Error! No text of specified style in document.

Error! No text of specified style in document.

Lab02 – Debugging with Code Composer Studio
This last lab exercise explores using CCSv5 (i.e. Eclipse) for building and debugging our Linux applications. First, we’ll install CCSv5; then set our project and remote debugging; then finally run/debug our program.
In the case of Linux applications, it’s often convenient to use the GDB (Gnu DeBugger) protocol – running over Ethernet (TCP/IP) – for connecting between the host (CCSv5/Eclipse) and the target (Linux application running on the ARM). We’ll find the gdb executable along with our build tools from Code Sourcery.

Here are a couple good references that you may want to refer to in the future:

CCSv5 wiki: http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v5
Linux Debug in CCSv5: http://processors.wiki.ti.com/index.php/Linux_Debug_in_CCSv5
CCSv5 Installation
We’ve installed CCSv5 into the /home/user/CCSv5 folder and configured the default workspace location to use /home/user/workspace.
[image: image25.png]

Create Project

1. Start CCSv5 from the Ubuntu desktop.
2. Create a new project using the /home/user/labs/ccslab example.
Eclipse provides many different types of projects. Most CCSv5 users choose one of two types:

· [image: image26.png]*

Code Composer
Studio v5

CCS Project – uses Eclipse’s managed make capability, which builds and maintains the make file for you as you add/subtract items and settings from the GUI
· Standard Make Project – uses your own makefile; while this leaves the work of building and maintaining your own makefiles, it gives you absolute control over your builds

The ccslab example contains a makefile for rebuilding the application. While it would certainly be possible to create a CCS Project (wherein eclipse uses an eclipse-managed makefile to rebuild the application) and place the source files into this project, this would require us to enter various search paths, compiler options etc. Since a tested makefile already exists, it’s simpler for us to use the standard make project.
[image: image1.png]<3 Applications Places System @ [#

k3

| Edit View Source Refactor Navigate Search Project Tools Run Scripts
CCS Project

OpenFile...

Source File
Header File

crl
shift+Ctri

Clos

Clo:

[image: image2.png]New Project

Select a wizard
Creates a new Makefile project in a directory containing existing cod

Wizards:

type filter text

b @& General

v & CCH

C Project

C+ Project

Makefile Project with Existing Code
b & ccs

b & RTSC Wizards

[Show All Wizards.

3. Import your existing makefile project.

[image: image3.png]Import Existing Code

Import Existing Code

Create a new Makefile project from existing code in that same
directory

Project Name

[cestan |

Existing Code Location
[momeyuserfabs/ccsiab | [Browse..|

Languages
@C @

Toolchain for Indexer Settings
<none>
Cross GCC

Click Finish, when done.

(Optional) Show, Setup, and use the Make Target View

The makefile we have imported for this project defines “all” and “clean” targets, which are the default make targets for the gui “project(build all” and “project(clean” options. If the makefile you import does not have these rules, you can create your own make targets via the procedure outlined in this section.

4. Show the Make Target view.

By default, the Make Target view is buried within Eclipse. This view allows to easily build any target within our makefile – although, (in the next step) we’ll have to set it up first.
[image: image4.png]ser Studio

VL] Help
New Window
New Editor

Open Perspective

=8

C/C++ Projects

Customize Perspective...
Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives.

Navigation

Console Shift+AIt+QZ
Ermor Log Shift+Alt+
Navigator

outline Shift+AIt+d
Problems Shift+AIt+Q,
Scripting Console ShiquIH}
Target Configurations

Refresh Debug Views
Preferences

Shift+Alt+Q

L ————

[image: image5.png][type filter text 4]

b & General 2|
b e Analysis Views
b e cicH+
b & Debug
b & Help
v & Make

b & Profiling
b & Team

C o | ey

As a little challenge, figure out how to add the Make Target view to the Show View menu.
5. Setup “all” and “clean” make targets.
Eclipse expects the makefile for a makefile project to be located at the top level of the project directory. Once you add “all” and “clean” make targets, you can build them by selecting the target in the ‘Make Target’ window and then either clicking the hammer icon or right-clicking and selecting ‘Build Target’
First, click the New Make Target button on the toolbar:

Add rules for “all” and “clean”
[image: image6.png]Modify Make Target

Target name:

Make Target
ame as the target name.

Make target: [all

Build Command
Use builder settings

Build command: [make

Build Settings
top on first build error
Run all project builders

Cancel

Setup CCCv5 For Remote GDB Debugging
IMPORTANT! By default CCS does not enable "C/C++ Application" configurations.
6. Enable the C/C++ Application configurations so that we can access GDB debugging from CCSv5.

 Open the Capabilities tab in the CCSv5 Preferences dialog.

Window -> Preferences -> Capabilities
[image: image7.png]type filter text Capabilities @ S o

v fe :eml (JC3 Ant Tools Enables GDB debugging with CDT-
D e
mpare/patd [Classic Update
Content Types.)
b Edit [0 €3 Debug Perspective
o [3 Debug View toolbar buttons
(3 DVT Project
b Network Connec: !
" [C3 EDC Project
Perspectives
Search)3 Java Development
- 0153 Memory View
b Security
b startup and Shut [€3 Menu Items -
- (0] C3 Mylyn Project (===
Web Browser
[€3 PDE Tools
b Workspace)
b e+ (3 Resource Navigator
> ccs (03 RSE Project
0 Team

Enable CDT GDB Debugging, and then click OK.
7. Build your program.
You can select Project(Build All or simply press the ‘Ctrl-B’ hotkey.

You should see the build feedback show in the Console window. A successful build will end as shown below.

[image: image8.png]Econsolexx‘ =a

[&¢ Problems 52 v =g

CDT Build Console [ccslab]

o ¢ @ @

= Bvriv

we=+ Build of configuration Default for
project ccslab *=++

nake all
Copied lipack executable into /home/user/
‘targetfs/home/root/labs/ccslab

#x+x Build Finished ***+

0items

8. Create a new C/C++ debug configuration.

Bring up the Debug Configurations dialog:

Run → Debug Configurations

Select "C/C++ Remote Application" and create a new configuration with the icon in the upper left hand corner of the window. You may name the configuration anything you find descriptive. Below it has been named “Remote_gdb.”
[image: image9.png]A EIEES

type filter text El

[E] C/C++ Application
[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugger
< [E]C/C++ Remote Application
[&] Remote_gdb
% Code Composer Studio - Device Debuggini
[€] GDB Hardware Debugging
& Launch Group

L ——(

Filter matched 8 of 8 items

9. Setup the configuration:

Use the following settings:

· Name:

Remote_gdb
· Project:
ccslab
· C/C++ App:
/home/user/labs/ccslab/linpack
· Enable the auto-build option.
· Remote Path: /home/root/labs/ccslab/linpack
· … but don’t close the dialog, we’re not done yet …

[image: image10.png]Debug Configurations

Create, manage, and run configur

BB %X B3y

Name: [Remote_gdb |

type filter text

[E] C/C++ Application
[E] C/C++ Attach to Applicatio
[E] C/C++ Postmortem Debug
= [E] C/C++ Remote Application
New_ ion

&% Code Composer Studio - D¢
[€] GDB Hardware Debugging
& Launch Group

Filter matched 8 of 10 items.

Main| - Arguments| %> Debugger| % Source| = Common|

C/C++ Application: -

[omensertabicsbingack | seochProject, | Browse. |
Project:
L mowse. |

(Defaule v

[cestan

Build (if required) before launching

Build configuration:

@ Select configuration using 'C/C++ Application®
) Enable auto build) Disable auto build

® Use workspace settings Configure Workspace Setting:

connecton: (| S (Froc-vi=-. |
Remote Absolute File Path for C/C++ Appl{¥ation:

[/homerootabs/ccslabflinpack

Commands to execute before apolication v

Using GDB (DSF) Automatic Remote Debugging Launcher - Select other...

@

Tell CCS that we want to use remote GDB debugging.
· Click the link "Select other..." to select a different launcher

· Select the "GDB (DSF) Automatic Remote Debugging Launcher"

· Click OK

[image: image11.png]Using GDB (DSF) Create Process Launcher - Select other

N

[image: image12.png]Select Preferred Launcher

This dialog allows you to specify which launcher to use when
le launchers are available for a configuration and launch

Change Workspace

Use configuration specific setting o

Launchers:

GDB (DSF) Manual Remote Debugging Launcher
Standard Remote Create Process Launcher
GDB (DSF) Automatic Remote Debugging Launcher

Description
Automatically start and debug a new application ona

@ Cancel

Configure a new Connection
· Press “New…” button next to connection
· Configure as per next four screen-captures
[image: image13.png]Connection: [Local v New.

[image: image14.png]New Connection

Select Remote System Type

Connection for Telnet access to remote systems

System type:
type filter text

~ & General
% FTP Only
A Linux
= Local
T3 SH Only

B Telnet Only (Experimental)
s Ui
& Windows

[image: image15.png]New Connection.

Remote Telnet Only (Experimental) System Connection

Define connection information

Parent profile:

Host name:
Connection name:

Description:

ubuntu

dm814x-evm.workshop.net|

dmB814x-evm.workshop.net

Verify host name

[image: image16.png]New Connection.
Telnet Shells (Experimental)

Define subsystem information

Configuration Properties

telnet.shells Property Value

Command.Prompt root@dm81dx-evm:~#
LoginPrompt | logi

LoginRequired true

Password.Prompt

Available Services

2 Generic shell service
~ %4 Telnet Connector Service
] Telnet Settings

Telnet login properties. Set these according to your remote system's login prompts.

[image: image17.png]Define subsystem information

New Connection

Configuration

terminals

Available Services

22 Terminal Service

Side note:

The command prompt, login prompt are as shown when using telnet to connect to the evm, which may be different than the login prompt when logging into the evm over the serial console:
[image: image18.png]userfubuntu:”$ telnet. IHBL4X-EVH,UORKSHOP NET
Trying 192,168,1,157 .,

Connected to THBL4-EVH, UDRKSHOP NET,

Escape character is °]'

frago Project https//arago-project.org duBléx-eun
frag 2011,09 du1dx-evn
Login: root.

Last iogin: Fri Tec_ 8 19:26:34 on pts/1
root@dnaldx-eun: s I

On the Debugger Main tab, specify the GDB debugger.

We are using the GDB debugger from Code Sourcery, so browse for the correct gdb client executable.

/home/user/arm-2009q1/bin/arm-none-linux-gnueabi-gdb
You may wish to view “/home/user/.gdbinit” which had to be added for gdb/CCS to correctly locate shared object libraries. Note that if you browse to this file, it is hidden. You will need to right-click in the file browser and select “show hidden files.”
[image: image19.png]Debug Configurations

| create, manage, and run configurations

b

BB %X B3y

Name: [Remote GDB |

type filter text

[ElC/C++ Application
[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugger
= [E] C/C++ Remote Application
[£] Remote GDB.
5 Code Composer Studio - Device Del
[£] GDB Hardware Debugging
Launch Group

Filter matched 8 of 8 items

Main| - Arguments | § Debugger| % Source| = Common

& Stop on startup at:

Debugger Options

Main Shared Libraries Gdbserver Settings

GDB debugger: [/homefuser/CodeSourcery/Sourcery_G++_Lite/bin/arm-none-linux-gnueabi-gdb

-
GDB command file: [/nome/usery.gdbinit | —

(Warning: Some commands in this file may interfere with the startup operation of the debugger, for example "run.)
Non-stop mode (Note: Requires non-stop GDB)

Enable Reverse Debugging at startup (Note: Requires Reverse GDB)

Force thread list update on suspend
Automatically debug forked processes (Note: Requires Multi Process GDB)

Using GDB (DSF) Automatic Remote Debugging Launcher - Select other

@

10. Launch the debug configuration by clicking the Debug button.

CCSv5 will launch the GDB debugger to connect to the GDB server.

After launching once from the debug configuration screen, you wil be able to re-launch the debugger using the green bug icon on CCS. However, you have to launch the debugger from this screen the first time so that this configuration is associated to the current project.
 [image: image20.png]Debug Configurations

Create, manage, and run configurations

CRX[E3

type filter text

[E1C/C++ Apy

[E]C/C++ Attach to Applicatio
[€]C/C++ Postmortem Debug

~ [€] C/C++ Remote Appli
[£] Remote_gdb

&% Code Composer Studio - De
[€] GDB Hardware Debugging
& Launch Group

T) I
Filter matched 8 of

Nam

Remote_gdb
I

Main| ®- Arguments| %5 Debugger| % Source| = Common|

C/C++ Appl

/homejuserflabs/omx_lab/decode_display/bin/dmg1dx-evm Search Project.
Project:

decode_display
Build (if required) before launching

Build configurat Default

Select configuration using ‘C/C++ Application’
® Enable auto build O Disable auto build

O Use workspace settings Configure Workspace Settings

Connection: dm814x-evm.workshop.net Properties...

Remote Absolute File Path for C/C++ Application:

Browse.

/homejroot/decode_display_aBhost_debug.xv5T

Commands to execute before application

Using GDB (DSF) Automatic Remote Debugging Launcher -
Select othe

@

You may be prompted for the target’s login information:
[image: image21.png]Enter Password

System type: Telnet Only (Experimental)
Host name: DMB14X-EVM.WORKSHOP.NET

User ID: root]

Password (optional):

Save user ID
O save password

After clicking Debug, the IDE will switch into the Debug Perspective. It will then load the program and execute until it reaches main().
 [image: image22.png]@@ CCs Debug - ccslab/linpack.c - Code Composer Studio

| cav | roev|a |y | or =} »
s Debug 33 = O |- Variables 5 |4 Expressions| itf Registers| % Breakpoints| =0
(U Y av & T <t B G oot~
- [E]Remote_gdb [C/C++ Remote Application] R
~ i linpack = cray float 4.7677779-41
~ 4 Thread [1] <main> (Suspended : Breakpoint) - 0ps float 0
- total float 0
+ 4 Thread [2] 1243 (Suspended : Container) e norma float 0
5 M = N .

[@ linpack.c 52 ‘

98 REAL resid,residn,eps,tl,tm, tn2;
99 REAL epslon(),second() kf;
100 static int ipvt[200],n,1,ntines,info,1da,ldaa,kflops;

101
»16020 lda = 201;
103 1daa = 200,
164 cray = .056;
105 n = 160;
106

107 fprintf(stdout,ROLLING) ; fprintf(stdout,PREC) ; fprintf(stdout, "Precision Linpack\n\n"
108 fprintf(stderr,ROLLING) ; fprintf(stderr,PREC) ; fprintf(stderr, "Precision Linpack\n\n"
109

110 ops = (2.8e0*(n*n*n))/3.0 + 2.6*(n*n);

m

& console 2]

B @@ o Bvrsv =0

Remote_gdb [C/C++ Remote Application] linpack.

11. View remote terminal

You can view the telnet terminal in which the application is running from the “Display Selected Console” dropdown in the console window

[image: image23.png]

[image: image24.png]w5 @@ M Evey =0
1CDT Global Build Console
CDT Build Console lab]
emote_gdb [C/C++ Remote Application] gdb traces

5 Remote_gdb [C/C++ Remote Application] gdb

+ 6 Remote_gdb [C/C++ Remote Application] linpack

12. Set some breakpoints, single step, view some variables

You can set a breakpoint by right-clicking on the line and selecting Run(Toggle Breakpoint, or by pressing (Ctrl-Shift-B). You can also double-click the area just to the left of the code line in the display window.
You can step over with Run(Step Over (F6), or by pressing the step-over icon.

You can run to the next breakpoint with Run(Run (Ctrl+F11) or by pressing the run icon.

→

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake
Lab 05 - 1
Lab 05 - 16
DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake
DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake
Lab 05 - 17

