
MSP430 Design Workshop

STUDENT GUIDE

MSP430 Design Workshop
Revision 4.01
February 2015

Important Notice

Important Notice
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or
to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on is
current and complete. All products are sold subject to the terms and conditions of sale supplied at
the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time
of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those mandated by government
requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be or
are used. TI’s publication of information regarding any third party’s products or services does not
constitute TI’s approval, warranty or endorsement thereof.

Copyright 2015 Texas Instruments Incorporated

Revision History
October 2013 – Revision 3.0 (based on MSP-EXP430F5529 USB Launchpad)
November 2013 – Revision 3.01
January 2014 – Revision 3.02
February 2014 – Revision 3.10 (MSP-EXP430F5529 & MSP-EXP430FR5969 Launchpad’s)
July 2014 – Revision 3.21
Jan 2015 – Revision 4.00 (based on F5529, FR5969 and FR4133 Launchpad’s)
Feb 2015 - Revision 4.01

Mailing Address
Texas Instruments
Training Technical Organization
6500 Chase Oaks Blvd – Bldg 2
M/S 8437
Plano, Texas 75023

ii MSP430 Design Workshop - Introduction

Introduction to MSP430

Introduction
Welcome to the MSP430 Workshop. This workshop covers the fundamental skills needed when
designing a system based on the Texas Instruments (TI) MSP430™ microcontroller (MCU). This
workshop utilizes TI’s integrated development environment (IDE) which is named Code Composer
Studio™ (CCS). It will also introduce you to many of the libraries provided by TI for rapid development of
microcontroller projects, such as MSP430ware™.

Whether you are a fan of the MSP430 for its low-power DNA, appreciate its simple RISC-like approach
to processing, or are just trying to keep your system’s cost to a minimum … we hope you’ll enjoy working
through this material as you learn how to use this nifty little MCU.

MSP430 Workshop - Introduction to MSP430 1 - 1

Administrative Topics

Chapter Topics
Introduction to MSP430 .. 1-1

Administrative Topics .. 1-3
Workshop Agenda ... 1-4
TI Products .. 1-6

TI’s Entire Portfolio .. 1-6
Wireless Products ... 1-7

TI's Embedded Processors ... 1-8
MSP430 Family ... 1-10
MSP430 CPU .. 1-14
MSP430 Memory .. 1-18

Memory Map ... 1-18
FRAM .. 1-21

MSP430 Peripherals ... 1-24
GPIO ... 1-24
Timers ... 1-25
Clocking and Power Management .. 1-26
Analog ... 1-27
Communications (Serial ports, USB, Radio) ... 1-29
Hardware Accelerators .. 1-30
Summary ... 1-31

ULP ... 1-32
Profile Your Activities .. 1-33

Community / Resources .. 1-37
References .. 1-39

Launchpad’s .. 1-40
MSP-EXP430F5529LP Launchpad .. 1-40
MSP-EXP430FR5969 Launchpad .. 1-41
MSP-EXP430FR4133 Launchpad .. 1-41

Lab 1 – Out-of-Box User Experience Lab ... 1-43

1 - 2 MSP430 Workshop - Introduction to MSP430

 Administrative Topics

Administrative Topics
A few important details, if you’re taking the class live. If not, we hope you already know where your own
bathroom is located.

Administrative Topics
 Tools Install & Labs
 Start & End Times
 Lunch
 Course aaterials
 Name Tags
 Restrooms
 aobile Communications
 vuestions & Dialogue (the key to learning)

MSP430 Workshop - Introduction to MSP430 1 - 3

Workshop Agenda

Workshop Agenda
Here’s the outline of chapters in this workshop.

MSP430 Design Workshop (v4.0)

Workshop Agenda

2. Code Composer Studio (CCS)
3. GPIO and MSP430ware
4. Clocking and System Init
5. Interrupts
6. Timers (A/B)
7. Low-Power & EnergyTrace (LPM)
8. Real Time Clocks (RTC)
9. Non-Volatile Memory (FRAM/Flash)

10. Universal Serial Bus (USB)
11. Using Energia (Arduino)
12. Using Segmented Displays (LCD)

Chapter 1: “Intro” Provides a quick introduction to TI, TI’s Embedded Processors, as well as the
MSP430 Family of devices.

Chapter 2: “CCS” introduces TI’s development ecosystem. This includes:
− Code Composer Studio (CCSv5)

− Target software, such as MSP430ware and TI-RTOS

− TI’s support infrastructure, including the embedded processors wiki and
Engineer-to-Engineer (e2e) forums.

Chapter 3: “GPIO” This is our introduction to programming with MSP430ware; specifically, the
DriverLib (i.e. driver library) part of MSP430ware. We start out by using it to program
GPIO to blink an LED (often called the “embedded systems version of ‘Hello World’”).
The second part of the lab reads a Launchpad pushbutton.

Chapter 4: “Clocks” This chapter starts at reset – in fact, all three resets found on the MSP430.
We then progress to examining the rich and robust clocking options provided in the
MSP430. This is followed by the power management features found on many of the
‘430 devices. The chapter finishes up by reviewing the other required system
initialization tasks … such as configuring (or turning off) the watchdog timer
peripheral.

Chapter 5: Interrupts … do you use interrupts? Yep, they’re one of the most fundamental parts of
embedded system designs. This is especially true when your processor is known as

1 - 4 MSP430 Workshop - Introduction to MSP430

http://processors.wiki.ti.com/index.php
http://e2e.ti.com/

 Workshop Agenda

the king of low-power. We examine the sources, how to enable, and what to do in
response to … interrupts.

Chapter 6: Timers are often thought of as the lifeblood of a microcontroller program. We use
them to generate periodic events, as one-shot delays, or just to wake ourselves up
every once in a while to read a sensor value. This chapter focuses on Timer_A – the
primary timer module found in the MSP430.

Chapter 7: Low Power Optimization – shows the basic steps for lowering power usage. Following
the ULP (ultra-low power) Advisor, we can find ways to minimize power in our code.
Energy Trace is a new tool for measuring power and, on the ‘FR58/59xx devices,
examining the states of peripherals and clocks.

Chapter 8: Real-Time Clocks provides a very low-power timer to keep track of calendar, time and
alarms.

Chapter 9: Nov-Volatile Memory – provides persistant storage, even when power is removed
from the device. Most MSP430 devices contain either Flash or FRAM non-volatile
memory.

Chapter 10: USB – Universal Serial Bus is an ideal way to communicate with host computers. This
is especially true as most PC’s have done away with dedicated serial and parallel
ports. We attempt to explain how USB works as well as how to build an application
around it. What you’ll find is that the MSP430 team has done an excellent job of
making USB simple.

Chapter 11: Energia is also known by the name “Arduino”. Energia was the name given to Arduino
as it was ported to the TI MCU’s by the open-source community. Look up the
definition of Energia – and let it ‘propel’ your application right off the Launchpad.

Chapter 12: Segmented LCD’s (Liquid Crystal Displays) provide a convenient, low-power way of
communicating with your system end-users. The ‘FR4133 provides the lowest power
LCD controller in the market. This chapter introduces you to LCD’s in general, then to
the specifics of using TI’s LCD_E controller found on the ‘FR4133 and its launchpad.

MSP430 Workshop - Introduction to MSP430 1 - 5

TI Products

TI Products

TI’s Entire Portfolio
It’s very difficult to summarize the entire breadth of TI’s semiconductor products – it’s so far reaching.
But, maybe that’s not to be unexpected from the company who invented the integrated circuit.

Whether you are looking for embedded processors (the heart of following diagram) or all the
components that sit alongside – such as power management, standard logic, op amps, data conversion,
display drivers, or … so much more – you’ll find them at TI.

Texas Instruments Portfolio

Looking at Wireless...

Before taking a closer look at embedded processors, we’ll glance at one of the hottest growing product
categories … TI’s extensive portfolio of wireless connectivity.

1 - 6 MSP430 Workshop - Introduction to MSP430

 TI Products

Wireless Products
Wireless devices let us talk through the air. Look ma, no wires.

What protocol or frequency resonates with you and your end-customers? Whether it’s: near-field
communications (NFC); radio-frequency ID (RFID); the long range, low-power sub 1-GHz; ZigBee®;
6LoPan; Bluetooth® or Bluetooth Low Energy® (BLE); ANT®; or just good old Wi-Fi – TI’s got you
covered.

Many low-end, low-cost MCU designers have longed for a way to connect wirelessly to the rest of the
world. TI’s wireless devices and modules make this possible. No longer do you need a gigahertz
processor to run the various networking stacks required to talk to the outside world – the TI SimpleLink
line handles this for you … meaning that any processor that can communicate via a serial port can be
networked. Drop a CC3000 module into your design and you’ve enabled it to join the Internet of Things
revolution.

Check out TI’s inexpensive, low-power and innovative wireless lineup!

MSP430 Workshop - Introduction to MSP430 1 - 7

TI's Embedded Processors

TI's Embedded Processors
Whether you are looking for the MSP430, which is the lowest power microcontroller (MCU) in the world
today … or the some of the highest performance single-chip microprocessors (MPU) ever designed
(check out Multicore) … or something in between … TI has your needs covered.

TI’s Embedded Processor PortfolioMicrocontrollers (MCU) Application (MPU)

MSP430 C2000 Tiva C Hercules Sitara DSP Keystone
16-bit 32-bit 32-bit 32-bit 32-bit 16/32-bit 32-bit

Ultra Low
Power & Cost Real-time All-around

MCU Safety Linux
Android

All-around
DSP

Massive
Performance

MSP430
ULP RISC

MCU

• Real-time
C28x MCU

• ARM M3+C28

ARM
Cortex-M4F

ARM
Cortex-M3
Cortex-R4

ARM
Cortex-A8
Cortex-A9

DSP
C5000
C6000

• C66 + C66
• A15 + C66
• A8 + C64
• ARM9 + C674

• Low Pwr Mode
 250nA (RTC)
 770nA (LCD)

• Analog I/F
• USB and RF

• Motor Control
• Digital Power
• Precision

Timers/PWM

• 32-bit Float
• Nested Vector

IntCtrl (NVIC)
• Ethernet

(MAC+PHY)

• Lock step
Dual-core R4

• ECC Memory
• SIL3 Certified

• $5 Linux CPU
• 3D Graphics
• PRU-ICSS

industrial subsys

• C5000 Low
Power DSP

• 32-bit fix/float
C6000 DSP

• Fix or Float
• Up to 12 cores

4 A15 + 8 C66x
• DSP MMAC’s:

352,000

TI-RTOS TI-RTOS (k) TI-RTOS 3rd Party
(only)

Linux, Android,
TI-RTOS Kernel

C5x: DSP/BIOS
C6x: TI-RTOS (k)

Linux
TI-RTOS (k)

Flash: 512K
FRAM: 128K

512K
Flash

1MB
Flash

256K to 3M
Flash

L1: 32K x 2
L2: 256K

L1: 32K x 2
L2: 256K

L1: 32K x 2
L2: 1M + 4M

25 MHz 300 MHz 120 MHz 220 MHz 1.35 GHz 800 MHz 1.4 GHz

$0.25 to
$9.00

$1.85 to
$20.00

$1.00 to
$8.00

$5.00 to
$30.00

$5.00 to
$25.00

$2.00 to
$25.00

$30.00 to
$225.00

To start with, look at the Blue/Red row about ⅓ the way down the slide. The columns with Red signify
devices utilizing ARM processor cores. If you didn’t think TI embraces the ARM lineup of processors,
think again. TI is one of the leaders in ARM development, manufacturing and sales.

Jumping to the 3rd column, the Tiva C (Tiva Connected) processors are probably the best all-around
MCU’s in use today. The 32-bit floating point ARM Cortex-M4F core can be connected to the real-world
by a dizzying array of peripherals. They provide a near-perfect balance of performance, power, and
connectivity.

On the other hand, if you’re building safety critical applications, the Hercules family of processors is
what you should key in on. Whether your customers appreciate the safety of dual-core, lockstep
processing or the SIL3 certification, these processors are a unique mix of ARM Cortex-R4 performance
combined with TI’s vast SafeTI® knowledge.

Moving up to what ARM calls their ‘Application’ series of processors, TI set the processing world on fire
(figuratively) when they introduced the Sitara AM335x. That you could get a $5 processor which runs
Linux, Android or other high-level operating systems was jaw-dropping. We probably didn’t make some
PC manufactures happy – we’ve seen many of our customers replace bulky, power-hungry embedded
PC’s with small, low-power BeagleBoard-like replacements. This device was the inflection point – it’s
started a new direction for embedding high-level host systems.

And if you’re looking for the high-end ARM Cortex-A15, we’ve got that too. Take your pick: do you want
one … or up to 4 A15 cores on a single device? And these multi-core devices also pack the number
crunching of TI’s C66x line of DSP cores. When high-end performance processing is critical to your
systems, look no further than TI Multicore.

1 - 8 MSP430 Workshop - Introduction to MSP430

 TI's Embedded Processors

But as one student asked, “If ARM is so great, why do you make other types of processors?”

While ARM is probably thought of today as the best all-around set of processor cores, there are areas
where it can be improved upon.

Driving to the lowest-power dissipation is one of those areas. In the end, the venerable MSP430 is not to
be outdone on the low end. As the MSP430 teams says, Ultra Low-Power (ULP) is “in our DNA”. You
know you’re doing something right when the 10-year shelf-life of the battery ends up self-dissipating
before you run it dry with your MSP430 design. It’s just hard to beat an MCU designed from the ground
up as a low-power CPU. That said, it’s also hard to beat the MSP430’s simple, inexpensive, high-
performance RISC engine.

The C2000 family has set the standard for control applications. Whether it’s digital motor control, power
control or one of the many other control-oriented MCU applications, this CPU really crunches the data.
You might also see a little Red in this column. That’s to indicate that even a good DSP-based
microcontroller can use a little bit of ARM to get a leg-up in the industry. We’ve coupled an ARM Cortex-
M3 along with the C28x core to make a stellar processing duo. Use the ARM to run your networking and
USB stacks – all the while the C28x core is taking care of your system’s real-time processing needs.
Sure, you could buy two chips to implement your systems (we’ll happily sell you a C28x along with Tiva
C), but these devices integrate them both into a singular device.

Finally, TI is known by many as the center of DSP excellence. While these CPUs often get lost in all the
hoopla surrounding ARM today, when it comes to real-time systems, a good DSP is hard to beat.
Whether you’re implementing a low-power system (look to C5000 DSP’s) or need the number crunching
performance of the C6000, these devices still cannot be bested in the world of hard real-time, low-
latency, highly deterministic applications. As mentioned earlier, the highest performing C6000 DSP cores
have been combined into the awesome performance of Multicore. You can get up to 8 CPU’s on a single
device; make them all C66x DSPs – or match four C66x CPU’s up with four of ARM’s stunning Cortex-
A15’s for a performance knock-out punch.

MSP430 Workshop - Introduction to MSP430 1 - 9

MSP430 Family

MSP430 Family
As stated, low-power is ‘in our DNA’. Though, it’s not all the MSP430 is known for.

One vector of new products has continued to integrate a wide range of low-power peripherals into the
MSP430 platform. Look for the products in the MSP430 F5xx, F6xx and FR5xxx families. Also, the
CC430 family adds the unique touch of on-chip integrated RF radios.

1 - 10 MSP430 Workshop - Introduction to MSP430

 MSP430 Family

A second vector of development is driving the cost out of your designs. Look no further than the Gxxx
Value Line series of devices. The goal is to provide highly integrated, low-power, 16-bit performance in
an inexpensive device – giving you a new choice versus those old 8-bit micros.

And finally, the new MSP430 Wolverine series of devices is once again setting new standards for low-
power processing. Sure, we’re only topping our own products, but who else is better suited to enable
your lowest power processing needs? Utilizing the FRAM memory technology, the FR5xxx Wolverine
devices combine the lowest power dissipation with a rich integration of peripherals.

MSP430 Families

Ultra Low
Power

Security
+ Comm

Low Power +
Performance

MSP430 Workshop - Introduction to MSP430 1 - 11

MSP430 Family

Here’s a quick overview of the device we’ll be using in this workshop. The MSP430F5529 is part of the
F5xx series of devices and is found on the new ‘F5529 USB Launchpad.

Ultra-Low Power
 160 μA/MIPS
 2.5 μA standby mode
 Integrated LDO, BOR, WDT+, RTC
 12 MHz @ 1.8V
 Wake up from standby in <5 μs

Increased Performance
 Up to 25 MHz
 1.8V ISP Flash erase and write
 Fail-safe, flexible clocking system
 User-defined Bootstrap Loader
 Up to 1MB linear memory addressing

Innovative Features
 Multi-channel DMA supports data

movement in standby mode
 Industry leading code density
 More design options including USB,

RF, encryption, LCD interface

F5xx Key Features

Looking at the 'FR59xx...

MSP430FR58xx/59xx

Debug
• Real Time JTAG
• 9mbedded emulation
• Bootstrap Loader

Accelerators
• 32x32 Multiplier
• 5MA (3 /h)
• /R/16
• A9S256 9ncryption (FR59xx)

aemory
• FRAM (32/48 / 64 KB)
• RAM (1 or 2 KB)
• MPU

Serial Interfaces
• 3 Serial Interfaces (eUS/I)
• 2 UART + Ir5A or SPI
• 2 I2/ or SPI

aSP430FR58/59xx
Ultra Low Power
16-bit M/U

16MHz

Power & Clocking
• Brownout Reset
• Supply Voltage Supervisor (SVS)
• Low Power Vreg (1.5V L5O)
• 9xternal Oscillators: LFXT, HFXT
• Internal Oscillators: VLO, 5/O (±2%)

Connectivity
• Up to 40 GPIO (Interrupt/Wake)
• /ap touch IO

Timers
• Watch 5og Timer (W5T_A)
• Real Time /lock (RT/_B)
• Two 16-bit w/3 //R (TA0, TA1)
• Two 16-bit w/2 //R (TA2, TA3)
• One 16-bit w/7 //R (TB0)

Analog
• 12-bit SAR A5/ (up to 16 ch)
o 5ifferential inputs
o Window comparators

• /omparator (/omp_9)
• Vref (R9F_A)

1 - 12 MSP430 Workshop - Introduction to MSP430

 MSP430 Family

MSP430FR4133
 Integrated LCD
 Configurable Pin-out
 On-chip Charge Pump
 Operates in LPM3.5

ultra low-power mode
 Integrated LCD driver

offers size and system
cost advantages

 Up to 60 GPIO pins
 Non-volatile FRAM

Technology
 Flexible use for code or

data allocation
 Ultra-low-power write
 No external EEPROM

needed with write
endurance of 1015

These are three of TI’s line-up of MSP430 devices – each featuring highly integrated set of peripherals.
We will be exploring quite a bit more about them as we go through this workshop.

MSP430 Workshop - Introduction to MSP430 1 - 13

MSP430 CPU

MSP430 CPU
As stated earlier, the MSP430 is an efficient, simple 16-bit low power CPU. Its orthogonal architecture
and register set make it C-compiler friendly.

 Efficient, ultra-low power CPU
 C-compiler friendly
 RISC architecture

 51 instructions
 7 addressing modes
 Constant generator

 Single-cycle register operations
 Bit, byte and word processing
 1MB unified memory map

 No paging

 Extended addressing modes
 Page-free 20-bit reach
 Improved code density
 Faster execution

 100% code compatible with
earlier versions

MSP430 CPU

The original MSP430 devices were true 16-bit processors. While 16-bits are quite ideal from a data
perspective, it’s limited from an addressing perspective. With 16-bit addresses, you’re limited to only 64K
of memory – and that really isn’t acceptable in many of today’s applications.

As early as the second generation of MSP430 devices, the CPU was expanded to provide full 20-bits of
addressing space – which provides 1M of address reach. The new CPU cores that support these
enhancements were called CPUX (for eXtended addressing). Thankfully, the extended versions of the
CPU maintained backward compatibility with the earlier devices.

In this course, we don’t dwell on these CPU features for two reasons:
• This change was made long enough to go that all the processors engineers choose today include

the enhanced CPU.

• With the prevalence of C coded applications in world of MSP 430, and embedded processing in
general, these variations fall below our radar. The compiler, handily, manages low-level details such
as this.

1 - 14 MSP430 Workshop - Introduction to MSP430

 MSP430 CPU

There are many touches to the MSP430 CPU which make it idea for low-power and microcontroller
applications, such as the ability to manage bytes, as well as 16-bit words.

16-bit addition Code/Cycles
5405 add.w R4,R5 ; 1/1
529202000202 add.w &0200,&0202 ; 3/6

8-bit addition
5445 add.b R4,R5 ; 1/1
52D202000202 add.b &0200,&0202 ; 3/6

Bytes, Words And CPU Registers

 Use CPU registers for calculations and dedicated variables
 Same code size for word or byte
 Use word operations when possible

Seven addressing modes …

Note: If you see a ‘gray’ slide like the one above and below were placed into the workbook, but has
been hidden in the slide set, so the instructor may not present it during class.

Seven Addressing Modes

Atomic addressing …

Mode Example Notes

Register mov.w R10,R11 Single cycle

Indexed mov.w 2(R5),6(R6) Table processing

Symbolic mov.w EDE,TONI Easy to read code, PC relative

Absolute mov.w &EDE,&TONI Directly access any memory

Indirect Register mov.w @R10,0(R11) Access memory with pointers

Indirect
Autoincrement mov.w @R10+,0(R11) Table processing

Immediate mov.w #45h,&TONI Unrestricted constant values

Atomic

MSP430 Workshop - Introduction to MSP430 1 - 15

MSP430 CPU

A rich set of addressing modes lets the compiler create efficient, small-footprint programs. And, features
like ‘atomic’ addressing are critical for real-world embedded processing.

Atomic Addressing

 Non-interruptible memory-to-memory operations
 Useable with complete instruction set

Memory
B

; MSP430
add A,B

; Pure RISC
push R5
ld R5,A
add R5,B
st B,R5
pop R5

A

B=B+A

Constant generator …

The little bit of genius that is the Constant Generator minimizes code size and runtime cycle count.
These ideas save you money while helping to reduce power dissipation.

Constant Generator

 Immediate values -1,0,1,2,4,8 generated in hardware
 Reduces code size and cycles
 Completely automatic

4314 mov.w #0002h,R4 ; With CG

40341234 mov.w #1234h,R4 ; Without CG

1 - 16 MSP430 Workshop - Introduction to MSP430

 MSP430 CPU

A low number of instructions are at the heart of Reduced Instruction Set Computers (RISC). RISC lowers
complexity, cost and power … while, surprisingly, maintaining performance.

51 Total Assembly Instructions

Bold type denotes emulated instructions

Format I
Src, Dest

Format II
Single Operand

Format III
+/- 9bit Offset Support

add(.b) br jmp clrc
addc(.b) call jc setc
and(.b) swpb jnc clrz
bic(.b) sxt jeq setz
bis(.b) push(.b) jne clrn
bit(.b) pop(.b) jge setn
cmp(.b) rra(.b) jl dint
dadd(.b) rrc(.b) jn eint
mov(.b) inv(.b) nop
sub(.b) inc(.b) ret
subc(.b) incd(.b) reti
xor(.b) dec(.b)

decd(.b)
adc(.b)
sbc(.b)
clr(.b)
dadc(.b)
rla(.b)
rlc(.b)
tst(.b)

MSP430 Workshop - Introduction to MSP430 1 - 17

MSP430 Memory

MSP430 Memory

Memory Map
We present the MSP430F5529 memory map as an example of what you find on most MSP430’s. It’s
certainly what we’ll see as we work though the lab exercises in this workshop.

A couple of important – and beneficial – points about MSP430’s memory map:
• The MSP430 defines a unified memory map. This means that, technically speaking, data and

program code can be located anywhere in the available memory space. (This doesn’t mean it’s
practical to locate global variables in flash memory, but the architecture does not prevent you from
doing so.)

• The MSP430, as stated earlier (see page 1-14), is implemented using 20-bit addressing; therefore,
the MSP430 can directly address the full 1M memory map without resorting to paging schemes. (If
you have ever had to deal with paging, we expect you might be cheering at this point.)

Flash
Like most MCU’s nowadays, the processor is dominated by non-volatile memory. In this case, Flash
technology provides us with the means to store information into the device – which retains its contents,
even when power is removed. (As we’ll see next, some of the latest MSP430 devices use FRAM
technology rather than Flash.)

1 - 18 MSP430 Workshop - Introduction to MSP430

 MSP430 Memory

The flash memory is In-System Programmable (ISP), which means we can reprogram the memory
without taking the chip off of our boards or using difficult bed-of-nails methods. In fact, you can program
the flash using:
• An IDE, such as CCS or IAR. These debugging tools utilize the 4-wire JTAG or 2-wire SPI-biwire

emulation connections.

• The MSP430 Boot-Strap Loader supports a variety of connections and options. For example, you
can use the serial (or USB) interfaces to reprogram your devices. These interfaces are popular on
many manufacturing work flows.

• Finally, you can reprogram all – or part – of the flash memory via your own program running on the
device itself. Check out the MSP430ware FLASH DriverLib functions.

On the ‘F5529, as with most MSP430 devices, the Flash actually consists of 3 regions.

Main consists of the bulk of flash memory. This is where our programs are written to when using the
default project settings. Main flash consists of one contiguous memory; although, the Interrupt Vectors
are located inside of it at 0xFF80. If your device has more than 64K of flash, then some will exist above
and below the vectors – as shown in the diagram for the ‘F5529 (which has 128K of flash).

Info Memory can be thought of as user data flash. Again, there are not any limitations on what you store
here, but these four segments are commonly used to hold calibration data or other non-program items
you want to store in non-volatile memory.

Boot Loader (BSL) holds the aforementioned boot loader code. This code, in turn, is used to load new
programs into Main flash. Please be aware that the BSL is handled differently amongst the various
generations of MSP430. In some cases, as with the ‘F5529, it is stored in its own region of flash
memory. On other devices, it may be hard-coded into the device.

RAM
RAM (Static Random Access Memory – SRAM) is found on every MSP430 device. Like flash, though,
the amount of RAM varies from device to device; and the amount of RAM memory is often directly
proportional to the cost of the device.

RAM is where most of the data is stored: everything from global variables, to stacks and heaps. It is
often thought of as the ‘working’ memory on the device. Even so, due to the ‘unified’ nature of the
MSP430 architecture, you can also move program code into RAM and run from this space.

The ‘F5529 has one aspect that is common among MSP430 devices which include the USB peripheral.
These devices have an extra 2KB of RAM; this RAM is dedicated to the USB peripheral when it is in use,
but available to your programs when the USB port is not being used. Please refer to the USB
Developers Package documentation to learn more about how the USB protocol stack uses this RAM.

TLV
Although not ‘memory’, the Device Descriptors (TVL) does appear within the memory map. This
segment contains a tag-length-value (TLV) data structure that comprises a hierarchical description (or on
older devices, flat file description) of information such as: the device ID, die revisions, firmware revisions,
and other manufacturer and tool related information. Additionally, these descriptors may contain
information about the available peripherals, their subtypes and addresses. This info may prove useful if
building adaptive hardware drivers for operating systems. (Note that some of the Value Line devices
may not contain all of this information; and, their factory supplied calibration data may reside in Info
Memory A.)

MSP430 Workshop - Introduction to MSP430 1 - 19

MSP430 Memory

Comparing Memory Maps
Most MSP430 devices have fairly similar Memory Maps; the primary differences ends up coming down
to how much memory a specific device contains. Please check the datasheet for the specific details on
each device.

‘F5529 vs ‘FR5969 Mem Maps‘F5529

0xFFFF

aain
Flash

81K

0xFF80 INT Vectors

0x4400

aain
Flash

0x2400
RAa

0x1/00 USB RAa
0x1A00 TLV

Info A
Info B
Info C

0x1800 Info D

Boot Loader

0x0000 Peripherals

‘FR5969

aain FRAa 17K

INT Vectors 80

aain
FRAa

47K

Vacant 8K

RAa 2K

TLV
Info A 128
Info B 128
Info C 128
Info D 128

Boot Loader 2K

Peripherals 4K
Bytes

0x243FF

 aost aSP430 devices have
similar aemory aaps

 ‘F5529
 128K of Flash non-volatile

memory
 10K of SRAM (2K can be

dedicated to USB usage)
 ‘FR5969

 64K of non-volatile FRAM
memory

 2K of SRAM
 Though you can use FRAM

like SRAM which gives you
up to 64K more read/write
storage)

Let's look closer at FRAM...

Memory Maps‘F5529

0xFFFF

aain
Flash

0xFF80 INT Vectors

0x4400

aain
Flash

0x2400
RAa

0x1/00 USB RAa
0x1A00 TLV

Info A
Info B
Info C

0x1800 Info D

Boot Loader

0x0000 Peripherals

‘FR5969

aain FRAa 17K

INT Vectors 80

aain
FRAa

47K

Vacant 8K

RAa 2K

TLV
Info A 128
Info B 128
Info C 128
Info D 128

Boot Loader 2K

Peripherals 4K
Bytes

0x243FF

‘FR4133
INT Vectors 80

aain
FRAa 15.5K

Vacant

RAa 2K

TLV

Info A 512

Vacant
Boot Loader 1K
Backup RAa 20B
Peripherals 4K

‘FR6989

aain
FRAa

81K

INT Vectors

aain
FRAa

Vacant

RAa
TLV

Info A
Info B
Info C
Info D

Boot Loader

Peripherals
Tiny RAa (26B) Let's look closer at FRAM...

The devices shown here have one other major differentiating factor, the ‘F5529 uses Flash technology
while the ‘FR5969 uses FRAM technology to store its non-volatile information. We briefly compare these
two technologies in the next section, though you may want to refer to the Non-Volatile Memory (Flash &
FRAM) chapter for more details.

1 - 20 MSP430 Workshop - Introduction to MSP430

 MSP430 Memory

FRAM
Some of the latest MSP430 devices from TI now use FRAM in place of Flash for their non-volatile
memory storage. For example, you will find the Wolverine (FR58xx, FR59xx) devices utilize this new
technology.

 Non-volatile, Reliable Storage
 Over 100 Trillion write/read

cycles
 Write Guarantee in case of

power loss
 Fast write times like SRAM
 ~50ns per byte or word
 1,000x faster than

Flash/EEPROM
 Low Power
 Only 1.5v to write & erase
 >10-14v for Flash/EEPROM

 Universal Memory

FRAM: The Future of MCU Memory

Photo: Ramtron Corporation

Memory Comparison

Actually, FRAM is not a brand new technology. It has been available in stand-alone memory chips for
nearly a decade. It is quite new, though, to find it used within micros.

In brief, the MSP430 FRAM provides some exciting new features in our MCUs:
• FRAM memory is a nonvolatile memory that reads and writes like standard SRAM

• It supports Byte or word write access

• A nearly limitless re-write capability – ‘we haven’t worn it out yet’

• Very fast write cycles – much faster than Flash or EEPROM

• Very low power – unlike Flash memory, it only takes 1.5V to write and erase FRAM (really ideal for
low-power data logging applications)

• Error Correction Code with bit error correction, extended bit error detection and flag indicators

• Power control for disabling FRAM if it is not used – and due to non-volatile nature, it naturally does
not lose its contents in the process of powering down

MSP430 Workshop - Introduction to MSP430 1 - 21

MSP430 Memory

As stated above, FRAM can be read and written in a similar fashion to SRAM and needs no special
requirements. This provides a big value in letting you choose how to use your memory; in other words, if
your system needs “a little bit more RAM”, this can be accomplished by locating your data in FRAM.

The downside, of course, is that your program could be just as easily overwritten in the same fashion.
(We shouldn’t have code that writes to program addresses – but accidents occur.) To this end, the
FRAM based devices provide a memory protection unit (MPU) that lets you create 1 to 3 segments of
FRAM. Often, these segments are set for: Execute only, Read only, and Read/Write.

The other two caveats to FRAM are that reads are a bit slower than Flash and their density is not as
great as we can build using flash technology. On the other hand, the benefits are an outstanding fit for
many MSP430 types of applications.

FRAM MCU Delivers Max Benefits
FRAM SRAM EEPROM Flash

Non-volatile
Retains data without power Yes No Yes Yes

Write speeds 10 ms <10 ms 2 secs 1 sec

Average active Power
(µA/MHz) 110 <60 50mA+ 230

Write endurance 1015 Unlimited 100,000 10,000

Dynamic
Bit-wise programmable Yes Yes No No

Unified memory
Flexible code/data

partitioning
Yes No No No

1 - 22 MSP430 Workshop - Introduction to MSP430

 MSP430 Memory

This graphic speaks to the earlier comment about the trade-offs between Flash and RAM. We have seen
users who are forced into purchasing a larger, more expensive MCU just to get a little bit more RAM.
The flexibility of FRAM allows your programs to use the non-volatile storage for things like variables and
buffers. This flexibility often ends up lowering your overall system costs.

MSP430 Workshop - Introduction to MSP430 1 - 23

MSP430 Peripherals

MSP430 Peripherals
This section provides a high-level overview of the various categories of MSP430 peripherals.

GPIO
MSP430 devices contain many I/O ports. The largest limitation is usually the package selection – a
lesser pin-count package means less General Purpose bit I/O.

Like most current day microcontrollers, the pins on our devices are heavily multiplexed. That is, you
often have one of several choices of signals that can be output to a given pin. The MSP430 makes each
signal independently programmable, which affords maximum flexibility.

MSP430 GPIO (Chapter 3)
GPIh
CI 3

‘F5529 block diagram

GPIh (/hapter 3)
 Independently programmable
 Any combination of input, output,

interrupt and peripheral is possible
 Each I/h has an individually

programmable pull-up/pull-down
resistor

 aany devices can lock pin values
during low-power modes

 Some devices support touch-sense
capability built into the pins

Other handy GPIO features include:
− I/O ports 1 and 2 can generate interrupts to the CPU. (Some devices support interrupts on

additional I/O ports.)

− Pull-up and Pull-down resistors are available as part of the I/O port, simplifying your board
design.

− Many devices can lock the state of the pins when going into the lowest power modes, which
again saves the effort, power, and cost of adding external transceivers to accomplish this
purpose.

− Finally, many I/O ports include ‘touch’ circuitry. This additional circuitry makes it easy to
implement capacitive touch based interfaces in your systems – all without having to add extra
hardware.

1 - 24 MSP430 Workshop - Introduction to MSP430

 MSP430 Peripherals

Timers

MSP430 Timers (Chapters 3, 5, 6, 8)
Watchdog
CI 3 & 5

GPIh
CI 3

CI 6
Timer A & B

‘F5529 block diagram

Timers (Chapters 3, 5, 6, 8)
 Timer_A: 16-bit timer/counter
 Multiple capture/compare registers
 Generates PWM and other complex

waveforms & interrupts
 Directly trigger GPIO, DMA, ADC, etc.

 Timer_B: Same as A; improved PWM
 Timer_D: Same as B; with hi-res timing
 RTC: Real-time clock with calendar &

alarms – runs in LPM3 low power mode
 Watch: Watchdog or interval functions

CI 8
RTC

As stated earlier, timers are often thought of as the heartbeat of an embedded system. The MSP430 contains
a number of different timers that can assist you with different system needs.

Timer _A (covered in detail in Chapter 6) is the original timer found across all MSP430 generations. And there
is a reason for that, it is quite powerful, as well as flexible.

These 16-bit timers contain anywhere from 2 to 7 capture/compare registers (CCR). Each CCR can capture a
time value when triggered (capture mode). Alternatively, each CCR could be used to generate an interrupt or
signal (internal or external via a pin) when the timer’s counter (TAR) matches the value in the CCR (compare
mode). Oh, and each CCR is independently programmable – thus some could be used for capture while
others for compare.

Using the CCR feature, it is easy to create a host of complex waveforms – for example, they could be used to
generate PWM outputs. (Something we’ll explore in Lab 6.)

Timer_B is nearly similar to Timer_A. It provides the ability to use the internal counter in 8/10/12 or 16-bit
modes. This affords it a bit more flexibility. Additionally, double-buffered CCR registers, as well as the ability to
put the timer outputs into high-impedance, provide a couple of additional advantages when driving H-bridges
and such.

Timer_D takes Timer_B and adds a higher resolution capability. (BTW, we’re not sure what happened to
Timer_C…)

RTC (real-time clock) peripherals not only provide a time base, but their calendar and alarm modes make
them ideal for clock/calendar types of activities. More importantly, they have been designed to run with
extremely low power. This means they can provide a heartbeat while the rest of your system is asleep.

Watchdog timers provide two different functions. In their namesake mode, they act as failsafe’s for the
system. If your code does not reset them before their counter reaches the end, they reset the system. This
functionality is ALWAYS enabled at boot. You can also choose to use them as an interval timer.

MSP430 Workshop - Introduction to MSP430 1 - 25

MSP430 Peripherals

Clocking and Power Management
MSP430 Clocks (Chapter 4)
The MSP430 devices provide a rich, robust set of clocking options.

Rich in that they provide a great number of on- and off-chip clock sources. Further, there are three
internal clocks routed to the CPU and various peripherals. Why three? Simply, there's a clock for the
CPU and two clocks for the peripherals - one fast and the other slow - with goal of providing the user a
balance of performance and low power. Of course, some of the devices provide more clock choices than
others.

Robust clocking in that there are defaults and failsafe’s for all of the various clocks. These failsafe clocks
choices can be particularly important for some applications. Imagine a crystal oscillator being forcibly
removed from the board - or maybe just broken - when your end-product is accidentally damaged in use.
It's nice to know there are internal alternatives that let your product continue working in a well-
documented state.

Please turn to the Clocking chapter for further information.

MSP430 Clocking & Power Mgmt (Ch 4)
Power
CI 4

Clocks
CI 4

‘F5529 block diagram

Clocking (/hapter 4)
 Three Internal Clocks provide for

CPU, fast and slow peripherals
 aany clock sources (internal and

external) provide cheap and accurate
clks with quick wake-up

 Clock defaults and failsafe’s improve
system robustness

Power agmt
 Brown-out reset on all devices
 aany provide LDh’s and power

supervisors
 hn-chip power gating drives ULP

Power Management
Power is one of those features that every system needs but doesn't often get highlighted. All of the
MSP430 devices provide some level of Power Management. On the most cost-sensitive, it might only be
a Brown-Out Reset (BOR) peripheral - which makes sure there is enough power going to the device to
assure proper, stable operation. The other notable point is that BOR was designed with extreme
sensitivity to low-power system needs.

On other devices you'll find BOR plus an increasing set of power management peripherals. For example,
the 'F5529 device adds an LDO (low dropout voltage regulator) which derives a steady CPU voltage
from that applied to the device. (Normally, voltage regulation is handled by an extra device in your

1 - 26 MSP430 Workshop - Introduction to MSP430

 MSP430 Peripherals

system.) The 'F5529 also contains a sophisticated power supervisor to warn (i.e. interrupt) your system
when the power is getting close to out-of-spec.

Power gating is another feature found on most of the MSP430 devices. The basic idea is that we want to
power-down anything that is not needed.

Analog
Bringing high-quality analog components on-chip was a big selling point of the original MSP430 devices
- and still is today. Besides providing high-quality analog, they've done it with a low-power footprint, too.

MSP430 analog peripherals cover a wide range of needs. At one end, you'll find most every device
contains one or more analog comparators. These signal the processor when an analog input crosses a
boundary. (Comparators are often used to build a "poor mans" analog to digital converter.)

In many systems, though, you will want an actual ADC (analog to digital) converter. The MSP430 family
provides a wide variety of options. In fact, some designers select their specific MSP430 device based
upon which type of converter they want to use.

Almost regardless of the type of analog component, they have a few key features in common. The ability
to generate interrupts is fundamental. Also critical are the ability to trigger conversions based on timers;
and couple that with using DMA's to transfer the results to memory sans CPU.

MSP430 Analog
Watchdog
CI 3 & 5

Power
CI 4

GPIh
CI 3

CI 6
Timers

Clocks
CI 4

‘F5529 block diagram

Analog
 Families ADC converter options:
 10 or 12-bit SAR (ADC10, ADC12)
 16 or 24-bit Sigma-Delta (SD16, SD24)
 Slope converters

 DAC converters: 12-bit 5A/12
 Comparators
 Voltage REFerences
 Features in common:
 Analog mux supporting multiple input chan’s
 DMA can read/write samples without CPU
 Precise timing when using timer to trigger
 Generate interrupts to CPU
 Low power dissipation

MSP430 Workshop - Introduction to MSP430 1 - 27

MSP430 Peripherals

The following slide shows a couple of devices which really show off the MSP430 analog capabilities. The
MSP430i2040 provides 4 sigma-delta convertors into a low-cost SOC. The MSP430F67791 packs seven
(7) sigma-delta convertors, along with an additional 10-bit SAR analog to digital convertor.

Sampling of MSP430 Analog
 4 Sigma-Delta AFE

1% accuracy for precise measurements
with a 2000:1 dynamic range ΣΔ
convertors

 Low Cost SoC – Targets low-end meters
with minimal communications (memory)
requirements

 Internal DCO – eliminates need for
external crystal

 Small packages minimize pin count and
cost

 Temperature - -40C to 105C

MSP430i2040

 7 Independent Sigma-Delta ADC’s
with Differential Inputs and Variable Gain

 7 Channel 10-bit SAR ADC (200-ksps)
Six Channels Plus Supply and
Temperature Sensor Measurement

 LCD Driver With Contrast Control for up
to 320 segments

 Six Enhanced Communications Ports
 512 KB of Flash
 32 KB of SRAM
 MPY and CRC Accelerators

MSP430F67791

We’ve seen folks choose these parts just to get access to their highly integrated analog capabilities. The
MSP430 CPU being a big bonus! It’s like buying a stand-alone convertor and getting the CPU for free!

1 - 28 MSP430 Workshop - Introduction to MSP430

 MSP430 Peripherals

Communications (Serial ports, USB, Radio)
We specifically chose the name "Communications" for this category, rather than the more common
"Serial Communications" It's true that most of the communications ports utilize serial connections; this is
due to the lower cost and power of using fewer pins. But, in the end, we didn't want to overlook the
growing support for wireless communications.

MSP430 Communication
Watchdog
CI 3 & 5

Power
CI 4

GPIh
CI 3

USB
CI 10

CI 6
Timers

Clocks
CI 4

‘F5529 block diagram

Communications
 USB (Chapter 10)
 USB 2.0 at Full speed (12Mbps)
 Includes PHY, LDO, PLL, PUR

 Serial ports
 USI: SPI, I2C
 USCI: SPI, I2C, IrDA, UART
 eUSCI: enhanced USCI

 Radio Frequency
 CC430 and RF430 devices include

Sub-1GHz or NFC radios
 WiFi, BLE, ANT, Bluetooth & Sub1GHz

communications via TI SimpleLink

The additional of radios to some MSP430 devices makes them quite unique in the industry. Beyond that,
TI has created wireless chips and modules that can be used from any MSP430 device. It's really telling
when the cheapest Value Line MSP430 device can actually talk Wi-Fi using TI's CC3000 module. A
similar story can be shown across TI's complete portfolio of wireless technologies. In the end, TI is
enabling a very low-cost entry point into the "Internet of Things".

Let's not forget the various MSP430 serial ports. They are the workhorses of communications. There are
a variety of serial modules, from UART, to SPI, to I2C.

MSP430 Workshop - Introduction to MSP430 1 - 29

MSP430 Peripherals

Hardware Accelerators
One question that is often asked, "Why would you put dedicated hardware accelerators onto low-cost,
low-power processors?"

It's an interesting question ... with a very practical answer. If a specific functionality is required,
accelerators are the most efficient implementation. Take for example, the CRC or AES modules; serial
(and wireless) communications are often requiring these functions to make the data transmissions robust
and secure. To implement these functions in software is possible, but would actually consume a lot more
power. Further, the memory footprint for an algorithm (code and data) often ends up greater than the
smaller footprint of the hardwired accelerator. Thus, where it makes sense, you'll see TI adding
dedicated hardware modules.

MSP430 Accelerators
Watchdog
CI 3 & 5

Power
CI 4

GPIh
CI 3

USB
CI 10

Clocks
CI 4

‘F5529 block diagram

Accelerators
 DaA (“hardware memcpy”)
 /opy from memory to memory
 Faster copies than with /PU
 Supports periph’s (A5/, UART)

 aPY32 (8/16/32 aultiplier)
 MA/, fractional, saturation support

 CRC: Single-cycle /R/ generation
 AES: 128, 192, 256 bit encryption
 LCD: Automatic with up-to 160-bit

Another example is the multiplier. We can benefit from it without any programming effort, since the
compiler automatically uses this hardware, when it's available.

With regards to the Direct Memory Access (DMA) peripheral, we caution you ... if you find yourself using
memcpy() in your code, you should investigate how the DMA might save you time and power. It also
should be utilized in your peripheral driver software whenever and wherever it's available.

1 - 30 MSP430 Workshop - Introduction to MSP430

 MSP430 Peripherals

Summary
Many of the peripherals we've just outlined are covered - in detail - within their own chapters. Over time,
we'll be adding more chapters to the course to cover additional peripherals.

MSP430 Peripherals (and In-Depth Chapters)
Watchdog
CI 3 & 5

Power
CI 4

GPIh
CI 3

Clocks
CI 4

‘F5529 block diagram
CI 6

Timer A & B
CI 8
RTC

USB
CI 10

The following comparison table has not been updated for the latest devices; even so, we included it as a
quick comparison between some of the MSP430 generations.

MSP430 Peripheral Overview
1xx 2xx 4xx 5xx

Basic /lock System Basic /lock System + FLL, FLL+ Unified /lock System

/ore voltage same
as supply voltage
(1.8-3.6V)

/ore voltage same as
supply voltage (1.8-
3.6V)

/ore voltage same as
supply voltage (1.8-
3.6V)

Programmable core
voltage with
integrated PMM (1.8-
3.6V)

16-bit /PU 16-bit /PU, /PUX 16-bit /PU, /PUX 16-bit /PUXv2

GPIO GPIO w/ pull-up and
pull-down GPIO, L/5 /ontroller

GPIO w/pull-up
and pull-down,
drive strength

N/A N/A N/A /R/16

Software RT/ Software RT/
Software RT/ with
Basic Timer, Basic
Timer + RT/

True 32-bit RT/
w/Alarms

USART US/I, USI USART, US/I US/I, USB, RF
5MA up to 3-ch 5MA up to 3-ch 5MA up to 3-ch 5MA up to 8-ch
MPY16 MPY16 MPY16, MPY32 MPY32
A5/10,12 A5/10,12, S516 A5/12, S516, OPA A5/12_A

4-wire JTAG
4-wire JTAG, 2-wire
Spy Bi-Wire (Some
devices)

4-wire JTAG 4-wire JTAG,
2-wire Spy Bi-Wire

MSP430 Workshop - Introduction to MSP430 1 - 31

ULP

ULP
Does Low Power matter? Our answer is a resounding YES!

Some end-products are only enabled by low-power operation. For example, a wrist watch that cannot
make it through a single day would be of little value.

But even when the application does not demand low power, we think it still matters. The trend in
electronics over the past few years has been, "Why consume power if you don't have to?" In fact, the
MSP430 has found many new applications in the last couple of years where end-users are demanding
the reduction of 'phantom load', also known as 'vampire power'. This can be defined as the dissipation of
power when electronic products are in standby mode (or even when switched off completely). The
MSP430 is a perfect fit for systems trying to prevent these issues.

Why does Ultra Low Power Matter?

$50 Billion
Spent Every Year

On Batteries

2.9 Billion
Thrown Away
Each Year in

the U.S.

Distributed
Sensor Networks

Mean More
Batteries in

Remote Locations

How does this impact you?

50 Billion
Additional
Connected

Devices Expected
by 2020

Low Power Modes (LPM's)

1 - 32 MSP430 Workshop - Introduction to MSP430

 ULP

Profile Your Activities
A fundamental precept of low-power systems is: turn on, do something, then turn off.

The following diagram is a good example of this. One of the low-power modes lets you put the fast
components of the system to sleep, while retaining the slow clock running a RTC. Then, as needed, the
system wakes up, performs one or more tasks, then goes back into low-power mode.

Ultra-low Power Activity Profile

Standby (LPM3)

Active Active
170 µA

0.4 µA

Leave On the Slow Clock
 Low power clock and peripherals

interrupt CPU only for processing

On-Demand CtU Clock
 DCh starts immediately
 CPU processes data and quickly

returns to Low Power aode

MSP430 Workshop - Introduction to MSP430 1 - 33

ULP

The MSP430 supports this sleep/wake/sleep profile quite well, by providing a variety of low-power
modes (LPM). The following chart is an example of the LPM's found on various MSP430 devices,
showing which resources are powered down by LP mode. It also broadly indicates what it takes to wake
up from a given LPM. (In general, LPM0 and LPM3 are very popular modes.)

Low-Power Modes

hperating
aode

CP
U

 (a
CL

K)

Sa
CL

K

AC
LK

RA
a

Re

te
nt

io
n

Bh
R

Se
lf

W
ak

eu
p

Interrupt Sources

Active

Timers, ADC, DaA, WDT, I/0,
External Interrupt, ChaP,

Serial, RTC, other

LPa0

LPa1

LPa2

LPa3

LPa3.5 External Interrupt, RTC

LPa4 External Interrupt

LPa4.5 External Interrupt

LPM is great, but waking up...

Almost as important is the 430's ability to wake up quickly from a sleep mode as is demonstrated on the
next slide. The DCO (digitally controlled oscillator) is one of the on-chip, high-performance clocks
available to the MSP430. The graphic is powerful statement, showing how quickly the clocks and system
can be up-and-running after receiving an interrupt.

Performance on Demand

Immediate-stable clock start for quick reaction to events

Interrupt

DCO

1 - 34 MSP430 Workshop - Introduction to MSP430

 ULP

This slide shows some of the quantitative data for different LPM's across a few different devices. Please,
keep in mind that you should always design your system by referencing the datasheet, but this slide
does give us a good comparison between the various MSP430 generations.

MSP430™ Series Comparison
aode G2xx F5xx FR57xx FR58xx

FR59xx

Performance (max) 16 aIz 25 aIz 24 aIz
(FRAa at 8aIz)

16 aIz
(FRAa at 8aIz)

Flex Unified aemory No No FRAa (16K) FRAa (64K)

Active Aa 230 µA (1aIz) 180 µA/aIz 100 µA/aIz <100 µA/aIz

Standby
RTC

LPa3
LPa3.5

0.7 µA 1.9 µA
2.1 µA

6.3 µA
1.5 µA

0.7 µA
0.4 µA

hff LPa4
LPa4.5

0.1 µA 1.1 µA
0.2 µA

5.9 µA
0.3 µA

0.6 µA
0.1 µA

Wake-up
from

Standby 1.5 µs 3.5 µs
or 150 µs 78 µs <10 µs

hff - 2000 µs 310 µs 150 µs

Much of designing for low-power is common sense; e.g. turn it off when you're not using it. The following
slide provides a good set of guidelines (or principles) to use when developing our application.

 aaximize the time in LPa3
 Use interrupts to control program flow
 Replace software with peripherals
 Power manage external devices
 Configure unused pins properly
 Efficient code makes a difference
 Even wall powered devices can be

“greener”
 Every unnecessary instruction

executed is a portion of the battery
wasted that will never return

 Use ULP Advisor to help you minimize
power in your system

Principles For ULP Applications

MSP430 Workshop - Introduction to MSP430 1 - 35

ULP

Many of these guidelines have been distilled into a static code analysis tool that is part of the TI (and
IAR) compiler. This tool can help us learn what techniques to apply - or for the more experienced, help
us not overlook something we already know.

ULP AdvisorTM Software: Turning MCU developers
into Ultra-Low-Power experts

• Supports all MSP430
devices and can benefit
any application

• Checks all code within a
project at build time

• Enabled by default
• Parses code line-by-line

• List of 15 Ultra-Low-Power best
practices

• Compilation of ULP tips & tricks
from the well-known to the more
obscure

• Combines decades of MSP430
& Ultra-Low-power development
experience

• Identify key areas of
improvement

• Presented as a “remark”
within “Problems” window

• Includes a link to more
information

ULP Advisor analyzes all
MSP430 C code line-by-line.

Checks against a thorough
Ultra-Low-Power checklist.

Highlights areas of
improvement within code.

1 - 36 MSP430 Workshop - Introduction to MSP430

 Community / Resources

Community / Resources
Wiki
The TI Embedded Processor’s wiki provides a wealth of information. Highlighted below you’ll find the
MSP430 and TTO (Technical Training Organization) links found on the main TI wiki page. Of course,
most anything else you might be looking for can be easily found from the Google search box, right under
the “Main Page” title.

TTO Workshops: processors.wiki.ti.com

MSP430 Workshop - Introduction to MSP430 1 - 37

Community / Resources

From the TTO wiki page you’ll find a link to this workshop. You most likely already found this page when
following our download/installation instructions to get ready for the workshop. You may also want to
return here often to access updates to these workshop materials.

This Workshop

Forums
There are a wide ranging set of user-to-user forums. Check them out, when you have a ???

Engineer-2-Engineer Forums

http://e2e.ti.com

1 - 38 MSP430 Workshop - Introduction to MSP430

http://processors.wiki.ti.com/index.php/Getting_Started_with_the_MSP430_LaunchPad_Workshop

 Community / Resources

References
There are many great references for learning more about the MSP430. Here’s two of them that are
favored by a number of us in TI’s field applications.

Further Reading…
MSP430 Microcontroller Basics by John H. Davies,
(ISBN-10 0350642360) Link

Microcontroller Programming and Interfacing:
Texas Instruments MSP430 (Synthesis Lectures on
Digital Circuits and Systems)
by Steven Barrett and Daniel Pack ,
(ISBN-10 0350642360) Link

MSP430 Workshop - Introduction to MSP430 1 - 39

Launchpad’s

Launchpad’s

MSP-EXP430F5529LP Launchpad
The MSP430F5529 Launchpad is a powerful, low-cost evaluation (and development) tool.

MSP-EXP430F5529LP Launchpad

As the diagram shows, the board is really divided into two halves. The top portion (above the ------- line)
is an open-source emulator (called eZ-FET lite). This connects our 'target' MSP430 to a PC running a
debugging tool, such as Code Composer Studio. You can isolate the emulator from the 'target' processor
by pulling the appropriate jumpers (that straddle the dashed line).

The lower portion of the board provides the target of our application programming. There are LED's,
pushbuttons, and pins we can use to let our programs interact with the 'real world'.

MSP-EXP430F5529LP Overview

1 - 40 MSP430 Workshop - Introduction to MSP430

 Launchpad’s

MSP-EXP430FR5969 Launchpad

MSP-EXP430FR5969 Overview

MSP-EXP430FR4133 Launchpad

MSP-EXP430FR4133 Launchpad

MSP430 Workshop - Introduction to MSP430 1 - 41

Notes:

Lab: Introduction to the MSP430

Introduction
The first lab exercise in this workshop introduces you to the Launchpad you have selected to
work with – running its pre-loaded demonstration program (also called the Out-of-the-Box demo).

Future lab exercises will over-write the original program, but in Lab 2c and 2d we will show you
how to restore the original Out-of-the-Box demo, should you want to do so.

Lab 1 Topics
Lab: Introduction to the MSP430 .. 1-43

Lab 1a – MSP-EXP430F5529LP User Experience .. 1-44
Examine the LaunchPad Kit Contents .. 1-44

Lab 1b – MSP-EXP430FR5969 LaunchPad OOB .. 1-46
First Steps – Out-of-Box Experience .. 1-46
(‘FR5969) Extra Credit .. 1-51

Lab 1c – MSP-EXP430FR4133 LaunchPad OOB .. 1-52

MSP430 Design Workshop - Introduction to the MSP430 1 - 43

Lab 1a – MSP-EXP430F5529LP User Experience

Lab 1a – MSP-EXP430F5529LP User Experience
 ‘FR5969 FRAM Launchpad users should jump to Lab 1b on page 1-46.
 ‘FR4133 FRAM Launchpad users should jump to Lab 1c on page 1-52.

This lab simply gives us an opportunity to pull the board out of the box and make sure it runs
properly. The board arrives with a USB keyboard/memory application burned into the flash
memory on the ‘F5529.

You can either follow the quick start directions on the card included with the Launchpad, or follow
the directions here. We re-created the directions since some folks have a tough time reading the
small print of the quick start card.

 Verify tool installation
 Review Launchpad kit

contents
 Connect hardware
 Try out preloaded software

using Quick Start Guide

Lab 1 – Run Out-of-Box Demo

Agenda …

Examine the LaunchPad Kit Contents
1. Open up your MSP430F5529 LaunchPad box. You should find the following:

− The MSP-EXP430F5529LP LaunchPad Board

− USB cable (A-male to micro-B-male)

− “Meet the MSP430F5529 Launchpad Evaluation Kit” card

2. Initial Board Set-Up
 Using the included USB cable, connect the USB emulation connector on your evaluation

board to a free USB port on your PC.

 A PC’s USB port is capable of sourcing up to 500 mA for each attached device, which is
sufficient for the evaluation board. If connecting the board through a USB hub, it must usually
be a powered hub. The drivers should install automatically.

3. Run the User Experience Application
 Your LaunchPad Board came pre-programmed with a User Experience application. This

software enumerates as a composite USB device.
• HID (Human Interface device): an emulated keyboard

• MSC (Mass Storage class): an emulated hard drive with FAT volume

 The contents of the hard drive can be viewed with a file browser such as Windows Explorer.

1 - 44 MSP430 Design Workshop - Introduction to the MSP430

 Lab 1a – MSP-EXP430F5529LP User Experience

4. View the contents of the emulated hard drive

 Open Windows Explorer and browse to the emulated hard drive. You should see four files
there:

− Button1.txt – the contents of this file are "typed out" to the PC, using the emulated
keyboard when you press button S1

− Button2.txt – the contents of this file are "typed out" to the PC, using the emulated
keyboard when you press button S2

− MSP430 USB LaunchPad.url – when you double-click, your browser launches the
MSP- EXP430F5529LP home page

− README.txt – a text file that describes this example

5. Use S1 and S2 buttons to send ASCII strings to the PC

 The LaunchPad's buttons S1 and S2 can be used to send ASCII strings to the PC as if they
came from a keyboard. These strings that are sent are stored in the files Button1.txt and
Button2.txt, respectively; and these files can be modified to change the strings. The text
string is limited to 2048 characters, so even though you can make the file contents longer, be
aware that the string will be truncated to 2048.

Open Notepad. In the start menu, type “Run”, then type “Notepad”

To send the strings to Notepad, press S1.

What do you see? __

Now press S2. What happens now? __

 The default ASCII strings stored in the two text files are:
− Button1.txt: "Hello world"

− Button2.txt: an ASCII-art picture of the LaunchPad rocket

 For the rocket picture, please note that the display can be affected by settings of the
application receiving the typed characters. On Windows, the basic Notepad.exe is
recommended.

Note: If you have an older version of the ‘F5529 Launchpad (prior to “Revision 1.5), then your
board must enumerate with a USB host before it can receive power. This means USB
batteries – which do not contain a USB host – cannot be used as a power source.

MSP430 Design Workshop - Introduction to the MSP430 1 - 45

Lab 1b – MSP-EXP430FR5969 LaunchPad OOB

Lab 1b – MSP-EXP430FR5969 LaunchPad OOB

Lab 1 – MSP430FR5969 Launchpad
 Verify tool installation
 Review Launchpad kit contents
 Connect hardware

 Try out pre-loaded software using
Quick Start Guide

First Steps – Out-of-Box Experience
These steps were taken from Section 1.4 and 3.0 of the MSP-EXP430FR5969 LaunchPad™
User’s Guide (slau535a.pdf).

An easy way to get familiar with the EVM is by using its pre-programmed out-of-box demo code,
which demonstrates some key features of the MSP-EXP430FR5969 LaunchPad.

The out-of-box demo showcases MSP430FR5969's ultra-low power FRAM by utilizing the
device's internal temperature sensor while running only off of the on-board Super Capacitor.

1. First step is to connect the LaunchPad to your computer using the included Micro-USB
cable.

 The RED and GREEN LEDs near the bottom of the LaunchPad toggle a few times to indicate
the preprogrammed out-of-box demo is running.

 After the LEDs toggle, the MSP430FR5969 CPU enters low-power mode 3 and waits for
commands to come from the PC GUI via the backchannel UART. (A backchannel UART is
the name given the UART to USB connection where the UART signals on the MSP430 are
turned into a USB CDC class protocol by the MSP430 emulator.)

 The Out-of-Box GUI is required to connect to the serial port that the LaunchPad's UART
communication uses. But, to use the GUI we need to know which COM port our Launchpad
was assigned to by Windows.

1 - 46 MSP430 Design Workshop - Introduction to the MSP430

http://www.ti.com/lit/slau535

 Lab 1b – MSP-EXP430FR5969 LaunchPad OOB

2. Open Windows Device Manager and find the two COM ports assigned to the MSP430
Launchpad.

Write down the two ports listed on your
computer.

MSP Application UART1: _________________

MSP Debug Interface: ____________________

MSP430 Design Workshop - Introduction to the MSP430 1 - 47

Lab 1b – MSP-EXP430FR5969 LaunchPad OOB

3. Start the out-of-box demo GUI.

 Using the out-of-box demo GUI, the user can place the LaunchPad into two different modes.
• Live Temperature Mode

This mode provides live temperature data streaming to the PC GUI. The user is able to
influence the temperature of the device and see the changes on the GUI.

• FRAM Logging Mode

This mode shows the FRAM data logging capabilities of the MSP430FR5969. After
starting this mode, the LaunchPad will wake up every five seconds from sleep mode
(indicated by LED blink) to log both temperature and input voltage values. After
reconnecting to the GUI, these values can be uploaded and graphed in the GUI.

 The easiest way to start the GUI is to double-click the link found in the MSP430ware library
folder.

C:\ti\msp430\MSP430ware_1_97_00_47\examples\boards\MSP-EXP430FR5969\MSP-

EXP430FR5969 Software Examples\GUI\OutOfBox_FR5969_GUI.lnk

 The Out-of-Box example and GUI are included in the latest version of MSP430ware (as we

mentioned earlier) as well as the MSP-EXP430FR5969 Software Examples download
package (SLAC645).

1 - 48 MSP430 Design Workshop - Introduction to the MSP430

 Lab 1b – MSP-EXP430FR5969 LaunchPad OOB

 Here’s a snapshot of the GUI.

4. Connect the GUI to your Launchpad.

 To get it to display data, we first need to
connect with it.

 Select the “MSP Application UART1”
communications port from the list and click
the Connect button.

MSP430 Design Workshop - Introduction to the MSP430 1 - 49

Lab 1b – MSP-EXP430FR5969 LaunchPad OOB

5. Once connected, to enter the live temperature mode, click the "Start" button below
"Live Temp Mode" in the GUI's Application Controls panel.

 At this point, you should see the graph of temperature data populating the Incoming Data
panel.

 What is ‘FR5969 Doing?

It sets up its 12-bit ADC for sampling and converting the signals from its internal
temperature sensor. A hardware timer is also configured to trigger the ADC conversion
every 0.125 seconds before the device enters low-power mode 3 to conserve power. As
soon as the ADC sample and conversion is complete, the raw ADC data is sent the
through the UART backchannel to the PC GUI.

As the raw ADC data is received by the PC GUI, Celsius and Fahrenheit units are
calculated first. The PC GUI keeps a buffer of the most recent 100 temperature
measurements, which are graphed against the PC's current time on the Incoming Data
panel.

A red horizontal line is drawn across the data plot to indicate the moving average of the
incoming data.

6. To exit Live Temp mode, click the "Stop" button under "Live Temp Mode". You must
exit this mode before starting the FRAM Log Mode.

7. To enter the FRAM Log Mode, click the "Start" button under "FRAM Log Mode" in the
GUI's Application Controls panel.

 When the MSP430FR5969 receives the UART command from the GUI, it starts the entry
sequence by initializing the Real-Time Clock to trigger an interrupt every 5 seconds. The red
LED blinks three times to indicate successful entry into FRAM Log Mode.

 Unlike in the Live Temperature Mode, the MSP430FR5969 enters low-power mode 3.5 to
further decrease power consumption and wakes up every 5 seconds to perform data logging.
Because the UART communication module does not retain power in LPM3.5, the GUI
automatically disconnects from the LaunchPad after entry into FRAM Log Mode.

 Each time the device wakes up, the green LED lights up to indicate its state to the user.
The 12-bit ADC is set up to sample and convert the signals from its internal temperature
sensor and battery monitor (Super Cap voltage).

 A section of the device's FRAM is allocated to store the raw ADC output data (address
0x9000 to 0xEFFF). This allows the demo to store up to 6144 temperature and voltage data
points (5 seconds/sample is approximately 8.5 hours of data).

8. To exit the FRAM Log Mode, press the S2 (right) push button on the LaunchPad.

 The red LED turns on briefly to indicate successful exit.

 The LaunchPad returns to the Power up and Idle state and you can reconnect the
LaunchPad with the GUI to transfer the logged data from FRAM to the PC.

9. Make sure the Launchpad is connected to the GUI and click the "Transfer FRAM Data"
button in the GUI to begin transfer.

 A progress bar shows progress until the transfer completes, and the temperature and voltage
data are plotted in the Incoming Data panel.

1 - 50 MSP430 Design Workshop - Introduction to the MSP430

 Lab 1b – MSP-EXP430FR5969 LaunchPad OOB

(‘FR5969) Extra Credit
Open up the MSP-EXP430FR5969 LaunchPad™ User’s Guide (slau535a.pdf) to section “2.4.5
Super Cap”. Try using the FRAM Log Mode while powered from the Super Cap.

 The FRAM Log Mode also provides the option to log temperature data while powered either
through the USB cable or only by the on-board Super Cap. The PC GUI contains step-by-
step instructions in its side panel for configuring the jumpers on the LaunchPad to power the
device with the Super Cap.

Hint: We suggest that you look carefully at the initial jumper locations so that you can easily
return the jumpers to their original locations after playing with the Super Cap.

MSP430 Design Workshop - Introduction to the MSP430 1 - 51

Lab 1c – MSP-EXP430FR4133 LaunchPad OOB

Lab 1c – MSP-EXP430FR4133 LaunchPad OOB

 Verify tool installation
 Review Launchpad kit contents
 Connect hardware

 Try out pre-loaded software using
Quick Start Guide

Lab 1c – MSP430FR4133 Launchpad

These steps were taken from the MSP-EXP430FR4133 LaunchPad™ Quick Start Guide (slau594.pdf)

1 - 52 MSP430 Design Workshop - Introduction to the MSP430

http://www.ti.com/lit/slau594

Programming in C with CCS

Introduction
This chapter will introduce you to Code Composer Studio (CCS).

In the lab, we will build our first project using CCS and then experiment with some useful
debugging features. Even if you have some experience with CCS, we hope that you will find
exercise to be a good review – and in fact, that you might even learn a few new things about CCS
that you didn’t already know.

Learning Objectives

Objectives

 List the 3 parts of TI’s support ecosystem
 Describe the fundamentals of

Code Composer Studio
 Differentiate CCS/Eclipse workspaces and

projects
 Create a new CCS project
 Analyze the different CCS licensing options
 Lab – Create, build and debug a “Hello World”

example using CCSv6

MSP430 Design Workshop - Programming in C with CCS 2 - 1

TI Support Ecosystem

Chapter Topics
Programming in C with CCS .. 2-1

TI Support Ecosystem ... 2-3
Run-Time Software ... 2-4

Low-level C Header Files .. 2-4
MSP430ware (DriverLib) ... 2-4
Energia .. 2-5
TI-RTOS .. 2-5

Development Tools ... 2-6
Integrated Development Environments (IDE) ... 2-6
Other MSP430 Tools ... 2-7

Examining Code Composer Studio ... 2-8
Functional Overview .. 2-8

Editing ... 2-8
Debugging ... 2-10

Target Config & Emulation .. 2-10
Emulation Hardware .. 2-11

Perspectives .. 2-12
Workspaces & Projects ... 2-13

Some Final Notes about CCS/Eclipse .. 2-14
Portable Projects ... 2-15

Creating a Project ... 2-16
Adding Files to a project .. 2-17

Licensing/Pricing ... 2-18
Changing a CCS User Licence ... 2-19

Writing MSP430 C Code ... 2-20
Build Config & Options .. 2-20

Debug Options .. 2-21
Optimize Options (aka “Release” Options) ... 2-21
Build Configurations .. 2-22

Data Types .. 2-23
Device Specific Files (.h and .cmd) ... 2-24
MSP430 Compiler Intrinsic Functions ... 2-26

Lab 2 – CCStudio Projects .. 2-27

2 - 2 MSP430 Design Workshop - Programming in C with CCS

 TI Support Ecosystem

TI Support Ecosystem
TI’s goal is to provide an entire ecosystem of tools and support. Development tools, like Code
Composer Studio are just the starting point; then add in software libraries that run on your target
processor as well as wiki’s and support forums.

We’ll take a brief look at all three parts of the Ecosystem:
• Run-Time Software

• Development Tools

Support and Community was examined back in Chapter 1.

MSP430 Design Workshop - Programming in C with CCS 2 - 3

TI Support Ecosystem

Run-Time Software
The MSP430, like most of TI’s microcontroller (MCU) platforms, is supported by a rich, layered
approach to foundational software.

Pick a Level that Suits your needs

Energia Chapter
(Chapter 11)

MSP430ware
(Chapter 3)

Header Files
(Chapter 2 & 3)

MSP430 Device
(Chapter 1)

Free Run-Time Software

Low-level C Header Files
Working our way up from the bottom, the MSP430 family provides a custom C language header
file (and linker command file) for each device. These header files provide symbols that define all
the various registers, pointers and bitfields found on ‘your’ device. Not only do they minimize the
number of times you’ll need to pour through the user guide and datasheet (to figure out
obsequious hex values), but they make your code more readable. We also hope that providing a
common set of symbols will make it easier to share and reuse code. Finally, since these files
primarily contain ‘definitions’, they don’t add any ‘bulk’ to your code. (We’ll discuss these files
further at the end of this chapter.)

MSP430ware (DriverLib)
MSP430ware is a collection of libraries, examples, and tools. We’ll examine many of these items
in the next chapter. What we want to call out here is the MSP430ware Driver Library – also
known as “DriverLib”.

MSP430ware DriverLib borrows heavily from the stellar TivaWare driver library that ships with
TI’s ARM Cortex-M4F devices. In each case, DriverLib provides a low-level abstraction layer that
makes writing code easier. MSP430ware even builds upon the ‘header’ file layer making it easier
to dig-thru the source code (which is provided) if you ever want to discover how an API is
implemented. Furthermore, it means you can easily mix-and-match DriverLib with ‘header’ file
code.

Our main goal is to help you improve the readability and maintenance of your ‘430 code; that
said, we also strive to keep the library as small and efficient as possible.

2 - 4 MSP430 Design Workshop - Programming in C with CCS

 TI Support Ecosystem

If you’ve ever had to return to low-level code a year later – or port it to another device in the same
MCU family – you’ll really appreciate the convenience and ease-of-use of DriverLib.

Energia
Energia is a community-based port of the ever-popular Arduino. This software makes it easy for
users to grab code already available in the Arduino community and put it to good use on TI’s
MSP430 Launchpads. In other words, it puts the word “rapid” in rapid-prototyping.

In fact, Energia isn’t just for prototyping anymore. There are many customers using this in small
to midsize production systems. In any case, whether you use it for prototyping or otherwise, you’ll
find it an easy, fun way to get your ideas into hardware. (With good reason, Arduino helped coin
the phrase, “Sketching with hardware”.)

(Coming in 2014, look for Arduino support in TI’s high-end development tool: Code Composer Studio.)

TI-RTOS
TI’s real-time operating system (TI-RTOS) is a highly capable package of system-building
software. It’s not just enough to package a bunch of software libraries together into a single
executable; the TI-RTOS team validates all the components against each other – creating
examples that utilize all the various libraries.

TI-RTOS:
• Provides an optimized real-time kernel that works with TI Wares (driverLib) and other

additional software collateral
• TI-RTOS is available for these architectures

• MSP430, Tiva-C ARM Cortex M4F, Concerto (F28M35) devices
• TI-RTOS kernel is available for these architecture (but not the full TI-RTOS suite):

• C28x, Sitara Cortex-A8 and -A9 processors
• Training: 2-day TI-RTOS Kernel Workshop

Real-time kernel
(SYS/BIOS)

• Scheduling
• Memory management
• Synchronization
• Real-time analysis

TI Wares
Minimizes programming

complexity w/optimized drivers
• Low-level driver libraries
• Thread-safe Peripheral API

Additional /ollateral
• USB Stack
• Networking Stack
• WiFi Stack
• Open Source FAT f/s
• Libraries & Examples

TI-RTOS
Kernel + TI Wares

T I - R TO S

+ • File systems
• Network stack
• USB

Real-Time Operating System (TI-RTOS)

The soul of TI-RTOS is the TI-RTOS Kernel (formerly named SYS/BIOS). The kernel provides a broad set of
embedded system services, most notably: Threads, Scheduling, Semaphores, Instrumentation, Memory
Management, inter-thread communication and so on. It’s been built with modularity in mind, so it’s easy to
take the parts that make sense for your application and exclude the parts that don’t.

TI-RTOS includes the kernel plus a number of customized drivers built upon the TI-wares (i.e. MSP430ware
DriverLib). They’ve also thrown in a variety of other O/S level packages, such as: USB Stack, WiFi
networking, FatFs. (The list will continue to grow, so keep your eye on the TI-RTOS webpage.)

MSP430 Design Workshop - Programming in C with CCS 2 - 5

http://www.ti.com/tool/ti-rtos

TI Support Ecosystem

Development Tools
Integrated Development Environments (IDE)
TI Code Composer Studio is a highly capable integrated development tool (IDE). Built on the
popular Eclipse IDE platform, TI has both simplified and extended the Eclipse framework to
create a powerful, easy-to-use development platform. In fact, the MSP430 was the first MCU
inside TI to get the Eclipse treatment … but it’s come a long way since then.

Development Tools for MSP430
Open

Source

Evaluation
License

 32KB code-size
or 30-day limit

 Upgradeable

 Full function
 JTAG limited

after 90-days
N/A N/A

Compiler IAR C/C++ TI C/C++
or GCC GCC* GCC

Debugger
and IDE

 C-SPY
 Embedded

Workbench

 TI or GDB
 CCStudio

(Eclipse-based)
Energia IDE
(Arduino port)

MSPDEBUG
(gdb proxy)

Full
Upgrade $2700 $445 Free Free

JTAG
Debugger

J-Link
$299

MSP-FET430UIF
$99

No JTAG
 serial.printf()
 LED or scope

MSP-FET430UIF
$99

 GCC*: CCSv6 contains GNU GCC compiler
MSPGCC was available prior to GNU GCC

 CCSv6 allows you to debug Energia
projects using full debug toolset

As highly as we value CCS, we know it may not be for every user. To that end, we work diligently
with our 3rd parties and the open-source community to provide MSP430 compatibility in their
ecosystems.

IAR Systems, for example, commands a huge fan base among MCU developers. Whenever the
MSP430 team creates new tooling, they don’t just think about how it can be integrated into CCS,
but they also consider how it can be used by our IAR customers as well. With their highly
regarded compiler, many of our customers think that the extra cost of IAR is easily worth it.

At the other end of the spectrum, we know that some of our customers cannot even afford the
low-cost price-point of CCS. For hobbyists and folks needing to rapid-prototype systems, the
Energia open-source port of Arduino is a great option.

If you want to stay in the open-source domain, but step down from the abstraction provided by
Energia, you can write C code using the open-source version of the Gnu Compiler (GCC).

It doesn’t matter which tool suite you choose, in any case, you’ll still have all the other MSP430
ecosystem components at your disposal. For example, MSP430ware DriverLib works in all of
these environments.

2 - 6 MSP430 Design Workshop - Programming in C with CCS

 TI Support Ecosystem

Other MSP430 Tools
The MSP430 team has created a number of additional tools to support development of MSP430
applications. For example, since low-power designs are a major consideration for MSP430 users,
the ULP Advisor tool provides static analysis of your code – from a power perspective – every
time you compile. Novice and experienced users alike will find something they missed when
trying to cut every nano-amp from their system.

ULP (Ultra-Low Power) Advisor
Squeezing out every last nanoAmp

 Checks your code against an MSP430 ULP Checklist
 The ULP Advisor wiki includes a description of each rule, proposed

remedies, code examples & links to related e2e online forum posts
 ULP Advisor is FREE and is available as a plugin for CCS
 Standalone command-line tool for use with other IDEs
 Learn more at www.ti.com/ulpadvisor

Write your code…

ULP Advisor finds areas for code improvement

Wiki provides details & remedies

Grace, on the other hand, provides a graphical development interface for TI’s Value-Line and
Wolverine series of devices. Just by selecting a few simple choices from the GUI interface, you
can quickly build up your system. Grace outputs well commented DriverLib and/or Header file
code. Use it to build up a custom set of drivers – or build your entire application – in Grace.

MSP430 Design Workshop - Programming in C with CCS 2 - 7

Examining Code Composer Studio

Examining Code Composer Studio

Functional Overview
As described earlier, Code Composer Studio is TI’s Eclipse based Integrated Development
Environment (IDE). You might also think of IDE as meaning, “Integrated Debugger and Editor”,
since that’s really what it provides. CCS is made up of a suite of tools that help you:
• Edit and Build your code

• Debug and Validate your code

CCS Functional Overview

Compiler

Asm

.c

.asm .obj

.asm

Edit Debug

 Integrated Development Environment (IDE) based on Eclipse
 Integrated “Debugger” and “Editor” – IDE

Edit and Debug have the own “perspectives” (menus, windows)
 Contains all development tools – compilers, TI-wTOS kernel and

includes one target – the Simulator

Standard
Runtime
Libraries

.out

.lib

.mapUser.cmd

TI-RTOS
Libraries

TI-RTOS
Config
(.cfg) Bios.cmd

Launch
tad

EVa

Stand Alone
Emulator

(MSP430 FET)

Target
Cfg File

.ccxml

Link

Editing
On the Editing side, you’ll find the Compiler → Assembler → Linker tools combine to create the
executable output file (.out). These are the tools that CCS invokes when you click the “Build”
toolbar button.

Let’s do a brief summary of the files shown here:

.c Your C (or C++) source code files

.asm Assembly files are created by the compiler. By
default, they’re considered temporary and deleted;
though, you can tell CCS to retain them.

.obj Relocatable object files. Again thought of as
temporary and deleted when build is complete.

.lib Any object library you want to reference in your code.
By default, TI’s compiler ships with a run-time support library (RTS) that provides standard
C functions. See the compiler user’s guide for more information. (slau132.pdf)

2 - 8 MSP430 Design Workshop - Programming in C with CCS

http://lmgtfy.com/?q=slau132.pdf

 Examining Code Composer Studio

.cmd Linker command files tells the linker how to allocate memory and stitch your code and
libraries together. TI provides a default linker command file specific to each MSP430
device; it is automatically added to your project when you create a new project. You can
edit it, if needed, though most users get by without ever touching it.

.out The executable output file. This is the file that is loaded into Flash or FRAM on your
MSP430 MCU whenever you click the “Debug” button on your CCS toolbar.

.map The map file is a report created by the linker describing where all your code and data
sections were linked to in memory.

Please refer to the MSP430 Compiler User’s Guide (slau132.pdf) and MSP430 Assembly
Language User’s Guide (slau131.pdf) for more information on the TI code generation tools.

The remaining “BUILD” tools shown in our diagram are related to the TI-RTOS kernel.

In essence, the TI-RTOS kernel is composed of many object code libraries. By creating a new
project based on the TI-RTOS template, CCS will automatically:
• Link in the required libraries

• Add the TI-RTOS configuration file (.cfg)

The configuration file provides a GUI interface for specifying which parts of the kernel you want to
use; helping you to create any static O/S objects that you want in your system; as well as creating
a second linker command file that tells the linker where to find all the kernel’s libraries.

While we briefly discuss TI-RTOS scheduling and threads during the Interrupts chapter of this
workshop, we recommend you take a look at the TI-RTOS Kernel Workshop1 if you want more
information.

1 http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop

MSP430 Design Workshop - Programming in C with CCS 2 - 9

http://lmgtfy.com/?q=slau132.pdf
http://lmgtfy.com/?q=slau131.pdf
http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop
http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop

Examining Code Composer Studio

Debugging
Once again, the “debug” side of the Code Composer Studio lets you download your executable
output (.out) file onto your target processor (i.e. MSP430 device on your Launchpad) and then run
your code using various debugging tools: breakpoint, single-step, view memory and registers, etc.

You will get a lot more detail and experience with debugging projects when running the upcoming
lab exercises on your Launchpad.

Target Config & Emulation
CCS needs to understand how to connect to your target. That is, which target processor do you
want to download-to and run your code on?

Going back to older revisions of CCS (versions prior to CCSv4), TI provided a stand-alone tool
where you would specify how the target board was connected to CCS. Nowadays, this feature
has been integrated into CCS. The Target Configuration File (.ccxml) contains all the information
CCS needs to connect and talk to your target (be it a board or a software simulator).

Target Configuration and Emulators
 The Target /onfiguration Cile specifies:

• Connection to the target (e.g. USB CET)
• Target device (e.g. aSt430C5529)
• GEL file (if applicable) for h/w setup

 EaU /onnection Options
• aSt-CET430 stand-alone CET
• EZ-CET built into development boards (i.e. Launchpad)
• (non aSt430) XDS100v1/v2, 200, 510, 560, 560v2

For the MSP430, the CCXML file is automatically created when you create a new project. This file
is based on your telling CCS which CPU variant you’ve chosen (i.e. MSP430F5529); as well as
which “Connection” you are planning to use for connecting your PC to the target board.

The most common connection that MSP430 users choose is: TI MSP430 USB1 [Default]
In fact, this is the connection we’ll be using in the upcoming lab exercises.

Note: If you ever get an error that indicates CCS doesn’t know how to connect to the target, you
probably didn’t specify the “connection” when creating your project. You can easily fix this
by editing the project’s properties.

2 - 10 MSP430 Design Workshop - Programming in C with CCS

 Examining Code Composer Studio

Emulation Hardware

MSP430 JTAG Emulators

 Eliminates need for external tool
 Integrated USB-powered emulator

- aini USB cable
 trogram & debug any aSt430

Value Line a/U through the Spy
Bi-Wire (2-wire JTAG) protocol

 Use Launchtad as a programmer
ANY Spy Bi-Wire enabled aSt430
(not officially supported by TI)

Integrated Flash Emulation Tool

Flash Emulation Tool (MSP-FET)
One tool to rule them all – Direct replacement to MSP-FET430UIF

Order now
@ www.ti.com/tool/msp_fet

Ceatures:
 USB debugging interface to connect any aSt430

a/U to a t/ for real-time, in-system
programming and debugging

 Enables EnergyTrace™ technology for energy
measurement and debugging on all aSt430 devices

 Up to 4x faster than its predecessor
(aSt-CET430UIC)

 Includes Backchannel UART for bi-directional
communication between the aSt430 and a t/

Technical Specifications:
 Software configurable supply voltage

between 1.8 V and 3.6 V at 100 mA
 Supports JTAG Security Cuse blow to protect code
 Supports all aSt430 boards with JTAG header
 Supports both JTAG and Spy-Bi-Wire (2-wire JTAG)

debug protocols

MSP430 Design Workshop - Programming in C with CCS 2 - 11

Examining Code Composer Studio

Perspectives
In Eclipse, Perspectives describe an arrangement for toolbars and windows. CCS Edit and
CCS Debug are the two perspectives that are used most often. Notice how the perspectives
differ for each of the modes shown below.

CCS GUI – EDIT Perspective

troject Explorer
• troject(s)
• Source Ciles

Source EDIT’ing
• Tabbed windows
• Color-coded text

Outline View
• Declarations

and functions

aenus & Buttons
• Specific actions

related to EDIT’ing

terspectives
• EDIT and DEBUG

Eclipse even varies the toolbars and menus between perspectives.

CCS GUI – DEBUG Perspective

DEBUG Windows
• Watch Variables
• aemory Browser
• tC execution point
• Console Window

aenus & Buttons
• welated to DEBUG’ing
• tlay, tause, Terminate

/onnection Type
• Specified in Target Cfg file
• What options do users have

when connecting to a target?
• This window also provides a

“call” stack

2 - 12 MSP430 Design Workshop - Programming in C with CCS

 Examining Code Composer Studio

Workspaces & Projects
Eclipse based IDE’s provide a hierarchy for storing program information. Experienced
programmers are familiar with the concept of keeping all their programs source files in a Project.

Eclipse goes one step further and also defines a Workspace. In fact, whenever you open CCS
(or any Eclipse IDE) you are asked to select a workspace. In essence, a Workspace is just the
folder in which your projects reside. In the CCS/Eclipse, you can actually think of the Project
Explorer window as a visual representation of your Workspace.

Workspaces and Projects (GUI)

WORKStA/E

tROJE/TSource

Every active project in your workspace will be displayed in the Project Explorer window, whether
the project happens to be open or closed.

Some users like to only put only one project per workspace; others put every project into a single
workspace – it doesn’t matter to Eclipse.

In our workshop, we have chosen to create one workspace which will hold all of our lab files. This
makes it easy to switch back and forth between exercises, if you should want to do so.

As a final note, this hierarchy reflects how many settings are handled inside of Eclipse. Most
settings are modified at the Project level – for example, you can pick the compiler per project.

Some settings, though, can be defined for the whole Workspace; for example, you can create
path variables to point to library repositories. These almost always can be overridden in a given
project, but this means you’re not forced to define certain items over-and-over again.

Finally, there are some definitions that are globally setup in the Eclipse/IDE preferences. Unlike
pre-Eclipse versions of CCS, they are not stored in the Windows registry. This makes the Linux
version of the tools possible; but it also means it’s easier to keep multiple versions of CCS on
your computer (if you should need to do so).

MSP430 Design Workshop - Programming in C with CCS 2 - 13

Examining Code Composer Studio

Let’s look at projects & workspaces from another perspective. The following diagram should
confirm what we just discussed. Workspaces contain Projects which contain Source files.

Projects and Workspaces

 troject folder contains:
• Build and tool settings (for use

in managed aAKE projects)
• Ciles can be linked to or

reside in the project folder
• Deleting a linked file from

troject Explorer only deletes
the link

Workspace
• troject 1
• troject 2
• troject 3
• Settings/pref’s

 Workspace folder contains:
• ‘Workspace’ is just a folder that

keeps track of projects… along with
IDE settings and preferences

• trojects can reside in the workspace
folder or be linked from elsewhere

• Deleting a project from the troject
Explorer only deletes the link

Source Ciles
• Code and Data

Header Ciles
• Declarations

Library Ciles

troject
• Source Ciles
• Header Ciles
• Library Ciles
• Build/tool settings

Notice how the lines between the various objects are labeled “Link”. This represents one way in
which they can be connected. Reading the bullets on the above slide tells us that Source files can
actually reside “inside” the project folder or be “linked” to the project.

As we’ll see in a minute, when you add a file to a project, you have the option of “copying” the file
into the project or “linking” it to the project. In other words, you have the option to decide how and
where to store your files.

Within Projects, it’s most common to see source files reside in the project folder;
whereas, libraries are most often linked to the project. This is not a rule, but rather a style
adopted by most users.

With regards to Projects and Workspaces: a project folder always resides inside of the
workspace. At the very least, this is where Eclipse stores the metadata for each project (in a few
different project-related XML files). The remaining project files can reside in a folder outside of the
Workspace. Once again, Eclipse provides users with a lot of flexibility in how their files are stored.

Some Final Notes about CCS/Eclipse
• If you create a new source file in CCS/Eclipse, it will automatically be stored in the project

folder.

• If you copy a source file (e.g. C file) into the project folder using the O/S filesystem, it will
automatically show up in the project. That is, if you copy a C file into the project folder using
Windows explorer, it will be “in the project”. Note, though, that CCS does provide a way to
“exclude a file from build” – but this is not the default.

• You can export and import projects directly to/from archive (zip) files. Very nice!

2 - 14 MSP430 Design Workshop - Programming in C with CCS

 Examining Code Composer Studio

Portable Projects
While this will not be an issue when working with the MSP430 – at least in this workshop – you
should be aware that build issues can arise when sources (files and/or libraries) are linked into a
project. It isn’t normally an issue on the system where the project is created, but rather, build
problems can show up when sharing the project with other team members.

If your teammates do not have exactly the same file directory hierarchy as the person who
created the project, the tools may not be able to find all of the sources – and thus, the build will
fail.

This is not a TI specific problem; hence, the Eclipse IDE provides a solution.

 Workspace folder contains:
• ‘Workspace’ is just a folder that

keeps track of projects… along with
IDE settings and preferences

• trojects can reside in the workspace
folder or be linked from elsewhere

• Deleting a project from the troject
Explorer only deletes the link

Projects and Workspaces

 troject folder contains:
• Build and tool settings (for use

in managed aAKE projects)
• Ciles can be linked to or

reside in the project folder
• Deleting a linked file from

troject Explorer only deletes
the link

Workspace
• troject 1
• troject 2
• troject 3
• Settings/pref’s

Source Ciles
• Code and Data

Header Ciles
• Declarations

Library Ciles

troject
• Source Ciles
• Header Ciles
• Library Ciles
• Build/tool settings

tortable trojects
When working with others, please take care when linking files into
your projects.
You can make your projects “tortable” by not assuming other users
have the same directory layout on their computers.
The best way to do this is to create a macro definition
(i.e. an IDE variable) for each source directory that you link into your
project. The recipient of your project only needs to change the
macro’s value to where they installed the files and should easily be
able to build the program.
We won’t need to worry about this for the aSt430 Workshop, but
we suggest you refer to the TI wiki site for more info about “tortable
trojects” if you’ll need to link files in your end application.

As described here, the solution involves creating a “pointer” to each directory which contains
linked source or library files. Officially, these “pointer” is called a “macro”; although it might be
better described by the term “IDE variable”.

Whatever you call this feature, a teammate who wants to build the project just needs to verify that
the “pointer” macro contains the same directory path as the original user. If not, by updating any
macro that differs in their system, the new user can easily build the project.

This is one of those problems that you might not realize is important… until you run into it.

Note: In the case of the MSP430 applications team, they recommend importing the entire
MSP430 Driver Library into your project. This not only eliminates the problem of linked
libraries, but it also means that the library will be built with the same compiler options as
the rest of your project.

MSP430 Design Workshop - Programming in C with CCS 2 - 15

Examining Code Composer Studio

Creating a Project
There are many ways to create a new project, the easiest is to select:

File → New → CCS Project

TI defined their own C project type called “CCS Project”. This enhancement condenses the
standard Eclipse “new project” wizard from 6 dialogs down to 1. (Awesome!)

Creating a New Project (CCSv6)
Cile New //S troject

(in Edit perspective…)

1. Select Device
2. /onnection

How target is connected to //S
(creates .ccxml file in project)

3. troject Name
4. troject Type

Executable or Library
5. troject Location

• Default = workspace
• aanual = anywhere you like

6. Templates
• No BIOS? /hoose “Empty”
• BIOS? /hoose BIOS template

When creating a new project you need to define:
• Project Name

• Are you making an Executable program or a Library

• Where do you want your project to reside – by default, CCS puts it in the Workspace

• Processor Family (i.e. MSP430)

• Specific device you’re using

• Target Connection (i.e. MSP430 USB 1)

• Template – CCS provides a number of project templates. The most common template is
probably “Empty”. But some of the others may come in handy. For example, if you are
creating a TI-RTOS based project, you will want to choose one of their project templates.

2 - 16 MSP430 Design Workshop - Programming in C with CCS

 Examining Code Composer Studio

Adding Files to a project
As we described earlier, when adding files to a project, you have the choice of copying them into
the project folder or linking them to the project folder.

Copying the files keeps them together inside the project folder. On the other hand, if you’re
sharing libraries or files between projects (or with other users), it might make more sense to link
them.

Adding Files to a Project
 Users can ADD (copy or link) files into their project

• SOUwCE files are typically COtIED
• LIBwAwY files are typically LINKED (referenced)

1 wight-click on project and select: 2 Select file(s) to add to the project:

3 Select “Copy” or “Link”
 /OtY

• /opies file from original location
to project folder (two copies)

 LINK
• References (points to) source

file in the original folder
• You can select the “reference”

point (default is project’s dir)

Portable Projects
This is not an issue for this workshop because the MSP430 team recommends that you add a copy of DriverLib
to each project. That said, you will likely run into this issue in the future, so we wanted to bring it to your attention.

The phrase Portable Projects signifies that projects can be built in a portable fashion. That is, with a little
consideration, it is easy to build projects that can be moved from one user to another – or from one computer
environment to another.

When a source file or library is contained inside of a project folder, it is easy for the tools to find and use it.
Eclipse automatically knows how to find files inside the project folder.

The biggest headache in moving projects relates to “linked” source files and libraries. When a file is located
outside of the project folder, the build will fail unless the person receiving the project user places all the
referenced (i.e. linked) files into exactly the same locations inside their filesystem. This is a very common
problem!!!

The best solution is to use Eclipse Path Variables to point to each directory where you have linked resources.
Since this is not a problem encountered in this workshop, we suggest you refer to these locations for more info:

http://processors.wiki.ti.com/index.php/Portable_Projects

You may also want to reference the Tiva-C Workshop or the TI-RTOS Kernel Workshop for code examples
dealing with Portable Projects.

MSP430 Design Workshop - Programming in C with CCS 2 - 17

http://processors.wiki.ti.com/index.php/Portable_Projects

Examining Code Composer Studio

Licensing/Pricing
Many users will find that they can use Code Composer Studio free of charge.

For example, there is no charge when using CCS with most of the available TI development
boards – with the MSP430, they allow you to use it for free (with any tool), as long as your
program is less than 16KB.

Furthermore, TI does not charge for CCS licenses when you are connecting to your target using
the low-cost XDS100 JTAG connection.

CCStudio Licensing and Pricing
Licensing
• Wide variety of options (node

locked, floating, time based)
• All versions (full, DSK, free

tools) use same image
• Annual subscription - $99

($159 for floating)
• Updates available online

Item Description Price Annual
Platinum Eval Tools Full tools with 90 day limit (all EMU) FREE

Platinum Bundle
XDS100; Simulators; many TI dev’l
boards (such as Tiva-C Launchpad);
MSP430 when using GNU Compiler

FREE

16K Code-Size Limited MSP430 when using TI C Compiler FREE
Platinum Node Lock Full tools tied to a machine $445* $ 99
Platinum Floating Full tools shared across machines $795 $159

* Download version; $495 when disc is shipped to you

For those cases where you need to use a more sophisticated (i.e. faster) JTAG development
connection, TI provides a 90-day free evaluation license. After that, you need to purchase the
tool. Thankfully, when you encounter one of these cases, CCS for only costs $445.

2 - 18 MSP430 Design Workshop - Programming in C with CCS

 Examining Code Composer Studio

Changing a CCS User Licence
In this workshop, we can use the free license options. For CCSv5 you would choose the “16K
Code Size Limited (MSP430)” option; you don’t have to do anything for CCSv6, it defaults to the
free option.

It is a little bit tricky to change the licensing method. That is, it’s hard to find the following dialog.

As shown, choose Code Composer Studio Licensing Information from the Help menu. When that
dialog appears, choose the Upgrade tab, then click the Launch License Setup… button.

Change CCS User
License (CCSv6)

MSP430 Design Workshop - Programming in C with CCS 2 - 19

Writing MSP430 C Code

Writing MSP430 C Code
As part of the prerequisites for the workshop, we stated that you should be familiar with the C
language; therefore, in this section we do not plan to cover general C language syntax. Rather,
this section is dedicated to implementation details of the MSP430 C Compiler.

Build Config & Options
TI C compilers offer nearly a hundred different build options. We plan to focus on just a few
options so that you’re aware of the most common ones.

You should find the table below broken into two sets of options:

Compiler Build Options
 Almost 100 compiler options let you tune your code’s performance, size, etc.
 The following table lists the most commonly used options:

Options Description
Debug -ss Interlist C statements into assembly listing

Optimize
(Release)

-o3 Invoke optimizer (-o0, -o1, -o2/-o, -o3, -o4)

-mf Speed/code size tradeoff (-mf0 thru -mf5)

-k Keep asm files, but don't interlist

 To make things easier, CCS creates two BUILD CONFIGURATIONS:
• Debug (no optimization) which is great for LOGICAL debug

• Release which is good for PERFORMANCE/Size

• Users can create their own custom build configurations

How do you CHANGE compiler build options or configurations?

2 - 20 MSP430 Design Workshop - Programming in C with CCS

 Writing MSP430 C Code

Debug Options
Until recently, you were required to use the –g option when you wanted source-level debugging
turned on. The drawback to this option was that it affected the code performance and size. This
has changed… since source-level debugging does not affect the optimizer’s efficiency, it is
always enabled.

On the other hand, if you want to see your C code interlisted with its associated assembly code,
then you should use the –ss option. Be aware, though, that this does still affect the optimizer –
which means that you should turn off this option when you want to minimize the code size and
maximize performance such as when building your production code.

Optimize Options (aka “Release” Options)
We highlight 3 optimization options:

• -o turns on the optimizer. In fact, you can enable the optimizer with different levels of
aggressiveness; from –o0 up thru –o4. When you get to –o3, the compiler is optimizing code
across the entire C file. Recently, TI has added the –o4 level of optimization; this provides
link-time optimizations, on top of all those performed in level –o3.

• -mf lets the compiler know how to tradeoff code size versus speed.

• -k does not change the optimizer; rather, it tells the tools to keep the assembly file (.asm). By
default the asm file is deleted, since it’s only an intermediate file. But, it can be handy if you’re
trying to debug your code and/or want to evaluate how the compiler is interpreting your C
code. Bottom Line: When optimizing your code, replace the –ss option with the –k option!

MSP430 Design Workshop - Programming in C with CCS 2 - 21

Writing MSP430 C Code

Build Configurations
Early in development, most users always use the Debug compiler options.

Later in the development cycle, it is common to switch back and forth between Debug and
Release (i.e. optimize) options. It is often important to optimize your code so that it can perform
your tasks most efficiently … and with the smallest code footprint.

Rather than forcing you to continuously tweak options by hand, you can use Build Configurations.
Think of these as ‘groups’ of options.

When you create a new project, CCS automatically creates two Build Configurations:
− Debug

− Release

This makes it easy for you to switch back and forth between these two sets of options.

Even further, you can modify each of these option sets … or create your own.

Modifying Build Configurations
 Right-click on the project and select Properties
 Select the build configuration: Debug or Release
 Then click “Processor Options” or any other category (like Optimization):

Hint: If you modify a Project build option, it only affects the active build configuration.

This is a common source of errors. For example, when you add a new library search path
to your project options during Debug, it only affects that configuration. This means that
it’s common to run into errors whenever you switch to the Release build configuration.

CCS is trying to help – and often asks if you want to update both/all configurations. But,
this is a new feature and only works for some of the options. This means that when an
option should apply to all configurations, you should (manually) change them both at the
same time … or be prepared to tweak the Release build options the first time you use it.

2 - 22 MSP430 Design Workshop - Programming in C with CCS

 Writing MSP430 C Code

Data Types
The following data types are specified in the C Compiler Users Guide. We’ve circled the types
that best describe this processor.

With the MSP430’s ability to perform byte-wide addressing, it follows that char’s are 8-bits.

As one might expect, though, being a 16-bit CPU, both the short and int data types are 16-bits
wide.

MSP430 C Data Types (ELF format)
Type Bits Representation

char 8 (aligned to 8-bit boundary)

short 16 Binary, 2's complement

int 16 Binary, 2's complement

long 32 Binary, 2's complement

long long 64 Binary, 2's complement

float 32 IEEE 32-bit

double 64 IEEE 64-bit

long double 64 IEEE 64-bit
 Data are aligned to 16-bit address boundary (except where noted)
 8-bit values are stored in bits 0-7 of a register
 32- and 64-bit types require 2 and 4 registers, respectively

MSP430 Design Workshop - Programming in C with CCS 2 - 23

Writing MSP430 C Code

Device Specific Files (.h and .cmd)
TI has created a device-specific header file (.h) and linker command file (.cmd) for each specific
MSP430 device. With the MSP430F5529 device as an example, if you look through the files
installed with the MSP430 compiler, you’ll find: msp430f5529.h and msp430f5529.cmd

Example: Device Specific ‘Header’ Files

1. Device header file (msp430f5529.h)
Register bit-field symbols are found in ‘header’ file

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

2. Device linker command file (msp430f5529.cmd)
Symbols that represent register locations – which are effectively
addresses – are found in the ‘linker’ command file

 Below is an example of using the MSP430 ‘header’ files.
 This example will be used in the upcoming lab exercise. It turns off the

Watchdog Timer (WDT). We have to setup the WDT in every MSP430 program.
(We explain why in Chapter 4 of the workshop.)

 Notice how “address” values (i.e. register locations) are found in the .cmd
file, while all other symbol definitions are found in the .h file.

As described in the above diagram, these two files provide symbolic definitions for all registers
and bitfields found in each CPU and its peripherals.

What’s the simple key to figure out which file contains a given symbol?
• If the symbol relates to an address, such as the symbol for a memory-mapped register (e.g.

WDTCTL), you’ll find it defined in the .CMD file. This is because the linker (and its associated
linker command file) specifies memory allocations and addresses.

• All the other device-specific symbols are described in the header (.h) file, as is common
practice for the C language.

2 - 24 MSP430 Design Workshop - Programming in C with CCS

 Writing MSP430 C Code

To make programming easier for you, CCS automatically adds these two device-specific files to
your project.
• You’ll find a linker command file added to your project folder; in fact, it should be listed in the

Project Explorer window within your project.

• Most new CCS projects include an “empty” main.c file. The header file is #included at the
top of this file.

Device Specific Files (.h/.cmd)
 New CCS projects automatically contain two files based upon the

“Target CPU” selection:
1. Device header file (e.g. msp430f5529.h)

 Symbols defined for bit fields, reg’s, etc.
 Structs/union’s also defined for bit fields, if you prefer
 You shouldn’t have to use hard-coded bit locations, etc.
 Your code should #include msp430.h, this points to the device specific .h file

2. Device linker command file (e.g. msp430f5529.cmd)
 Device specific addresses defined in dev specific .cmd file
 Creating a new CCS project automatically includes a project .cmd file … which includes

the device specific .cmd file
 You shouldn’t have to ever look up the address of a register
 Default linker command file in your project points to device specific .cmd file

 You should use these symbols in your code, rather than specifying
hard values/addresses

 MSP430ware also uses these symbolic definitions; that is, these
definitions represent the lowest-level abstraction layer for C code

In the next chapter we introduce the MSP430ware Driver Library. It utilizes these device-specific
header (and linker command) files, though it is automatically included by including the Driver
Library’s own header file <driverlib.h>.

MSP430 Design Workshop - Programming in C with CCS 2 - 25

Writing MSP430 C Code

MSP430 Compiler Intrinsic Functions
Along with the symbols defined in the device specific header & linker files, it’s common to see
programmers use the compiler’s intrinsic functions. Think of these as functions that are “built-in”
to the TI compiler. In most cases, intrinsic functions correlate to hardware specific features found
in processors.

Intrinsics for MSP430 C Compiler

_bcd_add_short(); _disable_interrupt(); _never_executed();
_bcd_add_long(); _enable_interrupt(); _no_operation();
_bic_Sw_register(); _even_in_range(); _op_code();
_bic_Sw_register_on_exit(); _get_interrupt_state(); _set_interrupt_state();
_bis_Sw_register(); _get_w4_register(); _set_w4_register();
_bis_Sw_register_on_exit(); _get_w5_register(); _set_w5_register();
_data16_read_addr(); _get_St_register(); _set_St_register();
_data16_write_addr (); _get_Sw_register(); _swap_bytes();
_data20_read_char(); _get_Sw_register_on_exit();
_data20_read_long(); _low_power_mode_0();
_data20_read_short(); _low_power_mode_1();
_data20_write_char(); _low_power_mode_2();
_data20_write_long(); _low_power_mode_3();
_data20_write_short(); _low_power_mode_4();

_delay_cycles(); _low_power_mode_off_on_exit();

 Compiler intrinsic functions are essentially “built-in” C functions
 They usually provide access to underlying hardware features of a processor;

often mapping closely to specific asm instructions
 We will use some of these in today’s workshop:

We’ve circled some of the intrinsic functions we’ll use in this class; from setting and/or clearing
bits in the Status Register (SR) to putting the processor into low-power modes.

2 - 26 MSP430 Design Workshop - Programming in C with CCS

 Lab 2 – CCStudio Projects

MSP430 Workshop - Programming C with CCS 2 - 27

Lab 2 – CCStudio Projects
The objective of this lab is to learn the basic features of Code Composer Studio. In this exercise
you will create a new project, build the code, and program the on-chip flash on the MSP430
device.

Lab 2 – Creating CCS Projects
 Lab 2a – Hello World

 Create a new project
 Build program, launch debugger, connect

to target, and load your program
 printf() to CCS console

 Lab 2b – Blink the LED
 Explore basic CCS debug functionality

Restart, Breakpoint, Single-step,
Run-to-line

 Lab 2c – Restore Demo to Flash
 Import CCS project (for original demo)
 Load program to device’s flash memory
 Verify original demo program works

 (Optional) Lab 2d
 Create binary TXT file of your program
 Use MSP430 Flasher to program original

demo’s binary file to device’s flash Time: 45 minutes

Lab 2 – CCStudio Projects

2 - 28 MSP430 Workshop - Programming C with CCS

Lab Outline

Programming C with CCS .. 2-25

Lab 2 – CCStudio Projects .. 2-27
Lab 2a – Creating a New CCS Project ... 2-29

Intro to Workshop Files ... 2-29
Start Code Composer Studio and Open a Workspace ... 2-30
“CCS Edit” Perspective ... 2-31
Create a New Project .. 2-32
Build The Code (ignore advice)... 2-35
Verify Energy Trace is ‘Off’ ... 2-36
Debug The Code ... 2-36
Fix The Example Project ... 2-39
Build, Load, Connect and Run … using the Easy Button ... 2-40

Lab 2b – My First Blinky .. 2-41
Create and Examine Project ... 2-41
Build, Load, Run .. 2-42
Restart, Single-Step, Run To Line .. 2-43

(Optional) Lab 2c – Restoring the OOB .. 2-45
(Optional) Lab 2d – MSP430Flasher .. 2-47

Programming the OOB demo using MSP430Flasher ... 2-47
Programming Blinky with MSP430Flasher .. 2-51
Cleanup ... 2-52

 Lab 2 – CCStudio Projects

MSP430 Workshop - Programming C with CCS 2 - 29

Lab 2a – Creating a New CCS Project
In this lab, you create a new CCS project that contains one source file – hello.c – which prints
“Hello World” to the CCS console window.

The purpose of this lab is to practice creating projects and getting to know the look and feel of
CCS. If you already have experience with CCS (or the Eclipse) IDE, this lab will be a quick
review. The workshop labs start out very basic, but over time, they’ll get a bit more challenging
and will contain less “hand holding” instructions.

Hint: In a real-world MSP430 program, you would NOT want to call printf(). This function is slow,
requires a great deal of program and data memory, and sucks power – all bad things for any
embedded application. (Real-world programs tend to replace printf() by sending data to a terminal
via the serial port.)

We’re using this function since it’s the common starting point when working with a new processor.
Part B of this lab, along with the next chapter, finds us programming what is commonly called, the
“embedded” version of “hello world”. This involves blinking an LED on the target board.

Intro to Workshop Files

1. Find the workshop lab folder.

 Using Windows Explorer, locate the following folder. In this folder, you will find at least two
folders – aptly named for the two launchpads this workshop covers – F5529_USB,
FR5969_FRAM:

C:\msp430_workshop\F5529_USB
C:\msp430_workshop\FR4133_FRAM
C:\msp430_workshop\FR5969_FRAM

 Click on YOUR specific target’s folder. Underneath, you’ll find many subfolders

C:\msp430_workshop\F5529_USB\lab_02a_ccs
C:\msp430_workshop\F5529_USB\lab_02b_blink

...
C:\msp430_workshop\F5529_USB\solutions
C:\msp430_workshop\F5529_USB\workspace

 From this point, we will usually refer to the path using the generic <target> so that we can
refer to whichever target board you may happen to be working with.

e.g. C:\msp430_workshop\<target>\lab_02a_ccs

 So, when the instructions say “navigate to the Lab2 folder”, this assumes you are in the tree
related to YOUR specific target.

 Finally, you will usually work within each of the lab_ folders but if you get stuck, you may opt
to import – or examine – a lab’s archived (.zip) solution files. These are found in the
\solutions directory.

Hint: – This lab does not contain any “starter” files; rather, we’ll create everything from scratch.

– The readme file provides the solution code that you can copy/paste, if necessary. That said,
 you won’t need to do that in this lab exercise.

Lab 2 – CCStudio Projects

2 - 30 MSP430 Workshop - Programming C with CCS

Start Code Composer Studio and Open a Workspace

Note: CCSv6 should already be installed; if not please refer to the workshop installation guide.

2. Start Code Composer Studio (CCS).

 Double-click CCS’s icon on the desktop or select it from the Windows Start menu.

3. Select a Workspace – don’t use the default workspace location !!

 When CCS starts, a dialog box will prompt you for the location of a workspace folder. We
suggest that you select the workspace folder provided in our workshop labs folder.
(This will help your experience to match our lab instructions.)

 Select either one of: (to match your target)

C:\msp430_workshop\<target>\workspace

 Most importantly, the workspace provides a location to store your projects … or links to your

projects. In addition to this, the workspace folder also contains many CCS preferences, such
as perspectives and views. The workspace is saved automatically when CCS is closed.

Hint: If you check the “Use this as the default…” option, you won’t be asked to choose a
workspace every time you open CCS. At some point, if you need to change the workspace –
or create a new one – you can do this from the menu: File Switch Workspace

4. Click OK to close the Select a workspace dialog.

5. After quickly examining the “Getting Started” window, you can close it, too.

 When CCS opens to a new workspace, the Getting Started window is automatically opened
and you’re greeted with a variety of options. We want to mention two items:

 App Center – you can download additional TI tools and content here. For example, this

is one way to install MSP430ware or TI-RTOS.

 Simple Mode – We suggest that you do not put CCS into Simple Mode when following

our lab instructions, as we’ve chosen to use the full-featured interface.

 Later on, you may want to come back and check out the remaining links and videos.

Make sure to select
FR5969

or

FR4133
If you’re using one of
those Launchpad’s

 Lab 2 – CCStudio Projects

MSP430 Workshop - Programming C with CCS 2 - 31

“CCS Edit” Perspective

6. At this point you should see an empty CCS workbench.

 The term workbench refers to the desktop development environment.

 The workbench will open in the “CCS Edit” view.

Maximize CCS to fill your screen

 Notice the tab in the upper right-hand corner…

 Perspectives define the window layout views of the workbench, toolbars, and menus – as
appropriate for a specific type of activity (i.e. editing or debugging). This minimizes clutter of
the user interface.

 The “CCS Edit” perspective is used to when creating, editing and building C/C++

projects.

 CCS automatically switches to the “CCS Debug” perspective when a debug session

is started.

 You can customize the perspectives and save as many as you like.

Hint: The Window Reset Perspective… is handy for those times when you’ve
changed the windows and want to get back to the original view.

Notice Project Explorer is

empty – this matches our

empty Workspace folder

Lab 2 – CCStudio Projects

2 - 32 MSP430 Workshop - Programming C with CCS

Create a New Project
7. Select New CCS Project from the menu.

 A project contains all the files you will need to develop an
executable output file (.out) which can be run on the MSP430
hardware. To create a new project click:

File New CCS Project

8. Make project choices as shown here:

 Note: Your dialog may look slightly different than this one. This is how it looked for CCSv6.0 (build 190).

a) Type “5529”, “5969” or
“4133” into variant to
quickly select Target
CPU

b) Use Default debugger
connection (this creates
the .ccsxml file for you)

c) Name: lab_02a_ccs

d) Don’t use default
location

e) Choose your target’s
lab_02a_ccs folder

f) Select template:

Hello World

g) Click ‘Finish’ when
done.

Target CPU selection results in:

 Compiler target (-vmsp) option

 CCS adding the correct device

specific:

 ‘Header’ file (.h)
 Linker command file (.cmd)

 Lab 2 – CCStudio Projects

MSP430 Workshop - Programming C with CCS 2 - 33

9. Code Composer will add the named project to your workspace.

View the project in the Project Explorer pane.

Click on the left of the project name to expand the project

 CCS includes other items based upon the Template selection. These might include source

files, libraries, etc.

 When choosing the Hello World template, CCS adds the file hello.c to the new project.

Lab 2 – CCStudio Projects

2 - 34 MSP430 Workshop - Programming C with CCS

10. Open and view lab_02a_ccs_readme.txt.

 During installation, we placed the readme file into the project folder.

By default, Eclipse (and thus CCS) adds any file it finds within the project folder to the project.
This is why the readme text file shows up in project explorer. Go ahead and open it up:

Double-click on: lab_02a_ccs_readme.txt

 You should see a description of this lab similar to the abstract found in these lab directions.

Hint: Be aware of this Eclipse feature. If – say in Windows Explorer – you absent-mindedly
add a C source file to your project folder, it will become part of your program the next
time you build.

If you want a file in the project folder, but not in your program, you can exclude files
from build:
 Right-click on the file Exclude from Build

11. Explore source code in hello.c.

 Open the file, if it’s not already open.

Double-click on hello.c in the Project Explorer window

 We hope most of this code is self-explanatory. Except for one line, it’s all standard C code:

#include <stdio.h>
#include <msp430.h>

/*
 * hello.c
 */
int main(void) {

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 printf("Hello World!\n");

 return 0;
}

 The only MSP430-specific line is the same one we examined in the chapter discussion:

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 As the comment indicates, this turns off the watchdog timer (WDT peripheral). As we’ll learn
in Chapter 4, the WDT peripheral is always turned on (by default) in MSP430 devices. If we
don’t turn it off, it will reset the system – which is not what we usually want during
development (especially during ‘hello world’).

 Lab 2 – CCStudio Projects

MSP430 Workshop - Programming C with CCS 2 - 35

Sidenote: ULP Advisor

Sometime, when you launch the debugger (as we will soon), CCS will warn you that your code could be
better optimized for lower power.

While we like the ULP Advisor tool, this usually comes up a long time before we are ready to start
optimizing our performance. We recommend that you click the box:

 Do not show this message again

As the dialog above indicates, you can always go into your project’s properties and enable or disable
this advice. We will do this in a later chapter, when we’re ready to focus on driving our every last Nano
amp.

Build The Code (ignore advice)

12. Build your project using “the hammer” and check for errors.

 At this point, it is a good time to build your code to check for any errors before moving on.

Just click the “hammer” icon:

 It should build without any Problems, although you should see two sets of Advice:
Optimization Advice and Power (ULP™) Advice.

At this point, we’re just going to ignore their advice.
It’s better to get code running first. Later, we return
and investigate some of these items further.

 If the program builds successfully, move to the next page to begin debugging. If you have
problems getting it to build, please ask a neighbor, or your instructor for help.

Lab 2 – CCStudio Projects

2 - 36 MSP430 Workshop - Programming C with CCS

Verify Energy Trace is ‘Off’

We really like the new EnergyTrace features in CCS. It provides an incredible amount of
information – but, we really don’t need all of that info when we’re just trying to get an LED to blink.
Some versions of CCS turn this new feature ‘on’ by default. We suggest turning it off – for now.
We’ll re-enable it during the Low Power Optimzation chapter.

13. Disable EnergyTrace (or verify it’s disabled).

Window Preferences

Code Composer Studio Advanced Tools EnergyTrace™ Technology

Debug The Code

14. Debug your program.

 Clicking the Debug button will: Build the program (if needed); Launch the debugger; Connect
to Target; and Load your program

Click the BUG toolbar button:

 Your program will now download to the target board and the PC will automatically run until it
reaches main(), then stop as shown:

 Lab 2 – CCStudio Projects

MSP430 Workshop - Programming C with CCS 2 - 37

Connection Problems - Troubleshooting

 If the error “cannot connect to target” appears, the problem is most likely due to:

 No target configuration (.ccxml) file

 Wrong board/target config file or both – i.e. board does not match the target config file

 Bad USB cable

 Windows USB driver is incorrect – or just didn’t get enumerated correctly

 If you run into this, check for each of these possibilities. In the case of the Windows USB driver try:

 Unplugging the USB cable and trying it in a different USB port. (Just changing ports can

often get Windows to re-enumerate the device.

 Open Windows Device Manager and verify the board exists and there are no warnings or

errors with its driver.

 If all else fails, ask your neighbor (or instructor) for assistance.

Note: The first time you Launch a debugger session, you may encounter the following dialog:

This occurs when CCS finds that the FET firmware – that is, the firmware in your
Launchpad’s debugger – is out-of-date. We recommend that you choose to update the
firmware. Once complete, CCS should finish launching the debugger.

Lab 2 – CCStudio Projects

2 - 38 MSP430 Workshop - Programming C with CCS

15. Run the code.

 Now, it’s finally time to RUN or “Play”. ► Hit the Resume button:

 The button is called ‘Resume’, though we may end up calling it
 ‘Play’ since that’s what the icon looks like.

16. Pause the code.

 To stop your program running, ► click the Suspend button to pause):

Warning: Suspend is different than Terminate !!!

If you click the Terminate button, the debugger – and your connection to the target – will be
closed. If you’re debugging and just want to view a variable or memory, you will have to open
a new debug session all over again. Remember to pause and think, before you halting your
program.

17. Did printf work?

 Did “Hello World!” show up in your console window?

 Nope, it didn’t show up for us.

18. Let’s Terminate the debug session and go fix “their” project.

 This time we really want to terminate our debug session.

Click the red Terminate button:

 This closes the debug session (and Debug Perspective). CCS will switch back to the Edit
perspective. You are now completely disconnected from the target.

 Lab 2 – CCStudio Projects

MSP430 Workshop - Programming C with CCS 2 - 39

Fix The Example Project

19. What is wrong? Increase the heap size.

 Per the wiki suggestion, let’s increase the heap size to 320 bytes.

Right-click project Properties MSP430 Linker Basic Options

 Increase Heap size to: 320

 You can find a description of this problem by searching the internet for: “msp430 printf”

 From that, you should find a MSP430 wiki page that describes how to get printf() to work:

 http://processors.wiki.ti.com/index.php/Printf_support_for_MSP430_CCSTUDIO_compiler

 (In fact, this is how we figured out how to solve the problem.)

Hint: As a side note, if you look just below the entry for setting the Heap size, you will see
the setting for Stack size. This is where you would change the stack size of you
system, if you ever need to do that.

Lab 2 – CCStudio Projects

2 - 40 MSP430 Workshop - Programming C with CCS

Build, Load, Connect and Run … using the Easy Button

20. Rebuild and Reload your program.

 First, make sure you terminated your previous debug session and you are in the Edit
perspective.

21. Once the program has successfully loaded, ► run it.

Note: The ‘FR4133 may stop half-way through the printf() routine – if this happens, just click the
Run/Resume button again and it should continue.

You can avoid this unintended breakpoint by setting the FRAM waitstates to 0. The
default waitstates value on the ‘FR4133 is 1, which covers running the processor up to its
full speed. If you stay at or below 8MHz, then they can be set to 0.

Eliminating this pause isn’t really necessary for this lab, though we’ll need to employ this
trick for lab_4b_wdt. By Lab 4, we’ll have learned how to change waitstates using
Driver Library; for now, adding this line of code somewhere before the call to printf() will
solve the problem:
 FRCTL0 = FRCTLPW | NWAITS_0;

22. Terminate and Close the lab_02a_ccs project.

 Terminate the debug session and then close the project. Closing a project is both handy and
prevents errors.

Right-click project Close Project

 If your source file (hello.c) was open, notice how closing the project also closes most source
files. This can help prevent errors. (Wait until you’ve spent an hour editing a file – with it not working
– only to find you were editing a file with the same name, but from a different project. Doh!)

 You can quickly reopen the project, when and if you need to.

FR4133

 Lab 2 – CCStudio Projects

MSP430 Workshop - Programming C with CCS 2 - 41

Lab 2b – My First Blinky
We plan to get into all the details of how GPIO (general purpose input/output) works in the next
chapter. At that time, we will also introduce the MSP430ware DriverLib library to help you
program GPIO, as well as all the other peripherals on the MSP430.

In the lab exercise, we want to teach you a few additional debugging basics – and need some
code to work with. To that end, we’re going to use the Blink template found in CCS. This is
generic, low-level MSP430 code, but it should suite our purposes for now.

Create and Examine Project

1. Create a new project (lab_02b_blink) with the following properties:

Make sure to select
5969

or 4133
if you’re using one

of them

Choose the default
compiler version

Lab 2 – CCStudio Projects

2 - 42 MSP430 Workshop - Programming C with CCS

2. Let’s quickly examine the code that was in the template.

 This code simply blinks the LED connected to Port1, Pin0 (often shortened to P1.0).

#include <msp430.h>

int main(void) {

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 P1DIR |= 0x01; // Set P1.0 to out-put direction

 for(;;) {
 volatile unsigned int i; // volatile to prevent optimization

 P1OUT ^= 0x01; // Toggle P1.0 using exclusive-OR

 i = 10000; // SW Delay
 do i--;
 while(i != 0);
 }

 Other than standard C code which creates an endless loop that repeats every 10,000 counts,
there are three MSP430-specific lines of code.

 As we saw earlier, the Watchdog Timer needs to be halted.

 The I/O pin (P1.0) needs to be configured as an output. This is done by writing a “1” to bit

0 of the Port1 direction register (P1DIR).

 Finally, each time thru the for loop, the code toggles the value of the P1.0 pin.

(In this case, it appears the author didn’t really care if his LED started in the on or off

position; just that it changed each time thru the loop.)

Hint: As we mentioned earlier, we will provide more details about the MSP430 GPIO
features, registers, and programming in the next chapter.

Build, Load, Run

3. Build the code. Start the debugger. Load the code.

 If you don’t remember how, please refer back to lab_02a_ccs.

4. Let’s start by just running the code.

Click the Resume button on the toolbar (or press F8)

 You should see the LED toggling on/off.

5. Halt the debugger by clicking the “Suspend” button … don’t terminate!

 Lab 2 – CCStudio Projects

MSP430 Workshop - Programming C with CCS 2 - 43

Restart, Single-Step, Run To Line

6. Restart your program.

 Let’s get the program counter back to the beginning of our program.

Run Restart - or - use the Restart toolbar button:

 Notice how the arrow, which represents the
Program Counter (PC) ends up at main() after
your restart your program. This is where your
code will start executing next.

 In CCS, the default is for execution to stop
whenever it reaches the main() routine.

 By the way, Restart starts running your code
from the entry point specified in the executable (.out) file. Most often, this is set to your reset
vector. On the other hand, Reset will invoke an actual reset. (Reset will be discussed further
in Chapter 4.)

7. Single-step your program.

 With the program halted, click the Step Over (F6) toolbar button (or tap the F6 key):

Run Halt Close Debugger Step Into Step Over Step Return Restart

 Notice how one line of code is executed each time you click Step Over; in fact, this action
treats functions calls as a single point of execution – that is, it steps over them. On the other
hand Step Into will execute a function call step-by-step – go into it. Step Return helps to jump
back out of any function call you’re executing.

Hint: You probably won’t see anything happen until you have stepped past the line of code
that toggles P1.0.

8. Single-step 10,000 times

Try stepping over-and-over again until the light toggles again…

 Hmmm… looking at the count of 10,000; we could be single-stepping for a long time. For this,
we have something better…

9. Try the Run-To-Line feature.

 Click on the line of code that toggles the LED.

Click on the line: P1OUT ^= 0x01;

Then Right-click and select Run To Line (or hit Ctrl-R)

Single-step once more to toggle the LED

Lab 2 – CCStudio Projects

2 - 44 MSP430 Workshop - Programming C with CCS

10. Set a breakpoint.

 There are many ways to set a breakpoint on a line of code in CCS. You can right-click on a
line of code to toggle a Breakpoint. But the easiest is to:

Double-click the blue bar on the line of code

 For example, you can see we have just set a breakpoint on our toggle LED line of code:

Once a breakpoint is set, there will be a blue marker
that represents it. By double-clicking in this location,
we can easily add or remove breakpoints.

11. Run to breakpoint.

 Run the code again. Notice how it stops at the breakpoint each time the program flow
encounters it.

 Press F8 (multiple times)

 You should see the LED toggling on or off each time you run the code.

12. Terminate your debug session.

 When you’re done having fun, terminate your debug session.

13. Close the project.

 If any edit windows are still open after closing the project, we recommend closing them, too.

Note: When using early versions of CCSv6 with the ‘FR5969 device, under some
circumstances, CCS may corrupt your program in Flash memory if you have more than
one breakpoint set. This usually occurs when restarting or resetting your program during
debug. The easiest way to visualize this is to view your main() function using the
Disassembly Window.

The workarounds include:
1. Clear all breakpoints before resetting, restarting or terminating your program.
2. Load a different program; then load the program that has become corrupted.

 Lab 2 – CCStudio Projects

MSP430 Workshop - Programming C with CCS 2 - 45

(Optional) Lab 2c – Restoring the OOB
Do you want to go back and run the original Out-Of-Box (OOB) demo that came on your Launchpad board?

Unfortunately, we overwrote the Flash memory on our microcontroller as downloaded our code from the
previous couple lab exercises. In this part of the lab, we will build and reload the original demo program.
Note: sometimes the Out-Of-Box demo is also referred to as the UE (User Experience) demo.

1. Import OOB demo project.

 The out-of-box demo can be found in the latest version of MSP430ware.

Project Import CCS Projects...

For ‘F5529 users, import the project OutOfBox_EmulStorageKeyboards_16KB from the following:

C:\ti\msp430\MSP430ware_1_97_00_47\examples\boards\MSP-EXP430F5529LP\MSP-EXP430F5529LP Software Examples

For ‘FR5969 users, import the project OutOfBox_FR5969 from:

 C:\ti\msp430\MSP430ware_1_97_00_47\examples\boards\MSP-EXP430FR5969\MSP-EXP430FR5969 Software Examples

For ‘FR4133 users, import the project OutOfBox_FR4133 from:

 C:\ti\msp430\MSP430ware_1_97_00_47\examples\boards\MSP-EXP430FR4133\MSP-EXP430FR5969 Software Examples

C:\ti\msp430\MSP430ware_1_97_00_47\examples\boards\MSP-EXP430F5529LP\MSP-EXP430F5

Lab 2 – CCStudio Projects

2 - 46 MSP430 Workshop - Programming C with CCS

In all cases, if you have a choice, check “Copy projects into workspace” and then hit the Finish button.

2. Build the out-of-box demo project that you just imported.

3. Click the Debug button to launch the debugger, and load the program to flash.

 In this excercise, we’re not that interested in running the code within the debugger, rather
we’re just using the debug button as an easy way to program our device with the demo
program. Later labs will explore the various features on display in the demos.

4. Terminate the debugger and close the project. (You can run it within the debugger, but
running it outside the debugger ‘proves’ the program is actually in Flash or FRAM memory.)

5. Unplug the Launchpad from your PC and plug it back in.

 The original demo, which was just re-programmed into Flash/FRAM, should now be running.
(You can refer back to Lab1 if you have questions on how to use the demo.)

 Lab 2 – CCStudio Projects

MSP430 Workshop - Programming C with CCS 2 - 47

(Optional) Lab 2d – MSP430Flasher
The MSP430Flasher utility lets you program a device without the need for Code Composer
Studio. It can actually perform quite a few more tasks, but writing binary files to your board is the
only feature that we explore in this exercise. The tool is documented at:

http://processors.wiki.ti.com/index.php/MSP430_Flasher_-_Command_Line_Programmer

Note: The MSP430Flasher utility is quite powerful; with that comes the need for caution. With
this tool you could – if you are being careless – lock yourself out of the device. This is a
feature that is appreciated by many users, but not during development. The batch files
we’re provide should’nt hurt your Launchpad – but you should treat this tool with caution.

Programming the OOB demo using MSP430Flasher

1. Verify MSP430Flasher installation.

Where did you install the MSP430Flasher program? Please write down the path here:

 __/MSP430Flasher.exe

Hint: If you have not installed this executable, either return to
the installation guide to do so, or you may skip this optional
lab exercise.

2. Edit / Verify DOS batch program in a text editor.

 We created the ue.bat file to allow you to program the User Experience OOB demo to your
Launchpad without CCS. Open the following file in a text editor:

C:\msp430_workshop\<target>\lab_02d_flasher\oob.bat

 Verify – and modify, if needed – the two directory paths listed in the .bat file. For example:

CLS

C:\ti\MSP430Flasher_1.3.3\MSP430Flasher.exe -n MSP430F5529 -w
"C:\msp430_workshop\F5529_usb\workspace\OutOfBox_EmulStorageKeyboards\Debug\OutOfBox_EmulStorageKeyboards.txt" -v

CLS

C:\ti\MSP430Flasher_1.3.3\MSP430Flasher.exe -n MSP430FR5969 -w
C:\msp430_workshop\FR5969_fram\workspace\OutOfBox_FR5969\Debug\OutOfBox_FR5969.txt" -v

CLS

C:\ti\MSP430Flasher_1.3.3\MSP430Flasher.exe -n MSP430FR4133 -w
C:\msp430_workshop\FR4133_fram\workspace\OutOfBox_FR4133\Debug\OutOfBox_FR4133.txt" -v

Where: -n is the name of the processor to be programmed
 -w indicates the binary image
 -v tells the tool to verify the image

 We used the default locations for MSP430Flasher and our lab exercises. You will have to
change them if you installed these items to other locations on your hard drive.

Lab 2 – CCStudio Projects

2 - 48 MSP430 Workshop - Programming C with CCS

3. Open up a DOS command window.

 One way to do this is by typing “command” in Windows “Start” menu, then hitting Enter.

 After starting command, it should open to something similar to this:

4. Navigate to your lab_02d_flasher folder.

 The DOS command for changing directories is: “cd”

cd C:\msp430_workshop\<target>\lab_02d_flasher\

 Once there, you should be able to list the directories contents using the dir command.

dir

 Lab 2 – CCStudio Projects

MSP430 Workshop - Programming C with CCS 2 - 49

5. Run the batch file to program the out-of-box executable to your board.

oob.bat

 You should see it running … here’s a screen capture we caught mid-programming:

 If the information echoed by MSP430Flasher went by too fast on the screen, you can review
the log file it created. Just look for the ‘log’ folder inside the directory where you ran
MSP430Flasher.

6. Once again, verify the Launchpad program works.

Hint: If you have trouble finding the binary hex file (or in the next section, creating the binary
hex file), we created a subdirectory in Lab2c called “local_copy” and placed the two
binary files along with their respective .bat files.

Notes:

 Lab 2 – CCStudio Projects

MSP430 Workshop - Programming C with CCS 2 - 51

Programming Blinky with MSP430Flasher

We can use this same utility to burn other programs to our target. Before we can do that, though,
we need to create the binary file of our program. The UE app already did this as part of their build
process, but we need to make a quick modification to our project to have it build the correct
binary format for the flasher tool.

7. Open your lab_02b_blink project.

8. Open the project properties for you project.

 With the project selected, hit Alt-Enter.

9. (CCSv6) Change the following settings in your project, as shown below:

Hint: This procedure is documented at:
http://processors.wiki.ti.com/index.php/Generating_and_Loading_MSP430_Binary_Files.

10. Rebuild the project.

 If you don’t rebuild the project, the .txt binary might not be generated if CCS thinks the
program is already built.

Clean the project
Build the project

11. Verify that lab_02b_blink.hex (or lab_02b_blink.txt) was created in the
/Debug directory.

lab_02b_blink.txt

12. Open blink.bat with a text editor and verify all the paths are correct.

C:\msp430_workshop\<target>\lab_02d_flasher\blink.bat

 Note that you may need to change the name of the file in .bat depending on the file extension
needed for your program (either .hex or .txt).

Lab 2 – CCStudio Projects

2 - 52 MSP430 Workshop - Programming C with CCS

13. Run blink.bat from the DOS command window.

 When done programming, you should see the LED start blinking.

Cleanup

14. Close your lab_02b_blink project.

15. You can also close the DOS command window, if it’s still open.

Using GPIO with MSP430ware

Introduction
In the previous lab exercise, we blinked an LED on the MSP430 Launchpad, but we didn’t write the
code – we were able to import a generic ‘blink’ template that ships with CCStudio.

This chapter explores the GPIO (general purpose bit input/output) features of the MSP430 family. By
examining the hardware operation of the I/O pins, as well as the registers that control them, we gain
insight into the many ways we can utilize these features.

To make programming easier, we’ll use the driver library (DriverLib) component of MSP430ware.
While not actually a set of “drivers” in the traditional sense, this library provides us the software tools
to quickly build and deploy our own driver code for MSP430 devices.

Learning Objectives

Objectives

- List 3 components of MSP430ware
- Describe (and name) the GPIO control registers
- Implement the steps needed to use MSP430ware

DriverLib in a CCS project
- Show how to disable the watchdog timer
- Lab – Use MSP430ware to blink and LED and

read a button on the MSP430 Launchpad

MSP430 Workshop - Using GPIO with MSP430ware 3 - 1

MSP430ware (DriverLib)

Chapter Topics
Using GPIO with MSP430ware ... 3-1

MSP430ware (DriverLib) ... 3-3
Installing MSP430ware ... 3-3
DriverLib .. 3-4
DriverLib Modules ... 3-5
Programming Methods – Summary .. 3-5

MSP430 GPIO .. 3-6
GPIO Basics .. 3-6

Input or Output .. 3-7
GPIO Output ... 3-8
GPIO Input .. 3-9
Drive Strength ... 3-10

Flexible Pin Useage (Muxing) ... 3-11
Pin Selection ... 3-12

Devices with Multiple Pin Selection Registers .. 3-13
Port Mapping ... 3-14

Summary ... 3-15
Before We Get Started Coding ... 3-17

1. #Include Files .. 3-17
2. Disable Watchdog Timer ... 3-18
3. Pin Unlocking (Wolverine only) ... 3-19

Lab 3 ... 3-21
Lab 3a Worksheet ... 3-23

MSP430ware DriverLib ... 3-23
GPIO Output ... 3-23

Lab 3a – Blinking an LED.. 3-25
Add MSP430ware DriverLib .. 3-27
Add the Code to main.c .. 3-30
Debug .. 3-31

Lab 3b – Reading a Push Button .. 3-33
GPIO Input Worksheet .. 3-33

File Management .. 3-35
Add Setup Code (to reference push button) ... 3-37
Modify Loop ... 3-38
Verify Code.. 3-39

Optional Exercises .. 3-39
Chapter 3 Appendix .. 3-41

3 - 2 MSP430 Workshop - Using GPIO with MSP430ware

 MSP430ware (DriverLib)

MSP430ware (DriverLib)
MSP430ware is a bundle of Libraries, Examples and Tools supporting the MSP430 family of
microcontrollers. To simplify the installation of all these elements, they have been bundled together
into a single (.exe) file.

MSP430ware
 Libraries

 DriverLib*
 Graphics
 USB Stack
 CapTouch
 MathLib
 IEC60730

 Examples
 All device

generations
 Development

boards
 Software Tools

 Grace
 ULP
 Optimization

Advisor

* Other tools/libraries covered in later workshop chapters

Installing MSP430ware
When you install MSP430ware as part of CCSv6 – or from the stand-alone MSP430ware installer
downloaded directly from the TI website – it is, by default, installed to,

C:\ti\msp430\MSP430ware_1_97_00_47\

When MSP430ware is updated, they increase the revisions numbers – for example, from
1_60_02_09 to 1_80_01_03. Note that it’s possible that our lab exercises may show a slightly older
version of the MSP430ware libraries.

To update MSP430ware, you by using the auto-update feature of CCS. Alternatively, you can download the
stand-alone installer from the MSP430ware webpage.

MSP430 Workshop - Using GPIO with MSP430ware 3 - 3

http://www.ti.com/tool/msp430ware

MSP430ware (DriverLib)

DriverLib
The MSP430ware library used most often in this workshop will be the Driver Library – often called
DriverLib.

To quote the DriverLib documentation (we couldn’t have said this better ourselves):
 The Texas Instruments® MSP430® Peripheral Driver Library is a set of drivers for accessing the peripherals found on the

MSP430 5xx/6xx family of microcontrollers. While they are not drivers in the pure operating system sense (that is, they do
not have a common interface and do not connect into a global device driver infrastructure), they do provide a mechanism
that makes it easy to use the device’s peripherals.

While we recommend that you read the entire “Introduction” in the DriverLib users guide (look in the
“doc” folder within the DriverLib folder), but this statement does a good job stating the intent of the
driver library.

In the following graphic, you can see that the Driver Library provides a convenient way to program the
MSP430 peripherals in an easy-to-read (hence easy-to-maintain).

Driver Library vs Traditional C Coding (PWM example)

 Driver Library offers easy-to-understand
functions

 bo more cryptic registers to configure
 Cunctional coding of peripherals rather than

bitwise programming
 High-level AtL makes it easy to port code

between most aSt430 devices
 ainimal overhead

In the previous chapter, we showed you the method of “Traditional C code with Header Files”. In a
few rare cases, you might still want to use the Header File symbols; in fact, DriverLib itself utilizes
some of these symbols, so they are both compatible with each other.

This said, the convenience of DriverLib’s API easily makes it the most desirable method of
programming MSP430 peripherals.

On a side note, you might remember a similar diagram (to that above) from the previous chapter. One
big difference is that diagram shows an additional, higher-level layer called Energia. Energia (the
Arduino port for TI microcontrollers) provides a convenient, portable means of programming MSP430
peripherals – in fact, it’s even easier to use than DriverLib. Once again, you can even mix the two
programming paradigms. For some, this is a godsend, for others, it’s one abstraction layer too much;
therefore, most of the chapters in this workshop will focus on DriverLib. Please check out the
“Energia” chapter, though, if you’re interested in using the Arduino port for rapid prototyping (or
production coding).

3 - 4 MSP430 Workshop - Using GPIO with MSP430ware

 MSP430ware (DriverLib)

DriverLib Modules
For the most part, DriverLib is organized by peripheral modules. Each peripheral has its own API
specification; this provides good modularity and makes it easy to reuse peripheral code across
devices whose peripherals are in common. There are cases where one module may rely on another,
but in most cases they are independent API sets.

MSP430ware DriverLib Modules

 Software modules tend to match 1-to-1 with hardware peripherals
 Some of the module names above have been abbreviated
 Not all devices have all hardware (and thus, software) modules
 DriverLib is not currently available for MSP430 ValueLine devices

Programming Methods – Summary
Over the past two chapters we have introduced four ways to program the MSP430. They are listed
below along with the chapters (and courses) they are discussed in.

Summary

Name 4 ways to program GPIO:

1. ___

2. ___

3. ___

4. ___

Using device specific header & command files (.h/.cmd) Ch2

aSt430ware DriverLib (F5xx and Fw59xx devices) Ch3

Energia Ch11

Grace graphical driverlib tool (Value-line and Fw58/59xx devices) *

*see Chapter 8 in the “G2553 Value-Line Launchpad Workshop”

* http://processors.wiki.ti.com/index.php/Getting_Started_with_the_MSP430G2553_Value-Line_LaunchPad_Workshop

Used in
this

chapter

MSP430 Workshop - Using GPIO with MSP430ware 3 - 5

http://processors.wiki.ti.com/index.php/Getting_Started_with_the_MSP430G2553_Value-Line_LaunchPad_Workshop

MSP430 GPIO

MSP430 GPIO

GPIO Basics
General Purpose Bit Input/Output (GPIO) provides a means of controlling – or observing – pin values
on the microcontroller. This is the most basic service provided by processors.

The MSP430 provides one or more 8-bit I/O ports. The number of ports is often correlated to the
number of pins on the device – more pins, more I/O. The I/O port bits (and their related pins) are
enumerated with a Port number, along with the bit/pin number; for example, the first pin of Port 1 is
called: P1.0.

Why did we say pin/bit number? Each I/O pin is individually controllable via CPU registers. For
example, if we want to read the input value on P1.0, we can look in bit 0 of the register called P1IN.
There are a number of registers used to view and control the I/O pins. In this chapter we’ll examine
most of them; though, a few – such as those related to interrupts – will be explored in a later chapter.

Note: As mentioned in the previous paragraph, many GPIO pins can be used to trigger interrupts to
the CPU. The number of pins that support interrupts depends upon which device you’re
using. Most devices support interrupts with Ports 1 and 2, but make sure you reference your
device’s datasheet.

3 - 6 MSP430 Workshop - Using GPIO with MSP430ware

 MSP430 GPIO

Input or Output
Each GPIO pin is individually controllable – that is, you can configure each pin to be either an input or
an output. This is managed via the DIR register; for example, to set P1.7 to be an output you would
need to set P1DIR.7 = 1 (as shown below).

PxDIR (Pin Direction): Input or Output

7 6 5 4 3 2 1 0
P1IN

P1OUT
P1DIR 1 1

P1IN.7

P1OUT.7

P1DIR.7

#include <driverlib.h>

GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0 + GPIO_PIN7);

 PxDIR.y: 0 = input Register example:
1 = output P1DIR |= 0x81;

 MSP430ware example:

“1”

Remember that we had multiple programming methodologies? Our graphic above shows us two of
them.
• You’ll see the “Register example” above uses C code to set the P1DIR register to a given hex

value.
• On the other hand, in the “MSP430ware example”, the DriverLib function allows you to set one or

more pins of a given port as an output. (By the way, to set up the pin as an input, you would use
the GPIO_setAsInputPin() function.)

Both methods will end up setting the same registers to the same bit values, though nowadays most
teams prefer the more intuitive coding of the DriverLib example. Why? Because you don’t really even
have to know the register details to understand that pins 0 and 7 are set up as outputs.

Note: As stated earlier in the chapter, the other two programming methods are discussed
elsewhere. The Energia method is discussed in its own chapter. Arduino has predefined
function names for setting I/O pins. Similarly, the GRACE tool is discussed in its own chapter
– which as of this writing is only found in the Value-Line Launchpad version of this workshop.

With the direction configured you will either use the respective IN or OUT register to view or set the
pin value (as we’ll see on the next couple pages).

MSP430 Workshop - Using GPIO with MSP430ware 3 - 7

MSP430 GPIO

GPIO Output
Once you’ve configured a pin as an output with the PxDIR register, you can set the pins value using
the PxOUT register. For P1.7, this would be the P1OUT register.

GPIO Output

7 6 5 4 3 2 1 0
P1IN x

P1OUT 1

P1DIR 1

P1IN.7

P1OUT.7

P1DIR.7
“1”

“1”
“1”

GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN7);

 PxOUT.y: 0 = low Register example:
1 = high P1OUT |= 0x80;

 MSP430ware example:

Once again, the DriverLib GPIO_setOutputHighOnPin() or GPIO_SetOutputLowOnPin()
functions are the easiest way to write to the PxOUT registers. You can set multiple pins/bits by or’ing
(+) them together (similar to the P1DIR example on the previous page).

3 - 8 MSP430 Workshop - Using GPIO with MSP430ware

 MSP430 GPIO

GPIO Input
Reading a pin’s value is done by reading the PxIN register. The GPIO_getInputValue() DriverLib
function returns this value to a variable in your program.

Enable resistor

GPIO Input (Resistors)

7 6 5 4 3 2 1 0
P1IN x

P1OUT 1

P1DIR 0

P1REN 1

P1IN.7

P1OUT.7

P1DIR.7

P1REN.7

unsigned short usiButton = 0;
GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P1, GPIO_PIN7);
usiButton = GPIO_getInputPinValue(GPIO_PORT_P1, GPIO_PIN7);

 Input pins are held in high-impedance (Hi-Z) state, so
they can react to 0 or 1

 When not driven, Hi-Z inputs may float up/down …
prevent this with pullup/pulldown resistors

 PxREN enables resistors
PxOUT selects pull-up (1) or -down (0)

 Lower cost devices may not provide up/down resistors
for all ports

Input pins are slightly more complicated than output pins. While the PxDIR function selects whether a
pin is used for an input or output, your input pin may need further configuration.

When using a pin as an input, what value does the pin have when it is not being driven by external
hardware? Unfortunately, when not being driven, an input pin ‘floats’ – that is, it can change state
arbitrarily. Not only is this undesirable from a logical point of view, but even worse, power is
consumed every time the pin changes state. The common solution is to tie the pin high (or low)
through a resistor. When driven, the external signal can override the weak pull-up (or pull-down);
otherwise the resistor holds the input to a given value.

To minimize system cost and power, most MSP430 I/O ports provide internal pull-up and pull-down
resistors. You can enable these resistors via the PxREN (Resistor ENable) register bits. When
PxREN is used to enable these resistors, the associated PxOUT bit lets you choose whether the pull-
up or pull-down resistor is enabled.

Of course, the easiest way to configure the pull-up or pull-down resistor is to use one of the two GPIO
DriverLib functions:

 GPIO_setAsInputPinWithPullUpResistor()

 GPIO_setAsInputPinWithPullDownResistor()

Note: Another feature of input pins is their ability to generate CPU interrupts. We won’t cover those
details in this chapter; rather, we’ll save that discussion until the Interrupts chapter.

MSP430 Workshop - Using GPIO with MSP430ware 3 - 9

MSP430 GPIO

Drive Strength
The F5xx/6xx series of MSP430 devices allow the designer to select whether they want outputs to be
driven with lower or higher drive strength. The benefit of this extra feature is that it allows you to tune
or power dissipation of your system. You can minimize the extra power usage of outputs when and
where it is not needed.

3 - 10 MSP430 Workshop - Using GPIO with MSP430ware

 MSP430 GPIO

Flexible Pin Useage (Muxing)
Microcontroller designers have to deal with two conflicting user needs:

 More Capability vs Lower Cost

Users want as many features as possible on their processors; the more peripheral options, the better.
For example, some users may want 4 serial ports, where others might need 4 I/O ports.

The more pins you add to a device, the greater the cost. (Not only does this make the device more
expensive, but it adds to the overall board/system cost.) Therefore, if we added pins for every feature
stuffed into our microcontrollers, the cost quickly becomes untenable.

The way this is managed is by ‘muxing’ different functions onto each pin. In other words, you can
select which function you want to use for any given pin on the device. For example, looking at pin 14
in the following diagram, it can be used as either GPIO pin P1.1 or for Timer A0.

Controlling GPIO Ports

 Most pins on MCU’s are multiplexed to provide you with greater
flexibility – which peripherals do you want to use in your system

While these pin configurations can be changed at runtime, most users do not find this very useful.
The primary reason for this flexibility is so you can choose which features are needed for your specific
system.

Note: Please do not select your specific device – or layout your board’s hardware – before deciding
which features are needed for your system.

If you have done microcontroller system design in the past, this is probably an obvious
statement, but it’s a mistake we’ve seen a number of times in the past.

MSP430 Workshop - Using GPIO with MSP430ware 3 - 11

MSP430 GPIO

Pin Selection
The PxSEL register lets you choose whether to use a peripheral or GPIO functionality for each pin.
As you can see in the diagram below, DriverLib provides functions to specify this functionality.

Pin Flexibility
7 6 5 4 3 2 1 0

P1IN
P1OUT
P1DIR

P1REN
P1DS
P1SEL

IN / OUT

Peripheral
(e.g. Timer)

 Most pins on MCU’s are multiplexed to provide
you with greater flexibility

 Often, two (or more) digital peripherals are
connected to the pin – in this case, some families
use PxDIR to select between them, while others
have multiple PxSEL registers

P1SEL.1

“PxSEL = 0”

“PxSEL = 1”

GPIO_setAsPeripheralModuleFunctionOutputPin(port, pin);
GPIO_setAsPeripheralModuleFunctionInputPin(port, pin);

3 - 12 MSP430 Workshop - Using GPIO with MSP430ware

 MSP430 GPIO

Devices with Multiple Pin Selection Registers
Some MSP430 devices actually have two pin select registers, as this is needed to support the greater
number of pin mux options.

P1SEL0 & P2SEL1: FR5969 Example

// Set pin P1.0 to output TA0.1 (which is the CCR1 output signal for TIMER0_A)
GPIO_setAsPeripheralModuleFunctionOutputPin(

GPIO_PORT_P1, // I/O Port number
GPIO_PIN0, // Pin Number
GPIO_PRIMARY_MODULE_FUNCTION); // Which peripheral function

(primary, secondary, ternary)

(Crom the ‘Cw5969 User’s Guide)
 The User’s Guide

tells us how to read
the datasheet

 DriverLib uses
L/h Cunction name

(Crom the ‘Cw5969 datasheet)

In the device User’s Guide, they generically name the different peripheral I/O selections (first, second,
and third) with the names:

• Primary
• Secondary
• Tertiary

Because the specific peripheral selections can vary from device-to-device, the detailed options are
not described in the User’s Guide, but rather in each device’s datasheet. Unfortunately, though, the
datasheets do not use the actual Primary/Secondary/Tertiary terminology. That said, you can match
the PSEL bit values to figure this out. For example, on the ‘FR5969 (in above diagram):

If P1DIR = 1, then TA0.1 is the Primary selection since P1SEL1.0:P1SEL2.0 = 01

Another way to say this is that because the datasheet shows that the TA0.1 PSEL values are “01”, we
know from the User’s Guide that this corrolates to the Primary function.

The DriverLib functions let you set both “Select” registers with one call. This is done by adding a third
argument in which to specify which I/O function you want to enable:

• GPIO_PRIMARY_MODULE_FUNCTION
• GPIO_SECONDARY_MODULE_FUNCTION
• GPIO_TERNARY_MODULE_FUNCTION

You can see an example of this function in the above graphic.

As we’ve seen, you can figure out which enumeration to use by comparing the selections from both
the datasheet and user’s guide. (In fact, ‘FR5969 users will do this for the Timer chapter’s lab exercise.)

User
Guide

Datasheet

MSP430 Workshop - Using GPIO with MSP430ware 3 - 13

MSP430 GPIO

Port Mapping
The MSP430F5xx and ‘F6xx devices provide the Port Map module which provides additional flexibility
for mapping functions to pins. The signals that can be mapped to the port mapping pins are
highlighted with a PM_ prefix.

Port Map (PM) Module (F5xx only)
 Port mapping allows for additional

digital signals to be mapped to one or
several output pins:
 PM_xxx = port-mapable signal
 Datasheet specifies which ports can

be mapped
 By default, single configuration per

reset (PUC)
 Port Mapping Reconfigure bit

(PMRECNFG) allows for
runtime re-configurations

 Port mapping configuration is
password protected

On the device shown above, only Port 4 has been designed with the Port Mapping (PM) feature.

3 - 14 MSP430 Workshop - Using GPIO with MSP430ware

 MSP430 GPIO

Summary
The following graphic summarizes the GPIO features (and nomenclature) across three MSP430
devices. These three devices provide a good cross-section of MSP430 sub-families:
• The F5529 is an example of the ‘F5xx/6xx series.

• ‘FR5969 is one of the new Wolverine FRAM devices.

• ‘G2553 is the Value-Line processor found on the current Value-Line Launchpad.

GPIO Summary: F5529 vs FR5969 vs G2553
PA PB PC PD PJ*

(4-bit)

Reset
Value
(PUC)P1† P2 P3 P4 P5 P6 P7 P8

PxIN

All
Cour

Devices
support

torts 1 and 2

F5529
Fw4133
Fw5969
(only)

F5529 (t8 x3-bits)
Fw4133 (t8 x12-bits)

F55
&

Fw59

undef
PxOUT unchg
PxDIR 0x00
PxREN 0x00
PxDS 0x00
PxSEL 0x00
PxIV

Fw5969 (only)

0x00
PxIES unchg
PxIE 0x00
PxIFG 0x00

F5529/Fw4133 only (80-pin)
Fw5969 only (48-pin) * tJ: 4-bits shared with JTAD pins
D2553 only (20-pin) †t1: 4-bits shared with JTAD pins (‘D2553)

 Each numbered port has 8 bits, unless noted otherwise
 At reset, all I/O pins are set to … input
 You should initialize all pins (to prevent floating inputs)
 Analog functions can ‘preempt’ pin function selection

What can we derive from the table above?
• The various GPIO memory-mapped registers are shown here listed down the first column. Most

of these registers were described in the preceding discussion.

• All three devices (and most all MSP430 devices) contain two 8-bit I/O ports (P1, P2) which
provide the GPIO functionality – including interrupt inputs. We demonstrated this above by using
the ‘black’ fill under ports P1 and P2; notice it covers every register’s row.

• Alternatively, you can program ports 1 and 2 simultaneously by writing to port “PA”. This means
by writing to PAOUT, you can concurrently configure the outputs of all 16-pins.

• The ‘G2553 Value-Line device only includes P1 and P2. (There just aren’t enough pins on this
device to support more I/O ports.)

• The new ‘FR5969 Wolverine devices added interrupt support for PB (i.e. ports P3 & P4).

• Only the ‘F5529, of our three example devices, has enough pins to support ports P5 – P8. Note,
though, that the P8 port only contains 3-bits.

• Port PJ is unique. For these devices, it’s only 4-bits wide. These signals represent the 4 JTAG
pins; although, any of these four pins can also be reconfigured for GPIO.

MSP430 Workshop - Using GPIO with MSP430ware 3 - 15

MSP430 GPIO

The following diagram summarizes the GPIO API found in MSP430ware DriverLib. Not only have we
listed the various functions, but we’ve indicated which GPIO registers they write to (or read from).

MSP430ware GPIO Summary
PA PB

P1† P2 P3 P4

PxIN

All
Cour

Devices
support

torts 1 and 2

F5529
Fw4133
Fw5969
(only)

PxOUT

PxREN

PxDIR

PxSEL

PxDS

PxIV

Fw5969 (only)
PxIES

PxIE

PxIFG

DtLO_setDriveStrength

DtLO_setAsLnputtin
DtLO_setAsOutputtin
DtLO_setAsteripheralaoduleFunctionLnputtin

DtLO_setAsteripheralaoduleFunctionOutputtin

GPIO_getInputPinValue
GPIO_setOutputHighOnPin
GPIO_setOutputLowOnPin
GPIO_toggleOutputOnPin

DtLO_setAsLnputtinWithtullDownwesistor
DtLO_setAsLnputtinWithtullUpwesistor

DtLO_interruptEdgeSelect
DtLO_disableLnterrupt
DtLO_enableLnterrupt
DtLO_getLnterruptStatus
DtLO_clearLnterruptFlag

3 - 16 MSP430 Workshop - Using GPIO with MSP430ware

 Before We Get Started Coding

Before We Get Started Coding
Getting Your Program Started

We cover system initialization details in Chapter 4,
but here are a few items needed for Lab 3:
1. Lnclude required #include files
2. Turn off the Watchdog timer
3. Unlock pins (CwAa devices)

1. #Include Files
If you’ve programmed in C for very long, you have probably become accustomed to using Include
files. As described in the last chapter, every MSP430 device has a specific .h file created to define its
various registers and symbols. When using the “Register” model of programming, you would need to
include this header file.

To make programming easier, the DriverLib team combined all their header files into a single
“driverlib.h” file; in fact, this header file also pulls in the appropriate .h file for your device.

#include <driverlib.h>

GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN7);

Include Files
 Like most C programs, we

need to include the required
header files

 Each aSt430 device has its
own .h file to define various
symbols and registers –
include this using msp430.h

 DriverLib defines all peripherals available for each given
device – include hw_memmap.h (from /inc folder)

 .ut to make DriverLib easy, TL created a single header file
to link in: driverlib.h

MSP430 Workshop - Using GPIO with MSP430ware 3 - 17

Before We Get Started Coding

2. Disable Watchdog Timer
The MSP430 watchdog timer is always enabled. If you’re just trying to get your first program to run,
you won’t need this feature, thus you can stop this timer with the DriverLib function shown below.

#include <driverlib.h>

WDT_A_hold(WDT_A_BASE); //Stop watchdog timer

Disable WatchDog Timer

 aSt430 watchdog timer is
always enabled at reset

 Watchdog timer requires
modification password (0x5A)

 Easiest solution:
.egin your program with
DriverLib (WDT_A) function

Note: We discuss the watchdog timer in more detail during the next chapter.

3 - 18 MSP430 Workshop - Using GPIO with MSP430ware

 Before We Get Started Coding

3. Pin Unlocking (Wolverine only)
Pin locking is a feature that holds the last state of all GPIO pins when a device is put into its lowest
power modes – that is, when power is removed from the memory and registers. Without this ‘locking’
feature, the pins would lose their values when these power modes are entered.

The pin-locking feature freezes the state of each pin. That is, the pins are effectively disconnected
from their associated register bits (i.e. PxOUT) – you can think of there being a switch along the
vertical dashed line shown below.

0
1

Pin UnLocking (Default for FRAM devices)

0
0
1
0

0
1

1

GPIO Control Registers (IN, OUT, etc)

LOCKLPM5 pin locking

 PM5CTL0.LOCKLPM5 bit disconnects
registers from pins – allows pin values to
remain constant during low power modes
(LPM3.5/4.5)

 Bit automatically set upon entering
LPMx.5 mode (see Low Power Chapter)

 FRxx FRAM devices always power-on with
this mode set – you must clear it for pins
to respond to your register settings

 Hint: Unlock pins before clearing and
enabling GPIO port interrupts

GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN7);
GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN7);

PMM_unlockLPM5(); // unlock pins after setting all gpio registers

Many devices (prior to the FRAM), such as the ‘F5529, provide the pin-locking feature – although, it’s
not enabled by default. The new ‘FRxx (FRAM) devices, though, have this feature enabled by default
… therefore, the pins are always locked at power-up.

When this feature is enabled, there is an additional ‘unlocking’ step required in order for your I/O to
respond to the values written to the GPIO control registers.

As shown above, it is suggested that you set up your GPIO registers and then unlock the registers
using the PMM_unlockLPM5() function.

MSP430 Workshop - Using GPIO with MSP430ware 3 - 19

Before We Get Started Coding

Notes

3 - 20 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Lab 3
We begin with a short Worksheet to prepare ourselves for coding GPIO using MSP430 DriverLib.

Next you’ll implement the blinking LED example using DriverLib, finally adding a test of the push
button in the final part of the lab exercise.

Lab 3 – Blink with MSP430ware
 Lab Worksheet… a Quiz, of sorts on:

 GtLh
 DriverLib
 tath Variables

 Lab 3a – Embedded ‘Hello World’
 Create a aSt430ware DriverLib GtLh project
 Use LDE path variables to make your

project portable
 Write code to enable LED
 Use simple (inefficient) delay function

to create blinking LED
 Use CCS debugging windows to view

registers and memory

 Lab 3b – wead Launchpad tush .utton
 Test the state of the push button
 hnly blink LED when button is pushed

(again, inefficient, but we’ll fix that in Chapter 5)

Here’s a helpful Port/Pin summary for the Launchpad’s LEDs and Buttons.

Launchpad Pins for LEDs/Switches
Launchpad C5529 Cw4133 Cw5969 LED Color

LED1 t1.0 t1.0 t4.6 wed LED
(with Jumper)

LED2 t4.7 t4.0 t1.0 Green LED

.utton 1 t2.1 t1.2 t4.5

.utton 2 t1.1 t2.6 t1.1

MSP430 Workshop - Using GPIO with MSP430ware 3 - 21

Lab 3

Lab3 Abstract
Lab 3a – GPIO
This lab creates what is often called, the "Embedded Hello World" program.

Your code will blink the Launchpad’s LED example using the MSP430ware DriverLib library. While
this is a simple exercise, that’s perfect for learning the mechanics of integrating DriverLib.

Part of learning to use a library involves adding it to our project and adding its location the compiler’s
search path.

Finally, along with single-stepping our program, we will explore the "Registers" window in CCS. This
lets us view the CPU registers, watching how they change as we step thru our code.

Note: This code example is a BAD way to implement a blinking light ... from an efficiency
standpoint. The _delay_cycles() function is VERY INEFFICIENT. A timer, which we’ll learn
about in a later chapter, would be a better, lower-power way to implement a delay. For our
purposes in this chapter, though, this is an easy function to get started with.

Lab 3b - Button
The goal of this lab is to light the LED when the SW1 button is pushed.

After setting up the two pins we need (one input, one output), the code enters an endless while loop
where it checks the state of the push button and lights the LED if the button is pushed down.

Basic Steps:
- Cut/Paste previous project
- Delete/replace previous while loop
- Single-step code to observe behavior
- Run, to watch it work!

Note: "Polling" the button is very inefficient!

We'll improve on this in both the Interrupts and Timers chapters and exercises.

Hint: The MSP430 DriverLib Users Guide is a good resource to help you answer the questions on
the next page. It can be found in the MSP430ware “doc” folder:
 \MSP430ware_1_97_00_47\driverlib\driverlib\doc\MSP430F5xx_6xx\
 \MSP430ware_1_97_00_47\driverlib\driverlib\doc\MSP430FR2xx_4xx\
 \MSP430ware_1_97_00_47\driverlib\driverlib\doc\MSP430FR5xx_6xx\

3 - 22 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Lab 3a Worksheet
MSP430ware DriverLib
1. Where is your MSP430ware folder located? (You should have written this down in the Installation Guide)

2. To use the MSP430ware GPIO and Watchdog API, which header file needs to be included in
your source file? (Hint: We discussed this during the presentation in the “Before We Get Started” section.)

#include < ________________________ >

3. Which DriverLib function stops the Watchdog timer?
(Hint: Look in DriverLib User’s Guide or the “Before We Get Started” section of this chapter.)

__ ;

GPIO Output
4. Which I/O pin on Port 1 is connected to an LED (on your Launchpad)?

 What two GPIO DriverLib functions are required to initialize this GPIO pin (from previous
question) as an output and set its value to “1”?

 (Hint: Look at the chapter slides titled: “PxDIR (Pin Direction)” and “GPIO Output”.)

___;

___;

 For FRAM devices, what additional function is needed to make the I/O work (i.e. to connect the
GPIO registers to the pin)?

___;

FR5969

FR4133

MSP430 Workshop - Using GPIO with MSP430ware 3 - 23

Lab 3

5. Using the _delay_cycles() intrinsic function (from the last chapter), write the code to blink an LED
with a 1 second delay setting the pin (P1.0) high, and then low?

 (Hint: What two GPIO functions set an I/O Pin high and low?)

#define ONE_SECOND 800000

while (1) {

 //Set pin to “1” (hint, see question 4)

 __ ;

 _delay_cycles(ONE_SECOND);

 // Set pin to “0”

 ___ ;

 _delay_cycles(ONE_SECOND);

}

Double-check your answers against ours … see the Chapter 3 Appendix.

3 - 24 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Lab 3a – Blinking an LED
1. Close any open project and file.

 This helps to prevent us from accidentally working on the wrong file, which is easy to do when we
have multiple lab exercises that use “main.c”. If a previous project is open:

Right-click on the project and select “Close Project”

 Also, if the Target Configurations window is open, please close it.

2. Create a new project.

Name the new project: lab_03a_gpio

Fill in the new project dialog as shown below, then click Finish.

 If you have questions about creating CCS projects, you can refer back to Lab 2b.

Note: If you’re working with the ‘FR5969 or ‘FR4133, please replace the ‘F5529 references shown above with
those required for your Launchpad.

Also, your compiler version may be more recent than the one shown in the screen capture.

MSP430 Workshop - Using GPIO with MSP430ware 3 - 25

Lab 3

3. Notice that the main() function already turns off the watchdog timer.

 Although this is not required, you can replace this “register-based” code with the DriverLib
function. Either way works fine. If you want to use DriverLib, please reference your Worksheet
answer #3 (on page 3-23).

4. Add required header files.
 Add the #include header required by MSP430ware DriverLib. (See Worksheet question #2).

Hint: The default main.c created by the new project wizard already has
#include <msp430.h>. You can replace this with the DriverLib #include. It’s OK to
have both of them, but the DriverLib header file references msp430.h for you.

5. Build your program.

 Even though we haven’t added any code yet, try building the program.

???
6. Why the build error?

 Depending upon which version of CCS you have, you might have seen a question mark (?) in
front of the #include before you built the program.

 When building your program, you should have received a build error. What caused this error?

3 - 26 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Add MSP430ware DriverLib
Hopefully you answered the last question by saying that we need to add the DriverLib library to our
project. The question marks told us that CCS couldn’t find the header file.

Adding the DriverLib library is a two-step process:
• Import a copy of the library

• Include the location in the CCS build search path

7. Import MSP430ware DriverLib library to your project.

File → Import → Import... → General → File System

 Then select the version and path of MSP430ware you are using. Note: Your path may be slightly
different than what is shown below. (See Worksheet question #1.)

 After clicking Finish, you should notice the library folder was added to your project:

 driverlib/MSP430F5xx_6xx

 or one of these, depending on which Launchpad you’re using:

driverlib/MSP430FR5xx_6xx

driverlib/MSP430FR2xx_4xx

 You will need to expand
‘driverlib’ so that you can
choose the driverlib folder
for your architecture.

 Don’t forget to select your
project folder.

 Select ‘Create top-level
folder’

C:\ti\msp430\aSt430ware_1_97_00_47\drivelib\driverlib

‘C5529 US.

‘Cw5969 CwAa

‘Cw5969 CwAa

MSP430 Workshop - Using GPIO with MSP430ware 3 - 27

Lab 3

8. Update your project’s search path with the location of DriverLib header files.
 Along with adding the library, we also need to tell the compiler where to find it.

 Open the Include Options and add the directory to #include search path:

Right-click project → Properties

 Then select:

Build → MSP430 Compiler → Include Options

 And click the “Add” search path button.

 When the “Add directory path” dialog appears, you can add the path manually:

${PROJECT_ROOT}\driverlib\MSP430F5xx_6xx or \MSP430FR5xx_6xx

 or minimize typing errors by selecting it from the Workspace (as shown below).

3 - 28 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

 Select the driverlib folder and click OK.

 Clicking OK once more returns us to the project’s properties. Notice that the driverlib directory –

found inside the workspace & project directory – has now been added to the project #include
search path.

 After inspecting the new search path, you can close the project properties dialog.

9. Click the build toolbar button to verify that your edits, thus far, are correct.

MSP430 Workshop - Using GPIO with MSP430ware 3 - 29

Lab 3

Add the Code to main.c
10. Set up P1.0 as output pin.

 Reference Worksheet question #4 (page 3-23).

 Begin writing your code after the code that disables the watchdog timer as shown:

Hint: If you’re using the ‘FR5969 or ‘FR4133 Launchpad, don’t forget to add the line of code
which unlocks the pins. (Reference Worksheet question 4b (page 3-23).

11. Create a while{} loop that turns LED1 off/on with a 1 second delay.

 Reference Worksheet question #0 (page 3-24). Begin the while{} loop after the code you wrote in
the previous step (to set up the output pin).

 Also, don’t forget to add the #define for “ONE_SECOND” towards the top of the file.

12. Build your program with the Hammer icon.
 Make sure your program builds correctly, fixing any syntax mistakes found by the compiler. For

now, you can ignore any remarks or advice recommendation, we’ll explore this later.

13. Load and Run your program.
 Click the Debug button to start the debugger and download your program. Then click the Resume

button to run the code.

Does your LED flash? ___

 If it doesn’t, let’s hope following debug steps help you to track down your error.

 If it does, hooray! We still think you should perform the following debug steps, if only to better
understand some additional features of CCS.

14. Suspend the debugger.

Alt-F8

FR5969

FR4133

3 - 30 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Debug
15. Restart your program.

16. Open the Registers window and view P1DIR and P1OUT. Then single-step past the GPIO
DriverLib functions.

View → Registers

Expand Port_1_2, P1OUT and P1DIR as shown

 Then, single-step (i.e. Step Over – F6) until you execute this line:

GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);

Your register view should now look similar to this:

17. Single-step until you reach the _delay_cycles() function.

 You should see the P1OUT register change as you step over the appropriate function.

 Unfortunately, the “Step Over” command doesn’t step over _delay_cycles().

MSP430 Workshop - Using GPIO with MSP430ware 3 - 31

Lab 3

18. Set breakpoints on both GPIO_setAs … functions, then Run and check values in
Registers window.

 Since it’s difficult to step over _delay_cycles(), we’ll just run past them. Setting the breakpoints on
both lines where we change the GPIO pin value, we should see the LED toggle each time you
press run.

 Set breakpoints as shown below:

Then click Run several times stopping at each breakpoint and keeping your eye on the LED.

Note: Following these debugging steps, we ended up finding the problem in our original code. A
cut and paste error left us with two lines of code in our loop that both turned off the LED.
Oops!

While basic debugging techniques, these steps are powerful tools for finding and fixing
errors in your code.

19. If you’re using an FRAM Launchpad, you may want to exaine the PM5CTL0 register.

 If you’ve already run your code, the PM5CTL0.LOCKLPM5 should already have been cleared by
your program. It requires power-cycle to reset to set this to its initial condition. Follow these steps
to see your code “unlock” the pins on
the device.

a) If running, suspend your program.

Alt-F8

b) Open the register window and
display the LOCKLPM5 bit.

c) Perform a Hard Reset.

Run → Reset → Hard Reset

d) Then, restart the program.

e) Finally, single-step your program until you see the
LOCKLPM5 value change to 0.

FR5969

FR4133

3 - 32 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Lab 3b – Reading a Push Button
GPIO Input Worksheet
1. What three different DriverLib functions can set up a GPIO pin for input?

 Hint: One place to look would be the MSP430 DriverLib Users Guide found in the MSP430ware
folder: \MSP430ware_1_97_00_47\driverlib\driverlib\doc\MSP430F5xx_6xx\
 \MSP430ware_1_97_00_47\driverlib\driverlib\doc\MSP430FR2xx_4xx\
 \MSP430ware_1_97_00_47\driverlib\driverlib\doc\MSP430FR5xx_6xx\

2. What can happen to an input pin that isn’t tied high or low? (Hint: See “GPIO Input” topic on pg 3-9.)

3. Which I/O pin on Port 1 is connected to a Switch (on your Launchpad)?

 Assuming you need a pull-up resistor for a GPIO input, write the line of code required to setup
this pin as an input: (Hint: See “GPIO Input” topic on pg 3-9.)

___;

MSP430 Workshop - Using GPIO with MSP430ware 3 - 33

Lab 3

4. Complete the following code to read pin P1.1:

volatile unsigned short usiButton1 = 0;

while(1) {

 // Read the pin for push-button 2

 usiButton1 = __;

 if (usiButton1 == GPIO_INPUT_PIN_LOW) {

 // If button is down, turn on LED

 GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0);

 }

 else {

 // Otherwise, if button is up, turn off LED

 GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);

} }

5. In embedded systems, what is the name given to the way in which we are reading the button?
(Hint – it is not an interrupt.)

Check your answers against ours … see the Chapter 3 Appendix

3 - 34 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

File Management
We’re going to try another – easier – method of creating a new DriverLib project from scratch.

Use the driverlib project template

1. Terminate the debugger (if it’s still running).

2. Create a new driverlib project.
 There are a couple different ways to import the example projects, but we’ve picked the easiest

method, using the DriverLib project template.

 Create a new project – as you have done previously – but in this case you should select the
template, as shown below:

Empty Project with DriverLib Source

3. Quickly examine the new lab_03b_button Project.

 Looking at this project, you’ll see that it already has the DriverLib library imported into the project.
Also, the required #include search path entry has already been added to the project.

 Much thanks to the MSP430ware team for making this so easy!

MSP430 Workshop - Using GPIO with MSP430ware 3 - 35

Lab 3

Copy our code from the previous project

4. Delete the ‘empty’ main.c from the new project.

5. Copy/Paste main.c from lab_03a_gpio to lab_03b_button.

 You can easily copy and paste files right inside the CCS Project Explorer. Simply right-click on
the file (main.c) from the previous project and select “Copy”; then right-click on the new project
and select “Paste”.

 (Alternatively, we could have just copied and pasted the main() function from our previous lab project, but
we found it easier to copy the whole file.)

6. Close the previous lab: lab_03a_gpio.

 As we’ve learned, this should close the .c source files associated with those projects, which can
help us from accidentally editing the wrong file. (Believe us, this happens a lot.).

Right-click on the project and select “Close Project”.

7. Make sure the new project is active and then build the new lab, just to make sure
everything was copied correctly.

3 - 36 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Add Setup Code (to reference push button)
8. Open main.c for editing.

9. Before the main() function, add the global variable: usiButton1

volatile unsigned short usiButton1 = 0;

 Let’s explain some of our choices:

 Global variable: We chose to use a global variable because it’s in scope all the time. Since it
exists all the time (as opposed to a local variable), it’s just a bit easier to debug the code.
Otherwise, local variables are probably a better choice: better programming style, less prone to
naming conflicts and more memory efficient.

 Volatile: We’ll use this variable to hold the state of the switch, after reading it with our DriverLib
function.

Does this variable change outside the scope of C? ________________________________

 Absolutely; its value depends upon the pushbutton’s up/down state. That is why we must declare
the variable as volatile.

unsigned short … You tell us, why did we pick that? ______________________________

 usiButton1: The ‘usi’ is Hungarian notation for unsigned short integer. We added the ‘1’ to
‘Button’, just in case we want to add a variable for the other button later on. (We could have also
used the names ‘S1’ and ‘S2’ as they’re labeled on the Launchpad, but we liked ‘Button’ better.)

=0 … well, that’s just good style. You should always initialize your variables. Many embedded
processor compilers do not automatically initialize variables for you.

10. In main(), add code to set push button as an input with pull-up resistor.
 This setup code should go before the while{} loop. (And for the FRAM devices, we recommend

placing this code before the unlock LPM5 function.)

 And don’t forget, this code was the answer to Worksheet question #3 (page 3-33).

Hint: We should have recommended bringing a magnifying glass to read the silk screen on the
Launchpad board. It can be difficult to read the button (and LED) labels. It may easier to
reference the Quick Start sheet that came with your Launchpad.

MSP430 Workshop - Using GPIO with MSP430ware 3 - 37

Lab 3

Modify Loop
11. Modify the while loop to light LED when S2 push button is pressed.

 Comment out (or delete) LED blinking code and replace it with the code we created in the
Worksheet question #0 (page 3-34).

 At this point, your main.c file should look similar to following code. The ‘FR4133 code uses a
different pin number (P1.2).

// --
// main.c (for lab_03b_button project) (‘FR5969 Launchpad)
// --

//***** Header Files **
#include <driverlib.h>

//***** Global Variables **
volatile unsigned short usiButton1 = 0;

//***** Functions ***
void main (void)
{
 // Stop watchdog timer
 WDT_A_hold(WDT_A_BASE);

 // Set pin P1.0 to output direction and initialize low
 GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);
 GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);

 // Set switch 2 (S2) as input button (connected to P1.1)
 GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P1, GPIO_PIN1);

 // Unlock pins (required for 'FR5xx devices)
 PMM_unlockLPM5();

 while(1) {
 // Read P1.1 pin connected to push button 2
 usiButton1 = GPIO_getInputPinValue (GPIO_PORT_P1, GPIO_PIN1);

 if (usiButton1 == GPIO_INPUT_PIN_LOW) {
 // If button is down, turn on LED
 GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0);
 }
 else {
 // If button is up, turn off LED
 GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);
 }
 }
}

Hint: If you want to minimize your typing errors, you can copy/paste the code from the listing above. We
have also placed a copy of this code into the lab’s readme file (in the lab folder); just in case the
copy/paste doesn’t work well from the PDF file.

Copying from PDF will usually mess up the code’s indentation. You can fix this by selecting the
code inside CCS and telling it to clean-up indentation:

 Right-click → Source → Correct Indentation (Ctrl+I)

3 - 38 MSP430 Workshop - Using GPIO with MSP430ware

 Lab 3

Verify Code
12. Build & Load program.

13. Add the usiButton1 variable to the Watch Expression window.

 Hint: select the variable name before you right-click on it and add it to the Watch window.

14. Single-step project. Watch the LED and variable.

 Loop thru while{} multiple times with the button pressed (and not pressed), watching the variable
(and LED) change value.

15. Run the program.

 Go ahead and click the Run toolbar button and revel in your code, as the LED lights whenever
you push the button.

Note: This is not efficient code. It would be much better to use the push-button input pin as an
interrupt … which we’ll do in Chapter 5.

Optional Exercises
• Try this lab without pull-up (or pull-down) resistor.

Without the resistor, is the pushbutton’s value always consistent? (yes / no) _______________
• Try using the other LED on the board …

• … or the other pushbutton.

MSP430 Workshop - Using GPIO with MSP430ware 3 - 39

Lab 3

Notes

3 - 40 MSP430 Workshop - Using GPIO with MSP430ware

 Chapter 3 Appendix

Chapter 3 Appendix

1. Where is your aSt430ware folder located?

__
2. To use the aSt430ware GtLh and Watchdog AtL, which header file needs to

be included in your source file?
#include < ________________________ >

3. What DriverLib function stops the Watchdog timer?
__ ;

4a. Which L/h pin on tort 1 is connected to an LED (on your Launchpad)?

__
4b. What two GtLh DriverLib functions are required to initialize this GtLh pin

(from previous question) as an output and set its value to “1”?

__ ;
__ ;

4c. For the FRAM devices, what additional function is needed to make it work
(i.e. to connect the I/O to the pin)?
__ ;

Lab3a – Worksheet

driverlib.h

aost likely: C:\ti\msp430\MSP430ware_1_97_00_47\

WDT_A_hold(WDT_A_BASE)

GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0)

GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0)

PMM_unlockLPM5();

F5529/FR5969/FR4133: P1.0

Lab3a – Worksheet
5. Using the _delay_cycles() intrinsic function (from the last chapter),

write the code to blink an LED with a 1 second delay setting the
pin (P1.0) high, then low?
#define ONE_SECOND 800000

while (1) {

//Set pin to “1” (hint, see question 4)

___ ;

_delay_cycles(ONE_SECOND);

// Set pin to “0”

___ ;

_delay_cycles(ONE_SECOND);

}

GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0)

GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0)

MSP430 Workshop - Using GPIO with MSP430ware 3 - 41

Chapter 3 Appendix

1. What 3 function options can be used to set a pin for GPIO input?
Hint, one place to look would be the MSP430 Driverlib Users Guide found here:

\MSP430ware_1_97_00_47\driverlib\doc\<target>\

2. What can happen to an input pin that isn’t tied high or low?

3a. Which I/O pin on Port 1 is connected to a Switch (on your Launchpad)?

3b. Assuming you need a pull-up resistor for a GPIO input, write the line of code
required to setup this pin as an input:
___;

or ___;

Lab3b – Worksheet

The input pin could end up floating up or down. This uses
more power … and can give you erroneous results.

GtLh_setAsLnputtinWithtullUpwesistor (GtLh_thwT_t1, GtLh_tLb1)

GPIO_setAsInputPin()

GPIO_setAsInputPinWithPullDownResistor()

GPIO_setAsInputPinWithPullUpResistor()

GtLh_setAsLnputtinWithtullUpwesistor (GtLh_thwT_t1, GtLh_tLb2)

F5529/FR5969: P1.1 FR4133: P1.2

4. Complete the following code to read pin P1.1:
volatile unsigned short usiButton1 = 0;

while(1) {

// Read the pin for push-button S2

usiButton1 = ____________________________________;

if (usiButton1 == GPIO_INPUT_PIN_LOW) {

// If button is down, turn on LED
GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0);

}
else {

// Otherwise, if button is up, turn off LED
GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);

}
}

Lab3b – Worksheet

GtLh_getLnputtinValue (GtLh_thwT_t1, GtLh_tLb1)

“tolling”

5. In embedded systems, what is the name given to the way in which
we are reading the button? (Hint, it’s not an interrupt)

3 - 42 MSP430 Workshop - Using GPIO with MSP430ware

MSP430 Clocks & Initialization

Introduction
A fundamental part of any modern MCU is its clocking. While rarely a flashy part of system design, it
provides the heartbeat of the system. It becomes even more important in applications that depend upon
precise, or very low-power, timing.

The MSP430 provides a wealth of clock sources; from ultra-low-power, low-cost, on-chip clock sources to
high-speed external crystal inputs. All of these can be brought to bear through the use of 3 internal clock
signals, which drive the CPU along as well as fast and slow peripherals.

Along with clocking, though, there are a few other items that need to be initialized at system startup.
Towards the end of the chapter, we touch on the power management and watchdog features of the
MSP430.

Learning Objectives

Objectives

- List four MSP430 operating modes
- List the MSP430’s three internal clocks and

describe why there’s more than one
- Describe how clock calibration works , including

the FLL feature found on the F5xx devices
- Use DriverLib to configure the various clocks on

the MSP430
- Explain what a Watchdog Timer is and how it works
- Perform other req’d system initialization:

- Power management (PMM)
- Configuring Watchdog timer (WDT)

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 1

Operating Modes (Reset → Active)

Chapter Topics
MSP430 Clocks & Initialization .. 4-1

Operating Modes (Reset → Active) .. 4-3
BOR ... 4-3
BOR → POR → PUC → Active (AM) ... 4-4

Clocking... 4-6
What Clocks Do You Need? ... 4-6
MCLK, SMCLK, ACLK .. 4-8
Oscillators (Clock Sources) ... 4-9
Clock Details (by Device Family) .. 4-11
Using MSP430ware to Configure Clocking ... 4-16
Additional Clock Features ... 4-18

DCO Setup and Calibration .. 4-21
How the DCO Works ... 4-22
Factory Callibration (FR5xx, G2xx) ... 4-26
Runtime Calibration (F4xx, F5xx, F6xx) .. 4-28
FR2xx/4xx DCO Calibration .. 4-31
VLO 'Calibration' ... 4-32

Other Initialization (WDT, PMM) ... 4-33
Watchdog Timer .. 4-34
PMM with LDO, SVM, SVS, and BOR .. 4-35
Operating Voltages ... 4-37
Summary ... 4-38
Initialization Summary (template) .. 4-40

Lab Exercise ... 4-41

4 - 2 MSP430 Workshop - MSP430 Clocks & Initialization

 Operating Modes (Reset → Active)

Operating Modes (Reset → Active)
The MSP430 has a number of operating modes. In this chapter we explore the modes that take
the processor from startup to active. In a future chapter, the low-power modes will be explored.

BOR
The MSP430 starts out in the Brown-Out Reset (BOR) mode. A Brownout Fault (i.e. not enough
power) is the most common event that brings the CPU to this state.

Brownout Reset (BOR)
At power-up, the brownout circuitry

holds device in reset until Vcc is above
hysteresis point

Startup from BOw:
 wST/NMI pin is configured as reset
 I/O pins are configured as inputs
 Clocks are configured
 teripherals and CtU registers are

initialized (see user guide)
 Status register (Sw) is reset
 Watchdog timer powers up active in

watchdog mode
 trogram counter (tC) is loaded with

reset vector location (0xFFFE)
If reset vector is blank (0FFFFh), the
device enters LtM4

In BOR, a series of items (listed above) are changed to their default states. (As always, the
device datasheet and users guide should be the final reference as to what is changed in each of
the reset states.)

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 3

Operating Modes (Reset → Active)

BOR → POR → PUC → Active (AM)
As shown below, BOR is the first of three reset states.

BOR → POR → PUC → Active (AM)

Three Levels of weset
 BOw is most comprehensive, followed by:

 tOw = tower-On Reset
 tUC = tower-Up Clear

 Different events trigger different resets; e.g.
 SVS (power supervisor) triggers tOR
 WDT (watchdog) triggers tUC

 Each level touches different bits in CtU and
peripheral registers → User Guide notation:

Different reset states, such as BOR, POR and PUC are triggered from different events. For
example, upon power-up you may want to do a full system reset; though, this is usually not
desired for something like a watchdog timeout event.

The previous page contained a list of actions that occur in the MSP430 hardware when a BOR
event occurs. To find these details for all of the reset modes, please refer to the datasheet and
users guides; as shown above, there are different nomenclature which represent the reset mode
where a given hardware default value is applied.

4 - 4 MSP430 Workshop - MSP430 Clocks & Initialization

 Operating Modes (Reset → Active)

Here’s the full diagram showing the Reset and Active modes for the ‘F55291. This shows all the
various events that direct the MSP430 CPU into its different Reset states. You can find a similar
diagram for each series of MSP430 processors.

 Diagram makes a good
reference during dev’l

 See diagram in each
User’s Guide

 Note: We removed the
Low-Power Modes (LPMx)
from this diagram for
simplicity (they will be
discussed in later chapter)

MSP430F5529 Power-Up Modes

1 MSP430x5xx and MSP430x6xx Family User’s Guide, slau208m.pdf, (Texas Instruments, 2013) pg. 63

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 5

http://www.ti.com/litv/pdf/slau208m

Clocking

Clocking

What Clocks Do You Need?
MSP430 provides a wide range of clocking options. Before choosing and configuring the clocks,
though, you need to determine which clock features are most important for your system: Fast,
low-power, accurate, etc. At times, choosing these various options may force you to make
tradeoffs; hence, it’s important to for you consider which of these (or what group of them) are
most significant for your end-application.

What Clocks Do You Need?

 Cast Clocks CtU, Communications, Burst trocessing

 Low-power RTC, Remote, Battery, Energy Harvesting

 Accurate Stable over ⁰/V, Communications, RTC, Sensors

 Cailsafe Robust–keeps system running in case of failure

 Cheap … goes without saying …

… or some combination of these features?

4 - 6 MSP430 Workshop - MSP430 Clocks & Initialization

 Clocking

MSP430's rich clock ecosystem provides three internal clocks from a variety of clock sources.

Let's start on the right-side of the following diagram; there are 3 internal clocks which provide a
variety of high and/or low speed options.

On the left-hand side, there are internal and external oscillators which provide both high and slow
speed clock sources.

The next few slides provide further examination of the source oscillators and internal clocks.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 7

Clocking

MCLK, SMCLK, ACLK
As described in the following graphic, MCLK drives the clock rate of the CPU. It typically runs at a
“fast” speed – from 1 MHz up to 16 or 25 MHz (depending upon the upper limit of the given
device). MCLK can run slower than this, but it’s more common to see the CPU run in the MHz
range in order to get its work done quickly and then go into one of the low-power “sleep” modes.

MSP430 Clock Options

CPU

Clock

ADC LCDGPIO

SerialWDT Timer RTC

ACLK
SMCLK

MCLK

Name Description Used-by Typical Speed
 MCLK Master Clock CtU Fast
 SMCLK Sub-Master Clock teripherals Fast
 ACLK Auxiliary Clock teripherals Slow

Clocks – Cast or Slow
 All MSt430 devices

provide at least 3 clocks
 Tune system peripherals

by choice of clock:
 Fast = terformance
 Slow = Low-power

 Cast/slow clocks also
provide wider timing

SMCLK and ACLK are primarily used for clocking peripherals. It’s convenient to have two
peripheral clocks – one faster (SMCLK) and another slower (ACLK).

Some peripherals (such as serial ports) often require a fast clock to meet the communication
datarate requirements while other peripherals (e.g. timers) may not always need to run as fast.
The ability to provide a low-speed clock can provide two advantages:

− As you probably know, higher frequencies beget higher power usage; thus, a lower-
speed clock saves power.

− It is often difficult to provide slow-enough timing if you only have a single, fast clock. Two
peripheral clocks provide a greater range of performance to the various peripherals on
the device.

The preceding graphic shows how one might use these various clocks on the MSP430. Please
refer to the datasheet, though, since these vary slightly by device. For example, some devices
allow all three clocks (MCLK, SMCLK, ACLK) to drive all of the peripherals while others only allow
SMCLK and ACLK.

4 - 8 MSP430 Workshop - MSP430 Clocks & Initialization

 Clocking

Oscillators (Clock Sources)
The typical MSP430 device provides a wide range of clock oscillator sources: internal/external,
fast/slow, higher precision vs lower cost. Looking at the diagram, we can see that the typical
sources are listed in the order from lower to higher frequency. Two slides from now, we'll
compare the essential differences between the oscillator clock sources.

Typical Clock Sources
Crequency

VLO ~10 KHz

wECO 32768 Hz

XT1 • LF: < 50 KHz
• HF: 4-Max MHz

XT2 4-40 MHz

DCO 100 KHz to
CtU Max

MODOSC • 5 MHz
• 5 aHz / 128 MODOSC

ACLK

SMCLK

MCLK

` V R 1 2 D

*Note: This is a general description, please refer to datasheet/UsersGuide for complete details regarding your device

Again, we caution you to examine the datasheet carefully to determine which oscillator clock
sources are available for your specific device. That said, the following table provides a quick
snapshot of what sources are available on each of the three MSP430 Launchpad’s.

Typical Clock Sources
Crequency ‘G2553

Value-line
‘C5529

USB
‘Cw4133
CwAM

‘Cw5969
CwAM

VLO ~10 KHz

wECO 32768 Hz

XT1 • LF: < 50 KHz
• HF: 4-Max MHz

XT2 4-40 MHz

DCO 100 KHz to
CtU Max

MODOSC
(MODCLK)

• 5 MHz
• 5 aHz / 128

*Note: This is a general description, please refer to datasheet

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 9

Clocking

Here we see that the typical sources are listed in the order from lower to higher frequency. In this
case, we’re looking specifically at the clock source options found on the ‘F5529.

Clock Source Details (‘F5529)
Crequency trecision Current /

Startup Comments

VLO ~10 KHz Very Low
(±40%) 60nA Use as Ultra

Low tower tick

wECO 32768 Hz aed/High
(3.5%)

3µA
25µS

Trimmed to
3.5%

XT1 • LF: < 50 KHz
• HF: 4-Max MHz High 75nA

500-1k mS
Crystal or
Ext Clock

XT2 4-40 MHz High 260µA (12MHz)
400µS

Crystal or
Ext Clock

DCO 100 KHz to
CtU Max Low/aed 60µA

200nS
Calibrate with
Constant/CLL

MODOSC • 5 MHz
• 5 aHz / 128 Med N/A Used by FLASH

or ADC

VLO: most MSP430 devices provide a Very Low-frequency Oscillator (VLO). While not a highly
accurate clock, this source is extremely low-power. Also, as it is internal to the chip, it ends up
being very inexpensive. If you need to wake up the processor every couple seconds to perform a
task (i.e. read a sensor), the low-power VLO is a common way to get this done.

REFO: not all devices provide the REFerance Oscillator (REFO) source, but when available, it's a
low-cost, internal source for the common "watch crystal" frequency. This can be a convenient way
to drive a real-time clock in your system without requiring an external crystal. While not quite as
accurate as some crystals, it's a less-expensive, robust solution.

XT1 and XT2: as the graphic demonstrates, XT1 and XT2 provide the eXTernal clock inputs.
These sources, along with a couple pins each, provide a means of connecting to external crystal
oscillator sources.

− Not all devices provide both clock sources; for example, we saw on the previous page
that the 'G2553 only has XT1 (in fact, it's actually called LFXT1 on that device).

− Why would you need two external clocks? For those cases when you need very precise
low and high frequency clocks. For example, you might use XT1 to drive a real-time clock
(RTC) while the 'F5529 uses XT2 to source a high-speed, high-precision clock to the
USB peripheral.

− It should also be noted that you can connect a digital oscillator signal directly to these
inputs; that is, you don't have to use a crystal if you've already got the necessary
frequency on your board.

− Bottom line, the XT inputs provide the highest possible precision, but are a little less
robust since crystals can often be one of the most delicate components in a system.

4 - 10 MSP430 Workshop - MSP430 Clocks & Initialization

 Clocking

DCO: the Digitally Controlled Oscillator (DCO) provides a fast, low-lost, on-chip oscillator source.
It is very common to see this source being used to drive the CPU and many high-speed
peripherals. Another great feature is fast start-up time for this source, which is very important in a
low-power system (where you might want to sleep the clock to save power). Later in the chapter,
we'll explore a variety of methods for 'tuning' the DCO for improved accuracy.

MODOSC: the MODuale OSCillator (MODOSC) is another common high-frequency source. In
some devices, it dedicated to the Analog to Digital Converter (ADC) - which can start and stop the
source as needed. On other devices, though, the clock can be used to source a variety of
peripherals. In any case, this is another on-chip oscillator source.

Clock Details (by Device Family)
The MSP430F5529 specific clock options we just examined are found in the F5xx/F6xx UCS
(Unified Clock System) peripheral. As we’ve stated, various device sub-families provide different
clocking features and options. Each “unique” set of options is described by a clock peripheral
name – for example, while the ‘F5529 has the UCS peripheral, the ‘FR5969 FRAM devices use
the CS peripheral.

MSP430 Clock Modules
Module Clock Module Name MSP430

Device Family

BCS Basic Clock System F1xx / F2xx

BCS+ Basic Clock System + F2xx / G2xx

FLL+ Frequency Locked Loop + F4xx

UCS Unified Clock System F5xx / F6xx

CS Clock System FR5xx / FR6xx

CS Clock System
(slightly different than FR5xx/6xx version) FR2xx / FR4xx

CCS Compact Clock System L092

In general, all of these “different” peripherals provide the same basic functionality: that is, they
nearly all provide three internal clocks (MCLK, SMCLK, ACLK) from a similar set of oscillator
sources.

What differs between them are exactly which sources are provided for a given family, how the
DCO frequency is configured and tuned, as well as a number of other miscellaneous clock
features. Many of these similarities and differences are described over the next few pages.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 11

Clocking

F1xx Clocking (BCS)
These early devices provided the same three internal clocks, but the oscillator sources were quite
a bit more limited. Also, the DCO had to be tuned in software if the temperature or voltage
changed significantly during operation. (Later devices moved this chore into hardware.)

F1xx Basic Clock System (BCS)

R2/SR

Reserved CSCG1 SCG0 ZNGIECPU
OFF

OSC
OFFV

F2xx/G2xx Clocks (BCS+)
Some F2xx devices still utilized the BCS peripheral, but the later devices – as well as the “G”
series Value-Line devices – provide users with the enhanced BCS+ peripheral. You’ll find that
this clock system has additional source options. Also, the DCO (as well as some other
peripherals, such as the ADC) are calibrated during factory testing. Thus, you can get a much
higher precision DCO by utilizing the correct calibration values stored in the flash by TI.

 Very Low Power/Low Frequency
Oscillator (VLO)*
 4 – 20kHz (typical 12kHz)
 500nA standby
 0.5%/°C and 4%/Volt drift
 Not in ’21x1 devices

 Crystal oscillator (LFXT1)
 Programmable capacitors
 Failsafe OSC_Fault

 Minimum pulse filter
 Digitally Controlled Oscillator

(DCO)
 0-to-16MHz
 + 3% tolerance
 Factory calibration in Flash

MCLK
CPU

SMCLK
Peripherals

ACLK
Peripherals

16MHz
DCO

Min. Puls
Filter

VLO

OSC_Fault

F2xx/G2xx Basic Clock System (BCS+)

On PUC, MCLK and SMCLK are sourced
from DCOCLK at ~1.1 MHz. ACLK is sourced
from LFXT1CLK in LF mode with an internal
load capacitance of 6pF. If LFXT1 fails, ACLK
defaults to VLO.

* Not on all devices. Check the datasheet.

4 - 12 MSP430 Workshop - MSP430 Clocks & Initialization

 Clocking

F5xx/F6xx Clocks (UCS)
The Unified Clock System is most flexible MSP430 clock peripheral to date. It provides an
orthogonal set of clock options – any source can drive any internal clock signal. Additionally, it
provides the hardware required to dynamically tune the DCO as needed under varying conditions.
(We’ll explain later how this works.)

 UCS is available on F5xx/F6xx devices
 Six independent clock sources

 Low Frequency
 LF XT1 32768 Hz crystal
 VLO 10 kHz
 REFO 32 kHz

 High Frequency
 HF XT1 4 – 32 MHz crystal
 XT2 4 – 32 MHz crystal
 DCO FLL calibration

 FLL references (divisible, too)
 LFXT1 / XT1
 REFO
 XT2

 Orthogonal: Any source to any clock
 MODOSC provided for Flash & ADC12
 Clocks on demand

F5xx: Unified Clock System (UCS)

 Orthogonal clock system
 Any source can drive

any clock signal
 2 Integrated clock sources:

 wECO: 32kHz, trimmed osc.
 VLO: 12kHz, ultra-low

power
 DCO & CLL provide high

frequency accurate timing
 MODOSC provides bullet proof

timing for Clash
 Crystal pins muxed with

I/O function

F5xx/F6xx: Unified Clock System
Main Ceatures:
 Any OSC can drive any system

clock (MCLK,ACLK,SMCLK)
 Clock divider up to 32 for each

system clock
 Control the CLK in Low tower

Modes (stopped or running) and
react to module CLK requests

 OSC enable logic according
requests

 Supporting the CLL as sub-
module and providing the
control registers

 MODOSC as Clock source for
Clash and ADC

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 13

Clocking

FR58xx/FR59xx - Clock System (CS)
The Clock System (CS) used in the new ‘FR5xx devices provides almost as much flexibility as the
UCS peripheral, although – as we’ll see later – it’s easier to configure.

Clock System (CS)

 CS found on Wolverine (Cw58/59xx)
 Cive independent clock sources

 Low Creq
 LCXT (32768 Hz crystal)
 VLO (10 kHz)
 LCMODCLK (MODCLK/128)

 High Creq
 HCXT (4 – 24 MHz crystal)
 DCO (Specific CAL range)
 MODCLK (Internal 5MHz)

 Notes:
 MODOSC provided to ADC12,

MODCLK and LCMODCLK
 Defaults:

 DCO = 1MHz
 ACLK = Only LC sources

 Cailsafe's:
 LCXT: LCMODCLK (~42kHz)
 HCXT: MODCLK (5MHz)

4 - 14 MSP430 Workshop - MSP430 Clocks & Initialization

 Clocking

FR2xx/FR4xx - Clock System (CS)

FR4xx Clocking (CS)
OSC’s Clocks

FLL/DCO DCOCLK MCLK

REFO SMCLK

ACLK

VLO VLOCLK

XT1 XT1CLK

MODO MODCLK

Div

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 15

Clocking

Using MSP430ware to Configure Clocking
As we have done with our other peripherals (e.g. GPIO), we can use MSP430ware's DriverLib to
configure the clocking options. For example, in the following diagram the UCS_clockSignalInit()
function can be used to configure ACLK to use the REFO clock source.

An earlier clock diagram demonstrated the many places where the clock input frequencies can be
divided-down; once again, this provides you with a greater possible clock range. In this code
example, we just chose to set the clock divider to 1. Conveniently, the DriverLib API provides an
enumeration for each possible field value, including all the various clock divider options.
(DriverLib, with these enumerations, makes the code very easy to read.)

4 - 16 MSP430 Workshop - MSP430 Clocks & Initialization

 Clocking

Using an external clock crystal is a bit more involved than using an internal oscillator source.
Before you can configure the clock using the same UCS_clockSignal_init() function, you must:

− Setup the XIN/XOUT as clock pins. (On many devices, these pins default to their GPIO
modes.)

− The crystal oscillators must be started up before they can be used to source a clock. The
clock API provides two start functions: one will not exit until the oscillator has started,
while the other one can timeout and return even if the crystal hasn't started running
correctly. (If you use the latter, make sure you evaluate its return value.)

As pointed out in the slide, there are two functions that can be used to start each of the crystal
oscillator sources: one will continue until the crystal has started (and will run forever); while the
other provides a timeout option.

The crystal startup functions provide two arguments for selecting the crystal drive strength and
on-chip load capacitance.

− For Low Frequency (LF) crystals, the drive strength option allows you to tune the power
needed to drive the crystal; also, you can select an on-chip capacitor that meets your
crystals requirements. (Additional external capacitors can be added if necessary.)

− For HF crystals, different crystal or resonator ranges are supported by choosing the
proper drive settings. In this case, you will need to use external capacitors.

If you choose to use the XT1 (and/or XT2) inputs with an external clock signal on XIN (XT2IN),
you need to set them for bypass mode. Conveniently, DriverLib provides clock (UCS or CS)
functions for putting the interfaces into bypass mode.

The optional lab exercise for this chapter provides a crystal oscillator example for you to explore.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 17

Clocking

Additional Clock Features
There are a number of additional clock features that are summarized for our three example
devices in the following table

Additional Clock Features
Clock Ceature ‘G2553 (BCS+) ‘C5529 (UCS) ‘Cw5969 (CS)

Available
Clock

Sources

MCLK
VLO, LCXT1, XT2,

DCO VLO, wECO, XT1,
XT2, DCOCLK,
DCOCLKDIV

VLO, LCXT, LCMODCLK,
HCXT, MODCLK, DCOCLK

SMCLK

ACLK VLO, LCXT1 VLO, LCXT, LCMODCLK

Clock
Defaults

(at tUC weset)

MCLK
DC0

(1.1MHz)
DCOCLKDIV
(1.048 MHz)

DCO
(1MHz)

SMCLK

ACLK LCXT1 XT1CLK
(32KHz) LCXT

External Clk Cailsafe ACLK = VLO
S/MCLK = DCO

LC XT1 = wECO
HC XT1/XT2 = DCO

LCXT= LCMODCLK (38KHz)
HCXT=MODCLK (4.8MHz)

DCO Calibration Cactory Constant CLL (wun-time) Cactory Trimmed

tassword Needed
(To change clock settings)

No No Yes

Clock wequest
(teriph can force clk on)

WDT+ only Yes Yes

There’s quite a bit of information on this table. We’ll summarize the features row-by-row.

Available Clock Sources: The various clock oscillator sources were described earlier in this
chapter. This table shows which clock sources can be used for MCLK, SMCLK, and ACLK. You
might notice that, as we described earlier, the UCS peripheral (found on the ‘F5529) allows any
source to be used with any of the three clocks.

Clock Defaults: What happens if you do not configure the clock peripheral? As you might
expect, at (PUC) reset the three internal clocks default to a specific clock source and rate. These
are shown in the table.

External Clock Failsafe: What happens if the external crystal breaks or falls off your board?
The MSP430 clocks will default to an internal clock. While this may not be the rate/precision you
were expecting to run at, it’s better than having the system fail outright. There are clock fault
events that indicate if the external clock is not working correctly. (Note: it is expected that the
clock will be in a ‘fault’ state while the crystal is initializing.)

DCO Calibration: As we mentioned earlier – and will discuss in more detail later – different
generations of the MSP430 use different methods for calibrating the DCO. The first generation
forced you to do this in software; later generations use hardware or pre-calibrated constants.

Password: The latest generation of the MSP430 devices requires a password to modify the
clock configuration. The purpose of this is to prevent a software error from accidentally changing
the settings.

4 - 18 MSP430 Workshop - MSP430 Clocks & Initialization

 Clocking

Clock Request: Some devices, such as the ‘F5529, have a “clock request” signal running from
their peripherals to the UCS module – these signals request that their clock source must remain
on. In other words, when this feature is enabled, it prevents you from accidentally turning off a
clock that is in use by a peripheral.

For example:

 Let’s say that you wanted to put the CPU to sleep using Low-Power Mode 3 (LPM3) and wait
in that mode until the UART received a byte and created an interrupt.

 A problem would occur, though, if your UART was being clocked by SMCLK since LPM3
turns off SMCLK. In other words, what happens if the peripheral you were using to wake the
processor up just happened to be using that clock, you would never wake up.

The Clock Request feature allows a peripheral, such as the UART, to prevent its source clock
from being turned off. The CPU will still go into LPM3 mode, but in this case SMCLK would
remain on.

The caveat of Clock Request is that it affects power dissipation. By preventing a clock from
turning off, your processor will consume more power.

On the ‘G2553, only the clock being used by the Watchdog (WDT+) cannot be turned off, even if
the power mode (LPM) normally turns off that specific clock.

Our other two example devices (‘F5529, ‘FR5969) use a bit more advanced scheme. That is,
additional peripherals can ‘request’ a clock to remain on, even if a specific LPM normally disables
that clock.

Clock Requests (don’t turn off clocks, if needed)

 Modules place clock requests
to the system clocks

 LPM3 entry can be prevented
if a module requires SMCLK
to operate properly!

 Must be very conscious of
the clocks required in the
system.

Note: While this feature is a handy failsafe, it can also prevent your system from reaching its
lowest power state.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 19

Clocking

Additional Clock Notes/Warnings
Here’s an assortment of notes and warnings about the clocks.

Other Clock Notes/Warnings
 Devices with shared IO’s for GPIO and XIN/XOUT:

 Configure the XIN/XOUT ports correct, if you forget this the Fault will
be still available.

 If using a loop or interrupt for clearing the fault flag you will loop
forever

 After clearing the fault flag in the Clock system successfully you need to
clear the OFIFG flag inside the SFR as well.
 If you don‘t do this you run always with the failsafe clock. Two stage

Fault logic is new for 5xx series
 If LFXT is disabled when entering into a low-power mode:

 It is not fully enabled and stable upon exit from the low-power mode,
because its enable time is much longer than the wakeup time.

 If the application needs to keep LFXT enabled during a low-power
mode, the LFXTOFF bit can be cleared prior to entering the low-power
mode which causes LFXT to remain enabled.

 Similarly, the HFXTOFF bit can be cleared prior to entering the low-
power mode. This causes HFXT to remain enabled.

4 - 20 MSP430 Workshop - MSP430 Clocks & Initialization

 DCO Setup and Calibration

DCO Setup and Calibration

Calibrating DCO

Before we look at the details of calibration, let’s start with “How does the DCO work?”

As you can see from our earlier table, the DCO (digitally controlled oscillator) can be calibrated in
a variety of different ways, depending upon which generation MSP430 processor you're using.
Before discussing these various calibration options, let's first look at how the DCO works.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 21

DCO Setup and Calibration

How the DCO Works
The DCO is configured using three register fields. On most devices they're named: DCORSEL,
DCO, and MOD. In the process of discovering how the DCO works, we'll see how each of these
fields affects the DCO's output.

The DCO can operate in a number of different frequency ranges. On the 'F5529, you can select
from one of eight different frequency ranges. You might notice that these ranges overlap each
other quite a bit. The goal would be to pick a range where your desired frequency sits near the
middle. (This is not required, but provides the greatest flexibility - as we'll see in a minute.)

Pick a Frequency Range

f D
CO

M
Hz

DCO Range Select (DCORSEL)

UCSCTL1 DCORSEL
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘C5529 Example: 1 MHz
 DCOwSEL = 1

Select a range with the target
frequency near mid-point

In the diagram above, if we wanted to run at 1 MHz, range “one” happens to be a good choice.
Any of the first three would work, but range "1" puts our desired frequency close to the middle of
the range.

Notice that the DCORSEL (DCO Range SELect) register field provides a means of selecting
which DCO range you want to use.

4 - 22 MSP430 Workshop - MSP430 Clocks & Initialization

 DCO Setup and Calibration

While the DCORSEL allows you to select a range of frequencies, it’s the DCO field that allows us
to indicate which frequency we desire within that range. On the ‘F5529 the DCO field is 5-bits
long, which means we’re provided 32 different frequency levels in our chosen range.

Narrow The Range

f D
CO

M
Hz

DCO = 0

DCO = 0

DCO = 31

DCO = 31 ‘C5529 Example: 1 MHz
 DCOwSEL = 1

Select a range with the target
frequency near mid-point

 DCO = 18
Each range broken into 32
levels (8 levels for ‘G2xx)

UCSCTL0 DCO MOD

UCSCTL1 DCORSEL
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

What happens when the frequency you’re interested in falls between two levels specified by the
DCO field? In other words, what happens if the granularity of the DCO field is not enough to
specify our frequency of interest? (I.E. our frequency falls between a value of DCO and DCO+1.)

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 23

DCO Setup and Calibration

This is where the final field, called MOD, comes into play. MOD lets you tell the MSP430 clock to
modulate between two frequency levels: DCO and DCO+1. By mixing these two frequencies you
can obtain a very close approximation to your chosen clock frequency.

DCO Modulation

 The modulator mixes two frequencies to produce
the DCO clock

 This spreads the clock energy and reduces
electromagnetic interference (EMI)

 Due to small jitter, DCO cannot be used to lock a tLL

Naturally, you will probably configure DCO and MOD (and DCORSEL) during system initialization
(probably early in your main() function). If the temperature or input voltage varies over time,
though, you will likely want to tweak (i.e. tune) DCO and MOD to compensate for your systems
changing environment. On older MSP430 devices, these tweaks had to be done in software; on
later devices, hardware was added to automate this task for you. We’ll look at these tuning
options in the next section of the chapter.

4 - 24 MSP430 Workshop - MSP430 Clocks & Initialization

 DCO Setup and Calibration

DCO Summary
Here’s a summary of the DCO features we just discussed – the graphic is just drawn a little
differently. In essence, you must: (1) pick a range; (2) select a level within the range; and (3) pick
a modulation scheme that allows you to interpolate between adjacent ranges, as needed.

DCO Clock Summary

1. Select Range
2. Select Tap within Range
3. Choose Modulation to

effect greater precision

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 25

DCO Setup and Calibration

Factory Callibration (FR5xx, G2xx)
The Value-Line (‘G2xx) and FRAM (‘FR5xx) devices use static, pre-calibrated settings, chosen
during device testing, to allow your DCO to meet the frequencies and tolerances specified in the
device datasheet.

‘FR5xx Devices

FR5xx DCO – Calibrated Frequencies
 Clock System (CS) module

found on Cw5xx devices
 DCO (CS module) provides

multiple pre-defined &
calibrated frequencies

 Cactory Trimmed Accuracy:
+2% from 0-50C
+3.5% from -40 to 85C

 Cw5xx CS module requires psw
to write clock reg’s

 *If DCOCLK = 20 or 24MHz it
must be divided down for MCLK

DCORSEL DCOFSEL DCO (MHz)
0 or 1 000 1

0 001 2.667

0 010 3.333

0 011 4

0/1 100/001 5.33

0/1 101/010 6.67

0/1 110/011 8

1 100 16

1 101 20*

1 110 24*

CSCTL1 DCOFSEL
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

// Set DCO to 8MHz
CS_setDCOFreq(CS_DCORSEL_1, CS_DCOFSEL_3);

Ex:

Configuration of the ‘FR5xx devices is the easiest of all the MSP430 devices. Looking at the table
in the datasheet (which has been replicated above), you just need to choose the value of the
DCORSEL and DCOFSEL fields to match the frequency you want to run at. The silicon is
trimmed at the factory so that the device meets the accuracy specified in the datasheet.

4 - 26 MSP430 Workshop - MSP430 Clocks & Initialization

 DCO Setup and Calibration

‘G2xx Devices
The ‘G2xxx Value-Line devices take a slightly different approach. Rather than trimming the
silicon, as is done with the ‘FR5xx devices, the factory stores calibration values into each device’s
Flash memory (INFOA section) during device test.

‘G2xxx DCO – Calibration Constants

// Setting the DCO to 1MHz
if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)

while(1); // Erased calibration data? Trap!
BCSCTL1 = CALBC1_1MHZ; // Set range
DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation

 Most G2xx devices provide pre-calibrated clock settings – applying
these sets the Range, DCO, and MCO values

 Clock (and ADC) calibration values are calculated at the factory and
stored into Flash memory (INFOA)

 G2xx1 provide 1MHz calibration; G2xx2/3 provides all 4 frequencies

Basically, the device tester measures the silicon to determine what value of DCO and MOD is
required to run the DCO at a set of pre-determined frequencies. These calibration values are
stored into INFOA memory by the tester. You can then copy the appropriate calibration constant
from Flash into your DCO control register to run the clock at a specified frequency.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 27

DCO Setup and Calibration

Runtime Calibration (F4xx, F5xx, F6xx)
The MSP430F5xx series (along with the ‘F4xx and ‘F6xx) of processors can perform dynamic
calibration of the Digitally Controlled Oscillator (DCO) using the Frequency-Locked Loop (FLL)
hardware built into the Unified Clock System (UCS).

Dynamic Calibration of DCO in Software

 Minimize frequency drift due to changes in voltage or temperature
 DCO clock precision is achieved by periodic adjustment in loop
 Modify settings (DCO, MOD) in loop based upon comparison of DCO to

another known/stable freq, such as 32kHz crystal (or 50/60Hz AC power)

 Crequency Locked Loop (CLL) – ‘lock’ one frequency to another
 Software FLL is the only option available on ‘F1xx devices
 While software FLL could be used for any aSt430 device, the C4xx/5xx/6xx

clock modules contain Hardware FLL circuitry

32768 Hz // Partial SW FLL Code
if (COUNT < Compare) // DCO too fast

increase DCO/MOD;
else decrease DCO/MOD; // DCO too slow

In earlier MSP430 processors, this needed to be handled in software. Using the FLL, the
Modulation (MOD) parameter (i.e. field of the DCO control register) is adjusted up or down based
upon the count of DCO cycles versus an accurate reference clock (most commonly, a 32KHz
watch crystal).

4 - 28 MSP430 Workshop - MSP430 Clocks & Initialization

 DCO Setup and Calibration

At the top center of the following diagram, you’ll see the DCO circuitry. The output of the DCO is
labeled DCOLCLK. To provide more flexibility, this signal is divided by a bit-field value called
FLLD to make up a second clock frequency called DCOCLKDIV; not only can this clock be used
to source MCLK, SMCLK or ACLK, but it is also part of the clock’s feedback stabilization.

DCOCKLDIV is divided again by the bit-field FLLN which is then fed into an integrator. Once you
have selected a reference input clock to the integrator, the FLL will tweak the MOD bits as
needed to make sure the number of DCO clock outputs correlate to the FLL reference clock.
Thus even with varying voltage and temperature, as long as the FLL reference remains stable, so
will the DCO clock.

‘F5xx Hardware FLL

UCSCTL0 DCO MOD
UCSCTL2 FLLD FLLN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DCOCLK

DCOCLKDIV

DCO and MODulator

DC
Generator

FLLREFCLK

Divider
DCOCLKDIV/(FLLN+1)

Integrator

-

+

 XT1
 XT2
 REFO

Inc/dec DCO+MOD
bit-fields

as needed

÷n

DCOCLK = (FLLREFCLK/n) * FLLD * (FLLN + 1)

where: n = FLLREFDIV

As long as you know the desired value of DCOCLK and the FLL Reference Clock, it’s a simple
matter of choosing values for the 3 divider/multiplier fields (n, FLLD, FLLN) to solve the equation.

DCOCLK = (FLLREFCLK/n) * FLLD * (FLLN + 1)

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 29

DCO Setup and Calibration

The UCS API found in the MSP430ware DriverLib makes setting up the FLL and DCO easy.

As seen below, you must first configure the FLL reference clock using the UCS_clockSignalInit()
function. (In this example, we used REFO as the FLL reference clock.)

Setting ‘F5529 DCO with MSP430ware

UCSCTL0 DCO MOD
UCSCTL1 DCORSEL
UCSCTL2 FLLD FLLN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

#include <driverlib.h>

#define MCLK_FREQ_KHZ 8000
#define FLLREF_KHZ 32
#define MCLK_FLLREF_RATIO MCLK_FREQ_KHZ/FLLREF_KHZ // Ratio=250

void myInitDCO (void) {

// Set DCO FLLREF to 32KHz = REF0
UCS_clockSignalInit (UCS_FLLREF, // Setup FLLREFCLK

UCS_REFOCLK_SELECT, // FLLREFCLK=REFO
UCS_CLOCK_DIVIDER_1 // FLLREFDIV=1
);

// Setup DCO and FLL to provided freq (sets FLLD, FLLN, etc.)
// once clk settled, use as source for MCLK & SMCLK
UCS_initFLLSettle(MCLK_FREQ_KHZ,

MCLK_FLLREF_RATIO);
}

With the FLL reference clock set, the UCS_initFLLSettle() function configures the FLL and DCO
using the two clock frequencies you’ve chosen (DCOCLK and FLLREFCLK). Additionally, this
function adds time needed for the FLL feedback loop to ‘settle’. Alternatively, you could use the
UCS_initFLL() function if you didn’t want the function to add the clock settling time.

Note: The UCS initFLL functions configure both MCLK and SMCLK. A common mistake is to
configure SMCLK before calling the FLL init function.

For example, when creating our optional lab exercise, we configured SMCLK to use the
XT2 high-frequency crystal before configuring the FLL. We didn’t find our mistake until we
realized that SMCLK was running at the same speed as MCLK.

One last note, the initFLL functions will set MCLK and SMCLK to DCOCLK if the frequency is
greater than 16MHz, otherwise it will use the divided down DCOCLKDIV.

4 - 30 MSP430 Workshop - MSP430 Clocks & Initialization

 DCO Setup and Calibration

FR2xx/4xx DCO Calibration

FR2xx_4xx Clock System (CS)

 DCO setup is hybrid of Cw5xx DCO and C5xx DCO + CLL
 Specific frequency ranges

 wanges centered on 1, 2, 4, 8, 12, 16MHz
 Selected with DCOwSEL bits

 Uses CLL with reference frequency to tune within frequency
range

 512 DCO steps within these smaller ranges = smaller steps
 Allows very accurate DCO + CLL even with just wECO – no crystal (+/-

2% over temperature)
 Even more accurate with crystal (+/-0.5% over temperature)
 Much less jitter because steps are smaller

 CLL allows compensation for temperature drift

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 31

DCO Setup and Calibration

VLO 'Calibration'
The app note and library mentioned on the slide below can be used to calibrate the VLO clock at
runtime. While originally not known for its high accuracy, the VLO can be ‘calibrated’ using
another clock. The example shown here uses the DCO and TIMER_A to calibrate the VLO.

 Calibrate the VLO during runtime
 Example:

 Timer_A clocked at calibrated 1MHz (from DCO)
 Capture with rising edge of ACLK/8 from VLO
 fVLO = 8MHz/Counts

 Code library on the web (search for “SLAA340”)

Run Time ‘Calibration’ of VLO

TAR

Calibrated 1 MHz DCO

CCRx

ACLK/8 from VLO

fVLO = 8MHz/Counts

4 - 32 MSP430 Workshop - MSP430 Clocks & Initialization

 Other Initialization (WDT, PMM)

Other Initialization (WDT, PMM)
When starting up a system, there are a number of elements that must be initialized. Here’s a
generic summary detailing these items.

Software Initialization
Initialization Step wequired

Action?
Who is

wesponsible
Where

Discussed

1. Initialize the stack pointer (St) Yes Compiler N/A

2. Initialize watchdog timer
(usually OFF when debugging) Yes User Chapter 4

3. Setup tower Manager & Supervisors No User Chapter 4

4. Configure GtIO pins No User Chapter 3

5. Reconfigure clocks (if desired) No User Chapter 4
(earlier)

6. Configure peripheral modules No User Later
chapters

The Stack Pointer must be initialized but the compiler does this for us, which is why we don’t
directly discuss this in this workshop.

As discussed many times already in this workshop, since the Watchdog Timer defaults to “ON”,
it must be configured. During development and debugging we usually turn it off. The next section
discusses the Watchdog in further detail.

Some of the more feature-rich series of the MSP430 devices contain an on-chip LDO along with
Power Manager and Supervisor circuitry. If these features exist on your chosen device, you will
probably want to configure them. This is discussed later in this chapter.

In the last chapter we discussed and used GPIO pins (general purpose bit I/O). It highly
recommended that you configure all GPIO pins on your device. Obviously, those being used need
to be configured, but you should also configure those pins not in use so as to minimize power
dissipation.

Earlier in this chapter we discussed the many, varied clock options for the MSP430 devices.
Unless the default clock options are exactly what you need for your system, these need to be
configured.

Finally, you will need to setup and configure the remaining peripherals that will be used in your
application. We won’t try to list them all here – and they vary based upon the selected device –
but this is usually handled in main() before starting your while{} loop.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 33

Other Initialization (WDT, PMM)

Watchdog Timer
Watchdog Timers provide a system failsafe; if their counter ever rolls over (back to zero) they
reset the processor. To prevent your system from continuously resetting itself, you should clear
the counter at regular intervals. The goal here is to prevent your system from locking-up due to
some unexpected fault.

As mentioned frequently in this class, the MSP430 watchdog timer is “on” by default. You should
always disable the watchdog or configure it as needed.

The preceding slide describes three ways to utilize this peripheral:

1. Turn it off – which is useful while developing or debugging your application. You can use the
MSP430ware DriverLib “hold” function to accomplish this.

2. Use the Watchdog for its intended function. Again, the provided DriverLib function can be
used to perform this initialization.

3. Finally, if you do not need a watchdog for your system, you could re-purpose the peripheral
as a generic interval timer. Used this way, for example, you might setup the timer to create
periodic interrupts.

Note: As discussed earlier in this chapter, the clock being actively used by the Watchdog timer
cannot be disabled. Keep this in mind as you plan out your system and calculate its
power requirements.

4 - 34 MSP430 Workshop - MSP430 Clocks & Initialization

 Other Initialization (WDT, PMM)

PMM with LDO, SVM, SVS, and BOR
The power management module (PMM) integrates a number of power supply features that may
help you minimize external power supply hardware – and cost.

From the diagram below, you can see that we’ve drawn the LDO (low dropout voltage regulator)
right in the center of the diagram. This is to drive home the idea that it’s a central feature of the
PMM. The LDO will provide a regulated, stable voltage to the CPU core from the device voltage
applied to the DVcc pins. The device user’s guide defines the following nomenclature (as shown
below):
• High Side: unregulated voltage

• Low Side: regulated voltage

Power Management Module (PMM)
The on-chip tMM manages all functions related to the power supply and its
supervision for the device. Its primary functions are:
1. Generate a supply voltage for the core logic (LDO)
2. trovide several mechanisms for supervision and monitoring (SVS/SVM)

Regulator
(LDO)DVCC

(Device Voltage)
VCORE

(Core Voltage)

“Higa” lide “LOw” lide

SVMHSVSH SVSLSVML BOR

ResetCPU
InterruptsReset

SVM Supply Voltage Monitor Warn if voltage is getting low Optional
SVS Supply Voltage Supervisor Reset if voltage is too low Optional

BOw Brown-Out weset Reset if core voltage too low Always On

The SVM (supply voltage monitor) circuitry is intended to warn you (via interrupts) when the high-
or low-side voltages are getting close to their lower limits. You might use this to correct the power
supply or prepare for a power error/shutdown. (You can choose not to use this feature if you want
to save the small amount of power it consumes.)

The SVS (supply voltage supervisor) is another step further in supervision (vs SVM). The SVS
actually forces a reset if the high- or low-side voltages fall too low. This helps to prevent possible
errors from running the CPU out-of-spec. (You can choose not to use this feature if you want to
save the small amount of power it consumes.)

The BOR (brown-out reset) circuitry is found on every MSP430 device. You might remember us
talking about this hardware at the beginning of the chapter. In a sense, it is redundant to the
SVSL circuitry, although it is always on – and consumes very little power.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 35

Other Initialization (WDT, PMM)

The following diagram may help you visualize how the Supply Supervisors work:

Supply Supervisor and Monitor (SVS, SVM)
A few remarks:
 SVS and SVM can be disabled
 SVM provides “early” warning

and generates interrupts
 SVS turns off device – but also

sets an interrupt flag (check it
after reset)

 High side is the voltage input to
the device (prior to PMM’s LDO)

 Low side is the core voltage
(after LDO)

4 - 36 MSP430 Workshop - MSP430 Clocks & Initialization

 Other Initialization (WDT, PMM)

Operating Voltages
For many of the MSP430 devices, their capabilities can vary based upon the input voltage supply.
For example, most of the devices do not support in-system Flash programming when running
below 2.2V. Another example is that many devices require higher voltages to run at their faster
speeds.

Two examples of this are shown below:
• The ‘F2xx and ‘G2xx devices require 2.2V in order to perform in-system flash programming.

Also, their frequency is proportional to the input voltaage
• The F5529 can operate at any one of four voltage ranges. You would need to choose the

input voltage range appropriate for the speed you want to run. For example, if you want to run
at 10MHz you could run at power mode 1, but 25MHz requires power mode 3. On the other
hand, the ‘F5529 can program its flash memory across the entire input voltage range.

‘F5xx Operating Range
 25MHz peak performance
 More performance

across VCC range vs ‘F/G2xx:
 Flash ISP @ min. VCC
 8MHz @ min. VCC
 Up to 25MHz @ 2.4V-3.6V

 Programmable VCORE
maximizes power efficiency;
power vs performance

 VCORE register bits:
PMMCTL0.PMMCOREV

 When using SVS, changing
VCORE is a 4 step process, but
it’s easy with DriverLib:
PMM_setVCore();

#include <driverlib.h>

//Set VCore = 1 for 12MHz clock
PMM_setVCore(PMM_CORE_LEVEL_1);

t

v

w

u

The advantage to running with lower power voltage settings is that you, well, save power. The
tradeoff is that you give up capability when you run at the lower settings. Then again, you could
always change the Vcore setting on-the-fly, as needed by your application at any given time.

One big advantage of the new FRAM devices (e.g. ‘FR5969) is that they can write to their FRAM
and at full speed, even when running at their lowest input voltage. This really helps to minimize
power while providing you with maximum convenience.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 37

Other Initialization (WDT, PMM)

Summary
We have summarized three MSP430 devices in the table below. They demonstrate some of the
differences between the various series of MSP430: Value-Line, F5xx, and FR5xx FRAM.

4 - 38 MSP430 Workshop - MSP430 Clocks & Initialization

 Other Initialization (WDT, PMM)

The following two slides provide backup information. The first shows the advanced power-gating
found in the FRAM devices...

Wolverine Power Gating (‘FR58/59)
 Enhanced clock system
 Each module has a clock enable line
 If CE line is not in use the domain is powered down

Domain 1: Always ON CtU, Interrupt logic
Domain 2: Always OCC, AES, HW MtY
Domain 3/4: teripheral Domain for e.g.

timers

This slide shows a bit more information regarding the voltage supervision/monitoring.

Voltage Supervision & Monitoring

Power on Default Mode

Normal Performance Mode
+800 nA active current

consumption
0 nA LPM2,3,4 current

consumption

SVS / SVM disabled

• SVS / SVM disabled
• Zero-power BOR protection

is ALWAYS ON
• 5 us wakeup from LPM2,3,4
• +0 uA active & LPM2,3,4

current consumption

High-side Fast Performance Mode

• High-side Fast Performance Mode
• Low-side SVS / SVM disabled
• 5 us wakeup from LPM2,3,4
• +4 uA active & LPM2,3,4 current

consumption
• Automatic high-side protection

when CPU is active

Maximum Robustness

• Fast Performance Mode
• 5 us wakeup from LPM2,3,4
• +8 uA active & LPMx current

consumption

150 us wakeup from LPMx

High-side Full Performance
Mode

• High-side Full Performance
Mode

• Low-side SVS / SVM disabled
• +4uA active current

consumption
• +0uA LPM2,3,4 current

consumption
• Automatic high-side

protection when CPU is active
5 us wakeup from LPMx

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 39

Other Initialization (WDT, PMM)

Initialization Summary (template)
To some of you the following template may seem obvious, but we thought it might be handy to
provide a template, of sorts, for a main() function in an MSP430 program.

Summary: Initializing MSP430
#include <driverlib.h>

void main(void) {
// Setup/Hold Watchdog Timer (WDT+ or WDT_A)
initWatchdog();

// Configure GPIO ports/pins
initGPIO();

// Setup Clocking: ACLK, SMCLK, MCLK (BCS+, UCS, or CS)
initClocks();

//--
// Then, configure any other required peripherals and GPIO
...

while(1) {
...
}

}

Notice that there are function calls provided for many of the initialization steps discussed in this
chapter. Of course, it’s up to you to provide the necessary code for each of these functions. The
following lab exercises will provide some examples of these functions – which we’ll continue to
build upon in future chapters.

4 - 40 MSP430 Workshop - MSP430 Clocks & Initialization

 Lab 4 - Abstract

Lab 4 - Abstract
Lab 4 explores a variety of initialization tasks; the largest one being to setup the clocks for the
MSP430.

This lab also starts off with a worksheet where we will answer a number of questions (and write a
little code) that will be used in the upcoming lab procedure.

Lab 4a – Program MSP430 Clocks
We explore the default clock rates for each of MSP430’s three internal clocks; then, set them up
with a set of specified clock rates.

(Extra) Lab 4b – Blink LED with Different Clocks
If you have time, this lab provides an opportunity to explore the Watchdog Timer.

(Extra) Lab 4C – Utilizing Crystals as Clock Sources
Once again, if you have time, this lab gives us a chance to configure our system to use the
external crystal oscillators found on the Launchpad.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 41

Lab 4 - Abstract

Lab Topics
MSP430 Clocks & Initialization .. 4-40

Lab 4 - Abstract ... 4-41
Lab 4 Worksheet ... 4-43

Hints: ... 4-43
Reset and Operating Modes & Watchdog Timers .. 4-43
Power Management .. 4-43
Clocking... 4-43

Lab 4a – Program the MSP430 Clocks ... 4-47
File Management .. 4-47
Add the Clock Code .. 4-47
Initialization Code - Three more simple changes .. 4-52
Debugging the Clocks ... 4-53
Extra Credit (i.e. Optional Step) – Change the Rate of Blinking 4-56

(Optional) Lab 4b – Exploring the Watchdog Timer .. 4-57
What happens if WDT is allowed to Run .. 4-57
A couple of Questions about Watchdogs .. 4-57
File Management .. 4-58
Edit the Source File ... 4-59
Keep it Running ... 4-61
Extra Credit – Try DriverLib’s Watchdog Example (#3) ... 4-62

(Optional) Lab 4c – Using Crystal Oscillators ... 4-63
File Management .. 4-63
Modify GPIO .. 4-64
Debug .. 4-65

Chapter 04 Appendix .. 4-66

4 - 42 MSP430 Workshop - MSP430 Clocks & Initialization

 Lab 4 Worksheet

Lab 4 Worksheet
Hints:
• The MSP430 DriverLib Users Guide will be useful in helping to answer these workshop

questions. Find it in your MSP430ware DriverLib doc folder:
e.g. \MSP430ware_1_97_00_47\driverlib\doc\

• Maybe even more helpful is to reference the actual DriverLib source code – that is, the .h/.c
files for each module you are using. For example:

\MSP430ware_1_97_00_47\driverlib\driverlib\MSP430F5xx_6xx\ucs.h

• Finally, we recommend you also reference the DriverLib UCS example #4:

\msp430\MSP430ware_1_97_00_47\driverlib\examples\MSP430F5xx_6xx\ucs\ucs_ex4_XTSourcesDCOInternal.c

Reset and Operating Modes & Watchdog Timers
1. Name all 3 types of resets:

2. If the Watchdog (WDT) times out, which reset does it invoke?

3. Write the DriverLib function that stops (halts) the watchdog timer:

________________________(WDT_A_BASE);

Power Management
4. (‘F5529 Launchpad users only) Write the DriverLib function that sets the core voltage

needed to run MCLK at 8MHz.

_______________________(________________________);

Clocking
5. Why does MSP430 provide 3 different types of internal clocks?

 Name them:

____________ ____________ ____________

F5529

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 43

Lab 4 Worksheet

6. What is the speed of the crystal oscillators on your board?

 (Hint: look in the Hardware section of the Launchpad Users Guide.)

 ‘F5529 and ‘FR5969:

#define LF_CRYSTAL_FREQUENCY_IN_HZ _______________

#define HF_CRYSTAL_FREQUENCY_IN_HZ _______________

 ‘FR4133:

#define XT1_CRYSTAL_FREQUENCY_IN_HZ ______________

7. What function specifies these crystal frequencies to the DriverLib?

 (Hint: Look in the MSP430ware DriverLib User’s Guide – “UCS or CS chapter”.)

_______________________(LF_CRYSTAL_FREQUENCY_IN_HZ ,

 HF_CRYSTAL_FREQUENCY_IN_HZ);

_______________________(XT1_CRYSTAL_FREQUENCY_IN_HZ);

8. At what frequencies are the clocks running? There’s an API for that…
Write the code that returns your current clock frequencies:

uint32_t myACLK = 0;

uint32_t mySMCLK = 0;

uint32_t myMCLK = 0;

myACLK = _______________________();

mySMCLK = _______________________();

myMCLK = _______________________();

9. We didn’t set up the clocks (or power level) in our previous labs, how come our code worked?

 Don’t spend too much time pondering this, but what speed do you think each clock is running
at before we configure them? (You can compare this to your results when running the code.)

ACLK: ___________ SMCLK: ____________ MCLK: _________

4 - 44 MSP430 Workshop - MSP430 Clocks & Initialization

 Lab 4 Worksheet

10. Set up ACLK:
− Use REFO for the F5529 device
− Use VLO for the FR5969/FR4133 device

11. (F5529 User’s) Write the code to setup MCLK. It should be running at 8MHz using the
DCO+FLL as its oscillator source.

#define aCLK_59SLR95_CR9QU9bCY_Lb_KIZ _________________________

#define aCLK_CLLR9C_RATLh __________________________ /(UCS_R9ChCLK_CR9QU9bCY/1024)

// Set the FLL's clock reference clock to REFO

_________________________(

UCS_FLLREF, // Clock you're configuring

_____________________, // Clock Source

UCS_CLOCK_DIVIDER_1);

// Config the CLL's freq, let it settle, and set aCLK & SaCLK to use 5Ch+CLL as clk source

_________________________(

MCLK_DESIRED_FREQUENCY_IN_KHZ,

_____________________________);

 // Setup ACLK

 _________________________(

 ______ _ACLK, // Clock to setup

 ____________________________, // Source clock

 _____ _CLOCK_DIVIDER_1);

F5529

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 45

Lab 4 Worksheet

 (FR4133 User’s) Write the code to setup MCLK. It should be running at 8MHz using the
DCO+FLL as its oscillator source. (Hint: Look at the chapter discussion slides – it’s very similar to
‘F5529.)

 (FR5969 Users) Write the code to setup MCLK. It should be running at 8MHz using the DCO
as its oscillator source. (Hint: Look at the chapter discussion slides.)

// Set DCO to 8MHz
CS_setDCOFreq(

______________________, // Set Crequency range (5ChR)

______________________ // Set Crequency (5ChC)
);

// Set MCLK to use DCO clock source

_________________________(

__,

__,

UCS_CLOCK_DIVIDER_1);

 Please verify your answers before moving onto the lab exercise.

(Find them in the Chapter 4 Appendix)

FR5969

FR4133

4 - 46 MSP430 Workshop - MSP430 Clocks & Initialization

 Lab 4a – Program the MSP430 Clocks

Lab 4a – Program the MSP430 Clocks
File Management
1. Import previous lab_03a_gpio solution.

Project → Import CCS Projects…

2. Rename the project to lab_04a_clock and click OK.

Right-Click on Project → Rename

3. Make sure the project is active, then Build it, to be sure the import was error-free.

Add the Clock Code
4. Add myClocks.c into the project (from the lab_04a_clock folder).

 Since there can be quite a few lines of code (if you setup all the clocks), we decided to place
the clock initialization into its own file.

Right-click on project → Add Files…
C:\msp430_workshop\<target>\lab_04a_clock\myClocks.c

 Then select:

Copy files

or you may need:
• FR5969_fram
• FR4133_fram

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 47

Lab 4a – Program the MSP430 Clocks

5. (‘F5529) Update myclocks.c – adding answers from the worksheet

 Fill in the blanks with code you wrote on the worksheet.

//***** Header Files **
//#include <stdbool.h>
#include <driverlib.h>
#include "myClocks.h"

//***** Defines ***
#define LF_CRYSTAL_FREQUENCY_IN_HZ _______
#define HF_CRYSTAL_FREQUENCY_IN_HZ _______

#define MCLK_DESIRED_FREQUENCY_IN_KHZ _______
#define MCLK_FLLREF_RATIO ______/(UCS_REFOCLK_FREQUENCY/1024)

//***** Global Variables **
uint32_t myACLK = 0;
uint32_t mySMCLK = 0;
uint32_t myMCLK = 0;

//***** Functions ***
void initClocks(void) {
 // Set core voltage level to handle 8MHz clock rate
 PMM_setVCore(________________________);

 // Initialize the XT1 and XT2 crystal frequencies being used
 // so driverlib knows how fast they are
 _______________________(
 _______________________,
 _______________________);

 // Verify if the default clock settings are as expected
 myACLK = UCS_getACLK();
 mySMCLK = UCS_getSMCLK();
 myMCLK = UCS_getMCLK();

 // Setup ACLK to use REFO as its oscillator source
 UCS_clockSignalInit(
 UCS_ACLK, // Clock you're configuring
 ___________________, // Clock source
 UCS_CLOCK_DIVIDER_1); // Divide down clock source

 // Set the FLL's clock reference clock source
 UCS_clockSignalInit(
 UCS_FLLREF, // Clock you're configuring
 ___________________, // Clock source
 UCS_CLOCK_DIVIDER_1 // Divide down clock source
);

 // Configure the FLL's frequency and set MCLK & SMCLK to use the FLL
 UCS_initFLLSettle(
 MCLK_DESIRED_FREQUENCY_IN_KHZ, // MCLK frequency
 ___________________ // Ratio between MCLK and
 // FLL's ref clock source
);

 // Verify that the modified clock settings are as expected
 myACLK = UCS_getACLK();
 mySMCLK = UCS_getSMCLK();
 myMCLK = UCS_getMCLK();
}

Worksheet
Question #6

Worksheet
Question #11

Worksheet
Question #4

Worksheet
Question #8

Worksheet
Question #10

Worksheet
Question #11

F5529

Worksheet
Question #7

4 - 48 MSP430 Workshop - MSP430 Clocks & Initialization

 Lab 4a – Program the MSP430 Clocks

 (‘FR4133) Update myclocks.c – adding answers from the worksheet

 Fill in the blanks with code you wrote on the worksheet.

//***** Header Files **
//#include <stdbool.h>
#include <driverlib.h>
#include "myClocks.h"

//***** Defines ***
#define XT1_CRYSTAL_FREQUENCY_IN_HZ _______

#define MCLK_DESIRED_FREQUENCY_IN_KHZ _______
#define MCLK_FLLREF_RATIO _________________/(REFOCLK_FREQUENCY/1024)

//***** Global Variables **
uint32_t myACLK = 0;
uint32_t mySMCLK = 0;
uint32_t myMCLK = 0;

//***** Functions ***
void initClocks(void) {

 // Initialize the XT1 and XT2 crystal frequencies being used
 // so driverlib knows how fast they are
 _______________________(
 _______________________);

 // Verify if the default clock settings are as expected
 myACLK = CS_getACLK();
 mySMCLK = CS_getSMCLK();
 myMCLK = CS_getMCLK();

 // Setup ACLK to use REFO as its oscillator source
 CS_clockSignalInit(
 CS_ACLK, // Clock you're configuring
 ___________________, // Clock source
 CS_CLOCK_DIVIDER_1); // Divide down clock source

 // Set the FLL's clock reference clock source
 CS_clockSignalInit(
 CS_FLLREF, // Clock you're configuring
 ___________________, // Clock source
 CS_CLOCK_DIVIDER_1 // Divide down clock source
);

 // Configure the FLL's frequency and set MCLK & SMCLK to use the FLL
 CS_initFLLSettle(
 MCLK_DESIRED_FREQUENCY_IN_KHZ, // MCLK frequency
 _____________________________ // Ratio between MCLK and
 // FLL's ref clock source
);

 // Verify that the modified clock settings are as expected
 myACLK = CS_getACLK();
 mySMCLK = CS_getSMCLK();
 myMCLK = CS_getMCLK();
}

Worksheet
Question #6

Worksheet
Question #11

Worksheet
Question #8

Worksheet
Question #10

Worksheet
Question #11

Worksheet
Question #7

FR4133

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 49

Lab 4a – Program the MSP430 Clocks

 (‘FR5969) Update myclocks.c – adding answers from the worksheet

 Fill in the blanks with code you wrote on the worksheet.

//***** Header Files **
#include <driverlib.h>
#include "myClocks.h"

//***** Defines ***
#define LF_CRYSTAL_FREQUENCY_IN_HZ _______
#define HF_CRYSTAL_FREQUENCY_IN_HZ 0

//***** Global Variables **
uint32_t myACLK = 0;
uint32_t mySMCLK = 0;
uint32_t myMCLK = 0;

//***** Functions ***
void initClocks(void) {

 // Initialize the LFXT and HFXT crystal frequencies being used
 // so driverlib knows how fast they are
 _______________________(
 _______________________,

 // Verify if the default clock settings are as expected
 myACLK = CS_getACLK();
 mySMCLK = CS_getSMCLK();
 myMCLK = CS_getMCLK();

 // Setup ACLK to use VLO as its oscillator source
 CS_clockSignalInit(
 CS_ACLK, // Clock you're configuring
 ___________________, // Clock source
 CS_CLOCK_DIVIDER_1 // Divide down clock source
);

 // Set DCO to 8MHz
 CS_setDCOFreq(
 ___________________, // Set Frequency range (DCOR)
 CS_DCOFSEL_3 // Set Frequency (DCOF)
);

 // Set SMCLK to use the DCO clock
 CS_clockSignalInit(
 CS_SMCLK, // Clock you're configuring
 ___________________, // Clock source
 CS_CLOCK_DIVIDER_1); // Divide down clock source

 // Set MCLK to use the DCO clock
 CS_clockSignalInit(
 CS_MCLK, // Clock you're configuring
 ___________________, // Clock source
 CS_CLOCK_DIVIDER_1); // Divide down clock source

 // Verify that the modified clock settings are as expected
 myACLK = CS_getACLK();
 mySMCLK = CS_getSMCLK();
 myMCLK = CS_getMCLK();
}

FR5969

Worksheet
Question #6

Worksheet
Question #7

Worksheet
Question #8

Worksheet
Question #10

Worksheet
Question #11

Worksheet
Question #11

4 - 50 MSP430 Workshop - MSP430 Clocks & Initialization

 Lab 4a – Program the MSP430 Clocks

6. Try building to see if there are any errors.
 Hopefully you don’t have any typographic or syntax errors, but you should see this error:

 fatal error #1965: cannot open source file "myClocks.h"

 Since we placed the init clock function into a separate file, we should use a header file to
provide an external interface for that code.

7. Create a new source file called myclocks.h.

File → New → Header File

 Then click ‘Finish’.

8. Add prototype to new header file.

 CCS automatically creates a set of #ifndef statements, which are good practice to use
inside of your header files. It helps to keep items from accidentally being defined more than
once – which the compiler will complain about.

 All we really need in the header file is the prototype of our initClocks() function:
/*
 * myClocks.h
 */

#ifndef MYCLOCKS_H_
#define MYCLOCKS_H_

//***** Prototypes ***
void initClocks(void);

#endif /* MYCLOCKS_H_ */

9. Add reference to myclocks.h to your main.c.

 While we’re working with this header file, it’s a good time to add a #include to it at the top of
your main.c. Otherwise, you will get a warning later on.

#include “myClocks.h”

10. Try building again. Keep fixing errors until they’re all gone.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 51

Lab 4a – Program the MSP430 Clocks

Initialization Code - Three more simple changes
11. Reorganize main.c to group initialization code into functions.

 We’ve outlined the 3 areas you will need to adapt to create a little better code organization.

a) Add a prototype for a new function initGPIO().

b) Call initGPIO() and initClocks() from the main.

c) Create the initGPIO() function. Notice that the code for this function already exists;
we’re just moving it from main() to its own function initGPIO().

// --
// main.c (for lab_04a_clock project)
// --

//***** Header Files **
#include <driverlib.h>
#include "myClocks.h"

//***** Prototypes **
void initGPIO(void);

//***** Defines ***
#define ONE_SECOND 800000
#define HALF_SECOND 400000

//***** Functions ***
void main (void)
{
 // Stop watchdog timer
 WDT_A_hold(WDT_A_BASE);

 //Initialize GPIO
 initGPIO();

 //Initialize clocks
 initClocks();

 while(1) {

 // Turn on LED
 GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0);

 // Wait
 _delay_cycles(ONE_SECOND);

 // Turn off LED
 GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);

 // Wait
 _delay_cycles(ONE_SECOND);
 }
}
//**
void initGPIO(void) {

 // Set pin P1.0 to output direction and initialize low
 GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);
 GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);
}

a) Since the
setup code is
now organized
into functions,
prototypes
need to be
included for
them

b) This
follows the
init code
‘template’
discussed
in class

c) Create
GPIO
initializatio
n function

4 - 52 MSP430 Workshop - MSP430 Clocks & Initialization

 Lab 4a – Program the MSP430 Clocks

12. (FRAM devices only) Unlock the pins.

 Don’t forget to add the PMM_unlockLPM5() function to initGPIO(), if you haven’t already done
so.

13. Build the code and fix any errors. When no errors exist, launch the debugger.

Debugging the Clocks
Before running the code, let’s set some breakpoints and watch expressions.

14. Open myClocks.c.

15. Add a watch expression for myACLK (in KHz).

Select myACLK in your code → Right-click → Add Watch Expression…

 Enter ‘myACLK/1000’ into the dialog and hit OK. Upon hitting “OK”, the Expressions
window should open up, if it’s not already open.

 When we run the code, this should give us a value of 32, if ACLK is running at 32KHz.

16. Go ahead and create similar watch expressions for mySMCLK and myMCLK.

mySMCLK/1000
myMCLK/1000

17. Export expressions.

 CCS lets you export and import
expressions. Let’s save them so that we
can quickly import them later.

a) Right-click on Expressions window

b) Select Export…

c) And choose a name & location for the file
− We called it: myExpressions.txt

− and placed it at: C:\msp430_workshop

FR5969

FR4133

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 53

Lab 4a – Program the MSP430 Clocks

Note: Before you run the code to the first breakpoint, you may see an error in the Expressions
window similar to “Error: identifier not found”. This happens when the variable in the
expression is out-of-scope. For example, this can happen if you defined the variable as a
local, but you were currently executing code in another function. Then again, it will also
happen if you delete a variable that you had previously added to the Expression watch
window.

18. Finally, let’s add two breakpoints to myClocks.c.

 These breakpoints will let us view the expressions before … and after our clock initialization
code runs. (Note: We’ve shown the F5529 and FR5969 code – we hope you FR4133 users
can deduce the correct location based on your own.)

19. Run the code to the first breakpoint and write down the Express values:

myACLK/1000: __

mySMCLK/1000: ___

myMCLK/1000: __

Are these the values that you expected? __

 (Look back at Worksheet question #9, if you need a reminder.)

Note: Some versions of the ‘FR5969 debugger for CCSv6 gives an error whenever you ‘load
a program’, ‘reset’ or ‘restart’ the processor while multiple breakpoints are set. If you
find this happens to you, you can either:

• Clear all breakpoints before performing one of these actions
• Only set one breakpoint … as an alternative, we like to place the cursor where we

want to stop and then use Control-R to “run to the cursor”.

4 - 54 MSP430 Workshop - MSP430 Clocks & Initialization

 Lab 4a – Program the MSP430 Clocks

20. Run to the next breakpoint – at the end of the initClocks() function.

 Check on the values again:

myACLK/1000: __

mySMCLK/1000: ___

myMCLK/1000: __

Are these the values we were asked to implement? ________________________________

 (Look back at Worksheet questions 0-0.)

21. Let the program run from the breakpoint and watch the blinking LED.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 55

Lab 4a – Program the MSP430 Clocks

Extra Credit (i.e. Optional Step) – Change the Rate of Blinking
22. Halt the processor and terminate the debugger session.

23. Add a function call to initClocks() to force MCLK to use a different oscillator.
− ‘F5529 and ‘FR4133 users, try using REFO.

− ‘FR5969 users, try using VLO since
you don’t have the REFO oscillator.

 We suggest that you copy/paste the
function that sets up ACLK… then change
the ACLK parameter to MCLK.

 The ‘F5529 example is to the right:

 As this code demonstrates, it sets up
MCLK (via the UCS_initFLLSettle()
function) then changes it again right away
… but that’s OK. No harm done.

F
FYI: DriverLib version 1.70 removed the
“_BASE” argument from many of the DriverLib
functions.

24. Build your code and launch the debugger.

25. Run the code, stopping at both breakpoints.

Did the value for MCLK change? ___

 It should be much slower now that it’s running from REFO or VLO.

26. After the second breakpoint, watch the blinking light.
 When the code leaves the initClocks() function and starts executing the while{} loop, it should

take a very looooooong time to run the _delay_cycles() functions; our “ONE_SECOND” time
was based upon a very fast clock, not one this slow.

 To wait for 1 seccond, we set the __delay_cycles() to wait for 8 million cycles (when running
at 8MHz). Now that we’re running with a slower clock, how long will it take?

REFOCLK: 8,000,000 cycles / 32,768 cycles/sec = _________________ sec

VLOCLK: 8,000,000 cycles / 10,000 cycles/sec = _________________ sec

 If you’re patient enough, you should see the light blink…
(You have to be VERY, VERY patient to see the LED blink for VLO clock.)

244
800

4 - 56 MSP430 Workshop - MSP430 Clocks & Initialization

 (Optional) Lab 4b – Exploring the Watchdog Timer

(Optional) Lab 4b – Exploring the Watchdog Timer
What happens if WDT is allowed to Run
Before we create a new lab exercise, let’s quickly test our old one with regards to the Watchdog.

1. Launch and run the lab_04a_clock project.

 If there are any breakpoints set, remove them. Run the program and observe how fast the
LED is blinking. (Ours was blinking about 1/sec.)

2. Terminate the Debugger.

3. Edit the source file by commenting out the Watchdog hold function.
// WDT_A_hold(WDT_A_BASE);

4. Launch the debugger and run the program.

How fast is the LED blinking now? ___

 (Ours wasn’t blinking at all, after we left the WDT_A running. WDT_A must be resetting the
processor before we even get to the while{} loop.)

5. Close the lab_04a_clock project.

A couple of Questions about Watchdogs
6. Complete the code needed to enable the Watchdog Timer using ACLK:

 WDT_A_watchdogTimerInit(//Initialize the WDT as a watchdog
 WDT_A_BASE,

 _______________________________________, //Which clock should WDT use?

 //WDT_A_CLOCKDIVIDER_64); //Divide the WDT clock input?
 WDT_A_CLOCKDIVIDER_512); //Here are 3 (of 8) different div choices
 //WDT_A_CLOCKDIVIDER_32K);

 ______________________________(WDT_A_BASE); //Start the watchdog

7. Write the code to reset the Watchdog Timer.

 Often this is called ‘kicking the dog’ or ‘feeding the dog’.

 The purpose of the watchdog is reset the processor if your code doesn’t reset it before its
timer count runs out. What driverlib function can you used to reset the timer?

 (Hint: look in the Driver Library Users Guide or the wdt_a.h file inside the driverlib folder.)

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 57

(Optional) Lab 4b – Exploring the Watchdog Timer

File Management
8. Import the “Hello World” solution for lab_02a_ccs.

Project → Import CCS Projects…

 Import the archived solution file:

C:\msp430_workshop\<target>\solutions\lab_02a_ccs_solution.zip

9. Rename the project to: lab_04b_wdt

10. Build the project, just to verify it still works correctly.

11. Import DriverLib into your project and add the appropriate path to the compiler’s
#include search path setting.

 You could repeat the steps we completed to add DriverLib in Lab3a under the heading: “Add
MSP430ware Driverlib”. But it’s easier to use the DriverLib project template that the
MSP430ware team has provided.

Right-Click on Project → Source → Apply Project Template…

Select “Add Copy of DriverLib to Project” and click OK

 This adds the appropriate DriverLib library to your project and adds the correct directory
search path to the compiler’s build options.

12. Build the project to verify that we haven’t introduced any errors.
 Fix any errors and test until the program builds without any errors.

4 - 58 MSP430 Workshop - MSP430 Clocks & Initialization

 (Optional) Lab 4b – Exploring the Watchdog Timer

Edit the Source File
13. First, let’s modify the printf() statement.

 Next, we want to modify the print statement so that it shows how many times it has been
executed.

a) Add a global variable to the program.
uint16_t count = 0;

b) Replace printf() statement with the following while{} loop:
 while (1) {
 count++;
 printf("I called this %d times\n", count);
 }

14. Build the code to make sure it’s still error free. Fix any errors.

15. Replace the watchdog hold code with the two WDT_A functions you wrote earlier.
 Remember that we didn’t actually write this code. It ‘holds’ the watchdog by using register-

based syntax. So, this is the line you want to replace:
 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 This new code will initialize the watchdog timer using the clock and divisor of our choice; then
start the watchdog timer running. (See question #6 on page 4-57.)

16. Build the code to test that it’s error-free (syntax wise).

 Did you get an error? Unless you are a really experienced programmer and changed one
other item, you should have received an error similar to this:

Where are these values defined? __

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 59

(Optional) Lab 4b – Exploring the Watchdog Timer

17. Include driverlib.h in your hello.c file.

 Yep, when we added the driverlib code, we needed to add the driverlib header file, too.
Actually, you can replace the #include of the msp430.h file with driverlib.h because the
latter references the former.

 When complete, your code should look similar to this:
#include <stdio.h>
#include <driverlib.h>

uint16_t count = 0;

/*
 * hello.c
 */
int main(void) {
// WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 WDT_A_watchdogTimerInit(WDT_A_BASE,
 WDT_A_CLOCKSOURCE_ACLK,
 //WDT_A_CLOCKDIVIDER_64); //WDT clock input divisor
 WDT_A_CLOCKDIVIDER_512); //Here are 3 (of 8) div choices
 //WDT_A_CLOCKDIVIDER_32K);

 WDT_A_start(WDT_A_BASE);

 while (1) {
 count++;
 printf("I called this %d times\n", count);
 }
}

18. Build the code; fix any errors.

19. Launch the debugger and run the program. Write down the results.

 How many times does printf() run before the count restarts? Terminate, change divisor, and
retest. (This is why we put 2 commented-out lines in the code.)

 Number of times printf() runs before watchdog reset:

WDT_A_CLOCKDIVIDER_64: __

WDT_A_CLOCKDIVIDER_512: ___

WDT_A_CLOCKDIVIDER_32K: ___

 Here are the results we obtained (at the time of writing), but they can vary with new compiler releases:

• ‘F5529: 1, 10, 589 (respectively) … did you wait all the way to 589 before giving up?
• ‘FR5969: 0, 2, 141

 If you’re really curious about what is happening under-the-hood, try examining the Watchdog
control register. You can see it sets a different value for each of the divisor arguments. For
example, on the ‘FR5969, the arguments releate to these values:

÷ Default: 4 (i.e. ÷32K)
÷ 64: 7
÷ 512: 6
÷ 32K: 4

4 - 60 MSP430 Workshop - MSP430 Clocks & Initialization

 (Optional) Lab 4b – Exploring the Watchdog Timer

Keep it Running
20. Add the function call that will keep the CPU running without a watchdog reset.

 Add the line of code to the while{} loop – our answer to question # in this lab – that will reset
the watchdog and keep the program running.

 WDT_A_resetTimer(WDT_A_BASE);

Hint: You may want to change the clock divisor back to WDT_A_CLOCKDIVER_64 to
make it easier to see the change. Then, if the count goes past “1” you’ll know the
watchdog is being serviced.

21. Build and run the program to observe the watchdog resetting the MSP430.

How many times will it run now? ___

22. When done playing with the program, terminate your debug session close the project.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 61

(Optional) Lab 4b – Exploring the Watchdog Timer

Extra Credit – Try DriverLib’s Watchdog Example (#3)
The driverlib library contains an example for ‘watching’ the watchdog timer. Give it a test to watch
every time the watchdog rolls-over.

23. Import the wdt_a_ex3_watchdogACLK project using the CCS Resource Explorer.

 If you cannot remember how to import a project using the Resource Explorer, please refer

back to the beginning of Lab3b – Reading a Push Button. We started that lab by importing
the EmptyProject example project.

24. Examine the source file in the project.
 Notice how they utilize the GPIO pin. Every time the program re-starts it toggles the pin.

 If you look in the User Guide for your MSP430 device, you can see that while the PDIR (pin
direction) register is reset after a Power-Up Clear (PUC), the POUT value is left alone. This is
the trick used to make the pin toggle after every watchdog reset.

 Note, PUC was described during this chapter, while the GPIO pins were discussed in
Chapter 3.

25. Build and run the program to observe the watchdog resetting the MSP430.

26. When you’re done, close the project.

4 - 62 MSP430 Workshop - MSP430 Clocks & Initialization

 (Optional) Lab 4c – Using Crystal Oscillators

(Optional) Lab 4c – Using Crystal Oscillators

File Management
1. Import lab_04a_clock_solution.

 If you don’t remember how to do this, refer back to lab step 1 (on page 4-47).

2. Rename the project to lab_04c_crystals.

3. Make sure the project builds correctly.

4. Delete three files from the project:
• myClocks.c

• myClocks.h

• Old readme file (not required, but might make things less confusing later on)

5. Add files to project.
 Add the following two files to the project:

• myClocksWithCrystals.c

• myClocks.h

• lab_04c_crystals_readme.txt (again, not required, but helpful)

 You’ll find them along the path

C:\msp430_workshop\<target>\lab_04c_crystals\

6. Examine the new .c and .h files.

 Notice the following:
• We need to “start” the crystal oscillators before selecting them as a clock source.

• Two different ways to “start” a crystal – with and without a timeout.

− If no timeout is used, then that function will continue until the oscillator is started. That
could effectively halt the program indefinitely, if there is a problem with the crystal
(say, it breaks, has a solder fault, or has fallen off the board).

− A better solution might be to specify a timeout … as long as you check for the result
after the function completes. (In our example, we just used an indefinite wait loop, but
“in real life” you might choose another clock source based on a failed crystal.)

7. Build to verify that the file imported correctly.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 63

(Optional) Lab 4c – Using Crystal Oscillators

Modify GPIO
8. Add the following code to the initGpio() function in main.c.

 Rather than having you build and run the project only to find out it doesn’t work (like what
happened to the course author), we’ll give you a hint: connect the clock pins to the crystals.

 As you can see, the two different devices are pinned-out differently. Pick the code to match
your processor.

// Connect pins to crystal in/out pins
GPIO_setAsPeripheralModuleFunctionInputPin(
 GPIO_PORT_P5,
 GPIO_PIN5 + // XOUT on P5.5
 GPIO_PIN4 + // XIN on P5.4
 GPIO_PIN3 + // XT2OUT on P5.3
 GPIO_PIN2 // XT2IN on P5.2
);

 or
// Connect pins to crystal in/out pins
// Note, PJ.6 and PJ.7 not needed as HF crystal is not present
GPIO_setAsPeripheralModuleFunctionInputPin(
 GPIO_PORT_PJ,
 GPIO_PIN4 + // LFXIN on PJ.4
 GPIO_PIN5, // LFXOUT on PJ.5
 // GPIO_PIN6 + // HFXTIN on PJ.6
 // GPIO_PIN7 // HFXOUT on PJ.7
 GPIO_PRIMARY_MODULE_FUNCTION
);

 or
// Set XT1 (low freq crystal pins) to crystal input (rather than GPIO):
GPIO_setAsPeripheralModuleFunctionInputPin(
 GPIO_PORT_P4,
 GPIO_PIN1 + // XIN on P4.1
 GPIO_PIN2 , // XOUT on P4.2
 GPIO_PRIMARY_MODULE_FUNCTION
);

 By default – most MSP430 devices, these pins default to GPIO mode. Thus, we have to
connect them to the crystals by reprogramming the GPIO.

 One difference between the two processors – besides the port number being used – is that
we had to specify “GPIO_PRIMARY_MODULE_FUNCTION” for the ‘FR5969. This device
allows multiple Peripheral I/O pin options. (Refer back to Chapter 3 for
more details on this topic.)

Note: Above, we connect all four pins to their clock functions using
the GPIO_setAsPeripheralModuleFunctionInputPin().

Normally, connecting IN/OUT pins to Peripheral Functions requires two functions. For example ,
you would set the IN pins with the ‘InputPin’ function, while the setting the OUT pins using
the GPIO_setAsPeripheralModuleFunctionOutputPins() function.

Connecting crytal pins works with either solution… so we chose the one with less typing.

FR5969

F5529

FR4133

4 - 64 MSP430 Workshop - MSP430 Clocks & Initialization

 (Optional) Lab 4c – Using Crystal Oscillators

9. Build and launch the debugger.

Debug
10. Set three breakpoints in the myClocksWithCrystals.c file.

 Set a breakpoint after each instance of the code where we read the clock settings.

 For example:

11. Run the code (click ‘Resume’) three times and record the clock settings:

 Because of the way the FLL clock is handled on the ‘F5529 and ‘FR4133, we have three
places to record the clock values. With the ‘FR5969, you only need the first two columns.

Expression Default Settings First Clock Get Second Clock Get

myACLK/1000

mySMCLK/1000

myMCLK/1000

On the ‘F5529 and ‘FR4133, why didn’t SMCLK get set correctly on the first setup?
For example, on the ‘F5529 we set SMCLK to use XT2CLK, but it didn’t’ seem to take:

Hint: Read the comments in the code itself (myClocksWithCrystals.c). It explains what caused this.

12. When done experimenting with this code, terminate the debugger and close the
project.

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 65

Chapter 04 Appendix

Chapter 04 Appendix

Hints:
 The MSP430 DriverLib Users Guide will be useful in helping to answer these

workshop questions. Find it in your MSP430ware DriverLib doc folder:
e.g. \MSP430ware_1_97_00_47\driverlib\driverlib\doc\

 Maybe even more helpful is to reference the actual DriverLib source code –
that is, the .h/.c files for each module you are using. For example:
\MSP430ware_1_97_00_47\driverlib\driverlib\MSP430F5xx_6xx\ucs.h

 Finally, we recommend you also reference the DriverLib UCS example #4:
\msp430\MSP430ware_1_97_00_47\driverlib\examples\MSP430F5xx_6xx\ucs\ucs_ex4_XTSourcesDCOInternal.c

Reset and Operating Modes & Watchdog Timers
1. Name all 3 types of resets:

__
2. If the Watchdog (WDT) times out, which reset does it invoke?

__
3. Write the DriverLib function that stops (halts) the watchdog timer:

________________________(WDT_A_BASE);

Chapter 4 Worksheet (1)

.hR, thR, tUC

tUC

W5T_A_hold

Power Management
4. (‘F5529 Launchpad users only)

Write the DriverLib function that sets the core voltage needed to run
MCLK at 8MHz.
_______________________(________________________);

Chapter 4 Worksheet (2)

Clocking
5. Why does MSP430 provide 3 different types of internal clocks?

__
__
__

Name them:
____________ ____________ ____________

inittoweragmt taa_ChR9_L9V9L_1

To meet the varying demands of performance, accuracy, and power.

hne clock runs the CtU, while the other two provide fast and

slow/low-power clocking to the peripherals

aCLK SaCLK ACLK

4 - 66 MSP430 Workshop - MSP430 Clocks & Initialization

 Chapter 04 Appendix

Chapter 4 Worksheet (3)
6. What is the speed of the crystal oscillators on your board?

(Hint: look in the Hardware section of the Launchpad Users Guide.)
‘F5529:

#define LF_CRYSTAL_FREQUENCY_IN_HZ _______________

#define HF_CRYSTAL_FREQUENCY_IN_HZ _______________

‘FR5969:

#define LF_CRYSTAL_FREQUENCY_IN_HZ _______________

#define HF_CRYSTAL_FREQUENCY_IN_HZ _______________

‘FR4133:

#define XT1_CRYSTAL_FREQUENCY_IN_HZ ______________

32768
4000000

(for CR5969: We chose “0” for Iigh Crequency crystal , since the Launchpad doesn’t ship with one)

32768
0

32768

Chapter 4 Worksheet (4)
7. What function specifies these crystal frequencies to the DriverLib?

(Hint: Look in the MSP430ware DriverLib User’s Guide – “UCS or CS chapter”.)

‘F5529:

_______________________(

___________________________,

___________________________);
‘FR5969:

_______________________(

___________________________,

___________________________);
‘FR4133:

_______________________(__________________________);

LF_CRYSTAL_FREQUENCY_IN_HZ

HF_CRYSTAL_FREQUENCY_IN_HZ

LF_CRYSTAL_FREQUENCY_IN_HZ

HF_CRYSTAL_FREQUENCY_IN_HZ

XT1_CRYSTAL_FREQUENCY_IN_HZ

CS_set9xternalClockSource

UCS_set9xternalClockSource

CS_set9xternalClockSource

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 67

Chapter 04 Appendix

Chapter 4 Worksheet (5)
8. At what frequencies are the clocks running? There’s an API for that…

Write the code that returns your current clock frequencies:
uint32_t myACLK = 0;
uint32_t mySMCLK = 0;
uint32_t myMCLK = 0;

myACLK = _______________________();

mySMCLK = _______________________();

myMCLK = _______________________();

9. We didn’t set up the clocks (or power level) in our previous labs,
how come our code worked?

Don’t spend too much time pondering this, but what speed do you
think each clock is running at before we configure them?

ACLK: _________ SMCLK: __________ MCLK: _________
‘FR5969 ACLK: _________ SMCLK: __________ MCLK: _________

C5529 trefix = ‘UCS’
CR5969 trefix = ‘CS’
CR4133 trefix = ‘CS’

UCS_getACLK

UCS_getSaCLK

UCS_getaCLK

There are default values provided in hardware for clocks, power, etc.

32 KIz 1.048 aIz 1.048 aIz

39 KIz 1 aIz 1 aIz

‘F5529/FR4133

10. Set up ACLK:
• Use REFO for the F5529 device
• Use VLO for the FR5969/4133 devices

// Setup ACLK

_________________________(

______ _ACLK, // Clock to setup

____________________________, // Source clock

_____ _CLOCK_DIVIDER_1

);

// Setup ACLK

_________________________(

______ _ACLK, // Clock to setup

____________________________, // Source clock

_____ _CLOCK_DIVIDER_1

);

Chapter 4 Worksheet (6)
C5529 trefix = ‘UCS’
CR5969 trefix = ‘CS’
CR4133 trefix = ‘CS’

UCS_clockSignalLnit
UCS

UCS
UCS_R9ChCLK_S9L9CT

UCS_clockSignalLnit
CS

CS
CS_VLhCLK_S9L9CT

4 - 68 MSP430 Workshop - MSP430 Clocks & Initialization

 Chapter 04 Appendix

Chapter 4 Worksheet (7)
11. (F5529 User’s only) Write the code to setup MCLK. It should be

running at 8MHz using the DCO+FLL as its oscillator source.

#define aCLK_59SLR95_CR9QU9bCY_Lb_KIZ _________________________

#define aCLK_CLLR9C_RATLh __________________________ /(UCS_R9ChCLK_CR9QU9bCY/1024)

// Set the FLL's clock reference clock to REFO

_________________________(

UCS_FLLREF, // Clock you're configuring

_____________________, // Clock Source

UCS_CLOCK_DIVIDER_1);

// Config the CLL's freq, let it settle, and set aCLK & SaCLK to use 5Ch+CLL as clk source

_________________________(

MCLK_DESIRED_FREQUENCY_IN_KHZ,

_____________________________);

8000

aCLK_59SLR95_CR9QU9bCY_Lb_KIZ

UCS_clockSignalLnit

UCS_R9ChCLK_S9L9CT

UCS_initCLLSettle

aCLK_CLLR9C_RATLh

Chapter 4 Worksheet (9)
11. (FR5969 Users only) Write the code to setup MCLK. It should be

running at 8MHz using the DCO as its oscillator source.

// Set DCO to 8MHz
CS_setDCOFreq(

______________________, // Set Crequency range (5ChR)

______________________ // Set Crequency (5ChC)
);

// Set MCLK to use DCO clock source

_________________________(

__,

__,

UCS_CLOCK_DIVIDER_1);

CS_5ChRS9L_1
CS_5ChCS9L_3

CS_clockSignalLnit

CS_aCLK
CS_5ChCLK_S9L9CT

MSP430 Workshop - MSP430 Clocks & Initialization 4 - 69

Chapter 04 Appendix

6. Complete the code needed to enable the Watchdog Timer using
ACLK. (Hint: look at the WDT_A section of the DriverLib User’s Guide)

7. Write the code to ‘kick the dog’?
__________________________________(WDT_A_BASE);

Chapter 4b Worksheet

// Initialize the WDT as a watchdog

WDT_A_watchdogTimerInit(

WDT_A_BASE,

____________________________; //Which clock should W5T use?
WDT_A_CLOCKDIVIDER_64); //5ivide the W5T clock input?
//WDT_A_CLOCKDIVIDER_512); //Two other divisor options
//WDT_A_CLOCKDIVIDER_32K);

// Start the watchdog

__________________________________(WDT_A_BASE);

W5T_A_resetTimer

W5T_A_CLhCKShURC9_ACLK

W5T_A_start

4 - 70 MSP430 Workshop - MSP430 Clocks & Initialization

Interrupts

Introduction
What is an embedded system without interrupts?

If you just needed to solve a math problem you would most likely sit down and use a desktop
computer. Embedded systems, on the other hand, take inputs from real-world events and then
act upon them. These real-world events usually translate into ‘interrupts’ – asynchronous signals
provided to the microcontroller: timers, serial ports, pushbuttons … and so on.

This chapter discusses how interrupts work; how they are implemented on the MSP430 MCU,
and what code we need to write in order to harness their functionality. The lab exercises provided
are relatively simple (using a pushbutton to generate an interrupt), but the skills we learn here will
apply to all the remaining chapters of this workshop.

Learning Objectives

Objectives

- Explain the difference between Polling &
Interrupts

- List the 4 items that are part of the MSP430’s
interrupt processing flow

- Find the interrupt vector documentation
- Describe the difference between a dedicated and

grouped interrupt
- Write a function to enable interrupts
- Write two ISR functions (one for dedicated, the

other for grouped interrupts)

MSP430 Workshop - Interrupts 5 - 1

Interrupts, The Big Picture

Chapter Topics
Interrupts ... 5-1

Interrupts, The Big Picture .. 5-3
Polling vs Interrupts ... 5-3
Processor States and Interrupts ... 5-5
Threads: Foreground and Background ... 5-6

How Interrupts Work ... 5-7
1. Interrupt Must Occur ... 5-9
2. Interrupt is Flagged (and must be Enabled) ... 5-10
3. CPU's Hardware Response .. 5-12
4. Your Software ISR .. 5-14

Interrupts: Priorities & Vectors ... 5-17
Interrupts and Priorities ... 5-17
Interrupt Vector (IV) Registers .. 5-18
Interrupt Vector Table ... 5-19

Coding Interrupts ... 5-22
Dedicated ISR (Interrupt Service Routine) .. 5-22
Grouped ISR (Interrupt Service Routine) .. 5-24
Enabling Interrupts .. 5-26

Miscellaneous Topics .. 5-28
Handling Unused Interrupts .. 5-28
Interrupt Service Routines – Coding Suggestions .. 5-29
GPIO Interrupt Summary .. 5-30
Interrupt Processing Flow ... 5-30

Interrupts and TI-RTOS Scheduling .. 5-31
Threads – Foreground and Background ... 5-31
TI-RTOS Thread Types ... 5-33
Summary: TI-RTOS Kernel ... 5-36

Lab Exercise ... 5-37

5 - 2 MSP430 Workshop - Interrupts

 Interrupts, The Big Picture

Interrupts, The Big Picture
While many of you are already familiar with interrupts, they are so fundamental to embedded
systems that we wanted to briefly describe what they are all about.

From Wikipedia:
 A hardware interrupt is an electronic alerting signal sent to the processor from an external device,

either a part of the [device, such as an internal peripheral] or an external peripheral.

In other words, the interrupt is a signal which notifies the CPU that an event has occurred. If the
interrupt is configured, the CPU will respond to it immediately – as described later in this chapter.

Polling vs Interrupts
In reality, though, there are two methods that events can be recognized by the processor. One is
called “Polling”; the other is what we just defined, “Interrupts”.

We start with a non-engineering analogy for these two methods. If you’ve ever taken a long family
vacation, you’ve probably dealt with the “Are we there yet” question. In fact, kids often ask it over-
and-over again. Eventually … the answer will be, “Yes, we’re there”. The alternative method is
when my spouse says, “Wake me up when we get there”.

Waiting for an Event: Famfiv Vacatfon

Polling
Wane me up when we get there...

Interrupts

Both methods signal that we have arrived at our destination. In most cases, though, the use of
Interrupts tends to be much more efficient. For example, in the case of the MSP430, we often
want to sleep the processor while waiting for an event. When the event happens and signals us
with an interrupt, we can wake up, handle the event and then return to sleep waiting for the next
event.

MSP430 Workshop - Interrupts 5 - 3

Interrupts, The Big Picture

A real-world event might be our system responding to a push-button. Once again, the event could
be handled using either Polling or Interrupts.

It is common to see “simple” example code utilize Polling. As you can see from the left-side
example below, this can simply consist of a while{} loop that keeps repeating until a button-push
is detected. The big downfall here, though, is that the processor is constantly running– asking the
question, “Has the button been pushed, yet?”

Waiting for an Event: Button Push

100% CPU Load

while(1) {

// Polling GPIO button

while (GPIO_getInputPinValue()==1)
GPIO_toggleOutputOnPin();

}

// GPIO button interrupt

#pragma vector=PORT1_VECTOR

__interrupt void rx (void){

GPIO_toggleOutputOnPin();

}

> 0.1% CPU Load

Polling Interrupts

The example on the right shows an Interrupt based solution. Since this code is not constantly
running, as in the previous example’s while{} loop, the CPU load is very low.

Why do simple examples often ignore the use of interrupts? Because they are “simple”.
Interrupts, on the other hand, require an extra three items to get them running. We show two of
them in the right-hand example above.
• The #pragma sets up the interrupt vector. The MSP430 has a handy pragma which makes it

easy to configure this item. (Note: we’ll cover the details of all these items later in this
chapter.)

• The __interrupt keyword tells the compiler to code this function as an interrupt service routine
(ISR). Interrupt functions require a context save and restore of any resources used within
them.

While not shown above, we thought we’d mention the third item needed to get interrupts to work.
For a CPU to respond to an interrupt, you also need to enable the interrupt. (Oh, and you may
also have to setup the interrupt source; for example, we would have to configure our GPIO pin to
be used as an interrupt input.)

So, in this chapter we leave the simple and inefficient examples behind and move to the real-
world – where real-world embedded systems thrive on interrupts.

5 - 4 MSP430 Workshop - Interrupts

 Interrupts, The Big Picture

Processor States and Interrupts
In a previous chapter we covered many of the MSP430’s processor states. To summarize, the
MSP430 CPU can reside in: Reset, Active, or one of many Low-Power Modes (LPM). In many
cases, interrupts cause the CPU to change states. For example, when sitting in Low Power
Mode, an interrupt can “wake-up” the processor and return it to its active mode.

To help demonstrate this point, we stole the following slide from a discussion about Capacitive
Touch. While most of this slide’s content is not important for our current topic, we thought the
current vs time graph was interesting. It tries to visually demonstrate the changing states of the
device by charting power usage over time.

Notice the four states shown in this diagram:
• Notice how the current usage goes up at the beginning event – this is when the CPU is

woken up so it can start a couple of peripherals (timers) needed to read the CapTouch
button.

• The CPU can then go back to sleep while the sensor is being ‘read’ by the timers.

• When the read is complete (defined by something called “Gate” time, the CPU gets
interrupted and wakes up again in order to calculate the CapTouch button’s value from the
sensor data.

• Finally the CPU (and CapTouch hardware) can go back to sleep and wait for another system
wake-up event.

Interrupts Help Support Ultra Low Power

Only timers are running

Very little CPU
effort required

Lots of sleep time

 Keep CtU asleep (i.e. in Low
tower aode) while waiting for
event

 Lnterrupt ‘wakes up’ CtU when
it’s required
 Another way to look at it is

that interrupts often cause a
program state change

 Often, work can be done by
peripherals, letting CtU stay in
Lta (e.g. Gate Time)

MSP430 Workshop - Interrupts 5 - 5

Interrupts, The Big Picture

Threads: Foreground and Background
We conclude our Interrupts introduction by defining a few common terms used in interrupt-driven
systems: Thread, Foreground and Background.

If you look at the “code” below, you will see that there are three individual – and independent –
code segments below: main, ISR1, and ISR2.

We use the word independent because, if you were to examine the code in such a system, there
are no calls between these three routines. Each one begins and ends execution without calling
the others. It is common to call these separate segments of code: “Threads”.

Foreground / Background Scheduling
main() {

}

while(1){
background
or Ltax

}

//Init
initPMM();
initClocks();
...

ISR1
get data
process

{ystem Lnitialization
 The beginning part of main() is usually dedicated

to setting up your system (Chapters 3 and 4)

.ackground
 aost systems have an endless loop that runs

‘forever’ in the background
 Ln this case, ‘.ackground’ implies that it runs at a

lower priority than ‘Coreground’
 Ln a{t430 systems, the background loop often

contains a Low tower aode (Ltax) command –
this sleeps the CtU/{ystem until an interrupt
event wakes it up

Coreground
 Lnterrupt {ervice woutine (L{w) runs in response

to enabled hardware interrupt
 These events may change modes in .ackground –

such as waking the CtU out of low-power mode
 L{w’s, by default, are not interruptible
 {ome processing may be done in L{w, but it’s

usually best to keep them short

ISR2
set a flag

As we’ve seen in the workshop already, it is our main() thread that begins running once the processor has
been started. The compiler’s initialization routine calls main() when its work is done. (In fact, this is why all C
programs start with a main() function. Every compiler works the same way, in this regard.)

With the main() thread started, since it is coded with a while(1) loop, it will keep running forever. That is,
unless a hardware interrupt occurs.

When an enabled interrupt is received by the CPU, it preempts the main() thread and runs the associated
ISR routine – for example, ISR1. In other words, the CPU stops running main() temporarily and runs ISR1;
when ISR1 completes execution, the CPU goes back to running main().

5 - 6 MSP430 Workshop - Interrupts

 How Interrupts Work

Here’s where the terms Foreground and Background come into play. We call main() the Background
thread since it is our “default” thread; that is, the program is designed such that we start running main() and
go back to it whenever we’re done with our other threads, such as ISR1.

Whenever an interrupt causes another thread to run,
we call that a Foreground thread. The foreground
threads preempt the Background thread, returning to
the Background once completed.

The words “Foreground” and “Background” aren’t
terribly important. They just try to provide a bit of context that can be visualized in this common way.

It should be noted that it’s important to keep your interrupt service routines short and quick. This, again, is
common practice for embedded systems.

Note: We realize that our earlier definition of “Thread” was a little weak. What we said was true, but not complete. The
author’s favorite definition for “Thread” is as follows:

“A function or set of functions that operate independently of other code – running within their own context.”

The key addtion here is that a thread runs within its own context. When switching from one thread to another, the
context (register values and other resources) must be saved and restored.

How Interrupts Work
Now that we have a rough understanding of what interrupts are used for, let’s discuss what
mechanics are needed to make them work. Hint, there are 4 steps to getting interrupts to work…

How do Interrupts Work?
Slide left intentionally blank…

If you’ve been reading this chapter, you might notice that we’ve already covered these four items.
Over the next few pages we enumerate these steps again, filling-in additional details.

MSP430 Workshop - Interrupts 5 - 7

How Interrupts Work

Notes

5 - 8 MSP430 Workshop - Interrupts

 How Interrupts Work

1. Interrupt Must Occur
For the processor to respond to an interrupt, it must have occurred. There are many possible
sources of interrupts. Later in this chapter we will delve into the MSP430 datasheet which lists all
of the interrupt sources.

How do Interrupts Work?

• UAwT
• GtIO
• Timers
• ADC
• Etc.

1. An interrupt occurs

…currently executing code
interrupt occurs

next_line_of_code
}

Suffice it to say that most peripherals can generate interrupts to provide status and information to
the CPU. Most often, the interrupt indicates that data is available (e.g. serial port) and/or an event
has occurred that needs processing (e.g. timer). In some cases, though, an interrupt may be used
to indicate an error or exception in a peripheral that the CPU needs to handle.

Interrupts can also be generated from GPIO pins. This is how an external peripheral, or some
other controller, can signal the MSP430 CPU. Most MSP430 devices allow the pins from the first
two I/O ports (P1 and P2) to be individually configured for interrupt inputs. On the larger devices,
there may be additional ports that can be configured for this, as well.

Finally, your software can often generate interrupts. The logic for some interrupts on the
processor allow you to manually set a flag bit, thus ‘emulating’ a hardware interrupt. Not all
interrupts provide this feature, but when available, it can be a handy way to test your interrupt
service routine.

MSP430 Workshop - Interrupts 5 - 9

How Interrupts Work

2. Interrupt is Flagged (and must be Enabled)
When an interrupt signal is received, an interrupt flag (IFG) bit is latched. You can think of this as
the processor’s “copy” of the signal. As some interrupt sources are only on for a short duration, it
is important that the CPU registers the interrupt signal internally.

How do Interrupts Work?

• UAwT
• GtIO
• Timers
• ADC
• Etc.

1. An interrupt occurs

…currently executing code
interrupt occurs

next_line_of_code
}

2. It sets a flag bit
in a register

. . .

MSP430 devices are designed with “distributed” interrupt management. That is, most IFG bits are
found inside each peripheral’s control registers; this is different from most processors which have
a common, dedicated set of interrupt registers.

The distributed nature of the interrupts provides a number of benefits in terms of device flexibility
and future feature expansion; further, it fits nicely with the low-power nature of the MSP430.

The only ‘negative’ of distributed interrupts might be that it’s different — it’s just that many of us
older engineers are used to seeing all the interrupts grouped together. Bottom line, though, is that
working with interrupts (enabling interrupts, clearing flags, responding to them) is the same
whether the hardware is laid out centrally or in a distributed fashion.

5 - 10 MSP430 Workshop - Interrupts

 How Interrupts Work

Interrupt Flow
How does the interrupt signal reach the CPU?

We’ve just talked about the interrupt flag (IFG) bit – let’s start there. As described on the previous page,
when the interrupt source signal is received, the associated IFG bit is set. In fact, DriverLib contains
functions to read the status of most IFG bits. (Handy in those few cases where you need to poll an interrupt
source.)

When the IFG is set, the MSP430 device now sees that the signal has occurred, but the signal hasn’t made
its way to the CPU, yet. For that to happen, the interrupt must be enabled.

IE bit
“Lndividual”

Lnt Enable

SR.GIE
“Global”
Lnt Enable

IFG bit
Lnterrupt

‘Clag’

CPU1TIMER_A

0GPIO

0…

0NMI

Interrupt Flow

Lnterrupt Enable (LE); e.g.
GPIO_enableInterrupt();
GPIO_disableInterrupt();

TIMER_A_enableInterrupt();

Lnterrupt Clag weg (LCw)
bit set when int occurs; e.g.

GPIO_getInterruptStatus();
GPIO_clearInterruptFlag();

Global Lnterrupt Enable (GLE)
Enables ALL maskable interrupts

Enable: __bis_SR_register(GIE);
Disable: __bic_SR_register(GIE);

Lnterrupt
{ource

Interrupt enable bits (IE) exist to protect the CPU … and thus, your program. Even with so many peripherals
and interrupt sources, it’s likely that your program will only care about a few of them. The enable bits provide
your program with ‘switches’ that let you ignore all those sources you don’t need.

By default, all interrupt bits are disabled (except the Watchdog Timer). It is your program’s responsibility to
enable those interrupt sources that are needed. To that end, once again, DriverLib provides a set of
functions that make it easy for you to set the necessary IE bits.

Finally, there’s a “master” switch that turns all interrupts off. This lets you turn off interrupts without having to
modify all of the individual IE bits. The MSP430 calls this the global interrupt enable (GIE). It is found in the
MSP430 Status Register (SR).

Why would you need a GIE bit? Sometimes your program may need to complete some code atomically; that
is, your program may need to complete a section of code without the fear that an interrupt could preempt it.
For example, if your program shares a global variable between two threads – say between main() and an
ISR – it may be important to prevent interrupts while the main code reads and modifies that variable.

Note: There are a few non-maskable interrupts (NMI). These sources bypass the GIE bit. These
interrupts are often considered critical events – i.e. ‘fatal’ events – that could be used to provide a
warm reset of the CPU.

MSP430 Workshop - Interrupts 5 - 11

How Interrupts Work

3. CPU's Hardware Response
At this point, let’s assume you have an interrupt that has: occurred; been flagged; and since it
was enabled, its signal has reached the CPU. What would the CPU do in response to the
interrupt?

Earlier in the chapter we stated: “The interrupt preempts the current thread and starts running the
interrupt service routine (ISR).” While this is true, there are actually a number of items performed
by the hardware to make this happen – as shown below:

How do Interrupts Work?

• UAwT
• GtIO
• Timers
• ADC
• Etc.

1. An interrupt occurs

…currently executing code
interrupt occurs

next_line_of_code
}

2. {ets a flag bit
(LCG) in register

. . .

3. CtU acknowledges LNT by…
• Current instruction completes
• Saves return-to location on stack
• Saves ‘Status weg’ (Sw) to the stack
• Clears most of Sw, which turns off

interrupts globally (Sw.GIE=0)
• Determines INT source (or group)
• Clears non-grouped flag* (IFG=0)
• weads interrupt vector & calls ISw

We hope the first 3 items are self-explanatory; the current instruction is completed while the
Program Counter (PC) and Status Register (SR) are written to the system stack. (You might
remember, the stack was setup for the MSP430 by the compiler’s initialization routine. Please
refer to the compiler user’s guide for more information.)

After saving the context of SR, the interrupt hardware in the CPU clears most of the SR bits. Most
significantly, it clears GIE. That means that by default, whenever you enter an ISR function, all
maskable interrupts have been turned off. (We’ll address the topic of ‘nesting’ interrupts in the
next section.)

The final 3 items basically tell us that the processor figures out which interrupt occurred and calls
the associated interrupt service routine; it also clears the interrupt flag bit (if it’s a dedicated
interrupt). The processor knows which ISR to run because each interrupt (IFG) is associated with
an ISR function via a look-up table – called the Interrupt Vector Table.

5 - 12 MSP430 Workshop - Interrupts

 How Interrupts Work

Interrupt Vector Table – How is it different than other MCU’s?
The MSP430 Vector Table is similar and dissimilar to other microcontrollers:

• The MSP430, like most microcontrollers, uses an Interrupt Vector Table. This is an area
of memory that specifies a vector (i.e. ISR address) for each interrupt source.

• Some processors provide a unique ISR (and thus, vector) for every interrupt source.
Other processors provide only 1 interrupt vector and make the user program figure which
interrupt occurred. To maximize flexibility and minimize cost and power, the MSP430 falls
in between these two extremes. There are some interrupts which have their own,
dedicated interrupt vector – while other interrupts are logically grouped together.

• Where the MSP430 differs from many other processors is that it includes an Interrupt
Vector (IV) register for each grouped interrupt; reading this register returns the highest-
priority, enabled interrupt for that group of interrupt sources. As we’ll see later in this
chapter, all you need to do is read this register to quickly determine which specific
interrupt to handle.

Note: We’ll describe Interrupt Vector Table in more detail later in the chapter.

MSP430 Workshop - Interrupts 5 - 13

How Interrupts Work

4. Your Software ISR
An interrupt service routine (ISR), also called an interrupt handler, is the code you write that will
be run when a hardware interrupt occurs. Your ISR code must perform whatever task you want to
execute in response to the interrupt, but without adversely affecting the threads (i.e. code)
already running in the system.

Before we examine the details of the ISR; once again, how did we get to this point?
 Looking at the diagram below, we can see that (1) the interrupt must have occurred; (2) the processor

flags the incoming interrupt; (3) if enabled, the interrupt flag signal is routed to the CPU where it saves
the Status Register and Return-to address and then branches to the ISR’s address found in the
appropriate location in the vector table. (4) Finally, your ISR is executed.

How do Interrupts Work?

2. Sets a flag bit
(LCG) in register

. . .

• UAwT
• GtIO
• Timers
• A/D Converter
• Etc.

1. An interrupt
occurs

3. CtU acknowledges LNT by…
• Current instruction completes
• Saves return-to location on stack
• Saves ‘Status weg’ (Sw) to the stack
• Clears most of Sw, which turns off

interrupts globally (Sw.GIE=0)
• Determines INT source (or group)
• Clears non-grouped flag* (IFG=0)
• weads interrupt vector & calls ISw

4. L{w (Lnterrupt {ervice woutine)
• Save context of system
• (optional) we-enable interrupts
• *If group INT, read IV weg to

determines source & clear IFG
• wun your interrupt’s code
• westore context of system
• Continue where it left off (wETI)

The crux of the ISR is doing what needs to be done in response to the interrupt; the 4th bullet
(listed in red) reads:

 • wun your interrupt’s code

This is meant to describe the code you write to handle the interrupt. For example, if it’s a UART
interrupt, your code might read an incoming byte of data and write it to memory.

We’ll discuss the 2nd (optional) bullet on the next page.

The 3rd bullet indicates that if this is a “grouped” interrupt, you have to add code to figure out
which interrupt, in the group, needs to be handled. This is usually done by reading the group’s IV
register. (This bullet was in red because it is code you need to write.)

The other bullets listed under “4. ISR” are related to saving and restoring the context of the
system. This is required so that the condition mentioned earlier can be met: “without adversely
affecting the code threads already running in the system.”

5 - 14 MSP430 Workshop - Interrupts

 How Interrupts Work

We show the interrupt flow in a slightly different fashion in the following diagram. As you can see,
when an enabled interrupt occurs, the processor will look up the ISR’s branch-to address from a
specific address in memory (called the interrupt vector). For the MSP430, this address is defined
using the vector pragma.

#pragma vector=WDT_VECTOR
interrupt myISR(void){

}

4. Interrupt Service Routine (ISR)

Using Lnterrupt Keyword
 Compiler handles context save/restore
 Call a function? Then full context is saved
 No arguments, no return values
 You cannot call any TI-wTOS scheduler

functions (e.g. Swi_post)
 Nesting interrupts is aANUAL

&myISR

Vector Table…currently executing code
interrupt occurs

next_line_of_code
}

• Save context of system
• (optional) we-enable interrupts
• *If group INT, read assoc IV weg

(determines source & clears IFG)
• wun your interrupt’s code
• westore context of system
• Continue where it left off (wETI)

The context of the system – for example, the CPU registers used by the ISR – must be saved
before running your code and restored afterwards. Thankfully, the compiler handles this for you
when the function is declared as an interrupt. (As part of the “context restore”, the compiler will
return to running the previous thread of code by using the RETI instruction).

Please note the bullets under “Using the Interrupt Keyword” from the preceding diagram.

Using this keyword, the compiler handles all of the context save/restore for you and knows how to
return to your previous code – even restoring the original value for the Status Register (SR).

Hint: If you call a function within your ISR, the compiler will have to save/restore every CPU
register, not just the ones that it uses to implement your C code. This is because it
doesn’t know what resources the function call may end up using.

Since the interrupt occurs asynchronously to the background thread, you cannot pass arguments
to and receive return values from the ISR. You must communicate between threads using global
variables (or other appropriate data objects).

TI’s real-time operating system (TI-RTOS) provides a rich set of scheduling functions that are
often used within interrupt service routines. Be aware, though, that some of these functions can
only be used with RTOS “managed” interrupts. In fact, it’s actually easier to let TI-RTOS manage
your interrupts; it automatically handles plugging the interrupt vector as well as context
save/restore. (All you have to do is write a standard C function.) But, the details of TI-RTOS are
outside the scope of this workshop. While we provide a brief discussion of TI-RTOS at the end of
this chapter, please refer to the Introduction to TI-RTOS Kernel workshop for more details.

MSP430 Workshop - Interrupts 5 - 15

http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop

How Interrupts Work

Nesting Interrupts (not recommended)
Finally, while the MSP430 allows nesting of interrupts, it is not recommended.
• Nesting interrupts means one interrupt can interrupt another interrupt.

• You must manually configure nesting. That is, before running your interrupt handling code
you must:

− Disable any interrupts that you do not want to occur during your ISR. In other words, you
must first save, then disable, any IE bit that correlates to an interrupt that you do not want
to interrupt your ISR.

− Then, turn on interrupts globally by setting GIE = 1.

− At this point you can run your code that responds to the original interrupt. It may end up
being interrupted by any source that you left enabled.

− When you’ve completed your original interrupt code, you need to disable interrupts before
returning from the function. That is, set GIE = 0. (This is the state GIE was in when
entering your ISR code.

− You can now restore the IE bits that you saved before enabling GIE.

− At this point, you can return from the ISR and let the compiler’s code handle the
remaining context save and return branch back to the original thread.

• In general, it’s considered better programming practice to keep interrupt service routines very
short – i.e. lean-and-mean. Taking this further, with low-power and efficiency in mind, the
MSP430 team recommends you follow the no-nesting general principle.

Hint: We encourage you to avoid nesting, if at all possible. Not only is it difficult, and error
prone, it often complicates your programs ability to reach low-power modes.

5 - 16 MSP430 Workshop - Interrupts

 Interrupts: Priorities & Vectors

Interrupts: Priorities & Vectors

Interrupts and Priorities
Each MSP430 device datasheet defines the pending priority for each of its hardware interrupts. In
the case of the MSP430F5529, there are 23 interrupts shown listed below in decreasing priority.

In the previous paragraph we used the phrase “pending priority” deliberately. As you might
remember from the last topic in this chapter, interrupts on the MSP430 do not nest within each
other by default. This is because the global interrupt (GIE) bit is disabled when the CPU
acknowledges and processes an interrupt. Therefore, if an interrupt occurs while an ISR is being
executed, it will have to wait for the current ISR to finish before it can be handled … even if the
new interrupt is of higher priority.

On the other hand, if two interrupts occur at the same time – that is, if there are two interrupts
currently pending – then the highest priority interrupt is acknowledged and handled first.

LNT {ource triority
System Reset high

System NMI
User NMI
Comparator
Timer B (CCIFG0)
Timer B
WDT Interval Timer
Serial Port (A)
Serial Port (B)
A/D Convertor

GPIO (Port 1)

GPIO (Port 2)
Real-Time Clock low

0xFFFF

Interrupt Priorities (F5529)
 There are 23 interrupts

(partially shown here)

 Lf multiple interrupts (of the 23) are
pending, the highest priority is
responded to first

 .y default, interrupts are not
nested …
 That is, unless you re-enable INT’s

during your ISw, other interrupts will be
held off until it completes

 It doesn’t matter if the new INT is a
higher priority

 As already recommended, you should
keep your ISw’s short

 aost of these represent ‘groups’ of
interrupt source flags
 145 IFG’s map into these 23 interrupts

Most of the 23 interrupts on the ‘F5529 represent ‘groups’ of interrupts. There are actually 145
interrupt sources – each with their own interrupt flag (IFG) – that map into these 23 interrupts.

For example, the “Timer B (CCIFG0)” interrupt represents a single interrupt signal. When the
CPU acknowledges it, it will clear its single IFG flag.

On the other hand, the next interrupt in line, the “Timer B” interrupt, represents all the rest of the
interrupts that can be initiated by Timer0_B. When any one of the interrupts in this group occurs,
the ISR will need to determine which specific interrupt source occurred and clear its flag (along
with executing whatever code you want to associate with it).

MSP430 Workshop - Interrupts 5 - 17

Interrupts: Priorities & Vectors

Interrupt Vector (IV) Registers
As has been mentioned a couple of times in this chapter, to make responding to grouped
interrupts easier to handle, the MSP430 team created the concept of Interrupt Vector (IV)
Registers. Reading an IV register will return the highest-priority, pending interrupt in that group; it
will also clear that interrupts associated flag (IFG) bit.

Interrupt Vector (IV) Registers

 LV = Lnterrupt Vector register
 aost a{t430 interrupts can be caused by more than one

source; for example:
 Each 8-bi GtIO port one has a single CtU interrupt

 LV registers provide an easy way to determine which
source(s) actually interrupted the CtU

 The interrupt vector register reflects only ‘triggered’
interrupt flags whose interrupt enable bits are also set

 weading the ‘LV’ register:
 Clears the pending interrupt flag with the highest priority
 trovides an address offset associated with the highest priority

pending interrupt source

 An example is provided in the “Coding Lnterrupts” section
of this chapter

Port 1 Interrupt Vector Register (P1IV)Returns highest
pending Port 1 IFG

For grouped interrupts, most users read the IV register at the beginning of the ISR and use the
return value to pick the appropriate code to run. This is usually implemented with a Switch/Case
statement. (We will explore an example of this code later in the chapter.)

5 - 18 MSP430 Workshop - Interrupts

 Interrupts: Priorities & Vectors

Interrupt Vector Table
We can expand the previous interrupt source & priority listing to include a few more items. First of
all, we added a column that provides the IV register associated with each interrupt. (Note, the two
names shown in red text represent the IFG bits for dedicated/individual interrupts.)

Additionally, the first 3 rows (highlighted with red background fill) indicate that these interrupt
groups are non-maskable; therefore, they bypass the GIE bit.

LNT {ource LV wegister Vector Address Loc’n triority
System Reset SYSRSTIV RESET_VECTOR 63 high

System NMI SYSSNIV SYSNMI_VECTOR 62
User NMI SYSUNIV UNMI_VECTOR 61
Comparator CBIV COMP_B_VECTOR 60
Timer B (CCIFG0) CCIFG0 TIMER0_B0_VECTOR 59
Timer B TB0IV TIMER0_B1_VECTOR 58
WDT Interval Timer WDTIFG WDT_VECTOR 57
Serial Port (A) UCA0IV USCI_A0_VECTOR 56
Serial Port (B) UCB0IV USCI_B0_VECTOR 55
A/D Convertor ADC12IV ADC12_VECTOR 54

GPIO (Port 1) P1IV PORT1_VECTOR 47

GPIO (Port 2) P12V PORT2_VECTOR 42
Real-Time Clock RTCIV RTC_VECTOR 41 low

Legend: Non-maskable Group’d IFG bits
Maskable Dedicated IFG bits

Flash (128K)

INT Vectors (80)

RAM (8K)

USB RAM (2K)
Info Memory (512)
Boot Loader (2K)

Peripherals (4K)

Memory Map

0xFFFF

Interrupt Vectors & Priorities (F5529)

The final column in the above diagram hints at the location of each interrupts address vector in
the memory map. For example, when using the WDT as an interval timer, you would put the
address of your appropriate ISR into location “57”. As we saw in a previous topic, this can easily
be done using the vector pragma.

The MSP430 devices reserve the range 0xFFFF to 0xFF80 for the interrupt vectors. This means
that for the ‘F5529, the address for the System Reset interrupt service routine will sit at addresses
0xFFFE – 0xFFFF. (A 16-bit address requires two 8-bit memory locations.) The remaining
interrupt vectors step down in memory from this point. The map to the right of the table shows
where the interrupt vectors appear within the full MSP430 memory map.

MSP430 Workshop - Interrupts 5 - 19

Interrupts: Priorities & Vectors

Here’s a quick look at the same table showing the MSP430FR5969 interrupt vectors and
priorities. The list is very similar to the ‘F5529; the main differences stem from the fact that the
two devices have a slightly different mix of peripherals.

LNT {ource LV wegister Vector Address Loc’n triority
System Reset SYSRSTIV RESET_VECTOR high

System NMI SYSSNIV SYSNMI_VECTOR 54
User NMI SYSUNIV UNMI_VECTOR 53
Comparator_E CEIV COMP_B_VECTOR 52
Timer B0 (CCIFG0) CCIFG0 TIMER0_B0_VECTOR 51
Timer B0 TB0IV TIMER0_B1_VECTOR 50
WDT Interval Timer WDTIFG WDT_VECTOR 49
Serial Port (A0) UCA0IV USCI_A0_VECTOR 48
Serial Port (B0) UCB0IV USCI_B0_VECTOR 47
ADC12_B ADC12IV TIMER0_B0_VECTOR 46

GPIO (Port 1) P1IV PORT1_VECTOR 39

Real-Time Clock RTCIV RTC_VECTOR 31
AES256 Accelerator AESRDYIFG AES256_VECTOR 30 low

Legend: Non-maskable Group’d IFG bits
Maskable Dedicated IFG bits

Flash (64K)

INT Vectors (80)

USB RAM (2K)
Info Memory (512)
Boot Loader (2K)
Peripherals (4K)

Memory Map

0xFFFF

Interrupt Vectors & Priorities (‘FR5969)

5 - 20 MSP430 Workshop - Interrupts

 Interrupts: Priorities & Vectors

The preceding interrupt tables were re-drawn to make them easier to view when projected during
a workshop. The following slide was captured from ‘F5529 datasheet. This is what you will see if
you examine the MSP430 documentation.

‘F5529 Vector Table (From Datasheet)

Each device’s datasheet provides a similar vector table listing. If you are using the ‘G2553 or
‘FR5969 devices, for example, you will find a similar table in each of their respective datasheets.

MSP430 Workshop - Interrupts 5 - 21

Coding Interrupts

Coding Interrupts
As previously discussed, the code within your interrupt service routine will vary slightly based on
whether it handles a dedicated, single interrupt or if it handles a grouped interrupt. We will cover
both cases; starting with the easier, dedicated case.

Dedicated ISR (Interrupt Service Routine)

LNT {ource LV wegister Vector Address Loc’n triority
System Reset SYSRSTIV RESET_VECTOR 63 high

System NMI SYSSNIV SYSNMI_VECTOR 62
User NMI SYSUNIV UNMI_VECTOR 61
Comparator CBIV COMP_B_VECTOR 60
Timer B (CCIFG0) CCIFG0 TIMER0_B0_VECTOR 59
Timer B TB0IV TIMER0_B1_VECTOR 58
WDT Interval Timer WDTIFG WDT_VECTOR 57
Serial Port (A) UCA0IV USCI_A0_VECTOR 56
Serial Port (B) UCB0IV USCI_B0_VECTOR 55
A/D Convertor ADC12IV ADC12_VECTOR 54

GPIO (Port 1) P1IV PORT1_VECTOR 47

GPIO (Port 2) P12V PORT2_VECTOR 42
Real-Time Clock RTCIV RTC_VECTOR 41 low

Legend: Non-maskable Group’d IFG bits
Maskable Dedicated IFG bits

Flash (128K)

INT Vectors (80)

RAM (8K)

USB RAM (2K)
Info Memory (512)
Boot Loader (2K)

Peripherals (4K)

Memory Map

0xFFFF

Interrupt Vectors & Priorities (F5529)

The watchdog interrupt flag vector (WDTIFG) is a dedicated interrupt; therefore, your ISR code
only needs to respond to the single interrupt condition. Additionally, because it is a dedicated
interrupt, the CPU hardware automatically clears the WDTIFG bit when responding to the
interrupt and branching to your ISR.

When writing an ISR for dedicated interrupts, you code must address three items:

1. Put the ISR address into the vector table (using the vector #pragma)

2. Save/Restore the CPU context (using the __interrupt keyword)

3. Write your interrupt handler code (in other words, “Do what needs doing”)

5 - 22 MSP430 Workshop - Interrupts

 Coding Interrupts

We will use the following code example to demonstrate these three items.

#pragma vector=WDT_VECTOR

__interrupt void myWdtISR(void) {

GPIO_toggleOutputOnPin(...);

}

Interrupt Service Routine (Dedicated INT)

 #pragma vector assigns
‘myISR’ to correct location
in vector table

 __interrupt keyword tells
compiler to save/restore
context and RETI

LNT {ource LV wegister Vector Address Loc’n
WDT Interval Timer WDTIFG WDT_VECTOR 57

 For a dedicated
interrupt, the MSP430
CPU auto clears the
WDTIFG flag

Plug the Vector Table (#pragma vector)
In our example, the following line of code:

#pragma vector=WDT_VECTOR

tells the compiler to associate the function (on the following line) with the WDT_VECTOR.
Looking in the MSP430F5529 device-specific linker command file, you should find this vector
name (“WDT_VECTOR”) associated with vector #57. This matches with the datasheet
documentation we looked at earlier in the chapter.

Save/Restore CPU context (__interrupt keyword)
The __interrupt keyword tells the compiler that this function is an interrupt service routine and
thus it needs to save (and then restore) the context of the processor (i.e. CPU registers) before
(and after) executing the function’s code.

Don’t forget, functions using the __interrupt keyword cannot accept arguments or return values.

Hint: Empirical analysis shows that “__interrupt” and “interrupt” are both accepted by the
compiler.

Your Interrupt Code
In this example, the output of a GPIO pin is toggled every time the watchdog timer interrupt event
occurs. Not all ISR’s will be this short, but we hope this gives you a good starting example to work
from.

MSP430 Workshop - Interrupts 5 - 23

Coding Interrupts

Grouped ISR (Interrupt Service Routine)
Logical Diagram for Grouped Interrupts
Before examining the code for a grouped ISR, let’s first examine the grouped interrupt using a
logical diagram.

As we briefly mentioned earlier in the chapter (and will discuss in full detail in a later chapter), the
Timer_A and Timer_B peripherals are provided with two interrupts. For example, when looking at
Timer0_A5, there is a dedicated interrupt for TA0CCR0 (which stands for Timer0_A
Capture/Compare Register 0). Notice below how this is routed directly to the GIE input mux.

The remaining five Timer0_A5 interrupts are logically AND’d together; this combination provides a
second interrupt signal from Timer0_A5 to the GIE input mux.

Individual & Multiple Interrupt Sources

CPU

0
1

0
0

0

)
0

1
0

0
1

TIMER0_A5

TA0CCR1
TA0CCR2
TA0CCR3
TA0CCR4

TA0CTL

.CCLCG .CCLE
1 1TA0CCR0

0
1

0
0

0
1

1
1

0
1

0
0

1
1

0
0

)
GPIO Port 1 t1LCG t1LE

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

SR.GIE

52
TA0IV

53

LNT {ource LCG LV wegister Vector Address Loc’n
Timer A (CCIFG0) TA0CCR0.CCIFG none TIMER0_A0_VECTOR 53
Timer A TA0CCR1.IFG1…TA0CCR4.IFG TA0IV TIMER0_A1_VECTOR 52

GPIO (Port 1) P1IFG.0 … P1IFG.7 P1IV PORT1_VECTOR 47

47

Example:
Interrupts on

pin 1 and 5

Reading P1IV
returns highest
priority interrupt
and clears it’s
IFG bit

Single interrupt:
 Only caused by one

INT – simplifies ISR
 IFG auto cleared

This diagram also shows that all of the input pins for GPIO port 1 (P1) share a single, grouped
interrupt. This means your GPIO ISR must always verify which pin actually caused an interrupt
whenever the ISR is executed.

The interrupt logic within the CPU recognizes each of these interrupt sources, therefore:
• If the first interrupt (TA0CCR0) occurs, it will cause the code at vector address 53

(TIMER_A0_VECTOR) to be executed.

• Similarly, the remaining Timer0 interrupts are associated with vector 52.

• Finally, the GPIO port (P1) was assigned (by the chip designer) to vector 47.

5 - 24 MSP430 Workshop - Interrupts

 Coding Interrupts

ISR Example for Grouped Interrupts
The code for a grouped ISR begins similar to any MPS430 interrupt service routine; you should
use the #pragma vector and __interrupt keyword syntax.

#pragma vector=PORT1_VECTOR

__interrupt void myISR(void) {

switch(__even_in_range(P1IV, 0x10)) {

case 0x00: break; // None
case 0x02: break; // Pin 0
case 0x04: break; // Pin 1

case 0x06: GPIO_toggleOutputOnPin(…); // Pin 2
break;

case 0x08: break; // Pin 3
case 0x0A: break; // Pin 4
case 0x0C: break; // Pin 5
case 0x0E: break; // Pin 6
case 0x10: break; // Pin 7
default: _never_executed();

}}

Interrupt Service Routine (Group INT)
LNT {ource LV wegister Vector Address Loc’n

GPIO (Port 1) P1IV PORT1_VECTOR 47

 #pragma vector assigns
‘myISR’ to correct location
in vector table

 __interrupt keyword tells
compiler to save/restore
context and RETI

 Reading P1IV register:
 Returns value for

highest priority INT
for the Port 1 ‘group’

 Clears IFG bit
 Tell compiler to ignore

un-needed switch cases
by using intrinsics:
__even_in_range()
_never_executed()

For grouped interrupts, though, we also need to determine which specific source caused the CPU
to be interrupted. As we’ve described, the Interrupt Vector (IV) register is an easy way to
determine the highest-priority, pending interrupt source. In the case of GPIO port 1, we would
read the P1IV register.

It’s common to see the IV register read within the context of a switch statement. In the above
case, if the P1IV register returns “6”, it means that pin 2 was our highest-priority, enabled
interrupt on Port 1; therefore, its case statement is executed. (Note, the return values for each IV
register are detailed in the F5xx device Users Guide and the F5xx DriverLib User’s Guide. You
will find similar documentation for all MSP430 devices..)

If our program was using Pin 2 on Port 1, you should see the code for case 0x06 executed if the
GPIO interrupt occurs.

By the way, there are two items in the above code example which help the compiler to produce
better, more optimized, code. While these intrinsic functions are not specific to interrupt
processing, they are useful in creating optimized ISR’s.
• The __even_in_range() intrinsic function provides the compiler a bounded range to evaluate.

In other words, this function tells the compiler to only worry about even results that are lower
or equal to 10.

• Likewise the _never_executed() intrinsic tells the compiler that, in this case, “default” will
never occur.

MSP430 Workshop - Interrupts 5 - 25

Coding Interrupts

Enabling Interrupts
Earlier in the chapter we learned that for the CPU to recognize an interrupt two enable bits must
be set:

• Individual Enable – one IE bit for each interrupt source

• Global Interrupt Enable – GIE is a common “master” enable bit for all interrupts (except
those defined as non-maskable)

In the example below we show the code required to setup a GPIO pin as an interrupt. We chose
to enable the interrupt, as well as configuring the other GPIO pins, in a function called initGPIO();
implementing your code in this way is not required, but it’s how we decided to organize our code.

The key DriverLib function which enables the external interrupt is:

GPIO_enableInterrupt()

You will find that most of the MSP430ware DriverLib interrupt enable functions take a similar
form: <module>_enableInterrupt().

Enabling Interrupts – GPIO Example
#include <driverlib.h>

void main(void) {
// Setup/Hold Watchdog Timer (WDT+ or WDT_A)
initWatchdog();

// Configure Power Manager and Supervisors (PMM)
initPowerMgmt();

// Configure GPIO ports/pins
initGPIO();

// Setup Clocking: ACLK, SMCLK, MCLK (BCS+, UCS, or CS)
initClocks();

//--
// Then, configure any other required peripherals and GPIO
...

__bis_SR_register(GIE);

while(1) {
...
}

void initGPIO() {
// Set P1.0 as output
GPIO_setAsOutputPin (

GPIO_PORT_P1, GPIO_PIN0);

PMM_unlockLPM5(); // for FRAM devices

// Set input & enable P1.1 as INT
GPIO_setAsInputPinWithPullUpResistor (

GPIO_PORT_P1, GPIO_PIN1);

GPIO_interruptEdgeSelect (
GPIO_PORT_P1, GPIO_PIN1,
GPIO_LOW_TO_HIGH_TRANSITION);

GPIO_clearInterruptFlag (
GPIO_PORT_P1, GPIO_PIN1);

GPIO_enableInterrupt (
GPIO_PORT_P1, GPIO_PIN1);

}

__bis_SR_register(GIE);

initGPIO();

Within initGPIO() we highlighted three other related functions in Red:
• GPIO_setAsInputPinWithPullUpResistor() is required to configure the pin as an input. On

the Launchpad, the hardware requires a pull-up resistor to complete the circuit properly.
Effectively, this function configures our interrupt “source”.

• GPIO_interruptEdgeSelect() should be used to configure what edge transition (low-to-high
or high-to-low) will trigger an interrupt. This configures bits in the port’s IES register – which
are left uninitialized after reset.

5 - 26 MSP430 Workshop - Interrupts

 Coding Interrupts

• GPIO_clearInterruptFlag() clears the IFG bit associated with our pin (e.g. P1.1). This is not
required but is commonly used right before a call to “enable” an interrupt. You would clear the
IFG before setting IE when you want to ignore any prior interrupt event; in other words, clear
the flag first if you only care about interrupts that will occur now – or in the future.

Finally, once you have enabled each individual interrupt, the global interrupt needs to be enabled.
This can be done in a variety of ways. The two most common methods utilize compiler intrinsic
functions:
• __bis_SR_register(GIE) instructs the compiler to set the GIE bit in the Status Register

− bis = bit set

− SR = Status Register

− GIE = which bit to set in the SR

• __enable_interrupts(void) tells the compiler to enable interrupts. The compiler uses the
EINT assembly instruction which pokes 1 into the GIE bit.

Sidebar – Where in your code should you enable GIE?
The short answer, “Whenever you need to turn on interrupts”.

A better answer, as seen in our code example, is “right before the while{} loop”.

Conceptually, the main() function for most embedded systems consists of two parts:
• Setup

• Loop

That is, the first part of the main() function is where we tend to setup our I/O, peripherals, and other
system hardware. In our example, we setup the watchdog timer, power management, GPIO, and
finally the system clocks.

The second part of main() usually involves an infinite loop – in our example, we coded this with an
endless while{} loop. An infinite loop is found in almost all embedded systems since we want to run
forever after the power is turned on.

The most common place to enable interrupts globally (i.e. setting GIE) is right between these two
parts of main(). Looking at the previous code example, this is right where we placed our function that
sets GIE.

As a product example, think of the A/C power adaptor you use to charge your computer; most of
these, today, utilize an inexpensive microcontroller to manage them. (In fact, the MSP430 is very
popular for this type of application.) When you plug in your power adapter, we’re guessing that you
would like it to run as long as it’s plugged in. In fact, this is what happens; once plugged in, the first
part of main() sets up the required hardware and then enters an endless loop which controls the
adaptor. What makes the MSP430 such a good fit for this application is: (1) it’s inexpensive; and (2)
when a load is not present and nothing needs to be charged, it can turn off the external charging
components and put itself to sleep – until a load is inserted and wakes the processor back up.

MSP430 Workshop - Interrupts 5 - 27

Miscellaneous Topics

Miscellaneous Topics

Handling Unused Interrupts
While you are not required to provide interrupt vectors – or ISR’s – for every CPU interrupt, it’s
considered good programming practice to do so. To this end, the MSP430 compiler issues a
warning whenever there are “unhandled” interrupts.

The following code is an example that you can include in all your projects. Then, as you
implement an interrupt and write an ISR for it, just comment the associated #pragma line from
this file.

Handling Unused Interrupts
 The MSP430 compiler issues warning whenever all interrupts are not handled

(i.e. when you don’t have a vector specified for each interrupt)

 Here’s a simple example of how this might be handled:

// Example for UNUSED_HWI_ISR()

#pragma vector=ADC12_VECTOR
#pragma vector=COMP_B_VECTOR
#pragma vector=DMA_VECTOR
#pragma vector=PORT1_VECTOR
...

#pragma vector=TIMER1_A1_VECTOR
#pragma vector=TIMER2_A0_VECTOR
#pragma vector=TIMER2_A1_VECTOR
#pragma vector=UNMI_VECTOR
#pragma vector=USB_UBM_VECTOR
#pragma vector=WDT_VECTOR
__interrupt void UNUSED_HWI_ISR (void)
{

__no_operation();
}

Note: The TI code generation tools distinguish between “warnings” and “errors”. Both represent
issues found during compilation and build, but whereas a warning is issued and code
building continues … when an error is encountered, an error statement is issued and the
tools stop before creating a final executable.

5 - 28 MSP430 Workshop - Interrupts

 Miscellaneous Topics

Interrupt Service Routines – Coding Suggestions
Listed below are a number of required and/or good coding practices to keep in mind when writing
hardware interrupt service routines. Many of these have been discussed elsewhere in this
chapter.

Hardware ISR’s – Coding Practices
 An interrupt routine must be declared with no arguments and must return void

 Global variables are often used to “pass” information to or from an ISR
 Do not call interrupt handling functions directly (Rather, write to IFG bit)
 Interrupts can be handled directly with C/C++ functions using the interrupt

keyword or pragma
… Conversely, the TI-RTOS kernel easily manages Hwi context

 Calling functions in an ISR
 If a C/C++ interrupt routine doesn’t call other functions, usually, only those

registers that the interrupt handler uses are saved and restored.
 However, if a C/C++ interrupt routine does call other functions, the routine saves

all the save-on-call registers if any other functions are called
 Why? The compiler doesn’t know what registers could be used by a nested

function. It’s safer for the compiler to go ahead and save them all.
 Re-enable interrupts? (Nesting ISR’s)

 DON’T – it’s not recommended – better that ISR’s are “lean & mean”
 If you do, change IE masking before re-enabling interrupts
 Disable interrupts before restoring context and returning (RETI re-enables int’s)

 Beware – Only You Can Prevent Reentrancy…

We wrote the last bullet, regarding reentrancy, in a humorous fashion. That said, it speaks to an
important point. If you decide to enable interrupt nesting, you need to be careful that you either
prevent reentrancy - or that your code is capable of reentrancy.

Wikipedia defines reentrancy as:
 In computing, a computer program or subroutine is called reentrant if it can be interrupted in the middle of its

execution and then safely called again ("re-entered") before its previous invocations complete execution.

This type of program/system error can be very difficult to debug (i.e. find and fix). This is
especially true if you call functions within your interrupt service routines. For example, the C
language’s malloc() function is not reentrant. If you were to call this function from an ISR and it
was interrupted, and then it is called again by another ISR, your system would most likely fail –
and fail in a way that might be very difficult to detect.

So, we stated this humorously, but it is very true. We recommend that:
• You shouldn’t nest interrupts

• If you do, verify the code in your ISR is reentrant

• Never call malloc() – or similar functions - from inside an ISR

MSP430 Workshop - Interrupts 5 - 29

Miscellaneous Topics

GPIO Interrupt Summary
The diagram used to summarize the GPIO control registers in a previous chapter is a good way
to visualize the GPIO interrupt capabilities of our devices. From the diagram below we can see
that most MSP430 processors allow ports P1 and P2 to be used as external interrupt sources; we
see this from the fact that these ports actually have the required port interrupt registers.

PA PB PC PD PJ*
(4-bit)

Reset
Value
(PUC)P1† P2 P3 P4 P5 P6 P7 P8

PxIN

All
Cour

5evices
support

torts 1 and 2

F5529
Fw4133
Fw5969
(only)

F5529 (t8 x3-bits)
Fw4133 (t8 x12-bits)

F55
&

Fw59

undef
PxOUT unchg
PxDIR 0x00
PxREN 0x00
PxDS 0x00
PxSEL 0x00
PxIV

Fw5969 (only)

0x00
PxIES unchg
PxIE 0x00
PxIFG 0x00

GPIO Interrupt Register Summary

 P1IV: Interrupt Vector generator
Highest Priority Pending interrupt enabled on Port 1

 P1IES: Interrupt Edge Select
Are interrupts triggered on high/low edge? (0 = low-to-high)

 P1IE: Interrupt Enable register for Port 1
 P1IFG: Interrupt Flag register for Port 1

There are other devices in the MSP430 family that support interrupts on more than 2 ports, but of
the three example processors we use throughout this course, only the FR5969 (FRAM) devices
support interrupt inputs on additional ports (P3 and P4).

Interrupt Processing Flow
The following information was previously covered in this chapter, but since the slide is a good
summary of the interrupt processing flow, we have included it anyway.

ISR hardware - automatically
 PC pushed
 SR pushed
 Interrupt vector moved to PC
 GIE, CPUOFF, OSCOFF and SCG1 cleared
 IFG flag cleared on single source flags

reti - automatically
 SR popped - original
 PC popped

Prior to ISR
SP

Item1
Item2

PC
SR

SP

SP

Item1
Item2

Item1
Item2

PC
SR

Interrupt Processing

5 - 30 MSP430 Workshop - Interrupts

 Interrupts and TI-RTOS Scheduling

Interrupts and TI-RTOS Scheduling
When embedded systems start to become more complex – that is, when you need to juggle more
than a handful of events – using a Real-Time Operating System (RTOS) can greatly increase
your system’s reliability … while decreasing your time-to-market, frustration and costs.

The Texas Instruments RTOS (TI-RTOS) – also known as SYS/BIOS – provides many functions
that you can use within your program; for example, the TI-RTOS kernel includes: Scheduling,
Instrumentation, and Memory Management. You can choose which parts of TI-RTOS are needed
and discard the rest (to saves memory).

Think of TI-RTOS as a library and toolset to help you build and maintain robust systems. If you’re
doing just “one” thing, it’s probably overkill. As you end up implementing more and more
functionality in your system, though, the tools and code will save you time and headaches.

The only part of TI-RTOS discussed in this chapter is “Scheduling”. We talk about this because it
is very much related to the topics covered throughout this chapter – interrupts and threads. In
many cases, if you’re using an RTOS, it will manage much of the interrupt processing for you; it
will also provide additional options for handling interrupts – such as post-processing of interrupts.

As a final note, we will only touch on the topics of scheduling and RTOS’s. TI provides a 2-day
workshop where you can learn all the details of the TI-RTOS kernel. You can view a video
version of the TI-RTOS course or take one live. Please check out the following wiki page for more
information:

http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop

Threads – Foreground and Background
Our quick introduction to TI-RTOS begins with a summary of threads. While we discussed these
concepts earlier in the chapter, they are very important to how a RTOS scheduler works.

What is a Thread?

main() {

init code

}

while(1) {
nonRT Fxn

}

UART ISR
get byte
process
output

Timer ISR
Scan keyboard

 We all know what a function() is…
 A thread is a function that runs

within a specific context; e.g.
 triority
 wegisters/CtU state
 Stack

 To retain a thread’s context,
we must save

then restore it
 aost common threads in a system

are hardware interrupts

Foreground
threads

Background
thread

MSP430 Workshop - Interrupts 5 - 31

http://processors.wiki.ti.com/index.php/Introduction_to_the_TI-RTOS_Kernel_Workshop

Interrupts and TI-RTOS Scheduling

We also discussed the idea of foreground and background threads as part of the interrupts
chapter. In the case shown below (on the left), the endless loop in main() will run forever and be
pre-empted by higher-priority hardware interrupts.

main() {

init code

}

while(1) {
nonRT Fxn

}

H/W ISR
get data
process
printf()

Foreground / Background Scheduling
R

TO
S Scheduler

Idle
nonRT

+ instrumentation

 Ldle events run in sequence when no Iwi’s are posted
 Iwi is L{w with automatic vector table generation + context save/restore
 Iwi performs “process” – typical use is to perform IwT need, then post

“follow-up activity”

main() {
init
BIOS_start()

}

Hwi
get data
process
IOG_info1()

TI-RTOS utilizes these same concepts … only the names and threads change a little bit.

Rather than main() containing both the setup and loop code as described earlier, TI-RTOS
creates an Idle thread that operates in place of the while{} loop found previously in main(). In
other words, rather than adding your functions to a while{} loop, TI-RTOS has you add them to
Idle. (TI-RTOS includes a GUI configuration tool that makes this very easy to do.)

Since interrupts are part of the MSP430’s hardware, they essentially work the same way when
using TI-RTOS. What changes when using RTOS are:

• TI-RTOS calls them Hwi threads … for Hardware Interrupts

• Much of the coding effort is handled automatically for you by TI-RTOS (very nice)

Don’t worry, though, you’re not locked into anything. You can mix-and-match how you handle
interrupts. Let TI-RTOS manage some of your interrupts while handling others in your own code,
just as we described in this chapter.

Hint: When using TI-RTOS, the author prefers to let it manage all of the interrupts because it’s
easier that way. Only

Only in a rare case – like to save a few CPU cycles – would there be a need to managed
an interrupt outside of TI-RTOS. Thusfar, the only reason I’ve actually done this is to
provde that it works.

5 - 32 MSP430 Workshop - Interrupts

 Interrupts and TI-RTOS Scheduling

TI-RTOS Thread Types
We already described two types of threads: Hwi and Idle. Using these two threads is very similar
to what we described throughout this chapter.

TI-RTOS Thread Types – More Design Options
tr

io
rit

y
Iwi

Iardware Lnterrupts

 Iardware event triggers Iwi to run
 BIOS handles context save/restore, nesting
 Iwi triggers follow-up processing
 triorities set in silicon

{wi
{oftware Lnterrupts

 Software posts Swi to run
 terforms Iwi ‘follow-up’ activity (process data)
 Up to 32 priority levels (16 on C28x)
 Often favored by traditional h/w interrupt users

Task
Tasks

 Usually enabled to run by posting a ‘semaphore’
(a task signaling mechanism) (similar to tosix)

 Designed to run concurrently – pauses when
waiting for data (semaphore)

 Favored by folks experienced in high-level OS’s

Ldle
.ackground

 wuns as an infinite while(1) loop
 Users can assign multiple functions to Idle
 Single priority level

TI-RTOS provides two additional thread types: Software Interrupts (Swi) and Tasks (Task). As
you can see above, these thread types fall between Hwi and Idle in terms of priority.

Each of these threads can be used to extend your system’s processing organization.

What do we mean by this?

You might remember that we HIGHLY recommended that you DO NOT nest interrupts. But what
happens if you want to run an algorithm based on some interrupt event? For example, you want
to run a filter whenever you receive a value from an A/D converter or from the serial port.

Without an RTOS, you would need to organize your main while{} loop to handle all of these
interrupt, follow-up tasks. This is not a problem for one or two events; but for lots of events, this
can become very complicated – especially when they all run at different rates. This way of
scheduling your processing is called a SuperLoop.

With an RTOS, we can post follow-up activity to a Swi or Task. A Swi acts just like a software
triggered interrupt service routine. Tasks, on the other hand, run all the time (have you heard the term
multi-tasking before?) and utilize Semaphores to signal when to run or when to block (i.e. pause).

In other words, Swi’s and Task’s provide two different ways to schedule follow-up processing
code. They let us keep our hardware interrupts (Hwi’s) very short and simple – for example, all
we need to do is read our ADC and then post an associated Swi to run.

If all of this sounds complicated, it really isn’t. While outside the scope of this course, the TI-
RTOS course will have you up-and-running in no time. Once you experience the effective
organization provided by an RTOS, you may never build another system without one.

MSP430 Workshop - Interrupts 5 - 33

Interrupts and TI-RTOS Scheduling

TI-RTOS Details
The following slide provides some “characteristics” of the TI-RTOS kernel. The bottom-line here is
that it is a priority-based scheduler. The highest priority thread gets to run, period. (Remember,
hardware interrupts are always the highest priority.)

TI-RTOS Kernel – Characteristics
 wTOS means “weal-time O/S” – so the intent of this O/S is to provide common

services to the user WITIOUT disturbing the real-time nature of the system

 The TI-wTOS Kernel (SYS/BIOS) is a twE-EatTIVE scheduler. This means the
highest priority thread ALWAYS wUNS FIwST. Time-slicing is not inherently
supported.

 The kernel is EVENT-DwIVEN. Any kernel-configured interrupts or user calls to
AtIs such as Swi_post() will invoke the scheduler. The kernel is NOT time-
sliced although threads can be triggered on a time bases if so desired.

 The kernel is OBJECT BASED. All AtIs (methods) operate on self-contained
objects. Therefore when you change ONE object, all other objects are
unaffected.

 Being object-based allows most wTOS kernel calls to be DETEwaINISTIC. The
scheduler works by updating event queues such that all context switches take
the same number of cycles.

 weal-time Analysis AtIs (such as Logs) are small and fast – the intent is to LEAVE
them in the program – even for production code – yes, they are really that small

While you can construct a time-slicing system using TI-RTOS, this is not commonly done. While
time-slicing can be a very effective technique in host operating systems (like Windows or Linux), it
is not a common method for scheduling threads in an embedded system.

5 - 34 MSP430 Workshop - Interrupts

 Interrupts and TI-RTOS Scheduling

Hwi – Swi – Idle Scheduling
Here’s a simple, visual example of what real-time scheduling might look like in an RTOS based
system.

BIOS – Priority Based Scheduling
Iwi 2

Iwi 1

{wi 3 (Ii)

{wi 2

{wi 1 (Lo)

main

Ldle

Audio_ISR()
{
read_sample();
Swi_post(Swi_2);
}

int1

start

post2 rtn

int2

post3 rtn

post1 rtn

rtn

rtn

User {ETs the priorities, .LO{ executes them

tosted
wunning
weady

Notice how the system enters Idle from main(). Idle is always ready to run (just as our old while{}
loop was always ready to run).

When a hardware interrupt (Hwi) occurs, we leave Idle and execute the Hwi thread’s code. Since
it appears the Hwi posted a Swi, that’s where the TI-RTOS scheduler goes to once the Hwi
finishes.

We won’t go through the remaining details in this course, though we suspect that you can all
follow the diagram. For this slide, and a lot more information, please refer to the TI-RTOS Kernel
Workshop.

MSP430 Workshop - Interrupts 5 - 35

Interrupts and TI-RTOS Scheduling

Summary: TI-RTOS Kernel
The following slide summarizes much of the functionality found in the TI-RTOS kernel. In this
chapter we’ve only touched on the scheduling features.

TL-wTO{ Kernel (i.e. SYS/BIOS) is a
library of services that users can
add to their system to perform
various tasks:

TI-RTOS Kernel Services

 aemory agmt (stack, heap, cache)

 weal-time Analysis (logs, graphs, loads)

 {cheduling (various thread types)

 {ynchronization (e.g. semaphores, events)

The TI-RTOS product includes the kernel, shown above, along with a number of additional drivers
and stacks. Oh, and the kernel comes with complete source code – nothing is hidden from you.

For many, though, one of the compelling features of TI-RTOS is that it’s FREE*.

Remember, we make our money selling you devices. Our code and tools are there to help you
get your programs put together – and your systems to market – more quickly.

* That is, it’s free for use on all Texas Instruments processors.

5 - 36 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

Lab 5 – Interrupts
This lab introduces you to programming MSP430 interrupts. Using interrupts is generally one of
the core skills required when buiding embedded systems. If nothing else, it will be used
extensively in later chapters and lab exercises.

Lab 5 – Button Interrupts
 Lab Worksheet… a Quiz, of sorts:

 Lnterrupts
 Save/Restore Context
 Vectors and triorities

 Lab 5a – tushing your Button
 Create a CCS project that uses an interrupt

to toggle the LE5 when a button is pushed
 This requires you to create:

o Setup code enabling the GtLO interrupt
o GtLO LSR for pushbutton pin

 You’ll also create code to handle all the
interrupt vectors

 Optional
 Lab 5b – Use the Watchdog Timer

Use the W5T in interval mode to
blink the an LE5

Lab 5a covers all the essential details of interrupts:
− Setup the interrupt vector

− Enable interrupts

− Create an ISR

When complete, you should be able to push the SW1 button and toggle the Red LED on/off.

Lab 5b is listed as optional since, while these skills are valuable, you should know enough at the
end of Lab 5a to move on and complete the other labs in the workshop.

MSP430 Workshop - Interrupts 5 - 37

Lab 5 – Interrupts

Lab Topics
Interrupts ... 5-36

Lab 5 – Interrupts .. 5-37
Lab 5 Worksheet ... 5-39

General Interrupt Questions .. 5-39
Interrupt Flow .. 5-40
Setting up GPIO Port Interrupts .. 5-40
Interrupt Priorities & Vectors ... 5-41
ISR’s for Group Interrupts ... 5-42

Lab 5a – Push Your Button ... 5-44
File Management .. 5-44
Configure/Enable GPIO Interrupt … Then Verify it Works .. 5-47
Add a Simple Interrupt Service Routine (ISR) .. 5-50

Sidebar – Vector Error .. 5-50
Upgrade Your Interrupt Service Routine (ISR) ... 5-52

(Optional) Lab 5b – Can You Make a Watchdog Blink? ... 5-53
Import and Explore the WDT_A Interval Timer Example .. 5-53
Run the code ... 5-55
Change the LED blink rate .. 5-55

Appendix ... 5-56

5 - 38 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

Lab 5 Worksheet
General Interrupt Questions
Hint: You can look in the Chapter 5 discussion for the answers to these questions

1. When your program is not in an interrupt service routine, what code is it usually executing?
And, what ‘name’ do we give this code?

 __

2. Why keep ISR’s short? That is, why shouldn’t you do a lot of processing in them)?

 __

3. What causes the MSP430 to exit a Low Power Mode (LPMx)?

 __

4. Why are interrupts generally preferred over polling?

MSP430 Workshop - Interrupts 5 - 39

Lab 5 – Interrupts

Interrupt Flow
5. Name 4 sources of interrupts? (Well, we gave you one, so name 3 more.)
 Hint: Look at the chapter discussion, datasheet or User’s Guide for this answer.

6. What signifies that an interrupt has occurred?
 Hint: Look at the “Interrupt Flow” part of this chapter discussion.

A __________ bit is set

 What’s the acronym for these types of ‘bits” ___________

Setting up GPIO Port Interrupts
Next, let’s review the code required to setup one of the Launchpad buttons for GPIO input.
(Hint: Look in the Chapter 5 “Enabling Interrupts” discussion for help on the next two questions.)

7. Write the code to enable a GPIO interrupt for the listed Port.Pin?
 // GPIO pin to use: F5529 = P1.1, FR4133 = P1.2, FR5969 = P1.1

 ___ // setup pin as input

 ___ // set edge select

 ___ // clear individual flag

 ___ // enable individual interrupt

8. Write the line of code required to turn on interrupts globally:

 ___________________________________ // enable global interrupts (GIE)

 Where, in our programs, is the most common place we see GIE enabled?
(Hint: you can look back at the sidebar discussion where we showed how to do this.)

Timer_A

5 - 40 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

Interrupt Priorities & Vectors
9. Check the interrupt that has higher priority. (Hint: Look at the chapter discussion or device

datasheet for the answer.)
 GPIO Port 2
 WDT Interval Timer

10. Where do you find the name of an “interrupt vector” (e.g. PORT1_VECTOR)?

 Hint: Which header file defines symbols for each device?

11. Write the code to set the interrupt vector? (To help, we’ve provided a simple ISR to go with the line
of code we’re asking you to complete. Finish the #pragma statement...)

// Put’s the ISR function’s address into the Port 1 vector location

__interrupt void pushbutton_ISR (void)
{
 // Toggle the LED on/off
 GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);
}

 What is wrong with this GPIO port ISR?

12. How do you pass a value into (or out from) and interrupt service routine (ISR)?

 Hint: Look at the chapter topic “Interrupt Service Routines – Coding Suggestions”.

#pragma

MSP430 Workshop - Interrupts 5 - 41

Lab 5 – Interrupts

ISR’s for Group Interrupts
As we learned earlier, most MSP430 interrupts are grouped. For example, the GPIO port
interrupts are all grouped together. (Hint: To answer these last two questions, look at the
discussion titled “Grouped ISR” in this chapter’s discussion.)

13. For dedicated interrupts (such as WDT interval timer) the CPU clears the IFG flag when
responding to the interrupt. How does an IFG bit get cleared for group interrupts?

5 - 42 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

14. Creating ISR’s for grouped interrupts is as easy as following a ‘template’. The following code
represents a grouped ISR template.
• Fill in the appropriate blank line to respond to the Port 1 pin used for the pushbutton on

your Launchpad. (F5529/FR5969 = P1.1; FR4133 = P1.2)

• Add the code needed to toggle the LED (on P1.0) in response to the button interrupt.

#pragma vector=PORT1_VECTOR
__interrupt void pushbutton_ISR (void) {
 switch(__even_in_range(____________________, 0x10)){
 case 0x00: break; // None
 case 0x02: break; // Pin 0

 __

 break;
 case 0x04: // Pin 1

 __

 break;
 case 0x06: // Pin 2

 __

 break;
 case 0x08: // Pin 3

 break;
 case 0x0A: // Pin 4

 __

 break;
 case 0x0C: // Pin 5

 break;
 case 0x0E: // Pin 6

 __

 break;
 case 0x10: // Pin 7

 __

 default:
 _never_executed();

}

MSP430 Workshop - Interrupts 5 - 43

Lab 5 – Interrupts

Lab 5a – Push Your Button
When Lab 5a is complete, you should be able to push the S2 button and toggle the Red LED
on/off.

We will begin by importing the solution to Lab 4a. After which we’ll need to delete a bit of ‘old’
code and add the following.

− Setup the interrupt vector

− Enable interrupts

− Create an ISR

Launchpad Pin Button

F5529 P1.1 S2

FR5969 P1.1 S2

FR4133 P2.2 S1

File Management
1. Close all previous projects. Also, close any remaining open files.

2. Import the solution for Lab 4a from: lab_04a_clock_solution

 Select import previous CCS project from the Project menu:

Project → Import CCS Projects…

5 - 44 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

3. Rename the imported project to: lab_05a_buttonInterrupt

 You can right-click on the project name and select Rename, though the easiest way to
rename a project is to:

Select project in Project Explorer → hit @
 When the following dialog pops up, fill in the new project name:

4. Verify the project is active, then check that it builds and runs.

 Before we change the code, let’s make sure the original project is working. Build and run the
project – you should see the LED flashing once per second.

 When complete, terminate the debugger.

5. Add unused_interrupts.c file to your project.

 To save a lot of typing (and probably typos) we already created this file for you. You’ll need to
add it to your project.

Right-click project → Add Files…

 Find the file in:

C:\msp430_workshop\<target>\lab_05a_buttonInterrupt\unused_interrupts.c

“Copy” the file into your project

 You can take a quick look at this file, if you’d like. Notice that we created a single ISR function
that is associated with all of the interrupts on your device – since, at this point, all of the
interrupts are unused. As you add each interrupt to the project, you will need to modify this
file.

lab_05a_buttonInterrupt

MSP430 Workshop - Interrupts 5 - 45

Lab 5 – Interrupts

6. Before we start adding new code … comment out the old code from while{} loop.

 Open main.c and comment out the code in the while{} loop. This is the old code that flashes
the LED using the inefficient __delay_cycles() function.

 The easiest way to do this is to:

Select all the code in the while{} loop

c-| (This toggles the line comments on/off)

 Once commented, the loop should look similar to that below:

After commenting out the while code, just double-check for errors by clicking the build
button. (Fix any error that pops up.)

5 - 46 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

Configure/Enable GPIO Interrupt … Then Verify it Works

Add Code to Enable Interrupts

7. Open main.c and modify initGPIO() to enable the interrupt for your push-button.

 If you need a hint on what three lines are required, refer back to the Lab 5 Worksheet,
question # 7 (see page 5-40).

 Note that the pin numbers are the same, but the switch names differ for these Launchpads:
− For the ‘F5529 Launchpad, we’re using pushbutton S2 (P1.1)

− For the ‘FR5969 Launchpad, we’re using pushbutton S2 (P1.1)

− For the ‘FR4311 Launchpad, we’re using pushbutton S1 (P1.2)

8. Add the line of code needed to enable interrupts globally (i.e GIE).
 This line of code should be placed right before the while{} loop in main(). Refer back to the

Lab 5 Worksheet, question # 8 (see page 5-40).

9. Build your code.
 Fix any typos or errors.

Start the Debugger and Set Breakpoints
Once the debugger opens, we’ll setup two breakpoints. This allows us to verify the interrupts
were enabled, as well as trapping the interrupt when it occurs.

10. Launch the debugger.

11. Set a breakpoint on the “enable GIE” line of code in main.c.

12. Next, set a breakpoint inside the ISR in the unused_interrupts.c file.

MSP430 Workshop - Interrupts 5 - 47

Lab 5 – Interrupts

Run Code to Verify Interrupts are Enabled

13. Click Resume … the program should stop at your first breakpoint.

14. Open the Registers window in CCS (or show it, if it’s already open).
 If the Registers window isn’t open, do so by:

View → Registers

15. Verify Port1 bits: DIR, OUT, REN, IE, IFG.
 The first breakpoint halts the processor right before setting the GIE bit. Before turning on the

interrupts, let’s view the GPIO Port 1 settings. Scroll/expand the registers to verify:
• P1DIR.0 = 1 (pin in output direction)

• P1DIR.1 = 0 (input direction – to be used for generating an interrupt)

• P1REN.1 = 1 (we enabled the resistor for our input pin)

• P1OUT.0 = 0 (we set it low to turn off LE5)

• P1IE.1 = 1 (our button interrupt is enabled)

• P1IES.1 = 0 (configured to generate an interrupt on a low-to-high transition)

• P1IFG.1 = 0 (at this point, we shouldn’t have received an
 interrupt – unless you already pushed the button…)

 Here’s a snapshot of the P1IE register as
an example …

16. Next, let’s look at the Status Register (SR).

 You can find it under the Core Registers at the top
of the Registers window.

 You should notice that the GIE bit equals 0, since
we haven’t executed the line of code enabling
interrupts globally, yet.

5 - 48 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

17. Single-step the processor (i.e. Step-Over) and watch GIE change.

 Click the toolbar button or tap the ^key. Either way, the Registers window should update:

Testing your Interrupt
With everything set up properly, let’s try out our code.

18. Click Resume (i.e. Run) … and nothing should happen.

 In fact, if you Suspend (i.e. Halt) the processor, you should see that the program counter is
sitting in the while{} loop, as expected.

19. Press the appropriate pushbutton on your board.

 Did that cause the program to stop at the breakpoint we set in the ISR?

 If you hit Suspend in the previous step, did you remember to hit Resume afterwards?

 (If it didn’t stop, and you cannot figure out why, ask a neighbor/instructor for help.)

MSP430 Workshop - Interrupts 5 - 49

Lab 5 – Interrupts

Add a Simple Interrupt Service Routine (ISR)
Thus far we have used the HWI_UNUSED_ISR. We will now add an ISR specifically for our push-
button’s GPIO interrupt.

20. Add the Port 1 ISR to the bottom of main.c.

 Here’s a simple ISR routine that you can copy/paste into your code.
//***
// Interrupt Service Routines
//***
#pragma vector= ?????
__interrupt void pushbutton_ISR (void)
{
 // Toggle the LED on/off
 GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);
}

 Don‘t forget to fill in the ???? with your answer from question #11 from the worksheet (see
page 5-41).

21. Build the program to test for any errors.

 You should have gotten the error …

This error tells us that the linker cannot fit the PORT1_VECTOR into memory because the
interrupt vector is defined twice. (INT47 on the ‘F5529 and ‘FR4133; INT39 on the ‘FR5969)

 We just created one of these vectors, where is the other one coming from?

Sidebar – Vector Error
First, how did we recognize this error?

1. It says, “errors encountered during linking”. This tells us the complilation was fine, but
there was a problem in linking.

2. Next, “symbol “__TI_int47”” redefined”. Oops, too many definitions for this symbol. It also
tells us that this symbol was found in both unused_interrupts.c as well as main.c.
(OK, it says that the offending files were .obj, but these were directly created from their
.c source counterparts.

3. Finally, what’s with the name, “__TI_int47”? Go back and look at the Interrupt Vector
Location (sometimes it’s also called Interrupt Priority) in the Interrupt Vector table. You
can find this in the chapter discussion or the datasheet. Once you’ve done so, you should
see the correlation with the PORT1_VECTOR.

5 - 50 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

22. Comment out the PORT1_VECTOR from unused_interrupts.c.

23. Try building it again

 It should work this time… our fingers are crossed for you.

24. Launch the debugger.

25. Remove all breakpoints.

View → Breakpoints
Click the Remove All button

26. Set a breakpoint inside your new ISR.

27. Run your code … once the code is running, push the button to generate an interrupt.

 The processor should stop at your ISR (location shown above). Breakpoints like this can
make it easier to see that we reached the interrupt. (A good debugging trick.)

28. Resuming once again, at this point inside the ISR should toggle-on the LED.

 If it works, call out “Hooray!”

29. Push the button again.

 Hmmm… did you get another interrupt? We didn’t appear to.

 We didn’t see the light toggle-off – and we didn’t stop at the breakpoint inside the ISR.

 Some of you may have already known this was going to happen. If you’re still unsure, go
back to Step #0 from our worksheet (page 5-43). We discussed it there.

MSP430 Workshop - Interrupts 5 - 51

Lab 5 – Interrupts

Upgrade Your Interrupt Service Routine (ISR)
If you hadn’t already guessed what the problem was, we can deduce that since the IFG bit never
got cleared, the CPU never realized that new interrupts were being applied.

For grouped interrupts, if we use the appropriate Interrupt Vector (IV) register, we can easily
decipher the highest priority interrupt of the group; and, it clears the correct IFG bit for us.

30. Replace the code inside your ISR with the code that uses the P1IV register.

 Once again, we have already created the code as part of the worksheet; refer to the
Worksheet, Step 14 (page 5-43).

 To make life easier, here’s a copy of the original template from the worksheet. You may want
to cut/paste this code, then tweak it with answers from your worksheet. (Note: this is the code
for the ‘F5529 and ‘FR5969. Remember that the ‘FR4133 uses a different pin on Port 1.)

//***

// Interrupt Service Routines

//***

#pragma vector=PORT1_VECTOR

__interrupt void pushbutton_ISR (void) {
 switch(__even_in_range(????, 0x10)) {
 case 0x00: break; // None
 case 0x02: break; // Pin 0
 case 0x04: // Pin 1
 ??????????????????????;
 break;
 case 0x06: break; // Pin 2
 case 0x08: break; // Pin 3
 case 0x0A: break; // Pin 4
 case 0x0C: break; // Pin 5
 case 0x0E: break; // Pin 6
 case 0x10: break; // Pin 7
 default: _never_executed();
 }

}

Hint: The syntax indentation often gets messed up when pasting code. If/when this occurs, the
CCS editor provides a way to correct this using (<ctrl>-I).

 Select the ‘ugly’ code and press c-I

31. Build the code.
 If you correctly inserted the code and replaced all the questions marks, hopefully it built

correctly the first time.

32. Launch the debugger. Run/Resume. Push the button. Verify the light toggles.
 Run the program. Push the button and verify that the interrupt is taken every time you push

the button. If the breakpoint in the ISR is still set, you should see the processor stop for each
button press (and then you’ll need to click Resume).

 You’re welcome to explore further by single-stepping thru code, using breakpoints,
suspending (halting) the processor and exploring the various registers.

5 - 52 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

(Optional) Lab 5b – Can You Make a Watchdog Blink?
The goal of this lab is to blink the LED. Rather than using a _delay_cycles() function, we’ll use a
timer to tell us when to toggle the LED.

In Lab 4 we used the Watchdog timer as a … well, a watchdog timer. In all other exercises, thus
far, we just turned it off with WDT_A_hold().

In this lab exercise, we’re going to use it as a standard timer (called ‘interval’ timer) to generate a
periodic interrupt. In the interrupt service routine, we’ll toggle the LED.

As we write the ISR code, you may notice that the Watchdog Interval Timer interrupt has a
dedicated interrupt vector. (Whereas the GPIO Port interrupt had 8 grouped interrupts that shared
one vector.)

Import and Explore the WDT_A Interval Timer Example
1. Import the wdt_a_ex2_intervalACLK project from the MSP430 DriverLib examples.

 We’re going to “cheat” and use the example provided with MSP430ware to get the WDT_A
timer up and running.

 As we discussed in Chapter 3, there are two ways we can import an example project:
− Use the Project→Import CCS Projects (as we’ve done before)

− Utilize the TI Resource Explorer (which is what we’ll do again)

a) Open the TI Resource Explorer window, if it’s not already open

View → Resource Explorer (Examples)

b) Locate the wdt_a_ex2_intervalACLK example for your processor.

Look for it as shown here under: Example Projects → WDT_A

If you’re using the FR5969, follow
the same path starting from the

MSP430FR5xx_6xx heading

Likewise, pick the
MSP430FR2xx_4xx is you’re

using the FR4311

MSP430 Workshop - Interrupts 5 - 53

Lab 5 – Interrupts

c) Click the link to “Import the example project into CCS”.

Once imported you can close the TI Resource Explorer, if you want to get it out of the way.

d) Rename the imported project to: lab_05b_wdtBlink

While not required, this should make it easier to match the project to our lab files later on.

2. Open the lab_05b_wdtBlink.c file. Review the following points:

 Notice the 5riverLib function that sets up the
W5T_A for interval timing.
You can choose which clock to use; we selected
ACLK. By the way, what speed is ACLK running at?
(This example uses ACLK at the default rate.)
As described, dividing ACLK/8192 gives us an
interval of ¼ second.

The W5T_A is a system (SYS) interrupt, so it’s
IFG and IE bits are in the Special Functions
Register. It’s always good practice to clear a flag
before enabling the interrupt. (Remember, CPU
won’t be interrupted until we set GIE.)

Along with enabling interrupts globally (GIE=1), this
example puts the CPU into low power mode (LPM3).

When the interrupt occurs, the CPU wake up and
handles it, then goes back into LPM3. (Low Power
modes will be discussed further in a future chapter.)

They got a little bit fancy with the interrupt
vector syntax. This code has been designed
to work with 3 different compilers:

TI, IAR, and GNU C compiler.

These GPIO functions
should be familiar by
now …

Since W5T has a dedicated interrupt
vector, the code inside the ISR is simple.
We do not have to manually clear the IFG
bit, or use the IV vector to determine the
interrupt source.

5 - 54 MSP430 Workshop - Interrupts

 Lab 5 – Interrupts

Run the code
3. Build and run the example.

 You should see the LED blinking…

Change the LED blink rate
4. Terminate the debug session.

5. Modify the example to blink the LED at about 1 second intervals.
 Tip: If you want help with selecting and typing function arguments, you can you the

autocomplete feature of CCS. Just type part of the test, such as:

WDT_A_CLOCKDIVER_

 and then hit:

Control-TAB

 and a popup box appears providing you with choices – select the one you want. In this case,
we suggest you divide by 32K.

6. Build and run the example again.

 If you want, you can experiment with other clock divider rates to see their affect on the LED’s
blink rate.

MSP430 Workshop - Interrupts 5 - 55

Appendix

Appendix

Lab 05 Worksheet (1)
General Interrupt Questions
1. When your program is not in an interrupt service routine, what code is it

usually executing? And, what ‘name’ do we give this code?
__

2. Why keep ISR’s short (i.e. not do a lot of processing in them)?
__
__
__

3. What causes the MSP430 to exit a Low Power Mode (LPMx)?
__

4. Why are interrupts generally preferred over polling?
__
__

main functions while{} loop. We often call this ‘background’ processing.

We don’t want to block other interrupts. The other option is nesting

interrupts, but this is LbEFFLCLEbT. 5o interrupt follow-up processing in

while{} loop … or use TL-RTOS kernel.

Lnterrupts

They are a lot more efficient. tolling ties up the CtU – even worse it

consumes power waiting for an event to happen.

Lab 05 Worksheet (2)
Interrupt Flow
5. Name 3 more sources of interrupts?

__
__
__
__

6. What signifies that an interrupt has occurred?
A __________ bit is set
What’s the acronym for these types of ‘bits” ___________

Timer_A
GtLO

Watchdog Lnterval Timer

Analog Converter … and many more

flag

LFG

5 - 56 MSP430 Workshop - Interrupts

 Appendix

Lab 05 Worksheet (3)
7. Write the code to enable a GPIO interrupt for the listed Port.Pin?

GPIO pin to use: F5529 = P1.1, FR4133 = P1.2, FR5969 = P1.1
F5529 and FR5969:
___ // set up pin as input
___ // set edge select
___ // clear individual INT
__ // enable individual INT

FR4133:
___ // set up pin as input
___ // set edge select
___ // clear individual INT
__ // enable individual INT

GPIO_setAsInputPinWithPullUpResistor (GPIO_PORT_1, GPIO_PIN1);
GPIO_interruptEdgeSelect (GPIO_PORT_P1, GPIO_PIN1, GPIO_LOW_TO_HIGH_TRANSITION);
GPIO_clearInterruptFlag (GPIO_PORT_P1, GPIO_PIN1);
GPIO_enableInterrupt (GPIO_PORT_P1, GPIO_PIN1);

GPIO_setAsInputPinWithPullUpResistor (GPIO_PORT_1, GPIO_PIN2);
GPIO_interruptEdgeSelect (GPIO_PORT_P1, GPIO_PIN2, GPIO_LOW_TO_HIGH_TRANSITION);
GPIO_clearInterruptFlag (GPIO_PORT_P1, GPIO_PIN2);
GPIO_enableInterrupt (GPIO_PORT_P1, GPIO_PIN2);

Lab 05 Worksheet (4)
Interrupt Service Routine
8. Write the line of code required to turn on interrupts globally:

_________________________________ // enable global interrupts (GIE)
Where, in our programs, is the most common place we see GIE enabled?
(Hint, you can look back at the slides where we showed how to do this.)

__

__bis_SR_set(GLE);

Right before the while{} loop in main().

MSP430 Workshop - Interrupts 5 - 57

Appendix

Lab 05 Worksheet (5)
Interrupt Priorities & Vectors
9. Check the interrupt that has higher priority:

F5529 FR4133 FR5969
 GPIO Port 2 int42 int36 int36
R WDT Interval Timer int56 int49 int41

Let’s say you’re CPU is in the middle of the GPIO Port 2 ISR, can it be
interrupted by a new WDT interval timer interrupt? If so, is there anything
you could do to your code in order to allow this to happen?
__
__
bo, by default, aSt430 interrupts are disabled when running an LSR. To

enable this you could set up interrupt nesting (though this isn’t recommended)

Sidebar – Interrupt Vector Symbols
We needed all of these vector names to create an ‘unused vectors’
source file that’s provided you for in this lab exercise:

unused_interrupts.c

To get all of these symbols, we followed these steps:
1. Copy every line from the header file with the string “_VECTOR”.
2. Delete the duplicate lines (each vector symbol shows up twice in the file)
3. Replace “#define ” with “#pragma vector=” (and remove the text after the vector name)
4. Delete the “RESET_VECTOR” symbol as this vector is handled by the compiler’s

initialization routine

Lab 05 Worksheet (6)
10. Where do you find the name of an “interrupt vector”?

__
__
Lt’s defined in the device specific header file.

For example: msp430f5529.h, msp430fr5969.h, or msp430fr4133.h

5 - 58 MSP430 Workshop - Interrupts

 Appendix

11. How do you write the code to set the interrupt vector?
// Sets ISR address in the vector for Port 1

#pragma ___________________________________

__interrupt void pushbutton_ISR (void)
{

// Toggle the LED on/off
GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);

}

What is wrong with this GPIO port ISR?
__
__

Lab 05 Worksheet (7)

vector=tORT1_VECTOR

GtLO ports are grouped interrupts. Lt’s better to read the t1LV register

so you can handle multiple pin interrupts using switch/case statement

Lab 05 Worksheet (8)
12. How do you pass a value into (or out from) and interrupt service routine

(ISR)?
__

ISR’s for Group Interrupts
As we learned earlier, most MSP430 interrupts are grouped. For example, the
GPIO port interrupts are all grouped together.

13. For dedicated interrupts (such as WDT interval timer) the CPU clears
the IFG flag when responding to the interrupt. How does an IFG bit get
cleared for group interrupts?

__
__

Lnterrupts cannot pass arguments, we need to use global variables

Either manually; or when you read the LV register (such as t1LV).

MSP430 Workshop - Interrupts 5 - 59

Appendix

Lab 05 Worksheet (9)
14. Creating ISR’s for grouped interrupts is as easy as following a ‘template’.

Toggle P1.0 when button is pressed. F5529/FR5969 uses P1.1;
#pragma vector=PORT1_VECTOR
__interrupt void pushbutton_ISR (void) {

switch(__even_in_range(____________, 0x10)) {

// F5529 and FR5969 use t1.1 for button:
case 0x02: break; // Pin 0
case 0x04: // Pin 1

break;

case 0x06: break; // Pin 2

// FR4311 uses t1.2 for button:
case 0x02: break; // Pin 0
case 0x04: break; // Pin 1
case 0x06: // Pin 2

break;

t1LV

GtLO_toggleOutputOntin(GtLO_tORT_t1, GtLO_tLb0);

GtLO_toggleOutputOntin(GtLO_tORT_t1, GtLO_tLb0);

5 - 60 MSP430 Workshop - Interrupts

Timers

Introduction
Timers are often thought of as the heartbeat of an embedded system.

Whether you need a periodic wake-up call, a one-time delay, or need a means to verify that the
system is running without failure, Timers are the solution.

This chapter begins with a brief summary of the MSP430 Timers. Most of the chapter, though, is
spent digging into the details of the MSP430’s TIMER_A module. Not only does it provide
rudimentary counting/timing features, but provides sophisticated capture and compare features
that allow a variety of complex waveforms – or interrupts – to be generated. In fact, this timer can
even generate PWM (pulse width modulation) signals.

Along the way, we examine the MSP430ware DriverLib code required to setup and utilize
TIMER_A.

As the chapter nears conclusion, there’s a brief summary of the differences between TIMER_A
and TIMER_B. Bottom line, if you know how to use TIMER_A, then you can use TIMER_B; but,
there are a couple of extra features that TIMER_B provides.

Learning Objectives

Objectives

- List the different types of MSP430 timers
- Describe how a basic timer/counter works
- Define the concepts of Capture & Compare
- Explain the nomenclature for Timer_A
- Enumerate the 4 steps to programming Timer_A
- List 3 differences between Timer_A and Timer_B
- Write a program to:

- Generate (and handles) a periodic interrupt
- Generate a simple PWM waveform

MSP430 Workshop - Timers 6 - 1

Prerequisites and Tools

Chapter Topics
Timers .. 6-1

Prerequisites and Tools .. 6-2
Overview of MSP430 Timers .. 6-3

TIMER_A/B Nomenclature .. 6-4
Timer Summary ... 6-5

Timer Basics: How Timers Work ... 6-6
Counter.. 6-6

Frequency, Time-Period, Resolution .. 6-7
Capture.. 6-8
Compare.. 6-9

Timer Details: Configuring TIMER_A .. 6-12
1. Counter: TIMER_A_configure…() .. 6-13

Timer Counting Modes .. 6-14
Summary of Timer Setup Code – Part 1 ... 6-18

2a. Capture: TIMER_A_initCapture() ... 6-19
2b. Compare: TIMER_A_initCompare() ... 6-21

Summary of Timer Setup Code – Part 2 ... 6-23
Output Modes .. 6-24
PWM anyone? ... 6-29

3. Clear Interrupt Flags and TIMER_A_startTimer() ... 6-30
4. Interrupt Code (Vector & ISR) ... 6-31

TIMER_A DriverLib Summary ... 6-32
Differences between Timer’s A and B ... 6-33
Lab Exercise ... 6-35

Prerequisites and Tools
To get full entitlement from this chapter, we expect that you are already familiar with
MSP430ware’s DriverLib as well as MSP430 clocking and interrupts. The “extra” piece of
hardware required for this chapter is a single jumper wire.

6 - 2 MSP430 Workshop - Timers

 Overview of MSP430 Timers

Overview of MSP430 Timers
The MSP430F5529 timers are highlighted in the following block diagram.
• Yellow marks the three instances of the TIMER_A module.
• Pink was used for TIMER_B.
• Dark brown highlights the real-time clock (RTC_A).
• Light brown differentiates the Watchdog timer inside the SYS block

The “Timers in Training” callout box describes where the various timers are discussed in this
workshop. Timers A and B are covered in this chapter. We have already covered the Watchdog
timer in a previous chapter.

The RTC module will be discussed in a future chapter. A brief description of the RTC tells us that
it’s a very low-power clock; has built-in calendar functions; and often includes “alarms” that can
interrupt the CPU. It is frequently used for keeping a time-base while the CPU is in low-power
mode.

Nomenclature is
discussed on the

next page

MSP430 Workshop - Timers 6 - 3

Overview of MSP430 Timers

TIMER_A/B Nomenclature
The nomenclature of the TIMER_A and _B peripherals is a little unusual. First of all, you may
have already noticed that the MSP430 team often adds one of two suffixes to their peripheral
names to indicate when features have been added (or modified).
• Some peripherals, such as the Watchdog Timer go from “WDT” to “WDT+”. That is, they add

a “+” to indicate the peripheral has been updated (usually with additional features).

• Other peripherals are enumerated with letters. For example, three sophisticated MSP430
timers have been introduced: TIMER_A, TIMER_B, and TIMER_D. (What happened to _C?
Even I don’t know that. <ed>)

The use of a suffix is the generic naming convention found on the MSP430. With the timers,
though, there are a couple more naming variations to be discussed.

As we will cover in great detail during this chapter, these timers contain one or more Capture and
Compare Registers (CCR); these are useful for creating sophisticated timings, interrupts and
waveforms. The more CCR registers a timer contains, the more independent waveforms that can
be generated. To this end, the documentation often includes the number of CCR registers when
listing the name of the timer. For example, if TIMER_A on a given device has 5 CCR registers,
they often name it:

Timer_A5

But wait, that’s not all. What happens when a device, such as the ‘F5529 has more than one
instance of TIMER_A? Each of these instances needs to be enumerated as well. This is done by
appending the instance number after the word “Timer”, as in Timer0.

To summarize, here’s the long (and short) names for each of the ‘F5529 TIMER_A modules:

Instance Long Name Short Name

0 Timer0_A5 TA0

1 Timer1_A3 TA1

2 Timer2_A3 TA2

6 - 4 MSP430 Workshop - Timers

 Overview of MSP430 Timers

Timer Summary
The ‘F5529 contains most of the different types of timers found across the MSP430 family; in fact,
the only type of timer not present on this device is the high-resolution TIMER_D.

The following summary provides a snapshot of what timers are found on various MSP430
devices. You’ll find our ‘F5529 and ‘FR5969 devices in the last two columns of the table.

A one-line summary of each type of timer is listed below the table.

MSP430 Timers
L092 G2553 FR4133 F5172 F5529 FR5969

Timer_A 2 x A3 2 x A3 2 x A3 1 x A3 1 x A5
2 x A3

2 x A3
2 x A2*

Timer_B 1 x B7 1 x B7

Timer_D 2 x D3

Real-Time
Clock

RTC
Counter RTC_A RTC_B

Watchdog WDT_A WDT+ WDT_A WDT_A WDT_A WDT_A

Timer_A: ‘A3’ means it has 3 Capture/Compare Registers (used to generate signals & ints)
Timer_B: Same as A, but improves PWM
Timer_D: Same as B, adding hi-res timing
WDT+: Watchdog or Interval Modes; PSW Protected; Can stop; Select Clk; Clk fail-safe
WDT_A: Same as WDT+, but with 8 timer intervals rather than 4
BT1/RTC: Basic timer has 2x8-bit counters (can use as 1x16-bits) with calendar functions
RTC_A: 32-bit counter with a calendar, flexible programmable alarm, and calibration
RTC_B: Same as RTC_A, but adds switchable battery backup in case main-power fails

MSP430 Workshop - Timers 6 - 5

Timer Basics: How Timers Work

Timer Basics: How Timers Work
Before we discuss the details of TIMER_A, let’s begin with a quick overview describing how
timers work. Specifically, we will start by describing how a timer is constructed using a Counter.
Next, we’ll investigate the Capture and Compare capabilities found in many timers.

Counter
A counter is the fundamental hardware element found inside a timer.

The other essential element is a clock input. The counter is incremented each time a clock pulse
is applied to its clock input. Therefore, a 16-bit timer will count from zero (0x0000) up to 64K
(0xFFFF).

When the counter reaches it reaches its maximum value, it overflows – that is, it returns to zero
and starts counting upward again. Most timer peripherals can generate an interrupt when this
overflow event occurs; on TIMER_A, the interrupt flag bit for this event is called TAIFG (TIMER_A
Interrupt Flag).

Timer/Counter Basics

Counter
Register

15 0

Counter
Overflow Action
 Interrupt (TAICG)

FFFF

FFFE

FFFD

04

03

02

01 01

Each pulse
of clock input

increments the
counter register

Interrupt occurs when
timer overflows back
to zero

Notes
 Timers are often called “Timer/Counters” as a counter is the essential element
 “Timing” is based on counting inputs from a known clock rate
 Actions don’t occur when writing value to counter

TAR

Can I 'capture' a count/time value?

Clock Input
 Clock
 GPIO Pin (TACLK)

The clock input signal for TIMER_A (named TACLK) can be one of the internal MSP430 clocks or
a signal coming from a GPIO pin.

Many engineers call these peripherals “Timer/Counters” as they provide both sets of functionality.
They can generate interrupts or waveforms at a specific time-base – or could be used to count
external events occurring in your system.

One final note about the MSP430 timers: they do not generate interrupts (or other actions) when
you write to the counter register. For example, writing “0” to the counter won’t generate the TAIFG
interrupt.

6 - 6 MSP430 Workshop - Timers

 Timer Basics: How Timers Work

Frequency, Time-Period, Resolution
The Timer’s ability to create a consistent, periodic interrupt is quite valuable to system designers.
Frequency and Time Period are two terms that are often used to describe the rate of interrupts.
• How many times per second that a timer creates an interrupt defines its Frequency.
• Conversely, the amount of time in-between interrupt events is defined as the Time Period.

Frequency, Time Period, Resolution

 timer interrupt timer interrupt timer interrupt

Time Period

Definitions
 Frequency: How many times per second
 Time teriod: Amount of time between successive events
 Resolution: Granularity in determining system events

With what resolution can
we determine if an

event occurred here?

If a timer only consisted of a single counter, its resolution would be limited to the size of the
counter.

If some event were to happen in a system – say, a user pushed a button – we could only
ascertain if that event occurred within a time period. In other words, we can only determine if it
happened between two interrupts.

Looking at the above diagram, we can see that there is “more data” available – that is, if we were
to read the actual counter value when the event occurred. Actually, we can do this by setting up a
GPIO interrupt; then, having the ISR read the value from the counter register. In this case the
resolution would be better, but it is still limited by:

• It takes more hardware (an extra GPIO pin is needed)

• The CPU has to execute code – this consumes power and processing cycles

• The resolution is less deterministic because it’s based upon the latency of the interrupt
response; in other words, how fast can the CPU get to reading the counter … and how
consistent can this be each time it occurs

There is a better way to implement this in your system … turn the page and let’s examine the
timer’s Capture feature.

MSP430 Workshop - Timers 6 - 7

Timer Basics: How Timers Work

Capture
The Capture feature does just that. When a capture input signal occurs, a snapshot of the
Counter Register is captured; that is, it is copied into a capture register (CCR for Capture and
Compare Register). This is ideal since it solves the problems discussed on the previous page; we
get the timer counter value captured with no latency and very, very little power used (the CPU
isn’t even needed, so it can even remain in low-power mode).

The diagram below builds upon our earlier description of the timer. The top part of the diagram is
the same; you should see the Counter Register flanked by the Clock Input to the left and TAIFG
action to the right.

The bottom portion of the slide is new. In this case, when a Capture Input signal occurs, the value
from the Counter Register is copied to a capture register (i.e. CCR).

Capture/Compare
Register (CCRn)

Counter
Register

15 0TAR

Counter
Overflow Action
 Interrupt (TAICG)

Capture Input signal triggers
transfer:

Counter → Capture

Notes
 Capture time (i.e. count value) when Capture Input signal occurs
 When capture is triggered, count value is placed in CCR and an interrupt is generated
 Capture Overflow (COV): indicates 2nd capture to CCR before 1st was read

Capture Input
 CCInA
 CCInB
 Software

Capture Actions
 Interrupt (CCICGn)
 Signal peripheral
 Modify pin (TAx.n)

Capture Basics

Alternatively, use CCR for compare...

Clock Input
 Clock
 GPIO Pin (TACLK)

A few notes about the capture feature:
• As we discussed earlier, the MSP430 timers (TIMER_A, TIMER_B, and TIMER_D)

have multiple CCR registers; check your datasheet to determine how many are available per
timer peripheral. Each CCR, though, has its own capture input signal.

• The Capture Input signal can be connected to a couple of different signals (CCInA, CCInB) or
triggered in software

• The Capture Input hardware signals (CCInA, CCInB) are connected differently for each CCR
register and device. You need to reference the datasheet to verify what options are available
on your specific device.

• When a capture occurs, the CCR can trigger further actions. This “action” signal can generate
an interrupt to the CPU, trigger another peripheral, and/or modify the value of a pin.

6 - 8 MSP430 Workshop - Timers

 Timer Basics: How Timers Work

As we just discussed, the Capture feature provides a deterministic method of capturing the count
value when triggered. While handy, there is another important requirement for timers…

Compare
A key feature for timers is the ability to create a consistent, periodic interrupts.

As we know, TIMER_A can do this, but the timer’s frequency (i.e. time period) is limited to
dividing the input clock by 216. So, while the timer may be consistent, but not very flexible.
Thankfully, the Compare feature of TIMER_A (TIMER_B & TIMER_D) solves this problem.

Compare Basics

Compare Actions
 Interrupt (CCICGn)
 Signal peripheral
 Modify pin (TAx.n)

Capture/Compare
Register (CCRn)

Counter
Register

15 0

Clock Input
 Clock
 GPIO Pin (TACLK)

Counter
Overflow Action
 Interrupt (TAICG)

when Counter = Compare
Compare Actions can occur

Notes
 There are usually 2 to 7 compare registers (CCR’s), therefore

up to 8 interrupts or signals can be generated
 Counter must count-to Compare value to generate action

TAR

Once again, the top portion of this diagram remains the same (Clock Input + Counter Register).

The bottom portion of the diagram differs from the previous diagrams. In this case, rather than
using the CCR register for capture, it’s used as a compare register. In this mode, whenever a
match between the Counter and Compare occurs, a compare action is triggered. The compare
actions include generating an interrupt, signaling another peripheral (e.g. triggering an ADC
conversion), or changing the state of an external pin.

The “modify pin” action is a very powerful capability. Using the timer’s compare feature, we can
create sophisticated PWM waveforms. (Don’t worry, there’s more about this later in the chapter.)

MSP430 Workshop - Timers 6 - 9

Timer Basics: How Timers Work

Timer Summary – showing multiple CCR’s
The following example of a Timer0_A7 provides us a way to summarize the timer’s hardware.

15 0

Example: Timer0_A7

16-bit Counter
(TA0R)

Interrupt
(TA0ICG)

Divide
by 5-bits

(up to ÷ 64)
Enable
(TA0IE)

CCR0

CCR1

CCR2

CCR3

CCR4

CCR5

CCR6

Remember:
• Timer0 means it’s the first instance of Timer_A on the device.

• _A7 means that it’s a Timer_A device and has 7 capture/compare registers (CCR’s)

• The clock input, in this example, can be driven by a TACLK signal/pin, ACLK, SMCLK or
another internal clock called INCLK.

• The clock input can be further divided down by a 5-bit scalar.

• The TA0IE interrupt enable can be used to allow (or prevent) an interrupt (TA0IFG) from
reaching the CPU whenever the counter (TA0R) rolls over.

6 - 10 MSP430 Workshop - Timers

 Timer Basics: How Timers Work

This next diagram allows us to look more closely at the Capture and Compare functions.

Timer_A7 Summary

 Timer0_A7:
 Is the first instance (Timer0 or TA0) of Timer_A7 on the device
 _A7 means it has 7 Capture/Compare Registers (CCR’s)

 CCR registers can be configured for:
 Compare (set when CAP=0) generates interrupt (CCnICG) and

modifies OUT signal when TAR = CCRn
 Capture (when CAP=1) grabs the TAR value and sets an interrupt (CCnICG)

when triggered by the selected CCIx input

15 0

16-bit Counter
(TAR)

Interrupt
(TAICG)

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0

CCR6
 CAP=1
 CM
 SCS
 COV

CC0ICGCC0IE

TA0.0...
CAt=0

CC6ICGCC6IE

TA0.6

Every CCR register has its own control register. Notice above, that the “CAP” bit configures
whether the CCR will be used in capture (CAP=1) or compare mode (CAP=0).

You can also see that each CCR has an interrupt flag, enable, and output signal associated with
it. The output signal can be routed to a pin or a number of other internal peripherals.

As we go through the rest of this chapter, we’ll examine further details of the CCR registers as
well as the various “actions” that the timer generates.

In the next section, we’ll begin examining how to configure the timer using the MSP430ware
DriverLib API.

MSP430 Workshop - Timers 6 - 11

Timer Details: Configuring TIMER_A

Timer Details: Configuring TIMER_A
There are four steps required to get Timer_A working in your system:

1. Configure the main Timer/Counter by programming the TACTL control register.

2. Setup each CCR that is needed for your application. We will examine this step from both the
Capture and Compare perspective.

3. Next, you need to start the timer. (We also listed clearing the timer IFG bits, which is normally
done right before starting the timer.)

4 Steps to Program Timer_A

16-bit Counter (TAR)

CCR0 (TACCR0)
...

Timer_A Ctrl Reg (TACTL)

CCR0 Ctrl Reg (TACCTL0)

CCR6 (TACCR6)
CCR6 Ctrl Reg (TACCTL6)

Timer Setup Code
1. Configure Timer/Counter (TACTL)

 Clocking
 Which Count aode
 Interrupt on TAR rollover?

2. Setup Capture and/or Compare Registers
 Capture (TACCTL):

 Input
 Interrupt on Capture?

 Compare (TACCTL, TACCR):
 Compare-to Value
 Output mode (How output signal

changes at compare (EQU) events)
 Interrupt on Compare?

3. Clear interrupt Flags & Start Timer

Timer Interrupt Service Routine(s)
4. Write 1-2 ISR’s (CCR0, others)

4. Finally, if your timer is generating interrupts, you need to have an associated ISR for each

one. (While interrupts were covered in the last chapter, we briefly summarize this again in context of
the Timer_A.)

We will intermix how to write code for the timer with further examination of the timer’s features.

6 - 12 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

1. Counter: TIMER_A_configure…()
The first step to using TIMER_A is to program the main timer/counter control register. The
MSP430ware Driver Library provides 3 different functions for setting up the main part of the timer:

TIMER_A_configureContinuousMode()
TIMER_A_configureUpMode()
TIMER_A_configureUpDownMode()

We will address the different modes on the next page. For now, let’s choose ‘continuous’ mode
and see how we can configure the timer using the DriverLib function.

15 0

1. Configure Timer/Counter

16-bit Counter
(TAR)

Interrupt
(TAICG)

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

Timer_A_initContinuousaodetaram inittaram = { 0 };
inittaram.clockSource = TIaER_A_CLOCKSOURCE_ACLK;
inittaram.clockSourceDivider = TIaER_A_CLOCKSOURCE_DIVIDER_1;
inittaram.timerInterruptEnable_TAIE = TIaER_A_TAIE_INTERRUtT_ENABLE;
inittaram.timerClear = TIaER_A_DO_CLEAR;
inittaram.startTimer = false;

Timer_A_initContinuousaode(TIaER_A0_BASE, &inittaram);

From the diagram, we can see that 3 different hardware choices need to be made for our timer
configuration; the arrows demonstrate how the function parameters relate to these choices. Let’s
look at each parameter one-by-one:
• The first parameter chooses which Timer_A instance you want to program. In our example,

we have chosen to program TA0 (i.e. Timer0_A). Conveniently, the DriverLib documentation
provides enumerations for all the supported choices. (This is the same for all DriverLib
parameters, so we won’t keep repeating this statement. But, this is very handy to know!)

• The 2nd parameter lets you choose which clock source you want to use. We chose SMCLK.

• The next parameter picks one of the provided clock pre-scale values. The h/w lets you
choose from one of 20 different values; we picked ÷ 64.

• Parameter four lets us choose whether to interrupt the processor
when the counter (TA0R) rolls over to zero. This parameter ends up
setting the TA0IE bit.

• Finally, do you want to have the timer counter register (TA0R) reset
when the other parameters are configured?

Remember…
TAR: Timer_A count Register

TA0R: Name for count register
when referring to instance “0”
(i.e. Timer0_A)

MSP430 Workshop - Timers 6 - 13

Timer Details: Configuring TIMER_A

Timer Counting Modes
There are three different ways that the timer counter (TAR) can be incremented. These correlate
to the three configuration functions listed on the previous page. This page provides a single-slide
summary of the different modes – but we’ll examine each one over the following three pages.

Timer_A_initContinuousaodetaram inittaram = { 0 };
inittaram.clockSource = TIaER_A_CLOCKSOURCE_ACLK;
inittaram.clockSourceDivider = TIaER_A_CLOCKSOURCE_DIVIDER_1;
inittaram.timerInterruptEnable_TAIE = TIaER_A_TAIE_INTERRUtT_ENABLE;
inittaram.timerClear = TIaER_A_DO_CLEAR;
inittaram.startTimer = false;

Timer_A_initContinuousaode(TIaER_A0_BASE, &inittaram);

15 0

1. Configure Timer/Counter

16-bit Counter
(TAR)

Interrupt
(TAICG)

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

There are 4 different count modes ...

Timer Counting Modes Summary

CCR0 is special !!!

6 - 14 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

Continuous Mode
Thus far we have described the timer’s counter operating in the Continuous mode; in fact, this
was the configuration example we just discussed.

TAR in Continuous Mode
16-bit Counter

(TAR) TA0ICG
Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

Interrupt

FFFFh

0h

TA0ICG TA0ICG

 Continuous mode
TAR runs full range of
16-bit counter

 INT occurs at count to 0
TAR must transition to
zero – it won’t happen
if you write 0 to TAR

TIMER_A_configureContinuousMode();

What differs with Up mode?

The different counting modes describe how the timer counter register (TAR) is incremented or
decremented. For example, in Continuous mode, the timer counts from 0x0 up to 0xFFF and then
rolls back to 0x0, where it begins counting up again. (This is shown in the diagram above.)

As you can see, every time the counter rolls back to zero, the TAIFG bit gets set; which, if
enabled, interrupts the processor every 216 input clocks. (Since our previous example was for
Timer0_A, the diagram shows TA0IFG getting set.)

MSP430 Workshop - Timers 6 - 15

Timer Details: Configuring TIMER_A

Up Mode
The Up counting mode differs from the Continuous mode by resetting back to zero whenever the
counter matches CCR0 (Capture and Compare Register 0).

You can see the different waveforms compared on the slide below. The green waveform
counts Up to the value found in CCR0, and then resets back to zero.

On the other hand, the grey dotted waveform shows how, when in Continuous mode, the counter
goes past CCR0 and all the way to 0xFFFF.

TAR in UP Mode
16-bit Counter

(TAR) TA0ICG
Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0 CC0ICGCC0IE

Interrupts

FFFFh

CCR0

0h

 Ut mode
Ints at ‘custom’ (higher)
frequencies

 Both interrupts are
generated 1-cycle apart
 CC0ICG when TAR = CCR0
 TA0ICG when TAR0h

 CCR0 is special CCR
Only CCR0 affects TAR’s
count in this way

 CCR0 is a dedicated ICG,
the rest are grouped

CC0ICG
TA0ICG

CC0ICG
TA0ICG

Timer_A_initUpMode();

In Up mode, since we are using the CCR0 register, the timer can actually generate two interrupts:
• CC0IFG (for Timer0_A, this bit is actually called TA0CC0IFG)

• TAIFG (for Timer0_A, this bit is called TA0IFG)

You’re not seeing a color misprint; the two interrupts do not happen at the exact same time, but
rather 1 cycle apart. The CC0IFG occurs when there is a compare match, while the TA0IFG
interrupt occurs once the counter goes back to zero.

If you compare these two Up mode interrupts to the one generated in the Continuous mode, you’ll
see they occur at a more rapid frequency. This is a big advantage of the Up mode; your
frequency is not limited to 216 counts, but rather can be anywhere within the 16-bit counter’s
range. (The downside is that you also have to configure the CCR0 registers.)

Note: The CCR0 (Capture and Control Register 0) is special. That is, it is special in comparison to the
other CCR registers. It is only CCR0 that can be used to define the upper limit of the counter in Up
(or UpDown) count mode.

The other special feature of CCR0 is that it provides a dedicated interrupt (CC0IFG). In other
words, there is an Interrupt Vector location dedicated to CC0IFG. All the other Timer_A interrupts
share a common vector location (i.e. they make up a grouped interrupt).

6 - 16 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

Up/Down Mode
The UpDown count mode is similar to Up in that the counter only reaches the value in CCR0
before changing. In this case, though, it actually changes direction and starts counting down
rather than resetting immediately back to zero.

Not only does this double the time period (i.e. half the timer’s frequency), but it also spreads out
the two interrupts. Notice how CC0IFG occurs at the peak of the waveform, while TAIFG occurs
at the base of the waveform.

16-bit Counter
(TAR) TAICG

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0 CC0ICGCC0IE

Interrupts

FFFFh

CCR0

0h

TAR in UP/DOWN Mode

 Ut/DOWN mode
TAR counts up & down

 2x period of Ut mode
i.e. half the interrupts

 Remembers count dir
If TAR stopped then
started, it keeps going
in same direction TA0ICG

TIMER_A_initUpDownMode();

CC0ICG CC0ICG

In our diagram we show all three counter mode waveforms. The UpDown mode is shown in red;
Up is shown in green; and the Continuous mode is shown in grey.

.

 Which Count Mode Should I Use?
When using TIMER_A (or TIMER_B), you have a choice as to which counter mode to use. Here are
some things to keep in mind.
• Using Continuous mode doesn’t “tie up” your CCR0 register. It also means you don’t have

program the CCR0 register.

• Up mode allows you better control the timer’s frequency – that is, you can now control the time
period for when the counter resets back to zero.

• On the other hand, the UpDown mode not only lets you control the frequency better, but it also
allows for lower frequencies – since it effectively halves the frequency of the Up mode.

• Two more considerations of UpDown mode are:
− The two interrupts are spaced at ½ the time period from each other.
− When using multiple CCR registers, you can get two compare interrupts per cycle. (We’ll see more on this later.)

MSP430 Workshop - Timers 6 - 17

Timer Details: Configuring TIMER_A

Summary of Timer Setup Code – Part 1
Let’s summarize Part 1 of the timer setup code – which configures the timer’s count options. First
of all, as you can see below, we chose to place our timer setup code into its own function.
Obviously, this is not a requirement, but it’s how we wanted to organize our code examples.

Timer Code Example (Part 1)
#include <driverlib.h>

void main(void) {
// Setup/Hold Watchdog Timer (WDT+ or WDT_A)
initWatchdog();

// Configure GPIO ports/pins
initGPIO();

// Setup Clocking: ACLK, SMCLK, MCLK (BCS+, UCS, or CS)
initClocks();

//--
// Then, configure any other required peripherals and GPIO
initTimers();

__bis_SR_register(GIE);

while(1) {
...
}

Our earlier example for the Timer/Counter setup code demonstrated using the Continuous mode.
The following example shows using the Up mode. Here’s a quick comparison between the two
functions – notice that the Up mode requires two additional parameters.

Parameter ContinuousMode Function UpMode Function
Which Timer? TIMER_A0_BASE
Clock Source TIMER_A_CLOCKSOURCE_SMCLK
Clock Pre-scaler TIMER_A_CLOCKSOURCE_DIVDER_xx
Timer Period Not applicable Used to set the CCR0 value
Enable the TAIE interrupt? TIMER_A_TAIE_INTERRUPT_xxxxxx
Enable the CCR0 interrupt? Not applicable Used to set TA0CC0IFG
Clear the counter (TAR) ? TIMER_A_DO_CLEAR

6 - 18 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

2a. Capture: TIMER_A_initCapture()
Before we try writing the code to setup a CCR register for Capture, let’s first examine the timer’s
hardware options.
• Most importantly, when wanting to use the Capture features, you need to set CAP = 1.

• The CM bit indicates which clock edge to use for the capture input signal.

• Do you want the capture input signal sync’d with the clock input? If so, that’s what SCS is for.

• While you don’t configure COV, this bit indicates if a capture overflow occurred. In other
words, did a 2nd capture occur before you read the captured value from the CCR register?

• Finally, you can select what hardware signal you want to have “trigger” the capture.

15 0

Timer_A7: Capture Mode

16-bit Counter
(TAR)

Interrupt
(TAICG)

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0

CCR1

CCR2

CCR3

CCR4

CCR5

CCR6

 Capture or Compare (CAt)
CAP=1 for capture

 Which Edge (Ca)
Rising, Calling, or Both

 Sync’d to Clock (SCS)
Is capture sync or async?

 Capture Overflow (COV)
Did you miss a capture?

 CAP=1
 CM
 SCS
 COV

Interrupt
(CC6ICG)CC6IE

Hint: Each CCR can be configured independently. The flip side to this is that you must
configure each one that you want to use; this might involve calling the ‘capture’ and/or
‘compare’ configuration functions multiple times.

Use one for capture and the rest for compare. Or, use all for capture. You get to decide
how they are used.

Warning: If you are using Up or UpDown count modes, you should not configure CCR0. Just
remember that the TIMER_A_configureUpMode() and TIMER_A_configureUpDownMode()
configuration functions handle this for you.

MSP430 Workshop - Timers 6 - 19

Timer Details: Configuring TIMER_A

Capture Code Example
With the Capture mode details in mind, let’s examine the code.

To configure a CCR register for Capture mode, use the TIMER_A_initCapture() function.
Thankfully, when using DriverLib the code is pretty easy to read (and maintain). Hopefully
between the diagram and the following table, you can make sense of the parameters.

Example’s Parameter Value What is Parameter For? Value

TIMER_A0_BASE Which timer are you using? TA0

TIMER_A_CAPTURECOMPARE_REGISTER_6 Which CCR is being configured? CCR6

TIMER_A_CAPTUREMODE_RISING_EDGE Which edge of the capture signal are you using? Rising

TIMER_A_CAPTURE_INPUTSELECT_CCIxA The signal used to trigger the capture CCIn6A

TIMER_A_CAPTURE_ASYNCHRONOUS Sync the signal to the input clock? No, don’t sync

TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE Enable the CCR interrupt? CC6IE = 1

TIMER_A_OUTPUTMODE_OUTBITVALUE How should the output signal be handled? OUTMOD=0x0

We’ve briefly talked about every feature (i.e. function parameter) found in this function except
OutputMode. The “OUTBITVALUE” (for CCR6) indicates that the value of CCR6’s IFG bit should
be output to CCR6’s Output signal. The output signal can be used by other peripherals or routed
to the TA0.6 pin.

Note: With regards to OutputMode, this is just the tip-of-the-iceberg. There are actually 8
possible output mode settings. We will take you through them later in the chapter.

6 - 20 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

2b. Compare: TIMER_A_initCompare()
The other use of CCR is for comparisons to the main timer/counter (TAR).

Timer_A7: Compare Mode
15 0

16-bit Counter
(TAR)

Interrupt
(TAICG)

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0

CCR1

CCR2

CCR3

CCR4

CCR5

CCR6

CAt=0
OUT

(TA0.2)

Interrupt
(CC2ICG)

Enable
(CC2IE)

OUT
(TA0.2)

 CAt=0 (Capture off)
Compare mode on

 If CCR2 = TAR (named EQU2):
 Interrupt occurs (if enabled)
 OUT is set/reset/toggled

 OUT can be:
 Connected to pin (TA0.2)
 Routed to peripherals
 OUT bit can be polled I

 aany OUT signal options
Discussed later in the chapter

Once again, before we walk through the function that initializes CCR for Compare, let’s examine
its options:
• Set CAP=0 for the CCR to be configured for Compare Mode. (Opposite from earlier.)

• You must set the CCR2 register to a 16-bit value. When TAR = CCR2:

− An internal signal called EQU2 is set.

− If enabled, EQU2 drives the interrupt flag high (CC2IFG).

− Similar to the Capture mode, the CCR’s output signal is modified by EQU2. Again, this
signal is available to other internal peripherals and/or routed to a pin (in this case, TA0.2).

− Again, similar to the Capture mode, there are a variety of possible output modes for the
OUT2 signal (which will be discussed shortly).

MSP430 Workshop - Timers 6 - 21

Timer Details: Configuring TIMER_A

Compare Code Example
Let’s look at the code required to setup CCR2 for use in a Compare operation.

One thing you might notice about the TIMER_A_initCompare() function is that it requires fewer
parameters than the complementary initCompare function.

Example’s Parameter Value What is Parameter For? Value

TIMER_A0_BASE Which timer are you using? TA0

TIMER_A_CAPTURECOMPARE_REGISTER_2 Which CCR is being configured? CCR2

TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE Enable the CCR interrupt? CC2IE = 1

TIMER_A_OUTPUTMODE_SET_RESET How should the output signal be handled? OUTMOD=0x3

0xBEEF What ‘compare’ value will be written to CCR2? CCR2 = 0xBEEF

The OutputMode setting will be configured using the “Set/Reset” mode (which correlates to the
value 0x3). Once again, with so many different output mode choices, we’ll defer the full
explanation of this until the next topic.

6 - 22 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

Summary of Timer Setup Code – Part 2
Here’s a summary of the timer setup code we have looked at thus far.

Timer Code Example (Part 2 - Compare)
#include <driverlib.h>

void initTimerA0(void) {
// Setup TimerA0 in Up mode with CCR2 compare
TIMER_A_configureUpMode(TIMER_A0_BASE,

TIMER_A_CLOCKSOURCE_SMCLK,
TIMER_A_CLOCKSOURCE_DIVIDER_1,
TIMER_PERIOD,
TIMER_A_TAIE_INTERRUPT_ENABLE,
TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE,
TIMER_A_DO_CLEAR);

TIMER_A_initCompare(TIMER_A0_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_2,
TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMER_A_OUTPUTMODE_SET_RESET,
0xBEEF // Compare Value

);

}

1

2

Old API – Slide will be updated on next workshop revison

Part 1 of our code configures the timer/counter; i.e. the main element of Timer_A.

Part 2 configures the various Capture/Compare registers (CCR). Due to limited space on the slide
we have only included the initCompare function for CCR2. In a real application, you might use all
of the CCR registers – in which case, our initTimerA0() function would become a lot longer.

Before we move onto Part 3 of our timer configuration code, let’s spend a few pages explaining
the 8 different output mode options available when configuring Capture/Compare Registers.

MSP430 Workshop - Timers 6 - 23

Timer Details: Configuring TIMER_A

Output Modes
As you may have already seen, each CCR register has its own associated pin. For CCR1 on
Timer0 this pin would be named “TA0.1”. Depending upon which mode you put the CCR into; this
pin can be used as an input (for Capture) or an output (for either Capture or Compare).

When the pin is used as an output, its value is determined by the OUT bit-field in its control
register. The exact details for this are TA0.1 = TA0CCTL1.OUT. (Sometimes you’ll just see this
OUT bit abbreviated as OUT1.)

Besides routing the CCR OUT signal to a pin, it can also be used by other MSP430 peripherals.
For example, on some devices the A/D converter could be triggered by the timer directly.

So, what is the value of OUT for any given CCR register?
The value of OUT is determined by the OutputMode, as we discussed earlier. (Each CCR control
register has its own OUTMOD bit-field). This setting tells the OUT bit how to react as each
compare or capture occurs. As previously stated, there are 8 different OutputMode choices.

For example, setting OUTMOD = 0 mean it’s not changed by the timer’s hardware. That is, it’s
under software control. You can set OUT to whatever you like by writing to it in the CCRx control
register.

What happens to OUT when OUTMOD = 1 (“Set” mode)?

Timer CCR (Compare) Output Mode 01

Output
aode

(CCRn.OUTMOD)

01 Set

Note: Interrupts don’t vary
with OUTMOD, only the
OUTput signal changes

Output aode 1
 OUTaOD = 01 is called “Set”
 This means that OUT (e.g. TA0.1) is

set on EQU1
 That is, whenever TAR=CCR1

 Each CCR has it’s own
signal (e.g. TA0.1)
 Input for capture (CCI)
 Output for compare (OUT)

 Used as output, the value
in register bit CCRn.OUT is
routed to TA0.n

 Value of OUT is affected
by Output aode
(CCRn.OUTaOD) as described
over the next few slides

 If OUTaOD=0, then OUT bit
(and hence the signal) is under
software control

As we can see from the diagram above, when the timer/counter (TAR) counts up to the value in
CCR1 (i.e. TAR = CCR1), then a valid comparison is true.

The enumeration for OUTMOD = 1 is called “Set”; whenever TAR=CCR1, then OUT will be “Set”
(i.e. OUT = 1). In fact, OUT will remain = 1 until the CCR is reconfigured.

Why use “Set” mode? You might find this mode useful in creating a one-shot type of signal.

6 - 24 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

EQU
Before we examine OutputMode 2, let’s consider the nomenclature used in the MSP430 User’s
Guide.

Apparently, there is an EQU (equate) signal inside the timer for each CCR. For example, the
equate signal for CCR1 would be called EQU1. While these EQU values cannot be read directly
from any of the timer control registers, the documentation makes use of them to describe when a
comparison becomes true.

Therefore, when the timer counter (TAR) becomes equal to a compare register (CCR), the
associated EQU signal becomes true.

This can be seen in the following diagram captured from the TIMER_A documentation. Notice
how EQU0 becomes true when TAR=CCR0; likewise, EQU1 becomes true when TAR=CCR1.

MSP430 Workshop - Timers 6 - 25

Timer Details: Configuring TIMER_A

OUTMOD = 2 (“Toggle/Reset” mode)
OutputMode 2 is a bit more interesting than the previous output modes. Notice how this mode is
called “Toggle/Reset”. Each of these names corresponds to a different event.
• Toggle - This means that OUTn should be toggled whenever TAR=CCRn

• Reset - This implies that OUT=0 (i.e. reset) whenever TAR=CCR0

In other words, when the OutputModes are defined by two names, the first one dictates the value
of OUTn whenever the TAR=CCRn (i.e. whenever EQUn becomes true). The second name
describes what happens to OUTn whenever TAR=CCR0.

Note: Remember what we said earlier, CCR0 is often used in a special way. This is another
example of how CCR0 behaves differently than the rest of the CCR’s.

Looking at the diagram below, we can see that in OutputMode 2, the OUT1 signal appears to be
a pulse whose duty cycle (i.e. width) is proportional to the difference between CCR0 and CCR1.

01 Set

02 Toggle/
Reset

Timer CCR (Compare) Output Mode 02

Output
aode

(CCRn.OUTMOD)

 OUT is actually affected
by two events:
 EQUn : when TAR=CCRn
 EQU0 : when TAR=CCR0

 In other words, the two
events are CCRnIFG and
CCR0IFG, respectively

 Output aode 02 is called:

 As stated earlier, CCR0 is special
It affects all other CCR compare
outputs in this same way

 Note: In this example, EQU0 and
TAICG happen at the same time;
but TAICG does not affect OUT

Toggle Reset

on EQUn

on CCR0

Output aode 2
 OUTaOD = 02 is called “Toggle/Reset”
 This means that OUT (e.g. TA0.1) is

Toggled upon EQU1
 And Reset on EQU0 (i.e. CCR0 match)

Putting this out on a GPIO pin ...

By showing both OUTMOD=1 and OUTMOD=2 in the same diagram, you can see how the value
of OUTn can be very different depending upon the OutputMode selected.

6 - 26 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

Routing the OUT signal to a pin, as shown here, lets us drive external hardware directly from the
output of the timer. (In fact, we’ll use this feature to let the timer directly drive an LED during one
of the upcoming lab exercises.)

02 Toggle/
Reset

Timer CCR (Compare) Output Mode 02

Output
aode

(CCRn.OUTMOD)

 OUT is actually affected
by two events:
 EQUn : when TAR=CCRn
 EQU0 : when TAR=CCR0

 In other words, the two
events are CCRnIFG and
CCR0IFG, respectively

 Output aode 02 is called:
Toggle/Reset

Here’s an example of routine TA0.2 (i.e. OUT2) to a GtIO pin:

 Completely automatic
 Independent frequencies with different

duty cycles can be generated for each CCR

Looking at all the Output Modes…

MSP430 Workshop - Timers 6 - 27

Timer Details: Configuring TIMER_A

Summary of Output Modes
While we have only studied a couple of the output modes, we hope you will be able to decipher
the remaining modes based on their names. Here is a comparison of all the different OUTput
waveforms based upon the value of OUTMOD.

Capture “Output Modes” Summary

Output
aode

(CCRn.OUTMOD)

01 Set

02 Toggle/
Reset

03 Set/
Reset

04 Toggle

05 Reset

06 Toggle/
Set

07 Reset/
Set

 Use different OUTaOD
settings to create
various signal patterns

 Output modes 2, 3, 6,
and 7 are not useful for
output unit 0 because
EQUn = EQU0

 This summary is for the “Ut”
mode. User’s Guide has similar
diagrams for Continuous and
UpDown counter modes

Do these look like PWM signals?
Here's a simple PWM example...

 Point of Clarification – Only use modes 1, 4, and 5 for CCR0
The second bullet, in the diagram above, states that four of the Output Modes (2, 3, 6, and 7)
are not useful when you are working with CCR0.

Why are they not useful?

All four of these OutputModes include two actions:
• One action when: CCRn=TAR

• A second action when: CCR0=TAR

In this case, though, CCRn = CCR0. That means these modes could be trying to change OUT0
in two different ways at the same time.

Bottom Line: When using CCR0, only set OUTMOD to 0, 1, 4, or 5.

6 - 28 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

PWM anyone?
PWM, or pulse-width modulation, is commonly used to control the amount of energy going into a
system. For example, by making the pulse widths longer, more energy is supplied to the system.

Looking again at the previous example where OUTMOD = 2, we can see that by changing the
difference between the values of CCR0 and CCRn we can set the width of OUTn.

PWM Signals – Up to one per CCR
0xCCCC

TA0CCR0

TA0CCR1

TA0CCR2

0x0

OUT1

 Duty cycle (“on” time) is set by selecting Output aode and varying CCRx value
 In this example, CCR0 – CCR1 = amount of time Signal is High

CCR0 sets the time period

CCRn sets duty cycle

In the case of the MSP430, any timer can generate a PWM waveform by configuring the CCR
registers appropriately. In fact, if you are using a Timer_A5, you could output 4 or 5 different
PWM waveforms.

PWM Signals – Up to one per CCR
0xCCCC

TA0CCR0

TA0CCR1

TA0CCR2

0x0

OUT1

OUT2

 Duty cycle (“on” time) is set by selecting Output aode and varying CCRx value
 In this example, CCR0 – CCR1 = amount of time Signal is High

MSP430 Workshop - Timers 6 - 29

Timer Details: Configuring TIMER_A

3. Clear Interrupt Flags and TIMER_A_startTimer()
Part 3 of our timer configuration code is for clearing the interrupt flags and starting the timer.

As described earlier in the workshop, you are not required to clear interrupt flags before enabling
an interrupt, but once again, this is common practice. In Part 3 of the example below, we first
clear the Timer flag (TA0IFG) using the function call provided by DriverLib. Then, we clear all the
CCR interrupts using a single function; notice that the “+” operator tells the function that we want
to clear both of these IFG bits.

Timer Code Ex. (Part 3 – Clear IFG’s/Start)
#include <driverlib.h>

void initTimerA0(void) {
// Setup TimerA0 in Up mode with CCR2 Compare
TIMER_A_configureUpMode(TIMER_A0_BASE,

TIMER_A_CLOCKSOURCE_SMCLK,
TIMER_A_CLOCKSOURCE_DIVIDER_1,
TIMER_PERIOD,
TIMER_A_TAIE_INTERRUPT_ENABLE,
TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE,
TIMER_A_DO_CLEAR);

TIMER_A_initCompare(TIMER_A0_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_2,
TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMER_A_OUTPUTMODE_SET_RESET,
0xBEEF); // Compare Value

TIMER_A_clearTimerInterruptFlag(
TIMER_A0_BASE);

TIMER_A_clearCaptureCompareInterruptFlag(
TIMER_A0_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_0 +
TIMER_A_CAPTURECOMPARE_REGISTER_2);

TIMER_A_startCounter(TIMER_A0_BASE,
TIMER_A_UP_MODE); //Make sure this

} // matches config fxn

1

2

3
Old API – Slide will be updated on next workshop revison

We conclude the code for Part 3 by starting the timer. The start function only has two parameters:
• It’s probably obvious that you need to specify which timer that needs to be started.

• The other parameter specifies, once again, the count mode for the timer’s counter.

Warning!
Did we get your attention? The timer “start” function ended up being one of the biggest problems
during the development of this workshop.

As dumb as it sounds, we missed the fact that you need to set the counter mode (e.g. “UP”) in this
function. When we cut/pasted this function from another example, we never thought to change this
parameter.

Why, because we thought it had already been specified by using the TIMER_A_configureUpMode()
function. Well, we found out the hard way that you need to do both. Use the correct function AND
specify the correct count mode in the start function.

6 - 30 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

4. Interrupt Code (Vector & ISR)
The last part of our timer code is actually a review since interrupts were covered, in detail, in a
previous workshop chapter.

Remember, TIMER_A has two interrupt vectors: one dedicated to CCR0; another shared by
TAIFG and all the other CCR’s. Below, we provide a simple example of handling both.

Timer Code Example (Part 4 – ISR’s)
#pragma vector=TIMER0_A0_VECTOR
__interrupt void myISR_TA0_CCR0(void) {

GPIO_toggleOutputOnPin(...);
}

#pragma vector=TIMER0_A1_VECTOR
__interrupt void myISR_TA0_Other(void) {

switch(__even_in_range(TA0IV, 10)) {
case 0x00: break; // None
case 0x02: break; // CCR1 IFG
case 0x04: // CCR2 IFG

GPIO_toggleOutputOnPin(…);
break;

case 0x06: break; // CCR3 IFG
case 0x08: break; // CCR4 IFG
case 0x0A: break; // CCR5 IFG
case 0x0C: break; // CCR6 IFG
case 0x0E: // TA0IFG

GPIO_toggleOutputOnPin(…);
break;

default: _never_executed();
}

}

4

CCR0
ISR

ISR for
CCR2

and TA0IFG

MSP430 Workshop - Timers 6 - 31

TIMER_A DriverLib Summary

TIMER_A DriverLib Summary
This diagram attempts to summarize the functions found in the TIMER_A module of the
MSP430ware Driver Library.

Many of the functions have arrows pointed to/from the three main parts of the timer peripheral:
TAR (the main timer/counter); CCR (used for Compare); and CCR (used for Capture). The arrows
indicate whether the function reads or writes the associated registers.

MSP430ware TIMER_A Summary
TIaER_A_configureContinuousaode()

TIaER_A_configureUpaode()
TIaER_A_configureUpDownaode()

16-bit Counter
(TAR)

CCR0

CCR6

...

Timer_A Ctrl Reg

CCR0 Ctrl Reg

CCR6 Ctrl RegTIaER_A_initCapture()

TIaER_A_startCounter()
TIaER_A_clear()
TIaER_A_stop()

aISC Functions
TIMER_A_getSynchronizedCaptureCompareInput()
TIMER_A_getOutputCorOutputModeOutBitValue()
TIMER_A_setOutputCorOutputModeOutBitValue()

TIMER_A_getCounterValue()

TIaER_A_initCompare()
TIMER_A_setCompareValue

TIMER_A_getCaptureCompareCount()

Interrupt Functions
TIMER_A_enableInterrupt()
TIMER_A_disableInterrupt()
TIMER_A_getInterruptStatus()
TIMER_A_enableCaptureCompareInterrupt()
TIMER_A_disableCaptureCompareInterrupt()
TIMER_A_getCaptureCompareInterruptStatus()
TIMER_A_clearCaptureCompareInterruptClag()
TIMER_A_clearTimerInterruptClag()

TIaER_A_generatetWa()

Old API – Slide will be updated on next workshop revison

The bottom of the slide contains two boxes: one summarizes the Interrupt related functions while
the other contains three functions that read/write the input and output bit values.

6 - 32 MSP430 Workshop - Timers

 Differences between Timer’s A and B

Differences between Timer’s A and B
The Timer_A and Timer_B peripherals are very similar. The following slide highlights the few
differences between them.

Timer_A vs Timer_B

 “Sampling aode” acts like a digital sample & hold
 Timer_A can latch CCI input (to SCCI) upon compare
 Makes it easy to implement software UART’s
 Timer_B cannot latch CCI directly, but most devices with Timer_B have dedicated

communication peripherals

Timer_A specific features

 Compare (CCRx) registers are double-buffered & can be updated in groups
 Preserves PWM “dead time” between driving complementary outputs (H-bridge)
 More care is needed when implementing edge-aligned PWM with Timer_A

 TBR configurable for 8, 10, 12 or 16-bits counter (default is 16-bits)
 Provides range of periods when used in ‘Continuous’ mode

 Tri-state function from external pin
 External TBOUTH pins puts all Timer_B pins into high-impedance
 With Timer_A, you would need to reconfigure pins in software

Timer_B specific features

 Timer_B’s default functionality is identical to Timer_A
 Names are (almost) the same: TAR → TBR, TA0CTL → TB0CTL, etc.

Similarities

Hint: For a more complete understanding of these differences, we highly recommend that you
refer to MSP430 Microcontroller Basics. John Davies does a great job of describing the
differences between these timers. Furthermore, his discussion of generating PWM
waveforms using these timers is extremely good. If you’ve never heard of the differences
between edge-aligned and centered PWM waveforms, check out his MSP430 book.

MSP430 Microcontroller Basics by John H. Davies, (ISBN-10 0750682760) Link

MSP430 Workshop - Timers 6 - 33

http://www.amazon.com/MSP430-Microcontroller-Basics-John-Davies/dp/0750682760
http://www.amazon.com/MSP430-Microcontroller-Basics-John-Davies/dp/0750682760

Differences between Timer’s A and B

Notes

6 - 34 MSP430 Workshop - Timers

 Lab 6 – Using Timer_A

Lab 6 – Using Timer_A

Note: The solutions exist for all of these exercises, but the instructions for Lab 6d are not yet
included. These will appear in a future version of the course.

MSP430 Workshop - Timers 6 - 35

Lab 6 – Using Timer_A

Lab Topics
Timers .. 6-33

Lab 6 – Using Timer_A ... 6-35
Lab 6a – Simple Timer Interrupt ... 6-37

Lab 6a Worksheet ... 6-37
Lab 6a Procedure .. 6-42
Edit myTimers.c .. 6-43
Debug/Run .. 6-44

(Extra Credit) Lab 6b – Timer using Up Mode .. 6-45
Lab 6b Worksheet ... 6-45
File Management .. 6-48
Change the Timer Setup Code ... 6-49
Debug/Run .. 6-49
Archive the Project .. 6-50
Timer_B (Optional) ... 6-51

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer .. 6-52
Lab 6c Abstract ... 6-52
Lab 6c Worksheet ... 6-53
File Management .. 6-57
Change the GPIO Setup ... 6-57
Change the Timer Setup Code ... 6-58
Debug/Run .. 6-59
(Optional) Lab 6c – Portable HAL .. 6-63

(Optional) Lab 6d – Simple PWM (Pulse Width Modulation) .. 6-64
Chapter 6 Appendix .. 6-65

6 - 36 MSP430 Workshop - Timers

 Lab 6a – Simple Timer Interrupt

Lab 6a – Simple Timer Interrupt
Similarly to lab_05a_buttonInterrupt, we want to toggle an LED based upon an interrupt. In
this case, though, we'll use TIMER_A to generate an interrupt; during the interrupt service
routine, we'll toggle the GPIO value that drives an LED on our Launchpad board.

As we write the ISR code, you should see that TIMER_A has two interrupts:
− One is dedicated to CCR0 (capture and compare register 0).
− The second handles all the other timer interrupts

This first TIMER_A lab will use the main timer/counter rollover interrupt (called TA0IFG). As with
our previous interrupt lab (with GPIO ports), this ISR should read the TimerA0 IV register (TA0IV)
and decipher the correct response using a switch/case statement.

Lab 6a Worksheet
Goal: Write a function setting up Timer_A to generate an interrupt every two seconds.

1. How many clock cycles does it take for a 16-bit counter to ‘rollover’? (Hint: 16-bits)

 __

2. Our goal is to generate a two second interrupt rate based on the timer clock input
diagramed above.

 Using myClocks.c provided for this lab, we created a table of example clock & timer rates:

15 0

16-bit /ounter
(TAR)

5ivide
by 5-bits

(up to ÷ 64)

Input
Clock

Timer
Clock

Input /lock Timer /lock Timer Rate
Source Crequency 5ivider Resolution Crequency teriod

SM/LK 8 MIz 1 ⅛ ms 122 Iz 8 ms

SM/LK 8 MIz 8 1 ms 15 Iz 66 ms

A/LK 32 KIz 2 62 ms ½ Iz 4 s

A/LK 32 KIz 8 240 ms ⅟16 Iz 16 s

Timer
Rate

 Pick a source clock for the timer. (Hint: At 2 seconds, a slow clock might work best.)

Clock input (circle one): ACLK SMCLK

MSP430 Workshop - Timers 6 - 37

Lab 6a – Simple Timer Interrupt

3. Calculate the Timer settings for the clocks & divider values needed to create a timer
interrupt every 2 seconds. (That is, how can we get a timer period rate of 2 seconds.)

Which clock did you choose in the previous step? Write its frequency below and then
calculate the timer period rate.

 Input Clock: __________________ running at the frequency = ________________

Timer Clock = ÷ =
 input clock frequency timer clock divider timer clock freq

Timer Rate = x 65536 =

 timer clock period
(i.e. 1 / timer clock freq)

 counts for timer to
rollover

 timer rate period

4. Which Timer do you need to use for this lab exercise?

 In a later lab exercise we will output the timer directly to a BoosterPack pin. Unfortunately, the
two Launchpad’s map different timers to their BoosterPack pinouts. (This is due to the
‘FR5969 having few pins and only using the 20-pin BoosterPack layout; versus the 40-pin XL
layout for the ‘F5529.)

 Here are the recommended timers:

Launchpad Timer Short Name Timer’s Enum

‘F5529 Timer0_A3 TA0 TIMER_A0_BASE

‘FR4133 Timer0_A3 TA0 TIMER_A0_BASE

‘FR5969 Timer1_A5 TA1 TIMER_A1_BASE

Write down the timer enumeration you need to use: TIMER_ _______ _BASE

i.e. 64K

ACLK

6 - 38 MSP430 Workshop - Timers

 Lab 6a – Simple Timer Interrupt

5. Write the TIMER_A_initContinuousMode() function.

 The first part of our timer code is to setup the Timer control registers (TAR, TACTL). Fill in the
code to specify the clock and dividers we just figured out. Also, enable the TAIE interrupt and
clear the counter – but don’t start the timer, yet.

Timer_A_initContinuousModeParam initContParam = { 0 };

 initContParam.clockSource = ___;

 initContParam.clockSourceDivider = ___;

 initContParam.timerInterruptEnable_TAIE = _______________________________________;

 initContParam.timerClear = TIMER_A_DO_CLEAR;

 initContParam.startTimer = false;

Timer_A_initContinuousMode(TIMER_ _____ _BASE, &initContParam);

Hint: Where do you get help writing this function? We highly recommend the MSP430ware
DriverLib Users Guide. (See ‘docs’ folder inside MSP430ware’s driverlib folder.)
Another suggestion would be to examine the header file: (timer_a.h).

6. Skip this step … it’s not required.

 We outlined 4 steps to configure Timer_A. The second step is where you would set up the
Capture and Compare features. Since this exercise doesn’t need to use those features, you
can skip this step.

7. Complete the code to for the 3rd part of the “Timer Setup Code”.

 The third part of the timer setup code includes:
− Enable the interrupt (IE) … we don’t have to do this, since it’s done by the

TIMER_A_configureContinuousMode() function (from question 5 on page 6-39).

− Clear the appropriate interrupt flag (IFG)

− Start the timer

// Clear the timer interrupt flag

_______________________________________ (TIMER_____BASE); // /lear TA0IFG

// Start the timer

_______________________________________ (// Function to start timer

 TIMER_____BASE, // Which timer?

 _______________________________ // Run in /ontinuous mode

MSP430 Workshop - Timers 6 - 39

Lab 6a – Simple Timer Interrupt

8. Change the following interrupt code to toggle LED2 when Timer_A rolls-over.

 ‘F5529 LP ‘FR5969 LP Color

LED1 (Jumper) P1.0 P4.6 Red

LED2 P4.7 P1.0 Green

Button 1 P2.1 P4.5

Button 2 P1.1 P1.1

a) Fill in the details for your Launchpad.

Port/Pin number for LED2: Port _____, Pin _____

Timer Interrupt Vector: #pragma vector = ________________ _VECTOR

Timer Interrupt Vector register: ________________

 (Hint: We previously used P1IV for GPIO Port 1)

Hint:

6 - 40 MSP430 Workshop - Timers

 Lab 6a – Simple Timer Interrupt

b) Here is the interrupt code that exists from a previous exercise, change it as
needed.

Mark up the following code – crossing out what is old or not needed and writing in the
modifications needed for our timer interrupt.

#pragma vector=PORT1_VECTOR

__interrupt void pushbutton_ISR (void)

{

 switch(__even_in_range(P1IV , 16)) {

 case 0: break; // No interrupt

 case 2: break; // Pin 0

 case 4: // Pin 1

 GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);

 break;

 case 6: break; // Pin 2

 case 8: break; // Pin 3

 case 10: break; // Pin 4

 case 12: break; // Pin 5

 case 14:

 break; // Pin 6

 case 16: break; // Pin 7

 default: _never_executed();

 }

}

 Please verify your answers before moving onto the lab exercise.

MSP430 Workshop - Timers 6 - 41

Lab 6a – Simple Timer Interrupt

Lab 6a Procedure
File Management
1. Verify that all projects (and files) in your workspace are closed.

 If some are open, we recommend closing them.

2. Import the lab_06a_timer project.

 We have already created the initial lab project for you to import.

C:\msp430_workshop\<target>\lab_06a_timer

 It doesn’t matter whether you copy this project into your workspace or not. If you “copy” it into
your workspace, the original files will remain untouched. If do not copy, but rather “link” to the
project, you will only have one set of files and any changes you make inside of CCS will be
reflected in the C:\msp430_workshop\<target>\lab_06a_timer directory.

3. Briefly examine the project files

 This project uses code we have written earlier in the workshop, though we have partitioned
some of this code into separate files:
• myGpio.c

− The LED pins are configured as outputs and set to Low.

− For the ‘FR5969, the LFXT pins are set as clock inputs; and, the pins are unlocked.

• myClocks.c

− For ‘F5529 users, this is the same code you wrote in the Clocks chapter.

− For ‘FR5969 users, we used the file from Lab4c so that ACLK uses the 32KHz crystal
rather than VLO. Also, MCLK and SMCLK are set to 8MHz.

6 - 42 MSP430 Workshop - Timers

 Lab 6a – Simple Timer Interrupt

Edit myTimers.c
4. Edit the myTimers.c source file.

We want to setup the timer to generate an interrupt two seconds. The TAIFG interrupt service
routine will then toggle LED2 on/off.

void initTimers(void)

{

 // 1. Setup Timer (TAR, TACTL)in Continuous mode using ACLK

 TIMER_A_ _______________________(

 TIMER_A__BASE, // Which timer

 TIMER_A_ ________________, // Which clock

 TIMER_A_ _____________________, // Clock divider

 TIMER_A_ _____________________, // Enable INT on rollover?

 TIMER_A_DO_CLEAR // Clear timer counter

);

 // 2. Setup Capture & Compare features

 // This example does not use these features

 // 3. Clear/enable flags and start timer

 TIMER_A_ _______________________(TIMER_A1_BASE); // Clear Timer Flag

 TIMER_A_startCounter(

 TIMER__BASE,

 TIMER_A_ _______________ // Which timer mode

);

}

//****** Interrupt Service Routine **

#pragma vector=TIMER1_A1_VECTOR

__interrupt void timer1_ISR (void)

{

 // 4. Timer ISR and vector

 switch(__even_in_range(_____, 14)) { // Read timer IV register
 case 0: break; // None
 case 2: break; // CCR1 IFG
 case 4: break; // CCR2 IFG
 case 6: break; // CCR3 IFG
 case 8: break; // CCR4 IFG
 case 10: break; // CCR5 IFG
 case 12: break; // CCR6 IFG
 case 14: // TAR overflow

 // Toggle LED2 (Green) on/off

 GPIO_toggleOutputOnPin(_____________, _______________);

 break;

 default: _never_executed();

 }

}

Worksheet
Question #5
(page 6-39)

Worksheet
Question #7

Worksheet
Question #8

MSP430 Workshop - Timers 6 - 43

Lab 6a – Simple Timer Interrupt

5. Modify the Unused Interrupts source file.

 Since our timer code uses an interrupt, we need to comment out its associated vector from
the unused_interrupts.c file.

6. Build your code and repair any errors.

Debug/Run
7. Launch the debugger.

 Notice that you may still see the clock variables in the Expressions pane. This is convenient,
if you want to double-check the MSP430 clock rates.

8. Set a breakpoint inside the ISR.

 We found it worked well to set a breakpoint on the ‘switch’ statement (in the myTimer.c file).

9. Run your code.

 If all worked well, when the counter rolled over to zero, an interrupt occurred … which
resulted in the processor halting at a breakpoint inside the ISR.

 If the breakpoint occurred, skip to the next step …

 If you did not reach the breakpoint inside your ISR, here are a few things to look for:
− Is the interrupt flag bit (IFG) set?

− Is the interrupt enable bit (IE) set?

− Are interrupts enabled globally?

10. If the breakpoint occurred, then resume running again.

 You should always verify that your interrupts work by taking more than ‘one’ of them. A
common cause of problems occurs when the IFG bit is not cleared. This means you take one
interrupt, but never get a second one.

 In our current example, reading the TA1IV (or TA0IV for ‘F5529 users) should clear the flag,
so the likelihood of this problem occurring is small, but sometimes the problem still occurs
due to a logical error while coding the interrupt routine.

11. Did the LED toggle?
 If you are executing the ISR (i.e. hitting the breakpoint) and the LED is not toggling, try single-

stepping from the point where the breakpoint occurs. Make sure your program is executing
the GPIO instruction.

 A common error, in this case, is accidentally putting the “do something” code (in our case, the
GPIO toggle function) into the wrong ‘case’ statement.

12. Once you’ve got the LED toggling, you can terminate your debug session.

6 - 44 MSP430 Workshop - Timers

 (Extra Credit) Lab 6b – Timer using Up Mode

 (Extra Credit) Lab 6b – Timer using Up Mode
In this timer lab we switch our code from counting in the "Continuous" mode to the "Up" mode.
This gives us more flexibility on the frequency of generating interrupts and output signals.

From the discussion you might remember that TIMER_A has two interrupts:
• One is dedicated to CCR0 (capture and compare register 0).
• The second handles all the other timer interrupts

In our previous lab exercise, we created an ISR for the grouped (non-dedicated) timer interrupt
service routine (ISR). This lab adds an ISR for the dedicated (CCR0 based) interrupt.

Each of our two ISR's will toggle a different colored LED.

The goal of this part of the lab is to:
 // Timer_A in Up mode using ACLK
 // Toggle LED1 on/off every second using CCR0IFG
 // Toggle LED2 on/off every second using TA0IFG (or TA1IFG for ‘FR5969)

Lab 6b Worksheet
1. Calculate the timer period (for CCR0) to create a 1 second interrupt rate.

 Here’s a quick review from our discussion.

 Timer_A’s counter (TAR) will count up until it reaches the value in the CCR0 capture register,

then reset back to zero. What value do we need to set CCR0 to get a ½ second interval?

Timer Clock = 32 KHz ÷ 1 = 32 KHz
 input clock frequency timer clock divider timer clock freq

Timer Rate = 1/32768 x = 1 second
 timer clock period

(i.e. 1 / timer clock freq)
 timer counter period

(i.e. CCRO value)
 timer rate period

 MSP430 Workshop - Timers 6 - 45

(Extra Credit) Lab 6b – Timer using Up Mode

2. Complete the TIMER_A_initUpMode() function?

 This function will replace the TIMER_A_configureContinuousMode() call we made in our
previous lab exercise.

Hint: Where to get help for writing this function? Once again, we recommend the
MSP430ware DriverLib users guide (“docs” folder inside MPS430ware’s DriverLib).

Another suggestion would be to examine the timer_a.h header file.

Timer_A_initUpModeParam initUpParam = { 0 };

 initUpParam.clockSource = TIMER_A_CLOCKSOURCE_ACLK;

 initUpParam.clockSourceDivider = TIMER_A_CLOCKSOURCE_DIVIDER_1;

 initUpParam.timerPeriod =______________________________; // (calculated in previous question)

 initUpParam.timerInterruptEnable_TAIE = TIMER_A_TAIE_INTERRUPT_ENABLE;

 initUpParam.captureCompareInterruptEnable_CCR0_CCIE =

 __; // Enable CCR0 compare interrupt

 initUpParam.timerClear = TIMER_A_DO_CLEAR;

 initUpParam.startTimer = false;

Timer_A_initUpMode(TIMER____BASE, &initUpParam););

3. Modifying our previous code, we need to clear both interrupts and start the timer.
 We copied the following code from the previous exercise. It needs to be modified to meet the

new objectives for this lab.

 Here are some hints:
− Add an extra line of code to clear the CCR0 flag (we left a blank space below for this)

− Don’t make the mistake we made … look very carefully at the ‘startCounter’ function.
Is there anything that needs to change when switching from Continuous to Up mode?

// Clear the timer flag and start the timer

Timer_A_clearTimerInterruptFlag(TIMER____BASE); // Clear TA0IFG

__ (// Clear CCR0IFG

 TIMER______BASE,

 __);

Timer_A_startCounter(TIMER____BASE, // Start timer in

 TIMER_A_______MODE); // ____ mode

6 - 46 MSP430 Workshop - Timers

 (Extra Credit) Lab 6b – Timer using Up Mode

4. Add a second ISR to toggle the LED1 whenever the CCR0 interrupt fires.

On your Launchpad, what Port/Pin number does the LED1 use? ______________

 Hints:
 What port/pin does your LED1 use? Look back at question 8 (page 6-40).
 Look at the unused_interrupts.c file for a list of interrupt vector symbol names.

 Here we’ve given you a bit of code to get you started:

#pragma vector= _________________________________

__interrupt void ccr0_ISR (void)

{

 // Toggle the LED1 on/off

}

 Please verify your answers before moving onto the lab exercise.

MSP430 Workshop - Timers 6 - 47

(Extra Credit) Lab 6b – Timer using Up Mode

File Management
5. Copy/Paste lab_06a_timer to lab_06b_upTimer.

a) In CCS Project Explorer, right-click on the lab_06a_timer project and select “Copy”.

b) Then, click in an open area of Project Explorer pane and select “Paste”.
This will create a new copy of your project inside the Workspace directory.

c) Finally, rename the copied project to lab_06b_upTimer.

Note: If you didn’t complete lab_06a_timer – or you just want a clean starting solution –
you can import the lab_06a_timer archived solution.

6. Close the previous project: lab_06a_timer

7. Delete the old, readme file and import the new one.
 You can import the new readme text file from this folder:

C:\msp430_workshop\<target>\lab_06b_upTimer

8. Make sure the project is selected (i.e. active) and build it to verify no errors were
introduced during the copy.

6 - 48 MSP430 Workshop - Timers

 (Extra Credit) Lab 6b – Timer using Up Mode

Change the Timer Setup Code
In this part of Lab 6, we will be setting up TimerA in Up Mode.

9. Modify the timer configuration function, configuring it for ‘Up’ mode.
 You should have a completed copy of this code in the Lab 6b Worksheet.

 Please refer to the Lab Worksheet for assistance. (Question2, Page 6-46).

10. Modify the rest of the timer set up code, where we clear the interrupt flags, enable the
individual interrupts and start the timer.

 Please refer to the Lab Worksheet for assistance. (Question 3, Page 6-46).

11. Add the new ISR we wrote in the Lab Worksheet to handle the CCR0 interrupt.

 When this step is complete, you should have two ISR’s in your main.c file.

 Please refer to the Lab Worksheet for assistance. (Question 4, Page 6-47).

12. Don’t forget to modify the “unused” vectors (unused_interrupts.c).

 Failing to do this will generate a build error. (Most of us saw this error back during the
Interrupts chapter lab exercise.)

13. Build the code to verify that there are no syntax (or any other kind of) errors; fix any
errors, as needed.

Debug/Run
Follow the same basic steps as found in the previous lab for debugging.

14. Launch the debugger and set a breakpoint inside both ISR’s.

15. Run your code.

 If all worked well, when the counter rolled over to zero, an interrupt should occur. Actually,
two interrupts should occur. Once you reach the first breakpoint, resume running your code
and you should reach the other ISR.

Which ISR was reached first? ___

Why? __

16. Remove the breakpoints and let the code run. Do both LED’s toggle?

 An easy way to quickly remove all of the breakpoints is to open the Breakpoints View
window:

View → Breakpoints

 Then click the Remove all Breakpoints toolbar button.

MSP430 Workshop - Timers 6 - 49

(Extra Credit) Lab 6b – Timer using Up Mode

Archive the Project
Thus far in this workshop, we have imported projects from archives … but we haven’t asked you
to create an archive, yet. It’s not hard, as you’ll see.

17. Terminate the debugger, if it’s still open.

18. Export your project to the lab’s file folder.
− Right-click the project and select ‘Export’

− Select ‘Archive File’ for export, then click Next

− Fill out the dialog as shown below, choosing: the ‘upTimer’ lab; “Save in zip format”,

“Compress the contents of the file”; and the following destination:

C:\msp430_workshop\<target>\lab_06b_upTimer\my_lab_06b_upTimer.zip

6 - 50 MSP430 Workshop - Timers

 (Extra Credit) Lab 6b – Timer using Up Mode

Timer_B (Optional)

Note: Since the ‘FR4133 does not include the Timer_B peripheral, you can skip this exercise if
you’re using the MSP-EXP430FR4133 Launchpad.

Do you remember during the discussion that we said Timer_A and Timer_B were very similar? In
fact, the timer code we have written can be used to operate Timer_B … with 4 simple changes:
• It’s a different API … but not really.

 Rather than using the TIMER_A module from DriverLib, you will need to use TIMER_B;
unless you’re using one of the few unique features of TIMER_B, the rest of the API is the
same. In other words, you can carefully search and replace TIMER_A for TIMER_B.

• Specify a different timer.

 Since you’re using a different timer, you need to specify a different timer ‘base’. For either
the ‘F5529 or ‘FR5969 you should use TIMER_B0_BASE to specify the timer instance you
want to use.

• You need to use the TIMER_B interrupt vector.

 This changes the #pragma line where we specify the interrupt vector.
• You need to use the TIMER_B interrupt vector register.

 You need to read the TB0IV register to ascertain which TIMER_B flag interrupted the CPU.

All of these are simple changes. Try implementing TIMER_B on your own.

Note: While we don’t provide step-by-step directions, we did create a solution file for this
challenge.

MSP430 Workshop - Timers 6 - 51

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

Lab 6c Abstract
This lab is a minor adaptation of the TIMER_A code in the previous exercise. The main difference
is that we'll connect the output of Timer_A CCR2 (TA0.2 or TA1.2) directly to a GPIO pin.

We are still using Up mode, which means that CCR0 is used to reset TAR back to 0. We needed
to choose another signal to connect to the external pin… we arbitrarily chose to use CCR2 to
generate our output signal for this exercise.

In our case, we want to drive an LED directly from the timer’s output signal…

…unfortunately, the Launchpad does not have an LED connected directly to a timer output pin,
therefore we'll need to use a jumper in order to make the proper connection. As we alluded to
earlier in the chapter, in the case of Timer_A, the Launchpad’s route different timer pins to the
BoosterPack pin-outs.

 Here's an excerpt from the ‘F5529 lab solution:
 // When running this lab exercise, you will need to pull the JP8 jumper and

 // use a jumper wire to connect signal from pin ____ (on boosterpack pinouts) to

 // JP8.2 (bottom pin) of LED1 jumper ... this lets the TA0.2 signal drive the

 // LED1 directly (without having to use interrupts)

And a similar statement from the ‘FR5969 lab solution:
 // When running this lab exercise, you will need to pull the J6 jumper and

 // use a jumper wire to connect signal from pin ____ (on boosterpack pinouts) to

 // J6.2 (bottom pin) of the LED1 jumper ... this lets the TA1.2 signal drive

 // LED1 directly (without having to use interrupts)

And for those of you using the ‘FR4133:
 // When running this lab exercise, you will need to pull the JP1 jumper and

 // use a jumper wire to connect signal from pin _____ (on boosterpack pins) to

 // JP1.2 (bottom pin) of LED1 jumper ... this lets the TA1.2 signal drive

 // LED1 directly (without having to use interrupts)

(Note: Later in the lab instructions, we’ll show a picture of connecting the jumper wire.)

6 - 52 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Drive GPIO Directly From Timer

Lab 6c Worksheet
1. Figure out which BoosterPack pin will be driven by the timer’s output.

 To accomplish our goal of driving the LED from a timer, we need to choose which Timer CCR
register to output to a pin on the device. In the lab abstract (on the previous page) we stated
that for this lab writeup, we arbitrarily chose to use CCR2.

 Based on the choice of CCR2, we know that the timer’s output signal will be: TAn.2.

 We’ve summarized this information in the following table:

Device Timer CCRx Signal GPIO
Port/Pin

Is Pin on
Boosterpack?

‘F5529 TimerA0 CCR2 TA0.2

‘FR4133 TimerA1 CCR2 TA1.2

‘FR5969 TimerA1 CCR2 TA1.2

 Your job is to fill in the remaining two columns for the device that you are using.

a) Looking at the datasheet, which GPIO port/pin is combined with TA0.2 (or TA1.2)?
For example, here we see that P1.1 is combined with TA0.0:

Look for the correct pin in your device’s datasheet and enter it in the table above.

Hint: There are a couple places in the datasheet to find this information. We
recommend searching your device’s datasheet for “TA0.2” or “TA1.2”.

b) Next, is that signal output to the BoosterPack?

This information can be found directly from the Launchpad. Look for the silkscreened
labels next to each BoosterPack pin. When you find it, write YES/NO in the column above.

(If you’re getting a little older, you may need a magnifying glass to answer this
 question…or you may need to zoom in on the Launchpad’s photo.)

Sidebar – Choosing a Timer For This Exercise
Our choice of TimerA0 (for ‘F5529) and TimerA1 (for ‘FR5969 & ‘FR4133) was not arbitrary. Even
further, our choice of CCR2 was not entirely arbitrary.

Bottom line, we wanted to choose a Timer pin that was connected to the BoosterPack pinout since it
would make it easy for us to jumper that signal over to LED1.

The problem was that neither board connected the same TimerA outputs to its Boosterpack pinout.
In looking carefully at the datasheets for both devices, as well as the Boosterpack pinouts for each
Launchpad, we found a timer that we could use. The only issue is that one device mapped TA0.2 to
a pin, while the other mapped out TA1.2.

MSP430 Workshop - Timers 6 - 53

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

Did you find the correct pins on your Launchpad’s BoosterPack?

‘F5529F5529

‘FR5969FR5969

FR4133

2. Complete the following function to “select” P1.3 as a timer function (as opposed to GPIO).

 Hint: We discussed the port select function in the GPIO chapter. You can also find the details
of this function in the Driver Library User’s Guide.

‘F5529 Users, here’s the function you need to complete:

GPIO_setAs________________________________(

 ___________________,

 ___________________);

‘FR5969 or ‘FR4133 Users, your function requires one more argument:

GPIO_setA s________________________________(

 ___________________,

 ___________________,

 __);

F5529

FR5969

FR4133

6 - 54 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Drive GPIO Directly From Timer

3. Modify the TIMER_A_configureUpMode() function?

 Here is the code we wrote for the previous exercise. We only need to make one change to it.
Since we will drive the signal directly from the timer, we don’t need to generate the CCR0
interrupt anymore.

 Mark up the code below to disable the interrupt. (We’ll bet you can make this change without
even looking at the API documentation. Intuitive code is one of the benefits of using DriverLib!)

4. What ‘compare’ value does CCR2 need to equal in order to toggle the output signal at
a ½ second?

CCR0=0x8000

CCR2

0x0

5. Add a new function call to set up Capture and Compare Register 2 (CCR2). This should
be added to initTimers().

Timer_A_init___________________ initCcr2Param = { 0 };

 initCcr2Param.compareRegister = ___;

 initCcr2Param.compareInterruptEnable = TIMER_A_CAPTURECOMPARE_INTERRUPT_DISABLE;

 initCcr2Param.compareOutputMode = TIMER_A_OUTPUTMODE_TOGGLE_RESET;

 initCcr2Param.compareValue = _______________________________________;

Timer_A_init___________________(TIMER____BASE, &initCcr2Param);

½ Second

CCR2 = __________________

1 Second

//R2 value we
calculated above

goes here

Timer_A_initUpModeParam initUpParam = { 0 };

 initUpParam.clockSource = TIMER_A_CLOCKSOURCE_ACLK;

 initUpParam.clockSourceDivider = TIMER_A_CLOCKSOURCE_DIVIDER_1;

 initUpParam.timerPeriod = 0xFFFF / 2;

 initUpParam.timerInterruptEnable_TAIE = TIMER_A_TAIE_INTERRUPT_ENABLE;

 initUpParam.captureCompareInterruptEnable_CCR0_CCIE = TIMER_A_CCIE_CCR0_INTERRUPT_DISABLE;

 initUpParam.timerClear = TIMER_A_DO_CLEAR;

 initUpParam.startTimer = false;

Timer_A_initUpMode(TIMER____BASE, &initUpParam);

MSP430 Workshop - Timers 6 - 55

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

6. Compare your ISR code from myTimers.c in the previous lab to the code below. What
is different in the code shown here?

What did we change? ___

Note, this is the ‘F5529 code example. The ‘FR5969 uses a slightly different interrupt vector symbol and
interrupt vector register.

#pragma vector=TIMER0_A1_VECTOR

__interrupt void timer0_ISR(void)

{

 switch(__even_in_range(TA0IV, 14)) {

 case 0: break; // No interrupt

 case 2: break; // CCR1 IFG

 case 4: // CCR2 IFG

 _no_operation();

 break;

 case 6: break; // CCR3 IFG

 case 8: break; // CCR4 IFG

 case 10: break; // CCR5 IFG

 case 12: break; // CCR6 IFG

 case 14: break; // TAR overflow

 GPIO_toggleOutputOnPin(GPIO_PORT_P4, GPIO_PIN7);

 break;

 default: _never_executed();

 }

}

 During debug, we will ask you to set a breakpoint on ‘case 4’.

 Why should case 4 not occur in our program, and thus, the breakpoint never reached?

7. Why is it better to toggle the LED directly from the timer, as opposed to using an interrupt
(as we’ve done in previous lab exercises)?

6 - 56 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Drive GPIO Directly From Timer

File Management
1. Copy/Paste the lab_06b_upTimer to lab_06c_timerDirectDriveLed.

a) In Project Explorer, right-click on the lab_06b_upTimer project and select “Copy”.

b) Then, click in an open area of Project Explorer and select paste.

c) Finally, rename the copied project to lab_06c_timerDirectDriveLed.

Note: If you didn’t complete lab_06b_upTimer – or you just want a clean starting solution
– you can import the archived solution for it.

2. Close the previous project: lab_06b_upTimer

3. Delete old, readme file.

 Delete the old readme file and import the new one from:

C:\msp430_workshop\<target>\lab_06c_timerDirectDriveLed

4. Build the project to verify no errors were introduced.

Change the GPIO Setup
Similar to the parts A and B of this lab, we will make the changes discussed in the lab worksheet.

5. Modify the initGPIO function, defining the appropriate pin to be configured for the
timer peripheral function.

 Please refer to the Lab6c Worksheet for assistance. (Question 2, Page 6-54).

MSP430 Workshop - Timers 6 - 57

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

Change the Timer Setup Code
6. Modify the timer configuration function; we are still using ‘Up’ mode, but we can

eliminate one of the interrupts.

 Please refer to the Lab Worksheet for assistance. (Step 3, Page 6-55).

7. Add the TIMER_A function to your code that configures CCR2.

 Please refer to the Lab Worksheet for assistance. (Step 5, Page 6-55).

8. Delete or comment out the call to clear the CCR0IFG flag.

 We won’t need this because the timer will drive the LED directly – that is, no interrupt is
required where we need to manually toggle the GPIO with a function call.

TIMER_A_clearCaptureCompareInterruptFlag(TIMER_A0_BASE,
 TIMER_A_CAPTURECOMPARE_REGISTER_0 //Clear CCR0IFG
);

 Then again, it doesn’t hurt anything if you leave it in the code… if so, an unused bit gets
cleared.

9. Make the minor modification to the timer isr function as shown in the worksheet.

 Please refer to the Lab Worksheet for assistance. (Step 6, Page 6-56).

 ‘FR5969 users – we only showed the ‘F5529 code in the worksheet. Please be careful that
you do not change the interrupt vector or IV register values in your code. That’s not what
we’re asking you to do in this step.

10. Build the code verifying there are no syntax errors; fix any as needed.

6 - 58 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Drive GPIO Directly From Timer

Debug/Run
11. Launch the debugger and set three breakpoints inside the two ISR’s.

• When we run the code, the first breakpoint will indicate if we received the CCR0 interrupt.
If we wrote the code properly, we should NOT stop here.

• We should NOT stop at the second breakpoint either. CCR2 was set up to change the
Output Signal, not generate an interrupt.

• We should stop at the 3rd breakpoint. We left the timer configured to break whenever TAR
rolled-over to zero. (That is, whenever TA0IFG or TA1IFG gets set.)

Note: As of this writing, due to an emulator bug with the ‘FR5969 – as we discussed in an
earlier lab exercise – terminating, restarting, or resetting the ‘FR5969 with two or
more breakpoints set may cause an error. If this occurs, load a different program,
then reload the current one again.

12. Remove the breakpoints and let the code run. Do both LED’s toggle?

Why doesn’t the LED1 toggle? __

MSP430 Workshop - Timers 6 - 59

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

13. Add the jumper wire to your board to connect the timer output pin to LED1.

a) Remove the jumper (JP8 or J6) that connects the LED1 to P1.0 (or P4.6).
(We recommend reconnecting it to the top pin of the jumper so that you don’t lose it.)

b) On the ‘F5529 Launchpad, connect P1.3 (fifth pin down, right-side of board,
inside row of pins) to the bottom of the LED1 jumper (JP8) using the jumper wire.
(See the next page for the ‘FR5969 Launchpad.)

Ask your instructor
for a jumper wire,

when you need one

6 - 60 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Drive GPIO Directly From Timer

c) On the ‘FR5969 (not shown), connect P1.3 (in the lower, right-hand corner of the
BoosterPack pins to the LED1 jumper (J6).

d) We didn’t include a picture showing the ‘FR4133 pin P8.3 being connected to LED1. It’s
fairly easy to find, though as it’s in the lower-left corner of the Boosterpack pins.

14. Run your code.

 Hopefully both LED’s are now blinking. LED1 should toggle first, then the LED2.

Do they both blink at the same rate? __

Why or why not? ___

MSP430 Workshop - Timers 6 - 61

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

15. Terminate the debugger and go back to your main.c file.

16. Modify one parameter of the function that configures CCR2, changing it to use the
mode:

TIMER_A_OUTPUTMODE_TOGGLE

 Hint, if you haven’t already tried this trick, delete the last part of the parameter and hit

Ctrl_Space:

TIMER_A_OUTPUTMODE_ then hit Control-Space

Eclipse will provide the possible variations. Double-click on one (or select one and hit return)
to enter it into your code.

6 - 62 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Drive GPIO Directly From Timer

17. Build and run your code with the new Output Mode setting.

Do they both blink at the same rate? __

 If a compare match (TAR = CCR2) causes the output to be SET (i.e. LED goes ON), what
causes the output to be RESET (LED going OFF)?

 __

 How would this differ if you used the “TIMER_A_OUTPUTMODE_SET_RESET” mode …

If a compare match (TAR = CCR2) causes the output to be SET (i.e. LED goes ON),
what causes the RESET (LED going OFF)?

 __

 __

You may want to experiment with a few other output mode settings. It can be fun to see them
in action.

18. When done experimenting, terminate and close the project.

(Optional) Lab 6c – Portable HAL
Can you create a single timer source file that would work on multiple platforms?

For the most part, “Yes”. This is often done by creating a HAL (hardware abstraction layer).
We’ve created a rudimentary HAL version of Lab 6c. You can find this in the solution file:

lab_06c_timerHal_solution.zip

While the timer file is shared between the two HAL solutions, we didn’t get too fancy with this.
There are a couple of things we didn’t handle; for example, we didn’t do anything with
unused_interrupts.c and so it hade to be edited manually when porting between processors.

Play with it as you wish…

MSP430 Workshop - Timers 6 - 63

(Optional) Lab 6d – Simple PWM (Pulse Width Modulation)

(Optional) Lab 6d – Simple PWM (Pulse Width Modulation)
While we don’t have a complete write-up for our Simple PWM lab exercise, we created a solution
that shows off the TIMER_A_simplePWM() DriverLib function.

The lab_06d_simplePWM project uses this DriverLib function to create a single PWM
waveform. As with Lab 6c, the output is routed to LED1 using a jumper wire. By default, it creates
a 50% duty cycle … which means it blinks the light on/off (50% on, 50% off) similar (but slightly
faster) than our previous lab exercise.

One big change, though, is that we added two arguments to the initTimers() function. These
values are the “Period” and “Duty Cycle” values that are passed to the simplePWM function. We
also rewrote the main while{} loop so that it calls initTimers() every second.

The purpose of these changes was to allow you to have an easy way to experiment with different
Period & Duty Cycle values without having to re-build and re-start the program over-and-over
again. The values for period and duty-cycle were created as global variables – again, this makes
it easier to change them while debugging the project.

The easiest way to experiement with this program once you’ve started it running is to:
− Halt (i.e. Suspend) the program

− View the two values in the Expressions watch window

− Change the values, as desired

− Continue running the program – in a second, literally, the values should take effect

By the way, if you change the period to something smaller, you won’t be able to see the LED
going on/off anymore – it will just appear to stay on. At this point, changing the duty cycle will
cause the LED to appear bright (or dim).

As the name implies, this is a simple example, using a Driver Library function to quickly get PWM
running.

Both Timer_A and Timer_B peripherals can create multiple/complex PWM (pulse-width
modulation) waveforms. At some point, we may add additional PWM examples to the workshop,
but if you want to learn more right now, we highly recommend that you review the excellent
discussion in John Davies book: MSP430 Microcontroller Basics by John H. Davies, (ISBN-10
0750682760) Link

6 - 64 MSP430 Workshop - Timers

http://www.amazon.com/MSP430-Microcontroller-Basics-John-Davies/dp/0750682760
http://www.amazon.com/MSP430-Microcontroller-Basics-John-Davies/dp/0750682760

 Chapter 6 Appendix

Chapter 6 Appendix
Lab6a Answers

Lab 6a Worksheet (1-2)

216 = 64K

In Lab 4c we configured
A/LK for 32KHz

Lab 6a Worksheet (3)

32KHz 1 32K / sec

1 sec
32K cycles 2 sec

32 KHz

MSP430 Workshop - Timers 6 - 65

Chapter 6 Appendix

Lab 6a Worksheet (4-5)

TIaER_A_/Lh/KShUR/E_A/LK

TIaER_A_/Lh/KShUR/E_5IVI5ER_1

TIaER_A_TAIE_IbTERRUtT_EbABLE

tick the one req’d for your board: Ah or A1

AO/A1

Lab 6a Worksheet (7)

Timer_A_clearTimerInterruptClag

Timer_A_start/ounter

Ah or A1

TIaER_A_/hbTIbUhUS_ah5E

6 - 66 MSP430 Workshop - Timers

 Chapter 6 Appendix

Lab 6a Worksheet (8a)
‘C5529 Solution

‘CR5969 Solution

4 7

TIMER0_A1

TA0IV

1 0

TIMER1_A1

TA1IV

Lab 6a Worksheet (8b)
TIaER1_A1_VE/ThR

timer_ISR TA1IV 14

GtIh_togglehutputhntin(GtIh_thRT_t1, GtIh_tIb0);

TA0IV (for ‘C5529 and ‘CR4133)
TA1IV (for ‘CR5969)

or for the ‘C5529:
GtIh_togglehutputhntin(GtIh_thRT_t4, GtIh_tIb7);

 ‘CR5969 Answers are shown
 Cor ‘CR4133, use:

 TIaER1_A1_VE/ThR
 TA1IV
 t4.0

 Cor ‘C5529, use:
 TIaER0_A1_VE/ThR
 TA0IV
 t4.7

MSP430 Workshop - Timers 6 - 67

Chapter 6 Appendix

Lab6b Answers

Lab 6b Worksheet (1)

0x8000

Cor a 1 second timer rate and a 32KHz
input clock frequency, we need the
timer to count 32K (or 32768) times:
1/32768 * 32768 = 1 sec

A 16-bit counter rolls over at 216 counts
(which is 64K or 0xCCCC). We just need
to divide this by 2 to get 32K:
Period = 0xFFFF/2 = 0x8000

Lab 6b Worksheet (2)

TIaER_A_//IE_//R0_IbTERRUtT_EbABLE

0xCCCC / 2

Ah or A1

6 - 68 MSP430 Workshop - Timers

 Chapter 6 Appendix

Lab 6b Worksheet (3)

Timer_A_clear/apture/ompareInterruptClag

Ut Ut

Ah or A1

TIMER_A_CAPTURECOMPARE_REGISTER_0

Lab 6b Worksheet (4)

t4.6 (for ‘CR5969)
t1.0 (for ‘C5529 & CR4133)

TIaER1_A0_VE/ThR (or TIaER1_A0_VE/ThR for ‘C5529)

GtIh_togglehutputhntin(GtIh_thRT_t____, GtIh_tIb____);

Reflects the value
from above

MSP430 Workshop - Timers 6 - 69

Chapter 6 Appendix

Lab 6b : Lab Debrief

LE51 then LE52

Because the //R0 interrupt occurs before the TAICG interrupt

This is shown on the slide entitled “TAR in UP Mode”. Since they occur at
nearly the same instant in time, you have to set breakpoints in order to see
that LED1 happens before LED2.

6 - 70 MSP430 Workshop - Timers

 Chapter 6 Appendix

Lab6c Answers

Lab 6c Worksheet (1)

t1.3

t8.3

Yes

Yes

F5529

FR5969

t1.3 Yes

Lab 6c Worksheet (2)

PeripheralModuleFunctionOutputPin

GtIh_tIb3

GtIh_thRT_t1

GtIh_tIb3

GtIh_thRT_t1

GtIh_tRIaARY_ah5ULE_CUb/TIhb

PeripheralModuleFunctionOutputPin

PeripheralModuleFunctionOutputPin

GtIh_tIb3

GtIh_thRT_t1

GtIh_tRIaARY_ah5ULE_CUb/TIhb

MSP430 Workshop - Timers 6 - 71

Chapter 6 Appendix

Lab 6c Worksheet (3)

We changed ‘EbABLE’ to ‘5ISABLE’

Lab 6c Worksheet (4-5)

0x4000

0x8000 / 2 = 0x4000

CompareModeParam
TIaER_A_/AtTURE/hatARE_REGISTER_2

0x4000
CompareMode

6 - 72 MSP430 Workshop - Timers

 Chapter 6 Appendix

Lab 6c Worksheet (6)
Added _no_operation() – something to breakpoint on

We disabled the IbT because we’re driving the signal directly to the pin

Lab 6c Worksheet (7)

 Lower tower:
When the Timer drives the pin; no need to wake up the /tU. (Either
that, or it leaves the /tU free for other processing.)

 Less Latency:
When the /tU toggles the pin, there is a slight delay that occurs since
the /tU must be interrupted, then go run the ISR.

 aore 5eterministic:
The delay caused by generating/responding to the interrupt may vary
slightly. This could be due to another interrupt being processed (or a
higher priority interrupt occurring simultaneously). 5irectly driving the
output removes the variance and makes it easy to “determine” the time
that the output will change!

MSP430 Workshop - Timers 6 - 73

Chapter 6 Appendix

Lab 6c Debrief

We removed the interrupt that caused us to run the GtIh toggle
function and replaced it with code to let the timer directly drive
the LE5 … but we haven’t hooked up the LE5, yet.

bo

LE52 is based on the timer counting up to the value in //R0 (0x8000); while
LE51 toggles when the counter reaches //R2 (set to 0x4000) and is reset
whenever the counter reaches //R0.

Lab 6c Debrief

Yes (although offset by ½ second)

The next time TAR equals //R2

In this case, the “RESET” occurs when TAR = //R0

6 - 74 MSP430 Workshop - Timers

Low Power Optimization

Introduction
Ultra-low power is in our DNA.

The MSP430 is inherently low-power by design. But there’s more to it than that. As a system
designer and programmer, you need to utilize the low-power modes and features to extract the
most from the least. This chapter introduces us to a number of these ultra-low power (ULP)
capabilities; including the many tools TI provides to help you achieve your ULP target.

Learning Objectives

Objectives

- Describe MSP430 low-power modes and how
they function

- Use intrinsic functions to enable LPM’s
- List four Ultra Low Power design concepts
- Implement ULP Advisor™ suggestions for

minimizing power in an MSP430-based system
- Use EnergyTrace™ Technology to measure

energy usage in a system

MSP430 Design Workshop - Low Power Optimization 7 - 1

Low Power Modes (LPM)

Chapter Topics
Low Power Optimization .. 7-1

Low Power Modes (LPM) .. 7-3
Using Low Power Modes .. 7-5

Low Power Concepts .. 7-7
Use Interrupts and Low-Power Modes .. 7-7
Replace Software with Peripherals ... 7-8
Configure Unused Pins ... 7-8
Efficient Code Makes a Difference .. 7-9

Follow the Rules (ULP Advisor™) .. 7-10
About ULP Advisor™ .. 7-10
The List … of ULP Rules ... 7-12
How Do You Enable ULP Advisor™? ... 7-13

EnergyTrace™ ... 7-14
How does EnergyTrace Work? ... 7-16

Lab 7 – Low Power Optimization .. 7-17

Prerequisites and Tools

Prerequisites & Tools
 Skills Chapter

 Creating a CCS Project for MSP430 Launchpad(s) (Ch 2 & 3)
 Basic knowledge of:

 C language
 Setting up MSP430 clocks (Ch 4)
 Using interrupts (setup and ISR’s) (Ch 5)
 Timer usage and configuration (Ch 6)

 Hardware
 EnergyTrace™ capable hardware (one of the following)

 MSP-EXP430FR5969 Launchpad
 MSP-FET emulation tool (plus 4 jumper wires)

 Windows 7 (and 8) PC with available USB port
 MSP430F5529 Launchpad or MSP430FR5969 Launchpad

(with included USB micro cable)
 One jumper wire (female to female)

 Software
 CCSv6
 MSP430ware_1_90_xx_xx

7 - 2 MSP430 Design Workshop - Low Power Optimization

 Low Power Modes (LPM)

Low Power Modes (LPM)

Low Power Modes
BOR

POR

Active Mode

PUC

LPM3.5

LPM4.5
LPM0

LPM1

LPM2

LPM3

LPM4

Low-Power Modes

Operating
Mode

CP
U

 (M
CL

K)

SM
CL

K

AC
LK

RA
M

Re

te
nt

io
n

BO
R

Se
lf

W
ak

eu
p

Interrupt Sources

Active

Timers, ADC, DMA, WDT, I/0,
External Interrupt, COMP,

Serial, RTC, other…

LPM0

LPM1

LPM2

LPM3

LPM3.5 External Interrupt, RTC

LPM4 External Interrupt

LPM4.5 External Interrupt

MSP430 Design Workshop - Low Power Optimization 7 - 3

Low Power Modes (LPM)

Low-Power Modes (Bit Settings)

Operating
Mode

CP
U

 (M
CL

K)

SM
CL

K

AC
LK

Vc
or

e

RA
M

Re

te
nt

io
n

FR
AM

Re

te
nt

io
n Status Register (SR)

PM
M

CT
L0

.
PM

M
RE

G
O

FF

CP
U

O
FF

O
SC

O
FF

SC
G

0

SC
G

1

Active 0 0 0 0 0

LPM0 1 0 0 0 0

LPM1 1 0 1 0 0

LPM2 1 0 0 1 0

LPM3 1 0 1 1 0

LPM3.5 1 1 1 1 1

LPM4 1 1 1 1 0

LPM4.5 1 1 1 1 1

* SCG = System Clock Generator

MSP430™ Series Comparison
Mode G2xx F5xx FR57xx FR58xx

FR59xx

Performance (max) 16 MHz 25 MHz 24 MHz
(FRAM at 8MHz)

16 MHz
(FRAM at 8MHz)

Flex Unified Memory No No FRAM (16K) FRAM (64K)

Active AM 230 µA (1MHz) 180 µA/MHz 100 µA/MHz <100 µA/MHz

Standby
RTC

LPM3
LPM3.5

0.7 µA 1.9 µA
2.1 µA

6.3 µA
1.5 µA

0.7 µA
0.4 µA

Off LPM4
LPM4.5

0.1 µA 1.1 µA
0.2 µA

5.9 µA
0.3 µA

0.6 µA
0.1 µA

Wake-up
from

Standby 1.5 µs 3.5 µs
or 150 µs 78 µs <10 µs

Off - 2000 µs 310 µs 150 µs

7 - 4 MSP430 Design Workshop - Low Power Optimization

 Low Power Modes (LPM)

Using Low Power Modes

Entering Low Power Modes
Enter LPMx C Compiler Intrinsic Writing to SR with Intrinsic

LPM0 _low_power_mode_0(); _bis_SR_register(GIE + LPM0_bits);

LPM1 _low_power_mode_1(); _bis_SR_register(GIE + LPM1_bits);

LPM2 _low_power_mode_2(); _bis_SR_register(GIE + LPM2_bits);

LPM3 _low_power_mode_3(); _bis_SR_register(GIE + LPM3_bits);

LPM4 _low_power_mode_4(); _bis_SR_register(GIE + LPM4_bits);

 As written, both intrinsic functions enable interrupts and
associated low-power mode

 bis (and bic) instructions mimic assembly language:
 bis = bit set
 bic = bit clear

 bis/bic intrisics allows greater flexibility in selecting bits to set/clear

Automatically Re-entering LPM (after ISR)
main()

{
initGpio();
initClocks();
initTimers();

_low_power_mode_3();

//while(1);

}

#pragma vector = TIMER1_A0
__interrupt ISR()

{
GPIO_toggleOutputOnPin()

} // Return from interrupt (RETI)

LPM3

 Executing LPM3 function
puts the processor standby

 Unless an interrupt occurs,
CPU will stay asleep

 No while{} loop is needed

 An interrupt wakes the CPU

 Status Register (SR) is saved to stack
(including the LPM setting)

 Exiting ISR routine:

 Compiler uses RETI instruction
which restores SR from stack

 Restoring SR places CPU back into
low-power mode

MSP430 Design Workshop - Low Power Optimization 7 - 5

Low Power Modes (LPM)

Leaving LPM (after ISR)
main()

{
initGpio();
initClocks();
initTimers();

while(1){
_low_power_mode_3();
filter();

}
}

#pragma vector = TIMER1_A0
__interrupt ISR()

{
getSample();
_low_power_mode_off_on_exit();

} // Return from interrupt (RETI)

LPM3

 Executing LPM3 function puts
the processor standby

 Unless an interrupt occurs, CPU
will stay asleep

 Since ISR exits from LPM, we
need additional code (such as a
while{} loop)

 An interrupt wakes the CPU

 Status Register (SR) is saved to
stack (including LPM bits)

 Exiting ISR routine:
 ‘exit’ fcn modifies saved SR

(clearing LPM) before restore
 RETI instruction restores SR

from stack
 With LPM “off”, CPU returns

to instruction after LPM
intrinsic; e.g. filter()

7 - 6 MSP430 Design Workshop - Low Power Optimization

 Low Power Concepts

Low Power Concepts

 Use interrupts to control program flow
 Maximize the time in LPM3
 Replace software with peripherals
 Configure unused pins properly
 Power manage external devices
 Efficient code makes a difference

Every unnecessary instruction
executed is a portion of the battery
that’s wasted and gone forever

Principles For ULP Applications
 MSP430 is inherently low-power, but your

design has a big impact on power efficiency
 Even wall powered devices can become

“greener”

Use Interrupts and Low-Power Modes

Use Interrupts & Maximize LPM3

Standby (LPM3)

Active Active
170 µA

0.4 µA

Leave On the Slow Clock
 Low power clock and peripherals

interrupt CPU only for processing

On-Demand CPU Clock
 DCO starts immediately
 CPU processes data and quickly

returns to Low Power Mode

MSP430 Design Workshop - Low Power Optimization 7 - 7

Low Power Concepts

Replace Software with Peripherals

Replace Software With Peripherals

Timer_A

FRAMDMA

 Automate where possible
 Timer triggers analog conversion
 ADC triggers DMA to move result to memory

 Saves power since CPU and high-speed clock
can be turned off

 Higher precision and less latency for analog
sampling since timer directly triggers conversion

 Faster results since peripherals are optimized to
perform operations more quickly than the CPU

Configure Unused Pins

Configure Unused Pins
 Digital input pins subject to shoot-through current

 Input voltages between VIL and VIH cause shoot-through
if input is allowed to “float” (left disconnected)

 Port I/O’s should either:
1. Be driven to Vcc or ground by an external device
2. Set as an input using the pull-up/down resistor
3. Driven as an output

7 - 8 MSP430 Design Workshop - Low Power Optimization

 Low Power Concepts

Efficient Code Makes a Difference

ULP “Sweet Spot”
 Power dissipation increases with…

 CPU clock speed (MCLK)
 Input voltage (Vcc)
 Temperature

 Slowing MCLK reduces instantaneous power, but often
increases active duty-cycle (how long the CPU stays on)
 Look for ULP ‘sweet spot’ to maximize performance with

minimum current consumption per MIPS
Usually 8 MHz MCLK is the best tradeoff of power/performance

 Use lowest input voltage possible
 ‘F5529 lets you lower core voltage if full-speed operation

is not required
 ‘FR5969 operates at full speed down to 1.8V
 On some MSP430 devices, you need to take into

consideration minimum Vcc for flash programming, etc.

Optimize Performance
 Use Hardwired Accelerators, where available

 MPY32 AES256
 CRC16 DMA

 Optimize Code (saves code size and wasted cycles)
 CCS “Release” configuration with -O, -O3, or -O4
 Use –mf option to set tradeoff between code size/speed
 Optimization Advisor

 Optimized Libraries (faster and easier)
 MSPMathLib (floating-point math)
 IQmath and Qmath (fixed-point math)
 Energy calculations
 Capacitive Touch

MSP430 Design Workshop - Low Power Optimization 7 - 9

Follow the Rules (ULP Advisor™)

Follow the Rules (ULP Advisor™)

Use interrupts to control program flow
Maximize the time in LPM3
Replace software with peripherals
Configure unused pins properly
Power manage external devices
Efficient code makes a difference

Every unnecessary instruction
executed is a portion of the battery
that’s wasted and gone forever

 Use ULP Advisor to help minimize
power in your system

ULP Advisor Helps You Follow the Rules
 MSP430 is inherently low-power, but your

design has a big impact on power efficiency
 Even wall powered devices can become

“greener”

About ULP Advisor™

7 - 10 MSP430 Design Workshop - Low Power Optimization

 Follow the Rules (ULP Advisor™)

MSP430 | Ultra-Low Power is in our DNA

ULP Advisor™ benefits all experience levels

• Teaching tool for new MSP430
users

• Practical introduction to ULP
techniques

• Immediate coding feedback

• Wiki provides quick solution
and detailed background info

• Learn more from the
community & E2E

Beginning ULP
developers

• Not everybody remembers all the
rules all the time

• New rules might come in
• Saves time vs. manually going

through a large project or library to
check for ULP

• Helpful when developers inherit code
from other sources

• ULP Advisor should always be used
regardless of the application or target
device.

• Contribute to wiki & E2E

Experienced ULP
developers

AQ

MSP430 | Ultra-Low Power is in our DNA

• Identify key areas of
improvement

• Presented as a “remark”
within “Problems” window

• Includes a link to more
information

• List of 15 Ultra-Low-Power
best practices

• Compilation of ULP tips &
tricks from the well-known
to the more obscure

• Combines decades of
MSP430 and ULP
development experience

• Supports all MSP430
devices and can benefit
any application

• Checks all code within a
project at build time

• Enabled by default
• Parses code line-by-line

ULP AdvisorTM Software: Turning MCU developers
into Ultra-Low-Power experts

ULP Advisor analyzes all
MSP430 C code line-by-line.

Checks against a thorough
Ultra-Low-Power checklist.

Highlights areas of
improvement within code.

MSP430 Design Workshop - Low Power Optimization 7 - 11

Follow the Rules (ULP Advisor™)

The List … of ULP Rules

ULP Advisor Rules

Basic

ULP 1.1 Ensure LPM usage
ULP 2.1 Leverage timer module for delay loops
ULP 3.1 Use ISRs instead of flag polling
ULP 4.1 Terminate unused GPIOs

Math

ULP 5.1 Avoid processing-intensive operations: modulo, divide
ULP 5.2 Avoid processing-intensive operations: floating point
ULP 5.3 Avoid processing-intensive operations: (s)printf()
ULP 6.1 Avoid multiplication on devices without hardware multiplier
ULP 6.2 Use MATHLIB for complex math operations

Coding
Details

ULP 7.1 Use local instead of global variables where possible
ULP 8.1 Use 'static' & 'const' modifiers for local variables
ULP 9.1 Use pass by reference for large variables
ULP 10.1 Minimize function calls from within ISRs
ULP 11.1 Use lower bits for loop program control flow
ULP 11.2 Use lower bits for port bit-banging

DMA
ULP 12.1 Use DMA for large memcpy() calls
ULP 12.1b Use DMA for potentially large memcpy() calls
ULP 12.2 Use DMA for repetitive transfer

Counts,
Indexes,
Masks

ULP 13.1 Count down in loops
ULP 14.1 Use unsigned variables for indexing
ULP 15.1 Use bit-masks instead of bit-fields

ULP Wiki Page – Rule Details

7 - 12 MSP430 Design Workshop - Low Power Optimization

 Follow the Rules (ULP Advisor™)

How Do You Enable ULP Advisor™?

Configuring ULP Advisor

 ULP Advisor uses the TI
compiler option:
--advice:power=“all”

 Enable/configure it in the
CCS Project Properties dialog

 Easily ignore rules that don’t
apply to your system

MSP430 Design Workshop - Low Power Optimization 7 - 13

EnergyTrace™

EnergyTrace™

Energy Aware Debugging

 Two levels of EnergyTrace™

1. EnergyTrace: Measures energy usage in the system
2. EnergyTrace++: Energy, Power Modes, Clocks and Peripherals

 Devices supported by EnergyTrace (using MSP-FET):
 ‘FR59xx and ‘FR69xx devices support EnergyTrace++
 All MSP430 devices support EnergyTrace

MSP-EXP430FR5969 Launchpad
with on-board MSP-FET

MSP-FET
 Available: June 2014
 System power must come from FET

EnergyTrace Profile System States

7 - 14 MSP430 Design Workshop - Low Power Optimization

 EnergyTrace™

Power & Energy Graphs

EnergyTrace Profile Comparison

BeforeAfter Comparison

68%
Savings

MSP430 Design Workshop - Low Power Optimization 7 - 15

EnergyTrace™

How does EnergyTrace Work?

How Does EnergyTrace™ Work?

 By varying pulse frequency
DC-DC converters can vary
output power

 Emulators provide power to CPU’s
targets under during debugging

 Using a software controlled DC-DC converter
MSP430 FET’s accurately count every charge pulse
and sum them over time

 Unique way of continuously measuring energy to target

 EnergyTrace™ provides high precision vs the old-fashioned multi-meter
approach

 Since meters take samples discretely
they’re prone to missing small
windows of activity as ULP systems
wake-up and quickly return to sleep

7 - 16 MSP430 Design Workshop - Low Power Optimization

 Lab 7 – Low Power Optimization

Lab 7 – Low Power Optimization

Abstract
This lab exercise introduces us to many of the techniques used for measuring and reducing
power dissipation in a MSP430 based design.

We begin by learning how to use EnergyTrace™ to measure energy consumption in our
programs. Using this (or more crudely, using a multi-meter) we can now judge the affects our low-
power optimizations have on our system.

Lab 7 – Optimizing for Low-Power
A. Getting Started with EnergyTrace™

Explore tools by comparing Lab4a & Lab4c
 Enable EnergyTrace
 Capture EnergyTrace profile
 Compare EnergyTrace profiles
 ‘Fw5969 users can explore EnergyTrace++

B. Using ULt Advisor, Lnterrupts and Lta3
Lmprove power using Lab4c & Lab6b
 Enable ULt Advisor
 weplace delay() function with Timer
 aake use of Low tower aode 3 (Lta3)

C. Does Lnitializing GtLO torts aake a
Difference?
 Taking Lab4c, replace LED toggle with Lta3
 Lnitialize ALL pins as Outputs after reset
 Then, check if setting pins as Lnputs makes a

difference to power optimization

In part B of the lab, we use ULP Advisor to point out where our code might be improved, from a
power perspective. In this part of the lab, we go on to replace __delay_cycles() with a timer; as
well as implement low power mode 3 (LPM3).

Finally, in part C, we examine what – if any – affect uninitialized GPIO can have on an
microcontroller design. The results may surprise you…

MSP430 Design Workshop - Low Power Optimization 7 - 17

Lab 7 – Low Power Optimization

Chapter Topics
Low Power Optimization .. 7-15

Lab 7 – Low Power Optimization .. 7-17
Abstract ... 7-17
Notice - Measuring Energy in Lab 7 .. 7-19

How to Measure Energy .. 7-19
Lab Exercise Energy Measurement Recommendations .. 7-20

Lab 7a – Getting Started with Low-Power Optimization ... 7-21
Prelab Worksheet .. 7-21
Configure CCS and Project for EnergyTrace .. 7-22
Build Project and Run with EnergyTrace .. 7-24
EnergyTrace with Free Run .. 7-28
Compare EnergyTrace Profiles ... 7-28
Create Energy Profile for lab_04c_crystals ... 7-29
What have we learned in Lab7a? ... 7-30
(Optional) Viewing ‘FR5969 EnergyTrace++ States .. 7-31

Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts 7-32
Get Suggestions from ULP Advisor .. 7-32
Replace __delay_cycles() ... 7-35
Using Low-Power Mode (LPM3) ... 7-39
(Optional) Viewing ‘FR5969 EnergyTrace++ States ... 7-40
(Optional) Directly Driving the LED from Timer_A .. 7-41

Lab 7c – Configuring Ports for Lowest Power... 7-42
Import and Modify Program .. 7-42
Capture Baseline Reference ... 7-43
Add GPIO Port Initialization Code ... 7-43
Improve on GPIO Port Initialization ... 7-45

Chapter 7 Appendix .. 7-46
Connecting MSP-FET to ‘F5529 USB Launchpad .. 7-46
Lab 7 Debrief and Solutions .. 7-48

7 - 18 MSP430 Design Workshop - Low Power Optimization

 Lab 7 – Low Power Optimization

Notice - Measuring Energy in Lab 7
How to Measure Energy
There are four ways you can measure energy for the exercises found in this chapter:

1. The ‘FR5969 FRAM Launchpad supports the full EnergyTrace++ feature set – which includes
energy measurement as well as tracing the CPU modes and peripheral states.

2. The ‘FR4133 FRAM Launchpad supports EnergyTrace – that is, it allows energy
measurements but does not include the ++ features of tracing modes & states.

3. The new MSP-FET (Flash Emulation Tool) – supports measurement of energy with the
EnergyTrace feature for all MSP430 devices.

4. If you do not have either tool which supports TI’s EnergyTrace, you will need to measure it
the old fashioned way – using a multi-meter to determine the current being drawn by the
MSP430 CPU. We refer you to Section 2.3 of the MSP-EXP430F5529 Launchpad User’s
Guide (slau533b.pdf) for a detailed procedure on how this can be done.

Measuring Energy in Lab 7

 Four ways to measure Energy
1. aSt-EXt430Fw5969 Launchpad supports full EnergyTrace++
2. aSt-EXt430Fw4133 Launchpad supports EnergyTrace
3. aSt-FET supports EnergyTrace energy measurement
4. Old fashioned aulti-aeter crudely measures CPU’s current draw

 Lab steps written assuming EnergyTrace hardware is available
 Refer to Chapter Appendix for “how to” connect aSP-FET to the

‘F5529 USB Launchpad
 Lf using multi-meter, substitute current measurement procedure whenever

lab steps ask you to read from energy data from the EnergyTrace window

aSt-FET
 bow Available (as of June 2014)aSt-EXt430Fw5969 Launchpad

MSP430 Design Workshop - Low Power Optimization 7 - 19

http://www.ti.com/tool/msp-exp430fr5969
http://www.ti.com/tool/msp-fet?keyMatch=msp-fet&tisearch=Search-EN
http://www.ti.com/lit/pdf/slau533

Lab 7 – Low Power Optimization

Lab Exercise Energy Measurement Recommendations
As written, all Lab 7 exercises assume that you hardware (items #1 and #2 above) which
implements EnergyTrace.

‘FR5969 FRAM Launchpad
If you are using the ‘FR5969 FRAM Launchpad, no hardware configuration is required; the
Launchpad (and ‘FR5969 silicon) has been designed to support these features.

‘F5529 USB Launchpad
If you are using the ‘F5529 USB Launchpad (or any other MSP430 board, for that matter), we
suggest that you obtain the new MSP-FET tool. This will give you access to the new energy
measurement feature. (For live workshops held in North America, we provide MSP-FET tools that
you may borrow to complete these lab exercises.)

Normally, the MSP-FET connects to a target system via a 14-pin connector that follows TI’s
emulation pinout standard. Since the ‘F5529 Launchpad does not ship with this connector
populated on the Launchpad, you will need to use 4 jumper wires to connect the appropriate
MSP-FET pins to the emulation-target isolation jumpers. Please see topic the topic “Connecting
MSP-FET to ‘F5529 USB Launchpad” (page 7-46) for details on how to make these connections.

Bottom Line
To reiterate, these lab directions assume that you have hardware which supports EnergyTrace.

If you are using the ‘FR5969 Launchpad, you will have additional visibility into the CPU, but in
either case, EnergyTrace provides highly accurate energy measurement.

Using a Multi-Meter
On the other hand, if you are using a multi-meter, you should substitute recording the current
(µA/mA) for those lab steps where we direct users to view the EnergyTrace display. If you have
any previous multi-meter experience, this shouldn’t be a difficult substitution to make. Comparing
current values should be enough to evaluate ULP optimizations. Of course, you can always
calculate the approximate energy values from the current and voltage (DVCC) values.

Note: Be warned… once you’ve used EnergyTrace, you’ll find it difficult going back to using a
multi-meter; if not for the ease-of-use, for the increased measurement accuracy.

FR5969

F5529

7 - 20 MSP430 Design Workshop - Low Power Optimization

 Lab 7a – Getting Started with Low-Power Optimization

Lab 7a – Getting Started with Low-Power Optimization
This first lab exercise introduces us to measuring power – or energy – using EnergyTrace. (If you
don’t have hardware that supports EnergyTrace, please refer to the note on the previous page.)

We won’t actually write much code in this exercise; rather, we will compare the solutions for a
couple of our previous lab exercises – spending most of the time learning how to use the tools in
the process.

Prelab Worksheet
1. What is the difference between EnergyTrace and EnergyTrace++?

Which devices support EnergyTrace++? ___

2. What hardware options are available that supports EnergyTrace? _____________________

3. How can you calculate energy without EnergyTrace? _______________________________

What is the downside to this method? ___

MSP430 Design Workshop - Low Power Optimization 7 - 21

Lab 7a – Getting Started with Low-Power Optimization

Configure CCS and Project for EnergyTrace
1. Terminate the debugger if it’s still open and close all projects and files that may be

open in your CCS workspace.

2. Enable EnergyTrace profiling.

Window → Preferences

Code Composer Studio → Advanced Tools → EnergyTrace™ Technology

 Enable EnergyTrace then click OK

Note: ‘FR5969 users, we’ll look at the +States mode later on in the lab exercise.

7 - 22 MSP430 Design Workshop - Low Power Optimization

 Lab 7a – Getting Started with Low-Power Optimization

3. Import the previous lab exercise: lab_04a_clock_solution.zip

Project → Import CCS Projects

 Then select the project based upon the board you’re using - then click OK.

C:\msp430_workshop\F5529_usb\solutions\lab_04a_clock_solution.zip
C:\msp430_workshop\FR4133_fram\solutions\lab_04a_clock_solution.zip
C:\msp430_workshop\FR5969_fram\solutions\lab_04a_clock_solution.zip

4. (‘FR5969 only) Verify debugger is enabled for low-power (LPMx.5) modes.

Right-Click on project → Properties → Debug → MSP430 Properties

 Scroll-down and make sure the following is enabled, then click OK.

FR5969

MSP430 Design Workshop - Low Power Optimization 7 - 23

Lab 7a – Getting Started with Low-Power Optimization

5. If connected, remove the jumpers on the Launchpad for RTS and CTS in the
emulator/target isolation connector.

 This code does not use these UART signals, and keeping them connected draws slightly
more power. (By default, these signals are usually disconnected.)

 Shown above is the ‘FR5969 Launchpad, but you’ve find the same signals on the other

Launchpad connectors.

Build Project and Run with EnergyTrace
6. Build the project.

 At this point, we shouldn’t see any advice from ULP Advisor since we disabled this when
building our previous lab projects. In a few minutes we’ll turn this on and examine the results.

7. Start the debugger.

7 - 24 MSP430 Design Workshop - Low Power Optimization

 Lab 7a – Getting Started with Low-Power Optimization

8. Briefly examine the EnergyTrace window.

 Notice that there’s an extra window that opens in your debugger..

If the EnergyTrace window did not open:
− Double-check EnergyTrace is enabled.

− Window → Show View → Other… → MSP430-EnergyTrace

9. Set the EnergyTrace capture duration to 10 seconds.
 EnergyTrace captures data for a set period of time, and then displays those results. We can

easily choose the capture period using the provided EnergyTrace toolbar button. It defaults to
10 seconds, but it doesn’t hurt to verify the time.

 While we’re looking at the toolbar, please note some of its other buttons.

Start/Stop

EnergyTrace

Set capture
duration

Save Energy Profile
Open Profile for Compre

Switch between EnergyTrace
and EnergyTrace++

Open EnergyTrace settings in
CCS Preferences (step 2)

MSP430 Design Workshop - Low Power Optimization 7 - 25

Lab 7a – Getting Started with Low-Power Optimization

10. Set the cursor on the first line of code in the while loop.

 In most systems, we care more about “continuous” power usage rather than “initialization”
power usage. Because of this, we want to run past our initialization code before we start
collecting energy data.

 Instead of setting a breakpoint, it’s often easier to place your cursor on the line you want to
stop at, and then run to that cursor. Let’s start the action by placing our cursor on the first line
of the while loop.

11. Run to the cursor

Run → Run to Line or better yet use:

12. Click Resume and watch the duration count down.

 When we begin running the code it will execute the while{} loop and capture the energy data
for 10 seconds.

13. Suspend your program after count reaches zero.

 EnergyTrace doesn’t require that we halt the program, but we don’t need to keep it running
either.

7 - 26 MSP430 Design Workshop - Low Power Optimization

 Lab 7a – Getting Started with Low-Power Optimization

14. Expand EnergyTrace window to view the energy profile you just created.

We see that our processor consumed 72.26mJ in the
10 second capture period.

For many reasons, your numbers may differ from that
shown here:

− You may be using a different Launchpad.

− You start/end capture locations were different
 than ours

− Your compiler version or code was slightly
 different

Finally, note that we have not yet optimized for power
and the LED’s that we are blinking (driven from our
GPIO pins) are consuming quite a bit of energy.

15. Switch to the Power tab and see power consumption over time.

You might also want to check
out the Energy tab. It shows
running energy usage ofer
timer.

16. Save the energy profile – naming it “Lab04a”.
 To view the EnergyTrace toolbar again, click back on the

“EnergyTrace™ Technology” profile tab.

 Then click the “Save Profile” EnergyTrace toolbar button and
provide the name. (Use the default save-to directory.)

MSP430 Design Workshop - Low Power Optimization 7 - 27

Lab 7a – Getting Started with Low-Power Optimization

EnergyTrace with Free Run
Not surprisingly, the device hardware that supports many debugging features – such as
breakpoints – requires energy to operate. Let’s disable that hardware and capture another energy
profile.

17. Make sure your program is suspended.

18. Set the cursor at the first line in the while{} and run to that line.
 If you need a reminder how to do this, check back to steps 10-11 (on page 7-26).

19. Verify the EnergyTrace Capture duration is 10 seconds, then “Run Free”.

 This time, rather than hitting the Resume button, we want to run our target FREE of any
emulation.

Run → Run Free

20. Watch the EnergyTrace count down to zero and then suspend the program again.

 If you remember your program’s previous energy consumption you may notice a reduction.
But, we’ll do a more accurate comparison in the next few steps.

21. Save the new EnergyTrace profile – give it the name Lab4a_free_run.

 This isn’t required, but it allows us to reference this information in a later comparison.

Compare EnergyTrace Profiles
22. Click on the Open button in the EnergyTrace toolbar.

 Choose your first EnergyTrace profile: Lab4a.profxml

23. View the EnergyTrace profile comparison that opens.

This
comparison
shows that
turning off the
emulation
features –
using Run Free
– saved more
than 10mJ.

7 - 28 MSP430 Design Workshop - Low Power Optimization

 Lab 7a – Getting Started with Low-Power Optimization

24. Write down the energy used for Lab4a_free_run profile: ____________________ mJ

25. Terminate the debug session.

26. Close the lab_04a_clock_solution project.

Create Energy Profile for lab_04c_crystals
27. Import the lab_04c_crystals_solution.zip into your workspace.

 If you need a reminder on how to do this, please check back to Step 3 (page 7-23).

28. Build the project and start the debugger.

29. Run past the initialization code to the first line of the while{} loop.
 For a reminder on how to do this, check back to steps 10-11 (on page 7-26).

30. Verify the EnergyTrace Capture duration is 10 seconds, then “Run Free”.

 This time, rather than hitting the Resume button, we want to run our target FREE of any
emulation.

Run → Run Free

31. Watch the EnergyTrace count down to zero and then suspend the program again.

32. Save the new EnergyTrace profile – give it the name Lab4c_free_run.

33. Open the the Lab4a_free_run.profxml energy profile to compare against Lab4c.

MSP430 Design Workshop - Low Power Optimization 7 - 29

Lab 7a – Getting Started with Low-Power Optimization

34. How do the two profiles compare?

 Add your values to the chart below.

 (Hint: You can copy the value for the Lab4a_free_run from step 24 (page 7-29).

Project Energy Profile Time Energy

Lab4a_free_run 10 sec

Lab4c_free_run 10 sec

Which version consumed less energy? __

Why? __

Hint: During the exercise steps for both Lab 4a and 4c we set breakpoints and recorded
the values of three variables. What variables did we track … and how did they differ
between Lab 4a and Lab 4c?

35. Terminate the debug session.

What have we learned in Lab7a?
 How to open archived project solutions
 Enable EnergyTrace
 Enable low-power debugging in projects.
 Capture and Save energy profiles
 Using “Run Free” to increase accuracy of energy capture profile
 Compare energy profiles

7 - 30 MSP430 Design Workshop - Low Power Optimization

 Lab 7a – Getting Started with Low-Power Optimization

(Optional) Viewing ‘FR5969 EnergyTrace++ States
Remember that the ‘FR58/59xx and ‘FR68/69xx devices support additional tracing of their internal
CPU and peripheral states. Let’s examine this great new capability.

36. Open lab_4c_crystal_solution for debugging.

37. Verify that EnergyTrace is enabled.
 You can do this via the CCS Preferences, though, it’s easier to simply check if the

EnergyTrace window is open and the Start/Stop icon is “on” (that is, it should be blue).

38. Change to the EnergyTrace++ mode.
 Click the toolbar button that turns on this mode.

39. Resume your program while letting EnergyTrace profile your code. Suspend when the
EnergyTrace has finished counting down.

 View the various tabs in the EnergyTrace window – note that a new one has been added
showing the processor’s “States”.

 Notice the following:

• We’re in Active Mode (AM) for the duration of the capture.

• Also, the FRAM is being accessed and all three clocks are running (MCLK, SMCLK, and
ACLK).

 Admittedly, this information becomes more interesting once we begin using the low-power
modes and peripherals. But it’s fascinating to see how the processor is running internally.

Switch between EnergyTrace
and EnergyTrace++

MSP430 Design Workshop - Low Power Optimization 7 - 31

Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

Lab 7b – Reducing Power with ULP Advisor, LPM’s
and Interrupts

This exercise will start with the code we used from Lab 7a (which we imported from Lab 4c).
Rather than just measuring power, though, we’ll start to explore ways to reduce the program’s
power consumption.

Get Suggestions from ULP Advisor
1. Just to verify, all projects should be closed except lab_4c_crystals_solution; that

is, the project we were just working with.

2. Turn on all of the ULP Advisor rules.

Select the project lab_4c_crystals_solution

Press the key combination ━
 And select All the rules, as shown below:

7 - 32 MSP430 Design Workshop - Low Power Optimization

 Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

3. Build the project and then open the Advice window.

 The Advice window is available by default in the standard CCS window; if not, open it with:

View → Advice

 You results may vary based upon which processor you are using, but running with ULP

Advisor, we received 91 items of advice. You may notice that most of the items relate to
DriverLib code … further, most of them are related to peripheral source code that we’re not
even using in our program. (Thus, the linker will remove this from the final binary program.)

 With some experience you will find that there will be times that ULP Advisor notes an item
that you will want to ignore – maybe it’s providing a false-positive, where you know that an
item in your program just cannot be changed. Sometimes you will just choose to ignore the
item, but often we can use CCS build options to filter them out (as we will do in the next step).

4. Modify the project options to focus ULP Advisor on our source code.

 In other words, let’s tell CCS not to rule ULP Advisor on MSP430ware DriverLib code. This
can be done with file-specific project options.

Right-click on the ‘driverlib’ folder

Select Properties

Click None

Click OK

This turns off the ULP Advisor option for all of the files in the
‘driverlib’ folder. In fact, you can use this feature to modify
most all compiler option for any file or files.

MSP430 Design Workshop - Low Power Optimization 7 - 33

Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

5. Build the project again.

 Looking at Power (ULP) Advice for just our code, the list becomes more manageable.

 In Lab7b, we’re plan to improve upon the items highlighted above; i.e. rules ULP 1.1 and 2.1.

6. (Optional) If you have internet access, you can get more information for each rule by
clicking on its link.

For example, clicking takes you to...

 The wiki page which provides more information regarding rule ULP 2.1. This page explains
the rule and tries to give you suggestions for improving your code.

 Essentially, this rule is telling us that using the __delay_cycles() intrinsic is very power

inefficient. (This reinforces our warnings in previous lab projects where we admit that the
code we asked to write was inefficient.)

7 - 34 MSP430 Design Workshop - Low Power Optimization

 Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

Replace __delay_cycles()
Let’s begin by following the ULP 2.1 rule which tells us to replace __delay_cycles() by using a
timer. This provides the advantage of letting the timer interrupt us, rather than the having the CPU
count cycles in this inefficient intrinsic.

Also, using a timer will allow us (in the next section) to utilze one of the MSP430’s low-power
modes (LPMx).

7. Complete the table of lab exercises (from Chapters 1 - 7) in this workshop which
combined a timer with blinking an LED?

Lab Exercise Timer Module Used

lab_05b_wdtBlink

lab_06a_timer

lab_06b_upTimer

lab_06c_timerDirectDriveLed

lab_06d_simplePWM
‘F5529: Timer0_A
‘FR4133: Timer0_A
‘FR5969: Timer1_A

 In other words, we have already accomplished the task of swapping out __delay_cycles()
with a timer. Rather than re-creating this code, we will import and use a previous solution.

8. Close the lab_04c_crystals_solution project.

9. Import lab_06b_upTimer_solution into your workspace.

 (Hint: If you need a reminder on how to do this, please check back to Step 3 on page 7-23.)

 We chose this exercise because:
• The Watchdog Timer example was not implemented with the same LED blink rate, which

will affect the energy comparisons.

• TimerA’s Up mode is more flexible than the Continuous mode (found in lab_06a_timer).

• We’re going to look at the ‘DirectDrive’ example a little bit later.

• The PWM example was fancier than we needed for this exercise.

MSP430 Design Workshop - Low Power Optimization 7 - 35

Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

10. Rename the project to lab_07b_lpm_timer.

Right-click on the project → Rename

lab_07b_lpm_timer

11. Turn on ULP Advisor for the project. Turn it off for the ‘driverlib’ folder.

 (Hint: If you need a reminder, look at Steps 2-4 (page 7-32) for how this was done.)

12. Build the project and examine the ULP Advisor suggestions.

 Notice that the __delay_cycles() recommendations for main.c are now gone.

13. Start the debugger and load the program.

 If you see this dialog, just click Proceed.

14. Verify that EnergyTrace is still enabled and set for a 10 second capture duration.

15. (‘FR5969 only) Verify that you are using the EnergyTrace mode (and not EnergyTrace++).

 If you performed the optional exercise at the end of Lab 7a, your preferences may be set to
EnergyTrace++ mode. While this provides additional States visibility, the emulator’s use of
power prevents us from getting accurate energy measurements.

 Please go ahead and run the example with EnergyTrace++ mode. You should see that the
TA1 peripheral is now active.

 After trying ++ mode, though, please return to the EnergyTrace (non++) mode for the next
part of the exercise.

16. Set your cursor in the while{} loop and “Run to Line”.

 Set your cursor on the __no_operation() intrinsic function and then run to that point – as we
did earlier in the lab.

Run → Run to Line

 Run your code with the Free Run command. After EnergyTrace captures the data (for 10
sec), suspend the program.

Run → Free Run

FR5969

7 - 36 MSP430 Design Workshop - Low Power Optimization

 Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

17. Save the new energy profile as: Lab7b_original.profxml

18. Compare to the energy profile from Lab4c_free_run.profxml.

 (Hint: Check back to Step 33 on page 7-29 for a reminder on how this was done.)

19. Record the energy usage for each of these projects.

Project Energy Profile Time Energy

Lab4c_free_run 10 sec

Lab7b_original 10 sec

Which project uses more power? __

Why would our new project take more power after following the advice from ULP Advisor?
What could account for the extra power it’s requiring?

 (Hint: Let your lab_07b_lpm_timer project. Run it again… and watch the LED’s.)

20. Terminate your debugging session.

21. Comment out the toggling of LED1.

 Hopefully you figured out that our new Lab 7b project was toggling both LEDs, whereas the
Lab4 project only toggled one LED. In this case, it isn’t the toggling function that draws too
much power, but rather that we’re expending energy to drive both LEDs.

 To provide a fair comparison, we need to comment out one of the LED toggle functions. As
an example, we arbitrarily choose to comment out the LED1 function.

 Open up the myTimer.c file and comment out the GPIO_toggleOutputPin() as shown here:

22. Build your project and fix any syntax errors.

23. Start the debugger and then run to the __no_operation() inside the while{} loop.

Note
Shown here is the
‘FR5969 code.

If using the ‘F5529 or
‘FR4133 you’ll be
using Timer0 and
LED1 uses a different
Port/Pin on each.

MSP430 Design Workshop - Low Power Optimization 7 - 37

Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

24. Free Run your program and then click suspend when the EnergyTrace timer finishes
counting down from 10 seconds.

25. Save the new energy profile as: Lab7b_one_led

 Once again, compare this to the Lab4c energy profile.

Project Energy Profile Time Energy

Lab4c_free_run 10 sec

Lab7b_one_led 10 sec

Which project uses more power? __

Here’s the comparison we found for the ‘FR5969 at the time of writing this exercise. As you
can see below, using the timer (versus the CPU running __delay_cycles) saved us 10% of
our energy. You should see similar improvements for the ‘FR4133, as well.

FR5969

F5529

7 - 38 MSP430 Design Workshop - Low Power Optimization

 Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

Using Low-Power Mode (LPM3)
Once you’ve built your program to be interrupt-driven, it’s often quite easy to utilize the MSP430
low-power modes.

We chose to use Low-Power Mode 3 (LPM3) because it provides a very low standby power,
keeps ACLK running (which we’re using to clock Timer_A), and makes it easy to return to Active
Mode when an interrupt occurs.

26. Modify lab_07b_lpm_timer to use LPM3.

 In the program, you only need to replace __no_operation() with __low_power_mode_3().

 As we learned during the Chapter 7 discussion:
− Executing the _low_power_mode_3() function changes a few bits in the Status Register

(SR), therefore putting the CPU into LPM3.

− The processor remains in that state until an interrupt occurs.

− Interrupt ISR’s automatically save and restore the SR context; therefore, unless we alter
the normal ISR flow, the CPU will automatically return to LPM3 upon exiting the ISR.

 This means, we don’t need the while(1){} loop anymore, but it doesn’t hurt to leave it there.

27. Build your code and fix any syntax errors.

28. Start the debugger.

29. Set your cursor on the __low_power_mode_3() function and then run to that line.

30. Free Run your code and then Suspend after the EnergyTrace capture duration.

31. Save the new energy profile as: Lab7b_lpm

MSP430 Design Workshop - Low Power Optimization 7 - 39

Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

32. Compare the current energy profile to your previous one.

Project Energy Profile Time Energy

Lab7b_one_led 10 sec

Lab7b_lpm 10 sec

Which profile uses less power? __

Our ‘FR6969 results show another 20% savings in energy by utilizing LPM3; while the
‘F5529 LPM3 results in amost 70% savings.

(Optional) Viewing ‘FR5969 EnergyTrace++ States
If you are using the “FR5969, try running EnergyTrace++ again with the lab_07b_lpm_timer
project. The States is now more interesting since you can see the changes in the clocks and CPU
modes.

7 - 40 MSP430 Design Workshop - Low Power Optimization

 Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

(Optional) Directly Driving the LED from Timer_A

Note: We suggest that you skip this option lab exercise and continue on to Lab 7c. Then, if you
still have time after completing Lab 7c, you can try out this experiment.

Another interesting energy comparison would be a comparison between, effectively, a
comparison between lab_06b_upTimer and lab_06c_timerDirectDrive. In other words, can you
reduce power if you take away the CPU interrupt service routine and let the timer drive the LED
directly.

Rather than provide detailed, step-by-step directions for this optional exercise, we’ve written
down a few notes and will let you work through the details on your own.

Rough lab exercise procedural
• Import lab_06c_ledDirectDrive_solution.zip into CCS and rename imported

project to lab_07b_timerDirectDrive.

• As with our previous exercise, change the following two lines of code:

− Comment out code that toggles LED2 in timer ISR

− Replace __no_operation() function with LPM3 function call.

• Build and profile the energy usage

 By the way, don’t forget to connect LED1 to the timer output pin using a jumper wire. Please
see Lab 6c, if you have questions about how to connect the jumper wire.

• Compare to lab_07b_lpm_timer energy profile results

 When we did this, we found that (using the ‘FR5969 Launchpad) the directly driven LED
project took quite a bit more energy … these results shocked us.

 The key to our understanding this was to look at the Power graph differences between the
projects. We noted that the LED for one project consumed a lot more energy than for the
other project.

• Go back to lab_07b_lpm_timer and redo that lab exercise driving the other LED. In other
words, we wanted to make sure both labs are driving the same LED to get a better apples-to-
apples comparison.

 When we did this, we found that directly driving the LED save a minute amount of energy.

MSP430 Design Workshop - Low Power Optimization 7 - 41

Lab 7c – Configuring Ports for Lowest Power

Lab 7c – Configuring Ports for Lowest Power
One of the other items ULP Advisor remarked was that our GPIO ports had not been properly
initialized. Referring back to Lab 7b Step 5 (on page 7-34), it’s listed as rule ULP 4.1.

Once again, we’re going to start with lab_04c_crystals and explore what affect GPIO initialization
might have on our system.

Import and Modify Program
1. Terminate the debugger if it running and close all open projects and files.

2. Open project: lab_04c_crystals_solution

3. Copy the project lab_04c_crystals_solution and rename it lab_07c_initPorts.

a) In CCS Project Explorer, right-click and copy lab_04c_crystals_solution

b) Then right-click and paste it

c) Enter the new name lab_07c_initPorts when CCS requests it

4. Replace the while{} loop with LPM3.

 To focus specifically on the affects of GPIO initialization, we suggest removing the code that
blinks the LED – replacing it with a call to __low_power_mode_3().

7 - 42 MSP430 Design Workshop - Low Power Optimization

 Lab 7c – Configuring Ports for Lowest Power

Capture Baseline Reference
5. Build the project. Once any errors are fixed, launch the debugger.

6. Run the code until you reach the LPM3 function.
 Set the cursor on the __low_power_optimization() function and then press

7. Free Run the program until the EnergyTrace capture has completed. Save the energy
profile as Lab7c_noinit.profxml and record the energy data.

 We’ll fill in the 2nd and 3rd rows of this table in upcoming lab steps.

Project Energy Profile
Capture
Duration

Time
 Energy

(mJ)
Battery Life

(Days)

Lab7c_noinit 10 sec

Lab7c _initPortsAsOutputs 10 sec

Lab7c_initPortsAsInputs 10 sec

Add GPIO Port Initialization Code
Rather than ask you to type the same functions over and over again, we have already created a
port initialization file for you. The functions were the same ones discussed in Chapter 3, although
we utilized #ifdef statements to allow the same file to be used for most any MSP430 device.

8. Terminate your debug session if it’s running.

9. Add three new files to your project.

Right-click on the project → Properties

Add Files…

 Navigate to the appropriate directory for you processor:

C:\msp430_workshop\<target\lab_07c_ports

 Select the following three files and click Open.

initPortsAsOutputs.c

initPorts.h

lab_07c_initPorts_readme.txt

 When the Copy/Link dialog appears,
select “Copy” and click OK.

 You can delete the old readme file,
if you’d like.

MSP430 Design Workshop - Low Power Optimization 7 - 43

Lab 7c – Configuring Ports for Lowest Power

10. Open and examine the initPortsAsOutputs.c function.

 Notice that each port, if found for that device, is set so that all of the GPIO pins are set as
outputs in a low state.

11. Add initPorts() function call to main.c.

 While we’ve added the files to the project, we haven’t add the call to the initPorts() function,
yet. Immediately after the Watchdog hold function, add the new function to your program.

// Initialize I/O Ports
initPorts();

 Make sure you the new initPorts() function comes before the call to initGPIO(). We wrote the
initPorts() function to be a generic initialization routine, whereas the initGPIO() function sets
only the specific GPIO pins we need for our program.

 While we could combine these files, it is often useful – especially during development – to
use a baseline initialization routine at the beginning of your program.

 Your main() function should now look like this:

7 - 44 MSP430 Design Workshop - Low Power Optimization

 Lab 7c – Configuring Ports for Lowest Power

12. Build the project. Once any errors are fixed, launch the debugger.

13. Run the code until you reach the LPM3 function.
 Set the cursor on the __low_power_optimization() function and then press

14. Free Run the program until the EnergyTrace capture has completed. Save the energy
profile as Lab7c_initPortsAsOutputs.profxml and record the energy data.

 Fill in the 2nd row of the table found in Step 7 on page 7-43.

 Does initializing the I/O ports make much of a difference to energy consumption?

Improve on GPIO Port Initialization
While working on this lab exercise we found that our port initialization routine could be improved
upon. This last part of the exercise quickly examines this.

15. Add one more file to your project: initPorts.c

 Follow the same steps as before to add this file – making sure you “Copy” the file into your
project

16. Open and briefly examine initPorts.c.

 This file includes the same initPorts() function, although it configures GPIO in a different
mode. Rather than setting the GPIO pins as outputs, how does this new routine configure
them?

17. Exclude from build...

 If you were to try and build the project right now, you should get an error. The initPorts()
function is defined twice. Rather than deleting one copy, we suggest that you just exclude
one file from being built.

Right-Click on the file initPortsAsOutputs.c → Exclude From Build

 Now, when we click Build, CCS will ignore this file.

18. Build the project. Once any errors are fixed, launch the debugger.

19. Run the code until you reach the LPM3 function.

 Set the cursor on the __low_power_optimization() function and then press

20. Free Run the program until the EnergyTrace capture has completed. Save the energy
profile as Lab7c_initPortsAsInputs.profxml and record the energy data.

 Fill in the 3rd row of the table found in Step 7 on page 7-43.

 Does initializing the I/O ports as inputs (with a pulldown resistor) make much of a difference?

MSP430 Design Workshop - Low Power Optimization 7 - 45

Chapter 7 Appendix

Chapter 7 Appendix

Connecting MSP-FET to ‘F5529 USB Launchpad
Using the following two User’s Guide, we determined that you can connect the MSP-FET flash
emulation tool to the MSP-EXP430F5529 Launchpad’s isolation connector.

• MSP-EXP430F5529 Launchpad User's Guide (slau533b.pdf)

• MSP430 Hardware Tools User’s Guide (slau278r.pdf)

Connecting MSP-FET to ‘F5529 Launchpad

3V3

GND

SBW_RST

SBW_TST

7 - 46 MSP430 Design Workshop - Low Power Optimization

http://www.ti.com/lit/slau533
http://www.ti.com/lit/slau278

 Chapter 7 Appendix

MSP-FET to ‘F5529 Launchpad
Summary of Pin Connections

MSP-FET ‘F5529 Launchpad
(Isolation Jumper Block)

Signal Pin Signal Pin

GND 9 GND JP3

VCC_TOOL 2 3V3 JP2

TDO/TDI 1 SBW_RST JP4.2

TCK 7 SBW_TST JP4.1

MSP430 Hardware Tools User’s Guide (SLAU287r.PDF)
B.36.6 MSP-FET JTAG Target Connector (pg 154)

Table B-40: JTAG Connector Pin State by Operating Mode

MSP-EXP430F5529 Launchpad User's Guide (SLAU533b .PDF)
2.2.7 Emulator and Target Isolation Jumper Block

Table 3: Isolation Block Connections (pg 19)

MSP430 Hardware Tools User’s Guide (SLAU287r.PDF)
B.36.6 MSP-FET JTAG Target Connector (pg 154)

Table B-40: JTAG Connector Pin State by Operating Mode

MSP-EXP430F5529 Launchpad User's Guide (SLAU533b .PDF)
2.2.7 Emulator and Target Isolation Jumper Block

Table 3: Isolation Block Connections (pg 19)

User Guide Reference Pages

MSP430 Design Workshop - Low Power Optimization 7 - 47

Chapter 7 Appendix

Lab 7 Debrief and Solutions

Lab 7a - Worksheet

Both support energy measurement; EnergyTrace++ also
supports tracing CtU and peripheral states

aSt430Fw5xx/Fw69xx devices

‘Fw4133 Launchpad, and any aSt430 connected to the aSt-FET

Use a multi-meter to

measure current drawn by CtU multiplied by voltage and time

bot as accurate as EnergyTrace

‘Fw5969 Launchpad,

Lab 7a – Debrief (‘FR5969)

62.60 mJ

54.01 mJ

Lab4c

The aSt430 clocks in lab_04c_crystals were running

at a lower frequency, which consumes less power

7 - 48 MSP430 Design Workshop - Low Power Optimization

 Chapter 7 Appendix

Lab 7a – Debrief (‘FR4133)

44.36 mJ

45.22 mJ

Very close, but Lab4a is slightly less

The two are essentially equal; the differences in clock speed

(4a to 4c) are less than they are for the ‘Fw5969 solutions.

Lab 7a – Debrief (‘F5529)

115.25 mJ

121.62 mJ

Very close, but Lab4a is slightly less

The two are essentially equal; the differences in clock speed

(4a to 4c) are less than they are for the ‘Fw5969 solutions.

MSP430 Design Workshop - Low Power Optimization 7 - 49

Chapter 7 Appendix

Lab 7b

Lab Exercise Timer aodule Used

lab_05b_wdtBlink Watchdog
(Lnterval Timer mode)

lab_06a_timer
‘F5529: Timer0_A

‘Fw4133: Timer0_A
‘Fw5969: Timer1_A

lab_06b_upTimer
‘F5529: Timer0_A

‘Fw4133: Timer0_A
‘Fw5969: Timer1_A

lab_06c_timerDirectDriveLed
‘F5529: Timer0_A

‘Fw4133: Timer0_A
‘Fw5969: Timer1_A

lab_06d_simpletWa
‘F5529: Timer0_A
‘FR4133: Timer0_A
‘FR5969: Timer1_A

7. Complete the table of lab exercises (from Chapters 1 - 7) in this workshop
which combined a timer with blinking an LED?

Lab 7b

121.62 mJ

146.26 mJ

The timer code (Lab7b)

Watching Lab7b run, you might notice that both LEDs are

blinking – whereas in Lab4c, only one is blinking

‘F5529 values are
shown here

7 - 50 MSP430 Design Workshop - Low Power Optimization

 Chapter 7 Appendix

Lab 7b

110.33 mJ

34.51 mJ

Lab7b_lpm is much better

‘F5529 values are
shown here

Lab 7c (‘FR5969)

11.28 24.4

0.14 1920.4

0.01 24553.6

Steps 13/19 asked if initializing the GtLO (and init as inputs)
made much of a different to energy usage… Absolutely YES!

MSP430 Design Workshop - Low Power Optimization 7 - 51

Chapter 7 Appendix

Lab 7c (‘FR4133)

0.69 401.1

5.20 52.9

0.05 5589.4

Steps 13/19 asked if initializing the GtLO (and init as inputs)
made much of a different to energy usage… Absolutely YES!

Lab 7c (‘F5529)

8.03 34.2

7.47 36.8

7.47 36.8

Steps 13/19 asked if initializing the GtLO made much of a
different to energy usage… a little bit. On the ‘F5529, though,
no noticeable difference if GtLO was set as outputs or inputs
(unlike the ‘Fw4133 or ‘Fw5969).

7 - 52 MSP430 Design Workshop - Low Power Optimization

Real-Time Clock (RTC)

Introduction
The Real-Time Clock (RTC) peripheral is a sophisticated timer that keeps track of Calendar,
Month, and Time information. It operates in Binary or BCD modes; whichever is most useful for
your application.

The RTC affords you the ability to set Calendar/Time based Alarms (i.e. Interrupts).

This peripheral is extremely power sensitive and operates in many low-power modes. In fact, on
the MSP430FR5969, it even operates in LPM3.5 mode.

Learning Objectives
• Describe the architecture of the Real-Time Clock module.

• Learn to set alarms/interrupts for the RTC.

MSP430 Design Workshop - Real-Time Clock (RTC) 8 - 1

What is a Real-Time Clock?

Chapter Topics
Real-Time Clock (RTC) ... 8-1

What is a Real-Time Clock? ... 8-3
How Does the RTC Work? .. 8-4

RTC Block Diagram .. 8-4
RTC Interrupts ... 8-5

Programming the RTC .. 8-6
Additional Considerations ... 8-7
Summary ... 8-8

8 - 2 MSP430 Design Workshop - Real-Time Clock (RTC)

 What is a Real-Time Clock?

What is a Real-Time Clock?

What is a Real-Time Clock (RTC)?

It’s just that…
an alarm Clock

with Calendar functions

MSP430 Design Workshop - Real-Time Clock (RTC) 8 - 3

How Does the RTC Work?

How Does the RTC Work?

RTC Block Diagram

8 - 4 MSP430 Design Workshop - Real-Time Clock (RTC)

 How Does the RTC Work?

RTC Interrupts

RTC Interrupts
32-KHz
Clock ÷

DO
W

Ho
ur

Mi
n

Se
c

÷
PreScaler 0 PreScaler 1

Mo
nth

Da
y

Ye
ar

IFG Prescaler 0

IFG Prescaler 1
(RT1PS)
Prescaler’s can
generate interrupts at
clock rate ÷ by:
 2, 4, 8, 16, 32,

64,128,156

(RT0PS)

IFG
Ready (RTCRDY)
 Notifies when safe to read

or write registers

IFG
Oscillator

Fault

IFG

Da
y

DO
W

Ho
ur

Mi
n

Generate interrupt
if match between
time and alarm
registers for:
 Minutes
 Hours
 Day of the Week
 Day (of the month)

Alarm (RTCA)

IFGInterval
Timer

(RTCTEV)
 Each Minute
 Each Hour
 Midnight
 Noon

MSP430 Design Workshop - Real-Time Clock (RTC) 8 - 5

Programming the RTC

Programming the RTC

Setting RTC using GRACE

Grace supports:
 Devices
 F2xx, G2xx
 FR5xx

 RTC use cases
 Calendar mode

only
 BCD or Hex

modes
 Creates interrupt

handler template:
 Alarm
 Events
 Ready
 Osc Fault

DriverLib Example Code
// Initialize Calendar Mode of RTC
RTC_B_calendarInit (RTC_B_BASE, currentTime, RTC_B_FORMAT_BINARY);

// Setup Calendar Alarm for 5:00pm on the 5th day of the week.
// Note: Does not specify day of the week.
RTC_B_setCalendarAlarm (RTC_B_BASE,0x00,0x17, RTC_B_ALARMCONDITION_OFF,0x05);

// Specify an interrupt to assert every minute
RTC_B_setCalendarEvent (RTC_B_BASE, RTC_B_CALENDAREVENT_MINUTECHANGE);

// Clear interrupt bits before starting RTC
RTC_B_clearInterrupt (RTC_B_BASE, RTC_B_CLOCK_READ_READY_INTERRUPT + RTC_B

// Enable interrupt for RTC Ready Status, that let’s us know RTC registers are ready to read.
// Also, enable interrupts for the Calendar alarm & event.
RTC_B_enableInterrupt (RTC_B_BASE, RTC_B_CLOCK_READ_READY_INTERRUPT + RTC_

// Start RTC Clock
RTC_B_startClock (RTC_B_BASE);

// Enter LPM3 mode with interrupts enabled
__low_power_mode_3 ();
__no_operation();

8 - 6 MSP430 Design Workshop - Real-Time Clock (RTC)

 Additional Considerations

Additional Considerations

Additional Features
 Using RTC in LPM3.5 Mode

 All RTC’s work in LPM3 mode
 Since RTC_B and RTC_C can directly access the LF crystal, they can

operate in the “3.5” low-power mode
 LPM3.5 provides the lowest possible power dissipation with RTC

wake-up capability

 Easy Conversion Between BCD and Hex
 RTC_B/RTC_C provide BCD conversions in hardware
 Driver Library function provides easy access to this hardware feature

 Counter Mode
 RTC_A can be used as a 32-bit counter (rather than Calendar mode)
 Counter mode generates overflow interrupts at 8-, 16-, 24- and 32-bits

Exercise Caution
 Clear bit-fields before setting counters and alarms

 Prior to setting an alarms, clear all alarm registers, including the
alarm enable (AE) bits

 To prevent potential erroneous alarms when setting time values,
clear the interrupt enable (IE) bits, as well as the AE bits

 Writes to count registers takes effect immediately. Note that the RTC
clock is stopped during the write and both pre-scale registers are
reset. This could result in losing up to 1 second during a write.

 Invalid time and alarm settings are not validated or handled
via hardware (measure twice, program once)

 Reading Registers
 Care should be taken when reading (or writing) RTC

time/calendar/prescale registers so that your actions do not occur
during counter transitions

 These options can help to prevent erroneous results:
1. Let the RTC Ready (RTCRDY) interrupt you just after an update – you’ll

have ~1 sec before the next update
2. Check the RTCRDY bit before reading or writing the registers
3. Read the registers multiple times and take the majority vote
4. Hold the RTC before reading or writing any registers

MSP430 Design Workshop - Real-Time Clock (RTC) 8 - 7

Summary

Summary

RTC Comparison
Feature RTC_A RTC_B RCT_C

Highlights 32-bit Counter
Mode

LPM3.5,
Calendar Mode

Only

Protection Plus
Improved Calibration

& Compensation

Modes
Calendar Mode with
Programmable Alarms Yes Yes Yes

Counter Mode Yes No Device-dependent

Input Clocks ALCK, SMCLK 32-kHz crystal 32-kHz crystal

LPM3.5 Support No Yes Yes

Compensation
&

Calibration

Offset Calibration
Register Yes Yes Yes

Temperature
Compensation Register No No Yes

Temperature
Compensation

With software, manipulating
offset calibration value

With software using separate
temperature compensation

register

Calibration and
Compensation Period 64 min 60 min 1 min

Features

BCD to Binary
Conversion

Integrated for
Calendar Mode

Integrated for Calendar Mode plus
separate conversion registers

Event/Tamper Detect
With Time Stamp No No Device-dependent

Password Protected
Calendar Registers No No Yes

8 - 8 MSP430 Design Workshop - Real-Time Clock (RTC)

Non-Volatile Memory: Flash & FRAM

Introduction
What makes a microcontroller a microcontroller? That’s part of this chapter’s discussion. The
inclusion of memory – especially non-volatile memory – makes a microprocessor into a
microcontroller.

Non-volatile memory (NVM for short) is an important part of a microcontroller’s memory system;
this type of memory stays initialized (i.e. keeps its data) even when power is removed from the
device. Storing program code is the most obvious use of NVM, though many applications store
data tables and calibration data in NVM, as well.

Flash technology is the most common type of NVM used in today's microcontrollers. In the last
couple of years, though, Texas Instruments has introduced the use of FRAM technology into their
MSP430 microcontroller family. With near infinite write cycles and extremely low power
dissipation, it is a great fit for many end applications.

Learning Objectives

Objectives

- Define “microcontroller”
- Describe three uses for non-volatile memory
- Compare/Contrast two leading non-volatile

memory types: Flash and FRAM
- Define the words: “sections” and “linking”
- Draw a generic MSP430 memory map
- Use non-volatile memory to store persistent

variables
- Write code to protect memory and/or show how

to trap memory access violations

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 1

What is a Microcontroller?

Chapter Topics
Non-Volatile Memory: Flash & FRAM .. 9-1

What is a Microcontroller? ... 9-3
Non-Volatile Memory: Flash & FRAM ... 9-4

Flash Memory ... 9-5
FRAM Memory .. 9-6
Comparing FRAM and Flash .. 9-7

FRAM Benefits and Applications .. 9-8
Memory Maps & Linking .. 9-10

Memory Maps ... 9-10
How is NVM Used? ... 9-11
Comparing Device Memory Maps ... 9-13

Sections... 9-14
Linking ... 9-16

Linker Command File .. 9-16
Custom Sections ... 9-18

Using Flash ... 9-20
Using DriverLib to Write to Flash .. 9-22

Using FRAM (and the MPU) ... 9-23
FRAM Controller ... 9-23

Unified Memory ... 9-24
What Could Happen to FRAM? .. 9-25
Memory Protection Unit (MPU) ... 9-26

Using the Memory Protection Unit (MPU) ... 9-27
MPU Graphical User Interface .. 9-30

FRAM Code Example ... 9-32
Configuring the MPU using DriverLib .. 9-33
Putting Variables into FRAM ... 9-35
Setting FRAM Waitstates .. 9-37

Memory Protection on the 'FR2xx/4xx .. 9-39
System Init Functions .. 9-40
Lab 9 Exercises ... 9-41

Lab 9a – Using Non-Volatile Variables ... 9-42
lab_09a_info_fram (or lab_09a_info_flash) .. 9-42
(FRAM Devices Only) lab_09a_persistent ... 9-49
(‘F5529 Only) (Optional) lab_09a_low_wear_flash .. 9-52

(‘FR5969 Only) Lab 9b – Protecting Memory ... 9-53
lab_09b_mpu_gui .. 9-53
(Optional) lab_09b_mpu_with_driverlib ... 9-56

Chapter 9 Appendix .. 9-59

9 - 2 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 What is a Microcontroller?

What is a Microcontroller?
Texas Instruments was awarded the patent for the microcontroller (which we’ll nickname MCU)
when Gary Boone and Michael Cochran accomplished building a processor that contained
memory and peripherals. The inclusion of these two items causes a microprocessor to be called a
microcontroller.

 Wikipedia defines Microcontroller as:
A microcontroller (µC, uC or MCU) is a small
computer on a single integrated circuit containing
a processor core (CPU), memory, and
programmable input/output peripherals

 By strict definitions…
 Microprocessor s (MPU) only contain a CPU*

 MCU’s add the components needed to create
a full system on a chip

 Early MCU’s used factory-programmed Read-Only
Memory (ROM) to hold program instructions; today’s
MCU’s utilize in-system programmable Flash and
FRAM technologies

 MCU’s today are often predominated by memory area
– though most user development work is
centered around programming the CPU

 U.S. Patent 3,757,306:
Texas Instruments… engineers Gary Boone and
Michael Cochran succeeded in creating the first
microcontroller… in 1971.

CPU Peripherals

RAM

Non-Volatile
Memory

(ROM, Flash, FRAM)

What is a Microcontroller?

 http://en.wikipedia.org/wiki/aicroprocessor
* http://en.wikipedia.org/wiki/aicrocontroller
 http://smithsonianchips.si.edu/augarten/p38.htm This chapter focuses on Non-Volatile Memories...

The earliest microcontrollers used ROM (read-only memory) which was programmed into the
device as part of the processor’s manufacturing. High volume was required to make this worth the
cost.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 3

Non-Volatile Memory: Flash & FRAM

Non-Volatile Memory: Flash & FRAM
Non-Volatile Memory (NVM) retains its information, even when power is removed. This is different
than RAM (e.g. SRAM, DRAM) memory which loses its information when powered down.

NVM is important for storing your microcontroller’s code. It doesn’t do much good to write the
code into a microcontroller if it disappears whenever the processor is turned off. Microprocessors
solve this problem by using external non-volatile memory, which has to be loaded up each time
the processor starts up. This is unattractive in many applications since it raises the cost and
greatly increases start-up time.

What is Non-Volatile Memory?

CPU Peripherals

RAM

Non-Volatile
Memory

(ROM, Flash, FRAM)

 Non-Volatile Memory (NVM) retains its
information when powered down

 By contrast, Random Access Memory
(RAM) needs power to keep its information

 NVM examples include:
(MSP430 devices only use Flash or FRAM)
 Flash Memory
 FRAM (ferroelectric RAM)
 ROM (read-only memory)
 EEPROM (electrically erasable ROM)
 Hard disk drives

 Flash & FRAM are in-system programmable,
which means a program can rewrite them

 Typical MCU applications use:
 NVM for program and calibration data
 RAM for variables, stack and heap

Users really needed a way to program (and erase) their processor memories themselves. This
need has driven a number of enhancements in NVM since the early days of ROM’s.

MCU’s adopted Erasable/Programmable Read-Only Memory (EPROM). These devices had a
little window over the silicon that allowed the user to erase the program with a UV light. The code
could be programmed electrically with a special stand-alone programmer. Due to a demand for
low-cost, EPROM chips ended up being packaged in plastic without a window; these were
commonly known as OTP’s – for one-time programmables.

Nowadays, Flash memory technology is used by most microprocessors. This allows processors
to be programmed – and erased – electronically. Companies can purchase “empty” devices and
program them on their own; erasing them and re-programming, as needed.

While Flash was a major step forward in NVM technology, it has a few limitations, such as power-
hungry writes and limited endurance (i.e. the number of times you can erase and re-write the
memory).

FRAM technology, which has been available for a decade in stand-alone devices, is now
available from Texas Instruments in their MSP430 line-up. With low-power in its DNA, FRAM
technology is a natural fit for many MSP430 applications.

9 - 4 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Non-Volatile Memory: Flash & FRAM

Flash Memory
Flash memory made it cheap and convenient to create microcontrollers that were electrically
erasable and programmable.

How Flash Memory Works

 In this simplified example of a Flash Memory cell, the addition of a floating
gate makes it “sticky”

 Dielectric provides insulation allowing the floating gate to remain charged (or
not) for a very, very long time

 Overcoming the dielectric to erase/charge the floating gate requires a high
voltage (~14 Volts); Flash-based processors contain charge pumps to reach
these high voltages

 You must erase a Flash cell before it can be programmed; most Flash memory
implementations require an entire block to be erased at one time

Transistor

Source Drain

Control Gate Dielectric

Flash Memory Cell using a
Floating-Gate Transistor

Source Drain

Floating Gate

Control Gate

Dielectric

References:
 MSP430 Flash Memory Characteristics by Peter Forstner (SLAA334A.pdf)
 EE 216: Principles and Models of Semiconductor Devices by Chintan Hossain at Stanford University

http://www.youtube.com/watch?v=s7JLXs5es7I

How do flash devices work? In a nutshell, they use the concept of a floating gate transistor.

Usually a transistor is “off” or “on” depending upon the value applied at its control gate. Apply
power to the gate and it causes electrons to flow from the source to the drain; take the power
away from the gate and the electricity stops.

Flash memories use floating gates that are “sticky”; that is, they can “remember” their value. By
submerging the floating gate in a sea of dielectric, its charge value takes a very long time
(hundreds of years+) to leak away.

But, if it takes a long time to lose their value, how do you program a new value into them? You
must use a very high voltage – somewhere around 14 Volts – to program a new value into them.
Since most MCU’s run off of 5 Volts (or less), single-chip MCU manufacturer’s embed charge
pumps into them to generate the voltages required.

Even with the need for this extra high-voltage circuitry, flash memories have served the industry
quite well. Many of the MSP430 devices, such as the MSP430F5529 utilize flash non-volatile
memory.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 5

Non-Volatile Memory: Flash & FRAM

FRAM Memory
As we stated earlier, while FRAM technology has been used for stand-alone memory chips, it’s
relatively new to microcontrollers. Its high endurance and low-power operation make it idea for
many applications.

bitline
wordline

C
+
Vc

DRAM cell

bitline
wordline

CFE

+
Vc

FRAM cell

plateline

How FRAM Memory Works

References:
 FRAM for Dummies - http://www.edn.com/design/systems-design/4394387/FRAM-MCUs-For-Dummies--Part-1
 http://www.radio-electronics.com/info/data/semicond/memory/fram-ferroelectric-random-access-memory-technology-operation-theory.php

 Ferroelectric RAM (FRAM) is similar to Dynamic RAM (DRAM) – except that FRAM uses
ferroelectric capacitors – as opposed to traditional (dielectric) capacitors

 Applying a field to the ferroelectric capacitor flips its state; the amount of energy required
indicates the previous value

 Similar to DRAMs, reads are destructive; although FRAM implementations immediately write
back the original value

 FRAM (aka Fe-RAM) does not contain element “Fe” (Iron) – rather the name is based on the
ferroelectric hysteresis loop waveform, which is key to its operation

 Reads and writes only require about 1.5V – thus, no charge pump required

FRAM – Ferroelectric Random Access Memory – is much like other types of RAM memory. You
can read and write this memory just as you might an SRAM found in most processors. This said,
its closest cousin might be the DRAM (Dynamic RAM) cell.

DRAM’s use capacitance to hold information. As most electronics savvy folks know, applying a
field across a capacitor causes it to store a charge. The presence (or not) of this charge can be
sensed, which is how we read the DRAM cell. While DRAM is useful as a read/write memory, it
must remain powered-on and refreshed in order to retain their contents; therefore, they cannot be
used for non-volatile memory. (Instead, they might be thought of as the best example of ‘volatile’
memory.)

FRAM’s utilize the same basic concept as DRAM’s but utilize ferroelectric capacitance (Cfe) to
retain their information. The ferroelectric crystal contains a dipole whose atom can be moved into
an up or down state based upon the application of a field. The atoms position can then be
sensed, allowing us to read its value. Thankfully, the processes of setting the dipole’s state can
be done with as little as 1.5 Volts … making FRAM a very low-power technology.

Like a DRAM, the read is a destructive process, though FRAM memory implementations include
hardware to immediately write-back the value without any intervention needed from the user.
Unlike DRAM, though, the Cfe doesn’t lose its value if the power is removed. This makes it ideal
for use as a non-volatile memory.

One of the most commonly asked questions is whether FRAM’s contain the element Fe (Lead).
The answer is “No”. (Sorry, you can’t hang FRAM chips on your refrigerator like magnets.)
Rather, the name comes from the ferroelectric hysteresis cycle that maps its value.

9 - 6 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Non-Volatile Memory: Flash & FRAM

Comparing FRAM and Flash
The table below compares FRAM and Flash memories – as well as SRAM and EEPROM (which
is another popular NVM technology).

Comparison of Non-Volatile Memory
FRAM SRAM Flash EEPROM

Non-Volatile
Retains data without power Yes No Yes Yes

Avg Active Power (µA/MHz) 100 < 60 230 50,000+

Write Power for 12KB/s 9 µA N/A 2200 µA N/A

Write Speeds (13KB) 10 ms < 10 ms 1 sec 2 secs

Write Endurance 1015 Unlimited 105 105

Bit-wise Programmable Yes Yes No No

Data Erase Required No No Segment Page

Unified: Code and Data Yes No No No

Read Speeds 8 MHz up to 25MHz
(on some devices) N/A

FRAM, like SRAM, lets you read and write memory without any special code or procedure.

Alternatively, Flash and EEPROM require a multi-step process to update their contents. Even
worse, these technologies require that you erase an entire block before you can write a single
byte into it. These two items preclude their use for volatile memory operations – such as
variables, stack, heap, etc.

SRAM can store code or data; in fact, we can even execute code from SRAM. Unfortunately, it
loses its contents when power is removed. Sure, it doesn’t need much power, but it’s just not well
suited for non-volatile applications. (Note: To use SRAM for executing code, you must first copy the
code into the SRAM memory before executing it.)

FRAM, on the other hand, can be used for both volatile and non-volatile applications. It’s often
called a “unified” memory since it can be used to store both code and data. Throw in its low-
power nature as well as its nearly unlimited write endurance and you’ve got an exceptional
memory technology. (It seems every year the FRAM write endurance specs get bumped up
another notch; last year it was 1014, this year 1015 – it takes a lot of time to run these endurance
tests.)

Today, the FRAM technology limits us with its read frequency. It significantly out speeds Flash for
write operations, but it falls behind in reads. Obviously, this means it is not well suited for high-
end multi-GHz application processors; but, it fits nicely into low-power applications, which makes
it ideal for the MSP430 family.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 7

Non-Volatile Memory: Flash & FRAM

FRAM Benefits and Applications
The next two pages show five slides from the FRAM marketing presentations. They do a good job
demonstrating the advantages of FRAM. We offer them for your perusal. Though we won’t
address them individually, these slides confirm the information found in the previous comparison
table.

• Case Example: MSP430FR5739 vs. MSP430F2274
• Both devices use System clock = 8MHz
• Maximum Speed FRAM = 1.4MBps [100x faster]
• Maximum Speed Flash = 13kBps

FRAM = Ultra-Fast Writes

1,400kBps

13kBps

Max. Throughput:

• Use Case Example: MSP430FR5739 vs. MSP430F2274
• Both devices write to NV memory @ 13kBps
• FRAM remains in standby for 99% of the time
• Power savings: >200x of flash

FRAM = Low Active Write Duty Cycle

Consumption @ 13kBps:

9μA

2,200μA

9 - 8 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Non-Volatile Memory: Flash & FRAM

14

• Use Case Example: MSP430FR5739 vs. MSP430F2274
• Average power FRAM = 720µA @ 1400kBps
• Average power Flash = 2200µA @ 13kBps
• 100 times faster using half the power
• Enables more unique energy sources
• FRAM = Non-blocking writes

• CPU is not held
• Interrupts allowed

FRAM = Ultra-Low Power

• Use Case Example: MSP430FR5739 vs. MSP430F2274
• FRAM Endurance >= 100 Trillion [10^15]
• Flash Endurance < 100,000 [10^5]
• Comparison: write to a 512 byte memory block @ a speed of 12kBps

• Flash = 6 minutes
• FRAM = 100+ years

FRAM = High Endurance

114,000
years

[min]

FRAM Benefits --- Example App’s
 Non-Volatile

 Retains data without power

 Fast Write / Update
 RAM like performance.
 Up to ~ 50ns/byte access times today

(> 1000x faster than Flash/EEPROM)

 Low Power
 FRAM only needs 1.5V for writes

versus Flash/EEPROM >10-14V
 No charge pump needed for FRAM!

 High Write Endurance
 100 Trillion read/write cycles

 Superior Data Reliability
 ‘Write Guarantee’ in case of power

loss

Data logging & remote
sensor applications

Digital Rights
Management (DRM)

Low Power Applications
(e.g. Mobile & Consumer
products)

Energy Harvesting
(especially wireless)

Battery-Backed SRAM
Replacement

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 9

Memory Maps & Linking

Memory Maps & Linking

Memory Maps
As you might already know, memory-maps provide a tabular description for how memory
addresses are used. In our microcontrollers, they indicate how the chip designers have allocated
the memory addresses to Non-volatile memory (Flash or FRAM), volatile memory (RAM) and a
variety of other uses, such as peripheral control registers, boot-loaders, and such.

Program Code
Put your code into
“aain” Flash/FRAa due
to it’s large size and non-
volatile nature

Where Should Stuff Go?‘F5529

0xFFFF

Main
Flash

81K

0xFF80 INT Vectors

0x4400

Main
Flash

0x2400
RAM

0x1C00 USB RAM
0x1A00 TLV

Info A
Info B
Info C

0x1800 Info D

Boot Loader

0x0000 Peripherals

‘FR5969

Main FRAM 17K

INT Vectors 80

Main
FRAM

47K

Vacant 8K

RAM 2K

TLV
Info A 128
Info B 128
Info C 128
Info D 128

Boot Loader 2K

Peripherals 4K
Bytes

0x243FF

Variables
Put variables into RAa
because of its read/write
nature; this may include:
 Global variables
 Local variables
 Stack & Heap

Constant Data
Info blocks (A-D) were
design as places to keep
calibration data and
other persistent data

Note: These are common suggestions;
though, since FRAM is read/write and
non-volatile, you can put code and
variables anywhere in avail. memory

Unlike the “old” days, we don’t worry about the specific addresses used by each item anymore.
The need for this has been deprecated by the use of symbolic, high-level languages. For
example, rather than remembering the specific hex address used for a serial port register, we can
use the convenient symbol name defined for us in the libraries TI provides. Using DriverLib
throughout this workshop has shown us just how powerful – and easy – this can be.

Even though we might not be required to look up (and memorize) specific addresses nowadays,
the memory map is still enormously important. It shows us how much and of what type of memory
we have available in our system.

In fact, it’s this awareness of memory, and how to use it, that largely differentiates an Embedded
Processor programmer from a standard application programmer. For example, when first writing
programs in school, we usually didn’t care how much – or what types – of memory was available.
In other words, memory was (for me at least) a vaguely unlimited resource. (To infinity and beyond…)

In real-world embedded systems, though, memory is an expensive, and limited, critical resource.
If you pick a device that has more than enough memory, your boss will probably accuse you of
overspending. Also, as we’ve learned throughout this chapter, not all memory is equal – you don’t
want to put your variables into Flash … or your program code into RAM. (At least not at power-up.)

Bottom Line: We must think about what types of memory we have; how much we have of each
type; and how we should allocate our use of each.

9 - 10 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Memory Maps & Linking

How is NVM Used?
The previous slide roughly outlined where we should store various types of information.

The following slide provides a brief outline of how non-volatile memory (Flash/FRAM) is used in
two example MSP430 devices. As you can see, in both devices, the NVM is broken into three
areas: Main, Info, and Bootloader.

Memory Maps‘F5529

0xFFFF

Main
Flash

81K

0xFF80 INT Vectors

0x4400

Main
Flash

0x2400
RAM

0x1C00 USB RAM
0x1A00 TLV

Info A
Info B
Info C

0x1800 Info D

Boot Loader

0x0000 Peripherals

‘FR5969

Main FRAM 17K

INT Vectors 80

Main
FRAM

47K

Vacant 8K

RAM 2K

TLV
Info A 128
Info B 128
Info C 128
Info D 128

Boot Loader 2K

Peripherals 4K
Bytes

0x243FF
Most MSP430 devices have
similar Memory Maps
Devices use Flash or FRAM for
non-volatile storage:
 Main is commonly used for:

 Program code
 Large constant arrays/structs

 TVL Device Descriptor lets
your program access device
features (data stored in tag-
length-value format)

 Info user memory
 Used for non-volatile variables

and calibration data
 Broken into four 128-btye

segments: Info A-D
 Flash requires entire segment

to be erased – no restrictions
for FRAM devices

 Bootloader lets you program
Flash/FRAM via serial/UART

Thus far, this part of the chapter has discussed the memory-map. This provides us with a picture
of what memory is available for our application. At this point, we can state that:

“We want our program to be placed into ‘Main’ memory”.

The next two topics help us understand how we get the right information to the right place.
• Sections describes how our program is broken-up (by the build tools) into different pieces.

• Linking shows us how to make those pieces (i.e. sections) end up in the parts of memory
where we want them to go.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 11

Memory Maps & Linking

Notes
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ

9 - 12 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Memory Maps & Linking

Comparing Device Memory Maps
Here’s a quick comparison between the F5529, FR4133 and FR5969 memory maps.

Memory Maps‘F5529

0xFFFF

Main
Flash

0xFF80 INT Vectors

0x4400

Main
Flash

0x2400
RAM

0x1C00 USB RAM
0x1A00 TLV

Info A
Info B
Info C

0x1800 Info D

Boot Loader

0x0000 Peripherals

‘FR5969

Main FRAM 17K

INT Vectors 80

Main
FRAM

47K

Vacant 8K

RAM 2K

TLV
Info A 128
Info B 128
Info C 128
Info D 128

Boot Loader 2K

Peripherals 4K
Bytes

0x243FF

‘FR4133
INT Vectors 80

Main
FRAM 15.5K

Vacant

RAM 2K

TLV

Info A 512

Vacant
Boot Loader 1K
Backup RAM 20B
Peripherals 4K

‘FR6989

Main
FRAM

81K

INT Vectors

Main
FRAM

Vacant

RAM
TLV

Info A
Info B
Info C
Info D

Boot Loader

Peripherals
Tiny RAM (26B)

The F5529 has the most RAM, but the FR6989 (and FR5989) now provide as much non-volatile
memory using FRAM. The FR4133 has the least amount of FRAM, but this allows it to be used in
lower-cost applications.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 13

Memory Maps & Linking

Sections
From a high-level we’ve already learned that there are different types of memory – for example,
non-volatile (ROM-like) and volatile (RAM-like) memories.

In a similar fashion, the compiler breaks our program down into different Sections. Function-by-
function, file-by-file, the code generation tools will group together similar information into different
sections.

Let’s take the first two Sections shown at the top of the following slide:
• Global Variables

• Initial Values

All C programmers should recognize these two items – maybe not their names, but at least their
functionality. This is one of the first things we’re taught when starting to learn the C language.
But, let’s think about them from an embedded system point-of-view. What type of memory does
each need to go into?

short m = 10;
short x = 2;

//Persistent variables in FRAM
#pragma PERSISTENT(b)
short b = 5;

main()
{
short y = 0;

y = m * x;
y = y + b;

printf("y=%d",y);

}

Sections

 Tools break C programs into
different parts called Sections

 Default section names begin
with “.”

Global
Variables

(.bss)

Initial Values
(.cinit)

Local Variables
(.stack)

Code
(.text)

Standard C I/O
(.cio)

Persistent Variables (FRAM)
(.TI.persistent)

bote: Persistent variables are only initialized once (during loading) ;
further discussed later in upcoming FRAa section

You may have realized that both of these Sections need to be placed into different types of
memory. While Global Variables need to go into a RAM-like memory (so that we can read/write
their values), the Initial Values need to be stored in a ROM-like (non-volatile) memory so that
they’ll always exist (even after a power-cycle).

The compiler team has assigned common, pre-defined names for these two Sections:
• .bss = Global Variables

• .cinit = Initial Values

By the way, the compiler’s initialization routine copies the initial values into their respective global
variables – as well as setting up the stack and heap – before calling main(). (If you’re interested,
you can find the compiler’s initialization source code (rts.src) in the Run-Time Support library.)

9 - 14 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Memory Maps & Linking

In our simple program example we demonstrated five different Sections: Global Variables (.bss),
Initial Values (.cinit), Code (.text), Stack (.stack), and Standard I/O data buffers (.cio). These
represent about half of the various types of Sections the compiler may create.

Here’s a table showing most of the compiler’s Section types. Notice that the top 5 are intended for
non-volatile memory, whereas the bottom ones should be placed in volatile – also known as
uninitialized – memory.

Common Sections Created by TI Compiler
Section
Name Description Memory

Type
.text Code bon-Volatile

.data Global and static non-const variables that are
explicitly initialized bon-Volatile

.cinit Initial values for global/static vars bon-Volatile

.TI.persistent Initialized var’s declared with PERSISTEbT pragma FRAa

.TI.noinit bon-initialized var’s declared with bOIbIT pragma Uninitialized

.bss Global and static variables Uninitialized

.stack Stack (local variables) Uninitialized

.sysmem aemory for malloc fcns (heap) Uninitialized

.cio Buffers for stdio functions Uninitialized

For more details, see MSP430 Optimizing C/C++ Compiler User’s Guide (pg 69 - slau132i.pdf)

Please note, though, that not all of your programs will necessarily contain all of these Sections.
For example, if you do not use Standard I/O in your programs, the compiler won’t create a .cio
section, as it’s not needed.

For a complete list of Sections, please refer to the MSP430 Compiler User’s Guide.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 15

Memory Maps & Linking

Linking
Linking is the process of bringing together all of your programs object files and assigning
addresses to everything that requires memory.

Linking Your Program

Linker.obj

.obj

.lib

.map

-m

.out
-o

Linker
Command

File

Looking at the CMD file...

The inputs to the Linker include the object files created from each of your program source files –
whether you wrote the code in C, assembly, or any other language. The object files also include
any binary object libraries that you’ve specified in your code.

Note: By default, the compiler always includes the Run-Time Support (RTS) library since it
provides the compiler’s initialization routine, along with a variety of other common support
functions – such as standard I/O, math, trig, etc.

From these object files the Linker will create an executable binary file (.out). It also creates a Map
(.map) file that provides you with a report describing what Sections it found, where it put those
Sections, and where every global variable was allocated in memory.

Linker Command File
The other “optional” input to the Linker is the Linker Command File (.cmd). We say “optional”
because, in reality, it is not optional. Sure, the linker has default settings that will allow it to build a
binary file without any user direction – but these defaults rarely work for real-world systems.
Realistically, you must use a linker command file.

We show a simple example of a linker command file on the next page…

9 - 16 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Memory Maps & Linking

Every linker command file is composed of three parts:

1. Input files and linker options: This is not shown below since it is rarely used when the code-
generation tools are called from an IDE (like CCS).

2. MEMORY: This part of the .cmd file tells the Linker what memory it can allocate.

3. SECTIONS: This part lets us tell the compiler how – and where – we want each of our
Sections to be allocated.

MEMORY
{ RAM: origin = 0x2400, length = 0x2000

INFOA: origin = 0x1980, length = 0x0080
INFOB: origin = 0x1900, length = 0x0080
INFOC: origin = 0x1880, length = 0x0080
INFOD: origin = 0x1800, length = 0x0080
FLASH: origin = 0x4400, length = 0xBB80
FLASH2: origin = 0x10000,length = 0x14400

}
SECTIONS
{

.bss : {} > RAM

.data : {} > RAM

.sysmem : {} > RAM

.stack : {} > RAM

.text : {}>> FLASH2 | FLASH

.text:_isr : {} > FLASH

.cinit : {} > FLASH | FLASH2

.const : {} > FLASH | FLASH2

.cio : {} > RAM
}

Simple Linker Command File

Operators:
{ file.obj } specifies files to
include in output section

>> indicates output section
can be split (if necessary)

| used as ‘or’ symbol; allows
list of memory segments as
targets for output section

As you can see, each line in MEMORY{} defines a memory segment’s location and size. It is
common to find each of the different areas of our memory-map described here. The MEMORY
specifications can be broken up or combined as needed for your system, though this isn’t very
common.

In the SECTIONS{} portion of the .cmd file we see each of our Sections being directed into the
appropriate memory segment. In many systems, it’s really as simple as shown above. Of course,
there are more complicated systems that require a “finer” control of memory placement. To this
end, the Linker is incredibly flexible.

Unfortunately, digging into all the Linker’s details is outside the scope of this workshop. We’ll see
an advanced example later in this chapter, but we refer you to the MSP430 Assembly Language
Tools User’s Guide (slau131j.pdf) for all the gory details.

Hint: The MSP430 team has created a default linker command file for each specific MSP430
device. This is very handy!

In fact, you may never have to create (or even modify) a linker command file.

Even if you have to do so, their default file provides you a great starting point. This is
surely better than the days where everyone had to create their own from scratch.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 17

Memory Maps & Linking

Custom Sections
One last topic that spans Sections and Linking – you can create custom sections within your C
code. This gives you the advantage of being able to place any specific code or data item into any
location in memory.

Create Custom Sections
 Create custom code section using a pragma:

… or create a sub-section:

 There’s a data section pragma, as well:

#pragma CODE_SECTION(dotp, “critical”);
int dotp(a, x)

#pragma CODE_SECTION(ctrl, “.text:_ctrl”);
int ctrl(z)

#pragma DATA_SECTION (x, “InfoC_Vars”);
#pragma DATA_SECTION (y, “InfoC_Vars”);
int x[32];
short y;

* Also, look for the SET_CODE_SECTION and SET_DATA_SECTION pragmas in the compiler user’s guide

The #pragma statements shown above let you create CODE or DATA sections. For code
sections you need to specify the function and the name of the “section”. You are allowed to put as
many functions into one section as you would like.

Similarly, you can put as many variables into a data section as you want. We’ve provided an
example of this above.

Finally, the Linker allows the concept of sub-sections. This allows you to specify a custom section
for a function (or data variable) – but have it be a part of a larger section, too. Sub-sections give
you a choice for how they will be linked. If you call-out a subsection in the SECTIONS{} statement
of your linker command file, you can specify exactly where and how you want it to be placed into
memory. On the other hand, if you don’t specify it in your linker command file, it will be combined
with the ‘parent’ section and placed accordingly. In the example shown above, the _ctrl sub-
section would be allocated with the rest of .text you specifically listed it in your linker command
file.

9 - 18 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Memory Maps & Linking

In the example linker command file below, we didn’t specify the _ctrl sub-section, so it will end
up being allocated with the rest of .text. Alternatively, notice that another sub-section
(.text:_isr) was specifically called out and will be linked independently from the rest of .text.

MEMORY
{ RAM: origin = 0x2400, length = 0x2000

INFOA: origin = 0x1980, length = 0x0080
INFOB: origin = 0x1900, length = 0x0080
INFOC: origin = 0x1880, length = 0x0080
INFOD: origin = 0x1800, length = 0x0080
FLASH: origin = 0x4400, length = 0xBB80
FLASH2: origin = 0x10000,length = 0x14400

}
SECTIONS
{ critcal : {} > 0x2400

.bss : {} > RAM

.data : {} > RAM

.sysmem : {} > RAM

.stack : {} > RAM
InfoC_Vars : {} > INFOC type=NOINIT

.text : {}>> FLASH2 | FLASH

.text:_isr : {} > FLASH

.cinit : {} > FLASH | FLASH2

.const : {} > FLASH | FLASH2

.cio : {} > RAM }

CMD File with Custom Sections
 Custom sections allow

you to place code:
 At specific locations
 In a specific order

 NhINIT type tells system
init code to ignore
initialization for that
output section

 Sub-sections allow you
to specify the sub-sect’s
location
… or, if not specified, it’s
linked along with the
parent section (ie “.text”)

 This is a contrived
example to show the
mechanism; we’ll see
‘real’ examples later in
the chapter

Note: Let us caution you, though, that you should use this judiciously. We recommend that you
use Custom Sections (and/or customize the linker command file) only when “something”
has to go in a very specific location. In fact, though, we will show you an example of this
later in this chapter.

Side Bar

Sidebar – Using the “wrong” type of memory
As stated earlier, even though this goes against common style, you can place:

• “Code into RAM”

• “Variables into Flash”

While this is not a problem for the linker (because it only assigns addresses), it is tricky from a
hardware point-of-view. Making these options work correctly requires extra code.

For example, before you run code from internal RAM, must first copy it from its non-volatile
memory location into the RAM. This could be done with either the CPU or the DMA.

Updating variables stored in Flash requires a series of steps – as does any programming of
Flash memory. We provide an example of this in the upcoming lab exercises.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 19

Using Flash

Using Flash
The Flash Memory Controller provides access to the Flash non-volatile memory. Read accesses
occur normally, just as you might read from a RAM memory. Writes, on the other hand, require a
correct procedure to be followed. Writing directly to Flash causes an interrupt (if enabled) … and
doesn’t modify the Flash memory.

Flash Memory Controller
 Writing directly to Flash

causes an interrupt
 Must use ‘password’ when

writing to Flash control
registers – or a PUC occurs

 Writing to memory requires
‘procedure’

1. Enable write
2. Write data
3. Disable write

 DriverLib FLASH API makes
Flash easy-to-use

 Must erase before write
 Must erase entire segment
 You can write 8-, 16-, or 32-bits
 Must Unlock InfoA before

writing to it (to avoid INT)

The Flash write procedure includes:
• Disable the Watchdog Timer, if it is running.

• Clear the Flash LOCK bit (using the appropriate Flash Control Register password)

• Enable Flash write mode by setting WRT=1 (again, using the correct password)

• Writing to the memory as needed – checking the BUSY bit to make sure each write is
complete before starting another write.

• Disable write mode and re-LOCK the Flash (yet again, using the correct register password).

Note: Due to the complexity of these write operations, we recommend that you utilize the
FLASH DriverLib API, which will be discussed shortly.

9 - 20 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Using Flash

Before you can write to Flash memory, it must first be erased; in fact, the entire segment must
first be erased. Writes, though, can be done on a byte-by-byte basis.

On the ‘F5529 you might remember that we have three areas of Flash memory: Main, Info, and
Boot. The diagram below shows these along with their segment sizes.

Flash Segment Sizes‘F5529

0xFFFF

Main
Flash

81K

0xFF80 INT Vectors 80

0x4400

Main
Flash

47K

0x2400
RAM

0x1C00 USB RAM
0x1A00 TLV

Info A 128
Info B 128
Info C 128

0x1800 Info D 128

Boot Loader 2K

0x0000 Peripherals 4K
Bytes

0x243FF

Info blocks
128 byte segments

Boot Loader
512 byte segments

Main
512 byte segments

 Must erase before write
 Must erase entire segment, but

can write 8-, 16-, or 32-bits
 Must Unlock Info A before

writing to it, but Info B-D does
not require this

The Info blocks are popular locations to store calibration data because of their smaller 128 byte
segment size. This means less memory must be erased when needing to (re)write data. It also
minimizes interference with the “Main” Flash, which is often used for program code.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 21

Using Flash

Using DriverLib to Write to Flash
Notice the functions found in DriverLib’s FLASH module – these let you erase, write, fill and
check the status of the MSP430’s Flash memory.

FLASH API
 Writing to memory requires

‘procedure’
1. Enable write
2. Write data
3. Disable write

 Writing directly to Flash
causes an interrupt

 Must use ‘password’ when
writing to Flash control
registers – or a PUC occurs

 DriverLib FLASH API makes
Flash easy-to-use

 Must erase before write
 Must erase entire segment
 You can write 8-, 16-, or 32-bits
 Must Unlock InfoA before

writing to it (to avoid INT)

Flash erase operations are managed by:
 FlashCtl_segmentErase()
 FlashCtl_eraseCheck()
 FlashCtl_bankErase()

Flash writes are managed by:
 FlashCtl_write8()
 FlashCtl_write16()
 FlashCtl_write32()
 FlashCtl_memoryFill32()

Status is given by:
 FlashCtl_status()
 FlashCtl_eraseCheck()

Segment InfoA memory lock/unlock:
 FlashCtl_lockInfoA()
 FlashCtl_unlockInfoA()

The following code example uses DriverLib to perform a block erase on Info A; then write an
array of data to it. Remember, Info A has an extra “lock” feature that you need to unlock
beforehand, then should re-lock afterwards (this is not required for the other Info segments).

Code Example: Writing to “Info A”
#pragma DATA_SECTION (calibration_data_char, “.infoA”)
uint8_t calibration_data_char[16] = { 0x00,0x01,0x02,...};
uint16_t status;

// Unlock Info Segment A
FlashCtl_unlockInfoA();

do { // Erase INFOA
FlashCtl_segmentErase((uint8_t*)INFOA_START);
status = FlashCtl_eraseCheck((uint8_t*)INFOA_START,128);

} while (status == STATUS_FAIL);

// Write calibration data to INFOA
FlashCtl_write8(calibration_data_char,

(uint8_t*)INFOA_START, 16);

// Lock Info Segment A
FlashCtl_lockInfoA();

9 - 22 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Using FRAM (and the MPU)

Using FRAM (and the MPU)
Similar to Flash, there is a controller which handles the reading and writing of FRAM. Other than
the fact that both controllers require that you use a password to modify their registers, though,
there is very little else that they have in common.

FRAM Controller
Unlike Flash, FRAM allows users to easily read and write to them. This leaves the FRAM
Controller with only two things to do:
• Managing read/write access when the CPU is running > 8 MHz; including the use of cache to

minimize sequential/repetitive program accesses.

• Implementing error correction and control (ECC) memory checking.

Other than needing to set the waitstate value (if the CPU is running > 8 MHz), both of these run
transparent to the user.

FRAM Controller (FRCTL)
Functions of FRCTL:
 FRAM reads and writes like

standard RAM
bo cumbersome procedure is
required to store non-volatile data

 Read/Write frequency < 8MHz
 aust use wait-states

when aCLK > 8aHz
 Easy to configure in FRCTL

 Built-in 64 byte cache
 Lowers power by exe from RAa
 aaximizes performance;

especially when loops < 64B
 bo user configuration needed

 Bonus Feature: Error checking
and correction (ECC) built into
FRAa read/write cycle

Control Registers

FRAM
Controller

FRAM
Memory

Addr Bus

Data Bus Cache

If you care about the ECC feature, you will need to enable the associated interrupt bits so that
you’ll be warned in the case of a memory error/warning event.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 23

Using FRAM (and the MPU)

Unified Memory
FRAM supports unified memory – which means that you can store both Code and Data in FRAM.

Unified Memory : Code and Data
FRAM

Program
Code

Data
(constants)

Data
(variables)

FRAM Advantages:
 Mix & Match FRAM

for code and/or data
 Easy to read & write
 Fast
 High Endurance
 Non-volatile
 Very low power

If FRAM writes as easy as RAM,
what could happen in your system?

It’s often common to see the FRAM contain program code, constant data (i.e. read-only data), as
well as read/write (random access) data.

Can you think of what might go wrong, though, when using FRAM in this way?

Actually, it’s not a problem with the multi-use of FRAM; it’s more a problem with how easy it is to
write to FRAM…

9 - 24 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Using FRAM (and the MPU)

What Could Happen to FRAM?
The problem, as we said, is that FRAM is so easy to write to – unlike Flash. While generally this
is a good thing, what happens if your program goes rogue? For example, what happens if an
error causes your program stack to overrun its “boundary”?

Unified Memory : What Could Happen?
FRAM

Program
Code

Data
(constants)

Data
(variables)

FRAM Advantages:
 Mix & Match FRAM

for code and/or data
 Easy to read & write
 Fast
 High Endurance
 Non-volatile
 Very low power

Potential ERROR:
 What if your program

code accidentally wrote
over itself?

 What if the stack
overflows?

MPU to the rescue...

When using Flash, this problem would usually cause a system reset (PUC) since you cannot
write directly to it without using the proper procedure. With FRAM, though, there isn’t a
technological restriction to these types of programmatic errors.

The solution chosen by TI was to include a Memory Protection Unit (MPU) in these devices.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 25

Using FRAM (and the MPU)

Memory Protection Unit (MPU)
The MPU allows you to divide your FRAM into 2 or 3 segments and then individually apply
access permissions to each of these segments. As shown below, our FRAM was broken into 3
segments with: one segment (our code) set to only allow code Execution; another segment only
allows Read access; while the last allows read or write accesses.

Unified Memory : What Could Happen?
FRAM

Program
Code

Data
(constants)

Data
(variables)

Memory Protection Unit:

MPU Let’s you partition
FRAM into three segments

1. Execute only

2. Read Only

3. Read / Write

FRAM Advantages:
 Mix & Match FRAM

for code and/or data
 Easy to read & write
 Fast
 High Endurance
 Non-volatile
 Very low power

Potential ERROR:
 What if your program

code accidentally wrote
over itself?

 What if the stack
overflows?

How does the MPU work?

With the MPU configured and enabled in this manner, a write access to the “code” segment
generates an exception. This exception either causes a reset (PUC) or a non-maskable interrupt
(NMI) depending upon how you’ve configured the MPU.

In this way, you’re protected from potential errors due to errant writes to FRAM.

9 - 26 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Using FRAM (and the MPU)

Using the Memory Protection Unit (MPU)
Looking at the MPU more closely, we see that two registers define the boundaries for the three
segments. Writing addresses to these registers defines each segment’s location and size. An
upcoming example will show how we can use linker symbols to set these boundaries
appropriately.

Control Registers

MPU
FRAM

Memory

Addr

Data Bus

Interrupts

Memory Protection Unit
FRAM

Program
Code

Data
(constants)

Data
(variables)

MPUSEDB1

MPUSEDB2

Memory Protection Unit:

MPU Let’s you partition
FRAM into three segments

1. Execute only

2. Read Only

3. Read / Write

After a PUC reset, the MPU registers are set to their default state. This causes the FRAM to be
configured as a single segment with all access permissions enabled (Read, Write and Execute).

Notice – Use the MPU!

* Cited from the Application Note:
MSt430™ FR!M Technology – How To and Best tractices (SLAA628)

NOTE: Ht is very importMnt to MlRMys MppropriMtely configure Mnd enMNle
the MPU Nefore Mny softRMre deployment or production code
releMse to ensure mMximum MpplicMtion roNustness Mnd dMtM
integrityB The MPU should Ne enMNled Ms eMrly Ms possiNle Mfter
the device stMrts executing code coming from M poRer-on or reset
Mt the Neginning of the F stMrtup routine even Nefore the mMin()
routine is enteredB

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 27

Using FRAM (and the MPU)

As we might expect, looking at the following diagram we see that the MPU watches addresses
flowing into the FRAM controller. This allows it to intercept non-approved memory accesses to
FRAM.

Memory Protection Unit (MPU)

Control Registers

MPU

FRAM
Controller

FRAM
Memory

Addr

Data Bus

Interrupts

Cache

 No procedure to write to FRAM
 Configure MPU for 1-3 sections

(1 by default) to protect program
and/or data (on 1KB boundaries*)

 Violating protection causes
PUC or interrupt

 Must use ‘password’ when writing
to control registers – or else a
PUC occurs

 DriverLib FRAM and MPU API’s
makes it easy-to-use

 Configure wait-states if CPU is
running > 8MHz

 To use MPU
1. Set segment border registers
2. Turn on MPU
3. (Optional) Lock MPU registers

How do we configure the MPU?

Using the MPU requires:
• Writing a password to the MPU registers

• Setting the address segment boundary registers

• Setting the Read/Write/Execute permissions for each segment

• Configuring the violation response – should a PUC or NMI be generated whenever a
segment is incorrectly accessed

• Turn on the MPU

• Finally, you may wish to Lock the MPU to prevent any changes (until the next BOR reset)

While the procedure here might appear as long as the Flash writing procedure, remember that
you only need to do this once … not every time you want to write to FRAM.

A couple of additional notes about the MPU:
− Each segment can be configured individually for access permissions.

− You can also set access permissions for the Info blocks (as a whole).

− You can continue to change the MPU settings even after the MPU is enabled … that is,
unless you lock the MPU registers, in which case a reset is required before you can
access the MPU registers again.

9 - 28 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Using FRAM (and the MPU)

What are the Interrupt Options?

What Happens if MPU is Incorrectly Accessed?

A better way might be...

If a Memory Segment is
accessed incorrectly

NMI

PUC

IFG bit

 If an access violation occurs the IFG bit is always set
 “Assert PUC” lets you choose whether to have a

PUC or NMI generated
 Enable NMI can turn “off” NMI
 If PUC is off and NMI is off, only IFG is set (no interrupt)

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 29

Using FRAM (and the MPU)

MPU Graphical User Interface
Starting with CCSv6, the MSP430 team has created a convenient GUI to simplify the process of
setting up the MPU. The following screen capture shows the simple text/check boxes required to
set it up.

MPU Settings via GUI (CCSv6)

A better way might be...

 Intuitive way to
set segment
addresses and
assign permissions

 Allows selection of
interrupts and/or
PUC on violation

 Lock configuration
until BhR event

In fact, you can even elect to the let the GUI handle setting the boundary registers for you.

MPU Settings via GUI (CCSv6 only)

 Intuitive way to
set segment
addresses and
assign permissions

 Allows selection of
interrupts and/or
PUC on violation

 Lock configuration
until BhR event

 You can let the
code generation
tools manage the
MPU automatically
(explained next)

How does this "auto" setting work?

9 - 30 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Using FRAM (and the MPU)

The key to automating the GUI is found in the Linker Command File (CMD). The following fancy
linker syntax – found in the default linker CMD file – groups the non-volatile read/write sections
created by the linker.

The GUI tool creates 2 MPU segments:
• Segment 1 contains the Read/Write input sections that require non-volatile storage … or, in

the case of .cio, are large enough that they are often stored in “Main” FRAM space

• Segment 2 is not created as the starting address of Read/Execute non-volatile memory is
assigned to both MPU Segment Border registers.

• Segment 3 contains the input sections for Read-Only and Execute:

− Read Only sections such as the initial values for variables

− Finally, the Executable sections (.i.e. .text) which contain the code

Linker CMD file is Key to GUI “auto” Setting

 Default CMD creates 2 groups
allocated to FRAM:
u Read/Write
 Read hnly + Execute

 Defines address symbol
“fram_rx_start” which is at end
of read/write (i.e. start of “rx”)

 DUI creates 2 segments (1 & 3)
by assigning the same symbol to
MPUSEDB2 and MPUSEDB1.

u

Along with creating these output sections (and linking them into FRAM), the linker syntax above
also creates a symbol which defines the end of the Read/Write group and the start of each the
Read/Execute output sections.:

• fram_rx_start

The MPU GUI uses this symbol, but you can also access it from your code by using the proper
external declaration in your C file. An example of this is coming up later in this chapter.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 31

Using FRAM (and the MPU)

FRAM Code Example
The FRAM and MPU DriverLib functions can be used to configure FRAM access. We’ll examine a
few of these functions in our code example on the next page.

DriverLib FRAM & MPU API’s
FRAM writes can be managed by:
 FRAMCtl_write8()
 FRAMCtl_write16()
 FRAMCtl_write32()
 FRAMCtl_memoryFill32()

FRAM interrupts are handled by:
 FRAMCtl_enableInterrupt()
 FRAMCtl_getInterruptStatus()
 FRAMCtl_disableInterrupt()

Status is given by:
 FRAMCtl_configureWaitStateControl()
 FRAMCtl_delayPowerUpFromLPM()

Note: Setting the MPU with DriverLib is an alternative to using the GUI tool. If you’re not using
CCSv6, yet, then this is absolutely your best option. But this is also a good solution for
those of you who prefer to use code versus using a GUI.

9 - 32 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Using FRAM (and the MPU)

Configuring the MPU using DriverLib
The following example uses the symbols created by the linker to configure the boundaries
between the MPU’s three segments. The MPU_initTwoSegments() function makes it easy to
configure the segment boundaries and set the access permissions.

After configuring the segments, we tell the MPU we don’t want to generate a PUC when a
violation in Segment 1 occurs – instead, we’ll get an NMI if a violation occurs in this segment.

Finally, we start the MPU running.

Configuring MPU in Software

extern const uint16_t fram_rx_start;

void initMPU(void)
{

// Configure MPU as two Segments
MPU_initTwoSegments(MPU_BASE,
(uint16_t) &fram_rx_start >> 4, // Bound between 1 & 3
MPU_READ | MPU_WRITE | MPU_EXEC, // Seg 1: all access
MPU_READ | MPU_EXEC); // Seg 3: read & exe

// Disable PUC on segment access violation for segment 1
MPU_disablePUCOnViolation(MPU_BASE,

MPU_FIRST_SEG);

// Enable PUC on segment access violation for segment 3
MPU_enablePUCOnViolation(MPU_BASE,

MPU_THIRD_SEG);

// Start MPU protection
MPU_start(MPU_BASE);

For CCSv5.5 users or if you want to setup the MPU using C code:

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 33

Using FRAM (and the MPU)

Here’s a second example that configures the MPU for three segments.

Configuring MPU For 3 Segments

extern const uint16_t myFram_ro_start;
extern const uint16_t myFram_rx_start;

void initMPU(void)
{

// Initialize struct for three segments configuration
MPU_initThreeSegmentsParam myMPU;
myMPU.seg1boundary = &fram_ro_start; // Boundary between 1 & 2
myMPU.seg1boundary = & fram_rx_start; // Boundary between 2 & 3
myMPU.seg1accmask = MPU_READ|MPU_WRITE|MPU_EXEC; //Seg 1: all access
myMPU.seg2accmask = MPU_READ; // Seg 2: read only
myMPU.seg3accmask = MPU_READ|MPU_EXEC; // Seg 3: read & exe

// Configure MPU Segments
MPU_initThreeSegments(MPU_BASE,&myMPU);

// Disable PUC on segment access violation for segment 2
MPU_disablePUCOnViolation(MPU_BASE, MPU_SECOND_SEG);

// Start MPU protection
MPU_start(MPU_BASE);

For CCSv5.5 users or if you want to setup the MPU using C code:

9 - 34 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Using FRAM (and the MPU)

Putting Variables into FRAM
A unique advantage to placing variables in FRAM – besides the extra storage space it provides –
is that it allows variables to be non-volatile. That is, their value is retained – even upon power
loss.

An easy way to direct a variable to FRAM is to make it “persist”; that is, we can use a compiler
pragma to indicate that the variable’s value should persist even when power is removed from the
device.

Creating a Persistent Variable
#pragma PERSISTENT(b)
uint16_t b = 3;

int MyLine(int m, int x)
{

int y;

y = (m * x) + b;
Return (y);

}

 FRAM makes this easy – as simple to use as RAM
 Declaring variable as persistent means it’s:

 Placed into “.TI.persistent” section which is allocated to FRAM by
default linker command file

 Initialized only once, when the program is loaded into FRAM and
therefore retains its value whenever the program is reset/restarted

 NOINIT pragma similar to PERSISTENT, but uses “.TI.noinit”,
places the section in RAM, and never initializes the variable

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 35

Using FRAM (and the MPU)

Placing Variables into FRAM’s INFO Memory
Info memory is simple to use on FRAM-based devices. You just need is to indicate that your
variable should be placed into the Info B section using the Custom Section feature we discussed
earlier.

Code Example: Putting Var into “Info B”
#pragma DATA_SECTION (b, “.infoB”)
uint16_t b = 0;

int MyLine(int m, int x)
{

int y;

y = (m * x) + b;
Return (y);

}

 Place variable into INFO section using #pragma
 Default linker command file already assigns .infoB to a memory

segment called INFOB: infoB : {} > INFOB

 By default, all EABI sections are initialized at boot; tell linker
you don’t want INFOB to be initialized by setting ‘type’:

infoB : {} > INFOB type=NOINIT

 All Info blocks are defined in the CMD file in a similar fashion

This example lets us use FRAM for read/write variables, just like SRAM.

Note: If you want your INFO variable to persist – even after the processor is reset – you need to
declare the output section as NOINIT in the linker command file. We will see an example
of this in the upcoming lab exercise.

Put Any Section into FRAM
In fact, you can allocate any section to FRAM, it just takes a little editing of the using the linker
command file (.cmd).

9 - 36 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Using FRAM (and the MPU)

Setting FRAM Waitstates
Setting the FRAM’s waitstates involves a simple call to one DriverLib function. Look in the
datasheet to find the number of waitstate values you should use for your system.

Setting FRAM Wait-States

// If you run the CPU > 8 MHz, you need to set wait-states
FRAMCtl_configureWaitStateControl(FRAM_ACCESS_TIME_CYCLES_1);

Hint: Place this in your initClocks() function – near your MCLK setup code

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 37

Using FRAM (and the MPU)

Notes
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ

9 - 38 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Memory Protection on the 'FR2xx/4xx

Memory Protection on the 'FR2xx/4xx

FRAMCtl_write16() Example
FRAM writes can be managed by:
 FRAMCtl_write8()
 FRAMCtl_write16()
 FRAMCtl_write32()
 FRAMCtl_memoryFill32()

#pragma PERSISTENT(count) // Direct count into FRAM
uint16_t count = 0;
uint16_t temp = 0;

temp = 5;

// Write the value of temp back to the 'count'
FRAMCtl_write16(

&temp, // 'from' address of data
&count, // 'to' address of data
1 // How many elements to

);

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 39

System Init Functions

System Init Functions

Software System Initialization

Initialize
System

reset
vector

short m = 10;
short b = 2;
short y = 0;

main()
{
short x = 0;
scanf(x);
malloc(y);
y = m * x;
y = y + b;

}

_main

Reset Vector

_c_int00

1. Initialize compiler’s
stack and heap

2. Call the function:
_system_pre_init()

3. If return=1 then:
Initialize global and
static variables

4. Call _main

_system_pre_init()

 For more information on “reset events”, please refer to Chapter 4.

Example _system_pre_init()
int _system_pre_init(void)
{

// Stop watchdog timer
WDT_A_hold(WDT_A_BASE);

// Configure and start MPU
initMPU();

// Returning “1” tells compiler to complete variable
// initialization; alternatively, “0” says to skip it
return(1);

}

 Perform “early” system initializations by writing
_system_pre_init() function:
 It’s called by compiler’s boot routine (rts430_eabi.lib)
 Overload compiler’s function by writing your own
 Compiler’s default pre-init function is found in the Run-Time Support

library – it’s empty except for return(1);

 Returning 1 tells the compiler to initialize global and static
variables, while 0 tells it to skip this this step

9 - 40 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Lab 9 Exercises

Lab 9 Exercises

Lab Exercises
 Lab A – Count Power Cycles with Non-Volatile Variable

 Create a non-volatile variable – use it to count the # of power-cycles
o Blink LED the # of times there’s been a power cycle
o printf() to console the # of power cycles

 Use custom sections and linker command file to create the NVM variable
 (Flash only) Use API to write to NVM
 Use memory map and memory browser to ascertain where variables

were allocated by the linker
 (FRAM) Alternate Lab A – Use PERSISTENT pragma
 (F5529) Alternate Lab A – Low Wear Flash writes

 Explore the provided, albeit simple, low-wear flash write example
 (FR5969) Lab B – MPU Configuration

 Configure MPU to use 2 segments
 Write to ‘read/execute-only’ segment of FRAM to cause a memory

violation interrupt

* Note: We don’t have a (FR4133) Lab B… but the LCD chapter contains an extension of Lab9a.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 41

Lab 9 Exercises

Lab 9a – Using Non-Volatile Variables
lab_09a_info_fram (or lab_09a_info_flash)
This lab uses non-volatile memory to store a data value so that it will be available after a power-
cycle.

The value will be stored in Info memory, which a non-volatile memory (NVM) segment set aside
for data information. The 'F5529 uses flash technology to store non-volatile information, while the
'FR5969 & 'FR4133 use FRAM.

The code will keep track of how many power-cycles (BOR's) have occurred. After power up and
initializing the GPIO, the code looks for a count value in NVM, it then increments the count value
and:
• Writes the updated value back to Flash or FRAM

• Prints out the # of power-cycle counts with printf()

• Blinks the LED count # of times

To minimize typing, we created the project for you. The "hello.c" file in this project is an amalgam
of labs:

− lab_03a_gpio for the gpio setup

− lab_04b_wdt for the printf functionality

To this we've added:
− Logic to manage the "count" value

− For the ‘F5529, we wrote a function which writes to Flash Info B – since it needs to
be erased before being written to. (The FRAM devices don’t need this step!)

− You will need to fill in a few answers from your Lab 9a worksheet

There is no MPU "protection" setup for the 'FR5969 FRAM in this exercise. That is shown in
lab_09b_mpu_gui or lab_09b_mpu_with_driverlib. (Note that the F5529 and FR4133
devices don't have an MPU.)

9 - 42 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Lab 9 Exercises

Worksheet

1. Examine the linker command file (.cmd) and find the name of the memory area that
represents the Info memory. (You only need to complete the table for your processor.)

 Processor Memory Section Name Address

 F5529 INFOB

 FR5969 INFOB

 FR4133 INFOA

Finish this line of code:

 #pragma __________________ (count, "____________")

static uint16_t count;

2. Again, looking at the linker command file, what address symbol is created by the linker to
represent the starting address of executable code?

3. (‘F5529 only) What functions are needed to erase and write to Flash?

 (Note: We’re interested in writing 16-bit integers to Flash.)

 //Erase INFOB
 do {

 ________________________((uint8_t*)INFOB_START);
 status = FlashCtl_eraseCheck(
 (uint8_t*)INFOB_START,
 NUMBER_OF_BYTES);
 } while (status == STATUS_FAIL);

 //Flash Write

 __________________________________(

 (uint16_t*) value,
 (uint16_t*) flashLocation,
 1
);

F5529

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 43

Lab 9 Exercises

File Management
1. Close any open projects or files.

2. Create a new project in the appropriate lab folder.

 Use the “Empty Project with DriverLib Source” project template.

 Make sure you create your project in the correct folder:
 C:\msp430_workshop\F5529_usb\lab_09a_info_flash

 or C:\msp430_workshop\fr5969_fram\lab_09a_info_fram

FR5969

F5529

9 - 44 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Lab 9 Exercises

 or C:\msp430_workshop\fr4133_fram\lab_09a_info_fram

3. Delete main.c from the project.

 This isn’t needed since we’ve provided the file hello.c file which contains main().

4. Verify that your project contains the file hello.c.

 It should look like:

or

or

 If this file is missing, then you probably created the project in the wrong directory. You can

either add this file to your project (from the directory shown in Step 1) or delete the project
and start over again.

FR4133

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 45

Lab 9 Exercises

Edit Code
5. Fill in the blanks in the hello.c file.

 Use your answers from the worksheet questions (page 9-43).

6. Increase the heap size to 320.

 This was a change we performed back in Lab 2 in order to get C Standard I/O to work.
Here’s a quick reminder:

Right-click on Project → Properties…

Build → MSP430 Linker → Basic Options → Heap Size

7. ('FR5969 only) Modify the .infoB setting in linker command file.

 Since FRAM reads/writes like SRAM, the compiler auto-initializes it each time our C program
starts … just like any other global variable. Of course, that’s not what we want in this instance
– we want to use the non-volatile nature of FRAM to maintain the value of ‘count’ when the
power is off. To make this happen, we can tell the tools to “not initialize” the variables. This
can be done by editing one line in the linker command file to add the NOINIT type.

 .infoB : {} > INFOB type=NOINIT

 We could have limited the scope of our NOINIT modification, but it’s an easier edit to set this
type for the entire .infoB section.

Note: This step isn’t needed on the ‘FR4133 device – even though it’s also FRAM based.

While the ‘FR5969 has a more advanced MPU, it’s not turned on by default. Conversely,
the ‘FR4133 has a simple memory protection mechanism, but it is enabled by default.

FR5969

9 - 46 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Lab 9 Exercises

Build and Evaluate
8. Build program the program.

 Fix any syntax errors and rebuild until your program compiles successfully.

9. Open the .map file (from your project’s Debug folder) and answer the questions below.
 The .map file is a report created by the linker which records where memory was allocated.

(We used INFOA for the FR4133 and INFOB for FR5969 and F5529).

 ‘F5529 ‘FR5969 ‘FR4133

Which INFO Section was used? INFOB INFOB INFOA

Address of INFOA or INFOB

Where was this INFOA/INFOB
address specified to the tools?

Address of .infoA or .infoB

Compiler’s Boot Routine:
_c_int00 (.text:isr)

Main Code (.text)

Length of code* (.text)

Address of count

fram_rx_start

 *Note that turning on the optimizer may allow the compiler to build a smaller program.
 Also, you would not want to use printf() in a production level program as this leads to very
 inefficient programs.

10. Why does the code (.text) section start so far away from the beginning of Main Flash or
FRAM? (Hint: Look at the section allocations in the .cmd file.)

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 47

Lab 9 Exercises

Run the Program to Watch the Non-Volatile Variable
11. Launch the debugger.

12. Open the Memory Browser window.

View → Memory Browser

 Try looking at some of the locations used in our code:

0x1900 (or 0x1800)
&fram_rx_start (for ‘FR5969 devices)
&count

From the Memory Browser, what is the address of: &count _________________________

13. To watch their values, add variables to the Expressions Window for:

count
c (for ‘F5529 devices)
i (you can also see ‘i’ in the local Variables window)

Hint: You may want to change the number format for “c” to “hex”:
 Right-click expression → Number Format → Hex

14. Single-Step through the code to watch it work.

 The Memory Browser is interesting because you can see the variable in Flash (or FRAM).

Hint: You can also modify the value in Flash by changing it in the Memory Browser. This is
convenient if you want to reset the value back to 0.

This same hint works for FRAM too, but it’s not as surprising that we can change
FRAM so easily in the debugger

15. Restart the program.
 If you let the program run without a breakpoint, you may need to Suspend it before Restart.

16. Step through the code again ... hopefully it retained its count value.

 You should see the printf() statement output the latest count value, as well as the LED blink
one more time than during the previous run.

17. Terminate the debugger and unplug the board – then plug it back in.

 Do you see the LED blinking? Again, it should be 1 more time than previously.

18. Reset the Launchpad with the reset button ... does the LED blink 1-more-time each
time its reset or power-cycled?

 Just clicking the reset button on your board (without unplugging/plugging it) should be
enough to restart the program and increment count.

9 - 48 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Lab 9 Exercises

(FRAM Devices Only) lab_09a_persistent
As discussed in this chapter, the MSP430 compiler has a pragma to define persistent variables.
This method of creating persistent variables is easier to use than the method shown in
lab_09a_info.

Worksheet
(Hint: Please refer to the Chapter 9 discussion in the Workshop PDF for help with these questions.)

1. Write the line of code that tells the compiler to make the variable “count” into a
persistent, non-volatile variable.

 In the previous part of this exercise, creating a non-volatile variable took two steps:
 Specify the variable should go into a specific section using #pragma DATA_SECTION
 Edit the linker command file to declare the output data section as “type=NOINIT”

 What new pragma replaces these two steps?

 #pragma __________________________________ (count)

 uint16_t count = 0;

2. When using this pragma, what section name does the compiler place the variable into?

3. What action causes a Persistent variable to be initialized?

FR5969

FR4133

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 49

Lab 9 Exercises

File Management
4. Create a new CCS DriverLib project named lab_09a_persistent.

 Make sure you choose the DriverLib template in the dialog, then click Finish.

5. Copy/Paste the file hello.c from the previous lab exercise.

 In Project Explorer, copy hello.c from lab_09a_info_fram and paste it into
lab_09a_persistent.

6. You can now close the lab_09a_info_fram project.

7. Delete main.c from the new project.

 We don’t need to keep the generic/default main.c file since hello.c (which we just copied
into our project) contains the main() function.

8. Increase the heap size to “320” so that STDIO will work.

9. Build your project and fix any errors.

 Before we started editing the code, let’s make sure we didn’t introduce any errors when
creating our new project. (In fact, this is how we realized that we needed to tell you to delete
the default main.c file.)

9 - 50 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Lab 9 Exercises

Edit Code
10. Edit hello.c to use the new pragma rather than the old one.

 Comment out the old pragma that specified the infoB (or infoA) data section and enter the
new pragma which declares our variable as persistent (referring back to your answer in step
1 on pg 9-49).

 Your code should now look something like this:

Build and Run
11. Build the project and fix any errors you encounter.

12. Look up the following details in the lab_09a_persistent.map file.
 Hint: (1) Look for the .map file in the project’s Debug folder.

 (2) Double-click linker command file to open in the CCS editor
 (3) Use Control-F to open search dialog – then search for “count” and “.TI.persistent”

What address is count located at? ___

Is this address located in the .TI.persistent output section? __________________________

Referring to the memory-map shown in the chapter, what part of the memory map is
.TI.persistent located at? (Circle the correct answer)

INFOA INFOB INFOC INFOD MAIN

13. Click the Debug toolbar button to enter the debugger and load the program to your
FRAM Launchpad.

14. Verify that your code works as expected.

 Similar to the previous lab exercise (lab_09a_info steps 15-18 pg. 9-48), verify that your
count variable persists – and is incremented – after each reset and/or power cycle.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 51

Lab 9 Exercises

Initialzing a Persistent Variable
15. Terminate the debugger, if CCS is currently in Debug mode.

16. Power-cycle the Launchpad and count the number of LED blinks. (By unplugging, and
then re-plugging in your board.)

 We’re asking you this so that we can get a baseline number for our next step. Remember,
each time we power-cycle the board, count should be incremented and the LED should blink
that number of times.

of LED blinks after power-cycle: __

17. Make sure your Launchpad is plugged in and then click the Debug toolbar button.

18. After the debugger is launched and the program is loaded into FRAM by CCS… what is
the current value of count?

 Look in the Expressions Window (or the Memory Window) to get the value for count.

count = ____________________

Explain how count was changed to its new value? _________________________________

19. Terminate the debugger and close the project

(‘F5529 Only) (Optional) lab_09a_low_wear_flash
'F5529 only -- FRAM parts rarely need to worry about wear issues due to their high endurance.

This example modifies lab_09a_info_flash by using the entire infoB segment. In the original
exercise, we wrote count to the first location in Info B. On the next power-cycle we erased the
entire Info B segment and only wrote one location; we did this again-and-again on every power-
cycle.

This solution provides a simple method of minimizing FLASH wear. Rather than erasing the entire
flash on each power-cycle, we now use consecutive locations in flash. We keep doing this until
we reach the end of InfoB; only when we reach the end of InfoB do we erase the entire segment
and start over again.

While there are probably better algorithms to handle these types of flash wear issues, this is a
simple example solution to the problem.

Import and explore the lab_09a_low_wear_flash solution

F5529

9 - 52 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Lab 9 Exercises

(‘FR5969 Only) Lab 9b – Protecting Memory
As explored in Chapter 9, it’s important to protect your executable program and read-only data
stored in FRAM using the Memory Protection Unit (MPU). The FRAM – Usage and Best Practices
application note puts it this way:

The following lab exercise takes you through a couple of different ways you can set up the MPU:
• Using the MPU Graphical User Interface (GUI) found in CCSv6

• Using DriverLib code in MPU initialization function called from main()

• Using DriverLib code in MPU initialization function called from _system_pre_init()

You’ll find the GUI method to be quick and easy – thus we recommend that all FRAM users
complete this exercise. While the 2nd and 3rd examples are not difficult, evaluating their code
takes a little bit more time and effort, therefore we’ve marked them as “optional”.

lab_09b_mpu_gui
Using the CCSv6 GUI to automatically configure the MSP430 MPU.

File Management
1. Import the lab_09a_persistent_solution.zip project file.

 You can skip this step if you completed this project and want to use it, otherwise, import the
previous lab’s project solution.

2. Rename the project you just imported to: lab_09b_mpu_gui

3. Verify all other projects are closed.

4. Build the project to verify the project imported correctly.

FR5969

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 53

Lab 9 Exercises

Enable MPU
5. Open the lab_09b_mpu_gui project properties and setup the MPU GUI.

Right-click on the project → Properties

 Click OK once you have configured the MPU as shown.

6. Build the project.

7. Open the linker command file (.cmd) and determine the expected MPU settings.

 The GUI – along with the linker command file – configures the MPU as two segments. In this
case, it sets both segment border registers to the same value.

 Fill in the following values based on the default linker command file?

Segment 3
.text

Segment 2

Segment 1
.TI.persistent

Hint: The MPU segment registers should be set to the address shifted right by 4.
For example: fram_rx_start >> 4

8. Open the lab_09b_mpu_gui.map file to determine the starting address of Segment 1.

What is the starting address of .TI.persistent? ________________________________

How does this compare with your expectation? ___________________________________

MPUSEGB1 =

MPUSEGB2 =

Start address of
Segment 1

9 - 54 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Lab 9 Exercises

Debug and Verify
9. Launch the debugger. Let the program load and run to main().

10. Compare your expectations versus the actual MPU register settings.

 The MPU settings, as configured by the GUI, are written to the registers during as part of the
compiler’s initialization; therefore, the MPU settings are already set by the time the program
counter reaches main().

 Copy down the settings for the MPU Segment Border registers:

How do they compare to your expectations? _____________________________________

11. Once you’re done exploring the automatic GUI settings, you can Terminate the
debugger and close the project.

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 55

Lab 9 Exercises

(Optional) lab_09b_mpu_with_driverlib
This lab explores the use of the Memory Protection Unit (MPU). We program the MPU using
DriverLib and then set about violating the assigned protections by trying to write into protected
memory segments. We set up these violations to create NMI (non-maskable interrupt) events.

Project comments
• Builds on lab_09a_info_fram (that flashes the LED the number of times the program has

been reset or power-cycled)

• Uses _system_pre_init() function to configure WDT and MPU before reaching main()

• Initializes the MPU:

− Using 2 segments (with border address defined by the linker command file)

− Setting up violation on write to Segment 3 (where code is located)

− System NMI is generated on violation (as opposed to PUC)

− MPU is started, but not locked

• A “violation” function in the program tests the MPU's configuration by writing to the various
segments – trying to create violations; the results are reported back via printf()

• An example of the FR5969 reset handlers are provided; including a function that tests for why
the program was last reset

• A simple example for creating SYSTEM event flags is provided. This can be used to flag
reset/interrupt events so that your main program can respond to them (if needed). These
flags were allocated with PERSISTENT storage.

Files in the project:
• hello.c : Carried over from the previous lab, but quite a bit has been added to it.

• myMPU.c : Provides the function that initializes the MPU; as well as the function which
causes memory violations

• system_isr_routines.c : Includes the interrupt handlers for Reset, System NMI, and
User NMI events. Additionally, it contains our _system_pre_init() function call.

Reference
The system_isr_routines.c file provides a good template for handling MSP430 System
Reset Events. For more information about this, check out the wiki page:

 http://processors.wiki.ti.com/index.php/Handling_MSP430_System_Reset_Events

FR5969

9 - 56 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

http://processors.wiki.ti.com/index.php/Handling_MSP430_System_Reset_Events

 Lab 9 Exercises

Basic Lab steps
 Import the lab_09b_mpu_with_driverlib project
 Build the project
 Run the program and examine the printf() output to the Console window
 Suspend the program and put a breakpoint at the start of _system_pre_init()
 Import "watch_expressions.txt" from the lab folder into the Expressions window
 Reset the CPU and single-step through the initMPU() to see how these functions work –

watch how the MPU registers get modified
 Set breakpoints on the different cases in the NMI interrupt handler that are related to the 4

different FRAM segments. Why don’t we get Info and Segment 1 interrupts?
 Try changing the 'enablePUC' and 'enableNMI' options, each time rebuilding the program to

see how this affects the results of the memory segment violation tests
 Before launching the debugger, turn off the “auto run” feature:

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 57

Lab 9 Exercises

Notes
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQ

9 - 58 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Chapter 9 Appendix

Chapter 9 Appendix

Worksheet (Q1, Q2)

0x1900

DATA_SECTION

fram_rx_start

0x1900

0x1800

.infoB

.infoB

.infoA

Worksheet (Q3) – ‘F5529 Only

FlashCtl_segmentErase

FlashCtl_write16

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 59

Chapter 9 Appendix

lab_09a_info (Q9)

‘F5529 ‘FR5969 ‘FR4133

Which INFO Section was used? INFOB INFOB INFOA

Address of INFOA or INFOB 0x001900 0x001900 0x001800

Where was this INFOA/INFOB
address specified to the tools? Linker Command File

Address of .infoA or .infoB 0x001900 0x001900 0x001800

Compiler’s Boot Routine:
_c_int00 (.text:isr) 0x004400 0x004800 0x00D61C

Main Code (.text) 0x010000 0x010000 0x00C5D0

Length of code* (.text)
(Your values may vary…)

0x0012FC 0x001258 0x0011F8

Address of count 0x001900 0x001900 0x001800

fram_rx_start N/A 0x004800 N/A

lab_09a_info (Q10)

Because that’s how they were specified in the default linker

command file (.cmd).

Here’s some snippets from the ‘FR5969 linker command file.

You’ll find similar results for “FLASH” in the ‘F5529 linker command file.

9 - 60 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

 Chapter 9 Appendix

lab_09a_persistent (FR5969 Only)

PERSISTENT

.TI.persistent

Loading the program into FRAM using CCS

lab_09a_persistent (FR5969 Only)

0x4400

Yes

0

Clicking Debug toolbar button

causes CCS to load the program… which initializes tersistent variables

MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM 9 - 61

Chapter 9 Appendix

lab_09b_mpu_gui (FR5969 Only)

0x4400

0x480

0x480

0x4400

Matches our expectation; we
expected Segment 1 to contain the read/write data – while
Segment 3 would contain the read/execute content

Matches expectations

9 - 62 MSP430 Design Workshop - Non-Volatile Memory: Flash & FRAM

USB Devices

Introduction
The MSP430 makes an ideal USB device: ultra-low power, rich integration of peripherals and it’s
inexpensive. Do you want to make a Human Interface Device product? Maybe a sensor, such as
a barcode reader, that needs to be both low-power (when collecting data), but also capable of
‘dumping’ its data via USB to a computer. Dream big, we’ve got the devices, tools, and software
to help you make them come true.

Learning Objectives

Objectives

- Draw a diagram that defines the basic operation
of USB serial communications

- USB classes:
- List the 3 supported by MSP430 devices
- When to select one versus another

- Enumerate 2 ways, using TI’s USB API to respond
to a system’s USB connection state

- To NOT cover every aspect of USB
- Write a program to talk over the USB serial bus

using the provided API stack

MSP430 Design Workshop - USB Devices 10 - 1

Introduction

Chapter Topics
USB Devices .. 10-1

Introduction ... 10-1
What is USB? .. 10-3
MSP430's USB Support .. 10-7

USB Fees .. 10-13
How USB Works ... 10-15

Pipes and Endpoints ... 10-16
USB Transfer Types .. 10-19
The USB Frame .. 10-20

Descriptions and Classes .. 10-22
Quick Overview of MSP430’s USB Stack ... 10-28
ABC’s of USB .. 10-31

A. Plan Your System ... 10-31
B. Connect & Enumerate .. 10-32
C. Managing my App & Transferring Data .. 10-34

Final Thoughts .. 10-37
Lab Exercise ... 10-39

10 - 2 MSP430 Design Workshop - USB Devices

 What is USB?

What is USB?
Universal Serial Bus (USB) is just that, a universal serial connection between a “Host” and
“Device”. It has taken the place of many synchronous and asynchronous serial bus connections
in systems such as personal computers.

In the case of USB, the host manages all transfers, whether moving data to or from the host –
often this is called a master/slave architecture, where the host is the bus master. At a minimum,
there needs to be one host and one device.

MSP430 Design Workshop - USB Devices 10 - 3

What is USB?

But… USB supports many more than just a single device, the standard can actually support up to
127 different devices. Commonly, systems with multiple devices use hubs as interconnection
points between the host and devices – which results in a star arrangement.

Each type of device is distinguished using Vendor and Product ID (VID/PID). The combination of
VID and PID allows a host to identify the type of device that is connected and manage the point-
to-point communications with it – in most cases, this requires the host to load the appropriate
drivers required to talk with that specific type of device. (We’ll discuss this is greater detail later in
the chapter.)

10 - 4 MSP430 Design Workshop - USB Devices

 What is USB?

The Universal Serial Bus protocol has gone through a few versions over time. Back in 1995 USB
revision 1.1 was released. This version provided separate host and device connectors along with
supporting two different speeds: Low speed moved data at speeds up to 1.5Mpbs (megabits-per-
second); while Full speed provided data rates up to 12Mbps.

USB Standards

aSt430 USB teripheral Supports
 USB 2.0 standard
 Full speed USB device (12abps)
 Device only

Note: Look at TI’s TivaC processors if you need host, device or OTG support

Version Year Speeds Power
Available Notes

USB 1.1 1995 1½ Mbps (Low)
12 Mbps (Full) – Host & Device connectors

USB 2.0 2000
1½ Mbps (Low)
12 Mbps (Full)
480 Mbps (High)

500 mA
• Backward compatible

with USB 1.1
• Added On-the-Go (OTG)

USB 3.0 2008

1½ Mbps (Low)
12 Mbps (Full)

480 Mbps (High)
4.8 Gbps (Super)

900 mA

• Backward USB 2.0
compatibility

• Full-duplex
• Power mgmt features

In 2000, USB 2.0 was released as an upgrade to USB 1.1. Along with Low and Full speeds, a
much faster High 480Mbps rate was added. Other major additions to the standard included a
power supply of 500 mA provided from the USB cable, as well as capability for advanced devices
to switch between Host and Device modes – called On-The-Go (OTG) mode. The OTG feature is
handy in some applications where a product might have to be a Device or a Host depending upon
what it is connected to.

The MSP430’s USB port supports the USB 2.0 standard, but only operating at the Full rate.
(Seeing that the fastest MSP430 devices only run up to 25MHz, it’s not hard to wonder why they
cannot support the 480Mbps rate.) Additionally, since the MSP430 doesn’t provide Host support,
it therefore does not provide the OTG Host/Device switching feature.

Hint: If your product needs Host and or OTG support, you may want to check out TI’s Tiva-C
line of ARM Cortex M4F processors.

Just a few years ago, in 2008, USB added the 3.0 revision. While once again backward
compatible to USB 1.1 and USB 2.0, the new revision added an additional Super 4.8Gpbs rate. It
also included full-duplex operation, a higher power sourcing availability of 900 mA as well as
other power-management features. While this is quite advantageous for many types of end-
applications – such as hard disk drives, high-end imaging systems (i.e. scanners), and such – it’s
overkill for many other systems, where low power and cost are primary directives.

MSP430 Design Workshop - USB Devices 10 - 5

What is USB?

Bus standards, such as USB, contain a variety of layers. While these physical and data
specifications are important, exploring them in great detail is outside the scope of this chapter.

On the following slide, we’ll introduce a couple basic features of the physical layer – that is, of the
USB cable. Later on in the chapter, we will discuss some of the details regarding data and
software layers.

Bottom Line: We have tried to approach USB, in this chapter, from a pragmatic perspective. That
is, rather than examining the details of the specification, we want to figure out how to use TI’s
devices and tooling in order to just get something running.

USB … Physical Layer
 Four wires in the cable/connector:

 VBUS (5V - supplied by host)
 D+ for differential data signaling
 D–
 Ground

 Originally only two connector types (host & device), though many
additional plugs were defined later

 USB 2.0 added On-The-Go (OTG) feature, letting
devices switch from device to host, as needed

 USB 3.0 has concurrent bidirectional data
transfers, thus cables include four more
data lines (backward compatible)

 USB devices are hot swappable

D-
D+

GND

VBUS (+5V)

R

Y

B

Br

As shown above, the USB cable provides four different signals:

• One signal pair provides power and ground. The power signal, called VBUS, is a +5V
supply. Not only does this pair provide USB 2.0 devices with up to 500 mA of power, but
bringing this signal high (+5V) is how the Host begins communicating to a Device. (We’ll
see more about this later in the chapter.)

• The other pair of signals, D+ and D-, provides a differential data signal from the Host to
the Device. As most hardware engineers know, using differential signaling provides more
robust data transmissions.

USB 3.0 cables provide more additional signals to support its higher performance; although,
that’s not something we need to deal with in this chapter.

Finally, the USB standard supports “hot swappable” devices. This means they can be connected
and disconnected as needed. The USB protocol provides a means for handling this feature. To
this same end, your USB application should remain flexible. By this, we mean that your
application needs to be written so that it can handle an asynchronous change in the USB
connection state. This might include the Host putting your Device into Suspend mode (where you
receive a reduced power supply) … or the end-user disconnecting your Device from the Host by
“yanking the cable”.

10 - 6 MSP430 Design Workshop - USB Devices

 MSP430's USB Support

MSP430's USB Support
As we stated on the first page, the MSP430 proves to be an excellent solution for building USB
Devices. Many devices in the F5xx and F6xx MSP families contain the USB peripheral. Coupling
this proven USB hardware port with the low-power nature of the MSP430 makes possible some
interesting USB applications.

MSP430 USB Support

1. Largest 16-bit portfolio of integrated
USB and 512KB memory

2. Proven USB core
3. Optimized for low power operation

1. Perfect for developers new to USB as well
as experienced engineers

2. Code gen tools and proven USB stacks
significantly eases development
(at no cost to the customer)

3. Availability of a new low price MSP430 USB
LaunchPad tool

Most comprehensive low power MCU USB portfolio

Easy USB coding for developers

Besides the low-power advantages of the MSP430, though, the software tools and USB stack
make the MSP solution really stand-out.

The USB standard is a very capable, and therefore involved, protocol. The TI tools, along with the
MSP430 USB stack (i.e. USB library), make it possible for novices and experienced users to take
advantage of this capability.

Combining these software tools with the MSP430 USB Launchpad makes an excellent low-cost
development environment.

MSP430 Design Workshop - USB Devices 10 - 7

MSP430's USB Support

This table summarizes some of the MSP430 devices that provide USB functionality. As you can
see, there are a variety of processors with different memory and peripheral options.

MSP430 Devices with USB

troduct s trog
(KB)

wAa
(KB)

16-Bit
Timers

Common
teripherals ADC Additional

Features

aSt430F663x up to
256

8 to 16

4

WDT, wTC,
DMA(3-6),

MtY32,
Comp_B,
UAwT, StI,
I2C, tMM
(Bhw, SVS,
SVM, LDh)

12-bit

USB, EDI, DAC12,
LCD, Backup

battery switch

aSt430F563x up to
256

USB, EDI, DAC12,
Backup battery

switch
aSt430F552x 32 - 128 6 to 8

USB, 25 MItS
aSt430F551x 32 - 128 4 to 8 ‾

10-BitaSt430F550x 8 - 32 4

 tortfolio of devices with more (or less) peripheral/memory integration;
this provides basis for different price points

 USB Launchpad uses the ‘F5529 … found in the middle of the pack

10 - 8 MSP430 Design Workshop - USB Devices

 MSP430's USB Support

The following slide, taken from the ‘F5529 User’s Guide, lists many of the MSP430 USB module’s
features. While we’ve already spoken about the Full-speed capability, unless you’re already quite
familiar with the USB standard, most of the other features listed probably won’t make much
sense… yet.

MSP430 USB Module

MSP430 Design Workshop - USB Devices 10 - 9

MSP430's USB Support

We’ll address many of the data/system oriented features throughout the rest of the presentation.
You might note here, though, the hardware specific features. For example, “including the PHY”
(physical interface) means there’s one less thing for you to put on your board. Also, the USB port
has its own dedicated block of SRAM (though the system can use it when the USB port is
disabled).

USB Block Diagram

aSt430 USB teripheral Supports
 USB 2.0 standard
 Device only

(Host not supported– try Tiva-C from TI)
 Full speed USB device (12Mbps)
 Includes 16 Endpoints (8-in/8-out)
 Certified USB module

 Integrated transceiver (tHY)
 Integrated 3.3V LDh for direct

operation from USB bus
 trogrammable tLL

(generates 48MHz USB clock)
 Integrated D+ pull-up resistor (tUw)

Also, notice the LDO voltage regulators. These let the port (and even the MSP430 device itself)
operate from the +5V supply coming from an attached USB cable. Finally, the built-in PLL
handles the required USB clock requirements, utilizing one of the MSP430 external clock inputs.

10 - 10 MSP430 Design Workshop - USB Devices

 MSP430's USB Support

We bragged about the MSP430 development support. Here’s a peek at it. Looking at the items
pointed out by the red arrows:

• We begin with the excellent USB Programmers Guide

• The Descriptor Tool is truly unique. It makes easy work of the tedious (and error prone)
job of creating USB interface descriptors.

• The USB HID Demo is a Host-side tool that lets you interact with custom devices
implementing the Human Interface Device class. It’s like a serial terminal program for HID
devices.

• Finally, the rich set of examples provided by TI not only provides a way to “play” with
USB, they also make excellent starting points for your own applications.

USB Developers Package

MSP430 Design Workshop - USB Devices 10 - 11

MSP430's USB Support

Sidebar – MSP430 USB API Features

MSP430 USB API Features
1. A finished API

– Not just example code
– Increases chance of USB success, because the user doesn’t need to modify

the USB plumbing; speeds development
– An API approach makes USB more accessible to USB non-experts

2. Small memory footprint
– Single-interface CDC or HID: 5K flash / 400 bytes RAM
– MSC (not including file system / storage volume): 8K flash / 1.4K RAM

3. Can use either DMA or CPU to move data
– Simply turn the DMA feature ‘on’ and select the channel

4. Limited resource usage
– Only uses the USB module, some memory, & a DMA ch; no other resources

5. RTOS-friendly
– TI will soon provides using it with TI-RTOS

MSP430 USB API Features, cont.
6. Responsiveness

– No risky blocking calls stuck waiting for the host
– Data can be transferred “in the background”, for increased system

responsiveness and efficiency, even with a busy host/bus

7. Easy data interface (CDC and HID-Datapipe)
– The function calls are similar to interfacing with a simple COM port
– You can send/receive data of any size, with a single call -- no packetization

required
– Deep USB knowledge not required

8. Flexibility (MSC)
– Compatible with any file system software. (We provide the open-source

“FatFs” as an example.)
– Easy multiple-LUN support; just select the number of LUNs
– No RTOS required – but can be ported to one

10 - 12 MSP430 Design Workshop - USB Devices

 MSP430's USB Support

USB Fees
As we described earlier, your USB product needs a Vendor and Product ID (VID & PID) in order
to meet the requirements of the standard. The USB Implementers Forum (USB-IF) charges a fee
to license a Vendor ID.

As an alternative to purchasing your own VID, silicon vendors such as Texas Instruments, will
provide you the ability to use their VID when using the MSP430 USB-based devices. Please refer
to TI’s website for more information on obtaining a VID/PID.

MSP430 Design Workshop - USB Devices 10 - 13

MSP430's USB Support

Additional USB Resources
Along with TI’s MSP430 USB page, we’ve provided some USB references that we found useful.

Suggested Reading

 “Starting a USB Design Using aSt430™ aCUs” App Note by Keith Quiring
(Sept 2013) (Search ti.com for SLAA457.pdf)

 “trogrammers_Guide_aSt430_USB_AtI” by Texas Instruments (Aug 2013)
Found in the aSt430 USB Developers tackage

 “USB Complete: The Developer's Guide” by Jan Axelson (ISBN 1931448086)
http://www.amazon.com/USB-Complete-Developers-Guide-Guides/dp/1931448086

10 - 14 MSP430 Design Workshop - USB Devices

 How USB Works

How USB Works
As we stated at the beginning of the chapter, USB is a serial, Master/Slave communication
protocol. That is, the Host acts as the Master; communication to and from the Host is directed by
the Host. The Device only responds to requests from the Host.

The USB standard allows many Devices to be connected to a single Host. The Host assigns an
address to each Device as it is connected (i.e. enumerated) to the Host. This is really a minor
detail, though, since – as a Device – we don’t need or use this information.

Logical Connection Between Host & Device

Device

Master

Slave

 Communication takes place
between the host and device

 Host controls ALL communication
 Device is addressable

(assigned by host)

Host

MSP430 Design Workshop - USB Devices 10 - 15

How USB Works

Pipes and Endpoints
To be more specific, a Host communicates with a Device through a Pipe; that is the name given
to this communication pathway. The Pipe makes a connection to a Device Endpoint; which is
essentially just a buffer in the Device. (As we’ll see in a minute, the MSP430 has dedicated
Endpoints in its USB port hardware.)

Communication Pipes

Host

Device

Endpoint

Pipe

 Host/Device communication occurs
thru a Pipe

 The host sets up pipe connections
to one or more device “endpoints”

 An endpoint is essentially a buffer
in the device

10 - 16 MSP430 Design Workshop - USB Devices

 How USB Works

Pipes specify unidirectional data movement. If you want to move data in both directions, two
Pipes must be created – which requires 2 Endpoints. Also, seeing as Pipes (and USB, in general)
are Host centric, the directions In and Out are from the Host’s perspective.

Communication Pipes

Device

Pipes

InOut

Endpoints

 Host/Device communication occurs
thru a Pipe

 The host sets up pipe connections
to one or more device “endpoints”

 An endpoint is essentially a buffer
in the device

 Pipes/Endpoints are unidirectional
 In/Out is from the Host perspective

Host

MSP430 Design Workshop - USB Devices 10 - 17

How USB Works

While the USB standard only requires a Device to have one Input and one output Endpoint, the
MSP430 USB port provides 16 Endpoints: 8 Input and 8 Output. Additionally, the MSP430
Endpoints each contain a 64-byte buffer – the largest specified in the USB specification. All-in-all,
this hardware provides the MSP430 with a lot of flexibility in the types of communications it
supports.

As shown below, the set of Input and Output Endpoints are numbered 0 – 7.

MSP430 Supports 8 Ins/Outs

Device

Pipes

 Host/Device communication occurs
thru a Pipe

 The host sets up pipe connections
to one or more device “endpoints”

 An endpoint is essentially a buffer
in the device

 Pipes/Endpoints are unidirectional
 In/Out is from the Host perspective
 Endpoints are enumerated (from 0)
 Endpoint 0 is special case – all USB

devices must have EP0, which is
used for setup and control

 MSP430 Endpoints:
 16 endpoints (8 in, 8 out)
 Each has 64 byte buffer

00
Endpoints …

11 77

Host

InOut

What goes across pipes?

We often see the Endpoints referred to as EP0, EP1, … EP7.

The In/Out Endpoints do not have to be used in bidirectional pairs – sometimes you may find that
your Device needs 2 Inputs and 1 Output.

By the way, do you remember when we said that the USB spec requires a Device to have at least
1 Endpoint?

That happens to be Endpoint 0 (EP0). EP0 is a special case; the Host uses EP0 (both directions)
to setup and control USB operations. Without the Host being able to rely on a known Endpoint 0
always being available, it wouldn’t know how to start talking to new Devices as they’re physically
connected.

So, we’ve established the concept of a communication Pipe … what gets transferred across it?

10 - 18 MSP430 Design Workshop - USB Devices

 How USB Works

USB Transfer Types
Along with specifying an Endpoint and direction, a Pipe also specifies the “Type” of
communication transfer. The USB specification supports four Transfer Types, as defined in this
diagram.

USB Transfers

Device

Pipes

 Pipe’s define a Transfer Type as
well as the endpoint and direction

 USB supports 4 Transfer Types:
 Control Setup/Command/Status
 Interrupt Small size, Periodic

Guaranteed latency
Guaranteed bandwidth

 Bulk Large size allowed
No time guarantees

 Isochronous Guar. time, Periodic
No error handling
Not supported on ‘430

 Contrary to the name, ‘interrupt’
transfers are not initiated by device

00
Endpoints …

11 77

Host

InOut

How should we Frame this discussion?

If all we cared about was passing data across the Pipe, we wouldn’t need to further define the
Transfer Type of a Pipe. The fact is, sometimes we care about “when” data will arrive, just as
much as the data itself.

Each of the Transfer Types, listed above, briefly describe their temporal nature. Notice how
“Interrupt” types provide a guaranteed latency and bandwidth, although the tradeoff is a smaller
data payload. Conversely, “Bulk” transfers allow large sizes, but give up the time-oriented
guarantees.

Hint: “Interrupt” transfer types do not have anything to do with microprocessor “interrupts”. It is
just the word used in the USB specification to describe these types of transfers.

Similarly, “Interrupt” transfer types are initiated by the Host, just as all USB transfers are
initiated and controlled by the Host. (We’ll see more about this on the next page.)

Note: The MSP430 USB stack (i.e. USB library) only supports Control, Interrupt, and Bulk
transfer types. Currently, the MSP430 does not support Isochronous types, which are
more typically used in audio or video types of applications.

MSP430 Design Workshop - USB Devices 10 - 19

How USB Works

The USB Frame
If we’re talking about time-oriented concepts, such as latency and bandwidth, how are these
defined?

USB describes communications occurring within a 1 ms Frame. Each Frame begins with a Start-
of-Frame (SOF). After that comes ‘interrupt’ transfer types, then ‘control’ types, and finally ‘bulk’
transfer types.

In this way, interrupt transfers are guaranteed to occur. Conversely, if you have so many interrupt
transfers that the frame is near fully utilized, then bulk transfers might occur very slowly. Then
again, if you don’t have many interrupt or control transfers, bulk transfers will get most of the
frame and complete more quickly.

Providing further flexibility, periodic transfer types (e.g. interrupt transfers) can be configured to
occur in every frame – or as infrequently as once every 255 frames. This lets you specify the
amount bandwidth and latency needed for a given periodic transfer – as well as potentially free
up bandwidth for bulk transfer types.

10 - 20 MSP430 Design Workshop - USB Devices

 How USB Works

Sidebar – Packets
Realistically, large transfers must be broken down into smaller chunks. USB defines these
smaller chunks as ‘packets’.

We’ve chosen not to dig into the details of packets – or a number of other details like
handshaking, error detection, and so on. This decision was based on two factors: one, there just
isn’t enough time to go through every detail of the USB specification in this chapter; and two, the
USB peripheral’s hardware – and the TI USB stack – manage these details for us. In other words,
we don’t have to know them in order to get our USB application built and working.

MSP430 Design Workshop - USB Devices 10 - 21

Descriptions and Classes

Descriptions and Classes
As we say on the following slide, “What do you want to Transmit?”

Are you looking to send data across the USB bus similar to a standard serial port? Maybe you’re
building a human interface device and want to send mouse or keyboard data.

Device (example shown here is ‘composite’ device with multiple I/F’s)

What Do You Want to Transmit?
 USB devices describe one (or more) Interfaces to transmit information
 Typical interface examples:

 Creating a Virtual COM port requires 2-in and 1-out endpoints
 Human interface devices (mice/keyboards) require 1-in/1-out
 Memory devices also require 1-in/1-out

EP0 EP0 …EP1 EP1 EP7 EP7

Setup &
Control

EP2

Virtual
Cha tort

EP6 EP6

aouse Keyboard

Device Descriptors
Configuration

 Interface(s)
 Endpoint(s)

10 - 22 MSP430 Design Workshop - USB Devices

 Descriptions and Classes

Device (example shown here is ‘composite’ device with multiple I/F’s)

Summary – USB Interface Description
 USB devices describe one (or more) Interfaces to transmit information
 Typical interface examples:

 Creating a Virtual COM port requires 2-in and 1-out endpoints
 Human interface devices (mice/keyboards) require 1-in/1-out
 Memory devices also require 1-in/1-out

 USB devices must describe their themselves using device descriptors
 Host must match descriptors (at run time) with host-side device drivers (INF)
 MSP430 supports a single configuration with

one or more interfaces

EP0 EP0 …EP1 EP1 EP7 EP7

Setup &
Control

EP2

Virtual
Cha tort

EP6 EP6

aouse Keyboard

Device Descriptors
 Configuration

 Interface(s)
 Endpoint(s)

How can we simplify
configuration?

MSP430 Design Workshop - USB Devices 10 - 23

Descriptions and Classes

USB Classes

Device

EP0 EP0 …EP1 EP1 EP7 EP7

Setup &
Control

EP2

Virtual
Cha tort

EP6 EP6

aouse Keyboard

USB defines a number of device classes:
 Human Interface Device (HID)
 Communications Device (CDC)
 Memory Storage Class (MSC)

MSP430 Supports 4 classes
 HID, CDC, MSC (and PHDC)
 Host O/S can easily match its

drivers to known device classes
 Simplifies specifying interfaces

(e.g. creating descriptors)
 Descriptors take form of:

 Device: data-structures
 Host: .INF file

Is there an easy way to
create USB Descriptors?

“CDC” “HID” “HID”

10 - 24 MSP430 Design Workshop - USB Devices

 Descriptions and Classes

Descriptor Tool: API Integration

• The Tool is tightly integrated with the API
• Generates three source files that configure the rest of the stack
• Also generates the INF file (for CDC on Windows)

Configuration
constants

descriptors.h

descriptors.c

usbisr.c

Descriptor
Structures

API Stack

INF File

Communications Data Class (CDC)

 Implements a virtual Cha port on tC
 Simple serial terminal on Host side

(e.g. HyperTerm, tutty, Tera Term)

 The AtI presents a generic data
interface to the application

 Send/receive data of any size, with a
single function call

 Uses simple calls like:
 USB_connect();
 USB_sendData(buffer, size, intfNum);
 USB_receiveData(buffer, size, intfNum);

 Can be performed “in the background”
 Increases program responsiveness
 Improves efficiency

MSP430 Design Workshop - USB Devices 10 - 25

Descriptions and Classes

Human Interface Device (HID)
 HID classes transfers data in ‘report’

structures
 aSt430 supports any report type,

but are 3 are built-in:
 Keyboard (traditional)
 aouse (traditional)
 Datapipe (generic)

 ‘Datapipe’ presents a generic data
interface to the application
 aakes it easy to use HID for a CDC-

like interface
 TI provides a HID host demo tool

(which acts like host-side serial
terminal for datapipe xfers)

 Application code interchangeable
with CDC code, for easy migration

 aSt430 also provides AtIs for host-
side HID development:
 Windows
 Mac

Datapipe mode allows the benefits of
HID without some of its downsides
 Silent loading on the host
 Avoids USB’s complex HID report

structures
 Enables a unique value tradeoff

Memory Storage Class (MSC)
 Allows easy creation of a USB

storage device
 No wThS required

 But can easily be ported to one
 TI-wThS (coming soon for aSt430)

will provide a port with examples

 USB Developers tackage
includes a port of the open-
source FAT file system (FatFS)
 FatFS is provided as an example
 USB stack was designed to be

compatible with any file system

 Five demo apps provided

aSC will be covered in more
detail in an new chapter under

development

10 - 26 MSP430 Design Workshop - USB Devices

 Descriptions and Classes

Comparison/Summary of ClassesCDC HID MSC
Host
Interface Cha tort HID device Storage Volume

Host Loading User Intervention
(user loads .inf file) Silent Silent

Bandwidth “Hundreds of KB/sec” 62KB/sec “Hundreds of KB/sec”

Code Size 5K 5K 9K
(12-15K w/FS & vol)

Endpoints 2 in
1 out

1 in
1 out

1 in
1 out

Transfer
Type Bulk Interrupt Bulk (BhT)

Advantages
 Familiar to user
 Bulk transport
 Common host apps

 Silent loading
 Interrupt xfers
 aouse/Keybd

 Familiar to user
 Allows storage of

data using filesys

MSP430 Design Workshop - USB Devices 10 - 27

Quick Overview of MSP430’s USB Stack

Quick Overview of MSP430’s USB Stack

10 - 28 MSP430 Design Workshop - USB Devices

 Quick Overview of MSP430’s USB Stack

MSP430 Design Workshop - USB Devices 10 - 29

Notes:

 ABC’s of USB

ABC’s of USB

A. Plan Your System

Plan Your System
1. What are your requirements?

 How much data needs to transfer … and how fast?
 Is guaranteed bandwidth & timing important?
 Are you connecting to Window, Mac, Linux (or all)
 What power will be needed?

2. From the requirements, decide which class
(or classes) will be needed

3. Import EmptyUsbtroject (hptional)
4. wun Descriptor Tool

 trovides help & feedback in creating device description
 Generates device descriptor files & INF files
 If you followed step 3, it automatically drops generated

files into the project

MSP430 Design Workshop - USB Devices 10 - 31

ABC’s of USB

B. Connect & Enumerate

Six States of Connection
1. USB is disconnected

→ User plugs in device
& VBUS (power) appears

2. USB Connected, not enumerated
 handleVbushnEvent()

→ App calls USB_Setup(), which
pulls tUw up

3. Enumeration in trogress

ST_PHYS_
DISCONNECTED

ST_PHYS_
CONNECTED_

NOENUM

ST_ENUM_
ACTIVE

ST_ENUM_
SUSPENDED

ST_PHYS_
CONNECTED_

NOENUM_SUSP

x

ST_ENUM_IN_
PROGRESSR

Enumeration
the process in which the host
obtains the descriptors and
loads the correct driver

[ih-noo-muh-rey-shuh n]:

Six States of Connection
1. USB is disconnected

→ User plugs in device
& VBUS (power) appears

2. USB Connected, not enumerated
 handleVbushnEvent()

→ App calls USB_Setup(), which
pulls tUw up

3. Enumeration in trogress

→ Enumeration succeeds

4. Device is enumerated, bus active
 handleEnumCompleteEvent()

→ Host Suspends device/bus

5. Device is enum, but suspended
 handleSuspendEvent()

ST_PHYS_
DISCONNECTED

ST_PHYS_
CONNECTED_

NOENUM

ST_ENUM_IN_
PROGRESS

ST_ENUM_
ACTIVE

ST_ENUM_
SUSPENDED

ST_PHYS_
CONNECTED_

NOENUM_SUSP

R

x

Can we affect connection state?

10 - 32 MSP430 Design Workshop - USB Devices

 ABC’s of USB

USB Connection States

MSP430 Design Workshop - USB Devices 10 - 33

ABC’s of USB

C. Managing my App & Transferring Data

 Main Loop USB Framework
while(1){

switch(USB_connectionState())
{

case ST_USB_DISCONNECTED:

break;
case ST_ENUM_ACTIVE:

break;
case ST_ENUM_SUSPENDED:

break;
case ST_ENUM_IN_PROGRESS:

break;
case ST_USB_CONNECTED_NO_ENUM:

break;
case ST_NOENUM_SUSPENDED:

break;
case ST_ERROR:

break;
default:;

}
}

 Execution within main loop “forks”
depending on the state of USB,
creating alternate main loops
Thus, USB state becomes a central
part of managing software flow

 This framework excels when the
device behaves differently in each
state!

 For cases where system only cares
about one state, connectionState()
fxn could be called from IF{} stmt

 aost common non-wThS solution –
it’s used in many of the USB
examples provided with the AtI

These three states are where
the application spends most
of its time

10 - 34 MSP430 Design Workshop - USB Devices

 ABC’s of USB

MSP430 Design Workshop - USB Devices 10 - 35

ABC’s of USB

10 - 36 MSP430 Design Workshop - USB Devices

 Final Thoughts

Final Thoughts

MSP430 Design Workshop - USB Devices 10 - 37

Final Thoughts

10 - 38 MSP430 Design Workshop - USB Devices

 Lab 10 – Using USB Devices

Lab 10 – Using USB Devices

Lab 10 – USB Devices
 Lab 10a – HLD LED On/Off Toggle

 Set LED on/off/blinking from Windows PC
via the USB serial port using the HLD class

 Uses HLD host demo program supplied with
USB Developers Package

 Lab 10b – CDC LED On/Off Toggle
 Similar to Lab10a, but using CDC class to

transfer the data
 Host-side uses CCS serial Terminal (or Putty)

 Lab 10c – Send Short aessage via CDC
 Example sends a short message (i.e. time)

to host via CDC class
 Host-side uses CCS serial Terminal (or Putty)

 Lab 10d – Send Pushbutton State to
Host
 Starts by importing the Empty USB Example
 You add code to read the state of the

pushbutton and send it to the host (via HLD)
 Read data on host with serial terminal

MSP430 Design Workshop - USB Devices 10 - 39

Lab 10 – Using USB Devices

Lab Topics
USB Devices .. 10-37

Lab 10 – Using USB Devices .. 10-39
Lab 10a – LED On/Off HID Example .. 10-41
Lab 10b – LED On/Off CDC Example ... 10-44

Play with the demo .. 10-47
Lab 10c – CDC ‘Simple Send’ Example ... 10-49
Lab 10d – Creating a CDC Push Button App ... 10-51

Import Empty USB Project Steps .. 10-51
Use the Descriptor Tool .. 10-52
Add ‘Custom’ Code to Project ... 10-55

10 - 40 MSP430 Design Workshop - USB Devices

 Lab 10a – LED On/Off HID Example

Lab 10a – LED On/Off HID Example
The MSP430 USB Developers Package contains an example which changes the state of an LED
based on string commands sent from the USB host.

1. Import the following example into your workspace using TI Resource Explorer.

Help → Welcome to CCS

HID → Command-Line Interface with LED On/Off/Flash

2. Build the project.

3. Launch the debugger and wait for the program to load to flash; then start the program
running.

 At this point, the MSP430 should start running the USB application. You may see Windows
enumerate the USB device (in this case, your Launchpad); this usually appears as a popup
message from the system tray saying that a USB device (“USB input device”) was
enumerated.

MSP430 Design Workshop - USB Devices 10 - 41

Lab 10a – LED On/Off HID Example

4. Open the USB HID Demo program.

 TI provides a simple communications utility which can communicate with a USB device
implementing the HID-datapipe class. Essentially, this utility allows us to communicate with
devices much like a serial terminal lets us talk with CDC (comm port) devices.

 When the program opens, it will look like this:

 We’ll get back to this program in a minute. For now, return to CCS so that we can run the

demo code.

5. Switch back to the USB HID Demo application.
 With the USB program running on the Launchpad, let’s connect to it and send it commands.

6. Connect to the USB application.

 Click the button that tells the HID app to find the USB device with the provided
Vendor/Product IDs.

10 - 42 MSP430 Design Workshop - USB Devices

 Lab 10a – LED On/Off HID Example

 The app should now show “Connected” …
as well as show connected in the log below …

7. Play with the application.

 After getting the device and Windows app running,
what does it do? There are 4 commands you can use.

Enter a command and hit Send

8. In the HID USB application, disconnect from the
USB device; then close the application.

9. Switch back to CCS and Terminate the debugger
and close the project.

HID Commands

• LED ON!
• LED OFF!
• LED TOGGLE – SLOW!
• LED TOGGLE – FAST!

Don’t forget to use the “!”. The app uses
this as an end-of-string character.

Along with the LED changing, you will see
the command repeated back to the log.

MSP430 Design Workshop - USB Devices 10 - 43

Lab 10b – LED On/Off CDC Example

Lab 10b – LED On/Off CDC Example
Our next program is another example from the MSP430 USB Developers Package. This program
is a near duplicate of the previous lab – that is, it changes the state of an LED based on string
commands sent from the USB host. In this example, though, the string commands are sent using
the CDC class (versus the HID-datapipe class).

The advantage of the CDC class is that it can communicate with just about any Windows serial
terminal application. The disadvantage, as you might remember from the discussion, is that
Windows does not automatically load CDC based drivers – whereas Windows did this for us
when using an HID class driver.

10. Import the CDC version of the LED On/Off/Flash project.

11. Build the project and launch the debugger.

12. Run the program.

 The first time you run the program, Windows may not be able to enumerate the USB CDC
driver. You might see an error such as this pop up.

Why does this error occur? ___

10 - 44 MSP430 Design Workshop - USB Devices

 Lab 10b – LED On/Off CDC Example

13. Open the Windows Device Manager.

 For Windows 7, the easiest way is to start the device manager is to type “Device” into the
Start menu:

In most versions of Windows, such as Windows XP, you can also run the following program from
a command line to start the Device Manager:

devmgmt.msc

On Windows XP, you can quickly run the command line from the Start Menu:

Start Menu → Run

 You should find the a USB driver with a problem:

MSP430 Design Workshop - USB Devices 10 - 45

Lab 10b – LED On/Off CDC Example

14. Update the MSP430-USB Example driver.

 For Windows 7, the steps include:

Right-click on the driver → Update Driver Software…

Click Browse my computer for driver software

 Select the following (or wherever you installed the USB Developers Package)

C:\TI\MSP430\MSP430USBDEVELOPERSPACKAGE_4_00_02\MSP430_USB_SOFTWA
RE\MSP430_USB_API\EXAMPLES\CDC_VIRTUALCOMPORT\C1_LEDONOFF

During the installation, the following dialog may appear. If so, choose to Install the driver.

When complete you should see:

10 - 46 MSP430 Design Workshop - USB Devices

 Lab 10b – LED On/Off CDC Example

Note: The steps to install the USB CDC driver are also documented in the:

 Examples_Guide_MSP430_USB.pdf

found in the documentation directory of the USB Developers Package.

15. In the Device Manager, write down the COM port associated with our USB driver:

What is your COM port = ___

Hint: When done, we suggest you minimize the Device Manager; thus, leaving it open in the
background. It’s quite possible you may need to check the drivers later on during these
lab exercises.

Play with the demo
At this point, we should have:
• The USB device application running on the MSP430

• The appropriate Windows CDC driver loaded

Before we can communicate with the device, though, we also need to open a serial terminal.

16. Open your favorite serial terminal and connect to the MSP430.

 Putty and Tera Term are common favorites, but we’ll provide directions for using the Terminal
built into CCS.

a) Open the Terminal window.

Window → Show View → Other…

Looking at our computer, we would
need to use COM32

MSP430 Design Workshop - USB Devices 10 - 47

Lab 10b – LED On/Off CDC Example

b) Configure the terminal settings:

Open the Terminal settings and use the COM port
you wrote down in the previous step, then hit OK.

The Terminal should then show as “CONNECTED”.

If the terminal does not connect, then check:
− Is the MSP430 USB app running?

− Does the USB device show up in the Device
Manager?

− Did Windows load the driver (i.e. does the Device
Manager show a problem with the device)?

17. When connected, try turning on/off/toggling the LED.

18. When done experimenting…
• Stop the terminal (hit red disconnect button).

• Terminate the debugger.

• Close the project.

CDC Commands

• LED ON
• LED OFF
• LED TOGGLE – SLOW
• LED TOGGLE – FAST

Type one of these strings and then hit the
<Enter> key.

Along with the LED changing, you will see
the command repeated back to the term.

10 - 48 MSP430 Design Workshop - USB Devices

 Lab 10c – CDC ‘Simple Send’ Example

Lab 10c – CDC ‘Simple Send’ Example
Let’s try one more simple application example before we build our own. This next example simply
sends the time (from MSP430’s Real Time Clock) to a serial terminal.

19. Similar to our previous two examples, import the “Simple Sending of Data” project.

20. Build the project and launch the debugger.

21. Start the program.

22. Wait for the USB device to enumerate.

 If you’re not sure that Windows enumerated the device, check the Device Manager. If it does
not enumerate, try Terminating the debugger, unplugging the Launchpad, then plugging it
back into another USB port on your computer.

23. Once enumerated, start the Terminal again (by hitting the Green Connection button).
 You should see the time printed (repeatedly) to the Terminal.

MSP430 Design Workshop - USB Devices 10 - 49

Lab 10c – CDC ‘Simple Send’ Example

24. Once you are done watch time go by: disconnect the Terminal; Terminate the
debugger (if you didn’t do it in the last step).

25. (Optional) Review the code in this example. Here’s a bit of the code from main.c:
VOID main(VOID)
{
 WDT_A_hold(WDT_A_BASE); //Stop watchdog timer

 // Minimum Vcore required for the USB API is PMM_CORE_LEVEL_2
 PMM_setVCore(PMM_BASE, PMM_CORE_LEVEL_2);

 initPorts(); // Config GPIOS for low-power (output low)
 initClocks(8000000); // MCLK=SMCLK=FLL=8MHz; ACLK=REFO=32kHz
 USB_setup(TRUE,TRUE); // Init USB; if a host is present, connect
 initRTC(); // Start the real-time clock

 __enable_interrupt(); // Enable interrupts globally

 while (1)
 {
 // Enter LPM0, which keeps the DCO/FLL active but shuts off the
 // CPU. For USB, you can't go below LPM0!
 __bis_SR_register(LPM0_bits + GIE);

 // If USB is present, send time to host. Flag set every sec.
 if (bSendTimeToHost)
 {
 bSendTimeToHost = FALSE;
 convertTimeBinToASCII(timeStr);

 // This function begins the USB send operation, and immediately
 // returns, while the sending happens in the background.
 // Send timeStr, 9 bytes, to intf #0 (which is enumerated as a
 // COM port). 1000 retries. (Retries will be attempted if the
 // previous send hasn't completed yet). If the bus isn't present,
 // it simply returns and does nothing.
 if (cdcSendDataInBackground(timeStr, 9, CDC0_INTFNUM, 1000))
 {
 _NOP(); // If it fails, it'll end up here. Could happen if
 // the cable was detached after the connectionState()
 } // check, or if somehow the retries failed
 }
 } //while(1)
} //main()

// Convert the binary globals hour/min/sec into a string, of format "hr:mn:sc"
// Assumes str is an nine-byte string.
VOID convertTimeBinToASCII(BYTE* str)
{
 BYTE hourStr[2], minStr[2], secStr[2];

 convertTwoDigBinToASCII(hour, hourStr);
 convertTwoDigBinToASCII(min, minStr);
 convertTwoDigBinToASCII(sec, secStr);

 str[0] = hourStr[0];
 str[1] = hourStr[1];
 str[2] = ':';
 str[3] = minStr[0];
 str[4] = minStr[1];
 str[5] = ':';
 str[6] = secStr[0];
 str[7] = secStr[1];
 str[8] = '\n';
}

10 - 50 MSP430 Design Workshop - USB Devices

 Lab 10d – Creating a CDC Push Button App

Lab 10d – Creating a CDC Push Button App
We have experimented with three example USB applications. It’s finally time to build one from
“scratch”. Well, not really from scratch, since we can start with the “Empty USB Example”.

The goal of our application is to send the state of the Launchpad button to the PC via USB –
using the HID Datapipe interface. Thus, we’ll use a HID class driver. This application will borrow
from a number of programs we’ve already written:

GPIO – We will read the push button and light the LED when it is pushed. Also, we’ll send
“DOWN” when it’s down and “UP” when it’s up.

Timer – We’ll use a timer to generate an interrupt every second. In the Timer ISR we’ll set a flag.
When the flag is TRUE, we’ll read the button and send the proper string to the host.

HID Simple Send Example – we’ll borrow a bit of code from the HID example we just ran to
‘package’ up our string and send it via USB to the host.

Finally, we’re going to start by following the first 3 steps provided in TI Resource Explorer for the
Empty USB Example.

Import Empty USB Project Steps
1. Import the Empty USB Project.

 As it states in the Resource Explorer, DO NOT RENAME the project (yet).

MSP430 Design Workshop - USB Devices 10 - 51

Lab 10d – Creating a CDC Push Button App

Use the Descriptor Tool
2. Launch the Descriptor Tool.

Just as the Resource Explorer directs us, launch the Descriptor Tool. The easiest way
to do this is to click the link as shown above.

3. Generate descriptor files using the Descriptor Tool.

We will take a quick look at the organization levels in the tool. In most cases, we will use the
tools defaults.

a) MSP430 level … use the defaults.

b) USB Device … MSP430-Button Example

We suggest changing the Product String – so it’ll be easier to see that it is different than
previous examples. Also, we suggest changing the PID (we picked ‘301’ arbitrarily). For a
real design, you might end up purchasing the VID/PID (or obtain a free PID from TI).

10 - 52 MSP430 Design Workshop - USB Devices

 Lab 10d – Creating a CDC Push Button App

c) Configuration

Nothing to do on the configuration screen.

d) Add HID Interface
Once again, we chose to vary the string so that it would be a little bit less generic.

MSP430 Design Workshop - USB Devices 10 - 53

Lab 10d – Creating a CDC Push Button App

e) Click the button to generate the descriptor files.

Notice they get written to your empty project. (This is the reason we were asked not to
change the name until after we had used the Descriptor Tool.)

The files should be saved to our “empty” project … but if you’re asked where to save
them, choose the USB_config folder:

C:\msp430_workshop\F5529_usb\workspace\emptyUsbProject\USB_config\

f) Save the Descriptor Tool settings.

While not required, this is handy if you want to open the tool and view the settings at
some later point in time. Notice that ‘Save’ puts the resulting .dat file into the same folder
as our descriptor files.

Save to your emptyProject USB_config
folder. This is a pretty good place for it,
since this is where all of the descriptor files
it generates are placed. For example:

C:\msp430_workshop\F5529_usb\workspace\emptyUsbProject\USB_config\

g) You can close the Descriptor Tool.

4. Rename the project to lab_10d_usb.

 As you can see, the reason they didn’t want us to rename the project before now was that the
descriptor tool generates files to the empty project.

5. Build, just to make sure we’re starting off with a ‘clean’ project.

10 - 54 MSP430 Design Workshop - USB Devices

 Lab 10d – Creating a CDC Push Button App

Add ‘Custom’ Code to Project
6. Copy myTimer.c and myTimer.h (and the readme file) to the project folder.

 We’ve already written the timer routine for you. (Look back to our Timer chapter if you want to
know the details of how this code was developed.)

Right-click the project → Add Files…

 Choose the three files from the location:

C:\msp430_workshop\F5529_usb\lab_10d_usb\

7. Open main.c and add a #include for the myTimer.h.

 We suggest doing this somewhere below #include “driverlib.h”.

8. Add global variables.

 These are used to capture (and send) the button up/down state.
char pbStr[5] = ""; // Stores the string to send
volatile unsigned short usiButton1 = 0; // Stores the button state

9. Add additional setup code.
 We need to initialize an LED and pushbutton. We also need to call the initTimers() function

that was just added to our project in a previous step.
 GPIO_setAsOutputPin(GPIO_PORT_P4, GPIO_PIN7);
 GPIO_setAsInputPinWithPullUpresistor(GPIO_PORT_P2, GPIO_PIN1);
 initTimers();

10. Modify the low-power state of the program.
 Search down toward the end of main() until you find the intrinsic that sets the program into

low-power mode. Rather than using LPM3, we want to switch this to LPM0.
// _bis_SR_register(LPM3_bits + GIE);
 __bis_SR_register(LPM0_bits + GIE);

MSP430 Design Workshop - USB Devices 10 - 55

Notes:

 Lab 10d – Creating a CDC Push Button App

11. Add code to ST_ENUM_ACTIVE state.

 The active state is where we want to put our communication code. (It only makes sense to
that we send data to the host when we’re actively connected.

 When connected, we will read the pin, set the Launchpad’s LED and then construct a string
to send to the host. Finally, we send the data to the host in the background; that is, we won’t
wait for a response – although we do set a timeout in our code below.

 Note that it’s the timer that wakes us up every second to check the state – and if the USB is
in the connected state, to run through the routine below.

 // If USB is present, sent the button state to host. Flag set every sec
 if (bSend)
 {
 bSend = FALSE;

 usiButton1 = GPIO_getInputPinValue (GPIO_PORT_P2, GPIO_PIN1);

 if (usiButton1 == GPIO_INPUT_PIN_LOW) {
 // If button is down, turn on LED
 GPIO_setOutputHighOnPin(GPIO_PORT_P4, GPIO_PIN7);
 pbStr[0] = 'D';
 pbStr[1] = 'O';
 pbStr[2] = 'W';
 pbStr[3] = 'N';
 pbStr[4] = '\n';
 }
 else {
 // If button is up, turn off LED
 GPIO_setOutputLowOnPin(GPIO_PORT_P4, GPIO_PIN7);
 pbStr[0] = 'U';
 pbStr[1] = 'P';
 pbStr[2] = ' ';
 pbStr[3] = ' ';
 pbStr[4] = '\n';
 }

 // This function begins the USB send operation, and immediately
 // returns, while the sending happens in the background.
 // Send pbStr, 5 bytes, to intf #0 (which is enumerated as a
 // HID port). 1000 retries. (Retries will be attempted if the
 // previous send hasn't completed yet). If the bus isn't present,
 // it simply returns and does nothing.
 if (cdcSendDataInBackground((BYTE*)pbStr, 5, HID0_INTFNUM, 1000))
 {
 _NOP(); // If it fails, it'll end up here. Could happen if
 // the cable was detached after the connectionState()
 } // check, or if somehow the retries failed
 }

12. Add #include "USB_app/usbConstructs.h".

 We need to use this header file since it supports the hidSendDataInBackground() function we
are using to send data via USB.

13. Build the program and launch debugger.

MSP430 Design Workshop - USB Devices 10 - 57

Lab 10d – Creating a CDC Push Button App

14. Start your program and open the USB HID demo tool.

 You can either run the program from within the debugger – or – terminate the debugger and
unplug and then plug the Launchpad back in. In either case, your USB program should be
running.

 We need to use the HID tool to view the communications coming from the Launchpad. As we
mentioned earlier, it acts as a “terminal” for our HID Datapipe datastream.

 If you cannot remember how to open it, please refer back to Step 4 on page 10-42.

Hint: You might have to set the PID depending upon the value you selected while using
the Descriptor tool.

15. Verify your program works

 Once the the driver is loaded and working properly, open your Terminal, making sure to use
the proper comm port. (As a reminder, all of these steps we discussed earlier in this chapter.)

 At this point:
• The Red LED should be blinking on/off.

• The Green LED should light when Button1 is pushed …

• … and the state of the button should be written to the HID Terminal.

Remember that the code only tests the button once per second. So, you will need to hold (or
release) it for more than a second for it to take effect.

10 - 58 MSP430 Design Workshop - USB Devices

MSP430 Design Workshop - Using Energia (Arduino) 11 - 1

Using Energia (Arduino)

Introduction
This chapter of the MSP430 workshop explores
Energia, the Arduino port for the Texas Instruments
Launchpad kits.

After a quick definition and history of Arduino and
Energia, we provide a quick introduction to Wiring – the
language/library used by Arduino & Energia.

Most of the learning comes from using the Launchpad
board along with the Energia IDE to light LED’s, read
switches and communicate with your PC via the serial
connection.

Learning Objectives, Requirements, Prereq’s

Prerequisites & Objectives
 Prerequisites

 Basic knowledge of C language
 Basic understanding of using a C library and header files
 This chapter doesn’t explain clock, interrupt, and GPIO features in detail;

this is left to the other chapters in the MSP430 Design Workshop

 Requirements - Tools and Software
 Hardware

 Windows 7 (or 8) PC with available USB port
 MSP430F5529 or MSP430FR5969 Launchpad

 Software
 Energia Download
 Launchpad drivers
 (Optional) MSP430ware / Driverlib

 Objectives
 Define ‘Arduino’ and describe what is was created for
 Define ‘Energia’ and explain what it is ‘forked’ from
 Install Energia, open and run included example sketches
 Use serial communication between the board & PC
 Add an external interrupt to an Energia sketch
 Modify CPU registers from an Energia sketch

Already installed, if you
have installed CCSv5 or 6

What is Arduino

11 - 2 MSP430 Design Workshop - Using Energia (Arduino)

Chapter Topics

Using Energia (Arduino) ... 11-1

What is Arduino ... 11-3

Energia .. 11-4

Programming Energia (and Arduino) .. 11-7
Programming with ‘Wiring’ .. 11-7
Wiring Language/Library Reference ... 11-8
How Does ‘Wiring’ Compare? ... 11-9
Hardware pinout .. 11-10

Energia IDE ... 11-12
Examples, Lots of Examples ... 11-13

Debugging Energia (Arduio) with CCSv6 .. 11-13

Energia/Arduino References ... 11-14

Lab 11 ... 11-15

 What is Arduino

MSP430 Design Workshop - Using Energia (Arduino) 11 - 3

What is Arduino
Physical Computing … Hardware Hacking … a couple of the names given to Arduino.

 Our home computers are great at communicating with other computers and (sometimes) with
us, but they have no idea what is going on in the world around them. Arduino, on the other
hand, is made to be hooked up to sensors which feed it physical information.1 These can be

as simple as pressing a button, or as complex as using ultrasound to detect distance, or
maybe having your garage door tweet every time it’s opened.

 So the Arduino is essentially a simple computer with eyes and ears. Why is it so popular?

Because the hardware is cheap, it’s easy to program and there is a huge web community,

which means that beginners can find help and download myriad programs.1

What is Arduino?
Hardware
Open source C boards with pins and I/O

 Physical Computing
Software that interacts with the real world

 Open-source ecosystem
Tools, Software, Hardware (Creative Commons)

 Popular solution for…
Open-source programmers, hobbyists,
rapid prototyping

Tools
IDE: write, compile, upload

Code
‘Wiring’ Language includes:
 C/C++ software
 Arduino library of functions

 The idea is to write a few lines of code, connect a few electronic components to the Wiring
hardware and observe how a light turns on when person approaches it, write a few more

lines, add another sensor, and see how this light changes when the illumination level in a
room decreases. This process is called sketching with hardware; explore lots of ideas very
quickly, select the more interesting ones, refine and produce prototypes in an iterative

process.2

In the end, Arudino is basically an ecosystem for easy, hardware-oriented, real-world
programming. It combines the Tools, Software and Hardware for talking to the world.

1 http://www.wired.com/gadgetlab/2008/04/just-what-is-an/
2 http://en.wikipedia.org/wiki/Wiring_%28development_platform%29

Energia

11 - 4 MSP430 Design Workshop - Using Energia (Arduino)

Energia
/enerˈɡia/ ; e‧ner‧gi‧a

Energia (Russian: Энергия, Energiya, "Energy") was a Soviet rocket that was designed by NPO
Energia to serve as a heavy-lift expendable launch system as well as a booster for the Buran
spacecraft.3

Energia – Arduino for TI

 Energia is a fork of Arduino for
Texas Instruments MicroControllers
 Software – Wiring programming language
 Tools – Energia IDE

 Hardware (supported MCU’s)
 MSP430 LaunchPad (‘G2553)
 MSP430 FRAM “FraunchPad” (‘FR5739)
 MSP430 USB Launchpad (‘F5529)
 Stellaris/Tiva Cortex-M4F Launchpad

 Dev’l Project – energia.github.com/Energia/
 Support – forum.43oh.com

Energia was a
Soviet Rocket

Energia is a rapid electronics prototyping platform for the Texas Instruments msp430 LaunchPad.
Energia is based on Wiring and Arduino and uses the Processing IDE. It is a fork of the Arduino
ecosystem, but centered around the popular TI microntrollers: MSP430 and ARM Cortex-M4F.

Similar to it’s predecessor, it an open-sourced project. It’s development is community supported,
being hosted on github.com.

3 http://en.wikipedia.org/wiki/Energia

http://en.wikipedia.org/wiki/Russian_language
http://en.wikipedia.org/wiki/Soviet_Union
http://en.wikipedia.org/wiki/NPO_Energia
http://en.wikipedia.org/wiki/NPO_Energia
http://en.wikipedia.org/wiki/Expendable_launch_system
http://en.wikipedia.org/wiki/Buran_%28spacecraft%29
http://en.wikipedia.org/wiki/Buran_%28spacecraft%29
http://www.github.com/

 Energia

MSP430 Design Workshop - Using Energia (Arduino) 11 - 5

Sidebar – Energia Lineage

Energia Lineage

DBN
(1990’s)

Processing
(2001)

Wiring
(2003)

• Language
• Design By Numbers

programming language
• Teaching experiment

for non-programmers
• MIT (USA)

• Language, Tools
• Processing language

builds on Java, but with
simplified syntax

• Sketchbook mini-IDE
• For non-programmers
• Former MIT’ers (USA)

• Language, Tools, H/W
• Developed for single-

chipController
• Prototypingplatformfor

quick iterative design
• C++ plus Wiring library
• Java-based IDE
• Columbia

Arduino
(2005)

Fritzing
(2009)

• EDA Tools
• C++ w/Qt components

• Language, Tools, H/W
• Teaching, hobbyist,

Rapid prototyping
• C/C++ plus Wiring library
• Java-based IDE
• AVR C
• Ivrea (Italy)

Arduino and Energia
 Wiring-based language (syntax and libraries), similar

to C++ with some slight simplifications and mod’s
 Sketchbook (Processing-based) integrated

development environment

Energia
(2012)

• Language, Tools, H/W
• Direct fork of Arduino
• TI C Launchpad boards
• California (USA)

Design By Numbers (or DBN programming language) was an influential experiment in teaching
programming initiated at the MIT Media Lab during the 1990s. Led by John Maeda and his
students they created software aimed at allowing designers, artists and other non-programmers
to easily start computer programming. The software itself could be run in a browser and published
alongside the software was a book and courseware.4

Processing (2001) - One of the stated aims of Processing is to act as a tool to get non-
programmers started with programming, through the instant gratification of visual feedback.5

 This process is called sketching with hardware; explore lots of ideas very quickly, select the
more interesting ones, refine and produce prototypes in an iterative process.

Wiring (2003)6 - The Wiring IDE is a cross-platform application written in Java which is derived
from the IDE made for the Processing programming language. It is designed to introduce
programming and sketching with electronics to artists and designers. It includes a code editor …
capable of compiling and uploading programs to the board with a single click.

 The Wiring IDE comes with a C /C++ library called "Wiring", which makes common
input/output operations much easier. Wiring programs are written in C/C++, although users
only need to define two functions to make a runnable program: setup() and loop().

 When the user clicks the "Upload to Wiring hardware" button in the IDE, a copy of the code is
written to a temporary file with an extra include header at the top and a very simple main()
function at the bottom, to make it a valid C++ program.

4 http://en.wikipedia.org/wiki/Design_By_Numbers_%28programming_language%29
5 http://en.wikipedia.org/wiki/Processing_(programming_language)
6 http://en.wikipedia.org/wiki/Wiring_%28development_platform%29

Energia

11 - 6 MSP430 Design Workshop - Using Energia (Arduino)

Energia Lineage (cont’d)

Arduino7 - In 2005, in Ivrea, Italy, a project was initiated to make a device for controlling student-
built interaction design projects with less expense than with other prototyping systems available
at the time. Founders Massimo Banzi and David Cuartielles named the project after Arduin of
Ivrea, the main historical character of the town.

 The Arduino project is a fork of the open source Wiring platform and is programmed using a
Wiring-based language (syntax and libraries), similar to C++ with some slight simplifications
and modifications, and a Processing-based integrated development environment.

Energia (2012) – As explained in the previous section of this chapter, Energia is a fork of Arduino
which utilizes the Texas Instruments microcontroller Launchpad development boards.

Fritzing (2009)8 - An open-source initiative to support designers, artists, researchers and
hobbyists to take the step from physical prototyping to actual product.

 It’s essentially an Electronic Design Automation software with a low entry barrier, suited for
the needs of designers and artists. It uses the metaphor of the breadboard, so that it is easy
to transfer your hardware sketch to the software. From there it is possible to create PCB
layouts for turning it into a robust PCB yourself or by help of a manufacturer.

7 http://en.wikipedia.org/wiki/Arduino
8 http:// Fritzing.org

 Programming Energia (and Arduino)

MSP430 Design Workshop - Using Energia (Arduino) 11 - 7

Programming Energia (and Arduino)

Programming with ‘Wiring’

 Arduino programs are called
sketches
From the idea that we’re…

Sketching with hardware
 Sketches require only two

functions to run cyclically:
 setup()
 loop()

 Are C/C++ programs that can
use Arduino’s Wiring library
Library included with IDE

 If necessary, you can access
H/W specific features of C,
but that hurts portability

 Blink is C’s ‘Hello World’ ex.
 ‘Wiring’ makes this simple
 Like most first examples,

it is not optimized

// Most boards have LED and resistor connected
// between pin 14 and ground (pinout on later slide)
#define LED_PIN 14
void setup () {

// enable pin 14 for digital output
pinMode (LED_PIN, OUTPUT);

}
void loop () {

digitalWrite (LED_PIN, HIGH); // turn on LED
delay (1000); // wait one second (1000ms)
digitalWrite (LED_PIN, LOW); // turn off LED
delay (1000); // wait one second

}

Energia / Arduino Programming

Programming in Arduino is relatively easy. Essentially, it is C/C++ programming, but the Wiring
library simplifies many tasks. As an example, we use the Blink sketch (i.e. program) that is one of
examples that is included with Arduino (and Energia). In fact, this example is so ubiquitous that
most engineers think of it as “Hello World” of embedded programming.

How does the ‘Wiring’ library help to make things easier? Let’s examine the Blink code above:

 A sketch only requires two functions:
o setup() – a function run once at the start of a program which can be used to

define initial environment settings
o loop() – a function called repeatedly until the board is powered off

 Reading and Writing pins (i.e. General Purpose Input Output – GPIO) is encapsulated in
three simple functions: one function defines the I/O pin, the other two let you read or write
the pin. In the example above, this allows us to turn on/off the LED connected to a pin on
our microcontroller.

 The delay() function makes it simple to pause program execution for a given number of
microseconds. In fact, in the Energia implementation, the delay() function even utilizes a
timer which allows the processor to go into low power mode while waiting.

 Finally, which not shown here, Arduino/Energia makes using the serial port as easy as
using printf() in standard C programs.

About the only difference between Arduino and Energia programming is that you might see some
hardware specific commands in the sketch. For example, in one of the later lab exercises, you will
see how you can change the clock source for the TI MSP430 microcontroller. Changing clocks is
often done on the MSP430 so that you can balance processing speed against long battery life.

Programming Energia (and Arduino)

11 - 8 MSP430 Design Workshop - Using Energia (Arduino)

Wiring Language/Library Reference
What commands are available when programming with ‘Wiring’ in Arduino and Energia?

Arduino provides a language reference on their website. This defines the operators, controls, and
functions needed for programming in Arduino (and Energia).9 You will also find a similar HTML
reference available in the Energia installation zip file.

Wiring Library Reference

9 http://arduino.cc/en/Reference/HomePage

http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage

 Programming Energia (and Arduino)

MSP430 Design Workshop - Using Energia (Arduino) 11 - 9

How Does ‘Wiring’ Compare?
How does the ‘Wiring’ language compare to standard C code?

MSP430 C Code vs Wiring Language

Background
Loop

Setup
Code

void setup() {
// Setup pin for output
pinMode (LED_PIN, OUTPUT);

}

void loop() {
digitalWrite (LED_PIN, HIGH); // LED on
delay (1000); // wait 1 second
digitalWrite (LED_PIN, LOW); // LED off
delay (1000);

}

void main() {
// Setup pin for output
P1DIR = 0x40;
P1OUT = 0;
// Disable watchdog timer
WDTCTL = WDTPW | WDTHOLD;
// Setup Master Clock (MCLK)
BCSCTL1 = CALBC1_16MHZ;
DCOCTL = CALDCO_16MHZ;
BCSCTL2 &= ~(DIVS_0);
// Setup ACLK
BCSCTL3 |= LFXT1S_2;

while(1) {
P1OUT = 0x40; // LED on
_delay_cycles(1000); // wait 1 sec
P1OUT = 0; // LED off
_delay_cycles(1000);

}
}

This comparison helps to demonstrate the simplicity of programming with Energia. As stated
before, this can make for very effective rapid prototyping.

Later, during one of the lab exercises, we will examine some of the underpinings of Wiring.
Although the language makes programming easier, the same actual code is required for both
sides of this diagram. In the case of Wiring, this is encapsulated by the language/library. You will
see later on where this is done; armed with this knowledge, you can change the default values
defined by the folks who ported Arduino over to Energia for the TI microcontrollers.

Programming Energia (and Arduino)

11 - 10 MSP430 Design Workshop - Using Energia (Arduino)

Hardware pinout
Arduino programming refers to Arduino “pins” throughout the language and examples. In the
original implementation, these refer directly to the original hardware platform.

When adapting the Arduino library/language over to other processors, such as the TI
microcontrollers, these pins must be mapped to the available hardware. The following screen
capture from the Energia wiki shows the mapping for the MSP430 (v1.5 ‘G2553) Launchpad
development board. There are similar diagrams for the other supported TI boards; please find
these at wiki page: https://github.com/energia/Energia/wiki/Hardware.

MSP430 Launchpad : Energia Pinout
http://energia.nu/Guide_MSP430LaunchPad.html

Arduino/Energia logical pin #’s

Color Coded Pin Mapping

The wiki authors have color coded the pins to try and make things easier. The Black numbers
represent the Arduino Pin Numbers. Thus, you can write to the pins using the pin numbers:

 pinMode(2, OUTPUT);
 digitalWrite(2, HIGH);

The Grey values show the hardware elements that are being mapped, such as the LED’s or
PushButton. You can use these alternative names: RED_LED; GREEN_LED; PUSH2; and
TEMPSENSOR. Thus, to turn on the red LED, you could use:

 pinMode(RED_LED, OUTPUT);
 digitalWrite(RED_LED, HIGH);

Pins can also be address by there alternative names, such as P1_0. These correlate to the GPIO
port (P1) and pin (0) names (P1.0) as defined by the MSP430. (In fact, the Launchpads
conveniently show which I/O pins are mapped to the Boosterpack header connectors.) Using
these symbols, we can write to pins using the following:

 pinMode(P1_0, OUTPUT);
 digitalWrite(P1_0, HIGH);

https://github.com/energia/Energia/wiki/Hardware

 Programming Energia (and Arduino)

MSP430 Design Workshop - Using Energia (Arduino) 11 - 11

Sidebar

How can some ‘pins’ be connected to various pieces of hardware? (For example, PUSH2 and A3
(analog input 3) are both mapped to pin 5.)

Well, most processors today have multiplexed pins; i.e. each pin can have multiple functionality.
While a given ‘pin’ can only be used for one function at a time, the chip designers give users many
options to choose from. In an ideal world, we could just put as many pins as we want on a device;
but unfortunately this costs too much, therefore multiplexing is a common cost/functionality
tradeoff.

The remaining colored items show how various pins are used for digital, analog or
communications purposes. The color legend on the right side of the diagram demonstrates the
meaning of the various colors.

 Green indicates that you can use the associated pins with the digitalRead() and
digitalWrite() functions.

 Purple is similar to Green, though you can also use the analogWrite() function with these
pins.

 Yellow , Orange , and Red specify these pins are used for serial communication: UART,

I2C, and SPI protocols, respectively.

 Finally, Blue demonstrates which pins are connected to the MSP430’s ADC (analog to
digital converter).

Should you do Pullups or Not?

To reduce power consumption, MSP430 Value-Line Launchpads (version V1.5 and later) are
shipped without pull-up resistors on PUSH2 (S2 or P1_3 or pin 5). This saves (77uA) if port P1_3
is driven LOW. (On your LaunchPad just below the "M" in the text "MSP-EXP430G2" see if R34 is
missing.) For these newer launchpads, sketches using PUSH2 should enable the internal pull-up
resistor in the MSP430. This is a simple change; for example:

pinMode(PUSH2, INPUT); now looks like pinMode(PUSH2, INPUT_PULLUP);

Hardware Pin References

As stated above, the Energia wiki (https://github.com/energia/Energia/wiki/Hardware) and Energia site
(http://energia.nu/Guide_MSP430F5529LaunchPad.html) shows these pin mapping diagrams for each
of the Energia supported boards. You can also refer to the source code which defines this pin
mapping; look for Energia/hardware/msp430/variants/launchpad/pins_energia.h.
This header file can be found on github, or in the files installed with Energia.

Orange

https://github.com/energia/Energia/wiki/Hardware
http://energia.nu/Guide_MSP430F5529LaunchPad.html
https://github.com/energia/Energia/blob/master/hardware/msp430/variants/launchpad/pins_energia.h

Energia IDE

11 - 12 MSP430 Design Workshop - Using Energia (Arduino)

Energia IDE
The Energia IDE (integrated debugger and editor; integrated development environment) has been
written in Java. This is how they can provide versions of the tools for multiple host platforms
(Wndows, Mac, Linux).

Energia Debugger

 Installation
 Simply unzip Energia package
 Everything is included: debugger, libraries,

board files, compilers
 Download button…

 Performs compile and downloads the
program to the target

 Debugging – Use common open-src methods
 Write values to serial port: Serial.println()
 Toggle pins & watch with o-scope

New
Open

Save

Verify/Compile
Download

Installation of the tools couldn’t be much simplier – unzip the package … that’s it. (Though, if you
have not already installed TI’s Code Composer Studio IDE, you may have to install drivers so that
the Energia debugger can talk to the TI Launchpad board.)

Editing code is straightforward. Syntax highlighting, as well as brace matching help to minimize
errors.

Compiling and downloading the program is as simple as clicking the Download button.

Debugging code is handled in the common, open-source fashion: printf() style. Although, rather
than using printf(), you can use the Serial print functions to keep track of what is going on with
your programs. Similarly, we often use LED’s to help indicate status of program execution. And, if
you have an oscilloscope or logic analyzer, you can also toggle other GPIO pins to evaluate the
runtime state of your program sketches. (We explore using LED’s and serial communications in
the upcoming lab exercises.)

 Debugging Energia (Arduio) with CCSv6

MSP430 Design Workshop - Using Energia (Arduino) 11 - 13

Examples, Lots of Examples
Energia ships with many examples. These are great for getting started with programming – or
when trying to learn a new functionality. Our upcoming lab exercises will follow with this tradition
of starting from these simple examples.

Energia Sketches (Examples)

 Basic Sketches
 Blink is the ‘hello

world’ of micro’s
 BareMinimum is just

setup() and loop()

 Selecting example…
 Opens sketch in

debugger window
 Click download to

compile, download
and run

Debugging Energia (Arduio) with CCSv6

Full Energia Debug with CCSv6

Breakpoints

Watch Window

Single-Stepping

Call Stack

Energia/Arduino References

11 - 14 MSP430 Design Workshop - Using Energia (Arduino)

Energia/Arduino References
There are many more Arduino references that could possibly be listed here, but this should help
get you started.

Where To Go For More Information

 Energia
 Home: http://energia.nu/
 Download: http://energia.nu/download/
 Wiki: https://github.com/energia/Energia/wiki
 Getting Started: https://github.com/energia/Energia/wiki/Getting-Started
 Support Forum: http://forum.43oh.com/forum/28-energia/

 Launchpad Boards
 MSP430: http://www.ti.com/tool/msp-exp430g2 (wiki) (eStore)
 ARM Cortex-M4F: Launchpad Wiki eStore

 Arduino:
 Site: http://www.arduino.cc/
 Comic book: http://www.jodyculkin.com/.../arduino-comic-latest3.pdf

Energia

 Home: http://energia.nu/

 Download: http://energia.nu/download/

 Wiki: https://github.com/energia/Energia/wiki

 Supported Boards: https://github.com/energia/Energia/wiki/Hardware

 (H/W pin mapping)

 Getting Started: https://github.com/energia/Energia/wiki/Getting-Started

 Support Forum: http://forum.43oh.com/forum/28-energia/

Arduino

 Site: http://www.arduino.cc/

 Comic book: http://www.jodyculkin.com/.../arduino-comic-latest3.pdf

http://energia.nu/
http://energia.nu/
http://energia.nu/
http://energia.nu/download/
https://github.com/energia/Energia/wiki
https://github.com/energia/Energia/wiki/Hardware
https://github.com/energia/Energia/wiki/Hardware
https://github.com/energia/Energia/wiki/Hardware
https://github.com/energia/Energia/wiki/Getting-Started
https://github.com/energia/Energia/wiki/Getting-Started
https://github.com/energia/Energia/wiki/Getting-Started
http://forum.43oh.com/forum/28-energia/
http://forum.43oh.com/forum/28-energia/
http://forum.43oh.com/forum/28-energia/
http://www.arduino.cc/
http://www.arduino.cc/
http://www.jodyculkin.com/wp-content/uploads/2011/09/arduino-comic-latest3.pdf

 Lab 11

MSP430 Design Workshop - Using Energia (Arduino) 11 - 15

Lab 11
This set of lab exercises will give you the chance to start exploring Energia: the included
examples, the ‘Wiring’ language, as well as how Arduino has been adapted for the TI Launchpad
boards.

The lab exercises begin with the installation of Energia, then give you the opportunity to try out
the basic ‘Blink’ example included with the Energia package. Then we’ll follow this by trying a few
more examples – including trying some of our own.

Lab Exercises

Installing Energia
A. Blinking the LED
B. Pushing the Button
C. Serial Communication & Debugging
D. Push-Button Interrupt
E. Timer Interrupt (Uses Non-Energia Code)

Lab 11

11 - 16 MSP430 Design Workshop - Using Energia (Arduino)

Lab Topics

Using Energia (Arduino) ... 11-14

Lab 11 ... 11-15
Installing Energia ... 11-17

Installing the LaunchPad drivers ... 11-17
Installing Energia ... 11-17
Starting and Configuring Energia .. 11-18

Lab 11a – Blink ... 11-21
Your First Sketch ... 11-21
Modifying Blink .. 11-24

Lab 11b – Pushing Your button .. 11-25
Examine the code ... 11-25
Reverse button/LED action ... 11-26

Lab 11c – Serial Communication (and Debugging) .. 11-27
What if the Serial Monitor is blank? (’G2553 Launchpad Configuration) 11-28
Blink with Serial Communication ... 11-29
Another Pushbutton/Serial Example ... 11-29

Lab 11d – Using Interrupts .. 11-30
Adding an Interrupt .. 11-30

Lab 11e – Using TIMER_A ... 11-32

Appendix – Looking ‘Under the Hood’ .. 11-33
Where, oh where, is Main ... 11-33
Two ways to change the MSP430 clock source ... 11-35
Sidebar – initClocks() .. 11-36
Sidebar Cont’d - Where is F_CPU defined? .. 11-37

Lab Debrief .. 11-38
Lab 11a ... 11-38
Lab 11b ... 11-39
Lab 11c.. 11-40
Lab 11d ... 11-42

 Lab 11

MSP430 Design Workshop - Using Energia (Arduino) 11 - 17

Installing Energia
If you already installed Energia as part of the workshop prework, then you can skip this step and
continue to Lab 11a – Blink.

These installation instructions were adapted from the Energia Getting Started wiki page. See this
site for notes on Mac OSX and Linux installations.

https://github.com/energia/Energia/wiki/Getting-Started

Note: If you are attending a workshop, the following files should have been downloaded as part
of the workshop’s pre-work. If you need them and do not have network access, please
check with your instructor.

Installing the LaunchPad drivers

1. To use Energia you will need to have the LaunchPad drivers installed.

 For Windows Users

 If TI's Code Composer Studio 6.x with MSP430 suport is already installed on your computer
then the drivers are already installed. Skip to the next step.

a) Download the LaunchPad drivers for Windows:
 LaunchPad CDC drivers zip file for Windows 32 and 64 bit

b) Unzip and double click DPinst.exe for Windows 32bit or DPinst64.exe for Windows 64 bit.

c) Follow the installer instructions.

Installing Energia

2. Download Energia, if you haven’t done so already.

 The most recent release of Energia can be downloaded from the download page.

 Windows Users

 Double click and extract the energia-0101EXXXX-windows.zip file to a desired location.

 (We recommend unzipping it to: C:\TI\energia-0101E00xx).

https://github.com/energia/Energia/wiki/Getting-Started
https://github.com/energia/Energia/raw/gh-pages/files/EZ430-UART.zip
http://energia.nu/download

Lab 11

11 - 18 MSP430 Design Workshop - Using Energia (Arduino)

Starting and Configuring Energia

3. Double click Energia.exe (Windows users).

 Energia will start and an empty Sketch window will appear.

 Lab 11

MSP430 Design Workshop - Using Energia (Arduino) 11 - 19

4. Set your working folder in Energia.

 It makes it easier to save and open files if Energia defaults to the folder where you want to
put your sketches.

 The easiest way to set this locations is via Energia’s preferences dialog:

File Preferences

 Then set the Sketchbook location to:

C:\msp430_workshop\<target>\energia

 Which opens:

Lab 11

11 - 20 MSP430 Design Workshop - Using Energia (Arduino)

5. Selecting the Serial Port

 Select Serial Port from the Tools menu to view the available serial ports.

 For Windows, they will be listed as COMXXX port and usually a higher number is the
LaunchPad com port. On Mac OS X they will be listed as /dev/cu.uart-XXXX.

6. Select the board you are using – most likely the msp430f5529 (16MHz).

 To select the board or rather the msp430 in your LaunchPad, select Board from the Tools
menu and choose the board that matched the msp430 in the LaunchPad.

 Lab 11

MSP430 Design Workshop - Using Energia (Arduino) 11 - 21

Lab 11a – Blink
Don’t blink, or this lab will go by without you seeing it. It’s a very simple lab exercise – that
happens to be one of the many examples included with the Energia package.

As simple as this example is, it’s a great way to begin. In fact, if you have followed the flow of this
workshop, you may recognize the Blink example essentially replicates the lab exercise we
created in Chapter 3 and 4 of this workshop.

As we pointed out during the Energia chapter discussion, the Wiring language simplifies the code
quite a bit.

Your First Sketch

1. Open the Blink sketch (i.e. program).

 Load the Blinky example into the editor; select Blink from the Examples menu.

File Examples 1.Basics Blink

Lab 11

11 - 22 MSP430 Design Workshop - Using Energia (Arduino)

2. Examine the code.

 Looking at the Blink sketch, we see the code we quickly examined during our chapter
discussion. This code looks very much like standard C code. (In Lab11d we examine some of
the specific differences between this sketch and C code.)

 At this point, due to their similarity to standard C language code, we will assume that you
recognize most of the elements of this code. By that, we mean you should recognize and
understand the following items:

 #define – to declare symbols

 Functions – what a function is, including: void, () and {}

 Comments – declared here using // characters

 What we do want to comment on is the names of the two functions defined here:

 setup(): happens one time when program starts to run

 loop(): repeats over and over again

 This is the basic structure of an Energia/Arduino sketch. Every sketch should have – at the
very least – these two functions. Of course, if you don’t need to setup anything, for example,
you can leave it empty.

/*

 Blink

 Turns on an LED on for one second, then off for one second,
 repeatedly. This example code is in the public domain.

 */

void setup () {

 // initialize the digital pin as an output.

 // Pin 14 has an LED connected on most Arduino boards:

 pinMode (RED_LED, OUTPUT);
}

void loop () {

 digitalWrite (RED_LED, HIGH); // turn on LED

 delay (1000); // wait one second (1000ms)

 digitalWrite (RED_LED, LOW); // turn off LED

 delay (1000); // wait one second
}

 Lab 11

MSP430 Design Workshop - Using Energia (Arduino) 11 - 23

3. Compile and upload your program to the board.

 To compile and upload the Sketch to the LaunchPad click the button.

Do you see the LED blinking? What color LED is blinking? __________________________

What pin is this LED connected to? ___

 (Be aware, in the current release of Energia, this could be a trick question.)

Hint: We recommend you check out the Hardware Pin Mapping to answer this last
question. There’s a copy of it in the presentation. Of course, the original is on the
Energia wiki.

https://github.com/energia/Energia/wiki/Hardware%23wiki-LaunchPad_MSP430G2553

Lab 11

11 - 24 MSP430 Design Workshop - Using Energia (Arduino)

Modifying Blink

4. Copy sketch to new file before modification.

 We recommend saving the original Blink sketch to a new file before modifying the code.

File Save As…

 Save it to:

C:\msp430_workshop\<target>\energia\Blink_Green

Hint: This will actually save the file to:

C:\msp430_workshop\<target>\energia\Blink_Green\Blink_Green.ino

Energia requires the sketch file (.ino) to their to be in a folder named for the project.

5. How can you change which color LED blinks?

 Examine the H/W pin mapping for your board to determine what needs to change.

Please describe it here: __

 __

6. Make the other LED blink.

 Change the code, to make the other LED blink.

 When you’ve changed the code, click the Upload button to: compile the sketch; upload the
program to the processor’s Flash memory; and, run the program sketch.

Did it work? ___

 (We hope so. Please ask for help if you cannot get it to work.)

 Lab 11

MSP430 Design Workshop - Using Energia (Arduino) 11 - 25

Lab 11b – Pushing Your button
Next, let’s figure out how to use the button on the Launchpad. It’s not very difficult, but since
there’s already a sketch for that, we’ll go ahead and use it.

1. Open the Button sketch (i.e. program).

 Load the Button example into the editor.

File Examples 2.Digial Button

2. Try out the sketch.

 Before we even examine the code, let’s try it out. (You’re probably just like us … going to try
it out right away, too.)

When you push the button the (GREEN or RED) LED goes (ON or OFF)? ______________

By the way, you probably know this already from earlier in the workshop, but which button are
we using? If you’re using the F5529 Launchpad, then the “user” buttons are called PUSH1
and PUSH2; the example uses PUSH2 (the board silkscreen says P1.1) as shown here:

Examine the code

3. The author of this sketch used the LED in a slightly different fashion.

How is the LED defined differently in the Button Sketch versus the Blink sketch?

4. Looking at the pushbutton…

How is the pushbutton created/used differently from the LED? ________________________

What “Energia” pin is the button connected to? ___________________________________

What is the difference between INPUT and INPUT_PULLUP? ________________________

Lab 11

11 - 26 MSP430 Design Workshop - Using Energia (Arduino)

5. A couple more items to notice…

 Just like standard C code, we can create variables. What is the global variable used for in this
example?

 Finally, this is a very simple way to read and respond to a button. What would be a more
efficient way to handle responding to a pushbutton? (And why would this be important to
many of us MSP430 users?)

 __

(Note, we will look at this ‘more efficient’ method in a later part of the lab.)

Reverse button/LED action

Do you find this example to be the reverse of what you expected? Would you prefer the LED to
go ON when the button is pushed, rather than the reverse. Let’s give that a try.

6. Save the example to sketch new file before modification.

 Once again, we recommend saving the original sketch before modification. Save it to:

C:\msp430_workshop\<target>\energia\Button_reversed

7. Make the LED light only when the button is pressed.

 Change the code as needed.

Hint: The changes required are similar to what you would do in C, they are not unique to
Energia/Arduino.

8. When your changes are finished, upload it to your Launchpad.

Did it work? ___

 Lab 11

MSP430 Design Workshop - Using Energia (Arduino) 11 - 27

Lab 11c – Serial Communication (and Debugging)
This lab uses the serial port (UART) to send data back and forth to the PC from the Launchpad.

In and of itself, this is a useful and common thing we do in embedded processing. It’s the most
common way to talk with other hardware. Beyond that, this is also the most common debugging
method in Arduino programming. Think of this as the “printf” for the embedded world of
microcontrollers.

1. Open the DigitalReadSerial example.

 Once again, we find there’s a (very) simple example to get us started.

File Examples 1.Basics DigitalReadSerial

2. Save sketch as myDigitalReadSerial.

3. Examine the code.

 This is a very simple program, but that’s good since it’s very easy to see what
Energia/Arduino needs to get the serial port working.

/* DigitalReadSerial

 Reads a digital input on pin 2, prints the result to the
 serial monitor (This example code is in the public domain) */

void setup() {

 Serial.begin(9600); // msp430g2231 must use 4800

 pinMode(PUSH2, INPUT_PULLUP);
}

void loop() {

 int sensorValue = digitalRead(PUSH2);

 Serial.println(sensorValue);
}

 As you can see, serial communication is very simple. Only one function call is needed to
setup the serial port: Serial.begin(). Then you can start writing to it, as we see here in the
loop() function.

Note: Why are we limited to 9600 baud (roughly, 9600 bits per second)?

The G2553 Launchpad’s onboard emulation (USB to serial bridge) is limited to 9600
baud. It is not a hardware limitation of the MSP430 device. Please refer to the wiki for
more info: https://github.com/energia/Energia/wiki/Serial-Communication.

If you’re using other Launchpads (such as the ‘F5529 Launchpad), your serial port can
transmit at much higher rates.

https://github.com/energia/Energia/wiki/Serial-Communication

Lab 11

11 - 28 MSP430 Design Workshop - Using Energia (Arduino)

4. Download and run the sketch.

 With the code downloaded and (automatically) running on the Launchpad, go ahead and
push the button.

 But, how do we know it is running? It doesn’t change the LED, it only sends back the current
pushbutton value over the serial port.

Hint: After running the sketch and looking at the Serial Monitor (in the next step), you might
find that nothing is showing up. Try switching “pin 5” for “PUSH2” in the code. Look at the
mapping diagrams between the ‘G2553 and ‘F5529 Launchpads to see the mismatch.

5. Open the serial monitor.

 Energia includes a simple serial
terminal program. It makes it easy to
view (and send) serial streams via
your computer.

 With the Serial Monitor open, and
the sketch running, you should see
something like this:

 You should see either a “1” or “0”
depending upon whether the putton
is up or down.

 Also, notice that the value is updated continuously, since the sketch reads the button and
writes it to port in the loop() function.

Do you see numbers in the serial monitor?

 __

What if the Serial Monitor is blank? (’G2553 Launchpad Configuration)
If this is the case, your Launchpad is most likely configured incorrectly. For serial communications to work
correctly, the J3 jumpers need to be configured differently than how the board is configured out-of-the-box.
(This fooled us, too.) Refer to these diagrams for correct operation. (This does not affect other Launchpads.)

https://github.com/energia/Energia/wiki/Hardware%23wiki-Serial_port_communication_Hardware_UART

 Lab 11

MSP430 Design Workshop - Using Energia (Arduino) 11 - 29

Blink with Serial Communication

Let’s try combining a couple of our previous sketches: Blink and DigitalReadSerial.

6. Open the Button sketch.

 Load the Button from the Examples menu.

File Examples 2.Digial Button

7. Save it to a new file before modification.

 Once again, we recommend saving the original sketch before modification. Save it to:

C:\msp430_workshop\<target>\energia\Serial_Button

8. Add ‘serial’ code to your Serial_Button sketch.

 Take the serial communications code from our previous example and add it to your new
Serial_Button sketch. (Hint, it should only require two lines of code.)

9. Download and test the example.

 Did you see the Serial Monitor and LED changing when you push the button?

 __

10. Considerations for debugging…

 How you can use both of these items for debugging?

 Serial Port; LED (And, what if you didn’t have an LED available on your board?):

Another Pushbutton/Serial Example

Before finishing Lab 11C, let’s look at one more example.

11. Open the StateChangeDetection sketch.

 Load the sketch from the Examples menu.

File Examples 2.Digial StateChangeDetection

12. Examine the sketch, download and run it.

How is this sketch different? What makes it more efficient? __________________________

 __

How is this (and all our sketches, up to this point) inefficient? ________________________

 __

Lab 11

11 - 30 MSP430 Design Workshop - Using Energia (Arduino)

Lab 11d – Using Interrupts
Interrupts are a key part of embedded systems. It is responding to external events and
peripherals that allow our programs to ‘talk’ to the real world.

Thusfar, we have actually worked with a couple different interrupts without having to know
anything about them. Our serial communications involved interrupts, although the Wiring
language insulates us from needing to know the details. Also, there is a timer involved in the
delay() function; thankfully, it is also managed automatically for us.

In this part of the lab exercise, you will setup two different interrupts. The first one will be triggered
by the pushbutton; the second, by one of the MSP430 timers.

1. Once again, let’s start with the Blink code.

File Examples 1.Basics Blink

2. Save the sketch to a new file.

File Save As…

 Save it to:

C:\msp430_workshop\<target>\energia\Interrupt_PushButton

3. Before we modify the file, run the sketch to make sure it works properly.

4. To setup(), configure the GREEN_LED and then initialize it to LOW.

 This requires two lines of code which we have used many times already.

Adding an Interrupt
Adding an interrupt to our Energia sketch requires 3 things:

 An interrupt source – what will trigger our interrupt. (We will use the pushbutton.)

 An ISR (interrupt service routine) – what to do when the interrupt is triggered.

 The interruptAttach() function – this function hooks a trigger to an ISR. In our case, we

will tell Energia to run our ISR when the button is pushed.

5. Interrupt Step 1 - Configure the PushButton for input.

 Look back to an earlier lab if you don’t remember how to do this.

6. Interrupt Step 2 – Create an ISR.

 Add the following function to your sketch; it will be your interrupt service routine. This is about
as simple as we could make it.

void myISR()
{
 digitalWrite(GREEN_LED, HIGH);
}

 In our function, all we are going to do is light the GREEN_LED. If you push the button and the
Green LED turns on, you will know that successfully reached the ISR.

 Lab 11

MSP430 Design Workshop - Using Energia (Arduino) 11 - 31

7. Interrupts Step 3 – Connect the pushbutton to our ISR.

 You just need to add one more line of code to your setup() routine, the attachInterrupt()
function. But what arguments are needed for this function? Let’s look at the Arduino
reference to figure it out.

Help Reference

 Look up the attachInterrupt() function. What three parameters are required?

1. ___

2. ___

3. ___

 One you have figured out the parameters, add the function to your setup() function.

8. Compile & download your code and test it out.

Does the green RED_LED flash continuously? ____________________________________

When you push the button, does the GREEN_LED light? ___________________________

When you push reset, the code should start over again. This should turn off the
GREEN_LED, which you can then turn on again by pushing PUSH2.

Note: Did the GREEN_LED fail to light up? If so, that means you are not getting an
interrupt.

First, check to make sure you have all three items – button is configured;
attachInterrupt() function called from setup(); ISR routine that lights the GREEN_LED

The most common error involves setting up the push button incorrectly. The button
needs to be configured with INPUT_PULLUP. In this way, the button is held high
which lets the system detect when the value falls as the button is pressed.

Missing the INPUT_PULLUP is especially common since most Arduino examples –
like the one shown on the attachInterrupt() reference page only show INPUT. This is
because many boards include an external pullup resistor, Since the MSP430
contains an internal pullup, you can save money by using it instead.

Lab 11

11 - 32 MSP430 Design Workshop - Using Energia (Arduino)

Lab 11e – Using TIMER_A
9. Create a new sketch and call it Interrupt_TimerA

File New

File Save As…

C:\msp430_workshop\<target>\energia\Interrupt_TimerA

10. Add the following code to your new sketch.

#include <inttypes.h>

uint8_t timerCount = 0;

void setup()
{
 pinMode(RED_LED, OUTPUT);

 TA0CCTL0 = CCIE;
 TA0CTL = TASSEL_2 + MC_2;
}

void loop()
{
 // Nothing to do.
}

__attribute__((interrupt(TIMER0_A0_VECTOR)))
void myTimer_A(void)
{
 timerCount = (timerCount + 1) % 80;
 if(timerCount ==0)
 P1OUT ^= 1;
}

 In this case, we are not using the attachInterrupt() function to setup the interrupt. If you
double-check the Energia reference, it states the function is used for ‘external’ interrupts. In
this case, the MSP430’s Timer_A is an internal interrupt.

 In essense, though, the same three steps are required:

a) The interrupt source must be setup. In our example, this means seting up TimerA0’s
CCTL0 (capture/compare control) and TA0CTL (TimerA0 control) registers.

b) An ISR function – which, in this case, is named “myTimer_A”.

c) A means to hook the interrupt source (trigger from TimerA0) to our function. In this case,
we need to plug the Interrupt Vector Table ourselves. The GCC compiler uses the
__attribute__((interrupt(TIMER_A0_VECTOR))) line to plug the Timer_A0 vector.

Note: You might remember that we introduced Interrupts in Chapter 5 and Timers in
Chapter 6. In those labs, the syntax for the interrupt vector was slightly different from
what we are using here. This is because the other chapters use the TI compiler.
Energia uses the open-source GCC compiler, which uses a slightly different syntax.

 Appendix – Looking ‘Under the Hood’

MSP430 Design Workshop - Using Energia (Arduino) 11 - 33

Appendix – Looking ‘Under the Hood’
We are going to create three different lab sketches in Lab 11d. All of them will essentially be our
first ‘Blink’ sketch, but this time we’re going to vary the system clock – which will affect the rate of
blinking. We will help you with the required C code to change the clocks, but if you want to study
this further, please refer to Chapter 3 – Inititialization and GPIO.

Where, oh where, is Main

How does Energia setup the system clock?

Before jumping into how to change the MSP430 system clock rate, let’s explore how Energia sets
up the clock in the first place. Thinking about this, our first question might be…

 What is the first function in every C program? (This is not meant to be a trick question)

If Energia/Arduino is built around the C language, where is the main() function? Once we answer
this question, then we will see how the system clock is initialized.

Open main.cpp …

C:\TI\energia-0101E0010\hardware\msp430\cores\msp430\main.cpp

The “C:\TI\energia-0101E0010” may be different if you unzipped the Energia to a different location.

When you click the Download button, the tools combine your setup() and loop() functions into the
main.cpp file included with Energia for your specific hardware. Main should look like this:

main.cpp

// main.cpp
#include < Energia.h >
int main(void)
{

init();
setup();
for (;;) {

loop();
if (serialEventRun) {

serialEventRun();
}

}
return 0;

}

Clicking download
combines sketch with
main.cpp to create a
valid c++ program

We have already seen setup()
and loop(). This is how Energia
uses them.

Energia.h contains the #defines,
enums, prototypes, etc.

System initalization is
done in wiring.c

(see next slide)

C:\TI\energia-0101E0010\hardware\msp430\cores\msp430\

Where do you think the MSP430 clocks are initialized? _____________________________

Appendix – Looking ‘Under the Hood’

11 - 34 MSP430 Design Workshop - Using Energia (Arduino)

Follow the trail. Open wiring.c to find how init() is implemented.

C:\TI\energia-0101E0010\hardware\msp430\cores\msp430\wiring.c

 The init() function implements the essential code required to get the MSP430 up and running.
If you have already completed Chapter 4 – Clocking and Initialization, then you should
recognize most of these activities. At reset, you need to perform two essential activies:

 Initialize the clocks (choose which clock source you want use)

 Turn off the Watchdog timer (unless you want to use it, as a watchdog)

 The Energia init() function takes this three steps further. They also:

 Setup the Watchdog timer as a standard (i.e. interval) timer

 Setup two GPIO pins

 Enable interrupts globally

init() in wiring.c
C:\TI\energia-0101E0010\hardware\msp430\cores\msp430\

// wiring.c
void init()
{

disableWatchDog();
initClocks();
enableWatchDogIntervalMode();
// Default to GPIO (P2.6, P2.7)
P2SEL &= ~(BIT6|BIT7);
__eint();

}
enableWatchDogIntervalMode()
initClocks()
disableWatchDog()
enableWatchDog()
delayMicroseconds()
delay()
watchdog_isr ()

 wiring.c provides the core files for
device specific architectures

 init() is where the default
initializations are handled

 As discussed in Ch 3 (Init & GPIO)
 Watchdog timer (WDT+) is

disabled
 Clocks are initialized (DCO 16MHz)
 WDT+ set as interval timer

 Appendix – Looking ‘Under the Hood’

MSP430 Design Workshop - Using Energia (Arduino) 11 - 35

Two ways to change the MSP430 clock source

There are two ways you can change your MSP430 clock source:

 Modify the initClocks() function defined in wiring.c

 Add the necessary code to your Setup() function to modify the clock sources

Advantages

 Do not need to re-modify wiring.c after updating to new revision of Energia

 Changes are explicitly shown in your own sketch

 Each sketch sets its own clocking, if it needs to be changed

 In our lab, it allows us to demonstrate that you can modify hardware registers – i.e.
processor specific hardware – from within your sketch

Disdvantages

 Code portability – any time you add processor specific code, this is something that will

need to be modified whenever you want to port your Arduino/Energia code to another
target platform

 A little less efficient in that clocking gets set twice

 You have to change each sketch (if you always want a different clock source/rate)

Appendix – Looking ‘Under the Hood’

11 - 36 MSP430 Design Workshop - Using Energia (Arduino)

Sidebar – initClocks()

Here is a snippet of the initClocks() function found in wiring.c (for the ‘G2553 Launchpad). We
call it a snippet, since we cut out the other CPU speeds that are also available (8 & 12 MHz).

The beginning of this function starts out by setting the calibration constants (that are provided in
Flash memory) to their associated clock configuration registers.

(Sidebar): initClocks() in wiring.c

void initClocks(void)
{
#if (F_CPU >= 16000000L)
BCSCTL1 = CALBC1_16MHZ;
DCOCTL = CALDCO_16MHZ;

#elif (F_CPU >= 1000000L)
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

#endif

BCSCTL2 &= ~(DIVS_0);
BCSCTL3 |= LFXT1S_2;

CSCTL2 &= ~SELM_7;
CSCTL2 |= SELM__DCOCLK;
CSCTL3 &= ~(DIVM_3|DIVS_3);

#if F_CPU >= 16000000L
CSCTL1 = DCORSEL;

#elif F_CPU >= 1000000L
CSCTL1 = DCOFSEL0|DCOFSEL1;
CSCTL3 |= DIVM_3;

#endif
}

Select correct calibration
constants based on chosen clock
frequency

 F_CPU defined in boards.txt
 Select ‘board’ via: ToolsBoards

Set MCLK as per F_CPU

 Set SMCLK to F_CPU
Set ACLK to VLO (12Khz)

 Clear main clock (MCLK)
Use DCO for MCLK
Clear divide clock bits

If you work your way through the second and third parts of the code, you can see the BCS (Basic
Clock System) control registers being set to configure the clock sources and speeds. Once again,
there are more details on this in Clocking chapter and its lab exercise.

 Appendix – Looking ‘Under the Hood’

MSP430 Design Workshop - Using Energia (Arduino) 11 - 37

Sidebar Cont’d - Where is F_CPU defined?

We searched high & low and couldn’t find it. Finally, after reviewing a number of threads in the
Energia forum, we found that it is specified in boards.txt. This is the file used by the debugger
to specifiy which board (i.e. target) you want to work with. You can see the list from the
ToolsBoard menu.

C:\TI\energia-0101E0010\hardware\msp430\boards.txt

Lab Debrief

11 - 38 MSP430 Design Workshop - Using Energia (Arduino)

Lab Debrief

Lab 11a

Q&A: Lab11A (1)
Lab A
3. Do you see the LED blinking? What color LED is blinking? _____________________

What pin is this LED connected to? _______________________________________

(Be aware, in the current release of Energia, this could be a trick question.)

Red
P1_0

(Code says Pin14, it was RED that blinked)

Q&A: Lab11A (2)
5. How can you change which color LED blinks?

Examine the H/W pin mapping for your board to determine what needs to change.
Please describe it here: ___

6. Make the other LED blink.
Did it work? ____________________________________

Change from P1_0 to P4_7, for the green LED to blink
(Easier yet, just use the pre-defined symbol: GREEN_LED)

Yes

 Lab Debrief

MSP430 Design Workshop - Using Energia (Arduino) 11 - 39

Lab 11b

Q&A: Lab11B (1)
2. Try out the sketch.

When you push the button the (GREEN or RED) LED goes (ON or OFF)?

Examine the code
3. How is the LED defined differently in the ‘Button’ Sketch versus the ‘Blink’ sketch?

4. How is the pushbutton created/used differently from the LED?

What “Energia” pin is the button connected to? _______________________________
What is the difference between INPUT and INPUT_PULLUP?

Green LED goes OFF

In ‘Blink’, the LED was #defined (as part of Energia);
in ‘Button’, it was defined as a const integer. Both work equally well.

In Setup() it is configured as an ‘input’; in loop() we use digitalRead()
P1_1

INPUT config’s the pin as a simple input – e.g. allowing you to read pushbutton.
Using INPUT_PULLUP config’s the pin as an input with a series pullup resitor;
(many TI C provide these resistors as part of their hardware design).

Q&A: Lab11B (2)
5. Just like standard C code, we can create variables. What is the global variable used

for in the ‘Button’ example?

What would be a more efficient way to handle responding to a pushbutton? (And why
would this be important to many of us MSP430 users?)

(Note, we will look at this later.)

Reverse Button/LED action
8. Did it work? _________________

‘buttonState’ global variable holds the value of the button returned by digitalRead().
We needed to store the button’s value to perform the IF-THEN/ELSE command.

It would be more efficient to let the button ‘interrupt’ the processor, as opposed to
reading the button over and over again. This is as the processor cannot SLEEP
while polling the pushbutton pin. If using an interrupt, the processor could sleep until
being woken up by a pushbutton interrupt.

Yes (it should)

Lab Debrief

11 - 40 MSP430 Design Workshop - Using Energia (Arduino)

Lab 11c

Q&A: Lab11C (1)
5. Did you see numbers in the serial monitor? ___________________________

If using ‘G2553 LP you might not have seen anything in the Serial Monitor. If so, change:

Yes

Change the serial-port jumpers

Note – changing jumpers is only needed for ‘G2553 Value-Line Launchpad

 Lab Debrief

MSP430 Design Workshop - Using Energia (Arduino) 11 - 41

Q&A: Lab11C (2)
Blink with Serial Communication (Serial_Button sketch)
9. Did you see the Serial Monitor and LED changing when you push the button?

10. Considerations for debugging… How you can use both of these items for debugging?
(Serial Port and LED)
__

__

__

You (we hope so)

Use the serial port to send back info, just as you might use printf() in your C code.
An LED works well to indicate you reached a specific place in code. For example,
later on we’ll use this to indicate our program has jumped to an ISR (interrupt routine)
Similarly, many folks hook up an oscilloscope or logic analyzer to a pin, similar to
using an LED. (Since our boards have more pins than LEDs.)

Q&A: Lab11C (3)
Another Pushbutton/Serial Example (StateChangeDetection sketch)
12. Examine the sketch, download and run it.

How is this sketch different? What makes it more efficient?

How is this (and all our sketches, up to this point) inefficient?

It only sends data over the UART whenever the button changes

Our pushbutton sketchs – thusfar – have used polling to determine the state of the
button. It would be more efficient to let the processor sleep; then be woken up by an
interrupt generated when the pushbutton is depressed.

Lab Debrief

11 - 42 MSP430 Design Workshop - Using Energia (Arduino)

Lab 11d

Q&A: Lab11D
Interrupt Example (Interrupt_PushButton)
7. Look up the attachInterrupt() function. What three parameters are required?

1. ___
2. ___
3. ___

8. Compile & download your code and test it out.
Does the green RED_LED flash continuously? _____________________________
When you push the button, does the GREEN_LED light? _____________________

Notes:
 Use reset button to start program again and clear GREEN_LED
 Most common error, not configuring PUSH2 with INPUT_PULLUP.

Interrupt source – in our case, it’s PUSH2
ISR function to be called when int is triggered – for our ex, it’s “myISR”
Mode – what state change to detect; the most common is “FALLING”

Using Segmented Displays (LCD)

Introduction
This chapter introduces the segmented liquid crystal display (LCD). We begin with a quick
introduction to LCD’s and how they work. Second, we look at how they can be controlled and
used within an embedded system.

Finally we learn how to implement designs with the LCD_E controller found on the
MSP430FR4133 microcontroller. The ‘FR4133 Launchpad – with its built-in LCD display – makes
a great platform platform for LCD experimentation.

Learning Objectives

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 1

For More Information on LCD’s

Chapter Topics
Using Segmented Displays (LCD) ... 12-1

For More Information on LCD’s ... 12-2
Liquid Crystal Displays (LCD) ... 12-3

How do LCD’s Work? .. 12-5
Basic Control of an LCD (Static) ... 12-11
Using LCD’s with More Segments (Muxed) .. 12-16

Static vs Muxed ... 12-16
Muxed Control Signals .. 12-19

LCD Control Options ... 12-21
Bit Banging a Display .. 12-21
Displays with Built-in Drivers ... 12-23
MSP430 LCD Peripherals ... 12-24

Implementing Display with ‘FR4133 LCD_E ... 12-26
Choose Display and Pin Layout .. 12-26
LCD Init Code .. 12-29
Controlling Segments .. 12-49
Dual Memories & Blinking ... 12-55

Lab Exercise ... 12-57

For More Information on LCD’s

For More Information

Here are a couple of resources you can refer to for more
information concerning the use of Segemented LCD’s:
 Designing With MSP430™ MCUs and Segment LCDs

application note: www.ti.com/lit/pdf/slaa654
 MSP430 Microcontroller Basics by John H. Davies,

(ISBN-10 0750682760) ,nk

12 - 2 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Liquid Crystal Displays (LCD)

Liquid Crystal Displays (LCD)
There are many types of Liquid Crystal Displays available today – from the simple 7-Segment
single-digit displays, all the way up to the displays used for computer and television screens.

MSP430-based applications tend to favor low-cost, low-power segmented displays – typically with
less than 100-400 segments (or dots).

Types of LCD’s

* http://www.pcmag.com/encyclopedia/term/60488/lcd-types

 Segmented tassive L/D’s
 /heaper than Active aatrix
 Ldeal low-power embedded

applications
 Easily controlled by

microcontrollers
 This chapter focuses on using

segmented L/D’s

Large graphic displays like a computer or portable DVD player, on the other hand, tend to be
used in systems with high-level operating systems and much faster processors. As you might
imagine, this chapter focuses on the simpler lower-cost, segmented displays.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 3

Liquid Crystal Displays (LCD)

A large of number of end applications can benefit from MSP430s with integrated LCD controllers.
These include remote controls, blood glucose meters, and any LCD application where battery
power matters.

MSP430 + LCD Examples

A/C remote control

One-Time-
Password Token

Appliances

Consumer

Water Meter

E-Shelf Label
Low-power LCD

hand held

Simple control with
LCD display

Industrial

Watches

Remotes
Commercial

Healthcare

Blood Glucose
Meter

12 - 4 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Liquid Crystal Displays (LCD)

How do LCD’s Work?
Two physical properties are the fundamental elements of LCD displays:

• Polarizers

• Liquid Crystals.

Let’s begin with polarizers.

As you might remember from high-school physics, light consists of both particles and waves. For
our purposes, we’re interested in the “wave” concept. Shown at the top of the diagram light waves
are vibrating in all directions. But after passing through a polarizer, light only vibrates in a single
direction.

In other words, you might say polarizers filter all light waves except those vibrating in a single
direction.

What happens if we add a second polarizer – one that’s oriented differently?

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 5

Liquid Crystal Displays (LCD)

A second polarizer – rotated 90 degrees from the original – ends up blocking the light from
making it through the pair of polarizers.

This is because, after passing through the first polarizer, there aren’t any light waves that still
vibrate in the same direction as the second polarizer.

Effectively, using only two polarizers, all of the light would be filtered out. By itself, this isn’t the
effect we want; but it serves our purposes when we sandwich liquid crystals between the two
polarizers.

12 - 6 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Liquid Crystal Displays (LCD)

One of the unique benefits of liquid crystals is that they bend light 90 degrees. Putting these
crystals between the two polarizers allows light polarized by the top one to still be able to pass
through the bottom one.

If you add a reflector (i.e. mirror) to the bottom of the display, the light will bounce back and – due
once again to rotation by the liquid crystals – will pass all the way through.

It’s important for light to make it all the way back to the LCD user’s eye, but we’re still missing one
key component… how to turn parts of the display on and off.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 7

Liquid Crystal Displays (LCD)

Here we see another key feature of liquid crystals… when you apply a charge to them, they
untwist.

Untwisting the crystals means we’re back to the point where light cannot pass through the two
polarizers. Thus, by applying transparent electrodes to portions (or segments) of an LCD display,
we can use an electric charge to turn that segment “on” or “off”.

That is, where charge is applied, light gets blocked, and won’t reflect back to the user – who sees
the dark segment as “on”.

And where no charge is applied, the light gets reflected back to the user. Thus, by simply
applying an electric charge, you can control the appearance of an LCD display.

One problem, though, is that liquid crystals deteriorate when direct current (i.e. DC) charge is
applied to them.

It’s unfortunate that Direct Current (or DC) causes harm to liquid crystals. Why, because this is
the same type of charge output by a battery… as well as the general purpose I/O pins on a
microcontroller.

12 - 8 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Liquid Crystal Displays (LCD)

Since DC cannot be used, that means we need to drive LCD’s using Alternating Current (i.e. AC).
The most common place we see Alternating Current is the electrical charge coming out of our
wall sockets at home. While AC power from the electric company is too much power for driving an
LCD, we can learn something from how it works. Here’s the question… “If household current
alternates back-and-forth – spending as much time positively charged as negative – doesn’t that
add up to Zero?”

We know that alternating currents transmit power, but a standard DC calculation doesn’t seem to
work out. The key, favored by engineering, is to describe AC power using a Root Mean Squared
(known as RMS) calculation. The RMS value of a periodic current is equal to the direct current
(DC) that delivers the same average power to a resistor as the periodic current.

Properties of “Electric Charge”

VRMS (between Seg and Com)

Contrast vs. RMS Voltage

Electric Charge Untwists Crystals
 D/ voltage harms liquid

crystal properties
 They’re affected by VwaS charge
 VwaS increases as amplitude of

alternating voltage increases

 /rystals untwist more as VwaS
is increased – this affects
hb/hCC as well as contrast

Looking back at our LCD, we’ll toggle our processors pins back-and-forth to create the required
Alternating Current. Similar to household power, it’s the RMS power generated by our pins that
“untwists” the liquid crystals. A larger RMS charge (above the threshold) turns a segment “on”
while a smaller charge lets it remain “off”.

Notice the chart in the bottom corner of the slide. An LCD really isn’t just “on” or “off”. Rather,
since these crystals react in an analog sort of fashion, using different voltages can make them
appear darker or lighter. Using this idea often gives us a way to control the contrast of the display.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 9

Liquid Crystal Displays (LCD)

To quickly review how Liquid Crystal Displays work: Two polarizer planes are situated at 90˚
angles from each other. Without the liquid crystals, no light would be reflected back from the
mirror-like backing.

Displays are broken up into different segments. These are defined by translucent electrodes that
apply a charge across liquid crystals.

If no charge is applied, then the crystals twist the light allowing it though both polarizers. Hence,
the segment is “off”. Conversely, when a charge is applied, the crystals don’t bend the light and
light is not permitted to reflect back to the user, hence the segment is “on”.

Finally… and what a pain it is… direct current damages the liquid crystals; therefore, an RMS
voltage (that is, alternating current) must be used for to control the segments.

12 - 10 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Basic Control of an LCD (Static)

Basic Control of an LCD (Static)
With that background on how LCD’s work, let’s turn to what control signals can be used to
operate the display.

Some simple terminology – liquid crystal displays are controlled by Segment and Common
lines… called “Seg” and “Com”, for short.

In this example, we can see 8 segment lines (S1 thru S8) being routed to each of the segment
electrodes. 8 SEG’s are needed, because it’s a “7-segment” display with a “decimal point”.

The Common is shown here as 1 big electrode – this is meant to emphasize that all the segments
utilize the same COMMON line, hence the name. In real displays, the common electrodes tend to
be shaped just like the segments, but just wired all together.

Therefore, we’ll need 9 pins to drive 8 segments – one for each segment + the common line.

In an ideal world, you would be able to drive all of these N+1 signals from simple GPIO pins,
where N represents the number of segments in the display.

Over the next few pages, we’ll explore how we do this in the “real” world.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 11

Basic Control of an LCD (Static)

Once again, in an “ideal” world, we could just apply the “on” and “off” values of “1” and “0” to each
segment of our display – always keeping the COM low (like a ground).

SEG3

SEG4

COM

Driving SEG and COM
 If we wanted:

 Segment 3 = “off”
 Segment 4 = “on”

 Using simple GPIO, our signal might
look like…

COM

SEG3
SEG4

If this were the case, the only timing we would have to worry about is:

 “How often do we need to update the display?”

12 - 12 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Basic Control of an LCD (Static)

This leads to the term: “Frame-rate” – which is the frequency with which we update the display.
This term comes from video, where each frame of video is represented by a picture – the rate of
successive pictures (or frames) comes down to how fast do you need to show the pictures in
order to make the video appear smooth and pleasing to the eye.

The same concept applies here, even though we’re not talking ‘pictures’, but rather how
frequently we need to manipulate all of the segments.

SEG3

SEG4

COM

Frame Rate
 If we wanted:

 Segment 3 = “off”
 Segment 4 = “on”

 Using simple GPIO, our signal might
look like…

COM

SEG3
SEG4

teriod = 1 Crame = 1/Cramewate
Crame wate = Iow fast you want to clock each

segment (usually 30-60 Iz)

In any case, since both LCD’s and video are watched with the human eye, it’s common to find
both frame-rates around 30-60 Hz.

One more term defined in this image is “Period” – this is 1 over the frame-rate frequency. The
time period becomes significant since it specifies how much time we have to manipulate all of our
segments.

By the way, have you noticed what is wrong with the control signals shown here? What rule (from
the first part of this chapter) does this diagram violate?

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 13

Basic Control of an LCD (Static)

If you yelled out, “YOU CANNOT USE DC VOLTAGES”, then you were correct.

SEG3

SEG4

COM

No DC Voltages!
 If we wanted:

 Segment 3 = “off”
 Segment 4 = “on”

 Using simple GPIO, our signal might
look like…

COM

SEG3
SEG4

teriod = 1 Crame = 1/Cramewate
Crame wate = Iow fast you want to clock each

segment (usually 30-60 Iz rate)

As we stated, in an ideal world we’d simply set segments on/off using DC signals from our GPIO
pins… but liquid crystals deteriorate with DC voltages.

This means our signals have to become a bit more elaborate.

12 - 14 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Basic Control of an LCD (Static)

So, instead of using simple DC voltages, we have to convert them to AC signals – toggling our
pins up and down to communicate “on” or “off”. (In fact, this AC rule even applies to COM signal.
Notice that even it is alternated up then down in each frame.)

With this in mind, to keep segment “off” we need to apply zero charge. Notice how SEG3
accomplishes this by having its signal follow COM; when combing the two signals together,
Segment 3 is off because COM-SEG3 equates to zero average charge.

Alternating Voltages
 bo D/ values allowed!
 Each signal is alternated up/down
 Value is determined by subtracting

SEG from /ha
 Larger waS value (over the threshold)

turns segment “on”

COM

SEG3
SEG4

SEG3

SEG4

COM

Becomes
This

SEG3

SEG4

COM

SEG3RMS = COM-SEG3

SEG4RMS = COM-SEG4

V1

V0

V1

V0

V1

V0

+V1

V0

V0

- V1

1 Crame

And, this means we can keep Segment 4 on by setting SEG4 to be the opposite of COM. The
combination of these two signals provides enough average power to the segment to untwist the
liquid crystals.

This solves one of our real-world problems. Next, we’ll look at how to solve the other one.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 15

Using LCD’s with More Segments (Muxed)

Using LCD’s with More Segments (Muxed)
Using AC voltages solves one problem, but there’s another problem that often occurs when using
displays… What happens if your microcontroller doesn’t have enough pins to drive every
segment in the display?

Static vs Muxed
One big limitation of real-world processors is pin-count. From a cost perspective, you can only put
so many pins on any microcontroller.

“Static” displays, such as that shown on the left (of the following graphic), require you to have
N+1 pins… where N is the number of segments in the display. For example, an 8-segment
display requires 9 pins. That’s not too bad, but what happens if you want a 256-segment display?
Does your micro have 257 pins available – only for use by the display?

Thankfully, we can apply a common engineering solution to this problem. Multiplexing provides
a solution where each of the pins can be used for multiple purposes. (In fact, we see this concept
applied in many different ways, all throughout the MSP430.)

“Multiplexed” displays – also called “Muxed” displays – utilize this solution so that you can drive
many segments with a smaller number of pins. In the example to the right (of the proceeding
diagram), you’ll see that you can save 1/3 of the needed pins by parsing up the display segments
so that the top portion of the “8” character are driven first, and then the bottom ones are driven
second. In both cases, each portion utilizes the same SEG pins, but are differentiated by using
different COM pins.

Again, this simple example only saves 3 pins. But, for a 256-segment display, a muxed display
might only need 40-pins, versus the 257 we described earlier for static displays. Now that a BIG
difference.

12 - 16 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Using LCD’s with More Segments (Muxed)

Since Muxing is important, let’s take another look at a simple 4-segment example.

As discussed, each segment needs a SEG line, as well as a COM line. In this diagram, notice
how each of our 4 segments are connected: the top and right-side segments are controlled by
SEG0, while the other two are controlled by SEG1.

The only way this works is by time-division multiplexing. That is, during the first half of the time
period: SEG0 and SEG1 are driven together with COM0.

During the second half of the time period: SEG0 and SEG1 are driven along with COM1.

We tried to highlight this by labeling each segment below, such as S0C0 to represent SEG0 and
COM0 control signals.

Given the example shown here, only S0C0 is supposed to be on. (We tried to show it as darker,
with the others being more translucent.)

A common shorthand notation is given towards the bottom of the slide.The possible connections
are shown in a matrix, with the “on” connection represented by a solid circle.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 17

Using LCD’s with More Segments (Muxed)

Scaling from a simple multiplexed by 2 example, known as 2-mux, the MSP430 can also support
3-mux, 4-mux … all the way up to 8-mux displays.

In fact, this is an example of 8-mux – which means there are 8 common lines. (Alternatively, you
could state that each segment line can support 8 segments.)

2-mux, 3-mux, 4-mux, … 8

 Segmented L/Ds use auxing to
minimize pin count

 botation: Static (no mux), 2-mux,
3-mux, 4-mux, etc.
 Up to 8-mux on some aSP430s

 b-mux
 There are N common (/Oax) pins
 Each segment pin (Sx) drives N segments

 Some aSt430s can support up to
320 segments (using 8-mux)

To summarize, multiplexed displays allow us to drive many segments, while minimizing the
number of pins required.

This works well, but… if you’re thinking, wouldn’t applying alternating RMS voltages to 8-mux
frames get a little complicated… You’re correct!

12 - 18 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Using LCD’s with More Segments (Muxed)

Muxed Control Signals
Combining AC voltages with muxed control signals can make for complicated waveforms.

Don’t worry though… before we even get started talking about this slide, let’s get one thing clear
right up front… the LCD controller peripheral does all of this for us!

Thus, this page is just background information. With that in mind let’s break this diagram down.

VwaS

VwaS

Basic 2-Mux Example
1 Crame Differences from Static Example

 Each /ha is handled every frame in a
TDa (time-division muxed) fashion

 Crame contains 2*b phases
(where b is the number of /ha lines)

 ter frame: /ha0 alternates in first 2
phases, while /ha1 in the 2nd two phases

 aultiple bias voltages are needed to
create multiplexed VwaS values
(e.g. V1, V3, V5)

 Signals are combined to
determine state of each segment
 As before larger “swings” (i.e. amplitude)

enable the segment
 Thankfully… L/D peripheral

handles the details
 Waveforms generated automatically

by aSt430 L/D module
 Low-power L/D charge pump can

generate all required bias voltages
 L/D memory makes it easy to specify

which segments should be ‘on’

For a given frame, there must be 2 phases for every COM line. Therefore, a 2-mux display would
need 4 phases (2 phases * 2-mux). In fact, this fits with our previous 2-mux example; remember
that we only needed 2 phases for our “static” (i.e. 1-mux) display.

Extrapolating from the number of phases, your clock would need to be 4x the frame-rate. If you
wanted to update your display at 60 frames per second, you would need to set the LCD control
clock to 240 Hz (or greater)

That takes care of clock timing, but what about controlling the “on” and “off” values?

This is also a little more complicated. Rather than using just two voltages to signify “on” and “off”,
it’s easier to create the required RMS average charge values by using multiple voltages – called
“bias” voltages. You can see these to the right of the diagram, represented by: V1, V3, and V5.

While this makes the diagram more complicated, we don’t really have to worry about it since the
LCD controller handles all of the signals, combining them to achieve the proper “on” and “off”
values for each multiplexed segment.

Note: This example shows 3 bias voltages – which is sometime called 1/3 bias since they differ
from each other by thirds. Some displays require fewer (1/2 bias), while others require
more bias voltages – though 1/3 bias is probably most common. In any case, the
display’s documentation should indicate what bias voltages it requires.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 19

Using LCD’s with More Segments (Muxed)

To reiterate… if you’re using an LCD CONTROLLER, IT HANDLES ALL OF THE COMPLEX
SIGNALS, TIMING, and VOLTAGES.

This means… you only need to define a basic set of parameters to the LCD controller.

For example, selecting a specific display for your application will determine the number of muxes
(i.e. N-mux), the number of bias voltages and the number of pins that are required.

LCD Controller
 As stated previously, L/D /ontroller peripheral

handles all the complex timing, signal and voltages
 You only need to select the controllers modes and

sources:
 The choice of display defines:

N-mux, # of bias voltages and # of pins required
 L/D controller’s clock source
 Voltage reference source (for Bias voltage generation)

aay be external (via resistors) or from one of the
internal voltage references

 Which segments are “on” and “off”
 hther device specific features, such as ‘blinking’

What other parameters do you need to specify?
• Since the controller handles all the fancy timing and signal generation, you only need to

choose which clock source it should use.

• Similarly, you need to define the reference voltage and the controller will auto-generate all the
other required voltages. (Of course, you also have the option to create the voltages externally
using a resistor network – in this mode, the voltages become inputs to the controller.)

• Finally, you’ll choose – and may vary during runtime – which segments of the display should
be on, off, and/or blinking.

In a few pages we’ll examine the code required to select each of these options.

12 - 20 MSP430 Design Workshop - Using Segmented Displays (LCD)

 LCD Control Options

LCD Control Options
We’ll take a very brief look at three different ways you can control an LCD – before focusing our
efforts on the 3rd method, which uses the dedicated on-chip LCD controller peripheral.

Bit Banging a Display
As listed here, “bit banging” is one option. You could generate the waveforms required by the
LCD by using GPIO, as well as timers and/or serial ports.

Devices without LCD peripheral
 Two hptions:

 Bit Bang - Use software and GtLh
to drive the display

 Use external L/D controller
(connect via StL, L2/)

 App bote: Software Glass L/D
Driver Based on aSt430 a/U
www.ti.com/lit/pdf/slaa516
 Use resistors to for bias voltage
 Timer to do the frame timing
 4-mux software example

 Tradeoffs:
+ aore device options; bot

required to find device with L/D
– Iigher current consumption

(wake 8 times per frame)
– Uses /tU cycles just to keep

display “on”
– aore external components req’d
– /ode is quite a bit more complex

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 21

LCD Control Options

In fact, there’s an app note (highlighted in the slide) which you can refer to if you choose to go
this route.

TI Confidential – NDA Restrictions

SLAA516 App Note
• Example code for 4-mux

included with app note
• Frame divided into 8 time slots –

– 4 (1 for each COM)
– each divided into two parts

because no DC on LCD (must
toggle)

• Timer used to generate the 8
slots

• Must wake on each slot and
software set all COM & SEG
lines

• SEG same as COM = off
• SEG opposite COM = on

Time Slots

Another option is to use a use an external LCD controller – or maybe even an FPGA to generate
the waveforms.

In the end, we can only think of one advantage with the bit-banging technique: you’re not limited
to only those devices with an LCD controller. Other than that, this isn’t a very good option; it’s
more difficult and requires more power.

Bottom line – most folks choose one of the next two options.

12 - 22 MSP430 Design Workshop - Using Segmented Displays (LCD)

 LCD Control Options

Displays with Built-in Drivers
The second most popular solution is to pick a “smart display”… that is, one with a built-in
controller.

TI Confidential – NDA Restrictions

Displays with Built-in Drivers

• Dot-matrix LCD or e-paper displays
• Typically have built-in driver
• Typically controlled using SPI or

I2C, so MSP430 with USI or USCI
can easily control these
– Some displays do not have read-

back capability, so may need to store
current image in MSP430
RAM/FRAM

• Sharp LCD Boosterpack
www.ti.com/tool/430boost-sharp96

As shown here, the popular Sharp LCD Boosterpack is a good example of a smart display. In this
case, you would use one of the MSP430 serial ports to communicate with the display.

These are handy to use, as you only need to send commands and the display takes care of all
the messy work. The only downside is that these displays may be slightly more expensive.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 23

LCD Control Options

MSP430 LCD Peripherals
Finally, dedicated LCD controllers are the most efficient way to handle displays. Thankfully, many
MSP devices have these on-chip peripherals.

MSP430 LCD portfolio
tarameter L/D L/D_A L/D_B L/D_/ LD/_E

Number of Segments 128/4-aUX 160/4-aUX 160/4-aUX 320/8-aUX 448/8-aUX

Number of L/D Pins up to 4x46 up to 4 x 50
or 8 x 46

up to 4 x 60
or 8 x 56

Segment functionality
against port pin

selection

ainimum is group
of 16

Selection done in
groups of 4
segments

Lndividual
selection can be

done

Lndividual
selection can be

done

Lndividual
selection can be

done

/Oa/SED Pin
Assignments /Oa Cixed /Oa Cixed /Oa Cixed /Oa Cixed Any L/D pin

L/D /lock selection A/LK A/LK A/LK, VLO A/LK, VLO XT1, A/LK, VLO

Lnterrupt capabilities NO NO YES (4 sources) YES (4 sources) YES (3 sources)

Lndividual segment
blinking capabilities NO NO YES YES YES

Prog. blinking
frequency N/A N/A YES YES YES

Dual memory display NO NO YES YES YES

/harge Pump voltages N/A 3 x VwEC Programmable (15 Levels)

Works in LPa3.5 No No No No Yes

* For the full table, see the application note: Designing With MSP430™ MCUs and Segment LCDs (slaa654.pdf)

Low-cost, low-power, display applications have favored the MSP430 for many years. In that time,
TI has continually tweaked the LCD peripheral; employing continuous improvements over the
years.

The latest FRAM-based ‘FR4133 processor utilizes the newest controller, the “LCD_E” model.

Most of the features follow its recent predecessors, but for one big new advantage…

12 - 24 MSP430 Design Workshop - Using Segmented Displays (LCD)

 LCD Control Options

The new LCD controller can operate in the LPM3.5 … our “extreme” low-power mode.

This allows the ‘FR4133 to drive LCD displays (as well as a real-time clock) while dissipating less
than 800 nano amps… AMAZING!

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 25

Implementing Display with ‘FR4133 LCD_E

Implementing Display with ‘FR4133 LCD_E
In the final part of the discussion, we examine the steps required to implement a display using the
FR4133’s LCD Controller.

There are four basic elements to an LCD-based design. Let’s begin with “Choosing a Display”.

Choose Display and Pin Layout
It’s difficult for us to prescribe the correct display for your application’s needs. The “glass” (that is,
“display”) you choose will be based upon the needs of your system.

Maybe you’ll only need a single, 7-segment display… or, you might need to drive up to the full
256 segments the ‘FR4133 controller can handle.

The display shown here was captured from the FR4133’s Launchpad User’s Guide. Looking at its
(albeit negligible specifications), we can see that it requires 3 volts; 4 COM lines and 3 bias
voltages.

Select a Segmented LCD

 This display is found on the MSP-EXP430FR4133 Launchpad
 LCD datasheet defines:

 Driving Voltage = 3.0V
 Duty cycle = ¼ (which implies 4-mux)
 BIAS Voltages = 1/3

 Of display’s 38 pins: 4 COM, 27 SEG (and 7 unused)

While the display has 38 pins, looking through the Launchpad’s documentation shows that only
31 of these are needed to drive all the segments.

Does the MSP430FR4133 have enough pins for this display?

12 - 26 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

Yes, this device has a plethora of I/O.

The LCD controller has been assigned 45 of the devices 64 pins. If we assign the 31 pins
required by the Launchpad’s display, that means we’ve got 14 left over that can be utilized for
general purpose I/O.

Of the remaining 19 pins found on this package, only 4 of them are dedicated and cannot be used
for I/O. Two are used for the chip’s power supply, the other two are dedicated for in-circuit
emulation.

This is a very flexible device. In fact, turning to the next page, we’ll see that the LCD pins
themselves are not even “fixed”.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 27

Implementing Display with ‘FR4133 LCD_E

The FR4133 does not provide hard definitions for any of its LCD pins. You can route them to the
display’s pinout in whatever way makes your board layout the easiest.

Then, in software you can specify which LCD pin should be used for each of the COM lines.

LCD controllers don’t get any more flexible than this! Hardware designers REJOICE!

12 - 28 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

LCD Init Code
The next step in our LCD implementation is to initialize the LCD_E controller.

In this step we’ll configure the pin assignments; select the N-mux mode; and specify the clock
and voltage references needed for our application. This slide summarizes the init procedure.

The LCD’s init function includes:
1. Turn off the L/D controller
2. Set Lx pins to be used by L/D (versus GtLh)
3. /hoose aux and Timing modes
 b-mux mode
 Timing (clock source and rate)

4. Specify voltage reference and sources
 Voltage reference source (VwEC) – should they be

internal or external
 Lf internal, set the VwEC voltage level –

remember, this is programmable (15-levels)
 Source of bias voltages – external resistor

network or internal charge-pump
5. Turn the L/D controller “on”

We begin with turning off the LCD controller and assigning the pins.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 29

Implementing Display with ‘FR4133 LCD_E

Turn the LCD_E Off
The LCD_E controller should be turned off before changing many of its modes – so let’s start off
our initialization routine by doing just that.

LCD Init – Turn off Controller
 Using the LCD datasheet’s specs:

 Driving Voltage = 3.0V
 Duty cycle = ¼ (which implies 4-mux)
 BIAS Voltages = 1/3

 Of display’s 38 pins: 4 COM, 27 SEG (and 7 unused)

void initLCD(void) {

// Turn off LCD
LCD_E_off(LCD_E_BASE);

12 - 30 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

Allocate Pins
Next…looking at the LCD’s specifications from our earlier step, we need to assign 31 of the LCD
(i.e. Lx) pins to the LCD controller.

Thankfully, driverlib has a function that lets us assign a whole range of LCD pins to the LCD
controller.

LCD Init – Allocate Pins
 Using the LCD datasheet’s specs:

 Driving Voltage = 3.0V
 Duty cycle = ¼ (which implies 4-mux)
 BIAS Voltages = 1/3

 Of display’s 38 pins: 4 COM, 27 SEG (and 7 unused)

void initLCD(void) {

// Turn off LCD
LCD_E_off(LCD_E_BASE);

// Select range(s) of FR4133 LCD pins (Lx) to connect to LCD
// Note: this means they won’t be available for GPIO
LCD_E_setPinAsLCDFunctionEx(LCD_E_BASE,

LCD_E_SEGMENT_LINE_0, // assign range from pin L0
LCD_E_SEGMENT_LINE_26 // through pin L26

);
LCD_E_setPinAsLCDFunctionEx(LCD_E_BASE,

LCD_E_SEGMENT_LINE_36, // assign range from pin L36
LCD_E_SEGMENT_LINE_39 // through pin L39

);

Since this display, and the layout routed by the Launchpad’s hardware designer, connected the
MSP430 using two discontinuous ranges of GPIO pins, we were required to call the
LCD_E_setPinsAsLCDFunctionEx() function twice.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 31

Implementing Display with ‘FR4133 LCD_E

Finally, since this controller allows any LCD pin to act as a COM pin, we need to specify which
four pins (because we’re using a 4-mux display) should be assigned as COM lines. Once again, a
dedicated driverlib function makes this easy.

LCD Init – Assign COMs
 Using the LCD datasheet’s specs:

 Driving Voltage = 3.0V
 Duty cycle = ¼ (which implies 4-mux)
 BIAS Voltages = 1/3

 Of display’s 38 pins: 4 COM, 27 SEG (and 7 unused)

void initLCD(void) {

// Turn off LCD
LCD_E_off(LCD_E_BASE);

// Select range(s) of FR4133 LCD pins (Lx) to connect to LCD
// Note: this means they won’t be available for GPIO
LCD_E_setPinAsLCDFunctionEx(…);
LCD_E_setPinAsLCDFunctionEx(…);

// Configure first 4 pins as COMMON lines (COM0 – COM3)
LCD_E_setPinAsCOM(LCD_E_SEGMENT_LINE_0, LCD_E_MEMORY_COM0);
LCD_E_setPinAsCOM(LCD_E_SEGMENT_LINE_1, LCD_E_MEMORY_COM1);
LCD_E_setPinAsCOM(LCD_E_SEGMENT_LINE_2, LCD_E_MEMORY_COM2);
LCD_E_setPinAsCOM(LCD_E_SEGMENT_LINE_3, LCD_E_MEMORY_COM3);

Actually, the hardware layout made this very easy, we only need to assign the first four LCD pins
as our COMmon lines.

12 - 32 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

Warning!
Here’s something we stumbled into by accident as we wrote the workshop lab exercises.

It appears the COM pin selections are stored in the LCD’s memory (which we’ll talk about in a
couple of minutes). Suffice it to say, if you clear the LCD’s memory, you also erase the COM pin
selections.

LCD Init – Assign COMs
 Using the LCD datasheet’s specs:

 Driving Voltage = 3.0V
 Duty cycle = ¼ (which implies 4-mux)
 BIAS Voltages = 1/3

 Of display’s 38 pins: 4 COM, 27 SEG (and 7 unused)

void initLCD(void) {

// Turn off LCD
LCD_E_off(LCD_E_BASE);

// Select range(s) of FR4133 LCD pins (Lx) to connect to LCD
// Note: this means they won’t be available for GPIO
LCD_E_setPinAsLCDFunctionEx(…);
LCD_E_setPinAsLCDFunctionEx(…);

// Configure first 4 pins as COMMON lines (COM0 – COM3)
LCD_E_setPinAsCOM(LCD_E_SEGMENT_LINE_0, LCD_E_MEMORY_COM0);
LCD_E_setPinAsCOM(LCD_E_SEGMENT_LINE_1, LCD_E_MEMORY_COM1);
LCD_E_setPinAsCOM(LCD_E_SEGMENT_LINE_2, LCD_E_MEMORY_COM2);
LCD_E_setPinAsCOM(LCD_E_SEGMENT_LINE_3, LCD_E_MEMORY_COM3);

Warning!
The /ha selections are reset when you clear
the L/D’s memory. Cor example, by calling:

LCD_E_clearAllMemory()

So, you should always LCD_E_setPinAsCOM()
after clearing the memory…

Therefore, if you clear the memory in your init routine, you should do it BEFORE you assign the
COM pins. Do this and save yourself a couple of hours worth of debugging…

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 33

Implementing Display with ‘FR4133 LCD_E

Choose Mux and Timing Modes
The 3rd step asks us to select the mux and timing modes…

The LCD’s init function includes:
1. Turn off the L/D controller
2. Set Lx pins to be used by L/D (versus GtLh)
3. /hoose aux and Timing modes
 b-mux mode
 Timing (clock source and rate)

4. Specify voltage reference and sources
 Voltage reference source (VwEC) – should they be

internal or external
 Lf internal, set the VwEC voltage level –

remember, this is programmable (15-levels)
 Source of bias voltages – external resistor

network or internal charge-pump
5. Turn the L/D controller “on”

As with many of the peripherals we’ve configured throughout this workshop, we begin by creating
an initParams variable and setting it equal to its default parameters.

For our Launchpad’s display, we’re only going to change two of the parameters: clockDivider and
muxrate.

LCD Init – Configure Modes
 Using the LCD datasheet’s specs:

 Driving Voltage = 3.0V
 Duty cycle = ¼ (which implies 4-mux)
 BIAS Voltages = 1/3

 Of display’s 38 pins: 4 COM, 27 SEG (and 7 unused)

// Initialze LCD Clock and Mux mode
LCD_E_initParam initParams = LCD_E_INIT_PARAM;
initParams.clockDivider = CLOCKDIV_3; // Set frame rate

12 - 34 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

clockDivider
As shown on the previous slide, we want to divide the input clock by 3, to get our frame-rate close
to 60 Hz.

Wait a second, what clock source are we using? In other words, what’s getting divided by 3?

To figure this out, let’s look at the DriverLib User’s Guide. (Although, you could also look in the
“lcd_e.h” header file.)

The DriverLib User’s Guide (and header file) shows us that unless we specify otherwise, the
LCD_E peripheral will be configured to use the external clock source (XT1).

That means our clock source is calculated from 32KHz and is pre-divided by 3.

Note: Calculating the frame-rate from these values, though, requires crunching two simple
equations. We’ll leave the details of this until the upcoming lab exercise.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 35

Notes:

 Implementing Display with ‘FR4133 LCD_E

muxrate
Since, according to the User’s Guide, the DriverLib defaults to Static (that is, 1-mux mode), we
need to set the controller to run in 4-mux mode to match our display’s specifications.

With those two changes to initParams, you can go ahead and use it to initialize the LCD_E
controller with LCD_E_init().

LCD Init – Configure Modes
 Using the LCD datasheet’s specs:

 Driving Voltage = 3.0V
 Duty cycle = ¼ (which implies 4-mux)
 BIAS Voltages = 1/3

 Of display’s 38 pins: 4 COM, 27 SEG (and 7 unused)

// Initialze LCD Clock and Mux mode
LCD_E_initParam initParams = LCD_E_INIT_PARAM;
initParams.clockDivider = CLOCKDIV_3; // Set frame rate
initParams.muxRate = LCD_E_4_MUX; // Select mux
LCD_E_init(LCD_E_BASE, &initParams);

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 37

Implementing Display with ‘FR4133 LCD_E

Specify Voltage Reference/Source
The last thing we need to do before turning the display “on” is to configure the bias voltages that
will be used to drive the LCD. The 3 sets of options (3 bullets under #4 in the diagram) listed here
are summarized in the Device User’s Guide. The User’s Guide defines 6 modes, which describe
the various permutations…

The LCD’s init function includes:
1. Turn off the L/D controller
2. Set Lx pins to be used by L/D (versus GtLh)
3. /hoose aux and Timing modes
 b-mux mode
 Timing (clock source and rate)

4. Specify voltage reference and sources
 Source of bias voltages – external resistor

network or internal charge-pump
 Voltage reference source (VwEC) – should they be

internal or external
 Lf internal, set the VwEC voltage level –

remember, this is programmable (15-levels)
5. Turn the L/D controller “on”

12 - 38 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

As you can see, the 6 modes are broken up into 2 groups. One uses external resistors to create
the Bias voltages; the other set uses the LCD controller’s charge pump.

Summary: LCD_E Voltage Modes

aode /harge tump Voltage Bias ‘Source’ /ontrast /ontrol

0a Disabled

0b Disabled

aode 0: /harge tump Disabled
(wequires external resistor ladder across pins: w33 w23 w13 DND)

aode /harge tump Voltage Bias ‘Source’ /ontrast /ontrol

1 Enabled

2 Enabled

3 Enabled

4 Enabled

aode 1, 2, 3, 4: /harge tump Enabled
(wequires external capacitors between pins: w33 DND, w23 DND, w13 DND)

Let’s take a brief look at each mode – highlighting its key characteristics. We’ll then summarize by
“filling-in” this table.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 39

Implementing Display with ‘FR4133 LCD_E

Mode 0a

Note: As a point of reference, we’ve highlighted the parts of the diagram that are found “on-the-
device” using a gray background. The “off-chip” portions are found in the lower-left corner
in white. Therefore, the lines represented by R33, R23, and R13 represent pins on the
MSP430FR4133 device.

OK, with that stated, what are the unique points about Mode 0a…

First of all, you’ll notice that the 3 bias voltages are created using an external ladder of resistors.
The top one (highest voltage) is call VLCD, while the 2nd one represents 2/3 the value of VLCD and
finally the V4 voltage only has 1/3 of the original VLCD value.

The other salient point is that the Voltage Reference source is “external”. In other words, VLCD
equals the voltage applied to pin R33.

Likewise, the voltages created by the resistor network become the input values for V2 and V4.

Bias
Voltages
(Mode 0a)

 weference
Voltage is
External
VwEC = VEXT

 BLAS Voltages
Sourced External
(wesistor ladder)

 Voltages input
on pins w33, w23
and w13

 Set /ontrast by:
/hanging VEXT

w33

w23

w13

V1 (VL/D)

V2
(2/3 VL/D)

V4
(1/3 VL/D)

V5

VEXT

hn-chip

hff-chip

In Mode 0a, you need to change the value on R33 (i.e. VEXT) in order to adjust the contrast of the
display.

12 - 40 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

Mode 0b
Mode 0b is very similar to 0a, except that VLCD is referenced internally – from VCC – rather than
externally.

The only other difference this creates is that to adjust the contrast of the display, you need to vary
VCC rather than VEXT.

Bias
Voltages
(Mode 0b)

 weference
Voltage is
Lnternal
VwEC = V//

 BLAS Voltages
Sourced External
(wesistor ladder)

 Voltages input
on pins w33, w23
and w13

 Set /ontrast by:
/hanging V//
(i.e. VDD)

w33

w23

w13

V1 (VL/D)

V2
(2/3 VL/D)

V4
(1/3 VL/D)

V5

V//
hn-chip

hff-chip

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 41

Implementing Display with ‘FR4133 LCD_E

Modes 1 thru 4
The rest of the modes (Modes 1 thru 4) differ in that we use the internal charge pump to generate
the bias voltages.

The big difference between Modes 1 and 2 comes down to the source of our voltage reference.
Similar to Modes 0a and 0b, one is external and the other is internal.

Mode 1
As we can see, Mode 1 uses an external voltage VEXT applied to pin R33.

Bias
Voltages
(Mode 1)

 weference
Voltage is
External
VwEC = VEXT

 BLAS Voltages
Sourced Lnternal
(/harge tump)

 Voltages can be
output on pins
w33, w23 and w13

 Set /ontrast by:
/hanging VEXT

w33

w23

w13

V1 (VL/D)

V2
(2/3 VL/D)

V4
(1/3 VL/D)

V5

VEXT

hn-chip

hff-chip

12 - 42 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

Mode 2
While Mode 2 uses the internal VCC voltage as reference.

Bias
Voltages
(Mode 2)

 weference
Voltage is
Lnternal
VwEC = V//

 BLAS Voltages
Sourced Lnternal
(/harge tump)

 Voltages can be
output on pins
w33, w23 and w13

 Set /ontrast by:
/hanging V//
(i.e. VDD)

w33

w23

w13

V1 (VL/D)

V2
(2/3 VL/D)

V4
(1/3 VL/D)

V5

V//
hn-chip

hff-chip

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 43

Implementing Display with ‘FR4133 LCD_E

Mode 3
Mode 3 is different from all the other modes in that it uses a separate internal Voltage Reference
– called the “Bias Voltage Generator”. The benefit here is that the Bias Voltage Generator can be
configured to output any one of 16 different voltages. (From 2.6V up to 3.5V.)

The beauty of this is that we can now control the contrast via software. That is, by tweaking the
VLCD bits in the LCD Voltage control register, we can easy vary the display’s contrast.

Bias
Voltages
(Mode 3)

 weference
Voltage Lnternal
BLAS Voltage
Generator

 BLAS Voltages
Sourced Lnternal
(/harge tump)

 Voltages can be
output on pins
w33, w23 and w13

 Set /ontrast in
code using:

VL/Dx bits

w33

w23

w13

V1 (VL/D)

V2
(2/3 VL/D)

V4
(1/3 VL/D)

V5

hn-chip

hff-chip

12 - 44 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

Mode 4
Finally, Mode 4 is similar to Mode 2 in that the voltage reference is once again external. In this
case, though, the reference is applied to the lowest voltages (at pin R13) rather than the highest
voltage (at pin R33).

Bias
Voltages
(Mode 4)

 weference
Voltage is
External
VwEC = VwEC,EXT

 BLAS Voltages
Sourced Lnternal
(/harge tump)

 Voltages can be
output on pins
w33, w23 and w13

 Set /ontrast by:
/hanging VwEC,EXT

w33

w23

w13

V1 (VL/D)

V2
(2/3 VL/D)

V4
(1/3 VL/D)

V5

VwEC,EXT

hn-chip

hff-chip

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 45

Implementing Display with ‘FR4133 LCD_E

Summarize Voltage Modes
To summarize the various modes, we’ve completed the earlier table.

Summary: LCD_E Voltage Modes

aode /harge tump Voltage Bias ‘Source’ /ontrast /ontrol

0a Disabled w33 sourced with VEXT (L/DSELVDD = 0) /hanging VEXT

0b Disabled w33 sourced with V// (L/DSELVDD = 1) /hanging VDD/V// (1.8 to 3.6V)

aode 0: /harge tump Disabled
(wequires external resistor ladder across pins: w33 w23 w13 DND)

aode /harge tump Voltage Bias ‘Source’ /ontrast /ontrol

1 Enabled w33 sourced with VEXT (L/DSELVDD = 0) /hanging VEXT

2 Enabled w33 sourced with V// (L/DSELVDD = 1) /hanging VDD/V// (1.8 to 3.6V)

3 Enabled
Lnternal VwEC from Bias Voltage Denerator
w13 sourced with internal (VwEC,LNT)
(L/DSELVDD = 0 prevents Vcc from driving w33)
(VEXT is not connected)

Software programmable by
changing VL/D bits

(One reason that out-of-box
demo used aode 3)

4 Enabled w13 sourced with external VwEC,EXT
(L/DSELVDD = 0 prevents Vcc from driving w33)

/hanging VwEC (from 0.8 to 1.2V)

aode 1, 2, 3, 4: /harge tump Enabled
(wequires external capacitors between pins: w33 DND, w23 DND, w13 DND)

Subtly pointed out here, the out-of-box demo that comes with the ‘FR4133 Launchpad uses Mode
3. They chose this because the voltage references – and contrast control – were all handled
internally, under software control. In fact, for these reasons, this is probably the most popular
mode amongst users.

12 - 46 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

Voltage Init Code
Applying what we just learned to our code example, we set the VLCDSource voltage as needed
for “Mode 3”.

Then, we set the VLCD bits (that is, the VLCD Voltage) to 2.96 volts. (The apps team came up
with this value empirically, by trying various voltages and observing what looked best.)

Finally, we turn on the internal Charge Pump and set its frequency.

LCD Init – Configure Modes
 Using the LCD datasheet’s specs:

 Driving Voltage = 3.0V
 Duty cycle = ¼ (which implies 4-mux)
 BIAS Voltages = 1/3

 Of display’s 38 pins: 4 COM, 27 SEG (and 7 unused)

// Initialze LCD Clock and Mux mode
LCD_E_initParam initParams = LCD_E_INIT_PARAM;
initParams.clockDivider = CLOCKDIV_3; // Set frame rate
initParams.muxRate = LCD_E_4_MUX; // Select mux
LCD_E_init(LCD_E_BASE, &initParams);

// Configure Voltage Sources for the LCD Controller (Mode 3)
LCD_E_setVLCDSource(INTERNAL_REF_VOLTAGE, EXTERNAL_SUPPLY_V…
LCD_E_setVLCDVoltage(LCD_E_REFERENCE_VOLTAGE_2_96V);
LCD_E_enableChargePump(LCD_E_BASE);
LCD_E_setChargePumpFreq(LCD_E_BASE, LCD_E_CHARGEPUMP_FREQ_16);

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 47

Implementing Display with ‘FR4133 LCD_E

Turn On the LCD Controller
That takes us to the final command in our initialization routine… Turning “on” the LCD controller…

The LCD’s init function includes:
1. Turn off the L/D controller
2. Set Lx pins to be used by L/D (versus GtLh)
3. /hoose aux and Timing modes
 b-mux mode
 Timing (clock source and rate)

4. Specify voltage reference and sources
 Voltage reference source (VwEC) – should they be

internal or external
 Lf internal, set the VwEC voltage level –

remember, this is programmable (15-levels)
 Source of bias voltages – external resistor

network or internal charge-pump
5. Turn the L/D controller “on”

One of the great advantages to using DriverLib… it’s not hard to figure out what “LCD_E_on”
means!

LCD Init – Configure Modes
 Using the LCD datasheet’s specs:

 Driving Voltage = 3.0V
 Duty cycle = ¼ (which implies 4-mux)
 BIAS Voltages = 1/3

 Of display’s 38 pins: 4 COM, 27 SEG (and 7 unused)

// Initialze LCD Clock and Mux mode
LCD_E_initParam initParams = LCD_E_INIT_PARAM;
initParams.clockDivider = CLOCKDIV_3; // Set frame rate
initParams.muxRate = LCD_E_4_MUX; // Select mux
LCD_E_init(LCD_E_BASE, &initParams);

// Configure Voltage Sources for the LCD Controller
LCD_E_setVLCDSource(INTERNAL_REF_VOLTAGE, EXTERNAL_SUPPLY_V…
LCD_E_setVLCDVoltage(LCD_E_REFERENCE_VOLTAGE_2_96V);
LCD_E_enableChargePump(LCD_E_BASE);
LCD_E_setChargePumpFreq(LCD_E_BASE, LCD_E_CHARGEPUMP_FREQ_16);

// Turn LCD on
LCD_E_on(LCD_E_BASE);

12 - 48 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

Controlling Segments
OK, now that we’ve got the LCD controller initialized and turned on… what do you want to
display? In other words, which segments do you want turned “on”?

Remember the shorthand we showed earlier in the chapter? Let’s see how this translates to
actually driving the LCD display…

You might remember that our LCD controller has its own memory - enough memory to specify the
on/off value for each segment line.

Since we’re using a 4-mux display, each segment line is associated with 4 COM pins. Therefore,
each byte of LCD memory lets us control two LCD segment pins. (We’ tried to highlight this fact in
the following diagram.)

LCD Memory

SEG2

SEG1

COM2COM1on

off

 wecall our earlier nomenclature for
/ha/SEG connections

 L/D_E include memory registers where
each bit controls a segment

Segments COM1 COM2 COM3 COM4 COM1 COM2 COM3 COM4

L/Da19

…

L/Da1

L/Da0 LCD Pin (L1) LCD Pin (L0)
LCD Pin (L2)

LCD Pin (L39) LCD Pin (L38)

 wemember, in 4-mux mode,
each Lx pin controls 4 segments

 Thus an 8-bit memory register
can control up to 8 segments

LCD Pin (L3)

From this, we can tell that 20 locations in LCD memory can handle the 40 LCD pins (4-mux
mode).

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 49

Implementing Display with ‘FR4133 LCD_E

How do we “set” a bit… for example, how would we set SEG1 at COM1 to “on”?

All you need to do is set the associated bit in the LCD memory. It really can’t get much easier
than this.

LCD Memory

SEG2

SEG1

COM2COM1on

off

 wecall our earlier nomenclature for
/ha/SEG connections

 L/D_E include memory registers where
each bit controls a segment

Segments COM1 COM2 COM3 COM4 COM1 COM2 COM3 COM4

L/Da19

…

L/Da1 1 0 0 0

L/Da0 LCD Pin (L1) LCD Pin (L0)
LCD Pin (L2)

LCD Pin (L39) LCD Pin (L38)

 wemember, in 4-mux mode,
each Lx pin controls 4 segments

 Thus an 8-bit memory register
can control up to 8 segments

Setting a bit turns on a segment

DriverLibrary makes this easy to do, just call the LCD_E_setMemory() function:

(LCD_E_BASE, 1, 0x80); LCD_E_setMemory

In fact, DriverLib makes it even easier because we don’t even have to look up or calculate the
hex address locations for the LCD memory; instead, you can use LCDM1 – or just “1” – to
indicate the appropriate LCD memory location.

12 - 50 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

Turning to the ‘FR4133 Launchpad, how did the hardware designer connect the LCD pins to the
display?

Looking in the Launchpad’s User Guide, we find this table. The designer did a great job of
summarizing all of the details we need to drive the display.

FR4133 Launchpad LCD Connections
 Launchpad User’s Guide nicely describes pin connections:

 e.g. Cw4133 pin (L1), tort tin (t7.1), L/D’s pin (23)
 Along with which segment each L/DaEa bit enables

It shows us the LCD memory locations, the LCD pin – as well as its associated GPIO Port and
Pin numbers. It even shows the pin on the display that it’s connected to.

Finally, each of the segments are written into the table so that we can see what bits must be set
in order to turn a specific segment on.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 51

Implementing Display with ‘FR4133 LCD_E

Let’s focus on the first character in our display.

Here we’ve highlighted the two memory locations that represent the first character… which is
called “A1”.

Choosing Layout for Easier Software

 botice how we can set an entire character (e.g. “2”) by writing one or two
consecutive L/D aemory locations (L/D4 and L/D5)

 Ience the comment: “Choosing a good pin layout can ease software”
 aake programming easier by pre-defining segment values for digits;

you can also define the alphabet in a similar fashion

const char digit[10] =
{

0xFC, /* "0" */
0x60, /* "1" */
0xDB, /* "2" */
0xF3, /* "3" */
0x67, /* "4" */
0xB7, /* "5" */
...

See how each of the segments that make up A1 are assigned their own SEG/COM bits?

It appears that if we want to display the number “2” on “A1”, we’ll need to enable segments “A1A”,
“A1B” as well as A1… M, G, E and D.

We could poke these bits individually, but it’s more common to do this the easy way…

12 - 52 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

Creating masks for each digit and character is an easier – and less error prone – way to display
an alphanumeric character.

Going back to our DriverLib “setMemory” example, this might look like:

#define pos1 4 // Position 1 (A1) is at LCDM4

LCD_E_setMemory(LCD_E_BASE, pos1, digit[2]);

Controlling LCD_E with DriverLib

const char digit[10] =
{

0xFC, /* "0" */
0x60, /* "1" */
0xDB, /* "2" */
0xF3, /* "3" */
0x67, /* "4" */
0xB7, /* "5" */
...

L/D aemory
location

Segment
aask

Here, the setMemory example is going to apply the “digit[2]” mask value to “position 1”.

Where each of the six alphanumeric elements of the display are called “position” 1, 2, 3, 4, 5, and
6.

BTW, why is position 1 = 4? Look back to the launchpad’s “LCD to MSP430 Connections” table
to figure out why…

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 53

Implementing Display with ‘FR4133 LCD_E

DriverLib allows us to do more than just “set” a memory location.

We can also “clear” the memory location, as well as “toggle” its bit values.

#define pos1 4 // Position 1 (A1) is at LCDM4

LCD_E_setMemory(LCD_E_BASE, pos1, digit[2]);

Set/Clear Segments with DriverLib

Turn segments on/off:
 LCD_E_setMemory() Overwrites LCDMx memory with provided value
 LCD_E_clearMemory() Clears the specified bits of LCDMx register
 LCD_E_toggleMemory() Toggles all 8-bits in bits in LCDMx register
 LCD_E_updateMemory() Sets the specified bits of LCDMx (LCDMx |= mask)

Finally, the “update” function can be a handy alternative to “set”. Whereas “set” clears all the bits
in the memory location before setting specified mask value; “update” just OR’s the mask into the
memory location. In other words, “update” leaves alone any bits that were already set in that
memory.

12 - 54 MSP430 Design Workshop - Using Segmented Displays (LCD)

 Implementing Display with ‘FR4133 LCD_E

Dual Memories & Blinking
We’re almost done with the chapter discussion. We’ve just got a couple of additional features to
go over…

Just a couple of minutes ago, we discussed the fact that our LCD peripheral has its own memory.

The ‘FR4133 device actually has 40 memory locations.

Mux-4 (or lower) only requires 20 memory locations, because we can control 2 pins per location.
This means that we can make two memory blocks out of the 40 locations. As shown here, the first
one is called the “LCD Memory” (abbreviated LCDM); while the second is called “LCD Blinking
Memory” (or LCDBM). At any given time, the display can be showing either one of them.

Two LCD Memories

L/D
aemory
(L/Da)

L/D Blinking
aemory
(L/DBa)

 L/D_E has two similar memories:
 L/Da
 L/DBa

 Ln Static, aux-2, and aux-4 modes:
 Use as dual display memories,

easily switching between them
 Put a different image in each and

let the L/D controller alternate
between them – to create a
custom blinking effect

 Ln aux-5 thru -8 modes:
 Since more than 4 common (/Oa)

lines are required, both memories
are needed to hold a single image

 L/D_E is disabled
 You can use the L/D memory for

other data

This works out great because you can put a different ‘image’ in each memory block and then
switch between them – which lets you create custom blinking patterns. In fact, the controller can
automatically switch between the two memories on its own – while the rest of the microcontroller
stays asleep. VERY POWERFUL… well, POWERFUL in an ULTRA LOW-POWER way.

On the other hand, if your display is big enough to require Mux-5 or above, all of the memory is
required to configure a single display. In other words, you only get the one “LCD Memory” block.

This doesn’t mean you can’t do blinking on big displays… there are other built-in blinking modes,
but you’ll lose the ability to blink between two custom patterns without the CPU having to wake up
and perform the switch.

MSP430 Design Workshop - Using Segmented Displays (LCD) 12 - 55

Implementing Display with ‘FR4133 LCD_E

DriverLib LCD_E Summary
Here we summarize the DriverLib functions for manipulating the memory and segments.

To our earlier four functions, we’ve added two functions to clear the memory… as well as two
others which deal with blinking and memory block selection.

#define pos1 4 // Position 1 (A1) is at LCDM4

LCD_E_setBlinkingMemory(LCD_E_BASE, pos1, digit[2]);

DriverLib Overview

Turn Blinking Memory segments on/off:
 LCD_E_setBlinkingMemory() Overwrites LCDBMx location
 LCD_E_clearBlinkingMemory() Clears specified bits of LCDBMx
 LCD_E_toggleBlinkingMemory() Toggles all bits of LCDBMx location
 LCD_E_updateBlinkingMemory() Sets specified bits of LCDBMx location

Clear All segments:
 LCD_E_clearAllMemory() Clears entire LCDM memory
 LCD_E_clearAllBlinkingMemory() Clears entire LCDBM memory

Memory vs Blinking Memory:
 LCD_E_selectDisplayMemory() Display either LCDM or LCDBM
 LCD_E_setBlinkingControl() Sets blinking freq. and 1 of 4 blink modes

1. Blinking is off
2. Blink individual segments
3. Blink all segments
4. Alternate display between LCDM & LCDBM

The lower-right hand corner of the slide shows the four options for the “setBlinkingControl”
function. Of course, you can turn blinking “off”. But, you can also blink individual segments, all
segments, or – as we just described on the previous slide – alternate between the two memory
blocks.

12 - 56 MSP430 Design Workshop - Using Segmented Displays (LCD)

Using Segmented Displays (LCD)
There are two parts to this exercise – A and B.

lab_12a_heart
In the first part, we’ll explore turning on and off the “heart” and “timer” segments. We’ll also play
with blinking these segments – even alternating between them.

After filling out a few questions in the lab worksheet, we’ll import and edit the lab project. In the
debugging phase of this lab, we’ll ask you to set a breakpoint, run to that point, and then single-
step through your code. This seems to be the easiest way to watch how the display responds to
the various “set”, “clear”, “update” and blinking functions.

Lab 12 – Using an Segmented LCD

lab_12b_persistent
 Starting with the solution from Lab 9

 Lab 9 flashed the LED and used
printf() to display the reset count to
the CCS console

 Ln this exercise you’ll add code to
display the # of times the Launchpad
is reset on the LCD

lab_12a_heart
 Lnitialize the LCD
 Explore turning on/off segments for

the Heart (HRT) and Timer (TaR)
 Experiment with the blinking

features of LCD_E

lab_12b_persistent
Finally, if you have time, you can try the next part of the lab. Here we’ll go back and add some
code to the Persistent FRAM exercise.

You might recall that we used FRAM to “persist” a variable. That is, we were able to retain the
value even after resetting the device. In fact, we used this value to track how many times the
board was reset; then flashed the LED that many times.

Now that we know how to use your board’s display, why don’t we go ahead and show the count
value on the LCD?

Have fun with the lab!

MSP430 Design Worskhop - Using Segmented Displays (LCD) 12 - 57

Lab 12a – A Launchpad with Heart

Lab 12a – A Launchpad with Heart
Using an LCD requires a few of steps:
• Planning – figuring out what LCD you need for your application; verifying the LCD controller

can operate that display (often called ‘glass’); and, implementing the hardware design. For
this exercise, we assume these steps have been completed and that you have a board –
such as the ‘FR4133 Launchpad – that is ready for software.

• Initialization – like most other peripherals, we have to choose the proper modes of operation
for our application and ready the device. Here are the basic initialization steps:

− Turn off LCD_E

− Set Lx I/O pins needed by controller

− Setup the input clocking and frame rate (and enable the segment pins)

− Configure voltage requirements – including enabling the built-in Charge Pump, if used.

− Set COM pins (not required for all LCD controllers, but necessary for the ‘FR4133 since
any LCD pin can be used as a COM line.

− Finally, turn on the LCD_E controller

• Runtime – display the segements need for your application; changing them as necessary.

Initialization Worksheet
1. From the MSP-EXP430FR4133 Launchpad User’s Guide, what ‘FR4133 LCD pins (Lx)

need to be configured for use by the display. (Hint, look on page 15 of slau595.pdf.)

2. Complete the DriverLib function which sets these Lx pins as LCD pins.
 (Hint: Look in the DriverLib User’s Guide for the proper syntax.)

LCD_E_setPinAsLCDFunctionEx(LCD_E_BASE,

 ___ //starting pin

 ___ //ending pin

)

LCD_E_setPinAsLCDFunctionEx(LCD_E_BASE,

 ___ //starting pin

 ___ //ending pin

)

12 - 58 MSP430 Design Worskhop - Using Segmented Displays (LCD)

 Lab 12a – A Launchpad with Heart

3. How fast will the frame rate (Fframe) be given this initialization code?

 This code is used to initialize the LCD controller.
LCD_E_initParam initParams = LCD_E_INIT_PARAM;
 initParams.clockDivider = LCD_E_CLOCKDIVIDER_3;
 initParams.muxRate = LCD_E_4_MUX;
 initParams.segments = LCD_E_SEGMENTS_ENABLED;
LCD_E_init(LCD_E_BASE, &initParams);

 Here’s a brief line-by-line description of the code:

a) Creates an inititialization variable (initParam) and sets it to a set of default values.
(The default values are specified in the DriverLib User’s Guide.)

The remaining 3 lines of code alter these elements from their defaults. Other structure
elements, such as initParams.clockSource is, left to its default = XT1CLK.

b) The clock divider alters the Flcd, which in turn affects Fframe.

c) Static displays are the default, but the Launchpad use a 4-mux display.

d) By default all segments are left disabled. We want to leave them enabled.

e) The LCD_E_init() call applies the parameters to the LCD controller.

 FLCD = _________________________________

 FFRAME = _________________________________

 Hints:

• The ‘FR4133 User’s Guide provides two formulas to help you calculate the frame rate.

− As we discussed, the LCD frequency should be:

− The LCD frequency can also be calculated with this expression:

− The code snippet in this lab step provides us the fsource and LCDDIVx values.

− The trickiest part is figuring out the value of MUXDIVIDER. It isn’t the “obvious” value,
which would be “4”. Rather, the value is specified in a table within the FR4133 User’s
Guide – look for it in the LCD_E section entitled “LCD Timing Generation”.

MSP430 Design Worskhop - Using Segmented Displays (LCD) 12 - 59

Lab 12a – A Launchpad with Heart

4. Write two lines of code to clear all the LCD Memory.

5. Which bits are set by these 4 lines of code?
LCD_E_setPinAsCOM(LCD_E_BASE, LCD_E_SEGMENT_LINE_0, LCD_E_MEMORY_COM0);

LCD_E_setPinAsCOM(LCD_E_BASE, LCD_E_SEGMENT_LINE_1, LCD_E_MEMORY_COM1);

LCD_E_setPinAsCOM(LCD_E_BASE, LCD_E_SEGMENT_LINE_2, LCD_E_MEMORY_COM2);

LCD_E_setPinAsCOM(LCD_E_BASE, LCD_E_SEGMENT_LINE_3, LCD_E_MEMORY_COM3);

 These functions tell LCD_E which (Lx) pins to use for the common (COM) signals. Where is
this information stored? (That is, what gets altered by this code?)

Runtime Worksheet
6. Which address/bit controls each of the following segments? Fill out the table.

 Just to get you started, we added the Antenna symbol to the table.

Symbol Memory
Location

Bit
Location Hex Value

Antenna (ANT) LCDM9 2 0x04

Heart (HRT)

Timer (TMR)

7. Write the line of code that sets (i.e. turns on) the “Heart” segment.

LCD_E____________________________(LCD_E_BASE,

 ____________________________, // Location

 ____________________________ // Mask (hex)
);

12 - 60 MSP430 Design Worskhop - Using Segmented Displays (LCD)

 Lab 12a – A Launchpad with Heart

8. What happens if we set (turn on) the HRT symbol, then set the TMR symbol?

 Will they both be enabled, or will the second one replace the first one?

9. What function lets us clear one symbol without affecting another controlled by the
same memory location (LDCMx)?

 Complete the function to clear the Timer (TMR) symbol.

 LCD_E____________________________(LCD_E_BASE,

 LCD_E_MEMORY_BLINKINGMEMORY_12, // Location

 0x8); // Mask (hex)

10. What’s the greatest advantage to the automatic blinking features of the ‘FR4133?

11. Finish the following line of code so that it enables the LCD controller’s blinking feature
– switching between both banks of memory.

 LCD_E____________________________(LCD_E_BASE,

 LCD_E_BLINK_FREQ_CLOCK_PRESCALAR_64,

 __);

MSP430 Design Worskhop - Using Segmented Displays (LCD) 12 - 61

Lab 12a – A Launchpad with Heart

Lab File Management
12. Verify CCS is open and close any projects that are open in the workspace.

13. Import the lab_12a_heart project.

Project → Import CCS Projects…

C:\msp430_workshop\fr4133_fram\lab_12a_heart

Copy the project into your workspace

Note: For your reference, to created this project by copying/pasting lab_06a_timer and
renaming it. We then deleted: main.c, timer.h, timer.c

Finally, we added the files: myLcd.h, myLcd.c, (and a new file called) main.c

12 - 62 MSP430 Design Worskhop - Using Segmented Displays (LCD)

 Lab 12a – A Launchpad with Heart

Examine and Tweak LCD Files
We want to quickly introduce you to each of the three new files found in this project. Note, some
will require a little bit of editing.

myLcd.h (No edits required)
Defines or declares a number of items that can be used in your programs. The three main
categories are:
• Definitions for character positions – one for each character on the display (from Left→Right)

• Global variables that define values for numerical digits and the alphabet. With them, you can
easily print a “3” or a “”B” to the LCD. They are defined in mylcd.c.

• Finally, the header includes prototypes for three functions defined in mylcd.c.

 :

MSP430 Design Worskhop - Using Segmented Displays (LCD) 12 - 63

Lab 12a – A Launchpad with Heart

myLcd.c (Some edits required)
In a nutshell, here’s the things you’ll find in this file. (By the way, thanks to the MSP applications
team as we borrowed quite a bit of code from their out-of-box demo application.
• It begins with the initialization of the ‘digit’ and ‘alphabet’ arrays. Once again, this makes it

easy to use symbols without needing sprinkle hex values all thoughout your code.

• LCD_init() function

− Turn off LCD_E

− Set Lx I/O pins needed by controller

− Setup the input clocking and frame rate (and enable the segment pins)

− Configure voltage requirements – including enabling the built-in Charge Pump, if used.

− Set COM pins (not required for all LCD controllers, but necessary for the ‘FR4133 since
any LCD pin can be used as a COM line.

− Finally, turn on the LCD_E controller

• LCD_showChar() function

− This function displays a character given a character/digit and position within the display

• LCD_displayNumber()

− This function takes a numerical value (using the long data type) and displays it on the
LCD.

− If the value isn’t a number, the function displays “ERROR”.

− Also, the value is displayed in a right-justified fashion.

− We developed this function for use in the lab_12b_persistence exercise.

Now, on to the edits for this file… we’ve left a few items for you to fill-in, based upon the earlier
worksheet questions.

14. Fill in the details for the two functions which assign Lx pins to the LCD Controller.

 Refer back question #2 (on page 12-58).

15. Write in the two functions needed to clear the LCD memory.

 Refer back question #4 (on page 12-60).

16. What happens if you set the COM pins and cleared the memory in reverse order?

 If you’re not quite sure, Question #5 (on page 12-60) should help. That is, thinking about
where the COM bits are stored .

12 - 64 MSP430 Design Worskhop - Using Segmented Displays (LCD)

 Lab 12a – A Launchpad with Heart

main.c (Some edits required)

Main Edits
Only edits here are to fill in the details for three missing functions.

17. Fill in the function that sets the heart to display.

 Refer back question #7 (on page 12-60).

18. How do we clear some LCD memory location? Fix that line of the file.

 Refer back question #9 (on page 12-61).

19. Finally, complete the function which turns on blinking by switching back-and-forth
between memories.

 Refer back question #11 (on page 12-61).

20. Build your code and fix any typos and errors.

Step and Observe
21. Launch the debugger to load your code into the ‘FR4133.

22. Set a breakpoint on the first line of code where we begin manipulating the display.

 Up until this point, the code is the same as it was in Lab6a – the only difference being that
we’ve initialized the LCD rather than a Timer.

23. Stepping over the first LCD_E_setMemory() function, you should see the “Heart”
appear on the LCD display.

Did the heart appear? __

24. The next stepover should display the Timer symbol.

Did the Timer appear? ___

Is the Heart still there? __

Refer back to Question #8 (on page 12-61). Was your prediction correct?

MSP430 Design Worskhop - Using Segmented Displays (LCD) 12 - 65

Lab 12a – A Launchpad with Heart

25. The next three Step-overs demonstrate the ‘update’, ‘clear’ and ‘toggle’ memory
functions.

 Verify they worked as expected.

26. The next step takes us back to the ‘setMemory’ function.

What’s different about this function this time? _____________________________________

Made you Blink
27. The next three function calls explore many of the blinking features.

 First we enable all the individual segments to flash. Does that mean every segment flashes?

Or just the enabled segments?

28. The final set of “blinking” function calls:

a) First has us populating – and using – the Blinking memory (LCDBM). This shows us how
to switch back and forth (manually) between displaying either memory.

b) Next, we can start to see how to use these two memories to make custom (more
complicated) blinking patterns. With the “Heart” enabled in one memory… and the
“Timer” in the other…

Did the two icons alternate flashing? __

 Why would this solution be superior to using a timer ISR to tell you when to go switch what is
being displayed?

D.O.N.E.
29. Well, actually the last step in our program just spells DONE (not D.O.N.E.).

30. When you’re all done playing and tweaking the code, please go ahead and close the
project.

12 - 66 MSP430 Design Worskhop - Using Segmented Displays (LCD)

 (Optional) Lab 12b – Displaying Persistent Data

(Optional) Lab 12b – Displaying Persistent Data
We thought it would be fun to take lab_09a_persistent and write the count value to the LCD
display, rather than just to the CCS console.

Go ahead and run this lab. You can probably tell right away that it’s a mashup of
lab_09a_persistent and lab_12a_heart.

Explore the code, build it and test it out.

If you’re looking for more of a challenge, you could remove the printf() and/or LED feedback
options. Alternatively, you could program the buttons (using the code from Lab 5) to reset the
count value or increment it further.

MSP430 Design Worskhop - Using Segmented Displays (LCD) 12 - 67

Notes:

 Appendix

Appendix

Initialization Worksheet

pins L0~L26 as well as
pins L36~L39

LCD_E_SEGMENT_LINE_0
LCD_E_SEGMENT_LINE_26

LCD_E_SEGMENT_LINE_36
LCD_E_SEGMENT_LINE_39

32768 / (3 + 1) * 16 = 512

512 / 8 = 64 Hz

MSP430 Design Worskhop - Using Segmented Displays (LCD) 12 - 69

Appendix

LCD_E_clearAllMemory(LCD_E_BASE);

LCD_E_clearAllBlinkingMemory(LCD_E_BASE);

The COM pin assignments is stored in the LCD memory
Warning – if you clear the LCD, you erase these assignments

Runtime Worksheet

LCDM12 2 0x04

LCDM12 3 0x08

_setMemory

LCD_E_MEMORY_BLINKINGMEMORY_12

0x08

12 - 70 MSP430 Design Worskhop - Using Segmented Displays (LCD)

 Appendix

Only one will be “on”, as the “setMemory” function
overwrites the memory location

LCD_E_clearMemory

_clearMemory

While it’s easy to use, the greatest advantage is
Ultra Low-Power. You get these advantages, even
when the device is sleeping in LPM3.5 mode!

_setBlinkingControl

LCD_E_BLINK_MODE_SWITCHING_BETWEEN_DISPLAY_CONTENTS

Warning – if you clear the LCD memory, this will erase

the COM pin assignments

MSP430 Design Worskhop - Using Segmented Displays (LCD) 12 - 71

Appendix

Yes

Yes
No

Sets both segments at the same time

Just the enabled ones

Yes

Lower CPU overhead; more precise timing; MUCH, MUCH lower power

12 - 72 MSP430 Design Worskhop - Using Segmented Displays (LCD)

	MSP430 Design Workshop
	1. Introduction to MSP430
	Administrative Topics
	Workshop Agenda
	TI Products
	TI's Embedded Processors
	MSP430 Family
	MSP430 CPU
	MSP430 Memory
	MSP430 Peripherals
	ULP
	Community / Resources
	Launchpad’s
	Lab1 - Intro to the MSP430
	Lab 1a – MSP-EXP430F5529LP User Experience
	Lab 1b – MSP-EXP430FR5969 LaunchPad OOB
	Lab 1c – MSP-EXP430FR4133 LaunchPad OOB

	2. Programming in C with CCS
	TI Support Ecosystem
	Examining Code Composer Studio
	Writing MSP430 C Code
	Lab 2 - CCStudio Projects
	Lab 2a - Create a New Project
	Lab 2b - Blink
	(Optional) Lab 2c - Restore OOB
	(Optional) Lab 2d - MSP430Flasher

	3. Using GPIO with MSP430ware
	MSP430ware (DriverLib)
	MSP430 GPIO
	Before We Get Started Coding
	Lab 3
	Chapter 3 Appendix

	4. MSP430 Clocks & Initialization
	Operating Modes (Reset → Active)
	Clocking
	DCO Setup and Calibration
	Other Initialization (WDT, PMM)
	Lab 4 - Clocks and Sys Init
	Lab 4 Worksheet
	Lab 4a – Program the MSP430 Clocks
	(Optional) Lab 4b – Exploring the Watchdog Timer
	(Optional) Lab 4c – Using Crystal Oscillators
	Chapter 04 Appendix

	5. Interrupts
	Interrupts, The Big Picture
	How Interrupts Work
	Interrupts: Priorities & Vectors
	Coding Interrupts
	Miscellaneous Topics
	Interrupts and TI-RTOS Scheduling
	Lab 5 – Interrupts
	Worksheet
	Lab 5a
	Lab 5b
	Appendix

	6. Timers
	Prerequisites and Tools
	Overview of MSP430 Timers
	Timer Basics: How Timers Work
	Timer Details: Configuring TIMER_A
	TIMER_A DriverLib Summary
	Differences between Timer’s A and B
	Lab 6 – Using Timer_A
	Lab 6a – Simple Timer Interrupt
	 (Extra Credit) Lab 6b – Timer using Up Mode
	(Extra Credit) Lab 6c – Drive GPIO Directly From Timer
	(Optional) Lab 6d – Simple PWM (Pulse Width Modulation)
	Chapter 6 Appendix

	7. Low Power Optimization
	Low Power Modes (LPM)
	Low Power Concepts
	Follow the Rules (ULP Advisor™)
	EnergyTrace™
	Lab 7 – Low Power Optimization
	Lab 7a – Getting Started with Low-Power Optimization
	Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts
	Lab 7c – Configuring Ports for Lowest Power

	Chapter 7 Appendix
	Connect MSP-FET to F5529 Launchpad
	Lab Debrief and Solutions

	8. Real-Time Clock (RTC)
	What is a Real-Time Clock?
	How Does the RTC Work?
	Programming the RTC
	Additional Considerations
	Summary

	9. Non-Volatile Mem: Flash & FRAM
	What is a Microcontroller?
	Non-Volatile Memory: Flash & FRAM
	Memory Maps & Linking
	Using Flash
	Using FRAM (and the MPU)
	Memory Protection on the 'FR2xx/4xx
	System Init Functions
	Lab 9 Exercises
	Lab 9a - Using NVM Variables
	Lab 9a - Persistent (FRAM)
	Lab 9a - Low wear flash (F5529)
	Lab 9b - MPU GUI (FR5969)
	Lab 9b - Lab 9b - MPU DriverLib (FR5969)

	Chapter 9 Appendix

	10. Building USB Devices
	Introduction
	What is USB?
	MSP430's USB Support
	How USB Works
	Descriptions and Classes
	Quick Overview of MSP430’s USB Stack
	ABC’s of USB
	Final Thoughts
	Lab 10 – Using USB Devices
	Lab 10a – LED On/Off HID Example
	Lab 10b – LED On/Off CDC Example
	Lab 10c – CDC ‘Simple Send’ Example
	Lab 10d – Creating a CDC Push Button App

	11. Using Energia (Arduino)
	What is Arduino
	Energia
	Programming Energia (and Arduino)
	Energia IDE
	Energia/Arduino References
	Lab 11 - Energia
	Appendix – Looking ‘Under the Hood’
	Lab Debrief

	12. Using Segmented Displays (LCD)
	For More Information on LCD’s
	Liquid Crystal Displays (LCD)
	Basic Control of an LCD (Static)
	Using LCD’s with More Segments (Muxed)
	LCD Control Options
	Implementing Display with ‘FR4133 LCD_E
	Lab 12
	Lab 12a – A Launchpad with Heart
	(Optional) Lab 12b – Displaying Persistent Data
	Appendix

