Error! No text of specified style in document.
	Error! No text of specified style in document.
Lab 1 – Booting Linux on the DM8148
Introduction
Most development for a Linux based target devices, such as the ARM CPU’s on the DM816x and DM814x families, is done on Linux-based host machines. Developers with Linux PCs can therefore work directly in this environment, but authors using Windows based PCs need either to obtain a new PC running Linux, or employ software that can simulate the Linux environment on top of Windows. In this workshop, VMware is used to create a 'virtual machine' on a windows PC, inside which the Ubuntu operating system can run. In this portion of the lab, the steps to configure Ubuntu on VMware will be implemented. In this lab, the following steps will be taken to set up the software development environment:
A: Start and Configure VMware and Ubuntu Linux
B: Configure Boot Server
C: Boot U-boot and Confirm Settings
D: Configure the boot mode options on the DVEVM
E: (Optional) Create Bootable MMC

[bookmark: _Toc269489912]

[bookmark: _Toc269489914]A. Start and Configure VMware and Ubuntu Linux
1. [image:]Launch VMware: On the Windows desktop, double click the VMware icon:
2. [image:]Open the Netra 1-day workshop VMware image: In the VMware Workstation window, Home tab, Click on the Open Existing VM or Team Icon:
From the dialog box that appears, go to directory
C:\vm_images and select folder netra1day
and choose file netra1day.vmx
3. Verify the Linux networking options are set to ‘bridged’ mode: This option tells VMware to access the network and obtain its own IP address (other choices involve the Windows PC acting as a router). If not set to ‘bridged’
If you have opened VMware application and the TTO image, you should see the Ethernet setting in the middle of the VMware screen as shown here:
[image:][image: Ethernet Bridged 00]
If you happened to get a little ahead of our instructions and already started the VMware image (which we do in step Error! Reference source not found.), the easiest way to see this is in the status bar. Just hover over the Ethernet board icon and read the popup message:

4.
Define which of the Ethernet ports on the PC Linux we will use.
From the VMware Workstation menus, select Edit | Virtual Network Settings… In the Virtual Network Editor dialog box that appears, go to the Host Virtual Network Mapping tab. In the drop box for VMnet0, select the Network Interface Card corresponding to the Ethernet connection to the DM8168 EVM (via an intermediate network switch). In this example, we are using the Broadcom NetXtreme Gigabit Ethernet Packet Scheduler Miniport adaptor, as depicted below:
[image: network, prefs]
[image: network card selection for vmware]
14. To improve system speed, disable the VMware snapshot feature: Under Edit | Preferences, go to the Priority tab, and uncheck the Snapshots feature. Close the window by clicking on the OK button. (If using the VM Player, this option does not apply to you.)
[image: Snapshot priority]
5. Start the Virtual Machine by pressing the start icon (green arrow): [image:]
The machine should boot into Ubuntu linux without requiring a login or password. The machine is setup for
Username: 	user
Password: 	(null)

B. Configure Boot Server
6. [bookmark: _Ref301951775]Verify DHCP server configuration
In a linux terminal, type:
user@ubuntu~$ gedit /etc/dhcp3/dhcpd.conf
At line 73 you will see the following subnet entry:
subnet 192.168.1.0 netmask 255.255.255.0 {
 range dynamic-bootp 192.168.1.110 192.168.1.254;
 allow unknown-clients;
 if exists host-name {
 ddns-hostname = option host-name;
 } else {
 ddns-hostname = binary-to-ascii(10, 8, "-", leased-address);
 }
bootp options
 filename "u-boot.bin";
 next-server 192.168.1.1;
}
This entry creates the 192.168.1.xxx subnet. The DHCP server will assign addresses between 192.168.1.110-192.168.1.254. If a host provides the DCHP server with a hostname, it will be registered in the dynamic domain name server, otherwise a hostname comprised of the assigned IP address will be registered in the ddns.
Finally, the BOOTP protocol is configured. The BOOTP protocol provides any host that queries the DHCP server with a filename and IP address from which to tftp a boot image. This information will automatically be transmitted to the DM8148 evm when it runs a DHCP query.
7. [bookmark: _Ref301960682]Verify Dynamic Domain Name Server (ddns) configuration
We will use a dynamic domain name server to register the hostname provided by the DM8168 EVM when it boots. This provides the convenience of being able to substitute this hostname in place of the actual IP address assigned to the board by the DHCP protocol.
	The hostname used will be as provided by the hostname variable in u-boot when the dhcp command is run. This hostname is hard-coded into the u-boot.bin that we are providing to the board as “dm8148-evm.”
	Programming a ddns is beyond the scope of this lab exercise, however, for those interested in seeing how it was done, the “bind9” dns was installed, and the following two configuration files were modified from their installed versions:
user@ubuntu~$ gedit /etc/bind9/named.conf.local /etc/bind9/named.conf.options
There are also two zone configuration files at
user@ubuntu~$ gedit /var/cache/bind/db.workshop.net /var/cache/bind/db.192.168.1
There was also information added to /etc/dhcp3/dhcpd.conf beyond what is listed above in order to program the dhcp server to inform the ddns of new hostnames and addresses when they are added.
8. [bookmark: _Ref301951664]Verify tftp server configuration
The tftpd server that we are using is automatically started at boot time by the xinetd daemon service.
	user@ubuntu~$ more /etc/xinetd.d/tftp
		Note the “server_args = /tftpboot” setting. This configures the tftpd server to use the “/tftpboot” directory as its home directory.
		This configuration was generated by the EzSDK script at:
	user@ubuntu~$ more ~/ti-ezsdk_dm814x-evm_5_03_01_15/bin/setup-tftp.sh
9. View the /tftpboot directory
Since we have seen in step 9 that the tftpd server is configured with /tftpboot as its home directory, we can verify the contents
user@ubuntu~$ ls /tftpboot
There are two files here, u-boot.bin and uImage-dm814x-evm.bin. Recall that the BOOTP protocol configured in step 7 specifies the u-boot.bin file from server 192.168.1.1 (which is the static IP address of this VMware image).
The u-boot image provided has been hard-coded with fixed boot arguments. (Sources at /home/user/u-boot-emac-boot-xxxM) This guarantees that no matter which boot arguments were previously stored in a board’s flash, the correct boot arguments will be used to boot the kernel image.
10. View other important network files
A few other important steps are necessary in configuring our network boot. Firstly, we have opened the firewall on this ubuntu machine to allow all hosts to access all ports. While this is obviously an insecure setting, it provides the simplest configuration for a lab machine
user@ubuntu~$ more /etc/hosts.allow
user@ubuntu~$ more /etc/hosts.deny
Also, the EzSDK has exported the /home/user/targetfs directory as an available network file share. This will be the root filesystem which runs on the DM816x EVM when it boots.
user@ubuntu~$ more /etc/exports
	Finally, the IP address of this Ubuntu VMware machine has been statically configured to 192.168.1.1
user@ubuntu~$ more /etc/network/interfaces

C. Boot U-boot and Confirm Settings
11. Power off the DM814x EVM.
12. Verify that S1 switch on the DM814x EVM Board is set to:
SW3: 	11101 00000
(1-3 are On, 4 is Off, 5 is on)
This configures the bootmode pins of the DM814x to NAND boot mode.
This assumes that you have u-boot flashed into the NAND of this development board.
13. Verify VMware Ubuntu IP Settings
You can print the current IP settings using linux ifconfig command:
ifconfig
The system should be configured with two interfaces, eth0 and lo. Eth0 should have ip address 192.168.1.1 and lo should have address 127.0.0.1 (both statically configured). In some cases you may find that instead of eth0, there is a listing for eth1 and no IP address has been assigned. This is generally caused by a conflict between Ubuntu 10.04 and VMware. The following step shows how this issue can be fixed.
14. (If Necessary) – Fix Ubuntu /etc/udev/rules.d/70-persistent-net.rules
This is accomplished via the following command:
sudo rm /etc/udev/rules.d/70-persistent-net.rules

There is a known issue between Ubuntu 10.04 and VMware. Ubuntu keeps track of the MAC address that is associated to a given Ethernet device (i.e. eth0, eth1, etc.) via the file
/etc/udev/rules.d/70-persistent-net.rules. This is useful for systems having more than one physical Ethernet port because it guarantees that the same physical Ethernet port (that is guaranteed to have a unique MAC address) is always assigned to the same Ethernet device.
	When a virtual machine is copied, VMware will change the virtual MAC address for the virtual machine. This is done so that if both this virtual machine and the original are run concurrently, there will not be a MAC address conflict. Unfortunately, this creates a problem with Ubuntu, because when a new MAC address is assigned, Ubuntu will assume that a new NIC has been added to the system and will assign it to eth1. The way to solve this issue is by erasing the persistent-net.rules file. (Don’t worry, Ubuntu will just create a new one with the new MAC address.)
15. (If Necessary) – If you removed /etc/udev/rules.d/70-persistent-net.rules in step 3, reboot
You can reboot by typing the following at the terminal:
sudo shutdown –h now
Restart the system and repeat step 2. If you still do not have a valid configuration, let your instructor know.
16. Connect an Ethernet cable between host PC and Centaurus evm
This is a crossover configuration. In some cases you may need an Ethernet crossover cable; however, most modern PC’s have the ability to auto-detect and automatically crossover with a standard Ethernet cable. The virtual machine image that you are using is configured with a DHCP server, so you do not need a router or a switch. If you are connected through an intermediate device, be sure to disable dhcp in this device (i.e. if you are connecting through a router.)
17. Configure Windows IP settings to 192.168.1.2 (static)
On a Windows XP system, select StartControl PanelNetwork Connections(wired connection)
In the properties window for your wired Ethernet connection, scroll in the “items” window to the “Internet Protocol (TCP/IP)” item, right-click to highlight and then right-click the Properties… button. Configure the connection with
IP address: 192.168.1.2
Subnet mask: 255.255.255.0
Default Gateway: (blank)
Preferred DNS Server: (blank)
Alternate DNS Server: (blank)
[image:]

18. Connect an RS-232 cable between the DVEVM and PC RS-232 ports.
19. [image: TeraTermShortcut_white]Start TeraTerm: On the Windows desktop, double click on the TeraTerm icon.
The TeraTerm serial configuration file dvevm.ini, in the TeraTerm program folder
has already been set up with the following necessary configuration states:
Bits per Second: 115200
Data Bits: 8
Parity: None
Stop Bits: 1
Flow Control: None
20. [bookmark: _Ref301959790]Power on the DVEVM board and press any key to interrupt U-Boot's boot sequence. At this point, the DVEVM U-Boot terminal prompt TI8148_EVM # should be visible in the TeraTerm session window.
21. Configure the bootcommand of the NAND-flashed u-boot to autoboot using DHCP/BOOTP
setenv autoload yes
setenv loadaddr 0x81000000
setenv bootcmd “dhcp; go ${loadaddr}”
saveenv
22. Boot Linux
You may either power-cycle the board or, from the u-boot command prompt, type:
	# boot
23. Debugging tip: The servers that we have configured to run under the Ubuntu virtual machine are configured to dump debug/trace information to the system log. Even if you successfully completed step 17, it is good practice to check what successful completion should look like. At the Linux prompt of the Ubuntu virtual machine (not your Terra Term connection to u-boot running on the DM8148 EVM!), type the following. (Note, as before, the user@ubuntu~$ is the Linux prompt and should not be typed)
user@ubuntu~$ tail /var/log/syslog
You should see something similar to the following:
Aug 24 09:37:05 ubuntu dhcpd: BOOTREQUEST from 90:d7:eb:1b:c1:64 via eth0
Aug 24 09:37:05 ubuntu dhcpd: BOOTREPLY on 192.168.1.176 to 90:d7:eb:1b:c1:64 via eth0
Aug 24 09:37:05 ubuntu tftpd[2808]: tftpd: trying to get file: u-boot.bin
Aug 24 09:37:05 ubuntu tftpd[2808]: tftpd: serving file from /tftpboot
This is the feedback from the DHCP and TFTP servers. When you executed the dhcp request from the NAND-flashed u-boot, it begins by making a DHCP request and should have been granted an IP address as per the first two lines. The DHCP server also provided a server IP address (192.168.1.1) and a boot file (u-boot.bin), and in the next two lines the log shows that the EVM made a tftp request for this file and that the tftp server served this file from the default directory, /tftpboot.

[bookmark: _Toc269489913]D. Verify Arago Linux Configuration via TFTP/NFS
Upon successful boot of Arago Linux, you will be presented the login prompt on the Terra Term console (after quite a bit of feedback as Linux boots):
dm814x-evm login:
24. Enter user “root” at the login prompt (no password)
dm814x-evm login: root
25. Verify subnetwork configuration
The domain name server in the Ubuntu virtual machine (see step 8) defines the subnetwork 192.168.1.x as “workshop.net” as well as statically declaring 192.168.1.1 (the Ubuntu host itself) as ubuntu.workshop.net.
The hostname environment variable in U-boot is set to “dm814x-evm” and therefore the ddns has registered dm816x-evm.workshop.net as the hostname associated with the IP address that has been assigned to the board.
You can verify that the hostname is correctly set using:
root@dm816x-evm:~# more /etc/hostname
dm814x-evm.workshop.net
Also, in order for the domain name server to be accessed, it needs to be specified in the file resolv.conf, which can be verified via:
root@dm816x-evm:~# /etc/resolv.conf
The hostname and dns server were configured in these files at boot time by a script that can be viewed via:
root@dm816x-evm:~# more /etc/init.d/hostname.sh
26. Verify subnetwork
We will be using the hostnames instead of IP addresses in the CCSv5 debugging lab exercise (lab 2). We can verify that the hostnames are correctly set using:
root@dm816x-evm:~# nslookup dm816x-evm
Server: 192.168.1.1
Address 1: 192.168.1.1 ubuntu.workshop.net
Name: dm814x-evm
Address 1: 192.168.1.178 dm814x-evm.workshop.net

root@dm816x-evm:~# nslookup ubuntu
Server: 192.168.1.1
Address 1: 192.168.1.1 ubuntu.workshop.net
Name: ubuntu
Address 1: 192.168.1.1 ubuntu.workshop.net
27. [bookmark: _Ref301962292]Verify startup configuration
The DM8168 is comprised of three primary subsystems: the Digital Signal Processor (DSP), the Video and Imaging Coprocessor (VICP) and the Video Port Subsystem (VPSS). Linux startup scripts are provided in the Arago distribution to load firmware into the VICP and VPSS subsystems and load the corresponding drivers into the running Linux kernel.
The startup script methodology used by the Arago distribution is called SysV (system five) and is a common startup methodology across various Linux distributions. Much information is available on the internet for those wishing to learn more about SysV.
We will do a quick verification of the startup scripts, located at /etc/init.d, via:
root@dm816x-evm:~# more /etc/init.d/load-hdvpss-firmware.sh
and
root@dm816x-evm:~# more /etc/init.d/load-hdvicp2-firmware.sh
These scripts show which commands have been executed in order to configure the VPSS and VICP subsystems. Note that not all scripts which exist in the /etc/init.d folder are executed at runtime. Only those scripts in /etc/rc5.d (usually these are links to scripts in /etc/init.d) will be run. Let’s verify that the scripts we are executing are:
root@dm816x-evm:~# ls /etc/rc5.d
S02dbus-1 		S20syslog
S10load-hdvicp2-firmware.sh 	S20thttpd
S10telnetd 		S99rmnologin
S15load-hdvpss-firmware.sh
Note that these are not all of the startup scripts that come with the standard Arago distribution. For the workshop we have removed “S30pvr-init” and “S99matrix-gui-e”
28. Verify dynamic kernel modules.
The startup scripts examined in step 24 load various modules into the running Linux kernel. You can verify with:
	root@dm816x-evm:~# lsmod
	Module 	Size 		Used by
TI81xx_hdmi 	11226 	 	0
ti81xxfb 	20355 		0
vpss 	59536 		1 ti81xxfb
syslink 	1096481 	1 vpss
ipv6 	209879 	12
29. Verify shared file system between Ubuntu and EVM. Since any file change to the root directory of our EVM board will be reflected in Ubuntu Linux, let’s give it a try by creating a new file (or updating its timestamp) using the Linux “touch” command.
From Tera Term (which is now logged into the DaVinci board):
root@dm816x-evm:~# cd /				moves you to root
root@dm816x-evm:~# touch putfileatroot.txt	create a new empty file at root
Now, let’s look for this file on the NFS source directory; that is, in the target filesystem on our Ubuntu PC. To do this, list the files of the target filesystem from the Ubuntu terminal session (note: be careful to be in the correct window, as there are two that can be easily mistaken for each other) you started earlier:
user@ubuntu~$ cd /home/user/workdir/filesys
user@ubuntu~$ ls -la
You should see the putfileatroot.txt in your listing, with the current date and time stamp (you could always try the Linux date command if you’d like to change it to your time zone). Note, you can see the same directory (and file) from both environments. Similarly, when we create new app’s within Ubuntu Linux, if they are created (or copied to) our filesys folder, they’re immediately available at our NFS mounted EVM target.

E. (Optional) Create Bootable MMC
30. Insert 4GB MMC into SD/MMC cardreader and plug cardreader into PC USB slot. If you have focus inside the virtual machine, the USB should mount into your virtual machine instead of the host PC.
31. Verify SD/MMC cardreader is mounted into virtual machine using
VMRemovable Devices(Cardreader name). If the device has mounted into the virtual machine, it will have a checkmark next to the name. If it does not have a checkmark, you can select “connect” from the options available under the (Cardreader name) subfolder.
32. [bookmark: _Ref300568137]Determine the Small Computer Systems Interface (SCSI) device-node mapping of your SD/MMC cardreader
sudo sg_map –i
You should see something similar to the following output to the terminal:
/dev/sg0 /dev/scd0 NECVMWar VMware IDE CDR10 1.00
/dev/sg1 /dev/sda VMware, VMware Virtual S 1.0
/dev/sg2 /dev/sdb USB 2.0 SD/MMC Reader
In the above example, the SD/MMC Reader has been mapped to the /dev/sdb device node.

sg_map is part of the sg3-utils package available through Ubuntu’s Aptitude package manager. It has already been installed for you on this virtual machine, but if you are running these labs on a different Linux computer, you can install the utility by typing:
sudo apt-get install sg3-utils
33. Change into the ti-ezsdk_dm814x-evm_5_01_01_80/bin/ directory
cd ti-ezsdk_dm814x-evm_5_03_01_15/bin/
34. IMPORTANT: The next step can potentially erase your system’s harddrive, so be sure to read the entire step before typing the command
35. [bookmark: _Ref300568472]Execute the mksdboot.sh shell script, being sure to use the MMC/SD cardreader device node determined in step 29
This step will take a long time, so we will let the MMC card be written while the next lecture proceeds.
sudo ./mksdboot.sh --device /dev/sdb --sdk ..
You will see the following warning:
**
* THIS WILL DELETE ALL THE DATA ON /dev/sdb *
* *
* WARNING! Make sure your computer does not go *
* in to idle mode while this script is *
* running. The script will complete, *
* but your SD card may be corrupted. *
* *
* Press <ENTER> to confirm.... *
**
This is your last opportunity to cancel. If you are certain that you have correctly entered the SCSI device node as determined in step 29, you may press enter to proceed.
36. After ./mksdboot completes, power off the DM814x EVM.
37. Remove the MMC card created in step 32 from the SD/MMC cardreader and insert it into the SD/MMC slot of the DM814x EVM (P9)
38. Change the S3 switch on the DM816x EVM Board to:
SW3: 	11101 00000
39. (Optional) Unplug the Ethernet cable from DM814x EVM (J10)
This will verify that the board is boot ing from MMC and not the network boot previously configured.
40. Power on the DM814x EVM.
41. When you are finished, re-insert the Ethernet cable into DM8168 EVM RJ-45 slot (J10) and return the S3 switch on the DM816x EVM Board to network boot:
SW3: 	11100 00000
(BTM0-2 are On, BTM3-4 are Off as labeled on PCB)
Lab exercises 2 and 3 assume that you boot Linux via the TFTP/NFS method.

DM8168 1-day Workshop - Lab 1 – Booting Linux on the DM8168	2 - 1
2 - 2	DM8168 1-day Workshop - Lab 1 – Booting Linux on the DM8168
DM8168 1-day Workshop - Lab 1 – Booting Linux on the DM8168	2 - 3
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image1.png

image2.png

