
Low Power Optimization

Introduction
Ultra-low power is in our DNA.

The MSP430 is inherently low-power by design. But there’s more to it than that. As a system
designer and programmer, you need to utilize the low-power modes and features to extract the
most from the least. This chapter introduces us to a number of these ultra-low power (ULP)
capabilities; including the many tools TI provides to help you achieve your ULP target.

Learning Objectives

Objectives

- Describe MSP430 low-power modes and how
they function

- Use intrinsic functions to enable LPM’s
- List four Ultra Low Power design concepts
- Implement ULP Advisor™ suggestions for

minimizing power in an MSP430-based system
- Use EnergyTrace™ Technology to measure

energy usage in a system

MSP430 Design Workshop - Low Power Optimization 7 - 1

Low Power Modes (LPM)

Chapter Topics
Low Power Optimization .. 7-1

Low Power Modes (LPM) .. 7-3
Using Low Power Modes .. 7-5

Low Power Concepts .. 7-7
Use Interrupts and Low-Power Modes .. 7-7
Replace Software with Peripherals ... 7-8
Configure Unused Pins ... 7-8
Efficient Code Makes a Difference .. 7-9

Follow the Rules (ULP Advisor™) .. 7-10
About ULP Advisor™ .. 7-10
The List … of ULP Rules ... 7-12
How Do You Enable ULP Advisor™? ... 7-13

EnergyTrace™ ... 7-14
How does EnergyTrace Work? ... 7-16

Lab 7 – Low Power Optimization .. 7-17

Prerequisites and Tools

Prerequisites & Tools
 Skills Chapter

 Creating a CCS Project for MSP430 Launchpad(s) (Ch 2 & 3)
 Basic knowledge of:

 C language
 Setting up MSP430 clocks (Ch 4)
 Using interrupts (setup and ISR’s) (Ch 5)
 Timer usage and configuration (Ch 6)

 Hardware
 EnergyTrace™ capable hardware (one of the following)

 MSP-EXP430FR5969 Launchpad
 MSP-FET emulation tool (plus 4 jumper wires)

 Windows 7 (and 8) PC with available USB port
 MSP430F5529 Launchpad or MSP430FR5969 Launchpad

(with included USB micro cable)
 One jumper wire (female to female)

 Software
 CCSv6
 MSP430ware_1_90_xx_xx

7 - 2 MSP430 Design Workshop - Low Power Optimization

 Low Power Modes (LPM)

Low Power Modes (LPM)

Low Power Modes
BOR

POR

Active Mode

PUC

LPM3.5

LPM4.5
LPM0

LPM1

LPM2

LPM3

LPM4

Low-Power Modes

Operating
Mode

CP
U

 (M
CL

K)

SM
CL

K

AC
LK

RA
M

Re

te
nt

io
n

BO
R

Se
lf

W
ak

eu
p

Interrupt Sources

Active     

Timers, ADC, DMA, WDT, I/0,
External Interrupt, COMP,

Serial, RTC, other…

LPM0     

LPM1     

LPM2    

LPM3    

LPM3.5   External Interrupt, RTC

LPM4   External Interrupt

LPM4.5  External Interrupt

MSP430 Design Workshop - Low Power Optimization 7 - 3

Low Power Modes (LPM)

Low-Power Modes (Bit Settings)

Operating
Mode

CP
U

 (M
CL

K)

SM
CL

K

AC
LK

Vc
or

e

RA
M

Re

te
nt

io
n

FR
AM

Re

te
nt

io
n Status Register (SR)

PM
M

CT
L0

.
PM

M
RE

G
O

FF

CP
U

O
FF

O
SC

O
FF

SC
G

0

SC
G

1

Active       0 0 0 0 0

LPM0      1 0 0 0 0

LPM1      1 0 1 0 0

LPM2     1 0 0 1 0

LPM3     1 0 1 1 0

LPM3.5  1 1 1 1 1

LPM4    1 1 1 1 0

LPM4.5  1 1 1 1 1

* SCG = System Clock Generator

MSP430™ Series Comparison
Mode G2xx F5xx FR57xx FR58xx

FR59xx

Performance (max) 16 MHz 25 MHz 24 MHz
(FRAM at 8MHz)

16 MHz
(FRAM at 8MHz)

Flex Unified Memory No No FRAM (16K) FRAM (64K)

Active AM 230 µA (1MHz) 180 µA/MHz 100 µA/MHz <100 µA/MHz

Standby
RTC

LPM3
LPM3.5

0.7 µA 1.9 µA
2.1 µA

6.3 µA
1.5 µA

0.7 µA
0.4 µA

Off LPM4
LPM4.5

0.1 µA 1.1 µA
0.2 µA

5.9 µA
0.3 µA

0.6 µA
0.1 µA

Wake-up
from

Standby 1.5 µs 3.5 µs
or 150 µs 78 µs <10 µs

Off - 2000 µs 310 µs 150 µs

7 - 4 MSP430 Design Workshop - Low Power Optimization

 Low Power Modes (LPM)

Using Low Power Modes

Entering Low Power Modes
Enter LPMx C Compiler Intrinsic Writing to SR with Intrinsic

LPM0 _low_power_mode_0(); _bis_SR_register(GIE + LPM0_bits);

LPM1 _low_power_mode_1(); _bis_SR_register(GIE + LPM1_bits);

LPM2 _low_power_mode_2(); _bis_SR_register(GIE + LPM2_bits);

LPM3 _low_power_mode_3(); _bis_SR_register(GIE + LPM3_bits);

LPM4 _low_power_mode_4(); _bis_SR_register(GIE + LPM4_bits);

 As written, both intrinsic functions enable interrupts and
associated low-power mode

 bis (and bic) instructions mimic assembly language:
 bis = bit set
 bic = bit clear

 bis/bic intrisics allows greater flexibility in selecting bits to set/clear

Automatically Re-entering LPM (after ISR)
main()

{
initGpio();
initClocks();
initTimers();

_low_power_mode_3();

//while(1);

}

#pragma vector = TIMER1_A0
__interrupt ISR()

{
GPIO_toggleOutputOnPin()

} // Return from interrupt (RETI)

LPM3

 Executing LPM3 function
puts the processor standby

 Unless an interrupt occurs,
CPU will stay asleep

 No while{} loop is needed

 An interrupt wakes the CPU

 Status Register (SR) is saved to stack
(including the LPM setting)

 Exiting ISR routine:

 Compiler uses RETI instruction
which restores SR from stack

 Restoring SR places CPU back into
low-power mode

MSP430 Design Workshop - Low Power Optimization 7 - 5

Low Power Modes (LPM)

Leaving LPM (after ISR)
main()

{
initGpio();
initClocks();
initTimers();

while(1){
_low_power_mode_3();
filter();

}
}

#pragma vector = TIMER1_A0
__interrupt ISR()

{
getSample();
_low_power_mode_off_on_exit();

} // Return from interrupt (RETI)

LPM3

 Executing LPM3 function puts
the processor standby

 Unless an interrupt occurs, CPU
will stay asleep

 Since ISR exits from LPM, we
need additional code (such as a
while{} loop)

 An interrupt wakes the CPU

 Status Register (SR) is saved to
stack (including LPM bits)

 Exiting ISR routine:
 ‘exit’ fcn modifies saved SR

(clearing LPM) before restore
 RETI instruction restores SR

from stack
 With LPM “off”, CPU returns

to instruction after LPM
intrinsic; e.g. filter()

7 - 6 MSP430 Design Workshop - Low Power Optimization

 Low Power Concepts

Low Power Concepts

 Use interrupts to control program flow
 Maximize the time in LPM3
 Replace software with peripherals
 Configure unused pins properly
 Power manage external devices
 Efficient code makes a difference

Every unnecessary instruction
executed is a portion of the battery
that’s wasted and gone forever

Principles For ULP Applications
 MSP430 is inherently low-power, but your

design has a big impact on power efficiency
 Even wall powered devices can become

“greener”

Use Interrupts and Low-Power Modes

Use Interrupts & Maximize LPM3

Standby (LPM3)

Active Active
170 µA

0.4 µA

Leave On the Slow Clock
 Low power clock and peripherals

interrupt CPU only for processing

On-Demand CPU Clock
 DCO starts immediately
 CPU processes data and quickly

returns to Low Power Mode

MSP430 Design Workshop - Low Power Optimization 7 - 7

Low Power Concepts

Replace Software with Peripherals

Replace Software With Peripherals

Timer_A

FRAMDMA

 Automate where possible
 Timer triggers analog conversion
 ADC triggers DMA to move result to memory

 Saves power since CPU and high-speed clock
can be turned off

 Higher precision and less latency for analog
sampling since timer directly triggers conversion

 Faster results since peripherals are optimized to
perform operations more quickly than the CPU

Configure Unused Pins

Configure Unused Pins
 Digital input pins subject to shoot-through current

 Input voltages between VIL and VIH cause shoot-through
if input is allowed to “float” (left disconnected)

 Port I/O’s should either:
1. Be driven to Vcc or ground by an external device
2. Set as an input using the pull-up/down resistor
3. Driven as an output

7 - 8 MSP430 Design Workshop - Low Power Optimization

 Low Power Concepts

Efficient Code Makes a Difference

ULP “Sweet Spot”
 Power dissipation increases with…

 CPU clock speed (MCLK)
 Input voltage (Vcc)
 Temperature

 Slowing MCLK reduces instantaneous power, but often
increases active duty-cycle (how long the CPU stays on)
 Look for ULP ‘sweet spot’ to maximize performance with

minimum current consumption per MIPS
Usually 8 MHz MCLK is the best tradeoff of power/performance

 Use lowest input voltage possible
 ‘F5529 lets you lower core voltage if full-speed operation

is not required
 ‘FR5969 operates at full speed down to 1.8V
 On some MSP430 devices, you need to take into

consideration minimum Vcc for flash programming, etc.



Optimize Performance
 Use Hardwired Accelerators, where available

 MPY32  AES256
 CRC16  DMA

 Optimize Code (saves code size and wasted cycles)
 CCS “Release” configuration with -O, -O3, or -O4
 Use –mf option to set tradeoff between code size/speed
 Optimization Advisor

 Optimized Libraries (faster and easier)
 MSPMathLib (floating-point math)
 IQmath and Qmath (fixed-point math)
 Energy calculations
 Capacitive Touch

MSP430 Design Workshop - Low Power Optimization 7 - 9

Follow the Rules (ULP Advisor™)

Follow the Rules (ULP Advisor™)

Use interrupts to control program flow
Maximize the time in LPM3
Replace software with peripherals
Configure unused pins properly
Power manage external devices
Efficient code makes a difference

Every unnecessary instruction
executed is a portion of the battery
that’s wasted and gone forever

 Use ULP Advisor to help minimize
power in your system

ULP Advisor Helps You Follow the Rules
 MSP430 is inherently low-power, but your

design has a big impact on power efficiency
 Even wall powered devices can become

“greener”

About ULP Advisor™

7 - 10 MSP430 Design Workshop - Low Power Optimization

 Follow the Rules (ULP Advisor™)

MSP430 | Ultra-Low Power is in our DNA

ULP Advisor™ benefits all experience levels

• Teaching tool for new MSP430
users

• Practical introduction to ULP
techniques

• Immediate coding feedback

• Wiki provides quick solution
and detailed background info

• Learn more from the
community & E2E

Beginning ULP
developers

• Not everybody remembers all the
rules all the time

• New rules might come in
• Saves time vs. manually going

through a large project or library to
check for ULP

• Helpful when developers inherit code
from other sources

• ULP Advisor should always be used
regardless of the application or target
device.

• Contribute to wiki & E2E

Experienced ULP
developers

AQ

MSP430 | Ultra-Low Power is in our DNA

• Identify key areas of
improvement

• Presented as a “remark”
within “Problems” window

• Includes a link to more
information

• List of 15 Ultra-Low-Power
best practices

• Compilation of ULP tips &
tricks from the well-known
to the more obscure

• Combines decades of
MSP430 and ULP
development experience

• Supports all MSP430
devices and can benefit
any application

• Checks all code within a
project at build time

• Enabled by default
• Parses code line-by-line

ULP AdvisorTM Software: Turning MCU developers
into Ultra-Low-Power experts

ULP Advisor analyzes all
MSP430 C code line-by-line.

Checks against a thorough
Ultra-Low-Power checklist.

Highlights areas of
improvement within code.

MSP430 Design Workshop - Low Power Optimization 7 - 11

Follow the Rules (ULP Advisor™)

The List … of ULP Rules

ULP Advisor Rules

Basic

ULP 1.1 Ensure LPM usage
ULP 2.1 Leverage timer module for delay loops
ULP 3.1 Use ISRs instead of flag polling
ULP 4.1 Terminate unused GPIOs

Math

ULP 5.1 Avoid processing-intensive operations: modulo, divide
ULP 5.2 Avoid processing-intensive operations: floating point
ULP 5.3 Avoid processing-intensive operations: (s)printf()
ULP 6.1 Avoid multiplication on devices without hardware multiplier
ULP 6.2 Use MATHLIB for complex math operations

Coding
Details

ULP 7.1 Use local instead of global variables where possible
ULP 8.1 Use 'static' & 'const' modifiers for local variables
ULP 9.1 Use pass by reference for large variables
ULP 10.1 Minimize function calls from within ISRs
ULP 11.1 Use lower bits for loop program control flow
ULP 11.2 Use lower bits for port bit-banging

DMA
ULP 12.1 Use DMA for large memcpy() calls
ULP 12.1b Use DMA for potentially large memcpy() calls
ULP 12.2 Use DMA for repetitive transfer

Counts,
Indexes,
Masks

ULP 13.1 Count down in loops
ULP 14.1 Use unsigned variables for indexing
ULP 15.1 Use bit-masks instead of bit-fields

ULP Wiki Page – Rule Details

7 - 12 MSP430 Design Workshop - Low Power Optimization

 Follow the Rules (ULP Advisor™)

How Do You Enable ULP Advisor™?

Configuring ULP Advisor

 ULP Advisor uses the TI
compiler option:
--advice:power=“all”

 Enable/configure it in the
CCS Project Properties dialog

 Easily ignore rules that don’t
apply to your system

MSP430 Design Workshop - Low Power Optimization 7 - 13

EnergyTrace™

EnergyTrace™

Energy Aware Debugging

 Two levels of EnergyTrace™

1. EnergyTrace: Measures energy usage in the system
2. EnergyTrace++: Energy, Power Modes, Clocks and Peripherals

 Devices supported by EnergyTrace (using MSP-FET):
 ‘FR59xx and ‘FR69xx devices support EnergyTrace++
 All MSP430 devices support EnergyTrace

MSP-EXP430FR5969 Launchpad
with on-board MSP-FET

MSP-FET
 Available: June 2014
 System power must come from FET

EnergyTrace Profile System States

7 - 14 MSP430 Design Workshop - Low Power Optimization

 EnergyTrace™

Power & Energy Graphs

EnergyTrace Profile Comparison

BeforeAfter Comparison

68%
Savings

MSP430 Design Workshop - Low Power Optimization 7 - 15

EnergyTrace™

How does EnergyTrace Work?

How Does EnergyTrace™ Work?

 By varying pulse frequency
DC-DC converters can vary
output power

 Emulators provide power to CPU’s
targets under during debugging

 Using a software controlled DC-DC converter
MSP430 FET’s accurately count every charge pulse
and sum them over time

 Unique way of continuously measuring energy to target

 EnergyTrace™ provides high precision vs the old-fashioned multi-meter
approach

 Since meters take samples discretely
they’re prone to missing small
windows of activity as ULP systems
wake-up and quickly return to sleep

7 - 16 MSP430 Design Workshop - Low Power Optimization

 Lab 7 – Low Power Optimization

Lab 7 – Low Power Optimization

Abstract
This lab exercise introduces us to many of the techniques used for measuring and reducing
power dissipation in a MSP430 based design.

We begin by learning how to use EnergyTrace™ to measure energy consumption in our
programs. Using this (or more crudely, using a multi-meter) we can now judge the affects our low-
power optimizations have on our system.

Lab 7 – Optimizing for Low-Power
A. Getting Started with EnergyTrace™

Explore tools by comparing Lab4a & Lab4c
 Enable EnergyTrace
 Capture EnergyTrace profile
 Compare EnergyTrace profiles
 ‘FR5969 users can explore EnergyTrace++

B. Using ULP Advisor, Interrupts and LPM3
Improve power using Lab4c & Lab6b
 Enable ULP Advisor
 Replace delay() function with Timer
 Make use of Low Power Mode 3 (LPM3)

C. Does Initializing GPIO Ports Make a
Difference?
 Taking Lab4c, replace LED toggle with LPM3
 Initialize ALL pins as Outputs after reset
 Then, check if setting pins as Inputs makes a

difference to power optimization

In part B of the lab, we use ULP Advisor to point out where our code might be improved, from a
power perspective. In this part of the lab, we go on to replace __delay_cycles() with a timer; as
well as implement low power mode 3 (LPM3).

Finally, in part C, we examine what – if any – affect uninitialized GPIO can have on an
microcontroller design. The results may surprise you…

MSP430 Design Workshop - Low Power Optimization 7 - 17

Lab 7 – Low Power Optimization

Chapter Topics
Low Power Optimization .. 7-15

Lab 7 – Low Power Optimization .. 7-17
Abstract ... 7-17
Notice - Measuring Energy in Lab 7 .. 7-19

How to Measure Energy .. 7-19
Lab Exercise Energy Measurement Recommendations .. 7-20

Lab 7a – Getting Started with Low-Power Optimization ... 7-21
Prelab Worksheet .. 7-21
Configure CCS and Project for EnergyTrace .. 7-22
Build Project and Run with EnergyTrace .. 7-24
EnergyTrace with Free Run .. 7-28
Compare EnergyTrace Profiles ... 7-28
Create Energy Profile for lab_04c_crystals ... 7-29
What have we learned in Lab7a? ... 7-30
(Optional) Viewing ‘FR5969 EnergyTrace++ States .. 7-31

Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts 7-32
Get Suggestions from ULP Advisor .. 7-32
Replace __delay_cycles() ... 7-35
Using Low-Power Mode (LPM3) ... 7-39
(Optional) Viewing ‘FR5969 EnergyTrace++ States ... 7-40
(Optional) Directly Driving the LED from Timer_A .. 7-41

Lab 7c – Configuring Ports for Lowest Power... 7-42
Import and Modify Program .. 7-42
Capture Baseline Reference ... 7-43
Add GPIO Port Initialization Code ... 7-43
Improve on GPIO Port Initialization ... 7-45

Chapter 7 Appendix .. 7-46
Connecting MSP-FET to ‘F5529 USB Launchpad .. 7-46
Lab 7 Debrief and Solutions .. 7-49

7 - 18 MSP430 Design Workshop - Low Power Optimization

 Lab 7 – Low Power Optimization

Notice - Measuring Energy in Lab 7
How to Measure Energy
There are three ways you can measure energy for the exercises found in this chapter:

1. The ‘FR5969 FRAM Launchpad supports the full EnergyTrace++ feature set – which includes
energy measurement as well as tracing the CPU modes and peripheral states.

2. The new MSP-FET (Flash Emulation Tool) – supports measurement of energy with the
EnergyTrace feature for all MSP430 devices.

3. If you do not have either tool which supports TI’s EnergyTrace, you will need to measure it
the old fashioned way – using a multi-meter to determine the current being drawn by the
MSP430 CPU. We refer you to Section 2.3 of the MSP-EXP430F5529 Launchpad User’s
Guide (slau533b.pdf) for a detailed procedure on how this can be done.

Measuring Energy in Lab 7

 Three ways to measure Energy
1. MSP-EXP430FR5969 Launchpad supports full EnergyTrace++
2. MSP-FET supports EnergyTrace energy measurement
3. Old fashioned Multi-Meter crudely measures CPU’s current draw

 Lab steps written assuming EnergyTrace hardware is available
 Refer to Chapter Appendix for “how to” connect MSP-FET to the

‘F5529 USB Launchpad
 If using multi-meter, substitute current measurement procedure whenever

lab steps ask you to read from energy data from the EnergyTrace window

MSP-EXP430FR5969 Launchpad
with on-board MSP-FET

MSP-FET
 Now Available (as of June 2014)

MSP430 Design Workshop - Low Power Optimization 7 - 19

http://www.ti.com/tool/msp-exp430fr5969
http://www.ti.com/tool/msp-fet?keyMatch=msp-fet&tisearch=Search-EN
http://www.ti.com/lit/pdf/slau533

Lab 7 – Low Power Optimization

Lab Exercise Energy Measurement Recommendations
As written, all Lab 7 exercises assume that you hardware (items #1 and #2 above) which
implements EnergyTrace.

‘FR5969 FRAM Launchpad
If you are using the ‘FR5969 FRAM Launchpad, no hardware configuration is required; the
Launchpad (and ‘FR5969 silicon) has been designed to support these features.

‘F5529 USB Launchpad
If you are using the ‘F5529 USB Launchpad (or any other MSP430 board, for that matter), we
suggest that you obtain the new MSP-FET tool. This will give you access to the new energy
measurement feature. (For live workshops held in North America, we provide MSP-FET tools that
you may borrow to complete these lab exercises.)

Normally, the MSP-FET connects to a target system via a 14-pin connector that follows TI’s
emulation pinout standard. Since the ‘F5529 Launchpad does not ship with this connector
populated on the Launchpad, you will need to use 4 jumper wires to connect the appropriate
MSP-FET pins to the emulation-target isolation jumpers. Please see topic the topic “Connecting
MSP-FET to ‘F5529 USB Launchpad” (page 7-46) for details on how to make these connections.

Bottom Line
To reiterate, these lab directions assume that you have hardware which supports EnergyTrace.

If you are using the ‘FR5969 Launchpad, you will have additional visibility into the CPU, but in
either case, EnergyTrace provides highly accurate energy measurement.

Using a Multi-Meter
On the other hand, if you are using a multi-meter, you should substitute recording the current
(µA/mA) for those lab steps where we direct users to view the EnergyTrace display. If you have
any previous multi-meter experience, this shouldn’t be a difficult substitution to make. Comparing
current values should be enough to evaluate ULP optimizations. Of course, you can always
calculate the approximate energy values from the current and voltage (DVCC) values.

Note: Be warned… once you’ve used EnergyTrace, you’ll find it difficult going back to using a
multi-meter; if not for the ease-of-use, for the increased measurement accuracy.

FR5969

F5529

7 - 20 MSP430 Design Workshop - Low Power Optimization

 Lab 7a – Getting Started with Low-Power Optimization

Lab 7a – Getting Started with Low-Power Optimization
This first lab exercise introduces us to measuring power – or energy – using EnergyTrace. (If you
don’t have hardware that supports EnergyTrace, please refer to the note on the previous page.)

We won’t actually write much code in this exercise; rather, we will compare the solutions for a
couple of our previous lab exercises – spending most of the time learning how to use the tools in
the process.

Prelab Worksheet
1. What is the difference between EnergyTrace and EnergyTrace++?

Which devices support EnergyTrace++? ___

2. What hardware options are available that supports EnergyTrace? _____________________

3. How can you calculate energy without EnergyTrace? _______________________________

What is the downside to this method? ___

MSP430 Design Workshop - Low Power Optimization 7 - 21

Lab 7a – Getting Started with Low-Power Optimization

Configure CCS and Project for EnergyTrace
1. Terminate the debugger if it’s still open and close all projects and files that may be

open in your CCS workspace.

2. Enable EnergyTrace profiling.

Window → Preferences

Code Composer Studio → Advanced Tools → EnergyTrace™ Technology

 Enable  EnergyTrace then click OK

Note: ‘FR5969 users, we’ll look at the +States mode later on in the lab exercise.

7 - 22 MSP430 Design Workshop - Low Power Optimization

 Lab 7a – Getting Started with Low-Power Optimization

3. Import the previous lab exercise: lab_04a_clock_solution.zip

Project → Import CCS Projects

 Then select either project (based upon the board you’re using) and click OK.

C:\msp430_workshop\F5529_usb\solutions\lab_04a_clock_solution.zip
C:\msp430_workshop\FR5969_fram\solutions\lab_04a_clock_solution.zip

4. (‘FR5969 only) Verify debugger is enabled for low-power (LPMx.5) modes.

Right-Click on project → Properties → Debug → MSP430 Properties

 Scroll-down and make sure the following is enabled, then click OK.

FR5969

MSP430 Design Workshop - Low Power Optimization 7 - 23

Lab 7a – Getting Started with Low-Power Optimization

5. If connected, remove the jumpers on the Launchpad for RTS and CTS in the
emulator/target isolation connector.

 This code does not use these UART signals, and keeping them connected draws slightly
more power. (By default, these signals are usually disconnected.)

 Shown above is the ‘FR5969 Launchpad, but you’ve find the same signals on the ‘F5529

Launchpad connector.

Build Project and Run with EnergyTrace
6. Build the project.

 At this point, we shouldn’t see any advice from ULP Advisor since we disabled this when
building our previous lab projects. In a few minutes we’ll turn this on and examine the results.

7. Start the debugger.

7 - 24 MSP430 Design Workshop - Low Power Optimization

 Lab 7a – Getting Started with Low-Power Optimization

8. Briefly examine the EnergyTrace window.

 Notice that there’s an extra window that opens in your debugger..

If the EnergyTrace window did not open:
− Double-check EnergyTrace is enabled.

− Window → Show View → Other… → MSP430-EnergyTrace

9. Set the EnergyTrace capture duration to 10 seconds.
 EnergyTrace captures data for a set period of time, and then displays those results. We can

easily choose the capture period using the provided EnergyTrace toolbar button. It defaults to
10 seconds, but it doesn’t hurt to verify the time.

 While we’re looking at the toolbar, please note some of its other buttons.

Start/Stop

EnergyTrace

Set capture
duration

Save Energy Profile
Open Profile for Compre

Switch between EnergyTrace
and EnergyTrace++

Open EnergyTrace settings in
CCS Preferences (step 2)

MSP430 Design Workshop - Low Power Optimization 7 - 25

Lab 7a – Getting Started with Low-Power Optimization

10. Set the cursor on the first line of code in the while loop.

 In most systems, we care more about “continuous” power usage rather than “initialization”
power usage. Because of this, we want to run past our initialization code before we start
collecting energy data.

 Instead of setting a breakpoint, it’s often easier to place your cursor on the line you want to
stop at, and then run to that cursor. Let’s start the action by placing our cursor on the first line
of the while loop.

11. Run to the cursor

Run → Run to Line or better yet use: 

12. Click Resume and watch the duration count down.

 When we begin running the code it will execute the while{} loop and capture the energy data
for 10 seconds.

13. Suspend your program after count reaches zero.

 EnergyTrace doesn’t require that we halt the program, but we don’t need to keep it running
either.

7 - 26 MSP430 Design Workshop - Low Power Optimization

 Lab 7a – Getting Started with Low-Power Optimization

14. Expand EnergyTrace window to view the energy profile you just created.

We see that our processor consumed 72.26mJ in the
10 second capture period.

For many reasons, your numbers may differ from that
shown here:

− You may be using a different Launchpad.

− You start/end capture locations were different
 than ours

− Your compiler version or code was slightly
 different

Finally, note that we have not yet optimized for power
and the LED’s that we are blinking (driven from our
GPIO pins) are consuming quite a bit of energy.

15. Switch to the Power tab and see power consumption over time.

You might also want to check
out the Energy tab. It shows
running energy usage ofer
timer.

16. Save the energy profile – naming it “Lab04a”.
 To view the EnergyTrace toolbar again, click back on the

“EnergyTrace™ Technology” profile tab.

 Then click the “Save Profile” EnergyTrace toolbar button and
provide the name. (Use the default save-to directory.)

MSP430 Design Workshop - Low Power Optimization 7 - 27

Lab 7a – Getting Started with Low-Power Optimization

EnergyTrace with Free Run
Not surprisingly, the device hardware that supports many debugging features – such as
breakpoints – requires energy to operate. Let’s disable that hardware and capture another energy
profile.

17. Make sure your program is suspended.

18. Set the cursor at the first line in the while{} and run to that line.
 If you need a reminder how to do this, check back to steps 10-11 (on page 7-26).

19. Verify the EnergyTrace Capture duration is 10 seconds, then “Run Free”.

 This time, rather than hitting the Resume button, we want to run our target FREE of any
emulation.

Run → Run Free

20. Watch the EnergyTrace count down to zero and then suspend the program again.

 If you remember your program’s previous energy consumption you may notice a reduction.
But, we’ll do a more accurate comparison in the next few steps.

21. Save the new EnergyTrace profile – give it the name Lab4a_free_run.

 This isn’t required, but it allows us to reference this information in a later comparison.

Compare EnergyTrace Profiles
22. Click on the Open button in the EnergyTrace toolbar.

 Choose your first EnergyTrace profile: Lab4a.profxml

23. View the EnergyTrace profile comparison that opens.

This
comparison
shows that
turning off the
emulation
features –
using Run Free
– saved more
than 10mJ.

7 - 28 MSP430 Design Workshop - Low Power Optimization

 Lab 7a – Getting Started with Low-Power Optimization

24. Write down the energy used for Lab4a_free_run profile: ____________________ mJ

25. Terminate the debug session.

26. Close the lab_04a_clock_solution project.

Create Energy Profile for lab_04c_crystals
27. Import the lab_04c_crystals_solution.zip into your workspace.

 If you need a reminder on how to do this, please check back to Step 3 (page 7-23).

28. Build the project and start the debugger.

29. Run past the initialization code to the first line of the while{} loop.
 For a reminder on how to do this, check back to steps 10-11 (on page 7-26).

30. Verify the EnergyTrace Capture duration is 10 seconds, then “Run Free”.

 This time, rather than hitting the Resume button, we want to run our target FREE of any
emulation.

Run → Run Free

31. Watch the EnergyTrace count down to zero and then suspend the program again.

32. Save the new EnergyTrace profile – give it the name Lab4c_free_run.

33. Open the the Lab4a_free_run.profxml energy profile to compare against Lab4c.

MSP430 Design Workshop - Low Power Optimization 7 - 29

Lab 7a – Getting Started with Low-Power Optimization

34. How do the two profiles compare?

 Add your values to the chart below.

 (Hint: You can copy the value for the Lab4a_free_run from step 24 (page 7-29).

Project Energy Profile Time Energy

Lab4a_free_run 10 sec

Lab4c_free_run 10 sec

Which version consumed less energy? __

Why? __

Hint: During the exercise steps for both Lab 4a and 4c we set breakpoints and recorded
the values of three variables. What variables did we track … and how did they differ
between Lab 4a and Lab 4c?

35. Terminate the debug session.

What have we learned in Lab7a?
 How to open archived project solutions
 Enable EnergyTrace
 Enable low-power debugging in projects.
 Capture and Save energy profiles
 Using “Run Free” to increase accuracy of energy capture profile
 Compare energy profiles

7 - 30 MSP430 Design Workshop - Low Power Optimization

 Lab 7a – Getting Started with Low-Power Optimization

(Optional) Viewing ‘FR5969 EnergyTrace++ States
Remember that the ‘FR58xx and ‘FR59xx devices support additional tracing of their internal CPU
and peripheral states. Let’s examine this great new capability.

36. Open lab_4c_crystal_solution for debugging.

37. Verify that EnergyTrace is enabled.
 You can do this via the CCS Preferences, though, it’s easier to simply check if the

EnergyTrace window is open and the Start/Stop icon is “on” (that is, it should be blue).

38. Change to the EnergyTrace++ mode.
 Click the toolbar button that turns on this mode.

39. Resume your program while letting EnergyTrace profile your code. Suspend when the
EnergyTrace has finished counting down.

 View the various tabs in the EnergyTrace window – note that a new one has been added
showing the processor’s “States”.

 Notice the following:

• We’re in Active Mode (AM) for the duration of the capture.

• Also, the FRAM is being accessed and all three clocks are running (MCLK, SMCLK, and
ACLK).

 Admittedly, this information becomes more interesting once we begin using the low-power
modes and peripherals. But it’s fascinating to see how the processor is running internally.

Switch between EnergyTrace
and EnergyTrace++

MSP430 Design Workshop - Low Power Optimization 7 - 31

Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

Lab 7b – Reducing Power with ULP Advisor, LPM’s
and Interrupts

This exercise will start with the code we used from Lab 7a (which we imported from Lab 4c).
Rather than just measuring power, though, we’ll start to explore ways to reduce the program’s
power consumption.

Get Suggestions from ULP Advisor
1. Just to verify, all projects should be closed except lab_4c_crystals_solution; that

is, the project we were just working with.

2. Turn on all of the ULP Advisor rules.

Select the project lab_4c_crystals_solution

Press the key combination ━
 And select All the rules, as shown below:

7 - 32 MSP430 Design Workshop - Low Power Optimization

 Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

3. Build the project and then open the Advice window.

 The Advice window is available by default in the standard CCS window; if not, open it with:

View → Advice

 You results may vary based upon which processor you are using, but running with ULP

Advisor, we received 91 items of advice. You may notice that most of the items relate to
DriverLib code … further, most of them are related to peripheral source code that we’re not
even using in our program. (Thus, the linker will remove this from the final binary program.)

 With some experience you will find that there will be times that ULP Advisor notes an item
that you will want to ignore – maybe it’s providing a false-positive, where you know that an
item in your program just cannot be changed. Sometimes you will just choose to ignore the
item, but often we can use CCS build options to filter them out (as we will do in the next step).

4. Modify the project options to focus ULP Advisor on our source code.

 In other words, let’s tell CCS not to rule ULP Advisor on MSP430ware DriverLib code. This
can be done with file-specific project options.

Right-click on the ‘driverlib’ folder

Select Properties

Click None

Click OK

This turns off the ULP Advisor option for all of the files in the
‘driverlib’ folder. In fact, you can use this feature to modify
most all compiler option for any file or files.

MSP430 Design Workshop - Low Power Optimization 7 - 33

Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

5. Build the project again.

 Looking at Power (ULP) Advice for just our code, the list becomes more manageable.

 In Lab7b, we’re plan to improve upon the items highlighted above; i.e. rules ULP 1.1 and 2.1.

6. (Optional) If you have internet access, you can get more information for each rule by
clicking on its link.

For example, clicking takes you to...

 The wiki page which provides more information regarding rule ULP 2.1. This page explains
the rule and tries to give you suggestions for improving your code.

 Essentially, this rule is telling us that using the __delay_cycles() intrinsic is very power

inefficient. (This reinforces our warnings in previous lab projects where we admit that the
code we asked to write was inefficient.)

7 - 34 MSP430 Design Workshop - Low Power Optimization

 Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

Replace __delay_cycles()
Let’s begin by following the ULP 2.1 rule which tells us to replace __delay_cycles() by using a
timer. This provides the advantage of letting the timer interrupt us, rather than the having the CPU
count cycles in this inefficient intrinsic.

Also, using a timer will allow us (in the next section) to utilze one of the MSP430’s low-power
modes (LPMx).

7. Complete the table of lab exercises (from Chapters 1 - 7) in this workshop which
combined a timer with blinking an LED?

Lab Exercise Timer Module Used

lab_05b_wdtBlink

lab_06a_timer

lab_06b_upTimer

lab_06c_timerDirectDriveLed

lab_06d_simplePWM
‘F5529: TimerA0

‘FR5969: Timer_A1

 In other words, we have already accomplished the task of swapping out __delay_cycles()
with a timer. Rather than re-creating this code, we will import and use a previous solution.

8. Close the lab_04c_crystals_solution project.

9. Import lab_06b_upTimer_solution into your workspace.

 (Hint: If you need a reminder on how to do this, please check back to Step 3 on page 7-23.)

 We chose this exercise because:
• The Watchdog Timer example was not implemented with the same LED blink rate, which

will affect the energy comparisons.

• TimerA’s Up mode is more flexible than the Continuous mode (found in lab_06a_timer).

• We’re going to look at the ‘DirectDrive’ example a little bit later.

• The PWM example was fancier than we needed for this exercise.

MSP430 Design Workshop - Low Power Optimization 7 - 35

Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

10. Rename the project to lab_07b_lpm_timer.

Right-click on the project → Rename

lab_07b_lpm_timer

11. Turn on ULP Advisor for the project. Turn it off for the ‘driverlib’ folder.

 (Hint: If you need a reminder, look at Steps 2-4 (page 7-32) for how this was done.)

12. Build the project and examine the ULP Advisor suggestions.

 Notice that the __delay_cycles() recommendations for main.c are now gone.

13. Start the debugger and load the program.

 If you see this dialog, just click Proceed.

14. Verify that EnergyTrace is still enabled and set for a 10 second capture duration.

15. (‘FR5969 only) Verify that you are using the EnergyTrace mode (and not EnergyTrace++).

 If you performed the optional exercise at the end of Lab 7a, your preferences may be set to
EnergyTrace++ mode. While this provides additional States visibility, the emulator’s use of
power prevents us from getting accurate energy measurements.

 Please go ahead and run the example with EnergyTrace++ mode. You should see that the
TA1 peripheral is now active.

 After trying ++ mode, though, please return to the EnergyTrace (non++) mode for the next
part of the exercise.

16. Set your cursor in the while{} loop and “Run to Line”.

 Set your cursor on the __no_operation() intrinsic function and then run to that point – as we
did earlier in the lab.

Run → Run to Line

 Run your code with the Free Run command. After EnergyTrace captures the data (for 10
sec), suspend the program.

Run → Free Run

FR5969

7 - 36 MSP430 Design Workshop - Low Power Optimization

 Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

17. Save the new energy profile as: Lab7b_original.profxml

18. Compare to the energy profile from Lab4c_free_run.profxml.

 (Hint: Check back to Step 33 on page 7-29 for a reminder on how this was done.)

19. Record the energy usage for each of these projects.

Project Energy Profile Time Energy

Lab4c_free_run 10 sec

Lab7b_original 10 sec

Which project uses more power? __

Why would our new project take more power after following the advice from ULP Advisor?
What could account for the extra power it’s requiring?

 (Hint: Let your lab_07b_lpm_timer project. Run it again… and watch the LED’s.)

20. Terminate your debugging session.

21. Comment out the toggling of LED1.

 Hopefully you figured out that our new Lab 7b project was toggling both LEDs, whereas the
Lab4 project only toggled one LED. In this case, it isn’t the toggling function that draws too
much power, but rather that we’re expending energy to drive both LEDs.

 To provide a fair comparison, we need to comment out one of the LED toggle functions. As
an example, we arbitrarily choose to comment out the LED1 function.

 Open up the myTimer.c file and comment out the GPIO_toggleOutputPin() as shown here:

22. Build your project and fix any syntax errors.

23. Start the debugger and then run to the __no_operation() inside the while{} loop.

Note
Shown here to the left
is the ‘FR5969 code.

If using the ‘F5529,
you’ll be using Timer0
and LED1 uses a
different Port/Pin.

MSP430 Design Workshop - Low Power Optimization 7 - 37

Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

24. Free Run your program and then click suspend when the EnergyTrace timer finishes
counting down from 10 seconds.

25. Save the new energy profile as: Lab7b_one_led

 Once again, compare this to the Lab4c energy profile.

Project Energy Profile Time Energy

Lab4c_free_run 10 sec

Lab7b_one_led 10 sec

Which project uses more power? __

Here’s the comparison we found for the ‘FR5969 at the time of writing this exercise. As you
can see below, using the timer (versus the CPU running __delay_cycles) saved us 10% of
our energy.

FR5969

F5529

7 - 38 MSP430 Design Workshop - Low Power Optimization

 Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

Using Low-Power Mode (LPM3)
Once you’ve built your program to be interrupt-driven, it’s often quite easy to utilize the MSP430
low-power modes.

We chose to use Low-Power Mode 3 (LPM3) because it provides a very low standby power,
keeps ACLK running (which we’re using to clock Timer_A), and makes it easy to return to Active
Mode when an interrupt occurs.

26. Modify lab_07b_lpm_timer to use LPM3.

 In the program, you only need to replace __no_operation() with __low_power_mode_3().

 As we learned during the Chapter 7 discussion:
− Executing the _low_power_mode_3() function changes a few bits in the Status Register

(SR), therefore putting the CPU into LPM3.

− The processor remains in that state until an interrupt occurs.

− Interrupt ISR’s automatically save and restore the SR context; therefore, unless we alter
the normal ISR flow, the CPU will automatically return to LPM3 upon exiting the ISR.

 This means, we don’t need the while(1){} loop anymore, but it doesn’t hurt to leave it there.

27. Build your code and fix any syntax errors.

28. Start the debugger.

29. Set your cursor on the __low_power_mode_3() function and then run to that line.

30. Free Run your code and then Suspend after the EnergyTrace capture duration.

31. Save the new energy profile as: Lab7b_lpm

MSP430 Design Workshop - Low Power Optimization 7 - 39

Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

32. Compare the current energy profile to your previous one.

Project Energy Profile Time Energy

Lab7b_one_led 10 sec

Lab7b_lpm 10 sec

Which profile uses less power? __

Our ‘FR6969 results show another 20% savings in energy by utilizing LPM3; while the
‘F5529 LPM3 results in amost 70% savings.

(Optional) Viewing ‘FR5969 EnergyTrace++ States
If you are using the “FR5969, try running EnergyTrace++ again with the lab_07b_lpm_timer
project. The States is now more interesting since you can see the changes in the clocks and CPU
modes.

7 - 40 MSP430 Design Workshop - Low Power Optimization

 Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts

(Optional) Directly Driving the LED from Timer_A

Note: We suggest that you skip this option lab exercise and continue on to Lab 7c. Then, if you
still have time after completing Lab 7c, you can try out this experiment.

Another interesting energy comparison would be a comparison between, effectively, a
comparison between lab_06b_upTimer and lab_06c_timerDirectDrive. In other words, can you
reduce power if you take away the CPU interrupt service routine and let the timer drive the LED
directly.

Rather than provide detailed, step-by-step directions for this optional exercise, we’ve written
down a few notes and will let you work through the details on your own.

Rough lab exercise procedural
• Import lab_06c_ledDirectDrive_solution.zip into CCS and rename imported

project to lab_07b_timerDirectDrive.

• As with our previous exercise, change the following two lines of code:

− Comment out code that toggles LED2 in timer ISR

− Replace __no_operation() function with LPM3 function call.

• Build and profile the energy usage

 By the way, don’t forget to connect LED1 to the timer output pin using a jumper wire. Please
see Lab 6c, if you have questions about how to connect the jumper wire.

• Compare to lab_07b_lpm_timer energy profile results

 When we did this, we found that (using the ‘FR5969 Launchpad) the directly driven LED
project took quite a bit more energy … these results shocked us.

 The key to our understanding this was to look at the Power graph differences between the
projects. We noted that the LED for one project consumed a lot more energy than for the
other project.

• Go back to lab_07b_lpm_timer and redo that lab exercise driving the other LED. In other
words, we wanted to make sure both labs are driving the same LED to get a better apples-to-
apples comparison.

 When we did this, we found that directly driving the LED save a minute amount of energy.

MSP430 Design Workshop - Low Power Optimization 7 - 41

Lab 7c – Configuring Ports for Lowest Power

Lab 7c – Configuring Ports for Lowest Power
One of the other items ULP Advisor remarked was that our GPIO ports had not been properly
initialized. Referring back to Lab 7b Step 5 (on page 7-34), it’s listed as rule ULP 4.1.

Once again, we’re going to start with lab_04c_crystals and explore what affect GPIO initialization
might have on our system.

Import and Modify Program
1. Terminate the debugger if it running and close all open projects and files.

2. Open project: lab_04c_crystals_solution

3. Copy the project lab_04c_crystals_solution and rename it lab_07c_initPorts.

a) In CCS Project Explorer, right-click and copy lab_04c_crystals_solution

b) Then right-click and paste it

c) Enter the new name lab_07c_initPorts when CCS requests it

4. Replace the while{} loop with LPM3.

 To focus specifically on the affects of GPIO initialization, we suggest removing the code that
blinks the LED – replacing it with a call to __low_power_mode_3().

7 - 42 MSP430 Design Workshop - Low Power Optimization

 Lab 7c – Configuring Ports for Lowest Power

Capture Baseline Reference
5. Build the project. Once any errors are fixed, launch the debugger.

6. Run the code until you reach the LPM3 function.
 Set the cursor on the __low_power_optimization() function and then press

7. Free Run the program until the EnergyTrace capture has completed. Save the energy
profile as Lab7c_noinit.profxml and record the energy data.

 We’ll fill in the 2nd and 3rd rows of this table in upcoming lab steps.

Project Energy Profile
Capture
Duration

Time
 Energy

(mJ)
Battery Life

(Days)

Lab7c_noinit 10 sec

Lab7c _initPortsAsOutputs 10 sec

Lab7c_initPortsAsInputs 10 sec

Add GPIO Port Initialization Code
Rather than ask you to type the same functions over and over again, we have already created a
port initialization file for you. The functions were the same ones discussed in Chapter 3, although
we utilized #ifdef statements to allow the same file to be used for most any MSP430 device.

8. Terminate your debug session if it’s running.

9. Add three new files to your project.

Right-click on the project → Properties

Add Files…

 Navigate to the appropriate directory for you processor:

C:\msp430_workshop\<target\lab_07c_ports

 Select the following three files and click Open.

initPortsAsOutputs.c

initPorts.h

lab_07c_initPorts_readme.txt

 When the Copy/Link dialog appears,
select “Copy” and click OK.

 You can delete the old readme file,
if you’d like.

MSP430 Design Workshop - Low Power Optimization 7 - 43

Lab 7c – Configuring Ports for Lowest Power

10. Open and examine the initPortsAsOutputs.c function.

 Notice that each port, if found for that device, is set so that all of the GPIO pins are set as
outputs in a low state.

11. Add initPorts() function call to main.c.

 While we’ve added the files to the project, we haven’t add the call to the initPorts() function,
yet. Immediately after the Watchdog hold function, add the new function to your program.

// Initialize I/O Ports
initPorts();

 Make sure you the new initPorts() function comes before the call to initGPIO(). We wrote the
initPorts() function to be a generic initialization routine, whereas the initGPIO() function sets
only the specific GPIO pins we need for our program.

 While we could combine these files, it is often useful – especially during development – to
use a baseline initialization routine at the beginning of your program.

 Your main() function should now look like this:

7 - 44 MSP430 Design Workshop - Low Power Optimization

 Lab 7c – Configuring Ports for Lowest Power

12. Build the project. Once any errors are fixed, launch the debugger.

13. Run the code until you reach the LPM3 function.
 Set the cursor on the __low_power_optimization() function and then press

14. Free Run the program until the EnergyTrace capture has completed. Save the energy
profile as Lab7c_initPortsAsOutputs.profxml and record the energy data.

 Fill in the 2nd row of the table found in Step 7 on page 7-43.

 Does initializing the I/O ports make much of a difference to energy consumption?

Improve on GPIO Port Initialization
While working on this lab exercise we found that our port initialization routine could be improved
upon. This last part of the exercise quickly examines this.

15. Add one more file to your project: initPorts.c

 Follow the same steps as before to add this file – making sure you “Copy” the file into your
project

16. Open and briefly examine initPorts.c.

 This file includes the same initPorts() function, although it configures GPIO in a different
mode. Rather than setting the GPIO pins as outputs, how does this new routine configure
them?

17. Exclude from build...

 If you were to try and build the project right now, you should get an error. The initPorts()
function is defined twice. Rather than deleting one copy, we suggest that you just exclude
one file from being built.

Right-Click on the file initPortsAsOutputs.c → Exclude From Build

 Now, when we click Build, CCS will ignore this file.

18. Build the project. Once any errors are fixed, launch the debugger.

19. Run the code until you reach the LPM3 function.

 Set the cursor on the __low_power_optimization() function and then press

20. Free Run the program until the EnergyTrace capture has completed. Save the energy
profile as Lab7c_initPortsAsInputs.profxml and record the energy data.

 Fill in the 3rd row of the table found in Step 7 on page 7-43.

 Does initializing the I/O ports as inputs (with a pulldown resistor) make much of a difference?

MSP430 Design Workshop - Low Power Optimization 7 - 45

Chapter 7 Appendix

Chapter 7 Appendix

Connecting MSP-FET to ‘F5529 USB Launchpad
Using the following two User’s Guide, we determined that you can connect the MSP-FET flash
emulation tool to the MSP-EXP430F5529 Launchpad’s isolation connector.

• MSP-EXP430F5529 Launchpad User's Guide (slau533b.pdf)

• MSP430 Hardware Tools User’s Guide (slau278r.pdf)

Connecting MSP-FET to ‘F5529 Launchpad

3V3

GND

SBW_RST

SBW_TST

7 - 46 MSP430 Design Workshop - Low Power Optimization

http://www.ti.com/lit/slau533
http://www.ti.com/lit/slau278

 Chapter 7 Appendix

MSP-FET to ‘F5529 Launchpad
Summary of Pin Connections

MSP-FET ‘F5529 Launchpad
(Isolation Jumper Block)

Signal Pin Signal Pin

GND 9 GND JP3

VCC_TOOL 2 3V3 JP2

TDO/TDI 1 SBW_RST JP4.2

TCK 7 SBW_TST JP4.1

MSP430 Hardware Tools User’s Guide (SLAU287r.PDF)
B.36.6 MSP-FET JTAG Target Connector (pg 154)

Table B-40: JTAG Connector Pin State by Operating Mode

MSP-EXP430F5529 Launchpad User's Guide (SLAU533b .PDF)
2.2.7 Emulator and Target Isolation Jumper Block

Table 3: Isolation Block Connections (pg 19)

MSP430 Hardware Tools User’s Guide (SLAU287r.PDF)
B.36.6 MSP-FET JTAG Target Connector (pg 154)

Table B-40: JTAG Connector Pin State by Operating Mode

MSP-EXP430F5529 Launchpad User's Guide (SLAU533b .PDF)
2.2.7 Emulator and Target Isolation Jumper Block

Table 3: Isolation Block Connections (pg 19)

User Guide Reference Pages

MSP430 Design Workshop - Low Power Optimization 7 - 47

Chapter 7 Appendix

Notes
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq

7 - 48 MSP430 Design Workshop - Low Power Optimization

 Chapter 7 Appendix

Lab 7 Debrief and Solutions

Lab 7a - Worksheet

Both support energy measurement; EnergyTrace++ also
supports tracing CPU and peripheral states

MSP430FR5xxx devices

‘FR5969 Launchpad and any MSP430 connected to MSP-FET

Use a multi-meter to

measure current drawn by CPU multiplied by voltage and time

Not as accurate as EnergyTrace

Lab 7a – Debrief (‘FR5969)

62.90 mJ

54.01 mJ

Lab4c

The MSP430 clocks in lab_04c_crystals were running

at a lower frequency, which consumes less power

MSP430 Design Workshop - Low Power Optimization 7 - 49

Chapter 7 Appendix

Lab 7a – Debrief (‘F5529)

118.28 mJ

121.92 mJ

Very close, but Lab4a is slightly less

The two are essentially equal; the differences in clock speed

(4a to 4c) are less than they are for the ‘FR5969 solutions.

Lab 7b

Lab Exercise Timer Module Used

lab_05b_wdtBlink Watchdog
(Interval Timer mode)

lab_06a_timer
‘F5529: TimerA0

‘FR5969: Timer_A1

lab_06b_upTimer
‘F5529: TimerA0

‘FR5969: Timer_A1

lab_06c_timerDirectDriveLed
‘F5529: TimerA0

‘FR5969: Timer_A1

lab_06d_simplePWM
‘F5529: TimerA0

‘FR5969: Timer_A1

7. Complete the table of lab exercises (from Chapters 1 - 7) in this workshop
which combined a timer with blinking an LED?

7 - 50 MSP430 Design Workshop - Low Power Optimization

 Chapter 7 Appendix

Lab 7b

121.92 mJ

146.26 mJ

The timer code (Lab7b)

Watching Lab7b run, you might notice that both LEDs are

blinking – whereas in Lab4c, only one is blinking

‘F5529 values are
shown here

Lab 7b

110.33 mJ

34.81 mJ

Lab7b_lpm is much better

‘F5529 values are
shown here

MSP430 Design Workshop - Low Power Optimization 7 - 51

Chapter 7 Appendix

Lab 7c (‘FR5969)

11.28 24.4

0.14 1920.4

0.01 24553.6

Steps 13/19 asked if initializing the GPIO (and init as inputs)
made much of a different to energy usage… Absolutely YES!

Lab 7c (‘F5529)

8.03 34.2

7.47 36.8

7.47 36.8

Steps 13/19 asked if initializing the GPIO made much of a
different to energy usage… a little bit. On the ‘F5529, though,
no noticeable difference if GPIO was set as outputs or inputs
(unlike the ‘FR5969).

7 - 52 MSP430 Design Workshop - Low Power Optimization

	Low Power Optimization
	Low Power Modes (LPM)
	Low Power Concepts
	Follow the Rules (ULP Advisor™)
	EnergyTrace™
	Lab 7 – Low Power Optimization
	Lab 7a – Getting Started with Low-Power Optimization
	Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts
	Lab 7c – Configuring Ports for Lowest Power

	Chapter 7 Appendix
	Connect MSP-FET to F5529 Launchpad
	Lab Debrief and Solutions

