
USB Devices

Introduction
The MSP430 makes an ideal USB device: ultra-low power, rich integration of peripherals and it’s
inexpensive. Do you want to make a Human Interface Device product? Maybe a sensor, such as
a barcode reader, that needs to be both low-power (when collecting data), but also capable of
‘dumping’ its data via USB to a computer. Dream big, we’ve got the devices, tools, and software
to help you make them come true.

Learning Objectives

Objectives

- Draw a diagram that defines the basic operation
of USB serial communications

- USB classes:
- List the 3 supported by MSP430 devices
- When to select one versus another

- Enumerate 2 ways, using TI’s USB API to respond
to a system’s USB connection state

- To NOT cover every aspect of USB
- Write a program to talk over the USB serial bus

using the provided API stack

MSP430 Design Workshop - USB Devices 10 - 1

Introduction

Chapter Topics
USB Devices .. 10-1

Introduction ... 10-1
What is USB? .. 10-3
MSP430's USB Support .. 10-7

USB Fees .. 10-13
How USB Works ... 10-15

Pipes and Endpoints ... 10-16
USB Transfer Types .. 10-19
The USB Frame .. 10-20

Descriptions and Classes .. 10-22
Quick Overview of MSP430’s USB Stack ... 10-28
ABC’s of USB .. 10-31

A. Plan Your System ... 10-31
B. Connect & Enumerate .. 10-32
C. Managing my App & Transferring Data .. 10-34

Final Thoughts .. 10-37
Lab Exercise ... 10-39

10 - 2 MSP430 Design Workshop - USB Devices

 What is USB?

What is USB?
Universal Serial Bus (USB) is just that, a universal serial connection between a “Host” and
“Device”. It has taken the place of many synchronous and asynchronous serial bus connections
in systems such as personal computers.

In the case of USB, the host manages all transfers, whether moving data to or from the host –
often this is called a master/slave architecture, where the host is the bus master. At a minimum,
there needs to be one host and one device.

MSP430 Design Workshop - USB Devices 10 - 3

What is USB?

But… USB supports many more than just a single device, the standard can actually support up to
127 different devices. Commonly, systems with multiple devices use hubs as interconnection
points between the host and devices – which results in a star arrangement.

Each type of device is distinguished using Vendor and Product ID (VID/PID). The combination of
VID and PID allows a host to identify the type of device that is connected and manage the point-
to-point communications with it – in most cases, this requires the host to load the appropriate
drivers required to talk with that specific type of device. (We’ll discuss this is greater detail later in
the chapter.)

10 - 4 MSP430 Design Workshop - USB Devices

 What is USB?

The Universal Serial Bus protocol has gone through a few versions over time. Back in 1995 USB
revision 1.1 was released. This version provided separate host and device connectors along with
supporting two different speeds: Low speed moved data at speeds up to 1.5Mpbs (megabits-per-
second); while Full speed provided data rates up to 12Mbps.

USB Standards

aSt430 USB teripheral Supports
 USB 2.0 standard
 Full speed USB device (12abps)
 Device only

Note: Look at TI’s TivaC processors if you need host, device or OTG support

Version Year Speeds Power
AvailaNle Notes

USB 1B1 199D 1½ MNps (Low)
12 MNps (Full) – Host & Gevice connectors

USB 2B0 2000
1½ MNps (Low)
12 MNps (Full)
480 MNps (HigO)

D00 mA
• Backward compatiNle

witO USB 1B1
• Added On-tOe-Go (OTG)

USB 3B0 2008

1½ MNps (Low)
12 MNps (Full)

480 MNps (HigO)
4B8 GNps (Super)

900 mA

• Backward USB 2B0
compatiNility

• Full-duplex
• Power mgmt features

In 2000, USB 2.0 was released as an upgrade to USB 1.1. Along with Low and Full speeds, a
much faster High 480Mbps rate was added. Other major additions to the standard included a
power supply of 500 mA provided from the USB cable, as well as capability for advanced devices
to switch between Host and Device modes – called On-The-Go (OTG) mode. The OTG feature is
handy in some applications where a product might have to be a Device or a Host depending upon
what it is connected to.

The MSP430’s USB port supports the USB 2.0 standard, but only operating at the Full rate.
(Seeing that the fastest MSP430 devices only run up to 25MHz, it’s not hard to wonder why they
cannot support the 480Mbps rate.) Additionally, since the MSP430 doesn’t provide Host support,
it therefore does not provide the OTG Host/Device switching feature.

Hint: If your product needs Host and or OTG support, you may want to check out TI’s Tiva-C
line of ARM Cortex M4F processors.

Just a few years ago, in 2008, USB added the 3.0 revision. While once again backward
compatible to USB 1.1 and USB 2.0, the new revision added an additional Super 4.8Gpbs rate. It
also included full-duplex operation, a higher power sourcing availability of 900 mA as well as
other power-management features. While this is quite advantageous for many types of end-
applications – such as hard disk drives, high-end imaging systems (i.e. scanners), and such – it’s
overkill for many other systems, where low power and cost are primary directives.

MSP430 Design Workshop - USB Devices 10 - 5

What is USB?

Bus standards, such as USB, contain a variety of layers. While these physical and data
specifications are important, exploring them in great detail is outside the scope of this chapter.

On the following slide, we’ll introduce a couple basic features of the physical layer – that is, of the
USB cable. Later on in the chapter, we will discuss some of the details regarding data and
software layers.

Bottom Line: We have tried to approach USB, in this chapter, from a pragmatic perspective. That
is, rather than examining the details of the specification, we want to figure out how to use TI’s
devices and tooling in order to just get something running.

USB … Physical Layer
 Four wires in the cable/connector:

 VBUS (5V - supplied by host)
 D+ for differential data signaling
 D–
 Ground

 Originally only two connector types (host & device), though many
additional plugs were defined later

 USB 2.0 added On-The-Go (OTG) feature, letting
devices switch from device to host, as needed

 USB 3.0 has concurrent bidirectional data
transfers, thus cables include four more
data lines (backward compatible)

 USB devices are hot swappable

D-
D+

GND

VBUS (+5V)

R

Y

B

Br

As shown above, the USB cable provides four different signals:

• One signal pair provides power and ground. The power signal, called VBUS, is a +5V
supply. Not only does this pair provide USB 2.0 devices with up to 500 mA of power, but
bringing this signal high (+5V) is how the Host begins communicating to a Device. (We’ll
see more about this later in the chapter.)

• The other pair of signals, D+ and D-, provides a differential data signal from the Host to
the Device. As most hardware engineers know, using differential signaling provides more
robust data transmissions.

USB 3.0 cables provide more additional signals to support its higher performance; although,
that’s not something we need to deal with in this chapter.

Finally, the USB standard supports “hot swappable” devices. This means they can be connected
and disconnected as needed. The USB protocol provides a means for handling this feature. To
this same end, your USB application should remain flexible. By this, we mean that your
application needs to be written so that it can handle an asynchronous change in the USB
connection state. This might include the Host putting your Device into Suspend mode (where you
receive a reduced power supply) … or the end-user disconnecting your Device from the Host by
“yanking the cable”.

10 - 6 MSP430 Design Workshop - USB Devices

 MSP430's USB Support

MSP430's USB Support
As we stated on the first page, the MSP430 proves to be an excellent solution for building USB
Devices. Many devices in the F5xx and F6xx MSP families contain the USB peripheral. Coupling
this proven USB hardware port with the low-power nature of the MSP430 makes possible some
interesting USB applications.

MSP430 USB Support

1. Largest 16-bit portfolio of integrated
USB and 512KB memory

2. Proven USB core
3. Optimized for low power operation

1. Perfect for developers new to USB as well
as experienced engineers

2. Code gen tools and proven USB stacks
significantly eases development
(at no cost to the customer)

3. Availability of a new low price MSP430 USB
LaunchPad tool

Most comprehensive low power MCU USB portfolio

Easy USB coding for developers

Besides the low-power advantages of the MSP430, though, the software tools and USB stack
make the MSP solution really stand-out.

The USB standard is a very capable, and therefore involved, protocol. The TI tools, along with the
MSP430 USB stack (i.e. USB library), make it possible for novices and experienced users to take
advantage of this capability.

Combining these software tools with the MSP430 USB Launchpad makes an excellent low-cost
development environment.

MSP430 Design Workshop - USB Devices 10 - 7

MSP430's USB Support

This table summarizes some of the MSP430 devices that provide USB functionality. As you can
see, there are a variety of processors with different memory and peripheral options.

MSP430 Devices with USB

troduct s trog
(KB)

wAM
(KB)

16-Bit
Timers

Common
teripherals ADC Additional

Features

MSt430F663x up to
256

8 to 16

4

WDT, wTC,
DMA(3-6),

MtY32,
Comp_B,
UAwT, StI,
I2C, tMM
(Bhw, SVS,
SVM, LDh)

12-bit

USB, EDI, DAC12,
LCD, Backup

battery switch

MSt430F563x up to
256

USB, EDI, DAC12,
Backup battery

switch
MSt430F552x 32 - 128 6 to 8

USB, 25 MItS
MSt430F551x 32 - 128 4 to 8 ‾

10-BitMSt430F550x 8 - 32 4

 tortfolio of devices with more (or less) peripheral/memory integration;
this provides basis for different price points

 USB Launchpad uses the ‘F5529 … found in the middle of the pack

10 - 8 MSP430 Design Workshop - USB Devices

 MSP430's USB Support

The following slide, taken from the ‘F5529 User’s Guide, lists many of the MSP430 USB module’s
features. While we’ve already spoken about the Full-speed capability, unless you’re already quite
familiar with the USB standard, most of the other features listed probably won’t make much
sense… yet.

MSP430 USB Module

MSP430 Design Workshop - USB Devices 10 - 9

MSP430's USB Support

We’ll address many of the data/system oriented features throughout the rest of the presentation.
You might note here, though, the hardware specific features. For example, “including the PHY”
(physical interface) means there’s one less thing for you to put on your board. Also, the USB port
has its own dedicated block of SRAM (though the system can use it when the USB port is
disabled).

USB Block Diagram

aSP430 USB Peripheral Supports
 USB 2.0 standard
 Device only

(Host not supported– try Tiva-C from TI)
 Full speed USB device (12abps)
 Includes 16 Endpoints (8-in/8-out)
 Certified USB module

 Integrated transceiver (PHY)
 Integrated 3.3V LDO for direct

operation from USB bus
 Programmable PLL

(generates 48aHz USB clock)
 Integrated D+ pull-up resistor (PUR)

Also, notice the LDO voltage regulators. These let the port (and even the MSP430 device itself)
operate from the +5V supply coming from an attached USB cable. Finally, the built-in PLL
handles the required USB clock requirements, utilizing one of the MSP430 external clock inputs.

10 - 10 MSP430 Design Workshop - USB Devices

 MSP430's USB Support

We bragged about the MSP430 development support. Here’s a peek at it. Looking at the items
pointed out by the red arrows:

• We begin with the excellent USB Programmers Guide

• The Descriptor Tool is truly unique. It makes easy work of the tedious (and error prone)
job of creating USB interface descriptors.

• The USB HID Demo is a Host-side tool that lets you interact with custom devices
implementing the Human Interface Device class. It’s like a serial terminal program for HID
devices.

• Finally, the rich set of examples provided by TI not only provides a way to “play” with
USB, they also make excellent starting points for your own applications.

USB Developers Package

MSP430 Design Workshop - USB Devices 10 - 11

MSP430's USB Support

Sidebar – MSP430 USB API Features

MSP430 USB API Features
1. A finished API

– Not just example code
– Increases chance of USB success, because the user doesn’t need to modify

the USB plumbing; speeds development
– An API approach makes USB more accessible to USB non-experts

2. Small memory footprint
– Single-interface CDC or HID: 5K flash / 400 bytes RAM
– MSC (not including file system / storage volume): 8K flash / 1.4K RAM

3. Can use either DMA or CPU to move data
– Simply turn the DMA feature ‘on’ and select the channel

4. Limited resource usage
– Only uses the USB module, some memory, & a DMA ch; no other resources

5. RTOS-friendly
– TI will soon provides using it with TI-RTOS

MSP430 USB API Features, cont.
6. Responsiveness

– No risky blocking calls stuck waiting for the host
– Data can be transferred “in the background”, for increased system

responsiveness and efficiency, even with a busy host/bus

7. Easy data interface (CDC and HID-Datapipe)
– The function calls are similar to interfacing with a simple COM port
– You can send/receive data of any size, with a single call -- no packetization

required
– Deep USB knowledge not required

8. Flexibility (MSC)
– Compatible with any file system software. (We provide the open-source

“FatFs” as an example.)
– Easy multiple-LUN support; just select the number of LUNs
– No RTOS required – but can be ported to one

10 - 12 MSP430 Design Workshop - USB Devices

 MSP430's USB Support

USB Fees
As we described earlier, your USB product needs a Vendor and Product ID (VID & PID) in order
to meet the requirements of the standard. The USB Implementers Forum (USB-IF) charges a fee
to license a Vendor ID.

As an alternative to purchasing your own VID, silicon vendors such as Texas Instruments, will
provide you the ability to use their VID when using the MSP430 USB-based devices. Please refer
to TI’s website for more information on obtaining a VID/PID.

MSP430 Design Workshop - USB Devices 10 - 13

MSP430's USB Support

Additional USB Resources
Along with TI’s MSP430 USB page, we’ve provided some USB references that we found useful.

Suggested Reading

 “Starting a USB Design Using aSt430™ aCUs” App Note by Keith Quiring
(Sept 2013) (Search ti.com for SLAA457.pdf)

 “trogrammers_Guide_aSt430_USB_AtI” by Texas Instruments (Aug 2013)
Found in the aSt430 USB Developers tackage

 “USB Complete: The Developer's Guide” by Jan Axelson (ISBN 1931448086)
http://www.amazon.com/USB-Complete-Developers-Guide-Guides/dp/1931448086

10 - 14 MSP430 Design Workshop - USB Devices

 How USB Works

How USB Works
As we stated at the beginning of the chapter, USB is a serial, Master/Slave communication
protocol. That is, the Host acts as the Master; communication to and from the Host is directed by
the Host. The Device only responds to requests from the Host.

The USB standard allows many Devices to be connected to a single Host. The Host assigns an
address to each Device as it is connected (i.e. enumerated) to the Host. This is really a minor
detail, though, since – as a Device – we don’t need or use this information.

Logical Connection Between Host & Device

Device

Master

Slave

 Communication takes place
between the host and device

 Host controls ALL communication
 Device is addressable

(assigned by host)

Host

MSP430 Design Workshop - USB Devices 10 - 15

How USB Works

Pipes and Endpoints
To be more specific, a Host communicates with a Device through a Pipe; that is the name given
to this communication pathway. The Pipe makes a connection to a Device Endpoint; which is
essentially just a buffer in the Device. (As we’ll see in a minute, the MSP430 has dedicated
Endpoints in its USB port hardware.)

Communication Pipes

Host

Device

Endpoint

Pipe

 Host/Device communication occurs
thru a Pipe

 The host sets up pipe connections
to one or more device “endpoints”

 An endpoint is essentially a buffer
in the device

10 - 16 MSP430 Design Workshop - USB Devices

 How USB Works

Pipes specify unidirectional data movement. If you want to move data in both directions, two
Pipes must be created – which requires 2 Endpoints. Also, seeing as Pipes (and USB, in general)
are Host centric, the directions In and Out are from the Host’s perspective.

Communication Pipes

Device

Pipes

InOut

Endpoints

 Host/Device communication occurs
thru a Pipe

 The host sets up pipe connections
to one or more device “endpoints”

 An endpoint is essentially a buffer
in the device

 Pipes/Endpoints are unidirectional
 In/Out is from the Host perspective

Host

MSP430 Design Workshop - USB Devices 10 - 17

How USB Works

While the USB standard only requires a Device to have one Input and one output Endpoint, the
MSP430 USB port provides 16 Endpoints: 8 Input and 8 Output. Additionally, the MSP430
Endpoints each contain a 64-byte buffer – the largest specified in the USB specification. All-in-all,
this hardware provides the MSP430 with a lot of flexibility in the types of communications it
supports.

As shown below, the set of Input and Output Endpoints are numbered 0 – 7.

MSP430 Supports 8 Ins/Outs

Device

Pipes

 Host/Device communication occurs
thru a Pipe

 The host sets up pipe connections
to one or more device “endpoints”

 An endpoint is essentially a buffer
in the device

 Pipes/Endpoints are unidirectional
 In/Out is from the Host perspective
 Endpoints are enumerated (from 0)
 Endpoint 0 is special case – all USB

devices must have EP0, which is
used for setup and control

 MSP430 Endpoints:
 16 endpoints (8 in, 8 out)
 Each has 64 byte buffer

00
Endpoints …

11 77

Host

InOut

What goes across pipes?

We often see the Endpoints referred to as EP0, EP1, … EP7.

The In/Out Endpoints do not have to be used in bidirectional pairs – sometimes you may find that
your Device needs 2 Inputs and 1 Output.

By the way, do you remember when we said that the USB spec requires a Device to have at least
1 Endpoint?

That happens to be Endpoint 0 (EP0). EP0 is a special case; the Host uses EP0 (both directions)
to setup and control USB operations. Without the Host being able to rely on a known Endpoint 0
always being available, it wouldn’t know how to start talking to new Devices as they’re physically
connected.

So, we’ve established the concept of a communication Pipe … what gets transferred across it?

10 - 18 MSP430 Design Workshop - USB Devices

 How USB Works

USB Transfer Types
Along with specifying an Endpoint and direction, a Pipe also specifies the “Type” of
communication transfer. The USB specification supports four Transfer Types, as defined in this
diagram.

USB Transfers

Device

Pipes

 Pipe’s define a Transfer Type as
well as the endpoint and direction

 USB supports 4 Transfer Types:
 Control Setup/Command/Status
 Interrupt Small size, Periodic

Guaranteed latency
Guaranteed bandwidth

 Bulk Large size allowed
No time guarantees

 Isochronous Guar. time, Periodic
No error handling
Not supported on ‘430

 Contrary to the name, ‘interrupt’
transfers are not initiated by device

00
Endpoints …

11 77

Host

InOut

How should we Frame this discussion?

If all we cared about was passing data across the Pipe, we wouldn’t need to further define the
Transfer Type of a Pipe. The fact is, sometimes we care about “when” data will arrive, just as
much as the data itself.

Each of the Transfer Types, listed above, briefly describe their temporal nature. Notice how
“Interrupt” types provide a guaranteed latency and bandwidth, although the tradeoff is a smaller
data payload. Conversely, “Bulk” transfers allow large sizes, but give up the time-oriented
guarantees.

Hint: “Interrupt” transfer types do not have anything to do with microprocessor “interrupts”. It is
just the word used in the USB specification to describe these types of transfers.

Similarly, “Interrupt” transfer types are initiated by the Host, just as all USB transfers are
initiated and controlled by the Host. (We’ll see more about this on the next page.)

Note: The MSP430 USB stack (i.e. USB library) only supports Control, Interrupt, and Bulk
transfer types. Currently, the MSP430 does not support Isochronous types, which are
more typically used in audio or video types of applications.

MSP430 Design Workshop - USB Devices 10 - 19

How USB Works

The USB Frame
If we’re talking about time-oriented concepts, such as latency and bandwidth, how are these
defined?

USB describes communications occurring within a 1 ms Frame. Each Frame begins with a Start-
of-Frame (SOF). After that comes ‘interrupt’ transfer types, then ‘control’ types, and finally ‘bulk’
transfer types.

In this way, interrupt transfers are guaranteed to occur. Conversely, if you have so many interrupt
transfers that the frame is near fully utilized, then bulk transfers might occur very slowly. Then
again, if you don’t have many interrupt or control transfers, bulk transfers will get most of the
frame and complete more quickly.

Providing further flexibility, periodic transfer types (e.g. interrupt transfers) can be configured to
occur in every frame – or as infrequently as once every 255 frames. This lets you specify the
amount bandwidth and latency needed for a given periodic transfer – as well as potentially free
up bandwidth for bulk transfer types.

10 - 20 MSP430 Design Workshop - USB Devices

 How USB Works

Sidebar – Packets
Realistically, large transfers must be broken down into smaller chunks. USB defines these
smaller chunks as ‘packets’.

We’ve chosen not to dig into the details of packets – or a number of other details like
handshaking, error detection, and so on. This decision was based on two factors: one, there just
isn’t enough time to go through every detail of the USB specification in this chapter; and two, the
USB peripheral’s hardware – and the TI USB stack – manage these details for us. In other words,
we don’t have to know them in order to get our USB application built and working.

MSP430 Design Workshop - USB Devices 10 - 21

Descriptions and Classes

Descriptions and Classes
As we say on the following slide, “What do you want to Transmit?”

Are you looking to send data across the USB bus similar to a standard serial port? Maybe you’re
building a human interface device and want to send mouse or keyboard data.

Device (example shown here is ‘composite’ device with multiple I/F’s)

What Do You Want to Transmit?
 USB devices describe one (or more) Interfaces to transmit information
 Typical interface examples:

 Creating a Virtual COM port requires 2-in and 1-out endpoints
 Human interface devices (mice/keyboards) require 1-in/1-out
 Memory devices also require 1-in/1-out

EP0 EP0 …EP1 EP1 EP7 EP7

Setup &
/ontrol

EP2

Virtual
/ha tort

EP6 EP6

aouse Yeyboard

Device Descriptors
Configuration

 Interface(s)
 Endpoint(s)

10 - 22 MSP430 Design Workshop - USB Devices

 Descriptions and Classes

Device (example shown here is ‘composite’ device with multiple I/F’s)

Summary – USB Interface Description
 USB devices describe one (or more) Interfaces to transmit information
 Typical interface examples:

 Creating a Virtual COM port requires 2-in and 1-out endpoints
 Human interface devices (mice/keyboards) require 1-in/1-out
 Memory devices also require 1-in/1-out

 USB devices must describe their themselves using device descriptors
 Host must match descriptors (at run time) with host-side device drivers (INF)
 MSP430 supports a single configuration with

one or more interfaces

EP0 EP0 …EP1 EP1 EP7 EP7

Setup &
/ontrol

EP2

Virtual
/ha tort

EP6 EP6

aouse Keyboard

Device Descriptors
 Configuration

 Interface(s)
 Endpoint(s)

How can we simplify
configuration?

MSP430 Design Workshop - USB Devices 10 - 23

Descriptions and Classes

USB Classes

Device

EP0 EP0 …EP1 EP1 EP7 EP7

Setup &
Control

EP2

Virtual
COa Port

EP6 EP6

aouse Keyboard

USB defines a number of device classes:
 Human InPerface Device (HID)
 CommunicaPions Device (CDC)
 Memory SPorage Class (MSC)

MSP430 SupporPs 4 classes
 HID, CDC, MSC (and PHDC)
 HosP OCS can easily maPcO iPs

drivers Po known device classes
 Simplifies specifying inPerfaces

(e.g. creaPing descripPors)
 DescripPors Pake form of:

 Device: daPa-sPrucPures
 HosP: .INF file

Is POere an easy way Po
creaPe USB DescripPors?

“CDC” “IID” “IID”

10 - 24 MSP430 Design Workshop - USB Devices

 Descriptions and Classes

Descriptor Tool: API Integration

• The Tool is tightly integrated with the API
• Generates three source files that configure the rest of the stack
• Also generates the INF file (for CDC on Windows)

Configuration
constants

descriptors.h

descriptors.c

usbisr.c

Descriptor
Structures

API Stack

INF File

Communications Data Class (CDC)

 Implements a virtual COa port on tC
 Simple serial terminal on Host side

(e.g. HyperTerm, tutty, Tera Term)

 The AtI presents a generic data
interface to the application

 Send/receive data of any size, with a
single function call

 Uses simple calls like:
 USB_connect();
 USB_sendData(buffer, size, intfNum);
 USB_receiveData(buffer, size, intfNum);

 Can be performed “in the background”
 Increases program responsiveness
 Improves efficiency

MSP430 Design Workshop - USB Devices 10 - 25

Descriptions and Classes

Human Interface Device (HID)
 IID classes transfers data in ‘report’

structures
 aSt430 supports any report type,

but are 3 are built-in:
 Keyboard (traditional)
 aouse (traditional)
 Datapipe (generic)

 ‘Datapipe’ presents a generic data
interface to the application
 aakes it easy to use IID for a CDC-

like interface
 TI provides a IID host demo tool

(which acts like host-side serial
terminal for datapipe xfers)

 Application code interchangeable
with CDC code, for easy migration

 aSt430 also provides AtIs for host-
side IID development:
 Windows
 aac

Datapipe mode allows the benefits of
IID without some of its downsides
 Silent loading on the host
 Avoids USB’s complex IID report

structures
 Enables a unique value tradeoff

Memory Storage Class (MSC)
 Allows easy creation of a USB

storage device
 No RTOS required

 But can easily be ported to one
 TI-RTOS (coming soon for aSt430)

will provide a port with examples

 USB Developers tackage
includes a port of the open-
source CAT file system (CatCS)
 CatCS is provided as an example
 USB stack was designed to be

compatible with any file system

 Cive demo apps provided

aSC will be covered in more
detail in an new chapter under

development

10 - 26 MSP430 Design Workshop - USB Devices

 Descriptions and Classes

Comparison/Summary of ClassesCDC HID MSC
Host
Interface /Oa tort IID device Storage Volume

Host Ioading User Intervention
(user loads .inf file) Silent Silent

BandwidtO “Iundreds of KB/sec” 62KB/sec “Iundreds of KB/sec”

Code Size 5K 5K 9K
(12-15K w/CS & vol)

Endpoints 2 in
1 out

1 in
1 out

1 in
1 out

Transfer
Type Bulk Interrupt Bulk (BOT)

Advantages
 Camiliar to user
 Bulk transport
 /ommon host apps

 Silent loading
 Interrupt xfers
 aouse/Keybd

 Camiliar to user
 Allows storage of

data using filesys

MSP430 Design Workshop - USB Devices 10 - 27

Quick Overview of MSP430’s USB Stack

Quick Overview of MSP430’s USB Stack

10 - 28 MSP430 Design Workshop - USB Devices

 Quick Overview of MSP430’s USB Stack

MSP430 Design Workshop - USB Devices 10 - 29

Notes:

 ABC’s of USB

ABC’s of USB

A. Plan Your System

Plan Your System
1. What are your requirements?

 How much data needs to transfer … and how fast?
 Is guaranteed bandwidth & timing important?
 Are you connecting to Window, aac, Linux (or all)
 What power will be needed?

2. From the requirements, decide which class
(or classes) will be needed

3. Import EmptyUsbtroject (Optional)
4. Run Descriptor Tool

 trovides help & feedback in creating device description
 Generates device descriptor files & INF files
 If you followed step 3, it automatically drops generated

files into the project

MSP430 Design Workshop - USB Devices 10 - 31

ABC’s of USB

B. Connect & Enumerate

Six States of Connection
1. USB is disconnected

→ User plugs in device
& VBUS (power) appears

2. USB Connected, not enumerated
 handleVbusOnEvent()

→ App calls USB_Setup(), which
pulls tUR up

3. Enumeration in trogress

ST_PHYS_
DISCONNECTED

ST_PHYS_
CONNECTED_

NOENUM

ST_ENUM_
ACTIVE

ST_ENUM_
SUSPENDED

ST_PHYS_
CONNECTED_

NOENUM_SUSP





x



ST_ENUM_IN_
PROGRESSR

Enumeration
the process in which the host
obtains the descriptors and
loads the correct driver

[iO-noo-muh-re-sOuh n]:

Six States of Connection
1. USB is disconnected

→ User plugs in device
& VBUS (power) appears

2. USB Connected, not enumerated
 handleVbusOnEvent()

→ App calls USB_Setup(), which
pulls tUR up

3. Enumeration in trogress

→ Enumeration succeeds

4. Device is enumerated, bus active
 handleEnumCompleteEvent()

→ Host Suspends device/bus

5. Device is enum, but suspended
 handleSuspendEvent()

ST_PHYS_
DHSCONNECTED

ST_PHYS_
CONNECTED_

NOENUM

ST_ENUM_HN_
PROGRESS

ST_ENUM_
ACTHVE

ST_ENUM_
SUSPENDED

ST_PHYS_
CONNECTED_

NOENUM_SUSP





R

x



Can Re affect connection state?

10 - 32 MSP430 Design Workshop - USB Devices

 ABC’s of USB

USB Connection States

MSP430 Design Workshop - USB Devices 10 - 33

ABC’s of USB

C. Managing my App & Transferring Data

 Main Loop USB Framework
while(1){

switch(USB_connectionState())
{

case ST_USB_DISCONNECTED:

break;
case ST_ENUM_ACTIVE:

break;
case ST_ENUM_SUSPENDED:

break;
case ST_ENUM_IN_PROGRESS:

break;
case ST_USB_CONNECTED_NO_ENUM:

break;
case ST_NOENUM_SUSPENDED:

break;
case ST_ERROR:

break;
default:;

}
}

 Execution within main loop “forks”
depending on the state of U{B,
creating alternate main loops
Thus, U{B state becomes a central
part of managing software flow

 This framework excels when the
device behaves differently in each
state!

 Cor cases where system only cares
about one state, connection{tate()
fxn could be called from LC{} stmt

 aost common non-wTh{ solution –
it’s used in many of the U{B
examples provided with the AtL

These three states are where
the application spends most
of its time

10 - 34 MSP430 Design Workshop - USB Devices

 ABC’s of USB

MSP430 Design Workshop - USB Devices 10 - 35

ABC’s of USB

10 - 36 MSP430 Design Workshop - USB Devices

 Final Thoughts

Final Thoughts

MSP430 Design Workshop - USB Devices 10 - 37

Final Thoughts

10 - 38 MSP430 Design Workshop - USB Devices

 Lab 10 – Using USB Devices

Lab 10 – Using USB Devices

Lab 10 – USB Devices
 Lab 10a – HLD LED On/Off Toggle

 Set LED on/off/blinking from Windows PC
via the USB serial port using the HLD class

 Uses HLD host demo program supplied with
USB Developers Package

 Lab 10b – CDC LED On/Off Toggle
 Similar to Lab10a, but using CDC class to

transfer the data
 Host-side uses CCS serial Terminal (or Putty)

 Lab 10c – Send Short aessage via CDC
 Example sends a short message (i.e. time)

to host via CDC class
 Host-side uses CCS serial Terminal (or Putty)

 Lab 10d – Send Pushbutton State to
Host
 Starts by importing the Empty USB Example
 You add code to read the state of the

pushbutton and send it to the host (via HLD)
 Read data on host with serial terminal

MSP430 Design Workshop - USB Devices 10 - 39

Lab 10 – Using USB Devices

Lab Topics
USB Devices .. 10-37

Lab 10 – Using USB Devices .. 10-39
Lab 10a – LED On/Off HID Example .. 10-41
Lab 10b – LED On/Off CDC Example ... 10-44

Play with the demo .. 10-47
Lab 10c – CDC ‘Simple Send’ Example ... 10-49
Lab 10d – Creating a CDC Push Button App ... 10-51

Import Empty USB Project Steps .. 10-51
Use the Descriptor Tool .. 10-52
Add ‘Custom’ Code to Project ... 10-55

10 - 40 MSP430 Design Workshop - USB Devices

 Lab 10a – LED On/Off HID Example

Lab 10a – LED On/Off HID Example
The MSP430 USB Developers Package contains an example which changes the state of an LED
based on string commands sent from the USB host.

1. Import the following example into your workspace using TI Resource Explorer.

Help → Welcome to CCS

HID → Command-Line Interface with LED On/Off/Flash

2. Build the project.

3. Launch the debugger and wait for the program to load to flash; then start the program
running.

 At this point, the MSP430 should start running the USB application. You may see Windows
enumerate the USB device (in this case, your Launchpad); this usually appears as a popup
message from the system tray saying that a USB device (“USB input device”) was
enumerated.

MSP430 Design Workshop - USB Devices 10 - 41

Lab 10a – LED On/Off HID Example

4. Open the USB HID Demo program.

 TI provides a simple communications utility which can communicate with a USB device
implementing the HID-datapipe class. Essentially, this utility allows us to communicate with
devices much like a serial terminal lets us talk with CDC (comm port) devices.

 When the program opens, it will look like this:

 We’ll get back to this program in a minute. For now, return to CCS so that we can run the

demo code.

5. Switch back to the USB HID Demo application.
 With the USB program running on the Launchpad, let’s connect to it and send it commands.

6. Connect to the USB application.

 Click the button that tells the HID app to find the USB device with the provided
Vendor/Product IDs.

10 - 42 MSP430 Design Workshop - USB Devices

 Lab 10a – LED On/Off HID Example

 The app should now show “Connected” …
as well as show connected in the log below …

7. Play with the application.

 After getting the device and Windows app running,
what does it do? There are 4 commands you can use.

Enter a command and hit Send

8. In the HID USB application, disconnect from the
USB device; then close the application.

9. Switch back to CCS and Terminate the debugger
and close the project.

HID Commands

• LED ON!
• LED OFF!
• LED TOGGLE – SLOW!
• LED TOGGLE – FAST!

Don’t forget to use the “!”. The app uses
this as an end-of-string character.

Along with the LED changing, you will see
the command repeated back to the log.

MSP430 Design Workshop - USB Devices 10 - 43

Lab 10b – LED On/Off CDC Example

Lab 10b – LED On/Off CDC Example
Our next program is another example from the MSP430 USB Developers Package. This program
is a near duplicate of the previous lab – that is, it changes the state of an LED based on string
commands sent from the USB host. In this example, though, the string commands are sent using
the CDC class (versus the HID-datapipe class).

The advantage of the CDC class is that it can communicate with just about any Windows serial
terminal application. The disadvantage, as you might remember from the discussion, is that
Windows does not automatically load CDC based drivers – whereas Windows did this for us
when using an HID class driver.

10. Import the CDC version of the LED On/Off/Flash project.

11. Build the project and launch the debugger.

12. Run the program.

 The first time you run the program, Windows may not be able to enumerate the USB CDC
driver. You might see an error such as this pop up.

Why does this error occur? ___

10 - 44 MSP430 Design Workshop - USB Devices

 Lab 10b – LED On/Off CDC Example

13. Open the Windows Device Manager.

 For Windows 7, the easiest way is to start the device manager is to type “Device” into the
Start menu:

In most versions of Windows, such as Windows XP, you can also run the following program from
a command line to start the Device Manager:

devmgmt.msc

On Windows XP, you can quickly run the command line from the Start Menu:

Start Menu → Run

 You should find the a USB driver with a problem:

MSP430 Design Workshop - USB Devices 10 - 45

Lab 10b – LED On/Off CDC Example

14. Update the MSP430-USB Example driver.

 For Windows 7, the steps include:

Right-click on the driver → Update Driver Software…

Click Browse my computer for driver software

 Select the following (or wherever you installed the USB Developers Package)

C:\TI\MSP430\MSP430USBDEVELOPERSPACKAGE_4_00_02\MSP430_USB_SOFTWA
RE\MSP430_USB_API\EXAMPLES\CDC_VIRTUALCOMPORT\C1_LEDONOFF

During the installation, the following dialog may appear. If so, choose to Install the driver.

When complete you should see:

10 - 46 MSP430 Design Workshop - USB Devices

 Lab 10b – LED On/Off CDC Example

Note: The steps to install the USB CDC driver are also documented in the:

 Examples_Guide_MSP430_USB.pdf

found in the documentation directory of the USB Developers Package.

15. In the Device Manager, write down the COM port associated with our USB driver:

What is your COM port = ___

Hint: When done, we suggest you minimize the Device Manager; thus, leaving it open in the
background. It’s quite possible you may need to check the drivers later on during these
lab exercises.

Play with the demo
At this point, we should have:
• The USB device application running on the MSP430

• The appropriate Windows CDC driver loaded

Before we can communicate with the device, though, we also need to open a serial terminal.

16. Open your favorite serial terminal and connect to the MSP430.

 Putty and Tera Term are common favorites, but we’ll provide directions for using the Terminal
built into CCS.

a) Open the Terminal window.

Window → Show View → Other…

Looking at our computer, we would
need to use COM32

MSP430 Design Workshop - USB Devices 10 - 47

Lab 10b – LED On/Off CDC Example

b) Configure the terminal settings:

Open the Terminal settings and use the COM port
you wrote down in the previous step, then hit OK.

The Terminal should then show as “CONNECTED”.

If the terminal does not connect, then check:
− Is the MSP430 USB app running?

− Does the USB device show up in the Device
Manager?

− Did Windows load the driver (i.e. does the Device
Manager show a problem with the device)?

17. When connected, try turning on/off/toggling the LED.

18. When done experimenting…
• Stop the terminal (hit red disconnect button).

• Terminate the debugger.

• Close the project.

CDC Commands

• LED ON
• LED OFF
• LED TOGGLE – SLOW
• LED TOGGLE – FAST

Type one of these strings and then hit the
<Enter> key.

Along with the LED changing, you will see
the command repeated back to the term.

10 - 48 MSP430 Design Workshop - USB Devices

 Lab 10c – CDC ‘Simple Send’ Example

Lab 10c – CDC ‘Simple Send’ Example
Let’s try one more simple application example before we build our own. This next example simply
sends the time (from MSP430’s Real Time Clock) to a serial terminal.

19. Similar to our previous two examples, import the “Simple Sending of Data” project.

20. Build the project and launch the debugger.

21. Start the program.

22. Wait for the USB device to enumerate.

 If you’re not sure that Windows enumerated the device, check the Device Manager. If it does
not enumerate, try Terminating the debugger, unplugging the Launchpad, then plugging it
back into another USB port on your computer.

23. Once enumerated, start the Terminal again (by hitting the Green Connection button).
 You should see the time printed (repeatedly) to the Terminal.

MSP430 Design Workshop - USB Devices 10 - 49

Lab 10c – CDC ‘Simple Send’ Example

24. Once you are done watch time go by: disconnect the Terminal; Terminate the
debugger (if you didn’t do it in the last step).

25. (Optional) Review the code in this example. Here’s a bit of the code from main.c:
VOID main(VOID)
{
 WDT_A_hold(WDT_A_BASE); //Stop watchdog timer

 // Minimum Vcore required for the USB API is PMM_CORE_LEVEL_2
 PMM_setVCore(PMM_BASE, PMM_CORE_LEVEL_2);

 initPorts(); // Config GPIOS for low-power (output low)
 initClocks(8000000); // MCLK=SMCLK=FLL=8MHz; ACLK=REFO=32kHz
 USB_setup(TRUE,TRUE); // Init USB; if a host is present, connect
 initRTC(); // Start the real-time clock

 __enable_interrupt(); // Enable interrupts globally

 while (1)
 {
 // Enter LPM0, which keeps the DCO/FLL active but shuts off the
 // CPU. For USB, you can't go below LPM0!
 __bis_SR_register(LPM0_bits + GIE);

 // If USB is present, send time to host. Flag set every sec.
 if (bSendTimeToHost)
 {
 bSendTimeToHost = FALSE;
 convertTimeBinToASCII(timeStr);

 // This function begins the USB send operation, and immediately
 // returns, while the sending happens in the background.
 // Send timeStr, 9 bytes, to intf #0 (which is enumerated as a
 // COM port). 1000 retries. (Retries will be attempted if the
 // previous send hasn't completed yet). If the bus isn't present,
 // it simply returns and does nothing.
 if (cdcSendDataInBackground(timeStr, 9, CDC0_INTFNUM, 1000))
 {
 _NOP(); // If it fails, it'll end up here. Could happen if
 // the cable was detached after the connectionState()
 } // check, or if somehow the retries failed
 }
 } //while(1)
} //main()

// Convert the binary globals hour/min/sec into a string, of format "hr:mn:sc"
// Assumes str is an nine-byte string.
VOID convertTimeBinToASCII(BYTE* str)
{
 BYTE hourStr[2], minStr[2], secStr[2];

 convertTwoDigBinToASCII(hour, hourStr);
 convertTwoDigBinToASCII(min, minStr);
 convertTwoDigBinToASCII(sec, secStr);

 str[0] = hourStr[0];
 str[1] = hourStr[1];
 str[2] = ':';
 str[3] = minStr[0];
 str[4] = minStr[1];
 str[5] = ':';
 str[6] = secStr[0];
 str[7] = secStr[1];
 str[8] = '\n';
}

10 - 50 MSP430 Design Workshop - USB Devices

 Lab 10d – Creating a CDC Push Button App

Lab 10d – Creating a CDC Push Button App
We have experimented with three example USB applications. It’s finally time to build one from
“scratch”. Well, not really from scratch, since we can start with the “Empty USB Example”.

The goal of our application is to send the state of the Launchpad button to the PC via USB –
using the HID Datapipe interface. Thus, we’ll use a HID class driver. This application will borrow
from a number of programs we’ve already written:

GPIO – We will read the push button and light the LED when it is pushed. Also, we’ll send
“DOWN” when it’s down and “UP” when it’s up.

Timer – We’ll use a timer to generate an interrupt every second. In the Timer ISR we’ll set a flag.
When the flag is TRUE, we’ll read the button and send the proper string to the host.

HID Simple Send Example – we’ll borrow a bit of code from the HID example we just ran to
‘package’ up our string and send it via USB to the host.

Finally, we’re going to start by following the first 3 steps provided in TI Resource Explorer for the
Empty USB Example.

Import Empty USB Project Steps
1. Import the Empty USB Project.

 As it states in the Resource Explorer, DO NOT RENAME the project (yet).

MSP430 Design Workshop - USB Devices 10 - 51

Lab 10d – Creating a CDC Push Button App

Use the Descriptor Tool
2. Launch the Descriptor Tool.

Just as the Resource Explorer directs us, launch the Descriptor Tool. The easiest way
to do this is to click the link as shown above.

3. Generate descriptor files using the Descriptor Tool.

We will take a quick look at the organization levels in the tool. In most cases, we will use the
tools defaults.

a) MSP430 level … use the defaults.

b) USB Device … MSP430-Button Example

We suggest changing the Product String – so it’ll be easier to see that it is different than
previous examples. Also, we suggest changing the PID (we picked ‘301’ arbitrarily). For a
real design, you might end up purchasing the VID/PID (or obtain a free PID from TI).

10 - 52 MSP430 Design Workshop - USB Devices

 Lab 10d – Creating a CDC Push Button App

c) Configuration

Nothing to do on the configuration screen.

d) Add HID Interface
Once again, we chose to vary the string so that it would be a little bit less generic.

MSP430 Design Workshop - USB Devices 10 - 53

Lab 10d – Creating a CDC Push Button App

e) Click the button to generate the descriptor files.

Notice they get written to your empty project. (This is the reason we were asked not to
change the name until after we had used the Descriptor Tool.)

The files should be saved to our “empty” project … but if you’re asked where to save
them, choose the USB_config folder:

C:\msp430_workshop\F5529_usb\workspace\emptyUsbProject\USB_config\

f) Save the Descriptor Tool settings.

While not required, this is handy if you want to open the tool and view the settings at
some later point in time. Notice that ‘Save’ puts the resulting .dat file into the same folder
as our descriptor files.

Save to your emptyProject USB_config
folder. This is a pretty good place for it,
since this is where all of the descriptor files
it generates are placed. For example:

C:\msp430_workshop\F5529_usb\workspace\emptyUsbProject\USB_config\

g) You can close the Descriptor Tool.

4. Rename the project to lab_10d_usb.

 As you can see, the reason they didn’t want us to rename the project before now was that the
descriptor tool generates files to the empty project.

5. Build, just to make sure we’re starting off with a ‘clean’ project.

10 - 54 MSP430 Design Workshop - USB Devices

 Lab 10d – Creating a CDC Push Button App

Add ‘Custom’ Code to Project
6. Copy myTimer.c and myTimer.h (and the readme file) to the project folder.

 We’ve already written the timer routine for you. (Look back to our Timer chapter if you want to
know the details of how this code was developed.)

Right-click the project → Add Files…

 Choose the three files from the location:

C:\msp430_workshop\F5529_usb\lab_10d_usb\

7. Open main.c and add a #include for the myTimer.h.

 We suggest doing this somewhere below #include “driverlib.h”.

8. Add global variables.

 These are used to capture (and send) the button up/down state.
char pbStr[5] = ""; // Stores the string to send
volatile unsigned short usiButton1 = 0; // Stores the button state

9. Add additional setup code.
 We need to initialize an LED and pushbutton. We also need to call the initTimers() function

that was just added to our project in a previous step.
 GPIO_setAsOutputPin(GPIO_PORT_P4, GPIO_PIN7);
 GPIO_setAsInputPinWithPullUpresistor(GPIO_PORT_P2, GPIO_PIN1);
 initTimers();

10. Modify the low-power state of the program.
 Search down toward the end of main() until you find the intrinsic that sets the program into

low-power mode. Rather than using LPM3, we want to switch this to LPM0.
// _bis_SR_register(LPM3_bits + GIE);
 __bis_SR_register(LPM0_bits + GIE);

MSP430 Design Workshop - USB Devices 10 - 55

Notes:

 Lab 10d – Creating a CDC Push Button App

11. Add code to ST_ENUM_ACTIVE state.

 The active state is where we want to put our communication code. (It only makes sense to
that we send data to the host when we’re actively connected.

 When connected, we will read the pin, set the Launchpad’s LED and then construct a string
to send to the host. Finally, we send the data to the host in the background; that is, we won’t
wait for a response – although we do set a timeout in our code below.

 Note that it’s the timer that wakes us up every second to check the state – and if the USB is
in the connected state, to run through the routine below.

 // If USB is present, sent the button state to host. Flag set every sec
 if (bSend)
 {
 bSend = FALSE;

 usiButton1 = GPIO_getInputPinValue (GPIO_PORT_P2, GPIO_PIN1);

 if (usiButton1 == GPIO_INPUT_PIN_LOW) {
 // If button is down, turn on LED
 GPIO_setOutputHighOnPin(GPIO_PORT_P4, GPIO_PIN7);
 pbStr[0] = 'D';
 pbStr[1] = 'O';
 pbStr[2] = 'W';
 pbStr[3] = 'N';
 pbStr[4] = '\n';
 }
 else {
 // If button is up, turn off LED
 GPIO_setOutputLowOnPin(GPIO_PORT_P4, GPIO_PIN7);
 pbStr[0] = 'U';
 pbStr[1] = 'P';
 pbStr[2] = ' ';
 pbStr[3] = ' ';
 pbStr[4] = '\n';
 }

 // This function begins the USB send operation, and immediately
 // returns, while the sending happens in the background.
 // Send pbStr, 5 bytes, to intf #0 (which is enumerated as a
 // HID port). 1000 retries. (Retries will be attempted if the
 // previous send hasn't completed yet). If the bus isn't present,
 // it simply returns and does nothing.
 if (cdcSendDataInBackground((BYTE*)pbStr, 5, HID0_INTFNUM, 1000))
 {
 _NOP(); // If it fails, it'll end up here. Could happen if
 // the cable was detached after the connectionState()
 } // check, or if somehow the retries failed
 }

12. Add #include "USB_app/usbConstructs.h".

 We need to use this header file since it supports the hidSendDataInBackground() function we
are using to send data via USB.

13. Build the program and launch debugger.

MSP430 Design Workshop - USB Devices 10 - 57

Lab 10d – Creating a CDC Push Button App

14. Start your program and open the USB HID demo tool.

 You can either run the program from within the debugger – or – terminate the debugger and
unplug and then plug the Launchpad back in. In either case, your USB program should be
running.

 We need to use the HID tool to view the communications coming from the Launchpad. As we
mentioned earlier, it acts as a “terminal” for our HID Datapipe datastream.

 If you cannot remember how to open it, please refer back to Step 4 on page 10-42.

Hint: You might have to set the PID depending upon the value you selected while using
the Descriptor tool.

15. Verify your program works

 Once the the driver is loaded and working properly, open your Terminal, making sure to use
the proper comm port. (As a reminder, all of these steps we discussed earlier in this chapter.)

 At this point:
• The Red LED should be blinking on/off.

• The Green LED should light when Button1 is pushed …

• … and the state of the button should be written to the HID Terminal.

Remember that the code only tests the button once per second. So, you will need to hold (or
release) it for more than a second for it to take effect.

10 - 58 MSP430 Design Workshop - USB Devices

	10. Building USB Devices
	Introduction
	What is USB?
	MSP430's USB Support
	How USB Works
	Descriptions and Classes
	Quick Overview of MSP430’s USB Stack
	ABC’s of USB
	Final Thoughts
	Lab 10 – Using USB Devices
	Lab 10a – LED On/Off HID Example
	Lab 10b – LED On/Off CDC Example
	Lab 10c – CDC ‘Simple Send’ Example
	Lab 10d – Creating a CDC Push Button App

