

Running an Application from Internal Flash Memory on
the TMS320F281x DSP

David M. Alter DSP Applications - Semiconductor Group

ABSTRACT

Several special requirements exist for running an application from on-chip flash memory
on the TMS320F281x DSP. These requirements generally do not manifest themselves
during development in RAM since the Code Composer Studio™ debugger can mask
problems associated with initialized sections and how they are linked to memory. This
application report covers the requirements needed to properly configure application
software for execution from on-chip flash memory. Requirements for both DSP/BIOS™
and non-DSP/BIOS projects are presented. Some performance considerations and
techniques are also discussed. Example code projects are included that run from on-chip
flash on the eZdsp™ F2812 development board (or alternately any F2810, F2811, or
F2812 DSP board). Code examples that run from internal RAM are also provided for
completeness. These code examples provide a starting point for code development, if
desired.

Note that the issues discussed in this application report apply directly to F281x members
of the F28x DSP family, specifically the F2810, F2811, and F2812 DSP devices.
Applicability to future devices in the F28x family, although quite likely, is not guaranteed.
In addition, the requirements and techniques presented in this application report for
DSP/BIOS projects apply specifically to Code Composer Studio v2.21.04, v2.21.00, and
v2.20.18. Earlier versions of DSP/BIOS were incomplete in their support of the F281x
DSP, and it is suggested that the reader upgrade to the latest version. Future versions of
DSP/BIOS may have differences that make some of the items discussed in this report
unnecessary (although in all likelihood backwards compatibility will be maintained, so that
the techniques discussed here should still work). The reader should keep this in mind if
using a newer version.

Finally, this application report does not provide a tutorial on writing and building code for
the F281x DSP. It is assumed that the reader already has at least the main framework of
their application code running from RAM, probably using the Code Composer Studio
debugger to perform the code download. This report only identifies the special items that
must be considered when moving the application into on-chip flash memory.

Code Composer Studio and DSP/BIOS are trademarks of Texas Instruments.
eZdsp is a trademark of Spectrum Digital Incorporated.
Trademarks are the property of their respective owners.

Application Report
SPRA958D – September 2004

1

SPRA958D

2 Running an Application from Internal Flash Memory on the TMS320F281x DSP

Revision History

Revision Date Who Description of Changes from Previous Version

SPRA958D Sept. 2004 D. Alter Code Corrections only. The appnote text itself did not change.

- Corrected counter bug in DelayUs() in DelayUs.asm.

- Corrected typo in DelayUs() function header in DelayUs.asm.

- Correct comment field for T2CON.TPSx bit in Ev.c.

SPRA958C May 2004 D. Alter Code Corrections only. The appnote text itself did not change.

- Corrected GPIO pin names in ACTRA register comments in Ev.c.

- Added PLL lock delay loop in Sysctrl.c.

- Removed PLL configuration from .cdb files for
example_BIOS_ram.pjt and example_BIOS_flash.pjt.

- Corrected comment field for ADCTRL1.5 bit in ADCTRL1
initialization in Adc.c.

- Corrected comment field for GPTCONA.8_7 bit in GPTCONA
initialization in Ev.c.

- Removed redundant PIE acknowlege from CAP1INT_ISR in
DefaultISR_nonBIOS.c.

- Fixed the length of the memcpy() for the PieVect section in
PieCtrl_BIOS.c (removed the “+ 1”).

- In main_BIOS.c and main_nonBIOS.c, changed the following
comment from:

/*** Copy all FLASH sections that need to run from RAM (use
far_memcpy() from RTS library) ***/

to:

/*** Copy all FLASH sections that need to run from RAM (use
memcpy() from RTS library) ***/

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 3

SPRA958B Jan. 2004 D. Alter - Deleted “+ 1” length for examples of memcpy() function calls. For
example, previously:

 memcpy(&econst_runstart,
 &econst_loadstart,
 &econst_loadend - &econst_loadstart + 1);

Is now:

 memcpy(&econst_runstart,
 &econst_loadstart,
 &econst_loadend - &econst_loadstart);

- Fixed italics on references 4 and 5.

- Fixed code comment in main_BIOS.c and main_nonBIOS.c to say
memcpy() instead of far_memcpy().

SPRA958A Nov. 2003 D. Alter - Corrected RAMH0 length in files f2812_nonBIOS_ram.cmd and
f2812_nonBIOS_flash.cmd.

- Added .cio section to f2812_nonBIOS_ram.cmd and
f2812_nonBIOS_flash.cmd.

- Added .cio section to Table 1.

- Removed c:\ti2\c2000\rtdx\include and c:\ti2\c2000\bios\include
search paths from f2812_nonBIOS_ram.pjt and
f2812_nonBIOS_flash.pjt, Project -> Build_Options, Compiler Tab,
Preprocessor Category, Include search path. They are not needed.

- Fixed .trcdata section copy instructions in Section 4 to require copy
to be done before main(). Modified example_BIOS_ram and
example_BIOS_flash example code to incorporate this.

- Tested code with C2000 Code Composer Studio v2.21.04.

SPRA958 Sept. 2003 D. Alter - Original

SPRA958D

4 Running an Application from Internal Flash Memory on the TMS320F281x DSP

Contents

Revision History..2
1 Introduction ...5
2 Creating a User Linker Command File ..5

2.1 Non-DSP/BIOS Projects..5
2.2 DSP/BIOS Projects ...6

3 Where to Link the Sections ..6
3.1 Non-DSP/BIOS Projects..7
3.2 DSP/BIOS Projects ...8

4 Copying Sections from Flash to RAM...11
4.1 Copying the Interrupt Vectors (non-DSP/BIOS projects only)...11
4.2 Copying the .hwi_vec Section (DSP/BIOS projects only)..12
4.3 Copying the .trcdata Section (DSP/BIOS projects only)..12
4.4 Initializing the Flash Control Registers (DSP/BIOS and non-DSP/BIOS projects)14
4.5 Maximizing Performance by Executing Time-critical Functions from RAM16
4.6 Maximizing Performance by Linking Critical Global Constants to RAM17

4.6.1 Method 1: Running All Constant Arrays from RAM ...17
4.6.2 Method 2: Running a Specific Constant Array from RAM ...20

5 Programming the Code Security Module Passwords..21
6 Executing Your Code from Flash after a DSP Reset..25
7 Disabling the Watchdog Timer During C-Environment Boot ..27
8 C-Code Examples..29

8.1 General Overview..29
8.2 Directory Structure and File Utilizations ..30
8.3 Additional Information..32

References...34

Figures
Figure 1. Specifying the User Init Function in the DSP/BIOS Configuration tool13
Figure 2. Specifying the Link Order In Code Composer Studio ..19
Figure 3. DSP/BIOS MEM Properties for CSM Password Locations ...24
Figure 4. DSP/BIOS MEM Properties for CSM Reserved Locations ..24
Figure 5. DSP/BIOS MEM Properties for Jump to Flash Entry Point...26

Tables
Table 1. Section Linking in Non-DSP/BIOS Projects...7
Table 2. Section Linking In DSP/BIOS Projects ...9
Table 3. Example Code File Directories..30
Table 4. Example Code File Inventory and Utilization...30

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 5

1 Introduction
The TMS320F281x DSP family has been designed for standalone operation in embedded
controller applications. The on-chip flash usually eliminates the need for external non-volatile
memory and for a host processor from which to bootload. Configuring an application to run from
flash memory is a relatively easy matter provided that one follow a few simple steps. This report
covers the major concerns and steps needed to properly configure application software for
execution from internal flash memory. Requirements for both DSP/BIOS and non-DSP/BIOS
projects are presented. Some performance considerations and techniques are also discussed.

Note that the issues discussed in this report apply directly to F281x members of the F28x DSP
family, specifically F2810, F2811, and F2812 devices. Applicability to future F28x devices,
although quite likely, is not guaranteed. In addition, the requirements and techniques presented
here for DSP/BIOS projects apply specifically to Code Composer Studio v2.21.04, v2.21.00, and
v2.20.18. Earlier DSP/BIOS versions were incomplete in their support for the F28x, and it is
suggested that the reader upgrade to the latest version. Future versions may have differences
that make some of the items discussed here unnecessary (although in all likelihood backwards
compatibility will be maintained, so that the techniques discussed here should still work). The
reader should keep this in mind if using a later version.

Finally, this application report does not provide a tutorial on writing and building code for the
F281x DSP. It is assumed that the reader already has at least the main framework of their
application code running from RAM, probably using the Code Composer Studio debugger to
perform the code download. This report only identifies the special items that must be
considered when moving the application into on-chip flash memory.

2 Creating a User Linker Command File

2.1 Non-DSP/BIOS Projects

In non-DSP/BIOS applications, the user linker command file will be where most memory is
defined, and where the linking of most sections is specified. The format of this file is no different
than the linker command file you are currently using to run your application from RAM. The
difference will be in where you link the sections (to be discussed in Section 3). More information
on linker command files can be found in reference [4]. The non-DSP/BIOS code projects that
accompany this application report contain linker command files that can be used for reference.

When using the DSP281x Header Files v1.00 (or later) to define C structures for the on-chip
peripherals (see reference [7]), a linker command file named DSP281x_Headers_nonBIOS.cmd
is provided with them. This file contains linker MEMORY and SECTIONS declarations for linking
the structures. Starting with Code Composer Studio v2.20, more than one linker command file
can be added to a project. Hence, all one needs to do is add both the user linker command file
as well as the DSP281x Peripheral Structures linker command file to their project. In general,
the order of the linker command files is unimportant since during a project build, Code
Composer Studio evaluates the MEMORY section of every linker command file before
evaluating the SECTIONS section of any linker command file. This ensures that all memories
are defined before linking any sections to those memories. However, advanced users may need
manual control over the order of linker command file evaluation in some rare situations. This
can be specified within Code Composer Studio on the Project → Build_Options, Link Order tab.

SPRA958D

6 Running an Application from Internal Flash Memory on the TMS320F281x DSP

2.2 DSP/BIOS Projects

The DSP/BIOS configuration tool generates a linker command file that specifies how to link all
DSP/BIOS generated sections, and by default all C compiler generated sections. When running
your application from RAM, this linker command file may be the only one in use. However,
when executing from flash memory, there will likely be a need to generate and link one or more
user defined sections. In particular, any code that configures the on-chip flash control registers
(e.g. flash wait-states) cannot execute from flash. In addition, one may want to run certain time
critical functions from RAM (instead of flash) to maximize performance. A user linker command
file must be created to handle these user defined sections.

Starting with Code Composer Studio v2.20, more than one linker command file can be added to
a project. Hence, all one needs to do is add both the user linker command file, as well as the
DSP/BIOS generated linker command file, to their project. In general, the order of the linker
command files is unimportant since during a project build, Code Composer Studio evaluates the
MEMORY section of every linker command file before evaluating the SECTIONS section of any
linker command file. This ensures that all memories are defined before linking any sections to
those memories. However, advanced users may need manual control over the order of linker
command file evaluation in some rare situations (for example, to preempt and override
DSP/BIOS linkage of a section). This can be specified within Code Composer Studio on the
Project → Build_Options, Link Order tab.

When using the DSP281x Header Files v1.00 (or later) to define C structures for the on-chip
peripherals (see reference [7]), a linker command file named DSP281x_Headers_BIOS.cmd is
provided with them. This file contains linker MEMORY and SECTIONS declarations for linking
the structures. Simply add this linker command file to the code project as well.

3 Where to Link the Sections
Two basic section types exist: initialized, and uninitialized. Initialized sections must contain valid
values at device power-up. For example, code and constants are found in initialized sections.
When designing a stand-alone embedded system with the F281x DSP (e.g., no emulator or
debugger in use, no host processor present to perform bootloading), all initialized sections must
be linked to non-volatile memory (e.g., on-chip flash). An uninitialized section does not contain
valid values at device power-up. For example, variables are found in uninitialized sections.
Code will write values to the variable locations during code execution. Therefore, uninitialized
sections must be linked to volatile memory (e.g., RAM).

It is suggested that the -w linker option be invoked. The -w option will produce a warning if the
linker encounters any sections in your project that have not been explicitly specified for linking in
a linker command file. When the linker encounters an unspecified section, it uses a default
allocation algorithm to link the section into memory (it will link the section to the first defined
memory with enough available free space). This is almost always risky, and can lead to
unreliable and unpredictable code behavior. The -w option will identify any unspecified sections
(e.g., those accidentally forgotten by the user) so that the user can make the necessary addition
to the appropriate linker command file. The -w option can be selected in Code Composer Studio
on the Project → Build_Options menu, Linker tab, select the Advanced category, and then
check the -w option box.

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 7

CAUTION:
It is important that the large memory model be used with the C-compiler (as
opposed to the small memory model). Small memory model requires certain
initialized sections to be linked to non-volatile memory in the lower 64Kw of
addressable space. However, no flash memory is present in this region on
F2812, F2811, or F2810 devices (probably true on future F28x devices as well).
Therefore, large memory model should be used. In Code Composer Studio, the
large memory model is on the Project → Build_Options menu. Select the
Compiler tab, choose the Advanced category, and check the -ml option box. For
non-DSP/BIOS projects, one should include the large memory model C-compiler
runtime support library, rts2800_ml.lib, into their code project (as opposed to
rts2800.lib, which is for the small memory model). For DSP/BIOS projects,
DSP/BIOS will take care of including the required library. The user should not
include the rts2800_ml.lib (or rts2800.lib) library into a DSP/BIOS project.

3.1 Non-DSP/BIOS Projects

The compiler uses a number of specific sections. These sections are the same whether you are
running from RAM or flash. However, when running a program from flash, all initialized sections
must be linked to non-volatile memory, whereas all uninitialized sections must be linked to
volatile memory. Table 1 shows where to link each compiler generated section on the F281x
DSP. Information on the function of each section can be found in reference [2]. Any user
created initialized section should be linked to flash (e.g., those sections created using the
CODE_SECTION compiler pragma), whereas any user created uninitialized sections should be
linked to RAM (e.g., those sections created using the DATA_SECTION compiler pragma).

Table 1. Section Linking in Non-DSP/BIOS Projects

Section Name Where to Link Restrictions
.cinit Flash None

.cio RAM None

.const Flash1 Lower 64Kw of memory

.econst Flash None

.pinit Flash None

.switch Flash None

.text Flash None

.bss RAM2 Lower 64Kw of memory

.ebss RAM None

.stack RAM Lower 64Kw of memory

.sysmem RAM2 Lower 64Kw of memory

.esysmem RAM None

.reset RAM3 None

SPRA958D

8 Running an Application from Internal Flash Memory on the TMS320F281x DSP

Table 1 Notes:
1 The .const section is only used with the small memory model. When using large memory
model, the .econst section is used instead. However, it is good practice to specify all possible
sections in the linker command file. The .const section is restricted to the lower 64Kw of
memory, but in reality there is no flash memory available in this address range on F281x
devices. Since the .const section is not used with large memory model, just link the section to
any memory. Then, check the .map file generated by the linker to confirm that the .const section
is of zero length (meaning that it is not in use).
2 The .bss and .sysmem sections are only used with the small memory model. When using large
memory model, the .ebss and .esysmem sections are used instead. However, it is good practice
to specify all possible sections in the linker command file. It is also wise to check the .map file
generated by the linker to confirm that the .bss and .sysmem sections have a length of zero
(meaning they are not in use).
3 The .reset section contains nothing more than a 32-bit interrupt vector that points to the
C-compiler boot function in the runtime support library (the _c_int00 routine). It generally is not
used. Instead, the user typically creates their own branch instruction to point to the start of his
code (see Sections 6 and 7). When not in use, the .reset section should be omitted from your
code build by using a DSECT modifier in the linker command file. For example:

/**
* User's linker command file
**/

SECTIONS
{
 .reset : > FLASH, PAGE = 0, TYPE = DSECT
}

3.2 DSP/BIOS Projects

The memory section manager in the DSP/BIOS configuration tool allows one to specify where to
link the various DSP/BIOS and C-compiler generated sections. Table 2 indicates where the
sections shown on each tab of the memory section manager should be linked (i.e., RAM or
FLASH). Note that this information has been tabulated specifically for Code Composer Studio
v2.21.04, v2.21.00, and v2.20.18. Later versions of Code Composer Studio, although quite
likely to be the same, may have some differences. The reader should check the version they
are using (go to the Help → About menu in Code Composer Studio) and simply be aware of
potential differences while proceeding.

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 9

Table 2. Section Linking In DSP/BIOS Projects

Memory Section
Manager TAB

Section Name Where to Link

Segment for DSP/BIOS Objects RAM
General

Segment for malloc()/free() RAM

Argument Buffer Section (.args) RAM

Stack Section (.stack) RAM

DSP/BIOS Init Tables .gblinit Flash

TRC Initial Values (.trcdata) RAM1

DSP/BIOS Kernel State (.sysdata) RAM

BIOS Data

DSP/BIOS Conf Sections (*.obj) RAM

BIOS Code Section (.bios) Flash

Startup Code Section (.sysinit) Flash

Function Stub Memory (.hwi) Flash

Interrupt Service Table Memory (.hwi_vec) PIEVECT RAM2

BIOS Code

RTDX Text Segment (.rtdx_text) Flash

Text Section (.text) Flash

Switch Jump Tables (.switch) Flash

C Variables Section (.bss) RAM3

C Variables Section (.ebss) RAM

Data Initialization Section (.cinit) Flash

C Function Initialization Table (.pinit) Flash

Constant Section (.econst) Flash

Constant Section (.const) Flash3

Data Section (.data) Flash

Compiler Sections

Data Section (.cio) RAM

Load Address - BIOS Code Section (.bios) Flash4

Load Address - Startup Code Section (.sysinit) Flash4

Load Address - DSP/BIOS Init Tables (.gblinit) Flash4

Load Address

Load Address - TRC Initial Value (.trcdata) Flash1

SPRA958D

10 Running an Application from Internal Flash Memory on the TMS320F281x DSP

Load Address - Text Section (.text) Flash4

Load Address - Switch Jump Tables (.switch) Flash4

Load Address - Data Initialization Section (.cinit) Flash4

Load Address - C Function Initialization Table (.pinit) Flash4

Load Address - Constant Section (.econst) Flash4

Load Address - Constant Section (.const) Flash3,4

Load Address - Data Section (.data) Flash4

Load Address - Function Stub Memory (.hwi) Flash4

Load Address - Interrupt Service Table Memory (.hwi_vec) Flash2

Load Address - RTDX Text Segment (.rtdx_text) Flash4

Table 2 Notes:
1 The .trcdata section must be copied by the user from its load address (specified on the Load
Address Tab) to its run address (specified on the BIOS Data Tab) at runtime. See Section 4.3
for details on performing this copy.
2 The PIEVECT RAM is a specific block of RAM associated with the Peripheral Interrupt
Expansion (PIE) peripheral. On F2810, F2811, and F2812 devices, the PIE RAM is a 256x16
block starting at address 0x000D00 in data space. For other devices, confirm the address in the
device datasheet. The memory section manager in the DSP/BIOS configuration tool should
already have a pre-defined memory named PIEVECT. The .hwi_vec section must be copied by
the user from its load address (specified on the memory section manager Load Address Tab) to
its run address (specified on the memory section manager BIOS Code Tab) at runtime. See
Section 4.2 for details on performing this copy.
3 The .const and .bss sections are only used with the small memory model, and are restricted to
the lower 64Kw of memory space. When using large memory model, the .econst and .ebss
sections are used instead (these have no lower 64Kw restriction). Large memory model should
always be used, and hence it does not matter where .const and .bss sections are linked. It is
good practice to check the .map file generated by the linker to confirm that the .const and .bss
sections have a length of zero (meaning they are not in use).
4 The specific flash memory selected as the load address for this section should be the same
flash memory selected previously as the run address for the section (e.g., on the BIOS Data,
BIOS Code, or Compiler Sections tab).

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 11

4 Copying Sections from Flash to RAM

4.1 Copying the Interrupt Vectors (non-DSP/BIOS projects only)

The Peripheral Interrupt Expansion (PIE) module manages interrupt requests on F281x devices.
At power-up, all interrupt vectors must be located in non-volatile memory (i.e., flash), but copied
to the PIE RAM as part of the device initialization procedure in your code. The PIE RAM is a
specific block of RAM, which on F2810, F2811, and F2812 devices is a 256x16 block starting at
address 0x000D00 in data space. For other devices, check the address in the device datasheet.

Several approaches exist for linking your interrupt vectors to flash and then copying them to the
PIE RAM at runtime. One such approach is to create a constant C-structure of function pointers
that contains all 128 vectors. If using the DSP281x peripheral structures (see reference [7]),
such a structure, called PieVectTableInit, has already been created in the file
DSP281x_PieVect.c. Since this structure is declared using the const type qualifier, it will be
placed in the .econst section by the compiler (large memory model assumed). One simply
needs to copy this structure to the PIE RAM at runtime. The C-compiler runtime support library
contains a memory copy function called memcpy() that can be used to perform the copy task.
This function is used as follows:

/**
* User's C-source file
**/

/**
* NOTE: This function assumes use of the DSP281x Header File
* structures (TI Literature #SPRC097).
**/

#include <string.h>

void main(void)
{
/*** Initialize the PIE_RAM ***/
 PieCtrlRegs.PIECRTL.bit.ENPIE = 0; // Disable the PIE
 asm(" EALLOW"); // Enable EALLOW protected register access
 memcpy((void *)0x000D00, &PieVectTableInit, 256);
 asm(" EDIS"); // Disable EALLOW protected register access
}

The above example uses a hard coded address for the start of the PIE RAM, specifically
0x000D00. If this is objectionable (as hard coded addresses are not particularly good
programming practice), one can use a DATA_SECTION pragma to create an uninitialized
dummy variable, and link this variable to the PIE RAM. The name of the dummy variable can
then be used in place of the hard coded address. For example, when using the DSP281x
peripheral structures, an uninitialized structure called PieVectTable is created and linked over
the PIE RAM. The memcpy() instruction in the previous example can be replaced by:

 memcpy(&PieVectTable, &PieVectTableInit, 256);

Note that the length is 256. The memcpy function copies 16-bit words (as opposed to copying
128 32-bit words).

SPRA958D

12 Running an Application from Internal Flash Memory on the TMS320F281x DSP

4.2 Copying the .hwi_vec Section (DSP/BIOS projects only)

The DSP/BIOS .hwi_vec section contains the interrupt vectors, and must be loaded to flash but
run from RAM. The user is responsible for copying this section from its load address to its run
address. This is typically done in main(). The DSP/BIOS configuration tool generates global
symbols that can be accessed by code in order to determine the load address, run address, and
length of the .hwi_vec section. These symbol names are:

 hwi_vec_loadstart

 hwi_vec_loadend

 hwi_vec_runstart

Each symbol is self-explanatory from its name. Note that the symbols are not pointers, but
rather symbolically reference the 16-bit data value found at the corresponding location (i.e., start
or end) of the section. The C-compiler runtime support library contains a memory copy function
called memcpy() that can be used to perform the copy task. A C-code example of how to use
this function to perform the section copy follows. Note that the PIE RAM is EALLOW protected.
Therefore, inline EALLOW and EDIS assembly instructions must bracket the memory copy of
the .hwi_vec section, as shown.

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int hwi_vec_loadstart;
extern unsigned int hwi_vec_loadend;
extern unsigned int hwi_vec_runstart;

void main(void)
{
/* Initialize the .hwi_vec section */
 asm(" EALLOW"); /* Enable EALLOW protected register access */

 memcpy(&hwi_vec_runstart,
 &hwi_vec_loadstart,
 &hwi_vec_loadend - &hwi_vec_loadstart);

 asm(" EDIS"); /* Disable EALLOW protected register access */
}

4.3 Copying the .trcdata Section (DSP/BIOS projects only)

The DSP/BIOS .trcdata sections must be loaded to flash, but run from RAM. The user is
responsible for copying this section from its load address to its run address. However, unlike the
.hwi_vec section, the copying of .trcdata must be performed prior to main(). This is because
DSP/BIOS modifies the contents of .trcdata during DSP/BIOS initialization (which also occurs
prior to main()).

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 13

The DSP/BIOS configuration tool provides for a user initialization function which can be utilized
to perform the .trcdata section copy prior to both main() and DSP/BIOS initialization. This can
be found in the project configuration file under System - Global Settings Properties, as shown in
Figure 1.

Figure 1. Specifying the User Init Function in the DSP/BIOS Configuration tool

What remains is to create the user initialization function. The DSP/BIOS configuration tool
generates global symbols that can be accessed by code in order to determine the load address,
run address, and length of each section. These symbol names are:

 trcdata_loadstart

 trcdata_loadend

 trcdata_runstart

Check this box
Enter your
function name
here (note the
leading
underscore)

SPRA958D

14 Running an Application from Internal Flash Memory on the TMS320F281x DSP

Each symbol is self-explanatory from its name. Note that the symbols are not pointers, but
rather symbolically reference the 16-bit data value found at the corresponding location (i.e., start
or end) of the section. The C-compiler runtime support library contains a memory copy function
called memcpy() that can be used to perform the copy task. A C-code example of a user init
function that performs the .trcdata section copy follows.

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int trcdata_loadstart;
extern unsigned int trcdata_loadend;
extern unsigned int trcdata_runstart;

void UserInit(void)
{
/* Initialize the .trcdata section before main() */
 memcpy(&trcdata_runstart,
 &trcdata_loadstart,
 &trcdata_loadend - &trcdata_loadstart);
}

4.4 Initializing the Flash Control Registers (DSP/BIOS and non-DSP/BIOS projects)

The initialization code for the flash control registers, FOPT, FPWR, FSTDBYWAIT,
FACTIVEWAIT, FBANKWAIT, and FOTPWAIT, cannot be executed from the flash memory or
unpredictable results may occur. Therefore, the initialization function for the flash control
registers must be copied from flash (its load address) to RAM (its run address) at runtime.

CAUTION:
The flash control registers are protected by the Code Security Module (CSM). If
the CSM is secured, you must run the flash register initialization code from
secured RAM (e.g., L0 or L1 SARAM) or the initialization code will be unable to
access the flash registers. Note that the CSM is always secured at device reset,
even if you are using dummy passwords of 0xFFFF.

The CODE_SECTION pragma of the C compiler can be used to create a separately linkable
section for the flash initialization function. For example, suppose the flash register configuration
is to be performed in the C function InitFlash(), and it is desired to place this function into a
linkable section called secureRamFuncs. The following C-code example shows proper use of
the CODE_SECTION pragma along with an example configuration of the flash registers:

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 15

/**
* User's C-source file
**/

/**
* NOTE: The InitFlash() function shown here is just an example of an
* initialization for the flash control registers. Consult the device
* datasheet for production wait-state values and any other relevant
* information. Also, this function assumes use of the DSP281x
* Header File structures (TI Literature #SPRC097).
**/

#pragma CODE_SECTION(InitFlash, "secureRamFuncs")
void InitFlash(void)
{
 asm(" EALLOW"); // Enable EALLOW protected register access
 FlashRegs.FPWR.bit.PWR = 3; // Flash set to active mode
 FlashRegs.FSTATUS.bit.V3STAT = 1; // Clear the 3VSTAT bit
 FlashRegs.FSTDBYWAIT.bit.STDBYWAIT = 0x01FF; // Sleep to standby cycles
 FlashRegs.FACTIVEWAIT.bit.ACTIVEWAIT = 0x01FF; // Standby to active cycles
 FlashRegs.FBANKWAIT.bit.RANDWAIT = 5; // Random access waitstates
 FlashRegs.FBANKWAIT.bit.PAGEWAIT = 5; // Paged access waitstates
 FlashRegs.FOTPWAIT.bit.OTPWAIT = 5; // Random access waitstates
 FlashRegs.FOPT.bit.ENPIPE = 1; // Enable the flash pipeline
 asm(" EDIS"); // Disable EALLOW protected register access

/*** Force a complete pipeline flush to ensure that the write to the last register
 configured occurs before returning. Safest thing is to wait 8 full cycles. ***/

 asm(" RPT #6 || NOP");

} //end of InitFlash()

The section secureRamFuncs can then be linked using the user linker command file. This
section will require separate load and run addresses. Further, we will want to have the linker
generate some global symbols that can be used to determine the load address, run address,
and length of the section. This information is needed to perform the copy from the sections load
address to its run address. The user linker command file would appear as follows:

/**
* User's linker command file
**/

SECTIONS
{
/*** User Defined Sections ***/
secureRamFuncs: LOAD = FLASH, PAGE = 0
 RUN = SECURE_RAM, PAGE = 0
 RUN_START(_secureRamFuncs_runstart),
 LOAD_START(_secureRamFuncs_loadstart),
 LOAD_END(_secureRamFuncs_loadend)
}

SPRA958D

16 Running an Application from Internal Flash Memory on the TMS320F281x DSP

In this example, the memories FLASH and SECURE_RAM are assumed to have been defined
either in the MEMORY section of the user linker command file (for non-DSP/BIOS projects) or in
the memory section manager of the DSP/BIOS configuration tool (for DSP/BIOS projects). The
PAGE designation for these memories should match that of the memory definition. The above
example assumes both memories have been declared on PAGE 0 (program memory space).
The RUN_START, LOAD_START, and LOAD_END directives will generate global symbols with
the specified names for the corresponding addresses. Note the use of the leading underscore
on the global symbol definitions (e.g., _secureRamFuncs_runstart)

Finally, the section must be copied from flash to RAM at runtime. As in Sections 4.1 - 4.3, the
compiler runtime support library memory copy function memcpy() can be used:

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int secureRamFuncs_loadstart;
extern unsigned int secureRamFuncs_loadend;
extern unsigned int secureRamFuncs_runstart;

void main(void)
{
/* Copy the secureRamFuncs section */
 memcpy(&secureRamFuncs_runstart,
 &secureRamFuncs_loadstart,
 &secureRamFuncs_loadend - &secureRamFuncs_loadstart);

/* Initialize the on-chip flash registers */
 InitFlash();
}

4.5 Maximizing Performance by Executing Time-critical Functions from RAM

(DSP/BIOS and non-DSP/BIOS projects)

The on-chip flash memory on F2810, F2811, and F2812 devices provides effective code
execution performance of roughly 110 to 120 Mips (millions of instructions per second) with a
DSP clock of 150 MHz. This compares to the full 150 Mip performance of on-chip RAM. It may
therefore be desirable to run certain time-critical or computationally demanding routines from on-
chip RAM. However, in a standalone embedded system, all code must initially reside in non-
volatile memory. Therefore, separate load and run addresses must be setup for those functions
running from RAM, and a copy must be performed to move them from the on-chip flash to the
RAM at runtime. To do this, apply the same procedure previously described in Section 4.4.

Using the CODE_SECTION pragma, one can add multiple functions to the same linkable
section. The entire section can then be assigned to run from a particular RAM block, and the
user can copy the entire section to RAM all at once, as discussed in Section 4.4. If finer linking
granularity is required, separate section names can be created for each function.

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 17

4.6 Maximizing Performance by Linking Critical Global Constants to RAM

(DSP/BIOS and non-DSP/BIOS projects)

Constants are those data structures declared using the C language const type modifier. The
compiler places all constants in the .econst section (when using the large memory model).
While special pipelining on F281x devices accelerates effective flash performance for code
execution, accessing data constants located in the on-chip FLASH can take multiple cycles per
access. Typical flash wait-states on a 150 MHz F281x DSP will be 5 cycles (see the device
datasheet for final wait-state specifications). It may therefore be desirable to run heavily
accessed constants and constant tables in on-chip RAM. However, a standalone embedded
system requires that all initialized data (e.g., constants) initially reside in non-volatile memory.
Therefore, separate load and run addresses must be setup for those constants we wish to
access in RAM, and a copy must be performed to move them from the on-chip flash to the RAM
at runtime. Two different approaches for accomplishing this will be presented.

4.6.1 Method 1: Running All Constant Arrays from RAM

This approach involves specifying separate load and run addresses for the entire .econst
section. The advantage of this approach is ease of use, while the disadvantage is excessive
RAM usage (there may be only a few constants that require high-speed access, but with this
method all constants are relocated into RAM).

4.6.1.1 Non-DSP/BIOS Projects

The same approach discussed in Section 4.4 can be used. Simply specify separate load and
run address for the .econst section in the user linker command file, and then add code to your
project to copy the entire .econst section to RAM at runtime. For example:

/**
* User's linker command file
**/

SECTIONS
{
.econst: LOAD = FLASH, PAGE = 0
 RUN = RAM, PAGE = 1
 RUN_START(_econst_runstart),
 LOAD_START(_econst_loadstart),
 LOAD_END(_econst_loadend)
}

SPRA958D

18 Running an Application from Internal Flash Memory on the TMS320F281x DSP

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int econst_loadstart;
extern unsigned int econst_loadend;
extern unsigned int econst_runstart;

void main(void)
{
/* Copy the .econst section */
 memcpy(&econst_runstart,
 &econst_loadstart,
 &econst_loadend - &econst_loadstart);
}

4.6.1.2 DSP/BIOS Projects

Although the DSP/BIOS configuration tool allows the specification of different load and run
addresses for the .econst section, it will not generate the code accessible labels that are
needed to perform the memory copy. Therefore, the user must preemptively link the .econst
section in the user linker command file before the DSP/BIOS generated linker command file is
evaluated. The user linker command file would appear as follows:

/**
* User's linker command file (DSP/BIOS Projects)
**/

SECTIONS
{
/*** Preemptively link the .econst section ***/
/* Must come before DSP/BIOS linker command file is evaluated */

.econst: LOAD = FLASH, PAGE = 0
 RUN = RAM, PAGE = 0
 RUN_START(_econst_runstart),
 LOAD_START(_econst_loadstart),
 LOAD_END(_econst_loadend)
}

To guarantee that the user linker command file is evaluated before the DSP/BIOS generated
linker command file during the project build, one must specify the link order in Code Composer
Studio. This is done by clicking on Project → Build_Options, selecting the Link Order tab, and
then specifying the appropriate order for the linker command files in question. Figure 2 shows
an example of this, where f2812_BIOS_flash.cmd is the name of the user linker command file,
and example_BIOS_flashcfg.cmd is the name of the DSP/BIOS generated linker command file.

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 19

Figure 2. Specifying the Link Order In Code Composer Studio

Note that since the DSP/BIOS generated linker command file will also attempt to link the .econst
section, the linker will give a warning stating "Multiple definitions of SECTION named '.econst'."
This warning may be safely ignored.

The .econst section can then be copied from its load address to its run address as follows:

SPRA958D

20 Running an Application from Internal Flash Memory on the TMS320F281x DSP

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int econst_loadstart;
extern unsigned int econst_loadend;
extern unsigned int econst_runstart;

void main(void)
{
/* Copy the .econst section */
 memcpy(&econst_runstart,
 &econst_loadstart,
 &econst_loadend - &econst_loadstart);
}

4.6.2 Method 2: Running a Specific Constant Array from RAM

(DSP/BIOS and non-DSP/BIOS projects)

This method involves selectively copying constants from flash to RAM at runtime. The
procedure to accomplish this is slightly more involved than with Method 1. An initialization
constant must be created using the const type modifier. This constant will be placed in the
.econst section by the C compiler, and linked to flash. In addition, the actual constant is created
in a user specified section using the DATA_SECTION pragma. This user specified section is
linked to RAM. Finally, the user must copy the initialization array to the actual array at runtime.

Suppose for example that one wants to create a 5 word constant array called table[] to be run
from RAM. We will create an initialization array called table_init[] to hold the constant values,
and use a DATA_SECTION pragma to place table[] in a user defined section called ramconsts.
The C-source file would appear as follows:

/**
* User's C-source file
**/

const int table_init[5]={1,2,3,4,5}; //initialization array

#pragma DATA_SECTION(table, "ramconsts")
int table[5]; //actual array

void main(void)
{

}

The section ramconsts can then be linked to RAM using the user linker command file, and global
symbols generated to facilitate the memory copy. The user linker command file would appear
as follows:

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 21

/**
* User's linker command file
**/

SECTIONS
{
/*** User Defined Sections ***/
ramconsts: RUN = RAM, PAGE = 1
 RUN_START(_ramconsts_runstart),
 RUN_END(_ramconsts_runend),
}

Note that the ramconsts section does not require separate load and run addresses. It is an
uninitialized section (you must initialize it with the data contained in the initialization array).

Finally, table[] must be initialized from table_init[] at runtime:

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int ramconsts_runstart;
extern unsigned int ramconsts_runend;

void main(void)
{
/* Initialize the ramconsts section */
 memcpy(&ramconsts_runstart,
 &table_init,
 &ramconsts_runend - &ramfuncs_runstart);
}

5 Programming the Code Security Module Passwords
(DSP/BIOS and non-DSP/BIOS projects)

The CSM module on F281x devices provides protection against unwanted copying of your
software. On F281x devices, the entire flash, the OTP memory, and the L0 and L1 RAM blocks
are secured by the CSM (the flash configuration registers are secured as well). When secured,
only code executing from secured memory can access data (read or write) in other secured
memory. Code executing from unsecured memory cannot access data in secured memory.
Detailed information on the CSM module can be found in reference [3].

SPRA958D

22 Running an Application from Internal Flash Memory on the TMS320F281x DSP

The CSM uses a 128-bit password comprised of 8 individual 16-bit words. On F2810, F2811,
and F2812 devices, these passwords are stored in the upper most 8 words of the flash (i.e.,
addresses 0x3F7FF8 to 0x3F7FFF). On other F28x devices, refer to the device datasheet for
this information. During development, it is recommended that dummy passwords of 0xFFFF be
left in the password locations. When dummy passwords are used, only dummy reads of the
password locations are needed to unsecure the CSM. Placing dummy passwords into the
password locations is easy to do since 0xFFFF will be the state of these locations after the flash
is erased during flash programming. Users need only avoid linking any sections to the password
addresses in their code project, and the passwords will retain the 0xFFFF.

After development, one may want to place real passwords in the password locations. In
addition, the CSM module on F2810, F2811, and F2812 devices requires programming values
of 0x0000 into flash addresses 0x3F7F80 through 0x3F7FF5, inclusive, in order to properly
secure the CSM (see reference [1]). The easiest way to accomplish both of these tasks is with
some simple assembly language programming. The following is an example of an assembly
code file that specifies the desired password values, and places them in a named initialized
section called passwords. It also creates a named initialized section called csm_rsvd that
contains all 0x0000 values and is of proper length to fit in addresses 0x3F7F80 to 0x3F7FF5,
inclusive. See reference [4] for more information on the assembly language directives being
used.

* passwords.asm

* Dummy passwords of 0xFFFF are shown. The user can change these to
* desired values.
*
* CAUTION: Do not use 0x0000 for all 8 passwords or the CSM module will
* be permanently locked. See the "TMS320F28x System Control
* and Interrupts Peripheral Reference Guide" (SPRU078) for more
* information.

 .sect "passwords"
 .int 0xFFFF ;PWL0 (LSW of 128-bit password)
 .int 0xFFFF ;PWL1
 .int 0xFFFF ;PWL2
 .int 0xFFFF ;PWL3
 .int 0xFFFF ;PWL4
 .int 0xFFFF ;PWL5
 .int 0xFFFF ;PWL6
 .int 0xFFFF ;PWL7 (MSW of 128-bit password)
;--

 .sect "csm_rsvd"
 .loop (3F7FF5h - 3F7F80h + 1)
 .int 0x0000
 .endloop
;--

 .end ;end of file passwords.asm

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 23

Note that this example is showing dummy password values of 0xFFFF. Replace these values
with your desired passwords.

CAUTION:

Do not use 0x0000 for all 8 passwords. Doing so will permanently lock the CSM
module! See reference [3] for more information.

The passwords and csm_rsvd sections should be placed in memory with the user linker
command file.

For non-DSP/BIOS projects, the user should define memories named (for example)
PASSWORDS and CSM_RSVD on PAGE 0 in the MEMORY portion of the user linker
command file. The sections passwords and csm_rsvd can then be linked to these memories.
The following example applies to F2810, F2811, and F2812 devices (for other devices, consult
the device datasheet to confirm the addresses of the password and CSM reserved locations).

/**
* User's user linker command file (non-DSP/BIOS Projects)
**/

MEMORY
{
PAGE 0: /* Program Memory */
 CSM_RSVD : origin = 0x3F7F80, length = 0x000076
 PASSWORDS : origin = 0x3F7FF8, length = 0x000008
PAGE 1: /* Data Memory */
}

SECTIONS
{
/*** Code Security Password Locations ***/
passwords: LOAD = PASSWORDS, PAGE = 0
csm_rsvd: LOAD = CSM_RSVD, PAGE = 0
}

For DSP/BIOS projects, the user should define the memories named (for example)
PASSWORDS and CSM_RSVD using the memory section manager of the DSP/BIOS
configuration tool. The two figures that follow show the DSP/BIOS memory section manager
properties for these memories on F2810, F2811, and F2812 devices. For other devices, consult
the device datasheet to confirm the correct addresses and lengths.

SPRA958D

24 Running an Application from Internal Flash Memory on the TMS320F281x DSP

Figure 3. DSP/BIOS MEM Properties for CSM Password Locations

Figure 4. DSP/BIOS MEM Properties for CSM Reserved Locations

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 25

The sections passwords and csm_rsvd can then be linked to these memories in the user linker
command file. For DSP/BIOS projects, the user linker command file would appear as:

/**
* User's linker command file (DSP/BIOS Projects)
**/

SECTIONS
{
/*** Code Security Password Locations ***/
passwords: LOAD = PASSWORDS, PAGE = 0
csm_rsvd: LOAD = CSM_RSVD, PAGE = 0
}

6 Executing Your Code from Flash after a DSP Reset
(DSP/BIOS and non-DSP/BIOS projects)

F281x devices contain a ROM bootloader that can transfer code execution to the flash after a
device reset. The ROM bootloader is detailed in reference [5]. When the boot mode selection
pins are configured for "Jump to Flash" mode, the ROM bootloader will branch to the instruction
located at address 0x3F7FF6 in the flash. The user should place an instruction that branches to
the beginning of their code at this address. Recall that the CSM passwords begin at address
0x3F7FF8, such that exactly 2 words are available to hold this branch instruction. Not
coincidentally, a long branch instruction (LB in assembly code) occupies exactly 2 words.

In general, the branch instruction will branch to the start of the C-environment initialization
routine located in the C-compiler runtime support library. The entry symbol for this routine is
_c_int00. No C code can be executed until this setup routine is run. Alternately, there is
sometimes a need to execute a small amount of assembly code prior to starting your C
application (for example, to disable the watchdog timer peripheral). In this case, the branch
instruction should branch to the start of your assembly code. Regardless, there is a need to
properly locate this branch instruction in the flash. The easiest way to do this is with assembly
code. The following example creates a named initialized section called codestart that contains a
long branch to the C-environment setup routine. The codestart section should be placed in
memory with the user linker command file.

* CodeStartBranch.asm

 .ref _c_int00

 .sect "codestart"
 LB _c_int00 ;branch to start of code

 .end ;end of file CodeStartBranch.asm

SPRA958D

26 Running an Application from Internal Flash Memory on the TMS320F281x DSP

For non-DSP/BIOS projects, the user should define a memory named (for example)
BEGIN_FLASH on PAGE 0 in the MEMORY portion of the user linker command file. The
section codestart can then be linked to this memory. The following example applies to F2810,
F2811, and F2812 devices. For other F28x devices, consult the device datasheet to confirm the
boot to flash target address.

/**
* User's linker command file (non-DSP/BIOS Projects)
**/

MEMORY
{
PAGE 0: /* Program Memory */
 BEGIN_FLASH : origin = 0x3F7FF6, length = 0x000002
PAGE 1: /* Data Memory */
}

SECTIONS
{
/*** Jump to Flash boot mode entry point ***/
codestart: LOAD = BEGIN_FLASH, PAGE = 0
}

For DSP/BIOS projects, the user should define the memory named (for example)
BEGIN_FLASH using the memory section manager of the DSP/BIOS configuration tool. Figure
5 shows the memory section manager properties for this memory on F2810, F2811, and F2812
devices. For other devices, consult the datasheet to confirm the correct addresses and lengths.

Figure 5. DSP/BIOS MEM Properties for Jump to Flash Entry Point

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 27

The section codestart can then be linked to this memory in the user linker command file. For
DSP/BIOS projects, the linker command file would appear as:

/**
* User's linker command file (DSP/BIOS projects)
**/

SECTIONS
{
/*** Jump to Flash boot mode entry point ***/
codestart: LOAD = BEGIN_FLASH, PAGE = 0
}

7 Disabling the Watchdog Timer During C-Environment Boot
(DSP/BIOS and non-DSP/BIOS projects)

The C-environment initialization function in the C compiler runtime support library, _c_int00,
performs the initialization of global and static variables. With the far memory model, this
involves a data copy from the .cinit section (located in on-chip flash memory) to the .ebss
section (located in RAM) for each initialized global variable. For example, when a global
variable is declared in source code as:

 int x=5;

the "5" is placed into the initialized section .cinit, whereas space is reserved in the .ebss section
for the symbol "x." The _c_int00 routine then copies the "5" to location "x" at runtime. When a
large number of initialized global and static variables are present in the software, the watchdog
timer can timeout before the C-environment boot routine can finish and call main() (where the
watchdog can be either configured and serviced, or disabled). This problem may not manifest
itself during code development in RAM since the data copy from a .cinit section linked to RAM
will occur at a fast pace. However, when the .cinit section is linked to internal flash, copying
each data word will take multiple cycles since the internal flash memory defaults to the
maximum number of wait-states (wait-states are not configured until the user code reaches
main()). In addition, the code performing the data copying is executing from flash, which further
increases the time needed to complete the data copy (the code fetches and data reads must
share access to the flash). Combined with the fact that the watchdog timeout period defaults to
its minimum possible value, a watchdog timeout becomes a real possibility.

There is an easy method to detect this problem using Code Composer Studio. To test for a
watchdog timeout:

1. Load the symbols for the code you have programmed into the flash
(click File → Load_Symbols → Load_Symbols_Only).

2. Reset the DSP (click Debug → Reset_CPU).

3. Restart the DSP (click Debug → Restart) (this step is not necessary if the bootloader is
configured for "Jump to Flash" mode).

SPRA958D

28 Running an Application from Internal Flash Memory on the TMS320F281x DSP

4. Run to main() (click Debug → Go_Main). If you do not get to main(), it is pretty likely that
the watchdog is expiring before the C-environment boot routine is able to complete.

The easiest method for correcting the watchdog timeout problem is to disable the watchdog
before starting the C-environment boot routine. The watchdog can later be re-enabled after
reaching main() and starting your normal code execution flow. The watchdog is disabled by
setting the WDDIS bit to a 1 in the WDCR register. To disable the watchdog before the boot
routine, assembly code must be used (since the C environment is not yet setup). In Section 6,
the codestart assembly code section implemented a branch instruction that jumped to the
C-environment initialization routine, _c_int00. To disable the watchdog, this branch should
instead jump to watchdog disabling code, which can then branch to the _c_int00 routine. The
following code example performs these tasks:

* File: CodeStartBranch.asm
* Devices: TMS320F2812, TMS320F2811, TMS320F2810
* Author: David M. Alter, Texas Instruments Inc.
* History: 09/08/03 - original (D. Alter)

WD_DISABLE .set 1 ;set to 1 to disable WD, else set to 0

 .ref _c_int00

* Function: codestart section
* Description: Branch to code starting point

 .sect "codestart"
 .if WD_DISABLE == 1
 LB wd_disable ;Branch to watchdog disable code
 .else
 LB _c_int00 ;Branch to start of boot.asm in RTS library
 .endif
;end codestart section

* Function: wd_disable
* Description: Disables the watchdog timer

 .if WD_DISABLE == 1

 .text
wd_disable:
 EALLOW ;Enable EALLOW protected register access
 MOVZ DP, #7029h>>6 ;Set data page for WDCR register
 MOV @7029h, #0068h ;Set WDDIS bit in WDCR to disable WD
 EDIS ;Disable EALLOW protected register access
 LB _c_int00 ;Branch to start of boot.asm in RTS library

 .endif

;end wd_disable

 .end ; end of file CodeStartBranch.asm

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 29

8 C-Code Examples

8.1 General Overview

A code download containing four different code projects accompanies this application report:

• example_nonBIOS_ram.pjt - non-DSP/BIOS project that runs from on-chip RAM

• example_nonBIOS_flash.pjt - non-DSP/BIOS project that runs from on-chip Flash

• example_BIOS_ram.pjt - DSP/BIOS project that runs from on-chip RAM

• example_BIOS_flash.pjt - DSP/BIOS project that runs from on-chip Flash

These are just examples, and have only been tested briefly. No guarantee is made about their
suitability or performance for application usage. These examples were built and tested using
C2000 Code Composer Studio version v2.21.04. Although the focus of this application report is
running code from flash, the RAM examples are provided for completeness.

The projects were developed on the eZdsp F2812 development board. However, they will also
run on any other F2810, F2811, or F2812 board as they run entirely from internal memory. If
running on a different board, the user should be aware that the code configures the
GPIOA0/PWM1 and GPIOF14/XF_XPLLDIS* pins as outputs. Also note that although all code
and data are linked to internal memories, the code does configure the external memory interface
on the F2812 as part of the DSP initialization process. Since most of the external memory
interface does not exist on F2810 and F2811 devices, this initialization is not needed on these
two devices (although it is harmless). The only exception is the configuration of the XCLKOUT
pin, which is present on F2810 and F2811 devices.

The source code utilizes the DSP281x Header File structures v1.00 for accessing peripheral
registers on the F2812 device. All needed files from the DSP281x package are included here.
However, the user is encouraged to download the complete DSP281x package for additional
information. This is available on the TI website, http://www.ti.com (see reference [7]).

Each of the code projects perform the same functions:

• Illustrates F2812 (or F2810, or F2811) DSP initialization. The PLL is configured for x5
operation (i.e., 30 MHz XCLKIN which results in 150 MHz CPU operation).

• Enables the real-time emulation mode of Code Composer Studio.

• Toggles the GPIOF14 pin to blink the LED on the eZdsp F2812 board. In non-DSP/BIOS
projects, this is done in the ADCINT ISR. In DSP/BIOS projects, a periodic function is used.

• Configures the ADC to sample on ADCINA0 channel at a 50 kHz rate.

• Services the ADC interrupt. The ADC result is placed in a circular buffer of length 50 words.

• Sends out 2 kHz symmetric PWM on the PWM1 pin.

• Configures the capture unit #1.

• Services the capture #1 interrupt. Reads the capture result and computes the pulse width.

SPRA958D

30 Running an Application from Internal Flash Memory on the TMS320F281x DSP

8.2 Directory Structure and File Utilizations

The four code projects mostly share the same source code files. This illustrates how the same
source code can be used in RAM and flash applications, and DSP/BIOS and non-DSP/BIOS
applications. Table 3 shows the directory structure of the example code, while Table 4 provides
a complete inventory of all files and their utilization by each project.

Table 3. Example Code File Directories

File Directory Contents
\DSP281x_headers\include Contains the needed files from the DSP281x Header File structures

v1.00. Note that this directory has exactly the same contents as the
DSP281x_headers\include directory from v1.00 of reference [7].

\projects Contains the example projects (.cdb, .cmd, .h, and .pjt files)
\src Contains common and non-common source code files (.c and .asm files)

Table 4. Example Code File Inventory and Utilization

Project Utilization

Filename

exam
ple_nonB

IO
S_ram

exam
ple_nonB

IO
S_flash

exam
ple_B

IO
S_ram

exam
ple_B

IO
S_flash

\DSP281x_headers\include\DSP281x_Adc.h1
\DSP281x_headers\include\DSP281x_CpuTimers.h1
\DSP281x_headers\include\DSP281x_DefaultIsr.h1
\DSP281x_headers\include\DSP281x_DevEmu.h1
\DSP281x_headers\include\DSP281x_Device.h1
\DSP281x_headers\include\DSP281x_Ecan.h1
\DSP281x_headers\include\DSP281x_Ev.h1
\DSP281x_headers\include\DSP281x_Gpio.h1
\DSP281x_headers\cmd\DSP281x_Headers_BIOS.cmd1
\DSP281x_headers\cmd\DSP281x_Headers_nonBIOS.cmd1
\DSP281x_headers\include\DSP281x_Mcbsp.h1
\DSP281x_headers\include\DSP281x_PieCtrl.h1
\DSP281x_headers\include\DSP281x_PieVect.h1 2 2
\DSP281x_headers\include\DSP281x_Sci.h1

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 31

\DSP281x_headers\include\DSP281x_Spi.h1
\DSP281x_headers\include\DSP281x_SysCtrl.h1
\DSP281x_headers\include\DSP281x_Xintf.h1
\DSP281x_headers\include\DSP281x_XIntrupt.h1
\projects\example_BIOS.h
\projects\example_BIOS_flash.cdb
\projects\example_BIOS_flash.pjt
\projects\example_BIOS_flashcfg.cmd3

\projects\example_BIOS_ram.cdb
\projects\example_BIOS_ram.pjt
\projects\example_BIOS_ramcfg.cmd3
\projects\f2812_BIOS_flash.cmd
\projects\f2812_BIOS_ram.cmd
\projects\example_nonBIOS.h
\projects\example_nonBIOS_flash.pjt
\projects\example_nonBIOS_ram.pjt
\projects\f2812_nonBIOS_flash.cmd
\projects\f2812_nonBIOS_ram.cmd
\src\Adc.c
\src\CodeStartBranch.asm
\src\DefaultIsr_BIOS.c
\src\DefaultIsr_nonBIOS.c
\src\DelayUs.asm
\src\DSP281x_GlobalVariableDefs.c1
\src\Ev.c
\src\Gpio.c
\src\main_BIOS.c
\src\main_nonBIOS.c
\src\passwords.asm
\src\PieCtrl_BIOS.c
\src\PieCtrl_nonBIOS.c
\src\PieVect_nonBIOS.c
\src\SetDBGIER.asm
\src\SysCtrl.c
\src\Xintf.c
\disclaimer.txt Documentation file
\readme.txt Documentation file

SPRA958D

32 Running an Application from Internal Flash Memory on the TMS320F281x DSP

Table 4 Notes:
1 This file is identical to the file of the same name found in the \v100\DSP281x_Headers
subdirectory of the DSP281x Header File structures download, v1.00 (see reference [7]).
2 Although DSP281x_PieVect.h is included into the flash projects, the structure PieVectTable
that it defines (and which is linked over the PIE RAM) is not actually used by the code in
DSP/BIOS projects. It is included more for completeness, and to assist with debug (e.g., for
viewing the pie vectors in a watch window).
3 The files example_BIOS_flashcfg.cmd and example_BIOS_ramcfg.cmd are created by the
DSP/BIOS configuration tool, and should not be modified by the user. They are provided here
only to avoid a project open error message from Code Composer Studio (since these .cmd files
have been included in their respective code projects). The files example_BIOS_flash.cdb and
example_BIOS_ram.cdb contain everything Code Composer Studio needs to create these two
.cmd files at project build time.

8.3 Additional Information

1) The .pjt project files can be found in the \project_BIOS and \project_nonBIOS directories.
After compiling a project, the .out file will be located in the \projects\Debug directory.

2) Project options have been configured assuming that C2000 Code Composer Studio has been
installed in either the c:\ti or c:\ti2 directory. If your tools are installed in a different directory, you
will need to modify the project options (specifically, the search path for compiler include files,
and the search path for linker library files) in order to get the projects to build without error.

3a) If using the RAM examples, the F2812 on the eZdsp board should be configured for "Jump
to H0" bootmode, and also have the PLL jumpered for enable. Check the board jumpers to be:

 JP1 2-3 (MP/MC*)

 JP9 1-2 (PLL)

 JP7 2-3 (boot mode)

 JP8 2-3 (boot mode)

 JP11 1-2 (boot mode)

 JP12 2-3 (boot mode)

If this does not seem to be working, check the reference manual for your eZdsp board to confirm
the jumper settings. Jumper settings may have changed if the eZdsp board was revised.

3b) If using the FLASH examples, the F2812 on the eZdsp board should be configured for
"Jump to Flash" bootmode, and also have the PLL jumpered for enable. Check the board
jumpers to be:

SPRA958D

 Running an Application from Internal Flash Memory on the TMS320F281x DSP 33

 JP1 2-3 (MP/MC*)

 JP9 1-2 (PLL)

 JP7 1-2 (boot mode)

 JP8 don't care (boot mode)

 JP11 don't care (boot mode)

 JP12 don't care (boot mode)

If this does not seem to be working, check the reference manual for your eZdsp board to confirm
the jumper settings. Jumper settings may have changed if the eZdsp board was revised.

4) The ram examples are linking sections in various places that may look unnecessary (e.g., the
section ramfuncs is loaded to one ram area, and copied to and run from another ram area. On
the surface, this look rather pointless. These things were done in preparation to build the flash
project. In reality, a real embedded system cannot run on ram alone. It must have non-volatile
memory someplace. Hence, in the flash system, you will see the same sections being loaded to
flash, but copied to and run from ram.

5) There has not been too much attention given to where everything is linked. The goal in
writing these example projects was to simply get them working correctly. The linking may need
to be tuned to get better performance (e.g., to avoid memory block access contention, or to
better manage memory block utilization).

6) For non-DSP/BIOS projects, a complete set of interrupt service routines are defined in the file
DefaultIsr_nonBIOS.c. Each interrupt is executed directly in its hardware ISR. However, with
the exception of the ADCINT and CAPINT1, each ISR actually executes an ESTOP0 instruction
(emulation stop) to trap spurious interrupts during debug. Note that each ISR is using the
"interrupt" keyword which tells the compiler to perform a context save/restore upon function
entry/exit.

7) For DSP/BIOS projects, a complete set of (hardware) interrupt service routines are defined in
the file DefaultIsr_BIOS.c. Each ISR can be hooked to the desired interrupt using the HWI
manager in the DSP/BIOS configuration tool. Also, the DSP/BIOS Interrupt Dispatcher can be
used to handle the context save/restore, which is why the ISRs are not using the "interrupt"
keyword (as in the non-DSP/BIOS case). In these examples, the CAPINT1 ISR is performed
directly in the DefaultIsr_BIOS.c file (as an example of reducing latency), whereas the ADC
interrupt function in DefaultIsr_BIOS.c posts a SWI to perform the ADC routine. These are just
examples. Note that the CAPINT1 is still using the DSP/BIOS dispatcher to perform context
save/restore (as selected in the HWI manager of the configuration tool). If absolute minimum
latency is required (for some time critical ISR), one could disable the interrupt dispatcher for that
interrupt, and add the "interrupt" keyword to the ISR function declaration. Note that doing so will
preclude the user for utilizing any DSP/BIOS functionality in that ISR.

SPRA958D

34 Running an Application from Internal Flash Memory on the TMS320F281x DSP

References

1. TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2811,
TMS320C2812 Digital Signal Processors Data Manual (SPRS174)

2. TMS320C28x Optimizing C/C++ Compiler User’s Guide (SPRU514)
3. TMS320F28x System Control and Interrupts Peripheral Reference Guide (SPRU078)
4. TMS320C28x Assembly Language Tools User’s Guide (SPRU513)
5. TMS320F28x Boot ROM Peripheral Reference Guide (SPRU095)
6. TMS320C28x DSP CPU and Instruction Set Reference Guide (SPRU430)
7. C281x C/C++ Header Files and Peripheral Example Code (SPRC097)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of
this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such
altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and is an
unfair and deceptive business practice. TI is not responsible or liable for any such statements.

 Mailing Address:

 Texas Instruments
 Post Office Box 655303
 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

