
Application Report
SPRA755 - August 2001

1

Getting Started in C and Assembly Code With the
TMS320LF240x DSP

David M. Alter DSP Applications – Semiconductor Group

ABSTRACT

This application report presents basic code for initializing and operating the TMS320LF240x†

DSP devices. Two functionally equivalent example programs are presented: one written in
assembly language and the other in C language. Detailed discussions of each program are
provided that explain numerous compiler and assembler directives, code requirements, and
hardware-related requirements. The programs are ready to run on either the TMS320LF2407
Evaluation Module (EVM) or the eZdsp LF2407 development kit. However, they are also
intended for use as a code template for any TMS320LF240x† (LF240x) or TMS320LF240xA†

(LF240xA) DSP target system.

Contents

1 Introduction 2.

2 Hardware Setup 2.
2.1 LF2407 EVM Setup 2.
2.2 eZdspE LF2407 Setup 3.

3 Using the Code Composer GEL File 4.

4 Overview of the Example Programs 4.

5 Assembly Language Example Program 6.

6 C Language Example Program 13.

7 Conclusion 20.

8 References 20.

Appendix A Assembly Language Example Program Listing 21.

Appendix B C Language Example Program Listing 30.

List of Figures

Figure 1 Assembly Language Example Program Code Flow 7.

Figure 2 C Language Example Program Code Flow 14.

† Go to http://www.ti.com for a complete list of TMS320C24x devices.

eZdsp is a trademark of Spectrum Digital Incorporated.
TMS320C24x is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

SPRA755

2 Getting Started in C and Assembly Code With the TMS320LF240x DSP

1 Introduction

A hurdle often faced by code developers working with an unfamiliar DSP is knowing how to get
started. A good example program that illustrates proper DSP initialization, interrupt handling,
and peripheral operation can be invaluable. This application report presents basic code for
initializing and operating the TMS320LF240x devices. Although the code herein is designed to
run on either the TMS320LF2407 Evaluation Module (EVM) or the eZdsp LF2407
development kit, it is also applicable, and intended for use, as a code template for any
TMS320LF240x (LF240x) or TMS320LF240xA (LF240xA) DSP target system.

This application report presents two functionally equivalent example programs: one written in
assembly language, and the other written in C programming language. A reader who possesses
an understanding of one of these two languages can compare the two programs to understand
the coding in the other language. The philosophy behind the code examples is to keep them as
simple and clear as possible. Therefore, only a few of the numerous peripherals on the LF2407
DSP are exercised. The assumption is that once the basic coding techniques for configuring a
peripheral register are illustrated, the reader can easily duplicate the code to configure any other
peripheral.

In addition to the example programs, two complete header files are provided that define the
addresses of all user-programmable registers on the LF2407 DSP: one for assembly code and
the other for C code. Finally, a Code Composer v4.1x gel file is provided (along with usage
instructions) that conveniently places all LF2407 peripheral registers into a Code Composer
menu for easy inclusion into a debugger watch window.

2 Hardware Setup

The example programs in this application note are designed to run out-of-the-box on either the
LF2407 EVM or eZdsp LF2407. If you do not have one of these boards, all of the benefits of
the example programs are still available to you. You simply may not be able to run the programs
without making modifications to them for your particular target board.

2.1 LF2407 EVM Setup

The example programs are ready to run on the LF2407 EVM board without any modification. It is
assumed that the reader already has the EVM board, an emulator (e.g., XDS510PP-plus from
Spectrum Digital Inc. or XDS510) and a debugger (e.g., Code Composer v4.10 or v4.12)
installed on a PC and ready to go. It is beyond the scope of this application report to provide
direction on tools installation. Please see the installation instructions that came with the tools for
assistance with this.

Numerous jumpers exist on the EVM board. The following are jumper setting requirements for
proper operation of the example programs:

• JP5: This jumper controls the voltage level of the VCCP pin on the DSP. Normally, leave it in
the 1–2 position. If you want to program the FLASH with the example program, set to the
2–3 position during FLASH programming. It is good practice to return it to the 1–2 position
after FLASH programming.

Code Composer is a trademark of Texas Instruments.

SPRA755

3 Getting Started in C and Assembly Code With the TMS320LF240x DSP

• JP6: This jumper controls the voltage level of the MP/MC pin on the DSP. Normally, set to
the 1–2 position to use the external RAM in place of the internal FLASH. Set to the 2–3
position if you want to program the FLASH with the example program, and leave in the 2–3
position to run the program out of the FLASH after it is programmed.

• JP13: Set to the 1–2 position. This uses the clock oscillator on the EVM board.

• JP16: Set to the 1–2 position. This disables bootloading.

All other jumper settings are don’t cares for the example programs, since those jumpers affect
peripherals that are not used here (e.g., CAN, SPI, ADC, or SCI). Additional information on
these jumpers can be found in reference [7].

The LF2407 EVM is assumed to contain a 7.3728 MHz on-board oscillator. The example
programs configure the DSP phase-locked loop (PLL) for multiply-by-four mode, which gives a
CPU clock of 29.49 MHz (i.e., 30 MHz). The values stated in this report for the PWM carrier
frequency, GPIO toggle period, and LED bank update rate have been computed assuming a 30
MHz CPU clock. If a different oscillator value is used, these values will be different. In addition,
one must be careful not to exceed the rated clock speed of the DSP in use (30 MHz for current
LF240x devices or 40 MHz for current LF240xA devices). Some early LF2407 EVM boards used
15 MHz oscillators that exceed the 30 MHz DSP rating if multiplied by four with the PLL. All you
need to do in this situation is edit the example programs so that the PLL is configured for
multiply-by-two mode instead. This setting is selected by bits 11–9 in the SCSR1 register. These
bits are currently written as 000b. Change these to 001b to get the multiply-by-two PLL (see
discussions for program lines 114 and 572 in sections 5 and 6, respectively, of this document).
Also, some of the newest EVMs may have been fitted with a 40 MHz LF2407A DSP and use a
10 MHz oscillator. No program change is necessary here, although again timing values for the
PWM, GPIO toggle, etc., will differ from those stated in this report (i.e., they will be 33% faster).
For more information on the PLL and the SCSR1 register, see reference [2], pages 2–3 to 2–5.

2.2 eZdsp LF2407 Setup

The example programs are ready to run on the eZdsp LF2407 board (henceforth referred to as
eZdsp) without any modification. It is assumed that the reader already has the eZdsp and its
debugger software installed and ready to go. It is beyond the scope of this application report to
provide direction on tools installation. Please see the installation guide that came with the tools
for assistance with this.

Several jumpers exist on the eZdsp board. The following are jumper setting requirements for
proper operation of the example programs:

• JP3: This jumper controls the voltage level of the VCCP pin on the DSP. Normally, leave it in
the 1–2 position. If you want to program the FLASH with the example program, set to the
2–3 position during FLASH programming. It is good practice to return it to the 1–2 position
after FLASH programming.

• JP4: This jumper controls the voltage level of the MP/MC pin on the DSP. Normally, set to
the 1–2 position to use the external RAM in place of the internal FLASH. Set to the 2–3
position if you want to program the FLASH with the example program, and leave in the 2–3
position to run the program out of the FLASH after it is programmed.

All other jumper settings are don’t cares for the example programs, since those jumpers affect
the ADC peripheral and the ADC is not used by the example programs. Additional information
on these jumpers can be found in reference [8].

SPRA755

4 Getting Started in C and Assembly Code With the TMS320LF240x DSP

The eZdsp is assumed to contain a 14.7 MHz on-board oscillator. The on-board FPGA then
implements a divide-by-two, such that a 7.35 MHz clock signal is ultimately fed into the LF2407
DSP. The example programs configure the DSP phase-locked loop (PLL) for multiply-by-four
mode, which gives a CPU clock of 29.4 MHz (i.e., 30 MHz). The values stated in this report for
the PWM carrier frequency, GPIO toggle period, and LED bank update rate have been
computed assuming a 30 MHz CPU clock. If a different oscillator value is used, these values will
be different. In addition, you must be careful not to exceed the rated clock speed of the DSP in
use (30 MHz for current LF240x devices, or 40 MHz for current LF240xA devices). For example,
if you are using a 30 MHz oscillator instead of the standard 14.7 MHz one, using the
multiply-by-four PLL mode would exceed the 30 MHz frequency rating of the LF2407 DSP. All
you need to do in this situation is edit the example programs so that the PLL is configured for
multiply-by-two mode instead. This setting is selected by bits 11–9 in the SCSR1 register, and
these bits are currently written as 000b. Change these to 001b to get the multiply-by-two PLL
(see discussions for program lines 114 and 572 in sections 5 and 6, respectively, of this
document). For more information on the PLL and the SCSR1 register, see reference [2], pages
2–3 to 2–5.

3 Using the Code Composer GEL File

The file lf2407.gel is provided with this application report download. This is a script file
containing startup instructions for TMS320C2xx Code Composer v4.1x. Specifically, it has been
tested with v4.10 and v4.12 of this debugger. When installed with Code Composer, it causes all
LF2407 DSP peripheral registers to be listed on the GEL menu inside Code Composer. When a
particular register is selected on this menu (e.g., by clicking on it with your PC mouse), that
register is added to the WATCH WINDOW inside Code Composer. This functionality is a useful
aid during code debug, and avoids having to fumble through the user’s guide to look up register
addresses. Note that the peripheral set of the LF2407 DSP is a superset of all other current
240x and 240xA devices. Therefore, this gel file is usable with any 240x or 240xA target.

To use the gel file with Code Composer, place the file in the C:\tic2xx\cc\gel directory on your PC
(assuming you used the default installation paths when you installed Code Composer). Then,
right-click on the shortcut (or Windows 95/98 Start menu item) that you use to invoke Code
Composer. Select Properties, and then click on the Short Cut menu. The Target: box on this
menu should show the following (again assuming default installation paths):

C:\tic2xx\cc\bin\cc_app.exe C:\tic2xx\cc\gel\init.gel

To use the lf2407.gel file, simply change the Target: box to read:

C:\tic2xx\cc\bin\cc_app.exe C:\tic2xx\cc\gel\lf2407.gel

4 Overview of the Example Programs

There are two functionally identical programs provided. The first is written in TMS320C2xx DSP
assembly language, while the second is written in C programming language. Each example
program has been tested on both the LF2407 EVM and the eZdsp LF2407. Code generation
was performed using the TMS320C2x/C2xx/C5x Code Generation Tools PC v7.00, with C2xx
Code Composer Software Package PC v4.12 as the debugger. The C example program was
tested with compiler optimization disabled, and also with level 3 (–o3) optimization.

SPRA755

5 Getting Started in C and Assembly Code With the TMS320LF240x DSP

Each example program performs the following tasks on the DSP:

• Configures the two System Control and Status registers

• Disables the Watchdog Timer

• Configures the external memory interface

• Configures the shared device pins

• Configures GP Timer 1 and the compare units to provide 20KHz, 25% duty cycle symmetric
PWM on the PWM1 pin. This can be observed by connecting an oscilloscope to the
PWM1/IOPA6 signal located on the EVM and eZdsp signal headers.

• Configures GP Timer 2 to provide a 250ms interrupt

• Configures the core and event manager interrupt registers, and enables global interrupts

• In the GP Timer 2 interrupt service routine, the following is performed:

– Context save/restore using a software stack

– The quad LED bank on the EVM is sequenced (250 ms update rate). This is visible only
on the EVM, since the eZdsp does not have the quad LED bank. However, no
modifications to the program are necessary for operation on the eZdsp . The LED
update instructions produce a benign write to I/O space on the external memory interface
of the DSP when using the eZdsp .

– The IOPC0 pin is toggled, producing a 2 Hz (500ms) square wave. On the EVM, the
IOPC0 pin is connected to the red LED labeled DS1 on the board. On the eZdsp , the
IOPC0 pin is connected to the red LED labeled DS2 on the board. Users can visually see
the pin toggle by observing the LED. Alternately, an oscilloscope can be connected to the
W/R/IOPC0 pin on the EVM and eZdsp signal headers.

In addition, the example programs illustrate the following concepts:

• How to work with multiple files
• How to work with multiple code sections
• How to write an interrupt service routine using either C or assembly language
• How to insert inline assembly code into a C language program
• How to access the I/O space using either C or assembly language
• How to access peripheral registers using either C or assembly language
• How to use include files
• Complete core interrupt vector tables for C and assembly language programs
• Example LF2407 DSP linker command files for both C and assembly language programs

Finally, note that besides running from external memory, each example program can be
programmed into the internal FLASH memory on the LF2407 DSP and run out of the FLASH on
either the LF2407 EVM or the eZdsp LF2407, without the need for any file modifications.

SPRA755

6 Getting Started in C and Assembly Code With the TMS320LF240x DSP

5 Assembly Language Example Program

The assembly language example program consists of the following files:

• vectors.asm: Interrupt vector table
• example.asm: Main program
• f2407.h: Header file containing peripheral register address definitions
• example.cmd: Linker command file
• example.mak: C2xx Code Composer v4.1x project file
• example.out: Program executable
• example.map: Memory map file output by the code generation tools

Only the first five listed files are needed to build the program. The final two files are provided for
convenience, and are produced by the code generation tools when the program is built. To build
the project using Code Composer, load the project file example.mak into Code Composer (click
on PROJECT–>OPEN), and then select PROJECT–>BUILD or PROJECT–>REBUILD ALL. See
the online help available within Code Composer for additional assistance.

Figure 1 illustrates the code flow for the assembly language example program. Execution begins
at the reset vector in the file vectors.asm after a hardware reset. This vector branches to the
start of the main program in the file example.asm. Processor initialization is then performed,
after which an endless main loop is entered. The DSP is periodically interrupted out of this
endless loop by the timer 2 period interrupt, at which time the interrupt service routine is
executed.

Appendix A contains file listings of vectors.asm, example.asm, and example.cmd. Contiguous
line numbers have been provided along the left-hand side of the code to facilitate discussion.
The assembly instructions used in the code are documented in reference [1], and it is beyond
the scope of this application report to provide detailed explanations of the instruction mnemonics
and syntax. However, a number of details and useful pieces of information will now be
discussed.1

Line 1 (vectors.asm): The asterisk in column 1 indicates that the entire line is a comment. The
asterisk can only be used in column 1. To place a comment in a line beginning at a different
column, use a semi-colon, as shown in line 16.

Line 13 (vectors.asm): The .ref directive is used to reference symbols defined externally to a
source file. In this case, the symbols “start” and “timer2_isr” are both declared in the file
example.asm, but are referenced here in vectors.asm. The .ref directive is the complement of
the .def directive (see Line 69 below). The .ref directive is documented in reference [4], page
4–44.

Line 15 (vectors.asm): The .sect directive is used to declare an initialized section. In this case,
the interrupt vectors (code) are being placed in the section named “vectors” so that they can be
linked to a specific address range. You can find the vectors section listed in the SECTIONS
portion of the linker command file example.cmd.

1. Cited page and section numbers in references correspond to the specific revision of the documentation listed in the Reference section of this
application report. These numbers have been given as a matter of convenience, but may no longer be accurate if a new revision of the
documentation is released. The referenced material itself, however, should still be found in the cited document. See the index in the cited
document to find the correct page for the referenced subject.

SPRA755

7 Getting Started in C and Assembly Code With the TMS320LF240x DSP

Interrupt setup

– Clear core flags
– Enable core interrupts
– Clear EV flags
– Enable EV interrupts
– Enable global interrupt bit

Timer 2 ISR

– Context save
– Clear T2PINT flag
– Sequence EVM LED bank
– Toggle IOPC0 pin
– Context restore
– Re-enable global interrupts
– Return

CPU initialization

– SCSR1 and SCSR2 regs
– Watchdog disable
– External memory i/f
– Shared I/O pins
– Software stack setup

Timers 1 and 2 setup

– Disable timers
– Configure GPTCONA
– Clear counters
– Set period registers
– Disable deadband unit
– Setup PWM1 compare unit
– Enable timers

Main loop

Endless loop
(wait for interrupt)

INT3 vector

Reset vector
DSP reset

Timer2
period

interrupt

�

�

�

File: example.asm

File: vectors.asm

�

�

�

Figure 1. Assembly Language Example Program Code Flow

SPRA755

8 Getting Started in C and Assembly Code With the TMS320LF240x DSP

Lines 16 – 47 (vectors.asm): Each interrupt vector is two 16-bit words long and contains a
single branch instruction that indicates the address of the interrupt service routine (ISR)
associated with it. Line 16 is the reset vector. It branches to the label start located at the
beginning of the main program in example.asm. Line 19 is the core interrupt 3 vector. This core
interrupt is shared between several peripheral interrupts, among them the timer 2 period
interrupt. In this example program, the timer 2 period interrupt is the only interrupt enabled on
core interrupt 3. Therefore, the interrupt 3 vector can branch directly to the timer 2 interrupt
service routine, located at the label timer2_isr in example.asm. If more than one peripheral
interrupt is enabled on a given core interrupt line, the software needs to differentiate among the
peripheral interrupts so that the correct ISR is executed. The procedure for doing this is
discussed in reference [2], pages 2–20 to 2–21. The core interrupt vector addresses are
documented in reference [1], pages 5–15 to 5–16. The sharing of the core interrupts is
documented in reference [5], pages 20 to 23. Note that all remaining interrupt vectors branch to
themselves. This is useful during code development to trap erroneous interrupts. In a real
application, one would probably want to branch all unused interrupts to an error-handling routine
that performs whatever recovery steps are desired.

Line 69 (example.asm): The .def directive is used to make symbols declared in a source file
visible to code in other files. In this case, the labels “start” and “timer2_isr” are both declared
here in the file example.asm, but are referenced in vectors.asm. The .def directive is the
complement of the .ref directive (see Line 13 above). The .def directive is documented in
reference [4], page 4–44.

Line 74 (example.asm): The .include directive is used to import a file directly into your source
code at assembly time. In this case, the address definition file f2407.h is being included. The file
f2407.h contains address definitions for all of the peripheral registers in the LF2407 DSP. The
.include directive is documented in reference [4], page 4–29.

Line 76 (example.asm): The .set directive is used to define a constant in assembly code. The
assembler replaces all occurrences of the constant within the source file with the specified
value. The .set directive is documented in reference [4], page 4–67.

Lines 76 – 82 (example.asm): The .set directive is being used here to define the addresses in
external I/O space of the D/A converter, DIP switch bank, and quad LED bank found on the
LF2407 EVM (the eZdsp LF2407 does not contain any of these features). Note that only the
quad LED bank is exercised by the example program (has no effect on eZdsp LF2407).
Additional information on these EVM features can be found in reference [7].

Lines 98 – 99 (example.asm): The .bss directive is used to allocate space for uninitialized
variables in the .bss section. In this case, 1 word (16-bits) is being allocated for the variable
temp1, and 1 word is being allocated for the variable LED_index. You can find the .bss section
listed in the SECTIONS portion of the linker command file example.cmd. The .bss directive is
documented in reference [4], page 4–25.

Note that uninitialized variables can also be allocated using the .usect directive, which allows
their placement into named sections other than .bss. The .bss directive is nothing but a special
case of the .usect directive, and is used mostly for convenience. For example, the following two
lines of code are equivalent:

SPRA755

9 Getting Started in C and Assembly Code With the TMS320LF240x DSP

.bss temp1, 1 ;reserve 1 word in .bss section

temp1 .usect ”.bss”, 1 ;reserve 1 word in .bss section

The .usect directive is documented in reference [4], page 4–67. An example of .usect, used in
this example program, may be found at Line 252.

Line 106 (example.asm): The .text directive is used to signify that the code (or initialized data)
which follows is to be placed into the .text section. You can find the .text section listed in the
SECTIONS portion of the linker command file, example.cmd. The .text directive is documented
in reference [4], page 4–75.

Note that code and/or initialized data sections other than .text can be declared using the .sect
directive. The .text directive is nothing but a special case of the .sect directive, and is used
mostly for convenience. For example, the following two lines of code are equivalent:

.text ;code that follows goes in .text section

.sect ”.text” ;code that follows goes in .text section

The .sect directive is documented in reference [4], page 4–66.

Line 107 (example.asm): The label “start” is being used to mark the beginning of the main
program. The reset vector in vectors.asm (see Line 16 above) branches here. Note that all
labels must begin in column 1 in an assembly source file. The colon following the label is
optional.

Line 112 (example.asm): The LDP instruction is used to set the data page for instructions using
the direct-addressing mode that follow it. The assembler constant DP_PF1 is defined in the
include file f2407.h.

Line 114 (example.asm): The SPLK instruction is used to load a number into a data space
address. In this case, the address corresponds to the SCSR1 register. Since the constant
SCSR1 has been defined in the include file f2407.h (see Line 74 above), you can simply
reference the address by the name of the constant (SCSR1).

The value written to the SCSR1 register contains bit fields to program the PLL for x4 mode. In
addition, there are six clock control bits that enable the clocks for the on-chip peripheral
modules. Note that a peripheral module does not function if the clock to it is not enabled. In the
example here, all clocks have been enabled. In a real application, you might want to disable
clocks to any peripherals not being used to reduce power consumption. Finally, the ILLADR bit
(illegal address detection bit) is being cleared by writing a 1 to it. Although ILLADR defaults to 0
after a reset, it is good practice to clear it anyway, in case (for example) software were to branch
to the reset vector as a means of restarting a program. The SCSR1 register is documented in
reference [2], pages 2–3 to 2–5.

Lines 131 – 143 (example.asm): The SCSR2 register is being initialized. Boolean operations
are being used to set and clear the various bits. This procedure is used instead of a direct
register load so it does not disturb the state of the MP/MC bit. This bit reflects the state of the
MP/MC pin at reset, and determines whether the FLASH memory is active in program space, or
if external memory is mapped to those addresses. Since this example program is designed to
run from either FLASH or external memory, the state of the MP/MC pin at power up is unknown.
Therefore, the state of the MP/MC pin must be preserved.

SPRA755

10 Getting Started in C and Assembly Code With the TMS320LF240x DSP

Bit 5 of SCSR2 is the WD OVERRIDE bit. This is a clear-only bit. If this bit is cleared (by writing
a 1 to it), the watchdog timer cannot be disabled. The example code does not clear this bit, and
the watchdog timer is later disabled at Line 150.

The SCSR2 register is documented in reference [2], pages 2–5 to 2–7.

Lines 148 – 157 (example.asm): The WDCR register is being configured to disable the
watchdog timer. The WDCR register is documented in reference [2], pages 11–9 to 11–10.

Lines 162 – 173 (example.asm): The WSGR register is being configured to set the wait states
for the external memory interface. On both the LF2407 EVM and eZdsp LF2407, zero wait
states are needed in both program and data space. For the I/O space, one wait state is needed
on the EVM for the D/A converter, whereas this is a don’t care on the eZdsp LF2407, since
there are no devices in the external I/O space. The WSGR register is located in I/O space, so
the OUT instruction must be used to write to it. The WSGR register is documented in reference
[2], pages 3–18 to 3–19.

Lines 178 – 238 (example.asm): The shared pins on the LF2407 are being configured. All
shared pins default to the General Purpose Input Output (GPIO) input function after a device
reset. The example program is configuring the PWM1/IOPA6 pin for PWM1 function. All other
pins are left as GPIO. Note that bits 15–9 of the MCRB register affect operation of the JTAG
emulation pins. These bits should always be written as 1. The MCRx registers are documented
in reference [2], Chapter 5.

Lines 243 – 246 (example.asm): The W/R/IOPC0 pin is being configured as a GPIO output.
The W/R/IOPC0 pin was previously configured for GPIO function in Line 200 using the MCRB
register. The PCDATDIR register now determines GPIO input or output function. The
W/R/IOPC0 pin is toggled by the example program, as discussed in section 4. The PCDATDIR
register is documented in reference [2], Chapter 5.

Lines 251 – 254 (example.asm): A software stack is being set up. In this example program, the
software stack is used only for context saves and restores during interrupt service routines.
However, other uses for a software stack include parameter passing to called functions and
storage of local function variables. Here, the AR1 register is being used as the stack pointer,
which is the same register convention employed by the C compiler.

The .usect directive is used to allocate space for the software stack in the uninitialized section
called stack. You can find the stack section allocated in the SECTIONS portion of the linker
command file example.cmd. The .usect directive is documented in reference [4], page 4–67.

Lines 260 – 261 (example.asm): GP Timers 1 and 2 are both disabled before being configured.
This is proper programming procedure: always disable a peripheral before configuring it.

Lines 263 – 336 (example.asm): The various event manager registers necessary to configure
the desired 20KHz PWM output using timer 1 and compare 1, and also the desired 250ms
periodic interrupt using timer 2 are being initialized. The event manager is documented in
reference [2], Chapter 6.

Lines 348 – 351 (example.asm): The core interrupt flag register (IFR) and core interrupt mask
register (IMR) are initialized to enable the desired core interrupts. It is good practice to clear the
IMR register first, since the IMR is not initialized by a DSP reset, and therefore contains an
unknown value after power-up. After doing this, the IFR register is cleared to clear any pending
core interrupts, and then the desired interrupts are enabled in the IMR. Note that before
enabling any peripheral interrupt, the core interrupt on which it is grouped should first be
enabled. The IFR and IMR registers are documented in reference [1], pages 5–17 to 5–20.

SPRA755

11 Getting Started in C and Assembly Code With the TMS320LF240x DSP

Lines 356 – 370 (example.asm): The desired event manager interrupts are being enabled.
Note that before enabling any peripheral interrupt, the core interrupt on which it is grouped
should first be enabled in the IMR register. Also note that the only event manager interrupt used
in this program is the timer 2 period interrupt, which is enabled by setting bit 1 in the EVAIMRB
register. The event manager interrupt registers are documented in reference [2], Chapter 6.

Line 375 (example.asm): The global interrupt mask bit is cleared. Clearing this bit enables all
maskable core interrupts that have been enabled via the IMR register. The INTM bit is located in
Status Register 0 (ST0), and is documented in reference [1], pages 4–15 to 4–17.

Lines 380 – 382 (example.asm): The main loop in the program is nothing but an endless loop
containing a single NOP instruction. The DSP loops here until an enabled interrupt occurs, in
this case, the timer 2 period interrupt.

Lines 396 – 401 (example.asm): A context save to the software stack is being performed. In
this example, only ST0, ST1, and the ACC are being saved since these are the only registers
used by the ISR. The context save illustrated here can easily be expanded to include other
registers as needed.

Note that Line 397 advances the stack pointer (AR1) by one location, which skips a memory
word. This is a necessary operation since there can potentially be situations in a program where
the stack pointer is not pointing to the next free memory location, but instead is pointing to the
last used location on the stack. An example of where this situation can arise is during a context
restore, starting at Line 425. If interrupts were being nested here and an interrupt occurred
during the context restore, that ISR must skip one memory location with the stack pointer, so as
not to overwrite an occupied stack location (note that in this example, the program interrupts
have not been nested). Another example is when accessing local variables or passed function
parameters which reside on the stack (note that this does not occur in the example program
here). To do this, a copy of the stack pointer is generally made using a different ARx register,
and the copy then used for addressing. The code to make the stack pointer copy would appear
as follows, using AR5 here as the copy register:

MAR *, AR1 ;ARP = stack pointer

SAR AR1, * ;Save the stack pointer (AR1) onto the stack.

LAR AR5, * ;AR5 now contains a copy of the stack pointer.

; Stack pointer again points to next free location.

Upon completion of the above code segment, AR5 can be used to address into the stack and
access any local variables or passed function parameters. Notice that between the SAR and
LAR instructions, the stack pointer (AR1) is actually pointing to an occupied stack location. If an
interrupt were to occur between those two instructions, that ISR would overwrite an occupied
stack location unless it had skipped one stack location before putting anything onto the stack.

Lines 404 – 405 (example.asm): Peripheral interrupt flags must be manually cleared in the ISR,
unlike core interrupt flags in the IFR register which are cleared automatically by the DSP when
the interrupt is serviced. In this case, the T2PINT flag is cleared by writing a 1 to its bit in the
EVAIFRB register. The EVAIFRB register is documented in reference [2], Chapter 6.

SPRA755

12 Getting Started in C and Assembly Code With the TMS320LF240x DSP

Lines 408 – 415 (example.asm): The quad LED bank on the LF2407 EVM is updated. The
variable LED_index is first used to update the LED bank, after which it is advanced by 1 by
using a left-shift followed by a store back to memory. Since the LED bank exists in the I/O
memory space, the OUT instruction is used. After the LED_index has been advanced 4 times
(i.e., since there are 4 LEDs), it is reset back to 1.

Lines 418 – 421 (example.asm): The W/R/IOPC0 pin is toggled by an XOR (exclusive OR) of
the proper bit (bit 0) in the PCDATDIR register, with a binary 1.

Lines 424 – 429 (example.asm): The context restore is performed from the software stack.
Note that the restoration order of ST0 and ST1 is important. When using indirect addressing (as
was used here), ST0 should be restored first, followed by ST1. If direct addressing is used for
the context save/restore, ST1 should be restored first. These sequences for context restore
ensure that the ARP and DP bit fields are restored properly in the ST0 and ST1 registers.

Line 430 (example.asm): Global interrupts must be manually re-enabled before returning from
an ISR by clearing the INTM bit.

Line 431 (example.asm): The RET instruction returns from the ISR.

Lines 442 – 455 (example.cmd): The MEMORY section of the linker command file should
define all available memory on the DSP target system. The basic memory map for the LF2407
DSP is documented in reference [5], pages 16 and 32 to 33. You should tailor external memory
definitions to meet those of your particular target board. In this example, a memory map has
been defined that works for both the LF2407 EVM and the eZdsp LF2407.

The memory definitions are defined separately for program space (linker page 0) and data
space (linker page 1). In the program space, the memory region named “VECS” has been
specially defined so that the reset and interrupt vectors can be linked to the correct locations, as
required by hardware. The interrupt vector addresses are documented in reference [1], pages
5–15 to 5–16. Note that the VECS memory is physically part of either the internal FLASH or
external memory, depending on the state of the MP/MC pin at reset. The memory region named
“FLASH” is defined over a 32Kx16 memory address range that will correspond to two possible
physical memories. It will either be the internal FLASH memory (if the MP/MC pin was low
during DSP reset), or it will map to external memory (if MP/MC pin was high during reset). See
section 2 of this document for information on jumper settings that control the MP/MC pin on the
LF2407 EVM and eZdsp LF2407 boards. Finally, the memory region named “EXTPROG”
defines the external program memory that is available on the LF2407 EVM and eZdsp
LF2407. Note that on the eZdsp LF2407, the external SRAM available at the EXTPROG
addresses can also be mapped to the FLASH region addresses. See reference [8] for details.

In the data space, the internal dual-access memory blocks B0, B1, and B2 are defined, as is the
2Kx16 internal single-access RAM block SARAM. The memory region named “EXTDATA”
defines the external data memory that is available on the LF2407 EVM and eZdsp LF2407.

Lines 457 – 463 (example.cmd): The SECTIONS section of the linker command file tells the
linker where to locate each section used in the code. Here, only four sections have been used
(.text, .bss, vectors, and stack). Notice that the vectors section has been linked to the VECS
memory region, which places the interrupt vectors at the correct DSP-specific addresses. The
SECTIONS section of the linker command file is documented in reference [4], section 8.7.

SPRA755

13 Getting Started in C and Assembly Code With the TMS320LF240x DSP

Note (example.cmd): Numerous linker options exist, all of which can be invoked either on the
command line that starts the linker, or by placing the options at the beginning of the linker
command file before the MEMORY section. Chapter 8 in reference [4] shows examples that
place various options at the beginning of the linker command file (e.g., Example 8–2, page
8–17). However, placing these options in the linker command file is neither necessary nor
recommended when using the Code Composer debugger, since Code Composer offers
configuration menus that allow you to select desired options for your code project. Code
Composer then uses the selected options on the linker command line when it invokes the linker
during project building. This is why example.cmd only contains the MEMORY and SECTIONS
sections, and nothing else. To select linker (and compiler and assembler) options from within
Code Composer, click on the PROJECT menu, and then select OPTIONS.

6 C Language Example Program
The C language example program consists of the following files:
• cvectors.asm: Interrupt vector table
• example_c.c: Main program
• f2407_c.h: Header file containing peripheral register address definitions
• example_c.cmd: Linker command file
• example_c.mak: C2xx Code Composer v4.1x project file
• example_c.out: Program executable
• example.map: Memory map file output by the code generation tools

Only the first five listed files are needed to build the program. The final two files are provided for
convenience, and are produced by the code generation tools when the program is built. To build
the project using Code Composer, load the project file example_c.mak into Code Composer
(click on PROJECT–>OPEN), and then select PROJECT–>BUILD or PROJECT–>REBUILD
ALL. See the online help available within Code Composer for additional assistance.

Figure 2 illustrates the code flow for the C language example program. Execution begins at the
reset vector in the file cvectors.asm after a hardware reset. This vector branches to the c_int0()
function in the C language runtime support library rts2xx.lib. This library comes with the code
generation tools, and must be linked with all C language programs (done by adding it to your
Code Composer project). This has already been done in example_c.mak. The c_int0() function
sets up the C stack, initializes values for all initialized global and static variables, and finally calls
main(). The c_int0() function is documented in reference [3], section 6.8.

Once at main(), the processor is initialized, after which an endless main loop is entered. The DSP
is periodically interrupted out of this endless loop by the timer 2 period interrupt, at which time the
interrupt service routine is executed. ISR context save and restore, global interrupt re-enable, and
program return are handled automatically by functions in the runtime support library.

Appendix B contains file listings of cvectors.asm, example_c.c, and example_c.cmd. Contiguous
line numbers have been provided along the left-hand side of the code to facilitate discussion.
The file example_c.c is functionally equivalent to the assembly language program example.asm,
previously discussed in this document. Readers can compare these two files in order to gain
insight into C language implementations of assembly language code segments, and vice versa.
A number of details and useful pieces of information will now be discussed.2

2. Cited page and section numbers in references correspond to the specific revision of the documentation listed in the Reference section of this
application report. These numbers have been given as a matter of convenience, but may no longer be accurate if a new revision of the
documentation is released. The referenced material itself, however, should still be found in the cited document. See the index in the cited
document to find the correct page for the referenced subject.

SPRA755

14 Getting Started in C and Assembly Code With the TMS320LF240x DSP

Timer 2 ISR

– Clear T2PINT flag
– Sequence EVM LED bank
– Toggle IOPC0 pin
– Return

CPU iniitialization

– SCSR1 and SCSR2 regs
– Watchdog disable
– External memory i/f
– Shared I/O pins

Timer 1 and 2 setup

Interrupt setup

– Clear core flags
– Enable core interrupts
– Clear EV flags
– Enable EV interrupts
– Enable global interrupt bit

Main loop

Endless loop
(wait for interrupt)

INT3 Vector

Reset Vector
DSP Reset

�

�

�

�

�

�

File: example.asm(C Compiler Runtime Support Library)

c_int0 function

– Software stack setup
– Initialize global variables
– Call main()

I$$SAVE() function

– Context save

I$$REST() function

– Context restore
– Re-enable global interrupts
– Return

Ti
m

er
 2

 P
er

io
d

In
te

rr
up

t

File: cvectors.asm

File: rts2xx.lib
(C Compiler Runtime Support

Library

– Disable timers
– Configure GPTCONA
– Clear counters
– Set period registers
– Disable deadband unit
– Setup PWM1 compare unit
– Enable timers

Figure 2. C Language Example Program Code Flow

SPRA755

15 Getting Started in C and Assembly Code With the TMS320LF240x DSP

NOTE: Much of the discussion that follows presents identical points to those made previously
in section 5 for the assembly language example program. Information is repeated here to allow
independent reading of the discussions of the C and assembly language example programs.

General (cvectors.asm): The interrupt vector table must be written in assembly language.
While you could use inline assembly to embed the vector table into a C language file, it is better
programming practice to use a separate file, as was done in this example. Multiple source files
need simply be added to the Code Composer project. They will then be linked together
automatically by the code generation tools during a project build.

Line 464 (cvectors.asm): The asterisk in column 1 indicates that the entire line is a comment.
The asterisk can only be used in column 1. To place a comment in a line beginning at a different
column, use a semi-colon, as shown in line 478.

Line 475 (cvectors.asm): The .ref directive is used to reference symbols defined externally to a
source file. In this case, the symbol _c_int0 is declared in the runtime support library rts2xx.lib, and
the label _timer2_isr is declared in the file example_c.c. However, both are referenced here in
cvectors.asm. Note the use of the leading underscore on both labels. All symbols which are defined
in C but referenced with assembly code must have a leading underscore appended to the symbol
name in the assembly code reference. The .ref directive is documented in reference [4], page 4–44.

Line 477 (cvectors.asm): The .sect directive is used to declare an initialized section. In this
case, the interrupt vectors (code) are being placed in the section named vectors so that they can
be linked to a specific address range. You will find the vectors section listed in the SECTIONS
portion of the linker command file example_c.cmd.

Lines 478 – 509 (cvectors.asm): Each interrupt vector is two 16-bit words long, and contains a
single branch instruction that indicates the address of the interrupt service routine (ISR)
associated with it. Line 478 is the reset vector, and branches to the label _c_int0 which is the
entry point to a routine located in the rts2xx.lib library. Line 481 is the core interrupt 3 vector.
This core interrupt is shared between several peripheral interrupts, among them the timer 2
period interrupt. In this example program, the timer 2 period interrupt is the only interrupt
enabled on core interrupt 3. Therefore, the interrupt 3 vector can branch directly to the timer 2
interrupt service routine, located at the label timer2_isr in example_c.c. If more than one
peripheral interrupt were enabled on a given core interrupt line, software would need to
differentiate among the peripheral interrupts so that the correct ISR could be executed. The
procedure for doing this is discussed in reference [2], pages 2–20 to 2–21. The core interrupt
vector addresses are documented in reference [1], pages 5–15 to 5–16. The sharing of the core
interrupts is documented in reference [5], pages 20 to 23. Note that all remaining interrupt
vectors branch to themselves. This is useful during code development to trap erroneous
interrupts. In a real application, one would probably want to branch all unused interrupts to an
error handling routine that performs whatever recovery steps are desired.

Line 531 (example_c.c): The file f2407_c.h is being included into the C source file. This file
contains address definitions for all of the peripheral registers in the LF2407 DSP. For example,

#define WDCR (volatile unsigned int *)0x7029 /* WD timer control register */

defines the data space address for the watchdog timer control register WDCR. The above uses
the ANSI C language preprocessor directive #define to associate the text WDCR with an
immediate pointer to an unsigned integer at the address 0x7029. This allows one to access the
defined register in their C program using a simple pointer construct. For example, to write the
value 0x00E8 to the WDCR register, you simply write the following in your C program:

SPRA755

16 Getting Started in C and Assembly Code With the TMS320LF240x DSP

WDCR = 0x00E8; / write 0x00E8 to the WDCR register */

The volatile keyword in the address definition tells the compiler that a variable is not under its
sole control (e.g., something other than code generated by the compiler, such as hardware,
could change its value). It is important to use this keyword with register definitions, especially if
the compiler optimizer is enabled. The volatile keyword is documented in reference [3], page
3–10.

Lines 533 – 552 (example_c.c): Address definitions for the I/O space are being made. The I/O
space for LF2407 devices consists of a 64Kx16 address block, beginning at address 0x0000. On
the LF2407 EVM, the D/A converter, DIP switch bank, and quad-LED bank are located external
to the DSP in the I/O space (on the eZdsp LF2407, no external devices exist in the I/O space).
Note that only the quad LED bank is exercised by the example program (has no effect on
eZdsp LF2407). The compiler assumes that a variable is located in the data space unless that
variable is specifically defined as being in the I/O space.

The compiler provides the “ioport” keyword to declare an I/O space address. The ioport keyword
declares an address in the I/O space as being of a particular type, e.g. unsigned int. The
address itself is declared using the construct portxxxx, where xxxx is the 64K word address of
the port. For example:

ioport unsigned int port000C; /* I/O space address 0x000C is an unsigned int */

To make the C code more readable, you can associate a symbol with port000C as follows:

#define LED port000C /* EVM LED bank is at address 0x000C in I/O space */

ioport unsigned int port000C; /* I/O space address 0x000C is an unsigned int */

You can now access the declared I/O address using the defined name. For example, to write the
value 0x0001 to address 0x000C in I/O space, you would write:

LED = 0x0001; /* write 0x0001 to EVM LED bank */

The ioport keyword is documented in reference [3], page 5–13. For details on the I/O space
memory map, see reference [3], or the datasheet for your particular TI DSP device.

Line 568 (example_c.c): This is the function declaration for main(). This function is called by the
_c_int0 function, located in the runtime support library rts2xx.lib.

Line 572 (example_c.c): The SCSR1 register is being initialized. The value written to the
SCSR1 register contains bit fields to program the PLL for x4 mode. In addition, there are six
clock control bits that enable the clocks for the on-chip peripheral modules. Note that a
peripheral module will not function if the clock to it is not enabled. In the example here, all clocks
have been enabled. In a real application, you can disable clocks to any peripherals not being
used to reduce power consumption. Finally, the ILLADR bit (illegal address detection bit) is
cleared by writing a 1 to it. Although ILLADR defaults to 0 after a reset, it is good practice to
clear it anyway in case, for example, software were to branch to the reset vector as a means of
restarting a program. The SCSR1 register is documented in reference [2], pages 2–3 to 2–5.

SPRA755

17 Getting Started in C and Assembly Code With the TMS320LF240x DSP

Line 589 (example_c.c): The SCSR2 register is being initialized. Boolean operations are used
to set and clear the various bits. This procedure is used instead of a direct register load, so as
not to disturb the state of the MP/MC bit. This bit reflects the state of the MP/MC pin at reset and
determines whether the FLASH memory is active in program space, or if external memory is
mapped to those addresses. Since this example program is designed to run from either FLASH
or external memory, the state of the MP/MC pin at power up is unknown. Therefore, the state of
the MP/MC pin must be preserved.

Bit 5 of SCSR2 is the WD OVERRIDE bit. This is a clear-only bit. If this bit is cleared (by writing
a 1 to it), the watchdog timer cannot be disabled. The example code does not clear this bit, and
the watchdog timer is later disabled at Line 601.

The SCSR2 register is documented in reference [2], pages 2–5 to 2–7.

Line 601 (example_c.c): The WDCR register is being configured to disable the watchdog timer.
The WDCR register is documented in reference [2]. pages 11–9 to 11–10.

Line 612 (example_c.c): The WSGR register is being configured to set the wait states for the
external memory interface. On both the LF2407 EVM and eZdsp LF2407, zero wait states are
needed in both program and data space. For the I/O space, one wait state is needed on the
EVM for the D/A converter, whereas this is a don’t care on the eZdsp LF2407 since there are
no devices in the external I/O space. The WSGR register is located in I/O space, and was
declared using the ioport keyword in the file f2407_c.h. This is why an asterisk (i.e., pointer
symbol) is not used in the code in front of WSGR. See lines 533 – 552 above for more
information on I/O space accesses in C. The WSGR register is documented in reference [2],
pages 3–18 to 3–19.

Lines 622 – 680 (example_c.c): The shared pins on the LF2407 are being configured. All
shared pins default to the GPIO (General Purpose Input Output) input function after a device
reset. The example program is configuring the PWM1/IOPA6 pin for PWM1 function. All other
pins are left as GPIO. Note that bits 15–9 of the MCRB register affect operation of the JTAG
emulation pins. These bits must always be written as a 1. The MCRx registers are documented
in reference [2], Chapter 5.

Line 683 (example_c.c): The W/R/IOPC0 pin is being configured as a GPIO output. The
W/R/IOPC0 pin was previously configured for GPIO function in Line 642 using the MCRB
register. The PCDATDIR register now determines GPIO input or output function. The
W/R/IOPC0 pin is toggled by the example program, as discussed in section 4. The PCDATDIR
register is documented in reference [2], Chapter 5.

Lines 687 – 688 (example_c.c): GP Timers 1 and 2 are both disabled before being configured.
This is proper programming procedure: always disable a peripheral before configuring it.

Lines 690 – 766 (example_c.c): The various event manager registers necessary to configure
the desired 20KHz PWM output using timer 1 and compare 1, and also the desired 250ms
periodic interrupt using timer 2 are being initialized. The event manager is documented in
reference [2], Chapter 6.

SPRA755

18 Getting Started in C and Assembly Code With the TMS320LF240x DSP

Lines 772 – 774 (example_c.c): The core interrupt flag register (IFR) and core interrupt mask
register (IMR) are initialized to enable the desired core interrupts. It is good practice to clear the
IMR register first, since the IMR is not initialized by a DSP reset, and therefore contains an
unknown value after power up. After doing this, the IFR register is cleared to clear any pending
core interrupts, and then the desired interrupts are enabled in the IMR. Note that before
enabling any peripheral interrupt, the core interrupt on which it is grouped should first be
enabled. The IFR and IMR registers are documented in reference [1], pages 5–17 to 5–20.

Lines 777 – 789 (example_c.c): The desired event manager interrupts are being enabled. Note
that before enabling any peripheral interrupt, the core interrupt on which it is grouped should first
be enabled in the IMR register. Also note that the only event manager interrupt in use in this
program is the timer 2 period interrupt, which is enabled by setting bit 1 in the EVAIMRB register.
The event manager interrupt registers are documented in reference [2], Chapter 6.

Line 792 (example_c.c): Inline assembly is being used to clear the global interrupt mask bit.
The INTM bit is not directly accessible from C code, hence the use of inline assembly and the
CLRC assembly instruction. Clearing this bit enables all maskable core interrupts that have been
enabled via the IMR register. The INTM bit is located in Status Register 0 (ST0), and is
documented in reference [1], pages 4–15 to 4–17.

Inline assembly is invoked by using the asm keyword, and placing in quotations the desired
assembly language statement:

asm(” CLRC INTM”); /* enable global interrupts */

With inline assembly, whatever is written between the quotation marks is inserted directly into
the compiler-generated assembly code. The functional position of the statement relative to the
C code is preserved in the assembly code (i.e., the compiler optimizer will not move instructions
around an inline assembly statement). Note that the character immediately following the first
quotation mark is placed at column 1 in the assembly file. The space between the quotation
mark and the CLRC instruction is therefore important in this example, since only labels and
comments can begin in column 1 of an assembly file. The asm keyword is documented in
reference [3], page 6–22.

Line 795 (example_c.c: The main loop in the program is nothing but an empty endless while()
loop. The DSP will loop here until an enabled interrupt occurs, in this case the timer 2 period
interrupt.

Line 797 (example_c.c): The closing brace marks the end of main().

Line 800 (example_c.c): This is the function declaration for the interrupt service routine
timer2_isr(). Interrupt service routines can neither return a value, nor receive passed values,
hence the use of the void data types in the function declaration. The “interrupt” keyword is used
to tell the compiler that this function is an ISR. When this keyword is used, the compiler will
insert code into the ISR that calls the context save function I$$SAVE upon function entry, and
also insert code that branches to the context restore function I$$REST at the end of the ISR.
These two functions are located in the runtime support library rts2xx.lib. After restoring the
context, the I$$REST function re-enables global interrupts (i.e., clears the INTM bit) and then
returns to the original interrupted routine. The interrupt keyword is documented in reference [3],
page 6–26.

SPRA755

19 Getting Started in C and Assembly Code With the TMS320LF240x DSP

Line 803 (example_c.c): Peripheral interrupt flags must be manually cleared in the ISR, unlike
core interrupt flags in the IFR register which are cleared automatically by the DSP when the
interrupt is serviced. In this case, the T2PINT flag is cleared by writing a 1 to its bit in the
EVAIFRB register. The EVAIFRB register is documented in reference [2], Chapter 6.

Lines 806 – 808 (example_c.c): The quad LED bank on the LF2407 EVM is updated. The
variable LED_index is first used to update the LED bank, after which it is advanced by 1 by
left-shifting it once. The LED bank exists in the I/O memory space, and the label “LED” was
previously defined to access the proper address in I/O space in Lines 551–552. After the
LED_index has been advanced 4 times (i.e., since there are 4 LEDs), it is reset back to 1.

Line 811 (example_c.c): The W/R/IOPC0 pin is toggled by an XOR (exclusive OR) of the
proper bit (bit 0) in the PCDATADIR register with a binary 1.

Line 813 (example_c.c): The closing brace marks the end of the ISR.

Lines 825 – 838 (example_c.cmd): The MEMORY section of the linker command file defines
all available memory on the DSP target system. The basic memory map for the LF2407 DSP is
documented in reference [5], page 16 and also pages 32 to 33. You should tailor external
memory definitions to meet those of your particular target board. In this example, a memory map
has been defined that works for both the LF2407 EVM and the eZdsp LF2407.

The memory definitions are defined separately for program space (linker page 0) and data
space (linker page 1). In the program space, the memory region named VECS has been
specially defined so that the reset and interrupt vectors can be linked to the correct locations, as
required by hardware. The interrupt vector addresses are documented in reference [1], pages
5–15 to 5–16. Note that the VECS memory is physically part of either the internal FLASH or
external memory, depending on the state of the MP/MC pin at reset. The memory region named
FLASH is defined over a 32Kx16 memory address range that will correspond to two possible
physical memories. It will either be the internal FLASH memory if the MP/MC pin was low during
DSP reset, or it will map to external memory if MP/MC pin was high during reset. See section 2
of this document for information on jumper settings that control the MP/MC pin on the LF2407
EVM and the eZdsp LF2407 boards. Finally, the memory region named “EXTPROG” defines
the external program memory that is available on the LF2407 EVM and eZdsp LF2407. Note
that on the eZdsp LF2407, the external SRAM available at the EXTPROG addresses may also
be mapped to the FLASH region addresses. See reference [8] for details.

In the data space, the internal dual-access memory blocks B0, B1, and B2 are defined, as is the
2Kx16 internal single-access RAM block SARAM. The memory region named “EXTDATA”
defines the external data memory that is available on the LF2407 EVM and eZdsp LF2407.

Lines 840 – 853 (example_c.cmd): The SECTIONS section of the linker command file tells the
linker where to locate each section used in the code. The C compiler uses seven specific
sections (Lines 843 – 849), although it does not necessarily always allocate each section
(e.g., .switch section will only be allocated if you have used switch statements in your C code).
The function of each of these sections is documented in reference [3], pages 6–3 to 6–4. In
addition to these sections, one user defined section called vectors (defined in the file
cvectors.asm) is also used by this program, and therefore must be specified in the linker
command file. The vectors section has been linked to the VECS memory region, which places
the interrupt vectors at the correct DSP specific addresses. The SECTIONS section of the linker
command file is documented in reference [4], section 8.7.

SPRA755

20 Getting Started in C and Assembly Code With the TMS320LF240x DSP

Note (example_c.cmd): Numerous linker options exist, all of which can be invoked either on the
command line that starts the linker, or by placing the options at the beginning of the linker
command file before the MEMORY section. Chapter 8 in reference [4] shows examples that
place various options at the beginning of the linker command file (e.g., Example 8–2, page
8–17). However, placing these options in the linker command file is neither necessary nor
recommended when using the Code Composer debugger, since Code Composer offers
configuration menus that allow you to select desired options for your code project. Code
Composer then uses the selected options on the linker command line when it invokes the linker
during project building. This is why example_c.cmd only contains the MEMORY and SECTIONS
sections, and nothing else. To select linker (and compiler and assembler) options from within
Code Composer, click on the PROJECT menu, and then select OPTIONS.

7 Conclusion

Two functionally identical example programs, one written in assembly language, and the other in
the C programming language, have been presented and discussed. These programs illustrate
basic code for initializing and operating the TMS320LF240x DSP. The programs are ready to run
on either the TMS320LF2407 Evaluation Module (EVM) or the eZdsp LF2407 development kit,
but are also intended for use as code templates for any LF240x or LF240xA DSP target system.

8 References
1. TMS320F/C24x DSP Controllers CPU and Instruction Set Reference Guide (SPRU160C).

2. TMS320LF/LC240x DSP Controllers System and Peripherals Reference Guide (SPRU357A).

3. TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide (SPRU024E).

4. Fixed-Point DSP Assembly Language Tools User’s Guide (SPRU018D).

5. TMS320LF2407, TMS320LF2406, TMS320LF2402 DSP Controllers datasheet (SPRS094F).

6. TMS320LF2407 DSP Controller Silicon Errata (SPRZ158F).

7. TMS320LF2407 Evaluation Module Technical Reference (from Spectrum Digital, Inc.)

8. eZdsp Technical Reference (from Spectrum Digital, Inc.)

SPRA755

21 Getting Started in C and Assembly Code With TMS320LF240x DSP

Appendix A Assembly Language Example Program Listing
Line numbers listed along the left-hand side of the file listings are numerically contiguous across
all files in Appendixes A and B.

1 **
2 * Filename: vectors.asm *
3 * *
4 * Author: David M. Alter, Texas Instruments Inc. *
5 * *
6 * Last Modified: 03/14/01 *
7 * *
8 * Description: Interrupt vector table for ’240x DSP core *
9 * for use with assembly language programs. *
10 * *
11 **
12
13 .ref start, timer2_isr
14
15 .sect ”vectors”
16 rset: B start ;00h reset
17 int1: B int1 ;02h INT1
18 int2: B int2 ;04h INT2
19 int3: B timer2_isr ;06h INT3
20 int4: B int4 ;08h INT4
21 int5: B int5 ;0Ah INT5
22 int6: B int6 ;0Ch INT6
23 int7: B int7 ;0Eh reserved
24 int8: B int8 ;10h INT8 (software)
25 int9: B int9 ;12h INT9 (software)
26 int10: B int10 ;14h INT10 (software)
27 int11: B int11 ;16h INT11 (software)
28 int12: B int12 ;18h INT12 (software)
29 int13: B int13 ;1Ah INT13 (software)
30 int14: B int14 ;1Ch INT14 (software)
31 int15: B int15 ;1Eh INT15 (software)
32 int16: B int16 ;20h INT16 (software)
33 int17: B int17 ;22h TRAP
34 int18: B int18 ;24h NMI
35 int19: B int19 ;26h reserved
36 int20: B int20 ;28h INT20 (software)
37 int21: B int21 ;2Ah INT21 (software)
38 int22: B int22 ;2Ch INT22 (software)
39 int23: B int23 ;2Eh INT23 (software)
40 int24: B int24 ;30h INT24 (software)
41 int25: B int25 ;32h INT25 (software)
42 int26: B int26 ;34h INT26 (software)
43 int27: B int27 ;36h INT27 (software)
44 int28: B int28 ;38h INT28 (software)
45 int29: B int29 ;3Ah INT29 (software)
46 int30: B int30 ;3Ch INT30 (software)
47 int31: B int31 ;3Eh INT31 (software)

SPRA755

22 Getting Started in C and Assembly Code With TMS320LF240x DSP

48 **
49 * Filename: example.asm *
50 * *
51 * Author: David M. Alter, Texas Instruments Inc. *
52 * *
53 * Last Modified: 03/14/01 *
54 * *
55 * Description: This program illustrates basic initialization and *
56 * operation of the LF2407 DSP. The following peripherals are *
57 * exercised: *
58 * 1) Timer 2 is configured to generate a 250ms period interrupt. *
59 * 2) The LED bank on the LF2407 EVM is sequenced in the Timer2 ISR. *
60 * 3) The IOPC0 pin is toggled in the Timer2 ISR. *
61 * 4) Timer 1 is configured to drive 20KHz 25% duty cycle symmetric *
62 * PWM on the PWM1 pin. *
63 * *
64 **
65
66 ;~~~
67 ;Global symbol declarations
68 ;~~~
69 .def start, timer2_isr
70
71 ;~~~
72 ;Address definitions
73 ;~~~
74 .include f2407.h
75
76 DAC0 .set 0000h ;EVM DAC register 0 (I/O space)
77 DAC1 .set 0001h ;EVM DAC register 1 (I/O space)
78 DAC2 .set 0002h ;EVM DAC register 2 (I/O space)
79 DAC3 .set 0003h ;EVM DAC register 3 (I/O space)
80 DACUD .set 0004h ;EVM DAC update register (I/O space)
81 DIPSWCH .set 0008h ;EVM DIP switch (I/O space)
82 LED .set 000Ch ;EVM LED bank (I/O space)
83
84 ;~~~
85 ;Constant definitions
86 ;~~~
87 timer2_per .set 58594 ;250ms timer2 period with a 1/128
88 ;timer prescaler and 30MHz CPUCLK
89
90 pwm_half_per .set 750 ;period/2, 20KHz symmetric PWM with
91 ;a 30MHz CPUCLK
92
93 pwm_duty .set 563 ;25% PWM duty cycle
94
95 ;~~~
96 ;Uninitialized global variable definitions
97 ;~~~
98 .bss temp1,1 ;general purpose variable
99 .bss LED_index,1 ;LED index
100
101

SPRA755

23 Getting Started in C and Assembly Code With TMS320LF240x DSP

102 **
103 * M A I N R O U T I N E *
104 **
105
106 .text
107 start:
108
109 ;~~~
110 ;Configure the System Control and Status Registers
111 ;~~~
112 LDP #DP_PF1 ;set data page
113
114 SPLK #0000000011111101b, SCSR1
115 * ||||||||||||||||
116 * FEDCBA9876543210
117 * bit 15 0: reserved
118 * bit 14 0: CLKOUT = CPUCLK
119 * bit 13–12 00: IDLE1 selected for low–power mode
120 * bit 11–9 000: PLL x4 mode
121 * bit 8 0: reserved
122 * bit 7 1: 1 = enable ADC module clock
123 * bit 6 1: 1 = enable SCI module clock
124 * bit 5 1: 1 = enable SPI module clock
125 * bit 4 1: 1 = enable CAN module clock
126 * bit 3 1: 1 = enable EVB module clock
127 * bit 2 1: 1 = enable EVA module clock
128 * bit 1 0: reserved
129 * bit 0 1: clear the ILLADR bit
130
131 LACC SCSR2 ;ACC = SCSR2 register
132 OR #0000000000001011b ;OR in bits to be set
133 AND #0000000000001111b ;AND out bits to be cleared
134 * ||||||||||||||||
135 * FEDCBA9876543210
136 * bit 15–6 0’s: reserved
137 * bit 5 0: do NOT clear the WD OVERRIDE bit
138 * bit 4 0: XMIF_HI–Z, 0=normal mode, 1=Hi–Z’d
139 * bit 3 1: disable the boot ROM, enable the FLASH
140 * bit 2 no change MP/MC* bit reflects the state of the MP/MC* pin
141 * bit 1–0 11: 11 = SARAM mapped to prog and data (default)
142
143 SACL SCSR2 ;store to SCSR2 register
144
145 ;~~~
146 ;Disable the watchdog timer
147 ;~~~
148 ; LDP #DP_PF1 ;set data page
149 ;
150 SPLK #0000000011101000b, WDCR
151 * ||||||||||||||||
152 * FEDCBA9876543210
153 * bits 15–8 0’s reserved
154 * bit 7 1: clear WD flag
155 * bit 6 1: disable the dog
156 * bit 5–3 101: must be written as 101
157 * bit 2–0 000: WDCLK divider = 1
158

SPRA755

24 Getting Started in C and Assembly Code With TMS320LF240x DSP

159 ;~~~
160 ;Setup external memory interface for LF2407 EVM
161 ;~~~
162 LDP #temp1 ;set data page
163
164 SPLK #0000000001000000b, temp1
165 * ||||||||||||||||
166 * FEDCBA9876543210
167 * bit 15–11 0’s: reserved
168 * bit 10–9 00: bus visibility off
169 * bit 8–6 001: 1 wait–state for I/O space
170 * bit 5–3 000: 0 wait–state for data space
171 * bit 2–0 000: 0 wait state for program space
172
173 OUT temp1, WSGR
174
175 ;~~~
176 ;Setup shared I/O pins
177 ;~~~
178 LDP #DP_PF2 ;set data page
179
180 SPLK #0000000001000000b,MCRA ;group A pins
181 * ||||||||||||||||
182 * FEDCBA9876543210
183 * bit 15 0: 0=IOPB7, 1=TCLKINA
184 * bit 14 0: 0=IOPB6, 1=TDIRA
185 * bit 13 0: 0=IOPB5, 1=T2PWM/T2CMP
186 * bit 12 0: 0=IOPB4, 1=T1PWM/T1CMP
187 * bit 11 0: 0=IOPB3, 1=PWM6
188 * bit 10 0: 0=IOPB2, 1=PWM5
189 * bit 9 0: 0=IOPB1, 1=PWM4
190 * bit 8 0: 0=IOPB0, 1=PWM3
191 * bit 7 0: 0=IOPA7, 1=PWM2
192 * bit 6 1: 0=IOPA6, 1=PWM1
193 * bit 5 0: 0=IOPA5, 1=CAP3
194 * bit 4 0: 0=IOPA4, 1=CAP2/QEP2
195 * bit 3 0: 0=IOPA3, 1=CAP1/QEP1
196 * bit 2 0: 0=IOPA2, 1=XINT1
197 * bit 1 0: 0=IOPA1, 1=SCIRXD
198 * bit 0 0: 0=IOPA0, 1=SCITXD
199
200 SPLK #1111111000000000b,MCRB ;group B pins
201 * ||||||||||||||||
202 * FEDCBA9876543210
203 * bit 15 1: 0=reserved, 1=TMS2 (always write as 1)
204 * bit 14 1: 0=reserved, 1=TMS (always write as 1)
205 * bit 13 1: 0=reserved, 1=TD0 (always write as 1)
206 * bit 12 1: 0=reserved, 1=TDI (always write as 1)
207 * bit 11 1: 0=reserved, 1=TCK (always write as 1)
208 * bit 10 1: 0=reserved, 1=EMU1 (always write as 1)
209 * bit 9 1: 0=reserved, 1=EMU0 (always write as 1)
210 * bit 8 0: 0=IOPD0, 1=XINT2/ADCSOC
211 * bit 7 0: 0=IOPC7, 1=CANRX
212 * bit 6 0: 0=IOPC6, 1=CANTX
213 * bit 5 0: 0=IOPC5, 1=SPISTE
214 * bit 4 0: 0=IOPC4, 1=SPICLK
215 * bit 3 0: 0=IOPC3, 1=SPISOMI
216 * bit 2 0: 0=IOPC2, 1=SPISIMO
217 * bit 1 0: 0=IOPC1, 1=BIO*
218 * bit 0 0: 0=IOPC0, 1=W/R*
219

SPRA755

25 Getting Started in C and Assembly Code With TMS320LF240x DSP

220 SPLK #0000000000000000b,MCRC ;group C pins
221 * ||||||||||||||||
222 * FEDCBA9876543210
223 * bit 15 0: reserved
224 * bit 14 0: 0=IOPF6, 1=IOPF6
225 * bit 13 0: 0=IOPF5, 1=TCLKINB
226 * bit 12 0: 0=IOPF4, 1=TDIRB
227 * bit 11 0: 0=IOPF3, 1=T4PWM/T4CMP
228 * bit 10 0: 0=IOPF2, 1=T3PWM/T3CMP
229 * bit 9 0: 0=IOPF1, 1=CAP6
230 * bit 8 0: 0=IOPF0, 1=CAP5/QEP4
231 * bit 7 0: 0=IOPE7, 1=CAP4/QEP3
232 * bit 6 0: 0=IOPE6, 1=PWM12
233 * bit 5 0: 0=IOPE5, 1=PWM11
234 * bit 4 0: 0=IOPE4, 1=PWM10
235 * bit 3 0: 0=IOPE3, 1=PWM9
236 * bit 2 0: 0=IOPE2, 1=PWM8
237 * bit 1 0: 0=IOPE1, 1=PWM7
238 * bit 0 0: 0=IOPE0, 1=CLKOUT
239
240 ;~~~
241 ;Configure IOPC0 pin as an output
242 ;~~~
243 LDP #DP_PF2 ;set data page
244 LACC #0100h ;ACC = 0100h
245 OR PCDATDIR ;OR in PCDATDIR register
246 SACL PCDATDIR ;store result to PCDATDIR
247
248 ;~~~
249 ;Setup the software stack
250 ;~~~
251 stk_len .set 100 ;stack length
252 stk .usect ”stack”,stk_len ;reserve space for stack
253
254 LAR AR1, #stk ;AR1 is the stack pointer
255
256 ;~~~
257 ;Setup timers 1 and 2, and the PWM configuration
258 ;~~~
259 LDP #DP_EVA ;set data page
260 SPLK #0000h, T1CON ;disable timer 1
261 SPLK #0000h, T2CON ;disable timer 2
262
263 SPLK #0000000000000000b, GPTCONA
264 * ||||||||||||||||
265 * FEDCBA9876543210
266 * bit 15 0: reserved
267 * bit 14 0: T2STAT, read–only
268 * bit 13 0: T1STAT, read–only
269 * bit 12–11 00: reserved
270 * bit 10–9 00: T2TOADC, 00 = no timer2 event starts ADC
271 * bit 8–7 00: T1TOADC, 00 = no timer1 event starts ADC
272 * bit 6 0: TCOMPOE, 0 = Hi–z all timer compare outputs
273 * bit 5–4 00: reserved
274 * bit 3–2 00: T2PIN, 00 = forced low
275 * bit 1–0 00: T1PIN, 00 = forced low
276

SPRA755

26 Getting Started in C and Assembly Code With TMS320LF240x DSP

277 ;Timer 1: Configure to clock the PWM on PWM1 pin.
278 ;Symmetric PWM, 20KHz carrier frequency, 25% duty cycle
279 SPLK #0000h, T1CNT ;clear timer counter
280 SPLK #pwm_half_per, T1PR ;set timer period
281 SPLK #0000h, DBTCONA ;deadband units off
282 SPLK #pwm_duty, CMPR1 ;set PWM duty cycle
283
284 SPLK #0000000000000010b, ACTRA
285 * ||||||||||||||||
286 * FEDCBA9876543210
287 * bit 15 0: space vector dir is CCW (don’t care)
288 * bit 14–12 000: basic space vector is 000 (dont’ care)
289 * bit 11–10 00: PWM6/IOPB3 pin forced low
290 * bit 9–8 00: PWM5/IOPB2 pin forced low
291 * bit 7–6 00: PWM4/IOPB1 pin forced low
292 * bit 5–4 00: PWM3/IOPB0 pin forced low
293 * bit 3–2 00: PWM2/IOPA7 pin forced low
294 * bit 1–0 10: PWM1/IOPA6 pin active high
295
296 SPLK #1000001000000000b, COMCONA
297 * ||||||||||||||||
298 * FEDCBA9876543210
299 * bit 15 1: 1 = enable compare operation
300 * bit 14–13 00: 00 = reload CMPRx regs on timer 1 underflow
301 * bit 12 0: 0 = space vector disabled
302 * bit 11–10 00: 00 = reload ACTR on timer 1 underflow
303 * bit 9 1: 1 = enable PWM pins
304 * bit 8–0 0’s: reserved
305
306 SPLK #0000100001000000b, T1CON
307 * ||||||||||||||||
308 * FEDCBA9876543210
309 * bit 15–14 00: stop immediately on emulator suspend
310 * bit 13 0: reserved
311 * bit 12–11 01: 01 = continous–up/down count mode
312 * bit 10–8 000: 000 = x/1 prescaler
313 * bit 7 0: reserved in T1CON
314 * bit 6 1: TENABLE, 1 = enable timer
315 * bit 5–4 00: 00 = CPUCLK is clock source
316 * bit 3–2 00: 00 = reload compare reg on underflow
317 * bit 1 0: 0 = disable timer compare
318 * bit 0 0: reserved in T1CON
319
320 ;Timer 2: configure to generate a 250ms periodic interrupt
321 SPLK #0000h, T2CNT ;clear timer counter
322 SPLK #timer2_per, T2PR ;set timer period
323
324 SPLK #1101011101000000b, T2CON
325 * ||||||||||||||||
326 * FEDCBA9876543210
327 * bit 15–14 11: stop immediately on emulator suspend
328 * bit 13 0: reserved
329 * bit 12–11 10: 10 = continous–up count mode
330 * bit 10–8 111: 111 = x/128 prescaler
331 * bit 7 0: T2SWT1, 0 = use own TENABLE bit
332 * bit 6 1: TENABLE, 1 = enable timer
333 * bit 5–4 00: 00 = CPUCLK is clock source
334 * bit 3–2 00: 00 = reload compare reg on underflow
335 * bit 1 0: 0 = disable timer compare
336 * bit 0 0: SELT1PR, 0 = use own period register
337

SPRA755

27 Getting Started in C and Assembly Code With TMS320LF240x DSP

338 ;~~~
339 ;Other setup
340 ;~~~
341 ;LED index initialization
342 LDP #LED_index ;set data page
343 SPLK #1h, LED_index ;initialize the LED index
344
345 ;~~~
346 ;Setup the core interrupts
347 ;~~~
348 LDP #0h ;set data page
349 SPLK #0h,IMR ;clear the IMR register
350 SPLK #111111b,IFR ;clear any pending core interrupts
351 SPLK #000100b,IMR ;enable desired core interrupts
352
353 ;~~~
354 ;Setup the event manager interrupts
355 ;~~~
356 LDP #DP_EVA ;set data page
357 SPLK #0FFFFh, EVAIFRA ;clear all EVA group A interrupts
358 SPLK #0FFFFh, EVAIFRB ;clear all EVA group B interrupts
359 SPLK #0FFFFh, EVAIFRC ;clear all EVA group C interrupts
360 SPLK #00000h, EVAIMRA ;enabled desired EVA group A interrupts
361 SPLK #00001h, EVAIMRB ;enabled desired EVA group B interrupts
362 SPLK #00000h, EVAIMRC ;enabled desired EVA group C interrupts
363
364 LDP #DP_EVB ;set data page
365 SPLK #0FFFFh, EVBIFRA ;clear all EVB group A interrupts
366 SPLK #0FFFFh, EVBIFRB ;clear all EVB group B interrupts
367 SPLK #0FFFFh, EVBIFRC ;clear all EVB group C interrupts
368 SPLK #00000h, EVBIMRA ;enabled desired EVB group A interrupts
369 SPLK #00000h, EVBIMRB ;enabled desired EVB group B interrupts
370 SPLK #00000h, EVBIMRC ;enabled desired EVB group C interrupts
371
372 ;~~~
373 ;Enable global interrupts
374 ;~~~
375 CLRC INTM ;enable global interrupts
376
377 ;~~~
378 ;Main loop
379 ;~~~
380 loop:
381 NOP
382 B loop ;branch to loop
383
384
385 **
386 * I N T E R R U P T S E R V I C E R O U T I N E S *
387 **
388
389 ;~~~
390 ;GP Timer 2 period interrupt (core interrupt INT3)
391 ;~~~
392
393 timer2_isr:
394
395 ;Context save to the software stack
396 MAR *,AR1 ;ARP=stack pointer

SPRA755

28 Getting Started in C and Assembly Code With TMS320LF240x DSP

397 MAR *+ ;skip one stack location (required)
398 SST #1, *+ ;save ST1
399 SST #0, *+ ;save ST0
400 SACH *+ ;save ACCH
401 SACL *+ ;save ACCL
402
403 ;Clear the T2PINT interrupt flag
404 LDP #DP_EVA ;set data page
405 SPLK #00001h, EVAIFRB ;clear T2PINT flag
406
407 ;Sequence the LED bank on the LF2407 EVM
408 LDP #LED_index ;set data page
409 OUT LED_index, LED ;light the LED
410 LACC LED_index,1 ;load LED index with left shift of 1
411 SACL LED_index ;store updated index
412 SUB #0010h ;subtract the mask
413 BCND done, LT ;branch if index not ready for reset
414 SPLK #1h, LED_index ;reset LED index to 1
415 done:
416
417 ;Toggle the IOPC0 pin
418 LDP #DP_PF2 ;set data page
419 LACC #0001h ;ACC = 0001h
420 XOR PCDATDIR ;XOR the IOPC0 bit to toggle the pin
421 SACL PCDATDIR ;store result to PCDATDIR
422
423 ;context restore from the software stack
424 MAR *, AR1 ;ARP = AR1
425 MAR *– ;SP points to last entry
426 LACL *– ;restore ACCL
427 ADD *–,16 ;restore ACCH
428 LST #0, *– ;restore ST0
429 LST #1, *– ;restore ST1, unskip one stack location
430 CLRC INTM ;re–enable interrupts
431 RET ;return from the interrupt

SPRA755

29 Getting Started in C and Assembly Code With TMS320LF240x DSP

432 /***
433 * Filename: example.cmd *
434 * *
435 * Author: David M. Alter, Texas Instruments Inc. *
436 * *
437 * Last Modified: 03/14/01 *
438 * *
439 * Description: Assembly code linker command file for LF2407 DSP. *
440 ***/
441
442 MEMORY
443 {
444 PAGE 0: /* Program Memory */
445 VECS: org=00000h, len=00040h /* internal FLASH */
446 FLASH: org=00044h, len=07FBCh /* internal FLASH */
447 EXTPROG: org=08800h, len=07800h /* external SRAM */
448
449 PAGE 1: /* Data Memory */
450 B2: org=00060h, len=00020h /* internal DARAM */
451 B0: org=00200h, len=00100h /* internal DARAM */
452 B1: org=00300h, len=00100h /* internal DARAM */
453 SARAM: org=00800h, len=00800h /* internal SARAM */
454 EXTDATA: org=08000h, len=08000h /* external SRAM */
455 }
456
457 SECTIONS
458 {
459 .text: > FLASH PAGE 0
460 .bss: > B1 PAGE 1
461 vectors: > VECS PAGE 0
462 stack: > SARAM PAGE 1
463 }

SPRA755

30 Getting Started in C and Assembly Code With TMS320LF240x DSP

Appendix B C Language Example Program Listing

Line numbers listed along the left–hand side of the file listings are numerically contiguous across
all files in Appendixes A and B.

464 **
465 * Filename: cvectors.asm *
466 * *
467 * Author: David M. Alter, Texas Instruments Inc. *
468 * *
469 * Last Modified: 03/14/01 *
470 * *
471 * Description: Interrupt vector table for ’240x DSP core *
472 * for use with C language programs. *
473 * *
474 **
475 .ref _c_int0, _timer2_isr
476
477 .sect ”vectors”
478 rset: B _c_int0 ;00h reset
479 int1: B int1 ;02h INT1
480 int2: B int2 ;04h INT2
481 int3: B _timer2_isr ;06h INT3
482 int4: B int4 ;08h INT4
483 int5: B int5 ;0Ah INT5
484 int6: B int6 ;0Ch INT6
485 int7: B int7 ;0Eh reserved
486 int8: B int8 ;10h INT8 (software)
487 int9: B int9 ;12h INT9 (software)
488 int10: B int10 ;14h INT10 (software)
489 int11: B int11 ;16h INT11 (software)
490 int12: B int12 ;18h INT12 (software)
491 int13: B int13 ;1Ah INT13 (software)
492 int14: B int14 ;1Ch INT14 (software)
493 int15: B int15 ;1Eh INT15 (software)
494 int16: B int16 ;20h INT16 (software)
495 int17: B int17 ;22h TRAP
496 int18: B int18 ;24h NMI
497 int19: B int19 ;26h reserved
498 int20: B int20 ;28h INT20 (software)
499 int21: B int21 ;2Ah INT21 (software)
500 int22: B int22 ;2Ch INT22 (software)
501 int23: B int23 ;2Eh INT23 (software)
502 int24: B int24 ;30h INT24 (software)
503 int25: B int25 ;32h INT25 (software)
504 int26: B int26 ;34h INT26 (software)
505 int27: B int27 ;36h INT27 (software)
506 int28: B int28 ;38h INT28 (software)
507 int29: B int29 ;3Ah INT29 (software)
508 int30: B int30 ;3Ch INT30 (software)
509 int31: B int31 ;3Eh INT31 (software)

SPRA755

31 Getting Started in C and Assembly Code With TMS320LF240x DSP

510 /***
511 * Filename: example_c.c *
512 * *
513 * Author: David M. Alter, Texas Instruments Inc. *
514 * *
515 * Last Modified: 03/14/01 *
516 * *
517 * Description: This program illustrates basic initialization and *
518 * operation of the LF2407 DSP. The following peripherals are *
519 * exercised: *
520 * 1) Timer 2 is configured to generate a 250ms period interrupt. *
521 * 2) The quad LED bank on the LF2407 EVM is sequenced in the *
522 * Timer2 ISR. *
523 * 3) The IOPC0 pin is toggled in the Timer2 ISR. *
524 * 4) Timer 1 is configured to drive 20KHz 25% duty cycle symmetric *
525 * PWM on the PWM1 pin. *
526 * *
527 ***/
528
529
530 /*** Address Definitions ***/
531 #include ”f2407_c.h”
532
533 #define DAC0 port0000 /* EVM DAC register 0 (I/O space) */
534 ioport unsigned port0000; /* ’24xx compiler specific keyword */
535
536 #define DAC1 port0001 /* EVM DAC register 1 (I/O space) */
537 ioport unsigned port0001; /* ’24xx compiler specific keyword */
538
539 #define DAC2 port0002 /* EVM DAC register 2 (I/O space) */
540 ioport unsigned port0002; /* ’24xx compiler specific keyword */
541
542 #define DAC3 port0003 /* EVM DAC register 3 (I/O space) */
543 ioport unsigned port0003; /* ’24xx compiler specific keyword */
544
545 #define DACUD port0004 /* EVM DAC update register (I/O space) */
546 ioport unsigned port0004; /* ’24xx compiler specific keyword */
547
548 #define DIPSWCH port0008 /* EVM DIP switch (I/O space) */
549 ioport unsigned port0008; /* ’24xx compiler specific keyword */
550
551 #define LED port000C /* EVM LED bank (I/O space) */
552 ioport unsigned port000C; /* ’24xx compiler specific keyword */
553
554
555 /*** Constant Definitions ***/
556 #define timer2_per 58594 /* 250ms timer2 period with a 1/128
557 timer prescaler and 30MHz CPUCLK */
558
559 #define pwm_half_per 750 /* period/2, 20KHz symmetric PWM with
560 a 30MHz CPUCLK */
561
562 #define pwm_duty 563 /* 25% PWM duty cycle */
563
564
565 /*** Global Variable Definitions ***/
566 unsigned int LED_index; /* LED_index */

SPRA755

32 Getting Started in C and Assembly Code With TMS320LF240x DSP

567 /****************************** MAIN ROUTINE ***************************/
568 void main(void)
569 {
570
571 /*** Configure the System Control and Status registers ***/
572 *SCSR1 = 0x00FD;
573 /*
574 bit 15 0: reserved
575 bit 14 0: CLKOUT = CPUCLK
576 bit 13–12 00: IDLE1 selected for low–power mode
577 bit 11–9 000: PLL x4 mode
578 bit 8 0: reserved
579 bit 7 1: 1 = enable ADC module clock
580 bit 6 1: 1 = enable SCI module clock
581 bit 5 1: 1 = enable SPI module clock
582 bit 4 1: 1 = enable CAN module clock
583 bit 3 1: 1 = enable EVB module clock
584 bit 2 1: 1 = enable EVA module clock
585 bit 1 0: reserved
586 bit 0 1: clear the ILLADR bit
587 */
588
589 *SCSR2 = (*SCSR2 | 0x000B) & 0x000F;
590 /*
591 bit 15–6 0’s: reserved
592 bit 5 0: do NOT clear the WD OVERRIDE bit
593 bit 4 0: XMIF_HI–Z, 0=normal mode, 1=Hi–Z’d
594 bit 3 1: disable the boot ROM, enable the FLASH
595 bit 2 no change MP/MC* bit reflects state of MP/MC* pin
596 bit 1–0 11: 11 = SARAM mapped to prog and data
597 */
598
599
600 /*** Disable the watchdog timer ***/
601 *WDCR = 0x00E8;
602 /*
603 bits 15–8 0’s: reserved
604 bit 7 1: clear WD flag
605 bit 6 1: disable the dog
606 bit 5–3 101: must be written as 101
607 bit 2–0 000: WDCLK divider = 1
608 */
609
610
611 /*** Setup external memory interface for LF2407 EVM ***/
612 WSGR = 0x0040;
613 /*
614 bit 15–11 0’s: reserved
615 bit 10–9 00: bus visibility off
616 bit 8–6 001: 1 wait–state for I/O space
617 bit 5–3 000: 0 wait–state for data space
618 bit 2–0 000: 0 wait state for program space
619 */
620
621 /*** Setup shared I/O pins ***/
622 *MCRA = 0x0040; /* group A pins */
623 /*
624 bit 15 0: 0=IOPB7, 1=TCLKINA
625 bit 14 0: 0=IOPB6, 1=TDIRA

SPRA755

33 Getting Started in C and Assembly Code With TMS320LF240x DSP

626 bit 13 0: 0=IOPB5, 1=T2PWM/T2CMP
627 bit 12 0: 0=IOPB4, 1=T1PWM/T1CMP
628 bit 11 0: 0=IOPB3, 1=PWM6
629 bit 10 0: 0=IOPB2, 1=PWM5
630 bit 9 0: 0=IOPB1, 1=PWM4
631 bit 8 0: 0=IOPB0, 1=PWM3
632 bit 7 0: 0=IOPA7, 1=PWM2
633 bit 6 1: 0=IOPA6, 1=PWM1
634 bit 5 0: 0=IOPA5, 1=CAP3
635 bit 4 0: 0=IOPA4, 1=CAP2/QEP2
636 bit 3 0: 0=IOPA3, 1=CAP1/QEP1
637 bit 2 0: 0=IOPA2, 1=XINT1
638 bit 1 0: 0=IOPA1, 1=SCIRXD
639 bit 0 0: 0=IOPA0, 1=SCITXD
640 */
641
642 *MCRB = 0xFE00; /* group B pins */
643 /*
644 bit 15 1: 0=reserved, 1=TMS2 (always write as 1)
645 bit 14 1: 0=reserved, 1=TMS (always write as 1)
646 bit 13 1: 0=reserved, 1=TD0 (always write as 1)
647 bit 12 1: 0=reserved, 1=TDI (always write as 1)
648 bit 11 1: 0=reserved, 1=TCK (always write as 1)
649 bit 10 1: 0=reserved, 1=EMU1 (always write as 1)
650 bit 9 1: 0=reserved, 1=EMU0 (always write as 1)
651 bit 8 0: 0=IOPD0, 1=XINT2/ADCSOC
652 bit 7 0: 0=IOPC7, 1=CANRX
653 bit 6 0: 0=IOPC6, 1=CANTX
654 bit 5 0: 0=IOPC5, 1=SPISTE
655 bit 4 0: 0=IOPC4, 1=SPICLK
656 bit 3 0: 0=IOPC3, 1=SPISOMI
657 bit 2 0: 0=IOPC2, 1=SPISIMO
658 bit 1 0: 0=IOPC1, 1=BIO*
659 bit 0 0: 0=IOPC0, 1=W/R*
660 */
661
662 *MCRC = 0x0000; /* group C pins */
663 /*
664 bit 15 0: reserved
665 bit 14 0: 0=IOPF6, 1=IOPF6
666 bit 13 0: 0=IOPF5, 1=TCLKINB
667 bit 12 0: 0=IOPF4, 1=TDIRB
668 bit 11 0: 0=IOPF3, 1=T4PWM/T4CMP
669 bit 10 0: 0=IOPF2, 1=T3PWM/T3CMP
670 bit 9 0: 0=IOPF1, 1=CAP6
671 bit 8 0: 0=IOPF0, 1=CAP5/QEP4
672 bit 7 0: 0=IOPE7, 1=CAP4/QEP3
673 bit 6 0: 0=IOPE6, 1=PWM12
674 bit 5 0: 0=IOPE5, 1=PWM11
675 bit 4 0: 0=IOPE4, 1=PWM10
676 bit 3 0: 0=IOPE3, 1=PWM9
677 bit 2 0: 0=IOPE2, 1=PWM8
678 bit 1 0: 0=IOPE1, 1=PWM7
679 bit 0 0: 0=IOPE0, 1=CLKOUT
680 */
681
682 /*** Configure IOPC0 pin as an output ***/
683 *PCDATDIR = *PCDATDIR | 0x0100;
684
685

SPRA755

34 Getting Started in C and Assembly Code With TMS320LF240x DSP

686 /*** Setup timers 1 and 2, and the PWM configuration ***/
687 *T1CON = 0x0000; /* disable timer 1 */
688 *T2CON = 0x0000; /* disable timer 2 */
689
690 *GPTCONA = 0x0000; /* configure GPTCONA */
691 /*
692 bit 15 0: reserved
693 bit 14 0: T2STAT, read–only
694 bit 13 0: T1STAT, read–only
695 bit 12–11 00: reserved
696 bit 10–9 00: T2TOADC, 00 = no timer2 event starts ADC
697 bit 8–7 00: T1TOADC, 00 = no timer1 event starts ADC
698 bit 6 0: TCOMPOE, 0 = Hi–z all timer compare outputs
699 bit 5–4 00: reserved
700 bit 3–2 00: T2PIN, 00 = forced low
701 bit 1–0 00: T1PIN, 00 = forced low
702 */
703
704
705 /* Timer 1: configure to clock the PWM on PWM1 pin */
706 /* Symmetric PWM, 20KHz carrier frequency, 25% duty cycle */
707 *T1CNT = 0x0000; /* clear timer counter */
708 *T1PR = pwm_half_per; /* set timer period */
709 *DBTCONA = 0x0000; /* deadband units off */
710 *CMPR1 = pwm_duty; /* set PWM1 duty cycle */
711
712 *ACTRA = 0x0002; /* PWM1 pin set active high */
713 /*
714 bit 15 0: space vector dir is CCW (don’t care)
715 bit 14–12 000: basic space vector is 000 (dont’ care)
716 bit 11–10 00: PWM6/IOPB3 pin forced low
717 bit 9–8 00: PWM5/IOPB2 pin forced low
718 bit 7–6 00: PWM4/IOPB1 pin forced low
719 bit 5–4 00: PWM3/IOPB0 pin forced low
720 bit 3–2 00: PWM2/IOPA7 pin forced low
721 bit 1–0 10: PWM1/IOPA6 pin active high
722 */
723
724 *COMCONA = 0x8200; /* configure COMCON register */
725 /*
726 bit 15 1: 1 = enable compare operation
727 bit 14–13 00: 00 = reload CMPRx regs on timer 1 underflow
728 bit 12 0: 0 = space vector disabled
729 bit 11–10 00: 00 = reload ACTR on timer 1 underflow
730 bit 9 1: 1 = enable PWM pins
731 bit 8–0 0’s: reserved
732 */
733
734
735 *T1CON = 0x0840; /* configure T1CON register */
736 /*
737 bit 15–14 00: stop immediately on emulator suspend
738 bit 13 0: reserved
739 bit 12–11 01: 01 = continous–up/down count mode
740 bit 10–8 000: 000 = x/1 prescaler
741 bit 7 0: reserved in T1CON
742 bit 6 1: TENABLE, 1 = enable timer
743 bit 5–4 00: 00 = CPUCLK is clock source
744 bit 3–2 00: 00 = reload compare reg on underflow

SPRA755

35 Getting Started in C and Assembly Code With TMS320LF240x DSP

745 bit 1 0: 0 = disable timer compare
746 bit 0 0: reserved in T1CON
747 */
748
749
750 /* Timer 2: configure to generate a 250ms periodic interrupt */
751 *T2CNT = 0x0000; /* clear timer counter */
752 *T2PR = timer2_per; /* set timer period */
753
740 *T2CON = 0xD740; /* configure T2CON register */
755 /*
756 bit 15–14 11: stop immediately on emulator suspend
757 bit 13 0: reserved
758 bit 12–11 10: 10 = continous–up count mode
759 bit 10–8 111: 111 = x/128 prescaler
760 bit 7 0: T2SWT1, 0 = use own TENABLE bit
761 bit 6 1: TENABLE, 1 = enable timer
762 bit 5–4 00: 00 = CPUCLK is clock source
763 bit 3–2 00: 00 = reload compare reg on underflow
764 bit 1 0: 0 = disable timer compare
765 bit 0 0: SELT1PR, 0 = use own period register
766 */
767
768 /*** Other setup ***/
769 LED_index = 0x0001; /* initialize the LED index */
770
771 /*** Setup the core interrupts ***/
772 *IMR = 0x0000; /* clear the IMR register */
773 *IFR = 0x003F; /* clear any pending core interrupts */
774 *IMR = 0x0004; /* enable desired core interrupts */
775
776 /*** Setup the event manager interrupts ***/
777 *EVAIFRA = 0xFFFF; /* clear all EVA group A interrupts */
778 *EVAIFRB = 0xFFFF; /* clear all EVA group B interrupts */
779 *EVAIFRC = 0xFFFF; /* clear all EVA group C interrupts */
780 *EVAIMRA = 0x0000; /* enable desired EVA group A interrupts */
781 *EVAIMRB = 0x0001; /* enable desired EVA group B interrupts */
782 *EVAIMRC = 0x0000; /* enable desired EVA group C interrupts */
783
784 *EVBIFRA = 0xFFFF; /* clear all EVB group A interrupts */
785 *EVBIFRB = 0xFFFF; /* clear all EVB group B interrupts */
786 *EVBIFRC = 0xFFFF; /* clear all EVB group C interrupts */
787 *EVBIMRA = 0x0000; /* enable desired EVB group A interrupts */
788 *EVBIMRB = 0x0000; /* enable desired EVB group B interrupts */
789 *EVBIMRC = 0x0000; /* enable desired EVB group C interrupts */
790
791 /*** Enable global interrupts ***/
792 asm(” CLRC INTM”); /* enable global interrupts */
793
794 /*** Proceed with main routine ***/
795 while(1); /* endless loop, wait for interrupt */
796
797 } /* end of main() */
798

SPRA755

36 Getting Started in C and Assembly Code With TMS320LF240x DSP

799 /********************** INTERRUPT SERVICE ROUTINES *********************/
800 interrupt void timer2_isr(void)
801 {
802
803 *EVAIFRB = *EVAIFRB & 0x0001; /* clear T2PINT flag */
804
805 /*** Sequence the LED bank on the LF2407 EVM ***/
806 LED = LED_index; /* light the LEDs */
807 LED_index = LED_index << 1; /* left shift LED index */
808 if(LED_index == 0x0010) LED_index = 0x0001; /* reset LED index */
809
810 /*** Toggle the IOPC0 pin ***/
811 *PCDATDIR = *PCDATDIR ^ 0x0001; /* XOR the IOPC0 bit to toggle the pin */
812
813 }

SPRA755

37 Getting Started in C and Assembly Code With TMS320LF240x DSP

814 /***
815 * Filename: example_c.cmd *
816 * *
817 * Author: David M. Alter, Texas Instruments Inc. *
818 * *
819 * Last Modified: 03/14/01 *
820 * *
821 * Description: C code linker command file for LF2407 DSP. *
822 ***/
823
824
825 MEMORY
826 {
827 PAGE 0: /* Program Memory */
828 VECS: org=00000h, len=00040h /* internal FLASH */
829 FLASH: org=00044h, len=07FBCh /* internal FLASH */
830 EXTPROG: org=08800h, len=07800h /* external SRAM */
831
832 PAGE 1: /* Data Memory */
833 B2: org=00060h, len=00020h /* internal DARAM */
834 B0: org=00200h, len=00100h /* internal DARAM */
835 B1: org=00300h, len=00100h /* internal DARAM */
836 SARAM: org=00800h, len=00800h /* internal SARAM */
837 EXTDATA: org=08000h, len=08000h /* external SRAM */
838 }
839
840 SECTIONS
841 {
842 /* Sections generated by the C–compiler */
843 .text: > FLASH PAGE 0 /* initialized */
844 .cinit: > FLASH PAGE 0 /* initialized */
845 .const: > B1 PAGE 1 /* initialized */
846 .switch: > FLASH PAGE 0 /* initialized */
847 .bss: > B1 PAGE 1 /* uninitialized */
848 .stack: > SARAM PAGE 1 /* uninitialized */
849 .sysmem: > B1 PAGE 1 /* uninitialized */
850
851 /* Sections declared by the user */
852 vectors: > VECS PAGE 0 /* initialized */
853 }

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products
or services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2001, Texas Instruments Incorporated

