does not add any
noticeable distortion. There is nothing you need to modify here – just FYI.

27. Within the while() loop, replace fread() call with Sound_read() call.

 If you need a hint, you can reference the audio_thread_fxn() in lab06a_audio_recorder.

 Once again, don’t forget to change the DBG() statement to use hBufIn vs. inputfile.

Lab06c_audio_loopthru

6 - 16 DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver

28. Create an audio pass-thru using memcpy() to copy data from the input to the output.

 You will need to use the Buffer_getUserPtr() function to get the memory pointer associated
with each buffer. (The handles hBufIn and hBufOut are pointers to structures, not pointers to
the underlying memory buffers).

 For example, if you wanted to specify the pointer to the input buffer, you would use:
 Buffer_getUserPtr(hBufIn)

 You will also need to use the Buffer_getSize() function to determine how many bytes to
transfer. In this case, use the size of the output buffer:
 Buffer_getSize(hBufOut)

The memcpy() prototype is as follows:

memcpy(void *write_to, void *read_from, int num_bytes);

In your code, substitute the functions provided above into the memcpy call to perform the
audio pass thru.

29. Replace the file cleanup code with the Buffer_delete cleanup on hBufIn.
• Locate the Thread Delete Phase after the “cleanup:” tag in the audio_thread_fxn

of lab06c. Remove the code section labeled:

/* Close input file */

• Replace the file cleanup code’s fclose() with the proper Buffer_delete() of hBufIn.

30. If you opened audio_thread.c in lab06a_audio_record, you can close it now.

 Note, you should not need to save audio_thread.c from lab06a_audio_record because
you should not have modified this file, only copied sections from it to paste into lab06c.

31. Update the variable declarations at the beginning of audio_thread_fxn.

 After cutting-and-pasting the code in the last few steps, a few new variables have been added
and one was removed. Update the variable declarations at the beginning of
audio_thread_fxn.

 The following can be removed:

FILE *inputFile = NULL;

 Make sure the following variable is declared:

Buffer_Handle hBufIn = NULL;

32. Save and close audio_thread.c.

 Lab06c_audio_loopthru

DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver 6 - 17

Build and Test
33. Build and install the application

make install

34. Go to the /opt/workshop folder on the target and run the application.

 You should hear audio playing.

 If you have re-booted the board recently and NOT loaded loadmodules.sh on the EVM, this
lab will fail to allocate memory. FYI.

 Again, if at all possible (and we know it IS possible), please turn down your volume to a
reasonable level so as not to disturb your neighbors too much or cause others in the building
to call the police and cite you for disturbing the peace. Thanks.

Lab06c_audio_loopthru

6 - 18 DaVinci/OMAP Workshop - Lab 6 - Using the ALSA Driver

 Page left intentionally blank.

OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers 7 - 1

Lab 7 - Using Video Drivers

Introduction
This chapter explores the video system drivers. The labs demonstrate the Linux V4L2 and FBdev
drivers as well as basic file I/O, through four small applications: on-screen display (OSD), video
recorder, video player, and video loop-thru (video-capture copied to video-display).

Lab 7 is composed of 4 parts:

• Lab 07a: You will build an on-screen display for the your device using the FBDEV
(thru DMAI) driver – INSPECTION LAB only.

• Lab 07b: Examines v4L2 video capture via a simple video recorder application –
INSPECTION LAB only.

• Lab 07c: Examines the v4L2 display driver using via a video display application. This
application plays back the file captured in lab 07b – INSPECTION LAB only.

• Lab 07d: You will combine the recorder and player applications into a video loop-thru
application using memcpy to transfer data between capture and display drivers.

• Lab 07e: You will modify lab07d to perform video loop-thru via pointer passing between
capture and display drivers. (More efficient)

Outline
Lab 7 - Using Video Drivers ... 7-1

Lab 7 – Using Video Drivers .. 7-2
Lab07a_osd_setup .. 7-2
Lab07b_video_capture ... 7-6
Lab07c_video_playback... 7-9
Lab07d_video_loopthru...7-11
Lab07e_video_efficient ...7-20

Lab 7 – Using Video Drivers

7 - 2 OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers

Lab 7 – Using Video Drivers

Lab07a_osd_setup

lab07a_osd_setup

video_thread.c

FBDEV vid

main.c

1. Create your own custom picture for the OSD window (using gimp),
saving the picture to 16-bit format RGB565 (as osd.r16).

2. Inspect video_thread.c and helper functions (inside video_osd.c).
3. Build, run. Result: see your customer banner displayed on screen (no video yet…).

Goal: to build an on_screen display for the DM644x
using the FBDEV driver.
From a coding perspective, it’s an inspection lab only.

Lab 07a Procedure
1. In Ubuntu Linux, change to the directory:

/home/user/labs/lab07a_osd_setup/osdfiles

2. Open the Gimp (open-source) paint program by typing “gimp” in the terminal.

3. Create a customer banner picture.

 Create a new file using: File New

 Set the height and width to 80 x 640, since we only want to create a banner, not fill the whole
screen. Other than the resolution, nothing else in the new file dialog needs to be modified.

 Width: 640 pixels

 Height: 80 pixels

 Lab 7 – Using Video Drivers

OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers 7 - 3

4. Paint something for your OSD banner.

 You can create a simple graphic quickly using
just three of the many tools.
− Before clicking any of the tools, you can

choose a color first using the color box.
− Start with the gradient tool to create a

background. Select the tool, then click and
drag the mouse over the 640x80 image
area.

− Add text or paint something over the
gradient with either of these tools,
respectively.

5. Save your file and exit Gimp.

 When you are finished, save with File Save. Then exit Gimp.

 Be sure to select “BMP” (bitmap) from the Select File Type box. Name your file:
 ti_rgb24_640x80.bmp

 It DOES matter what you name the file because later, during the building process, this file is
specifically copied to the target. This name also makes it easy to remember it’s a 640x80
Bitmap image in 24-bit RGB.

You will also need to specify the R8 G8 B8 format.

6. Make sure your file is saved to the osdfiles subdirectory in your lab folder.

The gradient tool is the box at the top that
shows a gradient going from green to white

You can change the colors by left
clicking on the color box

Add text by selecting the
font icon is the capitol T

Paint brush

Lab 7 – Using Video Drivers

7 - 4 OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers

7. Change to the lab07a_osd_setup/app directory and list the contents.

8. Examine two of the video files.

video_osd.c
 video_osd.c contains a number of functions for manipulating the on-screen display. Unlike

DMAI, these functions are not part of an official package, but were developed for these lab
exercises to demonstrate the capabilities of the on-screen display hardware.

• video_osd_place(): places a picture on the OSD display. Assumes data is provided in
32-bit ARGB (8-bit attribute transparency, 8-bit red, 8-bit blue 8-bit green per pixel).

• video_osd_scroll(): a more complex version of video_osd_place() that will offset the
OSD display by x and/or y scroll values. This can be used to scroll a banner or
picture horizontally or vertically.

• video_osd_circframe(): draws a circular alpha-blended frame around the video
output.

osd_thread.c
 The thread function in osd_thread.c is video_thread_fxn() which uses the helper

functions from video_osd.c as well as an extension of the DMAI Display module
(myDisplay) which supports alpha blending:

• calls myDisplay_fbdev_create() to open the OSD window. This window is memory
mapped (mmap’ed) into the application space and a handle to the Display object is
returned and stored in hOsd.

• calls readPictureBmp() to read the custom banner picture (as created in gimp and
stored in a 24-bit RGB bitmap file) and store a handle to a buffer object containing
the picture into the bannerBuf Buffer handle (which is passed by reference). In
addition to reading the 24-bit RGB data from the file, it appends an 8-bit
transparency value before each pixel, which in this case is a constant value specified
by TRANSP and equal to 0xFF (fully opaque).

• Inside the initialization for() loop, all OSD buffers are initialized by placing the
bannerBuf picture buffer using video_osd_place(), which places the picture on the
OSD window with a y offset of 480 (screen height of 480 minus picture height of
80).

• Also inside the initialization for() loop, a call is made to video_osd_circframe() to
initialize all OSD buffers with a circular semi-transparent (0x80 is 50% transparency)
blue frame (0x0000FF is blue, 0x00FF00 is green, 0xFF0000 is red).

• Drops into a while loop (testing on env->quit, which is changed to 1 when ctrl-C is
pressed) in which it scrolls the OSD banner by calling myDisplay_fbdev_get to gain
access to the next OSD buffer, calling video_osd_scroll to update the scrolling
buffer, and calling myDisplay_fbdev_put to display the updated buffer.

 The application assumes the picture is supplied in a 640 x 80 24-bit RGB (8-8-8) format,
which should be the case if you followed the previous gimp instructions.

 Lab 7 – Using Video Drivers

OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers 7 - 5

9. Build and install the application.

10. Execute the application on the target.

target# cd /opt/workshop

Note: loadmodules.sh does not need to be re-executed if you have previously run the
script (to load the cmem module into the Linux kernel) since the last reset of the board.

target# ./loadmodules.sh

target# ./app_debug.xv5T

At this point, you should only see a black background with the OSD showing. The OSD
should consist of your scrolling graphic along with a circular, semi-transparent frame.

Lab 07a Questions

1. How would you modify the lab07a_osd_setup application to make the banner you created
semi-transparent instead of solid?

 __

 __

 __

2. How would you modify the lab07a_osd_setup application to place your banner at the top of
the screen instead of the bottom?

 __

 __

 __

3. (Advanced) Why is the Buffer_Handle bannerBuf preceded with an ampersand (&) in the
function readPictureBmp()?

 __

 __

 __

Lab 7 – Using Video Drivers

7 - 6 OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers

Lab07b_video_capture

lab07b_video_record

video_thread.c

main.c

v4l2 video fwrite()
to /tmp/video.raw

1. Examine helper functions (setup, cleanup, wait_for_frame) in video_input.c.
2. Examine video_thread_fxn() in video_thread.c.
3. Examine main.c (how the signal handler is created/used, then calls video_thread_fxn).
4. Build, run. Result: create a file (video.raw) that contains about 2s of captured video.

Goal: Examine v4L2 video capture via a simple video recorder app.
Inspection lab only.

11. Change to the directory:

/home/user/labs/lab07b_video_capture/app

12. Examine the video files:

app_cfg.cfg
 As with lab07a_osd_setup the eXpress DSP Component (XDC) tool configuration file

imports and configures the RTSC-compliant packages used in this application.

 These RTSC packages are:

• ti.sdo.ce.osal.Global: Global Operating System Abstraction Layer (OSAL) module

• ti.sdo.dmai: The Digital Multimedia Application Interface (DMAI) module

• ti.tto.myDisplay: An extension of the DMAI Display module for use in these lab
exercises

 Lab 7 – Using Video Drivers

OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers 7 - 7

video_thread.c
 This file contains a single function, video_thread_fxn(). This function encapsulates the

functionality necessary to run the video recorder and is analogous to the audio_thread_fxn()
that was used in lab06.

video_thread_fxn() utilizes the following:

• Capture_detectVideoStd() and BufferGfx_calcDimensions(): these two DMAI
functions are used in conjunction to detect the video standard which is input to the
development board and calculate the corresponding buffer size of a single video
frame.

• BufTab_create(): A method of the BufTab DMAI module which creates a table of
Buffers, in this case the video buffers which will be used by the video capture driver
to store video frames

• Capture_create(): A method of the Capture DMAI module which opens and
configures the Linux V4L2 video capture driver. Since the application passes a
bufTab (Buffer Table) handle, the driver will use user-allocated (as opposed to
driver-allocated) buffers to store video frames.

• fopen(): Standard Linux I/O (i.e from #include <stdio.h>) call to open a file
where the captured video data will be written

• for() loop:

o Loops through 10 cycles so as not to overflow /tmp directory’s RAM memory

o Capture_get(): dequeues the next video frame from the V4L2 driver
(blocks/pauses if buffer is not available, yet).

fwrite(): The video frame is copied into the file.

o Capture_put(): Once the application has finished writing the video buffer to
the file, the buffer handle must be passed back to the driver so that it can be
refilled with new video data.

main.c
 This is the entry point for the application. main() does the following:

• Creates a signal handler to trap the Ctrl-C signal (also called SIGINT, the interrupt
signal). When this signal is sent to the application, the videoEnv.quit global variable
is set to true to signal the video thread to exit its main loop and begin cleanup.

• After configuring this signal handler, main() calls the video_thread_fxn() function to
enter into the video thread. Upon completion of this function, main() checks the
return value of the function (success or failure) and reports.

13. Build and install the application using gMake using “make install”.

Lab 7 – Using Video Drivers

7 - 8 OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers

14. Run the application on the target

 Open a terminal to the EVM board. Navigate to the target’s /opt/workshop directory, and
then execute the ./app_debug.xv5T application.

Hint: By the way, make sure you have a video source playing for this lab to look right.

 You will get a message from the application indicating that it has recorded 10 captured video
frames. Check the following to ensure that the video has recorded properly:

ls –lsa /tmp/video.raw

 The file should be about 7 MB in size. The reason that the application only records ten video
frames is to keep from overflowing the /tmp directory.

Note: We are saving the file to RAM-based /tmp directory because the NFS mounted
filesystem that the board is using is too slow to save raw video.

Also note, that you cannot see this file from within Ubuntu because the /tmp directory
contents are actually stored in RAM, as opposed to on the NFS drive.

 Lab 7 – Using Video Drivers

OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers 7 - 9

Lab07c_video_playback

video_thread.c

main.c

fread()
/tmp/video.raw v4l2 vid

1. Examine video_output.c and its helper functions.
2. Ensure video.raw still exists in /tmp RAM (and has a file size greater than zero).
3. Build, run. Result: video.raw file is displayed on the screen (along with your OSD).

Goal: Examine FBdev display driver using a video display app. This
app will play back the file recorded in lab07b (and add OSD from 07a).
Inspection lab only.

15. Change to the directory:

/home/user/labs/lab07c_video_playback/app

16. Examine video_thread.c:

 As opposed to the recorder which uses DMAI’s Capture module, this application uses the
myDisplay module to display video frames it reads from the /tmp/video.raw file:

• fopen() and fread(): Opens the input file containing captured video frames and reads
two 4-byte integer values. The first is the video standard (as enumerated in DMAI’s
videoStd.h) and the second is the size of each video frame.

• BufTab_create(): A method of the BufTab DMAI module which, using the
captureSize variable which was read from the input file, creates a table of
appropriately sized buffers to hold video frame data that is read from the file.

• Display_create(): A method of the Display DMAI module which opens and
configures the Linux V4L2 video display driver. Since the application passes a
bufTab (Buffer Table) handle, the driver will use user-allocated (as opposed to
driver-allocated) buffers to store video frames.

• while() loop:

o Loops until ctrl-C is pressed or input file is depleted

o Display_get(): dequeues a free video frame buffer from the V4L2 Display
driver.

o fread(): The next video frame is read from the file and copied into the
dequeued video buffer.

o Display_put(): Once the free video frame buffer has been written with valid
video data, it is passed back to the V4L2 Display driver (enqueued) to be
displayed.

Lab 7 – Using Video Drivers

7 - 10 OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers

17. Build and install the application.

18. Check to make sure video.raw exists and has a file size larger than zero.

 Navigate to /tmp in the EVM board’s filesystem and list the contents of the directory. Use
the “ls –lsa” flags to verify that video.raw exists and has a greater than zero file size. The
application is hard coded (using a #define statement in video_thread.c) to read data from
the file /tmp/video.raw.

 If you have powered off or reset the EVM since running the lab07b_video_capture
application, the video.raw file will have been cleared from RAM memory. If so, go back and
build/install lab07b_video_capture to create the video.raw file again.

19. Execute the ./app_debug.xv5T application. Press Ctrl-C to exit the application.

 The application should play back the video from /tmp/video.raw along with your
customized OSD banner (non-scrolling). The application does not actually modify the OSD,
but the last OSD frame is likely still in the OMAP3530 Video Display Sub-system back end
hardware and will therefore be displayed overlaid ontop of the video. If you reset the board,
and execute lab07c_video_playback, you will see only played back video without the OSD
overlay.

 Since there are only 10 video frames, you will have to look very closely to see movement, but
the application pauses for 5 seconds after the 10 frames are displayed so that you will have
time to see the final video frame displayed on the LCD.

 Lab 7 – Using Video Drivers

OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers 7 - 11

Lab07d_video_loopthru
In this portion of the lab, you will combine the lab07b_video_capture and the
lab07c_video_playback applications into a single video loop-thru application.

In part B, we recorded video from the v4L2 input and placed it into a file (video.raw) – this used
an fwrite() command to write the video buffer to a file. In Part C, we did an fread() of the
video.raw file and sent that video to V4L2 display driver.

We now have the input (capture) application (Part B) and the output (display) application (Part C)
that you will now combine into a single application (Part D). We’ll need to get rid of the “file
reads/writes” and replace them with a memcpy operation to copy data from Capture driver buffers
to Display driver buffers.

If using a memcpy to transfer the data between Capture and Display drivers seems like
unnecessary overhead, you are correct! In lab07e, we will modify this application to pass the data
via pointers. We are doing both labs for two reasons. Firstly, the pointer passing method is not as
simple as may first seem, as will be explored in lab07e. Secondly, when we reach lab09 and add
codecs to process our video data, the structure of lab07d will actually be more appropriate.

lab07d_video_loopthru

video_thread.c

v4l2 video v4l2 video

main.c

1. Answer a few questions about the big picture (covered in the next few slides…).
2. Copy files from lab07c (playback) to lab07d (loopthru).
3. Add video input files from lab07b (record) to lab07d (loopthru).
4. Make code modifications to stitch the record to the playback (covered in the

next few slides…).
5. Build, run. Result: video is captured (v4L2) and then displayed (FBdev) with your OSD.

Goal: Combine the recorder (lab07b) and playback (lab07c) into a
video loopthru application.
Hey – YOU get to do this yourself (no more inspection stuff…).

Lab 7 – Using Video Drivers

7 - 12 OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers

Before we start copying, cutting, and pasting files and code, let’s think about what must be done
to get the loopthru lab to work.

• In Lab07b_video_capture, we used fwrite() to PUT (write) the video data to the video.raw
file. What two functions were used to GET (read) the video data from v4L2 driver and return
the video buffer back to the driver once the application has recorded the data?

 GET video data: 1. _______________________________________

 2. _ ______________________________________

 PUT video data: 1. fwrite() the video frame _______________

• Similarly, in Lab07c_video_playback, we used the functions listed below to PUT (write) the
data to the FBdev driver. What function is used to GET (read) the video data?

 GET video data: 1. _______________________________________

 PUT video data: 1. Display_get() to get an empty video buff

 2. Display_put() to display video data ____

In this lab exercise, we will start with the Lab07c_video_playback files, then edit them to create
the loopthru code. Based on this, generally what functions should be required for our while() loop
in the Lab07d_video_loopthru?

 Get video data: 1. _______________________________________

 2. _______________________________________

 Copy video data: 1. memcpy to copy from input to output ___

 Put video data: 1. _______________________________________

 2. _______________________________________

 Lab 7 – Using Video Drivers

OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers 7 - 13

To summarize, the following lab procedure will take the _capture and _playback files and
combine them into a loopthru example.

lab07b_video_record
video_thread.c

v4l2 fwrite()

lab07c_video_playback
video_thread.c

fread() v4l2

Lab 7b
What functions "get" a video frame?
Get data:

1. Capture_get()
2. Capture_put()

Put data:
1. fwrite() frame size
2. fwrite() the video frame

Lab 7c Lab 7d
What functions "display" a frame?
Get data:

1. fread() frame size
2. fread() the video frame

Put Data:
1. Display_get()
2. Display_put()

lab07d_video_loopthru

For Lab07d:
Take the code from lab07c
Replace the fread's with the v4l2 capture code found in lab 07b

Lab 7c Lab 7d
(starting point)

video_thread.c
…
while {

fread frame size
fread frame to working buffer
-
-

Display_get ();
Display_put ();

}

video_thread.c
…
while {

Capture_get ();
Display_get ();

memcpy (),

Capture_put ();
Display_put ();

}

Replace with
v4l2 code capture

from Lab07b
Add code to copy

input to output and
release the buffer

Note: For those advanced students who would like a challenge, see if you can accomplish this
lab without referring to the procedure below. If you finish within 15 minutes with no
help, you may ask the instructor(s) for a free 4Gen iPod touch 64G.

Lab 7 – Using Video Drivers

7 - 14 OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers

Lab07d Procedure
20. As a starting point, begin by copying the lab07c_video_playback application into the

lab07d_video_loopthru folder.

(ubuntu) # cd /home/user/labs
(ubuntu) # cp –Rf lab07c_video_playback/* lab07d_video_loopthru
(ubuntu) # cd lab07d_video_loopthru/app
(ubuntu) # make clean

21. Reference the header file you just copied.

Open lab07d_video_loopthru/app/video_thread.c for editing along with
lab07b_video_capture/app/video_thread.c

To open both files, you can either open a second terminal, invoke gedit with a trailing
ampersand (&) to keep control of a single terminal, or supply both file names when you
invoke your editor. You can also load the second file using the file drop-down menu.

22. Remove the INPUTFILE definition (lab07d).

 Since our loopthru app won’t need to read video from a file any longer, we don’t need this
definition any longer. In video_thread.c:
• Remove the #define constant declaration for INPUTFILE.

//* Input file *
//#define INPUTFILE "/tmp/video.raw"

23. Define that we want three capture buffers (and two display buffers).

 Similar to that for display (which should already be defined from the playback application),
we need to indicate to our thread the number of capture buffers used in the input driver using
the NUM_CAP_BUFS constant.

//* Double-buffered display, triple-buffered capture *
#define NUM_DISPLAY_BUFS 2
#define NUM_CAPTURE_BUFS 3

 Note: The display buffers are rotated using the hardware Video Rotation Framebuffer
(VRFB) which requires a large VRFB buffer allocation (2048x640 pixels) due to the fact that
it rotates a fixed 2048x2048 dataset. For this reason, it is recommended that two display
buffers be used. (In the current configuration of the CMEM module, there is only enough pre-
allocated memory to support two such buffers, so the curious student who modifies the
NUM_DISP_BUFS to 3 will have a buffer allocation failure.)

 Lab 7 – Using Video Drivers

OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers 7 - 15

24. Change #define constants so that our debug (i.e. printf) comments make sense.

 This needs to be done in two places – where it’s defined and used.

 Change the INPUTFILEOPENED constant to CAPTUREDEVICEINITIALIZED.

 First, we need to edit the initMask which originally followed the fopen() we deleted. It should
now look like:

/* Record that capture device was opened in initialization bitmask */
initMask |= CAPTUREDEVICEINITIALIZED;

 Then, go back up to the declarations section for video_thread_fxn and locate and change the
appropriate #define statement. It should now look like:

/* The levels of initialization for initMask */
#define OSDSETUPCOMPLETE 0x1
#define DISPLAYDEVICEINITIALIZED 0x2
#define CAPTUREDEVICEINITIALIZED 0x4

25. Delete the code to open our input file.

 Since we now need to read data directly from the video capture port – i.e. v4L2 via DMAI,
we need to delete the code to open our input file.

 In an earlier step we deleted the definitions for an INPUTFILE constant. Now, we need to
delete its use.

 Still within lab07d_video_loopthru/video_thread.c, locate the fopen() function that
opens INPUTFILE for reading, then delete the entire if statement which contains it.

 The statements to remove are:

 if((inputFile = fopen(INPUTFILE, "r")) == NULL) {
 ERR("Failed to open input file %s\n", INPUTFILE);
 status = VIDEO_THREAD_FAILURE;
 goto cleanup;
 }

 DBG("Opened file %s with FILE pointer %p\n", INPUTFILE, inputFile);

26. Delete the code to read the input video standard from the input file

You should remove four lines, the actual fread call into the dAttrs.videoStd field, followed by
the following two lines of error handling and the fourth line closing brace.

27. Delete the code to read the capture video size from the input file

You should remove four lines, the actual fread call into the captureSize field, followed by the
following two lines of error handling and the fourth line closing brace.

28. Delete the line which sets the bufSize to captureSize as well as the printf of captureSize

bufSize variable will be determined in the capture code you are about to replace the above
code with. You can printf the bufSize instead of removing this line if you like.

Lab 7 – Using Video Drivers

7 - 16 OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers

29. Replace the section that you removed in the previous 4 steps with the section from
lab07b_video_capture/app/video_thread.c that initializes the capture device.

Be sure that this coded is added to lab07d/video_loopthru above the section of code
initializing the display driver as the initialization of the video display driver is dependent
upon the captureSize variable determined by the capture driver.

Note: we will add the necessary variable declarations in a later step.

 The code that is necessary for the input capture setup is described below. You can either look
at lab07b and figure out which code you need to copy or move down to the “spoiler alert”
section below for more direct hints about what to do here.

 The code you need to copy/paste from lab07b does the following:

• Detect the video standard on the video capture port (NTSC versus PAL)

• Calculate the video buffer size according to the input video standard

• Calculate the dimensions of the video buffer based on the input video standard and
the (assumed) color space YUV (in UYUV format) and store in gfxAttrs structure.

• Create a table of buffers for use by the capture driver based on the size and attributes
previously calculated.

• Create a reference to the input capture driver and store in hCapture variable

 Spoiler Alert! (On following comments) You should attempt to determine which portion of
code from lab07b_video_capture is necessary based on the information above, but as a
double check, you will need everything from
lab07b_video_capture/app/video_thread.c that starts at the comment banner:

/* Detect which video input is connected on the component input */

 until you reach (but not including) the banner:

// Open the output file

 Lab 7 – Using Video Drivers

OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers 7 - 17

30. Add the video capture declarations to the video_thread_fxn().

 Once again, since we copied the files from the playback directory, the display declarations
should already be setup. Now, we just need to go back and add the capture declarations from
the lab07b_video_capture directory.

 We suggest to cut/paste these variables from lab07b_video_capture/video_thread.c.

 We need:

• A video capture driver attributes structure, which will be named “cAttrs” and
initialized to the DMAI video capture default values for the OMAP3530

• A DMAI handle to store our reference to the Capture driver once it is opened, which
will be named “hCapture.”

• A video standard type enumerated variable named videoStd

• A DMAI Buffer table handle named “hBufTabCapture.”

• A buffer handle to refer to buffers interchanged with the capture driver, which will be
named “cBuf.”

31. Configure the video display driver video standard to match that of the capture driver

Locate the code which sets the numBufs and rotation for the display attrs:

dAttrs.numBufs = NUM_DISPLAY_BUFS;

dAttrs.rotation = 90;

This code should remain unchanged. However, you want to add another line of code which
will modify the videoStd field of the display attributes as:

dAttrs.videoStd = Capture_getVideoStd(hCapture);

Lab 7 – Using Video Drivers

7 - 18 OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers

32. In the video thread while loop, replace the video input functions — from fread() to the
v4L2 capture driver.

 First, with all the cutting/pasting going on, make sure you are editing the correct file:
lab07d_video_loopthru/video_thread.c.

 Within the while loop of video_thread_fxn, we’re going to replace the fread() statement with
the code needed to capture the frame from the v4l2 device. Replace:

// Read raw video data from inputFile
if(fread(Buffer_getUserPtr(dBuf), 1, captureSize, inputFile) <
captureSize)
 break;

 with the code required to read from the v4l2 device. Again, it’s probably easiest to cut/paste
this from lab07b_video_capture – you will need two function calls – a _get call to get a
handle to the next buffer on the capture driver queue and a _put call to place it back on the
Capture driver queue after you are finished with it.

Hint: when finished with this editing, you should have the following pseudo code:
_get //capture

_get //display

**** to be filled with memcpy ****

_put //capture

_put //display

 Lab 7 – Using Video Drivers

OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers 7 - 19

33. Insert a memcpy command to copy the video frame from your capture buffer to the
display buffer.

 (Later in the workshop, we will replace this with a codec/algorithm process call.)

 What three arguments should we use for memcpy():

 Hint: you will need to use the Buffer_getUserPtr() and Buffer_getSize() DMAI
Buffer methods to determine this information from the Buffer objects pointed to by the cBuf
and dBuf handles.

 Both of these functions take a single argument, which is a Buffer handle, i.e.
 void *myPtr;

 myPtr = Buffer_getUserPtr(cBuf);

 The previous statement would store the userspace pointer (i.e. virtual address) of the buffer
referred to by the cBuf Buffer object handle into the myPtr variable.
 int mySize;

 mySize = Buffer_getSize(cBuf);

 The statements above would store the size of the buffer referred to by the cBuf Buffer object
handle into the mySize variable.

Destination: ______________________________

Source: ______________________________

Length: ______________________________

 memcpy has the following function prototype:
 memcpy(void *destination, void *source, int length);

 Note: Step 38 provides the “reality check” for this step -- what the interior of the
video_thread_fxn() while loop should look like. You may either double-check your
work now or proceed to step 37 and only use the double-check if the application does not
perform as expected.

34. Remove the sleep(5) call after the while loop.

This function pauses five seconds, which was important for our playback application due to
the small number of frames played back but is no longer necessary.

35. Cleanup the video input … rather than fclosing the input file.

 Finally, replace the section in the cleanup that closes the raw video input file with the
corresponding cleanup code from lab07b_video_capture that cleans up the capture driver.

36. Save and close video_thread.c from lab07d_video_loopthru.

 Note: you should just close video_thread.c from lab07b_video_capture, because you
should not have made any changes to this file.

Lab 7 – Using Video Drivers

7 - 20 OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers

37. Build and install the application…then run it.

 Oh, and make sure your video source is still playing.

38. Reality check.

 The interior of the video_thread_fxn() while loop should look as follows:
while (!env->quit)

{

 Capture_get(hCapture, &cBuf);

 Display_get(hDisplay, &dBuf);

 memcpy(Buffer_getUserPtr(dBuf),

 Buffer_getUserPtr(cBuf),

 Buffer_getSize(dBuf));

 Capture_put(hCapture, cBuf);

 Display_put(hDisplay, dBuf);

}

 Note: The size of the capture and display buffers is the same (as guaranteed in the
initialization section of the video_thread_fxn()), so the memcpy command could also
use Buffer_getSize(cBuf) as its final argument. More robust code could test and determine
the lesser of the two sizes and copy only that much.

Lab07e_video_efficient
39. As a starting point, begin by copying the lab07d_video_loopthru application into the

lab07e_video_efficient folder.

(ubuntu) # cd /home/user/labs
(ubuntu) # cp –Rf lab07d_video_loopthru/* lab07e_video_efficient
(ubuntu) # cd lab07e_video_efficient/app
(ubuntu) # make clean

40. Open lab07e_video_efficient/app/video_thread.c in the editor of your choice.

41. Define a combined capture and display number of buffers constant.

 In order to use pointer passing between the Capture and Display drivers, we will need to
initialize the drivers during Capture_create and Display_create with the same (shared) buffer
pool.

 It is a good idea to comment out or delete the #define statements for
NUM_CAPTURE_BUFFERS and NUM_DISPLAY_BUFFERS so that the compiler will
warn of any places where you might forget to replace them. After these have been removed,
define a new constant NUM_CAPTURE_DISPLAY_BUFFERS and set the size to 3.

42. Declare a combined hBufTabCaptureDisplay buffer table handle.

 Again, it is a good idea to remove the hBufTabCapture and hBufTabDisplay. You can use
these previous buffer table handle declarations as a format for declaring
hBufTabCaptureDisplay.

 Lab 7 – Using Video Drivers

OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers 7 - 21

43. Modify the BufTab_create for the hBufTabCapture to store the buffer table instead in
hBufTabCaptureDisplay.

 Don’t forget to use your new constant NUM_CAPTURE_DISPLAY_BUFFERS when
creating this buffer table.

44. Modify cAttrs.numBufs to use the appropriate constant.

 This attribute tells the Capture driver how many buffers to use from the provided buffer table
during Capture_create().

45. Modify Capture_create() to use the new buffer table handle.

 The V4L2 driver assigns an index to each buffer that it circulates. It is important that every
buffer which will be passed to the Capture driver via your application is registered with the
driver at initialization so that these indices may be mapped.

46. After Capture_create(), reclaim all buffers and mark unused.

 When the Capture_create() call is made with hBufTabCaptureDisplay, each buffer in this
buffer table is not only registered with the capture driver, but queued onto the driver’s
incoming queue. We need to dequeue all buffers and mark them as free so that they will be
registered with the display driver during Display_create().

 Add a declaration for

int i;

 at the top of video_thread_fxn() and then set up a for loop which iterates
NUM_CAPTURE_DISPLAY_BUFS times and uses Capture_get() to reclaim and buffer
BufTab_freeBuf to mark the buffer unused.

 Note: the Display driver will always hold one buffer in the pool (for display), so it is simpler
to do Capture_create() first, reclaim all buffers, and then do Display_create().

47. Remove the BufTab_create() call to create a second buffer table for hBufTabDisplay.

 Since we are sharing hBufTabCaptureDisplay between the two drivers, there is no need to
create the second buffer table.

48. Modify dAttrs.numBufs to use the correct number of buffers.

49. Modify Display_create() to use the hBufTabCaptureDisplay buffer table.

50. Get a single buffer from the Display driver and put it on the Capture queue.

 As with the Capture driver, after Display_create() is called, all buffers from the provided
buffer table are queued into the driver’s incoming queue. Because the Display driver must
always hold a buffer for display, we generally want to have a single buffer on the Capture
queue and two buffers on the Display queue. Thus, before entering the while loop, we need to
Display_get() a buffer from the Display driver and Capture_put() it onto the Capture queue.

 Hint: if you need help with the Display_get() and Capture_put() functions, you can reference
these function calls within the while loop.

Lab 7 – Using Video Drivers

7 - 22 OMAP / Sitara / DaVinci Workshop - Lab 7 - Using Video Drivers

51. Within the while loop, remove the memcpy statement and instead use pointer passing to
pass buffers between Capture and Display.

 Since the cBuf and dBuf Buffer_Handle’s both refer to buffers on the same
hBufTabCaptureDisplay, you can simply pass cBuf to the Display via Display_put() and dBuf
to the Capture driver via Capture_put().

52. Save video_thread.c, then make install and test the application.

53. (Optional) Benchmark the application.

 If you wish to benchmark this more efficient application you can execute it in the background
using the “&” character.

./app_debug.xv5T &

 Note, that Linux will display the process ID (PID) for ./app_debug.xv5T.

 Now run the “top” command:

top

 where you can then view the CPU % for the ./app_debug.xv5T application. When ready,
you can use Ctrl-C to exit the top application.

 Since our app_debug.xv5T program is now running in the background, it won’t receive the
kill signal if we press Ctrl-C. (Notice just above, that Ctrl-C stopped top, but didn’t affect our
program.) In order to stop it, we need to send a signal directly to our program’s process ID.
We can do this with the kill command. (By the way, the SIGINT signal used below is the
same signal that is normally generated by our Ctrl-C.)

kill –s SIGINT [PID]

 where [PID] is the process ID which was displayed when you launched ./app_debug.xv5T
in the background. If you can’t find the PID in the terminal output, you can run the “ps”
command to list all currently running processes and their PID’s.

DaVinci / OMAP Linux Design Workshop - Lab 8 - Running Audio and Video 8 - 1

Lab 8 - Running Audio and Video

Introduction
Welcome to labs 8a and 8b. In these labs, you will combine the audio loopthru application from
lab6c with the video loopthru application of lab7d into a single (multi-threaded) application that
handles both audio and video.

Outline
Lab 8 - Running Audio and Video ... 8-1

Lab08a – Run Audio and Video in Separate Processes .. 8-2
Build Audio Executable.. 8-2
Build Video Executable.. 8-2
Run Audio and Video in Separate Processes.. 8-3

Lab08b_audio_video... 8-4
Edit main.c.. 8-6

Chapter 8 Appendix ...8-11
Sidebar - Looking at the pthread arguments in detail: ...8-11
Sidebar to the Sidebar – The devilish details of the pthread_create() 3rd arg8-12

Lab08a – Run Audio and Video in Separate Processes

8 - 2 DaVinci / OMAP Linux Design Workshop - Lab 8 - Running Audio and Video

Lab08a – Run Audio and Video in Separate Processes
lab08a_audio_video

ALSA audio ALSA audio
audio_thread.c

v4l2 video v4l2 video
video_thread.c

lab06c_audio_loopthru/app_debug.xv5T

lab07d_video_loopthru/app_debug.xv5T

Build Audio Executable
1. Change to the /home/user/workshop/lab06c_audio_loopthru/app directory in the

Ubuntu PC (solution to the previous audio loopthru lab).

 Note, if you couldn’t get lab06c working properly, copy from the solutions folder.

2. Build and install the application using “make debug install”.

 This will build the debug version and install it to the DVEVM. Note, if you have problems
building at this step, try cleaning, then building:

make clean
make debug install

3. On the DVEVM board, use the Linux “mv” command to change the name of the
app_DEBUG.xv5T application to app_AUDIO.xv5T.

Build Video Executable
4. Change to the /home/user/workshop/lab07d_video_loopthru/app directory.

5. Build and install the application.

make debug install

 Lab08a – Run Audio and Video in Separate Processes

DaVinci / OMAP Linux Design Workshop - Lab 8 - Running Audio and Video 8 - 3

Run Audio and Video in Separate Processes
6. On the DVEVM board, execute the app_AUDIO.xv5T application using the following

command:

./app_AUDIO.xv5T &

 Note, the trailing ampersand (&) in this command indicates that the application is to be run as
a separate process. (In this case, our audio app will run in the terminal background, meaning
that the terminal will remain open to new commands even while the application is executing.)

 You may need to press the Enter key inside your TerraTerm terminal in order to get a new
Linux command prompt.

7. On the DVEVM board, execute the app_DEBUG.xv5T application (the video loopthru
application) using the following command:

./app_DEBUG.xv5T

 You should now have both audio loopthru and video loopthru running concurrently on the
board. They are running as concurrent, but separate, processes. In lab08b and lab08c we will
use pthreads to run the audio and video loopthru in parallel threads within the same process
or application.

8. Halt the video loopthru (running in the terminal foreground) by pressing Ctrl-C.

9. Use the following command to determine the process ID of the audio loopthru, which is
running in the terminal background:

ps

 Look for the app_AUDIO.x470MV to find its PID. To be more fancy, you could pipe the output
of ps to the Linux grep command:

ps aux | grep “app_AUDIO.xv5T”

10. Halt the audio loopthru using the kill command and PID value from the last step.

kill –s SIGINT <app_AUDIO.xv5T process ID>

 For example, if the process ID is 500, type:

 kill –s SIGINT 500

Lab08a Question

 Which scheduling policy is being used by each of the audio and video program processes
(i.e. how is the thread within each process being scheduled)? _________________________

Lab08b_audio_video

8 - 4 DaVinci / OMAP Linux Design Workshop - Lab 8 - Running Audio and Video

Lab08b_audio_video
In this lab, we will combine lab06c_audio_loopthru and lab07d_video_loopthru into a single,
multi-threaded application. (Note,if you were not able to get one of these labs to work, you can
copy it from the appropriate solutions folder: /home/user/solutions)

File Management
11. Change to the /home/user/labs directory.

cd ~/labs

Hint: It is important to do the following two steps in this exact order.
Otherwise, some of the following directions (i.e. editing main.c) will be incorrect!

12. List the lab08b_audio_video/app diretory

Two previously unused files have been provided for you:

ls lab08b_audio_video/app

thread.c

thread.h

13. Examine thread.c in gedit or similar editor

This file contains one function, launch_pthread() which will takes five parameters:

• pthread_t *hThread_byref: this is a pointer to a handle (i.e. a handle passed by
reference) which is used as a return value. The memory location pointed to by
hThread_byref will be updated with a pthread handle.

• int type: integer specifying that the created thread will either be REALTIME or
TIMESLICE as per #define in thread.h

• int priority: The priority assigned to the thread. (is only used for thread type =
REALTIME)

• void *(*thread_fxn)(void *env): a pointer to the function that is the entry point for
the created thread. This function takes a single pointer as an argument (although the
pointer may be a pointer to a structure, effectively allowing multiple arguments.)

• void *env: the pointer which will be passed as the argument to thread_fxn() as
per the above

Examination of the launch_pthread() function shows the thread creation procedure which was
reviewed in the lecture portion of module 8.

 Lab08b_audio_video

DaVinci / OMAP Linux Design Workshop - Lab 8 - Running Audio and Video 8 - 5

14. Copy the full contents of lab07a_osd_setup into lab08b_audio_video.

cp –R –f lab07a_osd_setup /* lab08b_audio_video

 or you can use the file browser within Ubuntu.

15. Copy the full contents of lab06c_audio_loopthru into lab08b_audio_video.

cp –R –f lab06c_audio_loopthru/* lab08b_audio_video

 or you can use the file browser within Ubuntu.

16. Copy the full contents of lab07d_video_loopthru into lab08b_audio_video.

cp –R –f lab07d_video_loopthru/* lab08b_audio_video

 Don’t worry about overwriting any files.

Lab08b_audio_video

8 - 6 DaVinci / OMAP Linux Design Workshop - Lab 8 - Running Audio and Video

Edit main.c
17. Open lab08b_audio_video/app/main.c in a text editor.

18. Fill in the missing .h files, as well as the missing _env variables for the audio and osd
threads to main.c.

 Your main.c file should contain the following:

video_thread.h
video_env (which is the video_thread_env variable)

 You need to add the following to main.c. (Refer to lab06c for this code.)

audio_thread.h
audio_env (which is the audio_thread_env variable)

 as well as (Refer to lab07a for this code.)

osd_thread.h
osd_env (which is the audio_thread_env variable)

19. Make sure that video, audio and osd while loops exit when Ctrl-C is pressed.

 Recall that the signal_handler function is run whenever Ctrl-C is pressed. This signal handler
sets the quit field in both of these global structures to true, signaling to the thread that it
should proceed to its cleanup phase and then exit.

 How do the threads know where to look for these variables? These environment structures are
passed as the argument to the thread. Within the thread function, the main while loop tests on
the appropriate quit variable. When the quit variable becomes true, execution drops out of the
while loop and into the final (cleanup) phase of the function.

 Currently the signal_handler() function sets video_env.quit to one (true). We need to add
similar statements for the audio_env.quit and osd_env.quit to the signal handler below.

void signal_handler(int sig)
{
 DBG("Ctrl-C pressed, cleaning up and exiting..\n");

 video_env.quit = 1;
}

 Lab08b_audio_video

DaVinci / OMAP Linux Design Workshop - Lab 8 - Running Audio and Video 8 - 7

20. To make debugging easier, put a one-second delay in between *.quit=1 calls.

 Since we’re exiting three pthreads back-to-back, you might find that their debug messages
become interleaved – which can make debugging more difficult. To this end, when building
with our “debug” profile, we could delay the start of the second quit by using a Linux time
function.

 Insert the following code between each *.quit=1 call to cause Linux to sleep for one second.
This should make debugging easier.

#ifdef _DEBUG_
 sleep(1);
#endif

 Don’t forget to include the proper header file for the sleep() function: unistd.h

21. Include the <pthread.h> header file that prototypes the launch_pthread() function.

 This is the header file for the code you examined in step 13.

22. Declare three pthread handles and three return pointers needed to manage our new
threads (audio, video, osd).

 At the top of main(), add three pthread handles (of type pthread_t) named audioThread,
osdThread and videoThread. Handles are used to refer to instantiated objects; the handle
value will be set during pthread_create() in step 23, then used again later to refer to that
pthread instance.

 Also, we want to add three void pointers: one named audioThreadReturn, one named
osdThreadReturn and one named videoThreadReturn. The return pointers will be used when
“joining” (i.e. exiting) a thread in step 26; they will allow you to interrogate the status after an
exit.

 It should end up looking like:

 pthread_t audioThread, osdThread, videoThread;
 void *audioThreadReturn, *osdThreadReturn, *videoThreadReturn;

Lab08b_audio_video

8 - 8 DaVinci / OMAP Linux Design Workshop - Lab 8 - Running Audio and Video

23. Replace the direct call of video_thread_fxn() with a call of launch_pthread() to
create a new thread that has video_thread_fxn() as its entry point.

 Currently main.c calls video_thread_fxn. Replace this direct function call with a call to
launch_pthread()

 Replace the following:

 /* Call video thread function */
 videoThreadReturn = video_thread_fxn((void *) &video_env);

 With this starting code … you have to fill in a few details:

/* Create a thread for video loopthru */
if(launch_pthread(&thread, (type), (priority), video_function, argument)
!= thread_SUCCESS){
 ERR("pthread create failed for video thread\n");
 status = EXIT_FAILURE;
 goto cleanup;
 }
 initMask |= VIDEOTHREADCREATED;

 (type) – either REALTIME or TIMESLICE as per thread.h

 As per the lecture, we want to set this field to TIMESLICE for video_thread_fxn()

 (priority) – this value will be ignored for TIMESLICE type, so you can set
it to zero

24. Add launch_pthread() calls to launch the audio_thread_fxn() and osd_thread_fxn()
entry points as threads with the following characteristics:

 audio_thread_fxn(): type: REALTIME

 priority: 99

 osd_thread_fxn(): type: TIMESLICE

 priority: 0 (unused)

At this point, you should have 3 sets of launch_pthread calls (one for video, audio, and osd).

Be sure to record successful launching of the audio and osd threads in the intiMask.

We’ve given you
hints, but you need

to figure out the
actual arguments…

Don’t forget to add #defines
for audio & video thread

created masks.

 Lab08b_audio_video

DaVinci / OMAP Linux Design Workshop - Lab 8 - Running Audio and Video 8 - 9

25. To make debugging easier, put a one-second delay in between pthread_create() calls.

 Since we’re creating two pthread’s back-to-back, you might find that their debug messages
could become interleaved – which can make debugging more difficult. To this end, when
building with our “debug” profile, we could delay the start of the second pthread_create() by
using a Linux time function.

 Insert the following code between your two pthread_create() calls to cause Linux to sleep for
one second. This should make debugging easier.

#ifdef _DEBUG_
 sleep(1);
#endif

26. Add “cleanup” section using pthread_join() for both audio and video threads.

 First, let’s create a “cleanup” section in our main.c file.

 After the audio, osd and video threads have been created, use pthread_join on all three
threads to pause execution of the main thread until all threads have exited.

 The prototype for pthread_join is:

int pthread_join(pthread_t thread, void **value_ptr);

 The first parameter is the handle to the thread to join to (the variable we created in step 22,
then filled-in with pthread_create() in step 23).

 We use audioThreadReturn, osdThreadReturn and videoThreadReturn pointers (by reference)
to store the return status (pass/fail) from the join function. Since we want to return a value via
this argument, we want to pass the (void pointer) argument by reference. To avoid getting an
incompatible pointer type warning, we want to recast this argument – since this recasting can
be a bit tricky for some of us, rather than have you figure it out by trial-and-error, here are the
values to use for the second argument of each join function:

(void **) &videoThreadReturn
(void **) &osdThreadReturn
(void **) &audioThreadReturn

 So, as an example, to join the video thread, you can write the following after “cleanup:” :

 Pthread_join(videoThread, (void **) &videoThreadReturn);

27. Ensure all initMask #defines are completed for video, audio and osd.

28. Save and close main.c.

Lab08b_audio_video

8 - 10 DaVinci / OMAP Linux Design Workshop - Lab 8 - Running Audio and Video

29. Modify your makefile_profile.mak to copy (i.e. install) the ti_rgb24_640x80.bmp file
from the osdfiles directory to the execution directory.

The way this install rule is written it will copy all of the dependencies of the rule into the
execution directory. Knowing we would have an OSD file eventually, we added an OSD
variable to the install string. As long as INSTALL_OSD_IMAGE = “”, nothing was copied.

We can change this by adding the file we want copied to the Application Information section
of our makefile. That is, set the INSTALL_OSD_IMAGE variable to the name of your OSD
image file. (Make sure it starts with “../osdfiles/” so gMake can find it.)

PROGNAME := app

CONFIG := app_cfg

INSTALL_OSD_IMAGE := ../osdfiles/ti_rgb24_640x80.bmp

INSTALL_SERVER :=

 ...

.PHONY : install
install : $(PROGNAME)_$(PROFILE).xv5T $(INSTALL_OSD_IMAGE) $(INSTALL_SERVER)

 (install rule continues…)

 Alternatively, we could have just had you add the OSD filename to the install rule
dependencies like this.

install : $(PROGNAME)_$(PROFILE).xv5T ../osdfiles/ti_rgb24_640x80.bmp

 We chose not to do this so that we could try and keep all the application specific info grouped
together towards the top of the makefile.

30. Build and install the application using gMake:

make debug install

31. Execute the ./app_DEBUG.xv5T application on the development board.

 You should have simultaneous audio and video playing through the board, with a scrolling
OSD.

32. Press Ctrl-C to exit the application.

Lab08b Question
 What scheduling policy is being used by each of the audio, video and osd threads? _______

 Chapter 8 Appendix

DaVinci / OMAP Linux Design Workshop - Lab 8 - Running Audio and Video 8 - 11

Chapter 8 Appendix

Sidebar - Looking at the pthread arguments in detail:

 The detailed function prototype for pthread_create is:

int pthread_create(pthread_t *thread, pthread_attr_t *attr,
 void *(*start routine)(void *), void *arg);

*thread: After pthread_create() runs, the first argument becomes our handle to the newly
created thread instance. We’ll use it every time we want to do something with/to
this specific thread instance.

 The handle is of type pthread_t (i.e. pthread_type).

It is passed by reference (hence *thread in the above prototype), which allows the
pthread_create() to return the value for our newly created thread.

A final note (to those of us who are a bit rusty on our C syntax), if the
pthread_create() function is going to use this argument as a pointer, then we need
to pass it the address (&hint, hint) of our pthread_t variable.

*attr: The second argument is a pointer to a thread attributes structure. Hence, it uses a
variable of type pthread_attr_type.

 In the next lab we will modify the thread attributes, but for now will use default
thread attributes by passing a NULL pointer.

start_routine:
The third argument is both the easy and hard to understand. Let’s focus on the easy
part here. Simply, you just need to specify the name of the function to be run once
the thread is created. As a hint, ask yourself this question, what function call are we
replacing in main() with pthread_create()? That is the function we need to enter
here as the 3rd argument.

 (See the sidebar at the end of this step for a discussion of this arguments “structural
complexity”.)

*arg: The final argument to pthread_create is a void *argument. When start_routine() is
run, upon creating our pthread, this is the argument that will be passed as the
start_routine’s one-and-only argument.

 In our case we want to pass video_env to video_thread_fxn and audio_env to
audio_thread_fxn. We can do this by passing both structures by reference and
recasting to a void pointer type, i.e.:
(void *) &audio_env
(void *) &video_env

Chapter 8 Appendix

8 - 12 DaVinci / OMAP Linux Design Workshop - Lab 8 - Running Audio and Video

Sidebar to the Sidebar – The devilish details of the
 pthread_create() 3rd arg

The third argument to the pthread_create() function specifies the start_function. That is, the
function automatically run after creating the new thread.

As an example, the argument might look like:

 pthread_create(&myThread, NULL, myFunction,(void *) &myArg)

Looking at the official definition for the pthread_create() function, we find the third argument
looks like:

void *(*start_routine)(void *)

All this is really saying is that this argument is just a pointer to a function whose prototype is:

void *start_routine(void *arg);

This prototype means that it is a function that
 takes a void pointer as its single argument and returns a void pointer.

Why does the pthread definition use the extra complication of void pointers for both the argument
and return values? Because this flexibility allows you to create a function that meets your needs.
You can define any structure (or scalar) to be passed and returned to your start function.

In other words, the thread function is defined with void pointers for both its argument and return
because this allows you to create any structure you wish for each of them. This allows you to
populate the argument structure with as many arguments as you want – ditto for the return
structure – and pass pointers to these structures.

Fortunately (and not by accident…) the video_thread_fxn and audio_thread_fxn that we have
been using happen to both use void pointers as their argument and return values.

Note, our example’s prototype would be:
void *myFunction(void *arg);

DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine 9 - 1

Lab 9 - Using a Given Engine

Lab 9 – 12 Summary
Codec Engine - Use Cases

Engine

App

Engine

App

Engine

App

DSP
Server

Engine

App

DSP
Server

Lab 9

Lab 10

Lab 11

Lab 12

Given
Given

There are four different use-cases for interacting with the Codec Engine
Here’s a quick description, along with a reference where it’s covered

Linux application
dev’l only – Engine
provided as .o lib
Engine provided by
another in-house
team or 3rd Party
Modularity allows to
focus on end-app
Codecs local or
remote (don’t care)

Linux application
dev’l – as well as
Engine config (.cfg)
Build Engine & app
all-in-one
While easy, user
must know about
pkgs & .cfg files
Local codecs only

Similar to prev
use-case, but
you’re provided
server containing
remote codecs
Simple (.cfg)
method makes
remote codecs
easy to use

Similar to others
from app/engine
producers persp.
Building a server
is like building a
DSP executable
(i.e. “.out” file)
Requires some
embedded syst.
dev’l experience

Lab Outline
Lab 9 - Using a Given Engine... 9-1

Lab 9 Introduction .. 9-2
Lab09a_use_published_engine ... 9-3

Examine Provided Lab Files... 9-3
Build, Install, Run Application... 9-4

Lab09b_use_published_engine_av ... 9-5
File Management .. 9-5
Examine/Modify video_thread.c .. 9-6
Add Codec Engine & Codec Calls ... 9-8
Modify Buffer Table and Open Display Driver.. 9-9
Create an intermediate buffer (encBuf) ...9-11
Update video thread’s while() loop - Replacing memcpy() with video codec processing.................9-12
Modify video_thread.h ..9-13
Modify main.c ...9-14

Lab 9 Introduction

9 - 2 DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine

Lab 9 Introduction
In this lab exercise, you will extend the Lab8b audio/video example to add an audio and video
encoders and decoders to your audio and video streams.

• Specifically, in Lab9a we provide the code to add an audio encoder & decoder to your
audio loopthru thread from Lab8b.

• Then, in Lab9b, you will add video encoder & decoder processing to the video thread.

This lab makes use of the dummy (i.e. pass-thru) audio and video codecs that come with the
Codec Engine examples, running locally on the ARM processor. These dummy codecs are a great
way to build-up (i.e. model) a system prior to having your completed algorithms ready to
integrate. In our case, they provide a simple first step towards integrating signal processing.

The project uses a pre-built (or “published”) engine; essentially, the entire signal processing
content has been wrapped up into a single library archive. On your end, though, in order to utilize
the audio and video codecs from the published engine, you will need to add Engine and VISA
functions to your application. (The next chapter discusses how to build an engine.)

engine.o

lab09a_use_published_audio_engine

audio_thread.c

Sound_read() Sound_write()

ALSA audio ALSA audio

video_thread.c

Display_put()

v4l2 video v4l2 video

main.c

Capture_get()

Note:
Since this lab exercise uses the
provided engine.o library, we
have slightly modified the
makefile to include it in the
build. Lab10, which builds the
engine using Configuro will go
back to our previous makefile.

main() also calls
osd_thread.c as

a 3rd thread

AUDDECAUDENC

Aenc_process() Adec_process()

engine.o

lab09b_use_published_engine_av

audio_thread.c

AUDDEC

video_thread.c

v4l2 video

main.c

AUDENC

Aenc_process()

VIDENC

Adec_process()

VIDDEC

ALSA audio ALSA audio

v4l2 video

main() also calls
osd_thread.c as

a 3rd thread

Sound_read() Sound_write()

Display_put()Capture_get() Venc_process() Vdec_process()

 Lab09a_use_published_engine

DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine 9 - 3

Lab09a_use_published_engine
To reconfirm, in this lab you should hear audio and see video, but we are only “processing” the
audio. That is, we will continue to use a memcpy() to pass-thru the raw video data. On the other
hand, the audio data will be passed to the audio encoder – then audio decoder – before being
written to the audio output driver. (Lab09b gets us processing the video, too.)

Examine Provided Lab Files
1. Change to the /home/user/labs/lab09a_use_published_audio_engine/engine

directory and list the contents.

 The engine directory contains two object libraries named: engine_debug.ov5T and
engine_release.ov5T. These files contain all object code needed for our given engine, to be
used by your application. Hence these are published as pre-built engines. (In lab10 we will
examine how to build and modify an engine.)

 In addition, we have included the engine_cfg.cfg file used to create these pre-built engines.
Although this file will not be directly used by the lab09a_use_published_engine application,
it’s good practice to provide the original config file along with the engine, as a reference.

2. Change to the app directory and examine the files:

audio_thread.c
 audio_thread.c should look very similar to the file you developed in Lab8. The following

additions have been made to support audio processing using the Codec Engine:

• Added DMAI header files: Two additional DMAI header files have been #included
into the file, <ti/sdo/dmai/ce/Adec.h> and <ti/sdo/dmai/ce/Aenc.h>

• A number of variables have been declared: Handles for the engine, audio encoder
and decoder (engineHandle, encoderHandle and decoderHandle) as well as
configuration parameters and dynamic parameters for the encoder and decoder
(aeParams, adParams, aeDynParams, adDynParams). Note that the parameters
structures have all been initialized to the DMAI default values in these declarations.

• Encoder/decoder creation: During the initialization stage of the thread, there is an
Engine_open() call, followed by Aenc_create() and Adec_create() function calls.

• Encoded buffer create: A new buffer has been created to handle the encoded data
coming from Aenc_process() before it is passed to the decoder. A reference to the
buffer is stored in the hBufEnc handle.

• Within the while loop: Aenc_process() and Adec_process() have been called in
between the Sound_read() and Sound_write() calls; these encode the audio putting it
into the hBufEnc buffer, then decodes it again before output. Note the workaround:
Buffer_setNumBytesUsed() is called after both Aenc_process() and Adec_process();
this is required because the CE copy codec examples don’t set the size of their
respective output buffers (because they’re always the same size as the input buffers.)
A production-quality codec should not require this workaround.

• Cleanup: After the while loop exits, Adec_delete(), Aenc_delete() and
Engine_close() are called to free codec & Codec Engine resources. Also,
Buffer_delete() was added to free the intermediate buf we created (ref’d by hBufEnc).

Lab09a_use_published_engine

9 - 4 DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine

Examine main.c
 Remember that CERuntime_init() must be called before any other Codec Engine functions.

You might also note that the audio_env structure has been modified to include the string
value for our engineName, which allows us to pass the name of our Engine from main() to the
audio thread. (Each thread has to call Engine_open separately to obtain a unique handle to
the Engine).

Build, Install, Run Application
3. Build and install the application using gMake (debug profile).

The video_thread.c file we have provided for you has a number of #define statements and
variable declarations that have been added for convenience as outlined in lab09b. As a result,
when you build, you will get a number of warnings for unused variables:

video_thread.c: In function 'video_thread_fxn':
video_thread.c:95: warning: unused variable 'dDynParams'
video_thread.c:94: warning: unused variable 'eDynParams'
video_thread.c:93: warning: unused variable 'dParams'
video_thread.c:92: warning: unused variable 'eParams'
video_thread.c:91: warning: unused variable 'decoderHandle'
video_thread.c:90: warning: unused variable 'encoderHandle'
video_thread.c:89: warning: unused variable 'engineHandle'
video_thread.c:86: warning: unused variable 'encBufSize'
video_thread.c:85: warning: unused variable 'encBufAttrs'
video_thread.c:84: warning: unused variable 'encBuf'

Don’t worry about these warnings – we’ll use all of these variables in part B.

4. Insert the CMEM and DSPLINK drivers into the kernel.

 If you have called the ./loadmodules.sh script already you do not need to call it again,
but if you have reset your board since the last time this was called, you will need to load
those modules again.

 Remember, in order to use a driver it must be installed into the kernel. Starting with Lab 9,
we begin using CMEM. (DSPLINK won’t be used until Lab 11.)

 The loadmodules.sh script dynamically loads the cmemk.ko and dsplinkk.ko kernel
modules using the modprobe command (which calls insmod) and allocates the appropriate
device nodes to support the drivers using mknod, as we discussed back in Chapter 6.
On the EVM board (i.e. Tera Term), run the script:

./loadmodules.sh

Note: If loadmodules is not in our EVM’s /opt/workshop directory, you missed a step from an
earlier lab. No need to worry – in Ubuntu, run the install script from Lab00.

5. Execute the app_debug.xv5T application.

 After you’ve confirmed it works, press Ctrl-C to exit the application.

 Lab09b_use_published_engine_av

DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine 9 - 5

Lab09b_use_published_engine_av
Using lab09a_use_published_engine as a reference, add a video encoder and decoder into the
audio thread of the application. After copying over the previous lab, you will need to modify
video_thread.c to use:

− Venc_create() – Vdec_create()

− Venc_process() – Vdec_process()

− Venc_delete() – Vdec_delete()

As a hint, you may want to use audio_thread.c as a reference, even cutting and pasting
segments from this file as a starting point for your code.

File Management
6. Begin by copying the files of lab09a_use_published_audio_engine into

lab09b_use_published_engine_av.

cd ~/labs
cp –R -f lab09a_use_published_audio_engine/* lab09b_use_published_engine_av

Lab09b_use_published_engine_av

9 - 6 DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine

Examine/Modify video_thread.c
7. Open lab09b_use_published_engine_av/app/video_thread.c for editing.

8. Verify the appropriate #includes and #defines are present, which are used to access to
the video decoder and encoder.

Note: Since this step is little more than an exercise in typing, we have provided the
header file includes and defines for you in the starter file so that you can get on to the
interesting portion of the lab. Each step that is already done has been outlined below.

 The following shows the header file includes that are needed to get our new codecs working.

/* Codec Engine headers */
#include <xdc/std.h>
#include <ti/sdo/ce/Engine.h>

/* DMAI headers */
#include <ti/sdo/dmai/Dmai.h>
#include <ti/sdo/dmai/Capture.h>
#include <ti/sdo/dmai/Display.h>
#include <ti/sdo/dmai/Buffer.h>
#include <ti/sdo/dmai/BufferGfx.h>
#include <ti/sdo/dmai/Vdec.h>
#include <ti/sdo/dmai/Venc.h>

/* Application header files */
#include "debug.h" // DBG and ERR macros
#include "video_thread.h" // video thread definitions

/* Video encoder and decoder used */
#define VIDEO_ENCODER "video_encoder"
#define VIDEO_DECODER "video_decoder"

...

/* Numbers of video buffers needed */
#define NUM_CAPTURE_BUFS 3

/* Create a joint buffer table to be shared between decoder and display *
//#define NUM_DISPLAY_BUFS 2
//#define NUM_DECODER_BUFS 3
#define NUM_DECODER_DISPLAY_BUFS 4

...

/* Intermediate buffer for encoded video */
Buffer_Handle encBuf = NULL; // pointer to encoded buffer
Buffer_Attrs encBufAttrs = Buffer_Attrs_DEFAULT;
int encBufSize = 0;

/* Codec engine variables */
Engine_Handle engineHandle = NULL; // handle to Engine
Venc_Handle encoderHandle = NULL; // handle to video encoder
Vdec_Handle decoderHandle = NULL; // handle to video decoder
VIDENC_Params eParams = Venc_Params_DEFAULT;
VIDDEC_Params dParams = Vdec_Params_DEFAULT;
VIDENC_DynamicParams eDynParams = Venc_DynamicParams_DEFAULT;
VIDDEC_DynamicParams dDynParams = Vdec_DynamicParams_DEFAULT;

 a

 c

 e

 b

 d

 Lab09b_use_published_engine_av

DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine 9 - 7

Discussion:

 If you are wondering “How on earth would I know what header files to include and variable
types to define???”, don’t forget about the DMAI documentation. Due to time limitations in
the workshop, it isn’t efficient to have you search through the docs and header files, finding
every type definition and enumeration value that you need. But alas, it’s all there in the API
reference guide documentation:
 ~/ti-dvsdk_omap3530-evm_4_00_00_17/dmai_2_05_00_18_ApiReference.html

 You can view this file using the web browser installed on this system.
cd /home/user/ti-dvsdk_omap3530-evm_4_00_00_17/dmai_2_05_00_18/
firefox file://$PWD/dmai_2_05_00_18_ApiReference.html

Select the Venc module and note that all of the type definitions, functions, and default
parameter structures are listed.

 You may also find it convenient to look directly inside of the Sound.h DMAI header file. To
do this, open a new terminal. Navigate to:

 /home/user/ti-dvsdk_omap3530-evm_4_00_00_17/dmai_2_05_00_18/packages/ti/sdo/dmai/ce
 and open the Venc.h header file in the editor of your choice.

Below is an explanation of each item we have done for you:

a. First, we need to include the header files that reference the standard XDC definitions, as
well as the codec engine definitions.

b. We will be utilizing two new DMAI library modules to access video encoder and decoders,
namely the Venc and Vdec modules. In this section, the header files for those modules are
added. (These DMAI modules are basically wrappers around the Codec Engine functions
we discussed earlier in the workshop.)

c. In our video thread, rather than using the actual codec string names (as we defined in our
.cfg file), we chose to abstract them via #define statements.

d. For increased efficiency, we’ve chosen to share buffers between the decoder and display.
Thus we commented out the previous statements and defined a new value. (Note, we were
able to reduce the required buffers from 5 down to 4.)

e. We need to add declarations for each variable we plan to use in the video thread. Normal
practice would obviously be to write the new code you are adding, then go back and declare
variables as you need them. To save you some typing, though, we’ve already added them.

9. Extend the #define’d bit values for the initMask to include the following:

/* The levels of initialization for initMask */
#define OSDSETUPCOMPLETE 0x1
#define DISPLAYDEVICEINITIALIZED 0x2
#define CAPTUREDEVICEINITIALIZED 0x4
#define VIDEOENCODERCREATED 0x8
#define VIDEODECODERCREATED 0x10
#define ENCODEDBUFFERALLOCATED 0x20
#define ENGINEOPENED 0x40

 Once again, we will use these in our cleanup & error management code to detect which
actions have (or have not) been completed successfully.

Lab09b_use_published_engine_av

9 - 8 DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine

Modifying video_thread.c (cont’d)

Add Codec Engine & Codec Calls
10. Open the codec engine and create instances of both the video encoder and decoder.

 DMAI provides functions for setting up these entities. (In fact, we added header files already
for referencing these functions in a previous step (8b)).

 In this step you need to add function calls to:

 a. Open the Engine

 b. Create instance of the video encoder

 c. Create instance of the video decoder

 The code provided below needs to be added to video_thread.c. As shown below, we’ve
provided the code for (a) opening the Engine and (b) creating an instance of the encoder
as a reference. We’ve left it up to you to write the third piece (decoder instance), which also
must be added to video_thread.c.

 You have two choices at this point: (1) type it all manually; (2) copy the three parts from the
audio_thread_fxn() in audio_thread.c and paste them into video_thread.c – modifying
them to use “video” references instead of “audio”. It’s your choice….

video_thread.c
/* Open the codec engine */
/* Note: codec engine should be opened in each thread that uses it */

engineHandle = Engine_open(env->engineName, NULL, NULL);

if(engineHandle = NULL){

 ERR("Engine setup failed in video_thread_fxn\n");

 status = VIDEO_THREAD_FAILURE;

 goto cleanup;

}

initMask |= ENGINEOPENED;

/* Create an instance of the video encoder */

encoderHandle = Venc_create(engineHandle, VIDEO_ENCODER, &eParams, &eDynParams);

if(encoderHandle = NULL){

 ERR("Video encoder create failed in video_thread_fxn\n");

 status = VIDEO_THREAD_FAILURE;

 goto cleanup;

}

initMask |= VIDEOENCODERCREATED;

 Lab09b_use_published_engine_av

DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine 9 - 9

 What is the engine name we are using and where is it defined? _______________________

 Trace out how the engine name gets from where it’s defined, to where it is used in

 the Engine_open() function call? ___

Modify Buffer Table and Open Display Driver
11. In the declarations section, change hBufTabDisplay to hBufTabDecoderDisplay.

Updated to indicate we will be using a shared buffer between the decoder and display.
(Strictly speaking, we didn’t need to change this. But it often helps to keep variable names
close to their usage/meaning.)

12. Modify the hBufTabDisplay BufTab_Create() to create a buffer table in
hBufTabDecoderDisplay and move the create call to just after Vdec_create().

 Certain video codecs, such as H.264, use the concept of B frames which allow backwards
references (from the encoder standpoint) to frames which have yet to be decoded. The result
is that these decoders may need to maintain a pool of video frames that are operated upon
together during process.

 While not all decoders require this (certainly not the “copy” decoder!), we will go ahead and
add it for when we use a real video codec in Lab 11a.

 Since we will no longer need the Display buffer table (as we’re now sharing a buffer table
between the display driver the decoder) the simplest thing for you to do is cut and paste the
DecoderDisplay buffer table allocation code and modify as necessary.

 Paste just before the code that opens the video display – Display_create():

hBufTabDecoderDisplay = BufTab_create(NUM_DECODER_DISPLAY_BUFS,
 bufSize,
 BufferGfx_getBufferAttrs(&gfxAttrs));
if (hBufTabDecoderDisplay == NULL)
{
 printf(“Failed to allocate contiguous buffers\n”);
 goto cleanup;
}

/* Create the display driver instance */
...

13. Modify the Display_create() call to use hBufTabDecoderDisplay.

Note: You may recall that in lab07e, it was necessary to dequeue the buffers – which were
initialized in the capture driver – before the Display_create() call. In the case when using Vdec,
the buffer table is registered but not queued (and not marked as in use), so there is no need to go
through this procedure before sharing the buffer table with the Display driver.

Lab09b_use_published_engine_av

9 - 10 DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine

14. Initialized video decoder to use hBufTabDecoderDisplay.

 Vdec_setBufTab() grants the table of video buffers to the video decoder for its use.

 We want to do this after just after the decoder instance has been created. So, add this code
right after the Vdec_create() call (and it’s associated error checking if statement):

/* For Vdec, we'll reuse the Buffer table created for the display */
Vdec_setBufTab(decoderHandle, hBufTabDecoderDisplay);

 Lab09b_use_published_engine_av

DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine 9 - 11

Create an intermediate buffer (encBuf)
15. First, let’s allocate a buffer to hold data between encoder and decoder process calls.

 Here’s how we’ll create our intermediate buffer:

encBuf = Buffer_create(bufSize, &encBufAttrs);

 Before we can execute this call, though, we’ll first need to figure out it’s proper arguments:
• Before we can allocate the buffer, we need to figure out how large it should be.

− For a “real” codec, we could check the codec’s datasheet for the maximum buffer size – or,
some codecs provide this as a status value that can be returned via their _control() function.

− In any case, since we are using dummy codecs (shipped with the Codec Engine), this is not a
question because the output (“encoded”) buffer size will always be the same size (the same
data!) as the input buffer. (To put this another way, since this is a dummy copy codec, we can
cheat and know that this is always the right size: encBufSize = bufSize;)

− Note, bufSize is the video buffer size as calculated earlier in the video thread based upon the
result of the Capture_detectVideoStd() call.

• For cache efficiency (on the DSP), we chose to align our buffers to BUFSIZEALIGN (set
to 128 bytes, the cache line size of the C64x+ DSP).

• To simplify setting the size of the buffer, we called a DMAI function to choose between
our two possible sizes (encBufSize, BUFSIZEALIGN).

• As always, it’s a good idea to add error-checking code to help with debugging.

 Here’s the code you need to add to your file:
 Add just after the call to Vdec_setBufTab() and right before the while() loop.

/* Set buffer size for intermediate buffer (for encoded data) */
/* as the size of a full frame */
 encBufSize = bufSize;

/* Allocate intermediate buffer */
/* Note, must use contiguous buffers if passed to DSP! */
 encBufAttrs.memParams.align = BUFSIZEALIGN;
 encBufAttrs.memParams.type = Memory_CONTIGPOOL;

 encBuf = Buffer_create(Dmai_roundUp(encBufSize, BUFSIZEALIGN),
 &encBufAttrs);

 if (encBuf == NULL)
 {
 ERR("Failed to alloc video buffer in video_thread_fxn.\n");
 status = VIDEO_THREAD_FAILURE;
 goto cleanup;
 }

 initMask |= ENCODEDBUFFERALLOCATED;

 DBG("Alloc’d intermediate video buffer of size %d\n", encBufSize);

Lab09b_use_published_engine_av

9 - 12 DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine

Update video thread’s while() loop - Replacing memcpy()
with video codec processing
13. Replace the memcpy in the “while” loop with processing calls to video encoder and

decoder.

 Within the while loop (in video_thread.c), you should find the following code:

get() a buffer from video capture device
get() a buffer from video display device

memcpy() captured buffer into display buffer

put() the capture buffer back to capture driver for reuse
put() the display buffer back to display driver for reuse

 You need to replace the mempcy() function call with two calls to encode/decode the audio.
Also, in our solutions we chose to put back the buffers right after their use – therefore, our
pseudo-code looks like:

get() a buffer from video capture device

Venc_process() captured buffer into encoded buffer (encBuf)
put() the capture buffer back to capture driver for reuse

get() a buffer from video display device

Vdec_process() encoded buffer into display buffer

put() the display buffer back to display driver for reuse

 As a hint, here is the prototype for Venc_process(), the DMAI video encoder process
function.

int Venc_process(Venc_Handle encoderHandle, Buffer_Handle inputBuffer,
 Buffer_handle outputBuffer);
Venc_process(

____encoderHandle_________, // handle to encoder
____cBuf__________________, // buffer being input into encoder
____encBuf________________, // buffer output by encoder

 Similarly, here’s the prototype of the DMAI video decoder process function:
int Vdec_process(Vdec_Handle encoderHandle, Buffer_Handle inputBuffer,
 Buffer_handle outputBuffer);

Vdec_process(

__________________________, // handle to decoder
__________________________, // buffer being input into decoder
__________________________, // size of buffer being put into decoder

 As a side note, the while() loop in audio_thread.c is conceptually similar to what we’re
doing here (get data encode decode), but the calls to the audio and video drivers are a
little bit different – necessitating the changes to our while() loop in video_thread.c.

 Lab09b_use_published_engine_av

DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine 9 - 13

14. After while() exits, add cleanup code for the buffers and instances you added to this file.

 There already is a “cleanup” section in audio_thread_fxn with two calls to close the input,
and output video drivers. You need to add code to clean the remaining resources we have
added:

− Video Encoder

− Video Decoder

− Engine

− Encoded Buffer

 Hints:
• To view the prototypes for each of the three cleanup functions, you would normally refer

to the documentation. We have provided them here for your easy reference:
 Engine_close(Engine_Handle engineHandle);
 Vdec_delete(Vdec_Handle decoderHandle);
 Venc_delete(Venc_Handle encoderHandle);

• Don’t forget that the engine cleanup must occur after all encoders and decoders
associated with the engine have already been deleted.

• If in doubt, check out the cleanup code in audio thread file.
• Since we allocated the intermediate processing buffer (encBuf) using the DMAI

Buffer_create() function, we recommend using its counterpart, Buffer_delete(), to free the
buffer and release the memory.

15. Save, then exit, the video_thread.c file.

Modify video_thread.h
16. Extend the video_thread_env structure, adding an element to pass the engine name from

main() to video_thread_fxn().

 This data structure is defined in the header file, and referenced by both main.c and
video_thread.c.

 You may remember our chapter discussion strenuously suggesting that the engine string
name be passed to each thread, as opposed to opening the engine in main and passing a
handle. To this end, our structure’s new element should be a string named engineName.

 char *engineName;

 If needed, you can reference audio_thread.h to see how we extended the environment
structure there.

Lab09b_use_published_engine_av

9 - 14 DaVinci/OMAP Workshop - Lab 9 - Using a Given Engine

Modify main.c
17. Fix the initialization of the video_env global variable.

 After changing the definition of video_thread_env in a previous step, our initialization is now
incomplete. We recommend initializing the new element to NULL;. The next step sets it to the
engine’s string name.

18. Modify main.c so that it passes the engineName to our video thread function.

 Set the element you just modified, in video_thread_env, to the correct engine name.

 What value should be used for the engine name?

 Similar to the encoder and decoder string names we have used, you can find the engine string
name defined in the engine configuration (.cfg) file. To make things easy, though, we have
already #defined a constant for you:

#define ENGINE_NAME = “encodedecode”.

 In our solutions we set the engineName field in the video_env structure right before we called
the video thread’s launch_pthread() function. It could have been done almost anywhere
before this call, but this is location we chose.

Build, install and Run Application
19. Review the build script makefile_profile.mak, then build the program and test it out.

gedit makefile_profile.mak &

 Notice that some additional –i paths have been added to the file; these options tell the
compiler where to find the various header files for the code bundled into the “engine” library.
Keeping track of these headers is a bit tedious, but luckily, when we use Configuro again in
the next chapter, it will automatically handle this for us.

Close the file
Run gMake to build the application, then run it

 Make sure your audio/video source is playing – you should successfully see and hear the
results…

 We now have the “framework” for using a real local codec in our application, even though
the codec we’re currently just a “copy codec”. In future labs, we’ll replace the dummy, copy
codec with a real codec – and with very few modifications…

DaVinci/OMAP Workshop - Lab 10 - Building an App With Engine 10 - 1

Lab 10 - Building an App With Engine
Lab 10 Context

Codec Engine - Use Cases

Engine

App

Engine

App

Engine

App

DSP
Server

Engine

App

DSP
Server

Lab 9

Lab 10

Lab 11

Lab 12

Given
Given

There are four different use-cases for interacting with the Codec Engine
Here’s a quick description, along with a reference where it’s covered

Linux application
dev’l only – Engine
provided as .o lib
Engine provided by
another in-house
team or 3rd Party
Modularity allows to
focus on end-app
Codecs local or
remote (don’t care)

Linux application
dev’l – as well as
Engine config (.cfg)
Build Engine & app
all-in-one
While easy, user
must know about
pkgs & .cfg files
Local codecs only

Similar to prev
use-case, but
you’re provided
server containing
remote codecs
Simple (.cfg)
method makes
remote codecs
easy to use

Similar to others
from app/engine
producers persp.
Building a server
is like building a
DSP executable
(i.e. “.out” file)
Requires some
embedded syst.
dev’l experience

Chapter Topics
Lab 10 - Building an App With Engine ..10-1

Lab 10 Context...10-1
Chapter Topics...10-1
Lab Introduction ..10-2
Lab10a_build_app_and_engine...10-3

File Management ...10-3
Create RTSC configuration (.cfg) file ...10-3
Update XDCPATH..10-5
Build, Install, Run (and hopefully not need to debug…)...10-6
Make it fail ..10-6

(Optional) Lab10b _engine_deliverable ..10-8
File Management ...10-8

Lab Introduction

10 - 2 DaVinci/OMAP Workshop - Lab 10 - Building an App With Engine

Lab Introduction
In this lab, you will extend Lab 9 by building the Engine (that was previously given to you) along
with your application. After using Configuro in Lab 5, and your having used Engine in Lab 9, you
should find this next step of building an engine pretty easy. In this exercise, our engine will still
use the dummy (i.e. copy pass-thru) audio and video codecs that come with the Codec Engine
examples, running locally on the ARM processor.

Once we copy our previous files into our new project folder, only two items must be
added/changed to build our own engine along with our application.

a. Create a configuration (app_cfg.cfg) file that tells Configuro which codec packages
you want in your engine.

b. Modify the XDCPATH (i.e. Configuro’s search path) inside the
makefile_profile.mak so Configuro can find the packages you want to use

engine configuration
(app_cfg.cfg)

lab10a_build_app_and_engine

Build the engine and
application in one step
using gMake/Configuro

audio_thread.c

Sound_read() Sound_write()

ALSA audio ALSA audioAUDDEC

video_thread.c

Capture_get() Display_put()

v4l2 video v4l2 video

main.c

AUDENC

Aenc_process()

VIDENC

Venc_process()

Adec_process()

VIDDEC

Vdec_process()

 Lab10a_build_app_and_engine

DaVinci/OMAP Workshop - Lab 10 - Building an App With Engine 10 - 3

Lab10a_build_app_and_engine

File Management
1. Clean your lab09b_use_published_engine_av project.

cd /home/user/labs/lab09b_use_published_engine_av/app

make clean

2. Copy the lab09b_use_published_engine_av project to the Lab 10a directory.

cd ~/labs/lab10a_build_app_and_engine/app

cp –R -f ~/labs/lab09b_use_published_engine_av/* .

 Note, if your previous Lab 9b didn’t work, please copy from the solutions folder instead:

cp –R -f ~/solutions/lab09b_use_published_engine_av/* .

3. Copy our makefiles from Lab8b into lab 10.

 We need to go back to our original makefiles, since Lab 9 used a slightly modified makefile
in order to provide gcc with the header/library paths needed for building with the provided
engine. This lab once again relies on Configuro to provide the library (-l) and include (-i) file
path statements. (You might remember us discussing this feature of Configuro in Chapter 5.)

cp -f ~/labs/lab08b_audio_video/app/makefile* .

Create RTSC configuration (.cfg) file
Our configuration file for building an engine containing only local codecs must specify three
group(s) of packages. After creating the configuration file itself (in step 4), the following three
steps outline how to import – and configure – each of the necessary packages.

4. Open/create the RTSC configuration (app_cfg.cfg) file for editing.

cd /home/user/lab/lab10a_build_app_and_engine/app

gedit app_cfg.cfg &

5. You should already have the following RTSC modules/packages imported:

var osalGlobal = xdc.useModule(‘ti.sdo.ce.osal.Global’);
var dmai = xdc.loadPackage(‘ti.sdo.dmai’);
var myDisplay = xdc.loadpackage (‘ti.tto.myDisplay’);

 Additionally, the osalGlobal module should be configured to osalGlobal.LINUX

 None of this code should be changed, we will be appending to this file in the following.

Lab10a_build_app_and_engine

10 - 4 DaVinci/OMAP Workshop - Lab 10 - Building an App With Engine

6. Import the four codec’s we want to include in our engine.

 In order to instantiate and use codecs in our C program, we need to specify them here so that
Configuro will add them to our engine. Refer to the presentation to figure out the syntax, but
here is a list of the codecs we plan to use:

ti.sdo.ce.examples.codecs.viddec_copy.VIDDEC_COPY
ti.sdo.ce.examples.codecs.videnc_copy.VIDENC_COPY
ti.sdo.ce.examples.codecs.auddec_copy.AUDDEC_COPY
ti.sdo.ce.examples.codecs.audenc_copy.AUDENC_COPY

 As a side note, it is common convention for package names to begin with your company and
group name. In this case, ti.sdo.ce stands for:

 Texas Instruments . Software Development Organization . Codec Engine team
 The remaining part of the name was used to distinguish one package from another. In this

case, you can see that we are including the codec examples provided by the CE team. As was
the case in Labs 09 – 12, we use these dummy copy codecs; they simply perform a memcpy()
inside the codec. While this makes them a bit un-exciting, they are great placeholders until
we swap them out for real codecs. (In Lab 12b, we replace the video copy codecs with a real
H.264 codec.)

 One last item to note, again it is common practice for codec authors to use all CAPS for the
actual module name inside a codec package. As a user, you just need to refer to the vendor’s
documentation (or examples) to figure out which name to include in your .cfg file.

7. Create the actual engine, by importing the Codec Engine package, and configure it to
include our codecs.

 Once again, we refer you to the chapter discussion to figure out the module name and syntax
for creating an engine. To provide consistency, though, we recommend that you use these
names for your engine and codecs:

 Engine name: "encodedecode"

 videnc copy: "video_encoder" (local)

 viddec copy: "video_decoder" (local)

 audenc copy: "audio_encoder" (local)

 auddec copy: "audio_decoder" (local)

8. Check your work

You can compare app/app_cfg.cfg to the provided engine/engine_cfg.cfg that was provided
with the engine files of lab09b. Your app_cfg.cfg should have everything that was previously
included (as per step 5) appended with the items you see in engine_cfg.cfg (as per steps 6 and
7).

9. When complete, save and close your config file.

 Lab10a_build_app_and_engine

DaVinci/OMAP Workshop - Lab 10 - Building an App With Engine 10 - 5

10. Remove engine directory

Now that the engine packages have been added to app_cfg.cfg, we no longer need the
provided engine_DEBUG.ov5T and engine_RELEASE.ov5T files.

rm –Rf /home/user/labs/lab10a_build_app_and_engine/engine

Update XDCPATH
11. Find the XDCPATH definition in your makefile_profile.mak file.

gedit makefile_profile.mak &

12. Examine Configuro search path for the packages specified in your .cfg file.

 You might remember we created a gMake variable (XDCPATH) which tells Configuro
where to search. For simplicity, the makefile provided in lab07 has already been configured
to search the codec engine repositories (even though these paths have not been required
previous to this lab.)

 In makefile_profile.mak, you can confirm that Configuro will search the following
repositories (i.e. directories) which contain the packages we included with our .cfg file:

ti.sdo.ce.engine Codec Engine $(CE_INSTALL_DIR)/packages

‘copy’ codecs CE Examples $(CE_INSTALL_DIR)/examples

req by codecs xDAIS $(XDAIS_INSTALL_DIR)/packages

req by CE CMEM $(CMEM_INSTALL_DIR)/packages

req by CE Contig Mem Alloc $(FC_INSTALL_DIR)/packages

Lab10a_build_app_and_engine

10 - 6 DaVinci/OMAP Workshop - Lab 10 - Building an App With Engine

Build, Install, Run (and hopefully not need to debug…)
13. Make and install your program to the DVEVM target.

14. On the DVEVM board, run the loadmodules.sh script if it has not been run since the
board was last booted.

Hint: If you are unsure whether or not the loadmodules.sh script has been run, you can always
run the unloadmodules.sh script and then re-run the loadmodules.sh script to put the
system into a known state.

15. Execute the app_debug.xv5T application.

Make it fail
Once you have your program working, it’s a good idea to figure out what it looks like when you
make a mistake. A majority of all build mistakes are caused by incorrect path statements. For
example, if you don’t specify the correct search paths, Configuro will fail. Actually, this is a good
thing; it is much better to fail early during build, than later during runtime.

We recommend that if you didn’t accidentally get a failure when first building and running your
program that you force an error and look at its affect.

16. Open your makefile_profile.mak and modify the XDCPATH statement – remove the
CMEM directory reference – then save the file.

gedit makefile_profile.mak &

 Lab10a_build_app_and_engine

DaVinci/OMAP Workshop - Lab 10 - Building an App With Engine 10 - 7

17. Upon rebuilding, without the CMEM reference, you should see this error:

4. ----- Starting Configuro for app_cfg.cfg (note, this may take a minute)

js: "/home/user/dvsdk_1_30_00_40/xdctools_3_10/packages/xdc/cfg/Main.xs", line 193:
xdc.services.global.XDCException: xdc.PACKAGE_NOT_FOUND: can't locate the package
'ti.sdo.linuxutils.cmem' along the path:
'/home/user/dvsdk_1_30_00_40/codec_engine_2_00_01/packages;/home/user/dvsdk_1_30_00_4
0/codec_engine_2_00_01/examples;/home/user/dvsdk_1_30_00_40/xdais_6_00_01/packages;/h
ome/user/dvsdk_1_30_00_40/dsplink_140-
05p1/packages;/home/user/dvsdk_1_30_00_40/framework_components_2_00_01/packages;/home
/user/dvsdk_1_30_00_40/xdctools_3_10;/home/user/dvsdk_1_30_00_40/xdctools_3_10/packag
es;/home/user/dvsdk_1_30_00_40/xdctools_3_10/packages;/home/user/workshop/lab10_build
_engine/app/DEBUG/app_cfg/./..;'. Ensure that the package path is set correctly.

 "/home/user/dvsdk_1_30_00_40/xdctools_3_10/packages/xdc/cfg/Main.xs", line 154

 "/home/user/dvsdk_1_30_00_40/xdctools_3_10/packages/xdc/xs.js", line 160

gmake: *** [package/cfg/app_cfg_x470MV.c] Error 1

 While this error does look intimidating, it does contain the necessary information we need to
decipher, and solve, this problem. Look for this key item which leads us to our solution:

can't locate the package 'ti.sdo.linuxutils.cmem'

 In this case, the package name gives us a good place to start looking for a solution. When we
see cmem, it makes it pretty easy to track down the problem. If you look thru the path
Configuro is searching, you should notice that the CMEM directory is missing. (Of course,
because we just deleted it to force this error.)

 So, once we know this error, we need to find the correct directory to reference on the
XDCPATH string. With a little searching, you should be able to find the path. Look thru the
CMEM directory, until you find the folder that contains the path that error referenced:

ti/sdo/linuxutils/cmem

 The folder that holds “ti” from the above path needs to be added to the XDCPATH. In our
VMware image (at the time of this printing), the path should be:

/home/user/dvsdk_2_00_00_22/codec_engine_2_23_01/cetools/packages

 Now, if you remember that we have put all of our hardcoded path references in an imported
file called setpaths.mak, then you can get away with simply using:

$(CMEM_INSTALL_DIR)/packages

 You can try out both of these to assure yourself they both work.

Note: Notice how package names correlate to a filesystem. Whenever you see a “.” in a
package name, know that it will represent a directory level in the containing filesystem.
With a little practice, figuring out these problems should become less daunting.

18. Repair your XDCPATH and re-test your solution.

(Optional) Lab10b _engine_deliverable

10 - 8 DaVinci/OMAP Workshop - Lab 10 - Building an App With Engine

(Optional) Lab10b _engine_deliverable

File Management
19. Examine the provided files in lab10b_engine_deliverable/engine.

cd /home/user/labs/lab10b_engine_deliverable/engine
ls

You should see the following files:

audio_decoder_dummy.c audio_encoder_dummy.c
video_decoder_dummy.c video_encoder_dummy.c
engine_dummy.c engine_cfg.cfg
makefile makefile_profile.mak

20. Examine audio_decoder_dummy.c.

 The “dummy” files are all conceptually the same. You will see one function which exercises
each of the four codec engine calls for a given module, i.e. create, control, process and delete.
This forces these functions to be included in the engine deliverable from the codec engine
libraries that the Configuro tool will link.

21. Examine makefile_profile.mak.

Locate the “build engine deliverable” comment preceding the rule:

$(PROGNAME)_$(PROFILE).ov5T : (…)

Within this build rule is the link rule to link the $(C_OBJS), which in this case are the
dummy files, with the libraries provided by Configuro, $(PROFILE)/$(CONFIG)/linker.cmd

Note that the link command contains the flags:

-Wl,-r Forces a partial build, i.e. .o instead of an executable
-nostdlib Don’t link the standard libraries (will be linked by app)

22. Copy the files from lab09b_use_published_engine.

 This copy will cause the engine directory to be overwritten, but the new ‘dummy’ files should
remain untouched.

cd /home/user/labs/lab10b_engine_deliverable
cp –R ../lab09b_use_published_engine/* .

23. Rebuild the engine deliverable.
cd engine
make clean
make all

24. Rebuild and install the application.
cd ../app
make clean
make install

25. Test the application.

DaVinci/OMAP Workshop - Remote Codecs: Given a DSP Server 11 - 1

Remote Codecs: Given a DSP Server

Lab Context
Codec Engine - Use Cases

Engine

App

Engine

App

Engine

App

DSP
Server

Engine

App

DSP
Server

Lab 9

Lab 10

Lab 11

Lab 12

Given
Given

There are four different use-cases for interacting with the Codec Engine
Here’s a quick description, along with a reference where it’s covered

Linux application
dev’l only – Engine
provided as .o lib
Engine provided by
another in-house
team or 3rd Party
Modularity allows to
focus on end-app
Codecs local or
remote (don’t care)

Linux application
dev’l – as well as
Engine config (.cfg)
Build Engine & app
all-in-one
While easy, user
must know about
pkgs & .cfg files
Local codecs only

Similar to prev
use-case, but
you’re provided
server containing
remote codecs
Simple (.cfg)
method makes
remote codecs
easy to use

Similar to others
from app/engine
producers persp.
Building a server
is like building a
DSP executable
(i.e. “.out” file)
Requires some
embedded syst.
dev’l experience

Lab Outline
Remote Codecs: Given a DSP Server ...11-1

Lab Outline ..11-1
Lab 11 Introduction ...11-2
Lab 11a – Using a Published Server..11-3

Prepare/copy project files ..11-3
Modify Engine Configuration File (app_cfg.cfg)..11-4
Changes needed to makefile_profile.mak..11-5
Modify audio and video “_thread.c” files..11-6
Build and run ...11-6

Lab 11b – Using Real H.264 Codecs ...11-7
Prepare/copy project files ..11-7
Modify Engine Configuration File (app_cfg.cfg)..11-7
Changes needed to makefile_profile.mak..11-9
Modify main.c file ...11-10
Edit/Replace video_thread.c file..11-10
Build and run ...11-12

Lab 11 Introduction

11 - 2 DaVinci/OMAP Workshop - Remote Codecs: Given a DSP Server

Lab 11 Introduction
This exercise introduces DSP-based remote codecs. You will be provided a “published” DSP
server (i.e. DSP executable program). By modifying your Configuration (.cfg) file, your
application’s encode/decode functions will now run over on the DSP.

No application code needs to be changed to call remote vs. local (ARM-based) codecs. Though,
we will change how we allocate our memory buffers – to be sure they are allocated contiguously
within Linux.

Finally, you will want to tweak your makefile’s “install” rule to copy over the server file along
with your executable application.

In Lab 11b you will experiment with real H.264 codecs; and in the next lab, you will use the
Codec Engine wizards to build your own DSP server.

(published server)app_cfg.cfg

lab11a_use_published_server
main.c

server.x64P

audio_thread.c

Sound_read() Sound_write()

ALSA audio ALSA audioAUDDEC

video_thread.c

Capture_get() Display_put()

v4l2 video v4l2 video

AUDENC

Aenc_process()

VIDENC

Venc_process()

Adec_process()

VIDDEC

Vdec_process()

 Lab 11a – Using a Published Server

DaVinci/OMAP Workshop - Remote Codecs: Given a DSP Server 11 - 3

Lab 11a – Using a Published Server

Prepare/copy project files
1. Copy the contents from our last lab into the lab11a_publish_server.

cd ~/labs/lab11a_user_published_server
cp –R -f ~/labs/lab10a_build_app_and_engine/* .

2. Locate the “published” server in the lab11a server folder.

 This lab exercise uses the server that you’ll be creating in the next lab. For your convenience,
we’ve copied the server files over to the server directory.

cd ~/labs/lab11a_user_published_server/server

3. Examine package.xdc for the server package.

The package declaration:

package server [1, 0, 0] {

}

Indicates that this is the server package, revision 1.0.0, and that it has no modules – the
module declarations would appear inside the open and close braces. (I guess we weren’t very
creative with our name of server, but we wanted to keep it simple.)

4. Examine the codec.cfg XDC configuration file for our server package.

You should see four xdc.usemodule() statements that import the four codecs that we have
been using thus far (though, since this is the server cfg file, these end up being DSP versions
of the codecs): AUDDEC_COPY, AUDENC_COPY, VIDDEC_COPY and
VIDENC_COPY

Further down in the server.algs[] array, you can see the codecs were assigned the names
“viddec_copy,” “videnc_copy,” “auddec_copy” and “audenc_copy.”

5. Locate the server executables.

ls -l bin/

 You should see server.x64P. Therefore the path of the server executable – inside the
server’s package is:

Lab 11a – Using a Published Server

11 - 4 DaVinci/OMAP Workshop - Remote Codecs: Given a DSP Server

Modify Engine Configuration File (app_cfg.cfg)
6. Change back to your application directory

cd /home/user/labs/lab11a_build_app_and_engine/app

7. Open the config file (app_cfg.cfg) and update the OSAL runtime environment to
include DSPLINK.

osal.runtimeEnv = _________________

8. Modify the Engine.create() method to use the new “Create From Server” feature of the
Codec Engine.

 We could have listed each server codec individually, but to make it easier, as well as less
error prone, we recommend using the new Codec Engine method which extracts all the
required information from the server’s package.

 Referring to the chapter’s .cfg example, replace the Engine.create() method with the new
Engine.createFromServer() method.

var demoEngine = Engine.create("encodedecode", [
 {name: "video_encoder", mod: VIDENC, local: true},
 {name: "video_decoder", mod: VIDDEC, local: true},
 {name: "audio_encoder", mod: AUDENC, local: true},
 {name: "audio_decoder", mod: AUDDEC, local: true},
]);

 With:

var Engine = xdc.useModule(‘ti.sdo.ce.Engine’);

var myEngine = Engine.createFromServer(

 “<engine_name_here>”, // Engine name (as referred to in the C app)

 “<server_exec>”, // Where to find the .x64P exe, inside the server’s package

 “<server_package_name>” // Server’s package name
);

myEngine.server = “<server_exec>”; // Loc’n of server exe at runtime, relative to .xv5T program;
 // only needed if not found in the same folder as . xv5T

 Hints:
• The engine name can be whatever you want, but it should match the name used in your

applications Engine_open() call. So far, we’ve been using “encodedecode”.
• You determined the server executable name and path relative to server package directory

in step 0.
• You determined the package name of the server in step 3.
• Because the server .x64P and the ARM .xv5T applications will both be executed from

the same /opt/workshop directory, the engine’s .server property does not need to be
specified. (You can leave this line out). Or, you can specify it with the same executable
name as used above, but with no relative path (i.e. “./server.x64P”)

Replace

 Lab 11a – Using a Published Server

DaVinci/OMAP Workshop - Remote Codecs: Given a DSP Server 11 - 5

Changes needed to makefile_profile.mak
Two changes are required to get our build script up-to-date.

9. We must add an additional directory path or two to our XDCPATH variable.

 Here are a couple hints to help you complete this step:
• Now that we’re using remote codecs – and setting osal=DSPLINK_LINUX – we need to

make sure Configuro can find the path to the DSPLINK package.

• We need to tell Configuro where our server package is located, so we need to specify its
repository path. A good rule of thumb is that the package build directory is always
located at:

<Repository_Path>/<package_name>

Where in the package name, the periods ‘.’ are replaced by forward slashes ‘/’
Hence, if the server package name is ti.sdo.ce.examples.servers.all_codecs, the
path would be: /home/user/ti-dvsdk_omap3530-evm_4_00_00_17/codec-engine_2_25_05_16/examples.

 Then again, that wasn’t the name (or path) for our package. What is our server packages
path? __

• We also need to specify the paths to our codecs. The ‘copy’ codecs we’ve been using
thus far are located in the Codec Engine examples directory.

• Since this usually becomes an exercise in typing rather than learning, these paths have
already been added to makefile_profile.mak. Locate the XDCPATH variable and
verify that it contains our package locations. Which three paths on the XDCPATH
assignment represent the two packages we’ve talked about here:

 1. ___

 2. ___

 3. $(CE_INSTALL_DIR)/examples (we decided to give you one of them)_________

10. Modify the “install” rule so that it also copies the server executables.

 We handle the server install similar to how we added the OSD file to our make install rule in
Chapter 8. Again, this works since install rule copies all dependencies to the $(EXEC_DIR).

PROGNAME := app

CONFIG := app_cfg

INSTALL_OSD_IMAGE := ../osdfiles/ti_rgb24_640x80.bmp
INSTALL_SERVER := _______________________

.PHONY : install
install : $(PROGNAME)_$(PROFILE).xv5T $(INSTALL_OSD_IMAGE) $(INSTALL_SERVER)

 @echo ...

Lab 11a – Using a Published Server

11 - 6 DaVinci/OMAP Workshop - Remote Codecs: Given a DSP Server

Modify audio and video “_thread.c” files
11. Verify that buffers which are shared between Arm and DSP are contiguously allocated.

 Remember, the ARM device’s memory management unit (MMU) allows it to remap non-
contiguous memory buffers into contiguous memory buffers. This is accomplished using
virtual addresses. Since the C64+ DSP does not have an MMU (or even when the DSP has one,
due to the need for speed, it doesn’t want to use memory virtualization), any buffers passed by the
ARM to the DSP need to be allocated as physically contiguous buffers. For this reason, we
want the shared buffers to be allocated with the Linux CMEM (contiguous memory) driver.

 The DMAI Buffer_create() call can either allocate physically contiguous or virtually in
contiguous (which may or may not also be physically contiguous) memory depending on the
attributes structure it is provided. The default memory attributes structure specifies
contiguous memory, so all of the dynamic memory allocations in our applications are already
contiguous. Bottom line, no change needs to be made.

 For more information on the memory functions (as well as VISA functions), you can go to
the Codec Engine documentation by using:

cd /home/user/ti-dvsdk_omap3530-evm_4_00_00_17/codec-engine_2_25_05_16

mozilla file://$(pwd)/codec_engine_2_25_05_16_ReleaseNotes.html

 Select the Documentation link from the top of the release notes, then select Codec Engine
Application Programming Interface (API) Reference Guide in html, then select the Memory
link from the bottom of the page that comes up.

Build and run
12. Build the application.

make debug

 Did it build correctly? Why not?

 __

 Hint: look back to step 4.

13. Install and Run your application.

 If you’re rebooted the board recently, don’t forget to load the DSPLINK and CMEM
modules.

loadmodules.sh

 Then, execute the app_DEBUG.xv5T application.

 Lab 11b – Using Real H.264 Codecs

DaVinci/OMAP Workshop - Remote Codecs: Given a DSP Server 11 - 7

Lab 11b – Using Real H.264 Codecs
In Lab 11b you will swap out the dummy video_copy codecs shipped in the Codec Engine, for
real H.264 codecs that are part of the SDK.

Since we want to concentrate on the video codecs, we’ll disable the audio thread in our main.c
file, leaving us with running just the video and osd threads.

Example server
shipped in DVSDK

cs.x64P

engine.cfg

audio_thread.c

audio_input_output.c audio_input_output.c

OSS audio OSS audioAUDDEC

video_thread.c

video_input.c

v4l2 video FBDEV vid

main.c

AUDENC

audio_encoder.c

VIDENC

audio_decoder.c

VIDDEC

video_decoder.c

app_cfg.cfg

main.c

audio_thread.c

Sound_read() Sound_write()

ALSA audio ALSA audioAUDDEC

video_thread.c

Capture_get() Display_put()

v4l2 video v4l2 video

AUDENC

Aenc_process()

Venc_process()

Adec_process()

Vdec_process()

lab11b_real_codecs

H.264
VIDENC

H.264
VIDDEC

Prepare/copy project files
14. Copy the app and osdfiles directories from lab11a_publish_server.

cd ~/labs/lab11b_real_codecs

cp –R -f ~/labs/lab11a_publish_server/app .

cp –R -f ~/labs/lab11a_publish_server/osdfiles .

 Did we forget to copy something? No – since this lab uses a DSP server (cs.x64P) that ships
with the DVSDK, we don’t need a server folder in our lab11b directory. We’ll just update
our makefile_profile.mak to point to the new repository.

Modify Engine Configuration File (app_cfg.cfg)
15. Change to the application directory.

cd app

Lab 11b – Using Real H.264 Codecs

11 - 8 DaVinci/OMAP Workshop - Remote Codecs: Given a DSP Server

16. Open the config file (app_cfg.cfg) and update the “Create From Server” method.

 We could have listed each server codec individually, but to make it easier, as well as less
error prone, we recommend using the new Codec Engine method which extracts all the
required information from the server’s package.

 Once again, here’s the “prototype” for .CreateFromServer():

var Engine = xdc.useModule(‘ti.sdo.ce.Engine’);

var myEngine = Engine.createFromServer(

 “<engine_name_here>”, // Engine name (as referred to in the C app)

 “<server_exec>”, // Where to find the .x64P exe, inside the server’s package

 “<server_package_name>” // Server’s package name
);

myEngine.server = “<server_exec>”; // Loc’n of server exe at runtime, relative to .xv5T program;
 // only needed if not found in the same folder as . xv5T

 We need to update our previous .cfg file with the information for the DVSDK’s server:
• Build-time Server Package: ti.sdo.server.cs

• Build-time Path to executable: ./bin/cs.x64P
(relative to package)

• Run-time Server location: ./cs.x64P
(relative to ARM executable)

 Lab 11b – Using Real H.264 Codecs

DaVinci/OMAP Workshop - Remote Codecs: Given a DSP Server 11 - 9

Changes needed to makefile_profile.mak
Two changes are required to get our build script up-to-date.

17. We must add an additional directory path to our XDCPATH variable.

 We need to add the location of the new codecs and server to our XDCPATH so that
Configuro can find them. They repository where they’re located is:

$(SDK_INSTALL_DIR)/codecs-omap3530_1_01_00/packages

 We recommend you verify the server package listed in the previous step is found along this
repo path.

18. Modify the “install” rule so that it also copies the server executable.

 We handle the server install similar to how we added the OSD file to our make install rule in
Chapter 8. Again, this works since install rule copies all dependencies to the $(EXEC_DIR).

PROGNAME := app
CONFIG := app_cfg
INSTALL_OSD_IMAGE := ../osdfiles/ti_rgb24_640x80.bmp

INSTALL_SERVER := ___

...

.PHONY : install
install : $(PROGNAME)_$(PROFILE).xv5T $(INSTALL_OSD_IMAGE) $(INSTALL_SERVER)
 @echo ...

 What should the server location be? Well, what path did you find the .x64P file when you
verified it existed in the previous step?

Lab 11b – Using Real H.264 Codecs

11 - 10 DaVinci/OMAP Workshop - Remote Codecs: Given a DSP Server

Modify main.c file
19. Comment out the audio pthread create call.

 As we stated earlier, we just want to concentrate on the video parts of the lab. To that end, we
recommend you comment out the audio thread create call.

/* Create a thread for audio */
/* Commenting out audio thread -- this lab focusing video codecs
 DBG("Creating audio thread\n");

 audio_env.engineName = ENGINE_NAME;

 if(launch_pthread(&audioThread, REALTIME,
 sched_get_priority_max(SCHED_RR),
 audio_thread_fxn,
 (void *) &audio_env)
 != thread_SUCCESS)
 {
 ERR("Failed to create audio thread\n");
 status = EXIT_FAILURE;
 video_env.quit = 1;
 osd_env.quit = 1;
 goto cleanup;
 }

 initMask |= AUDIOTHREADCREATED;
*/

Edit/Replace video_thread.c file
20. Edit – or replace – the video_thread.c file.

 The changes required to video_thread.c are not difficult, but some of them are a bit tedious.
We’ll review them here, and then give you the option to make the edits … or copy the
solutions video_thread.c into your labs folder.

 Lab 11b – Using Real H.264 Codecs

DaVinci/OMAP Workshop - Remote Codecs: Given a DSP Server 11 - 11

/* DMAI headers */
#include <ti/sdo/dmai/Dmai.h>
...
#include <ti/sdo/dmai/BufferGfx.h>
//#include <ti/sdo/dmai/ce/Vdec.h> // As discussed briefly in
//#include <ti/sdo/dmai/ce/Venc.h> // chapter 9, many new video
#include <ti/sdo/dmai/ce/Vdec2.h> // codecs use a later
#include <ti/sdo/dmai/ce/Venc1.h> // version of the XDM standard
=====================================
/* Video encoder and decoder used */
//#define VIDEO_ENCODER "videnc_copy" // When the DVSDK team built
//#define VIDEO_DECODER "viddec_copy" // their server, they used
#define VIDEO_ENCODER "h264enc" // these names for their
#define VIDEO_DECODER "h264dec" // codecs
=====================================
Venc1_Handle encoderHandle = NULL; // handle to video encoder
Vdec2_Handle decoderHandle = NULL; // handle to video decoder
VIDENC1_Params eParams = Venc1_Params_DEFAULT;
VIDDEC2_Params dParams = Vdec2_Params_DEFAULT;
VIDENC1_DynamicParams eDynParams = Venc1_DynamicParams_DEFAULT;
VIDDEC2_DynamicParams dDynParams = Vdec2_DynamicParams_DEFAULT;

Int ret = Dmai_EOK;
=====================================
/* Setup Display */
The Display driver initialization needs to move after the Codec Engine (and codecs) setup code. Since we’re
sharing buffers with the decoder – and the we interrogate the decoder for “bufSize”, the setup display section
must be relocated (in our solutions, it’s right before the while() loop.
==
 eParams.inputChromaFormat = XDM_YUV_422ILE;
 eParams.maxBitRate = 4000000;
 eParams.maxWidth = gfxAttrs.dim.width;
 eParams.maxHeight = gfxAttrs.dim.height;

 eDynParams.targetBitRate = 4000000;
 eDynParams.inputWidth = gfxAttrs.dim.width;
 eDynParams.inputHeight = gfxAttrs.dim.height;

 encoderHandle = Venc1_create(…)
 ====================================
 dParams.forceChromaFormat = XDM_YUV_422ILE;
 dParams.maxWidth = VideoStd_D1_WIDTH;
 dParams.maxHeight = VideoStd_D1_PAL_HEIGHT;

 decoderHandle = Vdec2_create(…)
======================================
// DMAI will assume that the output buffers provided to the decoder are
// at least the size requested by the decoder, so for consistency
// it is good practice to always use a decoder getOutBufSize query
// to determine the size of the buffer table buffers
bufSize = Vdec2_getOutBufSize(decoderHandle);
hBufTabDecoderDisplay = BufTab_create(..., bufSize, ...);

Vdec2_setBufTab(decoderHandle, hBufTabDecoderDisplay);

 initMask |= VIDEODECODERCREATED;

/* Set buffer size for intermediate buffer (for encoded data) */
/* as the size of a full frame */
 //encBufSize = bufSize;
 encBufSize = Vdec2_getInBufSize(decoderHandle);

Changing to
VIDENC1 &
VIDDEC2 means
these change,
too.

The definition of
hBufTabDecoderDisp
lay now depends
upon size specified
by the video decoder.

New params
required for
H.2664 encoder
and decoder.

Lab 11b – Using Real H.264 Codecs

11 - 12 DaVinci/OMAP Workshop - Remote Codecs: Given a DSP Server

Build and run
21. Build the application.

make debug

22. Install and Run your application.

 Always remember, if you’ve rebooted the board recently, don’t forget to load the DSPLINK
and CMEM modules.

loadmodules.sh

 Then, execute the app_DEBUG.xv5T application.

DaVinci/OMAP Workshop - Lab 12 - Building a DSP Server 12 - 1

Lab 12 - Building a DSP Server

Where we’re at in the Codec Engine lab flow
We have finally arrived at the final step in our exploration of the Codec Engine; that is, we are
ready to build our own DSP Server. Lab12a_build_server focuses on this task. The optional
exercise (Lab12c_h264), if you have time, directs you to change out the video copy-based codecs
used in the last three labs for a real (watermarked) H.264 encoder and decoder.

Codec Engine - Use Cases

Engine

App

Engine

App

Engine

App

DSP
Server

Engine

App

DSP
Server

Lab 9

Lab 10

Lab 11

Lab 12

Given
Given

There are four different use-cases for interacting with the Codec Engine
Here’s a quick description, along with a reference where it’s covered

Linux application
dev’l only – Engine
provided as .o lib
Engine provided by
another in-house
team or 3rd Party
Modularity allows to
focus on end-app
Codecs local or
remote (don’t care)

Linux application
dev’l – as well as
Engine config (.cfg)
Build Engine & app
all-in-one
While easy, user
must know about
pkgs & .cfg files
Local codecs only

Similar to prev
use-case, but
you’re provided
server containing
remote codecs
Simple (.cfg)
method makes
remote codecs
easy to use

Similar to others
from app/engine
producers persp.
Building a server
is like building a
DSP executable
(i.e. “.out” file)
Requires some
embedded syst.
dev’l experience

Introduction
In this lab, you will extend Lab 11 to by letting you build the DSP server that was provided pre-
built for you. You will do this by running the Codec Engine’s DSP Server Wizard to create the
files needed to configure and build a DSP server.

main.c
server.cfg
server.tcf

lab_12a_build_server

server.x64P

engine.cfg

audio_thread.c

audio_input_output.c audio_input_output.c

OSS audio OSS audioAUDDEC

video_thread.c

video_input.c

v4l2 video FBDEV vid

main.c

AUDENC

audio_encoder.c

VIDENC

video_encoder.c

audio_decoder.c

VIDDEC

video_decoder.c

app_cfg.cfg

main.c

audio_thread.c

Sound_read() Sound_write()

ALSA audio ALSA audioAUDDEC

video_thread.c

Capture_get() Display_put()

v4l2 video v4l2 video

AUDENC

Aenc_process()

VIDENC

Venc_process()

Adec_process()

VIDDEC

Vdec_process()

Introduction

12 - 2 DaVinci/OMAP Workshop - Lab 12 - Building a DSP Server

Lab Table of Contents
Lab 12 - Building a DSP Server ..12-1

Where we’re at in the Codec Engine lab flow..12-1
Introduction ...12-1
Lab12a_build_server ...12-3

File Management ...12-3
Running the DSP Server Wizard ...12-5
Examine the Server Files ...12-9
Build the Server ...12-10
Build, Install and Run the Application ..12-10

 Lab12a_build_server

DaVinci/OMAP Workshop - Lab 12 - Building a DSP Server 12 - 3

Lab12a_build_server
While we do not have time in this workshop to build a DSP server piecewise from the ground up
(i.e. each file from scratch), this is unnecessary nowadays. Rather, the Codec Engine now
provides a DSP Server Wizard to help us quickly create the necessary files.

We’ll use this tool, modify one or two of its output files to suit our needs, then build the DSP
Server to use along with our previous ARM/Linux application.

File Management
1. Copy the Lab11a_publish_server/app directory over to lab12a_build_server.

cd ~/labs/lab12a_build_server/app
cp –R -u ~/labs/lab11a_publish_server/app/* .

2. Change to the /home/user/labs/lab12a_build_server/osdfiles and copy the files
from your previous lab exercise.

cd ~/labs/lab12a_build_server/osdfiles
cp –R -f ~/labs/lab11a_publish_server/osdfiles/* .

3. Change into the Lab12a server directory and examine the new makefile.

 This is where most of our work will take place in this exercise. There should only be one file
in this folder to start with – makefile – which has been modified a bit in order to build a DSP
server.

cd ~/labs/lab12a_build_server/server
gedit makefile_server.mak &

(set gmake source highlighting via gedit menu: View Highlight Mode Sources Makefile)

 What command invokes the DSP Server Wizard? __________________________________

 Where directory path do you find the DSP Server Wizard? ___________________________

 What tool do we use to build our DSP server executable (and package)? ________________

 Since our DSP server is a DSP executable (not just a library), why do we build it into a RTSC
package? __

Lab12a_build_server

12 - 4 DaVinci/OMAP Workshop - Lab 12 - Building a DSP Server

 To reiterate some of the differences in the makefiles:
• Similar to Configuro, we have added two more variables to run the Server Wizard and

XDC tools:
GENSERVER := $(XDC_INSTALL_DIR)/xs ti.sdo.ce.wizards.genserver
MAKEPKG := $(XDC_INSTALL_DIR)/xdc

• Check out the XDCPATH definition. One important path to note is where the copy-based
codecs we are using are located: $(CE_INSTALL_DIR)/examples.
export XDCPATH:=$(CONFIG_BLD_PATH);$(CE_INSTALL_DIR)/packages; … ;$(XDCROOT)

• Finally examine the make rules we created to: run the server wizard, build the server,
and clean the server directory. The build and clean rules make use of the XDC build
tool; this is the easiest way to build the server application and wrap it in a RTSC package.

 Lab12a_build_server

DaVinci/OMAP Workshop - Lab 12 - Building a DSP Server 12 - 5

Running the DSP Server Wizard
4. Let’s execute the rule we just examined to start the DSP Server Wizard.

make –f makefile_server.mak run_server_wizard &

5. Fill in the first dialog of the GUI DSP Server Wizard.

 Note, it may take a minute or two for the Wizard to appear, this is normal since it is searching
for any codecs/algorithms contained along the XDCPATH.

 When it appears, fill in the necessary information:

 Platform: ti.platforms.evm3530 (to match our board)

 Package Name: server (to match the name from our last lab)

 Destination Dir: /home/user/labs/lab12a_build_server

 C6000 Tools Dir: see above

 Codecs: Check the algo’s we have been using in the last exercises:

AUDDEC_COPY
AUDENC_COPY
VIDDEC_COPY
VIDENC_COPY

 Set the checkboxes as shown at the bottom of the dialog.

There is no scrollbar for codec selection
in this version of the wizard. Though, you
can scroll down/up with the cursor keys.

Lab12a_build_server

12 - 6 DaVinci/OMAP Workshop - Lab 12 - Building a DSP Server

6. Click Next for the second screen of the DSP Server Wizard.

 We will use the default values for everything in the second step of the wizard.

7. Click Next for the third step

Change your dialog to match the dialog settings we show above.

 Lab12a_build_server

DaVinci/OMAP Workshop - Lab 12 - Building a DSP Server 12 - 7

 The third dialog lets you set the location for memory usage for the DSP. These settings will
be saved by the wizard into a BIOS textual configuration include file (memmap.tci).

Memory Map

Set via Linux bootargs to MEM=99M
(uboot ‘bootargs’ variable)

Set with CMEM insmod command
(in loadmodules.sh)

99M

16M

Linux

CMEM

DSP Heap
(DDRALGHEAP)

Reset/Int

DSP Link

App Prog
(DDR)

Set in BIOS Textual Config (.tcf) file

Set in BIOS Textual Config (.tcf) file

Set in BIOS Textual Config (.tcf) file

Set in BIOS Textual Config (.tcf) file

L1DSRAM DSP L1 On-Chip SRAM (0 waitstate)
(DSP L2 is usually config’d as cache)

Note
 When building the labs, we originally chose the Use defaults setting. Doing this, we got an

error that said the entire memory specified had to be divisible by 4K. In response, we
changed the settings as provided here – modifying the DSPLINKMEM space slightly to
compensate for the 80H allocated to the Reset/Interrupt vectors. (The error message was well
stated, but we hope the defaults will work out-of-the-box in the next version of the wizard.)

These locations/sizes are
specified in the 3rd dialog

of genserver.

Lab12a_build_server

12 - 8 DaVinci/OMAP Workshop - Lab 12 - Building a DSP Server

8. Close DSP Server Wizard and save your entries.

 Click Finish to close the server wizard.

Finish

 When it asks if you want to save the values entered into the server wizards dialog, go ahead
and say yes. Save the file in a convenient location, for example, in the lab directory:

~/labs/lab12a_build_server/server

 If you should need to re-run the Server wizard, you can easily re-load your answers by using
the XML settings file.

 Also, you will receive a note stating:

 This dialog is letting you know that you can tune the server configuration by editing the
codec.cfg file. In our case, though, we don’t need to change any of these settings.

Note: You may receive one or two warnings when the wizard starts to write the server files.
One, it will warn you that the target directory already has files in it. That’s OK, in our
case we’ve got the makefile located in the folder already. Also, we just saved the .xml
file there.

The other warning is that some files may need to be edited. That doesn’t apply for this lab
exercise, but will for a future exercise.

 Lab12a_build_server

DaVinci/OMAP Workshop - Lab 12 - Building a DSP Server 12 - 9

Examine the Server Files
(created by the CE DSP Server Wizard)

9. Examine the files created by the wizard.

 If you’re not already in the server directory, switch over to it and examine the following
files.

Hint
 When opening and viewing the following .tcf and .cfg files with gedit, you may want to view

the file with “javascript” syntax highlighting.

View -> Highlight Mode -> Scripts -> JavaScript

server.tcf
 This is a platform specific file, thus its contents vary slightly based on which platform you

selected in the wizard. You are not expected to understand the details of this file, though it
should be clear that it is used to configure the memory map of the DSP as well as creating
and initializing various DSP/BIOS objects. Understanding the details of how this file
configures the DSP/BIOS operating system is the subject of TI’s 4-day BIOS workshop.

 Notice, too, that this file (on line 9) imports the memory map settings in the file: memmap.tci.

server.cfg
 This is another platform specific file. Note that the server configuration is similar to the

engine configuration as performed in app/app_cfg.cfg. Additionally the configuration file
configures the DMAN3 module, which is the module that provides DMA resources to server
codecs, and the DSKT2 module, which is the module for providing memory to server codecs.
(Note, DMAN3 will be discussed in a later chapter.) This file “imports” the codec.cfg file to
obtain the array of codecs/algorithms you selected to be included the ‘server’.

codec.cfg
This file should bring in the codecs and algorithms you specified during the server wizard. It also
configures each algorithm module per the defaults specified in that module (if there were any), and
then builds the array of algorithms using the name, priority, and other details you specified while
running the wizard.

package.xdc
 This file simply states the name of the package we are creating. It should reflect the name we provided

in the first step of the server wizard GUI.

 makefile
 The server creates a makefile to build the server, but since it requires you to go in and edit the paths to

our tools, we’ve decided to create our own. So ours isn’t overwritten, we’ve named it
makefile_server.mak

Other files …
 For our lab exercise, you should not need to modify the remaining lab files. While there are times

when one of these files may need to be edited – say, to access an advanced feature of RTSC packages
– but this is not need for this lab.

Lab12a_build_server

12 - 10 DaVinci/OMAP Workshop - Lab 12 - Building a DSP Server

Build the Server
10. Build the server package.

 Using the makefile again, run XDC to build the server.

make –f makefile_server.mak build_server

Build, Install and Run the Application
We must make a few changes to our application files based on the default naming created by the
DSP Server Wizard.

11. Move back to the application directory.

cd ../app to move back to the lab12a_build_server/app directory

12. Edit and/or verify that the XDCPATH in our makefile_profile.mak includes the path
to our server..

gedit makefile_profile.mak &

 Did XDCPATH include the path to our server? ___________________________________

 What is the path to the server? ___

13. Build and install the application.
make debug install

 Remember, if you have reset the board since running the lab 11 application you will need to
re-run the loadmodules.sh script.

14. Execute the app_debug.xv5T application. Press ctrl-c to exit the application.

Embedded System Design with Linux - iUniversal Lab Exercise Lab 13 - 1

iUniversal Lab Exercise

Lab Topics
iUniversal Lab Exercise ...13-1

Lab 13a – Creating a Universal Algo ..13-2
Running the GenCodecPkg wizard..13-2
Import Codec Library Project into CCSv4 ..13-5
Customizing the Code to Fit Your Algorithm ...13-6
Customizing the Code to Fit Your Algorithm ...13-7
Create a CCS Project for our Test Algorithm..13-11
Setup the new RTSC Config Project ...13-15
Setup the Algorithm Test Project ..13-17
Run and Debug Algorithm ..13-18

Test Application Code..13-19
Lab 13b - Creating a "server" for your algorithm ...13-23

Copy the necessary files into the VM shared folder ..13-23
File management in Linux...13-23
Make the DSP Server ..13-24
Build and Test the app and algo ..13-24

Lab 13a – Creating a Universal Algo

Lab 13 - 2 Embedded System Design with Linux - iUniversal Lab Exercise

Lab 13a – Creating a Universal Algo

Running the GenCodecPkg wizard
1. Start CCSv4.

2. Invoke GenCodecPkg wizard.

 Option 1: From CCSv4

 Add your Codec Engine installation directory to the "Tool Discovery Path". Go to

Window | Preferences | CCS | RTSC

 and verify the package codec_engine_2_26_01_09 shows up in the window. If so, check the
box next to it and exit the preferences.

 If it’s not there:
a. Add this package from the C:/TI directory.

b. Close and save the dialog.
c. Restart CCS. (At this point, it’s the easiest way to restart workspace).
d. Then reopen the same dialog to check the checkbox for the codec engine, then close the

dialog.

 At this point, you will have a new "Tools | Codec Engine Tools | GenCodecPkg" menu item
that will launch the wizard. Go ahead and startup the wizard.

 Option 2: Create a simple makefile to invoke the wizard
Paths to required dependencies
XDC_INSTALL_DIR := C:/ti/xdctools/xdctools_3_20_03_63
CE_INSTALL_DIR := C:/ti/codec_engine/codec_engine_2_26_01_09
XDAIS_INSTALL_DIR := $(CE_INSTALL_DIR)/cetools

Create an XDCPATH variable
export XDCPATH = $(CE_INSTALL_DIR)/packages;$(XDAIS_INSTALL_DIR)/packages

.PHONY : gencodecpkg
gencodecpkg:
 $(XDC_INSTALL_DIR)/xs ti.sdo.ce.wizards.gencodecpkg

 From the command-line, start the wizard with: make gencodecpkg

Try
this

option

 Lab 13a – Creating a Universal Algo

Embedded System Design with Linux - iUniversal Lab Exercise Lab 13 - 3

3. Generate IUNIVERSAL starterware – GenCodecPkg page 1.

a. Click 3rd option, "I want to create an algorithm from scratch".
b. The XDAIS directory should already point to your XDAIS directory (frequently the

$(CE_INSTALL_DIR)/cetools directory if you're not using a SDK).
c. Click Next.

Sidenote

When downloading the Codec Engine (stand-alone) from TI, you can
choose either the standard or lite versions.

The standard version contains an extra cetools directory which includes a
number of additional packages which CE depends on – such as XDAIS.

The SDK team has chosen to install the lite version; then they install all the
other packages at the root level of the SDK directory.

Lab 13a – Creating a Universal Algo

Lab 13 - 4 Embedded System Design with Linux - iUniversal Lab Exercise

4. Generate IUNIVERSAL starterware – GenCodecPkg page 2.

a. In the "Module" field enter the name of the algorithm you're creating: MIXER

b. In the "Vendor" field enter your company name: TTO

c. Under "Base Interface" choose: IUNIVERSAL

d. We want to build for C64x+ devices, so for "Target" choose: C64P COFF

e. The Destination Directory is where the generated files will be placed. Click the button
and create (and then select) the directory shown above.

f. The C6000 TI ‘cgtools’ Directory should point to your TI DSP compiler (the root of the
compiler installation, just above above the "bin" directory). When invoking the wizard
from within CCSv4, this is probably already set for you.

g. Check “Expert Mode” and change the “Package Name” to match that above. (While not
required, we wanted to organize our files in this way.)

h. Make sure that “Generate CCSv4 project” is checked.

i. Click Finish to generate the starter files.

5.

Common Mistake
Make sure you change the Package Name, so
that your directory paths are named like those in
this lab write-up.

 Lab 13a – Creating a Universal Algo

Embedded System Design with Linux - iUniversal Lab Exercise Lab 13 - 5

View wizard’s generated output files.

The generated files will reside at:

C:\workshop\labs\lab13a_build_algo\tto\codecs\mixer

 < repository > < package name >

Import Codec Library Project into CCSv4
6. Open CCSv4 and “Import Existing Project”.

 Import the codec wizard project we just created in:

C:\workshop\labs\lab13a_build_algo

7. Select the project you just imported and build it.

 Before making any changes, you should be able to build the generated package as is. It’s
worth verifying the generated files build correctly.

Select Project | Right-Click | Build Project

Lab 13a – Creating a Universal Algo

Lab 13 - 6 Embedded System Design with Linux - iUniversal Lab Exercise

8. Setup code completion for CCSv4.

 A good reason to use CCS is to take advantage of features like code completion. Later, when
debugging, if you press <Ctrl> <Space> on your keyboard you can invoke the Eclipse code
completion feature, which will help to finish typing the names of variables, functions, etc.
You will likely want CCS to have the capability of auto-completing names/fields related to
XDAIS’s IALG libraries.

 To set this up, do the following:
a. Right-click on your project in the "C/C++ Projects" window and select Properties.
b. Click on "C/C++ Include Paths & Symbols".
c. Click "Add External Include Path".
d. Click "Browse" and navigate to the appropriate source directory. Specifically for IALG

definitions, you need to point to <xdais>\packages.

C:\TI\codec_engine_2_26_01_09\cetools\packages

Note
The XDAIS path shown in this step assumes that you have installed the full version of the Codec
Engine, which includes a number of other libraries in the “cetools” directory. If you happened to install
the “lite” version of the Codec Engine, then you would need to have installed the XDAIS library
separately – and would want to use that path instead.

C:\TI\codec_engine_2_26_01_09\cetools\packages

 Lab 13a – Creating a Universal Algo

Embedded System Design with Linux - iUniversal Lab Exercise Lab 13 - 7

Customizing the Code to Fit Your Algorithm
We have chosen to implement a 2-channel mixer algorithm. This algo takes two buffers, weights
them each with their own gain value, then adds the buffers together.

Here is the data we will need to pass to our algo’s _process() function:

Two InBufs
One OutBufs
Two Additional elements for InArgs:
 gain0
 gain1

Before After

First, we’ll add two
new elements to
IMIXER_InArgs

Then we’ll implement
the _process() call in

mixer.c

Lab 13a – Creating a Universal Algo

Lab 13 - 8 Embedded System Design with Linux - iUniversal Lab Exercise

9. Modify the algo’s data structures.

 Since the buffers descriptors can take a variable number of buffers, we don’t really need to
modify the wizard’s output for them. We will have to add the gain variables to our code, though.

 Please refer to the “Getting Started with IUNIVERSAL” wiki page – Step 4 : Customizing the Code
to Fit Your Algorithm. (We provided this in PDF format in the lab13_starter_files folder.)

 Some hints on what to edit when following the Getting Started with IUNIVERSAL:
e. Edits to <module>_<vendor>_priv.h:

No changes needed…

f. Edits to <module>_<vendor>.h (in our case: mixer_tto.h):

− Define commands for use in the control() function.

No changes needed…

− Extend the I<MODULE>_Params as needed.

No changes needed…

− Extend the I<MODULE>_InArgs structure as needed.
typedef struct IMIXER_InArgs {
 /* This must be the first field */
 IUNIVERSAL_InArgs base;

 XDAS_Int16 gain0;
 XDAS_Int16 gain1;

− Extend the I<MODULE>_OutArgs structure as needed.

No changes needed…

− Extend the I<MODULE>_DynamicParams structure as need.

No changes needed…

− Extend the I<MODULE>_Status structure as necessary.

No changes needed…

mixer_tto_priv.h

mixer_tto.h

Type in By Hand

 Lab 13a – Creating a Universal Algo

Embedded System Design with Linux - iUniversal Lab Exercise Lab 13 - 9

Edits to <module>.c

− const I<MODULE>_Params I<MODULE>_PARAMS

− <MODULE>_<VENDOR>_alloc()

− <MODULE>_<VENDOR>_free()

− <MODULE>_<VENDOR_initObj()

− <MODULE>_<VENDOR>_process()

 This is where the actual algorithm goes! Add your algorithm code here.
 Note, we provided the entire process() function code for you to cut/paste to help minimize typos.

/*
 * ======== MIXER_TTO_process ========
 */

/* ARGSUSED - this line tells the TI compiler not to warn about unused args. */
 XDAS_Int32 MIXER_TTO_process(IUNIVERSAL_Handle h,
 XDM1_BufDesc *inBufs, XDM1_BufDesc *outBufs, XDM1_BufDesc *inOutBufs,
 IUNIVERSAL_InArgs *universalInArgs,
 IUNIVERSAL_OutArgs *universalOutArgs)
{
 XDAS_Int32 numInBytes, i;
 XDAS_Int16 *pIn0, *pIn1, *pOut, gain0, gain1;

 /* Local casted variables to ease operating on our extended fields */
 IMIXER_InArgs *inArgs = (IMIXER_InArgs *)universalInArgs;
 IMIXER_OutArgs *outArgs = (IMIXER_OutArgs *)universalOutArgs;

 /*
 * Note that the rest of this function will be algorithm-specific. In
 * the initial generated implementation, this process() function simply
 * copies the first inBuf to the first outBuf. But you should modify
 * this to suit your algorithm's needs.
 */

 /*
 * Validate arguments. You should add your own algorithm-specific
 * parameter validation and potentially algorithm-specific return values.
 */
 if ((inArgs->base.size != sizeof(*inArgs)) ||
 (outArgs->base.size != sizeof(*outArgs))) {
 outArgs->base.extendedError = XDM_UNSUPPORTEDPARAM;

 return (IUNIVERSAL_EUNSUPPORTED);
 }

 /* validate that there's 2 inBufs and 1 outBuf */
 if ((inBufs->numBufs != 2) || (outBufs->numBufs != 1)) {
 outArgs->base.extendedError = XDM_UNSUPPORTEDPARAM;

 return (IUNIVERSAL_EFAIL);
 }

 /* validate that buffer sizes are the same */
 if (inBufs->descs[0].bufSize != inBufs->descs[1].bufSize)
 return IUNIVERSAL_EFAIL;
 if (inBufs->descs[0].bufSize != outBufs->descs[0].bufSize)
 return IUNIVERSAL_EFAIL;

No changes
needed

mixer.c

Edit _process()
call

 Continued
on next page

Cut & Paste

Lab 13a – Creating a Universal Algo

Lab 13 - 10 Embedded System Design with Linux - iUniversal Lab Exercise

// DO IT!
 pIn0 = (XDAS_Int16*)inBufs->descs[0].buf;
 pIn1 = (XDAS_Int16*)inBufs->descs[1].buf;
 pOut = (XDAS_Int16*)outBufs->descs[0].buf;
 gain0 = inArgs->gain0;
 gain1 = inArgs->gain1;
 numInBytes = inBufs->descs[0].bufSize;

 for(i=0; i<numInBytes/2; i++)
 {
 pOut[i] = (pIn0[i]*(XDAS_Int32)gain0 + pIn1[i]*(XDAS_Int32)gain1) >> 15;
 }

 /* report how we accessed the input buffers */
 inBufs->descs[0].accessMask = 0;
 XDM_SETACCESSMODE_READ(inBufs->descs[0].accessMask);
 inBufs->descs[1].accessMask = 0;
 XDM_SETACCESSMODE_READ(inBufs->descs[1].accessMask);

 /* report how we accessed the output buffer */
 outBufs->descs[0].accessMask = 0;
 XDM_SETACCESSMODE_WRITE(outBufs->descs[0].accessMask);

 /*
 * Fill out the rest of the outArgs struct, including any extended
 * outArgs your algorithm has defined.
 */
 outArgs->base.extendedError = 0;

 return (IUNIVERSAL_EOK);
}

− <MODULE>_<VENDOR>_control()

o By default this function already supports the required command
XDM_GETVERSION.

o There is an #ifdef 0 that you can get rid of to add handling for any commands
that you defined in <module>_<vendor>.h, (i.e. mixer_tto.h).

10. Build your modified algorithm to verify it’s free from C language errors.

 Use CCSv4 to build the algorithm. Keep debugging the algorithm until it builds correctly.

 In the next part, we will test the algorithm to verify it is logically correct. For now, we just
want to make sure we have not introduced any C errors.

IMPORTANT

For the purpose of cache coherence it's important
to tell the framework about how the CPU has
accessed the buffers.

You must tell the application if you have read from
or written to any of the buffers. This is achieved by
using the accessMask fields associated with
each and every buffer.

 Lab 13a – Creating a Universal Algo

Embedded System Design with Linux - iUniversal Lab Exercise Lab 13 - 11

Create a CCS Project for our Test Algorithm
11. Create a new CCS Project.

12. Name and locate the project as shown below.

13. Choose the C6000 compiler target.

C:\workshop\labs\lab13a_build_algo\tto\app\mixer

It’s usually easiest to just
type this in (as opposed to
using the browse button).

Lab 13a – Creating a Universal Algo

Lab 13 - 12 Embedded System Design with Linux - iUniversal Lab Exercise

14. Select your codec project as a dependent project.

 This makes it easy to debug code from both projects at the same time.

15. Set the project settings for running on the C64x+ DSP.

 Choose:
g. Generic C64x+ Device
h. Little endian
i. The default TI DSP compiler

 and then hit Next.

Avoid Common Mistake
Make sure you click NEXT!

 Lab 13a – Creating a Universal Algo

Embedded System Design with Linux - iUniversal Lab Exercise Lab 13 - 13

16. Create an Empty RTSC Project.

 We want to create a RTSC project so we can make use of our new RTSC packaged
algorithm. So, choose Empty RTSC Project and click Next.

17. Create a “separate, reusable RTSC Configuration project”.

 Based on the “Empty RTSC Project” template from the previous dialog box, CCS will ask
if you already have a RTSC config project or want to create a new one. In our case, we’ll be
creating a new one.

 While we could just add the RTSC config info to our current project (item 1 below), we have
chosen to create a stand-alone RTSC config project.

 When you select this option, CCS will create a new CCS project (of type RTSC Config

Project). This means you’ll actually have 3 CCS projects now:
j. Algorithm
k. Test application
l. RTSC configuration

 The RTSC configuration project is the way CCS can run Configuro. This is similar to adding
the Configuro step to our makefile in previous labs.

Lab 13a – Creating a Universal Algo

Lab 13 - 14 Embedded System Design with Linux - iUniversal Lab Exercise

18. Choose the CCSv4 installed packages that will be included with the project.

 Fill-out the dialog as shown above, then click Finish.

 Note: we’ll add more packages in our codec.cfg file in an upcoming step.

19. You should now see three projects:

 Lab 13a – Creating a Universal Algo

Embedded System Design with Linux - iUniversal Lab Exercise Lab 13 - 15

Setup the new RTSC Config Project
20. Add the CE and BIOS configuration files to your new RTSC config project.

 The Configuro allows us to consume RTSC packages that are specified in a .cfg file.

 In CCS, we will need to add our .cfg file to the RTSC configuration project. In this way, it
will end up doing the same thing as our Configuro command performed in our standard make
file.

 You can right-click on the mixer_tto_app_configuration project, select Add File to Project…,
and add the following files from the Lab13a starter files:

ce_test.cfg
cd_test.tcf from C:\workshop\labs\lab13a_starter_files\config
codec.cfg

 At the end of this step, your project should look something like:

21. Change [Excluded from Build] – as shown above.

 So many folks miss this little item, we decided to call it out specifically.

22. Tell the config project to read both .tcf and .cfg files.

 Right-click and open the properties of the mixer_tto_app_configuration project and check the
box under the: C/C++ Build | Advanced Options:

Make sure that “codec.cfg” is the file which is
excluded from the build.

You can do this by right-clicking on the
individual files and selecting whether to
include/exclude it from the build process.

The reason we’re excluding codec.cfg is that
it’s actually included (similar to #include) into
ce_test.cfg. The XDC tools require the .cfg
and .tcf files to be named the same.

Important !!!

Lab 13a – Creating a Universal Algo

Lab 13 - 16 Embedded System Design with Linux - iUniversal Lab Exercise

23. While you have the properties open, we need to add to the search path (i.e. XDCPATH).

 Our config project needs two more paths added to its XDCPATH search list:

C:\TI\CCSv4\bios_5_41_07_24\packages
C:\workshop\labs\lab13a_build_algo

 Without adding the lab13a path, the config project wouldn’t be able to find the algorithm
we’ve just created.

Click here to add a new path
to the XDCPATH variable.

 Lab 13a – Creating a Universal Algo

Embedded System Design with Linux - iUniversal Lab Exercise Lab 13 - 17

Setup the Algorithm Test Project
The test project allows us to run and test our algorithm. Without this project, we wouldn’t know if
the algorithm really gives the correct answer. We know it builds, but we also want to know it
works logically, too.

24. Add the test program – main.c.

 We have written a simple test application that will use the UNIVERSAL VISA calls to test
your algorithm.

Right-click mix_tto_app and select Add Files to Project…

 Add the following file to your project:

C:\workshop\labs\lab13a_starter_files

25. Create a Target Configuration File for the C64x+ Simulator.

 CCSv4 uses Target Configuration Files to specify which target you want to run (i.e. debug)
your code on. (In CCSv3.3, you were required to run CCS Setup which set the target for all
projects withing CCS. CCSv4 allows each project to define a different target it will run on,
which is very nice.)

New | Target Configuration Files

 Name the file something like C6437_Sim and let’s just choose to use the shared location.
(The shared location just means that every
project in the workspace can use this Target
Config file).

 Pick the DM6437 Device Cycle Accurate

Simulator, Little Endian.

26. Build the test application.

 You shouldn’t have any errors to fix … our fingers are crossed.

Lab 13a – Creating a Universal Algo

Lab 13 - 18 Embedded System Design with Linux - iUniversal Lab Exercise

Run and Debug Algorithm
27. Start a debug session.

 Click the debug icon to start a debug session and download the program to the
simulator. Also, CCSv4 will change to a debug perspective (i.e. window layout).

28. Set breakpoints on the 4 VISA functions in our main() function.

MIXER_create()
MIXER_process()
MIXER_control()
UNIVERSAL_delete()

29. Set breakpoints in the algorithm, too.

 One of the big conveniences of debugging our test application – along with the algorithm
library package as a dependent project – is the ability to set breakpoints right in the algo
itself.

Click on the C/C++ perspective button

 to go back into the project/editing window layout.

 Navigate to the mixer.c file (in the tto.codecs.mixer project) and set a breakpoint inside

the MIXER_TTO_process() function. For example, maybe set a breakpoint on the line:

if ((inArgs->base.size != sizeof(*inArgs)) ||

30. Return to the Debug perspective and run/step thru the code.

 Some hints when running the debugger.

Run Halt Close Debugger Step Into Step Over Asm Step Into/Over Restart

 Note, you may see an error after the MIXER_control() call returns. At this point, the string return is not working
properly. Sorry, we’ll figure it out later … or you can take on the challenge.

31. When you’re finished testing the code, close the debugger.

 You can also close CCSv4 now, too — if you want to.

 Test Application Code

Embedded System Design with Linux - iUniversal Lab Exercise Lab 13 - 19

Test Application Code
//==
//
// FILE NAME : main.c
//
// ALGORITHM : MIXER
//
// VENDOR : TTO
//
// TARGET DSP: C64x+
//
// PURPOSE : This file contains code to test the MIXER algorithm.
//
// Nextxen Algorithm Wizard Version 1.00.00 Auto-Generated Component
//
// Creation Date: Mon - 17 January 2011
// Creation Time: 12:51 AM
//
//==

#include <xdc/std.h>
// which includes: stdarg.h, stddef.h

#include <ti/sdo/ce/CERuntime.h>
#include <ti/sdo/ce/osal/Memory.h> // Contiguous memory alloc functions
#include <ti/sdo/ce/universal/universal.h>
// which includes: iuniversal.h, xdm.h, ialg.h, xdas.h, Engine.h, visa.h, skel.h

#include <stdint.h> // used for definitions like uint32_t, ...
#include <string.h> // used for memset/memcpy commands

// Note1: Make sure you have added this algorithms repository as a -i compiler option;
that is, make sure the path that contains the folder "tto" is provided as a -i include
path. The compiler will concatenate the -i path, along with the specified in the <> to
find the actual header file.
// Note2: The 'mixer_tto.h' header also includes: imyalg.h

#include <tto/codecs/mixer/mixer_tto.h>

//==
//
// Prototypes
//
//==
int main (void);
void setup_IMIXER_buffers (void);
void error_check (Uint32 event, XDAS_Int32 val);

//==
//
// Global/Static Variables
//
// Note: We chose to make most of the variables and arrays 'static local'
// to make debugging easier for our simple codec engine test example.
// By declaring them this way, they remain in scope during the entire
// program.
//
//==
#define PROGRAM_NAME "universal_test"
#define ENGINE_NAME "myEngine"
#define ALGO_NAME "mixer"

static String sProgName = PROGRAM_NAME;
static String sEngineName = ENGINE_NAME;
static String sAlgoName = ALGO_NAME;

static Engine_Handle hEngine = NULL;
static UNIVERSAL_Handle hUniversal = NULL;

Test Application Code

Lab 13 - 20 Embedded System Design with Linux - iUniversal Lab Exercise

static IMIXER_Params myParams;

#define IN_BUFFER_SIZE 20
#define OUT_BUFFER_SIZE 20
#define INOUT_BUFFER_SIZE 16
#define STATUS_BUFFER_SIZE 16

static XDAS_Int8 *in0; // [IN_BUFFER_SIZE];
static XDAS_Int8 *in1; // [IN_BUFFER_SIZE];
static XDAS_Int8 *out0; // [OUT_BUFFER_SIZE];
static XDAS_Int8 *status0; // [STATUS_BUFFER_SIZE];

static XDM1_BufDesc myInBufs;
static XDM1_BufDesc myOutBufs;
static XDM1_BufDesc myInOutBufs;
static IMIXER_InArgs myInArgs;
static IMIXER_OutArgs myOutArgs;
static IMIXER_DynamicParams myDynParams;
static IMIXER_Status myStatus;

#define RETURN_ERROR 0
#define RETURN_SUCCESS 1

static unsigned int funcReturn = RETURN_SUCCESS;

static XDAS_Int32 rStatus = 0;

// ===
// MIXER_ Function Macros
//
// The following three macros make it easier to call the algorithm's create, process,
// and control methods. They provide recasting of the functions and arguments from
// the MIXER algorithm, to the UNIVERSAL API. This is needed since the Codec Engine
// framework implements the common API, which provides portability and ease-of-use.
//
#define MIXER_create(hEngine, sAlgoName, Params)
 UNIVERSAL_create(hEngine, sAlgoName, (IUNIVERSAL_Params *)&Params)
#define MIXER_process(hUniversal, InBufs, OutBufs, InOutBufs, InArgs, OutArgs)
 UNIVERSAL_process(hUniversal,
 &InBufs,
 &OutBufs,
 &InOutBufs,
 (IUNIVERSAL_InArgs *)&InArgs,
 (IUNIVERSAL_OutArgs *)&OutArgs)
#define MIXER_control(hEngine, eCmdId, DynParams, Status)
 UNIVERSAL_control(hEngine,
 eCmdId,
 (UNIVERSAL_DynamicParams *)&DynParams,
 (UNIVERSAL_Status *)&Status)

//==
//
// Functions
//
//==

int main(void)
{

// ==== Open the Codec Engine ==

 CERuntime_init();

 hEngine = Engine_open(sEngineName, NULL, NULL);
 error_check(TEST_ENGINE_OPEN,(XDAS_Int32) hEngine);

 Test Application Code

Embedded System Design with Linux - iUniversal Lab Exercise Lab 13 - 21

// ==== Create an Algo Instance ==

 // Initialize the params used for the create call
 myParams.base.size = sizeof(IMIXER_Params);

 //The MIXER_create() function creates an instance of our algorithm; you
 // can call the generic UNIVERSAL_create() function, but you would need to
 // correctly cast the parameters. The iMIXER.h file defines macros which
 // simplify the _create, _process, and _control function calls.
 hUniversal = MIXER_create(hEngine, sAlgoName, myParams);

 error_check(TEST_ALGO_CREATE, (XDAS_Int32) hUniversal);

// ==== Run the Algorithm ==

 setup_IMIXER_buffers();

 // Default values were applied; please change if you want to select other values.
 myInArgs.base.size = sizeof(IMIXER_InArgs);
 myInArgs.gain0 = 0x3fff;
 myInArgs.gain1 = 0x3fff;

 //IMIXER_OutArgs was not extended, so no additional values must be set in myOutArgs.
 myOutArgs.base.size = sizeof(IMIXER_OutArgs);

 rStatus = MIXER_process(hUniversal, myInBufs, myOutBufs, myInOutBufs, myInArgs, myOutArgs);

 error_check(TEST_ALGO_PROCESS,rStatus);

// ==== Call Algo control function ===

 //IMIXER_DynamicParams was not extended, so no additional values must be set
 myDynParams.base.size = sizeof(IMIXER_DynamicParams);
 myStatus.base.size = sizeof(IMIXER_Status);

 rStatus = MIXER_control(hUniversal, XDM_GETVERSION, myDynParams, myStatus);

 if (!rStatus)
 {
 printf("Program '%s': Algo '%s' control call succeded\n",sProgName, sAlgoName);

 printf("\tAlg version: %s\n", (rStatus == UNIVERSAL_EOK ?
 ((char *)myStatus.base.data.descs[0].buf) : "[unknown]"));
 }
 else
 {
 fprintf(stderr, "Program '%s': ERROR: Algo '%s' control call failed;
 rStatus=0x%x\n", sProgName, sAlgoName, (unsigned int) rStatus);
 }

// ==== Delete and Close the Algo Instance =================================

 UNIVERSAL_delete(hUniversal);

 Engine_close (hEngine);

// ==== Return from Main Function ==

#ifdef _DEBUG_
 printf("Program '%s': Function main() now exiting.\n", sProgName);
#endif

 //while(1);

 return(funcReturn);
}

// ==

Test Application Code

Lab 13 - 22 Embedded System Design with Linux - iUniversal Lab Exercise

// Buffer setup
// ==

void setup_IMIXER_buffers(void)
{

 // ==== ALLOCATE BUFFERS ===
 //
 // - Buffers are allocated with the Codec Engine's contigAlloc function
 // - On ARM, this fxn alloc's memory from the CMEM driver, which is req'd
 // when passing data to the DSP. A contiguous allocation is made when
 // run on the DSP, but this maps to a simple MEM allocation.
 // - This prevents a failure on architectures like OMAP3530 which provide
 // an MMU in the DSP's memory path.

 in0 = Memory_contigAlloc(IN_BUFFER_SIZE, 8);
 in1 = Memory_contigAlloc(IN_BUFFER_SIZE, 8);
 out0 = Memory_contigAlloc(OUT_BUFFER_SIZE, 8);
 status0 = Memory_contigAlloc(STATUS_BUFFER_SIZE, 8);

 // ==== INITIALIZE BUFFERS ===
 //
 // - We chose to use a simple data set for testing our algorithm.
 // - In "real" life you would want to enhance this test program with test
 // data that validates your algorithm.

 memset(in0, 0xA, IN_BUFFER_SIZE);
 memset(in1, 0xB, IN_BUFFER_SIZE);
 memset(out0, 0x0, OUT_BUFFER_SIZE);

 // === Setup buffer descriptors for calls used in the MIXER_process()
 // and MIXER_control() functions

 myInBufs.numBufs = 2;
 myInBufs.descs[0].bufSize = IN_BUFFER_SIZE;
 myInBufs.descs[0].buf = (XDAS_Int8 *) in0;
 myInBufs.descs[1].bufSize = IN_BUFFER_SIZE;
 myInBufs.descs[1].buf = (XDAS_Int8 *) in1;

 myOutBufs.numBufs = 1;
 myOutBufs.descs[0].bufSize = OUT_BUFFER_SIZE;
 myOutBufs.descs[0].buf = (XDAS_Int8 *) out0;

 myInOutBufs.numBufs = 0;

 myStatus.base.data.numBufs = 1;
 myStatus.base.data.descs[0].bufSize = STATUS_BUFFER_SIZE;
 myStatus.base.data.descs[0].buf = (XDAS_Int8 *) status0;

}

 Lab 13b - Creating a "server" for your algorithm

Embedded System Design with Linux - iUniversal Lab Exercise Lab 13 - 23

Lab 13b - Creating a "server" for your algorithm
Now that you’ve proven your algorithm works on a single-CPU DSP system, we can wrap our
algorithm into a server and call it from Linux on the ARM.

Copy the necessary files into the VM shared folder
1. Create the folder lab13b_run_algo in vm_images\shared.

 Create the following directory.

C:\vm_images\shared\lab13b_run_algo

2. Create the app folder in lab13b_run_algo and copy the main.c file.

 Create the app folder, then copy the file main.c from your CCS application project..

C:\vm_images\shared\lab13b_run_algo\app

Copy main.c into this folder

3. Create the server folder .

C:\vm_images\shared\lab13b_run_algo\server

4. Copy the algorithm into the lab13b_run_algo folder.

 Copy the whole algorithm (tto.codecs.mixer) directory to the Lab13b_run_algo folder.

C:\vm_images\shared\Lab13b_run_algo\tto\codecs\mixer

File management in Linux
5. Copy the entire lab13b_run_algo folder into ’labs’.

 Open up your VMware Ubuntu Linux and copy the entire lab13b_run_algo folder from the
VMware shared folder into your /home/user/labs directory.

6. Copy the makefile from Lab12a/server and edit XDCPATH.

Copy the makefile from your lab12a server folder into the
lab13b_build_algo server folder

 Verify that the your current lab path is included in the XDCPATH correctly.

7. Copy the makefiles from lab12a_build_server/app to lab13b_build_algo/app and edit
them.

 After copying the two makefiles: (1) verify that your new codec package is on the
XDCPATH; and, (2) remove the OSD file from the INSTALL_OSD_IMAGE variable.

INSTALL_OSD_IMAGE := ../osdfiles/ti_rgb24_640x80.bmp

DM6446 Labs:
You need to do
the same edits as
in steps 6-8, but
yours will look a
little different than
what is shown
here.

Also your files
would be in the
“workshops”
folder, not the
“labs” folder.

Lab 13b - Creating a "server" for your algorithm

Lab 13 - 24 Embedded System Design with Linux - iUniversal Lab Exercise

8. Copy the app_cfg.cfg from lab12a_build_server/app to Lab13b_run_algo/app.

 Again, we need to only make one small edit. Change the engine name from “encodedecode”
to “myEngine” – which is the name used in our main.c file.

Make the DSP Server
9. Switch to the Lab13b_run_algo/server folder and run the DSP Server using the wizard.

 Follow the steps from lab12a_build_server to create a new server using the “mixer” codec.

 Use the same platform and server package name as we’ve done in the past, but remember to
use the repo location: /home/user/labs/lab13a

10. Build the server.

Build and Test the app and algo
11. Switch to the lab13b_build_algo/app directory and build/install the test application.

make debug install

12. Switch over to Tera Term and run the application.

 If you’ve reset the EVM, make sure you run loadmodules.sh before running the application.
You should see a printf statement output as the program completes each VISA call. (You can
review the main.c code to find these printf’s in the test app – or add more if you’d like to
trace things more closely..)

	(lab00) Cover
	(lab03) Intro to Linux-Uboot
	(lab05) gMake Lab
	(lab06) Intro to Device Drivers
	(lab07) Video Driver Details
	(lab08) Multithread
	(lab09) Prebuilt engine
	(lab10) Build Engine
	(lab11) Prebuilt server
	(lab12) Build server
	(lab13) iUniversal

