USB Devices

Introduction

The MSP430 makes an ideal USB device: ultra-low power, rich integration of peripherals and it's
inexpensive. Do you want to make a Human Interface Device product? Maybe a sensor, such as
a barcode reader, that needs to be both low-power (when collecting data), but also capable of
‘dumping’ its data via USB to a computer. Dream big, we've got the devices, tools, and software
to help you make them come true.

Learning Objectives

Objectives

Draw q diagram that defines the basic operation
of USB serigl communications

USB classes:
= List the 3 supported by MSP430 devices

= When 1o select one versus another

Enumerate 2 ways, using Tl's USB AP o respond
1o a system's USB connection state

To NOT cover every aspect of USB

Write a program to talk over the USB serial bus
using the provided AP stack

MSP430 Design Workshop - USB Devices 10-1



Introduction

Chapter Topics

USB DIBVICES ...tetieetie e ettt ettt et e oo oottt et e e e e o e hab bttt e e e e e e s bbb be e e e e e e e e e nbbbbeeeeaeeeaannbnneeeaans 10-1
Ta 1 geTo[0Tex i o] o RSP UPTP PO 10-1
LT Eo L RS O 1] 2 iSSP 10-3
MSPA30'S USB SUPPOIM ...cciittiiieiittiieeeitiiee e estteee e sttt e e sntteeeestbeeesstbeeesabbeeesasaeaeeabbeeesaseeeesnnses 10-7

USB FBES ..ttt e et e e e et e e e e r e e e e e e e e e e e aaaa 10-13
HOW USB WOTKS ....cciiiiiiiec ittt ettt ettt e e sttt e e st e e e s nbbe e e e snnbeeeeans 10-15
Pipes and ENAPOINTS .......ooiiiiiiiiiiiiie ittt e e e e 10-16
0] 2 I = V1S3 (=T g 1Y o 1= U OUPPRRRR 10-19
TRE USB FTAME ...ttt ettt e e e e e ettt e e e e e e e e abbbe e e e e e e e e e nnneees 10-20
DeSCriptionNs ANd CIASSES. ... ...cooiiuiiiiiiiiiie ettt e st e e st e e e s nabeee e 10-22
Quick Overview of MSP430'S USB StaCK .........ccoiiiiiiiiiiiiii it 10-28
F N = O o L] = PSPPSR 10-31
AL Plan YOUE SYSIEM .. ..uuiiiiiiii it e e s s e e e e e e e st e e e e e e e e e e satteaeeeaeeesannnnnens 10-31
B. CONNECE & ENUMEIALE .....oiiiiiiiiiiiiteee et e e e e 10-32
C. Managing my App & Transferring Data...........cccvuevireei i 10-34
Tz 1 To 0 o | )£ PP 10-37
I 1o I =T o = PP PPPPPPPTTPRPN 10-39

10-2

MSP430 Design Workshop - USB Devices



What is USB?

What is USB?

Universal Serial Bus (USB) is just that, a universal serial connection between a “Host” and
“Device”. It has taken the place of many synchronous and asynchronous serial bus connections
in systems such as personal computers.

In the case of USB, the host manages all transfers, whether moving data to or from the host —
often this is called a master/slave architecture, where the host is the bus master. At a minimum,
there needs to be one host and one device.

U S B ¢ USB is a serial connection, hence
the name Universal Serial Bus

Host + It's a master/slave bus architecture
where Host initiates all transfers

¢ Consists of a single Host along
with 1 or more devices

Device

MSP430 Design Workshop - USB Devices 10-3



What is USB?

But... USB supports many more than just a single device, the standard can actually support up to
127 different devices. Commonly, systems with multiple devices use hubs as interconnection
points between the host and devices — which results in a star arrangement.

Each type of device is distinguished using Vendor and Product ID (VID/PID). The combination of
VID and PID allows a host to identify the type of device that is connected and manage the point-
to-point communications with it — in most cases, this requires the host to load the appropriate
drivers required to talk with that specific type of device. (We'll discuss this is greater detail later in
the chapter.)

U S B ¢ USB is a serial connection, hence
the name Universal Serial Bus

Host + It's a master/slave bus architecture
where Host initiates all transfers

+ Consists of a single Host along
with 1 or more devices

connected to host; directly or in a

J
/ star arrangement (using hubs)
+ USB devices identified by unique
Huk Vendor and Product ID (VID/PID)

¢ Host keeps track of topology such
that it knows what devices are gone
when a hub is disconnected

¢ From a “device” perspective, it
looks like a single, addressable bus

mm

Hub Device Hub ¢ Up to 127 devices can be

=

0

B
o
)
.
.
s
.t

10-4

MSP430 Design Workshop - USB Devices



What is USB?

The Universal Serial Bus protocol has gone through a few versions over time. Back in 1995 USB
revision 1.1 was released. This version provided separate host and device connectors along with
supporting two different speeds: Low speed moved data at speeds up to 1.5Mpbs (megabits-per-
second); while Full speed provided data rates up to 12Mbps.

USB Standards

1% Mbps (Low) .
USB 1.1 1995 12 Mbps (Full) — Host & Device connectors

1% Mbps (Low) e Backward compatible
USB 2.0 2000 12 Mbps (Full) 500 mA with USB 1.1
480 Mbps (High) e Added On-the-Go (OTG)
1% Mbps (Low) * Backward USB 2.0
12 Mbps (Full) compatibility
USB 3.0 2008 450 Mbps (High)y  2°°™* . Full-duplex

4.8 Gbps (Super) Power mgmt features
MSP430 USB Peripheral Supports

¢ USB 2.0 standard

¢ Full speed USB device (12Mbps)

¢ Device only
Note: Look at TI’s TivaC processors if you need host, device or OTG support

In 2000, USB 2.0 was released as an upgrade to USB 1.1. Along with Low and Full speeds, a
much faster High 480Mbps rate was added. Other major additions to the standard included a
power supply of 500 mA provided from the USB cable, as well as capability for advanced devices
to switch between Host and Device modes — called On-The-Go (OTG) mode. The OTG feature is
handy in some applications where a product might have to be a Device or a Host depending upon
what it is connected to.

The MSP430’s USB port supports the USB 2.0 standard, but only operating at the Full rate.
(Seeing that the fastest MSP430 devices only run up to 25MHz, it's not hard to wonder why they
cannot support the 480Mbps rate.) Additionally, since the MSP430 doesn’t provide Host support,
it therefore does not provide the OTG Host/Device switching feature.

Hint:  If your product needs Host and or OTG support, you may want to check out TI's Tiva-C
line of ARM Cortex M4F processors.

Just a few years ago, in 2008, USB added the 3.0 revision. While once again backward
compatible to USB 1.1 and USB 2.0, the new revision added an additional Super 4.8Gpbs rate. It
also included full-duplex operation, a higher power sourcing availability of 900 mA as well as
other power-management features. While this is quite advantageous for many types of end-
applications — such as hard disk drives, high-end imaging systems (i.e. scanners), and such — it's
overkill for many other systems, where low power and cost are primary directives.

MSP430 Design Workshop - USB Devices 10-5



What is USB?

Bus standards, such as USB, contain a variety of layers. While these physical and data
specifications are important, exploring them in great detail is outside the scope of this chapter.

On the following slide, we'll introduce a couple basic features of the physical layer — that is, of the
USB cable. Later on in the chapter, we will discuss some of the details regarding data and
software layers.

Bottom Line: We have tried to approach USB, in this chapter, from a pragmatic perspective. That
is, rather than examining the details of the specification, we want to figure out how to use TI's
devices and tooling in order to just get something running.

USB ... Physical Layer

¢ Four wires in the cable/connector:
+ VBUS (5V - supplied by host)
+« D+ }for differential data signaling

« D-—
+ Ground

VBUS (+5V)
D+

\ W= D-
GND

¢ Oiriginally only two connector types (host & device), though many

additional plugs were defined later e o -
¢ USB 2.0 added On-The-Go (OTG) feature, letting ! =
devices switch from device to host, as needed ; ae
¢ USB 3.0 has concurrent bidirectional data -

cm

transfers, thus cables include four more
data lines (backward compatible)

¢ USB devices are hot swappable

As shown above, the USB cable provides four different signals:

e One signal pair provides power and ground. The power signal, called VBUS, is a +5V
supply. Not only does this pair provide USB 2.0 devices with up to 500 mA of power, but
bringing this signal high (+5V) is how the Host begins communicating to a Device. (We'll
see more about this later in the chapter.)

e The other pair of signals, D+ and D-, provides a differential data signal from the Host to
the Device. As most hardware engineers know, using differential signaling provides more
robust data transmissions.

USB 3.0 cables provide more additional signals to support its higher performance; although,
that’s not something we need to deal with in this chapter.

Finally, the USB standard supports “hot swappable” devices. This means they can be connected
and disconnected as needed. The USB protocol provides a means for handling this feature. To
this same end, your USB application should remain flexible. By this, we mean that your
application needs to be written so that it can handle an asynchronous change in the USB
connection state. This might include the Host putting your Device into Suspend mode (where you
receive a reduced power supply) ... or the end-user disconnecting your Device from the Host by
“yanking the cable”.

10-6

MSP430 Design Workshop - USB Devices



MSP430's USB Support

MSP430's USB Support

As we stated on the first page, the MSP430 proves to be an excellent solution for building USB
Devices. Many devices in the F5xx and F6xx MSP families contain the USB peripheral. Coupling
this proven USB hardware port with the low-power nature of the MSP430 makes possible some

interesting USB applications.

MSP430 USB Support

Most comprehensive low powe

1. Largest 16-bit portfolio of integrated F5
USB and 512KB memory XX

2. Proven USB core
Optimized for low power operation FGXX

1. Perfect for developers new to USB as well
as experienced engineers

2. Code gen tools and proven USB stacks
significantly eases development
(at no cost to the customer)

3. Availability of a new low price MSP430 USB

Ultra-low power MCU
with up to 25MHz and
integrated USB

Ultra-low power MCU
with up to 25MHz,
integrated USB and LCD

LaunchPad tool

i3 TEXAS INSTRUMENTS

Besides the low-power advantages of the MSP430, though, the software tools and USB stack

make the MSP solution really stand-out.

The USB standard is a very capable, and therefore involved, protocol. The Tl tools, along with the
MSP430 USB stack (i.e. USB library), make it possible for novices and experienced users to take

advantage of this capability.

Combining these software tools with the MSP430 USB Launchpad makes an excellent low-cost

development environment.

MSP430 Design Workshop - USB Devices

10-7



MSP430's USB Support

This table summarizes some of the MSP430 devices that provide USB functionality. As you can
see, there are a variety of processors with different memory and peripheral options.

up to
256

up to
MSP430F563x 256

MSP430F552x 32-128 6to8

N ZEDINE  8-32 4

MSP430F663x
8to 16

MSP430 Devices with USB

Prog RAM | 16-Bit | Common ADC Additional
(KB) (KB) | Timers | Peripherals Features

¢ Portfolio of devices with more (or less) peripheral/memory integration;
this provides basis for different price points

¢ USB Launchpad uses the ‘F5529 ... found in the middle of the pack

USB, EDI, DAC12,
LCD, Backup
WDT, RTC, battery switch

DMA(3-6),  17.pit  USB, EDI, DAC12,
MPY32, Backup battery

Comp_B, switch
UART, SPI,
12C, PMM
(BOR, SVS, -
SVM, LDO) USB, 25 MIPS

10-Bit

10-8

MSP430 Design Workshop - USB Devices



MSP430's USB Support

The following slide, taken from the ‘F5529 User’s Guide, lists many of the MSP430 USB module’s
features. While we've already spoken about the Full-speed capability, unless you're already quite
familiar with the USB standard, most of the other features listed probably won’t make much
sense... yet.

MSP430 USB Module

2.3 MSP430 USB Module
Features of the MSP430 USB module are as follows:

* Full-speed USB device (12 Mbps). Full-speed is a great match for a 16-bit MCU. It facilitates
communication with a USB host, with simplicity and low system cost. The module does not perform
low- or high-speed transfers; it also does not function as a USB host controller.

+ Supports control, interrupt, and bulk transfers. This enables support of the most popular USB
device classes. (Streaming audio using isochronous transfers is not supported.)

+ Eight input and eight output endpoints. The more endpoints that are supported, the more USB
interfaces (logical devices) that can be implemented within a composite USB device. MSP430 MCUs
have enough endpoints for as many as seven interfaces in composite (depending on the ones
chosen), which is more than enough for the vast majority of USB applications.

+ An integrated 3.3-V LDO, for operation directly from 5-V VBUS from the host. In some
applications, this eliminates the need for an external LDO, because in addition to sourcing the MCU,
the integrated LDO can be used to source the entire system, up to 12 mA. (See the device data sheet
for parameters).

+ An integrated D+ pullup. This pullup is the way in which a USB device tells the host it is ready to be
enumerated. In contrast, some USB devices from other vendors require external circuitry to enable the
pullup.

+ Programmable PLL. An integrated PLL generates the 48-MHz clock needed for USB operation. The
reference for this PLL comes from the MCU's XT2 oscillator. A wide variety of sources can be used for
the reference.

+ Integrated transceiver (PHY). There is no need to buy one separately

Figure 1 shows a system block diagram.

System

54.DVEE,

MSP430 Design Workshop - USB Devices 10-9



MSP430's USB Support

We’'ll address many of the data/system oriented features throughout the rest of the presentation.
You might note here, though, the hardware specific features. For example, “including the PHY”
(physical interface) means there’s one less thing for you to put on your board. Also, the USB port
has its own dedicated block of SRAM (though the system can use it when the USB port is

disabled).

USB Block Diagram

System

VUsB [53_DVCC

ml:J-SB Module

3.3v
LDO

18v
LDO

Use crystal,

resonator, or input
an external clock

g i

Transceiver

>

L] CPU

use
Engine

>

RAM/Flash

48MHz PLL

USE|RAM

>

DMA Peripherals

A

XT2

XT1

VLO

——>» MCLK
H—>» smcLk
> ACLK

MSP430 USB Peripheral Supports

L 4
L 4

L 4
L 4
*

USB 2.0 standard
Device only

(Host not supported-— try Tiva-C from TI)
Full speed USB device (12Mbps)
Includes 16 Endpoints (8-in/8-out)

‘m‘@.ﬂ Certified USB module

L 4
2

Integrated transceiver (PHY)

Integrated 3.3V LDO for direct
operation from USB bus

Programmable PLL
(generates 48MHz USB clock)

Integrated D+ pull-up resistor (PUR)

4

2

Also, notice the LDO voltage regulators. These let the port (and even the MSP430 device itself)
operate from the +5V supply coming from an attached USB cable. Finally, the built-in PLL
handles the required USB clock requirements, utilizing one of the MSP430 external clock inputs.

10-10

MSP430 Design Workshop - USB Devices



MSP430's USB Support

We bragged about the MSP430 development support. Here'’s a peek at it. Looking at the items
pointed out by the red arrows:

We begin with the excellent USB Programmers Guide

The Descriptor Tool is truly unique. It makes easy work of the tedious (and error prone)

job of creating USB interface descriptors.
The USB HID Demo is a Host-side tool that lets you interact with custom devices

implementing the Human Interface Device class. It's like a serial terminal program for HID

devices.

Finally, the rich set of examples provided by TI not only provides a way to “play” with

USB, they also make excellent starting points for your own applications.

USB Developers Package

(/) TIResource Explorer i3

4 [ Libraries
%4 Driver Library
% Graphics Library
4 % USB Developers Package

| Programmer's Guide
| Examples Guide
|=] APIFunction Reference
@ Release Notes

‘ &g Descriptor Tool

@ Firmware Updater
- @ USB Hid Demo

a Y Example Projects
@ Empty USB Project
&0 CDC (Virtual COM Port) Examples
@0 HID (Human Interface Devices) Examples
@4 MSC (Mass Storage) Examples
@4 Composites (Multiple Interfaces) Examples
@4 SYSBIOS Examples
@4 General Examples

@4 Capacitive Touch Software Library

Developer’s
Package

MSP430 Design Workshop - USB Devices

10-11



MSP430's USB Support

Sidebar — MSP430 USB API Features

MSP430 USB API Features

1. Afinished API
— Not just example code

— Increases chance of USB success, because the user doesn’t need to modify
the USB plumbing; speeds development

— An API approach makes USB more accessible to USB non-experts
2. Small memory footprint
— Single-interface CDC or HID: 5K flash / 400 bytes RAM
— MSC (not including file system / storage volume): 8K flash / 1.4K RAM
3. Can use either DMA or CPU to move data
— Simply turn the DMA feature ‘on’ and select the channel
4. Limited resource usage
— Only uses the USB module, some memory, & a DMA ch; no other resources
5. RTOS-friendly
— Tl will soon provides using it with TI-RTOS

MSP430 USB API Features, cont.

6. Responsiveness
— No risky blocking calls stuck waiting for the host
— Data can be transferred “in the background”, for increased system
responsiveness and efficiency, even with a busy host/bus
7. Easy data interface (CDC and HID-Datapipe)
— The function calls are similar to interfacing with a simple COM port

— You can send/receive data of any size, with a single call -- no packetization
required
— Deep USB knowledge not required

8. Flexibility (MSC)

— Compatible with any file system software. (We provide the open-source
“FatFs” as an example.)

— Easy multiple-LUN support; just select the number of LUNs
— No RTOS required — but can be ported to one

10-12 MSP430 Design Workshop - USB Devices



MSP430's USB Support

USB Fees

As we described earlier, your USB product needs a Vendor and Product ID (VID & PID) in order
to meet the requirements of the standard. The USB Implementers Forum (USB-IF) charges a fee
to license a Vendor ID.

As an alternative to purchasing your own VID, silicon vendors such as Texas Instruments, will
provide you the ability to use their VID when using the MSP430 USB-based devices. Please refer
to TI's website for more information on obtaining a VID/PID.

USB Fee ... You need a Vendor ID

Fees. The USB-IF provides the USB specification, related documents, soft-

ware for compliance testing, and much more, all for free on its Web site.

Anyone can develop USB software without paying a licensing fee.

However, anyone who distributes a device with a USB interface must obtain
the rights to use a Vendor ID.

+ Vendor ID’s (VID) are assigned by the USB Implementers Forum (USB-IF)
+ Obtain VID by:

+ Joining USB-IF ($4000 annually)

+ Geta 2 yearslicense ($3500)

+ See http://www.usb.org/developers/vendor/

+ Alternatively, Tl VID-sharing program licenses PID’s to MSP430 customers
« Foruse with the MSP430VID (0x2047)
« License is free, with stipulation it’s only used with TI USB devices
+ Find out more at : http://www.ti.com/msp430usb

Clipped from, “USB Complete: The Developer's Guide™ by Jan Axelson (ISBN 1931448086)

MSP430 Design Workshop - USB Devices 10-13



MSP430's USB Support

Additional USB Resources

Along with TI's MSP430 USB page, we've provided some USB references that we found useful.

http:/lwww.ti.com/msp430usb

Come here to get up to date for all things related to MSP430 USB!

Microcontrollers (MCU)
*Design Support - Getting Started - Selection Tool = Training & Events =Developer Network

MSP430 Applications

Ultra-Low Power
Wireless

Utility Metering
Portable Medical
Security

Energy Harvesting

use

MCU Training
> Register now for MCU Day
* TI Technology Days

Support

> TI EZE Cornmunity

» Contact Technical Support
> MSP430 Discussion Group
> Third-Party Network

MSP430 + USB

The MSP430 portfolio has been expanded to include a variety

devices integrated with USB, ideal for applications including analog -
and digital sensor systems, data loggers, and other solutions that

require connectivity to various USBE hosts. With the MSP430FSSxx

family of devices, intuitive evaluation tools, and a library of USE
software, designers are prepared to implement USBE in their
projects today!

MSP430's USB Module Features:

* Full speed USB device at 12 Mbps

* Supports control, interrupt, and bulk
transfers et

* Eight input / Eight output endpoints e

» Integrated 3.3V LDO - for direct
operation from 5V VBUS

« Integrated D+ pull-up

* Integrated transceiver

* Timestamp generator capable of 62.5
ns resolution

Suggested Reading
“Starting a USB Design Using MSP430™ MCUs"” App Note by Keith Quiring
(Sept 2013) (Search ti.com for SLAA457.pdf)

“Programmers_Guide_MSP430_USB_API” by Texas Instruments (Aug 2013)
Found in the MSP430 USB Developers Package

“USB Complete: The Developer's Guide” by Jan Axelson (ISBN 1931448086)
http://www.amazon.com/USB-Complete-Developers-Guide-Guides/dp/1931448086

10-14

MSP430 Design Workshop - USB Devices



How USB Works

How USB Works

As we stated at the beginning of the chapter, USB is a serial, Master/Slave communication
protocol. That is, the Host acts as the Master; communication to and from the Host is directed by
the Host. The Device only responds to requests from the Host.

The USB standard allows many Devices to be connected to a single Host. The Host assigns an
address to each Device as it is connected (i.e. enumerated) to the Host. This is really a minor
detail, though, since — as a Device — we don’t need or use this information.

Logical Connection Between Host & Device

Master ggleNi ¢ Communication takes place
between the host and device

& Host controls ALL communication

& Device is addressable
(assigned by host)

Slave

Device

MSP430 Design Workshop - USB Devices 10-15



How USB Works

Pipes and Endpoints

To be more specific, a Host communicates with a Device through a Pipe; that is the name given
to this communication pathway. The Pipe makes a connection to a Device Endpoint; which is
essentially just a buffer in the Device. (As we’ll see in a minute, the MSP430 has dedicated
Endpoints in its USB port hardware.)

Communication Pipe

Host ¢ Host/Device communication occurs
thru a Pipe

¢ The host sets up pipe connections
to one or more device “endpoints”
Pipe < Anendpoint is essentially a buffer
in the device
Endpoint —> []
Device

10-16 MSP430 Design Workshop - USB Devices



How USB Works

Pipes specify unidirectional data movement. If you want to move data in both directions, two
Pipes must be created — which requires 2 Endpoints. Also, seeing as Pipes (and USB, in general)
are Host centric, the directions In and Out are from the Host's perspective.

Communication Pipes

+ Host/Device communication occurs
thru a Pipe

# The host sets up pipe connections
to one or more device “endpoints”

Pipes < Anendpoint is essentially a buffer
in the device

¢ Pipes/Endpoints are unidirectional
Out In ¢ In/Out is from the Host perspective

v
Endpoints —> |:| |:|

Device

MSP430 Design Workshop - USB Devices 10-17



How USB Works

While the USB standard only requires a Device to have one Input and one output Endpoint, the
MSP430 USB port provides 16 Endpoints: 8 Input and 8 Output. Additionally, the MSP430
Endpoints each contain a 64-byte buffer — the largest specified in the USB specification. All-in-all,
this hardware provides the MSP430 with a lot of flexibility in the types of communications it
supports.

As shown below, the set of Input and Output Endpoints are numbered 0 — 7.

MSP430 Supports 8 Ins/Outs

+ Host/Device communication occurs
thru a Pipe

¢ The host sets up pipe connections
to one or more device “endpoints”

Pipes < An endpoint is essentially a buffer
in the device

Pipes/Endpoints are unidirectional
In

)
mlalapEgals

In/Out is from the Host perspective
Endpoints are enumerated (from 0)

Endpoint 0 is special case - all USB
devices must have EPO, which is
used for setup and control

¢ MSP430 Endpoints:

« 16 endpoints (8 in, 8 out)

« Each has 64 byte buffer

Endpoints —+>

® 6 6 o

oDeg

Device

What goes across pipes?

We often see the Endpoints referred to as EPO, EP1, ... EP7.

The In/Out Endpoints do not have to be used in bidirectional pairs — sometimes you may find that
your Device needs 2 Inputs and 1 Output.

By the way, do you remember when we said that the USB spec requires a Device to have at least
1 Endpoint?

That happens to be Endpoint 0 (EPO). EPO is a special case; the Host uses EPO (both directions)
to setup and control USB operations. Without the Host being able to rely on a known Endpoint O

always being available, it wouldn’t know how to start talking to new Devices as they're physically
connected.

So, we've established the concept of a communication Pipe ... what gets transferred across it?

10-18 MSP430 Design Workshop - USB Devices



How USB Works

USB Transfer Types

Along with specifying an Endpoint and direction, a Pipe also specifies the “Type” of
communication transfer. The USB specification supports four Transfer Types, as defined in this
diagram.

USB Transfers

¢ Pipe’s define a Transfer Type as
well as the endpoint and direction
¢ USB supports 4 Transfer Types:
« Control Setup/Command/Status

P| pes « Interrupt Small size, Periodic
Guaranteed latency
Guaranteed bandwidth

« Bulk Large size allowed
No time guarantees

Out In
\|/ | \|/ 1‘ \|/ 1‘ «+ Isochronous Guar. time, Periodic
. No error handling
Endpoints —> |%| |%| |;| |}| ;’ |;| Not supported on ‘430
¢ Contrary to the name, ‘interrupt’
. transfers are not initiated by device
Device g

How should we Frame this discussion?

If all we cared about was passing data across the Pipe, we wouldn't need to further define the
Transfer Type of a Pipe. The fact is, sometimes we care about “when” data will arrive, just as
much as the data itself.

Each of the Transfer Types, listed above, briefly describe their temporal nature. Notice how
“Interrupt” types provide a guaranteed latency and bandwidth, although the tradeoff is a smaller
data payload. Conversely, “Bulk” transfers allow large sizes, but give up the time-oriented
guarantees.

Hint:  “Interrupt” transfer types do not have anything to do with microprocessor “interrupts”. It is
just the word used in the USB specification to describe these types of transfers.

Similarly, “Interrupt” transfer types are initiated by the Host, just as all USB transfers are
initiated and controlled by the Host. (We’'ll see more about this on the next page.)

Note: The MSP430 USB stack (i.e. USB library) only supports Control, Interrupt, and Bulk
transfer types. Currently, the MSP430 does not support Isochronous types, which are
more typically used in audio or video types of applications.

MSP430 Design Workshop - USB Devices 10-19



How USB Works

The USB Frame

If we're talking about time-oriented concepts, such as latency and bandwidth, how are these
defined?

USB describes communications occurring within a 1 ms Frame. Each Frame begins with a Start-
of-Frame (SOF). After that comes ‘interrupt’ transfer types, then ‘control’ types, and finally ‘bulk’
transfer types.

In this way, interrupt transfers are guaranteed to occur. Conversely, if you have so many interrupt
transfers that the frame is near fully utilized, then bulk transfers might occur very slowly. Then
again, if you don’t have many interrupt or control transfers, bulk transfers will get most of the
frame and complete more quickly.

Providing further flexibility, periodic transfer types (e.g. interrupt transfers) can be configured to
occur in every frame — or as infrequently as once every 255 frames. This lets you specify the
amount bandwidth and latency needed for a given periodic transfer — as well as potentially free
up bandwidth for bulk transfer types.

How is Bandwidth Guaranteed?

Frame n Frame n+l

= - Bulk = Bulk

SOF
INT
INT

SOF
| INT
INT

L J
1

< Remaining for Bulk xfers 1ms

\ Interrupts are given ‘slots’ in frame X
¢ Pipe’s define a Transfer Type as

- Start of Frame well as the endpointand direction

+ USB supports 4 Transfer Types:

+ Host won't allocate more than 90% o Bl Sefup/Command/Status
to periodic transfers (e.g. Interrupt) + Interrupt Small size, Periodic
Lo . Guaranteed latency
¢ Periodictransfers can be config’'d Guaranteed bandwidth
for every 1 to 255 frames + Bulk Large size allowed

No time guarantees

o + Isochronous Guar. time, Periodic
+ Last priority are Bulk transfers No error handling

+ Bulk can be the fastest transfer type Not supported on ‘430

« But, they have no guarantees + Contraryto the name, ‘interrupt’
transfers are not initiated by device

+ Nextin priority is Control transfers

10-20

MSP430 Design Workshop - USB Devices



How USB Works

Sidebar — Packets

Realistically, large transfers must be broken down into smaller chunks. USB defines these
smaller chunks as ‘packets’.

How Do You Fit Large Transfers

Frame n Frame n+1
AEEE Bulk 5[5 - su

+ Transfers are broken down into:
+ Transactions ... and furtherinto ...
+ Packets

+ Whose details are beyond the scope of this presentation

# Transfers (except Isochronous) are verified using
Handshaking, CRC, Data Toggle ... if an error occurs,
they are retransmitted

+ Thankfully, the USB hardware (and API stack) takes
care of these details

We've chosen not to dig into the details of packets — or a number of other details like
handshaking, error detection, and so on. This decision was based on two factors: one, there just
isn’t enough time to go through every detail of the USB specification in this chapter; and two, the
USB peripheral’s hardware — and the Tl USB stack — manage these details for us. In other words,
we don’t have to know them in order to get our USB application built and working.

MSP430 Design Workshop - USB Devices 10-21



Descriptions and Classes

Descriptions and Classes

As we say on the following slide, “What do you want to Transmit?”

Are you looking to send data across the USB bus similar to a standard serial port? Maybe you're
building a human interface device and want to send mouse or keyboard data.

What Do You Want to Transmit?

¢ USB devices describe one (or more) Interfaces to transmit information

¢ Typical interface examples:
» Creating a Virtual COM port requires 2-in and 1-out endpoints
+ Human interface devices (mice/keyboards) require 1-in/1-out
+ Memory devices also require 1-in/1-out

+ Interface(s)

Setup & Virtual
C%rl:ti:ol COM Port Mouse Keyboard
A P | v

EPO [ EPO

Device (example shown here is ‘composite’ device with multiple I/F’s)

10-22 MSP430 Design Workshop - USB Devices



Descriptions and Classes

Summary — USB Interface Description

¢ USB devices describe one (or more) Interfaces to transmit information

¢ Typical interface examples:
+ Creating a Virtual COM port requires 2-in and 1-out endpoints
+ Human interface devices (mice/keyboards) require 1-in/1-out
+ Memory devices also require 1-in/1-out
¢ USB devices must describe their themselves using device descriptors
¢ Host must match descriptors (at run time) with host-side device drivers (INF)

¢ MSP430 supports a single configuration with
one or more interfaces

Device Descriptors
+ Configuration
+ Interface(s)

r— Virtual .
Pty | _.COMPort  Mouse !‘EY'PP.?E/ + Endpoint(s)
Al v hi 2 /

EPO [ EPO | EP1||EP1 || EP2 : EP6 || EP6 :: EP7 ||EP7 - |
. ' _ o _ How can we simplify
Device (example shown here is ‘composite’ device with multiple I/F’s) configuration?

MSP430 Design Workshop - USB Devices 10-23



Descriptions and Classes

USB Cla

USB defines a number of device classes:

¢ Human Interface Device (HID)
¢ Communications Device (CDC)
¢ Memory Storage Class (MSC)

SSeS

MSP430 Supports 4 classes
+ HID, CDC, MSC (and PHDC)
+ Host O/S can easily match its
drivers to known device classes
+ Simplifies specifying interfaces
(e.g. creating descriptors)
+ Descriptors take form of:
« Device: data-structures
“HID” . * Host INF file

“cbc” “HID”

(" Viwat
Control 1...COMPort  Mouse  Keyboard |
N I! E f ~::-""""“EI
I P ¥ '
v Iil T T l Tl TE'
epo|epo|, | et |[ep1[Ep2]: ... {pe | [Esi {er |7 3
s St et

Device

Is there an easy way to
create USB Descriptors?

MSP430 USB De

scriptor Tool

s
& MSP430 USB Descriptor Tool (4.00.00.00)

File Help

[ Navigation View ] HID Interface &2

(= MSP430
(= USB Device
(= Configuration
[%%) Interface 20 [CDC]
[ Interface #1 [HID)
[ Interface # 2 [HID)

Common Interface Opti

Interface Number (intfN
Interface String

HID Parameters

Pelling Interval (ms;

HID Report Type
L 3
1 Help Pane
HID Repori ¢

HID interfaces can *

NI e e P IGAG 2

Add CDC Add HID Add MSC Add PHDC
(Virtual COM Port) (Mice, Etc.) (Storage Volumes) (Continua Medical)

¢ Quick and easy way to create

ons
um) 2

Keyboard

device descriptors and .inffiles

Minimizes error- very common
when creating descriptors by hand

Help pane provides useful ‘how to’

Recognized by MSP430’s USB stack
... simply add this tools output to
your USB project

10-24

MSP430 Design Workshop - USB Devices



Descriptions and Classes

Descriptor Tool: API Integration

The Tool is tightly integrated with the API
Generates three source files that configure the rest of the stack
Also generates the INF file (for CDC on Windows)

descriptors.h

Configuration
constants \

descriptors.c
Descriptor
= Structures

INF File

| 4

API Stack

-

|
A

I

usbisr.c

) |

\‘\

Jy‘ Texas
INSTRUMENTS

Communications Data Class (CDC)

¢ Implements a virtual COM port on PC

¢ Simple serial terminal on Host side
(e.g. HyperTerm, Putty, Tera Term)

¢ The API presents a generic data
interface to the application

¢ Send/receive data of any size, with a
single function call

& Uses simple calls like:
« USB_connect();
+ USB_sendData(buffer, size, intfNum) ;
« USB_receiveData(buffer, size, intfNum) ;

¢ Can be performed “in the background”
+ Increases program responsiveness
+ Improves efficiency

MSP430 Design Workshop - USB Devices

10-25



Descriptions and Classes

Human Interface Device (HID)

Add HID Add MSC Add PE Py ’
(Storage Volumes] HID classes transfers data in ‘report
structures

*
[ HID Interface 52
o RS ] & MSP430 supports any report type,
HID Parameters g tan
_ 5 3 but are 3 are built-in:
ation Poling Interval (ms) ! + Keyboard (traditional)
ace £0[CDC] || HID Report Type + Mouse (traditional)
sce #1[HID] Datapipe + Datapipe (generic)
ace # 2 [HID] = Keyboard
lialolals Mouse { & ‘Datapipe’ presents a generic data
HID Report 1 interface to the application
HID interfaces can be of various subtypes. Thell + Makes it easy to use HID for a CDC-
* HID-Datapipe: used for unformatted point-to-p like interface
*Mouse
* Keyboard + Tl provides a HID host demo tool
* Custom: anything that isn' one of the three (which acts like host-side serial
-4 terminal for datapipe xfers)
Datapipe mode allows the benefits of . APtFﬂiEaDt(i:O“ §°d? i“te"Chaﬂgei{’le
HID without some of its downsides wi code, Tor easy migration
+ Silent loading on the host * MdSPﬂlsl'g leo ?rovidei APIs for host-
. B side evelopment:
+ Avoids USB’s complex HID report < Windows

structures . Mac
+ Enables a unique value tradeoff

Memory Storage Class (MSC)

¢ Allows easy creation of a USB
storage device

¢ No RTOS required
+ But can easily be ported to one

+ TI-RTOS (coming soon for MSP430)
will provide a port with examples

4 USB Developers Package
includes a port of the open-
source FAT file system (FatFS)

=y examples + FatFS is provided as an example
=/ MSC_massStorage + USB stack was designed to be
+ 1 M1_FileSystemEmulation compatible with any file system

+- 1, M2_SDCardReader
4 1 M3_MultipleLUN

+/- |, M4_DoubleBuffering
+/- |, M5_CDROM

¢ Five demo apps provided

MSC will be covered in more
detail in an new chapter under
development

10 - 26 MSP430 Design Workshop - USB Devices



Descriptions and Classes

Host COM Port HID device
Interface

- User Intervention
Host Loadmg (user loads .inf file) m

Code Size 5K 5K
. 2in 1lin
Transfer
Bulk Interrupt
Type
= Familiar to user = Silent loading
Advan tag es = Bulk transport = Interrupt xfers

= Common host apps  ®* Mouse/Keybd

e b | wsc

Storage Volume

Bandwidth “Hundreds of KB/sec” 62KB/sec “Hundreds of KB/sec”

(12-15K w/FS & vol)

Bulk (BOT)

= Familiar to user
= Allows storage of
data using filesys

Silent

9K

1lin
1 out

MSP430 Design Workshop - USB Devices

10 - 27



Quick Overview of MSP430’s USB Stack

Quick Overview of MSP430’s USB Stack

USB Developers Package

(/) T1 Resource Explorer 3

4 [ Libraries -
@9 Driver Library

®4 Graphics Library
4 %P USB Developers Package

| Programmer's Guide U S B

] Examples Guide

|=] APIFunction Reference 5

@ Release Notes D v I p r
# & Descriptor Tool e e o e s
@ Firmware Updater P k
‘ @ USB Hid Demo ac age

. @5 CDC (Virtual COM Port) Examples

» %9 HID (Human Interface Devices) Examples
@0 MSC (Mass Storage) Examples
%0 Composites (Multiple Interfaces) Examples
4 SYSBIOS Examples
0 General Examples

@4 Capacitive Touch Scftware Library
P it A A e e

emptyUsbProject

USB ‘stack’ is built {( Project Explorer i3
upon driverlib i

4 = emptyUsbProject

= USB ‘stack’ library - [ Includes

found in USB_API . = driverlib
= Most users will never - .
edit these files & targetConfigs
> (= USB_API
= USB_app filesare | . (= USB_app

provided with API, but
are considered part of
the application

- (= USB_config

. |g] hal.c

= You may edit these . [A halh
. L2 Ink_msp430f5529.cmd
Descriptor Tool -y -
output files go here > m main.c

Starter main.c file is provided
with the emptyUsbProject

~

10 - 28 MSP430 Design Workshop - USB Devices



Quick Overview of MSP430’s USB Stack

USB Stack - API

Handlers (i.e. callbacks) L
for major USB events

APPLICATION

I"-—\

Example constructs for L
sending/receiving data
on CDC/HID

Demonstrate maximum
robustness

TX/RX Constructs

xxxSendDataWaitTilDone()
xxxSendDatalnBackgrnd()
xxxReceiveDatalnBuffer()

Event Handlers
USB_vbusOnEvent()
USB_suspendEvent()
USBCDC_dataReceived()

Class-Specific APls
Calls specificto a class r USBxxx_sendData();

USB API
USB_enable();
USB connect();
USB_connectionState();
USB_start();
USB_disable();
USB_disconnect();

USBxxx_receiveData();
CDC, HID, or MSC ) ’
( or ) USBxxx_rejectData();

USBMSC_bufferProcessed();

Calls pertaining ———

to any USB
interface

MSP430ware DriverLib

MSP430 Design Workshop - USB Devices 10-29




Notes:




ABC'’s of USB

ABC'’'s of USB

ABC’s of USB Implementation
NTransfer Basics

You can divide USB communicatice to two categories: Communications
used in enumerating the device and"@@mmunications used by the applica-
tions that carry out the device’s purpose. During enumeration, the host

e S,

learns about the device and prepares it for exchanging data_Application

A. Plan Your System
... and develop the device descriptors

B. Handling the connection with Host

Support the Host’s discovery and setup of the connection
(called enumeration — explained shortly)

Manage changes to connection state
To large part, this is automated by USB stack

¢. Data Communications
- Send/receive data - the original purpose of the connection

Clipped from, “USB Complete: The Developer's Guide™ by Jan Axelson (ISBN 1931448086)

A. Plan Your System

Plan Your System

1. What are your requirements?
+ How much data needs to transfer ... and how fast?
« Is guaranteed bandwidth & timing important?
« Are you connecting to Window, Mac, Linux (or all)
+ What power will be needed?

2. From the requirements, decide which class
(or classes) will be needed

3. Import EmptyUsbProject (Optional)

4. Run Descriptor Tool
+ Provides help & feedback in creating device description
+ Generates device descriptor files & INF files

« If you followed step 3, it automatically drops generated
files into the project

MSP430 Design Workshop - USB Devices 10-31



ABC'’s of USB

B. Connect & Enumerate

Six States of Connection

DsT PHYS
DISCONNECTED

1. USB is disconnected

— User plugs in device
& VBUS (power) appears

ST _PHYS_
) CONNECTED
NOENUM

2. USB Connected, not enumerated
@ handleVbusOnEvent()

— App calls USB_Setup(), which
pulls PUR up

ST_ENUM_IN

3. Enumeration in Progress D) “PROGRESS™

Enumeration [ ih-noo-muh-rey-shuh n |:

the process in which the host
obtains the descriptors and
loads the correct driver

Six States of Connection

DsT PHYS
DISCONNECTED

1. USB is disconnected

— User plugs in device
& VBUS (power) appears

ST _PHYS_
) CONNECTED_
NOENUM

2. USB Connected, not enumerated
@ handleVbusOnEvent()

— App calls USB_Setup(), which
pulls PUR up

ST _PHYS_
CONNECTED_
OENUM_SUSP

ST ENUM_IN
PROGRESS

3. Enumeration in Progress 3

— Enumeration succeeds

4. Device is enumerated, bus active
@ handleEnumCompleteEvent()

— Host Suspends device/bus

ST_ENUM

5. Device is enum, but suspended i |
SUSPENDED

@ handleSuspendEvent()

Can we affect connection state?

10-32 MSP430 Design Workshop - USB Devices



ABC'’s of USB

User removes cable;
VBUS disappears 2

—_—

o R
handleVbusOittvent() ST_PHYS_DISCONNECT
-

—B‘-..

B>
USB is disconnested -
T — —
7 VBUS
/ VBUS appears 2
f/{n ,LandkvbusﬂnEvanf(}
/]

——

?I/

o T—
/ ST_PHYS_CONNECTED NOENUM™
I

S USB connectad, bul device nol enumerated )
|

—

‘? _ —

App_ﬁc_‘a_ﬁgﬂaﬂs USB disconneci() »
—<T———pulls PUR low
™ ~——
/ N
Application calls USB_connect() A
x‘ \\ \ 2 pulis PUR up

\ .
Host suspends (he device = 3 \\‘\
\ N ———— ___ handieSuspendEvent() \

\ \\‘/'/ ST_ENUM_IN_PROGRESS ~—__ \

\ N
‘ — - —

\ / ST PHYS_CONNECTED_NOENUM_SUSP~.
. Host resumes the device —9_‘\ USE connactad, bul devics was suspendse withoul baing }
| \\ | handieResumeEvent() S
\ N
|

_ enumerated

— / /

/ /f
\\ Enumeration succeeds -
\\ \ ‘\ hand{eEnumComp!steEven!{)
N

N

,’-/7
— \_“‘\
| o STENMACTIE
\ e s e =

J-— ,’/
~.
N\

e
Haost resumes the device 4)

\Hosl suspends the device 2
\

andle SuspendEvent()
o
' /_,—_ T / _///
\’ ST ENUM SUSPENDED ™ S
\__E-;wcn 5 snumarated, but bus is suspﬂndn/n'//

handieResumeEvent|)

o

How Can | Modify Connection State?

4 The Host handles most of the Enumeration process
# The USB stack handles the task of serving up descriptors

4 The application isn’t required to do much except call:
USB_setup () - Tostartthe USBstack running

4 Additionally, you can elect to disconnect from the USB bus

APPLICATION USB APl provides
TX/RX Constructs Event Handlers fu nc_tlons to start,

xoSendDataWaitTilDone() USB_vbusOnEvent() disconnect,
xxxSendDatalnBackgrnd() USB_suspendEvent() suspend, resume,

xxReceiveDatalnBuffer() USBCDC_dataReceived() force Remote

Wakeup, etc.

USB AP 0
i USB_connectionState(); )
Class-Specific APls USB_start():
USB_enable(); =
R R e i

MSP430 Design Workshop - USB Devices

10-33



ABC'’s of USB

C. Managing my App & Transferring Data

Respond to Connection State (as needed)

+ Most USB programs adjust to connection state
For example:
+ Call USB_Start() after VbusOnEvent
+« Why send data if there isn’t a connection?
+ Reduce system power if host suspends USB bus
+ ..tonameafew

4 Three ways to respond to connection state:

USB stack (can) call Event Handler
whenever the state changes
Use ‘ = T
‘sonstructs’ APPLICATION [ A—
for data . TXIRX Constructs Event Handlers topping USB
transfer. - stopping ,you
- xoSendDataWaitTilDone() USB_vbusOnEvent() can check the
These xSendDatalnBackgrnd() USB_suspendEvent() connectionState()
functions test xxxReceiveDatalnBuffer() USBCDC_dataReceived() exolicit!
Lzre USB API i p .
sz . USB_connectionState(); “[[| )
Class-Specific APls USE_start():
USB_enable();
Upeasmpanasmn pmmnat oo g 5

©® Main Loop USB Framework

while(1){
switch( USB_connectionState() ) These three states are where
{ o the application spends most

case ST _USB_DISCONNECTED: «==--- ’/,;/ of its time

break; Ry
7’

case ST_ENUM_ACTIVE: <====-- e '/
break; / * Executi9n within main loop “forks”

case ST_ENUM_SUSPENDED: «---. depending on the state of USB,

~ - creating alternate main loops

break;

case ST_ENUM_IN_PROGRESS: Thus, USB stat_e becomes a central
break- part of managing software flow

case ST_USB_CONNECTED_NO_ENUM: ¢ This framework excels when the

device behaves differently in each

break; state!

case ST_NOENUM_SUSPENDED: ¢ For cases where system only cares
break; about one state, connectionState()

case ST_ERROR: & fxn could be called from IF{} stmt
break; ) ¢ Most common non-RTOS solution —

default:; Built-0 ma‘“O\_K it’s used in many of the USB

¥ \00P framewe examples provided with the API
3

10-34

MSP430 Design Workshop - USB Devices



ABC'’s of USB

® Respond to ‘Stack’ Events

BYTE USB_handleVbusOnEvent () {

‘id& hal.h PUPRPSES

if (USB_enable() = kUSB_ succeed)
USB_start(); *
}
return FALSE;
} *
BYTE USB_handleSuspendEvent ()
{
return TRUE;
}
BYTE|* == emptyUsbProject .
{ [ Includes
re (= driverlib
} (= targetConfigs
BYTE| © (> USBAPI bted()
{ 4 = USB_app
re L] usbConstructs.c /
[h] usbConstructs.h P *

.c] usbEventHandling.c
= USB_config
[g] hal.c

//Connect when VBUS appears

The API calls “event handlers” when
major events occur
These functions are essentially ISR’s,
as most are called from interrupts
+ Seven USB-level events
+ Three CDC events
+ Three HID events
If you’re comfortable with the term
callbacks, these are similar— except
we pre-defined the names in the API
The app can define behavior here;
i.e. you can modify this code as
needed — but keep handlers short!
If MSP430 was interrupted from LPM:
+ Return ‘TRUE’ keeps CPU awake
upon returning to main()
+ Return ‘FALSE’ allows CPU to
return to LPM

if

*

* & ¢ o

® Construct Functions

// From Example: CO_SimpleSend
convertTimeBinToASCII (timeStr) ;

( cdeSendDataInBackground (

timeStr,

CDCO_INTENUM,
1000) )

//Data to send

9, //8ize is 9 bytes
//Send to intf#0
//Retry 1000 times

4 = emptyUsbProject
[ Includes
(= driverlib

(= targetConfigs
(= USB_API

l£) usbConstructs.c
lh| usbConstructs.h
L€ usbEventHandling.c
(= USB_config
[£) hal.c

Function begins USB send operation and returns immediately, while send
occurs in background (i.e. asynchronous function)

Retries will be attempted if the previous send hasn't completed
If the bus isn't present, it does nothing and simply returns
Constructs are defined in usbConstructs.c/.h

They are example code - you can use and/or modify them

‘i‘@ hal.h PPN

MSP430 Design Workshop

- USB Devices

10-35



ABC'’s of USB

=9:

it

Constructs

— Recommended constructs for
sending/receiving data

Events

— API-driven “interrupts” for
major USB events

Device class-specific API
— CDC, HID, or MSC

USB protocol level API

— Calls common to any USB
device

Device header file
— Standard definitions

Under the Hood: API Stack Diagram

—

MSP430 HEADER FILE

Im
APPLICATION o
HEEEEEEN ‘-j-
1
TXRX EVENT £
CONSTRUCTS HANDLERS
h
NN e e
CDC/HIDIMSC =
API
X
USB API t
TIXh
L= 2
a
i
£
>

{P Texas
INSTRUMENTS

10 - 36

MSP430 Design Workshop - USB Devices




Final Thoughts

Final Thoughts

How to Get Started with USB

1. Start with example application from MSP430’s
USB Developers Package

+ Find an example close to your needs and modify it

2. Begin with the emptyUsbProject from the
Developers Package (method used in Lab 7d)
+ Empty project already contains all the needed code & lib’s

+ It also provides a framework (i.e. ‘template’) to add your
code into. This includes the common ‘switch’ call in main()

3. Add the USB code to your existing project
+ More work required to get app working
+ USB projects are often structured differently — you may
need to re-work some code anyway
+ Please refer to documentation found in Developers Pkg
for further discussion on this topic

Designing an Embedded USB App

4 Adding USB to existing app may mean re-thinking

functionality:
USB state often has a major impact on device behavior

Does it behave differently when attached to a host vs. not attached?

USE DISCONNECT

*

*

4 How does your app respond to the
three primary USB states?

4 In development, force O/S to reload
drivers whenever you change I/F spec

+ Delete Windows driver and then
connect/disconnect dev to reload driver

+ Change PID every time you change I/F
(e.g. everytime you run Descriptor Tool)

4 App should stay “fluid” to respond
quickly to:
« USB host requests

+« Changesin bus state
+ Outside interrupts

ENUM SUSPENDED

10 - 37

MSP430 Design Workshop - USB Devices



Final Thoughts

Write “Fluid” Apps

+ A USB app should stay “fluid”

— Bus state may change at any time

— While writing your app, always ask “What will happen if the bus is
removed here?”

* Calluse_connectionstate () often
— Gives software a chance to adapt to its new situation
» Be mindful of API return values

— They may indicate a lost bus

— Otherwise, your code might wait forever for a response that isn’t
coming

+ Be wary of loops whose exit depends on an
available bus

{; Texas
INSTRUMENTS

10- 38 MSP430 Design Workshop - USB Devices



Lab 10 — Using USB Devices

Lab 10 — Using USB Devices

Lab 10 — USB Device

+ Set LED on/off/blinking from Windows PC
via the USB serial port using the HID class

+ Uses HID host demo program supplied with
USB Developers Package
¢ Lab 10b — CDC LED On/Off Toggle

+ Similar to Lab10a, but using CDC class to
transfer the data

+ Host-side uses CCS serial Terminal (or Putty)

¢ Lab 10c — Send Short Message via CDC

+ Example sends a short message (i.e. time)
to host via CDC class

+ Host-side uses CCS serial Terminal (or Putty)

¢ Lab 10d - Send Pushbutton State to
Host
+ Starts by importing the Empty USB Example

+ You add code to read the state of the
pushbutton and send it to the host (via HID)

+ Read data on host with serial terminal

¢ Lab 10a - HID LED On/Off Toggle R

i

MSP430 Design Workshop - USB Devices

10-39



Lab 10 — Using USB Devices

Lab Topics

USB DBVICES ..eiiiitiitieiitiie e e ettt e e sttt e e sttt e e sttt e e sttt e e st b e e e asbae e e e stbe e e e sbbeee e nbaeaeaanteeeeennnaeeeeannes 10-37
Lab 10 — USING USB DEBVICES......coiiuitiiiiiiie ettt e ettt e e e e e e e s sanbbeee e e e e e e e aaneeees 10-39
Lab 10a — LED On/Off HID EXAQMPIE ...ceeeiieiiiiiiieiiee ettt e e siiaa e e e e 10-41
Lab 10b — LED On/Off CDC EXAMPIE......ccoiviiieiiiiieeiciiiie ettt e ssiteee et et e e s staeee e nineeeeans 10-44

Play With the DeMO........co e e e e e e s ennarreereeeeeaanns 10-47
Lab 10c — CDC ‘Simple Send’ EXamPIE .....cococuuvieiiieee et e e e s e e e e e s 10-49
Lab 10d — Creating @ CDC PusSh BULtON APD ...vvvriiiieeeiiiiieeeee e e e e e s s seen e e e e e s 10-51

Import EMpPty USB ProjECt STEPS ...ccoiuveiiiiiiiiee ettt 10-51

USE the DESCHPLOT TOO ...ttt e e e e e e s nba e eeeaaeeanns 10-52

Add ‘CuStOM’ COUE 10 PrOJECT.......eeiiiiiiie ettt e e e e e 10-55

10 - 40 MSP430 Design Workshop - USB Devices



Lab 10a — LED On/Off HID Example

Lab 10a — LED On/Off HID Example

The MSP430 USB Developers Package contains an example which changes the state of an LED
based on string commands sent from the USB host.

1. Import the following example into your workspace using Tl Resource Explorer.

Help — Welcome to CCS

HID —» Command-Line Interface with LED On/O0ff/Flash

(/) TI Resource Explorer &7 '

4 3 MSP430ware -
a [J Libraries

, @ Graphics Library I | “| Command-Line ’nt

a4 ®% USB Developers Package
| Programmer's Guide Command-Line Interface with LED On/Off/Flash

&5 Descriptor Tool
Irmware ater
@ Fi Upd

i@ USB Hid Demo Step 1: 9 Import the example project into CCS
4 % Example Projects I'
@ Empty USE Project ’r Click on the link above ta import the project. The
. % CDC (Virtual COM Port) Examples . ” project node fo browse the imported source files.
project fo open the source file editor.

4 Y HID (Human Interface Devices) Examples ’f

& Command-Line Interface with LED On/Off/Flash

Step 2 4, Build the imported project

m

— harn .'3".'.'. fu' s, I ||'|f fic i} ful'u Il }
[ Echo Back to Host To change build options, right click o the projec

2. Build the project.

3. Launch the debugger and wait for the program to load to flash; then start the program
running.

At this point, the MSP430 should start running the USB application. You may see Windows
enumerate the USB device (in this case, your Launchpad); this usually appears as a popup
message from the system tray saying that a USB device (“USB input device”) was
enumerated.

MSP430 Design Workshop - USB Devices 10-41



Lab 10a — LED On/Off HID Example

4. Open the USB HID Demo program.

Tl provides a simple communications utility which can communicate with a USB device
implementing the HID-datapipe class. Essentially, this utility allows us to communicate with
devices much like a serial terminal lets us talk with CDC (comm port) devices.

(/] TI Resource Explorer &3

1 Welcome
4 7 MSP430ware )
- o Devices \3_‘;> LaunCh Externa’ Ap
> '.’ Development Tools
4 [ Libraries
. %% Driver Library Click on the link to launch the external application

13

> % Graphics Library

gdr
4 % USB Developers Package Launch Java HID Demo.
B Programmer's Guide v
&, Descriptor Tool -

@ USB Hid Demo

@ Empty USE Project

When the program opens, it will look like this:

-
MSEP430 HID USE Application
@ PP

Vendor and Product ID {in Hex)

AFAFOA4720001400 |+ | Serial Number -a[l O
VID |0x2047 | PID |0x0301 SET VID PID —

HID 0 w | Interface

Send and Receive

=
0 Characters

Clear

Exit

L

We'll get back to this program in a minute. For now, return to CCS so that we can run the
demo code.

5. Switch back to the USB HID Demo application.

With the USB program running on the Launchpad, let's connect to it and send it commands. 4

6. Connect to the USB application. ,/

Click the button that tells the HID app to find the USB device with the provided -
Vendor/Product IDs.

10-42 MSP430 Design Workshop - USB Devices



Lab 10a — LED On/Off HID Example

-

/’ \\
The app should now show “Connected” ... - N
as well as show connected in the log below ... # ™~ ™4 \\
r@ MSP430 HID USE Application ,’ ‘ [ = | = é]w
Vendor and Product ID {in Hex) ,’ =TT Eﬂ@'“ 0
VID PID SET VID PID Interface
Connected
- l4 |
P - 0 Characters
I, Clear
’ Connected to device VID: 8263 PID: 769
] HID Commands
1
1 i e LED ON!
\ e LED OFF!
\ 7. Play with the application. e LED TOGGLE — SLOW!
\\ After getting the device and Windows app running, e LED TOGGLE — FAST!
N what does it do? There are 4 commands you can use. , in
So Don’t forget to use the “1”. The app uses
™ = w Enter a command and hit Send this as an end-of-string character.
8. In the HID USB application, disconnect from the Along with the LED changing, you will see
USB device; then close the application. the command repeated back to the log.

9. Switch back to CCS and Terminate the debugger

and close the project.

MSP430 Design Workshop - USB Devices 10 -43



Lab 10b — LED On/Off CDC Example

Lab

10b — LED On/Off CDC Example

Our next program is another example from the MSP430 USB Developers Package. This program
is a near duplicate of the previous lab — that is, it changes the state of an LED based on string
commands sent from the USB host. In this example, though, the string commands are sent using
the CDC class (versus the HID-datapipe class).

The advantage of the CDC class is that it can communicate with just about any Windows serial
terminal application. The disadvantage, as you might remember from the discussion, is that
Windows does not automatically load CDC based drivers — whereas Windows did this for us
when using an HID class driver.

10. Import the CDC version of the LED On/Off/Flash project.

4 B MSP430ware i
. &P Devices
; '.' Development Tools
a [P Libraries
. %% Driver Library

. B Graphics Library
4 9 USE Developers Package
1 Programmer's Guide
M Bxamples Guide
|=| APIFunction Reference
@) Release Notes
&, Descriptor Tool
@ Firmware Updater
@ USE Hid Demo
a4 ®" Example Projects
@I Ermnpty USE Project
a ¥ CDC (Virtual COM Port) Examples
S

|y LED On/Off/Flash

11. Build the project and launch the debugger.

12. Run the program. _
“IL Device driver software was not successfully installed

L Ciick here for details.

The first time you run the program, Windows may not be able to enumerate the USB CDC
driver. You might see an error such as this pop up.

Why does this error occur?

10-44

MSP430 Design Workshop - USB Devices



Lab 10b — LED On/Off CDC Example

13. Open the Windows Device Manager.

For Windows 7, the easiest way is to start the device manager is to type “Device” into the
Start menu:

Programs (2)

E_:ﬂ Device Firmware Upgrade Tool Help

|&| Keyboard and Devices User's Guide

Control Panel (32)
@ Devices and Printers

|:;ﬁ Device Manager;,
o View devices ET—‘I'W‘ re

Device Manager
View and update your hardware's settings and driver software,

Documents (143

E_j Device Drivers.ppt
P

[device

In most versions of Windows, such as Windows XP, you can also run the following program from
a command line to start the Device Manager:

devmgmt.msc
On Windows XP, you can quickly run the command line from the Start Menu:

Start Menu — Run

- Type the name of a program, folder, document, or
= Internet resource, and Windows will open it for you,

Open: | devmamt.msc W |

[ Ok H Cancel ][ Browse. .. ]

You should find the a USB driver with a problem:
M LF Network adapters

e
- 3. MSP430-USE Example
- {-lm p

4 ' Ports (COMELLPT)
- ..J5F MSP Application UARTL (COM30)
. L.JF MSP Debug Interface (COM29)

" n Processors

MSP430 Design Workshop - USB Devices 10 - 45



Lab 10b — LED On/Off CDC Example

14. Update the MSP430-USB Example driver.

For Windows 7, the steps include:

Right-click on the driver — Update Driver Software..

Click Browse my computer for driver software
Select the following (or wherever you installed the USB Developers Package)

C:\TI\MSP430\MSP430USBDEVELOPERSPACKAGE_4_00_02\MSP430_USB_SOFTWA
RE\MSP430_USB_API\EXAMPLES\CDC_VIRTUALCOMPORT\C1_LEDONOFF

@ [l Update Driver Software - M5P430-USE Example

Browse for driver software on your computer

Search for driver software in this location:

30_USB_APIEXAMPLES\CDC_VIRTUALCOMPORT\C1_LEDONOFFIIER Browse...

[¥] Include subfolders

During the installation, the following dialog may appear. If so, choose to Install the driver.
r@ Windows Security ﬂ‘

@] Windows can‘t verify the publisher of this driver software

= Don'tinstall this driver software

You should check your manufacturer's website for updated driver software
for your device.

= Install this driver software anyway
Only install driver software obtained from your manufacturer's website or
disc. Unsigned software from other sources may harm your computer or steal
information.

(w) See details

W u A

When complete you should see:

"\.J' || Update Driver Software - MSP430-USB Exarnple (COM32)

Windows has successfully updated your driver software

Windows has finished installing the driver software for this device:
M5P430-U5B Example

s 4

10 - 46 MSP430 Design Workshop - USB Devices



Lab 10b — LED On/Off CDC Example

Note: The steps to install the USB CDC driver are also documented in the:
Examples_Guide MSP430 USB.pdf

found in the documentation directory of the USB Developers Package.

15. In the Device Manager, write down the COM port associated with our USB driver:

L e e T e e Ty T .
E MSEP Application UARTL {CGMBL‘I'F
- Tr" MSP Debug Interface (COMZ29)

Looking at our computer, we would
need to use COM32

What is your COM port =

Hint:  When done, we suggest you minimize the Device Manager; thus, leaving it open in the
background. It's quite possible you may need to check the drivers later on during these
lab exercises.

Play with the demo

At this point, we should have:
e The USB device application running on the MSP430
e The appropriate Windows CDC driver loaded

Before we can communicate with the device, though, we also need to open a serial terminal.

16. Open your favorite serial terminal and connect to the MSP430.

Putty and Tera Term are common favorites, but we’ll provide directions for using the Terminal
built into CCS.

a) Open the Terminal window.

Window — Show View — Other..

~

(& Show View e[ =

type filter text

+ [ Team -
a = Terminal
2 Terminal
» = ULA i

QK l ’ Cancel

MSP430 Design Workshop - USB Devices 10 - 47



Lab 10b — LED On/Off CDC Example

b) Configure the terminal settings:

El Console | & Terminal :3

Serial: (COM32, 9600, 8, 1, Mone, Mone - CLOSED] - Encoding: (I5

-

«« Terminal Settings Iﬁ

View Settings:

View Title:  [Terminal

4 | 1

Open the Terminal settings and use the COM port
you wrote down in the previous step, then hit OK.

The Terminal should then show as “CONNECTED".

If the terminal does not connect, then check:
— Is the MSP430 USB app running?

Encoding: 150-8858-1

Connection Type:

Serial

Settings:

Port: COm32

Baud Rate: 9600

Data Bits: ’E v]
— Does the USB device show up in the Device
— Did Windows load the driver (i.e. does the Device Parity: ’Nme v]

Manager show a problem with the device)?

Flow Contral; ’None

Timeout (secl: 5
17. When connected, try turning on/off/toggling the LED.

El Console | Terminal &3 & B [ oK ] [ Cancel

Serial: (COM32, 9600, 8, 1, Mone, Mone - COMMECTED) - Encoding: (19,

LED TOGGLE - FAST
LED is teggling fast

LED ON CDC Commands
LED is ON

e L|ED ON
| e LED OFF

LED TOGGLE — SLOW
LED TOGGLE — FAST

4 | 1

] ] Type one of these strings and then hit the
18. When done experimenting... <Enter> key.

e Stop the terminal (hit red disconnect button). ) . .
Along with the LED changing, you will see

e Terminate the debugger. the command repeated back to the term.
e Close the project.

10 - 48 MSP430 Design Workshop - USB Devices



Lab 10c — CDC ‘Simple Send’ Example

Lab 10c — CDC ‘Simple Send’ Example

Let’s try one more simple application example before we build our own. This next example simply
sends the time (from MSP430’s Real Time Clock) to a serial terminal.

19. Similar to our previous two examples, import the “Simple Sending of Data” project.

S CDC (Virtual COM Port) Examples
i Simple sending of data

v r

20. Build the project and launch the debugger.
21. Start the program.

22. Wait for the USB device to enumerate.

If you're not sure that Windows enumerated the device, check the Device Manager. If it does
not enumerate, try Terminating the debugger, unplugging the Launchpad, then plugging it
back into another USB port on your computer.

23. Once enumerated, start the Terminal again (by hitting the Green Connection button).

You should see the time printed (repeatedly) to the Terminal.

=
B Terminal 2 o =l ug| * B -
Serial: (COM32, 9600, 8, 1, Mone, Mone - COMMECTED] - Encoding: (150-8859-1)
Bd:32:86
Bd:32:87
Bd:32:88
Bd4:32:89
84:32:1a
84:32:11
@4:32:12
ea:32:19] -

MSP430 Design Workshop - USB Devices 10 - 49



Lab 10c — CDC ‘Simple Send’ Example

24. Once you are done watch time go by: disconnect the Terminal; Terminate the
debugger (if you didn’t do it in the last step).

25. (Optional) Review the code in this example. Here's a bit of the code from main.c:

VOID main(VoID)

{
WDT_A_hold(WDT_A BASE); //Stop watchdog timer

// Minimum Vcore required for the USB APl is PMM_CORE_LEVEL_2
PMM_setVCore(PMM_BASE, PMM_CORE_LEVEL_2);

7N tClocks (8000000)%
USB_setup(TRUE, TRUE) ;
Qi tRTCO ;

// Config GPIOS for low-power (output low)
// MCLK=SMCLK=FLL=8MHz; ACLK=REF0=32kHz

// Init USB; if a host is present, connect
// Start the real-time clock

__enable_interrupt(); // Enable interrupts globally
while (1)

// Enter LPMO, which keeps the DCO/FLL active but shuts off the
// CPU. For USB, you can"t go below LPMO!
__bis_SR_register(LPMO_bits + GIE);

// 1f USB is present, send time to host. Flag set every sec.
if (bSendTimeToHost)
{

bSendTimeToHost = FALSE;

convertTimeBinToASCII(timeStr);

// This function begins the USB send operation, and immediately
// returns, while the sending happens in the background.

// Send timeStr, 9 bytes, to intf #0 (which is enumerated as a

// COM port). 1000 retries. (Retries will be attempted if the
// previgus e=resat_completed yet). |If the bus isn"t present,
/7 ¥simply returns and deg¢s nothing.

it {cdcSendDatalnBackground@timeStr, 9, CDCO_INTFNUM, 1000))

_NOPQ); ails, it "1l end up here. Could happen if
// the cable was detached after the connectionState()

} // check, or if somehow the retries failed

}
} //while(1)
} //mainQ)

// Convert the binary globals hour/min/sec into a string, of format "hr:mn:sc"
// Assumes str is an nine-byte string.
VOID convertTimeBinToASCII(BYTE* str)

{
BYTE hourStr[2], minStr[2], secStr[2];
convertTwoDigBinToASCI I (hour, hourStr);
convertTwoDigBinToASCII(min, minStr);
convertTwoDigBinToASCII(sec, secStr);
str[0] = hourStr[0];
str[1] = hourStr[1];
str[2] = ":";
str[3] = minStr[0];
str[4] = minStr[1];
str[5] = ":";
str[6] = secStr[0];
str[7] = secStr[1];
str[8] = "\n~";

¥

10-50 MSP430 Design Workshop - USB Devices



Lab 10d — Creating a CDC Push Button App

Lab 10d — Creating a CDC Push Button App

We have experimented with three example USB applications. It's finally time to build one from
“scratch”. Well, not really from scratch, since we can start with the “Empty USB Example”.

The goal of our application is to send the state of the Launchpad button to the PC via USB —
using the HID Datapipe interface. Thus, we’ll use a HID class driver. This application will borrow
from a number of programs we've already written:

GPIO — We will read the push button and light the LED when it is pushed. Also, we’ll send
“DOWN" when it's down and “UP” when it's up.

Timer — We'll use a timer to generate an interrupt every second. In the Timer ISR we’'ll set a flag.
When the flag is TRUE, we’ll read the button and send the proper string to the host.

HID Simple Send Example — we’ll borrow a bit of code from the HID example we just ran to
‘package’ up our string and send it via USB to the host.

Finally, we’re going to start by following the first 3 steps provided in TI Resource Explorer for the
Empty USB Example.

Import Empty USB Project Steps

1. Import the Empty USB Project.
As it states in the Resource Explorer, DO NOT RENAME the project (yet).

1 Welcome
2 MSP430ware 2 "
' € veice = Empty USB project
- [P Development Tools '
a [P Libraries
. % Driver Library Creates an empty USB project to start development
LW Graphics Library | RS AR
4 ®% USB Developers Package
x| Programmer's Guide These are the steps to import the project, use the descriptor tool, build the proj
JH Examples Guide
|=| APIFunction Reference
@ Release Motes

Step 1 g Import the example project into CCS (Do not rename)

&5 Descriptor Tool Click on the link above fo import the project. The imported project is available in the Projec,
@ Firmware Updater imported source files. To modify source code, double clicks on the source file within the proj

@) USB Hid Dema
4 %" Example Projects
i@ Empty USE Project
. 4 CDC (Virtual COM Port) Examples
. %% HID (Human Interface Devices) Examples Step 3: Rename the project (if needed)
. B4 MSC (Mass Storage) Examples
. ®% Composites (Multiple Interfac

Step 2: () Launch The Descriptor Tool

Design your USB device in the Descriptor tool and then generate Descriptor Tool! files info #

Examples MNaow that the project 15 imported and the USE descripfor made, you can rename the project

MSP430 Design Workshop - USB Devices 10-51



Lab 10d — Creating a CDC Push Button App

Use the Descriptor Too

2. Launch the Descriptor Tool.

S,
i
e
-y

3. Generate descriptor files using the De

Just as the Resource Explorer directs us, launch the Descriptor Tool. The easiest way
" to do this is to click the link as shown above.

scriptor Tool.

We will take a quick look at the organization levels in the tool. In most cases, we will use the

tools defaults.
a) MSP430 level ... use the defaults.

-
| MSP430 USE Descriptor Toal (4.00.00.00)

File Help

Add CDC

(Virtual COM Port)

Add HID
(Mice, Etc.)

] Mavigaticn View
= M5P430
. ice

[= Configuration

Add PHDC
(Continua Medical)
0O Msp430 22

M5P430 Configuration

Disable Crystal on Suspend

XT2 Oscillator Frequency [4.0 MHz

DMA Channel [

Using SYSBIOS [

B St e S SN DS

Drive VUSE from External Supply =l =

b)

USB Device ... MSP430-Button Example

We suggest changing the Product String — so it'll be easier to see that it is different than

previous examples. Also, we suggest changing the PID (we picked ‘301’ arbitrarily). For a
real design, you might end up purchasing the VID/PID (or obtain a free PID from TI).

'J‘,l"l M5P430 USE Descriptor Tool (4.00.00.00)

Add HID
(Mice, Etc.)

T USB Device &3

Eile Help

Add CDC Add PHDC

(Continua Medical)

Add MSC

(Virtual COM Port) (Storage Volumes)

O Mavigation View

Device Properties

Vendor ID (VID) 0x2047

I 0301 I

Interface 20 [CDC]

Product 1D (PID)

Vendor String Texas Instruments
Product String M5P430-USE Example
Uze Serial Number [}

Device Release Mumber 0200

10-52

MSP430 Design Workshop - USB Devices



Lab 10d — Creating a CDC Push Button App

c) Configuration

Nothing to do on the configuration screen.

-
3 MSP430 USE Descriptor Tool (4.00.00.00)

File Help

Add CDC

(Virtual COM Port)

T Navigation View
4 [= MS5P430

4 [= USB Device
= Configuration

d) Add HID Interface

Add HID
(Mice, Etc.)

O Configuration I3

Add MSC Add PHDC

(Continua Medical)

(Storage Volumes)

Configuration Parameters

Self-Powered [l

Remote Wakeup Supported Bl

Max. Power Drawn from Host (mA) [100 mi -
Configuration String M3P430 USE

Once again, we chose to vary the string so that it would be a little bit less generic.

Add CDC
(Virtual COM Port)

T Navigation View

Add HID
(Mice,

Add Pi

(Continua K

Add MSC

(Storage Volumes)

Etc.)

1 HID Interface 3

= M5P430
= USB Device

Interface £ 0 [HID]

P

Commeon Interface Options

Interface Mumber (intfMum) 0

Interface String HID Interface

HID Parameters
Polling Interval (ms) 1

HID Repart Type

MSP430 Design Workshop - USB Devices

10-53



Lab 10d — Creating a CDC Push Button App

e) Click the button to generate the descriptor files.

f)

Notice they get written to your empty project. (This is the reason we were asked not to
change the name until after we had used the Descriptor Tool.)

g = | ) e

:
KB

[ Generate Output (Alt+G) ]

Add PHDC

(Continua Medical)

The files should be saved to our “empty” project ... but if you're asked where to save
them, choose the USB_config folder:

C:\msp430_workshop\F5529 usb\workspace\emptyUsbProject\USB_config\

Save the Descriptor Tool settings.

While not required, this is handy if you want to open the tool and view the settings at
some later point in time. Notice that ‘Save’ puts the resulting .dat file into the same folder
as our descriptor files.

- 2
## MSP430 USB Descriptor Tool (4.00.0

[ Ei ] Hel Save to your emptyProject USB_config
=€) 7Ep folder. This is a pretty good place for it,

Open File... Ctrl+0 since this is where all of the descriptor files
= it generates are placed. For example:

|H Save As... I}, Alt+Shift+5

Exit Cirl+ X

4 [= U5B Device . :

C:\msp430_workshop\F5529 usb\workspace\emptyUsbProject\USB config\

g) You can close the Descriptor Tool.

4. Rename the project to lab_10d_usb.

As you can see, the reason they didn’t want us to rename the project before now was that the
descriptor tool generates files to the empty project.

5. Build, just to make sure we're starting off with a ‘clean’ project.

10-54

MSP430 Design Workshop - USB Devices



Lab 10d — Creating a CDC Push Button App

Add ‘Custom’ Code to Project

6. Copy myTimer.cand myTimer.h (and the readme file) to the project folder.

We've already written the timer routine for you. (Look back to our Timer chapter if you want to
know the details of how this code was developed.)

Right-click the project — Add Files..
Choose the three files from the location:
C:\msp430_workshop\F5529 usb\lab_10d_usb\

7. Open main.c and add a #include for the myTimer .h.

We suggest doing this somewhere below #include “driverlib_h".

8. Add global variables.

These are used to capture (and send) the button up/down state.

char pbStr[5] = ""; // Stores the string to send
volatile unsigned short usiButtonl = 0; // Stores the button state

9. Add additional setup code.

We need to initialize an LED and pushbutton. We also need to call the initTimers() function
that was just added to our project in a previous step.

GPI10_setAsOutputPin( GPIO_PORT_P4, GPIO_PIN7 );
GP10_setAslInputPinWithPullUpresistor( GPIO_PORT_P2, GPIO_PIN1 );
initTimers();

10. Modify the low-power state of the program.

Search down toward the end of main() until you find the intrinsic that sets the program into
low-power mode. Rather than using LPM3, we want to switch this to LPMO.

// _bis_SR_register(LPM3_bits + GIE);
_ _bis_SR_register(LPMO_bits + GIE);

MSP430 Design Workshop - USB Devices 10-55



Notes:




Lab 10d — Creating a CDC Push Button App

11. Add code to ST_ENUM_ACTIVE state.

The active state is where we want to put our communication code. (It only makes sense to
that we send data to the host when we're actively connected.

When connected, we will read the pin, set the Launchpad’s LED and then construct a string
to send to the host. Finally, we send the data to the host in the background; that is, we won't
wait for a response — although we do set a timeout in our code below.

Note that it's the timer that wakes us up every second to check the state — and if the USB is
in the connected state, to run through the routine below.

}

// 1f USB is present, sent the button state to host. Flag set every sec
if (bSend)

bSend = FALSE;

usiButtonl = GPIO_getlnputPinValue ( GPI0_PORT_P2, GPIO_PIN1 );

if ( usiButtonl == GPIO_INPUT PIN_LOW ) {

// 1T button is down, turn on LED
GP10_setOutputHighOnPin( GPI10_PORT_P4, GPIO_PIN7 );

pbStr[0] = "D*;

pbStr[1] = "0°;

pbStr[2] = "W*";

pbStr[3] = "N";

pbStr[4] = "\n";
else {

// 1f button is up, turn off LED
GP10_setOutputLowOnPin( GPIO_PORT_P4, GPIO_PIN7 );

pbStr[0] = "U*";
pbStr[1] = "P";
pbStr[2] = * *;
pbStr[3] = * *;
pbStr[4] = "\n";

This function begins the USB send operation, and immediately
returns, while the sending happens in the background.

Send pbStr, 5 bytes, to intf #0 (which is enumerated as a

HID port). 1000 retries. (Retries will be attempted if the
previous send hasn"t completed yet). If the bus isn"t present,
it simply returns and does nothing.
(cdcSendDatalnBackground((BYTE*)pbStr, 5, HIDO_INTFNUM, 1000))

_NOP(Q); // 1T it fails, it"ll end up here. Could happen if

// the cable was detached after the connectionState()
// check, or if somehow the retries failed

12. Add #include "USB_app/usbConstructs.h".

We need to use this header file since it supports the hidSendDatalnBackground() function we
are using to send data via USB.

13. Build the program and launch debugger.

MSP430 Design Workshop - USB Devices 10-57




Lab 10d — Creating a CDC Push Button App

14.

15.

Start your program and open the USB HID demo tool.

You can either run the program from within the debugger — or — terminate the debugger and
unplug and then plug the Launchpad back in. In either case, your USB program should be
running.

We need to use the HID tool to view the communications coming from the Launchpad. As we
mentioned earlier, it acts as a “terminal” for our HID Datapipe datastream.

If you cannot remember how to open it, please refer back to Step 4 on page 10-42.

Hint:  You might have to set the PID depending upon the value you selected while using
the Descriptor tool.

Verify your program works

Once the the driver is loaded and working properly, open your Terminal, making sure to use
the proper comm port. (As a reminder, all of these steps we discussed earlier in this chapter.)

At this point:

e The Red LED should be blinking on/off.

e The Green LED should light when Buttonl is pushed ...

e ... and the state of the button should be written to the HID Terminal.

Remember that the code only tests the button once per second. So, you will need to hold (or
release) it for more than a second for it to take effect.

10 - 58

MSP430 Design Workshop - USB Devices



	10. Building USB Devices
	Introduction
	What is USB?
	MSP430's USB Support
	How USB Works
	Descriptions and Classes
	Quick Overview of MSP430’s USB Stack
	ABC’s of USB
	Final Thoughts
	Lab 10 – Using USB Devices
	Lab 10a – LED On/Off HID Example
	Lab 10b – LED On/Off CDC Example
	Lab 10c – CDC ‘Simple Send’ Example
	Lab 10d – Creating a CDC Push Button App






