Error! No text of specified style in document.

Error! No text of specified style in document.

Lab02 – Debugging with Code Composer Studio
This last lab exercise explores using CCSv5 (i.e. Eclipse) for building and debugging our Linux applications. First, we’ll install CCSv5; then set our project and remote debugging; then finally run/debug our program.
In the case of Linux applications, it’s often convenient to use the GDB (Gnu DeBugger) protocol – running over Ethernet (TCP/IP) – for connecting between the host (CCSv5/Eclipse) and the target (Linux application running on the ARM). We’ll find the gdb executable along with our build tools from Code Sourcery.

Here are a couple good references that you may want to refer to in the future:

CCSv5 wiki: http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v5
Linux Debug in CCSv5: http://processors.wiki.ti.com/index.php/Linux_Debug_in_CCSv5
CCSv5 Installation
We’ve installed CCSv5 into the /home/user/CCSv5 folder and configured the default workspace location to use /home/user/workspace.
[image: image25.png]
Create Project

1. Start CCSv5 from the Ubuntu desktop.
2. Create a new project using the /home/user/labs/ccslab example.
Eclipse provides many different types of projects. Most CCSv5 users choose one of two types:

· [image: image26.png]CCS Project – uses Eclipse’s managed make capability, which builds and maintains the make file for you as you add/subtract items and settings from the GUI
· Standard Make Project – uses your own makefile; while this leaves the work of building and maintaining your own makefiles, it gives you absolute control over your builds

The ccslab example contains a makefile for rebuilding the application. While it would certainly be possible to create a CCS Project (wherein eclipse uses an eclipse-managed makefile to rebuild the application) and place the source files into this project, this would require us to enter various search paths, compiler options etc. Since a tested makefile already exists, it’s simpler for us to use the standard make project.
[image: image1.png]
[image: image2.png]
3. Import your existing makefile project.

[image: image3.png]
Click Finish, when done.

(Optional) Show, Setup, and use the Make Target View

The makefile we have imported for this project defines “all” and “clean” targets, which are the default make targets for the gui “project(build all” and “project(clean” options. If the makefile you import does not have these rules, you can create your own make targets via the procedure outlined in this section.

4. Show the Make Target view.

By default, the Make Target view is buried within Eclipse. This view allows to easily build any target within our makefile – although, (in the next step) we’ll have to set it up first.
[image: image4.png]
[image: image5.png]
As a little challenge, figure out how to add the Make Target view to the Show View menu.
5. Setup “all” and “clean” make targets.
Eclipse expects the makefile for a makefile project to be located at the top level of the project directory. Once you add “all” and “clean” make targets, you can build them by selecting the target in the ‘Make Target’ window and then either clicking the hammer icon or right-clicking and selecting ‘Build Target’
First, click the New Make Target button on the toolbar:

Add rules for “all” and “clean”
[image: image6.png]
Setup CCCv5 For Remote GDB Debugging
IMPORTANT! By default CCS does not enable "C/C++ Application" configurations.
6. Enable the C/C++ Application configurations so that we can access GDB debugging from CCSv5.

 Open the Capabilities tab in the CCSv5 Preferences dialog.

Window -> Preferences -> Capabilities
[image: image7.png]
Enable CDT GDB Debugging, and then click OK.
7. Build your program.
You can select Project(Build All or simply press the ‘Ctrl-B’ hotkey.

You should see the build feedback show in the Console window. A successful build will end as shown below.

[image: image8.png]
8. Create a new C/C++ debug configuration.

Bring up the Debug Configurations dialog:

Run → Debug Configurations

Select "C/C++ Remote Application" and create a new configuration with the icon in the upper left hand corner of the window. You may name the configuration anything you find descriptive. Below it has been named “Remote_gdb.”
[image: image9.png]
9. Setup the configuration:

Use the following settings:

· Name:

Remote_gdb
· Project:
ccslab
· C/C++ App:
/home/user/labs/ccslab/linpack
· Enable the auto-build option.
· Remote Path: /home/root/labs/ccslab/linpack
· … but don’t close the dialog, we’re not done yet …

[image: image10.png]
Tell CCS that we want to use remote GDB debugging.
· Click the link "Select other..." to select a different launcher

· Select the "GDB (DSF) Automatic Remote Debugging Launcher"

· Click OK

[image: image11.png]
[image: image12.png]
Configure a new Connection
· Press “New…” button next to connection
· Configure as per next four screen-captures
[image: image13.png]
[image: image14.png][image: image15.png]
[image: image16.png][image: image17.png]
Side note:

The command prompt, login prompt are as shown when using telnet to connect to the evm, which may be different than the login prompt when logging into the evm over the serial console:
[image: image18.png]
On the Debugger Main tab, specify the GDB debugger.

We are using the GDB debugger from Code Sourcery, so browse for the correct gdb client executable.

/home/user/arm-2009q1/bin/arm-none-linux-gnueabi-gdb
You may wish to view “/home/user/.gdbinit” which had to be added for gdb/CCS to correctly locate shared object libraries. Note that if you browse to this file, it is hidden. You will need to right-click in the file browser and select “show hidden files.”
[image: image19.png]
10. Launch the debug configuration by clicking the Debug button.

CCSv5 will launch the GDB debugger to connect to the GDB server.

After launching once from the debug configuration screen, you wil be able to re-launch the debugger using the green bug icon on CCS. However, you have to launch the debugger from this screen the first time so that this configuration is associated to the current project.
 [image: image20.png]
You may be prompted for the target’s login information:
[image: image21.png]
After clicking Debug, the IDE will switch into the Debug Perspective. It will then load the program and execute until it reaches main().
 [image: image22.png]
11. View remote terminal

You can view the telnet terminal in which the application is running from the “Display Selected Console” dropdown in the console window

[image: image23.png]
[image: image24.png]
12. Set some breakpoints, single step, view some variables

You can set a breakpoint by right-clicking on the line and selecting Run(Toggle Breakpoint, or by pressing (Ctrl-Shift-B). You can also double-click the area just to the left of the code line in the display window.
You can step over with Run(Step Over (F6), or by pressing the step-over icon.

You can run to the next breakpoint with Run(Run (Ctrl+F11) or by pressing the run icon.

→

DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake
Lab 05 - 1
Lab 05 - 16
DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake
DaVinci / OMAP Workshop - Lab 5 - Building Programs with gMake
Lab 05 - 17

