i3 TEXAS
INSTRUMENTS

Intro to the TI-RTOS Kernel Workshop
Student Guide

” "{L‘M‘- RUMENT IS

3 —

iva" : C6000™
Ir: :?ME,SSE““ Power Optimizod D8P

SimpleLink™
Wrelpss nebwork
Processors

i3 Texas i3 Texas v
INSTRUMENTS INSTRUMENTS BTeus

Intro to the TI-RTOS Kernel Workshop . . .
Student Guide, Rev 4.00 — May 2015 Technical Training

Intro to the TI-RTOS Kernel Workshop - Cover 0-1

Notice

Notice

Creation of derivative works unless agreed to in writing by the copyright owner is forbidden. No
portion of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the
prior written permission from the copyright holder.

Texas Instruments reserves the right to update this Guide to reflect the most current product
information for the spectrum of users. If there are any differences between this Guide and a
technical reference manual, references should always be made to the most current reference
manual. Information contained in this publication is believed to be accurate and reliable.
However, responsibility is assumed neither for its use nor any infringement of patents or rights of
others that may result from its use. No license is granted by implication or otherwise under any
patent or patent right of Texas Instruments or others.

Copyright ©2015 by Texas Instruments Incorporated. All rights reserved.

Technical Training Organization
Semiconductor Group

Texas Instruments Incorporated
7839 Churchill Way, MS 3984
Dallas, TX 75251-1903

Revision History

0.51 BETA Aug 2013 — CCSv5.4+, first beta run
1.00 PROD Oct 2013 (tons of errata from beta workshop — all fixed)

1.20 Nov 2013, errata fixed, C6000 BSL changed, lab/solution changes

1.40 Feb 2014 — errata fixed, interrupt benchmark info added, updated labs/sols
2.00 June 2014 — MAJOR upgrade to CCSv6, TI-RTOS SDKs, C6748 LCDK
2.10 Aug 2014 —upgraded all TI-RTOS SDKs, minor errata, fixed UIA lab issues
2.20 Oct 2014 — minor PPT and lab errata

2.30 Dec 2014 — minor errata, updated all software tools

2.50 March 2015 — minor errata in labs/slides

3.00 April 2015 — updated labs/solutions, minor errata

4.00 May 2015 — minor errata to lab procedures, labs/solution files, slide updates
NOTE: This workshop will no longer receive updates past 5/15/15

Intro to the TI-RTOS Kernel Workshop - Cover

Welcome

Introduction

The purpose of this chapter is to provide an overall introduction to the workshop including the
workshop objectives, agenda/outline, device families and find out, in general, what the needs are
from the participating students.

This chapter also has a short lab which will allow each student to test their hardware setup along
with the IDE — Code Composer Studio. Because this workshop contains many labs, we need to
make sure each student’s setup is ready to go.

All students are required to follow all installation instructions for their software/hardware setup
PRIOR to attending the workshop. Also, this workshop assumes you are using one of the MCU
LaunchPad boards (Tiva-C/TM4C, MSP430, and C28x) or the C6748 LCDK. The labs may not
work on other platforms without additional changes.

Intro to the TI-RTOS Kernel Workshop - Welcome 1-1

Chapter Topics

Chapter Topics

B 4= [0 3 - N 141
(O] o) (=Tl o] o) o7 SRS 1-2
TI-RTOS Workshop — Welcome & INtrodUCHIONccccuuveeeieaeeeiceiiieae et eeesn 1-3

AdMINISTrative TOPICSot e e e e e e e e e e e e e e e nenneeas 1-3
WOIKSNOP ODJECHIVES ..o 1-4
What We Won’t Cover — and WRY........ooo e 1-5
WOrKSHOP OULIINE ... e e e e e e e e e e e st e e e e e e e e e snnrnneees 1-6
INEFOAUCTIONS ...t e e e e e e st e e e e e e e e nn e s 1-7
TI DEVICES — OVEIVIOW ...ttt et e e et e e e e e e e e e e e e e e aaennnnees 1-8
TIFRTOS .ottt e e et e e ettt e e ettt e e e ettt e e e ettt e e e et e e e e e e e e atraaeeaas 1-10
WHhat IS TIERTOS ..ttt ettt e ettt e e e st e e e e snba e e e s anteeeesaneeeaeaan 1-10
Where Can You Download the TI-RTOS SDK ?.....coiuiiiiiiiiiie e 1-11
FFOT MOTE INTO. ..ottt e e e e e et e e 1-12
Workshops and Onlin€ RESOUICESeoiiiiiiiiiiie e 1-12
TIWVIKE SIEE .veeeeieieie ettt ettt e et e e e st e e e st e e e s sstaeeessntaeeesansaeeesansaneennns 1-13
BIOS WOIrKSROD ONINE...oveeeeeeeeeeeee ettt ettt a e e e e ettt e e e e e e s s 1-14
TI-RTOS WOrKSNOP WIKI......eiieiiiiiee ittt e e s etee e e e snraeee e e 1-14
TI-RTOS Workshop — Onling VIdEOScoeiiieiiiiiie e 1-15
HanNAs-0n Lab TargetS. ...ttt 1-16
Lab 1 — SYSIEIM SEIUD ..ot 1-17
LT oy Bl (o o7 To L1 = R 1-18
Computer Login (for TI computers/classrooms Only).........cccuvveeieeeiiiiiiiiiieee e 1-18
Connect Your Hardware (EVM, LaunchPad) to the PC..........cccoooiiiiiiiiie e, 1-18
Launch CCS and Run “BIINK LEDe et e e 1-19
Terminate the Debug SESSION ... 1-23
That's it, YOUTE DONE ...t e e e e et e e e aeaeees 1-23
Optional Lab — Exploring CCS Help — ProCeQUIeccccccuuveeeeeeeeesiiiiieaseeesesiriiaaaaeeaaa, 1-24
AAAitional INTOIMMALIONc.ocueiieeeeee ettt ea e aea e 1-26
INOTES ... ettt ettt et e et e e 1-28

Intro to the TI-RTOS Kernel Workshop - Welcome

TI-RTOS Workshop — Welcome & Introduction

TI-RTOS Workshop — Welcome & Introduction

Administrative Topics

In a live class, the instructor will go through this list and talk about each one specific to class

location/room.

Administrative Topics
¢ Start & End Times (i\)
¢ Lunch (special diets?), Breaks N6
¢ Tools Install & Labs

: g

¢ Course Materials \:/(g

Ve ;13
¢ Name Tags (Lab 0) %\%/
¢ Restrooms _
¢ Mobile Communications
¢ Dialogue (the key to learning)

Please disable ring tones on cell phones

Intro to the TI-RTOS Kernel Workshop - Welcome 1-3

TI-RTOS Workshop — Welcome & Introduction

Workshop Objectives
What Will You Accomplish?

Challenge Areas of Focus

¢ Define key software design decisions |+ Multiple Threads
in developing real-time systems: « Priorities
* Memory Footprint

¢ Apply optimal TI-RTOS Kernel « Scheduling
constructs to implement a given real- |« Interrupts
time system: + Dynamic Memory

* Instrumentation

¢ Use Code Composer Studio (CCS) + CCS

IDE to compile, link, debug and « Compiler/Linker
benchmark code on a development » Profiling
platform: + Debug Msgs/Info

i3 Texas What we won't cover...

INSTRUMENTS

As is the case with most training topics, there is a balance between time and breadth/depth of the
topics that can be covered. A serious “deep dive” into the world of TI-RTOS may take 5-8 days,
but this is, of course, unreasonable for a live training event. So, the author of this workshop had
to decide what the most important topics were and prioritize them which resulted in a 2-day
workshop format.

The objectives were derived from the most common challenges users face when they design their
systems. In the first row above, key areas of interest for developing real-time systems include
handling multiple threads and how to prioritize them. In systems without an O/S, this can be a
very difficult task. Also, minimizing memory footprint is always a big concern, especially for MCU
users with limited on-chip RAM.

The second row above speaks to the heart of this workshop — learning the optimal TI-RTOS
Kernel API that assist users in scheduling their threads, creating O/S-handled interrupts and
dynamic memory as well as adding instrumentation (visibility) to the application. The main goal of
this workshop is to cover the key concepts and mechanics in using the SYS/BIOS (TI-RTOS
Kernel) in any application.

A “getting started” workshop, like this one, would not be complete if we didn’t cover the basic
tools used to create and debug applications. So, as the third area mentions, this workshop will
start off with an introduction to TI's IDE — Code Composer Studio — which includes the compiler
and linker tools as well as how to benchmark (profile) your code.

1-4 Intro to the TI-RTOS Kernel Workshop - Welcome

TI-RTOS Workshop — Welcome & Introduction

What We Won’t Cover — and Why...

Challenge

Areas of Focus

+ Define key software design decisions
in developing real-time systems:

+ Priorities
« Multiple Threads
+ Memory Footprint

+ Apply optimal SYS/BIOS constructs to
implement a given real-time system:

+ Scheduling
« Interrupts

« Dynamic Memory
« Instrumentation

+ Use Code Composer Studio (CCS
IDE to compile, link, debug and
benchmark code on a development
platform:

-ccs

« Compiler/Linker
« Profiling

« Debug Msgs/Info

13 TEXAS
INSTRUMENTS

What We Won’t Cover and Why...

What Will You Accomplish?

Issues “outside the box”:
¢ Operating System Theory

¢ Specific hardware and software
applications

4 Architectural details*

TI-RTOS Workshop Scope and Depth

+ In 2 days, it is impossible to cover everything. We have purposefully
chosen the most pertinent topics related to the TI-RTOS kernel.

& Many app notes have been written to address specific topics not
covered in the workshop (check out www.ti.com/sysbios).

+ Do you have a need that falls “outside the box” ? If so, let us know now.

; * 1-day and multi-day workshops are available that are target-specific

As important as talking about what we WILL cover in the workshop — is to talk about what we do
NOT plan to cover. There is just not enough time in 2 days to discuss operating system theory,
specific hardware or software applications or deep architectural details about any one specific Tl

processor.

We do cover just enough of the architecture where BIOS intersects the hardware — a good
example of this is related to interrupts. If you have a strong desire to learn more about the

architecture of a specific processor, we suggest you take one of the workshops on that particular

processor.

Intro to the TI-RTOS Kernel Workshop - Welcome

TI-RTOS Workshop — Welcome & Introduction

Workshop Outline
Intro to the TI-RTOS Kernel Workshop

/Day 1 1. Welcome) _
2. Intro to CCS *
3. Intro to TI-RTOS Kernel Application
4. Configuring the Kernel —3 L S2
Operating System
Day 2 . Using Hwi
. Using Swi

5
6
7. Using Clk
8. Usmg Tasks
9

GrabBag Using Dynamic Mem

o

Copyright © 2013 Texas Instruments. All rights reserved.

This is the outline of the entire workshop. The current chapter (Welcome) simply sets the
groundwork for the rest of the chapters. As shown, the second chapter provides an overview of
TI's IDE (Integrated Development Environment) — CCS — and a walkthrough of this tool via a lab.
We have to assume most users don’t have tons of experience with CCS and, honestly, you can’t
do any labs without this foundational piece.

Then, from the third chapter through the optional chapter (Grab-bag), we will dive into the
concepts and mechanics of using the TI-RTOS Kernel, otherwise known as SYS/BIOS or “BIOS”
for short. The names of the chapters above are mostly self-explanatory.

Chapter 3 is the “why use BIOS” chapter — covering the concepts of BIOS and the benefits of
using an O/S. This is the only chapter that does not contain a lab — however, there is a quiz at the
end. Chapters 5-8 cover the basic thread types (Hwi, Swi, Task, and Idle) as well as how to use
the Clock module in BIOS. Chapter 9 is all about how threads can communicate with each other —
via mailboxes, queues, mutexes, etc.

Chapter “10” is about dynamic memory. Many users may opt for a static only system — hence this
chapter is optional. If time permits and the students in the workshop opt to stay for the last
chapter, then this information will be covered.

1-6 Intro to the TI-RTOS Kernel Workshop - Welcome

TI-RTOS Workshop — Welcome & Introduction

Introductions

Let’s See Who’s Here...

Raise your hand if you have...
¢ Attended a Tl workshop (1-day, Multi-day)
¢ Used CCSv5 before...

¢ Experience with TI-RTOS Kernel
(a.k.a. SYS/BIOS or BIOS 6.x)

¢ Used DSP/BIOS (BIOS 5.x), but not
SYS/BIOS (BIOS 6.x)

13 TEXAS
INSTRUMENTS

Often times, it helps the instructor of the class to know what types of experiences each student
has coming into the workshop. For example, if everyone has a ton of experience with BIOS or
CCS, this allows us (the instructors) to tune the workshop pace based on experience level.
Usually, in a general audience workshop, the experience is varied enough where the proper pace
is somewhat slow at the beginning to make sure everyone understands and can demonstrate
skills in the foundational pieces — especially chapters 2-4.

So, the instructor will ask the students to raise their hands and provide some indication of
experience and may ask follow-up questions to dive deeper into understanding specific
experience in some areas.

Intro to the TI-RTOS Kernel Workshop - Welcome 1-7

TI Devices — Overview

Tl Devices — Overview

Whether you are looking for the MSP430, which is the lowest power microcontroller (MCU) in the
world today ... or the some of the highest performance single-chip microprocessors (MPU) ever
designed (check out Multicore) ... or something in between ... Tl has your needs covered.

Microcontrollers (MCU) Application (MPU)

MSP430 C2000 TivaC Hercules Sitara DSP Multicore
16-bit 32-bit 32-bit 32-bit 32-bit 16/32-bit 32-bit
Ultra Low . All-around Linux All-around Massive
Power & Cost Real-time MCU Safety Android DSP Performance

MSP430 |* Real-time ARM ARM :ﬁg I ggg
ULPRISC | C28x MCU Cortex-M4F | COTtex-M3 | Cortex-A8
- ARM M3+C2g | Cortex- Cortex-R4 | Cortex-A15
: L%W1 F;JV‘K Mode . otor Control iZ-btit(I;I\c/)att -Lockstep +$5LinuxCPU +C5000Low X OrFloat
0. o« Dini * Nested Vector Dual-coreR4 : *Upto 12 cores
0.5 pA (RTC) *Digtal Power e (Nvic) ooy 3D Graphics PowerDSP B 0 oo
+Analog/F * Precision - Ethemnet Moy «PRUICSS %%—ggoﬂélfsl%at « DSP MMACs:
«USB and RE Timers’/PWM (MAC+PHY) *SIL3Certified industrial subsys 352,000
3rd Party Linux, Android, C5x: DSP/BIOS Linux
TR R (only) TLRTOS Kemnel C6x: TRRTOS (k) TIRTOS (K)
Flash: 512K 512K 512K 256Kto3M L1:32Kx2 L1:32Kx2 L1:32Kx2
FRAM: 64K Flash Flash Flash L2: 256K L2: 256K L2: 1M + 4M
25 MHz 300 MHz 80 MHz 220 MHz 1.35 GHz 800 MHz 1.4 GHz
$0.25 to $1.85 to $1.00 to $5.00 to $5.00 to $2.00 to $30.00 to
$9.00 $20.00 $8.00 $30.00 $25.00 $25.00 $225.00

To start with, look at the Blue/Red row about %5 the way down the slide. The columns with Red
signify devices utilizing ARM processor cores. If you didn’t think Tl embraces the ARM lineup of
processors, think again. Tl is one of the leaders in ARM development, manufacturing and sales.

Jumping to the 3" column, the Tiva C (Tiva Connected) processors are probably the best all-
around MCU’s in use today. The 32-bit floating point ARM Cortex-M4F core can be connected to
the real-world by a dizzying array of peripherals. They provide a near-perfect balance of
performance, power, and connectivity.

On the other hand, if you're building safety critical applications, the Hercules family of processors
is what you should key in on. Whether your customers appreciate the safety of dual-core,
lockstep processing or the SIL3 certification, these processors are a unique mix of ARM Cortex-
R4 performance combined with TI's vast SafeTI® knowledge.

Moving up to what ARM calls their ‘Application’ series of processors, Tl set the processing world
on fire (figuratively) when they introduced the Sitara AM335x. That you could get a $5 processor
which runs Linux, Android or other high-level operating systems was jaw-dropping. We probably
didn’t make some PC manufactures happy — we’ve seen many of our customers replace bulky,
power-hungry embedded PC’s with small, low-power BeagleBoard-like replacements. This device
was the inflection point — it’s started a new direction for embedding high-level host systems.

And if you’re looking for the high-end ARM Cortex-A15, we’'ve got that too. Take your pick: do
you want one ... or up to 4 A15 cores on a single device? And these multi-core devices also pack
the number crunching of TI's C66x line of DSP cores. When high-end performance processing is
critical to your systems, look no further than Tl Multicore.

Intro to the TI-RTOS Kernel Workshop - Welcome

TI Devices — Overview

But as one student asked, “If ARM is so great, why do you make other types of processors?”

While ARM is probably thought of today as the best all-around set of processor cores, there are
areas where it can be improved upon.

Driving to the lowest-power dissipation is one of those areas. In the end, the venerable MSP430
is not to be outdone on the low end. As the MSP430 teams says, Ultra Low-Power (ULP) is “in
our DNA”. You know you’re doing something right when the 10-year shelf-life of the battery ends
up self-dissipating before you run it dry with your MSP430 design. It’s just hard to beat an MCU
designed from the ground up as a low-power CPU. That said, it's also hard to beat the MSP430’s
simple, inexpensive, high-performance RISC engine.

The C2000 family has set the standard for control applications. Whether it's digital motor control,
power control or one of the many other control-oriented MCU applications, this CPU really
crunches the data. You might also see a little Red in this column. That'’s to indicate that even a
good DSP-based microcontroller can use a little bit of ARM to get a leg-up in the industry. We've
coupled an ARM Cortex-M3 along with the C28x core to make a stellar processing duo. Use the
ARM to run your networking and USB stacks — all the while the C28x core is taking care of your
system’s real-time processing needs. Sure, you could buy two chips to implement your systems
(we’ll happily sell you a C28x along with Tiva C), but these devices integrate them both into a
singular device.

Finally, Tl is known by many as the center of DSP excellence. While these CPUs often get lost in
all the hoopla surrounding ARM today, when it comes to real-time systems, a good DSP is hard
to beat. Whether you're implementing a low-power system (look to C5000 DSP’s) or need the
number crunching performance of the C6000, these devices still cannot be bested in the world of
hard real-time, low-latency, highly deterministic applications. As mentioned earlier, the highest
performing C6000 DSP cores have been combined into the awesome performance of Multicore.
You can get up to 8 CPU’s on a single device; make them all C66x DSPs — or match four C66x
CPU’s up with four of ARM’s stunning Cortex-A15’s for a performance knock-out punch.

Intro to the TI-RTOS Kernel Workshop - Welcome 1-9

TI-RTOS

TI-RTOS

What is TI-RTOS ?

What is TI-RTOS?
¢ A Software Development Kit (SDK) that contains a real-time O/S (SYS/BIOS)
¢ Currently available for Tiva-C (M4), Concerto (M3+C28x), C28x, MSP430, C6000
and Sitara (A8).
¢ Combines kernel (SYS/BIOS) with middleware such as TCP/IP and USB stacks,
FAT file system and device drivers that are “BIOS aware”
__________________________ |
IPC : TI-RTOS SDK for MCU 1
1 +Single product install, GSG :
: *Fully tested and integrated |
CC3xxx [1
wan e - Complete System 1
Kernel 1 n :
1
| ! If FAT File System USB |
1
|9 .
e |
1 lr TCP/IP IPC: Multicore 1
1 |a Communications Runtime :
Pt
1
DriverLib Dl |
USB, serial 1 |0 Drivers, Tlware, 1
' n Kemel (SYS/BIOS) | | o o> !
Existing TI Components L !

This is purely an introduction to the contents of the TI-RTOS SDK (Software Development Kit).
TI-RTOS is basically a software kit that contains drivers for things like IPC (Inter-Processor
Communications), TI's CC3000/31000 Wi-Fi modules, Networking, Fat filesystems and, of
course, the operating system called SYS/BIOS.

MCU customers often demand more than just an O/S. They want drivers that are built alongside
the O/S to help them create communication protocols in their application. The TI-RTOS SDK also
includes the driver library software such as TivaWare — an O/S-friendly version of the standard
driver library supported in that product family.

This workshop will focus primarily on the kernel — otherwise known as SYS/BIOS or “BIOS” or the
TI-RTOS kernel. The author and instructors will use any and all these names to describe the
operating system.

Intro to the TI-RTOS Kernel Workshop - Welcome

TI-RTOS

Where Can You Download the TI-RTOS SDK ?

TI-RTOS (Download, More Info...)

TI-RTOS: Real-Time Operating System (RTOS)

(ACTIVE) TI-RTOS

Description Technical
& Features Docums

comltoo\lt'\-rtos
Order Now :

Support &
Community

Part Number Buy from Texas Instruments or Third Party Alert Me

TIRTOS: Free

Real-Time Operating System (RTOS
Get Software

Status Current Version Version Date

m ACTIVE v2_00_01_23

24 Apr2014

TI-RTOS 2.x Product Releases i

Version

Description 1

CCS App Store

Update includes a new versian of the 5Y5/BIOS ker
2.10.01.38 | well as new PWM and DMA-based UART drivers for

-
Release Notes) oM
&
2.01.00.03 | Updare to suppartthe latest CC2100 and CC32005] RME:3 (01
for C2000 for C6000
Support for CC3. ble in the TI-RTOS for §f
se als pport for the CC3100 into

2.00.02.36 | This rele;
. e TI-RTOS for C2000 TI-RTOS for C6000
3 Jun 2014, Release Notes)

for MSP430

TI-RTOS for MSP430

for TivaC

TI-RTOS for TivaC

Con) :
2 1.23 |EK C129. rd suppol also added. Code Composer Studio
users are required to use CCSvE.x (or higher) and are recommended to use the App
Center in CCS to dow ad TI-RTOS. (24 Apr 2014, Release Notes)
- e

Shown is the link that can be used to access documentation on the TI-RTOS SDK and download
the kit. Currently, C28x, Tiva-C, C6000, MSP430 and Sitara (Cortex A8) products are supported.

Once again, the RTOS kernel — SYS/BIOS — or BIOS for short — is supported on almost all Tl
architectures. What the SDK adds are drivers for peripherals as well as O/S-aware versions of
the driver libraries — TivaWare and MSP430Ware. C28x and C6000 don't offer the full TI-RTOS

SDK including the drivers, but they all run the SYS/BIOS kernel.

Intro to the TI-RTOS Kernel Workshop - Welcome

For More Info...

For More Info...

Workshops and Online Resources

Where can | get additional skills?

Tl Hands-On Workshop Curriculum

¢ Building Linux based Systems Introduction to Linux Programming (3 days)
(ARM based - e.g. AM335x) www.ti.com/training

< Building BIOS-based Systems Intro to the TI-RTOS Kernel Workshop (2 days)
(SYS/BIOS Kemel, supports 4 architectures) www.ti.com/training

+ (6000 and MCU-based Systems 1- to 4-day Workshops Available
(C6000, MSP430, Tiva C Series, C28x) www.ti.com/training

Online Resources:
= T| Software

= MCU/DSP /AMxx / MCU / Wiki / RTOS http://www.ti.com/sysbios

http://processors.wiki.ti.com http://processors.wiki.ti.com/index.php/Download_CCS
http://www.ti.com/tool/ti-rtos
http://www.ti.com/myregisteredsoftware

=TI E2E Community (videos, forums, blogs)
http://e2e.ti.com

= TTO Workshop Materials
http://processors.wiki.ti.com/index.php/Hands-On_Training_for_TI_Embedded Processors

We often get questions about where to find out more information. Well, the top three bullets are
all about more training opportunities for customers who attend our classes. As you can see, we
have workshops on Linux running on the Cortex-A8 devices as well as architecture classes on
C6000 and all of our MCU product families.

In the bottom part of this slide, we talk about other resources that are available such as the main
TI wiki site where engineers post “application note” information about various topics as well as the
Engineer-to-Engineer (E2E) forum where users can ask questions and get responses from the
application teams inside TI.

1-12 Intro to the TI-RTOS Kernel Workshop - Welcome

For More Info...

TI Wiki Site

Tl Wiki (processors.wiki.ti.com)

Navigation

Wain Page
All pages

All categories
Popular pages
Popular authors
Popular categories
Category stats
Recent changes
Random page
Help

Google Search

Printexport

Create a book
Download as PDF
Printable version

Toolbox

What links here
Related changes
Special pages
Permanent link
Browse properties

i3 TExas

Texas Instruments Wiki

A3 TEXAS INSTRUMENTS Frocucts applcations Tools & Software Support . Communy Sample & 8uy AooutTl Y Sample & Purchase Cart

& 7570.70.82 Talkforthis IP address Login/ create accoun‘

—— =

Page Discussion Read View source View history

Main Page

SYSEIOS 1.50A

fnop > SYSIBIOS 2.DAY Warshop » G000 Embedses Dasign Worshop > Inroducion o the T1- Translata this page to| cs - Gesky [=] [Transiate

> lisin Fege

restrictions on this page

Microcontrollers (MCUs) ARM-based Processors Digital Signal Processors

RTOS Kemel
There are s

16-bit Ultra Low 32-bit Real-Time 32-bit ARM MCU 32-bit ARM Application Singlecore DSP Multicore DSP Ultra Low Power
Power MCU Mcu Processors for Processors DSP
Performance
Applications
* MSP430™ « C2000™ * Tiva™ C « Sitara™ Cortex s OMAP™ « CB000™ Pawer s KeyStone « C5000™
Cortex™ M4 Aand ARMS Processors with Optimized Mutticore
» TMS570 » KeyStone Cortex™ Ag » KeyStone
Cortex™ R4 Cortex™ A15 AZ and A15 Multicore
* RM4 Cortex™ and Cortex™ o OMAP™ DSP+ARM
R4F Al15 + DSP Legacy » CE000™
. TMIS4TOM Processors with Mukticore
Cortex™ M3 ARMT, 9, 11
Automative * DaVinci™
Video
Processors

INSTRUMENTS

Py
-

oo B

Here is a screenshot of our current wiki site. You can point and click around or simply search for
the information you are looking for. Most users just use Google as the search engine and most

likely, some topic related to the search shows up on the Tl wiki site. Instead of writing real

application notes these days, engineers write wiki pages instead.

There is a TON of data and learning tools on all of these wiki sites. Well, in fact, this workshop
and all the associated videos are hosted on a wiki page...

Intro to the TI-RTOS Kernel Workshop - Welcome

BIOS Workshop Online...

BIOS Workshop Online...
TI-RTOS Workshop Wiki

TI-RTOS Workshop — Online

{f

6.6 Labs/Sols Downloads l
7 Intro to TI-RTOS Kemel Workshop Online Video Tuterials
8 Workshop Suggestions, Feedback, Questions, Comments (and monetary donations) {
e LW = _a M\ et —'-_—Jr

Introduction to the TI-RTOS Kernel Workshop

PO |

Contents [hide]
1 Waming - page under "transition” - ALL ITEMS moving to the new Tl Training Portal Seon (training ti.com) - PLEASE READ
2 Introduction to the TI-RTOS Kemnel Workshop - Now using CCSv6 and TI-RTOS SDKs
3 Online Training Videos Available as of 12/01/13
4 Use Cases
5 Attend a Live Workshop 1
6 Rev 3.00 IS NOW AVAILABLE - April 2015 l
6.1 Rev 3.00 Changes - April 2015
6.2 Workshop Student Guide
6.3 Workshop Lab Manual ONLY F
6.4 TI-RTOS Workshop Installation Guide (must be completed BEFORE class starts)
6.5 Workshop PPTs

http://processors.wiki.ti.com/index.php/TI-RTOS_Workshop

Note: soon to be replaced by training.ti.com here:

Texas https://training.ti.com/ti-rtos-workshop-series

INSTRUMENTS

If you installed the tools necessary to do the labs for this workshop, you have seen this site. The
author has posted all of the install docs, Powerpoint slides, labs, solutions and his online videos
for all to download and use. Shown below, and on the next page, are the contents of this site...

J‘i’ TEXAS
INSTRUMENTS

TI-RTOS Workshop — Materials, Files, Videos

Rev 3.00 IS NOW AVAILABLE - April 2015

The current workshop will support the fallowing products - Tiva-C series, MSP430, C6000 and C28x If
and timers. TI-RTOS is mostly target agnostic. so ANY user of ANY TI platform that supports TI-RTOS,
platform. For CC3200. CC26xx/CC13xx devices. users can run their labs on the Cortex M4 platform (Ti:
architecture. New solutions (lab 5. Hwi only) for MSP430FR5969 LP and MSP432401R LP are now aval

Rev 3.00 Changes - April 2015
- minor errata in slides, updated lab/solution files (latest RTOS SDKs, compilers), new solutions (lab S.i
Workshop Student Guide

The student guide includes all of the Powerpeint slides and lab procedures. This latest release mcludeé
below will give you everything you need to know to leam about the TI-RTOS kernel
Student Guide (April 20, 2015) (344 pages) (12 MB)

+ Intro to the TI-RTOS Kemel Workshop Student Guide Rev 3.00 (pdf)@ i

Workshop Lab Manual ONLY t
The lab manual includes only the lab procedures (ne Powerpeint slides are included).
Lab Manual (April 20, 2015) (150 pages) (5 MB)

+ Intro to the TI-RTOS Kemel Workshop Lab Manual ONLY Rev 3.00 (.pdf)@

TI-RTOS Workshop Installation Guide (must be completed BEFORE class starts)

TI-RTOS Workshop Installation Guide - (April 20, 2015) (12 pages) (525K)
The installation guide covers all procedures to dewnleadfinstall all TI-RTOS, driver library and CCS tocl
workshop was all about getting users "started” along the path of using TI tools and software. However

« Intro to the TI-RTOS Kemel Workshop Installation Guide Rev 3.00 (pdf)@

Workshop PPTs
All PowerPoint Slides (April 20, 2015) (17MB) Note: NeW Location soon !
« TI-RTOS Kemnel Workshop PPT Slides Rev 3.00 (.zip)& ¥
https://training.ti.com/ti-rtos-workshop-series
All Labs and Solution Files (April 20, 2015) (45MB)

» Labs and Selution Files Rev 3.00 (.zip) - install at C:\TI_RTOS#

Labs/Sols Downloads

Loncma, pras—

Intro to the TI-RTOS Kernel Workshop - Welcome

BIOS Workshop Online...

TI-RTOS Workshop — Online Videos
TI-RTOS Workshop — Online Videos

TI-RTOS Workshop Series

This workshop series provides an introduction to the TI-RTOS Kemel (also known as SYS/BIOS) for all Texas Instruments embedded
processor users (C28x, MSP430, Tiva-C, C6000, CE6x Multi-core/OMAR, Cortex AS)

iRTOS Werkehop seres NEEPSI//training.ti.com/ti-rtos-workshop-series

This workshop series has an introduction and ten chapters.

TI-RTOS Workshop Series - Introduction
Recorded Date: Tuesday, February 17, 2015

TI-RTOS Kernel 2-Day Workshop
TI-RTOS Kernel 2-day Workshop - Introduction

*p Texas

INSTRUMENTS
Tl Yians
amniation

TI-RTOS Workshop Series 1 of 10 - Welcome

Recorded Date: Tuesday. February 17, 2015
TI-RTOS Kernel 2-Day Workshop

TI-RTOS Kernel 2-day Workshop - Part 1 of 10

echnicarTr
Crianizaton

TI-RTOS Workshop Ser

Recorded Date: Tuesday. February
TI-RTOS Kernel 2-Day Workshop

TI-RTOS Kernel 2-day Workshop - P
9. Inter-thread Comm

[Optional]-|

BT micMem
INSTRUMENTS
Tec

Craanizaton

e petead P g .
13 TEXAS
INSTRUMENTS

Want to watch the author teach the chapters in this workshop “live”? Well, he spent quite a bit of
time going through each chapter and post producing each chapter to add some highlighting,
zoom and pans and other eye-catching stuff to keep the chapters as entertaining as possible.
There is not one scripted slide in all ten chapters — he just teaches it as if there was a live
audience in front of him.

Voice-over PPT can be extremely boring. However, this author is always concerned about
educational value and keeping the topic light-hearted, entertaining and along the way, you'll learn
the concepts and mechanics of using BIOS in your application. He tells stories and he shares the
good and the bad of all things Tl and BIOS. This author treats this workshop as an engineer
talking to other engineers. Nothing is perfect in the world of embedded systems and tools and
therefore the author tells the truth — even if it hurts. His teaching style is fun and entertaining and
‘raw”, so don’t expect the typical “put you to sleep” chapters that are all too common with voice-
over PPTs.

Also, if you're a C6000 user, this author and a co-worker have created a 2-day architectural
workshop that contains the same “raw” feel and entertaining videos covering all aspects of the
C6000 architecture, tools and compiler optimization, using the cache and EDMAS3. Those videos
can be accessed via the following link:

http://processors.wiki.ti.com/index.php/C6000 Embedded Design Workshop Using BIOS

Intro to the TI-RTOS Kernel Workshop - Welcome 1-15

http://processors.wiki.ti.com/index.php/C6000_Embedded_Design_Workshop_Using_BIOS

Hands-on Lab Targets...

Hands-on Lab Targets...

The following two slides cover the target boards for the labs for this workshop as of 1Q14.
Updates could be made at any time, so stay tuned.

Tiva-C LaunchPad MSP-EXP430F5529 LP
* TM4C123GH6PM (80 MHz) * MSP430F5529 (25 MHz)
* 256K Flash, 32K SRAM » 128K Flash, 10K SRAM

Used for CC32xx/C26xx/13xx

17 EMU Connections —l

Targets for Workshop Labs (1)

C6748 LCDK F28069 Control Stick
* (6748 DSP (300 MHz) * TMS320F28069 (90 MHz)
128M DDR, 320K SRAM e 128Kw Flash, 50Kkw SRAM

Targets for Workshop Labs (2)

EMU Connections —l

Intro to the TI-RTOS Kernel Workshop - Welcome

Lab 1 - System Setup

Lab 1 — System Setup

A number of different LaunchPads, Evaluation Modules (EVMs) and Experimenter Kits (EK) can
be driven by Code Composer Studio (CCS).

This first lab exercise will provide familiarity with the method of verifying the target hardware and
setting up CCS to use the selected target. The following diagram explains what you will
accomplish in this lab from a hardware and software perspective:

Lab 1 - “Load & Run a .OUT File”

Lab Goal: Hardware (LaunchPad/EK)
Someone hands you an 1. Verify hardware setup
executable (.OUT) file and you 2. Verify JTAG/EMU connection
want to LOAD and RUN IT.

Software

Launch CCSv6

Import Target Config File
Launch Debug Session
Load blink_target.out
Run BLINK program
Terminate Debug Session
Close CCSv6

)
A
)
i
)
\

n
Y
£
3
3
B
A\
b Y
3
Y

NowuswNeE

Note: if you have NOT followed the installation instructions
for your environment already, please let your instructor know !!

i3 Texas Time: 15 min

INSTRUMENTS

WARNING — PLEASE READ BEFORE CONTINUING:

Hint: If you have NOT already followed ALL installation instructions for your system — installing
CCS, downloading driver libraries and installing the lab/sols folders for the workshop
labs, PLEASE inform your instructor ASAP so they can help you. If you did not follow the
installation instructions BEFORE the workshop, do NOT continue with this lab until your
setup is complete.

*** turn the page for the actual lab instructions... ***

Intro to the TI-RTOS Kernel Workshop - Welcome 1-17

Lab 1 - Procedure

Lab 1 — Procedure

In this lab, you will simply run Code Composer Studio (CCS), load an executable output file (blink
LED) and run it. This will test the host PC’s (running CCS) connection to your development board.
We want to make sure your setup is fine and working properly before we move on to later labs in
the workshop.

In this lab, we are only going to load and run a binary file — we will cover WAY more details about
CCS in the next chapter.

NOTE ABOUT: ACTION SYMBOL - »

Hint: Actions have consequences. And during labs, if you don’t follow instructions, well, there
will be consequences. To help students FIND the actions in labs, the author has added
an ACTION SYMBOL - » - to help you find the parts of the labs that require you to DO
SOMETHING. So when you see », make sure you read/follow those parts of the step.
The rest of the lab is often an explanation of WHAT you’re doing or WHY you are
performing the steps — good stuff — but if you're just looking for the “next thing to do”,
well, then you have the action symbol to help you skip directly to the next action.

Computer Login (for Tl computers/classrooms only)

1. If necessary, log in to the Tl computer.

If you are taking this class on a Tl issued computer in a Tl classroom, you may need to log in
to the computer. If the computer is not already logged-on, check to see if the log-on
information is posted. If not, please ask the instructor (student/student is a common ID/pswd
to try).

Connect Your Hardware (EVM, LaunchPad) to the PC

2. Attach the USB cable to your development platform.

This class is designed to work with the MCU LaunchPads (Tiva-C, MSP430), C28x Control
Stick and the C6748 LCDK. All labs have been verified on CCSv6.0 or later. If you have a
different board or earlier version of CCS, the labs may not work properly.

» MCU USERS: Connect the USB cable from your development board to the host PC.

Make sure you connect to the EMULATION USB connection on your board because some
have two USB connections and you want the proper one for emulation (see the diagrams
previously shown in the discussion material if you have questions).

» TIVA USERS ONLY — make sure the Device/Debug switch is set to “Debug”.

» C6000 USERS ONLY - connect the XDS510 Emulator to the 14-pin header on your
C6748 LCDK. Also, check SW1 (Switch 1) and make sure switches 2, 3 and 4 are ON (up)
and the rest are OFF (down) on this switch. This is typically the way it ships...FYI.

Intro to the TI-RTOS Kernel Workshop - Welcome

Lab 1 - Procedure

Launch CCS and Run “Blink LED”

3. Launch CCS.
» Launch CCS on your system using whatever means necessary.

Most folks are using their own laptops, so you should already know how to launch CCS. If
not, please ask the instructor (hint: search for an icon that says CCSv6.x).

» If CCS asks about which workspace to use, select Browse and browse to:
C:\TI_RTOS\Workspace

If you have your own workspace already set up and this dialog does not pop up, select:
File = Switch Workspace =2 Other

And browse to:
C:\TI RTOS\Workspace

» Click Ok.

» If new components were installed, close Resource Explorer, close CCS and re-open CCS
so that these new components will be activated.

4. You may need to deal with a “new user” license agreement.

If CCS asks for credentials regarding your license, you may need to tell CCS what type of
license you prefer. If you already have a license or have used CCS before and chosen a
license agreement, you can skip this step.

Select Help > CCS License Info and then click the “Upgrade” tab below and “Launch License
Setup” button....

Status | Upgrade | Manage

Teo upgrade your existing license for Code Composer Studio, click
the Launch License Setup button,

Launch License Setup...

Then choose the type of license that best fits your situation — if you don’t know, choose
“Evaluate”. The list of license options will be different than your neighbor’s list because it is
based on the devices you installed with CCS.

Intro to the TI-RTOS Kernel Workshop - Welcome 1-19

Lab 1 - Procedure

5. Import the target configuration file for YOUR development board.

In order to communicate with your specific board, you will need to launch a specific target
config file that matches your target. A target config file tells CCS how to communicate with a
specific target using a specific connection.

Normally, the target config file is set up for you when you create a project. But in this lab, we
are only using the executable, so we need to launch the file that connects us to the specific
board so we can RUN that executable. In later labs, this step will be unnecessary (except for
C6K users):

» Select: View - Target Configurations:

[View| Mavigate Project Run Ser

{71 TIResource Explarer

«# GUI Composer™

wOhe ol

@ Scripting Consale

q %] Target Configurations

» Right-click on “User Defined” and select “Import Target Configuration”:

4 |[= User Defined
[Mew Target Configuration

Import Target Configuration

» Browse to: C:\TI RTOS\Workshop Admin\Target Config Files and selectthe
target config file that matches YOUR SPECIFIC TARGET:

WCATI RTOS\Workshop_Admin Target_Config_

Date modj

Mame

|| C28069_Control_Stick_TTO.ccxml 72013
|| M5P430F5529_LaunchPad_TTO.ccxml 6/18/2013
|| TM4C123GHEPM_LaunchPad_TTC.coceml 6/15/2013
|| XDS510_USB_LCDE_6748_TTO.cexml 5/1/2014

Note: TM4C = Tiva C Series

1-20 Intro to the TI-RTOS Kernel Workshop - Welcome

Lab 1 - Procedure

» When the dialogue box appears, select “Copy”:
«+ File OperatiDnA ﬁ

Select show files should be imported:
@ Copy files
71 Link to files

0K l ’ Cancel

This will COPY the target configuration file from the previous folder into the proper directory
used by CCS for Target Configuration Files. You should now see this new target config file in
the User Defined folder in CCS.

6. Set this new target config file as the DEFAULT.

» Right-click on the newly imported config file and select “Set as Default’.

| Set as Default '

This will set your specific target config file to the default and it should now appear in BOLD.

7. Launch the target config file.

When you LAUNCH a target config file, CCS will change to the Debug perspective (more on
perspectives in the next chapter) and open a debug session allowing you to communicate
with your target.

» Right-click on your target config file and select “Launch Selected Configuration”:

««l Launch Selected Configuration ’

If you get a “Cannot connect to target’ style error, make sure you chose the proper target
config file for your target. If you continue to get this error, let your instructor know.

8. Connect to the target.

Once you have opened the debug session, the next step is to connect to your target.

» You can simply click the symbol on the toolbar: Hf!

» Or, you can choose: Run > Connect Target:

Run | Scripts Window Help
B Connect Target

You are now connected to the target via JTAG Emulation over the USB connection — you are
ready to load a program and run it.

Intro to the TI-RTOS Kernel Workshop - Welcome 1-21

Lab 1 - Procedure

9. Load the executable program — blink_target.out.

Each development board will have its own unique .out file created specifically for that board.

» Select: Run - Load - Load Program:

Scripts - Window Help

B Connect Target Ctri+Alt+C
Disconnect Target Ctrl+Alt+D | @ - {f.g| -:-%_;. p—
Restore Debug State Alt+E =

#* Load b | i Load Program...

And browse to the proper directory based on the target you are using. All labs and solution
files should be contained in: C:\TI_RTOS\TARGET where TARGET is either C28x, C6000,

MSP430 or TM4C. Locate the \Labs\Lab_ 01 folder based on the appropriate target and
load the .out file located there.

For example, if you are using the Tiva-C (TM4C) LaunchPad, browse to:

C:\TI RTOS\TM4C\Labs\Lab 01l\blink TM4C.out

» Load blink_farget.out to the target.

If CCS complains that it can’t find a source file, IGNORE it. Source files aren’t available
for binary-only (.out) files.

Intro to the TI-RTOS Kernel Workshop - Welcome

Lab 1 - Procedure

10. Run the program.
After loading the program,

» click the green Resume (Play) button:
‘ua- m |

You should see an LED blinking on your target.

If you don’t see anything blinking, your system may need some assistance. Check:
e Did you load the correct .out file for your target?
e Do you have the right target board?
o Did you use import and use the correct target config file?

If all else fails, terminate your debug session (click on the red box, see next step), close CCS,
open it back up and retrace your steps. If you still can’t get it to work, inform your instructor.

Terminate the Debug Session

11. Terminate the debug session.
If you see the LED blinking, you can now terminate the session.

» Click the red “Terminate” button:

u&-”lil |

This will take you back to CCS’s Edit Perspective.

12. You can close CCS or leave it open.

» Make fun of any neighbors who aren’t done yet.

That’s it, You’re Done !

You’re finished with this lab. If time permits, move on to the optional Lab
that follows where you can explore CCS Help, Tutorials, CCS tips & tricks, App
Center, Resource Explorer Examples, efc....

Intro to the TI-RTOS Kernel Workshop - Welcome 1-23

Optional Lab — Exploring CCS Help — Procedure

Optional Lab — Exploring CCS Help — Procedure

In this short optional lab, you will be able to explore some of the additional features of CCS via

the HELP menu and the CCSv6 App Store.

1. Check out the CCS VIDEO TUTORIALS.
This requires an internet connection, so if you don’t have one, you can skip this step.
» Select Help > CCS Videos and Tutorials = All CCS Videos:

= 3

{8 Getting Started l

B CCS Videos and Tuterials All CC5 Videos

Note — this will only work if your laptop has an internet connection in the classroom
(which may or may not be the case).

If your laptop connects, you have a TON of videos you can watch:

Tools Showcase

. Lo -

= o I . - o

= = L\ =)

— o ; —1 -z A, 4
- { n =L|—__!—1-‘ =

: =3 - E3 [12:43]

Getting Started with Code 2013 Emulator Showcase GUI Composer Optimizer Assistant Trace

Cornpose[Studio vb by Code Composer 302 views by Code Composer 312 views by Code Composer 156 views by Code Composer 108 views

by Code Composer 633 views

Module for Cor
by Code Composer

ITM: Instrumen 1

§

4

|
|
I
| »
|
|
|

i

(- 2>) i Eg —
How to Prepare a Compiler Using Energia projects in Easily launch the debugger Editor quick fixes for How to access memory Using the termi
Test Case CCSv6 without a project source code using the DAP CCSve
by Code Composer 227 views by Code Composer 315 views by Code Composer 326 views by Code Composer 264 views by Code Composer 91 views by Code Composer
Code Composer Studio v5 Quick Tips {
" - p F - - o ee—]
i = . | —] 5
1 ' | = i
,' | — . ’
| | | [
= a3 - e
Easily launch the debugger Code Folding Compare Files How much memory am | Comment multiple lines of Column Editing
without a project by Code Composer 488 views by Code Composer 434 views using? code Selection Mode
by Code Composer 325 views by Code Composer 314 views by Code Composer 238 views by Code Composer
Frs . A s aba PN ot
=t eyl ity

1-24 Intro to the TI-RTOS Kernel Workshop - Welcome

Optional Lab — Exploring CCS Help — Procedure

2. Try out the CCS App Store.
Select View > App Center:

—
| View | MNavigate Proj

v CCS App Center

Check out the different options you have for downloading new products.
3. See what’s in the new Resource Explorer.

Looking for examples to help you get started? The Resource Explorer has tons of examples
for different target architectures.

Select: View > Resource Explorer (Examples):

[‘l.l"iew] Mavigate Project Scripts
% CCSApp Center
IE:E&.:I Getting Started

i Resource Explorer (Examples)

Click around for your specific target and see what types of examples exist. There is some
really good stuff in there to help you get started...

4. Peruse the TIPS and TRICKS for Eclipse.
This also requires an internet connection.
» Select Help = Tips and Tricks...:

Help |

v« Welcome to CCS ‘

L Ses E‘e'-.r.er’iite

Key Assist..,
Tips and Tricks... ‘

You’re finished with the optional lab...

Intro to the TI-RTOS Kernel Workshop - Welcome 1-25

Ad(ditional Information

Additional Information

The industry’s broadest wireless connectivity portfolio
134.2K-13.56MHz

RFID, NFC SimpliciTl SimpliciTl ZigBee® Bluetooth®
1SO14443A/B 6LoWPAN PurePath 6LOWPAN BLE Wi-Fi
15015693 W-MBus Wireless RFACE ANT

Example Applications

Product Lineup

TMS37157 CC1110 CcCc2500 CC2530 CC2560/4 WL1271/3
TRF796x CC1190 CC2543/4/5 CC2530ZNP CC2540/1 WL 18xx
TRF7970 CCl1xL CC2590/91 CC2531 CC2570/1 CC3000

Ccc430 cc8520/21 CcC2533

CC112x C€C2530/31 CC2520

CC120X

CC1180 Red = SimpleLink family

Some of the Available BoosterPacks

RF Module w/LCD

Y
|

Inductive Charging

Solar Energy Harvesting Olimex TMPOO6 IRTemperature

8x8 LED Matrix Sensor

Universal Energy
Harvesting

Sub-1GHz RF Wireless

C5000 Audio
g Capacitive Touch
Capacitive Touch TPLO501 SPI
. Digital Pot.
Q‘ -{NSTRUMENTS Available Boosterpacks...

Intro to the TI-RTOS Kernel Workshop - Welcome

Ad(ditional Information

Some of the Available BoosterPacks

OLED Display

Proto board ZigBee Networking

LCD Controller MOD Board

Development Package Adapter Adapter
i3 Texas
INSTRUMENTS

Intro to the TI-RTOS Kernel Workshop - Welcome

Notes...

Notes...

1-28 Intro to the TI-RTOS Kernel Workshop - Welcome

Intro to Code Composer Studio - CCSv6

Introduction

This chapter will introduce Code Composer Studio (CCS) version 6. Most users have probably
had some experience with CCSv5 and a few may be new to Eclipse (CCS). CCSv6 was launched
in April 2014 and this workshop has been upgraded recently to use this new version of CCS.

Every lab in this workshop will use CCSv6, so the purpose of this chapter is to provide a very
basic overview of terminology and how to perform basic actions to build and debug applications.
If you are brand new to CCS, you have come to the right place. This chapter will walk you through
creating a new project, using target configuration files, learning how to connect to different
emulators and what goes on behind the scenes when you hit the “Build” button. If you have lots of
experience with CCS, this will be a good refresher chapter for you.

Throughout the entire workshop, users will have many opportunities to use CCS in completing
each one of the labs associated with each chapter.

For more detailed information on CCS, please refer to the “For More Info” slide near the end of
this chapter.

Objectives

Objectives

= Describe the fundamentals of Code
ComposerStudio (CCS) v6

Demonstrate new features of CCSv6 such as
workspaces, perspectives and views

Learn how to create a new CCS project

Describe the target and emulator options

Analyze the different CCS licensing options

Lab - Create, build and debug a “blink LED”
example using CCSv6

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-1

Module Topics

Module Topics

Intro to Code Composer Studio - CCSVB..........cccericiiririiiir e 21
1Y (oo 17 =T o] o] (o1 NS 2-2
T] SOftWAIE ECOSYSIOIM ...ttt e ettt e e e e e e st aa e e e e e ssasseees 2-3

RUN-TIME SOfWAIE ...ttt e e e e e e e e e e e e e e e e e e neneeeas 2-4
a1 (o (o T O OV o SR 2-5
FUNCHONAI OVEIVIEW ...ttt e e e e e e e e e e e e ee e e e e e e e e e neneeeas 2-5
ST =Y o103 1)Y= TSP PPPRPPPPNt 2-7
Target Config & EMUIATOTScoouiiieiieee e e a e e e 2-8
JTAG EMUIGLOTS ...ttt ettt e et e e e nre e e e e nree e e ennees 2-10
WOrKSPACES & PrOJECESueiiiiiii ittt a e e e et r e e e e e e s earnaeees 2-12
Creating @ PrOJECTuviiiie it e e e e e e e e aaa e e e aanes 2-15
Adding Files t0 @ PrOJECTcooiiiiiieeeeeeeeeeeeeee ettt 2-16
POrabIE PrOJECESceiiieie e 2-16
Compiler Options & Build CONfIQUIAtioNS...............cccuveeiiieeeeisciirieiae e eeeseiitteaaa e e esesireeaaaaeeasaas 2-17
Compiler Build OPtioNS ...t e e e e e e e ee e e e e e e e aannas 2-17
Modifying Compiler Build Configurationsc.eeioiiiiiiiiiiceee e 2-19
LiCENSING/PIICING ..o ettt e e et e e et e e et e e e e tre e e e e e e eenes 2-20
L 10T T SRR 2-20
Changing CCS USEI LICENSESc.uuiiieiiiiieeiiiiee ettt siee e et e st e e e nree e e e 2-21
CCSVE — FOF MOIE INFO.. ..ot e e ea e e e e e 2-22
Lab 2 — CCOSVE PrOJECES.........eeeeiiee ettt 2-23
LABD 2 — PrOCEAUIE.....cccceoneeeeeeeee et e ettt e e e e e e e e e e e e e e e nnnee s 2-24
INtro 10 TI-RTOS WOrkshop File€S.........uviiiiiiiiiiieie et 2-24
Create and Explore Your New CCS Projectocuueiiiiiiiiiiie e 2-25
Add Libraries and Include Search Paths............coooii e 2-29
Explore the Blink LED COde........coo et e e e e e 2-35
Using the Target Configuration Fileoocuiiiiiiiii e 2-36
LU [o TR o = To IR (U [2-37
Add @ Breakpoint.ot e e e e e e e e e e nenneeas 2-40
Watch Variables and View Memory ConteNntsS............ccccuviiieiieiiiiciiiiieeee e 2-41
Other Useful DebUG/EItING TIPS ...ouveiieiiiiiee ettt e e 2-42
[Optional] Exploring Build Propertieso 2-45
[Optional] Creating Portable Projects.............ooa e 2-47
Introduction t0 Portable ProjectS...........uueuueiiiiiiiiiiiiiiiiiiiieiiiiieieieieieieveeeveeeeeaeeeeeeneeeeesessernrnne 2-47
Part 1 — Watch the Video on Portable Projects................uuuueiiiiiiiiiiiiiiiiiiiiiieieieieeieeveieieenens 2-48
Part 2 — Using VARS.INI — The Easier Methodccccoiiiiiiiiiiie e 2-48
Part 3 — Add Vars Manually — The Harder Method ..., 2-53
Tips — New Project Creation and DEDUQ...............c..uueeeeieeeeeesiiieieaeeeeeesieeaa e e e e esssreaaaaaeeasas 2-55
Appendix — Creating Portable ProjECtScccoeeeuuieeiiee ettt e e sraeaa e e e e 2-58
Portable Projects — CONCEPLSo.uueiiiiiiiiei e 2-58
Portable Projects — Two Types of Variablescooeiiiiiiiiiiiii e 2-59
Portable Projects — Variable SCOPEcooeiiiiiiiiiiiiiee et 2-60
Y 07 = 2-62

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Tl Software Ecosystem

Tl Software Ecosystem

TI's goal is to provide an entire ecosystem of tools and support. Development tools, like Code
Composer Studio are just the starting point; then add in software libraries that run on your target

processor as well as wiki’'s and support forums.

TI MCU Software and Tools Ecosystem

Development Tools

» CCStudio™ Integrated Dewvl't
Environment (IDE)

Run-Time Software

« Easy-to-use, highly-portable
Energia software

+ Optimizing compilers

= Graphical coding (e.g. Grace)

+ Design Kits & Eval Modules

« Rich 34 Party Support (e.g. IAR)

+ O/S independent device support
with TI-Ware software

« TI-RTOS: kernel, filesystem,
USB, networking, drivers

? ‘ ’ 5
* Free code that runs 3 Tools that hej’;; you
0h Your sysfem Support & Community create your code

* Tl Design Network: off-the-shelf
software, tools & services

 Forums: hitp:/le2e.ti.com
7 » Wiki: processors.wiki.ti.com

k Training: In-person and online

-
=T

-

Kesourcé; fokhelg you
help yoursel

Run-Time Software ...

We'll take a brief look at all three parts of the Ecosystem:
¢ Run-Time Software

e Development Tools
e Support and Community

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Tl Software Ecosystem

Run-Time Software

TI’s real-time operating system (TI-RTOS) is a highly capable package of system-building
software. It's not just enough to package a bunch of software libraries together into a single
executable; the TI-RTOS team validates all the components against each other — creating
examples that utilize all the various libraries.

Run-Time Software

Tl Wares: Minimizes programming TI-RTOS: Provides an optimized real-time
complexity w/optimized drivers & O/S kernel that works with Tl Wares:
independent support for Tl solutions: * Real-time kernel (SYS/BIOS) — most CPUs:

- Scheduling

* Low-level driver libraries - Memory management

* Peripheral programming interface - Utilities
* Foundational software packages (TI Wares)
* Libraries and examples
* TI-RTOS SDK available for Tiva-C, MSP430,
6000, C28x, Sitara (Cortex A8)

* |AR support available now

* Tool-chain agnostic C code

TI-RTOS
Kernel + s + * File systems
ares .
(SYS/BIOS) . ﬂest;vork stack

SN

[SDK (Software]

Development Kit)

Ok, let's go look at CCS ...

The soul of TI-RTOS is the TI-RTOS Kernel (formerly named SYS/BIOS). The kernel provides a
broad set of embedded system services, most notably: Threads, Scheduling, Semaphores,
Instrumentation, Memory Management, inter-thread communication and so on. It's been built with
modularity in mind, so it's easy to take the parts that make sense for your application and exclude
the parts that don't.

TI-RTOS includes the kernel plus a number of customized drivers built upon the Tl-wares (i.e.
MSP430ware and TivaWare DriverLibs). They’ve also thrown in a variety of other O/S level
packages, such as: USB Stack, WiFi networking, FatFs. (The list will continue to grow, so keep
your eye on the TI-RTOS webpage.)

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

http://www.ti.com/tool/ti-rtos

Intro to CCSv6

Intro to CCSv6

Functional Overview

As described earlier, Code Composer Studio is TI's Eclipse based Integrated Development
Environment (IDE). You might also think of IDE as meaning, “Integrated Debugger and Editor”,
since that’s really what it provides. CCS is made up of a suite of tools that help you:

e Edit and Build your code
o Debug and Validate your code

CCS Functional Overview

| I I

. | Stendard | |gysBios] | Target
Compiler | Runtime | ILibraries: I cf gFiIe :
-asm | Libraries | | | | lgre

€ \"b / I | | Launch

.asm) .obj out &

Edit Asm > Link — S
- EVM

SYS/BIOS e ot |
Config | User.cmd |

(cfg) —— Bios.cmd :

——e—)

¢ Integrated Development Environment (IDE) based on Eclipse

¢ Integrated “Debugger” and “Editor” — IDE
Edit and Debug have the own “perspectives” (menus, windows)

¢ Contains all development tools — editors, compilers, linkers,

BIOS and debugger)
Perspectives...

Editing

On the Editing side, you’ll find the Compiler — Assembler — Linker tools combine to create the
executable output file (.out). These are the tools that CCS invokes when you click the “Build”

toolbar button.
Compiler ?3253'3

Let’'s do a brief summary of the files shown here: 0 Libraries

.c Your C (or C++) source code files .c lib

.asm Assembly files are created by the compiler. By .asm .obj out '
default, they’re considered temporary and deleted; Asm Link .
though, you can tell CCS to retain them.

.0bj Relocatable object files. Again thought of as
temporary and deleted when build is complete.

dib Any object library you want to reference in your code.
By default, TI's compiler ships with a run-time support library (RTS) that provides standard
C functions. See the compiler user’s guide for more information.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-5

Intro to CCSv6

.cmd Linker command files tells the linker how to allocate memory and stitch your code and
libraries together. Tl provides a default linker command file specific to each MCU device —
it is automatically added to your project when you create a new project. You can edit it, if
needed, though most users get by without ever touching it. For C6000 users, the
command file is generated based on the platform package used in the project and
therefore cannot be manually edited — however, the platform package CAN be edited.

.out The executable output file. This is the file that is loaded into Flash or FRAM or RAM on
your target platform whenever you click the “Debug” button on your CCS toolbar.

.map The map file is a report created by the linker describing where all your code and data
sections were linked to in memory.

Please refer to your target's Compiler User’s Guide and Assembly Language User’s Guide for
more information on the Tl code generation tools.

The remaining “BUILD” tools shown in our diagram are related to the TI-RTOS kernel.

Standard 4
Compiler Runtime TFRTOS

Libraries Libraries

TI-RTOS

Config :
(.cfq) : Bios.cmd !

User.cmd

In essence, the TI-RTOS kernel is composed of many object code libraries. By creating a new
project based on the TI-RTOS template, CCS will automatically:

e Link in the required libraries
e Add the TI-RTOS configuration file (.cfg)
The configuration file provides a GUI interface for specifying which parts of the kernel you want to

use; helping you to create any static O/S objects that you want in your system; as well as creating
a second linker command file that tells the linker where to find all the kernel’s libraries.

Debugging

Once again, the “debug” side of the Code Composer Studio lets you download your executable
output (.out) file onto your target processor (i.e. the target device on your development board)
and then run your code using various debugging tools: breakpoint, single-step, view memory and
registers, etc.

You will get a lot more detail and experience with debugging projects when running the upcoming
lab exercises on your Launchpad.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Intro to CCSv6

Perspectives

In Eclipse, Perspectives describe an arrangement for toolbars and windows. CCS Edit and
CCS Debug are the two perspectives that are used most often. Notice how the perspectives
differ for each of the modes shown below.

CCSv6 GUI - EDIT Perspective

File Edit View Mavigate Project Scripts Run Window Help

5 v B R ik EIRAL R ¢

[Project Explorer 3 = B [g mainc |4 app.cfg
& v 64
' B & gy
> 125 C28x_LABS_SOL_BASELINE

<ow v QuickAccess]l % | (S CCS Edit | % CCS Debug

ey AY

- = ce000 L4B5 SOLE Mlenus & Buttons ©) ----oooooee- :

» 1 MSPA30_LABS 50 Msenusf& BUt_tons Perspectives

« & maciasssoLl e Specific actions
» 4% Binaries " ‘ * EDIT and DEBUG
5 et related to EDITing jo:
> (= Debug 73 BIOS_start(); = inc/hw_typesh
b @ sic 74 U inc/hw_memmaph
b (= targetConfigs 75} 21 driverlib/sysctlh
b L EK_TMACI23GXL.cmd = driverlib/gpic.h
b [g maine g] B U inc/hw_ints.h

[& app.cfg [TI-RTOS]

hardware_init() U driverlib/interrupt.h

m

b/timer.h
in

Source EDITing | | [outline View
* Tabbed windows « Declarations
* Color-coded text and functions

Project Explorer
* Project(s)

* Source Files

2 = 208 DI
SysCr (STScTT—STSTTv—oTSTSClL_USE PLLIS

98 // ADD Tiva-C GPIO setup - enables port, sets f
a1 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
92 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIM ~
Ll T — * [l T — b

B—— P S i . gy
gl —afl et A

If you click on the "Debug" perspective, the windows change to...

Eclipse even varies the toolbars and menus between perspectives.

CCSv6 GUI — DEBUG Perspective

File Edit View Project Tools Scripts Run Window Help

A B @a-Doard e -isaide @ o mos|s-i@f it ey B Bcsk [Fcbbg)

[Project Explorer = B %5 Debug 51 ¥ = B 0d=Variables & Expressions &3 il Registers =%
4 W¥ TWMC LABS SOL_BASELINE [Code Composer Studio - Device Debi| Expression Type Value
4 P Stellaris In-Circuit Debug Interface/CORTEX_MA4_0 (Suspended 6 i16ToggleCount chort s E
= ledToggle(at main.c:117 140

4 Add new expression

_sysbios_family_arm_m3_Hwi_dispaseG_l{unsigned int,

ti_sysbios_family_arm_m3_Hwi_dispatch_I()
mnnection Type

* Specified in Target Cfg file

* What options do users have
when connecting to a target?

Menus & Buttons
* Related to DEBUGIng
* Run, Suspend, Terminate

|& app.cfg [TI-RTOS] ﬁ;
s rre] 0x208645F4 116ToggleCount
116 void ledToggle(void) OErEE] [TIEELT] 7886 D76A 9964 930G
el B8x200G4EGE A307 EDF7 B500 0696 93DE 5954
115" TimerIntClear(T 8x20064628 DFB2 9211 61FF SF14 7EDG 8BO7
. 8x20064542 0260 1CF2 3845 745 D3EG CAFS
119 W
28 /7 LED values DEBUG Windows @x2000455C 3EC3 9ACA FCRI BF17 9584 BI1Y
5 CreTome . x20804676 ©F22 9CTE 9988 F50B D25D F3AS
121 if(GPIOPinRea
12 { (¢ Watch Variables 8x20004608 2ADD D7A3 67B2 87ED 3D66 9D6
23 [@x20004544 A9AG BE1L CECC 1CSE 48BC 49C
124 . Memory Browser x208045C4 7774 C3D6 28AD B22B 3739 418
135 x208G46DE FOS1 BAE7 7564 9E76 BOFE 389
, f P 0x200046FE 9B6C B36E DDFB 5979 7848 BEGY
126 ©
e PC execution point @x20004712 BE9S C3B6 BAI7 1C7E 6OD4 8554

* Console Window

El Console 52 1
TM4C_LABS_SOL_BASELINE 1
CORTEX_M4_@: GEL OQutput: "
Memory Map Initialization Complete !
Al il e R N PR e

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-7

Intro to CCSv6

Target Config & Emulators

CCS needs to understand how to connect to your target. That is, which target processor do you
want to download-to and run your code on?

Going back to older revisions of CCS (versions prior to CCSv4), Tl provided a stand-alone tool
where you would specify how the target board was connected to CCS. Nowadays, this feature
has been integrated into CCS. The Target Configuration File (.ccxml) contains all the information
CCS needs to connect and talk to your target (be it a board or a software simulator).

Target Configuration and Emulators

¢ The Target Configuration File specifies:
* Connection to the target (XDS, FET, etc.)
Launch . Targe.t deynce (t?.g. TMA4C123, C28027, etc.)
PR Pad * GEL file (if applicable) for h/w setup
™ Debug T, TM4C123GHEPM_LaunchPad_TTO.coxml 5 3
EVM Basic
General Setup
This section describes the general configuration about the target.
EMU Connection lSteHari;In—Cir(u\t Debug Interface -
Board or Device type filter text
Tiva TM4C123GHEPM -
) E Tiva TM4C123GHEPZ
= et e

& EMU Connection Options

* Built-in and external emulators from TI, Blackhawk,
Spectrum Digital and others

» XDS100v1/v2, 200, 510, 560, 560v2

* MSP-FET430 JTAG Emulators...

For the MCU devices, the CCXML file is automatically created when you create a new project.
This file is based on your telling CCS which CPU variant you’ve chosen (i.e. MSP430F5529); as
well as which “Connection” you are planning to use for connecting your PC to the target board.

For C6000 users, you will have to create a custom CCXML file that you can use in all of your
projects.

Note: If you ever get an error that indicates CCS doesn’t know how to connect to the target, you
probably didn’t specify the “connection” when creating your project. You can easily fix this
by editing the project’s properties.

2-8 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Intro to CCSv6

HIDDEN SLIDE...Creating a new Target Config file...

If you want to create a custom CCXML file, the following diagram shows you how. First, choose
New Target Configuration File and fill in the connection and board/device choices and then click
the Advanced tab. Then click on the CPU as shown and choose the proper GEL script to initialize
your processor. C6000 users will have to do this, but for all MCU users, this process is done
automatically when you create a project.

Creating a New Target Config File (.ccxml)

¢ Target Configuration — defines your “target” —i.e. emulator/device used, GEL
scripts (replaces the old CCS Setup)

¢ Create user-defined configurations (select based on chosen board)

) TM4C123GHEPM _LaunchPad TTO.coxml 52 ’ Advanced Tab
Basic 1 Target Configuration

General Setup

. . . . All Connections
This section describes the general configuration about the target.

4 T, Stellaris In-Circuit Debug Interface_0 4

I Connection [Stellarisln-(\rcu\t Debug Interface I

Board or Device type filter text

l Tiva TM4C123GHEPM
Tiva TM4C123GHBPZ

4 # Tiva TMAC123GHEPM 0 TR D
4 Gy CSDAPD click
4 \Q subpath_0
4§ CORTEX M40

Y

[] Tiwa TM4C123GHBZRB
[T Tiva TM4C1290MCPDT)
[T] Tiva TM4C1280NCZAL

Cpu Properties

Cortex M4 CPU 5 N
] Tiva TMACL202NCPDT | Specify GEL script here |
‘ — Set the properties of the selected cpu.
Basic | Advanced | Source
[7] Bypass

initialization script Juhemulationtgelitmdcd 23ghGpm.gel

More on GEL files...

HIDDEN SLIDE...what is in a GEL file?

A GEL file contains initialization scripts for your target’'s memory map, PLLs, timers and other
peripherals. It runs when you load a new program to your target as a convenience for the user.
Most of the items it initializes will need to be taken care of by your boot routine for a production
(stand-alone) system.

What is a GEL File ?

¢ GEL - General Extension Language (not much help, but there you go...)

¢ A GEL file is basically a “batch file” that sets up the CCS debug
environment including:

menuitem "StartUp"”

hotmenu StartUp()
{

/* Load the CortexM3 util.gel file */
L] -
Memory Map GEL_LoadGel("$(GEL_file dir)/CoztexM3_util.gel™);
. Watchdog GEL_MapOff () ;
GEL_MapReset () ;

memorymap init();

. UART GEL MapOn () ;
* Other periphs)

OnTargetConnect ()

{
watchdog_enable () ;
uart_enable():

¢ The board manufacturer (e.g. SD or LogicPD) supplies GEL files
with each board.

¢ To create a “stand-alone” or “bootable” system, the user must
write code to perform these actions (optional chapter covers these details)

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-9

Intro to CCSv6

JTAG Emulators

Shown below are some common emulators used with TI's target platforms. The main difference
between each emulator is speed, features and of course, cost.

The low-end XDS100v1/2 runs at a serial rate of 1MHz and is common found on LaunchPad
targets or any board with “built in” emulation. The cost is very low (free to $80US), they contain a
limited feature set but are still a good choice for entry-level programmers that want to test drive
the Tl tools. Also, don’t forget that CCS is FREE to use with this type of emulation — another huge
plus.

The XDS200 is a relatively new emulator and bridges the speed/price gap between the XDS100
and XDS560 emulators. It runs at 3MHz (3x the speed of XDS100) and offers a few more
features and has a price tag that won’t break the bank.

The XDS560v2 is one of the fastest emulators our third parties provide (25-40MHz serial rate)
and provides many features not found in the lower-end emulators. The XDS560v2 is a favorite of
C6000 and multi-core users due to the download speeds for large programs.

For the ultimate speed/feature list — almost a must for multi-core C66x users — is the Pro Trace
emulator. Of course, the price reflects the rich feature list and capability of this emulator.

JTAG Emulators

- 7,
o<

« Entry level JTAG emulator « Excellent balance of performance and cost

« USB interface « USB interface (Ethernet version available)

* 3 models based on JTAG headers (14pin TI, 20pin TI, « 20pin TI, 14pin TI, 20pin ARM and 10pin ARM
20/10pin ARM) connectors

« $79 « $295

o
- &

+ High performance JTAG emulator + Trace Receiver & XDS560v2 JTAG emulator
« USB or USB + Ethernet interfaces « USB + Ethernet interfaces
* Includes multiple JTAG adapters (14pin Tl, 20pin TI, * MIPI60 and 60pin Tl adapters
20pin ARM, 60pin MIPI, some include 60pin TI) « DSP & ARM Trace to pins
« System Trace + System Trace
+ $995 - $1495 - $3495

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Intro to CCSv6

For MSP430 users, listed below are a few more possible emulators — one with a USB interface
and the other with a Parallel Port interface (if you still have one left on your old laptop). ;-)

MSP430 JTAG Emulators

MSP-FET430UIF MSP-FET430PIF

B = | |
» USB Interface « Parallel Port Interface
« Compatible with CCS, IAR and other « Compatible with CCS, IAR and other
debuggers debuggers
+ $99 * $49

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Intro to CCSv6

Workspaces & Projects

Eclipse based IDE’s provide a hierarchy for storing program information. Experienced
programmers are familiar with the concept of keeping all their programs source files in a Project.

Eclipse goes one step further and also defines a Workspace. In fact, whenever you open CCS
(or any Eclipse IDE) you are asked to select a workspace. In essence, a Workspace is just the
folder in which your projects reside. In the CCS/Eclipse, you can actually think of the Project
Explorer window as a visual representation of your Workspace.

Workspaces and Projects (GUI)
A

L[Project Explorer &2 o R Y 5O
4 [Project1

] g;;? Binaries

- [t Includes

+ = Debug

. [= targetConfigs

» Le] main.

+ || startup_ccs.c

- | g tmidcl23ghbpm.cmd

=y driverlib.lib

4 [Project 2 [Active - Debug]])

- [t Includes

- = targetConfigs

> WORKSPACE

Lg| main.c
- g tmdcl23ghbpm.omd > ‘ PROJECT
& app.cfg
B driverlib.lib
makefile.defs
. & Project 3 _/

Looking more closely at Projects and Workspaces...

Every active project in your workspace will be displayed in the Project Explorer window, whether
the project happens to be open or closed.

Some users like to only put only one project per workspace; others put every project into a single
workspace — it doesn’t matter to Eclipse.

In our workshop, we have chosen to create one workspace which will hold all of our lab files. This
makes it easy to switch back and forth between exercises, if you should want to do so.

As a final note, this hierarchy reflects how many settings are handled inside of Eclipse. Most
settings are modified at the Project level — for example, you can pick the compiler per project.

Some settings, though, can be defined for the whole Workspace; for example, you can create
path variables to point to library repositories. These almost always can be overridden in a given
project, but this means you’re not forced to define certain items over-and-over again.

Finally, there are some definitions that are globally setup in the Eclipse/IDE preferences. Unlike
pre-Eclipse versions of CCS, they are not stored in the Windows registry. This makes the Linux
version of the tools possible; but it also means it's easier to keep multiple versions of CCS on
your computer (if you should need to do so).

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Intro to CCSv6

Let's look at projects & workspaces from another perspective. The following diagram should
confirm what we just discussed. Workspaces contain Projects which contain Source files.

Projects and Workspaces

. Link | Source Files
Project ~ 7|+ Code and Data
* Source Files Link ("Header Files
* Header Files * Declarations
* Library Files Link_(Library Files
* Build/tool settings * Code and Data

¢ Workspace \folder contains: ¢ Project \folder contains:

* IDE settings and preferences * Build and tool settings (for use
in managed MAKE projects)

Workspace

* Project1

* Project2 ——
* Project3

* Settings/preferences

* Projects can reside in the workspace
folder or be linked from elsewhere * Files can be linked to or

* When importing projects into the reside in the project folder

workspace, linking is recommended . Delgting a linked file from
* Deleting a project from the Project ;:OJFET(Explorer only deletes
Explorer only deletes the link el
* Example of linked library:
B driverlib.lib

Notice how the lines between the various objects are labeled “Link”. This represents one way in
which they can be connected. Reading the bullets on the above slide tells us that Source files can
actually reside “inside” the project folder or be “linked” to the project.

As we’ll see in a minute, when you add a file to a project, you have the option of “copying” the file
into the project or “linking” it to the project. In other words, you have the option to decide how and
where to store your files.

Within Projects, it's most common to see source files reside in the project folder; whereas,
libraries are most often linked to the project. This is not a rule, but rather a style adopted by most
users.

With regards to Projects and Workspaces: a project folder always resides inside of the
workspace. At the very least, this is where Eclipse stores the metadata for each project (in a few
different project-related XML files). The remaining project files can reside in a folder outside of the
Workspace. Once again, Eclipse provides users with a lot of flexibility in how their files are stored.

Some Final Notes about CCS/Eclipse

o If you create a new source file in CCS/Eclipse, it will automatically be stored in the project
folder.

e If you copy a source file (e.g. C file) into the project folder using the O/S file system, it will
automatically show up in the project. That is, if you copy a C file into the project folder using
Windows explorer, it will be “in the project”. Note, though, that CCS does provide a way to
“exclude a file from build” — but this is not the default.

e You can export and import projects directly to/from archive (zip) files. Very nice!

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-13

Intro to CCSv6

HIDDEN SLIDE ... Where is the Workspace in your file system?

Users can locate their workspace in the default location as shown below. The workspace folder is
the default location for any new project and it also contains the preferences you choose within
that specific workspace — which is contained in the metadata folder shown.

If you want to create a project outside of the workspace, you can elect to NOT use the default
location for all projects (workspace) by unchecking the box shown at the bottom of this slide.

In this workshop, users will elect to create their projects outside of the workspace, so you'll see
this again in the labs.

Eclipse “Workspace”

& Workspace — a “container” for Eclipse metadata and the default
location for all projects

¢ Default Location (as shown):

Ci\Documents and Settings\USERID \warkspace_v5_1\.metadata
X Name
B I3 workspace_v5_1 A D mylyn
El=] netoioa | 2 plgics
3 mylyn Jock
I .plugins Q,‘Iog
|2 MyProject version.ini

¢ Can change workspace location if desired

User can also locate projects in specific folders:

) New CCS Project
CCS Project
Create a new CCS Project. \&
Project name: | audio_test
[use default location
Location: | C:\BIOSv4\Labs\audio_test'Praject

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Intro to CCSv6

Creating a Project

There are many ways to create a new project, the easiest is to select:

File —» New — CCS Project

TI defined their own C project type called “CCS Project’. This enhancement condenses the

standard Eclipse “new project” wizard from 6 dialogs down to 1.

(Awesome!)

CCS Project

Create a new CCS Project.

Creating a New Project

Target: 5529 - IMSNEOFSSB

ICﬂnnertinn: [T1MSP430 USBL [Default] | <[dentity |
L MSP430
Project name: MSP430_New
[7] Use default location
Location: CATI_RTOS\MSP430\Labs

Compiler version: | TIw4.3.1

) (o]

= —-—
¥ Advanced settmgs)

~ Project templates and examples

type filter text

4[] Empty Projects

Creates an empty project fully
] initialized for the selected device.
o

[Empty Project
[& Empty Project (with main)

~ Advanced settings

[& Empty Assembly-only Pr
[& Empty RTSC Project
4 [E] Basic Examples

Qutput type:

Qutput format:

eabi (ELF) -

4 Connection

& Project Location

¢ Templates

(in Edit perspective...)

* If target is specified, user can
choose “connection” (i.e. the
target config file)

* Default = workspace
* Manual = anywhere you like

* No BIOS? Choose “Empty”
* BIOS? Choose BIOS template

[t Blink The LED
| Hello World

Device endianness:
Linker command file: <automatic>

Runtime support library: <automatic>

- Adding files to the project...

When creating a new project you need to define:

e Specific device you're using (use the filter on the left to filter the long list of possible targets)
e Target Connection (e.g. MSP430 USB 1)

e Project Name

e Where do you want your project to reside — by default, CCS puts it in the Workspace

e Template — CCS provides a number of project templates. The most common template is
probably “Empty”. But some of the others may come in handy. For example, if you are
creating a TI-RTOS based project, you will want to choose one of their project templates.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Intro to CCSv6

Adding Files to a Project

As we described earlier, when adding files to a project, you have the choice of copying them into
the project folder or linking them to the project folder.

Copying the files keeps them together inside the project folder. On the other hand, if you're
sharing libraries or files between projects (or with other users), it might make more sense to link
them.

Adding Files to a Project

¢ Users can ADD (copy or link) files into their project
* SOURCE files are typically COPIED
* LIBRARY files are typically LINKED (referenced)

@ Right-click on project and select: @ Select file(s) to add to the project:
4 [[= MSP430_New [Active - Debug]]' @] Ink_msp4306638.cmd
[l Includes || MSP430F6638.coxml

Add Files...

- (= targetConfigs

| mspd30x6i_fet_l.c
Ink_msp430f169.cm

@ Select “Copy” or “Link” ¢ COPY
* Copies file from original location
Select how files should be imported into the project: to projectfolder (tWO copies)
@ Copy files
¢ LINK

Link to files
* References (points to) source
file in the original folder

* Can select a “reference” point —
e.g. PROJECT_LOC or user-
defined VARIABLE (portable)

Build Configuraitons and Options...

Create link locations relative to: |PROJECT_LOC

Lngth P, P

Portable Projects

The phrase Portable Projects signifies that projects can be built in a portable fashion. That is, with a little
consideration, it is easy to build projects that can be moved from one user to another — or from one computer
environment to another.

When a source file or library is contained inside of a project folder, it is easy for the tools to find and use it.
Eclipse automatically knows how to find files inside the project folder.

The biggest headache in moving projects relates to “linked” source files and libraries. When a file is located
outside of the project folder, the build will fail unless the person receiving the project user places all the
referenced (i.e. linked) files into exactly the same locations inside their filesystem. This is a very common
problem!!!

The best solution is to use Eclipse Path Variables to point to each directory where you have linked resources.
Since this is not a problem encountered in this workshop, we suggest you refer to these locations for more info:

http://processors.wiki.ti.com/index.php/Portable Projects

The appendix for this chapter contains some slides on portable projects and one of the optional labs in the
workshop walks you through the steps.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

http://processors.wiki.ti.com/index.php/Portable_Projects

Compiler Options & Build Configurations

Compiler Options & Build Configurations
Compiler Build Options

As part of the prerequisites for the workshop, we stated that you should be familiar with the C
language; therefore, in this section we do not plan to cover general C language syntax. Rather,
this section is dedicated to implementation details of the target's C Compiler.

T1 C compilers offer nearly a hundred different build options. We plan to focus on just a few
options so that you’re aware of the most common ones.

Processor Options

e The —silicon_version option lets you choose which CPU to compile for. CCS chooses this
option for you based on the device you select when creating a new project.

e By default, the --code_model option follows the CPU type; therefore, it's most common to
see large as the common default.

e The --data_model defaults to small, which constrains data to 64K (addresses to 16-bits);
restricted means addresses can be 32-bits, but no data objects can be over 64KB,;
large indicates that addresses are 32-bits and there are no restrictions on data objects.

Compiler Build Options

@ Nearly 100 compiler options available to tune your code’s
performance, size, etc.

@ The following table lists the most commonly used options:

Options Description
-mv7M4 Generate Cortex M4 code
-vmsp Generate MSP430 code
Deb -g Enables src-level symbolic debugging
ebu
g -SS Interlist C statements into assembly listing
-03 Invoke optimizer (-00, -01, -02/-0, -03)
Optimize .
-mf/-ms Speed/code size tradeoff (-mf M4/MSP, -ms C28/C6000)
(release)
-k Keep asm files, but don't interlist
4 To make things easier, Tl has created two BUILD CONFIGURATIONS:
* Debug (-g, no opt) — great for LOGICAL debug K-

* Release (no —g, opt) — great for PERFORMANCE b
2R
* Users can create their own custom build configs -

How do you CHANGE compiler options?

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-17

Compiler Options & Build Configurations

Debug Options

Until recently, you were required to use the —g option when you wanted source-level debugging
turned on. The drawback to this option was that it affected the code performance and size. This
has changed... since source-level debugging does not affect the optimizer’s efficiency, it is
always enabled.

On the other hand, if you want to see your C code interlisted with its associated assembly code,
then you should use the —ss option. Be aware, though, that this does still affect the optimizer —
which means that you should turn off this option when you want to minimize the code size and
maximize performance such as when building your production code.

Optimize Options (aka Release Options)

We highlight 3 optimization options:

e -0 turns on the optimizer. In fact, you can enable the optimizer with different levels of
aggressiveness; from —o0 up thru —o4. When you get to —03, the compiler is optimizing code
across the entire C file. Recently, Tl has added the —04 level of optimization; this provides
link-time optimizations, on top of all those performed in level —03.

e -mf lets the compiler know how to tradeoff code size versus speed.

e -k does not change the optimizer; rather, it tells the tools to keep the assembily file (.asm). By
default the asm file is deleted, since it's only an intermediate file. But, it can be handy if you're
trying to debug your code and/or want to evaluate how the compiler is interpreting your C
code. Bottom Line: When optimizing your code, replace the —ss option with the —k option!

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Compiler Options & Build Configurations

Modifying Compiler Build Configurations

Early in development, most users always use the Debug compiler options.

Later in the development cycle, it is common to switch back and forth between Debug and
Release (i.e. optimize) options. It is often important to optimize your code so that it can perform
your tasks most efficiently ... and with the smallest code footprint.

Rather than forcing you to continuously tweak options by hand, you can use Build Configurations.
Think of these as ‘groups’ of options.

When you create a new project, CCS automatically creates two Build Configurations:
— Debug
— Release

This makes it easy for you to switch back and forth between these two sets of options.

Even further, you can modify each of these option sets ... or create your own.

Modifying Build Configurations

¢ Select the build configuration: Debug or Release
Right-click on the project and select Properties
Then click “Processor Options” or any other category (like Opt):

'+ Properties for blink_TMAC_TASK_SOL

type filter test Processor Options o v v P

- Resource
CCS General
4 CCS Build [Configuratmn: [Debug [Active] I '] lManageConfiguration;ml 3
‘a ARM Compiler 4
Processor Options

Optimization

Debug Options Target processor version (--silicon_version, -mv) T4 -

Include Options Designate code state, 16-bit (thumb) or 32-bit (--code_state)
eabi

MISRA-C:2004
. Advanced Options Specify floating point support (--float_support) FPw45PD16

> ARM Linker
» ¥DCtools

Hint: If you modify a Project build option, it only affects the active build configuration.

This is a common source of errors. For example, when you add a new library search path
to your project options during Debug, it only affects that configuration. This means that
it's common to run into errors whenever you switch to the Release build configuration.

CCS is trying to help — and often asks if you want to update both/all configurations. But,
this is a new feature and only works for some of the options. This means that when an
option should apply to all configurations, you should (manually) change them both at the
same time ... or be prepared to tweak the Release build options the first time you use it.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-19

Licensing/Pricing

Licensing/Pricing

Overview

Many users will find that they can use Code Composer Studio free of charge. What? Yes...

For example, there is no charge when using CCS with most of the available Tl development
boards — such as the Tiva-C LaunchPad or C28x Control Stick. With the MSP430, they allow you
to use it for free (with any tool), as long as your program is less than 16KB. There is no code size
limit for MSP430 if you use the GCC tools.

Furthermore, Tl does not charge for CCS licenses when you are connecting to your target using
the low-cost XDS100 JTAG connection as stated before. Yes, you give up speed and features,
but you can use CCS for FREE. Not a bad tradeoff.

If you DO plan to use CCS along with the XDS200 or better emulators, you will see a huge
increase in speed, but you will also need to purchase a license as shown below:

CCSv6 Licensing and Pricing
¢ Licensing
* Wide variety of options (node locked, floating, time based)
* All versions (full, DSK, free tools) use same image
* Updates readily available online

* Licenses are “perpetual” — subscriptions only needed to o o e udio
upgrade to next major release (CCSv5 to CCSv6) o e i flode
MO1
& Pricing ()
* Reasonable — includes FREE options noted below TS instunans
 Annual subscription - $99 (5159 for floating)
Item Description Price |Annual
Platinum Eval Tools Full tools with 90 day limit (all EMU) | FREE
Platinum Bundle XDS100 use (EVM/LP) or Simulator | FREE ©
Platinum Node Lock Full tools tied to a machine $495 (1) $99
Platinum Floating Full tools shared across machines $795 (1) $159
MSP430 Code-Limited MSP430 (16KB code limit, GCC) FREE

© - recommended option: purchase Dev Kit (LP, etc), use XDS100v1-2, & Free CCSv5/6
Managing your CCS license...

You can always use CCS for free for 90 days regardless of your choice of emulator. And, if you
need to purchase a license, they are relatively inexpensive — only $495 for a node-locked license.
Licenses are perpetual for any given major release. So, if you buy a license for CCSv6, you can
download and use all of the releases of CCSv6 without paying the annual subscription fee. But,
when Tl moves to CCSv7 (major new release), you will have to pay your “back taxes” of annual
subscriptions to be able to use the new major release.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Licensing/Pricing

Changing CCS User Licenses

It is a little bit tricky to change the licensing method. That is, it's hard to find the following dialog.

As shown, choose Code Composer Studio Licensing Information from the Help menu. When that
dialog appears, choose the Upgrade tab, then click the Launch License Setup... button.

Changing CCS User License

¢ If, for some reason, you need to change the licensing of

CCS to a different type:
Help «'s License Information View
xy Welcometo CCS
X Status | Upgrade | Manage
CC5v5 Developer Site
To upgrade your existing license for Code Composer Studio, click
| Code Composer Studie Licensing Information I the Launch License Setup button.

Launch License Setup...

Select a license option

Select one of the following license options:

@ ACTIVATE
- Select this if you have an activation code, license file or license server

turad Code Composer Studio for 90 days

() FREE LICEMSE - for use with
- XDS100 JTAG emulators
- Onboard emulators on EVMs/D5Ks/Stellaris/eZdsp/MAVRE development kits, Does not support eZ430,
- Linux/Android Application Development using GDB
- Simulators

() CODE SIZE LIMITED (MSP430)
- Free 16KB code size limited tools for M5P430

pra— Y — ey
St e ll®

In this workshop, if you paid for a license, use that option. If you have a brand new CCS
download, simply choose the “Evaluate” option to use CCS in the labs or the “Free License” for
any MCU users because the interface is XDS100v1.

For those C6000 users in the room, you will either choose “Evaluate” for a new license or choose
“Activate” if you have a license file from TI. In the labs, we will use the XDS510 which requires
one of these types of licenses.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-21

CCSv6 — For More Info...

CCSv6 - For More Info...

There is a TON of great tutorials, PPT presentations and Getting Started Guides for anything
related to CCS and Eclipse. Shown below is a link users can access to gain more knowledge in
many areas related to the CCS IDE.

CC§V6 — For More Information

ﬂ/)ﬁ Code Composer™ StUdW Emborey

"0Cess,,

™

Modules Library
Module ¢ [MSP430% & [C2000% & [Tiva® & [SimpleLink® ¢ [Sitara @ ¢ |Keystone & ¢ [C6000 & [C5000% &
Ovenview ¥ ¥ Y ¥ Y ¥ ¥ ¥
Scripting Y y Y Yy ¥ Iz Y Y \
UniFlash Y 1
i CCS YouTube Video
GRACE Y
Portable Projects ¥ . . .
o ' ; CCS introductory videos are available via the Code Composer YouTube channel £
itra-Low Power (ULP) Advisor ¥ .
Optimizer Assistant ¥ Youl['lil] being created and uploaded canstantly.
Target Configurations Y Mote: These videos will also be hosted on a Tl server in the future
WMulti-Core Debugging Y P, .
Advanced Breakpoints / AET N T i) ei— L Y - bl
Real-time Debug N Y Y Y N \ N N
GEL Y Y Y Y Y Y - -
Enhanced Emulation Module (EEM) | N N N N N Gettlng Sta rted G u IdeS
Linux Debug N N I N Y ¥
Profiling % v Y % Y % The Getting Started Guides are an excellent way?
CodelCaverage N N N N il v o CCSv6 Quick Start Guide B: PDF copy of the;
System Analyzer N N N N N Y
= = project and debug it

System Trace N N N N Y Y
RTOS Analyzer (RTA) i \ Y Y ¥ Y s CCSv6 Getting Started Guide. This guide cov
Processor Trace N N N N hd Y » CCSv6 Getting Started (Video): This demo g
cToolsLib N N N N N Y
Instrumentation Trace Macrocell (ITW) | Y Y Y N N

S ey ——

http://processors.wiki.ti.com/index.php/Category:CCS_Training

HIDDEN SLIDE...Development Tools for Tiva-C MCUs

TI's MCU platforms are supported not only by CCS but by other tools as shown below...

Development Tools for Tiva-C MCUs

SIAR .
IELIEES SN | Armpen | R
Eval Kit 30-day full 32KB code size | 32KB code size Full function.
license function. limited. limited. Onboard
Upgradeabl Upgradeabl Upgradeabl ion limited
Compiler GNU C/C++ IAR C/C++ RealView C/C++ TI C/C++
C-SPY/ .
Debugger / db / Ecli e CCS/Eclipse-
pse Embedded MVision s
IDE 9 Workbench based suite
99 USD
personal MDK-Basic (256
Full Upgrade edition / 2700 USD KB) = €2000 445 USD
2800 USD (2895 USD)
full support
De{"u‘;(;er J-Link, 209 USD | U-Link, 199 USD | XDS100, 79 USD

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — CCSv6 Projects

Lab 2 - CCSv6 Projects

In this lab, you will have an opportunity (maybe your first one) to work with CCSv6 and your target
development board. Because this is our first real lab of the workshop, we plan to keep it very

simple and just focus on the CCS basics.

First, we’ll create a new project that performs the famous “hello world” program for MCUs — uh,
blink an LED. You will then have the opportunity to perform some basic debugging in CCS. Once
finished, you can move on to the optional parts of the lab to explore some other debugging skills.

While this is definitely the “MCU BIOS Workshop”, these labs intentionally do not incorporate the

SYS/BIOS Real-time operating system and scheduler. We have plenty of time to learn those

concepts in later labs. ©

You are new to CCSv6 and * Create a new project
simply want to BLINK AN LED e Add (copy) main.c
(the “hello world” of MCU) on
your target board — and learn a
few things about the IDE e Add linker.cmd file

e Build, load, debug

Lab 2 - MCU “Hello World” — Blink an LED
Lab Goal: ¢ Lab 2 - Blink LED (no BIOS)

» Add (link/copy) driver “library”

& Architecture “Markers”

* Some labs contain architecture
“markers” that differentiate
specific instructions for your target

* Pay close attention to these:
-
"\ MSP430

Note: project creation/debug slides at end of lab

¢ Time: 45min

*kk

*** turn to the next page for the actual lab procedure

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — Procedure

Lab 2 — Procedure

In this lab, we will create a project that contains one simple source file — main.c — which has the
necessary code to blink an LED on your target board without the use of SYS/BIOS. It simply
makes a few calls to a few library functions to set up the pins and then toggle them.

The purpose of this lab is to practice creating projects and getting to know the look and feel of
CCSveé. If you already have experience with this IDE, it will be a good review and you will
probably learn some things you don’t know. The labs start out very basic, but over time, they get
a bit more challenging and will contain less “hand holding”.

NOTE ABOUT FOLLOWING INSTRUCTIONS — PLEASE READ AND FOLLOW
THIS INSTRUCTION !! ©

Note: Please be considerate of the whole class by FIRST following the
instructions in each lab until you are done — and resist the urge to click on buttons
to see what they do or dig into the assembly code. Get the lab done FIRST, then
take all the time you want to explore features of the IDE. That way, when everyone
is done with the lab, we can move on to the next chapter in a timely fashion. You
can also spend time doing the OPTIONAL lab steps and/or watching the
architecture videos. THANKS.

Intro to TI-RTOS Workshop Files

1. Browse the directory structure for the workshop labs.
First, we would like to introduce you to the workshop files throughout the labs.
» Using Windows Explorer, locate the following folder:
C:\TI RTOS

In this folder, you will find at least four folders — aptly named for the four architectures this
workshop covers — C28x, C6000, MSP430 and TM4C (Tiva-C).

» Click on YOUR specific target’s folder. Underneath, you'll find two more folders — \Labs
and \Sols. You will be working mostly from the \Labs folder but if you get stuck, you may
opt to import the lab’s archived solution (.zip) from the \Sols directory and find the errors of
your way.

» Click on the \Labs folder and you’ll find one folder per lab (e.g. Lab_01, etc.).

» Click on \Lab_02. In this folder, you will find two key directories — \Files and
\Project. The Files folder contains the “starter files” you need to create each project. The
Project folder will contain your project files and settings.

When the instructions say “navigate to the Lab4 folder”, this assumes you are in the tree
related to YOUR specific target.

2-24 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — Procedure

Create and Explore Your New CCS Project

2. Create a new CCS project.

» Launch CCS. If you are asked to choose a workspace, select Browse and pick the
workspace located at C: \TI RTOS\Workspace and check the box that says “don’t ask me
again”.

Each architecture is slightly different in the way projects are created — some provide target
config files in the project, some don’t. Some provide linker command files, some don’t. We
will attempt to provide some guidance regarding these differences along the way — so please
pay attention to the instructions and follow them carefully.

To create a new project,

» select Project — New CCS Project:

>

[Prﬂject] Run Scripts Wi

4§ MNew CCS Project

When the New Project Wizard shows up (MSP430 example shown),

» Select the appropriate options for your target (explained on the next page). Pay attention
to the architectural differences noted. UNCHECK THE “Use default location” CHECKBOX.

2+ New CCS Project E=REEREXES

CCS Project — g *

Create a new CCS Project.

Target: 5520 ~ [MsPa30Fss20 - |

Connection: | TIMSP430 USBI [Defaul] || Identity |

=5 MsP430

Project name: blink_target_CCS

[Use default location
Lecation: CATL RTOS\Target\Labs\Lab_02\Project

Compiler version: | TIwd.3.1 v] [More...]

¥ Advanced settings

* Project templates and examples

type filter text Creates an empty project fully initialized -«
- for the selected device.
4 | = Empty Projects =
55 Empty Project ' |:|
|55 Empty Project (with main.c) - -

@ < Back Mext > [Finish || cancel | §

(refer to the next page for hints on which options to use for YOUR target...)

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-25

Lab 2 — Procedure

Target: » choose one of the following based on your specific target — start typing the
following into the Target field and then choose the proper device just to the right:

o (C28x: controlSTICK — Piccolo F28069
e C6000: LCDKC6748

e MSP430: MSP430F5529

e TMA4C: Tiva TM4C123GH6PM

Connection: » choose the following for each target:

e (C28x: Connection: ’Texas.Instruments XD5100w1 USE Emulator

e (C6000: leave blank

e MSP430: Connection: ['I'I MSP430 USEL [Default]

e TMA4C: Connection: IStEIIarisIn-Cirr.uit Debug Interface

Project Name: » Use the following name — replacing target with your target name:
blink target CCs

..where target is either C28x, C6000, MSP430 or TM4C. For example, if you are using the
MSP430 Launchpad, the name of your project would be:

blink MSP430 CCs

Hint: Whenever you see “target’ in lab instructions, make sure you always use the letters that
correspond to your specific target.

» Location: » Uncheck the “Use default location” checkbox and specify
(browse to) the folder:

C:\TI_RTOS\Target\Labs\Lab 02\Project

...where Target is, again, your specific target — C28x, C6000, MSP430 or TM4C. As you can
see, we are not using the default workspace location for this project.

C6000 USERS ONLY - CHOOSE ELF BINARY FORMAT:

C6000 users have a choice between COFF (the older format) and ELF (the newer format).
COFF will not work with TI-RTOS for C6000. So...

» Click Advanced settings and change the binary format to ELF:

* Advanced settings

Qutput type: ’ Executable

Output format: Ieahi (ELF) i

Device endianness: ’Iittle

2-26 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — Procedure

ALL USERS — Project templates and examples:

» Choose “Empty Project” (see arrow on previous diagram two pages earlier)..
» Click Finish. (Note: we will look at the Advanced Settings shortly).

Your project should look something like this (Note: example shown is TM4C, your specific
linker command file and target config file will match your target — and C6000 users won't
have a target config file at att):

4 = blink_target_CCS [Active - Debug]
» [wjt! Includes
4 [= targetConfigs
5] readmetdt
7 Tiva TMACL23GHEP M. coxml [Active]
» | g tmdcl23ghépm.cmd

3. Add a source file (main.c) to your project.

The project for each target will require one source file (main. c), linker command file and a
library (or library folder) to support the blink LED code. We will first add (copy) the
source/command files and then add (link) the library files (if required).

» Right-click on your project and select “Add Files”.
» Browse to the following file and add (copy) it into your project:
C:\TI RTOS\Target\Labs\Lab 02\Files\main.c

«+ File Operation

Select how files should be imported into the project:

@ Copy files

() Link to files

...where Target denotes your specific target. We will look at the code inside main. c shortly.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-27

Lab 2 — Procedure

4. C28x, TM4C USERS ONLY - add additional files to your project

When the project is created, you will notice that a linker command file (.cmd) is automatically
added to your project. However, for a few targets, additional files are needed. These are
noted below...

C28x users — you must add an additional 1inker.cmd file due to the use of the header file
28% programming methodology which is the most widely used method for users of C28x devices.

Later, you will also add in a folder full of source files as well. If you want to know more about
how all these files work in detail, the author recommends taking the C28x 1-day or 3-day
workshops.

C28x USERS ONLY:
» Add (copy) the following 1inker.cmd file from ControlSuite (nonBIOS command file):
\controlSUITE\device support\f2806x\v136\F2806x headers\cmd\...

T

&) F2806x_Headers_BIOS.cmd
| F2806x_Headers_nonBIOS.cmd

TMA4C Users ONLY:

» If you are using CCSv5.5 or later, *_startup_ccs.c is auto-added to your project. If you're

using CCSv5.4 or earlier, you need to add (copy) *_startup_ccs.c to your project. This file is

used to configure the reset and interrupt vectors so that your code will worked “disconnected
from CCS. When you use BIOS (in the next lab), this file will become unnecessary.

2-28 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — Procedure

Add Libraries and Include Search Paths

Whoops, did you even know you had a problem already? Maybe not.

» Build your project by using the “hammer”: ;%

You will find that there are errors in your code — similar to this one:

@ Problems B2 Advice

1 error, 0 warnings, 0 others

Descripticn

a @ Errors (1 item)
£ 21965 cannot open source file "inc/hw_types.h"

Why does this happen? Because there are header files in main.c that the tools can’t find and
possibly library files missing (depending on your target).

So, in the next few steps, you'll be adding libraries (or folders) to your project as well as adding
include search paths.

You have basically two options to add PATH statements to your project — either hard code them
or use variables. Hard coding works, but is less portable. Using variables takes a little work up
front, but much less work if you want to hand your project off to someone and have them get it
working quickly. So, “pay me now” (variables) or “pay me later over and over again” (hard coded
paths).

The process of using variables for path statements is left as an optional lab at the end of this
chapter. If you get done early, you are welcome to learn more about how to create portable
projects. In this workshop, we will use VARIABLES but not provide a long explanation of why/how
these variables work. The entire discussion on these variables is left to a video as well as the
optional lab in this chapter. If you want all the details, watch the video and go through the optional
lab in this chapter.

We will shortcut the discussion and simply ask you to use the variables given and then import a
file called vars.ini to populate those variables in the proper place. There are TWO reasons we
use variables in this workshop:

¢ In order to make your own projects portable, it is important to at least be exposed to the
concept of using variables for paths

o When you import projects later on, the author used these exact variables in the solutions
and the starter projects. If your paths are different, it all works just fine. This will help us
avoid mismatches in what the author used as the default path vs. a student’s installation
of the tools.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-29

Lab 2 — Procedure

5. Modify vars.ini and import the variable(s).

Here is the basic idea. If user A sets a path for include files equal X (C: \mylib) and user B
has his tools set to path Y (D: \my1ib) and user A hands off a project to user B and says
“build it”, it won’t build — the paths don’t match. However, if these two users share a variable
named “MYLIB = “ and sets this variable in CCS, each user can have their own path for the
tools and the project in both environments will build properly. Same variable — different path.
Honestly — this is a beautiful thing.

vars.ini will contain the path and the variable. When you import vars. ini into your
workspace, ALL projects in that workspace can use the same variable. Warning — if you
switch workspaces, you will need to re-import vars.ini.

Open vars. ini for editing by doing the following:
» Select File 2 Open File and browse to:
C:\TI RTOS\vars.ini

You will see a file that looks similar to this (but probably have paths to newer tools):

5]

vamjml

CONTROLSUITE F2806x INSTALL = C:\TI\controlSUITE\device supporthf2806x\wvl4l

PDE_ INSTALL = C:\TI\pdk CMAPLI3E 1 01 00 02

MSP430WARE_INSTALL = C:\TI\tirtos_msp43x 2 12 00 24\products\M5PWare 2 00_00_40a
TIVAWARE INSTALL = C:\TI\tirtos tivac 2 10 01 38\products\TivaWare C Serie=-2.1.0.12573c

[Y-S FU SI

Most users only need ONE of these paths. Note: PDK_INSTALL is for C6000 users. So,

» Edit YOUR target’s path to match your actual tools location in your file system and then »
delete the other variables you don’t need.

» Save vars.ini.

To import this file and populate this variable into your workspace (so you can USE it in future
steps), select:

File = Import and then expand the category “Code Composer Studio”:

4 [= Code Composer Studio
s, Build Variables
1 CC5Projects

» Select “Build Variables” and click Next.

» Browse to the location of vars.ini, check the box to “Overwrite existing values” and then
click Finish:

Build-variables file: CATLRTOSYwars.ini

Owverwrite existing values

Your variable is now set for your current workspace. You will use this variable name to
represent the PATH used in vars.ini — in later steps...

2-30 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — Procedure

6. FOR Tiva-C Users ONLY - link a library to your project.
E> MSP430, C6000 and C28x USERS — PLEASE SKIP TO THE NEXT STEP

SRR In order to BLINK an LED on your board, we will be making calls (in main.c) to functions
which are contained in driver libraries.

have a newer version of Tivaware then shown below):

C:\TI\tirtos tivac 2.00 00 22\products\TivaWare C Series-
2.1.0.12573c\driverlib\ccs\Debug\driverlib.lib

» Link the library file relative to your TIVAWARE INSTALL variable:

Select how files should be imported into the project:

) Copy files

@ Link to files

Create link locations relative to: "ITUAWARE_IN STALL "l

Configure Drag and Drop Settings...

@:‘ l ’ Cancel

» Right-click on your project and Add (link) the following library file to your project (you may

Note: The paths listed above are examples. If you have an updated driver library that is

different than above, link in the LATEST driver installed on your system. For example, if
TivaWare was updated to rev 2.2 or later, the above path is incorrect — so simply use

common sense to link in the latest driver library installed on your PC.

Your project should now look something like this. The example below shows the Tiva-
C/TMAC target version:

4 = blink_target_CCS [Active - Debug]
> [Includes
> [targetConfigs
- g main.c
= | g7 tmdcl23ghGpm.cmd
Eg driverlib.lib

Double check you have main.c,a .1ib file and a . cmd file.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — Procedure

7. FOR MSP430 USERS ONLY - import folder of files to your project.
E> IF YOU ARE NOT AN MSP430 USER, PLEASE SKIP TO THE NEXT STEP.

The recommended way to use MSP430WARE is to IMPORT the folder that contains the
MSP430 library source files into your project.

f » Right-click on the project and select: Import 2 Import
P » Then perform the following as shown in the graphic below:

a. Expand General and click on File System (then click Next).
b. Browse to your MSP430Ware driverlib location: e.g (probably newer path).:
C:\TI\tirtos msp430 2 00 00 22\products\MSP430ware 1 80 01

» 03a\driverlib\
— choose the folder MSP430F5xx_6xx. Click Ok.

c. Check the box next to the folder on the left — MSP430F5xx_6xx.
d. Check the box next to Create top-level folder

< Import [T TET [
File system — Q
Import resources from the local file system. L‘ .u-f
-
From directory: C:\TImsp430\MSP430ware_1_80_01_03\driverlib\driverlib\MSP430F5:o_bicx -
> (V]2 MSP430F5: €] adc10_a.c -
[£] adc10_a.h L4
@ adcl2_a.c
[€] adc12_a.h
[£] aes.c
[£] aes.h
@ bak_batt.c
[€] bak_batt.h
¥ [€ comp b.c s
Filter Types... | | SelectAll || DeselectAll |
Into folder: blink_MSP430_CCS_SOL
Options
[Overwrite existing resources without warning
Create top-level folder
) W—

» Click Finish.
You should now see the COPIED folder “MSP430F5xx 6xx” in your project.

» Double-check you did not link in the “FR5xx_6xx” version (common mistake).

You also need to TURN OFF the ULP Advisor. Normally, you would want this on, but the
default is to warn you of every possible way to save power (great default, just gets in the way
in early development) — so you’re going to turn it off.

» Under Properties = Build 2> MSP430 Compiler 2 ULP Advisor and then click None.
» Click Ok.

2-32 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — Procedure

8. FOR C28x USERS ONLY - import folder of files to your project.
IF YOU ARE NOT A C28x USER, PLEASE SKIP TO THE NEXT STEP.

The recommended way to use controlSUITE is to add the necessary header source files for
your application. In this lab (and all future labs), we are doing the same thing. The author has
created a subset of the header file source code in a folder named \EWare_F28069 which is at
the root of your C28x folder.

The only way to copy in a FOLDER full of files is to IMPORT it.
» Right-click on the project and select: Import 2 Import

» Then perform the following as shown in the graphic below:
a. Expand General and click on File System (then click Next).

Browse to: C:\TI RTOS\C28x\EWare F28069

c. Check the box next to the folder on the left — Eware 28069.

d. Check the box next to Create top-level folder

File system

Import resources from the local file system.

From directory: CATL_RTOS\C28:\EWare_F28068

- Browse...

(= EWare_F28069

EWareReadme. td

@ F2806x_CodeStartBranch.asm
@ F2806x_CpuTimers.c

£ F2806x_Defaultlsr.c

@ F2B06x_GlobalVariableDefs.c
[£] F2806x_PieCtrl.c
[£] F2806x_PieVect.c
] F2806x_SysCtrl.c
@ F2806x_usDelay.asm
Filter Types... | | SelectAll || DeselectAll |
Into folder: blink_C28x_ CC5_SOL

Options
[] Overwrite existing resources without warning
Create top-level folder

» Click Finish.

You should now see the folder “EWare F28069” in your project. If you expand this folder in
your project, you'll notice that every file there is COPIED into your project. Note — when we
move to using TI-RTOS in the next lab, you will import the “ BIOS” version.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — Procedure

9. ALL USERS - Add INCLUDE search paths for the libraries.

Whenever you add a library (.lib) to your project, you also need to add a search path for the
header files associated with that library (or folder of files in the case of MSP430 or C28x).

» Right-click on your project and select Properties.

» Click on Build — Compiler — Include Options (as shown):

4 Build
4 ARM Compiler
Processor Options
Optimization
Debug Options

Include Options
MISRA-C:2004

» Click on the “+” sign next to #include search path (note: there are TWO boxes — make sure
you pick the right one) and add the following directory path(s) by typing in the path specific to
your tools install using the VARIABLE name from vars.ini.

(Note — those are BRACES "{ }” around the variables):

o (C28x: $ {CONTROLSUITE F2806x INSTALL}\F2806x common\include

$ {CONTROLSUITE F2806x INSTALL}\F2806x headers\include

e (6000 ${PDK_INSTALL}\packages

« MSP430 ${MSP430WARE INSTALL}\driverlib\MSP430F5xx 6xx
e TM4C ${TIVAWARE INSTALL}

» Click Ok.

Note: These options only apply to the current build configuration (i.e. Debug). If you switch to

the Release configuration, you will need to copy these paths to the new configuration.

10. Peruse the Project folder in Windows.

As discussed in the chapter, whenever you add (copy) files to your project, CCS will make a
COPY of that file and place it in your project folder. So, the Project Explorer view in CCS is
basically showing you the exact folder/file structure in your Windows filesystem.

» Using Windows Explorer, locate your project folder:
C:\TI RTOS\Target\Labs\Lab 02\Project

Do you see main.c? It should be there. Do you see the . 11ib file/folder? Tiva-C users won’t
see it because they LINKED their library. C28x/MSP430 users will see the folder they
imported — and C6000 users don’t have any extra files. Notice the other files and folders in
the \Project folder — these contain your project-specific settings.

After you BUILD your project, which folder will be added? If you don’t
know yet, well, stay tuned.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — Procedure

11. Build your project using “the hammer” and check for errors.

At this point, it is a good time to build your code to check for any errors before moving on.

» Just click the Build button — a.k.a. “the hammer”: ‘%

If you have any errors, try to fix them. After an error-free build, » go take a look at your
project folder again in Windows Explorer — is there a new folder? Open the \ Debug folder
and examine the contents — that’'s where the .0UT and .MAP files are — amongst other files.

Explore the Blink LED Code

12. Explore code in main.c.

In this lab, we are using a simple blink LED program — the famous “hello world” for MCUs.
The goal in this workshop is to keep the code very simple and focus on concepts where you
will be able to learn valuable skills without huge/complex code getting in the way. So, we will
be blinking an LED (or two) throughout all the labs. If the LED blinks, well, your code probably
works. If it doesn’t blink — there is, most likely, a problem.

We are starting with a program that does NOT use BIOS. In the next lab, you'll be adding
BIOS to this code. We will, by the end of the workshop, build a more complex system — once
piece at a time.

» Openmain.c for editing and peruse the whole file. You will see the header files,
prototypes and global variables used. Each target’s main. c will be slightly different only
because the hardware to set up the LED is different. However, if you look in the main ()
function, the while (1) loop is almost identical for all targets:

void main(void)

1
hardware_init(); /f init hardware via Xware
while(1) // forever loop
¢ ledToggle(); // toggle LED
delay(); // create a delay of ~1/2sec
i16ToggleCount += 1; // keep track of #toggles

If there is a watchdog timer present, we first disable it in the _init() routine. Then we perform
some setup for the hardware to blink the LED. Typically, this is done via a library call. In the
while(1) loop, we have three steps:

e Toggle the LED (via fxn or just one line of code)
o Delay function (usually the delay is about 1/2 second)
e Increment i16ToggleCount global variable (we’'ll use this in a few ways later)

e Doitagain...

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-35

Lab 2 — Procedure

Using the Target Configuration File

13. Open and analyze the Target Configuration File.

Remember, the Target Configuration (.ccxml) file tells CCS how to connect to our target
board/device to debug a program.

TargetConfig files are usually stored in one of two places:
¢ Inside the Project folder:

— For all MCUs projects (C28x, MSP430 and TM4C), CCS automatically creates a
target config file (using the “connection type” you specified when creating the
project). You can see this under the TargetConfig folder in your project.

e The “User Defined” folder under Target Configuration View (View — Target
Configurations).

— You might remember we imported a generic, board-specific TargetConfig file into the
“User Defined” folder during Lab 1.

Let's explore the TargetConfig file we will be using for this lab exercise:

* » Locate your target config file — either in your project (all
MCUs) or in the User Defined folder via View — Target
Configurations (C6000 only).

Target Configuration

All Connections
» Double-click to open. If you look at the bottom of the
screen, you'll notice you are viewing the Basic tab.

4 T, Stellaris In-Circuit Debug Interface
4 % Tiva TMAC123GHEPM
4 3 C5.DAPOD

Fi E}Q subpath_0
G} CORTEX M40

In the Basic tab, notice the connection type (which you can
edit) and the board/device selection (again, you could edit
this if you like).

» Now click on the Advanced tab and » click on the CPU
(as shown — your target and connection may vary).

Notice on the right-hand side the “initialization script”. This is the GEL (general extension
language) file that runs when you “connect to target”. Often, it sets up the hardware clocks
(PLL), memories, and peripheral settings — etc. — as a convenience for you when using CCS
and a target development board. When you create a production system, these commands will
obviously need to be part of your boot/init routine.

» Close the Target Configuration File.

Sidebar

There are two ways to invoke the debugger:
« Click the Debug toolbar button % 7 .

This launches the “Active” or “Default” TargetConfig file. For most users, this is the .ccxml file found in
your project. (Occassionally — and for all C6000 users — this is the last TargetConfig file which you
used.)

e Launch the debugger from the Target Configurations View (View — Target Configurations).

Right-click the TargetConfig file from this view and “Launch Selected Configuration”. This starts the de-
bugger, but you must still manually connect to the target and load your program. This is how we ran our
code in Lab 1.

When switching to a new project, C6000 users should always use this to invoke the debugger the first
time; after that, they can switch to using the Debug button on the toolbar.

2-36 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — Procedure

Build, Load, Run

There are four steps required to run code within CCS:

e Build (Compile, Assembile, Link) your code. (Step 143)
e Launch the debugger. (Step 14)
e Connect to your target board. (Step 15)
e Load your program. (Step 16)
o OK, the fifth step is actually hitting the “Run” button. (Step 187)

These steps can be invoked in two ways. We’'ll start with the step-by-step method; afterwards,
we’ll show the ‘shortcut’ method.

Launching the Debugger step-by-step

14. Build your project and fix any errors.

Note: If you have more than one project open in the workspace, ALWAYS FIRST click on the
project you want to build before building. It is usually best to close any projects you are
not working on first to avoid the possible error of building the WRONG project. Get in the
habit NOW of first clicking on the project you want to build (it will be highlighted) and then
build. In future labs, you will have main.c in EVERY project. Do you really want to click on
the wrong main.c and edit it? Nope. So, do yourself a favor and close any previous
projects AND click on the project you’re working on first before building/loading/running.

» Build your project by right-clicking on your Project and selecting Build Project:

| TE'? blink_TM4C_CC5_SOL [Active - Debuqg] 36 if(GPIOPinRead(
s :j:f' Binaries Mew 2
- [Includes

- = Debug
nows modules on the package path ot a K%

urrently emnpty because there is no RTSC Coi Show Build Settings...
Build Project -

Add Files...

» Or, by hitting the HAMMER:

&Ry -

» Fix any errors that occur.

15. LAUNCH a debug session.

» Select View — Target Configurations. Make sure the target config file you imported in the
previous lab is shown under User Defined.

» Right-click on this target config file and select:

v+ Launch Selected Configuration

Your perspective will change to the Debug perspective and a few notes may be sent to the
Console window.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-37

Lab 2 — Procedure

16. CONNECT to your target board.

» Connect to the Target via Run — Connect Target:

Run | Scripts Window H
B Connect Target

» Or via the Connect Target button: l-ni

If your TargetConfig specifies a GEL file, this is when it runs — so you may see a few more
comment lines in the Console window. If the error “cannot connect to target’ appears, the
problem is most likely due to:

e wrong board/target config file or both —i.e. board does not match the target config file
e wrong target bad/wrong GEL file (rare, but it can happen)
e bad USB cable

e Windows USB driver is incorrect — or just didn’t get enumerated correctly

Hint: Later on when you’re using the “easy one button” approach to loading your program,
if see an error, we recommend going back and launching the debugger using these
three discrete steps. It can often help you deduce when/where the problem occurred.

17. Load your program.

» Load your program via Run — Load — Load Program or via the download button: TR

When the dialog appears, » select Browse Project and navigate to the
Project\Debug\target.out file.

4 1= blink_target_CC5S
4 [= Debug
ot} blink_target_CCS.out

Hint: The reason to use Browse Project is that the default . out file that appears is often
NOT the .out file you want.

If you get into the habit of using Browse Project, it will default to the active project
which is usually what you want.

» Select your . out file (in the \Debug folder) and click Ok twice. Your program will now
download to the target board and the PC will auto-run to main () and stop as shown:

oid main({void)

2-38 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — Procedure

18. Run your program.
Now, it's finally time to RUN or “Play”. » Hit the RESUME (Run) button: (=

The LED on your target board should blink. If not, attempt to solve the problem yourself for a
few minutes ... then, ask your instructor for help.

To stop your program running, » click SUSPEND (Halt): 18|

Hint: Suspend is different than Terminate !!!

If you click the Terminate button, the debugger — and your connection to the target — will
be closed. If you're debugging and just want to view a variable or memory, you will have
to start all over again. Yes, this is very irritating. Remember to pause and think, before
you halting your program.

Terminate

19. Terminate the debug session.

OK, this time we really want to terminate our debug session. (This way, we can start up the
debugger again ... the easy way.)

» Clicking the red TERMINATE button: | [

This closes the debug session (and Debug Perspective). CCS will switch back to the Edit
perspective. You are now completely disconnected from the target.

Build, Load, Run ... again
Here’s the “easy button” (i.e. one button) method for debugging your code.

For MCU users, this is extremely simple. And the SECOND launch for C6000 users is just as
easy. (And, this will be the second time you will be debugging this program.)

20. Rebuild and Reload your program — the one-step method.

» First, make sure you terminated your debug session and your project is highlighted (in
scope) by clicking on the project.

» Then click the BUG button: | %5 ~

This Debug button performs the same 4 steps we just completed:
Builds the program (if needed); Launches the debugger; Connects to Target; Loads program

Once the program has successfully loaded, » run it.

Sidebar

CCS stores the previous launch/connection info in a hidden project folder called ./aunches. This is
how CCS projects know which target to connect to ... the second time they are invoked. (MCU
projects also use this feature, but usually work fine the first time they are invoked.)

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-39

Lab 2 — Procedure

Add a Breakpoint

21. SUSPEND (Halt) | ||| [the debugger.

Do you end up with a weird file that cannot be displayed? If not, run and halt a few times and
something like this may show up.

Often, this happens because the processor was
halted in a section of code where the CCS debugger
cannot find the associated source code. This
frequently means that you halted in the middle of a
routine from a binary object library.

L] main.c [c | 0x488a 3

l‘«lu:u source available for "0xd88a"

l‘u‘iew Disassembl}r...‘

22. Add a breakpoint in your code.

Breakpoints are very useful debug tools. Besides helping us to halt execution within a specific
source file (to solve our previous problem), they also allow us to halt in a location where we
may want to view a variable’s value (which we’ll do soon).

Let's add breakpoint and then run to it.
» Click into the main. c file, if you're not already halted there.

In the column next to the increment of toggleCount, » double-click to add a breakpoint:

il6ToggleCount += 1;

» Click RESUME (Play). The PC should stop at this line. This should happen each time you
hit RESUME.

23. Single-step your program.

Breakpoints are handy, but sometimes you want to view code execution after every line of
code — doing this with breakpoints would be very tedious. This is where single-stepping a
program comes in handy.

» With the program suspended, click the Step Over (F6) toolbar button (or tap the F6 key):

Resume Suspend Terminate Step Into | Step Qver Step Return Restart

[

%5 Debug 52 il W T 3 T - Rt

Notice how one line of code is executed each time you click Step Over; in fact, this action
treats functions calls as a single point of execution — that is, it steps over them. On the other
hand Step Into will execute a function call step-by-step — go into it. Step Return helps to jump
back out of any function call you're executing.

2-40 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — Procedure

Watch Variables and View Memory Contents

24. Hover over a variable to view it’s information & value.

» Hover over the varible i16ToggleCount in main(). After a few seconds, you should see an
information box pop up and show its value.

What is the value?

25. View/Watch variables.

» Double-click on i16ToggleCount in main() to select the variable. += 1;

» Right-click on the selected variable and choose:

\‘xﬂ Add Watch Expression... }'

» Click Ok. Do you see i16ToggleCount in the list? What is the value?
Is it the same as the previous step?

Hint: If the variable is not selected when you right-click and choose “Add Watch
Expression...”, you will have to type the name into the dialog — which is not as easy
as selecting the variable first.

Note that you can add any expression to a Watch entry. For example, this means we
could have the watch window show the value of: i16ToggleCount * 3

26. Viewing memory...

Does i16ToggleCount live somewhere in memory? Of course it does. You can see the actual
address in the expressions view. But let’s go see it in a Memory Browser window.

» Select View — Memory Browser:

[0 Memory Browser i

» Type “&i16ToggleCount’ into the memory window to display i16ToggleCount in memory:

(] Memory Browser 57 #k -
What does the “&” mean?

&il6ToggleCount
020000214 - 16ToggleCount <Memory Rendering 1=
16-BitHex - TIStyle |

@w2@90a214 1il16ToggleCount
S4E3 DS2A 7EFG 77E7
Ex2eaea22s FDEC 1E9A CABl 1586 1ASE 3AEG

@x2eaaazd4n A352 66D7 263A CAAB 3231 6847
Bx2BaEa25 2 8570 9315 9258 BEB2 B2EG

What happens if you forget to
use it? (Yes, you see it's
address, rather than it's value.)

» Try changing the memory
windows format from:

“16-bit Hex — T Style”

What changes when you do
this?

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-41

Lab 2 — Procedure

Other Useful Debug/Editing Tips

27.

28.

29.

30.

Ever wanted to know how much RAM/FLASH your application is taking?
New, in CCSv6 is a Memory Allocation View. Very cool.
» Select: View = Memory Allocation

And you will see a report similar to this one:

= Memory Allocation (3 ==
Project 'blink_TM4C_CC5_SOL": Link successful
- FLASH |1.894 (0%) 267k
. SRAM |534 %) 32,768

The author has yet to determine how these numbers are generated, but they are probably
sniffed out of the .map file based on section allocations. Very handy report for many users.

Viewing CPU registers...

» Select View — Registers and notice you can see the contents of all of the registers in your
target’s architecture. Sometimes quite handy when debugging.

1

9= Variables | 61" Expressions | i{}f Registers 3

Mame

i Core Registers
&% WATCHDOGO
& WATCHDOGI
&% GPIO_PORTA
&% GPIO_PORTE
%% GPIO_PORTC
&% GPIO_PORTD

Try using the Quick Access toolbar.

Sometimes, you just can’t find what you’re looking for in CCS — too many options floating
around. Quick Access is the “google search” of CCS options. Let’s say you wanted to know
where those “linked resource” variables are stored in the workspace. Well, if you go through
the optional lab at the end of this chapter, you'll find out. But just to try it out...find the Quick
Access toolbar in the upper right- hand corner of CCS:

r
Quick Access '

» Type “Linked Resources” into the toolbar and click on the answer. What do you see?

Restart your program.

We can simply restart our program without exiting the debugger. This will restart execution of
our program and run to main; similar to when we loaded our program.

» Select Run — Restart or click the Restart button:

&

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Lab 2 — Procedure

31.

32.

Introduce an error in the code.
Do NOT terminate or close your debug session.

» Switch back to the Edit perspective and remove the semicolon (;) from the call to
ledToggle ():

i

ledToggle()

» Go ahead and rebuild your project. When you see the error report:

£ Problems &3 | Advice

1 error, 0 warnings, 0 others » Expand it and double click on the error.

Description CCS will take you to or near the error.

4 @ Errors (1 item)
9 266 expecteda "

» Replace the semicolon and watch the
question mark disappear. Nice.

Make the delay 2x and rebuild/run.

» Modify the delay function to 2x the time delay and rebuild. Notice that, because you
already have a debug session open, if the program builds correctly, CCS will
AUTOMATICALLY load the new program. If a dialogue appears, say Yes and check the box
to remember your decision.

Hint: Sometimes, CCS will ask you to terminate your debug session before “auto loading” the

newly built .out file or the new .out file won'’t re-load properly. It will be obvious if either of
these occur. But most of the time, the auto reload works just fine.

So, once you have a debug session open and you don’t switch projects, CCS will auto-load a
successfully built program after making any edits (except for MSP430).

» Run your program to see if the LED blinks slower. Whoops, you still have a breakpoint set.
No worries — just » double-click the breakpoint again to remove it. You can also select View
— Breakpoints and uncheck the breakpoint there.

» Now run again.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-43

Lab 2 — Procedure

33.

34.

Want to know which file a function is declared in?

All of the variables and functions in your program are INDEXED by CCS (Eclipse). Some very
experienced users of Eclipse recommend rebuilding the index every once in a while to assist
in the Open Declaration option working better/faster.

» Right-click on your project and select Index = Rebuild.

» Find a function call in main. c (from your xX\Ware library), highlight it, then right-click on that
function and select Open Declaration.

Did CCS find the function? Very handy little trick. Later, you can use this to find declarations
for TI-RTOS function calls.

Let’s move some windows around and then reset the perspective.

Using the Edit perspective, » double-click on the tab showing main.c:

Notice that the editor window maximizes to full screen.
» Double-click on the the main. c tab again to shrink the window back to its original size.

» Left-click-drag the Problems window tab, drag it around and allow it to snap to another
location.

» Spend some time moving windows around in the Edit perspective.

Now, we will introduce one of the most USEFUL menu selections in CCS, called RESET
PERSPECTIVE. Whenever you get lost or some windows seem to have disappeared in
EITHER perspective, you can reset the window arrangement to the factory defaults. Very
useful.

» Select: Window > Reset Perspective:

Reset Perspective... b

and say “Yes” to the dialogue. Notice, the default Edit perspective shows the Resource
Explorer window, » go ahead and close it.

That’s It. You’re Done.

35.

Terminate your Debug Session and close your project (right-click, Close Project).

You're finished with this lab. Please let your instructor know you’re done...like by
raising your hand and shouting “I'm DONE !!”.Then, proceed to optional parts of the lab
below covering Build Properties and Portable Projects. Or, help a neighbor with their
lab or watch your architecture videos - only if time permits....

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

[Optional] Exploring Build Properties

[Optional] Exploring Build Properties

36. Explore the properties of your new project.
» Right-click on your project and select Properties.
» Expand and then explore each of the areas we have listed below:

Resource: This will show you the path of your current project and the resolved path if it is
linked into the workspace. Click on “Linked Resources” and both tabs associated with this.

What is the PROJECT_LOC path set to?

Are there any linked resources? If so, which file is it?

General: shows the main project settings including the Advanced Settings we skipped earlier.
Notice you can change almost every field here AFTER the project was created.

Build — Target Compiler: These are the basic compiler settings along with every compiler
setting for your project. We will use some of these during other workshop labs.

Feel free to click on a few more settings, but don’t change any of them.

» Click Cancel.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-45

[Optional] Exploring Build Properties

37. Explore Build Configurations.

Tl supports two default build configurations — Debug and Release. These are just containers
for build options (compiler and linker). You can change the settings of the default configs and
you can create your own build configurations if you like.

The Debug configuration turns on symbolic debug and turns off the optimizer. These options
are ideal when you want to debug your program’s logic and be able to single step your code.

The Release configuration typically turns off symbolic debug and turns on a medium level of
optimization. This configuration usually provides better performance and is more difficult (if
not impossible) to single step your code because you only have function-level visibility.

» Right-click on your project and select:

Build Configurations Manage... |

Make Targets Set Active » | v 1Debug

Index 4 Build Al 2 Release

Make sure the configuration is set to Debug.
» Right-click on the project and select Properties.

» Click on the Optimization and Debug Options categories:

4 Build

4 ARM Compiler
Processor Options
Optimization
Debug Options

What optimization level is used (-O)?

Which debugging model is used?

» Click the down arrow next to Configurations and select the Release configuration:
J

Configuration: |Debug [Active]
Debug [Active]

[All configurations]

AR e e L,

Opt level (-O0)? Debugging model?

» Switch back to the Debug configuration and then click cancel.

2-46 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

[Optional] Creating Portable Projects

[Optional] Creating Portable Projects

Ever created a project, zipped it up (archived it), sent it to someone and the build broke? This
optional lab will walk you through the steps to create a project that uses VARIABLES for paths
and therefore can easily be shared with others without the build breaking.

This lab explores the “scope” of CCS path variables, as well as how you can import variables into
CCS workspaces (and projects).

This lab is broken into three parts:

o Part 1 — watch a video that explains the basics of portable projects

e Part 2 — |learn the EASY way to create variables that are workspace scoped (i.e. they can
be imported and used in any given workspace for all projects in that workspace)

e Part 3 — learn the manual way of adding variables to your project or workspace and find
out all the details about where these variables are set.

So, if you only have time for Part 1, well, that’s ok — at least you’ve been exposed to the
concepts. If you can make it through Parts 2 and 3, even better. And, you can always revisit this
document later to catch up on this topic.

Introduction to Portable Projects

So, what problem are we trying to solve?

When you create a project, you typically LINK in libraries (like TivaWare) and also have Include
Search Paths for header files. You can HARD CODE these paths and they will work FINE in your
environment. But what if you want a co-worker to import/build/debug your project? Is your co-
workers environment the same as yours? Is TivaWare (or any library, driver library, etc) installed
in the same place? Does their environment match yours?

Maybe not. And if it doesn’t, the build will fail. Sure, they can go into the Properties and manually
change the hard-coded paths, but there is a better way.

There are really TWO ways of creating portable projects — the easy (cheesy) way and the truly
portable way:

Easy Way — in CCS, you can simply export your project and INCLUDE the linked files (like
TivaWare driverlib) in the project. This does NOT solve the hard-coded include search path
problem AND the zipped project is larger because it includes a resource that the other person
most likely already has in their environment. But, this IS an option in CCS. When you export a
project, simply make sure all the linked files are “checked” and the zip utility will go out, find them,
and add them to the zipped project. Not a complete solution, but there you go.

The second way — and more robust, portable method — is to use a VARIABLE (like

TIVAWARE INSTALL = YOUR PATH) and use this variable as the “link relative to” variable as
well as part of the include search paths. Just think — if you set YOUR variable to YOUR path and
then hand someone the project, all they have to do is set the variable to THEIR path and all is
well.

The second method described here is the subject of this optional lab and video...

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-47

[Optional] Creating Portable Projects

Part 1 — Watch the Video on Portable Projects

Awhile back, this subject used to be taught to every student. However, those who were new
to CCS had a hard enough time just keeping track of how projects work, dealing with build
configurations and all the debug techniques that exist in CCS. And yes, this is a heavy load
for some users. And while wrestling with the newness of Eclipse/CCS, the author added an
additional layer of complexity with covering Portable Projects. Well, it was just an added
“weight” for newer people. So, the author stripped it out and added it as an optional topic.

The good news is that all users can read/go through this optional lab at any time in order to
grasp the concepts and mechanics of using portable projects.

The first step in this optional lab is to watch a video introducing portable projects concepts.

38. Watch the Portable Projects video.

If you haven't already done so, please ask the instructor for a USB key and copy the videos
from the key onto your laptop.

Once copied, find the video on portable projects in this folder:
\VIDEOS Architecture\Portable Projects

= L,
&u Creating_Portable Projects.mpd ’

Click on the video and watch it — it is about 11min long. If you prefer to READ the story
instead, the slides and documentation are at the end of this chapter. When you are finished
reading/watching, proceed on to Part 2...

Part 2 — Using VARS.INI — The Easier Method

After watching the video, you now know there are two types of variables:

e LINKED RESOURCE PATH VARIABLES - the variable used to help CCS find your
linked resources — like the TivaWare library — driverlib.lib.

e BUILD VARIABLES - the variable used to help CCS find the include files (header files)
associated with the library that you linked.

In this workshop, only the Tiva-C users actually LINK in a library. However, ALL users have to
specify at least ONE path for the header files in the Properties = Compiler 2 Include Options
category. So, this topic actually applies to all users.

Typically, you want to set these two variables to the same value/path and use the SAME variable
name for both. So, because this part is the “easier method”, let’s talk about the mechanics first.

Variables can be scoped two ways — either for the entire workspace (any project in the workspace
share the same variables) or for each individual project. The “dummy mode” (this means “easier”
— don’t take offense) is to set these variables ONCE for the entire workspace and forget about it.
Kind of like a dummy mode on a camera. Most users would say “just make it work!”

Trust the author — the vars. ini approach that sets these variables for all projects in a
workspace is REALLY simple and handy. The mechanics include two simple steps:

1. Create afile called vars.ini and set your variable name and path
2. Import vars. ini into your workspace (then use these variables in your project)

In the proceeding steps, we will walk you through how to do this with the current lab...

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

[Optional] Creating Portable Projects

39. Explore the contents of vars.ini and make sure the paths match your tool’s location.
First, let’s look at a new file called vars.ini.
» Select File 2 Open and browse to:
C:\TI_RTOS\vars.ini

You will see something SIMILAR to this (but probably not identical):

CONTROLSUITE _F2806x INSTALL = C:\TI\controlSUITE‘device support\f2806x\v136
PDK_INSTALL = C:\TI\pdk OMAPL138& 1 01 00 02

MSP430WARE INSTALL = C:\TI\msp430\MSP430ware_1 20 01 03\
TIVAWARE INSTALL = C:\TI\TivaWare C Series-2.1.0.12573

» Find the variable that matches your target software and verify the path is correct. If not,
change the path to make sure it matches your tools installation folder.

» Delete the other variables that do not apply to your system.

» Save vars.ini.

40. Explore where these variables are stored as WORKSPACE variables.

Before we import this file into the workspace, let's go see where these variables are stored.
» Select Window 2 Preferences. When the dialogue appears, » type “linked” into the filter
field as shown — then click on Linked Resources:

linked

a General
a Editors
4 Text Editors
Linked Mode
4 Workspace

Linked Resources

This displays all of your current WORKSPACE LEVEL LINKED RESOURCE PATH
VARIABLES. Wow, that's a mouthful. In Part 3, we will set these variables at the PROJECT
level manually. In this Part (Part 2), we will set them at the WORKSPACE level so that all
projects in our workspace can use them.

Note: You could simply add the variable manually, while you are here. However, importing
them from vars.ini is simpler, accounts for fewer typing errors, and will set BOTH
variables (linked resource and build) at the same time.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-49

[Optional] Creating Portable Projects

41.

» Type “build” into the filter area and click on Build Variables as shown:

4 CfC++
4 Build
Build Variables

Here is where you can set WORKSPACE LEVEL build variables. Again, you could just add
the variable now manually, but vars. ini will do this for us.

Most likely, both the Linked Resources and Build Variables areas for your workspace were
BLANK - containing no workspace variables at all. That is about to change...

» Click Cancel.

Import vars. ini to set WORKSPACE LEVEL link and build variables.

Let's import the file vars.ini and see what happens....

» Select File 2 Import, then expand the CCS category, click on Build Variables (as shown):

. [~ General
s = CfC++
4 = Code Composer Studio
|og, Build Variables

» Click Next and browse to the location of vars.ini:

C:\TI RTOS\vars.ini

» Click Open, then click Finish. » Then select Window Preferences and locate your
WORKSPACE linked resource path variable and your build variable. Did they show up? It
should have imported ONE of the variables (unless you didn’t delete the others which is ok)
listed into both the linked resource and build variable areas (similar to what is shown below —
paths may not be exact):

Defined path variables:

Mame

» Click Ok.

WARNING —

= COMTROLSUITE_F2806x_INSTALL CAThcontrolSUITE\device_support\f2806:\ w136
[= MSP430WARE_IMSTALL CATImspd 300 M5P430ware 1_80_01 03

= PDK_INSTALL CATIpdk_OMAPLI38_ 1 01_00_02

= TIVAWARE_IMSTALL

Value

CATITiwaWare_C_Senes-2.1.012573

If you change workspaces, you will have to re-import vars.ini to set these

variables again. If your tools installation changes, you'll have to edit vars.ini and re-import.
So be careful.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

[Optional] Creating Portable Projects

The last step in this part is to modify your path statements for the include search paths to use
the new variable. Once you do so, you can hand off your project to a neighbor who is using
the same variable (but a different path that matches THEIR environment) and it will build
properly.

Remember that there are two types of variables — Linked Resource Path Variables and Build
Variables. When you imported vars.ini, CCS set BOTH of these variables to the path(s) you
imported.

If you are linking in a library (like the Tiva-C users in this class), you can change your “Link
relative to” from PROJECT_LOC to TIVAWARE_INSTALL. All users have a search path, so
we will go through the exact steps to get rid of the manual path and use the variable instead.

42. TIVA-C USERS ONLY - Modify linked library path.
» Right-click on driverlib.1lib in your Lab2 project and select Delete.

» Right-click on your project and select “Add Files”. Once again, point to the
driverlib.1lib file and then LINK it relative to the TIVAWARE INSTALL variable as
shown:

'« File Operation

Select how files should be imported into the project:
() Copy files

@ Link to files

Create link locations relative to: "I'['quWARE_INSTALL ']

Confiqure Drag and Drop Settings...

@ [ok][cancal |

43. ALL USERS - Modify Include Search Path to use new variable.
» Right-click on your Lab 2 project and select Properties.

» Then click on Compiler 2 Include Options. This will display the path(s) you entered during
the previous lab steps.

» Change YOUR hard-coded path(s) to use the variable you just created via vars.ini to
(obviously, use the variable that matches YOUR target):

C28x: ${CONTROLSUITE F2806x INSTALL}\F2806x common\include

S {CONTROLSUITE F2806x INSTALL}\F2806x headers\include
C6000: ${PDK INSTALL}\packages
MSP430: ${MSP430WARE INSTALL}\driverlib\driverlib\MSP430F5xx 6xx

TMA4C: ${TIVAWARE INSTALL}

44. Rebuild and run.

» Build your project, load it to your target and run it — to verify it is working properly.

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-51

[Optional] Creating Portable Projects

45. Vars.ini - Conclusion

Now, ANY project in your workspace (like all future labs in this workshop) can use these
variables without any more importing. They are part of your workspace. Also, if you export a
project and hand it to a friend, these workspace variables will NOT be included in the project.
Is that good ... or not?

This sounds bad; how will your friend build the project without these variables?

We recommend that you share a project with a friend or associate, include the following:
e The project itself (we like the export to archive feature for this)
e Thevars.ini file

At this point, your friend can follow these same steps: verify that vars. ini is correct, import
it, then import the project.

Note: Since you are reading this note, you now know HOW to use vars.ini and variables. If you

prefer to create your future lab projects using these variables, you are welcome to. Those
who get done with labs quickly (like you) now have an advantage — congrats.

46. Macros.ini ... vars.ini for projects.

As a final comment, CCS can also import a file named “macros.ini”. This file uses the same
format as vars.ini, but CCS imports the contents of this file into a project, rather than the
workspace. (We could have used this for our earlier lab steps, but that would have been too
easy. ©)

IF TIME PERMITS — move on to the last part of this optional lab...

2-52

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

[Optional] Creating Portable Projects

Part 3 — Add Vars Manually — The Harder Method

If you watched the video, you know that these variables can be scoped by workspace or
project. When you imported vars.ini, the scope was WORKSPACE. And, you could have
opted to manually enter those variables in Windows Preferences instead of importing vars.ini.
Either way, they would be workspace scoped.

If you would prefer to scope the variables by project, you have two choices as well — either
import macros.ini (same contents as vars.ini) or manually edit your project’'s Properties and
add the variable in the proper places.

In the last part of this optional lab, we will walk you through the steps to add the variable to
your project manually so if you ever want or need to know how to do this in the future, well,
you are well prepared...

47. Add linked resource path variables and build variables to your project settings.
To add a new LINKED RESOURCE PATH VARIABLE:
» Right-click on your project and select Properties.

» Expand the Resource list in the upper left-hand corner as shown and click on Linked
Resources (as shown):

a Resource
Linked Resources
Resource Filters

General

ALL USERS - here is where you would add the variable for any LINKED resources in your
project. C28x, C6000 and MSP430 users don’t have any linked resources in the project, so
you can skip down to adding the BUILD VARIABLE for the include search paths. However,
Tiva-C users get the thrill NOW of adding a new Linked Resource Path Variable...

TIVA-C USERS ONLY:

Do you see the path variable already there? If so, it was populated by importing vars.ini in the
previous part of this optional lab. If not...you can manually add it...

» In the Path Variables tab, click New.

» Type in the variable name (e.g. TIVAWARE_INSTALL) as shown on the previous screen
capture of vars.ini and click Folder and browse to the installed location of your driver library:

«« Mew Variable

Define a New Path Variable

Enter a new variable name and itz associated location.

Marne: TIVAWARE INSTALL

e C:ATI\TivaWare_C_Series-2.1.0.12573 || Folder.. || variable..

Resolved Location: CATIVTrvaWare_C_Series-2.1.012573

» Click Ok — do you see your new variable in the list?

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-53

[Optional] Creating Portable Projects

To add a new BUILD VARIABLE:
» Click Build and then the Variables tab:

OETTET AT

4 | Build

4 ARM Compiler g Variables

Processor Options

Optimization

Debug Options

Do you already see your variable listed? If so, this was populated by importing vars.ini in the
previous part of this optional lab. If not, you can manually add your variable now. Here’s
how...

» Click the Add button. When the Define a New Build Variable dialog appears, enter the
same variable name as before (e.g. TIVAWARE_INSTALL).

» Select Type: Directory so that the browse button pops up — then browse to your installation
directory. Make sure Apply to all configurations checkbox is checked (that way, when you
switch from Debug to Release configuration, you can always use these variables).

«+ Define 2 New Build Variabl

Variable narme: | TIVAWARE IMNSTALL -

Apply to all configurations

Value: Co/ Tl TivaWare_C_Series-1.1

That’s It. You’re Done.

48. Move on to the next optional part if time permits...

You're finished with the final optional lab in this chapter. Congrats. Pat yourself on the
back several times and gloat at your neighbor !!

2-54 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Tips — New Project Creation and Debug

Tips — New Project Creation and Debug

New Project Creation — C28x

¢ Shown below is a summary of the steps to create a new C28x project
¢ Refer to CCS/BIOS chapters/labs for specific screen shots and steps:

File = New = CCS Project. Then fill in all target-specific items including Connection type. Use “variant” to filter device list.

Project path: for TI-RTOS workshop labs, choose \ 1abx\ Project for your project location (do not use default workspace path)
Device Variant = controlSTICK - Piccolo F28069, Connection = Texas Instruments XDS100v1 USB Emulator

Project Template: For BIOS app, choose TI-RTOS = Kernel = Target = Minimal template. For non-BIOS app, use “Empty Project”
Next/Finish: If BIOS app, click “Next” to configure tools — choose latest tools: XDC, TI-RTOS, UIA. If non-BIOS app, click Finish.

File Mgmt. If necessary, delete main . c provided by New Project Wizard and add (copy) source files to project as directed in lab.
Linker Command File: Double-check that a 1inker . cmd file has been added already —e.g. TMS320F28069 . cmd

Header Files linker.cmd: Add add'l linker.cmd file (if BIOS app, choose F2806x Headers BIOS.cmd from controlSuite)

ControlSuite Source files: Add controlSUITE source files — if TI-RTOS workshop lab, add folder \Eware F28069 BIOS
(Right-click on project, select Import, expand General, choose File System, Next, browse to folder location, check checkbox)

10. Edit vars.ini: Modify vars.ini to match your exact controlSUITE path for CONTROLSUITE_F2806x_INSTALL = your path

11. Import vars.ini: if not already done once for workspace, import vars. ini by choosing File = Import = CCS = Build Variables,
then click Next, browse to vars. ini location, check box for “Overwrite existing values’, click Finish to import var into workspace

12. Add Include Search Paths: right-click on your project, select Properties, select Build = Compiler = Include Options. Then use
your variable - CONTROLSUITE_F2806x_INSTALL - to add the following paths:
S${CONTROLSUITE F2806x INSTALL}/£f2806x common/include
$ {CONTROLSUITE_F2806x_INSTALL}/£2806x_headers/include

13. Add Pre-defined Symbol: If BIOS project, right-click on project and select Properties. Select C2000 Compiler = Advanced Options
- Predefined Symbols, click the “+” sign to add a new NAME and type “xdc strict”using TWO underscores “ ", click Ok.

14. Modify Boot Settings: open app . c£g, in the Outline view, click BIOS - System Overview = Boot, click “Add C28x boot...”
checkbox, set DIV setting = 18 to provide 90MHz clock. Save app . cfg.

New Project Creation — C6000

¢ Shown below is a summary of the steps to create a new C6000 project T

¢ Refer to CCS/BIOS chapters/labs for specific screen shots and steps:

1. File = New = CCS Project. Then fill in all target-specific items. Use “variant” to filter device list (LCDKC6748)
. Project path: for TI-RTOS workshop labs, choose \ 1abx\ Project for your project location (do not use default workspace path)

. Device Variant = LCDKC6748, Connection = BLANK (will be chosen via User Defined Target Config File using EMU)
. Use ELF Qutput Format: TI-RTOS for C6000 only supports ELF. Click Advanced Settings and change output format to ELF.
. Project Template: For BIOS app, choose TI-RTOS - Kernel = Target - Minimal . For non-BIOS app, choose “Empty Project”

(< NS T NSO N

. RTSC Settings: If BIOS app, click “Next” to configure tools — choose latest tools —XDC, TI-RTOS, UIA. Choose the proper platform
file (ti.platforms.evmé6748) located at \xdctools_rev#\packages\ti\platforms. Ifnon-BIOS app, just click Finish.

7. File Mgmt: If necessary, delete main . c provided by New Project Wizard and add (copy) source files to project as directed in lab.
8. Linker Command File: No add'l linker files needed.
9. Edit vars.ini; Modify vars.ini to match your exact PDK install path for PDK_INSTALL = your install path

10. Import vars.ini: if not already done once for workspace, import vars. ini by choosing File = Import = CCS = Build Variables,
then click Next, browse to vars. ini location, check box for “Overwrite existing values”, click Finish to import var into workspace

11. Add Include Search Path: right-click on your project, select Properties, select Build = Compiler = Include Options. Then use
your variable - PDK_INSTALL - to add the following path:
S{PDK_INSTALL}/packages

12. Add Driver Library: If CSL is used — no library is necessary

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-55

Tips — New Project Creation and Debug

¢ Shown below is a summary of the steps to create a new MSP430 project
¢ Refer to CCS/BIOS chapters/labs for specific screen shots and steps:

© O N OO O A W N o~

10. Add Include Search Path: right-click on your project, select Properties, select Build = Compiler = Include Options. Then use
your variable - MSP430WARE INSTALL - to add the following path:

11. Add Driver Library: When using TI-RTOS, links for the driver library and include search paths is done FOR you. If not using TI-RTOS,
Link in the driver library code by doing the following: right-click on project, select Import, expand General, click
on File System and click Next. Browse to MSP430Ware location (same location as pointed to by your variable), choose the folder
MSP430F5xx_6xx (NOT the “FR” version), check this folder in the dialogue, check “create top-level folder”, click Finish.

12. Turn off ULP Advisor: Properties = Build = MSP430 Compiler = ULP Advisor, click None.

. File > New = CCS Project. Then fill in all target-specific items. Use “variant” to filter device list.

New Project Creation — MSP430

. Project path: for TI-RTOS workshop labs, choose \ 1abx\Pro7ject for your project location (do not use default workspace path)
. Device Variant = MSP430F5529, Connection = TI MSP430 USB1

. Project Template: BIOS app? Use TI-RTOS = Driver = 5529 LP - Example = Empty template. Non-BIOS? Use “Empty Project”

. RTSC Settings: If BIOS app, click “Next” to configure tools — choose latest XDC, TI-RTOS, UIA. If non-BIOS app, click Finish

. File Mgmt: If necessary, delete main . c provided by New Project Wizard and add (copy) source files to project as directed in lab.

. Linker Command File: Double check that the proper 1inker . cmd file has been added to your project.

. Edit vars.ini; Modify vars.ini to match your exact MSP430Ware path for MSP430WARE_INSTALL = your TI-RTOS install path

. Import vars.ini: if not already done once for workspace, import vars . ini by choosing File = Import = CCS = Build Variables,
then click Next, browse to vars. ini location, check box for “Overwrite existing values’, click Finish to import var into workspace

${MSP430WARE INSTALL}/driverlib/MSP430F5xx 6xx

¢ Shown below is a summary of the steps to create a new Tiva-C project
¢ Refer to CCS/BIOS chapters/labs for specific screen shots and steps:

1.
2.
3.
4,
5. RTSC Settings: If BIOS app, click “Next” to configure tools — choose latest XDC, TI-RTOS, UIA. If non-BIOS app, click Finish
6.
7.
8.
9.

10. Add Include Search Path: right-click on your project, select Properties, select Build = Compiler = Include Options. Then use
your variable - TIVAWARE INSTALL - to add the following path:

11. Add Driver Library: Link in the driver library code by doing the following (for the main driverlib plus any other libraries needed:
add (link) the following file RELATIVE to your variable TITVAWARE INSTALL:

File 2 New = CCS Project. Then fill in all target-specific items. Use “variant” to filter device list.
Project path: for TI-RTOS workshop labs, choose \ 1abx\Project for your project location (do not use default workspace path)
Device Variant = TM4C123GH6PM, Connection = Stellaris In-Circuit Debug Interface

Project Template: BIOS app? Use TI-RTOS - Driver 2 TM4C LP = Ex = Empty template. Non-BIOS app?, choose “Empty Project’

File Mgmt: If necessary, delete main . c provided by New Project Wizard and add (copy) source files to project as directed in lab.
Linker Command File: Double check that the proper 1inker . cmd file has been added to your project.
Edit vars.ini: Modify vars.ini to match your exact TIVAWare install path for TIVAWARE_INSTALL = your install path

Import vars.ini: if not already done once for workspace, import vars . ini by choosing File = Import = CCS = Build Variables,
then click Next, browse to vars. ini location, check box for “Overwrite existing values”, click Finish to import var into workspace

New Project Creation — Tiva-C

S{TIVAWARE INSTALL}

${TIVAWARE INSTALL}\driverlib\ccs\debug\driverlib.lib

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Tips — New Project Creation and Debug

Checklist — When Things Go Wrong

¢ Shown below is a checklist you can use when you get build errors (build) or you are
unable to connect to the target (debug)

¢ Build Problems
1. Chose wrong device variant when project was created (open project Properties and modify)
2. C28x — did not include the additional linker command file for the header files (add file to project)

3. No include search paths or search path incomplete (check Properties = Build - Compiler = Include Options). Also
double-check entire path from the include search path specified plus the additional paths in your source files to make
sure the paths are correct.

4. If using variables and vars.ini to set linked resource and build Eaths, may need to edit and/or re-import vars.ini —
edit file, then select File = Import > CCS - Build Variables, browse to vars.ini and open

5. Forgot to add the driver library for your specific target and/or linked it improperly

6. Changed build configurations (Debug to Release) and forgot to copy all settings from one configuration to the other
(they are SEPARATE containers of build options)

7. Build does not seem to grab changes. Clean project (right-click on project, clean, then rebuild again).

8. BIOS: did not start w/BIOS template (re-create project using BIOS template and add source files)

9. BIOS: did not use updated BIOS/compiler tools (Properties > General/RTSC tabs, make sure latest tools are chosen)
10. BIOS: C6000 — forgot to specify platform file (Properties 2 RTSC tab, specify proper platform)

11. BIOS: runtime settings incorrect — double check BIOS - Runtime module in app.cfg

¢ Debug/Connection Problems
1. Windows messed up or general odd behavior (either perspective): Use Windows = Reset Perspective !

2. Used wrong target configuration file and/or GEL file (open project Properties or User Defined Target Configurations and
modify/relaunch)

3. “Bug” used for build/launch/connect/reload. This does not work sometimes — especially the first time. If you have
problems, perform each step individually to find the problem. Your previous connection is stored in the . 1aunches
folder in your project directory. You can delete this folder and try the bug again. Or simply go through the steps ONCE
and then use the bug after that — because CCS should remember your “previous” launch steps.

4. Did not properly terminate previous debug session. This can cause any number of errors. Close CCS, power cycle the
board, relaunch CCS and relaunch debug session.

5. Workspace may be corrupt. Switch workspaces using File = Switch Workspace.
6. BIOS Runtime: use ROV to see the state of any problem area including stack overflow

Troubleshooting Checklist — For More Info

¢ Shown below are several wiki pages that may help you debug your
problem beyond the typical errors talked about on the previous pages...

¢ BIOS Debug Tips
http://processors.wiki.ti.com/index.php/DSP_BIOS_Debugging_Tips

¢ Debugging Boot Issues
http://processors.wiki.ti.com/index.php/Debugging_Boot_Issues

¢ Debugging CCSv5 Projects
http://processors.wiki.ti.com/index.php/GSG:Debugging_projects_v5

¢ Troubleshooting CCSv5
http://processors.wiki.ti.com/index.php/Troubleshooting_ CCSv5

¢ Debugging JTAG Connectivity Problems
http://processors.wiki.ti.com/index.php/Debugging_JTAG_Connectivity_Problems

¢ CCS FAQ
http://processors.wiki.ti.com/index.php/CCStudio_FAQ

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-57

Appendix — Creating Portable Projects

Appendix — Creating Portable Projects

Portable Projects — Concepts

Have you ever been passed a project from someone else and try to build it and it breaks? How
many of you can say “way too often”? The main reason why this happens is that users, either out
of laziness or lack of knowledge (and the author of this workshop has done this for BOTH
reasons before) use hard-coded paths in their projects to link in source files or libraries and also
header file locations (file search paths).

Creating a portable project allows multiple people to share a project with ease, re-locate a project
without breaking when you hit the BUILD button and allows you to easily react to new releases of
driver libraries.

Portable Projects

4 Why make your projects “portable”?
* Simplifies project sharing
* You can easily re-locate your projects — or use source control tools
* Allow simple changes to link to new releases of software libraries

=4

L™ Project Explorer &3 =ik =S
s - .
= L""’Iz -l”'cd“”e - Debug] Copied files are not a problem
> Iﬂl ncludes . .
& Debug (they move with the project folder)

Linked files may be an issue - located
outside the project folder, they may
be referenced via:

absolute path, or
relative path

(7= targetConfigs

+ | blink.c
. |g] main.c
- gz msp430f5529.crd

B driverlib.lib

«'« File Operation

Select how files should be imported into the project:

Choose a Path Variable

- Copy files 1 for a relative path
@) Link to files K
Create link locations relative to: | MSP430WARE_LOC - i

Confi D d Drop Settings... i
e { What are these variables?

As shown in this diagram, you have two types of files in your project — copied files (that reside in
the local project directory) and LINKED files such as the driverlib.lib shown above. If the file is
LINKED, it has to be linked relative to a folder location which is typically (default) your project
folder. But what if user A has driverlib.lib located at C:\driverlib and user B has this library in a
completely different location? Well, they can’t share projects easily — without hand-editing the
paths in the project.

With portable projects, user A specifies a VARIABLE named (e.g.) “DRIVERLIB_LOC = \pathA\".
User B uses the same variable name DRIVERLIB_LOC, but has it equated to \pathB\. When user
B gets a project from user A and builds the project, the paths WORK because of these variables.

There are actually TWO types of variables that can be scoped TWO different ways. The following
slides explain the details of the types of variables and scopes that can be used...

2-58 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Appendix — Creating Portable Projects

Portable Projects — Two Types of Variables

Two types of variables affect the build process — Linked Path Variables and Build Path Variables.

Linked Path Variables affect the LINKING of source files in your project explorer. If user A has
driverlib.lib located at path A, they simply assign a variable such as DRIVERLIB_LOC to that path
and use it in the project. When CCS builds the project, it will be able to find the driverlib location
easily because user A linked that driverlib RELATIVE to the LINKED VARIABLE, e.g.
DRIVERLIB_LOC vs. using a hard-coded path.

When this project is handed to user B, user B uses the same variable name (DRIVERLIB_LOC)

but has it equated to a different path — wherever the driverlib.lib file is located on user B’s file
system.

Two Types of Path Variables
Eclipse implements portable projects with two types of variables:

O Linked Path Variables

< Properties for Lab2

-
— 3 175 Project Explorer 2 ==
type filter text Linked Resources
Lz (a ﬁ Lab2 [Active - Debug]
| Linked Resources I Path Varisbles | Linked Res + [l Includes
Path varsbles specty locstions mene e systert, . LiNKEd path variables
= Debug
General The loxstions of nked reza myb spectfi]
P D e F’ are for references to targetConfigs
ARM Compier Name Value . files linked to a . [blink.c
inker -
Debug [CC5_BASE_ROOT CATheeniShces by project . [¢ main.c
Task Tags (>CCSINSTALLROOT CAThecwSh
(2C6_TOOL_ROOT C\ThecsvShtoo]
(= ECLIPSE_ HOME C\TheesvSheclip-
Tl #
(2 MSP430WARE_LOC CATRmspd30\MS,
TPARENT-TOC CAMSP430_Launch

@ Build Path Variables

< Properties for Lab2 ") d
type filter text — Build path variables T N (Bl M 2B 51
4+ Resource are for references ewse Build of configuration Debug for project Labz et -
Linked REs.Dur(Es Name Tyi during builds
Resource Filters MSP430WARE_LOC -
Use these var’s for
RART Compiler tool search paths
ARM Linker
Debug ‘

Hint: To avoid confusion, always create both variables with the same name Scope?

The second variable is for header files. If you want CCS to search the header file locations for this
driverlib (i.e. in INCLUDE folder), you must also specify a variable in the Build settings in CCS.
Typically, to avoid confusion, the SAME path variable is used for both. Again, when user A hands
a project to user B, the header file search won'’t break because the paths are specific but the
same variable is used in both environments.

This is a HUGE feature of Eclipse (CCS) and saves SO much time when projects are shared
between multiple users. This is why we force students through this process in the labs because it
is THAT good and we feel like ALL users need to be made aware of this capability.

Ok, so now you know why there are two variables, but would you want these variables to be
scoped only for the given project or over ANY project in a workspace? Well, you can choose...

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6 2-59

Appendix — Creating Portable Projects

Portable Projects — Variable Scope

Users can choose whether they want these variables to be limited in scope only to a specific
project OR they can apply to ANY project in the workspace. Most users choose to scope their
variables per workspace as you will be taught in the labs.

You can add variables manually in CCS (which will be shown in the labs) or you can take the
easy route and import a file with the variable(s) listed in that file — which you will do at the
beginning of a future lab.

If you want the variables scoped for a workspace, you place the variables in a file named vars.ini
and then import it (once) and the variables will apply to all projects in that workspace. However, if
you want the variables to only apply to a given project, you place the variables in a file named
macros.ini.

Variable Scope: Projects or Workspaces
L[Project Explorer &2 - ® ¥ O \
4 é;- Project1
> ;;—P' Binaries PROJECT
» [Includes
» == Debug
+ [= targetConfigs »
. [§ main.c \ Add path variables to
+ [startup_ces.c S each project
» | @ tmécld3ghbpm.cmd or
=5, driverlib.lib Add them to the
4 [[= Project 2 [Active - Debug] workspace to make
+ [l Includes them available to all
. [= targetConfigs projects
+ [main.c ¥
» g trmdcl23ghbpm.cmd
% oppcs > | WORKSPACE
B driverlib.lib
makefile.defs Users can also import vars.ini
e . containing path variables — auto
= Project 3 _/ sets WORKSPACE level vars
Note: See lab for “how to use” details

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Appendix — Creating Portable Projects

HIDDEN SLIDE...More details on Path and Build Variables

Path Variables and Build Variables
¢ Path Variables

* Used by CCS (Eclipse) to store base path for relative linked files

* Example: PROJECT_LOC is set to the path of your project, say
c:/Tiva_LaunchPad Workshop/lab2/project

* Used as a reference point for relative path, e.g.
${PROJECT LOC}/../files/main.c
Build Variables

* Used by CCS (Eclipse) to store base path for build libraries or files

* Example: CG_TOOL_ROOT is set to the path for the code
generation tools (compiler/linker)

 Used to find #include .h files, or object libraries, e.g.
${CG_TOOL ROOT}/include OF ${CG TOOL ROOT}/lib

4 How are these variables defined?

* The variables in these examples are automatically defined

when you create a new project (PROJECT_LOC) and when you
install CCS with the build tools (CG_TOOL_ROOQOT) — nice!

* What about TivaWare or additional software libraries? You can define
some new variables yourself

How and where do | add these variables?

HIDDEN SLIDE...More details on how to add variables....

Adding Variables
¢ Why are we doing this?

* We could use PROJECT_LOC for all linked resources or PROJECT_ROOT as
the base for build variables

* It is “almost” portable, BUT if you move or copy your project, you have
to put it at the same “level” in the file system

* Defining a link and build variable for TivaWare location gives us a relative
path that does NOT depend on location of the project (much more portable)

* Also, if we install a new version of TivaWare, we only need to change these
variables — much easier than creating new relative links

4 How to add Path and Build Variables

* Project — Properties, expand the Resource category, click on

Linked Resources. You will see a tab for Path Variables, click New
to add a new path variable

* Project — Properties, click on Build category, click on the Variables tab,
Click New to add a new build variable

* In the lab, we’ll add a path variable and build variable TIVAWARE_INSTALL
to be the path of the latest TivaWare release

¢ Note:

* This method defines the variables as part of the project (finer control)
* You can also define variables as part of your workspace (do it once)

Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Notes

Notes

2-62 Intro to the TI-RTOS Kernel Workshop - Intro to Code Composer Studio - CCSv6

Intro to the TI-RTOS Kernel

Introduction

This chapter provides an introduction to the basic concepts of the TI-RTOS real-time kernel —
otherwise known as SYS/BIOS. A case is made for WHY an RTOS is needed and how it can help
users develop system code and perform common tasks using services provided in the O/S.

This chapter focuses on the CONCEPTS behind using the TI-RTOS kernel and the services
provided. The next chapter will focus on the MECHANICS of how you actually implement it in a
real system.

This chapter will include a quiz at the end where each student can test their knowledge of
scheduling. The next chapter has a lab that focuses on how to create a new SYS/BIOS project
and start using the TI-RTOS kernel in a real system.

In this and all future chapters, the instructor (and documentation) will use the following terms
interchangeably: TI-RTOS kernel, SYS/BIOS and BIOS. They all mean the core operating
system. If a reference is made to “TI-RTOS SDK”, this is specific to the latest TI-RTOS offerings
for all MCUs and C60000. For C28x and C6000, this really means the “kernel only”. For MSP430
and Tiva-C users, the SDK contains O/S-aware drivers and therefore slightly modified versions of
TivaWare and MSP430Ware.

Objectives

Objectives

Answer the question - “why use an RTOS?”

Explore the basics concepts of the TI-RTOS
real-time kernel (SYS/BIOS)

Define kernel thread types and how the
scheduler prioritizes threads in a system

Explain the types of debugging tools built
into the TI-RTOS kernel

Quiz - Schedule the threads in a motor-
control application

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel 3-1

Module Topics

Module Topics

L o T o N 4 T B g 1@ 2T A=Y o - 31
1Y (oo 17 =T o] o] (o1 NS 3-2
WHRAL IS TNE TI-RTOS KEINIEI? ...t sssasssssssssssssssnsssnsnsns 3-3

TI-RTOS Kernel — List Of SEIVICEScouuveiieieeeeeeeeee e 3-3
TI-RTOS Kernel — CharacteriStiCscieiiiiiieeieeee e 3-4
TI-RTOS SCREAUIEK ...ttt ssasaasssssssssssssssssssssssssssssnsssnsnses 3-5
Yol o= Yo [U] [T aTo N o o] o] (=T o o [PPSR 3-5
Solution #1 — USE @ SUPET LOOP | ..eeeiiiiiieeee et a e 3-6
Solution #2 — Use Timer-based INtEIrrUPScooeiiiiiiiiie e 3-7
Solution #3 — Use NESTED INterruptS......cc.uuveiiiieeiiiieee ettt 3-8
Solution #4A — Separate Process from ISR...........oooiiiiiiii it 3-9
Solution #4B — The BIOS SChedUler..........ccoooiiiiiiiiie e, 3-10
THhread VS. FUNCHION et et et e e e e e e e e e e e e e e et e e e enanaes 3-11
The Scheduler — N ACHON e e e e e e e e e et e e e ena e 3-12
Y AVo o TgTo B 1= 1S € 3-13
TI-RTOS Kernel Services — SUMIMAIYoccuuuie i e s e nineaa e 3-15
TI-RTOS ENVIFONIMENL ...ttt ssssssssssssssssssssssssssssssssssssssnsnsnses 3-16
Kernel APIs, Objects and Handles............ooo e 3-16
Thread (Object) Creation in BIOSoooo oo 3-17
TI-RTOS Kernel Debugging TOOIS e e 3-18
07T g To I (@AY A [o] (o TS PPPPPRPPPPPRRPRt 3-18
UIA and ROV — Viewing Results iN CCS ...ttt 3-19
oY g Y (o (=3 [g (o T 3-21
CRAPLET QUIZ ...ttt e et e et e ettt e et et e e st a e e a e e s 3-24

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

What is the TI-RTOS Kernel?

What is the TI-RTOS Kernel?
TI-RTOS Kernel - List of Services

The TI-RTOS Kernel is simply a library of services that users can add to their system to perform
common tasks such as memory management, real-time analysis, scheduling (of threads) and
synchronization (having one thread send a signal to another).

The main benefit of an O/S is that these common tasks have already been written, tested and
validated and therefore users can focus most of their programming time on their own IP or
specialties vs. worrying about or adding their own schedulers and dealing with changes along the

way.

In this workshop, we will talk about and the students will program all of the common thread types
as well as BIOS “containers” such as queues and mailboxes.

TI-RTOS Kernel Services

4 4§ SVS/EIOS TI-RTOS Kernel (or SYS/BIOS) is a
@ Bos library of services that users can
A Diagnostics add to their system to perform
L0 various tasks:
- o Memory Management
- @ Realtime Analysis & Memory Mgmt (stack, heap, cache)
A(:E Scheduling '\
i Clock @ Real-time Analysis (logs, graphs, loads)
", Huwi
69 Idle ¢ Scheduling (various thread types)
B Swi o
@ Task @ Synchronization (e.g. semaphores, events)
\ ﬁj Timer /
. M Synchronization
: g System
. i Target Specific Support
What does the DNA of this kernel look like?

i3 TExAS TI-RTOS Kernel — Characteristics...
INSTRUMENTS

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel 3-3

What is the TI-RTOS Kernel?

TI-RTOS Kernel — Characteristics

If you described a friend of yours, what words would you use? Aggressive, nice, easy to get along
with, worried all the time — somehow you would describe their personality based on a list of
characteristics that you have witnessed firsthand.

TI-RTOS Kernel — Characteristics

¢ RTOS means “Real-time O/S” — so the intent of this O/S is to provide common
services to the user WITHOUT disturbing the real-time nature of the system

¢ The TI-RTOS Kernel (SYS/BIOS) is a PRE-EMPTIVE scheduler. This means the
highest priority thread ALWAYS RUNS FIRST. Time-slicing is not inherently
supported (can change PRI dynamically if desired).

& The kernel is EVENT-DRIVEN. Any kernel-configured interrupts or user calls to
APIs such as Swi_post () will invoke the scheduler. The kernel is NOT time-
sliced although threads can be triggered on a time bases if so desired.

¢ The kernel is OBJECT BASED. All APIs (methods) operate on self-contained
objects. Therefore when you change ONE object, all other objects are
unaffected.

4 Being object-based allows most RTOS kernel calls to be DETERMINISTIC. The
scheduler works by updating event queues such that all context switches take
the same number of cycles.

¢ Real-time Analysis APIs (such as Logs) are small and fast — the intent is to LEAVE
them in the program — even for production code — aides field testing

Let's take a closer look at one of the most
i3 Texas useful parts of the kernel - the SCHEDULER...

INSTRUMENTS

Many users who have been around operating systems for a while understand that there are
common characteristics about each O/S that make them unique or similar to other systems. If you
understand HOW BIOS works and how it will always behave, you will have fewer questions as we
go through each chapter because you’ve been introduced to its personality.

Shown in the slide above are the key characteristics of BIOS:

The intent of the O/S is to take very little time and footprint and operate well in a real-time
application.

TI-RTOS is a pre-emptive scheduler, so the highest priority always runs first — unlike an O/S
like Linux that does time-slicing and even the “nicest” thread gets a little time. Not so with
BIOS.

BIOS only runs when it is called — so it is EVENT driven. It is NOT some super loop that is
always consuming cycles and power.

BIOS methods (function calls) operate on objects — C structures. When you create or modify
one structure, it does NOT affect any other objects (structure).

BIOS is deterministic — all function calls will take the same amount of time with the exception
of dynamic memory functions like malloc().

The real-time analysis APIs were designed to be small and take very little time —i.e. the
intent was to leave them IN the application — even during production.

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

TI-RTOS Scheduler

TI-RTOS Scheduler

We will focus most of the rest of this chapter on the Scheduler because it is probably the most
useful and least understood part of the TI-RTOS kernel.

We will pose a problem first and attempt to solve it in various ways. The intent is not to patronize
users by showing simple solutions that don’t work and it is obvious they won’t work. However, the
intent is to build up the problem to a point where common solutions get difficult to manage and to
show where BIOS can be used effectively and easily to solve those problems.

Scheduling Problem

So, here is the problem we want to solve — two functions (threads) that need to be scheduled to
run at different times. How do you solve the problem?

Scheduling Problem — Two Threads

7~ Problem Definition: you have

Audio two different threads that need
(100KHz) to be serviced independently
KeyPad # Will one routine conflict
(10 Hz) with the other?
TI MCU ¢ How do you SCHEDULE each thread?
—

¢ Is one “thread” higher PRIORITY than
the other?

Let's explore a few options we can use to SCHEDULE these two threads...

13 TEXAS
INSTRUMENTS

Well, several solutions exist and we will take a look at the common ones...

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel 3-5

TI-RTOS Scheduler

Solution #1 — Use a Super Loop !

Interestingly enough, some folks still write code this way. The problem here is that what if the
keypad routine takes longer than 10usS to finish? You will miss audio samples. This solution just
doesn’t work well when threads of operation are at different frequencies.

Solution #1 — Super Loop

/main () \ -
(Solution #1 — put each algo
s e (1) into an endless loop in main()
{ _ ¢ What if algos run at different rates?
Audio - Audio — 100kHz (10ys)
KeyPad » KeyPad — 10Hz (100ms)
) ¢ What if one starves the other or delays
} the response causing jitter/noise?
\J /

Could you use a TIMER to trigger each “thread” (or process) via an interrupt?

13 TEXAS
INSTRUMENTS

3-6 Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

TI-RTOS Scheduler

Solution #2 — Use Timer-based Interrupts

This is another common solution. If you look at the average CPU time (usage) shown below, we
are only using 51% of the horsepower of the device, but it is the INSTANTANEOUS problem of
two interrupts conflicting that is the problem.

As shown in the diagram in the bottom right-hand corner, what if B (Keypad) is running and an
audio sample comes in (via an interrupt)? Most processors turn off the global interrupt bit when
inside one ISR and therefore you may miss interrupts.

/EimerA_ISR() \\
{

read sample;

. J
/EimerB_ISR() ‘\

{
read keypad;

. J
(main())
{
while (1) ;
\} J
i3 TEXAS

INSTRUMENTS

Solution #2 — Timer-based INTs

Solution #2 — an interrupt driven system
places each function in its own ISR

Period Compute Usage
Audio 10uS 5uS 50%
Keypad 100ms 1ms 1%
51%

¢ While CPU usage is fine, one interrupt may
block the other (instantaneous):

-7~

running / \

idle I .

\ ’ Interrupt
B ~ 4 a .
N= is missed

Time o, 4 2 3 4 5 6 7

How could we prevent this?

How could you prevent missed interrupts? Is one of these threads higher priority than the other?
Let’s investigate the answers to these questions...

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

TI-RTOS Scheduler

Solution #3 — Use NESTED Interrupts

Ok — this solution is extremely common. You have to assign priority to each interrupt and when a
higher priority interrupt occurs, you save the context of the lower priority interrupt and go service
the higher priority.

If you only have a few interrupts, one could argue that this solution works fine. However, many
systems have more than 2 or 3 interrupts and manually specifying WHICH interrupts can pre-
empt other interrupts — and then change this scheme when new interrupts are added — can be
very difficult to manage.

Solution #3 — Nested INTs

[TimerA_I sr() \ Solution #3 — nested interrupts allow
{ hardware interrupts to preempt each other
read sample;

AT
} idle
. J
: 2 &
(TimerB ISR()) B W e I
{ :
read keypad; Time 90 1 2 3 4 5 6 7

& Number of priorities are tied to the number of

\} _/ interrupts (one fxn/ISR), h/w priorities inflexible
it () "\ ¢ Lower priority ISRs must enable higher
i priorities via manual code (tquch one, touch all)
adile (1 5 —very messy and hard to validate
Q y, : . ST
P— Why is nesting required in this system?

INSTRUMENTS

Also, when you use this solution, the number of priorities is limited by the number of CPU
interrupts. On some devices, this is not really a limitation because they support 128+ interrupts.
The key problem here is that if you have 10 interrupts, nine of them have code in them that is
dependent on all the rest. Only the high priority leaves global interrupts off and does nothing else.
The other 9 ISRs must change the register that allows other interrupts to be turned on (and which
ones those are) and then turn the global bit back on.

In this scheme, if you, worst case, added a new highest priority interrupt, the 10 existing ISRs
would all need to change — manually. This can become difficult and messy. And then you have to
re-test and re-validate every ISR that was working fine before. These types of dependencies can
cause errors.

So, why is nesting required in this system?

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

TI-RTOS Scheduler

Solution #4A — Separate Process from ISR

Nesting is required in the system because the actual processing (algo) is done INSIDE the ISR.
Well, what other choice might you have? None, really. Unless you have an O/S that can post
some type of follow up activity in a software “thread”.

Solution #4 ? — Separate Process & ISR

(TimerA ISR)) Problem — nested interrupts are used
{ B because “Process” (algo) is done IN the ISR !

read sample;

¢ When HI PRl is running, you could STILL miss

interrupts:

\. / c/s 'Qiiﬂ
o ~ Nesto| Time Process Data C/R
?une rB ISR() (Read)

Global ints disabled

read keypad;

KeyPad ¢ What if we could separate the PROCESS from

the rest of the ISR?

}
\ / Hard
— N C/s| Real Post . . Process Data
main () Nest?| Time | Swi / (in Software Interrupt)
{ while (1) ; (Read)
) ! < Global ints disabled <«——— rather than all this time ———
. J
i3 Texas This is what the BIOS Scheduler is all about...

INSTRUMENTS

This is what the BIOS Scheduler is all about. In the first diagram above, you can see that global
interrupts are turned off for a long time because the PROCESSING is done inside the ISR. When
this happens, you may have a higher priority interrupt that needs to be serviced and it can’t be
because global interrupts are turned off. So, you have to NEST interrupts by having, for example,
the Keypad function modify the “which interrupts are enabled” register (e.g. IER) and then turn on
the global interrupt bit to allow nesting. As we stated earlier, this can become a mess.

In the lower diagram, you can see the ISR has been drastically shortened in time and only
contains the necessary real-time hardware read/signaling requirements and then a POST of
follow-up activity to happen “later”. Global interrupts are turned off a very short amount of time
and the ISRs are kept very short.

If the ISRs are extremely short, do you really need nesting? Probably not. So when, then, does
this follow up activity (shown as a Software Interrupt above) actually happen?

That is the beauty of BIOS. Hardware interrupts have specific hard-wired priorities associated
with them and they are nearly impossible (if not impossible) to change. The designers of the chip
had to fix these priorities in silicon. However, when the PROCESS is inside a software function
and is SEPARATED from the ISR, the USER then has complete control over the priority of this
function. So, the answer to WHEN the follow up is done is based on how the user prioritizes this
new “thread”.

The PROCESS of the data can actually be done in four different thread types in BIOS — let’s go
take a look at three of them now...

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel 3-9

TI-RTOS Scheduler

Solution #4B — The BIOS Scheduler

| think most would agree that separating the processing from the ISR is a good idea. Why?
Because:

e |ISRs become very short — no need for nesting

e Users can configure the priorities of each processing thread (unlike hardwired INTs)

e You can create as many priorities as you like (not tied to the number of INTs on the device)
¢ If you change the priority of one thread, it DOES NOT affect any other threads

Those benefits are huge.

Solution #4 — BIOS Scheduler

(A dio ISR)
{u 10 TSR Hwi — Hardware INT | !
* Context save/restore
read sample; If we can DECOUPLE the
post Audio; el 075k o processing from the
} = * Hard real-time “read TRIGGER (Hwi):
. 7 P S R ¢ ISRs become VERY
short (no need for
[Keypad_ISR()) nesting)
{ - ¢ Configure PRIs of
L~ Swi—Software INT threads via software

read keypad; /
f * Posted by software
post_KeyPad; « PROCESS data ¢ Add as many threads as

} U R we need (no limit)
_) ser can select priority o Touch ONE, no CODE

changes to the others !
/main () \

{ -
init stuff; Idle — Background

whiletTT; L7 * Runs multiple fxns inside
7 e of a while(1) loop
BIOS_start(); LO

\J / o
p What is the difference between a THREAD and a FUNCTION ?

13 TEXAS
INSTRUMENTS

Notice that we still have hardware interrupts in BIOS. You can see the Audio_ISR() above simply
does a read of the audio sample and then posts follow-up activity. The actually processing of the
audio sample is done inside what is called a Swi — or Software Interrupt. Same thing happens
inside the Keypad_ISR() — read input, post follow up activity.

If you want to make the audio processing a higher priority, then simple configure it that way (more
on this in the next chapter). The users pick the priorities and the operating system (BIOS)
executes those priorities. Very simple. Oh — and if you wanted to swap priorities — simply make
the change in the configuration, rebuild and run. Again, very simple and SO much less time
consuming than doing this manually with hardware interrupts.

As shown, as well, the while(1) loop in main() is replaced by a thread called “Idle” in the BIOS
Scheduler. More on this later...

We have used the word “thread” and “function” almost interchangeably — are they the same or
are they different? Let’s look at these definitions a little bit closer...

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

TI-RTOS Scheduler

Thread vs. Function

A FUNCTION is simply a set of program instructions that produce a given result.

A THREAD is a FUNCTION that runs within a specific CONTEXT - typically at a specific
PRIORITY.

When you see any function in your application, it could be a thread running at the lowest or
highest priority in your system. The function below — my_fxn() — could run as an ISR (Hwi) having
the highest priority in the system or it could be registered in the O/S (BIOS) as an Idle function
and therefore run at the lowest priority.

Which functions run at which priorities is up to the user. In the BIOS configuration file (.cfg) (more
details in the next chapter), users can register any function as any thread type.

“Thread” vs. Function
Thread wrapper (C/S)

" - A function is a set of program instructions
‘{’Ol my_fxn () that produce a given result.

int m, x, b; . .

int y; ¢ If you look at this function, can you
tell what priority it is running at?

y = m*x + b;
serial = vy;
results += 1; . . nq

) A thread is a function that runs within a

specific context (PRIORITY, stack, etc.)

Thread wrapper (C/R)

¢ my fxn () couldrunas ANY thread type (e.g. Swi_1 or Hwi_1)
¢ User selects thread GROUP (and PRI w/in group), BIOS executes it

Hwi Swi Idle
* High Priority ISR * Follow-up to Hwi * Lowest PRI
* Calls my_fxn() * Calls my_fxn() * Calls my_fxn()
< Priority
i3 Texas Let's see a scheduling example of these 3 threads...

INSTRUMENTS

So, the function — my_fxn() — could be registered in BIOS as a Swi, for example. Any Hwi (higher
priority) would pre-empt any Swi. However, my_fxn() would pre-empt any Idle functions because
Idle, as a thread, is the lowest priority thread in BIOS.

What if you have TWO Swi’'s ? Well, within the Swi GROUP, users can specify priorities WITHIN
this group — so the first Swi may have a priority of 10 (high) and the other Swi has a priority of 1
(low). So, the higher priority Swi would always pre-empt the lower priority Swi. So, there are four
GROUPS of priorities (one has yet to be mentioned) and each group can contain multiple
priorities within that group (with the exception of Idle — it is a single priority while(1) loop).

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel 3-11

TI-RTOS Scheduler

The Scheduler — in Action

This slide is truly best taught live or via online video. If you have access to the videos on the wiki
site, go watch this slide animate step by step. But, this is a document, so we will do our best in
print to explain it. ;-)

On the left-hand side, you will see three thread types — Hwi, Swi and Idle — in priority order from
the highest (Hwi) to the lowest (Idle).

The program runs main() and at the end of main(), a function is called — BIOS_start(). This starts
the BIOS scheduler. Nothing is running yet, so BIOS always defaults to the lowest priority thread
— Idle. If there are functions listed in the Idle thread, they will begin executing. This is similar to
any functions running inside a standard while(1) loop in main() — waiting for “something” to
happen — like an interrupt.

Time passes and then an interrupt is triggered — Hwi 1. Hwi 1 runs and posts Swi 2. After it
returns, BIOS will ALWAYS run the HIGHEST PRIORITY PENDING THREAD — which happens
to be Swi 2 — well, it's the ONLY one at the moment. Notice that when Swi 2 is posted inside Hwi
1, Swi 2 is made READY to run. Swi’'s have three “states” — Ready, Running, Inactive. When the
Swi is posted, it is made “Ready” and when it has the highest priority in the system, it Runs.

Swi 2 runs and is then pre-empted by Hwi 2 which posts Swi 3. When Hwi 2 returns, there are
two threads READY to run — Swi 2 and Swi 3. In BIOS, the bigger the number, the higher the
priority. So, Swi 3 runs and posts Swi 1. Swi 1 is made ready to run but Swi 3 is still running.

When Swi 3 returns, two threads are ready — Swi 2 and Swi 1. Which one runs first? Always — the
higher priority. So, Swi 2 finishes, then passes the execution to Swi 1. Swi 1 finishes and there
are no other threads in the system other than Idle. Idle is ALWAYS ready to run, so Idle runs and
the diagram ends.

BIOS - Priority Based Scheduling
post3 rtn Audio ISR()
Hwi 2 TN T {
read sample();
postz rtn SWi_POSt(SWi_Z),'
Hwi 1 TN }
post1 rtn
Swi 3 (Hi) [T TTTT W Posted
O Running
. int2 rtn [Ready
Swi 2 SEEEEEEEEE NS E NN EE NN
. rtn
Swi 1 (Lo) EEEEEEEEEEEE
start
main T4
int1
ldle [T TN I T T T T T T T T T LT T T T T T
TR User SETs the priorities, BIOS executes them
INSTRUMENTS

One key point here — the user sets the priorities of each thread in the BIOS configuration file (.cfg)
and then BIOS executes the priorities. Wow — very nice.

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

Adding Tasks...

Adding Tasks...

And along came another thread type — Tasks. So far, you have been exposed to Hwi, Swi and
Idle and they seemed (hopefully) pretty straight forward.

The easiest way to understand Tasks is to first understand Hwi and Swi. Then we will add Tasks

to the mix...
SYS/BIOS Thread Types (including Tasks)
4 . & Hardware event triggers Hwi to run
Hwi # BIOS handles context save/restore, nesting
Hardware Interrupts ¢ Hwi triggers follow-up processing
Priorities set in silicon
Swi & Software posts Swi to run
& Performs Hwi ‘follow-up’ activity (process data)
= Software Interrupts @ Up to 32 priority levels (16 on C28x/MSP430)
=
g ¢ Usually enabled to run by posting a ‘semaphore’
o Task (a task signaling mechanism)
& Designed to run concurrently — pauses when
Tasks waiting for data (semaphore)
¢ Up to 32 priority levels (16 on C28x/MSP430)
IdIe @ Runs as an infinite while(1) loop
: @ Users can assign multiple functions to Idle
Background ¢ Single priority level
i TEXA; ------------------------------ Alittle more info about Tasks...

INSTRUMENTS

Think about an ISR for the moment. When does it run? When it is triggered by an event in the
system. And when the ISR runs, it starts, runs to completion and returns and is not active again
until another event occurs (interrupt). Swi’s operate the same way. They are triggered by an
event (Swi_post) and when the run, they start, run to completion and when they return, they are
not active again until another trigger posts them to run. Both Hwi’'s and Swi’s use the system
stack so all of their “environment” (local vars) are placed on the stack, used during runtime and
then they no longer exist when they return because their context was on the stack which is no
longer valid after returning.

You wouldn’t “pause” an ISR and hang out in something like a while(1) loop forever, right? Of
course. Hwi and Swi threads start and run to completion and will not run again without being
triggered.

Ok — now we add Tasks to the system. Tasks are meant to run concurrently with other tasks.
They typically run inside a while(1) loop and are therefore always active. Their context is saved
on their own private stack and when they are pre-empted, they can block or pause waiting for a
signal (semaphore) to unblock them and make them ready to run.

A Swi or Hwi would be analogous to opening up a Word document, editing the document, saving
the file and then exiting Word — one document at a time. Multiple Tasks running would be
analogous to having 4 files open at the same time, but you only edit one at a time. When you
“click” on a specific file to edit it, this is analogous to a semaphore signaling the thread to run.

More details on all these thread types in their specific chapters...

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel 3-13

Adding Tasks...

So, as shown below, Tasks typically run in a loop. At the top of the Task function, you'll see a
while(1) loop followed by a PEND on a semaphore. When the Task PENDs (blocks), it is waiting
for a signal to wake it up and make it ready to run. Typically, an Hwi posts that semaphore and
makes the Task ready to run.

When the Task has the highest priority in the system, it runs and performs whatever process is
coded by the programmer and then it hits the while(1) loop again and blocks at the PEND again.
When a Task blocks, it gives up execution to a lower priority thread — possibly another Task or
Idle.

How Tasks Work...

@ Tasks are just a function that run

inawhile (1) loopandcontain Task Hwi_ISR:
a blocking call that waits for a POST SIGNAL]
signal

¢ When the task is BLOCKED (e.g.
waiting for “buffer ready” signal),

lower priority threads can run BL?CK_waitling — Pause
. or signa
¢ Another thread (e.g. Hwi) posts a (blocked
signal to UNBLOCK the Task state)

which triggers the execution of

[1]
“Process Data” Process Data

@ The code then loops back and

BLOCKS again — waiting for signal end Private
¢ Blocking requires each Task to Stack { |
have its own private stack. (Task)

Note: we have entire chapters dedicated to exploring both Swi’s and Tasks

13 TEXAS
INSTRUMENTS

Each Task has its own private stack to hold the context of where it left off — which allows the Task
to block or pause. This is very different from a Swi which behaves exactly like an ISR.

The main advantage of a Task is that the local environment is preserved across separate runs of
the Task processing. Because Swi's and Hwi’s use local variables stored on the system stack,
you will have to create their environment each time the Hwi or Swi is triggered. Tasks can set up
their own environment first, then enter the while(1) loop and run forever.

Many users who are familiar with operating systems usually prefer the flexibility of Tasks. Users
who are extremely comfortable with interrupt-driven systems tend to like Swi’s better. The author
always says “pick either one — just like a shower or a bath — either one will make you clean — it is
a matter of personal preference”.

Both Swi and Task have their own separate chapters in this workshop, so we will dive deeper into
the details of both and help provide more contrast between the two. There are tradeoffs, both
positive and negative, for both choices.

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

TI-RTOS Kernel Services — Summary

TI-RTOS Kernel Services — Summary

This is simply a summary of what we have covered so far and which chapters in this workshop
will dive deeper into each thread type.

So, the bottom line is that there is MUCH MORE to come. We have only skimmed the surface of
these thread types in this “intro” chapter.

TI-RTOS Kernel Services — Summary

4 You have now been exposed to the
following thread types:

a 33§ SYS/BIOS

& e0s i
. i Diagnostics e.(Chapter 4)
) Yo * Hwi (Chapter 5)
- o Memory Managemaf\ * SWwi (Chapter 6)
- [Realtime Analysis * Task (Chapter 8)
4 3§ Scheduling @ Each of these thread types have their
i Clock own chapter along with:
v' " Hwi
* Memory Mgmt (stack, heap) —
v/ () ldle “Dyn Mem” chapter (optional)
v swi : .
V& Task * Real-Time Analysis (logs, graphs,
. loads) — (Chapter 4)
@j Timer
\\‘,’;‘ Synchronization / e Clock/Timer — (Chapter 7)
> @ System Synchronization (semaphores,

- ¥ Target Specific Support

events) — (Chapter 8)

s Tixas Let's take a look at the BIOS environment...
INSTRUMENTS

Next, we will take a little closer look at how users interact with the BIOS library of services...

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel 3-15

TI-RTOS Environment

TI-RTOS Environment

Kernel APls, Objects and Handles

BIOS (or the TI-RTOS kernel) is object oriented. What does this mean? When you create a Swi,
for example, you are actually creating an OBJECT. What is an object? It is simply a structure in
C. And when the programmer, via the API (Application Programming Interface), calls a function
like Swi_post(), this METHOD (function call) simply operates on the OBJECT (structure) and uses
and/or modifies the object via a HANDLE (pointer to the object).

Wow — that was a mouthful. Read it a couple of times if it hasn’t sunk into your brain yet.

Kernel APIls, Objects and Handles

“ ;Sg?g’; BIOS is object oriented — each
. #& Diagnostics module is created as an object and
% 10 objects are accessed via the API:
. o Memory Management
. [B Realtime Analysis Audio_|SR(){
o - f_f-hec'”“”g Hard real_time access;
”; E"D_‘k N API Swi_post (AudioSwi);
1. Hwi
§Y e L}
i Swi
& Task Swi_Handle typedef struct SwiObj {
T3 Timer . AudioSwi: // handle
. & Synchronization & Better encapsulation Audio_fin: 1/ fxn
- & system ¢ Change one w/o o
. 3 Target Specific Support affecting others 2, I1"Priority
& Multiple instances h
& Easy to maintain, validate
, How do you create a Swi object ?
{IPTEXAS
INSTRUMENTS

So when you create a Swi, you're actually creating a C structure will specific elements inside it —
for example, as shown, the handle (pointer) to the Swi object (AudioSwi), the function that will be
called (Audio_fxn) and the priority of the Swi. A Swi object is relatively small and has very few
elements.

In code, when a Swi_post() is called, the BIOS Scheduler runs and grabs information from the
Swi object to understand which priority it is. It makes a change in the Swi queue and places this
new Swi in the proper spot based on its priority. When this Swi is at the head of the queue and is
ready to run, BIOS will call the function listed in the object (structure) — in this case Audio_fxn().

Remember when we talked about how difficult it was to manage the priorities of interrupts by
nesting all of them? The reason BIOS can handle so many priorities is that each one is
encapsulated inside an object. If you change the priority of one object, it does not affect any other
objects. The only thing that is affected is how BIOS executes them based on the priority queues
of each thread type.

This helps users easily maintain and validate their system because BIOS has already been tested
and validated in thousands of systems over the past 25 years and allows users to focus the
majority of their programming efforts on their specific IP vs. dealing with “operating system”
issues.

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

TI-RTOS Environment

Thread (Object) Creation in BIOS

So how do you create a thread in BIOS?

You actually have three choices. If you want to create a thread (Swi) statically, you can either
choose to use the BIOS GUI (shown in the middle left part of the slide below) or you can write
script code in the .cfg file as shown. Most users opt to use the GUI because it is more user
friendly.

Your other option is to create the Swi object “on the fly” — during runtime. You can call the
Swi_create() function to create the Swi dynamically. Some users really like this flexibility within
the O/S. BIOS doesn’t care if you use static or dynamic objects — the operation of the O/S is the
same either way.

Thread (Object) Creation in TI-RTOS

¢ Users can create threads (BIOS resources or “objects”):

* Statically (via the GUI or .cfg script)

* Dynamically (via C code) — more details in the “memory mgmt” chapter

* BIOS doesn’t care — but you might... Dynamic (C Code)
Static (GUI or Script) #include <ti/sysbios/knl/Swi.n>

Swi_Params swiParams; -
SYS/BIOS *» Scheduling * Swi - Instance S| - m

Swi_Params_init(&swiParams);
Module Advances swiParams.priority = 2;
= ~ Required Settings | SWi_create(ledToggle, &swiParams, NULL);

bytewswi] Honde [DOEEN
Function ledToggle Note: more details on BIOS

|_| Interrupt priority 2 config in the next chapter...

var Swi = xdc.useModule('ti.sysbios.knl.Swi");

var swiOParams = new Swi.Params();
swiOParams.instance.name = "MyNewSwi";

swiOParams.priority = 2;

Program.global.MyNewSwi = Swi.create("&ledToggle", swiOParams);

TI-RTOS Kernel Debugging Tools...

This slide really is a foretaste of what we will cover in the next chapter — BIOS Mechanics. This
current chapter is all about the concepts of BIOS and providing an overview of the capabilities. In
the next chapter, we will dive much deeper into the hands-on mechanics of using the
configuration tool to create all of these objects. One step at t time...

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel 3-17

TI-RTOS Kernel Debugging Tools

TI-RTOS Kernel Debugging Tools

UIA and ROV - Intro

The next few slides introduce users to the debug tools that are available within the RTOS kernel.

Shown below are two different debug tools. UIA is the Unified Instrumentation Architecture which
is a target-side API that allows users to add visibility and debug features to their code.

One of the most common debug function calls is printf() which prints a message to the console
screen. While this is helpful, it will typically be ripped out before production. Also, a printf() on
some processors takes 10K bytes and 10K cycles to run because math engines (DSPs) are not
made for processing strings.

The alternative is to use the Log functions within UIA to print a string to a custom window in the
System Analyzer (host-side tool). This function takes 40 bytes and 40 cycles to run — very small.
In addition to Logs, UIA supports loads (CPU, thread loading) as well as an execution graph
showing the user the equivalent diagram of a logic analyzer — except it is built into BIOS.

In the next lab, users will be able to set up UIA and use the System Analyzer to see the results
when the processor is halted. So, much more info in the next chapter/lab.

Built-in Debug Tools (UIA & ROV) - Intro

@ UIA - Unified Instrumentation

4 33 SYS/BIOS Architecture tools provide
@ BIos visibility into what is going on
- @ System in your system:
. i Diagnostics
. ¥ Scheduling * Logging — “printf()-lite”
9 Synchronization * Execution Graph — software “logic
Lo . analyzer”
. ¥ Target Specific Support
. 4 Memary Management * Load — CPU/Thread loading
(3 Realtime Analysis * UIA replaces the older RTA tools —

a 333 UIA
- 333 Loggers

requires “LoggingSetup”

4 ROV - RTOS Object Viewer —
see status of BIOS objects in
your system (when halted)

- 334 Services

) LoggingSetup

; s Let's look at what these tools look like in CCS...

ROV is the RTOS Obiject Viewer. This is a built-in tool to BIOS and there are no function calls
necessary to make it work. Basically, when the processor halts, this tool will go out and
interrogate every BIOS object in the system and show the user the current status. This includes
whether a specific thread was running, ready, inactive, or blocked. It will tell you the status of the
stack/heap — how much was allocated/used, etc.

Every single lab in this workshop uses ROV to debug problems — it is one of the most useful tools
in BIOS.

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

TI-RTOS Kernel Debugging Tools

UIA and ROV - Viewing Results in CCS

So, what does “real time” mean in regards to these real time tools. All data for the UIA function
calls is gathered during runtime in very few cycles (30-40). All of the formatting of the screens,
diagrams and text boxes are done by the host machine (your laptop) after the processor halts.
Gathering the data does not halt the CPU.

Once the data is gathered and the processor is halted, users can view the ROV tool or (as
shown) the CPU or Thread Loading Graphs via the System Analyzer (also known as RTOS

Analyzer).

Real-time is...

ROV and UIA - Visibility/Debug Tools

¢ Gather data on target (30-40 CPU cycles)
¢ Format data on host (1000s of host PC cycles)
¢ Data gathering does NOT stop target CPU
¢ Halt CPU to see results (stop-time debug)

F RTOS Object View (ROV) &2

4 5 blink_C28x CLK SOL.out
4 [Viewable Modules
@ BIOS
@® Boot
@ Clock
@® Diags

o

m

Module | Scan for errors... | Raw

address currentThreadType
0:0000a0c0 Task

cpuFreqlow ¢

90000000

i

3

P CPU Load 33

1007
%0

i -Ew =

Il

@ SR~ o |FEE T

=8

/

80

—

70

60

|

50

30
20

|
\
[|
|
\
\

m /

B !

I

time (ns)

RTOS Obj Viewer (ROV)

¢ Halt to see results

& Displays stats about all
threads in system

CPU/Thread Load Graph

¢ Analyze time NOT
spentin Idle

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

TI-RTOS Kernel Debugging Tools

The System Analyzer also supports Logs (similar to a printf()) as well as the Execution Graph
which shows WHEN events occur in the system down to the nanosecond.

Again, all of these tools will be used throughout all of the labs in this workshop. So you will get
plenty of hands-on experience if you choose to do the labs.

ROV and UIA - Visibility/Debug Tools

Logs FH *Live Session i ti:_: Execution Graph
¢ Send DBG Msgs to PC Type Time Master Message

. . 18 § 4500296077 C2Bic [./main.c:119] LED BENCHMARK = [464] CYCLES
¢ Data displayed during 19 5000253544 C28o [./main.ci117] LED TOGGLED [10] TIMES

i
i

stop-time 20 5000296033 C28oc [./main.c:il19] LED BENCHMARK = [464] CYCLES
L 2A i 5500253533 C2Boc [./main.c117] LED TOGGLED [11] TIMES
¢ Deterministic, low CPU 2 i 5500296022 (28w [./main.c119] LED BENCHMARK = [464] CYCLES
cycle count 3 i 6000253522 (28 [./main.cd17] LED TOGGLED [12] TIMES
I bt o P

¢ WAY more effi;ient than
traditional printf () || og info1("LED TOGGLED [%u] times”, count); |

Execution Gra ph BB Live Session || Execution Graph 3 1
 EIC28ecESwi
¢ View system events down bt »[~ ,[~ ,[~
to the CPU cycle... Stop]] 1

EIC280*05
#Switi_sysbios_knl_Clock_workFunc_EQ
Taskiti_sysbios_knl_Idle_loop_EQ

& Calculate benchmarks

p
5
8

Note: more details on how to }
configure these tools in the next 1
chapter... . ‘ ‘
10 510, 1,010 1,510
time (ms)
{L} Texas
INSTRUMENTS

3-20 Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

For More Info...

For More Info...

The following two slides talk about a few places to get more help with using SYS/BIOS - the

product page as well as the Help Contents in CCS...

For More Information
¢ TI-RTOS Kernel Product Page (www.ti.com/sysbios)

TI-RTOS-KERNEL:
(Formerly known as SYS/BIOS)

Get Software

Description

Advanced Real-Time Kernel Solution

microcontrollers.

P g i, P V—— -

Part Number Buy from Texas Instruments or Third Party Status Current Version Version Date F

ACTIVE v6.40.01.15 23-Apr-2014

TI-RTOS Kernel (formerly known as SYS/BIOS™) is an advanced, realtime kernel for use in a wide range of DSPs,
ARMs, and microcontrollers. It represents the successor product to the well-known DSP/BIOS realdime kernel,
which has been used in thousands of DSP applications. It provides preemptive multitasking, hardware abstraction,
and memaory management. TI-RTOS Kernel is atthe core of T-RTOS, a full-featured realtime operating system
including drivers drivers, netwarking and USB stacks. TI-RTOS is available for select Tl devices.

TI-RTOS Kernel is currently available for TI CGdx+ core based devices (including the OMAP35x™ and DaVinci™
digital video processors), TMS320C674x™ devices (including OMAP-L13x), TMS320CE66x™ multicore processors,
Sitara™ ARMO® Cortex ABE microprocessors, as well as TMS320C28x™, Tiva™ Cortex M4™ and MSP430™

{i’ Texas
INSTRUMENTS

For More Information (2)

[ti.syshios.rta
[ti.sysbios. syncs

& ti.syshios, timers
[ti.syshios. timers. dmtim
[13 ti.syshios, timers.gptim
[ti.syshios, timers, timeré
=) [ti.sysbios.utils

© 1PC (Multicore and 1/0) 1.23.02,
[SYS/BIOS 6.32.02.39
[Release Notes
Bl Getting Started Guide
Bl Users Guide

B Legacy Applicatiopé note [Load
[ap1 reference 5 [xde.runtime
@ DSP/BIOS 5.41.10.36 g 3:;:315

& Diags

* User Guides o
& Gatenul
» API Reference (knl) B Heaptin
Bl Heapstd

[1FilterLogger
[1Gaterrovider

L 4 CCS Hel P Co ntents Contents %, B || 5YS/BIOS 6.32.02.39
[ti.syshios.heaps ~
a|p -] ar § i [ti.syshios.interfaces
Search: [Clack
Bl Event
Contents B e
@ [Mailbox
XDAIS 7.10.00.06 Help / [l Semaphore
@ xpCtools 3.22.01.21 Bl swi
Code Composer Help / B Task

package ti.szysbios.knl

Contains core threading modules
Many real-time applications must perform 3|
such as the availability of data or the pres

important. [more ...]

KDCzpec declarations

requir

requiz

package ti.sysbiocs.knl [2, O, O, 01 {

module

tem Clock Manager

Event;

/I Event Manager
module Idle;

/! 1dle Thread Manager
module Mailbox;

/I Mailbox Manager
module

phore;
/ emaphore Manager
modul i

oftware Interrupt Manager
module Task;
[/ Task Manager

[E] IHeap
[Instance
& ILogger
; L1 tuocile
I3 TEXAS
INSTRUMENTS

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

For More Info...

HIDDEN SLIDE... where to download the latest tools.

Shown below is the link for where to download the individual BIOS tools — a very handy place to
grab the latest releases of all the tools — especially the interim releases between the major
updates of CCS...

Download Latest Tools
¢ Download Target Content
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/

Target Content Infrastructure Product Downloads

BIOS Platform Support Packages

DSP/BIOS and 5YS5/BIOS ‘ DSP/BIOS
DSP/BIOS BIOSUSE Product ‘ SYS/BIOS
DSP/BIOS Utilities ’ Utilities
Digital Video Sotware Development Kits (DVSDK) .
¢ SysLink
DSP Link and SysLink ’ DSP Link
* Syslink (BIOS 6) 'S |PC
* DSP Link (BIOS 5)
¢ Etc.

Graphics SDK

EDMAZ Low-level Driver

Interprocessor Communication (IPC)

{if Texas —_—
INSTRUMENTS

3-22 Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

For More Info...

*** this page is missing very important details... ***

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

Chapter Quiz

Chapter Quiz

Again — this is probably best explained live or via the online video, but we will do our best in print
to describe this.

This is a basic block diagram of a motor control system. This will be used as a basis for the
upcoming quiz. The goal is to pick a BIOS thread type for each block shown below.

This system uses two PID algos to control speed and position of the motor. Along with the algos
for PID, there are four other threads needed — Keypad, Host, LED and System Maintenance.

The table on the next page has some missing pieces which relate to the priorities and thread
types of the PID algos (speed and position) plus the four other thread types.

Use this diagram and then fill in the missing pieces in the table shown...

Quiz — Block Diagram
CPU —

PWM P Position O SW
Keypad — 12C Bridge >
PWM S —
Speed
Host «{ 12C
{ PIDx2 ; < Motor <>

ADC S S
‘,’ Sys N ensors
' Maint / ADC P
Basic Motor Control System Quiz
¢ Goal — Control motor speed/position @ Fill in the missing info in the tables
via PID algo based on ADC info and (next page) regarding HOW to
output control to PWM schedule the threads in the system
¢ Other services include: Keypad, LED, & Think about Priority and the TYPE of
Host, System Maintenance BIOS thread you would assign to each

See the following facing page for the table you need to fill out... »

3-24 Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

Chapter Quiz

Quiz - Fill in the missing pieces...
System Threads

Hwi’s S/W function BIOS Thread Type | S/W Priority?
ADC_P_ISR PID_Position High -
ADC S ISR PID_Speed
Host ISR Host Cmd_Proc Med -
Keypad_ISR Keypad_Read Low -
LED_blink_ISR | LED_toggle

Sys_maint Lowest -

Hwi’s: triggered by interrupt, ISR called via BIOS Hwi.

BIOS Thread Type: choices are — Hwi, Swi, Task, Idle
¢ S/W Priority: Swi (0-15/31), Task (0-15/31), Idle (0)

Bonus Question

If you had ONE timer and needed to run 5 different threads based off that timer,
how would you accomplish this?

*
¢ S/W function: called by “BIOS Thread Type” (e.g. Swi 5 calls PID_Position)
*

Click for ALL answers...

There truly is no real wrong answers here. You know the PID algos should be higher priority (see
the hints above) and other threads have hints as to what their priorities might be. Which BIOS

thread types would you use for each thread and once you pick a thread type, which priority would
you assign to those threads?

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

Chapter Quiz

Quiz - Solution

System Threads

Quiz - One “Solution”

Hwi’s S/W function BIOS Thread Type | S/W Priority?
ADC_P_ISR PID_Position Swi High — Swi 5
ADC_S_ISR PID_Speed Swi Swi 3
Host_ISR Host_Cmd_Proc Task Med - Task 5
Keypad_ISR Keypad_Read Task Low —Task 3
LED_blink_ISR LED_toggle Task Task 2
Sys_maint Idle Lowest — Idle

* o o

*

Bonus Question

If you had ONE timer and needed to run 5 different threads based off that timer,
how would you accomplish this? Use BIOS Clock Functions.

Hwi’s: triggered by interrupt, ISR called via BIOS Hwi.

S/W function: called by “BIOS Thread Type” (e.g. Swi 5 calls PID_Position)
BIOS Thread Type: choices are — Hwi, Swi, Task, Idle

S/W Priority: Swi (0-15/31), Task (0-15/31), Idle (0)

Multiple answers are possible — this is just one possibility. But this gives you the idea. Of course,
answers that include Sys_maint higher priority than PID_Speed may need a little more

thought...©

Intro to the TI-RTOS Kernel Workshop - Intro to the TI-RTOS Kernel

TI-RTOS Configuration

Introduction

This chapter covers the MECHANICS of creating TI-RTOS projects, configuring TI-RTOS kernel
services and how to add instrumentation APIs to your application.

The last chapter talked about concepts and “why an RTOS?” This chapter focuses on the HOW
you use and configure TI-RTOS in any application.

This chapter will cover topics such as creating a SYS/BIOS-based project, adding services to the
BIOS configuration file (.cfg) and how to add UIA (Unified Instrumentation Architecture) to your
run-time application and view the results via the RTOS Analyzer.

This chapter sets the ground work for all future chapters. Once you know how to create a BIOS
project and use instrumentation, the rest of the chapters will build on that knowledge as they
introduce new services to the user.

Objectives

Objectives

= | earn how to create a new SYS/BIOS project

= Understand how to create and configure BIOS
objects using the .cfg file and GUI editor

= Analyze the timeline of events in a BIOS
system

= Explore the built-in Visibility/Debug tools (UIA)

= Lab - Create, build and debug a TI-RTOS
kernel application that blinks an LED

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-1

Module Topics

Module Topics

TI-RTOS Configurationcccccciimiiiicicicrire s sscsssssrr e s s s ss s sss e e e s s s s s smnns e e e s s s s s s smnnneeessanssnnnnnnes 4-1
MOGUIE TOPICS ...ttt ettt e e 4-2
Creating A NEW BIOS PrOJECTcouuieeeeeeee ettt a ettt e e e e e sssssaaaaaeeaasa 4-3

CCS Project Creation — Choosing BIOS Template...........coooiiiiiiiiiiiiiceeee e, 4-3
CCS Project Creation — Choosing BIOS TOOIScccoiiiiiiiiiiiiiiiee e 4-4
CCS Project Creation — Choosing Platform ... 4-5
BIOS CONFIGUIALION ...ttt 4-6
Adding a BIOS Service t0 CFG File.....ooiiiiiiieiiieie e 4-6
Configuring @ BIOS Service — Idleuuviiiiieiiicee e 4-7
CFG Script Code vs. USINg the GUIoeiiiiiiiiiee e 4-8
BIOS System TIiMEINEooo e a e 4-11
UIA & RTOS ANGIYZEN ...ttt ettt ea e 4-12
Configuring UIA & RTOS ANAIYZETccoiiiiiiiiiiiei ettt 4-12
6] g o 1 oo [~ ORI 4-13
Using the EXeCULION Graphoouiiiiiiii e 4-14
Using CPU and Thread LOadingoouuiiiiiiiiiiiiee et 4-15
VEISION CONEION ...ttt ettt 4-16
Lab 4 — SYS/BIOS BliNK LEDccccuoioiieiieieeeeeee ettt 4-17
LaB 4 — PrOCEAUIE. ...t e ettt e e e e e e e e e e e e e 4-18
Create New blink_target BIOS ProjECt........cocuuiiiiiiiii et 4-18
Project File ManagemeEntuuueiiiiiiiiiiiiiiiieiiiieie et eeeeeeseeeeesesesesessssnsnrnsnrnrnnes 4-21
Exploring & Editing BIOS Config File (.CFG)......uuviiiiiiiiiieeeee e 4-23
Additional Steps for C28X USErs ONIY.......ccccuiiiiiiiee e 4-24
20T [o R o Y=o =T g Vo I U o TR 4-25
Register ledToggle() as an Idle Thread FUNCHON............cooiiiiiiiiiiiii e 4-27
Explore BIOS’ Sys Overview and Runtime Cfg ..o 4-28
201 Lo TR o = To IR (U [4-30
Explore the RTOS Object Viewer (ROV)uuiiiiiiiiiiiiiiie et 4-31
Add Unified Instrumentation Architecture (UIA) to the Project.............cccooiieiiiiis 4-32
UIA — Build, Load @nd RUN........cocuiiiiiiii et 4-36
That's It, YOU'TE DONE I ... 4-38
[Optional Lab 4B] — Blink LED for MSP430 and TiVa-C...............ueeiii oo 4-39

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Creating A New BIOS Project

Creating A New BIOS Project

CCS Project Creation — Choosing BIOS Template

Most of this screen should look familiar from the previous chapter on CCS. Basically, the top
portion of this dialogue is the same — the difference is that you will now choose a BIOS template
near the bottom of the screen.

The names “Minimal” and “Typical” are kind of ambiguous. Minimal simply has fewer services

automatically added to the .cfg file. And, honestly, it really doesn’t matter which one you choose
because you can add or subtract services from either one.

In this workshop, the author chose to start with the Minimal configuration template and then add

services to it.

CCS Project

Create a new CCS Project.

Target: ThMécl23gh

- | Tiva TM4C123GHBPM b

Cennection: [Stel\ansln—(ircuit Debug Interface

1)

L Cortex M [ARM]

Project name: TMAC_TI_RTOS_NEW
[]Use default location

Location: CATLRTOS\TM4Ch\Labs

Brof

Compiler version: | TIwv5.1.5

o) [mg

b Advanced settings
= Project templates and examples

type filter text

!

4 [= TI-RTOS for TivaC =
a [[=| Driver Examples
4 [[=] EK-TM4C123GXL Launch

An empty TI-RTQOS project

Creating a New TI-RTOS Project

¢ Create CCS Project
* Same as before except...

* You need to choose a TI-RTOS
project template

¢ “Driver” Project Template

* empty.c that contains
#tincludes for header files and
some starter “driver” code

* BIOS Config file (empty.cfg) -
contains UIA and “starter” BIOS
services

* Auto adds xWare driver lib and
necessary include search path —
great for Tiva-C & MSP430 users

¢ Kernel Examples
» C28x/C6000 users

4 [=| Example Projects
& Empty (Minimal) 1
r Empty Project| |
+ [= Instrumentation Bamples 1
» = Kernel Examples fls

* Pick “Minimal” example

When you click:
&

4 . L

R

When you create a BIOS project, you will be given two new files — main.c and app.cfg. main.c will
contain the includes for the header files based on the services in the .cfg file. The app.cfg file will
contain a minimum set of services to get started with BIOS. In the labs, we will continually be
adding services to this “starter” file.

Some people ask the author this question “so, can | start with a non-BIOS project and
then add BIOS later?” The answer is NO. You can’t take a non-BIOS project and just add
BIOS to it. The reason is because BIOS wants control over the build process and adds
several hooks that can’t just be tacked on to a non-BIOS project. The only way to
accomplish this — and it is not difficult — is to create a new BIOS project (like we are doing
now) and then simply add the files from the other project to it.

Note:

When you click the Next button...

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Creating A New BIOS Project

CCS Project Creation — Choosing BIOS Tools

When you click “Next”, you’ll see the following dialogue allowing you to choose the specific tools
versions you intend to add to the system — mainly XDC and SYS/BIOS. For MCU users, the third
file (platform) is automatically chosen for you. However, for C6000 users, that choice will be blank
and you will be asked to locate the proper platform package for your development tool. More on
this in the next slide...

SYS/BIOS Project Settings

@ Select versions of XDC Tools and TI-RTOS (plus others if necessary)
¢ Target, Platform and Build-profile are auto-selected

e ¢ Platform Pkgs:
RTSC Configuration Settings —i*
Select the RTSC Configuration project settings. / / = All MCU — auto chosen
m‘ = C6000 — must choose
and can customize
[XDCtuulsverslun: [330225_core | - o
& When you click “Finish”,
Prod d R L Order i
B Products an eposltonesl % Ord | you get the foIIowmg
» [=i SYS/BIOS <[Add. | . K .
)i System Anslyzer (UIA Target) [—rT— project (driver example):
. :E:ggi;::::«ﬁinkaa\a;;MtU; L 4 5 TMAC_TI RTOS_NEW [Active - Debug] i
V] = TI-RTOS for TivaC 1 » [l Includes 3
¢ 20.2. (= Debug
. Sk + = targetConfigs
> Board.h l
Target: titargets.arm.elf M4F . g EK_TM4C123GKL.c }
Platform: ti.platforms.tiva: TMAC123GHEPM - > g EK_TM4C123GKL.emd [
Build-profile: release . > EK_TMC123GXL.h
> lg empty.c
B empty_readmetdt
@ e A ety
i3 Texas More on Platforms...
INSTRUMENTS

Near the top, you will see the current XDC tools version. If you click the down arrow, we advise
you choose the LATEST version. Notice that you cannot select to NOT use XDC tools. Why?
Because this is the tool that a) provides the GUI interface to the app.cfg file; b) this is the tool that
builds your project. Without XDC, you can’t build your project.

The next set of choices are other tools that you may or may not need. Of course, you will need to
select SYS/BIOS as shown above and choose the LATEST version installed on your computer.
You may elect to choose other tools listed, but for now, we’ll just choose SYS/BIOS.

Now, when you click Finish, you will see the new project and the addition of main.c and app.cfg.

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Creating A New BIOS Project

CCS Project Creation — Choosing Platform

As stated earlier, MCU users are provided a linker.cmd file and platform for the device you chose
in the first dialogue box. Also note that platforms are only available for base or superset devices,
so your exact device may or may not be listed. You can always choose a different platform and/or
modify the default linker.cmd file to match your exact needs.

For C6000 users, the story is a bit different. C6000 devices (or multi-core C66x) contain internal
cache memories and the ability to use external memories like DDR2 or DDR3. Due to these extra
features, C6000 users are required to use either default or customized platform packages which
will GENERATE a linker.cmd file. So, in order to build, the tools must know which platform
package you are using. The default platform for the C6748 LCDK is shown in the slide below.
However, users can create their own custom platforms and choose that platform instead. So,
while there is more work involved in using C6000, there is also a lot more flexibility.

C6000 users should also note that the linker.cmd file is generated by the tools — so if you modify
it and then rebuild, your changes will be overwritten. Users can either modify the platform and/or
provide an additional linker.cmd file that contains custom section/memory allocations.

Memory Configuration (Platform Pkgs)

¢ MCU Users:

* Provided with a linker.cmd file to manage memory
* Only “base” or “superset” MCU devices have platforms auto-selected

¢ C6000 Users:
* BIOS will create a linker.cmd file based on the settings in the PLATFORM pkg

* When creating a new project, C6000 users will typically choose the default
“seed” platform file as shown:

Target: ti.targets.C674

Platform: i.platforms.evmnb748)

Build-profile; release

* 6000 users can create their own CUSTOM platform package to modify:

* Cache Settings * Code, data, stack placement
* User-named sections ¢ Customize internal memory segments
* External Memory (DDR2/3) * Benefit? Optimization...

i3 Texas What is in the app.cfg file ?
INSTRUMENTS

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-5

BIOS Configuration

BIOS Configuration

Adding a BIOS Service to CFG File

When you double-click to open the app.cfg file in your Project Explorer, two new windows will
open (note this is the tool XGCONF being executed from the XDCTools product).

The first window is Available Products (shown on the left below). This window displays, as the
name implies, all of the Available Products you selected in the “RTSC Configuration” tab/dialogue
when you created the project. If a tools is missing, simply right-click on your project and select
Properties, then click on the RTSC tab and enable the missing tool(s).

The second window that opens is an Outline View of your app.cfg file. You can either view the
script (actual contents of app.cfg) or add/subtract services via the Outline View. If the Outline
View does not show up, simply select View->Outline from the CCS menu to open it. This feature
is built into CCS and will show users the Outline of any file that is “in scope” — selected and being
viewed in the main Editing window of CCS.

Static BIOS Configuration (.cfg)
¢ The .cfg file contains all STATIC BIOS services used in the project
¢ To ADD a service, right-click on service in Available Products and
select “Use xyz”. It will then appear in your .cfg file (see Outline view)
1= Available Products 52 @ EI0S 3
- @ Clock
type filter text @ Defaults
a 33 TI-RTOS @ Diags
@ TRTOS @ Error cfg
> @ Drivers @ GPIO
> Monitors @ HeapMem
4 @ Products 4 @ Hwi
4 33 SYSBIOS © TIMER_2A_INT
@ BIos ® Idle
> Q System ® Log
- #4 Diagnostics @ LoggingSetup
a i Scheduling @® Main
& Task ® Memory
B Swi @® Program
M, Hwi @® Semaphore
() Idie @ SysMin
I Clock @& System
ﬁj Timer @ Text
b i S)rncbronization @ TIRTOS
{f E’s‘?ﬁummrs Note: you can also drag/drop services... When you click on Idle...

So, let’s assume that a user wants to add an Idle function — a function they want to run when the
BIOS Scheduler runs the Idle thread. If Idle is not a service listed in the app.cfg file, the user must
first ADD that service to app.cfg. There are two ways to do this:

e Drag and drop the service from Available Products into the Outline view of app.cfg
¢ Right click on the Idle service listed in Available Products and select Use Idle.

In either case, Idle will show up as a service in your app.cfg file — as shown above in the Outline
view.

Now, when you click on Idle in the Outline View to configure it...

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

BIOS Configuration

Configuring a BIOS Service — Idle

When you click on a service (e.g. Idle) in the Outline View, a configuration dialogue box will
display (as shown below). This dialogue is asking the user to add the functions BIOS will run

during the Idle thread.

In this example, the user wants to run a function called ledToggle. Note that this is EXACTLY

what you will be doing in the upcoming lab exercise.

Once again, the tool you are using here — the one displaying the GUI interface — is part of the
XDCTools product you selected when you created the project. The exact tool within the XDC

Tools package is called XGCONF — for XDC GRAPHICAL CONFIGURATION. You don'’t really

need to know this, but now you do. ;-)

SYS/BIOS * Scheduling * Idle - Basic Options
Advanced

Add the Idle function management module to my configuration

= User Defined Idle Functions

The functions below are added to the list of functions executed wheneve]
idled. To reference a function defined by

* your application: type its C name. For example, _c_int00,

* an existing module: you must type its fully ' qualified name. For e

User idle function 0

User idle function1 null

Useridle function 2 null

Q Texas
INSTRUMENTS

-

Static BIOS Configuration — Adding Idle Fxn

4 When you click on a service (or BIOS module) in the Outline view,
you can then configure its settings (e.g. adding an Idle function):

@ BIOS
@® Clock
@ Defaults
@ Diags
@ Error Cfg
@ GPIO
@® HeapMem
@® Hwi
@ TIMER_2A_INT
@ Idle
@® Log
@® LoggingSetup
® Main
® Memory
@® Program
@® Semaphore
@® SysMin
@& System
& Text
@ TIRTOS

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

BIOS Configuration

CFG Script Code vs. Using the GUI

When you add or configure services in the GUI, script code is added to the actual app.cfg file. If
you click on the cfgScript tab at the bottom of the Edit screen, you can see the script code that is
being used to configure all of the BIOS settings. If you add something via the script code, the GUI
will follow and vice versa.

If you prefer writing script code, go for it. Although, most users prefer the GUI and hardly ever
look at the script code.

Static BIOS Configuration — Adding Idle Fxn
¢ All changes made to the GUI are reflected in the script (.cfg file)
and vice versa
Click on a module on the right and you can see the
corresponding script in app.cfg: .)
@ Clock
= app.cfg 2 @ Defaults
7war Hwi = xdc.useModule('ti.sysbios.hal.Hwi'); © Diags cfg
var Idle = xdc.useModule('ti.sysbies.knl.Idle'); @ Error :
var Timestamp = xdc.useModule(' xdc.runtime.Timestamp'); @ GPIO
@® HeapMem
4 @ Hwi
e r i e A T LT @ TIMER_2A_INT
:: Idle.idleFxns[@] = "&ledToggle"; : idol:
T] @® LoggingSetup
SYS/BIOS | cfq Script © Main
® Memory
@® Program
Note: .cfg files don't “build up” entries like the older .tcf (DSP/BIOS) files did @ Semaphore
@® SysMin
@& System
® Tedt
@ TIRTOS
QTEXAS
INSTRUMENTS

Note: In past versions of DSP/BIOS (the previous product to SYS/BIOS), a TCF file was used
along with a GUI. This TCF file always added commands to the script and never deleted
any. So, you may have add this, delete this, add this, delete this — 4 commands that
canceled each other out. TCF files grew sometimes to very large sizes and over time,
were unreadable and possibly caused problems. This new .cfg file interface in SYS/BIOS
does NOT behave this way. If you delete something in the GUI, the script code is also
deleted. So, the .cfg files are very clean and readable and won’t cause build problems.

4-8 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

BIOS Configuration

HIDDEN SLIDE...BIOS System Overview

You will actually see this screen in the lab. There are three ways to find out what services are

added to the BIOS CFG file:

e Use the Outline view of app.cfg

e Read the script code in app.cfg

e Select BIOS->System Overview to see this graphical view:

BIOS System Overview

Welcome

BIOS

-

» SYS/BIOS - System Overview *

Runtime Error Handling Device Support Advanced

Threads

L Idle ‘ L Clack ‘
) (]

L Task ‘ ‘ Swi

]]

L
|

¢ To see the services
used in YOUR
.cfg file, choose:

¢ BIOS - System O/V

+ Notice the green

Synchronization

checkmarks (v')

Semaphore

‘ Event ‘

Mailbox ‘

Startup
Diagnostics

Memory Mangement

Error Handling

CPU Load

Timestamp

il

Memory ‘ ‘ Cache ‘
2.

HeapMem HeapBuf

HeapM ultiBuf

Some users like this view very much — so you'll actually access it in the upcoming lab exercise.
The services that are enabled in the app.cfg file are shown as GREEN checkmarks as shown

above.

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

BIOS Configuration

HIDDEN SLIDE ... Configuration Build Flow in XDC Tools

Some people start reading the BIOS user guides or other documents that talk about XDC tools
and RTSC packages. What is all this stuff? And do you need to be worried about it?

The answer to the second question is no — you don’t need to be concerned with the “behind the
scenes” work XDC is doing for you. They have hidden most of it from the user, but this slide
shows what XDC is doing behind the scenes.

Configuration Build Flow (CFG)

+ SYS/BIOS - user configures system with CEG file
* The rest is “under the hood”

USER UNDER THE HOOD (TOOLS)
*BIOS pkgs (cfg) | XDC
« Platform/Target s compiler.opt .cmd
» Build Options
-I -L
.C > Compiler Linker >{ app.out
+ BIOS modules (like HWI, Clock, Semaphore, etc.) are
delivered as RTSC compliant packages

» RTSC - Real Time Software Components — Packages that BIOS lib
contain libraries and metadata (similar to Java.jar files) IDS

» XDC — eXpress DSP Components — set of tools to consume
RTSC packages (knows how to read RTSC metadata)

{i; TexAs
INSTRUMENTS

Previously, we stated that BIOS has “hooks” into the build process — well, the diagram above
shows a few of those “hooks”. If you look at the left-hand side of the diagram, you’ll see what the
USER needs to be concerned with — namely the app.cfg file, choosing a platform/target and
modifying the compiler build options. Of course, your program’s C files are listed there as well.

When you click Build in a non-BIOS project, the build options and your source files will go through
the compiler, then linker (using the linker.cmd file) to create your .OUT file. However, when BIOS
is involved, XDC tools knows how to consume all of the BIOS libraries (called RTSC Packages,
e.g. Swi is a package, Idle is a separate package) along with your app.cfg settings and produce
two key files needed by the compiler and linker stages of the build process:

Compiler.opt is used by the Compiler
A separate linker.cmd file produced by BIOS is used by the Linker

All of this happens without user intervention. XDC Tools simply takes what you provided in the
app.cfg file, build options and your .c files and builds app.out.

So, when you read the documentation, don’t get bogged down into understanding the details of
XDC or RTSC. XDC is simply a tool used in the build process and provides the GUI interface.
RTSC stands for Real-time Software Components which describes how the BIOS libraries are
packaged — they are simply a library and metadata. All BIOS libraries are packaged using the
RTSC standard. You don’t need to know any of this, really, but some people like to see the
“under the hood” details of the entire flow. So, there you go...

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

BIOS System Timeline

BIOS System Timeline

So what happens from Reset until the BIOS Scheduler starts near the end of main() ? That's what
this diagram is attempting to show.

After reset, a C6000 device may run a “boot load” routine. All processors will then jump to the
reset label - _c_int00 — the reset vector and begin executing. During this time, the stack pointer
and global/static variables are initialized. At the end of this routine, BIOS init() will be called to
initialize all BIOS static objects. So, if you configured a Swi or Task in the app.cfg file, they will be
created and initialized before main(). BIOS_init() will then call main().

Most users will have some type of system initialization code in main() that runs and then the user
must call BIOS_start() to start the BIOS Scheduler. When the Scheduler starts, all clocks,
interrupts, etc. are enabled and ready to run and then the entire system begins executing.

System Timeline

Hardware Software
Reset BOOT Provided main.c Provided by TI
H/W MODE by TI
Device Boot (_c_intooz System BIOS_start() SYS/BIOS
Reset Loader BIOS_init() Init Code (ProvidedbyT) Scheduler

o o o
v v v

3

(C6000)

& RESET — Device is reset, then jumps to bootloader (optional)
or code entry point (c_int00) to init SP and globals/statics

4 Most MCUs have on-chip Flash and therefore don’t use a bootloader
¢ BIOS init () —configs static BIOS objects, then callsmain ()
¢ main ()

* User initialization

* Must execute BIOS start () to enable BIOS Scheduler & INTs

13 TEXAS
INSTRUMENTS

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-11

UIA & RTOS Analyzer

UIA & RTOS Analyzer

Configuring UIA & RTOS Analyzer

In the previous chapter, we talked a little about what UIA and the RTOS Analyzer were capable of
providing in terms of debug features. Now, it's time to learn how to ADD and CONFIGURE this
functionality into your application.

Remember when you created the project and on the RTSC tab, you selected the XDC tools and
SYS/BIOS versions? On that same tab, you must first enable (check) the System Analyzer tool as
shown on the left-hand side of this slide. Once selected, the Available Products window will show
“UIA” as a service. Simply drag/drop “LoggingSetup” into your app.cfg file (Outline View) and then
click on LoggingSetup to configure it.

Configuring UIA & RTOS Analyzer

¢ UIA (Unified Instrumentation Architecture) provides instrumentation APIs that
run on the TARGET — Why? Visibility into what your program is doing (or not doing)

& The RTOS Analyzer displays the results of these commands in CCS
& Multiple transport protocols are supported — we will use STOP-MODE JTAG

P =i, TI-RTOS for CH000 ~ Built-in Software Instrumentation §
s [# RTOS Execution Analysis Morelnfo..
=% 20123 (UIA) e
/ Task Context (Always en) [] Swi Context [[]Hwi Context [T] Semaphores
[7] RTOS Load Analysis MoreInfo... F.
CPU Load (Alwayson) [Taskload [TSwiload [7]Hwiload r
[F] Task Profiler MorelInfo..
aaa
> 234 LUQQETS ~ User-written Software Instrumentation
5 jjj SEnvices Enable modules for use in instrumenting your application code. Please click on the providd
) software., ;
4 LoggingSetup [¥] Error, Warning, Info and Print Events (c.g. Log_print2) Tutorial. 1
[#] Run-time Centrol of Event Logging Tutorial... !r
. ~ Loggers
“ ”
¢ Add “LoggingSetup” to !) ! }
2 . LoggingSetup generates any loggers required by the below setting automatically. I you wi
your .cfg file, then config them manually, More info...
LoggerStopMade (JTAG only) v 4
Tasks take less memory
to track, Hwi/Swi require ~ Logger Buffer Sizes
bigger buffers This section allows you to cenfigure how much memory you wish to allocate on the targetg
Buffer Sizes (MAUs)
Buffers are circular RTOSLosd Events 512 1
RTOS Execution Events 1024 4
User-written Log Events 1024 g
I3 TEXAS A A o i AN coinit® | 0S...

INSTRUMENTS

When you click on LoggingSetup, the dialogue on the right-hand side of this slide will appear. You
can see three different tools that can be configured — Execution Graph, Loads and Logs.

If you want Hwi or Swi or Tasks to show up in the Execution Graph, you can enable/disable them
here and then choose a buffer size (in Minimum Addressable Units — MAU). All of the default
buffer sizes are shown and can be used as is without many problems. Note that these are all
circular buffers, so they will always show the last “N” entries when the processor is halted. Swi’'s
and Tasks are rather easy to track in the Execution Graph, but note that Hwi’s, because they
happen so frequently (typically), will be difficult to see without a very large buffer size.

In the upper right-hand corner, you can specify the buffer size for the CPU Load and Thread Load
displays.

Near the bottom, you can choose a size of the buffer that will hold the results of any “Logs” — for
example the results of a Log_info() call — a lightweight version of a printf(). More details on this
later and in the lab.

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

UIA & RTOS Analyzer

Using Logs

So, after you configure the Log buffer in the previous dialogue, how do you actually view the
results?

First, you need to call a function, for example, like the Log_info1() shown below. The “1” means
you can use one variable in the parameter list — for example “result” as shown below. When this
function call executes, the variable “result’ is placed into the Log buffer and will be shown to the
user after execution halts. How many results can you see? That depends on the size of the buffer
you chose.

After halting execution, select Tools->RTOS Analyzer-> Raw Logs to see the results of the
Log_info() calls. They will display as shown below.

Using Logs
¢ printf () isa popular debug tool, but it can cost cycles/code size
on some MCUs and certainly is a bad idea on DSPs

@ Log_info() is ~40 cycles, provides similar benefits (allows 0-5 args):

Log_infol (“LED TOGGLED = [%u] TIMES”, toggles);

Which Analysis Features to Run:

Halt, choose proper tool via:

) . Analysis Feature Wh

Tools - RTOS Analyzer - Execution Analysis Execution Graph =
(pick services here, “Live Session” shows [E Concurrency =
Log_info results) [Printf Logs [
CPU Load 2

¢ Display the filtered results: SI:EEE:EM =
BB “Live Session 2 [“Execution Graph [*CPU Load: Graph 3 [] Duration C2

Type Time Error Master Message [] Count Analysis C2

[7] Context Aware Profile | 2

-

2700488180 C28xx

4500486140 C28sx

Note: users can export log data to .csv file
Execution Graph...

If you like, you can right-click on the log data and export it to a .csv file for use in other programs.

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-13

UIA & RTOS Analyzer

Using the Execution Graph

When you halt execution of the processor, choose Tools->RTOS Analyzer->Execution Graph to
see the results of the graph as shown below. In the top graph, notice the units of time shown — in
this example, they are shown in ms. However, you can zoom in on the graph and then the units
will change from ms to uS and then to ns. You can see the threads that are active in the system
on the left-hand portion of the graph.

Some users like to perform benchmarks on the events shown in the graph. No problem. Simply
lay down markers (X1 and X2 as shown) and then view the result — (X2-X1) — which shows
500ms in our example. This is actually a 1/2second Clock Function being fired and therefore
500ms confirms that.

This Execution Graph is an extremely useful and versatile tool — and the best part is — it is based
on time so that you can see, in time, when events occur in the system. Very helpful.

Using Execution Graph

¢ Execution Graph is a software logic analyzer that provides visibility
into almost every event in the system — down to the nanosecond.

)
A Live Session | Execution Graph &2 {

2o #Swi
Post ~ ~ ~
Start
Stop]]] J

F1C2800*05
#5Switi_sysbios_knl_Clock workFunc_E()
Task.ti syshios knl Idle_loop_EQ)

l Time basis (ns to ms)

E

-

lsource

T T T T
3610 4110 4,610 5110

i BB Live Session | Execution Graph &3
X1: 3,500 xz:4,000
Results are written to a system log, o . .
then displayed on the graph. Start
. Stop h
To view — halt, the use: o SC0S ’
Tools - RTOS Analyzer - Exec Analysis E e e
Users can also BENCHMARK using | 1
markers on the graph S
T L T Lz
3,400 3,900 i
i3 TExas .
INSTRUMENTS CPU and Thread Loading...

4-14 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

UIA & RTOS Analyzer

Using CPU and Thread Loading

The last of the three main debug tools is CPU and Thread Loading.

CPU Load calculates the time NOT SPEND IN THE IDLE THREAD. If the CPU load graph shows
30%, that means Idle is running 70% of the time and other threads (Hwi, Swi, Task) are running
30% of the time. This loading is a combination or aggregate of all threads other than Idle.

What if you wanted to see the individual thread loading to determine who is “hogging” the system
— in other words, which thread is the biggest contributor to the CPU Load? You can by selecting
Thread Load and making note of which threads are taking the highest number of cycles in your

system.

Using CPU/Thread Loading

¢ Observing load can be done in two different ways:
* CPU Load — calculates time NOT spent in the Idle thread
* Thread Load — displays loading of individual threads
To use, first configure buffer size in LoggingSetup
Halt, use Tools - RTOS Analyzer - Load Analysis to see the results:

kA R A =

[“Live Session |iil *Execution Graph [*CPU Load: Graph | flw *Task Load: Graph 52 = B

=

02,6 7.6
rime () 60

4l
Note: you can also calculate the load
dynamically using:

[t [sw1 [Tskstaskioad B Summary cPU
100 FH Detail
8 [t Graph =
|1 *CPU Load: Graph 5% FB *Live Session [*Execution Graph
§ 60 i
3 C2x
S a0
2 100 [

o

Load _getCPULoad() ;

13 TEXAS
INSTRUMENTS

4,750,676 4,750,696 :

If, for some reason, you want to know the CPU load during runtime, you can call the function

Load_getCPULoad().

Once again, you will be using all of these tools in the upcoming lab exercises...

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Version Control

Version Control

We often get questions about which files to place under version control — especially those related
to CCS and BIOS.

This slide summarizes the files that are suggested for users to place under version control:

e Source Files (.c, .h, .cfg)

e Custom platforms (C6000 only)

e Custom linker.cmd files

These are fairly easy to figure out. The harder ones to determine are the ones Eclipse (CCS)

uses to store project information. Shown in the bottom box are the ones Tl suggest you place
under version control and those don’t need to be saved.

Suggested Files for Version Control
¢ What you “check in” is up to you.

However, here are some suggestions: \Project

Source Files: J Jaunches
* "¢, mh | settings
» .cfg (SYS/BIOS Config) , Debug
+ custom platforms | targetConfigs
* custom linker.cmd files | | .ccsproject
|| «cproject
Eclipse (CCSv6) Files: I penjec
* Project Files - .project, .cproject main.
» CCS Project File: .ccsproject YES tm4c123gh6pm.cmd

* Target Config Files

-« Project Settings: .settings
» .launches — NO (debug connection)

* Build Config folders: Debug/Opt/Release
NO — generated when you build

42

4-16 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Lab 4 — SYS/BIOS Blink LED

Lab 4 — SYS/BIOS Blink LED

In this lab, you will create a new SYS/BIOS project from scratch and extend your CCSv6 skills as

well as dive into configuring a SYS/BIOS project.

This project starts with the same code as the previous lab so that students can see exactly what

is necessary to add SYS/BIOS to a NON-BIOS application.

The key changes you will make are:

e Creating a SYS/BIOS project and configure BIOS using the .cfg GUI editor

¢ Replacing the while (1) loop with BIOS start ()

e Deleting the call to 1edToggle () inmain (). (ledToggle () will be called from the

BIOS Idle thread)

e Adding an /dle thread to the project and registering 1edToggle () as an I/dle function

You will then add UIA/SA to the project and use Log_info () to display how many times

the LED was toggled.

Lab 4 — Blink an LED Using Idle

¢ Use Log_info() to print #toggles
BIOS_start(); — goheduler

ledToggle () {
toggle (LED) ;
delay (500ms) ;
Log_info();

}

¢ Time: 60min

Lab Goal: Procedure

This is your first TI-RTOS Kernel * Create a new BIOS project (Minimal)
project — and you just want to . T . A

blink an LED in Idle Add/link files (main.c, driverlib/folder)

e Create Idle object (for fxn ledToggle)

main.c
o) 1 e Build, “Play”, Debug
main
init hw() ; ¢ Add UIA/SA to project and configure

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Lab 4 — Procedure

Lab 4 — Procedure

Typically when you first acquire a new development board, you want to make sure that all the
development tools are in the right place, your IDE is working and you have some baseline code
that you can build and test with. While this is not the “ultimate” test that exposes every problem
you might have, it at least gives you a “warm fuzzy” that the major stuff is working properly.

So, in this lab, we will start with the previous lab’s solution and add SYS/BIOS to it.

Create New blink_target BIOS Project

1.
2,

Close all previous projects in CCS - right-click — Close Project.
Create a new CCS Project using TI-RTOS.

Go through the steps of creating a new CCS project as you did in the previous lab — you may
need to reference those steps now. Note the following:
e Name: blink target BIOS (where targetis YOUR target — as before —
either C28x, C6000, MSP430 or TM4C)
e Location: C:\TI RTOS\”Target”\Labs\Lab 04\Project
When the New Project Wizard pops up,

» fill in the top half of this dialogue the SAME WAY you did last time including the Device
info and Connection type. The example for TM4C is shown below — make sure you pick the
selections based on YOUR target platform. The author will remind you a few more times,
then will assume this will be crystal clear in future labs.

CCS Project _1-
Create a new CCS Project. :_" 5__,
Target: tmdclisg * | Tiva TM4C123GHEPM v]

Connection: [StellarisIn-Circuit Debug Interface v] Verify

% Cortex M [ARM] |

Project name: blink_Th4C_BIOS

[Use default location

Location: C:ATIRTOS\MSP430\Labs\Lab_04\Project

[

Compiler version: | TIv5.1.5

In the bottom half of the dialogue, there are several correct choices. MSP430 and TM4C
users will use the Driver Example and C6000/C28x users will use Kernel Examples. So, pay
close attention to the different instructions for each target on the next page...

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Lab 4 — Procedure

TM4C and MSP430 USERS - Choose Driver Example Template shown below:

w Project ternplates and examples

type filter text An empty TI-RTOS project

3

System Analyzer (UIA) *
RTOS

RTQS for TivaC

Drriver Examples

[= EE-TM4C123GEL Launchpad
4 ||=| Example Projects

|5z Empty (Minimal) Proje:
|55 Empty Project

=l

5T

SRS
]

» Choose Empty Project as shown above in the TI-RTOS Driver Examples folder. MSP430
users will have a similar folder structure as shown above.

As stated previously, this will provide you with the driver library links/includes as well as a
BIOS CFG file — empty.cfg. You will also get some extra .c and .h files you will delete
later.on.

» Click Next...

C6000 and C28x USERS — Choose the Kernel Example Template shown below:

* Project templates and examples

type filter text This example has a fairly minimal .cfg which
— is set up for a static application where all
4 [=| TI-RTOS for C2000 “ | objects are defined statically (via
+ [=| Instrumentation Bxamples configuration tool and/or target structures),
4 [= Kemel Bxamples Dynamic memory allocation has been
4[] Tl Target Examples disabled. The .cfg file creates a single task
& Minimal which has a couple of print staternents and
= Typical ﬁ E‘ a Task_sleep(] call.
(E=
|52 Typical (with separate conf _
1] P

» Choose Minimal as shown above in the TI-RTOS Kernel Examples folder. C6000 users
will have a similar folder structure as shown above.

As stated previously, this will provide you with a starter app.cfg file that you will add/subtract
services from.

» C28x USERS - Click Next...

C6000 USERS ONLY - Choose ELF output format.

» Click Advanced Settings and choose ELF binary format and then click Next...

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-19

Lab 4 — Procedure

Note: FYI - Detailed project creation steps and debug tips for each architecture are
summarized at the end of the previous lab. If you have questions or want to double-check
your “new project creation” procedure, please refer to the slides at the end of Lab 2. UIA
(later in the lab), XDC and BIOS/RTOS versions basically come in “sets”. You can’t use a
really old version of XDC with a brand new version of TI-RTOS, etc. All labs in this
workshop require a MINIMUM version of XDC (3.30.01.25_core), TI-RTOS (2.0.0.22),
and UIA (2.0.0.28). As long as you have CCSv6.0 or later, or have downloaded the latest
“set” of these tools, you'’re probably fine. But it would be wise to double-check this.

ALL USERS - In the RTSC Configuration Settings dialogue,

» select the LATEST version of the tools loaded on your machine. Be careful to select the
LATEST version of XDC (which is easy to miss because it’s at the top of the screen) and TI-
RTOS — as shown below.

Your system will probably have a newer version of the XDC and TI-RTOS tools than what is
shown below — again, choose the LATEST version you have. C6000 example shown below —
obviously, choose the TI-RTOS for YOUR TARGET:

RTSC Configuration Settings
Select the RTSC Configuration project settings.

5% CB7XX [C6000] |

#DCtools version: [3.30.2.44_c0re _

B4 Products and Repositories |{5.;} Grder|

+ [= TI-RTOS for C2000
4 =, TI-RTOS for CH000
= 201.23
[£# 2.00.22
+ [= TI-RTOS for MSP430
» [= TI-RTOS for Simplelink Wireless MCUs
» [= TI-RTOS for TivaC

C6000 USERS ONLY

Near the bottom of this dialog box, you must select a PLATFORM package. Choose the one
shown below:

Target: ti.targets.elf.Co74

Platform: ti.platforms.evrmnb748

Build-profile: release

ALL USERS: » Click Finish.

4-20 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Lab 4 — Procedure

Your project should look something like this (the example shown is for TM4C users — yours
may be slightly different):

4 = blink_TMA4C_BIOS_SOL [Active - Debug]
» [Includes
= Debug
» = targetConfigs
: Board.h
- €] EK_TM4CL23GXL.c
o g EK_TM4C123GXL.cmd
, EK_TMAC123GXLh
€] empty.c
5 empty_readmetd

2 empty.cfg

As you can see, using the TI-RTOS project template provided us with a starter CFG file and
possibly additional C/Header files (MSP430 and Tiva-C). Next, we will add the lab’s main.c
file and delete any other unnecessary files.

Project File Management

3. TM4C and MSP430 USERS - Delete unnecessary files from your project.
» Right-click on ALL .c, .h and . txt files in your project and select Delete.

DO NOT delete the . cfg file or . cmd file. These extra files were populated as starter files for
a driverlib example. We will add our own main. c file in the next step, so we don’t need the
default one.

When finished deleting files, your project should look like this (TM4C example shown):

4 1"':“; blink_TM4C_BIOS_SOL [Active - Del:-ug]]
+ [} Includes
7= Debug
» (== targetConfigs
» | g EK_TM4C123GXL.cmd
4 empty.cfg

4. C28x and C6000 USERS - delete main.c from your project.

You will be adding this lab’s main. c in the next step. Another main. c was populated
28V automatically as part of the template.

» Right-click on main.c and select Delete.

When finished, your project should look something like (C28x example shown):

4 = blink_C28x_BIOS_SOL [Active - Debug]
» ! Includes
= Debug
» = targetConfigs
» g TMS5320F28069.cmd
& app.cfg
@ makefile.defs

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-21

Lab 4 — Procedure

5. ALL USERS - Add main.c to your project.

» Add (copy) main.c from your \Lab 04\Files folder. This main.c contains the same
code as the previous lab plus some additional #includes necessary for BIOS projects to
build properly. We will inspect this file in one of the following steps.

6. Add (link) the appropriate driver library file/folder (same as the last lab) to your project.
Hey — this is where MSP430 and TM4C users say:
“Really? No library to import? But | am using TivaWare or MSP430Ware !”

Yes, you are. But you chose the DRIVER Example template which auto populates the driver
libraries and include files FOR YOU. This is new in CCSv6 and TI-RTOS. So, be grateful.

e P C28x USERS: mustimport the \EWare F28069 BIOS folder this time.
e (6000 USERS: no library to import (because the PDK/CSL is used)
e MSP430/TM4C USERS: no library to import
7. Add include search paths to your project settings.
e TM4C and MSP430 users have NOTHING to do here.

e (C28x USERS: » Add the include search path to your project settings as in Lab2 — you
need to add TWO paths using the vars.ini variable.

e (C6000 USERS: » Add the include search path to your project settings as in Lab2 — you
need to add ONE path using the vars.ini variable.

Do you remember how to do this? If so, go for it. If not, reference the steps from the previous
lab or the “helper” slides at the end of the last chapter’s lab for help.

8. C28x Users ONLY - add a pre-defined symbol for xdc__ strict.

There is a header file conflict in C28x when using TI-RTOS/BIOS. Apparently “uint8” is
defined twice. To avoid getting this error when you build, you must add a pre-defined symbol
for “xdc__strict” and this takes care of it.

» Open Project Properties, select C2000 Compiler 2 Advanced Options - Predefined
Symbols and click the “+” sign to add a new NAME.

» Type “xdc__strict” (that's TWO underscores) as shown below and click OK:

4 C2000 Compiler
Processor Options
Optimizaticon
Debug Options

Pre-define NAME (--define, -D) = o5 3
Include Options
4 Advanced Options

Advanced Debug Opti Pre-define MAME (--defing, -0
Language Options

Parser Preprocessing C xde_strict

Predefined Symbols |
Diagnostic Options
Runtime Model Optior
Advanced Optimizatio
Entry/Exit Hook Optior
Library Function Assur

fgzeun blar Chadian

4-22 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Lab 4 — Procedure

Exploring & Editing BIOS Config File (.CFG)

9. Explore services in app.cfg.

» Open the BIOS CFG file (empty.cfg or app.cfqg) for editing. CFG means your
project’s .cfg file (could be app.cfg or empty.cfg). When you do, you should have three
new windows pop up:

e Available Products (usually in the lower left-hand corner) @ BIOS

e Outline View (usually in the upper right-hand corner) @ Defaults
e Config or Edit window (in the upper middle of the screen) : E:.:.grs
The Available Products window shows ALL BIOS services that you can . @ Huwi

pick and choose from for your application. The Outline View (shown on @ log

the right) displays the services actually USED (yours may look slightly 4 ® LoggerBuf

different). The Edit/Cfg window allows you to configure specific @ loggerd
services used in the CFG file.

@ Main
In this lab, we’ll be using all of these windows to add and configure ® Memory
BIOS services. & Program
. . . . & SysMin
Notice that the CFG file contains a Task and also an instance of a ® System
Task (e.g. task0). Tasks usually have functions associated with them. 4 ® Task
» Click on the instance of the Task (e.g. task0) to see which @ taskl
function it is using. (Or, make sure you click on “Instance”). That & Text

function existed in the a .c file you deleted earlier. Because we don’t
have this function in our new main. c, this will cause a build error. So
we need to go delete the Task service...

10. Remove the Task service from your app.cfg file.

» Open your CFG file and then right-click on Task in the outline view and select “Stop Using
Task’:

@ System

4| @ Ta-
@ MNew Task...

@ Te Stop Using Task

Help

Here, we are removing the Task service completely. You could also just delete the Task
instance (e.g. task0) — that would work as well.

» Save your CFG file.
11. Explore the .cfg script.

Near the bottom of the middle screen, » click on the cfg Script tab:

SYS/BIOS | cfg Senpt

This shows you the source script — the actual contents of the . cfg file. If you click on a
service, e.g. Hwi, it will show you the exact script that was used to add that module to the
configuration as well as any instances of this object. Feel free to click around some, but don’t
change anything. More on this later...

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-23

Lab 4 — Procedure

Additional Steps for C28x Users Only

12. C28x Users ONLY - add and modify the Boot service in app.cfg.
» If you are NOT a C28x User, SKIP THIS SECTION !!

BIOS, by default, will set the frequency to 50MHz and disable the watchdog timer. However,

for the labs in this workshop, we set the clock frequency to 90MHz so why not tell BIOS to set
28X this frequency at boot time as well? It is not necessary for the labs to run, but it is good
practice for C28x users to know how to use the Boot service in BIOS. So, time to practice
" this...
St

» Double-click on your app . cfg file. » Click on BIOS in your outline view:

type filter text

1

Startup

» Click on “Add C28x Boot ...” checkbox at the top and then modify the “PLL Control

Register-DIV’ setting to be 18 instead of 10. This should result in a 90MHz frequency at boot
time. Now, this matches what our code sets up in main() also.

C28x/Boot - Boot/Startup Options 3

Advanced
‘d (28x Boot management to my configuration

w System Configuration

Disable the watchdog timer

"] Enable boot from FLASH
= PLL Configuration

Configure the PLL

PLL input clock (OSCCLK) frequency (MHz) 10

PLL Control Register - DIV

PLL Status Register - DIVSEL 2

Frequency 90 MHz

Lirnp mode abort function

ti_catalog_c2800_in

» Save your .cfg file.

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Lab 4 — Procedure

13. C28x users ONLY - add additional header linker.cmd file.

In the previous lab, C28x users had to add an additional 1inker.cmd file to the project — it
was named F2806x_ Headers nonBIOS.cmd. Now that we are using BIOS, we need to
add the OTHER . cmd file listed there:

| F2806x_Headers_BIOS.cmd
5| F2806x%_Headers_nonBIOS.cmd

» Add (copy) this command file to your project (note the path variable from vars.ini is used):

“CONTROLSUITE F2806x INSTALL”\device support\F2806x\v1xx\F2806x_headers\c
md\F2806x Headers BIOS.cmd

» Double-check that you imported the \EWare F28069 BIOS folder in this lab. The
previous folder (from lab 2) only works for non-BIOS applications.

Build, Load and Run.

14. Build, load and run your project and fix any errors.
» Build your project and fix any problems — then run it.

At this point, your program should build and run fine. We are just trying to eliminate any
errors before we start playing with the BIOS pieces. If your project does not build or your LED
does not blink, debug the problem. If you need help, ask your instructor.

15. Inspect the contents of main.c.

» Openmain.c. This code is nearly identical to the previous lab with the addition of some
BIOS header files near the top. You are now ready to edit this file to implement the
ledToggle () function as an Idle thread in BIOS.

But first, think about what we’re trying to accomplish. BIOS is an operating system that
controls the scheduling of your threads. A while () loop inmain () doesn’t work any
longer...

Now answer a few questions:

Should you keep the while (1) loop in main () in a BIOS program? Why/why not?

Which thread takes the place of the while (1) loop in a BIOS program?

Who calls 1edToggle () ?

When ledToggle() becomes an Idle thread, there is no direct call (that the compiler can see)
to ledToggle (). If you turn on higher forms of optimization, what might happen?

Which call in main () is missing that starts the BIOS Scheduler?

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-25

Lab 4 — Procedure

16. Modify main.c to use the BIOS scheduler.

Next, we will delete the while () loop and move the delay () function and
i16ToggleCount increment to the 1edToggle () function. The concept here is that BIOS
will call 1edToggle () from the Idle thread and implement toggling the LED and the delay.

First, let's move the delay () calland il16ToggleCount variable to the 1edToggle ()
function (C28x example shown below — your code might look slightly different).

» Copy and paste the call to delay () and the increment of 116ToggleCount to the
ledToggle () function near the bottom of the 1edToggle () function as shown:

3

void ledToggle(void)

i
GpiocDataRegs.GPBTOGELE.bit.GPIO34 = 1; // Toggle GPIO34 (LD2) of Control Stick
delay(); // create a delay of ~1/2sec
i16ToggleCount += 1; // keep track of #toggles

e (R P R it R Tt e =

» Now, delete the while () loop inmain () andthe call to 1edToggle () leaving ONLY the
call to hardware init () as shown:

void main(void)

hardware_init(); // init hardware via Xware

What is the BIOS call that starts BIOS? BIOS start () of course.

» Add this call to main () as shown:

void main(void)

1

hardware_init(); J/ init hardware via Xware

BIOS start(); // start BIOS Scheduler

Without BI0S start (), NOTHING works. When BIOS starts, it will always run the highest
priority pending thread in the system. If we have no Hwi, Swi or Tasks in the system, which
thread will run immediately?

And when [dle runs, which function will it call?

When 1edToggle () returns, which thread will run?

Ok, this is a circular discussion... ©

» Savemain.c.

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Lab 4 — Procedure

Register ledToggle() as an Idle Thread Function

17. Add Idle object to .cfg file.
Configuring static BIOS/RTOS objects is a 4-step process:

a) Indicate you want to USE a module (e.g. Hwi or Semaphore or Idle)

b) Create an INSTANCE of that module (e.g. add a new Hwi or Semaphore)

c) Configure that instance (e.g. name of the Hwi or Semaphore and add’l params)
d) Include a proper header file to your code (if needed)

e) Inour case, we want to USE the /dle Module and then configure it to call our

ledToggle () function when it reaches the /dle thread (the background loop).
Because we are STATICALLY configuring our objects (for now), we’ll use the
available GUI vs. creating it dynamically.

First, under the heading Scheduling in the Available Products window,

» right-click on Idle and select “Use Idle” OR, simply drag/drop Idle from here into your
Outline view.

=% Available Products &3

type filter text

4 333 TI-RTOS
& TIRTOS
P @ Products
4 33§ 5YSBIOS
& BIOS
: Q Systermn
. il Diagnostics
4 3% Scheduling
@ Task
B Swi
M Huwi
(9 Idle
£ Clock
@ Tirner
. %% Synchronization

. & 10

The Idle module will now show up in the outline view (on the right). FYI — the author likes the

drag/drop capability of these modules the best...FWIW...

» Click on the cfg Script tab to see the script that was added to the .CFG file for /dle. Cool.

Now it’s time to configure the Idle thread...

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Lab 4 — Procedure

18.

Configure Idle thread to call ledToggle().

» Click on the TI-RTOS tab (next to cfg Script). This should bring up the configuration box for
the Idle module. All we have to do is type in the name of the function(s) we want to run during
the Idle thread (BIOS’s version of the while (1) loop).

» Type in the 1edToggle function name into the first slot:

User idle function 0 m

Useridle function1l null

User idle function 2 null

If you have 3 Idle functions and you want them to run in order, place them here in the order
you want them to run. They will then run in a round-robin fashion. If you want to
GUARANTEE the order, then use one Idle function that calls the three functions in order.

» Save the BIOS CFG file. If you’re curious, you can select the cfg Script tab again and see
this function added to the script near the bottom.

Explore BIOS’ Sys Overview and Runtime Cfg

19.

20.

Explore BIOS’ Graphical System Overview
Some users like to see “the whole picture” of what is configured in their system graphically.
First, » click on the TI-RTOS tab (at the bottom) so we exit the viewing of the script code.

In the Outline view of the . cfg file, » click on the BIOS module and then click on the System
Overview tab. You will see the green checkmarks indicating which services are configured in
your system. These should match the Outline View.

For now, we’re using defaults and just get BIOS working. Later, we will optimize the system.
Explore BIOS’ Runtime Configuration

In the BIOS module, » click on the Runtime tab. This is the KEY place to change global
settings for your BIOS project. The Tiva-C example is shown — your settings may look slightly
different (screen capture shown on the next page...)

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Lab 4 — Procedure

BIOS - Runtime Example for Tiva-C (your settings might look different):

& empty.cfg I3
» TI-RTOS *» Products * SYSBIOS » BIOS - Basic Runtime Options & o
Welcome Systermn Cwverview Error Handling Device Support Advanced
= Library Selection Options * Dynamic Instance Creation Support
SYS/BIOS library type Enable Dynamic Instance Creation
-;-Instrumented A savings in code and data size can be achieved by
() Mon-instrumented disabling dynamic instance creation.

@ Custom (Optimized)

(©) Custom (Debug) ~ Runtime Memory Options

The library options above allow you to select pre-built libraries or rebuild the SYS/

BIOS from sources based on your application's configuration settings. System (Hwi and Swi) stack sife 4096

Heap size 4096
Enable Asserts Heap section null
[V Enable Logs [T Use HeapTrack
Custom Compiler Options --program_level_compile -03 -g --optimize_with_debug The heap configured above is used for the standard G

mallec() and free() functions or when the 'heap’

argument to Memory alloc() is NULL,

w Threading Options ~ Platform Settings
Enable Tasks (When disabled, the Task module is not configurable) These zettings should reflect the hardware platform
9 9 p
Enable Software Interrupts (When disabled, the Swi module is not configurable) that runs your application.
Enable Clock Manager (When disabled, the Clock module is not configurable) CPU clock frequency (Hz) 80000000

C Standard Library Lock

GateMutex -

gp——

e SYS/BIOS library type — In the latest BIOS tools, Custom (Optimized) is the default —
your build times increase because the BIOS source files are compiled optimally prior to
your application code. » Leave the default setting as is.

e Threading Options — » make sure each of these are checked. If not, stuff might not work!

¢ Dynamic Instance Creation Support — the default is dynamic creation/deletion. This
covers STATIC also. This is the proper all-encompassing setting. If you have a STATIC-
only system, you can save some footprint by unchecking this box.

e Runtime Memory Options — this is where you can modify the stack and heap settings for
your SYS/BIOS project. » Make stack = 1024, » heap =0

o Platform settings — This is where you tell BIOS how fast your processor is running. When
we use the Clock module in a future lab, this becomes a CRUCIAL setting. If you want
BIOS to configure time-based activities in your system, it has to know how fast your
processor is running. » Leave whatever default yours is set to.

» Did you modify the settings as suggested in the above paragraphs?

» Save your CFG file.

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-29

Lab 4 — Procedure

Build, Load, Run

21.

22,

Inspect main.c header files.

We are now using TI-RTOS (BIOS), which will need some header files. Take our word for it
that mixing an xWare (like ControlSUITE or TivaWare or MSP430ware) with BIOS can
sometimes cause conflicts between interrupts, timers, etc. because these libraries sometimes
stomp on something BIOS is already doing or vice versa. Interrupt and timer code is the
biggest “stomping ground”. (We will cover these issues in later chapters). However, in the
latest release of the TI-RTOS SDK for MSP430 and TivaWare, these conflicts are no longer a
problem. The xWare libraries for MSP430/Tiva-C are “BIOS-aware” — thank goodness.

However, the C6000 and C28x versions of xWare (CSL and header files respectively) have
no awareness of BIOS and therefore there is less protection built in. This is why C28x users
have had to import the author’s version of the header files because protection against code
running that ruins the BIOS enviornment has been handled in those files (C28x users can
read the readme.ixt file in the \EWare folder for more info on this).

» Openmain. Notice that the BIOS header files come before the xXWare header files. In
general, this is a good programming practice. Read the comments of each BIOS header file.

Build, load and run your program.

For MCU users, you can simply hit the bug to build/launch/connect/ and load your program.
For C6000 users, you need to first build your project (using the hammer), then perform the 3-
step launch/connect/load sequence like the previous lab.

» MCU users —just click the bug: | & =

» C6000 users — build, then launch/connect/load your program.

» All users: Once you have loaded your program, » click Resume (Run).

Did the LED blink? If so, move on. If not, debug the problem and after 2-3 minutes, if you
can'’t find a solution, ask your instructor. Common mistakes are:

e ForgotBIOS start () inmain() .

e Did not add the Idle module to your configuration (.cfqg)

e Forgot to add 1edToggle to the list of /dle functions.

e Stillhave awhile (1) loop inmain () and your code never reaches BIOS start ().

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Lab 4 — Procedure

Explore the RTOS Object Viewer (ROV)

23. Inspect the contents of the ROV tool.

As stated in the discussion material, the RTOS Object Viewer (ROV) is a great debug tool
and provides visibility into the state of the scheduler, BIOS threads and memory objects. We
will use ROV throughout the labs and you can also use ROV to debug your own programs.

First, make sure you are in the Debug perspective and your program is loaded and
suspended (halted).

» Select: Tools > ROV

Down below, you will see a list of modules on the left. If you click on a module, you can see
the status of each BIOS module along with different tabbed views.

The following “headings”, like “ROV-BIOS”, indicate the module to click on in the ROV to find
the answers (e.g. “BIOS). Some questions may require some exploring, but will allow you to
see the different types of data displayed by ROV.

Let's look at (click on) a few in particular to answer some questions. Please note that this
exercise is all about just perusing the contents of ROV - there are no wrong answers — just
click around and see what is there. All future labs will use ROV as well, so this is not the last
time you'll see it...

ROV-BIOS
Are clocks, Swis and Tasks enabled? Yes No

What is the frequency this processor is running at? MHz

ROV-Hwi (Module/Basic tabs)

What is the current size of the stack? What was the peak used?
How many Hwi’s are configured in your system?

FYI - the “minmal” app.cfg services include the BIOS Clock Module implicitly. This uses a
timer and sets up an interrupt (Hwi) for you (that's one of them). Also, inherent in every BIOS
application is the service Timestamp which also requires a timer and an interrupt. That’s the
second one. We will deal with these more in a later chapter...

ROV-idle

How many Idle functions are there? 0 1 2

We will use ROV to debug and analyze many items in future labs. The point here is to
introduce you to the tool, provide a basic overview and show how to access its information.
MUCH more on this in future labs...

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-31

Lab 4 — Procedure

Add Unified Instrumentation Architecture (UIA) to
the Project

As described in the discussion material, UIA is a utility that runs on the TARGET that
provides useful debug information such as Logs, Execution Graphs and Loading information.
UIA function calls store analysis data in buffers (in real time) and then display the data to the
user when they invoke the System Analyzer (SA) on the host PC within CCS.

We only plan to use the STOP-MODE JTAG Event Upload Mode in this workshop, but other

modes supported by UIA/SA allow run-time transfer of analysis data via JTAG, UART and
Ethernet.

We will use various capabilities of UIA/SA throughout all the labs. Here, we want to introduce
HOW to configure and use simple logging.

Hint: If you are familiar with the older stop-mode JTAG version called RTA, you may know that
the BIOS service “Agent” is used along with the buffer called “LoggerBuf”. If you have
existing projects with “Agent” in your .c £g file, this service has to be deleted before UIA
can be used. However, LoggerBuf can stay in the app . cfg file while using UIA. But

some edits to the CFG file are necessary depending on which template you chose —
more on this in the next few steps.

24. Add UIA to your app.cfg file.

Well, here is where the whole TI-RTOS SDK makes things REAL easy. Why? The proper UIA
version is already paired with XDC and BIOS versions in the SDK. Tiva-C and MSP430 users
have NOTHING to do here —in fact, the empty.cfg already contains UIA and is ready to go.

However, C6000 and C28x users, while UIA is already listed in Available Products
automagically, you will still have to add the service to the CFG file.

» Double-click on the .cfg file to open it (via the Edit perspective) and find the “Available
Products” window. Notice that Available Products contains the UIA Configuration service
called LoggingSetup:

=% Available Products 53

type filter text

4 333 TI-RTOS
& TIRTOS
F Q Products
- 333 SYSBIOS
4 333 UIA
- 33§ Loggers
- 333 Services
4 LoggingSetup

Again — MSP430 and Tiva-C users already have LoggingSetup in their CFG file. However,
C6000 and C28x users have another step — adding this service - LoggingSetup — to the CFG
file.... (on the next page)...

4-32 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

2%

Lab 4 — Procedure

C28x and C6000 USERS ONLY

» Add LoggingSetup to your app . cfg file (right-click and select Use or just left-drag it into
your CFG outline View). It will then show up in the Outline View. If the config dialog doesn’t
show up, click on LoggingSetup to view it.

We plan to use the default setup, so do NOT change any settings. The main configuration
options include:

e RTOS Execution Analysis — these options configure the Execution Graph
e RTOS Load Analysis — these settings are for CPU/Thread Loading

e User-written Software Instrumentation — these are settings for Logs — to capture the data
from a Log_info() call — the BIOS version of printf()

e Loggers — This sets the transfer protocol for the data. Notice that JTAGSTOPMODE is
chosen as the default.

e Logger Buffer Sizes — these buffer sizes affect HOW MUCH data is captured for Loads,
Graphs and Logs (as shown).

» Save your CFG file. Next, you will need to “kill” a little script code added by LoggerBuf
which conflicts with UIA.

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-33

Lab 4 — Procedure

25. Kill LoggerBuf script code.

C28x and C6000 users CFG file still contains a service called LoggerBuf which cannot be

deleted from the script code by deleting it graphically out of the Outline View (silly, but true).
However, the logger itself (the instance), logger0 can be. If you leave the script code in your
CFG file, you will get errors in your project — in fact, you may have already seen one pop up.

280

» Click on the tab “cfg Script” and find the following FOUR lines of script code:

riv g

@ * Create and install legger for the whole system

N

82 var loggerBufParams = new LoggerBuf.Params();

83 //loggerBufParams.numEntries = 4;

84 //var logger® = LoggerBuf.create(loggerBufParams);
85 //Defaults.common$.logger = logger®;

86 //Main.common$®.diags_INFO = Diags.ALWAYS ON;

» Comment out the four lines — as shown — in lines 83-86 (C28x example shown). These all
have to do with loggerO.

» Then, comment out the following ONE line of script code:

T oA

185 //BI0S.logsEnabled = false;

l 184 BI05.1libType = BIOS.LibType Custom;
186 BIOS.assertsEnabled = true;

» Save your CFG file.

26. ALL USERS - Add Log_info() to ledToggle().

In the 1edToggle () function, just beneath the increment of i 16toggleCount, » add the
following line of code:

i16ToggleCount 4= 1;

Log_infol("TOGGLED LED [¥u] times", i16ToggleCount);

Log info () calls require a header file.

» Add the following #include to your system (if not already done for you):

#include <wde/std.hx
#include <ti/sysbios/BI0S.h:>

#include <xdc/runtime/Log.h:

» Savemain.c.

4-34 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Lab 4 — Procedure

27. Enable Logs and add a heap to your BIOS program.

Each time you create a project and add UIA, you must check these settings. TWO critical
areas of settings affect the workings of UIA:

1. BIOS - Runtime Enables
2. LoggingSetup settings

You may have one right and the other wrong and then you’ll wonder why things aren’t
working. Then you send a msg to the e2e forum and you spend a few hours tracking one
checkbox down that you didn’t check. Sound familiar? Well, there are zillions of places this
can happen in an IDE (any IDE), so this is probably worth the price of admission to the
workshop. ;-)

The settings in the BIOS - Runtime area differ depending on HOW you created your project.
So, it is always a good idea to check these first.

» Open your CFG file.
» Click on the BIOS module in your outline view.
» Click on Runtime near the top.

» Enable Logs and make sure the stack and heap sizes match below (stk = 1024, heap = 0):

& empty.cfg 23
» TI-RTOS * Products * SYSBIOS * BIOS - Basic Runtime Options
Welcome System OQverview rror Handling Device Support Advanced
w Library Selection Options « Dynamic Instance Creation Support
SYS/BIOS library type Enable Dynamic Instance Creation
 Instrumented A savings in code and data size can be achi
() Non-instrumented instance creation.
@ Custom (Optimized)
(0 Custom (Debug) w Runtime Memory Options

The library options above allow you to select pre-built libraries or rebuild the SYS/BIOS from sources based

on your application’s configuration settings. System (Hwi and Swi) stack size 1024

Heap size 0

[¥] Enable Asserts Heap section
[#] Enable Logs [[]Use HeapTrack
l t“"‘-—-'“-——-"——*———.: s e
» FYI — you can right-click on ANY setting and select HELP for more information about any
field. Very helpful. Try it now.

Now, you need to make sure Logs are enabled in LoggingSetup.

In your CFG’s Outline View, » click on LoggingSetup and make sure the following is checked
(see the note about Log_print2 — this includes Log_info() calls — FY1):

T
=

+ User-written Software Instrumentation

Enable modules for use in instrumenting your application code. Please click on
software,

Error, Warning, Info and Print Events (e.g. Leg_print2) Tuterial...
[] Duration Analysis (Benchmarking) Tutorial...
[Statistical Analysis (Counting and Graphing) Tuterial...

[7] Snapshot Events (e.g. to log memory blocks, dynamic strings) Tutorial...

» Save your CFG file.

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-35

Lab 4 — Procedure

UIA - Build, Load and Run.

28. Buid and load your program.
» Build and load your program.

» Click Run (play) and make sure the LED is blinking. After about 5 blinks, » click Halt
(pause). We are using the mode “StopModeJTAG” so the processor must be halted to see
these results.

29. Use the RTOS Analyzer to view the UIA results.
RTOS Analyzer is a front-end for the System Analyzer and a bit more simple to use.
» Select Tools 2 RTOS Analyzer - Execution Analysis:

Tools | Scripts Run Window Help

Memory Map P & 3| o

GEL Files
& RTOS Object View (ROV)

RTOS Analyzer v | BE Execution Analysis

System Analyzer | fue Load Analysis
[f,’_; Hardware Trace Analyzer » | BH Printf and Error Logs
k2 Graph R B TaskProfile

i 3

ﬁ Image Analyzer Open File
I User Configurations

This will bring up the following dialogue allowing you to configure WHICH tools you would like
to see:

Which Analysis Features to Run:

Analysis Feature Which Cores Which Views to Open Instrumentation Status = Tips
[¥] Execution Graph C 28w Graph Good E]
DCnncurrency 28 Graph | ... E]
[] Printf Logs 28 Sumrmary E]
CPU Load C28c Graph [...] Good ()
[Task Load o Graph | ... ()
[Task Profiler e Summary ()
[] Duration 28 Summary | .., E]
DCDuntAnal}rsis 28w Surmmary | ... E]
[Context fsware Profile | 0280 Surmnmary | ... E]

By default, the Execution Graph and CPU Load should already be checked. If not, » check
them now. The author always just chooses these two tools every time regardless of whether
they are needed. You see Printf logs are NOT checked. This does NOT affect the display of
Log_info() results...only actual printf() calls. There will be another window that is displayed —
called Live Session that will display the Log_info() results.

» Click Start, then click on the Live Session tab.

4-36 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Lab 4 — Procedure

The information that is displayed in the Live Session View contains every BIOS event in the
system along with a time stamp. Everything is kind of scrunched together, so we need to
somehow “justify” the columns so you can see everything clearly.

To see all of the text, » click the “Auto Fit Columns” button: ﬁ

Look in the Message column of the display. Notice you can see the Log_info () results
showing how many times the LED was toggled (“TOGGLED LED...”).

While printf () takes 1000s of cycles/bytes of code on some processors, Log infol ()
requires only about 40 cycles — thus, not harming the real-time nature of your code.

To see ONLY the Log info () statements, you can filter the Raw Logs display.

b Click the “Filter” button: | o |

» Then filter the list using the following settings and click “Filter”:

i ™
'+ Set Filter Expression in Live Session: Logs - ﬁ

Use Field | Use Expression |

[Message v] [contains vl LED

| Use Bits Mask (hex):
[] Case Sensitive

Filter Clear Close Clear History

(results shown on the next page...)

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-37

Lab 4 -

Procedure

Your display should now only show the Log_info() results:

BH *Live Session 53

Type Time Error Master Message Event

1 1 513229777 C28xe [/main.c101] LED TOGGLED [1] TIMES Leg_L_info

2566008933

Look at the Time column on the left. This is the time stamp in NANOSECONDS — not cycles.

This can cause some confusion, but the accuracy is amazing. You would need to DIVIDE this
number by the number of nanoseconds in one CPU clock cycle to get the cycle number. The
previous tools in the older DSP/BIOS RTOS did not provide time stamps — just the results.
So, this is a great improvement.

Note: We chose not to open the Load and Execution Graphs in this lab because they don’t
report any useful data. CPU Load is defined as “time NOT spent in Idle”, so the CPU
Load graph will be zero because our program spends all of its time in /dle. Later lab
exercises utilizes UIA where it provides much more interesting and useful data.

For a further list of APIs supported in UIA/SA, download the System Analyzer User Guide —
SPRUH43E.

That’s It, You’re Done !!

30. Terminate your Debug Session. Close your project. Make sure all editing windows are
closed.

READ THIS:

Note: For all labs in this workshop, you will be using main.c and a CFG file in EVERY project.
Previous students have left open previous projects and edited the WRONG main.c or
CFG file and had problems. This is why we recommend CLOSING the current project so
that you avoid the confusion of multiple source files named the same.

Let the author tell this straight. If you do NOT close the projects each time and you
inadvertently modify the wrong file because you didn’t RTFM — read the FINE manual —
well, shame on you. Don’t waste the instructor’s time dealing with an RTFM issue. Got it?

You're finished with this lab. Please raise your hand and let the instructor know you are
finished. Maybe help a struggling neighbor get through his/her lab. Become the instructor’s
helper by helping a neighbor — hey, now THAT is a good slogan...or move on to the
optional lab below for MSP430 and Tiva-C users, or watch the architecture videos as
described earlier...or be really selfish and just check your email !

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

[Optional Lab 4B] — Blink LED for MSP430 and Tiva-C

[Optional Lab 4B] — Blink LED for MSP430 and Tiva-C

Note: If you are a C6000 or C28x user, SKIP this optional lab and watch your architecture
videos. This lab only pertains to MSP430 and Tiva-C users...

If you are a Tiva-C or MSP430 user, there is a BIOS template you can use to blink an LED or set
up any of the TI-RTOS drivers in the TI-RTOS SDK. The template actually has commented code
to set up any of the peripherals in the TI-RTOS library — very handy starting place for MSP430
and Tiva-C users.

Be aware that this optional lab discusses concepts that will be explained in later chapters. But
hey, this is an OPTIONAL lab, so the author took the poetic license to share this with you before
he actually explains it. But, the concepts are simple enough that it won’t be too hard to follow...

31. Close all previous projects in CCS - right-click — Close Project.
32. Create a new “driver example” project using a template.
» Select Project > New CCS Project.

» Select the following template and fill out all the other info about your project:

4 |=| TI-RTOS5 for M5P430

4 |\=| Driver Exarmples
MSP-EXP430F5529 Experimenter Board
MSP-EXP430F5529 Launchpad

4 ||=| Example Projects
& Empty (Minimal) Project
5 Empty Project

» Click Next and make sure the latest TI-RTOS is chosen along with XDC.
» Click Finish.
33. Explore empty.c.

» Open empty. c for editing. The first thing you will notice is that this source file is NOT
empty. It is an example blink LED project that uses BIOS to blink an LED via a Task that runs
continuously.

» First, look at main (). You will see a few init calls followed by a TI-RTOS driver call to turn
ON the LED prior to BIOS start().

» Look above main () to see the only Task in the system — heartBeatFxn (). Inside this
function is a while (1) loop that contains a Task sleep () and the LED toggle fxn call.

Where is the CALL to this function ?

Well, it is NOT inmain () — so who calls this Task? Oh, and another question, who is
sending the arg0 argument to this Task to set the sleep time?

Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration 4-39

[Optional Lab 4B] — Blink LED for MSP430 and Tiva-C

34. Explore empty.cfg which is also NOT empty.

Well, if you answered the previous questions by saying “BIOS calls this Task” and “BIOS
sends the argument to the Task” you get full credit for your answer.

Tasks are ready when they are created. When is the Task created? During BIOS init ()
which runs BEFORE main (). So, whenmain () calls BIOS start (), the highest priority
pending thread is executed by BIOS. So, heartBeatFxn () is called by BIOS and sent the
sleep argument (arg0) to tell the system to sleep for 1000 system ticks (which is set for 1ms)
— which means it will sleep for 1 second, wake up, toggle the LED again, then sleep...etc.

» Open empty.cfg. Inside the . cfqg file, you can see the Task — heartBeatTask.

» Click on heartBeatTask to see how it is configured. Notice that arg0 is set to 1000. So,
when BIOS calls this Task right after BIOS start (), the “sleepytime” will be 1000 system
ticks.

For extra credit, which service is setting up the system tick?

If you click on that service, you can see the configuration. This will all be covered in the
“Clock” chapter later on.

35. Where is the GPIO_write() command declared?

A neat little trick in CCS is the ability to open the declaration of a function call — especially
one that is inside a driver library or BIOS.

» Hold down the Cirl key and hover your mouse over the call to turn ON the LED in main ():

'* Turn on user LED */

GPIO_write(Board_LED®, Board_LED_ON);

The GPIO write () call turns into a LINK.
» Click it. It should open the file that declared this function. Way cool...
36. Build, Load, Run.

» Build, load and run the project. Make sure the LED is flashing at a 2s interval (on for a
second, off for a second).

» Then, go change arg0 to 500, rebuild and run.

Notice that at the top of main (), you will see other TI-RTOS driver calls for UART, SPI, 12C,
etc. So, in essence, this is a template for use with any of the TI-RTOS drivers.

When finished, » CLOSE this new project.

You're finished with the optional lab. Go help a neighbor or watch some of your architecture
videos.

4-40 Intro to the TI-RTOS Kernel Workshop - TI-RTOS Configuration

Using Hwi

Introduction

There is a “thread” of truth in these upcoming chapters about Hwi, Swi and Task. Now that we
have been introduced to the concepts of each, it is “time” to cause an interrupt in the system (via
a Timer) and configure a BIOS Hwi to respond to it.

This is one of the few chapters where the actual hardware differences cause us to pause and
cover each individually. For the most part, BIOS is “target-agnostic”, but when it comes to timers,
interrupts and boot settings, each architecture is a little different. That's ok, though. We think, for
the most part, this class demonstrates how common “all things BIOS” really is on every Tl
architecture.

In this chapter, we will cover the basics of how interrupts work on any processor and then dive
into the specifics of each architecture and how to configure an Hwi for each target. Also, if you
plan to nest interrupts (which is really not necessary if your ISRs are short), we’ll show you the
options you have and how BIOS makes it really easy to do so.

So, maybe you have 8 interrupts in your system and one of them has a VERY tight critical timing
required from trigger to the first line of code in the ISR. What if BIOS adds too much overhead
and your system can’t handle it? Well, keep that ONE interrupt outside the scope of BIOS and
use BIOS for the other 7 — we’ll show you how.

Because this course covers multiple architectures, we will need to address some specific
hardware capabilities of each one briefly and then head into the lab.

Objectives

Objectives

Describe how interrupts work in general and
on each architecture

Learn how to configure TI-RTOS Hwi’s for
each architecture (similar and different)

Explain how to nest interrupts using TI-RTOS

Compare/contrast kernel-managed interrupts
with the interrupt keyword (non-BIOS)

Lab - Add an Hwi to respond to a timer
interrupt that blinks the LED

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-1

Module Topics

Module Topics

L0 L] g o TN L 5-1
1Y (oo 17 =T o] o] (o1 NS 5-2
Hardware Interrupts (HWi) — INTIO...........oooveeeeeeeeee ettt e e e seaaaa e 5-3

Fore/Background Scheduling — Hwi and Idle..............ccoiiiiiiiiiii e 5-3
How Interrupts Work — STEPS 1 & 2. 5-4
ENabling INTEITUPLS ... 5-5
How Interrupts WOork — STEPS 3 & 4....uveeiiiiiceeeee et 5-6
CONFIGUITNG @N HWI ...ttt ea e 5-7
Configuring StatiC HWi'S. .. .o e e a e e 5-7
Static Configuration — Tiva-C Series & MSP430.........c.ccccoveeiiiiiiiiiiee e 5-8
Static Configuration — C28X & CBO00ueeiiieiiiiiiiiiiee e e eaarrare e e 5-9
Enabling Nested Interrupts in BIOSoooiiiiii e 5-10
Managing ISRS — TWO WaYS........ccoooeeeeiiee oottt a e ettt a e e e e et aaaaeeesssansees 5-11
Using BIOS-Managed ISRScouiiiiiiiiie e 5-11
Using NON-BIOS-Managed ISRSuiiiiiiiiiiie e 5-12
TWO MethodS — SUMMEAIYcoiiiiiiiiiiiie et e e e e 5-13
HWI BENCAIMAIKS ..ottt ettt e e 5-14
INterrupt RESPONSE TiME.. ... it e e e e e e e e ee e e e e e e e e ennns 5-14
How to Create an ISR Outside of BIOSoooiiiiiiieee e 5-15
Lab 5 — USING HWI ...ttt 5-17
LaB 5 — PrOCEAUIE. ...ttt e e e e e e e e e e e e 5-18
Create a New SYS/BIOS ProjJeCE.......ccuuiiiiiii ettt a e 5-18
EXPIOre SOUMCE FilES ...ttt e e e e e e ae e e e e e e e e aanes 5-20
Determine Interrupt Number or Event Id ... 5-20
Add The NEeW HWi e e e e e e 5-24
201 [R oY= To =T o o 1 =1 1T o G A 5-25
Debugging With UIA and ROVcooiiie ettt 5-25
Optional Lab — Using the BIOS Timer MOQUIE..................ccccoooioeiiaiiieesee e 5-28
Archive Lab and Copy Project.........oouiiiiiiiii e 5-28
F e [o I T3 =T o (o3 =1 (O 1S T 5 o [PPSR 5-29
Y 07 =R 5-34

5-2 Intro to the TI-RTOS Kernel Workshop - Using Hwi

Hardware Interrupts (Hwi) — Intro

Hardware Interrupts (Hwi) — Intro

Fore/Background Scheduling — Hwi and Idle

Here, we compare and contrast the highest and lowest priority threads in the system — Hwi and
Idle. On the left, we show a “typical” or “non O/S” version of the software. In main (), users do
their initialization first and then have a while (1) loop that processes non-realtime events. Why
are these non-realtime? Because the while (1) loop will be pre-empted by a higher priority
thread — namely any interrupt that occurs. When those interrupts occur, they are processed in a
vector table and then a branch occurs to the proper ISR based on the interrupt number.

Foreground / Background Scheduling

main() main()
init init
) BIOS_start()
while(1) e i .
nonRT) Idle |
/| nonRT 1
i| +instrumentation || &1
1 =51
1 : o1
ISR 1| Hwi g— 1
get buffer | getbuffer o :
process il process !
printf() : LOG_info1() :
}

¢ Idle events run in sequence when no Hwis are posted
¢ Hwi is ISR with automatic vector table generation + context save/restore

¢ Hwi performs “process” — typical use is to perform HRT need, then post
“follow-up activity”

13 TEXAS
INSTRUMENTS

With an O/S like BIOS, we still have the same “threads” as before (background — while (1) loop,
foreground — ISR processing), but we encapsulate both into the highest and lowest priority groups
in the system — Idle and Hwi. Main () still performs the same initialization as before, but the
while (1) loop is replaced by Idle which, is simply a while (1) loop with functions inside of it.
The ISR now becomes a BIOS Hwi thread — the same processing occurs inside the Hwi, but
BIOS adds features like context save/restore (uses the same code for all interrupts — thus saving
code space), the ability to call BIOS functions like Swi post () (which you cannot do in a
“typical” non-O/S ISR) and a smart return which we talked about earlier — that is, if a higher
priority thread is enabled inside the Hwi, the Hwi does NOT return to the previous context (Idle or
wherever), but “returns” to the higher priority thread — thus saving two context restores.

We will continue to compare/contrast non-O/S and BIOS interrupt strategies throughout this
chapter.

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-3

Hardware Interrupts (Hwi) — Intro

How Interrupts Work — Steps 1 & 2

So let’s take a look at how interrupts work — from the trigger to the end of the ISR — and
everything in between. It is important to understand this flow of “dominos” and where users have
influence via configuration or programming during the process.

First, an interrupt must occur — this could be an external or internal interrupt from, for example, a
peripheral like the UART, GPIO or a Timer. When the interrupt occurs, the processor will make a
“note” of that occurrence by setting a flag in a register that says “THIS interrupt occurred”. The
flag will continue to stay set until either the user clears it (polling — bad idea — but some people do
it) or when the interrupt is serviced by the processor (the flag is automatically cleared by
hardware when the ISR is serviced).

How do Interrupts Work?

1. Aninterrupt
occurs

UART
GPIO

e Timers
e Ext pins
e Etc.

2. Setsaflagina
register

How are interrupts "enabled"?

13 TEXAS
INSTRUMENTS

Then what happens? How does the processor actually find the ISR that corresponds to the
interrupt number that occurred?

Well, the user must ENABLE this interrupt or else the interrupt latency will be infinite. One time, a
student asked the author “so what is your MAXIMUM interrupt latency?” The author looked
puzzled for a moment and responded “weeks, months, years, uh...it is INFINITE”. The student
got angry and said he didn’t like this processor very much but the author assured him that there
were things the user could do to avoid this — we just hadn’t talked about it yet. The student
calmed down and waited patiently for the whole story. ;-)

Usually, users want to know the MINIMUM latency for each interrupt and we will spend some time
later in this chapter talking about this.

Intro to the TI-RTOS Kernel Workshop - Using Hwi

Hardware Interrupts (Hwi) — Intro

Enabling Interrupts

There are two different “gates” that the interrupt must pass through that are programmable by the
user and/or BIOS.

As you can see in the diagram below, the first two steps (trigger + flag) are shown on the left-
hand side. The user has two different “scopes” for enabling interrupts — individual and global.

The first “register” shown in the path after the flag (IFR — Interrupt Flag Register) is the Individual
Enable or the IER (Interrupt Enable Register). Users can enable or disable every single interrupt
available in the architecture and any interrupt the user wants to eventually service MUST be first
enabled individually.

The second “gate” the interrupt must pass through is the Global Enable (show as GIE — Global
Interrupt Enable — this may or may not be the name used in your specific architecture). This is
usually a single bit that allows ANY individually enabled interrupt to pass through (enabled) or
NONE of the enabled interrupts to pass through.

So, both the individual interrupt enable and the global interrupt bit must be ENABLED for the
processor to acknowledge that this interrupt occurred — even if the flag bit is set.

Receiving Interrupts (with BIOS Functions)

IFR IER GIE
Interrupt “Individual “Master
Flag Enable” Enable”
GPIO (0] o
UART] e e CPU
etc ... {o] ‘A/-

Interrupt Flag Resg (IFR)

bit set when int occurs H '
Hwi post () ; Global Interrupt Enable (GIE)

Hwi_clearInterrupt () Enables ALL IER-enabled interrupts
Hwi enable ()
Interrupt Enable Reg (IER) : Hwi disable ()
turns on individual ints Hwi restore ()

Hwi disablelInterrupt();
Hwi enableInterrupt();

Note: Hwi_post() not supported on MSP430

You can see in the bottom boxes the BIOS functions that affect each set of bits. Modifying the
IFR is not that common, so the two function calls for IFR aren’t used very often. For the IER,
users can, during runtime or in main (), enable or disable individual interrupts, but as you will see
soon, BIOS can take care of this for you in the configuration (you simply have to check a box that
says “please enable this interrupt for me”). So again, these functions are not used that often.

BIOS will also handle the global enable bit for you. However, if you need to disable global
interrupts around a piece of “critical section” code (more about this in the Inter-Thread
Communication chapter), you can use the functions shown.

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-5

Hardware Interrupts (Hwi) — Intro

How Interrupts Work — Steps 3 & 4

So, let’s say that the interrupt occurred and was properly enabled and the processor is ready to
acknowledge this interrupt. What happens next?

In step 3 below, you can see that the processor performs some actions that the user has little or
no control over. The CPU stops what it is doing, turns off the global interrupt bit (meaning that in
hardware, no nesting is allowed — but the user can modify this if they want to — more on this
later), clears the flag register (IFR) bit, saves the current PC on the stack, figures out WHICH
interrupt occurred and then calls the corresponding ISR for that interrupt.

Wow — that's a mouthful. So how does the CPU know which interrupt corresponds to which ISR?
If you aren’t using an O/S, you will need to create the vector table yourself. However, when using
BIOS, the O/S will create the vector table for you based on the interrupts (Hwi’'s) you registered in
the configuration file.

How do Interrupts Work?

1. Aninterrupt 3. CPU acknowledges interrupt
occurs and ...

e Stops what it is doing
¢ Turn off interrupts globally

e (Clears flag in register

e UART * Saves return-to location

e GPIO ¢ Determines which interrupt

* Timers e Calls ISR

e Ext pins

* Ete. 4. ISR (Interrupt Service Routine)
¢ Saves context of system*

2, Set§ aflagina e Runs your interrupt code (ISR)
register

e Restores context of system*

| | | | | .. | ||| | | e Continues where it left off*

* Must be done in user code, unless you use SYS/BIOS

13 TEXAS
INSTRUMENTS

So, the last bullet in #3 above is a small “white lie” — sort of a half-truth. When BIOS is present,
the ISR is not immediately called. BIOS has to perform a context save first (step 4) and then a
context restore afterwards and possibly a smart return from the ISR. So BIOS uses what is called
an interrupt dispatcher to perform all of these services for the user. In reality, the interrupt
dispatcher code is called first (not the ISR), does the context save, and then the dispatcher calls
your ISR.

The ISR then runs (this is code created by the user — it is just a function like you would expect)
and then the dispatcher is called again to perform the context save and possibly a smart return at
the end.

So now, let’s take a look at how to use the BIOS configuration tool (.cfg) to set up your interrupts
(Hwi’s)...

Intro to the TI-RTOS Kernel Workshop - Using Hwi

Configuring an Hwi

Configuring an Hwi

Configuring Static Hwi’s...

So now that you understand a few things about how interrupts work, how do you actually
configure an Hwi in BIOS?

As with ANY BIOS service, it must first (step #1 below) be added to the .cfg file from the Available
Products window. You can right-click and select “Use Hwi” or simply drag/drop from the Available
Products window into the Outline View of the . cfg file. Once the Hwi service is added to the

. cfg file, right-click on Hwi and select “Insert new Hwi”. A dialogue box (step #2) will then pop
up...

Configuring an Hwi — Statically via GUI

Example: Tie Tiva Timer2A to the CPU’s HWI;

(1) Use Hwi module (Available Products) , insert new Hwi (Outiie View)

= GE S_cheduling & Error
B Clok @ HeapMem .
" |:> P Remember, BIOS objects
f'; ;‘.j_'f 4 @ Hwi : can be created via the GUI,
& . S .umiihiho script code or C code (dynamic)
Timer - LDg

@ Configure Hwi — Event ID, CPU Int #, ISR vector:

@ User can configure: o
* Handle — name of object Handle myFd
ISR function myTickFxn
* ISR fxn (e.g. myTickFxn) Interrupt number 39
* Interrupt number (from + Additional Settings
dataSheet/ e-g- TlmerZA = 39) Argument passed to ISR function 0
* Priority & Event Id (arch-specific) | '™emeterietty 1
EventId -1
* Enable at startup (/ER)] Ensble ot stortup
. Masking options (nesting) Masking options MaskingOption_SELF -
i3 Texas (more later) . o . i)
INSTRUMENTS Let's look at each device's Hwi config - one at a time...

The dialogue box in the bottom right-hand corner shows the typical settings for any Hwi thread.
Because interrupts are VERY specific to each architecture, we are only showing the basic
settings and the following slides will show each user how to configure an Hwi for their specific
target.

The first four choices are used by every target — Handle (all BIOS objects must have a handle),
the ISR function (which function you want to run when THIS specific interrupt occurs), the
interrupt number (which interrupt it is) and a static argument you can pass to the Hwi (not used
very often). Interrupt priority is used by some architectures and Event Id is used by C6000.
Remember the IER register that allows you to individually enable this interrupt? If you check the
next box, BIOS will enable the IER register for you.

Lastly, there are some “masking options”. If you actually NEED to nest interrupts, BIOS does
allow you to do this and provides several options. More on this in a future slide...

Now, let’s take a look at how interrupts work on each specific architecture and which settings are
required for each target...

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-7

Configuring an Hwi

Static Configuration — Tiva-C Series & MSP430

Shown below is the specific information Tiva-C and MSP430 users need in order to fill out the
configuration for an Hwi for these targets. For both targets, you need to type in a Handle name
and the ISR function associated with this interrupt. We have covered these before. The rest of the
settings are slightly different for all architectures.

For Tiva-C, the datasheet can be quite confusing. If you look on the left, the configuration setting
is named “Interrupt Number”. On the right, you see a clip from the datasheet with two columns —
one says “Vector Number” and the other says “Interrupt Number”. Huh. If you go with the obvious
matching of the two names — Interrupt Number — you’d get it wrong. It is actually the VECTOR
NUMBER from the datasheet that is used in the BIOS configuration setting — as shown.

Next, the Cortex M4 has priority groups and TI has implemented 8 of them in the Tiva-C
architecture. So, interrupt priority corresponds to the priority group you want this interrupt to be
placed in (0-7) — from Group 0x0 (0) to group 0xe0 (7). If you place a “-1” in this field, which is the
default group, this is equivalent to choosing group 7 (lowest priority). Event Id is not applicable for
Tiva-C devices.

Hwi Configuration — Tiva & MSP430

. & Interrupt number comes from datasheet
Tiva-C |~ Required Settings P

Table 2-9. Interrupts

Handle m).eri Vector Number Interrupt Number (Bit (Description
in Interrupt Registers)
ISR function my TickFxn 0-15 - Processor exceptions
W R N

Interrupt number 39 _ . _ -

38 2z 16/32-Bit 1imer 1B

= G) 2 16/32-Bit Timer 2A

~ Additional Settings Bt Timer

40 24 16/32-Bit Timer 2B

Argument passed to ISR function 0 L. . L.
& Interrupt Priority specifies Priority Group:

Interrupt priori 1
nterrupt prionty 0x00 (0), 0x20 (1), ..., Oxe0 (7) = default “-1”
Event Id -1 .
& EventId: Shown but NOT applicable
MSP430 | ~ Required Settings & Interrupt number comes from datasheet
INTERRUPT SOURCE INTERRUPT FLAG PRIORITY
Handle hwiTimer
System Reset

ISR function Tirner_A et B s, g pritos g gpmssittm, el b g
Interrupt number 49 ‘\ - - \ , 1

L | DMA DMA1IFG, DMA2IFG (DMAIV) 50
~ Additional Settings T TA1 TA1CCRO CCIFGO® Cs0)
Argurnent passed to ISR function 0 & Interrupt Priority and Event Id are not

used
i3 Texas
INSTRUMENTS

For MSP430, the story is much more straightforward, although the names don’t match perfectly —
but there is only ONE number to deal with. Shown above is a clip from the datasheet showing the
column “PRIORITY” which has numbers in it — e.g. 49. This is the number you want to use in the
Interrupt number field in the .cfg GUI — as shown. The other settings don’t show up in the
configuration and are therefore not used.

The setting for IER is clipped off in both of the diagrams on the left, but it is there — just in case
you were wondering.

Now on to the C28x and C6000...

Intro to the TI-RTOS Kernel Workshop - Using Hwi

Configuring an Hwi

Static Configuration — C28x & C6000

C28x is probably the oddest of the four architectures we use in this workshop because the
datasheet has NO numbers in it — well, sort of. There is a combination of two features with C28x
— the actual CPU interrupt number and the PIE table that have to be dealt with by the user — or at
least you have to tell BIOS how to handle each.

The C28x uses groups of interrupts — 12 groups (INT1.y to INT12.y) of 8 interrupts each (INTx.1
to INTx.8) to allow 96 possible interrupt sources plus INT13 and INT14 which are used for Timer
interrupts TINT1 and TINTZ2 respectively.

So, the IER register will cover the 12 total CPU interrupts (Reset, NMI, INT13, INT14, plus the 8
groups of interrupts). The second level of “acknowledgement” comes with the PIE table. So,
which number do you put in the “Interrupt Number” field for BIOS? Great question.

The first trick is that the first 32 numbers are taken (0-31). The table from the datasheet starts
with INT1.1 in the upper right-hand corner (clipped off in the diagram below). If you start counting
at 32 with INT1.1 and count to the LEFT (confusing also) and you wanted the interrupt number
for, say, TINTO (shown in the clip below) which is INT1.7, you count 7 spots starting with 32 and
you get 38 — as shown in the configuration on the left.

Notice that there are two boxes to check below — “Enable at startup” (this is the IER register) and
also “Automatically acknowledge PIE interrupts”. Most users check both boxes. However, if you
don’t want BIOS to auto-acknowledge the PIE interrupt, you must write code to do this in your
ISR or you will never get this interrupt again.

Hwi Configuration — C28x & C6000

C28X |~ Required Settings & Interrupt number comes from PIE table:
Handle ryHwi | INTx.8 INTX.7
. . . INT1.y WAKEINT TINTO .
ISR function cpu_timer]_isr i
(LPM/WD) (TIMER 0)
Interrupt number 38 OXDAE 0XDAC
~ Additional Settings INT2.y Reserved Reserved
4
Argument passed to ISR function 0 - -
[7] Enable at startup & Interrupt Priority and Event Id not used
[l Automatically acknowledge PIE interrupts ¢ BIOS can auto acknowledge PIE interrupts

INT1.7 equates to “38” in BIOS Hwi

C6000 | ~+ Requiredsettings & Interrupt number (User INTs #4-15)
Handle HWLINTS @ Interrupt priority — N/A
ISR function isrAudio & Event Id comes from datasheet:
Interrupt number 3 EVT# Interrupt Name | Source

~ Additional Settings 0 EVTO C674x Int Ctl O

B st o JT A 35T Ll g

Argument passed to ISR function 0

Interrupt priority 5 3 Evis CoTdx Int Ctl 3
EventId 4 C4) | Te4PO_TINTI2 | Timers4P0 - TINT12
Enable at startup

Nesting interrupts...

C6000 has 12 CPU interrupts, but 128 possible sources. Users can “tie” any CPU interrupt
(numbers 4-15) to any Event ID (0-128). So, interrupt number above means the CPU interrupt
number (5 in this case) and Event Id corresponds to the datasheet EVT# as shown. So, for this
timer interrupt, Event Id #4 is correct. Interrupt priority truly has no meaning and is ignored.

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-9

Configuring an Hwi

Enabling Nested Interrupts in BIOS

The last part of the configuration is enabling or disabling nesting — and if you enable nesting,
WHICH interrupts you want to allow to pre-empt the interrupt you are currently configuring.

Let's step back one step first. Remember that the idea of BIOS is for the user to have complete
control over priorities. This means that the actual PROCESSING of an event (other than anything
hard real-time in nature) is done in a Swi or Task that is posted in the Hwi as follow-up activity.
This keeps ISRs very short and therefore, for the most part, nesting is NOT required.

So, the author’'s recommendation is to use “MaskingOption_ALL” on all interrupts in BIOS —
allowing zero nesting. At least start off this way and see how your system behaves and only
change this if there is a problem.

BUT, if you really want to nest interrupts, BIOS not only supports it, but also promotes it by using
the default option of * SELF” on all interrupts. So what do all these different choices mean?

Nesting — Enabling Preemption of Hwi

Masking options [MaskingOption_SELF v]
MaskingOption_NOME
MaskingOption_ALL
MaskingOption_BITMASK
MaskingOption_LOWER

& Default mask is “SELF” — which means all other Hwi’s
can pre-empt it except for itself (i.e. BIOS allows

nesting by default).
Can choose other masking options as required:
ALL: Best choice if ISR is short & fast (does not work on M4)
NONE: Dangerous — make sure ISR code is re-entrant (no M4)
BITMASK: User can choose specific interrupts to nest (no M4)
LOWER: Masks any interrupt(s) with lower priority (ARM only)
” E’s‘?ﬁumw‘rs Note: BIOS does not support nested interrupts for MSP430

Here is a breakdown of the choices (“SELF” is the default as described above):

e ALL —this is the author’s favorite choice. This means that global interrupts are kept off during
this specific interrupt and no other interrupts can pre-empt the interrupt you are configuring.
At least START your system with this setting on all interrupts and see how it goes.

o NONE - this means that not only can you interrupt yourself, but any interrupt that occurs will
pre-empt this interrupt. Global interrupts are turned back on and the IER is not modified. So,
if your ISR code is non re-entrant, then this could cause serious behavior problems. Not a
good choice for most systems.

o BITMASK - this is the smartest choice if you want to nest. This allows you to PICK which
interrupts can pre-empt the interrupt you are configuring. In a way, you can actually
customize the priority scheme this way. The IER will be modified by BIOS to only enable the
interrupts you choose for pre-emption.

e LOWER - this is a nice choice for any processor, but this assumes there is a priority
mechanism already built into the hardware — and therefore it only applies to ARM users
(Cortex A8 or Cortex M4). BIOS will mask off all interrupts lower than the one you are
configuring and allow any interrupts that are higher priority to pre-empt this one.

Intro to the TI-RTOS Kernel Workshop - Using Hwi

Managing ISRs — Two Ways

Managing ISRs — Two Ways
Using BIOS-Managed ISRs

Choices are a good thing, don’t you agree? With interrupts, you have the choice to use BIOS-
Managed or Non-BIOS-Managed methods. In the author’s opinion, you should let BIOS managed
every interrupt from the start and only if there is some critical time that is being missed should you
consider moving that interrupt outside the scope of BIOS. Why?

Because:
e The more the O/S knows about all of your threads the better
e You will make fewer mistakes long term

e BIOS-Managed interrupts allow more flexibility — allows BIOS function calls to follow-up
activity as well as the smart return

e |t saves code space because BIOS uses one set of code for context save/restore

Using the BIOS Hwi Dispatcher

currently_executing_code
{
interrupt Ocours -fe-- » Vector Table e »| Hwi Dispatcher:
next_line_of_code Context Save wwwfe :
} Context Restore
\/‘ “Smart” Return
BIOS Hwi Dispatcher void myHwi (arg)
¢ Easy to use, simple, RECOMMENDED {
¢ Turned ON for every BIOS Hwi READ HW PORT;
@ Slight increase in latency due to full context Swi_post();
save/restore }

¢ Allows BIOS Scheduler function calls

¢ Saves code space (all INTs share common
save/restore routine)

* Pgrforms ’fsmart retu'rn” —returns to
highest priority pending thread Using interrupts withOUT BIOS...

What is the downside? Increase in latency from trigger to the first line of code in the ISR. More on
this in a few more slides...

So, when an interrupt occurs, the vector table will call the BIOS Hwi Dispatcher to perform the
context save and then call your ISR function. As shown, all BIOS function calls (like Swi_post())
are allowed because BIOS is aware of this Hwi. After the ISR, the Dispatcher will perform a
context restore and execute a smart return if necessary — saving at least one context save/restore
pair — vs. going back to the “currently_executing_code” location and then switching to some
higher priority that was enabled in the ISR. Lots of benefits as shown in the lower-right hand
corner of this slide...

But, what if you want to NOT use BIOS for one of your interrupts? Let’s go take a look...

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-11

Managing ISRs — Two Ways

Using NON-BIOS-Managed ISRs

Is there a case where this makes sense? Yes. Again, the author recommends that you set up all
of your interrupts (Hwis) using BIOS at the beginning and see how they behave and only use
non-BIOS-managed interrupts for extremely critical situations.

If you have an event that must be serviced in 20 cycles or less and it is the golden timer

thread/ISR and everything will BREAK in your system if this timing is not perfect and fast every

time, you may elect to create an ISR outside of BIOS’ knowledge. But there are downsides to

this:

e If you call a function within the ISR, your latency will increase due to requiring a larger context
save/restore

¢ Nesting interrupts is manual — and as we talked about before — you will create dependencies
between these ISRs that become difficult to manage

e You cannot call any BIOS functions like Swi_post()

Using the interrupt Keyword
currently_executing_code

{

interrupt oceurs - » Vector Table pnnis
next_line_of_code :

}

interrupt myHwi (void)

Interrupt Keyword

¢ Compiler handles context save/restore

context save; //nest?

& Call a function? Then full context is saved READ HW PORT:
Nesting interrupts is MANUAL Process; //2?
* Users_ canNOT caII.any BIOS Scheduler SJufpe's‘L’U ;

functions (e.g. Swi_post) context restore;
& Use ONLY if absolute minimum latency is }

required in your system (and then, just

maybe)

i3 Texas Summary...
INSTRUMENTS

Of course, the choice is up to you. BIOS does not care whether you use him or not. The author
just wants you to be able to make informed decisions and the tradeoffs for both.

So, in this case, the user will indicate that myHwi is an ISR by using the interrupt keyword as
shown. This tells the compiler to perform a context save/restore which will be smaller than the
BIOS version. However, there will be a custom save/restore routine for every ISR that does not
use BIOS, thus increasing code size. This may or may not be a concern for you.

When the interrupt occurs, the vector table will directly call the ISR and execute it. The context
save/restore will be handled by the compiler. And, as shown, you cannot call any BIOS functions
within this ISR because BIOS has no clue this code is running. Also, the BIOS debug tools will
not be able to track this ISR at all.

Once again, use this option ONLY if absolute minimum latency is required from trigger to the first
line of code in the ISR.

Intro to the TI-RTOS Kernel Workshop - Using Hwi

Managing ISRs — Two Ways

Two Methods — Summary

The bottom line here is this:

e Use BIOS-Managed interrupts to start with and keep it that way unless there is a compelling
reason not to

e The whole concept of Hwi’s in BIOS is to keep ISRs very short and post follow-up activity.
This is not possible with “manual” interrupts using the interrupt keyword. You can create
interrupts outside of BIOS and they will work fine...but again, only entertain this idea if it is
absolutely crucial to your overall system performance.

¢ Do not MIX methods — in other words, don’t use the interrupt keyword on an ISR function that
is managed by BIOS. It will cause many problems.

Interrupt Creation Summary

1. BIOS Hwi Dispatcher
¢ Allows nesting of interrupts

& Saves code space
4 Required when ISR uses BIOS scheduler functions

¢ Performs a smart return to highest priority pending thread

2. Interrupt Keyword
¢ Slight advantage (only if absolute MIN latency required)

Notes:

¢ Choose HWI dispatcher OR Interrupt keyword on an
interrupt-by-interrupt basis

Caution:
For each interrupt, use only one of these two
interrupt context methods

13 TEXAS
INSTRUMENTS

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-13

Hwi Benchmarks

Hwi Benchmarks

Interrupt Response Time

So, the author really wanted to know the true benchmarks and how much time BIOS added for all
of the features it gives you.

First, these numbers in raw form may scare users. That’s ok — the truth is the best way to
communicate information and the numbers below are conservative — in other words, you can do
better than these numbers by running code out of RAM or using fewer wait states in flash or by
turning off more default features for each interrupt.

Also, the Timestamp_get32() function was used to compute these numbers. The author has plans
to update this information by using a real logic analyzer and performing the classic interrupt
latency test using GPIO. Timestamp is a rather heavy function, so the margin of error with these
numbers is about 20%. And, all code ran out of flash which uses wait states — so again, your
mileage may vary...

Interrupt Response Time
~CPU Cycles from trigger to first line of ISR code:

C28x MSP430 Tiva-C
Non-BlOS-Mg’d 30 25 25
BIOS-Mg’d (MIN) 193 32 101
BIOS-Mg’d (DEFAULT) 226 96 114

¢ “Non-BIOS Mg’d” means interrupt not managed by BIOS (vector must be
“plugged” manually)

¢ Application test code (from author) run from FLASH (some wait states)

¢ “DEFAULT” means that the default services for the interrupt are selected
(mostly ALL of them).

Users can improve cycle count by turning off some features and/or running
from RAM (see “MIN” numbers, where all BIOS features are turned off)

¢ Published “interrupt latency” numbers in BIOS Benchmarks describe the
longest time interrupts are disabled anywhere in the O/S.

¢ Benchmark projects available in the \TI_RTOS folder

i3 Texas How do you create a "zero latency" interrupt ?
INSTRUMENTS

So here, we compare three benchmarks for the MCU families. C6000 will be similar to Tiva-C.
The first row shows the numbers for interrupts created outside of BIOS using the interrupt
keyword. These times are from the trigger to the first line of code in the ISR.

The next row shows the BIOS-Managed interrupts and their corresponding latency with most of
the features turned off (see the Hwi configuration dialogue for a list of these features). So, this
would be the minimum latency for any interrupt managed by BIOS.

The last row shows kind of the “max” latency using the default features turned on by BIOS. Again,
these numbers may look big, but you must consider what is being done in the O/S in terms of
context save/restore, allowing BIOS functions to be called and the smart return. Given all of these
features/flexibility and possible time savings avoiding additional save/restore to/from the stack,
BIOS just must be as or more efficient than the manual method — all things considered.

Intro to the TI-RTOS Kernel Workshop - Using Hwi

Hwi Benchmarks

How to Create an ISR Outside of BIOS

Many people have asked this question in the workshop, so we wanted to detail exactly HOW to
create an interrupt outside of BIOS in case you decide to do so. You will see these methods used
in the interrupt benchmark projects in the TI_RTOS folder on the wiki.

Tiva-C users actually have the easiest method. You can STILL use the BIOS GUI to create your
interrupts (which is nice), but simply pick Priority Group 0 as shown and then use the interrupt
keyword on your function. Done.

For MSP430 users, you cannot define a zero-latency interrupt in the BIOS GUI, so this must be
done manually. Use the pragma “vector = N” where N is the interrupt number as before and then,
of course, use the interrupt keyword on the function. The pragma must come just before the
declaration of the ISR function.

Non-BIOS Managed INT Creation

TM4cC
& Easiest of them all — simply define the INT in the CFG file and choose Priority Group ZERO

¢ Then use interrupt keyword for the ISR: Interrupt priority 0 i
void interrupt isr‘_nonELIOS()b
MSP430

¢ Cannot define “zero latency” interrupt in the BIOS GUI

¢ User must manually use #pragma to “plug” the vector and then use the interrupt
keyword:)

#pragma vector = 42
interrupt void isr nonBIOS (void

C28x
¢ Define “zero latency” interrupt in the BIOS GUI (Hwi = Advanced, Ex: 0x10 is INT5):

zerolatencylERMask (k0

C6000
¢ Cannot define “zero latency” interrupt in the BIOS GUI
¢ User must use Hwi_plug() to “plug” the vector table + Hwi_eventMap() for Eventld

Hwi_plug(5, (Hwi_PlugFuncPtr)isr nonBIOS) ;
Hwi_eventMap (5, 64);

13 TEXAS
INSTRUMENTS

C28x and C6000 users are required to use the Hwi_plug() function call to “plug” the vector table
with the ISR function name and then use the interrupt keyword on that function. The author had to
do this for the benchmarks and the biggest struggle was the casting of the function name that
SYS/BIOS forced on him. Lucky for you, he already paid that price and is showing you exactly
how to do this above.

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-15

Hwi Benchmarks

*** this page does not exist — it is a figment of your imagination ***

5-16 Intro to the TI-RTOS Kernel Workshop - Using Hwi

Lab 5 — Using Hwi

Lab 5 — Using Hwi

In this lab, we added timer setup code to the hardware init () function to produce an interrupt
on a specific timer every 500ms. Your goal is to set up a TI-RTOS kernel Hwi to respond to that
interrupt and toggle the on-board LED as we did in the previous lab.

Once again, you will need to create a NEW BIOS project using the Minimal app.cfg and then add

services to it.

Lab Goal:

Set up a timer in TI-Ware and
configure an Hwi to respond to
that timer interrupt

main.c
main () {

init hw();

Timer (500ms)
BIOS start();
}

Scheduler

Lab 5 — “Blink LED” Using Hwi

Procedure

e Create a new BIOS project (min)

* Add/link files (main.c, driverlib/folder)
e Add Hwi object (for timer interrupt)

e Build, “Play”, Debug

¢ Add UIA/SA to project and cfg/use

¢ Use Log_info() to print #toggles

¢ [Optional] — use BIOS Timer module

Hwi ISR
ledToggle () {

toggle (LED) ;
Log_info() ;

i Texas ¢ Time: 30 min
INSTRUMENTS

Intro to the TI-RTOS Kernel Workshop - Using Hwi

Lab 5 — Procedure

Lab 5 - Procedure

Yes, you're going to create a new project — again. Repetition helps learning and there are some
pesky details we need to get right in order to create a project that builds. The more you do it, the
better you will get and the higher probability you will REMEMBER it.

After creating the project, you will configure an Hwi to respond to the timer interrupt. If your LED
blinks every second —you have success!!

Note:

If you can’t remember how to perform some of these steps, please refer back to the
previous labs for help. All steps are summarized at the end of Lab 2. Or, if you really
get stuck, ask your neighbor. If you AND your neighbor are stuck, then ask the instructor
(who is probably doing absolutely NOTHING important) for help. ©

Create a New SYS/BIOS Project

1. Close ANY open projects before continuing.

There will be TOO MANY .cfg and main. c files running around. You will edit the wrong file
if you don’t close the older projects. So close any open projects — NOW.

2. Create a new TI-RTOS Project using the template used in the previous lab.

Once again, if something is “fuzzy”, look back at the previous labs for help. Just as a
reminder though:

a.

b
c.
d

» Name your project: blink_target HWI (where target is YOUR specific target acronym).
» Create your project in the Target\Labs\Lab 05\Project folder.
» Don’t forget to choose your target device and connection properly.

» MSP430 and Tiva-C users — choose the Driver Example template (Empty):

>

4 |=| TI-RTOS for TivaC
4 [=| Driver Examples
4 | = EK-TMAC123GXL Launchpad

4 |=| Example Projects
= Empty (Minimal) Eaoj
= Empty Project

» C6000 and C28x users — choose the Kernel Example (Minimal):

4 |=| TI-RTOS for CAH000
=| Instrumentation Examples

4 [=| Kernel BExamples
& Minimal -

e Typical

» C6000 Users: make sure to choose ELF as the binary format (advanced settings) and
then on the RTSC tab, select the proper platform file (evm6748).

» ALL USERS — Make sure you select the LATEST tools installed on your PC — XDC
and TI-RTOS.

Intro to the TI-RTOS Kernel Workshop - Using Hwi

Lab 5 — Procedure

3. Perform file management.
» Delete the extra files populated by your template just like in the last lab.

» Add (copy) main.c fromthe Lab 05\Files folder (as you did before). Note that
main.c is DIFFERENT this time because it contains the timer setup code.

» Remove Task service if it exists in your .cfg file.

4. Add library files/folders and set your include search paths.
a. P C6000/C28x users - link/import the appropriate driver library file or folder.
b. » Add the proper include path(s) for the library header files using your install variable.
c. P Perform any additional steps for your architecture — namely:

e C28x: add pre-defined symbol “xdc__strict”, add Boot to your . ctg file via BIOS (System
Overview), then make PLL Control Register DIV = 18 to achieve 90MHz. Don'’t forget
to add the F2806x_Headers BIOS.cmd file and import the \EWare F28069 BIOS folder
(this is your “driver” code for ALL future labs)

e MSP430: disable the ULP Advisor

5. C6000 and C28x USERS - Check to make sure your linked resource and build
variables are set in the workspace.

In the last lab, you imported vars. ini to set the linked resource path variables and the build
variables based on the install path of your “ware” — e.g. PDK_INSTALL or
CONTROLSUITE F2806x INSTALL.

If you haven’t switched workspaces, these variables should still be set. Let's go make sure
anyway...

» Select Window =2 Preferences and type “1inked” into the filter field.

» Click on Linked Resources and check the paths.

» Then type “build” into the filter field and click on “Build Variables” and double-check the
paths. If everything looks good...move on...

6. Open your CFG file and make necessary changes.

In the last lab, we modified some settings in the . cfg file and we need to do the same here
because we have a NEW .cfg file.

» Open your . cfg and make the following edits or verify the values (BIOS 2 Runtime):
e Stack size = 1024, heap size =0
e Check the box next to “Enable Logs” (again, needed for UIA)
e Ensure all Threading Options (Tasks, Swi, Clock) are enabled.

e Ensure clock speed is proper for your target (it probably is fine)
C28x USERS — » modify boot settings to use 90MHz (like the last lab)
» Save your .cfg file.

7. Build your project and fix any errors.
» Build your new project (don’t use the bug, just the hammer).

At this point, your project should build fine. It won’t blink the LED yet because the Hwi is not
configured. We are just trying to verify the new project builds properly. If your project builds
clean, move on to the next step. If not, fix the build errors before moving on...

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-19

Lab 5 — Procedure

Explore Source Files

8. Where is Idle?

» Open app.cfg and look at the outline view.

Do you see Ildle? Huh. Does that mean the /dle thread doesn’t exist any longer? Nope. /dle
ALWAYS exists. We just don’t need to explicitly add it to the list of services because we
aren’t configuring any I/dle threads (like we did in the previous lab). Rest assured, that
background loop is always there.

Explore new timer code in main.c.
» Openmain.c and find the hardware init () function.

Near the bottom of that function, you will see the new TIMER init code. For example, here is
the one for C28x:

J/ Init CPU Timers - see F28@6x_CpuTimers.c for the fxn
| InitCpuTimers();

J// Configure CPU-Timer @ to interrupt every 588 millisec
// 98MHz CPU Freq, S@ems period (in uSec)
ConfigCpuTimer(&CpuTimere, 98, S00088);

» Which timer is being used for YOUR target?

» What is the timer period set to?

When you set up the Hwi, you need to know WHICH timer is being used. When the program
runs, the timer will tick down to zero and fire an interrupt. This becomes the SOURCE for the
BIOS Hwi. In the BIOS Hwi configuration, this interrupt source may be called “Interrupt
Number” or “Event Id”.

In an upcoming step, we will show you how to find the specific NUMBER that connects the
timer source to the BIOS Hwi configuration.

» When the interrupt fires, which function do you want to run?

Hint: BIOS adds two timers and two interrupts to your system implicitly — one for the BIOS

system tick and the other for the BIOS timestamp provider. This is an area where you
need to be careful about choosing ANY timer to use — it really depends on what your
driver library code initializes. If there is a collision, the best place to look is in ROV — Hwi.

Determine Interrupt Number or Event Id

10. Use the datasheet to determine the Eventld or interrupt number for YOUR timer.

Learning how to use the datasheet for a CPU is important. So, let’s look up the proper
number we need to signify the Timer interrupt we are using. Each architecture is VERY
different, so let’s take one at a time...

The datasheets for your target are contained at:
\TI RTOS\Workshop Admin\Processor Datasheets
» Locate your specific datasheet now and open it.

» Follow the instructions for YOUR target processor on the following pages to determine
your Interrupt Number or Eventld...

Intro to the TI-RTOS Kernel Workshop - Using Hwi

Lab 5 — Procedure

C28x Users:

On page 76, you'll see a table of interrupts — i.e. your PIE table that looks like this:

INTx.8 INTX.7 4
INTLy WAKEINT NTO ;r .
LPMWD) i PIE 1
OXD4E OxD4C : '
INT2.y Reserved Reserved }
il g - . :

Kind of a different organization. But you can see that TIMER 0 is PIE Group 1 and INT 7 in
that group — or INT1.7 for short. But wait, you need a decimal number — like 14 or 49 — you
can’'t use INT1.7 in the Hwi config.

Well, there are four ways to figure out this number. In the slides, we already showed you a
number — 38. But that is cheating. You can also find this info referenced in the SysCtrl and
Interrupt Reference Guide.

Another way to determine this is — first assume that INT numbers 0-31 are “reserved” or
“taken”. Now look at the table on page 76 and start counting (from the right) at 32 with
INT1.1. INT1.2 would be 33...and so on...making INT1.7 = 38.

The last way to figure this out is to use two tables — the one on page 76 of the datasheet
matched up with the one in the BIOS help guide in CCS.

» In CCS, select Help = Help Contents and then click on the following (list was edited):

Contents = '~ [
- @ SYS/BIOS 6.35.01.29
B Release Motes

B Getting Started Guide
= [API referance
= 14 all packages
= 4 ti.sysbios
B ti.sysbios.benchmarks
7 14 ti.sysbios.family
7 14 ti.sysbios.family.arp32
ShEL] ti.sysbios.family.c28
(& Hui

5 Settings

» Click on Hwi and scroll down to see a new table:

|l INTX.1][INTX.2 || INTX.3 | INTX.4 | INTX.5 || INTX.6 || INTX.7 || INTX.8

[EE |34 [EE IEE |37 3) |39
6

FEER X R

Well, of course, it's organized differently!! Some groups at Tl just don’t communinicate well,
eh? Never happens at your company I’'m sure. ;-) So, you can see that INT1.7 = 38 again.
FYI1 — BIOS uses Timer 1 for the clock tick and Timer 2 for the TimeStamp. That’s why we are
using Timer 0 for this lab. Want to know more about these bits? Take the C28x workshop !!

» C28x — WRITE DOWN YOUR INTERRUPT NUMBER HERE:

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-21

Lab 5 — Procedure

C6000 Users:

On page 91-93, you'll see a table of interrupt sources with the Event # on the left and the
interrupt name in the center:

63 RTC_IRQS RTC Combined
64 TE4P0_TINT34 Timer64P0 Interrupt 34
LiaaB5 GPIO_BOINT GPIQ Bank 0 Interrupt

Timer 0 is can be configured as a 64-bit timer, 2 32-bit timers or 4 16-bit timers — hence the
“12” and “34” 32-bit timer designations.

If you open main.c and look at the hardware init () function, you’ll notice which timer is
being used — Timer 0 (3:4) is set to a delay of ~500ms based for a 300MHz CPU clock
frequency — not that easy to tell but doesn’t 0xFO0O00 mean 500ms? Of course. ©

FYI - Timer 0 (1:2) is used for the System Tick (which will be explained later). This is why we
are using Timer 0 (3:4) in this lab.

Note: If using the OMAP-L138 LCDK, use Timer 1 instead of Timer 0. The ARM boot mode
uses TimerO0, so it whacks the Timer0 setup. These changes will apply to all future labs
as well. Event ID for Timer 1 is 48 vs. 64 and you must change the CSL code in the init
function in main.c to use:

CSL _TmrRegsOvly tmrORegs = (CSL TmrRegsOvly)CSL TMR 1 REGS;

» C6000 — WRITE DOWN YOUR EVENT ID NUMBER HERE:
» C6000 Users — use CPU Interrupt #5 — Interrupt Id: _5

MSP430 Users:

i
v\ MSP430 On page 21, you'll see a table of interrupt vectors from highest to lowest priority. FYI — BIOS
b 5 has already stolen Timer AO, so we are going to use Timer A1 (CCRO) in the lab. Here is a
\ i snippet from the datasheet:
PLL
DMA DMAOIFG, DMA1IFG, DMA2IFG (DMAIV)((3) OFFE4h | 50
TA1 TA1CCRO CCIFG0®) oFFe2h(49

TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,
AL s oA e I st e i L a QB AN, |

So, this one is rather easy. If you look in main. c, you will see that Timer_A1 is being set to
tick down every 500ms and trigger an interrupt. Interestingly, the nomenclature can be a bit
confusing here because the heading of the column says “PRIORITY”, but you will place the
number 49 in the “Interrupt Number” field in the Hwi config. This is when you say “thank
goodness I'm taking this class”. Well, common sense also dictates that this would be the
number because it's the ONLY number in the darn table. ©

We are using an UP mode counter that uses the CCRO register that counts up to the value in
CCRO, fires the interrupt and resets the timer counter to zero. So, 49 is the proper choice vs.
48. Want to know more about all the MSP430 Timers? Take the MSP430 Workshop !!

» MSP430 - WRITE DOWN YOUR INTERRUPT NUMBER HERE:

5-22 Intro to the TI-RTOS Kernel Workshop - Using Hwi

Lab 5 — Procedure

TMAC Users:

On page 100, you'll see a list of interrupts showing a VECTOR number and an INTERRUPT

number. Which one do you choose? Ah, just pick one and HOPE. Sometimes, that's what we
engineers do, eh? Folks think we’re so smart, but we just keep plugging in stuff until it works.
Admit it. Ok.

35 | 19 0x0000.008C 16/32-Bit Timer 0A
36 | 20 0x0000.0090 16/32-Bit Timer 0B
37 | 21 0x0000.0094 16/32-Bit Timer 1A
38 | 22 0x0000.0098 16/32-Bit Timer 1B
PR
CssQ 23 0x0000.009C 16/32-Bit Timer 2A
40 | 24 0x0000.00A0 16/32-Bit Timer 2B

The VECTOR number is what we need to use because this builds the vector table used to
route the interrupt (Timer going off) to our ledToggle() routine. BIOS will insert a call to our
ISR handler (ledToggle) in the appropriate vector location. The INTERRUPT number is the
actual BIT in the interrupt registers.

Timer 0 is taken by BIOS for the system tick (more on that in a later chapter). Timer 1 is
taken by BIOS for the TimeStamp Provider — again, more on this later.

So, we are left to use another timer — let’s use Timer2. Simple enough — just find the listing
for Timer 2A and use the VECTOR number (which is 39). Want more info on the Tiva-C
timers? Take the Tiva-C workshop !!

» TM4C — WRITE DOWN YOUR VECTOR NUMBER HERE:

11. ALL USERS - Answer a few questions.

Let’s think about the interrupt mechanism and BIOS for moment and » write the answers to
these questions:

» What peripheral is triggering the interrupt?

Ok, that was easy one. But when an interrupt is triggered, does it always get serviced? Nope.
Usually there is an INDIVIDUAL and a GLOBAL interrupt enable/disable. If you open
main.c, you won't see any commands that are enabling any interrupts.

» Who is responsible for enabling interrupts (globally and individually?)

» When does this “enabling” occur?

» Which function do we want to run when the interrupt triggers?

» What ties the interrupt from the timer TO this function?

Some may have answered that last question by saying “vector table” which is partially
correct. But when using BIOS, it will be the Hwi object that connects the trigger and ISR
(BIOS will build the vector table for you).

» How is the context save/restore handled?

In a non-BIOS interrupt, the PC is saved somewhere (like a stack) and when the ISR returns,
the PC is loaded with the previously saved value getting you get back to where you were.
Great. But what if, while using BIOS, a higher priority thread than what was first interrupted is
posted during the ISR? Do you return back to the original PC location?

YES NO Explain:

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-23

Lab 5 — Procedure

Add The New Hwi

12. Add an Hwi object to your CFG file.

As discussed in the chapter, you will need to add a new Hwi instance and provide some
information.

» Right-click on the Hwi module in the outline view and add a new Hwi:

4| @ Hy
@ Mew Hwi...
@ Lo Stop Using Hwi
@ Lo
@ M; Help

» Fill in the object with the following:
e Hwi handle: pick something like HWI_TIMER2 (or whichever timer it is)
¢ ISR function: which fxn do you want to run when the Timer triggers the interrupt?

e Interrupt Number (MCU): the number from the datasheet you already figured out

e Eventld and Interrupt Number (C6000 only): choose appropriate settings

Leave all other default setting as is and » save your . cfg file.

Note: When working inside the BIOS GUI, you have to be careful NOT to click or type or tab too

fast — especially when the tool is “thinking” — otherwise known as “validating”. When
validation is occurring, in the bottom right-hand corner, you will see this:

Validating app.cfg T

If you start typing or clicking away while your app . cfg is being validated, it may erase
some settings or typed letters. The lightning-speed clickers/typers (and you know who
you are) will fight with this a little. Beware. The good news is that each entry that you
make is being validated NOW vs. hearing about it during build. So the overall benefit is
GOOD.

13. Modify main.c to remove delay() and peruse a few other details.

» Open main.c for editing.

In the previous lab, we used a delay() function to delay 500ms for our blink LED program. In
this lab, we have setup code for a specific timer on your device.

Look in hardware_init() and find the timer setup code near the bottom of that routine — read
the comments and familiarize yourself with that code. Now that we have a TIMER to create
our delay, we no longer need the software delay/() function.

» In ledToggle(), comment out or remove the call to delay() and the prototype.

» Just to be complete, comment out or delete the delay() function itself (hint — select the
whole function and type CTRL-/, it comments everything that is selected.

Now, when the timer triggers the interrupt (after about 500ms), ledToggle() will be called, the
LED will toggle and then the program will return to where (which thread or function)?

Intro to the TI-RTOS Kernel Workshop - Using Hwi

Lab 5 — Procedure

Build, Load and Blink !

14. Build, load and run your program.

» Build your project and fix any errors that occur. When you have a clean build, » load and
run it. Does the LED blink every second?

If not, here are some hints that may help:
e Did you use the proper interrupt number in the new Hwi?
e Did you use 1edToggle as the ISR function name?

Try to debug the problem for a few minutes and then ask your instructor for help.

Debugging With UIA and ROV

15. C28x and C6000 USERS — Add LoggingSetup to your app.cfq file.
FYI — Tiva-C and MSP430 users already have LoggingSetup in their CFG file based on the

28 driver template they chose. However, C28x and C6000 users still have to add UIA manually
S because the Kernel template does not add this service for you manually.

» Open your . cfg file and under Available Products, right-click on LoggingSetup and add it
to your CFG file (drag and drop works too).

4 3 UIA %
: 334 Loggers

» 334 Services
4 LoggingSetup

» Don’t forget to comment out the five lines of script code to kill logger0 instance like you did
in the previous lab:

P
* Create and install logger for the whole system
£

var loggerBufParams = new LoggerBuf.Params();

//loggerBufParams.numEntries = 4;

ffvar logger® = LoggerBuf.create(loggerBufParams);

//Defaults.common$. logger = logger®;

//Main.common%.diags_INFO = Diags.ALWAYS_ON;

BI05.1ibType = BIOS.LibType Custom;
//BI0S.logsEnabled = false;
BIOS.assertsEnabled = true;

No other configuration is necessary.
» Save your CFG file.

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-25

Lab 5 -

Procedure

16. Build, load and run your program.

» Build and run your program and halt it after 5 seconds or so.

17. Explore the RTOS Object Viewer (ROV).
» Select Tools > ROV.
How many threads do you have in your system? 1 2 3 4 5 6 7

This is sort of a trick question and will be different based on your architecture. Let’s see if we
can find these threads and a decent answer to the question.

The thread types are Hwi, Swi, Task and Idle. Some threads are added by BIOS implicitly
and some are added by the user. So, if you take a common sense approach, your answer
would be TWO - the Hwi you added and, if you’re thinking properly, you’d remember Idle is
always there. So give yourself full credit if you answered two in the previous question.

But actually there are more than two. Let’s explore all of ROV and in the process answer
some other questions.

» Click on the underlined service in ROV and then answer the question:
e BIOS: What is your CPU frequency?

e Hwi: How many Hwi’s are in your system?

e Hwi (Module tab): Stack size? Max stack used

e Idle: How many Idle functions are in your system?

e Swi: How many Swi’s in your system?

e Task: How many Tasks?

e Timer: How many Timers are active?

So, you can see the Hwi you added to the system and yes, Idle is still around, but there are
more threads that BIOS added to the system automatically. BIOS will always add a Clock
(system tick) which adds an extra Hwi (for the timer), a Swi (for the clock function) and a
Timer. More on this in a later chapter.

If you had 3 Hwi’s, that was yours, Clock and one for Timestamp which will be explained in a
later chapter.

Let’'s move on to looking at UIA a bit more...

18. Use the RTOS Analyzer to see the Logs.

» Select Tools 2 RTOS Analyzer 2 Execution Analysis (start session, look at Live Session
results), then filter them to see the LED toggles.

Hint: We willuse Log info () in a later lab along with TimeStamp to benchmark our code
and display the results in this window.

FYI — The Execution Graph and CPU Load won’t show much in this lab — therefore we skip the
steps to look at them. First, we aren’t logging Hwis and second, all activity is done in the Hwi that
we aren’t logging. So, no fun there. In future labs, you will get much more experience using these
tools.

Intro to the TI-RTOS Kernel Workshop - Using Hwi

Lab 5 — Procedure

19. Find a function in your code.

You may or may not have done this before in Eclipse or other IDEs. Sometimes, you want to
know WHERE a function resides in your code either by selecting the prototype or an actual
call to that function. With large projects (not these labs), it is sometimes difficult to find the
actual function that is running. Eclipse has some built-in features to help.

Let’'s see how this works with a local function as well as a call to a BIOS function...
» Openmain.c for editing.

» Then hover your mouse over BIOS_start() in main(). You will see something similar to:

BIDS start(); %

Mame: BIOS_start
Prototype: Void BIOS_start();
Description:

Start 5YS/BIOS

The user's main() function is required to call this function after all other user initializations have been performed.

Package: ti.syshbics

. |Product: TI-RTOS for Tival 2.0.2.36
Header files:

ti/syshios/BIOS.h

=03

Press 'F2' for focus|

Notice that this “hovering” info provides some useful information.
» Now highlight the prototype for ledToggle near the top of the file.

» Right-click on the highlighted function and select “Open Declaration” or press F3. This will
take you directly to the function itself. This is how a “local” function would work.

» Now highlight the call to Log_info1() in ledToggle() and press F3. This will open up 1og.h
and show you where this function is declared.

Ok — this is not a huge deal — but could be handy some day...

20. Terminate your debug session. Close your project. CLOSE YOUR PROJECT.

You're finished with this lab. Please raise your hand and let the instructor know you
are finished with this lab (maybe throw something heavy at them to get their
attention or say “CCS crashed — AGAIN !I” — that will get them running...)

» If you have time, move on to the optional part of this lab...using BIOS
Timers — REALLY good stuff...or watch your architecture videos...

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-27

Optional Lab — Using the BIOS Timer Module

Optional Lab — Using the BIOS Timer Module

In the first part of this lab, we used the driver library code to set up and use a hardware timer to
trigger an Hwi. That’s fine and may be exactly how you would do that in your own application.

In this optional lab, we wanted to highlight a service from BIOS called Timer. What does it do? If
all you need is a timer plus an Hwi to call a function, well, that's what BIOS Timer module is. No
need to figure out period values, frequencies, interrupt vector numbers — all the manual way.
Timer combines ALL of this in one simple service.

So, just imagine grabbing the Timer module, picking the timer and adding the function (ledToggle)
that you want to call — build and run. Sounds too easy, eh?

Let's tryit....

Archive Lab and Copy Project

21. Archive your current solution.

Well, it is probably a good idea to save off your current solution before moving on. And,
learning how to archive a project to share with someone else is always a good thing. It is
easy to do, so let's do it...

» Make sure your project is OPEN. If not, open it back up (after closing it before)
» Right-click on your project and select Export.

» Then select Archive File and click Next:

4 [General
‘@ Archive File
177 File Systern
=] Preferences

» Browse to your /Lab 05 folder and type in a name — something like myHwiLab05. zip.
Make sure your project is checked and all files are checked (C28x example shown).

Archive file

Export resources to an archive file on the local file system. W=
P Y s
3 '@‘; blink_C28x HWI [Active - Debug] B .cosproject

[.cproject
2 .project
|5 xdchelp

¢ F2806x_Headers_BIOS.cmd
TMS320F28069.cmd

2 app.cfg [SYS/BIOS]
@main.c

@ makefile.defs

Filter Types... | | SelectAll || DeselectAll |

To archivefile CATLRTOS\C28:\Labs\Lab_05\myHwilab05.zip - :

5-28 Intro to the TI-RTOS Kernel Workshop - Using Hwi

Optional Lab — Using the BIOS Timer Module

22,

» Click Finish. Your project is now archived in your Lab 05 folder. If desired, you can
always choose Project = Import Existing... = Archive and retrieve it.
Let’s COPY our current project to a new one.

Another great trick in CCS is that you can copy projects inside the Project Explorer. We don’t
NEED to do this now because we can simply edit the project we're using, but it is another
feature of CCS that is nice to learn (hey, this is an optional lab, so there are no rules).

» Right-click on your project and select Copy.

In the white space below, » right-click again and select Paste. A dialogue will appear that
allows you to change the name of the project and place the project in a folder:

«+ Copy Project

LT ETL R C opy of blink C28x HWI

Use default lecation

» Name it “vlink target TIMER” and just keep the default location (your workspace).

» Click Ok. Your project will now be copied (all files and links) to a new project in your
workspace. Great. Now it's time to modify the project to use the BIOS Timer module...

Add Timer to BIOS Cfg

23. Delete the Hwi.

Because the timer includes an Hwi already, we don’t need the one that we added earlier.

» Right-click on the Hwi instance and select Delete.

@ Error 1
4 @ Hwi
@ Timer 41 TMT
@ Log Delete Timer_A1_INT
@ Logging

@ Main Elp

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-29

Optional Lab — Using the BIOS Timer Module

24. Comment out the code for the timer setup.

Each architecture has a slightly different amount of setup code. But, it should be commented
well enough to find it.

» Openmain.c for editing. Do not DELETE lines of code — just comment things out.

» Comment out the timer setup code in hardware_init(). Make sure you don’t comment out
any necessary CPU clock or GPIO setup code. Remember, if you highlight lines of code, then
hold down the CTRL key and then press “/”, CCS will comment the entire highlighted block.

Here is an example of the TM4C code commented out:

{/ Turn on the LED
E GPIOPinkrite{GPIO_PORTF_BASE, GPIO PIN 1|GPIO PIN_2|GPIO_PIN 3, 4);

// Timer 2 setup code

SysCtlPeripheralEnable(SYSCTL_PERIPH TIMERZ2); /{ enable Timer 2 periph clks
TimerConfigure(TIMER2_BASE, TIMER_CFG_PERIODIC); /f cfg Timer 2 mode - periodic
ui3z2Period = (SysCtlClockGet() /2); /f period = CPU glk diy 2 (5@8ms)
TimerLoadSet(TIMER2 BASE, TIMER_A, ui32Periocd); // set Timer 2 pericd
TimerIntEnable(TIMER2_BASE, TIMER_TIMA TIMEOUT); /{ enables Timer 2 to interrupt CPU
TimerEnable (TIMER2_BASE, TIMER_A); /{ enable Timer 2

If there is any other timer-specific code in 1edToggle (), » comment it out also.

25. Add BIOS Timer module to app.cfg.
» In Available Products, right-click on Timer (as shown) and add it to your . cfg file.

-3
3

4 33 SVS/BIOS
@ pI0S
> @ System
. 4 Diagnostics
a i Scheduling
@ Task
B Swi
M i
(Y ldie
% Clock

ﬁj Timer

» Once added, right-click on the Timer in your outline view and add a new Timer instance.
» Fill in the settings that make sense (here’s an example for TM4C users):

e Handle: anything you want (maybe use the Timer number like below)

e Timer ISR function: ledToggle

o Timer Id: it depends on the architecture — see the next page

e Period: 500000 uS

...See snapshot on the next page for the dialogue box...

5-30 Intro to the TI-RTOS Kernel Workshop - Using Hwi

Optional Lab — Using the BIOS Timer Module

= Required Settings
Handle Timer2

Timer ISR function ledTeggle

Timer Id

Periad 500000 period in microsecs -

= Additional Settings

Argument passed to the Timer ISR function null

Start mode ’timer starts automatically -

Run mode ’periodic and continucus -

TIMER TO USE - in general, use the Timer you used in the previous lab:
e (C28x: TimerO

e (C6000: Timer 2

e MSP430: Timer 1

e TMA4C: Timer 2

» Save your .cfq file.

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-31

Optional Lab — Using the BIOS Timer Module

How does BIOS know what frequency you are running at?

There is ONE setting that drives this. You can LIE to BIOS and it will hurt you, but isn’t that
the case with most relationships? ©

BIOS will calculate the proper PERIOD/TIMER values to place in the hardware timer based
on the frequency setting of the BIOS module. So, whatever your clock frequency is actually
set at (via boot or via init code), just tell BIOS the truth and all is well.

If your target supports the BIOS Boot module and you set the frequency there, this frequency
will be reflected in the BIOS - Runtime setting.

But for now, go check to make sure the frequency BIOS thinks you're running at IS the proper
frequency.

In your . cfqg file, » select BIOS - Runtime and check the frequency listed there. Is the right
frequency shown? (C6000 example shown below):

+ Platform Settings

These settings should reflect the hardware platform that runs your
application,

CPU clock frequency (Hz) 300000000

For most processors, it is correct already. The point is — the TIMER module will use this
frequency to calculate the period/timer values for the hardware timer on your architecture. If
there is a mistake, correct it now. But just to let you know the proper frequencies:

o (C28x: 90 000 000
e (C6000: 300 000 000
e MSP430: 8192000

e TMA4C: 40 000 000

Remember, this Timer module contains an Hwi and uses a timer and will call your ISR
function (ledToggle) when the timer counts down to zero. But the beauty is that:

e You don’t have to know the timer hardware
e You don’t have to look up the interrupt vector number
¢ You don'’t have to calculate a period based on frequency of the device

» Save your .cfg file.

5-32 Intro to the TI-RTOS Kernel Workshop - Using Hwi

Optional Lab — Using the BIOS Timer Module

26. Build, load, run.
» Build and run your program. Is the LED blinking ?? Hopefully so. If not, debug away.

This optional discussion really does highlight how easy BIOS is to use in terms of setting up
possibly tricky code — it saves time and headaches. Of course, there’s even more to come...

27. Archive your Timer project if you like — you know how to do that now.

28. Terminate your Debug session, close your project and close CCS.

You're finished with the optional part of this lab. If someone is still working on the
main lab, help them out...be a good neighbor — or boast that you’re done with the
optiona lab and stick your chin high in the air...or watch your architecture videos..

Intro to the TI-RTOS Kernel Workshop - Using Hwi 5-33

Notes

Notes

5-34 Intro to the TI-RTOS Kernel Workshop - Using Hwi

Using Swi's

Introduction

This chapter is the shortest in the workshop and it has the easiest lab. Enjoy.

In this chapter, we will cover the basics of Software Interrupts (Swi) and a few advanced functions
you can do with them. Swi’s are simple and look and feel just like Hwi’s except they are triggered
by a software command instead of a hardware interrupt.

In this chapter, we will cover Swi’s work, how they are scheduled and how to configure them and
some possible limitations vs. using Tasks. How does the BIOS Scheduler handle Swi’s that have
the same priority? How many Swi’s can you have in your system? How many different priorities
does your architecture support? Where is the context saved for each Swi when it is pre-empted
by a higher priority? All of these questions and more will be addressed in this chapter.

In the lab, you will modify your ISR code to post a Swi and then register ledToggle() as a Swi
instead of an Hwi.

In the Task chapter, once you have been introduced to Tasks, we will spend some time
comparing and contrasting Swi’s vs. Tasks and why you would want to use one vs. the other.

Objectives

Objectives

= Understand how Swi’s complement Hwi’s
= Describe how to confiqure Swi’s

= Detail how Swi’s are scheduled

= Touch on Scheduling Strategies

= Lab 6 - Use Swi to perform “Blink LED”
instead of an Hwi.

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6-1

Module Topics

Module Topics

L0 L] T TR T N 6-1
1Y (oo 17 =T o] o] (o1 NS 6-2
USING SWi ..ottt ettt e ettt e e e e e e s ettt e e e e e as e aaeeeaaia 6-3

10T [T 4o o SR 6-3
PoSting SWi From @n HWioooiiiiii e 6-4
Scheduling Rules — Swi’s at Different Priorities ... 6-5
Scheduling Rules — Swi’'s at Same Prioriti€scccvviiiiiii i 6-6
SWIi = CONFIGUIATION ...ttt ettt e ea s 6-7
OFREE USEIUI SWi APIS.....coooeeeeeeeeeeeeeeeee et a e e e e e e e e e e eanes 6-8
Scheduling SHategieS — F Y|ooo et 6-10
Lab 6: Blink LED USING @ SWiccooiiiiieiee et 6-11
Lab 6 — Procedure — Blink LED USING SWi...........cccciiiieiiiiiie e 6-12
IMPOM PrOJECT. ...ttt e e e e s 6-12
Add @ SWi to the SYSIEM ..o e 6-14
Add New ISR and Modify HWi.......cooiiiiiiiii e 6-16
L2011 [o R o Y=o =T g Vo I U o T 6-17
Use UIA and ROV to Debug Application....... ... 6-18
INOTES ...t ettt et 6-24

Intro to the TI-RTOS Kernel Workshop - Using Swi's

Using Swi

Using Swi

Introduction

Welcome to the shortest chapter in this class !

In the last chapter, we covered the details associated with Hwi and Idle. So far, in the labs, you
have programmed SYS/BIOS to blink an LED without BIOS and using the Idle and Hwi threads.
Next up is learning how Swi’s are created and how they get scheduled and to compare and
contrast Hwi and Swi since there are many similarities.

Swi, as a group priority are just below Hwi and just above Tasks. Any Hwi will pre-empt a Swi and
any Swi will pre-empt any Task. Also, within the Swi group, users can choose up to 16 priority
levels on C28x and MSP430 processors and up to 32 priority levels on Tiva-C and C6000.

What happens if two Swi’s are at the same priority? Well, you will just have to stay tuned until
later in this chapter when we address that question.

SYS/BIOS Thread Types (including Tasks)

A

SWi & Software posts Swi to run
& Performs Hwi ‘follow-up’ activity (process data)

=z Software Interrupts & Up to 32 priority levels (16 on C28x/MSP430)
=

o
‘=
o

i3 Texas Using Hwi and Swi together...

INSTRUMENTS

Next, let's see how Hwi’s are used to post Swi’s...

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6-3

Using Swi

Posting Swi From an Hwi

Shown below is the concept of how Swi’s can get posted within an Hwi. An interrupt occurs and
the ISR runs and does some sort of hard real-time processing (setting a GPIO pin, clearing a
timer, reading a register, etc.). Then, instead of processing the input inside the context of the Hwi,
the user posts follow-up activity by doing a Swi_post(). BIOS will register this post and update the
Swi queue to reflect this new Swi and its priority in the queue. This is the when the BIOS
Scheduler is called and the Swi is made ready to run.

The Swi cannot run right away because the Hwi is still running and has priority over any Swi.
Once the Hwi returns, if this Swi is the highest priority pending thread in the system, then it will
run. So, the user has full control over how long it will take to do the processing in the Swi — the
higher the priority of the Swi, the sooner the processing will run.

The nice thing about this concept is that the Hwi is very short and there is no need for nesting
interrupts when they have 5 lines of code inside them. And, this process that the Swi is executing
is completely software configurable by the user regarding priority — either statically or
dynamically.

Hardware and Software Interrupt System
Execution flow for flexible real-time systems:

(‘INT!}—{Hard RIT Process |— Post Swi [Cleanup,ReT | Hwi J
(.

‘ Swi Ready }—’[Continue Processing } Swi J

Hwi isrAudio: Swi
o Fast response to INTs *b‘:f“' = *XBUF; # Latency in response time
q q . cnt++; -
¢ Min context switching if (cnt >= BLKSZ) { ¢ Context switch
High priority for CPU Swi_post(swiFir); | ¢ Selectable priority levels
Limited # of Hwi possible cnt = 0; + Scheduler manages
pingPong = 1; execution

}

¢ TI-RTOS Kernel provides for Hwi and Swi management
¢ TI-RTOS Kernel allows the Hwi to post a Swi to the ready queue

i3 Texas Scheduling Swi's...
INSTRUMENTS

The code in the center of the slide is an ISR showing one example of how a Swi might be posted.
In this ISR code, a buffer (XBUF) is read into a buffer of samples and the count is incremented.
This code is doing block processing — waiting for an entire buffer of samples (e.g. 256) to be read
before the processing occurs. If the count value is equal to buffsize (256), then the Swi is posted
and the count is set back to zero. Also shown is the idea of using ping-pong buffer scheme so
that the processing of one buffer can take an entire buffer-sample time vs. just one more sample
time — relaxing the system requirements.

Some systems process samples every sample — this example just shows a different way via block
processing. The whole idea is simply to show when a Swi might be posted and users have
ultimate flexibility in terms of WHEN the Swi gets posted by where they write Swi_post() in their
code.

Intro to the TI-RTOS Kernel Workshop - Using Swi's

Using Swi

Scheduling Rules — Swi’s at Different Priorities

First of all, Swi priorities work this way — the higher the number, the higher the priority. The
diagram below shows threads in ascending priority order from bottom to top — with Hwi having the
highest priority.

So let’s say you had two Swi’s — one at priority 1 and the other at priority 2 as shown. In this
diagram, Swi 1 is running and then an interrupt occurs. The Hwi runs and posts swi_b running at
priority 2. When the Hwi finishes, which Swi runs?

BIOS will always run the highest priority pending thread. Remember when we talked about the
“smart return”? In a system without BIOS, the ISR would always return to the place that it came
from — in this case, swi_a. That would require a context switch but then another context switch
would occur to run swi_b which is at a higher priority. Instead, due to the smart return, BIOS will
“return” to swi_b and run it because it is higher priority than swi_a, thus avoiding an extra context
switch and saving time/cycles.

Once swi_b finishes, swi_a continues to run, then finishes and back to Idle. Idle is always around
and will run whenever there are no other threads active in the system.

Scheduling Rules

Highest Priority Swi_post(swi_b)
E} — Smart return
'< —————————————— from Hwi

\ Legend
---------------------------- —

Lowest Proity U Ready

T T T T T time t

& Swi_post(mySwi) : Unconditionally post a software interrupt (in the ready state)
+ Ifahigher priority thread becomes ready, the running thread is preempted

& Swi priorities from 1 to 32 (MSP430/C28x has 16)

¢ Automatic context switch (uses system stack)

i3 Texas What if the Swi's are at the same priority?
INSTRUMENTS

When Swi’s pre-empt each other, they use the system stack — just like Hwi’s. Swi’s also behave
just like Hwi’s by the fact that there is a trigger (Hwi’s trigger is an interrupt, Swi’s trigger is a
Swi_post()) and then both will run to completion without stopping.

You wouldn’t put a while(1) loop inside an ISR, right? Nope — why not? You may never return
from the ISR and nothing else would happen in the system. Swi’s are the same way. They don’t
exist in the Scheduler unless they are triggered/posted.

So what happens if these two Swi’s had the same priority?

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6-5

Using Swi

Scheduling Rules — Swi’s at Same Priorities

This diagram shows swi_a and swi_b at the SAME priority level. Swi’'s at the same priority level
run in the order they were posted. Just think about the Swi ready queue mentioned earlier. Swi_a
had already been posted and was the only Swi in the queue. When the Hwi runs and posts swi_b,
the queue is updated to show swi_b NEXT IN LINE to swi_a because they both of the same
priority level.

Therefore, when the Hwi returns, swi_a continues to run, finishes and then swi_b runs —in a
FIFO (first in, first out) order. After swi_b finishes, execution returns back to the Idle thread.

Scheduling Rules

Highest Priority Swi_post(swi_b)

swi_b (p1) @-fommmmmaaaas —_—

I

e

swi_a (p1)
Legend
------------------------------------- -— Running
Lowest Priority U Ready
t t t t t time t

Processes of same priority are scheduled first-in first-out (FIFO)

Having threads at the SAME priority offers certain advantages —
such as resource sharing (without conflicts) and reduced stack
requirements.

i3 Texas How do you configure a Swi?

INSTRUMENTS

One note to mention here. Is there an advantage to having Swi’s at the same priority? YES —
several. First, if these two Swi’s were sharing a resource, there will be no conflicts because one
cannot pre-empt the other — great for critical resource sharing between two threads (Swi's or
Tasks). For more info on this, refer to the Interthread Communication chapter later in this
workshop.

The other advantage is stack size. If you had 8 Swi’s at different priority levels and all of them
were active (or pre-empted), that would be a STACK full of 8 context saves on the system stack.
But if all 8 were “flat” — i.e. at the same priority level — even if they had all been posted, there
would only be a single context on the stack — not 8 of them. So, reduction of stack size is a
bonus.

Now that we know how Swi’s get posted and how they are scheduled, how do you create a Swi?

6-6 Intro to the TI-RTOS Kernel Workshop - Using Swi's

Swi — Configuration

Swi — Configuration

After a while, this diagram will get a little repetitive....

The first step in creating a Swi is to add the Swi module to your .cfg file. Either right-click and
“Use Swi” or simply drag/drop the Swi module from Available Products to the Outline View of your
.cfg file.

Once the Swi module is in your .cfg file, right click on Swi and select “Insert new Swi”. Then the
dialogue box in step 2 will pop up.

Static configuration for BIOS objects is the same for all objects — add the module, insert a new
“instance” of that module and configure it. You'll see this time and time again throughout this
workshop. But hey, it's a good thing. The look and feel and how you get things done in the GUI
tends to be the same everywhere — causing fewer headaches for users.

Configuring a Swi — Statically via GUI

| Example: Tie isrAudio() fxn to Swi, use priority 1 |

(1) Use Swi module (Available Products) , insert new Swi (Outiie View)

= ﬁ Scheduling I
£1% Clock T
My =@ 5(;"' — Remember, BIOS objects
69 e |:> frProcessSwi can be created via the GUI,
¥ ® Syshin script code or C code (dynamic)
& Task @ sSystem
o @ Timer

@ Configure Swi — Object name, function, priority:

+ Required Settings
Handle firProcessswi
Functicn FIF_process

Interrupt priority 2

Initial trigger L]

13 TEXAS
INSTRUMENTS

In step 2, the user simply fills out the settings as shown above. First, you provide a name (handle)
and the function associated with this Swi. So, when you POST this Swi using Swi_post(), you put
the HANDLE of the Swi inside the parentheses — e.g. Swi_post(firProcessSwi).

Next is the interrupt priority. Ok, they use the word “interrupt” here. Don’t confuse this with the
Hwi — they are totally different. This is just asking for the priority level of this Swi — from 1 to 16 or
1 to 32 depending on your architecture.

The last setting is the initial “trigger” — a 16-bit unsigned value. In the older days of BIOS, this was
called the mailbox value. We like the word “trigger” because this value is actually used to trigger a
Swi using other functions that will be covered on the next slide. For most users, this value is left
at its default — 0x0.

So, is Swi_post() the only way to post a Swi? Nope. There are other functions you find useful
depending on your system. Let’s go take a look at some of them...

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6-7

Other Useful Swi APIs

Other Useful Swi APIs

Besides Swi_post(), there are several other ways to post a Swi as well as control the run-time
nature of the Swi Scheduler. Shown below are three sets of functions that can be used in addition
to Swi_post() which is the most common way to post a Swi.

First, let’'s point out one fact — if you do 10 Swi_post() calls in a row of the same Swi before the
first Swi runs, how many times will the Swi run? The answer is — ONCE. Just imagine the queue
being updated 10 times with the same Swi over and over again — how many are in the queue?
One. Isn’t this just like an Hwi? If you have 10 interrupts on one line before the first one is
serviced, how many times does the ISR run? Once. There is only a single flag to keep track of a
specific interrupt occurring. Most engineers would say that if you get another interrupt before the
first one is done processing, you are not meeting real-time and this is an error. Swi_post() works
the same way.

However, you can play a few games with Swi’s via different function calls shown below in case
you want Swi’s to behave differently than a plain vanilla Swi_post(). So, let's go take a look at
them....

SYS/BIOS Swi APIs

Other useful Swi APIs:

API Description

Swi_inc() Post, increment count in trigger
Swi_dec() Decrement count, post if trigger = 0
Swi_or() Post, OR bit into trigger

Swi_andn() Zero a bit in trigger, Post if trigger = 0
Swi_getPri() Get any Swi Priority

Swi_raisePri() Raise priority of any Swi

Swi_getTrigger() Get any Swi’s trigger value

Swi_enable() Global Swi enable
Swi_disable() Global Swi disable
Swi_restore() Global Swi restore

Note: Can set “trigger” to any initial value (same as mbox in DSP/BIOS)

13 TEXAS
INSTRUMENTS

We will take these one at a time:

e Swi_inc() — posts the Swi and then increments the trigger value. This might be useful if you
want to know how many times a Swi had been posted. But remember, the Swi is only posted
once — but you can view the trigger value to see how many times it was posted.

o Swi_dec() — only posts the Swi if the trigger value is ZERO. Why would this be useful? If you
had a process thread that needed to run once every 5 interrupts, you could start the trigger
value at 5 and to a Swi_dec() in the ISR. After each Swi_dec(), the trigger would be
decremented once and then after the fifth time, the trigger would be zero and the Swi would
be posted. When the Swi is posted, the trigger value is reset to its original value.

Intro to the TI-RTOS Kernel Workshop - Using Swi's

Other Useful Swi APIs

Swi_or() — posts the Swi and then ORs in a bit to the trigger value. How might this be
helpful? Let’s say that you wanted to know WHO posted a specific Swi. If events A-E (5
events or ISRs) each had a different “bit” in the trigger, they could each do a Swi_or() and OR
in “their” signature bit. At any time, a programmer could go get the trigger of this Swi using
Swi_getTrigger() to find out WHO posted the Swi. Or, this Swi might do one set of processing
for Event A and a different set of processing for Event B. The Swi could get its own trigger to
find out WHO posted him.

Swi_andn() — clears a bit in the trigger and only posts the Swi if the trigger is ZERO. This
seems to be one of the more useful Swi functions for a system based on the author’s
experience. Let’s assume there are five events — Events A-E — that have to occur before you
post the Swi. Sure, you could use Swi_dec(), but what if Event A happened 3 times, Event B
happened 6 times and Events C-E all happened only once. Using Swi_dec(), the Swi would
have been posted after five of these events — regardless of WHICH events occurred. What if
you wanted to post the Swi after each of these events had occurred at least once? Well, you
first set up the trigger value as 11111b — or Ox1F. So you have five bits all set to one and
each event (A-E) are assigned one bit each. In each ISR of each event (A-E), you use
Swi_andn() and “not” a bit in each call. Once each event has occurred, the trigger value will
be zero, thus posting the Swi. And, when the Swi is posted, the trigger value is reset to the
initial value.

These are all fancier ways to post a Swi. It may seem a bit rudimentary but there you go. If you
feel like there is not enough flexibility in Swi's and they seem a bit archaic, well, maybe you need
the more full-featured capability of Tasks and Semaphores which are covered later.

Swi_getPri() — get the priority of any Swi in the system

Swi_raisePri() — raise the priority of any Swi in the system. So, during runtime, you can
RAISE the priority of any Swi in the system. But wait, you can never lower it back? Nope,
there is no Swi_lowerPri(). Why is this? Well, think about it for a moment. Where is the
context of a Swi stored when it gets pre-empted? On the system stack — just like nested
interrupts. Higher priority Swi's stack upwards on the stack. Let’s say you had 6 Swi’s on the
stack and you wanted to demote one of them. Uh, that doesn’t work. Raising the priority
works fine because BIOS can build the stack upwards, but it can’t insert a new one in the
middle somewhere and demote a Swi. Again, if this seems limiting, Tasks are probably your
answer because Tasks can be “set” to any priority any time — why? — because they have their
OWN private stack vs. using the system stack like Hwi and Swi’s

Swi_getTrigger() — get the trigger of any Swi in the system
Swi_enable() — enables the Swi Scheduler

Swi_disable() — disables the Swi Scheduler

Swi_restore() — restores the previous state of the Swi Scheduler

These last three function calls modify the behavior of the Swi Scheduler. When might you use
one of these? Well, if you were a Task and you were sharing a resource with a Swi and you were
about to access the shared resource, you might want to disable the Swi Scheduler briefly to avoid
a conflict of a Swi pre-empting you and causing a conflict. So, you would use a
Swi_disable/restore() pair around the access to the critical resource. The author recommends
never to use Swi_enable() for reasons that are discussed in the Interthread Communications
chapter later on.

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6-9

Scheduling Strategies — FYI

Scheduling Strategies — FYI

Some folks would like to have a starting point to help them initially schedule their threads — and
there are several good options. Let’s look at these one at a time.

Deadline Monotonic — this is an ok strategy, but not used very often. You simply pick what you
think is the most important thread and make it the highest priority.

Rate Monotonic — probably the most popular scheduling strategy and the most widely used. You
look at the rate each thread must run and you prioritize them with the highest frequency getting
the highest priority. So, for example, in an audio-video system, audio would have the highest
priority because the sample rate is, say 44KHz, the video is 60 frames/second and the user input
is checked at 10Hz. There is actually a published proof on the internet that proves that if your
system is loaded (CPU load) at less than 70%, you are guaranteed that all functions will meet
realtime.

Scheduling Strategies

¢ Deadline Monotonic >
Most important = highest PRI fé

¢ Rate Monotonic
Higher Frequency = highest PRI

¢ Higher rates get higher priority
¢ Easy way to assign priorities in a system

¢ Systems under 69% loaded guaranteed to run successfully
(published proof)

¢ Stu Monotonic
All threads at equal priority A]
¢ Place all threads at equal priority and then... Mwm wﬂ“m
¢ ONLY Raise priority of threads not making real time .

¢ Dynamic Priorities
Deadline approaching = raise PRI i i@

13 TEXAS
INSTRUMENTS

Stu Monotonic — this is actually exactly opposite of the Rate Monotonic method and has actually
been used with great success. First, you place all threads at the SAME priority level. The idea
here is that if you have enough CPU load left over, the threads that get behind will actually “catch
up” when other threads take less time, thus allowing all threads to complete in real-time. You can
start your system out with these settings and then only promote one or two threads that need
promotion. The other key benefit here is the reduction of the stack size. Remember, when
threads are at the same priority, the stack doesn’t grow.

Dynamic Priorities — the author calls this one the “lack of strategy” strategy. In this model, you
monitor the most important threads and if there is a chance that one of them might not meet a
deadline, you promote him very quickly so that he gets done in time and so on. It was on a list of
possible strategies but | have yet to run into a single user that has ever used this model.

We suggest you either use Rate Monotonic or Stu Monotonic if you want a good starting point
and then go from there.

Intro to the TI-RTOS Kernel Workshop - Using Swi's

Lab 6: Blink LED Using a Swi

Lab 6: Blink LED Using a Swi

In the last lab, the timer ISR executed the toggle of the LED. The whole idea of BIOS is to make
ISRs very short. SO, in this lab, the timer ISR will POST a Swi that calls ledToggle and toggles

the LED.

This will be the first lab where you IMPORT the starter project vs. creating a new project. All of
the libraries and source files have been added for you (aren’t you excited?) in the archived starter
project. It is actually the solution from the previous lab — a good starting point.

This is the first lab where UIA will display some very useful information and you will get a chance

to see it in action.

Lab Goal:

Instead of toggling the LED in
the Hwi’s ISR, the ISR will now
POST a Swi to toggle the LED

init hw();
Timer (500ms)

BIOS_start() ;

INSTRUMENTS

Lab 6 — “Blink LED” Using Swi

Procedure

* IMPORT archived (.zip) project
(please update to the latest BIOS/XDC/UIA)

* Add Swi object (for ledToggle)

¢ Build, “Play”, Debug

¢ Use ROV/UIA to debug

* Use Log_info() to print #toggles

Scheduler

—_. ml Swi_post (LEDSwi) ; | Hwi ISR
ml ledToggle () {)
& Time: 45 min toggle (LED) i |} FpSwi
Log_info();
_ idle | - .
13 TEXAS

Intro to the TI-RTOS Kernel Workshop - Using Swi's

Lab 6 — Procedure — Blink LED Using Swi

Lab 6 — Procedure — Blink LED Using Swi

Much of the work of creating a SYS/BIOS project is done. After the initial “startup” of the previous
chapters to learn how to create a BIOS project and create a thread (like an Hwi), adding
additional services is quite easy.

This lab proves this — with minimal steps you’ll add a Swi and get an Hwi to post that Swi. In this
lab, here is the chain of events:

The timer clicks down to zero and triggers a timer interrupt (via driver library code)

Hwi runs and calls a new ISR (Timer_ISR) — (new ISR written by user)
o Timer_ISR() posts the Swi (LEDSwi) to the BIOS Scheduler — (user creates Swi object)
e LEDSwi runs ledToggle() and toggles the LED
e Processing returns to /dle waiting for the next timer interrupt (and so on)

Also, a starter project has already been created for you to streamline the project creation steps
and get you quickly into the meat of the lab. You will simply import, edit and then build and run.

Import Project

1.

Open CCS and make sure all existing projects and files are closed.

» Close any open projects (right-click Close Project) before moving on. With many main.c
and . cfq files floating around, it is easy to get confused about WHICH file you are editing.
Did you close them?

» Also, make sure all file windows are closed. Again, this will help the confusion of
modifying, by mistake, the WRONG main.c or WRONG . cfg file.

Import existing project from \Lab06.

There are two ways to IMPORT a project — either from a directory or an archive. The course
author chose to archive each starter project in a . zip file — thus, you will be importing an
archive. So, what could go wrong when importing a project? The author had to make some
assumptions about paths for header files and libraries, right?

Note: Also, if it has been a year since those projects were created that you are importing, what

else might be different? Ah — the tools — like XDC and TI-RTOS and the compiler may
have been updated since the starter projects were created. So, after importing, you may
get some warnings about “this project was created with older tools”. If this occurs, simply
open the Properties of the project and:

»choose the latest XDC and TI-RTOS tools and the compiler version.

This will be the SAME for all future labs when you import an existing project — ALWAYS
ALWAYS ALWAYS check the RTSC settings and select the LATEST tools installed on
your PC. If you have a problem later, the author gives NOT following this advice about
4:1 odds as the cause of the problem.

Intro to the TI-RTOS Kernel Workshop - Using Swi's

Lab 6 — Procedure — Blink LED Using Swi

What you are importing is the solution from the last lab (h/w timer, NOT the optional lab),
though was renamed to reflect the new lab name. The starter project is named:

Lab 06 TARGET STARTER blink Swi.zip

» Select Project 2 Import CCS Projects:

[Project] Scripts - Run Window Help
% MNew CCS Project...
@ MNew Energia Sketch...

Exarnples

Import CCS Projects...

=)

» Then select the radio button for “Archive” and browse to the archived file for this lab (C28x
example shown below):

(g

Import Legacy CC5%¢3.3 Projects...
Import Energia Sketch...

B Import CCS Eclipse Proj

Select CCS Projects to Import

Select a directory to search for existing CCS Eclipse projects,

(") Select search-directory:

@ Select archive file: CATLRTOS\C28x\Labs\Lab_06'Lab_06_C28x_STARTER_blink_SWIzip

Discovered projects:

127 blink_C28:x_SW

» Click Finish.

The project “blink_ TARGET_SWT/ should now be sitting in your Project Explorer. If not, try to
debug the problem for a few minutes and then ask for help from your neighbor.

VERY IMPORTANT FOR ALL USERS !! » Select the Project Properties and view the RTSC
tab and select the latest XDC, TI-RTOS tools revisions. 2™ time that was mentioned. This
step will need to be done for EVERY lab that imports a project (i.e. all future labs).

» Expand the project to make sure the contents are correct. If all looks good...move on...
» When you import a project like this, where is your project located?

Sure, the initial zip file was in your Lab_06 folder, but where is the PROJECT folder that
contains the files you see in the Project Explorer?

The answer is — it's in your workspace. And if you chose the default Workspace for this
workshop, your project will be located at:

C:\TI-RTOS\Workspace\ProjectName

» Using Windows Explorer — go find it and see for yourself...

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6-13

Lab 6 — Procedure — Blink LED Using Swi

Build, load and run the project to make sure it works properly.

We want to make sure the imported project runs fine before moving on. Because this is the
solution from the previous lab, it should build and run.

» Build — fix errors.

» Then run it and make sure it works. If all is well, move on to the next step...

FYI — A very important header file has been added to main.c — it's been there for every
BIOS project before...but no attention has been paid to it. BIOS adds all symbols for
statically defined objects — like the handles to BIOS objects (Hwi's, Swi’s, etc.). Make
sure you have the following header file in your code.

Remember — BIOS header files should be placed BEFORE any xWare header files.

» Look at the top of main.c and observe the folllowng #include:

|f‘ir1clude <xdc/cfg/global.h> b

Add a Swi to the System

4,

Create a Swi object.

» First, open app.cfg and see if Swi is a service contained in your app.cfg file. It
shouldn’t be there because we are using the minimal app . cfg as the starting point (just like
the last lab). If you used “Typical’, it would already be there.

» Via Available Products, add Swi to your app . cfg file.

» Once added, added a new Swi instance — give it the name LEDSwi and point it to the
proper function.

2 “app.cfg i

» SYS/BIOS ' Scheduling * Swi - Instance Settings
Module Adwvanced

- i * Required Settings

Handle LEDSwi
Function 777777]

Interrupt pricrity -1

Initial trigger 0

Remember, when the timer triggers the Hwi, it will post THIS Swi you are creating.

Which function do you want the Swi to run when it posts?:

» Once again, try right-clicking on any field and select HELP for more info. See what it says.

Intro to the TI-RTOS Kernel Workshop - Using Swi's

Lab 6 — Procedure — Blink LED Using Swi

The default priority is -1. What does this mean? It means, interestingly, the HIGHEST Swi
priority. First, let's make a mistake with the priority setting and see how BIOS reports the
error....

» Choose “Interrupt priority” 42 (which does not exist) and save app.cfg. What happens? It
validates (checking for errors in your Swi object parameters).

The tools report back with lots of red marks. There is one next to the Priority parameter:

&
Interrupt priority® 42 '

Also in the Outline View:

4 @ Swi
g LEDSwi

And in the Problems window:

4 @ Errors (1 item)
B Swi pricrity (42] rust be less than Swi.numPricrities (32).

So, this validation process works — and trust the author when he says that this validation
process catches user errors — and this is a good thing. Wouldn’t you want to know NOW that
there is a mistake vs. during build time? The sooner you know, the better.

In the last error message there, it says “must be less than Swi.numPriorities (32 or 16)”. What
does this imply? It implies that there is a max number of Swi Priorities on each architecture:

e 32 Prilevels on C6000/Tiva-C
e 16 on C28x/MSP430
e FYI —this limitation is based on the size of an “int” on each architecture

» Click on Module in the Swi configuration dialogue to see the default setting of Swi
priorities:

+ Global Swi Options

Murnber of pricrities E

If you are a C6000 or Tiva-C user, you can modify this setting to as high as 32. Swi priorities
go from 0 (lowest) to (Swi.numPriorities — 1) where Swi.numPeriorities is shown in the box
above. Can you set this number LOWER than 16? Sure. But just leave the default (16) as is
for now.

» Now, click on Instance and change the Priority of LEDSwi to “1”.
» Save your .cfg file

Now when you POST this Swi with the following command, what is the HANDLE you use as
the parameter to the swi_ post () call?

Swi post (?22?7?): P27 =

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6-15

Lab 6 — Procedure — Blink LED Using Swi

Add New ISR and Modify Hwi

When the timer goes to zero and triggers an interrupt, we want to call a function (ISR) that posts
our new Swi. So, we need to modify the Hwi (to call the new ISR instead of ledToggle) and create
a new ISR that posts the Swi. Let’s create the new ISR first...

5. Add a new function for your ISR.
» Open main.c for editing.

» At the end of the file, add a new function named Timer ISR:

¥

184 void Timer ISR(woid)
185 {

136 Swi post(?2272);
67

La8 }

» Fill in the proper parameter for the Swi post () — which is the handle of Swi you created
earlier.

Tiva-C users — » you must move the following line of code (TimerIntClear...) from
ledToggle() to just above the Swi post () in Timer_ISR() (as shown) because this function
clears the Timer’s interrupt flag in the peripheral. If you don’t move it, your code won’t work.

void Timer ISR(wvoid)

1

TimerIntClear (TIMER2_BASE, TIMER_TIMA_ TIMEOUT);

Swi post(?2222%;

ALL USERS: » Save main.c.

6. Modify the Hwi to call the new ISR.

When the timer triggers the interrupt, we want the Hwi to call the ISR (that posts the Swi).
You just wrote this new function so:

» modify the Hwi object in . cfg to call this new ISR function. No need to change any other
values in the Hwi config — we still want the same Timer vector number, etc.

» Save your . cfg file.

6-16 Intro to the TI-RTOS Kernel Workshop - Using Swi's

Lab 6 — Procedure — Blink LED Using Swi

Build, Load and Run...

7. Build, Load, Run
» Build, load and run your code.

This says it all. That's it. You now have an ISR posting “follow up” activity to a Swi that is
under software control.

Is your LED blinking? If not, debug for a few minutes and then ask your instructor.

Right now, | hear the naysayers saying “so what? What’s the big deal?” Yes, it was a very
small step, but what it represents is far greater than a lab in a workshop can portray:

e Your ISRs are short and therefore no nesting is required (nesting can be a nightmare)

e You can have an unlimited number of Swi’s in your system — unlike the fact that the
number of hardware interrupts are limited by hardware.

e If you had multiple Swi’s, to re-prioritize them takes seconds via the priority parameter,
then you simply rebuild and run vs. having to hack ISR code to manage nested interrupt
priorities. Ah, life is better...

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6-17

Lab 6 — Procedure — Blink LED Using Swi

Use UIA and ROV to Debug Application

Now that we have a few things running in our system (Hwi, Swi, Idle) and UIA should look a bit
more interesting.

8. Terminate your debug session and make sure you’re in the Edit perspective.

9. Configure UIA settings.
Before we move on, we want to make sure UIA is set up properly.

Click on LoggingSetup in your . cfg outline: @ LoggingSetup

Make sure your setup matches this:

+ Built-in Software Instrumentation

RTOS Execution Analysis
Task Context (Always o
RTOS Load Analysis

[¥] Swi Context) [Hwi Contesxt DSemaphnres

CPU Load (Alwayson) [|Taskload []Swiload [Hwi Lead
[] Task Profiler More Info...

Make sure the following is enabled:
e Task Context, Swi Context (Swi is crucial, see circle above)

e The rest of the settings should be just fine (copied from last lab)

Note: Just a note on Hwi logging. It is helpful to be able to track Hwi’s in the system. The choice
is to track ALL of them or NONE of them (a feature has been requested to the TI-RTOS
team to be able to track only specific Hwi’s, but this feature does not exist in the current
UIA tool). But we have only one Hwi, right? Nope. There are two other Hwi’s supporting
the Clock and Timestamp services in BIOS, so if we turn on Hwi logging, those other
interrupts would dwarf our timer interrupt and we just wouldn'’t see it.

Shortly, we will show you via ROV which interrupts are used implicitly by BIOS. This is
important information because you don’t want to write code that conflicts with the
interrupts used by BIOS “under the hood”.

» Save .cfgq.

6-18 Intro to the TI-RTOS Kernel Workshop - Using Swi's

Lab 6 — Procedure — Blink LED Using Swi

10. Clean your project.

This is really not necessary here, but it is a skill that you will need to know. Sometimes, object
files or other “stuff” gets stuck and not properly rebuilt and a “clean build” is sometimes
necessary. If you've been around the block with any tools, you know the story.

» Right-click on your project and select “Clean Project’.

» Delete the Debug and src folders from your project.

Note: The Debug folder was created by CCS and contains your object files and .out file — so
this is a generated folder. The src folder is generated by BIOS, so it can be deleted also.
Just be careful when “cleaning” (deleting) these folders that you don’t accidently delete
something important.

11. Build your project and get ready to run — but DO NOT RUN YET.
» Build your application.

We want you to run for FIVE (5) blinks of the LED. So after you hit PLAY, count 5 blinks and
then hit PAUSE.

» Ok — NOW play, count to 5, and pause/halt. Our goal here is to observe a few things in the
RTOS Analyzer and ROV. You have now captured the proper data to see some useful
graphs and info.

12. View the Live Session display in the RTOS Analyzer.
» Select: Tools 2 RTOS Analyzer 2 Execution Analysis (then Start it)

Time Master Message Event EventClass Datal 3
: 0 Caioc LD ready: tsk: 0xald0, func: (kadbSeb, pri: 0 Task LD ready Unknown ti sysbios_knl Idle loop_E()

153966 C28ac LM_switch: oldtsk: 00, oldfunc: i), newtsk: Oxaldd... CtaChg TSK ti_sysbios_knl_Idle_loop_E()

500095811 C28xc LM_post: swi: 0xald0, func: (x3da29d, pri: 1 Post SWI ledToggle()

500181200 C28xx LM_begin: swi: (xalB0, func: (x3da29d, preThread: 0 Start SWI ledTeggle()

500226022 C28oc [../main.c:106] LED TOGGLED [1] TIMES Leg_L_info Unknown

500270111 C28xx LD_end: swit Oxald0 Stop SWI ledTeggle()

500356177 C28Bec LS _tasklLoad: (xald0,44992679,45027155,0:3 db%eb Load TSK ti_sysbios_knl_Idle_loop_ E{)

500404532 C28x LS_cpuload: 3% Load CPU CPU

Wow, a whole bunch of data. Raw logs actually is a display of every “event” that BIOS stored
in the System Log — lots of stuff even for a simple application like ours:

So, what do you see? Lots of stuff:

e Theresults of Log info () telling us how many times the LED was toggled
e When the Swi was posted, started and stopped

e The CPU Load calculation and the timestamp (Time) in nanoseconds.

This is a ton of information which can be very helpful during debug. Do you think a graphical
representation of these events would be helpful? Of course — that's what the Execution Graph is
— a display of all these system log events...

Hint: IF THE RTOS ANALYZER DISPLAYS SEEM TO NOT BE WORKING PROPERLY...
Make sure you added Swi Logging and then try again. Close the RTOS Analyzer
windows, run, halt, then open them up again.

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6-19

Lab 6 — Procedure — Blink LED Using Swi

13. Use the Execution Graph.

» Select Execution Graph

This will display the events in your system via a graph. The SCOPE of what you are looking
at varies depending on the frequency of the events. You can zoom in or zoom out and take
measurements on the graph for profiling when events occur.

In the upper left-hand corner of the display, you’ll see some “+” signs and the services shown.

» Expand the “+” signs and zoom in/out to match approximately the diagram below (C28x is
the example) — FYl — most users need to ZOOM OUT to see things:

El Conscle | T Control Panel | BB *Live Session | i}, Execution Graph &2

“ E1C280cESwi
Post Pl Pl
Start [[
stop] 1
| C2800 05
#5wiledToggle()
Task.ti_syshios_knl_Idle_loop_ E()

So we can see the following:
¢ |dle dominates the whole picture (represented by the bar at the bottom)

e We can see when the Swi is posted, starts and stops — very handy

¢ And we can see the ledToggle() fxn running when it is started by BIOS.
» Zoom in *,_ '=, [on one of the ledToggle() routines...

FYI — if you click on the graph (and it makes a red vertical line BEFORE you zoom in), the
zoom will focus on that event. It looks like this:

El Console | & Control Panel | Bl *Live Sessien | [y Execution Graph &2

* EC280c#Swi
Post Fad
Start L
Stop]
- C2800 05
#5wi.ledToggle()
Task.ti_sysbios_knl_Idle_loop__E()

It shows the Post, Start and Stop of the Swi (LEDSwi) and you see the ledToggle routine
running. IF, we were logging Hwi’s, you would see the Scheduler run between the Post and
Start of the Clock Swi. And, of course, Idle is the dominant thread running here.

So, how long does it take to toggle the LED on your target? Who knows... who cares...but
we know you’re an engineer and you WANT to know or you cannot sleep at night. So
hopefully there is a way to PROFILE on these graphs...

Intro to the TI-RTOS Kernel Workshop - Using Swi's

Lab 6 — Procedure — Blink LED Using Swi

14. Profile the ledToggle routine on the Execution Graph.

» Zoom in (you'll find the zoom +/- shortcuts on the Execution Graph toolbar just above the
graph) to the ledToggle routine so that you have a good view of it — something like this:

j—
P S

P PR

There is a measurement marker that you can use to benchmark how long this routine took on
your target. You will lay down TWO markers and the tool will take a measurement between
them.

» Select the measurement marker: é"i

» And lay down two markers (X1 and X2) on the left and right respectively (you get to
choose where you lay down markers):

s X2

T T T T
3,500,191 3,500,211 3,500,231 3,500,251 3,500,271

Time_(us)
i mtaie i,

And you'll see in the top left-hand corner a benchmark of (C28x is the example below):

¥1: 2,000,080 X2:2,000,090 X2-X1 =11 ’i

11 what? Cycles? Days? No — it is the units on the graph — microseconds. The units change
as you zoom in and zoom out, so knowing the UNITS and the NUMBER is important.

» What is the unit of time on the x-axis on YOUR graph?

» What is the actual benchmark number (X2-X1) you observed?

The author viewed the following results (Swi_enter to Swi_exit):
o (C28x: 991 cycles (11uS @ 90MHz)
e (C6000: 433 cycles (1.43uS @ 300MHz)
e MSP430: 1500 cycles (183uS @ 8.192MHz)
e TMA4C: 520 cycles (13uS @ 40MHz)

Note: this includes Swi overhead, call to ledToggle() and code to toggle the LED via GPIO. In
the next lab, you will benchmark the exact hardware cycles to toggle the LED/GPIO.

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6-21

Lab 6 — Procedure — Blink LED Using Swi

15. Check CPU Load.

A much less exciting view of the world is CPU load. But, it can be important.

CPU load is calculated by TIME NOT SPENT IN IDLE. So what if you had a system that had
15 Idle functions and that was it? No Hwi or Swi or Tasks — all Idle functions...

» What would your CPU load be? %

If you put anything down but zero percent, please check the drugs you are using or the
therapist you are seeing. If you spend 100% of the time in Idle, then your CPU Load is 0%.

You may see a note that says something like “CPU Load is not accurate because Swis and
Hwis are not tracked” — even if you ARE tracking Swis. This just means that if you are not
tracking Hwis (which take a ton of logging buffer space because they happen often), the CPU
calculation does not include the time spent in Hwis. For our little system, this is not a big deal
(one Hwi per half second). And, if you continue to have short ISRs (a couple real-time reads
and a post of follow-up activity), the CPU Load should continue to be fairly accurate.

However, if your ISRs are long and you don’t track Hwi's, then your CPU Load won'’t reflect
time spent in the ISR.

So, when are we spending time outside of Idle? When we are processing the ISR (which is
not much) and when we are toggling the LED in the Swi. The CPU load will be wildly different
based on the target you are using, but let’s see what it is for you....

» Select CPU Load to see this graph:
=

2,190 2,390

Ry

R -

Load%
-
fo

FYI — you can zoom vertically as well as horizontally — or both. The easy way is just to
highlight (drag a square from Load 0-5) and release it or...

Reset

Horizontal Zoom
& \Vertical Zoom
Both Directions

» Click the down arrow as shown and choose “vertical” and then zoom in:

The C28x shows about 1% load. Again, your mileage may vary depending on your target.
Whether this is important information to you or not is up to you — but now you know how to
display it. Remember, the Raw Logs (or Live Session) also told us this same info:

)

Tirne Error Master Message

4500085133 C 28 [../rmain.c:113] LED TOGGLED [9] ...
5000038255 C28xx L5_cpuload: 1%

Intro to the TI-RTOS Kernel Workshop - Using Swi's

Lab 6 — Procedure — Blink LED Using Swi

16. Conclusion.

You have now seen a bit more of the power of the UIA and RTOS Analyzer. Remember, we
are using the STOP MODE JTAG transport protocol. This information can be sent over other
protocols like a UART or Ethernet. The “how” of this is beyond the scope of this workshop —
but at least you've been exposed to the kinds of info that the RTOS Analyzer can display.

In future labs, you’ll be asked to perform some of these tasks without all of the screen
caps...so hopefully you paid attention.

17. Terminate your debug session and close your project and all files.

You're finished with this lab. Please raise your hand and let the instructor know you are

finished with this lab and then go help a neighbor with their lab...or watch your
architecture videos...or be devious and enjoy the pleasure of watching other people
struggle through the lab or be lazy and play a game on your smart phone...

Intro to the TI-RTOS Kernel Workshop - Using Swi's 6-23

Notes

Notes

6-24 Intro to the TI-RTOS Kernel Workshop - Using Swi's

Using Clock Functions & TimeStamp

Introduction

This chapter is all about the TI-RTOS Kernel Clock module and Clock functions. Often there is a
ton of confusion about what the Clock Module does and does not do for users including which
timers BIOS uses by default and how to change those defaults.

After the Clock Module info, we will also explore how to use Timestamp — a handy set of functions
that allow you to benchmark you code and then send out a log message with that info and see
the results in the RTOS Analyzers.

In the lab, users will program the Clock Module to create a tick rate every 500ms which will trigger
an Hwi and a Swi that will call the ledToggle() function. The timer, Hwi and Swi are all contained
inside the Clock Module and Clock Function. We will then benchmark how long it takes to toggle
the LED on the different architectures.

Objectives

Objectives

= Describe how to configure Clock Functions
to execute periodically

= Use Timestamp to benchmark code

= Review basic debug tools and UIA

= Lab 7 - Add Clock Fxn and use Timestamp to
provide benchmarking

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7-1

Module Topics

Module Topics

Using Clock Functions & TimeStamp.........cccccciiiiiicciimmieniisssccssesesssssssssssssss s s ssssssssmsssssssssnsnns 71
MOQUIE TOPICS ...ttt e ettt e e e e et e e e e 7-2
CIOCK MOQUIE ...ttt e e e e e e st e e e st e e enanneaeen 7-3

Can TimMeE DE AN EVENTE 7 ... ittt et e et abababsbsbsbsbsbabssnsnsssnsssnrnnes 7-3
CloCKk MOdUIE — HOW it WOIKSuuuiiiiiiiii bbbt baaabsbsbsbsbnsnsnssbnenrnnns 7-4
Clock Module — How to CoNfiIUIre Ttooiiiiieie e 7-5
(07 oTo @ iV [lo1 (o] 1 K JUU U U U 7-6
Clock Functions — HOW TheY WOTKuuiiiiiiiiee et 7-6
Clock Functions — How to Configure Themccciiiiiiiiiiiee e 7-7
TimeStamP — HOW ft WOIKS ...t a e 7-8
TI-RTOS Kernel — Timer and CIOCK USAQE...............ooeaiee oo 7-9
Lab 7: Clock Functions & TimeStamP..........cooneeeeeeeeeeeeeeeee e 7-11
Lab 7 — Procedure — Blink LED USING CIOCK SWiccccccuueeiiieeeesiiiiiise et 7-12
IMPOM PrOJECT. ...ttt e e e e s 7-12
Add a Clock and Clock Function to the System ..., 7-13
L2011 (o R (o Y= To IE=Ta o I (U o TR 7-15
Using TimeStamp (Benchmarking)coooiuiiiiiiiiiei e 7-16
INOTES ...ttt ettt e ettt e e e e e 7-24

7-2 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

Clock Module

Clock Module

Can Time be an Event ?

So far, we have been dealing with events like a interrupt being triggered. Of course, this was the
result of a TIMER reaching zero, so, of course TIME can be an event. But those interrupts could
have come from a UART or serial port or 12C channel as well.

So, YES, time can be an event and the piece of hardware we will use will be...wait for it...a
TIMER. ;-)

But, if you had 5 functions that you wanted to be time-based and only had 2 timers, how would
solve this problem? You might use one timer to go off at the smallest rate based on the need of
how often these 5 functions need to run. Then, in the ISR, you would calculate some sort of
multiplier and then possibly call the other functions when their “time is up”. So yes, you could do
this with your own ISR and timer. And, if you’ve been paying attention in this workshop, you may
even post Swi’s for each one of these 5 functions so that every function is not running in the
context of an ISR — good thought.

Time Can be an Event

What kinds of events cause these threads to run?

g“ﬂ retum ED\,?Q‘ return f:lﬁ'tz retun ’;‘f’fzt return

e post posy
semlgem2

return

return

Swi2

Swi1 pend

pend sem2

sem2

end
semZ

interrupt

Task 2

Task 1 TTTTTTTTTTTT

interrupt

interrupt

Idle 5 A A A [TTTTTTTTT

interrupt

Events over time

¢ Can “time” be an event?
¢ Which hardware peripheral would you use?

¢ How do you configure a function to run at a periodic rate?

i3 TExAS SYS/BIOS offers Clock services to set up periodic functions...
INSTRUMENTS

So, an RTOS provides services to users and TI-RTOS is no different. In this chapter, we will
explore the Clock Module and Clock Functions to see how this service works. To solve the
problem we posed above is the exact reason why the BIOS Clock service was invented — to use
ONE timer and trigger multiple functions from this single timer.

The Clock Module will create the System “Tick” rate (the lowest common frequency) and then you
can set up as many Clock Functions as you want to trigger on multiples of this “Tick” rate. BIOS
will steal a timer from your system and program it for you to the “Tick” rate you specify. It will
create an ISR for you and take one of your interrupts as well. It will then create a Clock Swi to
perform the calls to the Clock Functions at the “number of ticks” you specify for each.

So let’s go take a look at how all of this works...

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7-3

Clock Module

Clock Module — How it Works

The Clock Module is literally the heartbeat of the system for functions that need to run at specific
time intervals. This is what we call the “Tick” rate. In order to create a “Tick” rate, BIOS needs a
timer, an ISR and a Swi. The user will specify the Tick rate and which hardware timer is used and
the priority of the resulting Clock Swi. BIOS does all the rest.

In the diagram below, you can see that the user will specify 4 items in the .cfg file:

e Priority of the Swi (Clock Swi)

¢ Time Base (use an internal timer or manually advance the clock tick)

e Timer number — which hardware timer to use

e Tick rate — the smallest rate at which Clock Functions will be triggered (smallest choice is
1uS) — but remember an interrupt will occur every Tick, so choose wisely

app.cle Clock Module

* Priority ---H--------------------mm - 1
. T!me Base -f--/--o o ____ : J \
e Timer# -———f-"F-—~""""- | i Clock Swi

> “ready to run”
Clock_tick() k %\) Clock Fxns

Makes setting up a hardware timer very simple — user specifies
tick rate* (uS) — Clock module programs Timer, Hwi, ISR and Swi

2

Allows user to create different event rates from a single timer
User can choose time base — timer or app calls Clock_tick()

Explicit call of Clock_tick() could occur from your own ISR (GPIO, etc.)

* 6 o o

Clock Swi launches periodic functions after N ticks (details coming up...)
*Hint: choose a tick rate that minimize # INTs (least common multiple)

i3 TExas How do you configure the Clock Module?

INSTRUMENTS

BIOS will then create the ISR and program the hardware timer based on the Tick rate specified
by the user. It will also create a Swi that will run when the Tick goes off and call any Clock
Functions that need to run on that specific “Tick”.

Most people use the internal hardware timer to create the clock tick. However, if you have some
external clock that you want as the time basis, you can use the “backdoor” function Clock _tick() to
advance the tick. When this external event occurs, a function runs and you can place a call to
Clock_tick() to advance the “Tick” and then this becomes the time basis for all Clock Functions.
This option is not chosen very often, but it is there if you need it.

Choose the “Tick” rate carefully. If you have 5 functions and the fastest one needs to run every
1ms, don’t pick a Tick rate of 1uS — you’ll have 1000 interrupts for every ONE that you actually
need and this will hog system resources.

Also note that this Tick rate is also the time basis for timeouts on blocking calls, like
Semaphore_pend().

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

Clock Module

Clock Module — How to Configure It

Ok, now that you know what the Clock Module is used for — how do you actually configure it? As
always, you must first add the Clock Module to your app.cfg file either by dragging it from the
Available Products window to the Outline View or use the “right-click Use” method.

Once the Clock Module is in your app.cfg file, click on it and the dialogue at the bottom of this
slide will display.

Configuring the Clock Module (GUI)

@ Use Clock (Available Products) |4 B Scheduling

© Task @ BIOS
B Swi
M Huwi @& Boot

¢Y die @ Clock
7 Clock

@ Timer

@ Configure Clock — Clock Input, Tick period, Timer, Swi priority:

» SYS/BIOS * Scheduling * Clock - Module Settings @
app.cfg 4 9 g
. Priority ~ Time Base ~ Scheduling
* Time Base]) — - ——> Swi priority 15
o Timer # I~ @ Internally configure a hal Timer to periodically call Clock_tick() The pricrity above sets
) Application cede calls Clock_tick() all Clock functions ind
* Tick rate (uS) 7 The Clock module is disabled their period. Higher nu

~ Timer Control

Tick peried (us) 1000

Timerld ANY -
P TN ol o= e |
Note: Tiva/MSP430 users can also suppress clock tick interrupts to save power and/or stay in sleep mode
i3 TExas
INSTRUMENTS

In the previous discussion, we showed you four items that the user was able to configure — Swi
priority, time base, timer number and tick rate. Here, we show where each of these is specified in
the configuration window. Let’s take one at a time:

Priority — this is the priority of the Swi that BIOS will create and will run when the timer expires.
There is ONE Swi that runs and inside that Swi will be calls to your Clock Functions at the
intervals you specify for each function. You can modify the priority of this Swi vs. the other Swi’s
in your system — either higher or lower. The reason the Clock Module uses a Swi is that it needs
to guarantee that all clock functions that may occur on ANY tick ALL have to complete within one
system tick. If this were a Task, there might be too many higher priorities in the system that would
pre-empt these functions and not be able to meet the time limit of one system tick.

Time Base — you can see three choices: (1) Use the hardware timer — which is what 95% of
users choose — that’s the default; (2) application calls Clock_tick() manually — this is the
“backdoor” option where you can manually advance the tick in any function you choose; (3) the
Clock Module is disabled — the author thinks this choice is bogus — it’s like saying go right and left
at the same time — | want to use the Clock Module — | do NOT want to use the Clock Module. We
think this option will not be shown in future releases of XGCONF (XDC Tools).

Timer # - there is no arrow pointing this one out, but you can see the Timer Id dropdown box.
Users can select which timer is used to program the Tick rate.

Tick rate (uS) — here, users can specify the exact tick rate for the system in microseconds.

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7-5

Clock Functions

Clock Functions

Clock Functions — How They Work

So, when the “Tick” goes off, the Clock Swi is posted to run and will run at the priority specified by
the user. When this Swi runs, it will figure out WHICH Clock functions need to run and then call
them when their interval is reached.

Let’'s say you had three functions that needed to run at 1ms, 5ms and 10ms. You set the tick rate
to 1ms — which is the smallest timing you need. BIOS will call the first function every tick, the next
one every 5 ticks and the last one every 10 ticks — all within the context of this Swi thread.

On the tenth tick, what happens? All three functions are called. What happens if the execution
time of all three of this functions added together is longer than one tick time? Ooops. It is similar
to having 3 function calls inside of an ISR. If you get another interrupt before these functions
complete, you are not meeting real-time. The same limitation exists here.

Clock Functions

@ For each Clock Function, user specifies function to run and # ticks
between runs (period)

¢ “Tick” launches Clock Swi which compares running
“tick count” with “period” to determine if each fxn should run:

/ Clock Swi \ Clock Fxn 2

Clk Fxn 1 void doThis()
; {
Tick Clk Fxn 2 ---F---> CheckUsr();
doAlgo();

}

Clk Fxn n

- \/

¢ Clock Functions must complete within one System Tick

|
i

Break long functions into multiple threads (if needed)

i3 TExas How do you configure a Clock Function?

INSTRUMENTS

To avoid the problem described above, you can break long functions into multiple threads by
posting other Swi’s in the system that are lower priority than this Clock Swi. So, your Clock
function could be as simple as posting another Swi — fast, done, takes no time at all.

Here is a better problem, however. What if you have a Task-based system and your HI PRI
threads are Tasks and you want to use Clock Functions? Clock functions are Swi’s which will pre-
empt ANY Task in your system. Uh oh. Problem. Well, not really. Let’s pose the following
scenario:

You have a Task priority 10 that has the highest priority in your system. Ok. But you also have a
thread that needs to be triggered every millisecond that needs to run at a LOWER priority than
Task 10. Can you use a Clock function — running as a Swi to do this? Yes — simply do a
Semaphore_post() in the Clock fxn to unblock the lower priority thread. We will actually do this in
the lab to make the point even stronger...

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

Clock Functions

Clock Functions — How to Configure Them

Now that you have learned how Clock Fxns work, let’s look at actually HOW to configure them.
Here is a confusing point. When you add, for example, Swi to your .cfg file and you right-click and
select “Insert new Swi...”, you are adding an INSTANCE of a Swi to your configuration. This
makes sense. However, with the Clock Module, when you right-click and select “Insert new...”,
you are actually adding a Clock Function — not an instance of the Clock Module — like having two
Clock Modules. We mention this because we’ve seen users get confused — so now you know.

So first you add the Clock Module to your app.cfg file. Then right-click and select “Insert new...”
and a dialogue box will display (isn’t this getting a bit redundant? Yes — but that is good...)

Configuring a Clock Fxn — Statically via GUI
Example: Trigger ledToggle () every 500 ticks

@ Insert new Clock Fxn (Outline View)
3

@ BIOS
@ Boot

a @ Clock
@ ledToggleClk

@ Configure Clock Fxn — Object name, function, init timeout, period:

+ Required Settings

For “one-shot”, set initial Handle ledToggleClk
timeout to”value”, then }
set period =0 ~_ Function ledToggle

> Initial timeout 500

To START the Clock Fxn at _| Period 500
runtime, check this box B [¥] Start at boot time when instance is created
i3 Texas
INSTRUMENTS

When the dialogue appears, you have the following choices:

Handle — this is the name of the object — just like any BIOS object we’ve created so far.

Function — again, just like all the other objects you have created, which function do you want
to run when the Clock Swi is triggered?

Initial timeout — you can set the initial timeout to a different value than the periodic interval if
you prefer. For standard periodic functions, this value matches the next setting of “Period”
and is in units of Ticks (which you specified in the Clock Module previously). But what if you
have a “one-shot” function that you want to run only ONCE and never again? You set this
value to the number of ticks you want after BIOS_start(), this function will be placed on the
Scheduler then, executed, and never run again. However, you can RESET a one-shot
whenever you like. The time starts again and this function run once after the reset of this
function. Lots of options.

Period — this is the interval (in system ticks) you want this function to run. For one-shots, set
this value to zero.

Start at boot time... - check this box if you want BIOS to start the timing at BIOS_start(). If
not, you can elect to start the timer later in your code with Clock_start(). Most users simply
select this checkbox and allow BIOS to control the start time. The text is a little confusing with
the words “boot time”. This actually means at BIOS_start() — when the BIOS Scheduler starts
— not at “boot” when a hardware reset or “boot” occurs.

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7-7

Timestamp — How it Works

Timestamp — How it Works

The BIOS Timestamp module is great for benchmarking anything in your application code. In this
chapter, you learned about the Clock Module which requires a hardware timer from your device.
The Timestamp module will ALSO require a hardware timer which can be a different timer than
the Clock Module or you can combine the use of one timer for both services.

For MCU users, you can either choose a different timer for Timestamp than the Clock Module or
combine the services on one timer. For C6000 users, there is a dedicated free-running 64-bit
timer on the silicon called the “Time Stamp Counter High/Low” that is used by the Timestamp
module by default.

Timestamp — Benchmarking Code
4 How do you benchmark code in real time?

¢ Use the Timestamp Module

(c6000) | TSCH/L >

Timestamp

(MCU) | Timer >

4 C6000 devices use Timestamp Counter Hi/Lo (64 bit)
& Other devices typically use a system timer as input
Use the following APIs to take a snapshot of time or freq:

Time (CPU cycles) CPU Frequency (Hz)
uint32 t start, stop, result; Types_FreqHz timestampFreq;
start = Timestamp get32();

myAlgo(x,y,z) ;

stop = Timestamp get32() ; Il returns timestampFreq.lo in Hz
result = stop - start;

Timestamp_getFreq(×tampFreq);

* What if myAlgo gets pre-empted? Which h/w Timers are used for Clock and
« Note: rollover handled by 2’s complement math Timestamp for each architecture?

The key function call is shown above — Timestamp_get32() — which will return a 32-bit snapshot
of the timer. In this example, we are calculating the time it takes for myAlgo() to execute. You
simply take a snapshot before the function runs as well as when it completes and thensubtract
the two snapshots to get the benchmark.

In this scenario, there are two items to point out:

1. Why would the benchmarks be different every time? Well, what if myAlgo() gets pre-
empted during execution? This benchmark will include all pre-emptions — so it is NOT a
static benchmark of the function’s execution time. It is kind of like asking how long it will
take you to drive “downtown”. Your response would be “that depends on traffic’ — as is
the case here as well. When the benchmark is done, you could simply add the “result” to
a log message and see it in the RTOS Analyzer — as you will do in the lab.

2. What this code does NOT show is that Timestamp_get32() actually takes cycles to run
depending on the speed of the memory it is running in. To get a perfectly accurate
benchmark, it is best to benchmark Timestamp_get32() itself and subtract this time from
the final result.

If, for some reason, you would like to know the current frequency the CPU is running at during
runtime, you can use Timestamp_getFreq() to accomplish this.

7-8 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

TI-RTOS Kernel — Timer and Clock Usage

TI-RTOS Kernel — Timer and Clock Usage

Shown below is a table noting each timer that is used for each service by default for each
architecture as well as other options you have as the user.

Listed down the first column are the services and options you have. Let’s take the C28x as an
example:

Timer 1 is used, by default, for the Clock Module service
Timer 2 is used, by default, for the Timestamp service

These two timers are NOT combined by default — so if you add both services to your app.cfg
file, you will be consuming two hardware timers

Users can combine both services on one timer if needed — but note that the Timestamp APIs
will take longer to execute in this combined mode.

Users can modify the default clock source used by this timer — this is especially important for
MSP430 users because the default clock source is ACLK which runs at 32KHz — not a very
fast timer to do benchmarks with. Change it to MCLK for better performance (as noted below
the table).

The default clock rate is the CPU — which usually is not modified by users.

SYS/BIOS - Timer Usage

¢ BIOS adds implicit Clock/Timestamp services to every .cfg file.

& System Ticks are used for TIMEOUTSs on blocking calls — e.g.
Semaphore pend (Sem, timeout);

@ Let’s take a look at the timers/clocks used by BIOS:

Service C28x C6000 | MSP430 | TMAC
(c(:Z::ult clk) Timer 1 Timer 0 Timer AO Timer 0
TimeStamp .))

T 2 TSCL/H T Al T 1
(default Clk) imer SCL/ imer AO imer
Combined by
Default ? N N Y N
User Combine? Y N Y Y
Modify Clk Src ? Y Y Y Y
Default Clk Rate CPU CPU 32kHz CPU

Note: MSP430 Timer-A0 defaults to ACLK (32KHz), can be changed to MCLK (CPU)
i3 TExas
INSTRUMENTS

So, just pick your architecture and note the options and settings you have. The most DIFFERENT
of all of these is the MSP430.

Note: MSP430 USERS - please note that ACLK — running at 32KHz is your default clock rate.

This is VERY slow and will not give you very accurate benchmarks or timings for Clock
Functions. The first thing you should do when you create a project is to change this
setting to MCLK. Also note that BIOS will combine the use of Timestamp and Clock to
use one timer by default. These settings were chosen as default in order to save power —
but users can change them if necessary.

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7-9

TI-RTOS Kernel — Timer and Clock Usage

***HTTP ERROR 404 — PAGE FOUND BUT TOTALLY BLANK — CONTACT SYS-ADMIN ***

7-10 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

Lab 7: Clock Functions & TimeStamp

Lab 7: Clock Functions & TimeStamp

This lab will introduce two time-based SYS/BIOS services — Clock and Timestamp. Clock lets us
create periodic (and one-shot) functions while TimeStamp provides a timebase you can access
from your programs

Other SYS/BIOS services make use of both of these services. In fact, we’ve seen hints of this in
previous labs. This lab explores the “explicit” use of these services.

As a historical note, DSP/BIOS (BIOS 5.x) provided both a Clock and Periodic (PRD) services to
create a similar set of functionality. SYS/BIOS (BIOS 6.x) has streamlined these services into the
current modules.

Note: Using Clock will be covered in the main lab.

TimeStamp and UIA analysis are covered in the optional lab.

Lab 7 — “Blink LED” Using Clock

Lab Goal: Procedure

Instead of toggling the LED in a
Swi, the Clock module contains
the trigger (timer), Hwi and Swi e Add Clock object (for ledToggle)

e Import archived (.zip) project

main.c ¢ Remove Timer, Hwi, Swi !!
main() { * Build, “Play”, Debug
init hw();

//Timer (500ms)

¢ Use TimeStamp/UIA to benchmark your code

BIOS_start() ; e Lots of TIME calculations regarding LED toggle
} e Everything is done “inside” the BIOS Scheduler
Clock ledToggle () {
i Tick | Clock Clock toggle (LED) ;
€ 0:00 Hwi Swi Log_info() ;
BIOS Scheduler }
i3 Texas ¢ Time: 45 min

INSTRUMENTS

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7-11

Lab 7 -

Procedure — Blink LED Using Clock Swi

Lab 7 — Procedure — Blink LED Using Clock Swi

In this lab, much of the work is just deleting code we’ve already written because BIOS Clock will
do everything except write our algo — which, as always, is the ledToggle() routine. BIOS Clock is
VERY flexible. You can have 5 or 10 or 17 functions being driven by ONE timer with virtually zero
work on the programmer’s part.

What work is required? Pick your tick rate and set up each clock function with the #ticks and the
function and you’re done. Way too easy — and extremely powerful.

Once you set up Clock and a Clock Function, here is the chain of events:

e Clock timer clicks down to zero and triggers a timer interrupt

e Hwiruns and posts Clock Swi

e Clock Swi determines if any Clock Functions should run and if so, calls them (in our case,
it would be 1edToggle ())

e ledToggle () runs and toggles the LED and then returns back to /dle

Again, the starter project has already been created for you. You will simply import, edit and then
build and run.

Import Project

1. Open CCS and make sure all existing projects and files are closed.

» Close any open projects (right-click Close Project) before moving on. With many main.c
and . cfq files floating around, it might be easy to get confused about WHICH file you are
editing.

» Also, make sure all file windows are closed. Like your mom told you...”please clean up
your workspace !”

2. Import existing project from \Lab_07.
Just like last time, the author has already created an archived project for you.
Import the following archive:
Lab 07 TARGET STARTER blink Clk.zip
» Click Finish.

The project “blink_ TARGET _CLK’ should now be sitting in your Project Explorer. If not, try to
debug the problem for a few minutes and then ask for help from your neighbor.

» Right-click on the project and make sure the latest tools are selected: compiler, XDC and
TI-RTOS. Again, any time you IMPORT a project, always check this.

» Expand the project to make sure the contents are correct. If all looks good...move on...

3. Build, load and run the project to make sure it works properly.

We want to make sure the imported project runs fine before moving on. Because this is the
solution from the previous lab (plus a little extra code the author graciously added for you),
we expect, it should build and run fine as is:

» Build — fix errors.

» Then run it and make sure it works. If all is well, move on to the next step...

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

Lab 7 — Procedure — Blink LED Using Clock Swi

Add a Clock and Clock Function to the System

4. Add Clock to your .cfqg file.

» In Available Products, right-click and Use Clock (or just drag it over):

a % Scheduling
@ Task
B Swi
M i
LY Idle
{8 Clock

@ Tirmer

Note: MSP430 and Tiva-C users will already have Clock in the . cfg file (from the Template).

5. Configure Clock settings.

Ok, let’s stop for a second and think — out loud if you have to. We still want the LED to toggle
at a rate of 'z sec. Given that:

» What is the default System Tick period set to?
» Given the default period, how many ticks do we set ledToggle() to run at?

When the system tick goes off, we get an interrupt (Hwi) and a Swi runs to check if any clock
functions need to run. So, in the case of a 1ms tick rate, we want ledToggle() to run every
500 ticks. So, 499 times, we use an Hwi and a Swi for NOTHING - taking up precious
resources and CPU processing time not to mention disturbing the rest of the system with
interrupts we don’t need.

For THIS example, where we are only toggling an LED every 500ms:
» What would be the most wise setting for the System tick rate?
» Given that tick rate, how many ticks do we set ledToggle() to run at?

If you answered that the system tick should be set to 500ms which means our Clock Function
that calls ledToggle() is set to ONE, you are right. This is the tick rate that causes the least
disturbance in the force (sorry, Star Wars reference).

So, in your own system, always pick a tick rate that results in the FEWEST number of system
ticks given how often your Clock Functions need to run.

Now, configure the Clock settings based on the numbers for this application.

» Click on Clock in your . cfqg file and click Module:

» SYS/BIOS * Scheduling * Clock - Module Settings

Instance Advanced

All settings are set to their default.

» Change the tick rate and pick ANY timer. At this point, we are not using any other timers,
so ANY works. If you wanted to use a SPECIFIC timer, you can via the dropdown box.

» Save .cfg.

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7-13

Lab 7 — Procedure — Blink LED Using Clock Swi

6. MSP430/TM4C Users Only — see “clock tick suppression” option.

- Click the down arrow next to “Tick mode” in the Clock configuration to see the following:

=

w Timer Control

! Tick period (us) 500000

Timerld
Tick mode lTimerwiII interrupt every period hd

Timer will interrupt every period
Unnecessary timer ticks can be suppressed (available on subset of devices)

No need to change the option now — just wanted you to see where this option exists in the
CFG file. MSP430/M3/M4 devices often sleep for long periods of time. What wakes it up? An
interrupt. A clock tick is an interrupt. Well, what if it was just a tick with nothing to do? It
wakes up the processor and does nothing — not good. So, when you choose this option,
BIOS will keep the interrupt from firing IF there are no clock functions to run on that tick. Very
nice.

7. Add a new Clock Function.

» Right-click on Clock in the outline view and add a “New Clock”. (The author would like this
to say “New Clock Function” because you're not adding a new Clock Module instance, but
rather a Clock Function).

» Name the new clock function (Handle): ledToggleClk

» Which function do you want to run when the timer hits zero?

» Use this name as the Function.

» If the system tick is set to 500ms, how many ticks do you want to use for the Clock
Function?

» Set the initial timeout and period to this number.
» Make sure the checkbox to START the timer at BIOS_start() is checked:

| Start at boot time when instance is created i

Yes, this says “boot time”, but it means BIOS_start(). ©

» Save .cfg.

7-14 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

Lab 7 — Procedure — Blink LED Using Clock Swi

8. Edit main.c to rid ourselves of unnecessary code.

Because this is the solution from the previous lab, there is code to set up the timer and a
Timer_ISR() that we need to comment out (or delete).

» In hardware_init(), comment out the timer code (or delete it) — the C28x example is shown.
PLEASE be careful not to delete any LED/GPIO setup code — we still need that:

/4 Init CPU Timers - see F28@6x_CpuTimers.c for the fxn
// Timer 1 and 2 setup code was commented cut because these timers
// are used by BIOS

InitCpuTimers();

// Configure CPU-Timer @ to interrupt every 580 milliseconds
// 98MHz CPU Freg, 58@ms pericd (in uSec)
ConfigCpuTimer(&CpuTimerd, 98, S000@2);

// Start CPU Timer @
CpuTimer@Regs.TCR.all = @x4801;

» Then comment out or delete your ISR;:

void Timer ISR({void)

{

Swi_post(LEDSwi);

» Save main.c.

9. Delete BIOS Services that are not needed.
Our previous solution contained an Hwi and a Swi. We don’t need those any longer.

» Right-click on both Hwi and Swi and stop using these services:

® 5
[
®s

Mew Swi...

Stop Using Swi

» Save .cfg.

Build, load and run.

10. Build, load and run.
» Verify your LED is blinking. If not, it is debug time. Common mistakes include:
e System tick time has wrong value
¢ Clock function tick period has wrong value
e Wrong function was called from ledToggleClk Clock Function
e You forgot to check the box to START the timer

If your code is still not working, ask a neighbor for help or your instructor.

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7-15

Lab 7 — Procedure — Blink LED Using Clock Swi

Using TimeStamp (Benchmarking)

TimeStamp is a BIOS service that allows you to benchmark your code during runtime and then
display the results via the RTOS Analyzer when you halt. We will use Timestamp to gather the
data and Log_info() to display the data.

11. Add TimeStamp service to your app.cfg file.

In the Available Products window, » right-click on TimeStamp and select “Use Timestamp”:

I

4 3 SYS/BIOS
& BIOS
> Q System
o P4 Diagnostics
@ Leg
- [Loggers
Diags
M Assert
" Error

ﬁj Tirnestarnp

12. Open Timestamp Service and view the properties.
» Click on the Timestamp Service in your Outline View.

» Then click on:

Device-specific Timestamp support '

You will now see another configuration screen:

[] Add the LM4-specific Timestamp management module to my configuration
+ Time Base

Use Clock's timer

Tirmer Id AMY

» DO NOT CHECK ANY BOXES.

Most users will see SOMETHING like this dialogue. If you had checked the box, you could tell
BIOS to combine the Clock’s timer with the TimeStamp Clock and/or choose a specific timer
for TimeStamp. We won't use either of these settings, but now you know where to look.

7-16 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

Lab 7 — Procedure — Blink LED Using Clock Swi

13. View TimeStamp function calls to benchmark your ledToggle() routine.

» Locate your ledToggle() routine in main.c. We will need three 32-bit unsigned variables
to hold start, stop and delta values and two calls to Timestamp_get32() plus Log_info(). We
need three more variables to help calculate the overhead of Timestamp() itself.

» In ledToggle(), view the following 8 lines of code (as shown). Your code may look slightly
different because if you have if/else stmts and the benchmarks are buried inside the if. Each
architecture is different, so again, your code may look different. C28x example is shown:

void ledToggle(void)

static uint32_t ui32_t@, ui32_t1, ui32_t2, ui32start, ui32stop, uil32delta;

ui32_t@ = Timestamp_get32(); // calculate Timestamp() owverhead (ui32_t2)
ui32_tl = Timestamp_get32();

ui32_t2 = ui32 t1 - wi32_te;

uid2start = Timestamp_get32(); // get starting Timer snapshot for LED benchmark

GpiocDataRegs.GPETOGGLE.bit.GPIO34 = 1; // Toggle GPIO34 (LD2) of Contrel Stick

ui32stop = Timestamp_get32(); // get ending Timer snapshot for LED benchmark

uiz2delta = ui32stop - ui32start - ui32_t2; // calculate LED toggle benchmark

i16ToggleCount += 1; // keep track of #toggles
Log_infol("LED TOGGLED [%u] TIMES", il6ToggleCount); // send #toggles to Log display
Log_infol("LED BENCHMARK = [¥u] C28x CYCLES", ui32delta); // send LED benchmark to Log display

+—H+H

14. View header file for Timestamp calls.
» Near the top of main.c, notice the header file required for Timestamp calls:

#include <xdc/runtime/Timestamp.h>

15. Check to make sure Swi logging is enabled.

» Click on the LoggingSetup service in the . cfg file and make sure Swi Logging is enabled:

w Built-in Software Instrumentation

RTOS Execution Analysis More Info...

Task Context (Always off] [¥]Swi Context [| Hwi Context [| Semaphores

» If not, check it and save .cfgq.
If it is already checked, then move on to the next step.

Swi logging will allow the RTOS Analyzer to track the Clock Swi and our Clock Function.
Without that box checked, we wouldn’t see our LED toggle routine running in the RTOS
Analyzer.

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7-17

Lab 7 — Procedure — Blink LED Using Clock Swi

16. MSP430 USERS ONLY - Change Timestamp timer source from ACLK to SMCLK

The default TimeStamp clock source is ACLK for the MSP430 which means the resolution is
32KHz. To get better resolution, you can change the TimeStamp clock source to SMCLK.

» From Available Products, right-click on Diagnostics = TimeStamp and select “Use”.
» In the Outline View, click on TimeStamp.
» Check the box next to “Add Timestamp ...".

» Click on “Device-specific Timestamp support’.

The following dialogue will then appear:

Add the MSP430-specific Timestamp management module to my configuration

- Time Base
Uze Clock's timer [

Clock source

Clock synchrenized [T

TirnerId ANY -

» Check “Add the MSP430-specific ...” box.
» Uncheck “Use Clock’s timer’ box and choose SMCLK instead of ACLK.
» Save.cfq.

FYI, your previous benchmark for the Swi was probably around 183uS which is 1500 cycles
which was not accurate because you were using a 32KHz clock as the source for the
analysis tools and you didn’t even know it. The real number was more like 1800 cycles. So, in
the future calculations and comparisons, just use 1800 cycles when it asks you for the “Swi
overhead” number you got in the previous lab.

Now that you have changed Timestamp to use a more accurate clock (CPU Clock), you will
get more accurate results...

Also please note the author increased the buffer sizes in LoggingSetup for you to 512 for
all loggers. That way you’ll see more than a few LED toggles in the graphs/log views. Say
“thank you”.

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

Lab 7 — Procedure — Blink LED Using Clock Swi

17. Build and fix errors.
» Build your project and fix any errors.

» When it is clean, load it, but don’t run yet. Again, we are going to only run for 5 blinks of
the LED and then halt.

» Run your code, verify the LED is blinking — and count to 5 — then halt.

Any guesses as to how long the LED toggle took to run? Well, you should have a decent idea
from the previous lab.

18. Analyze benchmarks.

» Go back to your previous lab where you benchmarked your LED routine on the Execution
Graph and write down that benchmark here:

value units

Now, to be fair, that benchmark included the Swi setup and takedown times (O/S stuff), so we
hope to see a number a little smaller than this because we’re picking the exact start and stop
points of the LED toggle vs adding in the context save/restore of the Swi, etc.

» What will be the units on this new benchmark using TimeStamp?

So, we have a units mismatch, but we can do the conversion. The first benchmark was in uS
(most likely) — whatever the Execution graph showed. However, this new benchmark will be
in CPU Cycles.

Notes about benchmarks. Keep these facts in mind...

a. All MCUs are running at some number of wait states in this workshop. The proper
number of “min wait states” were not set in the application code in order to simplify the
code and focus on the TI-RTOS (BIOS) concepts except for C28x. For example, the
C28x has settings in F2806x_SysCtrl.c in the InitFlash() routine that are being called to
set the min wait states for 90MHz. Therefore the code is running as fast as it can. So, the
benchmarks are simply an indication of performance but all code would have to be
tweaked based on your application frequency and your specific target.

b. We DO subtract out the benchmark of Timestamp() itself. However, keep in mind we are
using the DEBUG build configuration which has ZERO optimization turned on. Another
item that can add time to the benchmarks. Want to know more about all this? Go take
one of the architecture workshops available.

c. Both of the above items add up to much larger benchmarks than what you will see when
the flash wait states are properly set for your architecture and you turn on optimization.

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7-19

Lab 7 — Procedure — Blink LED Using Clock Swi

19. Use RTOS Analyzer to observe the results.

» Open the RTOS Analyzer and find the benchmark for LED toggle. For the C28x, the
author saw THIS:

C8xx [./rmain.c126] LED TOGGLED [7] TIMES
C28xc [./main.c:128] LED BENCHMARK = [3] C28x CYCLES

C28x¢ [./main.c:126] LED TOGGLED [8] TIMES
[../main.c:128] LED BENCHMARK = [3] C28x CYCLES

» Write down your BENCHMARK cycle count: A = CYCLES

» What frequency is your TimeStamp timer running at? B = MHz

» What is the period of the TimeStamp timer? C = (1/B) units

» Write down your BENCHMARK from previous lab: D = uS (or nS)

» Convert your previous lab benchmark for ledToggle to CPU CYCLES by dividing your
previous lab benchmark D by C to find E in CYCLES: E = (D/C) = CYCLES

» How do “A” (Timestamp benchmark of LED/GPIO toggle ONLY) and “E” (Exec Graph
benchmark including Swi overhead — context save/restore, fxn overhead — code in ledToggle)
compare and why?

The answers that the author got for the C28x were as follows:

3 cycles, 90MHz, 11.1ns, 11uS, 990 cycles including Swi overhead and ledToggle fxn code.
So, 3 vs. 990.

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

Lab 7 — Procedure — Blink LED Using Clock Swi

20. Benchmark the System Tick and LED toggle on the Execution Graph.

» Open the Execution Graph zoom out to see the results (C28x shown):

Note: You will often have to ZOOM OUT to see the results because the Clock Swi only
happens every 1/2sec !

“ 5280 ESwi
Post
Start
Stop

FC28ec05

Well, we aren’t doing much other than running one Clock Function, so the graph is pretty
simple.

» If you measured the distance between each POST, what should the benchmark be?

Well, this is the TICK RATE shown below. Notice the units are in ms with this type of view.
Now use the measurement marker and measure between the posts — what do you get?

It should be something close to 500ms because that is the tick rate you set earlier in the
Clock module.

Here is the C28x benchmark showing 500ms:

b

¥1:1,500 X¥2:2,000 X2-X1 =500
“ 50280 ESwi
Post d o
Start [[

Stop i 1
2805

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7-21

Lab 7 — Procedure — Blink LED Using Clock Swi

Well, but how long did the entire Clock Fxn take that called ledToggle() including all of the
overhead?

» Remove the measurement markers by right-clicking on the graph and selecting:

rd

Remove Measurement Mark:

Remaowe All Measurement Marks

Click on one of the posts (a red line will show up — if not, click twice) — this sets a zoom point
—and then zoom in until you see this:

4 EC2800#5wi
Post Fad
Start L
Stop]
—|C2Bo 05
F5witi_sysbios_knl_Clock_workFunc__E(]
Task.ti_sysbios_knl_Idle_loop_E()

» Expand the *OS display so you can see the Clock Function as shown.
» Benchmark between the Start and Stop points using the measurement markers.
Write down your benchmark here: uS_ convert to CPU CYCLES:

For the C28x, the author got 21uS (1892 CPU cycles). What? Higher than the Swi from the
previous lab?

To review, here are the benchmarks for the C28x that the author observed:
e Raw LED toggle measured in code: 3 CYCLES
e LED toggle via Swi (including Swi overhead only): 990 CYCLES
e LED toggle via Clock in this lab: 1892 CYCLES

If you are having a tough time seeing CPU Load or other items in the Execution Graphs, you
can always LOAD the system with a dummy load like we used in your lab 2 main.c code.

If you want, add a delay() function just after toggling the LED (you can find the code in your
main.c from Lab 2) and then re-build and run. See how this affects the graphs. This is an
optional step — just try it if you like. You could also drop the frequency of the device to 1/10
what it is now if you know how to do this...

Now, what is the explanation of all of these numbers? We need a conclusion statement....

7-22 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

Lab 7 — Procedure — Blink LED Using Clock Swi

Conclusion
Here is the summary.

The first low number measured the hardware toggle of the LED period. It included nothing
else in ledToggle and no O/S overhead time — this is just the hardware time to toggle the
GPIO pin on the board. Ok.

The 2™ benchmark includes the Swi overhead, the extra code in the ledToggle() function and
the GPIO/LED toggle. But then when we use Clock, it is even higher....

Why? Remember that Clock includes the Hwi (context switch), Swi (context switch) and any
other processing overhead for the actual Hwi code and the Swi code that BIOS used. So, the
fact that it is higher makes sense because we're including more WORK in the benchmark.
This is all code you’d have to write anyway using a “bare metal” or driverlib approach — it is
just easier to configure and change priorities and then BUILD again when you have an O/S
like SYS/BIOS managing the scheduling. You can decide if this is right for you or not given a
full disclosure of timing and tradeoffs.

What if you had 5 clock functions that were all running at one system tick? They are all called
from the context of a Swi — in fact, the SAME Swi — so you would see one post of the Swi and
one long Clock function representing those 5 Clock functions. Of course, if they were firing at
different rates, you could distinguish between them.

Some people may say “this BIOS stuff adds a lot of overhead”. Well, two comments. First, to
do this on your own would take overhead — timer setup, ISR code, context switches, etc. And,
it's usually not that flexible in terms of adding more threads alongside it. Also, compare the
time it took to set up a Clock function in BIOS vs. bare metal code. Using BIOS is, by far,
easier.

This is the user’s decision — always. Use BIOS where it brings your system the best ease of
use and flexibility. If the overhead or latency is getting in the way of a critical interrupt or
timing, don’t use BIOS for that feature. We would always recommend doing everything in
BIOS first and then testing to see how things run — then go from there.

Following is the table of results the author saw during lab development (all #s are in CPU

cycles):
C28x C6000 MSP430 TMA4C
CPU Frequency 90 MHz 300 MHz 8.192 MHz 40 MHz
LED/GPIO
3 70 71 12
(hardware toggle)
+Swi and Fxn
overhead (lab 6) 990 433 1800 520
+ Clock overhead 1892 758 3516 720
(lab 7)

» Terminate your debug session, close the project and files.

You're finished with this required part of this lab. If you have extra time, help a
neighbor — there is no better way to learn this stuff than to turn to someone else and
walk them through a tough spot in the lab. And, it feels good too. © Then, if you

still have time, watch your specific architecture videos....

Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp 7-23

Notes

Notes

7-24 Intro to the TI-RTOS Kernel Workshop - Using Clock Functions & TimeStamp

Using Tasks and Semaphores

Introduction

In this chapter, you will learn about how to use Tasks and Semaphores. Tasks are the last thread
type we will discuss in this workshop.Tasks are typically used WITH Semaphores, although you
can create a task that has no loop and no Sempahore_pend(). However, most of the time, users
will construct their Tasks to include three phases of activity:

e prologue code to set up the environment of the Task just before the while(1) loop

e a while(1) loop that includes a Semaphore_pend() to block or wait for a signal (Semaphore)
to be posted signifying that data is available to process

e epilogue code that closes down the environment before the Task exits. This code will only
execute if the condition on the while(condition) loop fails.

In most cases, Tasks have a prologue and loop and run forever.

We will also cover how Semaphores work in detail, how to post a Semaphore and also the
conditions necessary to move past a Sempahore_pend(). BIOS actually has several types of
semaphores and some of the other options will be covered in the Inter-thread Communications
chapter where we can show exactly WHY these other options exist.

In the lab, users will create a Task and Semaphore. The Task will include a loop that blocks
waiting for a signal from the Hwi to unblock it to “go toggle the LED”.

Objectives

Objectives

" Describe the use of Semaphores and
Tasks in a system & how to configure
them in BIOS

= Compare/contrast Swi vs. Task

" Identify how Tasks are prioritized
within the BIOS Scheduler

" Lab 8 — Use a Task to perform LED
toggle

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-1

Module Topics

Module Topics

Using Tasks and Semaphores.........cccciiiiiniiiininsie e s ns e neas 8-1
1Y (oo 17 =T o] o] (o1 NS 8-2
(O [o I = K€ 8-3

o SRS 8-3
LI E] il o] o o] (oo O PRSP TP PR 8-4
Task — CONfIGUIAIONoouiiiiiie e e 8-5
Modifying @ Task's PrIOTIYcoeiiiiiiiiiiiei et e e 8-6
Scheduler — AdAING TasKS.oouuiiiiiiiie e et e et e e e e nre e e e enees 8-7
/S T - - G 8-9
USING SEMEPRNOIES. ...ttt e 8-10
S T=TaaE=T ol aTe] =T o= o Lo [SRRSO 8-10
SEMAPNOIE POST() ..uueeriiiiie et e e e e e e e e s e e e e e raaraaaeeas 8-11
Semaphore — Configuration ... 8-12
FIFO vs. Priority-Based SEMAPROIESccccueeeeiiie ettt ee ettt a e e s s 8-13
OFREE USEIUI APIS ...ttt e et a e et a e e eaeananee s 8-15
O [ol =T £ 8-16
EXPICIt POSHPENG ...t e e e e e e e e e e e e e annes 8-16
IMPLICIE POSI/PENG ...ttt e e e e e e e e e e eee e e e e e e e aannns 8-17
Dynamic Module Cre@tioN.................oooueei oot 8-18
Basic Concepts — Creating @ SEMaPNOre.........cccuvviiiiie e 8-18
Creating @ Task — DyNamiCallycooouuiiiiiii et e e 8-19
USING SYSEEM_PIINII() ..ottt 8-20
Memory FOOotprint — MCU Targetsooooueee et 8-21
Lab 8: USING TASKS ...ttt ettt e e 8-23
Lab 8 — Procedure — Blink LED USING TASK...........uuuuuuuuuuueeeuieiiiiiieesesisssnsnsssnssssnssssnnssssnnnsnnnnnns 8-24
IMPOM PrOJECT. ...ttt e e e e s 8-24
Add a Task and Semaphore to the SyStem ... 8-25
20T [o Y=o =T g Vo I U o TR 8-28
Use ROV and UIA to DebuUg COde.........eiiiiiiiiiiiieiee et 8-29
Using Simple Mode VIiew in CCS..... ..ot e e e e e e e e e e e 8-33
[Optional Lab] — Dynamic Module Creationcccooeeieeeeeee e 8-34
[a] oTo] o Bl 1= o1 PP PUPPPRPPNY 8-34
Check Dynamic Memory SettingSuvviiiiiiiiiieee e 8-35
Inspect NeW Code iN M@IN()....ueieeeeiiiiiiiiiee et e e e e e e e e e e e e e snrraeeeaeeeeeaanes 8-36
Delete the Semaphore and Add It Dynamicallyccccouiiiiieiiiiiiiiiiiee e 8-36
Build, Load, RUN, VEIIfY ...ttt e e e e e e e e e e e e annes 8-37
Delete Task and Add It Dynamicallyceoiiiiiiiiiiiiieeee e 8-38
INOTES ...ttt ettt e ettt e e e e 8-40

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Using Tasks

Using Tasks

Intro

So, the last of the thread types is Task. As we talked about in a previous chapter, Tasks operate
very differently than Swi’s. In most systems, Tasks are “always running” and are designed to run
concurrently along with other Tasks.

The four main differences between Swi's and Tasks are:

1.

Tasks have their own stack and are therefore allowed to BLOCK or PAUSE during
execution. When they block, they give up execution to the next lower priority thread that
is ready to run.

Often times, Tasks contain a while(1) loop so they run “forever” in the system. A posting
of a Semaphore from some other thread UNBLOCKS the waiting Task to run again
through the while(1) loop.

When you set up the environment for a Task, it also lives “forever” — across separate
runs of the Task itself. This is very different than Swi’s that use the system stack — any
environment is sitting on the system stack and is therefore NOT preserved over multiple
posts of a Swi. Because Tasks have their own stack, whatever you set up BEFORE the
loop will be there as long as the Task is alive.

Tasks are ready to run when they are CREATED. If it is a static Task, it will start running
at BIOS_start() and the PEND when necessary. This is also very different from Swi’s
because Swi’s are not ready to run until they are POSTED using, e.g., Swi_post().

SYS/BIOS Thread Types (including Tasks)

A

>
)
=
g ¢ Usually enabled to run by posting a ‘semaphore’
o k (a task signaling mechanism)
Tas :
4 Designed to run concurrently — pauses when
Tasks waiting for data (semaphore)
¢ Up to 32 priority levels (16 on C28x/MSP430)

i3 Texas Task toplogy...

INSTRUMENTS

As a group, Tasks have a higher priority than Idle and a lower priority than Swi’s. But just like
Swi’s, you can assign 16-32 priority levels to individual Tasks.

Let's go take a look at the topology of a Task...the prologue, loop and epilogue...

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-3

Using Tasks

Task — Topology

Tasks have three phases of activity — prologue, loop and epilogue. Let’s explore each one
separately:

PROLOGUE - This code is everything that comes before the loop and will only run ONCE. For
statically created Tasks (e.g. in the app.cfg file), Tasks will begin running at BIOS_start(). There is
no Task_post() function, so they are scheduled to run when they are created. Of course, they will
PEND when they hit the “_pend” in the while(1) loop. The prologue code can be used to set the
environment for the Task (for example, setting up dynamic memory buffers or other variables
needed in the Task for processing) and this environment will be preserved for the entire life of the
Task.

LOOP — most users just use a while(1) loop and the Task therefore will run forever. However, if
you have a system variable to use a condition, you can certainly do that. Somewhere in the loop,
you will need to use a Sempahore_pend() as shown below to block the Task from running until a
Semaphore is posted by some other thread (typically an Hwi). This is the SIGNAL that tells the
Task that data is available for the Task to process. And then, the actual code to process the data
comes next just prior to the end of the loop. After execution, the while(1) loop is executed again
and the Task blocks at the _pend again.

Task Code Topology — Pending

Void taskFxn(...)

¥ Prolog*l <——+ & |Initialization (runs once only)

[
L 2

while (‘condition’){ <~— Processing loop — (optional: cond)

Wait for resources to be available

[
L 2

Semaphore_pend() <

[* Process *| < & Perform desired algo work...

}

I* Epilog *I ¢ Shutdown (runs once - at most)

}

& Task can encompass three phases of activity
& Semaphore can be used to signal resource availability to Task
& Semaphore_pend() blocks Task until semaphore (flag) is posted

i3 Texas How do we configure a Task?
INSTRUMENTS

EPILOGUE - This code will only run if the while(condition) fails. Most Tasks just run forever, but
you are certainly allowed to use a conditional while() loop. If the condition fails, the epilogue code
will run ONCE. This is the place where you would write any “cleanup” code — like freeing back the
memory allocated off the heap in the prologue or any other necessary cleanup procedures. Note
that when the Task exits at the bottom, it can NEVER be run again if it is a static Task. The Task
object and associated stack space will live forever in the system and there is no way to free up
that memory because it was statically allocated. However, if you created this Task dynamically,
you can DELETE the Task which will free the object/stack memory back to the heap and then you
could re-create it and run it again as many times as you like.

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Using Tasks

Task — Configuration

So, this slide should be getting quite boring by now. To create a Task, add the Task module to
our app.cfg file (drag/drop or right-click “Use”). Then right-click on the Task module in the outline
view and select “Insert new...”. The dialogue box at the bottom left of this slide will then pop up.

Configuring a Task — Statically via the GUI

Example: Create ledToggleTask, tie to ledToggle(), priority 1

@ Use Task module (Available Products) , Add new Task (Outline View)

4 ¥ Scheduling
& Task @ System
i Swi a @ Task
" Howi |:> @ ledToggleTask
0 - o et
5 Clock
&ﬁ Timer

@ Configure Task — Object name, function, priority, stack size:
1

~ Required Settings

Handle ledTeggleTask Remember, BIOS objects

Function ledToggle can be created via the GUI,

Briority 1 script code or C code (dynamic)

+ Stack Control ,
Can you change a Task's

Stack size 512 } System dependent priority during runtime?

13 TEXAS
INSTRUMENTS

Give the Task a handle (name), associated function to run as well as this Task’s priority.

The default Task stack size will appear in the bottom box. The defaults are actually pretty good so
you can trust them at the start and then tweak them later as you run your code. ROV is a
FANTASTIC tool to help you tune your Task stack sizes. Run your code, halt and then click on
the Task module in ROV. ROV will tell you how much stack size was actually used. In the
example above, if you only used 128 bytes, maybe you could tune it down to 256 or 128 saving
you some much needed RAM memory.

So, can you change the priority of a Task during runtime? Remember the answer for this question
regarding Swi’s was that you could RAISE the Swi priority but you couldn’t LOWER it because
Swi’s use the system stack and they build up on each other. Because Tasks have their own
stack, you are allowed to SET (raise or lower) a Task’s priority at any time.

Let’'s go see how that works...

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-5

Using Tasks

Modifying a Task’s Priority

Because Task’s have their own stack, you can SET the priority of any Task to any priority level at
any time. How is that for flexibility?

As shown at the top of the slide below, you can use the function Task_setPri() to set a Task’s
priority during runtime. The return value of this function call is the original priority of that Task so
that in the future, if needed, you can set the priority back to where it was.

The new priority stays in effect until it is set again. If you would like to know the priority of any
Task, you can use Task_setPri() to find out a Task’s priority level at any time during runtime.

Modification of a Task’s Priority

origPrio = Task_setPri (Task_self(),7);
// critical section ...
// TSK priority increased or reduced ...
Task_setPri(Task_self () ,origPrio);

Task_setPri() can raise or lower priority (because Tasks have
their own stack)

Return argument of Task_setPri() is previous priority

*

New priority remains until set again
Can also use Task_getPri() to get a Task’s current priority
To suspend a TSK, set its priority to negative one (-1)

* Task removed from scheduler, can be re-activated with Task_setPri()

* 6 o o0

* Handy option for statically created TSKs that don’t need to run at start

Tasks are ready to run when CREATED...

13 TEXAS
INSTRUMENTS

8-6 Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Using Tasks

Scheduler — Adding Tasks...

As stated before, Tasks are READY to run when they are created. So when are statically defined
Tasks created? During BIOS_init() which happens BEFORE main(). So they will ALL be ready to
run when BIOS_start() executes.

Notice in the scheduling diagram below that as soon as BIOS_start() occurs, the BIOS Scheduler
does not start in Idle, but starts executing the highest priority pending thread in the system. Well,
there were TWO Tasks that were statically defined — one at priority 2 and the other at priority 1.
So, Task 2 begins executing and when it hits the _pend, Task 1 begins executing...and so on.

Again, this is very different than how Swi's work. Swi’s are ready to run when they are posted.
Tasks are ready to run when they are created. Note that if you create a Task dynamically, it will
immediately be ready to run after returning from the Task_create() call. If this new Task is a
higher priority than the Task that created it, an immediate context switch will occur and the new
Task will start running immediately.

Thread Preemption Example

post
swi1

Hwi Eﬁ

Swi 2
Swi 1 O
pend sem2
Task 2 }
; Notice that Tasks run
T Scheduler starts...
interrupt
_start

Idle [TTTTTTT1)

Events over time

13 TEXAS
INSTRUMENTS

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-7

Using Tasks

HIDDEN SLIDE... Task Object Concepts

This is just a taste of what is going on behind the scenes with the Task object. The object is
actually larger than what is shown, but these are the key fields of the Task object:

fxn — this the pointer to the Task function as you have seen before

environ — this is an environment pointer to a custom structure set up by the user. Simply create a
structure of any kind and use the handle (pointer) to that structure in the Task object. As shown at
the bottom of the slide, you can read or write a Task’s environment with the functions shown. This
capability is not used that often, but it is there if you need it.

priority — this is the priority of the Task which you have seen before

stack — pointer to the Task’s stack

name — optional text name — this can be used to identify with characters the name of the Task.
This is different than the handle name — or pointer to the Task object. It is a text string that can be

used during runtime for various purposes.

Task object:
¢ Pointer to task function
@ Priority: changeable
¢ Pointer to task’s stack
Stores local variables
¢ Nested function calls
¢ makes blocking possible

Interrupts run on the system
stack

& Pointer to text name of Task

@ Environment: pointer to user
defined structure:

ﬂ; Texas
INSTRUMENTS

myTsk

inst2

fxn

Task Object Concepts...

environ

struct
myEnv

Task
stack

C fxn, eg:

j bk FIR

struct
myEnv

Task
stack

priority 6
stack *
name Ipf1
fxn *
environ *
priority 6
stack *
name Ipf2

Task setenv(Task self () ,&myEnv) ;
hMyEnv = Task getenv (&myTsk) ;

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Swi vs. Task

Swi vs. Task

Now that we have spent some time talking about Tasks, we can now compare and contrast Swi's
vs. Tasks.

READY - Swi’s are ready when they are POSTED. The BIOS Scheduler will only add a Swi to
the ready queue when it is posted vs. Tasks are ready when they are CREATED - either
statically or dynamically.

INITIAL STATE - Because Swi’s use the system stack, any setup code for local variables are
deleted when the Swi finishes execution. But because Tasks have their own stack, the initial state
created just before the while() loop is preserved for as long as the Task is running.

BLOCK? — Swi’s cannot block, just like Hwi’'s can’t block — however Tasks can.

CONTEXT SWITCH SPEED - Swi’s and Tasks are almost the same speed. For DSP/BIOS
users, this was not the case — Swi’s were much faster than Tasks. Tasks, in SYS/BIOS, improved
40% in terms of context switch speed — a great improvement.

STACK — Swi’s use the system stack — Tasks use their own private stack

MEMORY FOOTPRINT — This topic is not shown below but is important to understand. Later in
this chapter, we will show some common footprints for different BIOS systems with Swi’s vs.
Tasks. With all the flexibility that Tasks provide, they DO take a larger RAM footprint — because
the Task object is larger than a Swi and Tasks require their own private stack.

~ Swi vs. Task
Swi Task

_post—|void mySwi () {

_creater>void myTask () {
// set local env // Prologue (set Task env)
while (cond) {

*%% RUN **%* Semaphore pend() ;

*k% RUN ***

} }
// Epilogue (free env)

}

* “Ready” when POSTED

* Initial state NOT preserved — must set
each time Swi is run

* “Ready” when CREATED (BIOS_init or dynamic)

* CanNOT block (runs to completion)
* P-L-E structure handy for resource creation (P)

* Context switch speed (~140c for C6k)
* All Swi’s share system stack w/Hwi

* Use: as follow-up to Hwi and/or when
memory size is an absolute premium

and deletion (E), initial state preserved
* Can block/suspend on semaphore (flag)
* Context switch speed (~160c for C6k)

* Uses its OWN stack to store context

* Use: Full-featured sys, CPU w/more speed/mem
i3 TEXAS
INSTRUMENTS

Most people use an O/S like the TI-RTOS kernel in order to use a thread type like Tasks — given
their flexibility, their features and their ability to be signaled by a counting semaphore — or
triggered via a MUTEX which is just a different implementation of a Semaphore. However, BIOS
doesn’t care if you use Swi’s or Tasks — just be aware of the tradeoffs.

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-9

Using Semaphores

Using Semaphores

Semaphore_pend()

Tasks almost ALWAYS use a Semaphore — this is the signaling mechanism to allow a Task to run again
inside the while() loop. Once in a while, users choose to create a Task with a high priority that will only run
once in order to do some initialization after BIOS_start(). Hi priority Tasks will start to run immediately and
need no trigger to do so — because they are READY when they are created during BIOS_init(). So, create a
Task with a high priority, use no loop or Semaphore and use it to initialize peripherals, etc. It will run once
and never again. This is, however, the exception to the rule — but now you know another way you can use
Tasks.

The common use of the Semaphore is to keep track of “how many times the Task needs to run inside the
loop”. A Semaphore object is very simple — just containing a Handle, a few attributes and a COUNT field.
When you POST a semaphore, the count is incremented by one. When you PEND on a Semaphore, the
count is decremented. If the count is > 0 when the PEND occurs, the return value of the PEND is true, the
count is decremented and the next line of code is executed. A non-zero value in COUNT signifies that a
thread had already POSTED this Semaphore and therefore the Task can unblock and execute it's
PROCESS code.

However, if the COUNT is zero when a PEND occurs, the Task will BLOCK. The user has a choice in terms
of HOW LONG the Task blocks — it can be any number of System Ticks (see the chapter on the Clock
Module for more info on what a “tick” is) all the way up to “wait forever”. If the timeout expires, once again,
the next line of code is executed, but the return value from the PEND is FALSE.

Semaphore Pend
Semaphore_pend (Sem, timeout); @
false T true
. A 4 \
tlme.""t Block task ——— SEM posted ———> Decrement
expires count
Semaphore Structure:
+ Non-negative 16-bit counter
+ Pending queue (FIFO) h 2
Return
BIOS_WAIT_FOREVER -1 | // wait forever TRUE
Zero 0| // don’t wait
value timeout | // system ticks
i3 Texas How does _post work?
INSTRUMENTS

Note: We recommend you use timeouts on your PEND calls so that your code will never get “stuck”
waiting for a Semaphore that never gets posted. If you make the timeout long enough, you can be
assured that it won’t timeout before a reasonable time has expired. When you use timeouts,
however, ALWAYS CHECK THE RETURN VALUE OF THE PEND! If you don’t, you could
process data that is not there and cause problems. There are two ways to get to the line of code
after the PEND - either you got the Semaphore or you timed out. One means “process the data”
and the other means “ooops, there was a problem”. So, handle these accordingly.

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Using Semaphores

Semaphore_post()

Semaphore_post() is relatively simple. When the POST occurs, it will either READY a waiting

Task (if there is a BLOCKED Task waiting for this Semaphore) or it will just increment the count

value in the Semaphore object.

Semaphore Post

Semaphore_post (Sem);

False Ready first

waiting task

pending on

| Increment count
sem?

Semaphore Structure:
+ Non-negative count
+ Pending queue (FIFO)

U Task switch will occur if higher
priority task is made ready

How do you configure a Semaphore?

13 TEXAS
INSTRUMENTS

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Using Semaphores

Semaphore — Configuration

Once again, you know the drill — add the Semaphore Module to your app.cfg file and the right-
click and add a new instance.

In the dialogue box, you provide the name (handle) and the initial count value. Most of the time,
the initial count is zero unless you are implementing a MUTEX with Semaphores — more on this in
the chapter on Inter-thread Communication.

The Semaphore type default is “Counting (FIFO)”. You can create either a binary or counting
Semaphore — depending on your systems’ needs. A binary semaphore is binary — the count value
will be one or zero. If the count is one and you post it again, it will still be a one. If it is a counting
semaphore and you post 5 times, the count value will be 5. This means the Task, pending on that
Semaphore, will run 5 times through the loop. This is different from a Swi because if you post a
Swi 5 times without running yet, the Swi will only run once — so, in essence, a Swi is always a
“binary”post.

Configuring a Semaphore — Statically via GUI

Example: Create ledToggleSem, counting (FIFO)

@ Use Semaphore (Available Products) , insert new Semaphore (Outline View)

a ™¥ Synchronization
*& Semaphore
& Cuent
R, Mailbox

4 @ Semaphore
® ledToggleSem
@& SysMin

b Queue

. & Gates
- "% Syncs

@ Configure Semaphore — Object name, initial count, type:

>
~ Required Settings
Handle ledTeggleSem

Initial count 0

@ Counting (FIFQ)
Semaphore type = Binary (FIFO)

) Counting (prierity-based)

_) Binary (priority-based)

) - Shared Semaphores...
13 TEXAS
INSTRUMENTS

The other options shown in the dialogue box — “priority-based” will be covered in the Inter-thread
Communications chapter where we set up a context in order to understand what “priority-based”
means.

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

FIFQ vs. Priority-Based Semaphores

FIFO vs. Priority-Based Semaphores

The default Semaphore type is “Counting (FIFO)”. Ok, the counting part is self-explanatory. But
what does “FIFO” mean? Well, it means first-in, first-out. Wonderful.

In the case of TWO threads sharing a Semaphore, let’s take a look at the diagram below. Two
Tasks (TSK Hi, TSK Lo) are sharing a Semaphore. The Hwi is the PRODUCER of the
Semaphore. If TSK Lo pends first and TSK Hi pends second, when the Semaphore is produced,
who gets it?

Think FIFO...

For the Counting (FIFO) type of Semaphore, there is a FIFO Semaphore Queue. The first thread
to PEND on that Semaphore is at the head of the queue. So, if TSK Lo pends first, it gets the
Semaphore first.

So, in the diagram below, you can see that TSK Lo gets to access the data first and TSK Hi is
blocked from accessing the data until TSK Lo re-posts the shared Semaphore (mutex). Is this a
problem?

Maybe. For FIFO Semaphores, this is the way you would want it to work. In general, this is not
really a problem. And, this is not the definition of PRIORITY INVERSION. This is simply how
FIFO Semaphores work.

Shared Semaphores — FIFO...

/ INT! post \

Hwi ¢—|@
INT! Enter (pend)
I eookeon| ____ pAceess
Enter (pend) Exit (post)

K_? _____ block 4 ACCESS ? /

¢ Pending threads are placed in a FIFO semaphore queue:

READY {=|[TSKLo | TsKHi |***| <=3

& Therefore, TSK Lo runs first. This is ok, but...

Priority Based Semaphores...

So, now you know how the FIFO Semaphore works — good thing. But, what else might occur that
would cause a problem here?

We are just showing two threads in this system. Could there be some TSK Med (medium) that
pre-empt TSK Lo and make TSK Hi wait even longer? Maybe...

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-13

FIFQ vs. Priority-Based Semaphores

Using priority-based Semaphores can help avoid the issues with priority inversion but they won’t
completely eliminate them.

In the diagram below, you will notice that this is the SAME diagram as the FIFO discussion.
However, if two threads are sharing a PRIORITY-BASED Semaphore, the higher priority thread
will always go to the head of the priority queue when it pends — thus getting the Semaphore first
when it is produced by the Hwi — as shown below. This is a decent solution, but will not elimate
the problem altogether.

Let's assume the POST (from the Hwi) happens FIRST. Then TSK Lo pends first. Whoops, TSK
Lo gets the Semaphore — there is nothing TSK Hi can do about this. The count value went from
“1” to “0” and TSK Hi must wait.

But, now you know how this type of Semaphore works differently than the FIFO type...

Priority-based Semaphores

/ INT! post \

Hwi i—%
INT! Enter (pend) v Exit (post)
) @_B_LO_C}XEQ " access ¥
Enter (pend) o

K_? ————— tllozk _____ 4 ———— - ACCEj

¢ If you use (priority-based) type Semaphores, the higher Pri gets it:

() Counting (FIFO)
Semaphore type () Binary (FIFQ)

@ Counting (priority-based)

() Binary (priority-based)
Other useful APls...

Hiruns first, but doesn’t fix “post” before “pend” case

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Other Useful APIs...

Other Useful APlIs...

Here are some other useful function calls related to Semaphores and Tasks. Some of these are
not used very often, but we wanted to at least make you aware of these in case you find a need
for them in your system code:

Semaphore_getCount() — get the count value of any Semaphore during runtime.

Task_sleep() — you can put a Task to sleep for N system ticks. Execution priority will be given to
the next lower priority and when the time has expired, the Task that slept will be READIED to run
again.

Task_yield() — this is used to give up execution to another Task AT THE SAME PRIORITY. If
you had four Tasks at priority 3, named Task A-D, Task A could yield to Task B and Task B could
yield to Task C, etc., thus creating a “round-robin” execution between Tasks at the same priority.

Task_setPri() — this was covered in this chapter — allows the user to dynamically set any Task to
any priority at any time.

Task_getPri() — get the current priority of any Task during runtime.

Task_get/setEnv () — these functions allow you to read or write a Tasks environment structure.

SYS/BIOS Semaphore/Task APls

Other useful Semaphore APIs:

Semaphore getCount () Get semaphore count

Other useful Task APIs:

Task sleep() Sleep for N system ticks
Task yield() Yield to same pri Task
Task setPri () Set Task priority

Task getPri () Get Task priority

Task get/setEnv () Get/set Task Env

Task enable () Enable Task Mgr
Task disable () Disable Task Mgr
Task restore () Restore Task Mgr

13 TEXAS
INSTRUMENTS

The last three functions allow you to enable, disable or restore the BIOS Task Manager.

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-15

Using Events

Using Events

Explicit Post/Pend

Events are a new service in SYS/BIOS and they are a great addition to the family.

Here is the problem that Events were created to solve...let's say you had a Task that needed to
unblock based on a logical combination (AND or OR) of three events occurring in the system. So,
the logic would be if A and B or C occurred, unblock the Task. Could you do this with 3 different
Semaphores? Yes, but it would require you to write this “logic” code in your application. What if it
was a complex combination of 7 different events? Ok, it could get hard. So, like any good O/S,
there is a SERVICE that can help you with this — it is called an Event object with supporting
functions — POST and PEND.

An Event object contains 32 bits — one bit for each event. The user can PEND (as shown in the
top right-hand portion of this slide) on a logical combination of these events occurring in the
system using Event_pend(). The logical combination can be either an OR or an AND of these
events.

In this example (top left-hand portion of this slide), you can see three different Hwi’s posting three
separate events — EV0, EV2 and EV5. myTask() can then unblock if ANY of these events are
posted using an OR mask (as shown in the code). This eliminates the need of writing your own
code to perform a logical combination of Semaphore_pend() calls.

Using Events — Explicit Post/Pend

Evt Obj
| Hwi 5 Post EVO0 EVO |—» myTask

EVA mask = EVO + EV2 + EV4;

: Post EV2 while (1)

|HWI7 EV2 — AND { // “simplified” ver

EV3 OR Event pend (mask) ;
|HWi9 Post EV4 EV4 // do work

L }
EV31

¢ Semaphore pend () only waits on one flag — a semaphore.
¢ What if you want to “unblock” based on multiple events?
¢ Use Events. Can OR or AND event IDs with bit masks

@ Events are “binary semaphores”. Only one Task can block on an
Evt object at a time (can’t use as “mutex”).

¢ The key “Explicit Post” and Pend APIs are: What about "implicit posts" ?

Event post (&Evt, Event Id xx);

Event pend (&Evt, andMask, orMask, timeout);

The two key function calls are shown above — POST and PEND. POST is simple — just post the
desired event Id and specify the Event Object. PEND requires the event object and a timeout —
just like a Semaphore_pend(). But you can also add an ANDmask, an ORmask or BOTH. And the
logic between both is an OR. So, there are a HUGE number of possible combinations you can
use with Events. Limitations? Yes. Only one Task can PEND on ONE Event object at a time —
you cannot have multiple Tasks pending on the same Event object. However, you CAN have
multiple Event_pend() calls in one Task.

8-16 Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Using Events

Implicit Post/Pend

Ok, now that you know how Events work, let's go to the COVERT side of things. Sure, there are
many ways you can make something happen on a processor, and NOT comment the code and
create job security for yourself because you're the only one that understands how the code
works. So, for those of you in this economy that desire security — which, given the current
economy — is a must — THIS is the slide for you. Try this out, don’t comment your work and your
previous employer will beg for you to come back.

In the previous slide, we talked about the explicit post of an Event — it is easy to see —itis a
function call — probably no comment necessary. But, can you imagine a case where you may
want to POST a Semaphore to unblock Task A and, at the same time, this same event could be
used as part of an Event POST also to Task B? Maybe.

Whether you are using a Semaphore, Mailbox or Message Queue, you can POST an event at the
SAME TIME you post a Semaphore, put a message in a Mailbox or Message queue. So, this is
one of those cases where “it is there if you need it”.

So, at the same time you perform a Semaphore_post(), you can also post EVO or EV5 to Event
object XYZ. How does this work?

When you create a Semaphore object, you will see near the bottom of the dialogue the words
“Event Support” — as shown. If you have Event objects already created, there will be a drop down
box for the instances shown and you will be allowed to type in the Event Id for that Event object.
Like we said before, if you don’t comment your code describing what you did, this is the ultimate
in job security. ;-)

Implicit “Event Post”

Evt Obj
Evo |- myiask
EVA mask = EVO + EV2 + EV4;
while (1
EV2 [axp |1 //(“)simplified" ver
post EV4 EV3 OR Event pend (mask) ;
- 0S EVa } // do work

EV31
& Other APIs, as shown above, can also post events — implicitly —
the eventld is part of the params structure (e.g. Semaphore):

* Event Support 1

These options are only available when Event supportis 3
enabled by the Semaphore module.,

Event instance | null speCIfy Event
EventId . «—1 ldhere...

So, even a standard semaphore post (Sem) can post an event !

PTexas NS Note: see “Event” example under SYS/BIOS Templates

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-17

Dynamic Module Creation

Dynamic Module Creation

Basic Concepts — Creating a Semaphore

A later chapter is completely dedicated to dynamic memory — creating objects and memory off of
a HEAP. These next few slides provide some basic information about how to create BIOS objects
dynamically and all the rest of the details are left for a later chapter.

To create a BIOS object dynamically, BIOS provides two basic methods — CREATE and DELETE
as shown in the slide below. The BIOS modules that you can create dynamically are shown on
the right-hand side.

Each object is going to have a set of attributes (parameter structure — called “params”) that are
used to configure the object. For a Semaphore, as shown below, we simply set the COUNT value
and the CREATE function returns the handle to the Semaphore. If we wanted a different type of
Semaphore, we would set those attributes (params) before the call to _create().

Then, the Semaphore is used as normal — using POST and PEND.

If we want to free the Semaphore object’'s memory back to the heap, we use _delete() to
accomplish this.

Dynamically Creating Kernel Objects

¢ Module_create Modules
¢ Allocates memory for object out of heap Hwi
¢ Returns a Module_Handle to the created object Swi
WI
¢ Module_delete
: Task
Frees the object’s memory
.) Semaphore
¢ Example: Semaphore creation/deletion:
Stream
#define COUNT 0 Mailbox

Semaphore Handle hMySem;

hMySem = Semaphore create (COUNT,NULL, &eb) ; C Clock
List
Semaphore_post (hMySem) ; X
Event
Semaphore delete (&hMySem) ; D Gate

Note: always check return value of _create APIs !

13 TEXAS
INSTRUMENTS

Note: |If you are truly interested in creating BIOS objects during runtime or creating buffers of
memory dynamically, we strongly suggest you look at the chapter on Dynamic Memory
later in this workshop. BIOS has added some great features that enhance the usage of
dynamic memory in addition to the standard malloc().

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Dynamic Module Creation

Creating a Task — Dynamically

This example is similar to the previous discussion about Semaphores. The Task object is a little
more complicated than a Semaphore object, so the param structure, taskParams, is shown. Here,
we set the Task priority to 3 via the params structure and then call Task_create().

Task_create() needs to know which function is associated with this Task (myCode) along with the
params structure and then it will return the handle to the Task — hMyTask.

Once again, when a Task is created, it is ready to run as normal. If, at some point, you don’t need
the Task any longer, you can simply delete it and free the memory back to the heap.

Example — Dynamic Task API

Task Handle hMyTsk;
Task Params taskParams;

Task Params_init (&taskParams) ;
taskParams.priority = 3;

hMyTsk = Task create (myCode, &taskParams, &eb) ;| C

// “MyTsk” now active w/priority = 3 ... X

Task delete (&hMyTsk) ; D

taskParams includes: heap location, priority, stack ptr/size, environment ptr, name

13 TEXAS
INSTRUMENTS

Note: Once again, if creating Tasks dynamically is of interest to you, go take a long look at the
chapter on Using Dynamic Memory. That chapter dives into the details of how heaps
work and the additional services that BIOS provides with heaps — even multiple heaps.

Note: What the heck is &eb? The answer is “Error Block”. There, now you know. ;-) If you
want to know more about Error Block and the implications of using it or not, again, go
take a look at the chapter on Using Dynamic Memory — we explain it in detail in that
chapter.

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-19

Using System_printf()

Using System_printf()

Why is this slide randomly placed in this spot? Great question — there was just nowhere else to
put it. Actually, the use of this function call is related to creating BIOS objects or buffers from the
heap because if you don’t get the resource you asked for, this is a serious problem — and during
the debug phase of your development, you will want to know.

In past chapters, we have covered the use of Log_info() — it is a very cheap and fast printf() for Tl
processors. While printf() can be used, it takes quite a few resources and cycles to execute and
includes a breakpoint as well.

System_printf() is a little “lighter” in terms of footprint and execution time and many users use it to
print error messages to the Console screen during the debug cycle of their development.

In the example below, System_printf() is used to acknowledge the lack of a return pointer from a
CREATE call — like Semaphore_create(). If the return handle is NULL, you may want to print this
message to the Console screen.

So, when do the results, like “buf: no resource”, actually show up in the Console window? When
you do a System_flush() or when BIOS exits.

Using System_printf()

¢ Need to print to the Console Window when something
bad happens?

¢ If you don’t get a handle to a resource (bad), you can use
this APl to send a report when BIOS exits:

System printf (“buf: no resource\n");

& Program
Uses the SysMin Module: @
@ System

¢ Outputs results to Console window when a System_flush()
occurs (like when BIOS exits) or _flush is called

& Offers similar flexibility as printf() for a smaller footprint
4 Can be called by an ISR (Hwi)

13 TEXAS
INSTRUMENTS

If you have seen some of the BIOS examples delivered with CCS, you may have seen
System_printf() used in a similar way. Many of the BIOS examples create threads dynamically
and they always check the return value of the _create() call. If the return value is NULL, they print
out an error message using System_ printf().

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Memory Footprint — MCU Targets

Memory Footprint — MCU Targets

The slide below tells a big story and one that needs to be told. Most MCU users are VERY
concerned about RAM footprint — as they should be. People ask the author often “so, how big is a
Semaphore? How much RAM footprint does BIOS add?”

Once again, the answer is “it depends”. If you pick the “typical” app.cfg file and let the defaults
stay as is, your footprint may be bigger than you want. There are benchmarks for SIZE delivered
with the BIOS product at:

bios_version#\packages\ti\sybios\benchmarks\doc-files\ARCH_sizes.html

Ok, so a Semaphore object takes X bytes and a Task consumes Y bytes. Most users have a hard
time translating this to real RAM bytes along with the code (FLASH) footprint. So, the author of
this workshop decided to take matters into his own hands and build projects on each architecture
and compare/contrast a non-BIOS project vs. using basic BIOS services to give users a feel for
the footprint sizes.

And what you see below are the results of this test. You can read the notes at the bottom of the
slide for many of the details.

First, all of these projects are available in the TI_RTOS folder you can download from the wiki.
Second, the author didn’t use the “Minimal” configuration file from BIOS — he used a modified
version of the MIN configuration file given in Appendix D of the BIOS User Guide. As you read the
notes at the bottom of the slide below, you will see the assumptions and choices made to come
up with all of the footprints shown.

Most users are interested in the RAM footprint while the Flash size is less important. This is a
“first cut” at the numbers and they follow the lab flow from this workshop. The intent here was to
give users a feel for the additional footprint required to use BIOS - the truth is always the best
policy — there is no marketing “spin” on this — just the raw data. Use it however you like...

Memory Footprint (MCU Targets)
¢ Application Baseline Footprints — Non-BIOS vs. BIOS (MIN)

Application FLASH (prog) in bytes RAM (data) in bytes

BLINK LED Using xWare MSP430 | C28x (w) | Tiva-C | MSP430 | C28x (w) Tiva-C
BASE — No BIOS (Lab 2, Blink LED) 1658 1364 2032 1026 1313 1046
+ BIOS + IDLE (and IDLE fxn) 4874 4034 8075 1180 1668 2318
+ Hwi 4886 4370 8083 1194 1732 2342
+ SWi (incl Hwi and Swi_post) 5790 4807 8199 1390 1796 2390
+ Task/Sem (inc/ Hwi to post Sem) 8488 6507 | 11161 2682 2500 4732
ngl‘l /fi(;‘;jff cem s“:"j)’”c"“"’” 15520 | 9505 | 15733| eoss| 5706 | 8272

¢ All BIOS applications used “MIN” BIOS CFG (modified from the BIOS U/G — Appendix D) plus
whatever objects, code and stack that were necessary (projects available in TI-RTOS folder)

All applications include a 1K user (system) stack (for Hwi/Swi)

All applications used the RELEASE build configuration (for source files)

No heap (dynamic memory allocation turned off)

All BIOS builds used “custom” optimizations which is the default for BIOS libraries

Task/Idle stacks — defaults used (MSP430: 512B, C28x: 256B, TM4C: 1K)

Tiva-C: exception handling turned OFF (commented in .cfg file used in project)

C28x FLASH vs. RAM - .map file (FLASH = FLASH, RAM = MO0-1 + L0-6), boot ROM tables excluded

L IR IR R IR R 2R 2

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-21

Memory Footprint — MCU Targets

*** ERROR 404 — PAGE MISSING — TITLE: WINNING LOTTO NUMBER ***

8-22 Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Lab 8: Using Tasks

Lab 8: Using Tasks

In this lab, you will add a Task and Semaphore via the Kernel's CFG file to respond to the timer
Hwi. In the Hwi/ISR, you will post a semaphore to unblock the Task (ledToggle).

Probably THE easiest lab in this workshop. Aren’t you excited !!

The optional lab walks you through creating the Semaphore and Task dynamically. Great lab —
and if you don’t get through it all — well, that's what “takehome” means. ©

Lab 8 — “Blink LED” Using Task

Lab Goal: Procedure

The Hwi’s ISR will now post a
SEMAPHORE to unblock a Task

¢ Import archived (.zip) project (from Swi lab)
* Add Task object (for ledToggle)

* Build, “Play”, Debug

¢ Use ROV/UIA to debug/analyze

main.c
main() {

init hw();
Timer (500ms)

BIOS start(); ® Replace Hwi, Sem, Timer with Task_sleep()

¢ [OPTIONAL] (create Sem/Task dynamically)

}
Scheduler

__> ml Semaphore post (LedSem) ; Hwi ISR
Task I ledToggle () {)
while (1) {
Semaphore_pend (LedSem) ;
Toggle LED; ledToggleTask
— }
1t |) J
PTexas NS « Time: 17.35 min

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-23

Lab 8 — Procedure — Blink LED Using Task

Lab 8 — Procedure — Blink LED Using Task

In this lab, you will import the Swi lab from ealier and add a Task and Semaphore. The
Timer_ISR() will post a Semaphore to unblock the new Task.

Some code will need to be added to ledToggle() to perform the while(1) loop and the
Semaphore_pend(). You will also need to add a new Semaphore to the BIOS CFG.

Using the Task and Semaphore, here is the new flow of events:
e Timer clicks down to zero and triggers the interrupt
e BIOS Hwi calls the Timer ISR()
e InTimer ISR(), a Semaphore is posted (LEDSem)
e LEDSem unblocks the Task (1LedToggle) to blink the LED
e ledToggle () runs and toggles the LED and then returns back to /dle

A starter project has already been created for you.

Import Project

1. Open CCS and make sure all existing projects and files are closed.

» Close any open projects (right-click Close Project) before moving on. With many main.c
and . cfqg files floating around, it might be easy to get confused about WHICH file you are
editing.

» Also, make sure all file windows are closed.
2. Import existing project from \Lab_08.

Just like last time, the author has already created a project for you and is contained in an
archived .zip file in your lab folder.

Import the following archive from your \Lab 08 folder:
Lab 08 TARGET STARTER blink Task.zip
» Click Finish.

The project “blink_ TARGET_TASK” should now be sitting in your Project Explorer. This is the
SOLUTION of the Swi lab from before (not the CLK lab). If you’re having difficulties, try to
debug the problem for a few minutes and then ask for help from your neighbor.

» Make sure all of the latest tools are selected: compiler, XDC, TI-RTOS

» Expand the project to make sure the contents are correct. If all looks good...move on...

3. Build, load and run the project to make sure it works properly.

We want to make sure the imported project runs fine before moving on. Because this is the
solution from the Swi lab, it should build and run.

» Build — fix errors.

» Then run it and make sure it works. If all is well, move on to the next step...

8-24 Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Lab 8 — Procedure — Blink LED Using Task

Add a Task and Semaphore to the System

4. Get rid of the Swi in CFG file.

We don’t need Swi in this lab, so delete it from your. cfg file. The other reason why we’re
doing this now is because this Swi calls ledToggle() and the Task we are about to add will
want to call the same function. So, we will avoid a few errors this way — delete, then add the
Task. Bottom line — we are replacing the Swi with a Task/Semaphore.

Add Task module and Task instance to your CFG file.

» In Available Products, right-click on Task and select “Use Task” or simply drag/drop the
service into your CFG file:

4 % Scheduling
@ Task
B Swi
W Hi
(9 e
{8 Clock

ﬁj Timer

» Right-click on the Task module in the CFG file and add a “New Task...” named
ledToggle Task that calls ledToggle() at priority 1. Use whatever the default Task stack size is.

» Save your .cfg file.

FYI — BIOS adds services implicitly for its own use. If you ever wanted to know what it added
“behind the scenes”, you can click on the following...

» You can see all of the locked/in-use implicit services in your system by selecting “Show
Configuration Results” — just hit the button below:

8% Qutline 52 E—:ﬁ

[Show Cenfiguration Results (Read Only)

t}!pc FITCErTExT

@ BIOS

» If you expand ti.sysbios.knl, you'll see the following (note: Task is NOT locked):

PRECET
» [catalog
4 {8 sysbios
@ BIOS
s [family
» 4 gates
4 hal
£} heaps
a f knl
& Clock
& Event
@& Idle
@& Queue
& Semaphore
;@ Swi
> @ Task

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-25

Lab 8 — Procedure — Blink LED Using Task

6. Add a new Semaphore to your CFG file.

» Add Sempahore to the Outline view. Via the GUI, you'll find it under Synchronization:

4 ¥ Synchronization
*¥ Sermnmaphore

*¥ Cyent
g8, Mailbox

k5 Queue

s é Gates
. M Suncs

» Then add a new instance with the following parameters:
e Handle: LEDSem
e Type: Counting (FIFO)
e |leavetherestasis...

» Save .cfgq.

Modify ledToggle() to use the topology of a Task.

Do you remember what the topology of a Task is? You will need to modify the ledToggle()
function to use a while(1) loop and a Semaphore_pend() just before the “process” — i.e.
toggling the LED.

» Modify ledToggle() by doing the following:
e Startawhile (1) loop just before the first line of code that toggles the LED.

e Just after the beginning of the while (1) loop, add the function that pends on a
Semaphore using the proper Semaphore handle (use BIOS WAIT FOREVER as the
timeout)

Semaphore pend (Your-Sem-Name, wait-value);
e PROCESS — ALL LED TOGGLE CODE GOES NEXT...
e Close the brace for the while (1) loop just AFTER the last line — the Log_info() call.
» Save main.c.
Is that it? Is that all you need to do? Let’s review:
e Hardware Timer clicks down to zero and fires an interrupt
e Hwiresponds to that interrupt and calls Timer_ISR()

o Timer_ ISR() must POST the Semaphore that ledToggle() is pending on (OOPS,
forgot to do that)

e ledToggleTask is made ready to run

e ledToggleTask object calls ledToggle() when the Hwi returns (it is the highest priority
pending thread)

e ledToggle() runs through the while (1) loop once and stops again at the _pend.

e The whole thing starts over again...

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Lab 8 — Procedure — Blink LED Using Task

8. Add Semaphore POST to Timer_ISR().
» In the Timer_ISR(), delete the post of the Swi and post the proper Semaphore instead.
Semaphore post (Your-Sem-Name) ;

» Savemain.c.

9. Edit LoggingSetup to make sure Semaphores are logged.
» Click on LoggingSetup in your CFG file and make sure the following is checked:

+ Built-in Software Instrumentation

RTOS Execution Analysis More Info...

Task Context (Always on) [¥] Swi Context [| Hwi Context ([¥] Semaphores

RTOS Load Analysis Moge I

CPU Load (Always on) [¥] Task Load

[] Task Profiler Mere Into...

[Swi Load [Hwi Load

» Save .cfg.

10. View where BIOS sets the Idle stack size and default Task Stack size.

The author stumbled into this one day. He knew that the thread /dle was truly the lowest
priority Task in the system — it is just a while(1) loop with no _pend and you can stick
functions into it. So, if it is a Task, it must have a stack. Right? But where is that specified?
MCU users want to limit footprint...so what if a user was wanting the smallest footprint
possible and was sniffing out every byte? Most users wouldn’t even think about the fact that
Idle has a stack and that MAYBE it is too big. Things that are hidden from the user is a sore
spot for the author...full exposure is the key here...

Ok, I'm sure that this would be OBVIOUS if you had the /dle service added to the CFG file
and the tools would say “Idle stack is THIS big”. Yes? No. Also, the author thought, what if |
wanted to change the default Task stack size to something other than what the developers
have chosen for me — it would be easy to find, right? No.

So, the author begged the BIOS team to make these things dumb-simple to find and they
have yet to do so. So, here is the trick...worth the price of admission to the workshop...

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-27

Lab 8 — Procedure — Blink LED Using Task

» Click on Task in your CFG file and then click on Module near the top:

[€] main.c & app.cfg &2

P _TI-RTOS * Products * SYSBIOS * Scheduling * Task - Module Settings
(stance Advanced

The Task module allows you to create one or more pricritized threads, each with a separate stack,
that can block on one or more events.

Add the Task threads module to my configuration

+ Global Task Options + Default Task Options
Mumber of priorities 16 Default stack size 2048

All blocked function null Default stack section fartaskStackSection
[¥]Tnitialize stack Default stack heap null

Check for task stack overflow
[] Delete terminated tasks
~ Idle Task Options

[¥] Enable Idle Task
[¥] Idle Task is vital

Idle Task stack size 2048

Idle Task stack section .fartaskStackSection

This is where the # max priorities are set, the Idle stack size and the default stack size for
each new Task. Heck, you can even define your own sections of memory to specifically place
these stacks into. A gold mine of info — right here on this page.

Now you know...and you are armed with more info to help you design your system and
minimize footprint. The author is NOT a marketing guy — he’s an engineer...just like you... ;-)

Build, Load and Run

11. Build, load, run, verify.
» Run for 5 blinks. If the LED doesn’t blink, common mistakes are:
e Task s pointing to the wrong function
e Forgot to post or pend on the Semaphore (or wrong Semaphore name)
e Forgot to add the timeout parameter to the _pend

e Didn’'tadd a while () loop to ledToggle()

8-28 Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Lab 8 — Procedure — Blink LED Using Task

Use ROV and UIA to Debug Code

12. Use ROV to see the new Task and Semaphore.

» Open ROV and click on Task and Semaphore to see the stats:

. -
Basic Raw ‘
address lakel event eventld mode count
000002022 ledToggleSern none n/fa counting 0

Basic |Detailed | Module | Readstl Raw |

address label pricrity mode fxn
0:0000a300 ledToggleTask 1 Blocked ledTeggle
000002324 ti.sysbios.knl.TaskIdleTask 0 Running ti_sysbios_knl_Idle_loop_E

13. Open the Execution Graph to see the Task running.

» Open the Execution Graph, expand the + signs on the top left hand corner and zoom in
properly to see the Task running:

kil Execution Graph &2 ':-15._' R ;

“ 0C28:0.#5emaphore

Semaphore_LM_pend L]
Semaphore_LM_post]

[C280e ¥ 05

Task.ledToggled |

Task.ti_syshbios_knl_Tdle_lciop_ () |

{BIOS Scheduler} I

Here, you see some pretty cool stuff:
e When the Semaphore is posted and pended
o |dle dominates the graph because we spend most of our time there
¢ You see the Task — ledToggle() running
e And something new — the Scheduler running (quite impressive)
14. Open the CPU Load Graph.
» Open the CPU Load to see that graph:

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-29

Lab 8 — Procedure — Blink LED Using Task

15. Sync the Execution Graph and System Log.

This is a great feature of UIA. Here is the setup — you see something happening in the
Execution Graph that looks odd or you are curious to find out more. While the Execution
Graph shows things graphically, what if you wanted to know WHICH Semaphore was posted
or what was happening in and around the Semaphore post or pend?

It sure would be nice to GROUP TOGETHER the system log and Execution Graph — when
you click on one, it syncs with the other. Well, you can...

» First, drag and drop the Live Session window above the rest so you can see the Live
Session view at the same time as the Execution Graph.

» Select the Enable Grouping button on the both Live Session and Execution Graph:

» Pick a zoom point around a post/pend of a Semaphore. Zoom in until your
graph looks similar to:

i Execution Graph &3

g C28:xc.#Semaphore
Semaphore_LM_pend L |
Semaphore_LM_post

- C28:00.*05
TaskledTeggle])]
Task.ti_sysbios_knl_Idle_loop__E() |me—m
{BIOS Scheduler} |

source

-—_—
2,500,130 2,500,380 2,500,630

» Then, click around near the pend or post and watch the system log sync with the
execution graph — or vice versa. Here | can see that THIS Semaphore was posted (C28x
example shown — your OxADDR will be different):

il 7

Semaphore_LM_pend Unknown

LM _pend: sem: Oxala2, count: 0, t..,

The address shown is for the Semaphore that was posted at that time in the system. But
WHICH Semaphore? We only have one, so that’s an easy answer. What if you had 12
Semaphores? Knowing the address, you could then go look at ROV and find the Semaphore
with the address 0xa0a2 and that’s it. The author has requested an enhancement to show
the Semaphore HANDLE in the Raw Logs view or display it when you hover over the flag in
the graph. We'll see if that ever happens... ©

8-30 Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Lab 8 — Procedure — Blink LED Using Task

16. View Task Loading in UIA.

We only have one Task in the system, but this is a good way to see the loading of each Task
in your system — from highest to lowest.

Task loading is not enabled by default in the System Analyzer, so we have to Kill the current
analysis session, then turn on Task Loading, then re-start the session.

» Close the Live Session window which will prompt you to close the entire session.
» Restart your program and run again for 5 blinks.
» Select Tools = Execution Analysis

The following dialogue window will open. Do you see the Execution Graph and CPU Load
enabled? Yep. If you look down the list, you'll see the setting for Task Load. Check the box
next to Task Load and then along that same row, click on the ... as shown:.

Which Analysis Features to Run:

Analysis Feature Which Cores Which Views to Open

Execution Graph 28 Graph

[] Concurrency C280¢ Graph | ..,

[Printf Logs C28a0¢ Surmmary

CPU Load C2%0 Graph [...]

[#] Task Load 28 Graph E’

When the next dialogue appears, check the boxes next to Graph and Summary:

[T Detail
Graph

Summary

» Click OK and then Start.

If you get a message about the data being “partial”, just continue. We only have one
semaphore, so there is not much to see...but the point here is how to enable and access this
info in your own system later on.

» Open the Task Load Summary and Task Load Graph to see the results:

L *Execution Graph fe *CPU Load: Graph |l *Task Load: Graph | BH *Task Load: Surnmary 52
Source Count Min Max Average Overall
1 CPU 10 00 0.0 0.00 0.00

T5K:ledToggle() 10 001 0 0.01 0.01
TSK:ti_sysbios_knl_Idle_loop_EQ 10 9999 99.99 99.99 99.99

The Task Load Graph is difficult to see because Idle dominates at 99.99 percent so there is
one line at the top and one line at the bottom (ledToggleTask) — but you get the idea that you
could see all of your Tasks here and which ones have the biggest loads.

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-31

Lab 8 — Procedure — Blink LED Using Task

17.

18.

Use Task_sleep() to perform timer function in the lab.

Remember Task sleep () from the discussion material? Well, because Task sleep ()
allows a thread to sleep for “N” number of system ticks, it actually uses the BIOS Clock
Module’s timer to sleep (give up control of execution to a lower priority thread) and then wake
up to the Ready state and run when it has priority. In this example, we won’t need the Hwi,
Semaphore or timer code any longer — all can be replaced with a simple Task sleep () call
in your Task...

» In main.c, make the following edits to your Task:
e Add Task sleep(N); where N isthe number of system ticks you want to sleep
¢ Remove the Semaphore pend/()

» Inmain.c, comment out the timer init code in hardware init ()

» In your . cfqg file, remove the Semaphore and Hwi.

» Rebuild and run.

By the way, how does this Task get called now that the Semaphore pend () was removed?

Learn how to use the file compare feature in CCS.

As you may have figured out already, all of these labs have solution files. Your instructor may
have pointed to these before. However, if you have not yet done a file compare in CCS
before, it is quick and easy. Sure, many people use programs like Beyond Compare (like the
author does), but the service in CCS is something you should at least know about.

First, » import the solution for Lab 8.
» Select Project 2 Import CCS Projects...
» And browse to the \Sols folder and choose the solution for this lab (NOT 8B).

Now, you can compare your main. c with the solution’s main.c and note any differences.
Wouldn't it be great to have solutions already done for all the programs you need to write in
the future? ;-)

» Make sure each project (yours and the solution project) are expanded and you can see
main.c in both.

P Left-click on one main. c file and then Ctrl-click the other main. c.
» Right-click on one of the main. c files and select Compare With - Each Other.

Note any differences — not that there will be many — especially if your lab is working properly.
But, now you know how to do this in CCS.

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Lab 8 — Procedure — Blink LED Using Task

Using Simple Mode View in CCS

19. Explore the Simple Mode View in CCS.

This view may or may not have been mentioned previously by your instructor. For users
migrating from Energia (Arduino) to CCS or migrating from another IDE that has one
perspective vs. two such as Edit and Debug.

You, yourself may also PREFER a simpler view without losing much flexibility in the IDE and
menus. So, now it is time to try it out...

» Select View > Getting Started and select Yes in the box below:

Would you like to use CCS in Simple mode? @ Yes) No

(Recommended for Energia and LaunchPad users)

You should now see a new perspective pop up in the upper right-hand corner of CCS:

[CCSEdit %%, CCSDebug [y CCS Simple

» Close the Getting Started window. Notice the changes in the view — the Debug window
and Project Explorer and the build and run/pause buttons are all in the same view.

» Rebuild your code, load and run it. Wow — all in one simple window.

» Go back to the regular two perspective view by reversing your steps — open Getting
Started and select “No” and then close the window.

20. Terminate your debug session and close the project.

If you have time, move on to the optional lab where you will create the semaphore and
task dynamically. It's a great lab...but only if you have time...or watch your architecture
videos...or help a neighbor get through their lab...or do nothing useful...

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-33

[Optional Lab] — Dynamic Module Creation

[Optional Lab] — Dynamic Module Creation

In this lab, you will import the solution for the Task lab from before and modify it by DELETING
the static declaration of the Task and Semaphore in the . cfg file and then add code to create
them DYNAMICALLY in main ().

Import Project

21.

22,

23.

Open CCS and make sure all existing projects are closed.

» Close any open projects (right-click Close Project) before moving on. With many main.c
and . cfgq files floating around, it might be easy to get confused about WHICH file you are
editing.

» Also, make sure all file windows are closed.

Import existing project from \Lab8b.

Just like last time, the author has already created a project for you and it’s contained in an
archived .zip file in your lab folder.

Import the following archive from your /Lab_8 folder:
Lab 8B TARGET STARTER blink Mem.zip
» Click Finish.

The project “blink_ TARGET_MEM?” should now be sitting in your Project Explorer. This is the
SOLUTION of the earlier Task lab with a few modifications explained later.

» Expand the project to make sure the contents look correct.

» Check properties and select the latest tools like always...

Build, load and run the project to make sure it works properly.

We want to make sure the imported project runs fine before moving on. Because this is the
solution from the previous lab, well, it should build and run.

» Build — fix errors.
» Then run it and make sure it works. If all is well, move on to the next step...

If you’re having any difficulties, ask a neighbor for help...

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

[Optional Lab] — Dynamic Module Creation

Check Dynamic Memory Settings

24. Open BIOS - Runtime and check settings.
» Open .cfg and click on BIOS 2 Runtime.

» Make sure the “Enable Dynamic Instance Creation” checkbox is checked (it should already
be checked):

+ Dynamic Instance Creation Support

| Enable Dynamic Instance Creation

A savings in code and data size can be achiev

» Check the Runtime Memory Options and make sure the settings below are set properly for
stack and heap sizes (modify if necessary):

= Runtime Memory Options

Systern (Hwi and Swi) stack size 1024

Heap size 256

We need SOME heap to create the Semaphore and Task out of, so 256 is a decent number
to start with. We will see if it is large enough as we go along.

» Save .cfg.

The author also wants you to know that there is duplication of these numbers throughout the
. cfg file which causes some confusion — especially for new users. First, BIOS 2 Runtime is
THE place to change the stack and heap sizes.

Other areas of the . cfg file are “followers” of these numbers — they reflect these settings.
Sometimes they are displayed correctly in other “modules” and some show “zero”. No
worries, just use the BIOS 2Runtime numbers and ignore all the rest.

But, you need to see for yourself that these numbers actually show up in four places in the
.cfg file. Of course, BIOS 2Runtime is the first and ONLY place you should use.

» However, click on the following modules and see where these numbers show up (don’t
modify any numbers — just click and look):

e Hwi (Module) — not the INSTANCE
e Memory (MSP430 and TM4C only)
e Program

Yes, this can be confusing, but now you know. Just use BIOS 2Runtime and ignore the other
locations for these settings.

Hint: If you change the stack or heap sizes in any of these other windows, it may result in a
BIOS CFG warning of some kind. So, the author will say this one more time — ONLY use
BIOS > Runtime to change stack and heap sizes.

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-35

[Optional Lab] — Dynamic Module Creation

Inspect New Code in main()

25. Open main.c and inspect the new code.

The author has already written some code for you in main (). Why? Well, instead of making

you type the code and make spelling or syntax errors and deal with the build errors, it is just
easier to provide commented code and have you uncomment it. Plus, when you create the
Task dynamically, the casting of the Task function pointer is a bit odd.

» Openmain.c and find main ().

» Inspect the new code that creates the Semaphore and Task dynamically (DO NOT
UNCOMMENT ANYTHING YET):

void main(wvoid) 3

Task_Params taskParams;
???? = Semaphore_create(®, NULL, NULL}); [/ create ledToggleSem Semaphore
Task_Params_init({&taskParams); [/ create ledToggleTask Task

taskParams.priority = 2222;
???? = Task _create((Task _FuncPtr)ledToggle, &taskParams, NULL);

- DYNAMIC CREATION OF TASKS AND SEMAPHORES

As you go through this lab, you will be uncommenting pieces of this code to create the
Semaphore and Task dynamically and you'll have to fill in the “????” with the proper names
or values. Hey, we couldn’t do ALL the work for you. ©

Also notice in the global variable declaration area that there are two handles for the
Sempahore and Task also provided.

In order to use functions like Semaphore_create() and Task_create(), you will need to
uncomment the necessary #include for the header files also.

Delete the Semaphore and Add It Dynamically

26. Get rid of the Semaphore in app.cfg.

» Remove LEDSem from the . cfg file and save .cfg.

27. Uncomment the two lines of code associated with creating ledToggleSem dynamically.

» In the global declaration area above main (), uncomment the line associated with the
handle for the Semaphore and name the Semaphore LEDSem.

P Inmain (), uncomment the line of code for Semaphore create () and use the same
name for the Semaphore (the return value of the _create call is the Semaphore handle).

» In the #include section near the top of main.c, uncomment the #include for
Semaphore.h.

» Savemain.c.

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

[Optional Lab] — Dynamic Module Creation

Build, Load, Run, Verify

28. Build, load and run your code.
» Build the new code, load it and run it for 5 blinks.

Is it working? If not, it is debug time. If it is working, you can move on...

29. Check heap in ROV.

So, how much heap memory does a Semaphore take? Where do you find the heap sizes and
how much was used? ROV, of course...

» Open ROV and click on HeapMen (the standard heap type), then click on Detailed:

address minBlockAlign sectionMame totalSize totalFreeSize largestFreeSize

0x0000a0a2 0xb300 4 =100 Oxed Q0

So, in this example (C28x), the starting heap size was 0x100 (256) and 0xdo is still free
(208), so the Semaphore object took 48 16-bit locations on the C28x (assuming nothing else
is on the heap). Well, there ARE other items placed on the heap before the Semaphore was
created. 10-20 hex is required for exit/atexit() functions — so the Semaphore itself really only
takes 10h bytes — or 16 bytes. Ok — that is more reasonable and matches the object definition
in Sempahore.h as well.

Note that your “mileage may vary” on the sizes here depending on your architecture. The
easiest way to check how big the Semaphore object is on the stack is to set a breakpoint on
the Semaphore create () function and on the next line of code and check the ROV sizes in
each case.

» Restart the code and set a breakpoint on the Semaphore create () call AND set
another breakpoint on the next line of code.

» Click Run and open up ROV.

» What is the free size available on the heap?

» Click Run again (to create the Semaphore).

» What is the free size available on the heap?

» Subtract the last two values you wrote down (e.g. 0xfO — 0xe0) and you get?

This is the size of the Semaphore object for YOUR specific architecture. You should get
about 10h or 16 locations (16-32 bytes).

Ok. So, we didn’t run out of heap. Good thing.

» Write down how many bytes your Semaphore required here:

» How much free size do you have left over?

So, when you create a Task, which has its own stack, if you create it with a stack larger than
the free size left over, what might happen?

Well, let’s go try it...(oh, and remember the Error Block thing? Is it being passed? What
happens if you don’t pass eb and you get NULL as the pointer? You are about to find out...)

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-37

[Optional Lab] — Dynamic Module Creation

Delete Task and Add It Dynamically

30.

31.

32.

Delete the Task in app.cfg.

Remove the Task from the app.cfqg file and save app.cfg.

Uncomment some lines of code and declarations.
» Uncomment the #include for Task.h.
» Uncomment the declaration of the Task Handle and fill in ??72.

» Uncomment the code in main () that creates the Task (LedToggleTask) and fill in the
?7?7?7 properly.

» Uncomment Task_Params declaration
» Create the Task at priority 2.

» Save main.c.

Build, load, run, verify.
» Build and run your code for five blinks. No blink? Read further...
» Halt your code.

Your code is probably sitting at abort (). How would the author know that? Well, when you
create a Task, it needs a stack. On the C6000, the default stack size is 2048 bytes. For C28x,
it is 256.

You probably aborted with a message that looks similar to this:

| = abort() at exit.c:109 D:{CBDIBEED}'

Just look at the call stack in the Debug window to see the progression of problems and errors
from the Task_create() all the way “upwards”:

4 we blink_C28x_MEM_SOL [Code Composer Studio - Device Debugging]

a4 o Texas Instruments ¥DS100v1 USE Emulator/C28 (Suspended)
abort() at exit.c:93 3DBT2C
xde_runtirme_System_abortStd_E() at System.c:94 0:30BD06
wde_runtirne_System_abort_ E(char *}() at System.c:53 0:3DBASL
xdec_runtime_Error_policyDefault_E(struct xdc_runtime_Error_Block *
xdc_runtime_Error_raiseX_ E{struct xdc_runtime_Error_Block *, unsig
ti_sysbios_heaps_HeapMerm_alloc_ E(struct ti_syshios_heaps_Heap
wde_runtime_IHeap_alloc(struct xde_runtime_IHeap_ Object *, unsi
xdc_runtime_Memery_alloc__E(struct xdc_runtime_IHeap__ Object *
ti_sysbios_knl_Task_Instance_init_ E(struct ti_syskios_knl_Task_Ohbje

ti_sysbios_knl Task_create(void ("){unsigned long,unsigned long), st

What happened? Two things. First, your heap is not big enough to create a Task from
because the Task requires a stack that is larger than the entire heap! ;-)

Also, did you pass an error block in the Task create () function? Probably not. So, what
happens if you get a NULL pointer back and you do NOT pass an error block? BIOS aborts.
Well, that's what it looks like.

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

[Optional Lab] — Dynamic Module Creation

33.

34.

35.

36.

37.

Open ROV to see the damage.

» Open ROV and click on Task. You should see something similar to this:

Basic |Detai|ed | Module I ReadyQs | Raw |

address label pricrity mode fxn a. a. stackSize
000002180 ti.syshios... 0 Running ti_syskios_knl_Idle leop_E 0. 0. 256
0:0000b1 4 2 Blocked ledToggle 0. 0. 256

» Look at the size of “stackSize” for ledToggle (name may or may not show up). This
screen capture was for C28x, so your size may be different (probably larger).

» What size did you set the heap to in BIOS Runtime? bytes
» What is the size of the stack needed for ledToggle (shown in ROV)? bytes

Get the picture? You need to increase the size of the heap...

Go back and increase the size of the heap.
» Open BIOS 2Runtime and use the following heap sizes:
o (C28x: 1024
e (C6000: 4096
e MSP430: 1024
e TM4C: 4096

We probably don’t need THIS large of a heap for this application — it could be tuned better —
we’re just using a larger number to see the application work. Remember, you can always run
your system and check ROV and then tune accordingly based on used vs. total heap/stk size.

» Save .cfg.

Wait, what about Error Block?

In a real application, the user has a choice whether to use Error Block or not. For debug
purposes, maybe it is best to leave it off so that your program aborts when the handle to the
requested resource is NULL. If you don't like that, then use Error Block and check the return
handle and deal with it however you choose — user preference.

In our lab, we chose to ignore Error Block, but at least you know it is there, how to initialize
one and how it works.

Rebuild and run again.

Rebuild and run the new project with the larger heap. Run for 5 blinks — it should work fine
now.

Terminate your debug session, close the project.

You're finished with this optional lab. Help a neighbor who is struggling with the
first lab — you know you KNOW IT when you can help someone else — and it’s being
a good neighbor. You've heard this before....somewhere...or just be selfish and
watch your architecture videos... ;-) Or be more selfish and check your email...

Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores 8-39

Notes

Notes

8-40 Intro to the TI-RTOS Kernel Workshop - Using Tasks and Semaphores

Inter-thread Communication

Introduction

In this chapter, you will learn about how to pass data between threads and how to protect
resources during critical sections of code.

This chapter is broken into two pieces based on how threads communicate:

PRODUCER/CONSUMER - this model assumes there is a type of formal communication
between threads where Thread A produces the data and then tells Thread B that the data is
available. Usually, Thread B is blocking while waiting for the data and Thread A uses some type
of signal (like a Semaphore) to tell Thread B the “data is ready”. Also, this model usually has
some sort of BIOS container (like a queue or mailbox) in the middle — managing the
communications between the two threads. Few problems exist with this model because the
communication is formalized.

CONCURRENT ACCESS - this model assumes that either Thread A or Thread B could gain
access to a critical resource at any time and therefore some sort of protection, like a gate or
mutex, must be used to protect one thread from the other during the critical section where the
lower priority thread is accessing the data. This may also involve modifying the behavior of the
BIOS Scheduler (like turning off global interrupts) as well.

In the lab, you will have the opportunity to program both a Queue and a Mailbox, by passing the
status of the LED (on or off) via one of these BIOS containers.

Objectives

Objectives

® Describe HOW to share resources
between threads

" Compare different use cases (concurrent
access vs. producer/consumer model)

® Analyze several BIOS building blocks for
data sharing and signaling

" |dentify where semaphores can be a
good choice vs. where they produce
problems

® Lab — Using Mailboxes and Queues

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-1

Module Topics

Module Topics

Inter-thread ComMMUNICAtIONcooiiiiici e 9-1
1Y (oo 17 =T o] o] (o1 NS 9-2
INEFOQUCTION ...ttt et a e e ea e e 9-3

Overview Of the Problem ... e a e 9-3
Resource Sharing — TWO MOGEISouuiiiiiiiiii e 9-4
“Producer-Consumer” MOME!ooueee oo 9-5
101 o T PO PPPPP PP 9-5
USING QUEUES — CONCEPLS .. .veiieiiiiieeeitiiie ettt ee ettt e ettt e ettt e e e sttt e e e sbae e e e snbeeeesanbaeeeesnneeaeens 9-6
Using Queues — Synchronizing QUEUESccoiuiiieiiiiiee e eiieee et e steee et e e saeee e 9-7
Using Queues — To Create a Peripheral DIIVET.cccoiiiiiiiiiiiiiie e 9-8
0L To TN 1Y F= 1] o To)= TSP PRPRPPNt 9-9
“Concurrent ACCESS” MOoooo oo 9-11
0o USSP 9-11
USING GIODAIS ...ttt e s 9-12
What is @ “Critical SECON" 2. ... e a e 9-13
Critical Section — Modifying Scheduler Behavior ... 9-14
USING MUTEXS — INIO ..ottt 9-15
USING MUTEX GatES. .. .eeeiiiiiiiieiie ettt s 9-16
A ToT 1Y TN Z=T <o o PR PPPPPUPRN 9-17
Priority Inversion — Solution #1 — Elevate Priority..........cccooiiiiii i 9-18
Priority Inversion — Solution #2 — MUtex Gates............coovviiiiiiiie i 9-19
What iS DEAAIOCK?eeieiiiiii ettt e et e e ettt e e e st e e e snteeeeesnteeeeeans 9-20
Same Priority TRIEAASc.cci i e e e e aae s 9-21
Lab 9: Using Mailboxes @nd QUEUEScccuueeeeeesieeeeeeeeesee et sae e ssee s 9-23
LaD 9 — PrOCEAUIE.........ccoeeeee ettt ettt e e 9-24
Part A — USIiNG MailDOXESooiiiiiiiii e 9-24
IMPOM PrOJECT. ... e 9-24
SETUP - Create Message Object and Add Mailbox to BIOS CFG.........cccccceviiiiinnnee. 9-25
SENDER - Create a New Task for Message Management FXNncccccceeeiieeeininenn. 9-26
SENDER — Post the Message to the MailboX..........cc.uuveeiieiiiiciiiieeee e 9-27
RECEIVER — Receive the Message and Toggle the LED............cccooveeeeiiiicciiiiieee e, 9-27
SEND/RECEIVE — MAILBOX — Build, Load, and RUNc.cccccceiiiiiiiiniiee e, 9-28

Part B — USING QUEUESc.eueiiiiiiiie ettt ettt e st e e s e e s s e e e aneeeeas 9-29
SETUP - Create the Queue Message Object and Queue Instance..............cccceeeeunnee.. 9-29
SENDER — Put Message in Queue and Post a Semaphorecccccvviieiiiiiee e, 9-30
RECEIVER - Receive the Message and Toggle the LED...........cccccoiiiiiiniiiiiniiec e 9-31
SEND/RECEIVE — QUEUE — Build, Load, and RuN...........cccoociiiiiiiiie e 9-31
INOTES ...ttt ettt e ettt e e e e 9-32

9-2 Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

Introduction

Introduction

Overview of the Problem

So, it is important to start off talking about what problem we are attempting to solve so that there
is a context to understand the solutions we discuss in this chapter.

In some way, threads need to communicate with one another — safely. Solutions like using global
variables and mutexes do solve the problem, but the qualifier is SAFELY.

Shown below is a simple diagram with Thread A and Thread B apparently sharing “data”. This
data could really be anything — a buffer, a peripheral, a channel of a peripheral — ANYTHING that
is shared between two threads.

Using a global variable between the two could work, but it is not safe — we’ll cover WHY this is in
a few moments.

Let us pose a question — what if Thread A and Thread B were at the same priority? Could there
be contention between the threads? No, because they cannot pre-empt each other. So, this is
really one of the better solutions when sharing data between threads — just place them at the
same priority.

But this is not always possible, so we want to talk about common solutions — using globals and
mutexes as well as some of the BIOS services that help threads communicate.

Sharing Data Between Threads - Problem

¢ What are common ways that threads share resources?

3
Thread A | <= {=> | Thread B

Just use Globals and don’t worry about it !!

¢ Come on, mutex’s are better. They are easy and we use
them all the time. They cause no problems.

¢ What problems can occur when using globals/mutex’s?

& Well, since we’re in the SYS/BIOS workshop, there must
be some services this RTOS provides to help us...

Yes, BIOS can help...but let's first look at the types of "sharing" that are possible...

The author has broken this topic down into two models — producer/consumer and concurrent
access. So let’s go take a look at what these mean...

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-3

Introduction

Resource Sharing — Two Models

Shown below is an overview of the two models and each have their own characteristics:

PRODUCER-CONSUMER: In this model, as described in the introduction, the threads agree
upon a formal “protocol” — method of sharing data — that will avoid conflicts. Thread A is the
producer of the “msg” or “data” and places this data into a BIOS container and then Thread A
signals Thread B that the “data is ready”. Thread B is often blocking waiting for this signal, it then
reads the data and processes it. Notice that the arrows flow in one direction — from the producer
to the consumer. So, our plan is to talk about the containers that exist and compare/contrast

them.

Resource Sharing — Two Types

¢ “Producer — Consumer” Model

S
Thread A :> Mg :> Thread B

BIOS “Container”

* Thread A produces a buffer or Msg and places it in a container.
* Thread B blocks until available, then consumes it when signaled (no contention)
* Data communication is achieved using BIOS “containers” (objects)

[»
¢ “Concurrent Access” Model Resource = Data or Peripheral

—
Thread A :> <: Thread B

* Any thread could access “Resource” at any time (no structured protocol/container)
* Pre-emption of one thread by another can cause contention or priority inversion

Let's look at the producer-consumer mode! first...

CONCURRENT ACCESS: Here, you can see the arrows flowing toward the “resource” whereby
either thread can gain access to the resource at any time. Just by seeing the arrows, you can
notice that this is a recipe for contention. If the threads are at disparate priorities and one pre-
empts the other at the wrong time (during the critical section), problems can occur. There are
several solutions to this that we will explore during this chapter.

First up is the PRODUCER-CONSUMER model...

9-4 Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

“Producer-Consumer” Model

“Producer-Consumer” Model

Intro

As stated before, here Thread A is PRODUCING the data or “msg” and Thread B is
CONSUMING the data. Thread B often blocks and waits for a signal from Thread A to denote that
the “data is ready”.

The “msg” is passed between the threads via a BIOS container — such as a Queue or Mailbox.
This protocol is fairly formal and reduces the chances of contention because Thread B won’t act
until Thread A says there is data available.

Re-use is a big deal in software. Using either a Mailbox or Queue allows you to take a function
that uses one of these containers and move it around as long as both sides speak the same
language. Usually, the signaling mechanism used is a Semaphore — what else? — they are
available in the O/S, so why not use them...

Producer — Consumer Model - Intro

5
Thread A > | | Msg > | Thread B
produce consume
BIOS
“Container”

How it Works:
¢ Datais UNIDIRECTIONAL — one thread waits for the other to produce
¢ Thread B often BLOCKS until data is produced

Advantages:
¢ Both threads use same protocol — contention is often avoided

¢ Threads become more “modular” and therefore reuse improves

Examples:

¢ BIOS: Queue, Mailbox, Stream 1/0

¢ May have built-in synchronization or user can add signaling via
Semaphores and Events

So let’s first take a look at how Queues work...

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-5

“Producer-Consumer” Model

Using Queues — Concepts

Conceptually, you can view a Queue as a container as shown below. Thread A PUTs a message
into the container, signals Thread B that the message is available and then Thread B GETs the
message. This is a one-way communication — from the producer to the consumer.

The Msg’s shown below contain whatever the programmer decides to create — it is simply a
structure defined by the programmer. It could hold pointers, buffers, variables, whatever you like.

The two key function calls are:
e Queue_put(): put a message into the Queue
e Queue_get(): get a message from the Queue

Messages are reclaimed on a first-in, first-out (FIFO) basis. If Thread A puts three messages into
the Queue and Thread B gets a message, it will get the first one placed into the Queue by Thread
A.

Queues are simple and not copy-based. Thread A owns and declares the structure that is used
and only a pointer to that structure (message) is passed in the Queue. Thread B then
reads/writes or processes Thread A’s memory. This is a major advantage because the next
container we will talk about, Mailbox, is copy-based — meaning that Thread A and Thread B both
have copies.

Queue size is limited only by memory — it can be as big or as small as you like — you do not need
to define this up front — so Queues are very flexible. If you don’t know exactly what the needs are
in the system at boot time, Queues can expand/contract based on runtime needs.

The disadvantage of Queues is that they have no built-in signaling. So, the user will have to
synchronize the producer and consumer threads using a Semaphore. We’'ll take a look at this
next...

Queue Concepts...

4 A Queue is a BIOS object that can contain anything you like

Queue

& “Data” is called a “Msg” — simply a structure defined by the user
& Msgs are “reclaimed” on a FIFO basis
& Key APlIs:

Queue put () ;
Queue get();

Advantages: simple, not copy based
¢ Disadvantage: no signaling built in

How would you synchronize the writer and reader?

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

“Producer-Consumer” Model

Using Queues — Synchronizing Queues

As you may have guessed, the Talker (producer thread) simply POSTs a Semaphore after
placing a message into the Queue and the Listener (consumer thread) blocks waiting for that
Semaphore before reading the message.

If you have heard about or seen PSP (Platform Support Package) drivers from T, a Queue plus a
Semaphore is, in essence, how these drivers are built. They formalize the “message” and call it
an 1/0O Packet and the Semaphore is built into the mechanism. Instead of a Queue, they call it a
Stream.

Synchronizing Queues...

¢ Use a Semaphore to synchronize writer/reader:

Queue

TALKER LISTENER LN
Queue_put(&myQ, msg); Semaphore_pend(&Sem, -1); *g'{
- Semaphore_post(&Sem); msg = Queue_get(&myQ); 2.

Note: “Queue+Sem” is the basis for how “streams” are built to interface with I/O drivers —
e.g. Platform Support Package (PSP) drivers from TI.

Let's see how Queues are used in a system...

So let’s go take a look at how these Queues actually work in a system...

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-7

“Producer-Consumer” Model

Using Queues — To Create a Peripheral Driver...

This is a VERY involved slide — lots of information to cover. First, let’s unlock the mystery of how
these Queues work.

A Queue is really NOT a container that has memory associated with it like a Mailbox (coming up
next). A Queue Object is simply a set of two pointers — a head and a tail. A message is a
structure defined by the user but must have a Queue_elem as the first element in the structure.
This Queue_elem is a structure containing two pointers — next and previous. So each message
actually points to the one before it and the one after it — thus creating a double-linked list. When
messages are PUT into the Queue, the next and previous pointers are updated in the message
itself. This is shown in the upper right-hand corner of this slide along with the message definition.

So the user must first declare a Queue in the configuration file and then define the message
(structure) in their C code. The user can put anything in the structure they like — for example, as
shown below, the structure contains two pointers — one to the input buffer and the other to the
output buffer. Then, the producer and consumer threads can start passing these messages
between each other.

Using Queues in a System...
+ User Setup: [Clem o3| —[megt || nss2 |-—[B001 |
A. Declare Queue in CFG
struct myMsg {

B. Define (typedef) structure of Msg Queue Elem elem;
short *pInBuf;
short *pOutBuf;

D. Send/receive data from the queue } Msg;

C. Fillin the Msg —i.e. define “elements”

¢ Example — RCV side of peripheral driver (Hwi):
1. Double Buffer System — main init puts TWQO Msgs in toHwiQ
2. Hwi gets EMPTY Buffer from toHwiQ (and fills it up with data) ——————
3. Hwi puts FULL Buffer into toTSKQ (gets next EMPTY) main

4. Task gets FULL buffer from toTSKQ (process) pu:[[
u
5. Task puts EMPTY buffer into toHwiQ \ P),

)
Note: two Queues allow Msgs to put
circulate between threads.

Task

toHwi = EMPTY, toTSK =FULL
./

The diagram at the bottom of this slide shows the RECEIVE SIDE of a peripheral — for example —
a serial port. You can read the steps — 1 through 5 above — but here is the main story: main()
“primes the pump” with two PUTs (double buffer system) into the toHwiQ and signals the Hwi that
an EMPTY message is available. The Hwi FILLs up the “buffer” and PUTs it into the toTSKQ and
signals the Task there is a FULL buffer to process. While the Task is processing the first buffer,
the Hwi starts to FILL the second message. When the Task is done with the first message, it
RECYCLES the used message (EMPTY) back into the toHwiQ and the process begins again.

In this way, the Task and the Hwi both have buffers to “process”. You now have a very simple
double-buffered system. So, here is the key to all this — what if, late in development, you decide
you need three buffers or four buffers? How hard is this to implement? Just add one or two more
PUTs in main() and you’re done. Now THAT is flexibility...

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

“Producer-Consumer” Model

Using Mailboxes

Mailboxes are actual containers — the Mailbox Object is strictly defined as a static size and length
— unlike Queues. When you create a Mailbox, you must specify the number of messages and the
size of each message.

The two key function calls are:

e Mailbox_post(): post a message into the Mailbox and block if the Mailbox is FULL, waiting
for the consumer to read a message.

¢ Mailbox_pend(): if a message exists (Mailbox is NOT empty), grab the message. If the
Mailbox is EMPTY, pend (block) waiting for a message to be placed into the Mailbox.

So, both function calls can block — and there is no need for an additional Semaphore because
Mailboxes have them built into the mechanism.

Using Mailboxes
——

Mailbox

¢ Mailboxes — a fixed-size BIOS Object that can contain anything you like

¢ Fixed length defined by:
* Number of Msgs (length of mailbox)
* Message Size (MAUs)

¢ Key APIs (both can block):

Mailbox post (&Mbx, &Msg, timeout); //blocks if full
Mailbox pend (&Mbx, &Mail, timeout) ; // blocks if empty

¢ Advantages: simple FIFO, easy to use, contains built-in semaphore for signaling

¢ Disadvantage: copy-based (both reader/writer own a copy) — best if used to
pass pointers or small Msgs

The main advantage of using Mailboxes is that they are very easy to use (no double-linked lists),
they are fixed in size (won’t grow/expand beyond the specified size) and they have built-in
signaling via Semaphores. As you'll see in the lab, there are actually two additional Semaphores
used to create the signaling of a FULL or EMPTY Mailbox.

The disadvantage of Mailbox is that it is copy-based — both Thread A and Thread B must allocate
memory to hold the contents of the message. This is NOT a big deal if all you are passing are
pointers — which is the most common use of Mailboxes. However, if you pass a 1K buffer, well,
you’ve just wasted some precious memory.

So, as a user, you have a choice to use Mailboxes or Queues depending on your system needs.
If all you need to do is pass a pointer or two or simple information, just use a Mailbox. If your
needs are more complex and must grow/expand based on runtime needs, maybe Queues are a
better choice. The bottom line is — you have a choice and now you understand the tradeoffs of
each...

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-9

“Producer-Consumer” Model

HIDDEN SLIDE...Advanced Producer-Consumer Services...

Queues are the basis for just about everything in BIOS. The first part of this slide talks about PSP
(Platform Support Package) drivers and Stream 1/O. If you are a C6000 or multi-core user, you
may have either used or seen PSP drivers. They use a combination of Queues and Semaphores
to create a communication protocol — called Streams — between the processing thread (Task) and
a driver provided by TI. These threads ISSUE and RECLAIM I/O packets (fancy messages) to
and from a Stream — which is just a fancier Queue. Same concepts apply.

Advanced “Producer-Consumer” Services

4 More advanced versions of the “producer-consumer” model are
built into SYS/BIOS and other drivers/frameworks:
Platform Support Package (PSP) Drivers
* Issue/Reclaim buffers to/from a STREAM (input and output Queues)

Stream
Messaging between cores (DSP = DSP, ARM - DSP)

* Lowest layer uses BIOS MessageQ SysLink/IPC
* SysLink is a layer above MessageQ — a driver ported to Linux
and SYS/BIOS MessageQ

The bottom half of this slide talks about Queues and how they are used to implement more
complex messaging schemes — mainly MessageQ, and above that, IPC — Inter Processor
Communications. For multi-core users (ARM + DSP or ARM + MCU or DSP + DSP), IPC is a
mainstream communication protocol that is completely built out of Queues along with other
information to designate the core or the device it is talking to.

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

“Concurrent Access” Model

“Concurrent Access’” Model

Intro

In this model, either thread (Thread A or Thread B) could gain access to the data or resource at
any time. Data is “up for grabs”. Some type of PROTECTION must be put in place to avoid
contention between these threads.

Often times, users opt to implement MUTEXSs in their system. While these can work very well,
they can also cause problems.

In this section, we will cover some common solutions to this model including modifying the
behavior of the BIOS Scheduler, using MUTEXs and also Mutex Priority Gates.

Along with these topics, we will get into more details about how Semaphores work — both FIFO
and priority-based Semaphores.

“Concurrent Access’” Model — Intro

D
Thread A :> <: Thread B

How it Works:
& Datais “up for grabs” — often first-come, first-serve
¢ User must add “protection” to avoid contention between different PRI threads

Advantages:
¢ Common usage — many systems use MUTEXs for resource protection

Disadvantages:
& MUTEXs can cause priority inversion or deadlock — both ugly scenarios
¢ Modifying scheduler behavior (e.g. disabling INTs) can cause jitter in the system

Examples:
¢ BIOS: Scheduler Mgmt, MUTEX (Gates), Task_setPri
¢ Note: watch out for “globals” accessed by multiple threads w/no protection...

Let's first look at a simple use of globals...

We will start the discussion with a review (from college) about how using global variables can
cause problems...

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-11

“Concurrent Access” Model

Using Globals

If you ever took a computer science course in college, you may have heard your professor say
“‘don’t use globals”. They may or may not have actually explained WHY. If you have programmed
any embedded system, this should be a review...but we’re starting with the easy cases first and
then we’ll get into more complex problems.

As shown in the diagram below, both Thread A (high priority) and Thread B (low priority) are
modifying a variable — cnt. When you look at the C code “cnt += 1;”, this looks like an ATOMIC
instruction — i.e. it CANNOT be broken into smaller pieces — or it will FINISH the result without
being interrupted.

BUT, when you compile C code, you get assembly code — typically a read/modify/write as shown
— LOAD, ADD, STORE. Could this assembly code be interrupted in the wrong place? The answer
is YES. So if two threads are sharing a global variable and one thread pre-empts the other at the
wrong time, you could end up with bad results.

What’s Wrong With Using Globals ??

¢ If two threads share a global, what’s the problem?

Thread A (hi) Thread B (lo)
(void A(void) { k- ("void B (void) {
cnt += 1, ent +=1;
' LD
:|___ADD
ST
} J } J

¢ What happens if Thread B gets pre-empted by A?
¢ The assembly code underneath does LD, ADD, ST...

¢ B could store the wrong value...

Let's look at a definition of “critical section” first...

The CRITICAL SECTION is when Thread B decides to increment count — this is the area of code
that modifies a SHARED RESOURCE.

Let's say Thread A is an Hwi and Thread B is a Task. What could Thread B do JUST BEFORE it
accesses cnt to ensure that Thread A could never pre-empt this critical section of code? The easy
answer is — turn off global interrupts. Yes, this is modifying how the Scheduler behaves and
turning off interrupts may cause undue latency in your system, but it solves the problem. This is
actually a very common solution that may or may not cause other headaches.

But this gets across the idea of what could be done just before (turn off interrupts) and just after
(restore global interrupts) a critical section of code where a Task and Hwi are sharing a resource.

We will explain further what is meant by CRITICAL SECTION next....

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

“Concurrent Access” Model

What is a “Critical Section” ?

Throughout the rest of this chapter, our attempt, with different solutions, will be to handle the
critical section of code where two (or more) threads share a resource. We will define the
beginning of this section with the word ENTER and the end of the section with the word EXIT.
You will see some type of ACTION taken at the ENTER of the critical section as well as at the
EXIT of the critical section.

The actions taken differ depending on what type of problem you are trying to solve — but there will
always be some sort of ENTER/EXIT action when dealing with critical sections.

BIOS has several great solutions that are built into the services. We will also cover common
solutions such as MUTEXs and the problems they can cause and how to solve them as well.

Critical Resource Protection

¢ Some sort of PROTECTION mechanism has to be used to
protect threads from conflict when sharing a resource

¢ Insimple terms, let’s define CRITICAL SECTION as the time
when the SHARED RESOURCE is being accessed:

Thread --------- I I

CRITICAL SECTION

For example, if a Task and Hwi are sharing a resource, the
GATE, or Enter/Exit commands in the Task might be:

Enter (Global INT = OFF) Exit (Global INT = ON)

CRITICAL SECTION

¢ MUTEXs, between Tasks, could also be used during Enter/Exit

What forms of “protection” exist?

As we discussed on the previous slide, one example of ENTER/EXIT would be to hold off
interrupts when sharing a resource between an Hwi and a Task. The Tasks ENTER would be
defined as “turn off global interrupts” and the EXIT would be defined as “restore the state of the
global interrupt bit”. In this way, the Task can freely access the shared resource without worries
that the Hwi could pre-empt it and cause contention.

There are many other examples that we will cover throughout the rest of this section...

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-13

“Concurrent Access” Model

Critical Section — Modifying Scheduler Behavior

There are several ways to modify the default behavior of the BIOS Scheduler. As discussed
previously, you may opt to disable/restore interrupts when a Task and Hwi are sharing a
resource. Yes, there are downsides to this (latency), but if the time they are disabled is short, it is
a small price to pay to avoid contention.

What if a Task is sharing a resource with a Swi? You could disable/restore the Swi manager
during the critical section.

On the bottom right-hand side of the slide, you'll see an example of a Task using disable/restore
of interrupts to avoid contention with an Hwi. If you go back to our original example, we were
attempting to solve the problem between Thread A (Hwi) and Thread B (Task) sharing the global
variable “cnt’. In this example, you can see the ENTER of the critical section as denoted by the
Hwi_disable() and the EXIT denoted by the Hwi_restore().

Note that Hwi_enable() is NOT USED. There is a good reason for this. What if interrupts were
already disabled prior to the ENTER gate in the Thread B? If you use disable, then enable, you
would turn ON interrupts accidentally which could cause problems. So, it is MUCH safer to use
disable/restore pairs. In fact, the list on the bottom left-hand portion of this slide actually omits the
_enable() function calls for that reason.

You can see in the example that the PREVIOUS state of the global interrupt bit is the return value
of the _disable() call so that you can simply “put it back” with the call to _restore() as shown.

Modifying BIOS Scheduler Behavior

¢ “When in doubt, just turn off interrupts !”

¢ This might sound funny...but it is a common method to solve
contention problems in systems

¢ Modifying the scheduler’s behavior is the ONLY solution for Hwi/Swi:
Usage (Notice Enter/Exit gates)

ﬁoid B (void) \
{ .

PGIE = Hwi_disable() ;

cnt += 1; //critical

Hwi_disable () ; turnoff global INTs
Hwi_restore () ; restore global INTs
Swi_disable () ; turnoffall Swi's
Swi_restore () ; restore Swi's
Task_disable () ; turn off all Tasks
Task_restore () ; restore Tasks L.
Task_setPri(); SetTask Pri Q /

Hwi_restore (pGIE) ;

& Advantages: common, simple
¢ Disadv: can cause jitter, latency

Let's move on to MUTEXs...

Task_setPri() can also be used as an ENTER/EXIT action as you will see in the upcoming
discussions.

Let's now take a look at MUTEXs — the advantages and disadvantages...

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

“Concurrent Access” Model

Using MUTEXs - Intro

MUTEX stands for MUTually EXclusive.The idea is that only one thread has the “key” to open the
shared resource and then that “key” is given back to the system for the next thread to take and
use. This is a very common solution to avoiding contention between threads that share
resources.

In BIOS, we commonly use MUTEX GATES to implement data sharing. However, another
common idea is to use Semaphores to implement MUTEXs. So, we will look first at the
Semaphore solution and then talk about the downsides of this approach and then lead into the
proper use — MUTEX GATES.

Shown in the bottom right-hand portion of the slide is an example demonstrating how you could
implement MUTEXs with Semaphores. Both threads contain the same ENTER/EXIT gates. First,
you set the Semaphore count to 1 instead of zero. Regardless of which thread runs first, the
Semaphore_pend() will cause the count value to go to zero during the critical section. The thread
(whichever one) accesses the data and then posts the Semaphore back to the system, thus
increasing the count value back to one — allowing the next thread to TAKE the key (Semaphore)
and access the data.

So, the ENTER action is a PEND and the EXIT action is a POST. Simple.

Data Sharing Using Semaphores

D
Thread A :> <: Thread B

¢ MUTEX = Mutually Exclusive (only one thread at a time)

4 Mutex is commonly used in systems to protect a critical resource
being accessed by multiple threads

¢ Users can create a mutex using semaphores with an initial count of 1

Task Hi Task Low
Semaphore_pend(Sem); Semaphore_pend(Sem);
Semaphore: Sem
Initial Count =1 @ @
Semaphore_post(Sem); Semaphore_post(Sem);

¢ Advantages: common, simple, can use FIFO or Priority Sems

¢ Disadvantage: no “ownership”, possible “nested” calls, another
thread could inadvertently post the Sem again

Mutex Gates solve these problems...

Again, this is a very common solution in many applications today. But what seems simple can
also cause problems...

With a Semaphore, there is no such thing as “ownership”. If one of these Tasks calls a helper
function that also blocks on this same Semaphore, you could write yourself into a “forever block”.
Also, another rogue Hwi could inadvertently POST this semaphore and make the other Task run
and crash into the critical section. So, what is missing is the concept of OWNERSHIP so that only
ONE Task can truly OWN the “key” which helps us avoid these drawbacks of using Semaphores
for MUTEXs....

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-15

“Concurrent Access” Model

Using MUTEX Gates...

GateMutex Usage

access

enter leave

K_?ﬂl_ block __secess 37 _ _ _ _ _ _ __

Use the following code in BOTH (TSK Hi and TSK Lo)

gateKey = GateMutex enter (gateMutex) ; Il 'enter Gate
cnt += 1; /I protected access
GateMutex leave (gateMutex, gateKey) ; I exit Gate

¢ TSK Lo has “key” (non-zero if first to enter gate). TSK Hi blocks at “enter”.
When TSK Lo finishes access, TSK Hi can access shared resource.

MUTEXs can cause priority inversion...

In this case, the OUTERMOST thread that does the first ENTER gets a positive KEY value and is
the ONLY thread that can unlock the resource for another thread to use. In this case, TSK Lo
enters first and OWNs the key. TSK Hi then runs and attempts to enter the critical section but
canNOT because TSK Lo owns the key. So TSK Hi blocks and TSK Lo finishes his access to the
critical section. Then TSK Hi can get the resource.

This is how MUTEXs SHOULD work and therefore GateMutex is a very proper way to implement
protection of critical resources.

However, usage of GateMutex does not eliminate the possibility of priority inversion which is the
next topic we will cover...

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

“Concurrent Access” Model

Priority Inversion

Priority Inversion

/ enter

. @ Blocked for a LONG time...
TSKHi |- = — — = = — - 2222 :

Y
\ TSK Lo |——aceessy %% __ _

@ TSK Lo enters critical section (using Semaphores or Gates)

@ TSK Hi pre-empts, but blocks to let TSK Lo leave critical section

¢ TSK Med pre-empts TSK Lo and holds off TSK Hi indefinitely

How could we use Task_setPri() to help us ?

Priority inversion is defined by the picture above — a bunch of MEDIUM priority threads that pre-

empt a lower priority thread who is sharing a resource with a high priority thread. While Hi and Lo
can share a mutex, the problem occurs if Lo gets the mutex first and then Lo gets pre-empted by
a bunch of Medium priority Tasks. Then Hi is REALLY held off for a long time — thus INVERTING

the priority between Lo and Hi.

There are actually two solutions to this — one which is fairly manual and another one that is very

elegant...

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

“Concurrent Access” Model

Priority Inversion — Solution #1 — Elevate Priority

If two threads are at the same priority, they cannot pre-empt each other. This alleviates
contention as well as possible priority inversion between these two threads — TSK Lo and TSK Hi.
In this case, the ENTER gate is comprised of two things — TSK Lo gets the current priority of TSK
Hi and then sets its priority level to the SAME priority as TSK Hi. TSK Lo can now access the
data without incident. The EXIT gate for TSK Lo would be simply to demote itself back down to its
original priority as shown in the diagram below.

After the EXIT of the critical section, TSK Hi can now access the data if it is ready.

Another advantage of this solution is that NO MUTEX IS REQUIRED. You replace the need of
the MUTEX by using Task_setPri() as the ENTER/EXIT gate for TSK Lo.

Temporarily Elevate Priority — Task_setPri()

/- N

Hwi

INT!

TSK Hi ‘1' Ready | Running (data access) !!

Enter - setPri(Hi) Exit - setPri(Lo)

KTSK L5 ? data access %_ L p_re-_enlptfd_ _ y

¢ TSK Lo can elevate its priority just before data access and then
lower its priority just after data access using: | Task_setPri () ;

¢ Advantage: no semaphore/mutex required !!

Mutex Priority Gates can come in handy for situations like this...

With every solution comes a new problem. Welcome to the life of an engineer. So, increasing the
priority of TSK Lo works well. But, you ALWAYS increase the priority of TSK Lo whether TSK Hi
would have been a problem or not, right? Does this waste time? Maybe. Also, this solution
requires you to figure out what TSK Hi’s priority is — maybe it is moving around as well.

What if you could KNOW that TSK Hi is possibly going to cause a problem and ONLY THEN
increase the priority of TSK Lo? Wow — that would be great. While the above solution works fine,
BIOS does provide another service that works even better...

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

“Concurrent Access” Model

Priority Inversion — Solution #2 — Mutex Gates

Now that you know you can use Task_setPri() to solve the problem, this solution should make
some sense. The problem with the previous solution is that TSK Lo would ALWAYS increase its
priority regardless of whether TSK Hi was “in the picture” or not.

Priority Mutex Gate uses an actual binary gate — 1 or 0 — to keep track of whether a thread
sharing a resource with another thread has actually been ENTERED yet.

The two key functions are:
o GateMutexPri_enter(): ENTER the critical section, set the gateKey to 1 (entered)

o GateMutexPri_leave(): EXIT the critical section, reset the gateKey to 0 if the thread’s
gateKey was “1” (first to enter) already

Take a look at the diagram below and the associated code. Both threads use the same code —
there is our little “cnt += 1;” again. There are two cases to discuss — one where TSK Hi pre-empts
TSK Lo and the other one where TSK Hi is not involved. Let’s do the second one first:

TSK Hi — NOT INVOLVED: In this scenario, TSK Lo calls GateMutexPri_enter() and the gateKey
is set to “1” to denote that TSK Lo “owns the key” — meaning the critical section has been entered
once. At this point, nothing happens. TSK Low simply accesses the data and if TSK Hi never gets
involved, TSK Lo stays at its priority level.

TSK Hi — GETS INVOLVED: In this scenario, TSK Lo gets the key just like before. However,
when TSK Hi runs (or pre-empts TSK Lo), TSK Hi also does an _enter(). AT THAT POINT, BIOS
will force TSK Lo to inherit the priority of TSK Hi, allow TSK Lo to finish its access and then BIOS
will demote TSK Lo at _leave() back to its original priority — thus allowing TSK Hi to access the
data. Any type of priority inversion is completely avoided.

Priority Mutex Gates

/ INT! enter Ieave\
‘1' @ block @

access

TSK Hi —_ p—2s

leave
enter Lo inherits

: access, pre-empted Hi's Pri pre-empted
TSK Lo |——f20cessy PE-IMPEC | L e
K ' access ' /

Use the following code in BOTH (TSK Hi and TSK Lo)

gateKey = GateMutexPri_ enter (gateMutexPri); //enter Gate
cnt += 1; Il protected access
GateMutexPri_ leave (gateMutexPri, gateKey); [/ exitGate

¢ TSK Lo inherits priority of TSK Hi if TSK Hi requests resource access (enter)
and then returns to original Pri after “leave”.

+ Advantages: simple to code, does automatic Task_setPri() of TSK Lo
Deadlock...

So, this BIOS service automatically performs the Task_setPri() to the proper level ONLY if the
other thread (TSK Hi) gets involved. Great solution...

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-19

“Concurrent Access” Model

What is Deadlock?

This is a case that doesn’t happen very often, but can be a KILLER bug to find. The author
believes that no one intends to create deadlock in a system — this code is built up over time and
all of the sudden, every Tuesday at 9pm, your system no longer responds. Ooops...

So, the idea here is to talk about what Deadlock is in order to make you aware of what can
happen when you share MULTIPLE Semaphores between two threads.

Deadlock will only occur if:

e Share more than one Semaphore (MUTEX) at a time
e Lock both resources in a circular fashion

e Do not use timeouts on your _pend() calls

e Threads are at different priorities

How DEADLOCK Can Occur...

Data
Thread A :> (Do] <: Thread B
Data

¢ Deadlock occurs when two threads block each other (stalemate)

¢ Conditions for deadlock include:
* Use of MUTEX with multiple resources (with circular pending)
* Threads at different priorities

Task A Task B Solutions:
Sem_pend(res_ 1) ; Sem pend (res_2) ; + Use timeouts on _pend
// use resourcel // use resource?2 o

STUCK? «——— 5 STUCK? + Use same ordering in
Sem d(res 2); Sem pend (res 1) ; both threads - 1, 2, 3
L_pen _<) s _pP _+)
// use resource? // use resourcel » Lock one resource at a
Sem post(res_1); Sem post(res_2); time, or ALL of them
Sem post (res_2) ; Sem post(res 1) ;

Let's take a look at the example shown. Let's assume Task A is the LOWER priority. Task A runs
first and takes (locks out) Resource 1 (res_1). Itis using Resource 1 and then gets pre-empted by
Task B. Task B uses (locks out) Resource 2 (res_2) and then PENDs on res_1. Task B blocks
because the res_1 count is zero — it is locked up by Task A. At some point, Task A runs again
and PENDs on res_2 and blocks — because res_2 count is zero — Task B has it locked up.

Stalemate. No winner. Only losers. System is non-responsive. Goodbye. Debug nightmare.

The point here is to understand the characteristics of what causes deadlock so that you can avoid
the situation. The solution is “don’t do whatever cause deadlock and you won’t experience
deadlock”. Kind of like going to the doctor and saying “when | move my arm THIS WAY it hurts”
and the doctor says “well, don’t move your arm that way...and that will be $175”. Ok, jokes aside,
only lock one resource at a time and use timeouts on your _pend() calls. Either one would have
solved the problem.

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

“Concurrent Access” Model

Same Priority Threads

This is truly the ultimate solution to any and all resource conflicts. You can read the advantages
at the bottom of the slide.

If two threads are at the same priority, they canNOT pre-empt each other. Therefore, no MUTEXs
are needed, no signaling is required, extremely simple solution.

All of the other solutions we talked about earlier assumed that threads were at disparate priorities
which is often the case — so that’'s why we spent so much time talking about them.

However, if there is ANY possibility of placing threads that share a resource at the SAME
PRIORITY level, wow, it solves a ton of problems.

Threads At SAME Priority

3
Thread A | [> (] Thread B

Pri = X Pri = X

¢ Can threads at the SAME priority pre-empt each other? NO !

¢ So, it is a good idea to place threads that share a critical resource
AT THE SAME PRIORITY. Life is good...
¢ Advantages galore:
* Built-in FIFO scheduling (no pre-emption or scheduler mods)
* No signaling required (no Semaphore, no blocking)
* Less memory/time overhead for pre-emption (context switch)
* No corruption or contention — easy to maintain

* VERY simple — solves ALL types of critical resource sharing problems
(e.g. priority inversion and deadlock)

Note: watch out for “Murphy” if someone changes priorities !

Is there a downside to this? Yes. Why is there ALWAYS a downside? Again, our lives as
engineers is one long stream of managing tradeoffs. Period.

Ever heard of a guy named Murphy? His name was actually Edward Murphy — an aerospace
engineer who worked on safety-critical systems. Murphy’s Law states that “anything that can go
wrong, will go wrong”. How does this apply to threads? Well, if you do NOT put any protection of
any kind into the code and assume these threads will ALWAYS be at the same priority, what
happens if you move from one project to another and the person who replaces you makes a
priority change? Or, another programmer, trying to solve a different problem decides to
Task_setPri() Thread A above? Ooops.

There, Murphy’s Law in the flesh.

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-21

“Concurrent Access” Model

*** this page is actually NOT blank... ***

9-22 Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

Lab 9: Using Mailboxes and Queues

Lab 9: Using Mailboxes and Queues

This lab has two parts:

e InPart A, you will add a Mailbox to the previous solution (Task) and pass the state of the LED
(on or off) via a mailbox.

e In Part B, you will pass the same value by using a Queue.

Some of the code has been done for you to avoid mistakes and typos — and in the Queue part,
some interesting casting is necessary to get it to work.

One of the side benefits of this lab is that you can compare/contrast mailboxes and queues.
Mailboxes are certainly more straight forward and do not require additional pointers — just using a
simple structure. But, Queues are more flexible.

Lab 9 — “Blink LED” Using Mailbox & Queue

Lab Goal:

The state of the LED (on or off) will M
now be passed by Message (via a

Mailbox or Queue). e Import archived (.zip) project (starter code)
main.c ¢ Add Mailbox object + post/pend (for LED on/off)

main() {

¢ Build, “Play”, Debug
* Add Queue object + put/get (for LED on/off)
¢ Build, Run, Debug

init hw();
Timer (500ms)
BIOS_start();

L 4
Scheduler
o
——» ml ——-[Semaphore post (Sem) ;] Hwi ISR
Task I mailbox_queue () { ilb
Post LED State to Mbx/Queue; } mailbox_queue()
T
Mailbox or Queue I]
—— ¥
Task I ledToggle () {)
PEND on read from Mbx/Queue;
Toggle LED based on LED State; IEdTOggle()
1dte |)
v

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-23

Lab 9 — Procedure

Lab 9 — Procedure

Part A — Using Mailboxes

In this lab, you will import the Task lab from earlier and add a new Task (for the mailbox setup
and _put) and modify the Semaphore to unblock the new mailbox_queue() Task function. The
Timer_ISR() will post this modified Semaphore to unblock the new Task.

Using the new mailbox code, here is the new flow of events:

e ledToggle () is STILL a Task so that it runs at BIOS Start () and then pends on the
Mailbox pend () waiting for the other Task (mailbox queue) to post the msg.

e Anew Task (mailbox queue Task)is added to the system to manage the mailbox.
e Timer clicks down to zero and triggers the interrupt

e BIOS Hwi calls the Timer ISR()

e InTimer ISR(),a Semaphore is posted (mailbox queue sem)

e Mailbox queue sem unblocks the mailbox queue () Task to create the MSG (LED
on or off) and puts it in the mailbox.

e TheMailbox pend() inthe ledToggle () Task runs and toggles the LED and then
returns back to ldle

A starter project has already been created for you. Note: you will now have TWO Tasks and TWO
Semaphores. Keep this in mind as you go through this lab.

Import Project

1.

Open CCS and make sure all existing projects and files are closed.

» Close any open projects (right-click Close Project) before moving on. With many main.c
and .cfg files floating around, it might be easy to get confused about WHICH file you are
editing. » Also, make sure all file windows are closed.

Import existing project from \Lab_09.

Just like last time, the author has already created a project for you and is contained in an
archived .zip file in your lab folder.

Import the following archive from your \Lab 09 folder:
Lab 09 TARGET STARTER blink MBX QUEUE.zip
» Click Finish.

The project “blink_ TARGET_MBX_QUEUE” should now be sitting in your Project Explorer.
This is the SOLUTION of the Task lab from before plus some extra code for using mailbox
and queue.

» Via Properties, ensure all of the latest tools (TI-RTOS, XDC, compiler) are selected.

» Expand the project to make sure the contents are correct. If all looks good...move on...

Note: Because this is one of the last labs in the workshop, the author decided to not hand-hold

as much and make you THINK a little bit more about what you’re doing. The lab diagram
of flow of information and the explanation at the top of this page should help. But this will
be a challenging lab to get working. There — your expectations are set. ©

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

Lab 9 — Procedure

SETUP - Create Message Object and Add Mailbox to BIOS CFG

3. Open main.c for editing and peruse the new code.

Hint: FYI - if you build the code right now, you will get errors. So just wait until the instructions
say to “build” — you know — READ THE FINE MANUAL. ©

» Open main.c and start near the top in the globals declaration area.

The first thing you have to do to get a Mailbox set up is to declare the Message Object itself:

{f for Mailbox - Part A

{/typedef struct Msgobj {
'/ Ink wal; /* message value */
J} Msgobj, *Msg; /* Message object and pointer type */

A mailbox message can contain anything you like but is FIXED in size. Soon, you'll need to
add a Mailbox to the . cfg file and configure the size of each message and the length. Here,
we are only using a single integer to define the value or STATE of the LED — either ON (1) or
OFF (0).

» Uncomment the structure for MsgObj. You now have a typdef named “MsgObj” that you
can later create an instance of to use in the code and a pointer to this object named *Msg.

4. Add Mailbox to your app.cfg file.

Hint: Mailbox is a synchronization service in BIOS (and so is Queue).

» Add a new instance of Mailbox named “LED Mbx” to your . c£fq file.

» Then configure it using a size of 4 (chars) = 32 bits and two messages. We’'ll only be using
ONE message, but that’s ok. More is always better, eh?

LED Mbx can now contain one or two instances of the MsgObj’s declared in the global area.

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-25

Lab 9 — Procedure

SENDER - Create a New Task for Message Management Fxn

5. Create a new Task and Semaphore for Mailbox management.

When the Timer ISR() fires, we need to create a value (on or off) that we can send to the
existing 1edToggle () Task which will actually toggle the LED. So, we created a new Task
function named:

mailbox queue ()

This function will serve as our Mailbox and Queue “manager” in order to create the LED state
value (0 or 1) and place it in the BIOS container — either a Mailbox or a Queue.

Notice that the structure of this function is a Task with a while (1) loop and a
Semaphore pend (). We need to do two things — first register this function as a Task and
then create a semaphore for the Timer ISR() and mailbox queue () to use for
synchronization.

» Register mailbox queue () fxn as a Task named mailbox_queue_Task with Pri = 2.
Your starter . cfg file already had a semaphore in it from the last lab — LEDSem.

» Simply change the name of this semaphore to mailbox _queue _Sem and use it
appropriately in the ISR and new mailbox queue () Task code.

Again, when the ISR triggers, we want mailbox queue () to unblock, create the LED state
and post it to the mailbox which then unblocks 1edToggle () to actually write the value to
the GPIO pins.

Uncomment instance of MsgObj.

Near the top of the new function —mailbox queue () — you'll see the creation of an
instance (msg) of type MsgOby:

» Uncomment this declaration so that we can use “msg” and its element “val” to effectively
toggle its state and send that state to 1edToggle () via the new Mailbox.

You'll also see where the LED state is managed via an exclusive OR. First, we set the initial
state to “1” and then simply toggle the state each time through the loop.

msg.val = 1;

This is the info posted to the Mailbox for 1edToggle ().

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

Lab 9 — Procedure

SENDER - Post the Message to the Mailbox

7. Use Mailbox_post() to post the msg to the Mailbox.

Further down in the mailbox_ queue () function, you'll see the following:

Now that the actual Message (MsgObj) has been filled with the LED state (1 or 0), it is now
time to post this message into the Mailbox you created earlier.

» Uncomment this line of code and replace the 22 ? with the proper name of the Mailbox
instance. Mailbox post () has a built-in semaphore and will block if the Mailbox is full. In
our case, we created two messages in the Mailbox and are only using one — so it shouldn’t
ever block.

RECEIVER - Receive the Message and Toggle the LED
8. Create an instance for MsgObj in the RECEIVER.

Near the top of the 1edToggle () Task, you will see the following:

This MsgObj — instantiated as “msg”, will be used for both the mailbox and queue parts of the
lab. Remember when we said Mailbox was COPY-BASED and that each thread had its own
copy of the message? Well, this is WHY we have to create the same msg using the type
MsgObj in the receiver just like in the sender — because it is copy based and each thread has
to allocated memory to hold the message. This is why it is a good idea to pass POINTERS or
small scalars instead of buffers via a Mailbox.

» Uncomment this declaration.
9. Use Mailbox_pend to receive the message.

Below the while (1) loop, you'll see the following code:

Mailbox pend(???, 8msg, BIOS WAIT FOREVER);

When Mailbox post () posts the message into the Mailbox, this will unblock this pend
and read the Message into the structure of “msg”. The element “val”, i.e. “msg.val” will
contain the state of the LED we want to use.

» Uncomment the call to Mailbox pend () and replace the 22?2 with the instance name of
the Mailbox.

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-27

Lab 9 — Procedure

10. Use the proper “if’ statement for the mailbox lab.
» Uncomment the proper “if’ statement for the mailbox version of the lab.

You can then use this value to either turn ON or OFF the LED. The rest of the LED “toggle”
code was left from the previous lab — although some code was modified to replace the
“toggle” capability with “set or clear” in order to use the value 0 or 1 to set the state of the
LED.

SEND/RECEIVE - MAILBOX - Build, Load, and Run

11. Build, load and Run your code.
» Clean your project first.

» Build and fix any errors.

Note: The author experienced some odd behavior when using CCSv5.5 and the latest
XDC/BIOS tools in preparing this lab. Sometimes, | would get 9 errors that seemed
erroneous — as if the app.cfg file was not being updated as part of the build. So, when |
cleaned the project first, all errors went away except for a few that were “real” that
needed to be fixed. Fair warning.

When you have a clean build, » load the .out file to the target and run. If your LED blinks
properly, you're in good shape. If not, it is debug time. Usually it is a good idea to set a
breakpoint near the “if’ statement in ledToggle() to check the state of the msg.val. This may
help narrow the problem.

After a period of 5-10min of unsuccessful debugging, you may want to either ask a neighbor
for help or look at the main.c file from the solution.

» How many semaphores are used in this example?

There are 3. One of them can be found in ROV under Semaphore — this is the one you
created yourself. There are two more created by Mailbox...

» Look at ROV under Mailbox->Raw->Instance States->LED Mbx->dataSem and -
>freeSem.

freeSem is used to ensure the mailbox does not overflow —i.e., there is ROOM in the
mailbox for another post. It has an initial count equal to the number of messages allowed in
the mailbox (2 in this case). The SENDER (post) pends on this before loading a message into
the mailbox — if it is full, it blocks. The Receiver posts this semaphore when it takes a
message out of the mailbox, thus freeing a space.

dataSem semaphore is posted when data is put into the mailbox by the SENDER and the
RECEIVER pends on this semaphore waiting for a message to arrive.

If you want, you can open the Execution Graph and see all these semaphores in action.

Queues are a little more straightforward in terms of semaphores, so let’s go try them as
well...

If everything looks good...move on to Part B...

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

Lab 9 — Procedure

Part B — Using Queues

The steps in this part of the lab will be similar. The procedure of setting up a Queue is almost
identical to using a Mailbox:

e Define a Message (same as mailbox but with Queue Elem as the first element).
e Create an instance of a Queue Object (similar to Mailbox)

e Create a POINTER to this Message — this is different — but Queues pass POINTERS to
the Messages in the Queue — more efficient than a Mailbox

e Send the Message via a Queue put () followed by a Semaphore post () to signal the
other thread that “they have mail”.

e Semaphore pend () in the second thread until the Message is in the Queue and then
perform a Queue get () to get the message.

Again — all of this is done via POINTERS vs. actual data like with Mailbox.

SETUP - Create the Queue Message Object and Queue Instance

12. Create the Message Object for a Queue Message
In the global areas of main.c,
» comment out the old MsgObj for Mailbox and

» uncomment the version for the Queue Message:

typedef struct MsgObj {
Queue_Elem elem;
Int wal; /* message value */
} MsgObj, *Msg; f* Use Msg as pointer to MsgObj */

Notice the addition of Queue Elem as the first element. This element contains the next and
previous pointers required by Queues because they are double-linked lists. Also remember
that a Queue is simply an object with a head and tail pointer — it takes very little memory.
When a msg is POSTED into the queue, the next/previous pointers of the message itself
(inside elem above) are modified, so this list can grow or shrink however big you like.

13. Create an Instance of a Queue in app.cfg.
In .cfg, » add a Queue and name the instance “LED_Queue”.

Notice there is no SIZING field. Once you create a Queue Message, it can contain anything
you like and you are simply handing a pointer to the message via put/get. Very efficient and
flexible. But, it takes a little more work because it is pointer-based.

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-29

Lab 9 — Procedure

14.

Create a pointer to the Queue Message and initialize the pointer.
Inmailbox queue (),

» uncomment the following code:

Msg msgp;
msgp = &msg;

Notice here that we have created an instance “msgp” which is of type “pointer to MsgOby”.
For experienced C programmers, this is no big deal — they say “of course this is what you do
(maybe they really know or maybe they are protecting their reputation). ;-)

”

For those less fortunate (the author is not a C guru), this part was a bit troublesome until a C
guru taught the author the how’s and why’s of this. Then we initialize the pointer to the
address of msg.

SENDER - Put Message in Queue and Post a Semaphore

The next few lines of code are still necessary — managing the state of the LED switch — on or off.
We still change the value of msg.val each time through the loop. The Task is STILL unblocked
by the Semaphore (mailbox queue Sem) just as before.

15.

16.

Create a new Semaphore to signal the other thread.

After putting the Message in the Queue, we need to signal the other thread — 1edToggle ()
— that a Message is IN the Queue. If you remember from the discussion material, Queues
have no built-in signaling like a Mailbox does. So, we need a Semaphore.

» In .cfg, add another Semaphore named “QueSem”.

Next, we need to put the Message in the Queue and post the new Semaphore.
P First, inmailbox queue (), comment out the old Mailbox post ().

» Then uncomment these two lines of code:

Queue puti???. (Queue Elem*imsgp):
Semaphore post (222);

Ah — the ??7? things show up again. At this point no help is provided.
» Fill in the ??? appropriately.

Notice that, as was stated before, Queues require POINTERS — hence the THING we are
putting into the Queue is “msgp” which is a POINTER to the Message. And, like BIOS
sometimes does, it requires a bit of casting as shown.

Honestly, it took the author a bit of time to figure that one out (he blames Mr. Kernighan and
Mr. Ritchie for this) — but the example in the SYS/BIOS User Guide did help.

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

Lab 9 — Procedure

RECEIVER - Receive the Message and Toggle the LED

17. Create pointer to Queue Message in Receiver.

In ledToggle (), » uncomment these two lines:

M=g msgp;
msgp = &msg;

Just like before, we need to create a pointer to the Queue Message. Queue get () returns
the pointer to the message so we can extract the LED state.

18. Add Semaphore_pend() and Queue_get() to Receiver code.
» Comment out the old call to Mailbox pend().

Because Queue’s have no signaling built in, we have to use a Semaphore pend () to WAIT
for the SENDER to post that Semaphore to unblock us so that we can go read the Message
from the Queue.

» Uncomment the following code and fill in the ??7:

Semaphore_pend(??7, BIOS WAIT FOREVER):
msgp = Queue get(?273;

msgp is the pointer to the Message sent to us by the Sender.

msgp—~>val would then contain the value — either 0 or 1.

19. Change “if” statement to use the proper syntax of msgp->val.

Comment out the Mailbox “if’ statement and uncomment the one used for the Queue.

SEND/RECEIVE - QUEUE - Build, Load, and Run
20. Build, load and Run your code.

» Clean your project first, then build and fix any errors.

When you have a clean build, » load the .out file to the target and run. If your LED blinks
properly, you're in good shape. If not, it is debug time.

After a period of 5-10min of unsuccessful debugging, you may want to either ask a neighbor
for help or look at the main.c file from the solution.

21. Close the Project and Close CCS - that’s the last lab (maybe).

You should pat yourself on the back — this was one of the harder labs in the workshop and
now you're done with ALL of the labs unless the class chooses to go through the Dynamic
Memory Chapter and the lab. But still — pat yourself on the back. Help a neighbor or watch
the architecture videos or just GO HOME. Congrats... ;-)

Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication 9-31

Notes

Notes

9-32 Intro to the TI-RTOS Kernel Workshop - Inter-thread Communication

Using Dynamic Memory

Introduction

In this chapter, you will learn how BIOS helps users manage dynamic memory allocation via
heaps.

BIOS doesn’t care whether you create buffers or BIOS objects statically or dynamically — it is
completely and totally up to the user depending on their systems’ needs. BIOS does, however,
extend the dynamic memory allocation services beyond the standard malloc(), namely providing
the capability of creating multiple heaps and having a choice of several different heap types.

One of these heap types (HeapBuf) completely eliminates the common drawbacks of dynamic
memory allocation — those being fragmentation and non-determinism.

Some companies have policies against using any type of dynamic memory allocation — that’s fine
— just do everything statically. No problem. For anyone, though, who wants to potentially use
dynamic memory in their system, this chapter and lab are a “must”.

In the lab, users will delete the static allocation of Tasks and Semaphores used in the Task/Sem
lab previously and create them dynamically. This lab will show users what happens if you overrun
the heap and will also show a few advanced debug methods using the ROV..

Objectives

Objectives

® Compare/contrast static and dynamic systems

" Define heaps and describe how to configure the
different types of heaps (std, HeapBuf, etc.)

® Describe how to eliminate the drawbacks of
using std heaps (fragments, non-determinism)

" Implement dynamic object creation

"= Lab — Using the previous Task/Sem lab, create
our Semaphores and Tasks dynamically

TI-RTOS Workshop - Using Dynamic Memory 10-1

Module Topics

Module Topics

Using DYNamicC MEMOTYcciiiiiiiiieiirrr s ssssss s s e asn s e amnn e e e 101
1Y (oo 11 =T o] o [o1 S 10-2
Dynamic Systems — INtrOQUCTIONccoeeeeeeieeieee ettt e e 10-3

Static VS. DYNAMIC......iiiiiiiie et e 10-3
Enabling Dynamic Instance Creation — CFG Filec.cooiiiiiiiiiic e 10-4
Dynamic MemOry CONCEPLS.........cceeeeeeeeeee ettt e ettt a e et e ettt a e e e e e st taaaaeeassssnsees 10-5
L0 L 1 To Jr= T (== T o RSP PSPPIt 10-5
Code Example #1 — Static vs. Dynamic Codingc.ccoiiiiiiiiiiiee i 10-6
Two Heaps Are Better Than ONe.......oooo oo 10-7
Code Example #2 — Std Heap vs. BIOS HEAPScevviiiiiiiieiiiie e 10-8
CreatiNng A HEAPuiieiiie et e e e e e e e e e e e e et rereaaaeeaaanes 10-9
Different TYPES OF HEAPS ...t e e 10-10
(0T [T 4o) o 1 SRR 10-10
HeapMem —the “Standard C” HEaAP -.....ceeiiaiiiiiii e 10-11
HeapBuf — Use to Allocate Fixed-Sized BUffers ..., 10-12
HeapBUf — CONCEPES .ot e e e e e e e nneeeeeeae s 10-12
HeapBuf — Creating @ HeapBUuf ... 10-13
HeapBuf — Can You Use Multiple HeapBuUufS?ooo i 10-14
HEAPMURIBUT ... et st e st e e e e e e e ennes 10-15
Default SYStemM HEAP ... e e e e e 10-16
Dynamic Module Cre@tioN..................ooueei it 10-17
Example — Creating a Semaphore Dynamicallyccccuviiiiiiiiiiciiiiieeee e 10-17
Example — Creating @ Task Dynamicallyooeiiiiiiiiiiiiiiiieee e 10-18
What is this “Error BIOCK” TRING?uueeeeieeeeeeeeeee ettt a e e et eaaaaa e e e 10-19
CUSEOM SECHION PIACEIMENT..........oooieeeeeeee et e e 10-20
(0T [T 4o o 1 SO 10-20
Making CUSIOM SECHONSeiiiiiiiiii e 10-21
Linking CusStom SECHONS...... ...t a e 10-22
Lab 10: UsSing DYN@MIC MEIMOIYoouui et 10-23
Lab 10 — Procedure — Using Dynamic TaSK/SeMcocvueiiimiieiiiiiiiieisiee e 10-24
[a] oTo]y Bl o =T o1 PP PRPPPRNS 10-24
Check Dynamic Memory SettingScccuviiiiiiei i 10-25
Inspect New Code iN M@IN()....eeieeiiiiiiiieee e e e e s e e e e e st e e e e e e e e e aanns 10-26
Delete the Semaphore and Add It Dynamicallyccccuueiiiiiiiiiiiiiiee e, 10-26
Build, Load, RUN, VETIfYooiiiiiie et 10-27
Delete Task and Add It Dynamicallyc.eeeiiiiiiiiiiiiie e 10-28
AAitional INTOIMALIONccueeiieeee et e e ee e e 10-30
INOTES ...ttt ettt et e et e e e e 10-31
MOFE INOEES..........eeeeeee ettt e e 10-32

10-2 TI-RTOS Workshop - Using Dynamic Memory

Dynamic Systems — Introduction

Dynamic Systems — Introduction

Static vs. Dynamic

This slide basically covers the tradeoffs between static and dynamic systems. Once again, it is
completely up to the programmer as to which they choose — or you can mix the two — which is
often the case.

STATIC MEMORY: All allocations are done at link time and all resources are available for the life
of the system. This type of allocation scheme is easy to manage, provides smaller code size
(because you don’t have to write code to allocate memory) and provides deterministic access.
The downside of this model is that it is a fixed allocation of resources — you can’t REUSE pieces
of precious internal RAM for multiple functions. This model is optimal when all or most of the
resources in the system are needed concurrently.

Static vs Dynamic Systems
& Static Memory

*

. . Allocated at LINK time
¢ Link Time:

- Allocate Buffers

*

+ Easy to manage (less thought/planning)
+ Smaller code size, faster startup

¢ Execute: + Deterministic, atomic (interrupts won’t mess it up)
- Read data))
- Process data ¢ - Fixed allocation of memory resources
- Write data & Optimal when most resources needed concurrently
. SYS/BIOS
4 Dynamic Memory (HEAP) allows either
. method
S (e ¢ Allocated at RUN time
- Allocate Buffers ¢ + Limited resources are SHARED
+ Objects (buffers) can be freed back to the heap
v R + Smaller RAM budget due to re-use
- R/W & Process
& - Larger code size, more difficult to manage
¢ Delete:

- NOT deterministic, NOT atomic
- FREE Buffers

& Optimal when multi threads share same resource

: or memory needs not known until runtime
I3 TEXAS

INSTRUMENTS

DYNAMIC MEMORY: Memory or BIOS objects are created at runtime and then freed (deleted)
back to the heap when no longer needed so that a different thread/function can use the physical
memory. The main advantages of this type of allocation is that limited on-chip resources (e.g.
RAM) can be shared between threads. It is kind of like sharing one parking spot for 3 people —
who use it each 8 hours per day — three shifts. You could have smaller parking lots if that was the
case. ;-) This model also requires a smaller RAM budget because multiple threads can use the
same “real estate”. The downside is that code size increases (slightly) and is a bit more difficult to
manage. Allocations from heaps are not deterministic — they take a different number of cycles
every time because the allocator has to search through the available blocks of memory to find the
size/shape you are looking for. This model is optimal when not all resources are needed
concurrently. If your back is up against a wall for your RAM budget, consider how your buffers are
used and consider sharing the physical memory between threads.

TI-RTOS Workshop - Using Dynamic Memory 10-3

Dynamic Systems — Introduction

Enabling Dynamic Instance Creation — CFG File

In order to use Dynamic memory function calls, Dynamic Instance Creation must be turned on. In
your app.cfg file, go to BIOS->Runtime to see if it is enabled. If you chose “Typical” for the
app.cfg file when you created your BIOS project, the checkbox should be checked. However, in
the “Minimal” configuration, it is not. It is always good to check — either way.

NOT checking this box will save you some code space — so if you are using a STATIC ONLY

system, we recommend you uncheck the box below — BIOS won'’t create a default heap and
won'’t link in the dynamic memory libraries — thus saving you some RAM and code space.

BIOS = Runtime Cfg — Dynamic Memory

¢ Memory Policies — Dynamic or Static?

+ Dynamic is the default policy (recommended)
+ Static policy can save some code/data memory
+ Select via .CFG GUI:

+ Dynamic Instance Creation Support

Enable Dynamic Instance Creation

A savings in code and data size can be achieved by disabling dynamic instance creation.

Runtime .

¢ MAU - Minimum Addressable Unit
* Memory allocation sizes are measured in MAUs

+ 8 bits: C6000, MSP430, ARM
+ 16 bits: C28x

Q Texas
INSTRUMENTS

Throughout the workshop and in many of the dialogue boxes, you will see the term “MAU” which
stands for Minimal Addressable Unit. This is often the unit size when BIOS asks you for any type
of SIZE. For C28x, this size is 16 bits — for all others, it is 8 bits. Just FYI...

10-4

TI-RTOS Workshop - Using Dynamic Memory

Dynamic Memory Concepts

Dynamic Memory Concepts

Using a Heap

If you have done any C programming, you are probably familiar with a heap and using malloc() to
allocate memory from the heap and using free() to de-allocate it. Standard C supports these
function calls and ONE heap as shown in the diagram below.

The limitation with ONE heap is “where are you going to put it?” Internal RAM? External DDR
memory (if your device supports that) ? Some users really don’t have a choice — it’s going into
internal RAM because that’s the only RAM space there is on the device. Other users, like C6000
and multicore, have choices between internal and external. But, with ONE heap, it is either in
faster internal limited RAM or sitting in slower external memory. Often, this doesn’t match the
overall need of needing a slow heap (for less important needs) and a fast heap for algorithms that
need higher performance. Hold on to that thought — BIOS helps solve this quite nicely.

Dynamic Memory Usage (Heap)

Using Memory Efficiently

Program ¢ Common memory reuse
Cache ‘—I within C language
¢ AHeap (i.e. system
Internal External memory) allocates, then
SRAM Memory frees chunks of memory
Stack from a common system
block
CPU ~EMIF+—
Heap

| N

Data
Cache

Code Example...
i3 TEXAS
INSTRUMENTS

So, before we start showing off BIOS and multiple heaps, let’s start by looking at a coding
example of static memory allocation vs. dynamic...

TI-RTOS Workshop - Using Dynamic Memory 10-5

Dynamic Memory Concepts

Code Example #1 — Static vs. Dynamic Coding

The diagram below shows a comparison of static vs. dynamic coding — side by side. The example
is split into three pieces — create, execute and delete. For static coding, you see the declaration of

variables “x” and “a” followed by the initialization of these arrays. For static, you just call a
function and there is no “freeing back to the heap” for static users.

On the right, you can see that malloc() is used to allocate “x” and “a” from the heap (which is not
specified here — it's just THE heap). The initialization and execution is the same as static, but
dynamic users get to FREE “x” and “a” back to the heap when the execution completes.

Dynamic Example (Heap)

“Normal” (static) C Coding “Dynamic” C Coding
#define SIZE 32 #define SIZE 32
char x[SIZE]; /*allocate*/ Create |x=malloc(SIZE); // MAUs
char a[SIZE]; a=malloc(SIZE); // MAUs
x={...}; [*initialize*/ x={...};
a={...}; a={...}
filter(...); [*execute*/ Execute |filter(...);

Delete | free(x);

free(a);

& High-performance DSP users have traditionally used static embedded systems

¢ As DSPs and compilers have improved, the benefits of dynamic systems often
allow enhanced flexibility (more threads) at lower costs

10-6

TI-RTOS Workshop - Using Dynamic Memory

Dynamic Memory Concepts

Two Heaps Are Better Than One

What if you wanted to have two heaps instead of one — maybe one in on-chip RAM that was fast
and another that was off-chip? With a standard heap, this is not possible because you only get

ONE.

Dynamic Memory (Heap)

Program

|

CPU

Data
Cache

Cache —|

Internal
SRAM

Stack

Heap

—EMIF

{i’ Texas
INSTRUMENTS

Using Memory Efficiently

¢ Common memory reuse
within C language

¢ AHeap (i.e. system
memory) allocates, then
frees chunks of memory
from a common system
block

External
Memory

What if | need two heaps?
¢ Say, a big image array off-chip, and
+ Fast scratch memory heap on-chip?

BIOS supports multiple heaps and changes the function call to Memory_alloc() instead of

malloc(). This new memory allocator allows users to create multiple heaps — actually as many as

you like.

Multiple Heaps

Program

|

CPU

Data
Cache

Cache —|

Internal
SRAM

Stack

Heap

—EMIF -

J‘l"; TeExAs
INSTRUMENTS

¢ BIOS enables multiple
heaps to be created

& Create and name heaps in
.CFG file or via C code

External
Memory + Use Memory_alloc()
function to allocate
Heap2 memory and specify

which heap

Let’'s go look at a coding example — comparing the standard heap to the new BIOS heaps...

TI-RTOS Workshop - Using Dynamic Memory

10-7

Dynamic Memory Concepts

Code Example #2 — Std Heap vs. BIOS Heaps

This time, on the left, you will see the code from before — using the standard C heap and malloc().
On the right, we show the new function call — Memory_alloc() — and the parameters that are
required.

First, you notice that in the standard C syntax, “x” and “a” both use malloc() and are allocated off
the same heap. With BIOS, you can create as many heaps as you like and place them
ANYWHERE in memory that you like — this is the ultimate in flexibility.

On the right, let’s look at the four parameters for Memory_alloc():

HEAP: if you use NULL, this is the standard heap you are used to with standard C. You can
allocate any size chunks that you like — just like normal. Notice that the allocation for “a” comes
from a separate NAMED heap — myHeap. This was created in the BIOS .cfg file and therefore “a”

is coming from a different heap than “x”.
SIZE: this is what you are also used to from the standard malloc() call. The size is in MAUs.

ALIGN: this is new. For some processors, alignment is CRITICAL for performance — especially
for C6000 and multicore users. Often, buffers need to be aligned on 8-byte or 16-byte boundaries
due to how the architecture works which significantly impacts performance. This field is specified
in bytes — if you want an 8-byte alignment, you put an 8 in this field.

eb: This stands for ERROR BLOCK. Basically, this is used to check for errors in allocations. Later
in this chapter, there is a whole slide talking about what ERROR BLOCK is, so we will wait until
then to provide the details.

Memory_alloc()

Standard C syntax Using Memory functions
LDefauIt System Heap ‘
#define SIZE 32 #define SIZE 32 /
x=malloc (SIZE) ; x = Memory alloc(NULL, SIZE, align, &eb);
a=malloc (SIZE) ; a = Memory alloc(myHeap, SIZE, align, &eb);
x={..}; x = {..};
Custom heap

a={..}; a = {.};

Error Block (more !
filter(.); filter(.); details later)
free(a) ; Memory free (NULL,x,SIZE) ;
free (x) ; Memory free (myHeap,a,SIZE);

Notes: - malloc(size) APl is translated to Memory_alloc(NULL,size,0,&eb) in SYS/BIOS

- Memory_calloc/valloc also available

13 TEXAS
INSTRUMENTS

Notice also that free() changes to Memory_free() and you must specify the heap, which variable
you are freeing and the size. For standard C syntax, the size is saved on the heap itself — but with
BIOS, it is not — therefore the user must re-specify it here. _calloc/_valloc are also supported with
the BIOS function calls.

10-8

TI-RTOS Workshop - Using Dynamic Memory

Dynamic Memory Concepts

Creating A Heap

So, now that we know a little about how to allocate buffers using the BIOS dynamic functions,
how do you actually create a heap? We use the configuration file, of course.

In the Available Products window, click on Memory Management and then click on Heaps. You
will see many TYPES of heaps listed. The standard C heap is called HeapMem in BIOS. Simply
drag/drop HeapMem into your app.cfg file and then add a new instance.

Creating A Heap (HeapMem)

@ Use HeapMem (Available Products)
a 4 Memory Management 3
4 Memory
4 9 Heaps
#h HeapMin
#fh HeapBuf
#h HeapCallback
#h HeapMem
HeapMultiBuf

@ Create HeapMem (myHeap): size, alignment, name
Static Dynamic
HeapMem_Params_init(&prms);
OR... Prms.size = 256;
myHeap = HeapMem_create(&prms, &eb);

+ Required Settings i
Handle [EETY

~ Buffer

Buffer Size (chars) 256

Usage
| buft = Memory_alloc(myHeap, 64, 0, &eb) |

Buffer Alignment 4

Minimum Block Alignment 0

« Buffer Placement

Memory section null

13 TEXAS
INSTRUMENTS

When the dialogue box appears, you can see that you will need to specify four parameters:
Handle: give the heap a custom name — e.g. myHeap
Buffer Size: this is the TOTAL size (in MAUSs) for the entire heap

Buffer Alignment: this is the alignment of the HEAP in powers of 2. So, if you want to align the
entire heap on an 8-byte boundary, you would use “8” in this field.

Min Block Alignment: This specifies the minimum alignment of each block within the heap. This
helps BIOS know how allocations will be made out of this heap. For a standard heap, just use “0”
as shown.

Memory section: if you leave this null, the tools will place this heap in the .sysmem section and it
will be linked based on where the linker.cmd file specifies it. However, if you want to name a
CUSTOM SECTION name - like .myHeap — you will need to add that to a customer linker.cmd
file and place this section into the memory segment of your choice. Like we said earlier — you
have ultimate flexibility in terms of WHERE each heap you create actually resides in physical
memory.

You can then see, on the right, how to DYNAMICALLY create this same heap. What? Yes. You
can dynamically create a heap using HeapMem__create(). Or, if you statically allocated it using the
dialogue above, you simply use the name of the heap, the size, alignment and eb as shown.

TI-RTOS Workshop - Using Dynamic Memory 10-9

Different Types of Heaps

Different Types of Heaps

Introduction

Shown below are the three types of heaps that BIOS supports. Each heap has its own
advantages and over the next few slides, we will cover the details of each.

HeapMem: This is the standard C heap that you may already be used to. You can allocate
variable-sized blocks from this heap — from one byte to many bytes. When you configure the
Heap Size in BIOS->Runtime, THIS is the heap you are configuring. You can choose to create
more heaps with the heap type of HeapMem, just like any heap type supported by BIOS and then
place it anywhere you like in physical memory. Allocations are non-deterministic because the
allocator must traverse the heap to find the size you requested. Also, fragmentation can occur on
this type of heap.

HeapBuf: This heap type is REALLY a great addition to BIOS. You create a heap with a fixed
block size (e.g. 256 bytes) and you specify you want 8 of them (for example). You can then
allocate/free these blocks from this heap with ZERO fragmentation and absolute determinism
because you either have a free block or you don’t — it takes the same amount of time to get a
handle back for the block you requested. So, this avoids the fragmentation/determinism problems
with HeapMem — or the standard C heap. The downside is that you have to know your block sizes
before you allocate them — but if you DO know them — this is a great type to use.

Heap Types

¢ Users can choose from 3 different types of Heaps:

O HeapMem .
. . 4 4 Memory Management
* Allocate variable-size blocks
#h Memory
* Default system heap type a |4 Heaps
#h HeapBuf
9 HeapBuf 4 Heaphem
* Allocate fixed-size blocks # HeapMultiBuf
o HeapTrack

© HeapMultiBuf

* Specify variable-size blocks, but internally,
allocate from a variety of fixed-size blocks

13 TEXAS
INSTRUMENTS

HeapMultiBuf: This heap type is similar to having multiple HeapBuf heaps and being able to
borrow blocks from another HeapBuf. Let’s say you had two HeapBufs — one with 16-byte blocks
and the other with 64K blocks. If you had already allocated all of the 16-byte blocks from the first
heap and you attempted to allocate another one, with just one HeapBuf, you would get NULL as
the return pointer. However, if you TIE these two heaps together, via HeapMultiBuf, you can
borrow a 64-byte block when you request a 16-byte block. Sure, you just wasted 48 bytes, but
you didn’t get a NULL pointer back.

10- 10

TI-RTOS Workshop - Using Dynamic Memory

Different Types of Heaps

HeapMem - the “Standard C” Heap

This is the standard C heap type — HeapMem — that you are used to using with malloc(). There
are no changes that BIOS makes to this heap type other than allowing you to create more than
one. As mentioned before, this heap type can suffer from fragmentation and the allocations are
not deterministic.

HeapMem

® Most flexible — allows allocation of HeapMem
variable-sized blocks (like malloc())

Ideal when size of memory is not known
until runtime

Creation: .CFG (static) or C code (dynamic)

Like malloc(), there are drawbacks:

NOT Deterministic = Memory Manager traverses
linked list to find blocks

ww L

Fragmentation — After frequent allocate/free, fragments occur

) s there a heap type without these drawbacks?

13 TEXAS
INSTRUMENTS

To configure the size of this heap (the standard heap used by BIOS), click on BIOS->Runtime
and then enter your desired heap size:

+ Runtime Memory Options

Systern (Hwi and Swi) stack size 1024

Heap size 256

HeapBuf doesn’t have any fragmentation or determinism issues...so let’s take a look at how it
works next...

TI-RTOS Workshop - Using Dynamic Memory 10 - 11

Different Types of Heaps

HeapBuf — Use to Allocate Fixed-Sized Buffers
HeapBuf — Concepts

When you create a HeapBuf, you need to specify how many blocks you have and what the size of
each block is — this block size is FIXED for ALL blocks in this heap. You can create this heap
either statically via the app.cfg file or dynamically using HeapBuf_create() as shown below.

Once created, you simply _alloc()/_free() from this heap — you check out buffers, use them and
then free them back to this heap. No fragmentation — completely deterministic.

As noted below, let’s say you had a block size of 64 bytes for each block in your heap. If you
request 64, you get 64. If you request 16, you get 64. If you request 128, you get a NULL pointer
to the resource. BIOS will not combine blocks of 64 to give you 128.

This heap type is ideal when you know your buffer sizes up front, but you want to share the
buffers between threads and re-use the real-estate of the heap.

HeapBuf

.........

HeapBuf_create()|[HeapBuf || BUF |: BUF || BUF || BUF HeapBuf_delete()

Memory_alloc() Memory_free()

TSK 1
BUF || BUF iBUF;BUF

¢ Allows allocation of fixed-size blocks (no fragmentation)

& Deterministic, no reentrancy problems

¢ Ideal when using a varying number of fixed-size
blocks (e.g. 4-6 buffers of 64 bytes each)

¢ Creation: .CFG (static) or C code (dynamic)
¢ For blockSize=64: Ask for 16, get 64. Ask for 66, get NULL

73 TEXAS How do you create a HeapBuf?

INSTRUMENTS

So, how do you create one of these HeapBufs ? That's the topic of the next slide...

10-12

TI-RTOS Workshop - Using Dynamic Memory

Different Types of Heaps

HeapBuf — Creating a HeapBuf

You can create a HeapBuf statically or dynamically — just like ANY heap type in BIOS — and you
can create as many as you like and place them anywhere in physical memory you like — just like
ANY heap type in BIOS.

STATIC COFIGURATION: As always, you add the HeapBuf module from the Available Products
window. Once added, you right-click on the HeapBuf module in your Outline View and select
“insert new...”. A dialogue box will appear as shown in the bottom left-hand corner. Here, you
specify the following:

Handle: the name of your HeapBuf

Block size: the size of each block in this heap — for example — 64 bytes

Number of blocks: how many blocks of (e.g. 64 bytes) would you like in this heap?
Alignment: this is the alignment of the HEAP, not the blocks in the heap

Memory section: if you would like to create a custom section here, you can — as shown. You will
then need to place this section into a memory segment in your own custom linker.cmd file.

Creating A HeapBuf

@ Use HeapBuf (Available Products)
4 4 Heaps

o HeapMin

o HeapBuf

4 @ HeapBuf

2 myHeapBuf

o HeapCallback
4 HeapMem
o HeapMultiBuf

4 @ Hwi

@ Create HeapBuf (myBuf): blk size, # of blocks, name

Static Dynamic
= Required Settings b prmS.blOCkSiZe = 64;
Handle | AR prms.numBlocks = 8;

OR... prms.bufSize = 256;

myHeapBuf = HeapBuf_create(&prms, &eb);

« Buffer

Block size 64
Mumber of blocks 8

Usage
[buf1 = Memory_alloc(myHeapBuf, 64, 0, &eb) |

Alignment 8

* Buffer Placement

Memory section .myHeapBuf

What if | need multiple sizes (16, 32, 128)?

13 TEXAS
INSTRUMENTS

DYNAMIC CONFIGURATION: Yes, you can also create a HeapBuf dynamically as shown in the
lower right-hand portion of this slide using HeapBuf_create(). You have to set up the parameter
structure (e.g. prms.blockSize =, etc.) and then use the _create() call to create it. WHICH heap
you create this out of is one of the parameters — not shown.

Then, once the HeapBuf heap is created, you simply use Memory_alloc(), as shown, to allocate
buffers from it.

TI-RTOS Workshop - Using Dynamic Memory 10-13

Different Types of Heaps

HeapBuf — Can You Use Multiple HeapBufs?

In the diagram below, we created 3 HeapBuf heaps — one with 8 blocks of 16-bytes each, one
with 8 blocks of 32-bytes each and one with 5 blocks of 128-bytes each. These are three
separate HeapBufs.

What would happen if you had already allocated all 8 of the 16-byte buffers and you attempted to
allocate the ninth one? Well, of course, you would get a NULL pointer back. NULL pointers are
bad — you don’t have ANY resource to use and your code must handle this issue gracefully.

Multiple HeapBufs

heapBuft | 16 | 16 | 16 | 16 | 16 | 16 | 16 16
heapBuf2 32 32 32 32
32 32 32 32
heapBuf3 128
1024 MAUs in 3 HeapBuf 128
Sin eapburs:
* 8 x 16-bytes 128
* 8 x 32-bytes 128
*5x 128-E>ytes 128

Given this configuration, what happens when we allocate
the 9t 16-byte location from heapBuf1?

¢ What “mechanism” would you want to exist to avoid the
NULL return pointer?

13 TEXAS
INSTRUMENTS

But, if an allocator existed that could GROUP together these three HeapBufs, maybe you could
BORROW a 32-byte buffer when you attempted to allocate the ninth 16-byte buffer. Would that
be advantageous? For some systems — yes — you wouldn’t get a NULL pointer back. Yes, you
have 32 bytes instead of 16, but this “waste” of memory is a small downside vs. getting a NULL
return pointer.

Just maybe BIOS has something like this...

10- 14 TI-RTOS Workshop - Using Dynamic Memory

Different Types of Heaps

HeapMultiBuf

Aha! This is it — HeapMultiBuf. In this scenario, you create multiple HeapBufs that are tied
together and then turn on BLOCK BORROWING from one heap to the next.

In this case, you can ask for one byte up to the max size — in this example, the max would be 128
bytes — and the allocator will return the buffer size that most closely fits what you asked for. Of

course, it is best if you allocate one of the three sizes in your HeapMultiBuf, but the great news is
that you won’t get a NULL pointer back unless all blocks have been used.

HeapMultiBuf

16 16 16 | 16 16 | 16 16 16

32 32 32 32

32 32 32 32
128

1024 MAUs in 3 Buffers:
128

* 8 x 16-byte

«8x 32-byte 128

-5 x 128-byte 128
128

13 TEXAS
INSTRUMENTS

¢ Creation: .CFG (static) or C code (dynamic)
& Ask for 17, get 32. Ask for 36, get 128.

¢ Allows variable-size allocation from a variety of fixed-size blocks

¢ Services requests for ANY memory size, but always returns the
most efficient-sized available block

¢ Can be configured to “block borrow” from the “next size up”

All BIOS heaps have status registers that you can read to find out how many blocks are available
prior to allocating a block. This may help you determine if you may get a NULL pointer back or
not. These registers are covered in the BIOS User Guide and are not covered in this workshop.

TI-RTOS Workshop - Using Dynamic Memory

10- 15

Different Types of Heaps

Default System Heap

Ok — one last word about heaps before we move on. This slide is review, but we wanted to make
sure you understand that when you configure the standard heap shown below (via BIOS-
>Runtime), this is the default heap and it is of type HeapMem. If you ever use NULL as the heap
name in any allocation, the allocation will come from this standard heap — as shown.

Default System Heap

¢ BIOS automatically creates a default system heap of type HeapMem

¢ How do you configure the default heap?

¢ In the .CFG GUI, of course:

7

= Runtime Memory Options

System (Hwi and Swi) stack size 1024

Heap size |:> E‘E

Heap section .ebss:taskStackSection

¢ How to USE this heap?

Runtime.

Z
bufl = Memory alloc(NULL, 128, 0, &eb);
myAlgo (bufl) ; ‘\|\ If NULL, uses default heap |
Memory free (NULL, bufl, 128);

13 TEXAS
INSTRUMENTS

10- 16 TI-RTOS Workshop - Using Dynamic Memory

Dynamic Module Creation

Dynamic Module Creation

Example — Creating a Semaphore Dynamically

These next few slides provide some basic information about how to create BIOS objects
dynamically.

To create a BIOS object dynamically, BIOS provides two basic methods — CREATE and DELETE
as shown in the slide below. The BIOS modules that you can create dynamically are shown on
the right-hand side.

Each object is going to have a set of attributes (parameter structure — called “params”) that are
used to configure the object. For a Semaphore, as shown below, we simply set the COUNT value
and the CREATE function returns the handle to the Semaphore. If we wanted a different type of
Semaphore, we would set those attributes (params) before the call to _create().

Then, the Semaphore is used as normal — using POST and PEND.

If we want to free the Semaphore object’'s memory back to the heap, we use _delete() to
accomplish this.

Dynamically Creating SYS/BIOS Objects

4 Module_create Modules

& Allocates memory for object out of heap

Hwi
& Returns a Module_Handle to the created object Swi
WI
¢ Module_delete
: Task
& Frees the object’s memory
. . Semaphore
¢ Example: Semaphore creation/deletion:
Stream
#define COUNT 0 Mailbox

Timer

Semaphore Handle hMySem;

hMySem = Semaphore create (COUNT,NULL, &eb); |C Clock
List
Semaphore post (hMySem) ; X
Event
Semaphore delete (&hMySem) ; D Gate

Note: always check return value of _create APIs !

13 TEXAS
INSTRUMENTS

As shown on the right-hand side of this diagram, most BIOS modules can be created dynamically
but not all of them. Each module will have corresponding MOD _create() and MOD_delete() func-
tions.

And, as noted, always check the return value of any _create() call to make sure the pointer is
NOT NULL. If you've done this sort of programming before, you understand the implications of
proceeding without checking the pointer.

TI-RTOS Workshop - Using Dynamic Memory 10-17

Dynamic Module Creation

Example — Creating a Task Dynamically

This example is similar to the previous discussion about Semaphores. The Task object is a little
more complicated than a Semaphore object, so the param structure, taskParams, is shown. Here,
we set the Task priority to 3 via the params structure and then call Task_create().

Task_create() needs to know which function is associated with this Task (myCode) along with the
params structure and then it will return the handle to the Task — hMyTask.

Once again, when a Task is created, it is ready to run as normal. If, at some point, you don’t need
the Task any longer, you can simply delete it and free the memory back to the heap.

Example — Dynamic Task API

Task Handle hMyTsk ;
Task Params taskParams;

Task Params_init (&taskParams) ;
taskParams.priority = 3;

hMyTsk = Task create (myCode, &taskParams, &eb) ;| C

// “MyTsk” now active w/priority = 3 ... X

Task delete (&hMyTsk) ; D

taskParams includes: heap location, priority, stack ptr/size, environment ptr, name

13 TEXAS
INSTRUMENTS

10- 18 TI-RTOS Workshop - Using Dynamic Memory

What is this “Error Block” Thing?

What is this “Error Block” Thing?

Getting a NULL pointer back when doing an allocation is a bad thing. So, the BIOS developers
had to make a choice — do we force users to check for a NULL return pointer or not?

While you can read the bullets below, here is the bottom line of Error Block:

If you do NOT pass an initialized Error_Block to the _alloc() function and the return pointer is
NULL, BIOS will exit. Period.

You can test, during debug time, whether you get a NULL pointer back by NOT passing an error
block and see when BIOS exits. This is considered a fatal error, so this is why BIOS forces you to
pass an error block.

However, if you DO pass an error block to the _alloc() call and the return pointer is NULL, nothing
happens — the treatment of this NULL pointer is left up to the user.

You can either check if pointer=NULL or you can use Error_check() to test the error block — either
way.

What is Error Block ?

Usage Setup Code

buf1 = Memory_alloc (myBuf, 64, 0, &eb) Error_Block eb;
Error_init (&eb);

Most SYS/BIOS APIs that expect an error block also return
a handle to the created object or allocated memory

¢ If NULL is passed instead of an initialized Error_Block and
an error occurs, the application aborts and the error can be
output using System_ printf().

¢ This may be the best behavior in systems where an error is
fatal and you do not want to do any error checking

4 The main advantage of passing and testing Error_block is
that your program controls when it aborts.

& Typically, systems pass Error_block and check resource
pointer to see if it is NULL, then make a decision...

Can check Error_Block using: Error check ()

i3 TEXAS
INSTRUMENTS

The code to create and initialize the error block is shown in the upper right-hand corner and this
error block can be re-used over and over again because it is reset to 1 for each _alloc() call.

TI-RTOS Workshop - Using Dynamic Memory 10-19

Custom Section Placement

Custom Section Placement

Introduction

We have talked some about creating your own sections and placing them in physical memory via
your own custom linker command file.

In this section, we will cover the details about exactly how this is done.

If you just write code, all of your code will end up in the .text section. All of your buffers will end up
in .far or .bss depending on your architecture. But what if you wanted to SPLIT .text and place a
specific function at a specific location in physical memory? Is this possible?

Also, if you had ONE buffer that you wanted to take out of the .bss section and place in a specific
location in memory, is this possible?

Custom Placement of Data and Code

¢ Problem #1: You have a function or buffer that you want to
place at a specific address in the memory map. How is this
accomplished?

.myCode
myFxn |:> Mem1

.myBuf
myBuffer |:> Mem2

¢ Problem #2: have two buffers, you want one to be linked at Ram1
and the other at Ram2. How do you “split” the .bss (compiler’s
default) section??

.bss
Ram1 Ram?2

buf1
:> buf1 buf2
buf2

13 TEXAS
INSTRUMENTS

The answer to both questions is YES — but it requires a little work on the programmer’s part...

10- 20 TI-RTOS Workshop - Using Dynamic Memory

Custom Section Placement

Making Custom Sections

There are two pragmas that can be used to create custom sections for code or data:

#pragma CODE_SECTION (): This will create a custom section (for example, .myCode) for the
function you specify — for example myFxn.

#pragma DATA_SECTION (): This will create a custom section (for example, .myBuf) for the
variable/buffer you declare — for example myBuffer.

When you see something in quotation marks “ ”, this is the name of the C SECTION that must be
located via the custom linker.cmd file you create.

Making Custom Sections

¢ Create custom code & data sections using:

#pragma CODE_SECTION (myFxn, “.myCode”) ;
void myFxn (*ptr, *ptr2, .){ };

#pragma DATA SECTION (myBuffer, “.myBuf”);
intl6_t myBuffer[32];

* myFxn & myBuffer isthe name of the fxn/var
* “.myCode & .myBuf” arethe names of the custom sections

¢ Split default compiler section using SUB sections:

#pragma DATA SECTION (bufl, “.bss:bufl”);
intlé_t bufl[8];
#pragma DATA SECTION (buf2, “.bss:buf2”);
intlé_t buf2[8];

i3 TExAS How do you LINK these custom sections?
INSTRUMENTS

So, what does this new custom linker.cmd file look like? That’s the topic of the next slide...

TI-RTOS Workshop - Using Dynamic Memory 10 - 21

Custom Section Placement

Linking Custom Sections

For MCU systems, you are provided with a linker.cmd file. For C6000 systems, the linker.cmd file
is generated for you. In either case, you can add ANOTHER linker.cmd file to your project in
order to link in custom sections that you created with the #pragmas in your code.

In the middle of this slide, you will see the contents of the “userlinker.cmd” file. As you can see, it
will contain only the SECTIONS directive and then list each section (e.g. .myCode) followed by a
memory segment (e.g. Mem1). You know where the .myCode came from — from the #pragma in
this previous slide. But where is Mem1 specified?

Memory segments, like Mem1, Mem2, etc. are listed in the linker command file supplied to you by
CCS. There will be specific memory regions listed and the name you use in the custom linker
command file must match the memory segments listed in the default linker command file. For
C6000 users, these memory segments are listed in the platform.

Simply create your own custom linker command file, give it a name, edit it to include the custom
sections you created as shown below and then add it to your project. Then, when you build, this
new custom linker command file will be used by the Linker to place these new sections.

Linking Custom Sections

app . cmd
SECTIONS { ... } Linker

SECTIONS userlinker.cmd

{ .myCode: > Meml
.myBuf: > Mem2
.bss:bufl > Raml

.bss:buf2 > Ram2

¢ Create your own linker.cmd file for custom sections

CCS projects can have multiple linker CMD files

¢ May need to create custom MEMORY segments also (device-specific)
¢ “bss:” used as protection against custom section not being linked

¢ —w warns if unexpected section encountered

Note: You will notice the use of .bss:buf1 in the linker command file above. What does this
mean? Buf1 is used as a SUBSECTION of .bss. If, for some reason, buf1 was left OUT of
the linker command file, where would it go? Wherever the linker wanted to put it. That’s
usually bad news. However, if buf1 is specified as a subsection, the worst case location
of buf1 would be in .bss which is more likely to be “ok” memory for your application. One
other note — if you use the —mo option (DASH M-OH), the linker will create a subsection
for every function in your application — for example .text:myCode, etc.) This is handy for
folks creating libraries because then your user can place these functions in different
memory segments easily to test performance.

10 - 22

TI-RTOS Workshop - Using Dynamic Memory

Lab 10: Using Dynamic Memory

Lab 10: Using Dynamic Memory

You might notice this system block diagram looks the same as what we used back in Lab 8 —
that’s because it IS.

We’'ll have the same objects and events, it’s just that we will create the objects dynamically
instead of statically.

In this lab, you will delete the current STATIC configuration of the Task and Semaphore and
create them dynamically. Then, if your LED blinks once again, you were successful.

Lab 10 — Creating Task/Sem Dynamically

main.c

Procedure
e Import archived (.zip) project (from Task lab)

main() {

init_hw() ;
Timer (500ms) ¢ Delete Task/Sem objects (for ledToggle)

BIOS start(); ¢ Write code to create Task/Sem Dynamically
} ¢ Build, “Play”, Debug

¢ Use ROV/UIA to debug/analyze
Scheduler
/ﬁ

— Semaphore post (LedSem) ; Hwi ISR
Task ledToggle () {)
while (1) {
Semaphore pend (LedSem) ;
Toggle LED; ledToggleTask
A }
e) J
N
ApTexas ¢ Time: 30 min

TI-RTOS Workshop - Using Dynamic Memory 10 - 23

Lab 10 — Procedure — Using Dynamic Task/Sem

Lab 10 — Procedure — Using Dynamic Task/Sem

In this lab, you will import the solution for the Task lab from before and modify it by DELETING
the static declaration of the Task and Semaphore in the . cfg file and then add code to create
them DYNAMICALLY in main ().

Import Project

1. Open CCS and make sure all existing projects are closed.
» Close any open projects (right-click Close Project) before moving on. With many main.c
and . cfqg files floating around, it might be easy to get confused about WHICH file you are
editing.
» Also, make sure all file windows are closed.

2. Import existing project from \Lab_10.
Just like last time, the author has already created a project for you and it’s contained in an
archived .zip file in your lab folder.
Import the following archive from your \Lab 10 folder:

Lab 10 TARGET STARTER blink Mem.zip

» Click Finish.
The project “blink_ TARGET_MEM?” should now be sitting in your Project Explorer. This is the
SOLUTION of the earlier Task lab with a few modifications explained later.
» Make sure all of the latest tools are selected: compiler, XDC and TI-RTOS.
» Expand the project to make sure the contents look correct.

3. Build, load and run the project to make sure it works properly.
We want to make sure the imported project runs fine before moving on. Because this is the
solution from the previous lab, well, it should build and run.
» Build — fix errors.
» Then run it and make sure it works. If all is well, move on to the next step...
If you’re having any difficulties, ask a neighbor for help...

10- 24 TI-RTOS Workshop - Using Dynamic Memory

Lab 10 — Procedure — Using Dynamic Task/Sem

Check Dynamic Memory Settings

4. Open BIOS 2> Runtime and check settings.
» Open .cfg and click on BIOS 2 Runtime.

» Make sure the “Enable Dynamic Instance Creation” checkbox is checked (it should already
be checked):

+ Dynamic Instance Creation Support

| Enable Dynamic Instance Creation

A savings in code and data size can be achiew

» Check the Runtime Memory Options and make sure the settings below are set properly for
stack and heap sizes (modify as necessary).

g

= Runtime Memory Options

Systern (Hwi and Swi) stack size 1024

Heap size 256

We need SOME heap to create the Semaphore and Task out of, so 256 is a decent number
to start with. We will see if it is large enough as we go along.

» Save .cfg.

The author also wants you to know that there is duplication of these numbers throughout the
. cfg file which causes some confusion — especially for new users. First, BIOS 2 Runtime is
THE place to change the stack and heap sizes.

Other areas of the . cfg file are “followers” of these numbers — they reflect these settings.
Sometimes they are displayed correctly in other “modules” and some show “zero”. No
worries, just use the BIOS 2Runtime numbers and ignore all the rest.

But, you need to see for yourself that these numbers actually show up in four places in the
.cfg file. Of course, BIOS 2Runtime is the first and ONLY place you should use.

» However, click on the following modules and see where these numbers show up (don’t
modify any numbers — just click and look):

e Hwi (Module) — not the INSTANCE
e Memory (MSP430 and TM4C only)
e Program

Yes, this can be confusing, but now you know. Just use BIOS 2Runtime and ignore the other
locations for these settings.

Hint: If you change the stack or heap sizes in any of these other windows, it may result in a
BIOS CFG warning of some kind. So, the author will say this one more time — ONLY use
BIOS > Runtime to change stack and heap sizes.

TI-RTOS Workshop - Using Dynamic Memory 10 - 25

Lab 10 — Procedure — Using Dynamic Task/Sem

Inspect New Code in main()

5. Open main.c and inspect the new code.

The author has already written some code for you in main (). Why? Well, instead of making
you type the code and make spelling or syntax errors and deal with the build errors, it is just
easier to provide commented code and have you uncomment it. Plus, when you create the
Task dynamically, the casting of the Task function pointer is a bit odd.

» Openmain.c and find main ().

» Inspect the new code that creates the Semaphore and Task dynamically (DO NOT
UNCOMMENT ANYTHING YET):

void main(wvoid) %

'/ [START] - DYMAMIC CREATION OF TASKS AND SEMAPHORES

Task_Params taskParams;
???? = Semaphore_create(®, NULL, NULL}Y; [/ create ledToggleSem Semaphore
Task_Params_init(&taskParams); [/ create ledToggleTask Task

taskParams.priority = ?777;
???? = Task_create((Task_FuncPtr)ledToggle, &taskParams, NULL);

- DYNAMIC CREATION OF TASKS AND SEMAPHORES

As you go through this lab, you will be uncommenting pieces of this code to create the
Semaphore and Task dynamically and you’ll have to fill in the “???7?” with the proper names
or values. Hey, we couldn’t do ALL the work for you. ©

Also notice in the global variable declaration area that there are two handles for the
Sempahore and Task also provided.

In order to use functions like Semaphore_create() and Task_create(), you will need to
uncomment the necessary #include for the header files also.

Delete the Semaphore and Add It Dynamically

6. Get rid of the Semaphore in app.cfg.

» Remove LEDSem from the . cfg file and save .cfqg.

7. Uncomment the two lines of code associated with creating ledToggleSem dynamically.

» In the global declaration area above main (), uncomment the line associated with the
handle for the Semaphore and name the Semaphore LEDSem.

» Inmain (), uncomment the line of code for Semaphore create () and use the same
name for the Semaphore (the return value of the _create call is the Semaphore handle).

P In the #include section near the top of main.c, uncomment the #include for
Semaphore.h.

» Savemain.c.

10 - 26

TI-RTOS Workshop - Using Dynamic Memory

Lab 10 — Procedure — Using Dynamic Task/Sem

Build, Load, Run, Verify

8. Build, load and run your code.
» Build the new code, load it and run it for 5 blinks.

Is it working? If not, it is debug time. If it is working, you can move on...

9. Check heap in ROV.

So, how much heap memory does a Semaphore take? Where do you find the heap sizes and
how much was used? ROV, of course...

» Open ROV and click on HeapMen (the standard heap type), then click on Detailed:

Detailed | Freelist | Raw

address label buf minBlock&lign sectionMame totalSize totalFreeSize largestFreeSize

0x0000a0a2 0xb300 4 =100 Oxd0 1]

So, in this example (C28x), the starting heap size was 0x100 (256) and 0xdo is still free
(208), so the Semaphore object took 48 16-bit locations on the C28x (assuming nothing else
is on the heap). Well, there ARE other items placed on the heap before the Semaphore was
created. 10-20 hex is required for exit/atexit() functions — so the Semaphore itself really only
takes 10h bytes — or 16 bytes. Ok — that is more reasonable and matches the object definition
in Sempahore.h as well.

Note that your “mileage may vary” on the sizes here depending on your architecture. The
easiest way to check how big the Semaphore object is on the stack is to set a breakpoint on
the Semaphore create () function and on the next line of code and check the ROV sizes in
each case.

» Restart the code and set a breakpoint on the Semaphore create () call AND set
another breakpoint on the next line of code.

» Click Run and open up ROV.

» What is the free size available on the heap?

» Click Run again (to create the Semaphore).

» What is the free size available on the heap?

» Subtract the last two values you wrote down (e.g. 0xfO — 0xe0) and you get?

This is the size of the Semaphore object for YOUR specific architecture. You should get
about 10h or 16 locations (16-32 bytes).

Ok. So, we didn’t run out of heap. Good thing.

» Write down how many bytes your Semaphore required here:

» How much free size do you have left over?

So, when you create a Task, which has its own stack, if you create it with a stack larger than
the free size left over, what might happen?

Well, let’s go try it...(oh, and remember the Error Block thing? Is it being passed? What
happens if you don’t pass eb and you get NULL as the pointer? You are about to find out...)

TI-RTOS Workshop - Using Dynamic Memory 10 - 27

Lab 10 — Procedure — Using Dynamic Task/Sem

Delete Task and Add It Dynamically

10.

1.

12.

Delete the Task in app.cfg.

Remove the Task from the app.cfqg file and save app.cfg.

Uncomment some lines of code and declarations.
» Uncomment the #include for Task.h.
» Uncomment the declaration of the Task Handle and fill in ??7.

» Uncomment the code in main () that creates the Task (LedToggleTask) and fill in the
??7?7 properly.

» Uncomment Task_Params declaration
» Create the Task at priority 2.

» Save main.c.

Build, load, run, verify.
» Build and run your code for five blinks. No blink? Read further...
» Halt your code.

Your code is probably sitting at abort (). How would the author know that? Well, when you
create a Task, it needs a stack. On the C6000, the default stack size is 2048 bytes. For C28x,
it is 256.

You probably aborted with a message that looks similar to this:

| = abort() at exit.c:109 UxCBDlEEEUi

Just look at the call stack in the Debug window to see the progression of problems and errors
from the Task_create() all the way “upwards”:

a %e blink_C28x_MEM_SOL [Code Composer Studio - Device Debugging]

a4 o Texas Instruments XDS100v1 USE Emulator/C28m (Suspended)
abort() at exit.c:93 Ou3DBT2C
xdc_runtime_Systern_abortStd_E() at Systern.c:34 0:3DBD0G
wde_runtime_System_abort_E{char *)() at System.c:53 0:30BAS1
xde_runtirne_Error_policyDefault_ E(struct xde_runtime_Error_Block *
xde_runtime_Error_raiseX_ E{struct xdc_runtime_Error_Block *, unsig
ti_sysbios_heaps_HeapMem_alloc_ E(struct ti_sysbios_heaps_Heap
xdec_runtime_IHeap_alloc(struct xdec_runtime_IHeap_ Object *, unsi
xde_runtime_Mermery_alloc__E(struct xdc_runtime_IHeap_ Object *
ti_sysbios_knl_Task_Instance_init_ E(struct ti_syskios_knl_Task_Ohbje

ti_sysbios_knl Task_create(void ("){unsigned long,unsigned long), st

What happened? Two things. First, your heap is not big enough to create a Task from
because the Task requires a stack that is larger than the entire heap! ;-) Also, did you pass
an error block in the Task create () function? Probably not. So, what happens if you get a
NULL pointer back and you do NOT pass an error block? BIOS aborts. Well, that’s what it
looks like.

10 - 28

TI-RTOS Workshop - Using Dynamic Memory

Lab 10 — Procedure — Using Dynamic Task/Sem

13. Open ROV to see the damage.

» Open ROV and click on Task. You should see something similar to this:

Basic |Detai|ed | Modulel ReadyQs I Raw |

address label pricrity mode fxn a. a. stackSize
000002180 tisysbics.. 0 Running ti_syshios_knl_Idle_loop_E 0. 0. 256
0:0000b1ed 2 Blocked ledTeoggle 0. 0. 258

» Look at the size of “stackSize” for ledToggle (name may or may not show up).
This screen capture was for C28x, so your size may be different (probably larger).

» What size did you set the heap to in BIOS Runtime? bytes
» What is the size of the stack needed for ledToggle (shown in ROV)? bytes

Get the picture? You need to increase the size of the heap...

14. Go back and increase the size of the heap.
» Open BIOS 2Runtime and use the following heap sizes:
o (C28x: 1024
e (C6000: 4096
e MSP430: 1024
e TMA4C: 4096

We probably don’t need THIS large of a heap for this application — it could be tuned better —
we’'re just using a larger number to see the application work. Remember, you can always run
your system and check ROV and then tune accordingly based on used vs. total heap/stk size.

» Save .cfg.

15. Wait, what about Error Block?

In a real application, the user has a choice whether to use Error Block or not. For debug
purposes, maybe it is best to leave it off so that your program aborts when the handle to the
requested resource is NULL. If you don't like that, then use Error Block and check the return
handle and deal with it however you choose — user preference.

In our lab, we chose to ignore Error Block, but at least you know it is there, how to initialize
one and how it works.

16. Rebuild and run again.

Rebuild and run the new project with the larger heap. Run for 5 blinks — it should work fine
now.

17. Terminate your debug session, close the project.

You're finished with this optional lab. Help a neighbor who is struggling with the
first lab — you know you KNOW IT when you can help someone else — and it’s being
a good neighbor. You've heard this before....somewhere...or just be selfish and
watch your architecture videos... ;-) Or be more selfish and check your email...

TI-RTOS Workshop - Using Dynamic Memory 10 - 29

Ad(ditional Information

Additional Information

Placing a Specific Section into Memory
¢ Via the Platform File (C6000 Only) — hi-level, but works fine:

Memory Sections

IRAM
IROM
L3_CBA_RAM

¢ Via the app.cfg GUI (finer control): \i Program |E>[Sections

* SYS/BIOS GUI now supports specific placements of sections (like .far, .bss, etc.
into specific memory segments (like IRAM, DDR, etc.):

+ Section Names ~ Load-Time Placement Options
. I
vecs Section Name [}
Lfar
GUI Memery Segment. IRAM

1
Address Alignment nul
Fill Value nul {

— - PSS o
il

l
J

Program.sectMap[”.far"] = new Program.SectionSpec();
Program.sectMap[".far"].loadSegment = "IRAM";

CFG script

10- 30 TI-RTOS Workshop - Using Dynamic Memory

Notes

Notes

TI-RTOS Workshop - Using Dynamic Memory 10 - 31

More Notes

More Notes

*** the very end ***

10- 32 TI-RTOS Workshop - Using Dynamic Memory

	BIOS_2DAY_00_Cover
	Notice
	Revision History

	BIOS_2DAY_01_Welcome
	Welcome
	Chapter Topics
	TI-RTOS Workshop – Welcome & Introduction
	Administrative Topics
	Workshop Objectives
	What We Won’t Cover – and Why…
	Workshop Outline
	Introductions

	TI Devices – Overview
	TI-RTOS
	What is TI-RTOS ?
	Where Can You Download the TI-RTOS SDK ?

	For More Info…
	Workshops and Online Resources
	TI Wiki Site

	BIOS Workshop Online…
	TI-RTOS Workshop Wiki
	TI-RTOS Workshop – Online Videos

	Hands-on Lab Targets…
	Lab 1 – System Setup
	Lab 1 – Procedure
	Computer Login (for TI computers/classrooms only)
	Connect Your Hardware (EVM, LaunchPad) to the PC
	Launch CCS and Run “Blink LED”
	Terminate the Debug Session
	That’s it, You’re Done !

	Optional Lab – Exploring CCS Help – Procedure
	Additional Information
	Notes…

	BIOS_2DAY_02_CCSv6
	Intro to Code Composer Studio - CCSv6
	Module Topics
	TI Software Ecosystem
	Run-Time Software

	Intro to CCSv6
	Functional Overview
	Editing
	Debugging

	Perspectives
	Target Config & Emulators
	JTAG Emulators
	Workspaces & Projects
	Some Final Notes about CCS/Eclipse

	Creating a Project
	Adding Files to a Project
	Portable Projects

	Compiler Options & Build Configurations
	Compiler Build Options
	Processor Options
	Debug Options
	Optimize Options (aka Release Options)

	Modifying Compiler Build Configurations

	Licensing/Pricing
	Overview
	Changing CCS User Licenses

	CCSv6 – For More Info…
	Lab 2 – CCSv6 Projects
	Lab 2 – Procedure
	Intro to TI-RTOS Workshop Files
	Create and Explore Your New CCS Project
	Add Libraries and Include Search Paths
	Explore the Blink LED Code
	Using the Target Configuration File
	Sidebar

	Build, Load, Run
	Launching the Debugger step-by-step
	Terminate
	Build, Load, Run … again
	Sidebar

	Add a Breakpoint
	Watch Variables and View Memory Contents
	Other Useful Debug/Editing Tips
	That’s It. You’re Done.

	[Optional] Exploring Build Properties
	[Optional] Creating Portable Projects
	Introduction to Portable Projects
	Part 1 – Watch the Video on Portable Projects
	Part 2 – Using VARS.INI – The Easier Method
	Part 3 – Add Vars Manually – The Harder Method
	That’s It. You’re Done.

	Tips – New Project Creation and Debug
	Appendix – Creating Portable Projects
	Portable Projects – Concepts
	Portable Projects – Two Types of Variables
	Portable Projects – Variable Scope

	Notes

	Portable Projects

	BIOS_2DAY_03_SYSBIOS_Intro
	Intro to the TI-RTOS Kernel
	Module Topics
	What is the TI-RTOS Kernel?
	TI-RTOS Kernel – List of Services
	TI-RTOS Kernel – Characteristics

	TI-RTOS Scheduler
	Scheduling Problem
	Solution #1 – Use a Super Loop !
	Solution #2 – Use Timer-based Interrupts
	Solution #3 – Use NESTED Interrupts
	Solution #4A – Separate Process from ISR
	Solution #4B – The BIOS Scheduler
	Thread vs. Function
	The Scheduler – in Action

	Adding Tasks…
	TI-RTOS Kernel Services – Summary
	TI-RTOS Environment
	Kernel APIs, Objects and Handles
	Thread (Object) Creation in BIOS

	TI-RTOS Kernel Debugging Tools
	UIA and ROV – Intro
	UIA and ROV – Viewing Results in CCS

	For More Info…
	Chapter Quiz
	Quiz - Solution

	BIOS_2DAY_04_SYSBIOS_Mechanics
	TI-RTOS Configuration
	Module Topics
	Creating A New BIOS Project
	CCS Project Creation – Choosing BIOS Template
	CCS Project Creation – Choosing BIOS Tools
	CCS Project Creation – Choosing Platform

	BIOS Configuration
	Adding a BIOS Service to CFG File
	Configuring a BIOS Service – Idle
	CFG Script Code vs. Using the GUI

	BIOS System Timeline
	UIA & RTOS Analyzer
	Configuring UIA & RTOS Analyzer
	Using Logs
	Using the Execution Graph
	Using CPU and Thread Loading

	Version Control
	Lab 4 – SYS/BIOS Blink LED
	Lab 4 – Procedure
	Create New blink_target_BIOS Project
	Project File Management
	Exploring & Editing BIOS Config File (.CFG)
	Additional Steps for C28x Users Only
	Build, Load and Run.
	Register ledToggle() as an Idle Thread Function
	Explore BIOS’ Sys Overview and Runtime Cfg
	Build, Load, Run
	Explore the RTOS Object Viewer (ROV)
	Add Unified Instrumentation Architecture (UIA) to the Project
	UIA – Build, Load and Run.
	That’s It, You’re Done !!

	[Optional Lab 4B] – Blink LED for MSP430 and Tiva-C

	BIOS_2DAY_05_Hwi
	Using Hwi
	Module Topics
	Hardware Interrupts (Hwi) – Intro
	Fore/Background Scheduling – Hwi and Idle
	How Interrupts Work – Steps 1 & 2
	Enabling Interrupts
	How Interrupts Work – Steps 3 & 4

	Configuring an Hwi
	Configuring Static Hwi’s…
	Static Configuration – Tiva-C Series & MSP430
	Static Configuration – C28x & C6000
	Enabling Nested Interrupts in BIOS

	Managing ISRs – Two Ways
	Using BIOS-Managed ISRs
	Using NON-BIOS-Managed ISRs
	Two Methods – Summary

	Hwi Benchmarks
	Interrupt Response Time
	How to Create an ISR Outside of BIOS

	Lab 5 – Using Hwi
	Lab 5 – Procedure
	Create a New SYS/BIOS Project
	Explore Source Files
	Determine Interrupt Number or Event Id
	Add The New Hwi
	Build, Load and Blink !
	Debugging With UIA and ROV

	Optional Lab – Using the BIOS Timer Module
	Archive Lab and Copy Project
	Add Timer to BIOS Cfg

	Notes

	BIOS_2DAY_06_Swi
	Using Swi's
	Module Topics
	Using Swi
	Introduction
	Posting Swi From an Hwi
	Scheduling Rules – Swi’s at Different Priorities
	Scheduling Rules – Swi’s at Same Priorities

	Swi – Configuration
	Other Useful Swi APIs
	Scheduling Strategies – FYI
	Lab 6: Blink LED Using a Swi
	Lab 6 – Procedure – Blink LED Using Swi
	Import Project
	Add a Swi to the System
	Add New ISR and Modify Hwi
	Build, Load and Run…
	Use UIA and ROV to Debug Application

	Notes

	BIOS_2DAY_07_Clk
	Using Clock Functions & TimeStamp
	Module Topics
	Clock Module
	Can Time be an Event ?
	Clock Module – How it Works
	Clock Module – How to Configure It

	Clock Functions
	Clock Functions – How They Work
	Clock Functions – How to Configure Them

	Timestamp – How it Works
	TI-RTOS Kernel – Timer and Clock Usage
	Lab 7: Clock Functions & TimeStamp
	Lab 7 – Procedure – Blink LED Using Clock Swi
	Import Project
	Add a Clock and Clock Function to the System
	Build, load and run.
	Using TimeStamp (Benchmarking)

	Notes

	BIOS_2DAY_08_Task
	Using Tasks and Semaphores
	Module Topics
	Using Tasks
	Intro
	Task – Topology
	Task – Configuration
	Modifying a Task’s Priority
	Scheduler – Adding Tasks…

	Swi vs. Task
	Using Semaphores
	Semaphore_pend()
	Semaphore_post()
	Semaphore – Configuration

	FIFO vs. Priority-Based Semaphores
	Other Useful APIs…
	Using Events
	Explicit Post/Pend
	Implicit Post/Pend

	Dynamic Module Creation
	Basic Concepts – Creating a Semaphore
	Creating a Task – Dynamically

	Using System_printf()
	Memory Footprint – MCU Targets
	Lab 8: Using Tasks
	Lab 8 – Procedure – Blink LED Using Task
	Import Project
	Add a Task and Semaphore to the System
	Build, Load and Run
	Use ROV and UIA to Debug Code
	Using Simple Mode View in CCS

	[Optional Lab] – Dynamic Module Creation
	Import Project
	Check Dynamic Memory Settings
	Inspect New Code in main()
	Delete the Semaphore and Add It Dynamically
	Build, Load, Run, Verify
	Delete Task and Add It Dynamically

	Notes

	BIOS_2DAY_09_ITC
	Inter-thread Communication
	Module Topics
	Introduction
	Overview of the Problem
	Resource Sharing – Two Models

	“Producer-Consumer” Model
	Intro
	Using Queues – Concepts
	Using Queues – Synchronizing Queues
	Using Queues – To Create a Peripheral Driver…
	Using Mailboxes

	“Concurrent Access” Model
	Intro
	Using Globals
	What is a “Critical Section” ?
	Critical Section – Modifying Scheduler Behavior
	Using MUTEXs – Intro
	Using MUTEX Gates…
	Priority Inversion
	Priority Inversion – Solution #1 – Elevate Priority
	Priority Inversion – Solution #2 – Mutex Gates
	What is Deadlock?
	Same Priority Threads

	Lab 9: Using Mailboxes and Queues
	Lab 9 – Procedure
	Part A – Using Mailboxes
	Import Project
	SETUP – Create Message Object and Add Mailbox to BIOS CFG
	SENDER – Create a New Task for Message Management Fxn
	SENDER – Post the Message to the Mailbox
	RECEIVER – Receive the Message and Toggle the LED
	SEND/RECEIVE – MAILBOX – Build, Load, and Run

	Part B – Using Queues
	SETUP – Create the Queue Message Object and Queue Instance
	SENDER – Put Message in Queue and Post a Semaphore
	RECEIVER – Receive the Message and Toggle the LED
	SEND/RECEIVE – QUEUE – Build, Load, and Run

	Notes

	BIOS_2DAY_10_Mem
	Using Dynamic Memory
	Module Topics
	Dynamic Systems – Introduction
	Static vs. Dynamic
	Enabling Dynamic Instance Creation – CFG File

	Dynamic Memory Concepts
	Using a Heap
	Code Example #1 – Static vs. Dynamic Coding
	Two Heaps Are Better Than One
	Code Example #2 – Std Heap vs. BIOS Heaps
	Creating A Heap

	Different Types of Heaps
	Introduction
	HeapMem – the “Standard C” Heap
	HeapBuf – Use to Allocate Fixed-Sized Buffers
	HeapBuf – Concepts
	HeapBuf – Creating a HeapBuf
	HeapBuf – Can You Use Multiple HeapBufs?

	HeapMultiBuf
	Default System Heap

	Dynamic Module Creation
	Example – Creating a Semaphore Dynamically
	Example – Creating a Task Dynamically

	What is this “Error Block” Thing?
	Custom Section Placement
	Introduction
	Making Custom Sections
	Linking Custom Sections

	Lab 10: Using Dynamic Memory
	Lab 10 – Procedure – Using Dynamic Task/Sem
	Import Project
	Check Dynamic Memory Settings
	Inspect New Code in main()
	Delete the Semaphore and Add It Dynamically
	Build, Load, Run, Verify
	Delete Task and Add It Dynamically

	Additional Information
	Notes
	More Notes

