Low Power Optimization

Introduction

Ultra-low power is in our DNA.

The MSP430 is inherently low-power by design. But there’s more to it than that. As a system

designer and programmer, you need to utilize the low-power modes and features to extract the

most from the least. This chapter introduces us to a number of these ultra-low power (ULP)
capabilities; including the many tools Tl provides to help you achieve your ULP target.

Learning Objectives

Objectives

Describe MSP430 low-power modes and how
they function

Use intrinsic functions to enable LPM's
List four UHra Low Power design concepts

Implement ULP Advisor™ suggestions for
minimizing power in an MSP430-based system

Use EnergyTrace™ Technology to measure
energy usage in q system

MSP430 Design Workshop - Low Power Optimization

Low Power Modes (LPM)

Chapter Topics

LOW POWETN OPLIMIZALION ...uviiiiiiiiiiiiiie ettt ettt e e e e e et e e e e e e e e e snnraaeeaaans 7-1
LOW POWEN MOAES (LPM) ...ttt ettt e e e e et b e e e e e e e e enbaaeeeaeas 7-3
L0 L] o T oYV = 1= 1Y o To =R 7-5
LOW POWET CONCEPLS ...iiiieiiiiiiii ettt s e e e ettt e e e ettt s e e e e e e e e bbb r e e e e e e e aab b n e e e e e e e eebbaanneee s 7-7
Use Interrupts and LOW-POWET MOOES..........ooiuriiiiiee e ciiiiieeee e e e s s siiee e e e e s snnreee e e e e e s e 7-7
Replace Software With PeripheralScooiiiiiiiiiicie e 7-8
CoNfiIGQUIe UNUSEA PINSooiiiiiiiiiiiiiie ettt ettt e e e e s sannee s 7-8
Efficient Code Makes @ DIfferenNCe.........ouiiiiiiiiiiiiiiie e 7-9
Follow the RUIES (ULP AGVISOI™) ...ttt ettt ettt 7-10
ADOUL ULP AQVISOI™ ...ttt ettt e e e e e e e et e e e e e e e e e e e annbbeeeeaeeeesannneees 7-10
The List ... Of ULP RUIES.......coiiiii ettt ettt e st e e e 7-12
How DO YOU ENable ULP AGVISOI™?coiiiiiiie ettt e e snsaee e 7-13
LYo VAL 1oL SRR 7-14
HOW d0eS ENErgyTrace WOIK?cccuvieiieee e ettt e e e e e s st e e e e e e e sssnan e e e e e e s s ennnaneeeeeeeennns 7-16
Lab 7 — Low Power OPtiMIZationeeiiieiiiiiiiiieiee e eciiete e e e s e s sireee e e e e e s s s sananeee e e e e e s s e annnees 7-17

Prerequisites and Tools

Prerequisites & Tools

¢ Skills Chapter
+ Creating a CCS Project for MSP430 Launchpad(s) (Ch2&3)
+ Basic knowledge of:
« Clanguage

« Setting up MSP430 clocks (Ch4)

« Using interrupts (setup and ISR’s) (Ch5)

- Timer usage and configuration (Ch6)
¢ Hardware

« EnergyTrace™ capable hardware (one of the following)
+ MSP-EXP430FR5969 Launchpad
« MSP-FET emulation tool (plus 4 jumper wires)

+ Windows 7 (and 8) PC with available USB port

+ MSP430F5529 Launchpad or MSP430FR5969 Launchpad
(with included USB micro cable)

+ One jumper wire (female to female)
¢ Software

+ CCSv6
+ MSP430ware_1 90 xx_xx

MSP430 Design Workshop - Low Power Optimization

Low Power Modes (LPM)

Low Power Modes (LPM)

Low Power Modes

Operating
Mode

Active
LPMO

LPM1

LPM2

LPM3

LPM3.5
LPM4

LPM4.5

Interrupt Sources

RAM
Retention
Self Wakeup

Timers, ADC, DMA, WDT, 1/0,
External Interrupt, COMP,
Serial, RTC, other...

External Interrupt, RTC
External Interrupt

External Interrupt

MSP430 Design Workshop - Low Power Optimization

Low Power Modes (LPM)

Low-Power Modes (Bit Settings)

Operating
Mode

CPU (MCLK)

X

LPM3.5
LPM4

LPMA4.5

* SCG = System Clock Generator

Retention

Retention

Status Register (SR)

© © o o o Nl

1 1 1
1 1 1
1 1 1

PMMCTLO
PMMREGOFF

1 1
1 0
1 1

MSP430™ Series Comparison

Performance (max) 16 MHz
Flex Unified Memory No

Standby |V E] 0.7 uA
R LPM3.5

TC
LPM4 0.1 pA
Off LPM4.5

Standby 1.5 us

25 MHz

No

1.9 pA
2.1pA

1.1pA
0.2 pA

3.5 us
or 150 ps

2000 ps

24 MHz
(FRAM at 8MHz)

FRAM (16K)

B o - v ssoamne 100

6.3 nA
1.5 pA

5.9 uA
0.3 pA

78 us

310 ps

FR58xx
N T T

16 MHz
(FRAM at 8MHz)

FRAM (64K)

—

<100 pA/MHz

0.7 pA
0.4 pA

0.6 pA
0.1 pA

<10 ps

150 ps

—

MSP430 Design Workshop - Low Power Optimization

Low Power Modes (LPM)

Using Low Power Modes

Entering Low Power Modes

Enter LPMx C Compiler Intrinsic Writing to SR with Intrinsic
LPMO _low_power_mode_0(); _bis_SR_register(GIE + LPMO_bits);
LPM1 _low_power_mode_1(); _bis_SR_register(GIE + LPM1_bits);
LPM2 _low_power_mode_2(); _bis_SR_register(GIE + LPM2_bits);
LPM3 _low_power_mode_3(); _bis_SR_register(GIE + LPM3_bits);
LPM4 _low_power_mode_4(); _bis_SR_register(GIE + LPM4_bits);

As written, both intrinsic functions enable interrupts and
associated low-power mode

¢ bis (and bic) instructions mimic assembly language:
+ bis = bit set
+ bic = bit clear

¢ bis/bic intrisics allows greater flexibility in selecting bits to set/clear

Automatically Re-entering LPM (after ISR)

mainQ)

{ . .
A = . & Executing LPM3 function
52:3%88() - puts the processor standby
initTimers(); ¢ Unless an interrupt occurs,
_low_power_mode 3Q); LPM3 CPU will stay asleep
//while(1); & No while{} loop is needed

#pragma vector = TIMERI_AO| ¢ Aninterrupt wakes the CPU
__interrupt ISRQ . .
& Status Register (SR) is saved to stack

including the LPM setti
GP10_toggleOutputOnPin() (including the setting)

¢ Exiting ISR routine:

3} // Return from interrupt (RETI) . Compiler uses RETI instruction
which restores SR from stack

7 + Restoring SR places CPU back into
low-power mode

MSP430 Design Workshop - Low Power Optimization 7-5

Low Power Modes (LPM)

Leaving LPM (after ISR)

main()
. .
initGpio();
initClocks();
initTimers();
while(1){
_low_power_mode_3Q); m

P filter(Q;

#pragma vector = TIMER1_AO
__interrupt ISRQ

getSample();

_low_power_mode_off_on_exit();

3} // Return from interrupt (RETI) 7

Executing LPM3 function puts
the processor standby

Unless an interrupt occurs, CPU
will stay asleep

Since ISR exits from LPM, we
need additional code (such as a
while{} loop)

An interrupt wakes the CPU

Status Register (SR) is saved to
stack (including LPM bits)

Exiting ISR routine:

« ‘exit’ fcn modifies saved SR
(clearing LPM) before restore

+ RETI instruction restores SR
from stack

« With LPM “off”, CPU returns
to instruction after LPM
intrinsic; e.g. filter()

MSP430 Design Workshop - Low Power Optimization

Low Power Concepts

Low Power Concepts

& MSP430 is inherently low-power, but your

4 Even wall powered devices can become
“greener”

¢ Use interrupts to control program flow
4 Maximize the time in LPM3

¢ Replace software with peripherals

¢ Configure unused pins properly

¢ Power manage external devices

¢ Efficient code makes a difference

Every unnecessary instruction
executed is a portion of the battery
that’s wasted and gone forever

Principles For ULP Applications

design has a big impact on power efficiency

Use Interrupts and Low-Power Modes

Use Interrupts & Maximize LPM3

777

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,

0au (G

Leave On the Slow Clock

¢ Low power clock and peripherals
interrupt CPU only for processing

On-Demand CPU Clock

¢ DCO starts immediately

¢ CPU processes data and quickly
returns to Low Power Mode

MSP430 Design Workshop - Low Power Optimization

Low Power Concepts

Replace Software with Peripherals

Replace Software With Peripherals

n,—<IN ADC our-'UL| DMA =
,?\
Timer A ¢ Automate where possible

« Timer triggers analog conversion
« ADC triggers DMA to move result to memory
4 Saves power since CPU and high-speed clock
can be turned off

¢ Higher precision and less latency for analog
sampling since timer directly triggers conversion

& Faster results since peripherals are optimized to
perform operations more quickly than the CPU

Configure Unused Pins

Configure Unused Pins

4 Digital input pins subject to shoot-through current
+ Input voltages between V, and V,, cause shoot-through
if input is allowed to “float” (left disconnected)
¢ Port 1/0’s should either:
1. Bedriven to V. or ground by an external device
2. Set as an input using the pull-up/down resistor
3. Driven as an output

(Digital) CMOS Inverter
Vee Vin
Vel

]

7-8 MSP430 Design Workshop - Low Power Optimization

Low Power Concepts

Efficient Code Makes a Difference
ULP “Sweet Spot”

¢ Power dissipation increases with...
+ CPU clock speed (MCLK)
+ Input voltage (Vcc)
+ Temperature

¢ Slowing MCLK reduces instantaneous power, but often
increases active duty-cycle (how long the CPU stays on)

+ Look for ULP ‘sweet spot’ to maximize performance with
minimum current consumption per MIPS

= Usually 8 MHz MCLK is the best tradeoff of power/performance

¢ Use lowest input voltage possible
+ ‘F5529 lets you lower core voltage if full-speed operation
is not required
+ ‘FR5969 operates at full speed down to 1.8V

+ On some MSP430 devices, you need to take into
consideration minimum Vcc for flash programming, etc.

Optimize Performance

¢ Use Hardwired Accelerators, where available
+ MPY32 + AES256
+ CRC16 + DMA

¢ Optimize Code (saves code size and wasted cycles)
+ CCS “Release” configuration with -O, -03, or -04
+ Use —mf option to set tradeoff between code size/speed
+ Optimization Advisor

¢ Optimized Libraries (faster and easier)
+ MSPMathlLib (floating-point math)
+ |Qmath and Qmath (fixed-point math)
+ Energy calculations
+ Capacitive Touch

MSP430 Design Workshop - Low Power Optimization 7-9

Follow the Rules (ULP Advisor™)

Follow the Rules (ULP Advisor™)

ULP Advisor Helps You Follow the Rules

& MSP430 is inherently low-power, but your
design has a big impact on power efficiency

¢ Even wall powered devices can become
“greener”

v Use interrupts to control program flow
v/ Maximize the time in LPM3

. . ULP MSP430™
v/ Replace software with peripherals L > S advisor | Uitra-Low Power MCUs

I
4

v Configure unused pins properly
v’ Power manage external devices
v Efficient code makes a difference

Every unnecessary instruction
executed is a portion of the battery
that’s wasted and gone forever /

4

¢ Use ULP Advisor to help minimize -
power in your system

ULP Advisor - Rule Table

1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
7

About ULP Advisor™

How ULP is your Application?

Silicon Hardware Design Software

| J
I
Power consumed is
made up of many
factors.

Silicon and Hardware are only half of the equation.
We need Optimized Software

EnergyTrace™ Technology and ULP Advisor™ Tools
can get you all the way there

W3 TexAS INSTRUMENTS

7-10 MSP430 Design Workshop - Low Power Optimization

Follow the Rules (ULP Advisor™)

MSP430 | Ultra-Low Power is in our DNA

ULP Advisor™ benefits all experience levels

o™
m

Experienced ULP

developers
¢ Teaching tool for new MSP430 « Not everybody remembers all the
users rules all the time

¢ New rules might come in

e Practical introduction to ULP) .
¢ Saves time vs. manually going

hni . -
techniques through a large project or library to
+ Immediate coding feedback check for ULP
o . .) « Helpful when developers inherit code
« Wiki provides quick solution from other sources

and detailed background info ¢ ULP Advisor should always be used

« Learn more from the regardless of the application or target

community & E2E device.
¢ Contribute to wiki & E2E

@ -{Eﬁuum ‘

MSP430 | Ultra-Low Power is in our DNA

ULP Advisor™ Software: Turning MCU developers
into Ultra-Low-Power experts

ULP Advisor analyzes all Checks against a thorough Highlights areas of
MSP430 C code line-by-line. Ultra-Low-Power checklist. improvement within code.

* Supports all MSP430 o List of 15 Ultra-Low-Power e Identify key areas of
devices and can benefit best practices improvement
any application « Compilation of ULP tips & ~ « Presented as a “remark”
« Checks all code within a tricks from the well-known within “Problems” window
project at build time to the more obscure « Includes a link to more
« Enabled by default « Combines decades of information
« Parses code line-by-line MSP430 and ULP
development experience

o
L, ULP 1.1 Ensure py

L1 ULP 2.1 Leverage i
= - ge timer madue 1
L1, ULP 3.1 Use ISRs insteaq ornagi;::r o
E, ULP 4.1 Teminate uused GPios

1 BTG {IAF5 3) Deteced no uses of low

=1, ULP 5.1 Avoid processing-intensive motuo &d

E__ ULP 5.2 Avoid processing-intensive floating poir | BTG (R4 1) Dteced uninitializeg bes
E ULP 5.3 Avoid processing-intensive is)prim_ﬂ]

&1 ULP 6.1 Avoid mutiplcation when HW mulipier

=1 Jacal instead of global variables W&

i1 ULP7.1Use o e e bl

i3 Texas
INSTRUMENTS

MSP430 Design Workshop - Low Power Optimization

Follow the Rules (ULP Advisor™)

The List ... of ULP Rules

ULP Advisor " ULP Advisor Rules

for M5P430 Microcontrollers

ULP 1.1 Ensure LPM usage
Basic ULP 2.1 Leverage timer module for delay loops
ULP 3.1 Use ISRs instead of flag polling
ULP 4.1 Terminate unused GPIOs
ULP 5.1 Avoid processing-intensive operations: modulo, divide
ULP 5.2 Avoid processing-intensive operations: floating point
Math ULP5.3 Avoid processing-intensive operations: (s)printf()
ULP 6.1 Avoid multiplication on devices without hardware multiplier
ULP 6.2 Use MATHLIB for complex math operations
ULP 7.1 Use local instead of global variables where possible
ULP 8.1 Use 'static' & 'const' modifiers for local variables
Coding uLP9.1 Use pass by reference for large variables
Details ULP 10.1 Minimize function calls from within ISRs
ULP 11.1 Use lower bits for loop program control flow

ULP 11.2 Use lower bits for port bit-banging
ULP 12.1 Use DMA for large memcpy() calls
DMA ULP 12.1b Use DMA for potentially large memcpy() calls
ULP 12.2 Use DMA for repetitive transfer
Counts, ULP 13.1 Count down in loops
Indexes, ULP14.1 Use unsigned variables for indexing
Masks ULP 15.1 Use bit-masks instead of bit-fields

ULP Wiki Page — Rule Details

Texas Instruments Wiki

Compiler/diagnostic messages/MSP430/1544

ULP Advisor > Rule 13.1 Count down in loops

What it means

In MSP430 assembly code, a conditional branch based on comparing a variable/register
against a non-zero value requires two instructions: compare and branch. However, when
branching & comparing against zero, a specific instruction, BNE, can be used to perform
both actions. This also holds true for a branch statement in C. Hence a counting down loop
can reduce one instruction for each iteration of the loop when compared to a loop counting ULP Advisor - Rule

up_ . ULP 1.1 Ensure LPM usage
Risks, Severity ULP 2.1 Leverage timer modul
A counting-up loop consumes one extra instruction for every iteration of the loop ULP 3.1 Use ISRs instead of fi
. . ULP 4.1 Terminate unused GR)
Why itis happenlng ULP 5.1 Aveid processing-inten:
A loop with an index counting up is detected in the code ULP 5.2 Avoid processing-intel
Remedy ULP 5.3 Avo?d procﬁélng—mten
ULP 6.1 Avoid multiplication
+ Use aloop that counts down whenever possible ULP 6.2 Use MATHLIB for co
+ Ensure that -02 optimization level is selected In the compiler, or greater implements are |) p 7 1 Use local instead of gi
included in the project settings to enable optimization for counting down loops. ULP 8.1 Use 'static' & 'const' m
Code Examp\e ULP 9.1 Use pass by reference

ULP 10.1 Minimize function call
int i; ULP 11.1 Use lower bits for |
PlOUT |= 0x01; // Set P1.0 LED on ULP 11 2 Use lower bits for p

for (1 = 5000; i>0; i--) // Count down lecp ULP 12.1 Use DMA for large m:
// In instead of: (1 = 0; 1 <3000; i++)

7-12 MSP430 Design Workshop - Low Power Optimization

Follow the Rules (ULP Advisor™)

How Do You Enable ULP Advisor™?

Easily access ULP Advisor™ software, supporting all
MSP430 development environments

¢ Integrated into popular MSP430 IDEs for seamless operation
+ ULP Advisor is automatically enabled & checks all code at build time

+ Joins differentiated MSP430 software tools integrated into CCS, including
MSP430Ware & Grace

ULP MSP430™

I @\dwsm Ultra-Low Power MCUsI

Stand-alone version available
for Open Source GCC &
other compilers

Integrated into
TI's Code Composer Studio

Integrated into
|IAR Embedded Workbench

Configuring ULP Advisor

type filter text ULP Advisor =1 4 v v
Resource
General

4 Build Configuration: [Debug [Active] '} {Manage Configurations...]

4 MSP430 Compiler
Processor Options

Optimization Set error category for ULP power rules (--advice:power_severity) E]
Include Options Enable checking of ULP power rules (--advice:power)
ULP Advisor ¥| 1: Low power mode (LPM) usage

Advice Opticns

2: Software (SW) delay
| 3:Flag poling []
4: Port initialization

5: Processing/Power intensive operations
6: Hardware multiplier

7: Variable scope
8: Constants

9: Function parameter

10: ISR

11: Constant generator utilization

12: Direct Memory Access (DMA) usage
13: Loop counter

¢ ULP Advisor uses the Ti
compiler option:

-—advice:power=“all”

¢ Enable/configure it in the
CCS Project Properties dialog

¢ Easily ignore rules that don’t
apply to your system

14: Array index
15: Bitfields

JENEEREEEEEEEE

MSP430 Design Workshop - Low Power Optimization

EnergyTrace™

EnergyTrace

Energy Aware Debugging

Y
s h

=

MSP-EXP430FR5969 Launchpad MSP-FET

: « Available: June 2014
with on-board MSP-FET + System power must come from FET

¢ Two levels of EnergyTrace™
1. EnergyTrace: Measures energy usage in the system
2. EnergyTrace++: Energy, Power Modes, Clocks and Peripherals

¢ Devices supported by EnergyTrace (using MSP-FET):
+ ‘FR59xx and ‘FR69xx devices support EnergyTrace++
+ All MSP430 devices support EnergyTrace

EnergyTrace Profile System States
EnergyTraces+™ Profile | States 37 e R~ v T=n
Name Runtime (%) Energy (%)

System 100 835
4 CPU

4 LowPower Mode [] 943 L 1 67.2

LPM2 e 03— 67.2

LPMO I 001 00

4 Active Mode o 57 == 323

TIMERO_AD_ISR. B 55 mm— 226

main I 021 02

4 Peripherals

TA0 e %3
FRAM] 57
TA2 00
Al 00
MPY 00
a3 00
USCLAD 00
TBO 00
eUSCl AL 00

REF

4 System Clocks
ACLK e 100
SMCLK]
MCLK o 57
MODOSC o
VLo |

7-14 MSP430 Design Workshop - Low Power Optimization

EnergyTrace™

Power & Energy Graphs

fiac Power 7 +, =, @ y T2 8

=

Energy 2 LY * =0
9y

Energ =

“ | n 3

Figure 3-10. Energy Window

EnergyTrace Profile Comparison

2 EnergyTrace™ Technology 51 P Power B Energy | States D@~ e 8- s
EnergyTraces » ™ Profile
() ()
Name Runtime (%) Energy (%)]| Delta Runtime (%) Delta Energy (%) Ref Runtime (%) Ref Energy (%)
System 100 N 550 100 100
« CPU
Low Power Mode = %y /3 %4 001 00
LPM3 I G5O S 565 001 00
4 Active Mode 1 111 14] e 100 = 100
CS_LFXTStatWithTimecgt | 111 14 111 04
CS_clockSignalinit I 001 o0 00 1 oo
a RIS i 00 1 01 001 00
_mspabi_drvul I 001 o0 001 00
main I 001 o0 | 055 . 55
Penipherals
FRAM 1 11 = 100
Ta2 | 00 00
Tal 1 00 00
MPY I 00 0.0
"""‘"‘-\\ /__R‘ /\
ADC . 0.0 00 .
e B i o0 T — o "“--—n’
System Clocks
ACLK 100 I '] ————R]
SMCLK 1 11 I -89 e 100
MCLE 1 11 989 I 100
MODOSC ! 1 I 00 11
VLo I 00 I 00 0.0
. _J " Ao J
After C : Before
omparison

MSP430 Design Workshop - Low Power Optimization 7-15

EnergyTrace™

How does EnergyTrace Work?

How Does EnergyTrace™ Work?

v
v
v .
v & By varying pulse frequency

DC-DC converters can vary
output power

"
7z ¢ Emulators provide power to CPU’s
gz targets under during debugging

¢ Using a software controlled DC-DC converter
MSP430 FET’s accurately count every charge pulse
and sum them over time

L
6&“5;\,\ / ¢ Unique way of continuously measuring energy to target

RS EnergyTrace™ provides high precision vs the old-fashioned multi-meter
approach

& Since meters take samples discretely
they’re prone to missing small
windows of activity as ULP systems
wake-up and quickly return to sleep

7-16 MSP430 Design Workshop - Low Power Optimization

Lab 7 — Low Power Optimization

Lab 7 — Low Power Optimization

Abstract

This lab exercise introduces us to many of the techniques used for measuring and reducing
power dissipation in a MSP430 based design.

We begin by learning how to use EnergyTrace™ to measure energy consumption in our

programs. Using this (or more crudely, using a multi-meter) we can now judge the affects our low-

power optimizations have on our system.

Lab 7 — Optimizing for Low-Power

A. Getting Started with EnergyTrace™
Explore tools by comparing Lab4a & Lab4c
+ Enable EnergyTrace
+ Capture EnergyTrace profile
+ Compare EnergyTrace profiles
+ ‘FR5969 users can explore EnergyTrace++

B. Using ULP Advisor, Interrupts and LPM3
Improve power using Lab4c & Lab6b
« Enable ULP Advisor
+ Replace delay() function with Timer
+ Make use of Low Power Mode 3 (LPM3)

C. Does Initializing GPIO Ports Make a
Difference?
+ Taking Lab4c, replace LED toggle with LPM3
+ Initialize ALL pins as Outputs after reset

+ Then, check if setting pins as Inputs makes a
difference to power optimization

HSP-ExP43eFE529LP @

H

In part B of the lab, we use ULP Advisor to point out where our code might be improved, from a

power perspective. In this part of the lab, we go on to replace __delay_cycles() with a timer; as
well as implement low power mode 3 (LPM3).
Finally, in part C, we examine what — if any — affect uninitialized GPIO can have on an
microcontroller design. The results may surprise you...

MSP430 Design Workshop - Low Power Optimization 7-17

Lab 7 — Low Power Optimization

Chapter Topics

LOW POWEN OPLIMIZATION ...eeiiiiiiiiiiiieiiie ettt e e e e e e e e e e e e snnbeeeaeaans 7-15
Lab 7 — Low Power OPtiMIZAtionooiiiiiiiiiiiiiiee et e e e e e e e e e neneeee 7-17
Y 0111 T PO PPUTPPRRPTPRIN 7-17
Notice - Measuring ENergy in Lab 7 ... e e e 7-19
HOW t0 MEASUIE ENEIQY...ccitiuiiiiiiiiiiiiiiii ettt e e et s e e e e e e e eeab e e e aeeeeees 7-19

Lab Exercise Energy Measurement RecommendationS.........ccoccveeeeviieeeeniiieeesniineee e 7-20

Lab 7a — Getting Started with Low-Power Optimizationccccoecvvviveeee e 7-21
Prelab WOTKSREEL. ..o e e e e e e e e e en e e e e e e e e e eanns 7-21
Configure CCS and Project for ENErgyTracCe...........ceeiiai it 7-22
Build Project and Run with ENErgyTracCeoccuuuiiiiiiiiiiiiiieieee e 7-24
ENergyTrace With FIEE RUNcoi it e e e e e e e rrarr e e e e e e e e aans 7-28
Compare ENergyTrace Profil€S.........cocuiiiiiii st e e 7-28
Create Energy Profile for [ab_04cC_CrystalS.........cccueiiieiiiiiiiiiieec e 7-29
What have we learned in Lab7a7oooiiiiiiiiiiii e 7-30
(Optional) Viewing ‘FR5969 EnergyTrace++ StateS.........ccccvvrveeeiiiiiiiiiieeee e cscnieeeeeee e 7-31
Lab 7b — Reducing Power with ULP Advisor, LPM’s and INterrupts..........ccccoeecvvvveeeeeensinnnnnen, 7-32
Get Suggestions fromM ULP AGVISOXuuiiiiiiiiieiiiee ettt 7-32
Replace __ delay _CYCIES()uuiie ittt 7-35
Using LOW-POWEr MOAE (LPM3)ciiiiiiiiiiiiiiee ettt ettt 7-39
(Optional) Viewing ‘FR5969 EnergyTrace++ StateS.........cccuvuiieiiiiiiiiiiiiiieeee e eeiiiieeee e 7-40
(Optional) Directly Driving the LED from Timer_A ... 7-41
Lab 7c — Configuring Ports for LOWESt POWETccoiiiiiiiiiiiieeiiiiee e 7-42
Import and MOdify Program ... e e a e e e 7-42
Capture Baseling RETEIENCEccici i e e s e e e e e e 7-43
Add GPIO Port INitialiZation COAE.........cciiiiiiieiiiiiee ettt sbee e e nibeee e 7-43
Improve on GPIO Port INItIaliZatioN...........oocceiiiiiiie s 7-45

(1 aT= T o1 (= A Y o] o 1T Lo [PP SUERR 7-46
Connecting MSP-FET to ‘F5529 USB Launchpad...........ccccvviiiieeiiiiiiiiieece e 7-46
Lab 7 Debrief and SOIULIONS..........ooiieiieiiiee et e e e enrrar e e e e e e e e e 7-49

MSP430 Design Workshop - Low Power Optimization

Lab 7 — Low Power Optimization

Notice - Measuring Energy in Lab 7

How to Measure Energy

There are three ways you can measure energy for the exercises found in this chapter:

1. The 'FR5969 FRAM Launchpad supports the full EnergyTrace++ feature set — which includes
energy measurement as well as tracing the CPU modes and peripheral states.

2. The new MSP-FET (Flash Emulation Tool) — supports measurement of energy with the
EnergyTrace feature for all MSP430 devices.

3. If you do not have either tool which supports TI's EnergyTrace, you will need to measure it
the old fashioned way — using a multi-meter to determine the current being drawn by the
MSP430 CPU. We refer you to Section 2.3 of the MSP-EXP430F5529 Launchpad User’s
Guide (slau533b.pdf) for a detailed procedure on how this can be done.

Measuring Energy in Lab 7

LE 4

MSP-FET
+ Now Available (as of June 2014)

MSP-EXP430FR5969 Launchpad
with on-board MSP-FET

¢ Three ways to measure Energy
1. MSP-EXP430FR5969 Launchpad supports full EnergyTrace++
2. MSP-FET supports EnergyTrace energy measurement
3. 0ld fashioned Multi-Meter crudely measures CPU’s current draw

¢ Lab steps written assuming EnergyTrace hardware is available
« Refer to Chapter Appendix for “how to” connect MSP-FET to the
‘F5529 USB Launchpad

» If using multi-meter, substitute current measurement procedure whenever
lab steps ask you to read from energy data from the EnergyTrace window

MSP430 Design Workshop - Low Power Optimization 7-19

http://www.ti.com/tool/msp-exp430fr5969
http://www.ti.com/tool/msp-fet?keyMatch=msp-fet&tisearch=Search-EN
http://www.ti.com/lit/pdf/slau533

Lab 7 —

Low Power Optimization

F5529

FR5969

Lab Exercise Energy Measurement Recommendations

As written, all Lab 7 exercises assume that you hardware (items #1 and #2 above) which
implements EnergyTrace.

‘FR5969 FRAM Launchpad

If you are using the ‘FR5969 FRAM Launchpad, no hardware configuration is required; the
Launchpad (and ‘FR5969 silicon) has been designed to support these features.

‘F5529 USB Launchpad

If you are using the ‘F5529 USB Launchpad (or any other MSP430 board, for that matter), we
suggest that you obtain the new MSP-FET tool. This will give you access to the new energy
measurement feature. (For live workshops held in North America, we provide MSP-FET tools that
you may borrow to complete these lab exercises.)

Normally, the MSP-FET connects to a target system via a 14-pin connector that follows TI's
emulation pinout standard. Since the ‘F5529 Launchpad does not ship with this connector
populated on the Launchpad, you will need to use 4 jumper wires to connect the appropriate
MSP-FET pins to the emulation-target isolation jumpers. Please see topic the topic “Connecting
MSP-FET to ‘F5529 USB Launchpad” (page 7-46) for details on how to make these connections.

Bottom Line
To reiterate, these lab directions assume that you have hardware which supports EnergyTrace.

If you are using the ‘FR5969 Launchpad, you will have additional visibility into the CPU, but in
either case, EnergyTrace provides highly accurate energy measurement.

Using a Multi-Meter

On the other hand, if you are using a multi-meter, you should substitute recording the current
(WA/mA) for those lab steps where we direct users to view the EnergyTrace display. If you have
any previous multi-meter experience, this shouldn’t be a difficult substitution to make. Comparing
current values should be enough to evaluate ULP optimizations. Of course, you can always
calculate the approximate energy values from the current and voltage (DVCC) values.

Note: Be warned... once you've used EnergyTrace, you'll find it difficult going back to using a
multi-meter; if not for the ease-of-use, for the increased measurement accuracy.

MSP430 Design Workshop - Low Power Optimization

Lab 7a — Getting Started with Low-Power Optimization

Lab 7a — Getting Started with Low-Power Optimization

This first lab exercise introduces us to measuring power — or energy — using EnergyTrace. (If you
don’t have hardware that supports EnergyTrace, please refer to the note on the previous page.)

We won't actually write much code in this exercise; rather, we will compare the solutions for a
couple of our previous lab exercises — spending most of the time learning how to use the tools in
the process.

Prelab Worksheet

1. What is the difference between EnergyTrace and EnergyTrace++?

Which devices support EnergyTrace++?

2. What hardware options are available that supports EnergyTrace?

3. How can you calculate energy without EnergyTrace?

What is the downside to this method?

MSP430 Design Workshop - Low Power Optimization 7-21

Lab 7a — Getting Started with Low-Power Optimization

Configure CCS and Project for EnergyTrace

1. Terminate the debugger if it's still open and close all projects and files that may be

open in your CCS workspace.

2. Enable EnergyTrace profiling.

Window — Preferences

Code Composer Studio — Advanced Tools — EnergyTrace™ Technology

¥ Enable ® EnergyTrace

o

w« Preferences

type filter text

- General
» IC++
4 Code Composer Studio
4 Advanced Tools
Disk Usage
EnergyTrace™ Technology
Source Line Reference
Trace Viewer
> Build
- Debug
- lrace
- RTSC
Energia
- Help
» Install/Update

EnergyTrace™ Technology

EnergyTrace™ technology enables analog energy measurement
the energy consumption of an application. This feature is availa
MS5P430 devices with selected debuggers.

EnergyTrace++™ technology in addition supports an energy-ba
analysis tool that is useful for measuring and viewing the applic
profile and optimizing it for ultra-low power consumption. Thi
available on selected M5P430 devices and debuggers.

Please check the "CCS for MSP430 User's Guide” for details.

[¥] Enable

@ EnergyTrace
() EnergyTrace+[CPU State]+[Peripheral States]

Note: ‘FR5969 users, we'll look at the +States mode later on in the lab exercise.

MSP430 Design Workshop - Low Power Optimization

Lab 7a — Getting Started with Low-Power Optimization

Import the previous lab exercise: lab_04a_clock_solution.zip
Project — Import CCS Projects

Then select either project (based upon the board you're using) and click OK.

C:\msp430_workshop\F5529 usb\solutions\lab_04a_clock_solution.zip
C:\msp430_workshop\FR5969_ fram\solutions\lab_04a_clock_solution.zip

-
«+ Import CCS Eclipse Projects L‘%

Select CCS Projects to Import Ly
Select a directory to search for existing CCS Eclipse projects. .
-
() Select search-directony: Browse...

@ Select archive file: Comsp430_workshop\FR5969_fram\selutionsilab_04a_clock_solution.zip Browse...

Discovered projects:

vl &

Select All

4. (‘FR5969 only) Verify debugger is enabled for low-power (LPMx.5) modes.

FR5969

Right-Click on project — Properties — Debug — MSP430 Properties

Scroll-down and make sure the following is enabled, then click OK.

-

v+ Properties for lab_04a_clock_solution

type filter text

» Resource
General
4 Build

4 MSP430 Compiler
Processor Options
Optimization
Include Options
ULP Advisor
Advice Options

» Advanced Options
» MSP430 Linker

[5P430 Hex Utility [Disabled]

Debug

Device | TI MSP430 USBEL/M5P430

Program/Memory Load
Auto Run and Launch O

[i=c/Oth

> | M5P430 Properties

@ Hardware

Target Voltage (mV) 3000 5
[Erase main, infermation, and IP protected area on connect ;
Downlead Qptions
Erase Options
(@ Erase main memory only
() Erase main and information memory
<«

() Replace written memory locations, retain unwritten memaory lo

Copy application to external SPI memory after program load
[] Allow Read/Write/Erase access to BSL memory

Low Power Mode Settings
I Enable Ultra Low Power debug / LPMx.5 debug I

MSP430 Design Workshop - Low Power Optimization

Lab 7a — Getting Started with Low-Power Optimization

5. If connected, remove the jumpers on the Launchpad for RTS and CTS in the
emulator/target isolation connector.

This code does not use these UART signals, and keeping them connected draws slightly
more power. (By default, these signals are usually disconnected.)

Shown above is the ‘FR5969 Launchpad, but you've find the same signals on the ‘F5529
Launchpad connector.

Build Project and Run with EnergyTrace

& 6. Build the project.

At this point, we shouldn’t see any advice from ULP Advisor since we disabled this when
building our previous lab projects. In a few minutes we’ll turn this on and examine the results.

% 7. Start the debugger.

7-24 MSP430 Design Workshop - Low Power Optimization

Lab 7a — Getting Started with Low-Power Optimization

8. Briefly examine the EnergyTrace window.

Notice that there’s an extra window that opens in your debugger..

If the EnergyTrace window did not open:
Double-check EnergyTrace is enabled.

Window — Show View — Other.. » MSP430-EnergyTrace

=E=)

-
'« CCS Debug - lab_04a_clock_solution/main.c - Code Composer Studio

File Edit View Project Tools Scripts Run Window Help

4 &% lab_04a_clock_selution [Code Composer Studio - Device Debugging]
4 o TIMSP430 USB1/MSP430 (Suspended - HW Breakpoint)

= main() at main.c:26 0004 CF2
_c_intD0_noexit() at boot.c:184 0x004E96 (the entry point was reached)

WOT_A_hold(WDT_A_BASE);
[/ Initialize GPIO
initGPIO();

// Initialize clocks
initClocks();

while(1) {
// Turn on LED

2|

El Console 2 -—llm'—gli’a‘l:ﬁ':'

lab_04a_clock_solution
MSP438: Loading complete. There were 1898 (code) and 122 (data) bytes

fdy v ie B BRI v

W g 5x\v$vz G @ viD !
%5 Debug 52 T = O - Variables 3% & Expressions 1! Registers 2% [] @ Ittt =08
Name Type Value Location

| B @ ecsen

- * Quick Access

1D EnergyTrace™ Technology 52 | [Power fuw Energy

EnergyTrace™ Profile

Name Live

written to FLASH. The expected RAM usage is 18@ (uninitialized data +
4 System
Time 0 sec
Energy 0.00 m)
4 Power

stack) bytes.

* Full License

9. Setthe EnergyTrace capture duration to 10 seconds.
EnergyTrace captures data for a set period of time, and then displays those results. We can
easily choose the capture period using the provided EnergyTrace toolbar button. It defaults to

10 seconds, but it doesn't hurt to verify the time. @
Set capture =
. sec
duration —
30 sec %
1 min
5 min

While we’re looking at the tgolbar, please note some of its other buttons.

Switch between EnergyTrace
and EnergyTrace++

He|El = B

i Open EnergyTrace settings in
Save Energy Profile CCS Preferences (step 2)

Start/Stop
Open Profile for Compre

EnergyTrace

MSP430 Design Workshop - Low Power Optimization

Lab 7a — Getting Started with Low-Power Optimization

10. Set the cursor on the first line of code in the while loop.

In most systems, we care more about “continuous” power usage rather than “initialization”
power usage. Because of this, we want to run past our initialization code before we start
collecting energy data.

Instead of setting a breakpoint, it's often easier to place your cursor on the line you want to
stop at, and then run to that cursor. Let’s start the action by placing our cursor on the first line
of the while loop.

[main.c &2

LMLLCLULRSL by

while(1) {
// Turn on LED
| GPIO setOutputHighOnPin(GPIO _PORT P1, GPIO PING);

[y W I S WY .

.__]

Ll

// Wait about a second

L]

11. Run to the cursor

Run — Run to Line or better yet use: Control @

1= P

. Click Resume and watch the duration count down.

When we begin running the code it will execute the while{} loop and capture the energy data
for 10 seconds.

EnergyTrace™ Profile
Name Live
4 System
Time 2 sec

0o 13. Suspend your program after count reaches zero.

EnergyTrace doesn’t require that we halt the program, but we don’t need to keep it running
either.

7-26 MSP430 Design Workshop - Low Power Optimization

Lab 7a — Getting Started with Low-Power Optimization

14. Expand EnergyTrace window to view the energy profile you just created.

1@ EnergyTrace™ Technolegy 52 | fw Po
EnergyTrace™ Profile We see that our processor consumed 72.26mJ in the
Name Live 10 second capture period.
4 System For many reasons, your numbers may differ from that
Time 10 sec shown here:
Energy 72.26 m))]
4 Power — You may be using a different Launchpad.
Mean | 7.22 mWW — You start/end capture locations were different
Min 3771 mW
Max 10911 mW than ours
4 Voltage — Your compiler version or code was slightly
Mean 358V .
different
a Current
M 2.02 mA . -
= i Finally, note that we have not yet optimized for power
Min 1.055 mA , AR .
Max | 3,046 mA and the LED’s that we are blinking (driven from our
Battery Life CR2032: 3.8 day (est.) GPIO pins) are consuming quite a bit of energy.

15. Switch to the Power tab and see power consumption over time.

12 EnergyTrace™ Techn... [ue Power 52 | Ju Energy = O
. You might also want to check
) (= =
S out the Energy tab. It shows
running energy usage ofer
timer.

-
-

7
16. Save the energy profile — naming it “Lab04a”. 2 EnergyTrace™ Technology 51| [Power [Energy

To view the EnergyTrace toolbar again, click back on the | EnergyTrace™ Profile
“EnergyTrace™ Technology” profile tab.

Then click the “Save Profile” EnergyTrace toolbar button and l.x_.tj
provide the name. (Use the default save-to directory.) =

MSP430 Design Workshop - Low Power Optimization 7-27

Lab 7a — Getting Started with Low-Power Optimization

ud

—

Control &

ud

EnergyTrace with Free Run

Not surprisingly, the device hardware that supports many debugging features — such as
breakpoints — requires energy to operate. Let’s disable that hardware and capture another energy
profile.

17. Make sure your program is suspended.

18. Set the cursor at the first line in the while{} and run to that line.

If you need a reminder how to do this, check back to steps 10-11 (on page 7-26).

19. Verify the EnergyTrace Capture duration is 10 seconds, then “Run Free”.

This time, rather than hitting the Resume button, we want to run our target FREE of any
emulation.

Run — Run Free

20. Watch the EnergyTrace count down to zero and then suspend the program again.

If you remember your program’s previous energy consumption you may notice a reduction.
But, we’'ll do a more accurate comparison in the next few steps.

21. Save the new EnergyTrace profile — give it the name Lab4a_free_run.

This isn’t required, but it allows us to reference this information in a later comparison.

Compare EnergyTrace Profiles

22. Click on the Open button in the EnergyTrace toolbar.

Choose your first EnergyTrace profile: Lab4a.profxml

23. View the EnergyTrace profile comparison that opens.

EnergyTrace™ Profile
Mame Live Delta (%) Reference This
4 System comparison
Time 10 sec 10 sec shows that
Energy 6290 m) = -103 7016 mJ turning off the
4 Power emulation
Mean 631 mW () 101 7.02 mW features —
Min 2986 mW = -19.5 3709 mW using Run Free
Max 9924 mW = 51 10.453 mW — saved more
than 10mJ.
4 Voltage
Mean 358V [00 358V
a Current
Mean 1.76 mA = -10.0 1.96 mA
Min 0.833 ma — -19.5 1.037 mA
Max 2768 ma = -51 2918 mA
Battery Life CR2032:4.4 day (est) =X 115 CR2032: 3.9 day (est))

MSP430 Design Workshop - Low Power Optimization

Lab 7a — Getting Started with Low-Power Optimization

%5

Control

—

(R

ud

24. Write down the energy used for Lab4a_free_run profile: mJ

25.
26.

Terminate the debug session.

Close the lab_04a_clock_solution project.

Create Energy Profile for lab_04c_crystals

27.

28.
29.

30.

31.

32.

33.

Import the lab_04c_crystals_solution.zip into your workspace.
If you need a reminder on how to do this, please check back to Step 3 (page 7-23).
Build the project and start the debugger.

Run past the initialization code to the first line of the while{} loop.

For a reminder on how to do this, check back to steps 10-11 (on page 7-26).

Verify the EnergyTrace Capture duration is 10 seconds, then “Run Free”.

This time, rather than hitting the Resume button, we want to run our target FREE of any
emulation.

Run — Run Free

Watch the EnergyTrace count down to zero and then suspend the program again.

Save the new EnergyTrace profile — give it the name Lab4c_free_run.

Open the the Lab4a_free_run.profxml energy profile to compare against Lab4c.

r.‘, Dpen . - - - Iﬁﬁ

@U?| , <« lab_0da_clock_solution » .dvt » - |¢1| Search .dvt JD'I
Organize - Mew folder ==« i 'ZEZ'
| lab_04a_clock_solution a* Mame .
J vt

. M5P430_2014_07_05_150845

| MSP430_2014_07_05_150848
| MSP430_2014_07_05_161625

, M5P430_2014 07 05161625

J Jaunches

|| Lab4a.profxml

] || Lab4a_free_run.profxml
| .settings

m

, Debug
J driverlib
J targetConfigs
J lab_Ddc_crystals_solution
J vt
, M5P430_2014 07 05 164322 - |74 m

File name: Labda_free_run.profxml - [*.profxml ']

| open | | Cancel |

MSP430 Design Workshop - Low Power Optimization 7-29

Lab 7a — Getting Started with Low-Power Optimization

34. How do the two profiles compare?
Add your values to the chart below.

(Hint: You can copy the value for the Lab4a_free_run from step 24 (page 7-29).
Project Energy Profile

Lab4a free run

Lab4c_free run

Which version consumed less energy?

Why?

Hint: During the exercise steps for both Lab 4a and 4c we set breakpoints and recorded
the values of three variables. What variables did we track ... and how did they differ
between Lab 4a and Lab 4c?

35. Terminate the debug session.

What have we learned in Lab7a?

How to open archived project solutions

Enable EnergyTrace

Enable low-power debugging in projects.

Capture and Save energy profiles

Using “Run Free” to increase accuracy of energy capture profile
Compare energy profiles

NN NN

7-30 MSP430 Design Workshop - Low Power Optimization

AN

@)

o®>
Optional) Viewing ‘FR5969 EnergyTrace++ States

Lab 7a — Getting Started with Low-Power Optimization

Remember that the ‘FR58xx and ‘FR59xx devices support additional tracing of their internal CPU
and peripheral states. Let's examine this great new capability.

37.

38.

Ol

1l

36.

39.

Open lab_4c_crystal_solution for debugging.

Verify that EnergyTrace is enabled.

You can do this via the CCS Preferences, though, it's easier to simply check if the
EnergyTrace window is open and the Start/Stop icon is “on” (that is, it should be blue).

P!

Change to the EnergyTrace++ mode. Switch between EnergyTrace
and EnergyTrace++

Click the toolbar button that turns on this mode.
VB~ Ee|BE-M= B

Resume your program while letting EnergyTrace profile your code. Suspend when the
EnergyTrace has finished counting down.

View the various tabs in the EnergyTrace window — note that a new one has been added
showing the processor’s “States”.

12 EnergyTrace™ Technology [iw Power [Energy [jl States 32 LRCN 'l & ‘ E T F

Notice the following:

e We're in Active Mode (AM) for the duration of the capture.

e Also, the FRAM is being accessed and all three clocks are running (MCLK, SMCLK, and
ACLK).

Admittedly, this information becomes more interesting once we begin using the low-power
modes and peripherals. But it's fascinating to see how the processor is running internally.

MSP430 Design Workshop - Low Power Optimization 7-31

Lab 7b — Reducing Power with ULP Advisor, LPM’s and Interrupts

Lab 7b — Reducing Power with ULP Advisor, LPM’s

and Interrupts

This exercise will start with the code we used from Lab 7a (which we imported from Lab 4c).
Rather than just measuring power, though, we’ll start to explore ways to reduce the program’s

power consumption.

Get Suggestions from ULP Advisor

1. Justto verify, all projects should be closed except lab_4c_crystals_solution; that

is, the project we were just working with.
2. Turn on all of the ULP Advisor rules.

Select the project lab_4c_crystals_solution

Press the key combination —

And select All the rules, as shown below:

-

«+ Properties for lab_04c_crystals_solution

Debug > [¥] 6: Hardware multiplier

. [¥] 7: Variable scope

> [¥] 8: Constants

» 9: Function parameter

» 10: ISR

» 11: Constant generator utilization

> 12: Direct Memory Access (DMA) usage
» [¥] 13: Loop counter

. [¥] 14: Array index

» 15: Bitfields

type filter text ULP Advisor Nl T
. Resource
General Configuration: | Debug [Active] "] [Manage Configurations...]
4 Build . .
4 MSP430 Compiler Set error category for ULP power rules (--advice:power_severity) [:]
Processor Options Enable checking of ULP power rules (--advice:power)
Optimization > 1: Low power mode (LPM) usage Mone
Include Options , 2: Software (SW) delay
5 3: Flag pelling I All \
» Advanced Options 5 4: Port initialization
» MSP430 Linker > 5: Processing/Power intensive operations Expand All

Command: "all"

Collapse All

7-32 MSP430 Design Workshop - Low Power Optimization

Lab 7b — Reducing Power with ULP Advisor, LPM’s and Interrupts

% 3. Build the project and then open the Advice window.

The Advice window is available by default in the standard CCS window; if not, open it with:

View — Advice

Ef,_ Problems ' Advice &2
91 iterms
Description Resource Path Locatio
a 1 Power (ULP) Advice (91 itemns)
i #1527-0 (ULP 2.1) Detected SW delay loop using empt adcl2_b.c flab_0dc_crystals_solution/driverlib/MSP430FR5:0:_Gax line 10
I #1535-D (ULP 8.1) variable "retVal" is used as a constar adcl2_b.c flab_0dc_crystals_solution/driverlib/MSP430FR50e G line 143
i #2553-D(ULP14.0) Array index (involving "i") of type " aes256.c flab_04c_crystals_solution/driverlib/MSP430FR5:0_Bxx line 99
i_#2553-D(ULP "I") of type "i_aes256.c fab_04c_crystals_solution/driverlib/MSP430F

Array index (involvin Bux line

You results may vary based upon which processor you are using, but running with ULP
Advisor, we received 91 items of advice. You may notice that most of the items relate to
DriverLib code ... further, most of them are related to peripheral source code that we’re not
even using in our program. (Thus, the linker will remove this from the final binary program.)

With some experience you will find that there will be times that ULP Advisor notes an item
that you will want to ignore — maybe it's providing a false-positive, where you know that an
item in your program just cannot be changed. Sometimes you will just choose to ignore the
item, but often we can use CCS build options to filter them out (as we will do in the next step).

4. Modify the project options to focus ULP Advisor on our source code.

In other words, let’s tell CCS not to rule ULP Advisor on MSP430ware DriverLib code. This
can be done with file-specific project options.

s

4 15 lab_04c_crystals_solution [Active Right-click on the “driverlib” folder
» #% Binaries Select Properties
+ [Includes

Click None

» [Debug
+ |E= driverlib Click OK
> (= target New 3
> g Inkmi Copy Chrls € This turns off the ULP Advisor option for all of the files in the
» L¢] main. , ‘driverlib’ folder. In fact, you can use this feature to modify
, ryClg Paste Ctrl+V . - . -
: most all compiler option for any file or files.
o [g] myCle 3 Delete Delete
E lab_04 Source k
myEx
e Show Build Settings
. Exclude from Build f v« Properties for lab_04c_crystals_solution l = &1
Build Project type filter ot ULP Advisor S Ty
Clean Project . Resource P 'l [M ——]
Rebu”d prDjECt General ontiguration: g anage LonTigurations...
Build
& Refresh = ‘4 :IIMSP430 Compiler Set error category for ULP power rules (--advice:power_severity) E
Processor Options Enable checking of ULP power rules (--advice:power)

Optimization
Include Options
ULP Advisor

Propertie Alt+Enten)
| > Advanced Options
» MSP430 Linker

» [] 1: Low power mode (LPM) usage

» [Z: Software (SW) delay

» [] 3: Flag polling

» [C] 4: Port initialization

> [] 5: Processing/Power intensive operations
L ier

Restore from Local History

=]

Expand All

MSP430 Design Workshop - Low Power Optimization 7-33

Lab 7b — Reducing Power with ULP Advisor, LPM’s and Interrupts

a8

5. Build the project again.

Looking at Power (ULP) Advice for just our code, the list becomes more manageable.

)

b

10 items

Problems ') Advice i3
Description Resource
i Optimization Advice (3 items)
4 1 Power (ULP) Advice (7 items)
1 #10371-D (ULP1.1) Detected no uses of low power mode state changes using LPMx or _bis_SR_register() or __lov lab_04c_cry
#10372-D (ULP 4.1) Detected uninitialized Port A in this project. Recommend initializing all unused ports to elim lab_04¢_cry:
#10372-D (ULP 4.1) Detected uninitialized Port B in this project. Recommend initializing all unused ports to elimi lab_04¢_cry:

by s

1 #1527-D (ULP 2.1) Detected SW delay loop using __delay_cycles. Recommend using a timer module instead main.c
1 #£1527-D (ULP 2.1) Detected SW delay loop using __delay_cycles. Recommend using a timer module instead main.c
i #1527-D (ULP 2.1) Detected SW delay loop using empty loop. Recommend using a timer module instead myClocks'

=

#1535-D (ULP 8.1) variable "returnValue” is used as a constant. Recommend declaring variable as either 'static cc myClocks!

In Lab7b, we're plan to improve upon the items highlighted above; i.e. rules ULP 1.1 and 2.1.

(Optional) If you have internet access, you can get more information for each rule by
clicking on its link.

For example, clicking &]152/-[) takes you to...

The wiki page which provides more information regarding rule ULP 2.1. This page explains
the rule and tries to give you suggestions for improving your code.

[Problems |, Advice | (@ Advice 32

m

ULP Advisor > Rule 2.1 Leverage timer module for de

What it means

The MSP430 offers various types of timers & clocks that can be configured to function U L
without CPU intervention. When a delay is required, one of the timer peripherals can be
leveraged to generate such delay without the CPU staying active. This method significantly
reduces the power consumption of the device. These timers can enable the MSP430
microcontroller to stay in a Low Power Mode until the timer wakes up the CPU.

for MEP420 Mid

ULP Advisor-R

ULP 1.1 Ensure LPM usag
ULP 2.1 Leverage timer

Risks, Severity

In a microcontroller, the CPU is the largest contributor to the overall power consumption.

‘When an application executes a delay, if the CPU stays in active mode, a significant ULP 3.1 Use ISEs instead of
amount of power and energy is wasted. ULP 4.1 Terminate nmsed
L. . ULP 5.1 Avoid processing-in
Why it is happening ULP 5.2 Avoid processing-int
ULP 5.3 Avoid processing-intg!

'I‘his ['l!_-'l

L

1 mgalblic atig

Essentially, this rule is telling us that using the __delay_cycles() intrinsic is very power
inefficient. (This reinforces our warnings in previous lab projects where we admit that the
code we asked to write was inefficient.)

MSP430 Design Workshop - Low Power Optimization

Lab 7b — Reducing Power with ULP Advisor, LPM’s and Interrupts

Replace _ delay _cycles()

Let’s begin by following the ULP 2.1 rule which tells us to replace __delay_cycles() by using a
timer. This provides the advantage of letting the timer interrupt us, rather than the having the CPU
count cycles in this inefficient intrinsic.

Also, using a timer will allow us (in the next section) to utilze one of the MSP430’s low-power
modes (LPMXx).

7. Complete the table of lab exercises (from Chapters 1 - 7) in this workshop which
combined a timer with blinking an LED?

lab_05b_wdtBlink
lab_0O6a_timer
lab_06b_upTimer

lab_06c¢_timerDirectDrivelLed

'F5529: TimetAO

lab 06d si lePWM
b _TRE_SImpIe 'FRSFEF: Timer Al

In other words, we have already accomplished the task of swapping out __delay_cycles()
with a timer. Rather than re-creating this code, we will import and use a previous solution.

8. Closethe lab_04c_crystals_solution project.

9. Import lab_06b_upTimer_solution into your workspace.
(Hint: If you need a reminder on how to do this, please check back to Step 3 on page 7-23.)

We chose this exercise because:

e The Watchdog Timer example was not implemented with the same LED blink rate, which
will affect the energy comparisons.

e TimerA’'s Up mode is more flexible than the Continuous mode (found in lab_06a_timer).
e We're going to look at the ‘DirectDrive’ example a little bit later.
e The PWM example was fancier than we needed for this exercise.

MSP430 Design Workshop - Low Power Optimization 7-35

Lab 7b — Reducing Power with ULP Advisor, LPM’s and Interrupts

FR5969

10.

11.

12.

13.

14.

15.

16.

Rename the project to lab_07b_Ipm_timer.

Right-click on the project — Rename
lab 07b_lpm_timer

Turn on ULP Advisor for the project. Turn it off for the ‘driverlib’ folder.

(Hint: If you need a reminder, look at Steps 2-4 (page 7-32) for how this was done.)

Build the project and examine the ULP Advisor suggestions.

Notice that the __ delay_cycles() recommendations for main.c are now gone.

Start the debugger and load the program.

If you see this dialog, just click Proceed.

. \
& ULP Advisor o

B The Ultra-Low-Power Advisor (ULP Adviser) checks for ultra-low power best practices.

" You have remarks in you project, which you could use to improve power consumption in your project.
Proceed with launch? Cancel to review advice in the Problems View, grouped under the Infos category.
Checking is enabled by default. Advice is grouped within the Problems view window under the Infos
category.

To change default ULP Advisor settings, go to Project = Properties = Build = M5P430 Compiler > ULP Advisor

For ULP Advisor rule details, visit http://www ti.com/ulpadvisor.

For option details, go to Help = Help Contents > M5P430 Optimizing C/C++ Compiler User Guide

[Proceed] [Cancel]

W s

Verify that EnergyTrace is still enabled and set for a 10 second capture duration.

(‘FR5969 only) Verify that you are using the EnergyTrace mode (and not EnergyTrace++).

If you performed the optional exercise at the end of Lab 7a, your preferences may be set to
EnergyTrace++ mode. While this provides additional States visibility, the emulator’s use of
power prevents us from getting accurate energy measurements.

Please go ahead and run the example with EnergyTrace++ mode. You should see that the
TA1 peripheral is now active.

After trying ++ mode, though, please return to the EnergyTrace (non++) mode for the next
part of the exercise.

Set your cursor in the while{} loop and “Run to Line”.

Set your cursor on the __no_operation() intrinsic function and then run to that point — as we
did earlier in the lab.

Run — Run to Line

Run your code with the Free Run command. After EnergyTrace captures the data (for 10
sec), suspend the program.

Run — Free Run

ud

MSP430 Design Workshop - Low Power Optimization

Lab 7b — Reducing Power with ULP Advisor, LPM’s and Interrupts

17. Save the new energy profile as: Lab7b_original .profxml

18. Compare to the energy profile from Lab4c_free_run.profxml.

(Hint: Check back to Step 33 on page 7-29 for a reminder on how this was done.)

19. Record the energy usage for each of these projects.

Project Energy Profile

Lab4c _free run

Lab7b_original

Which project uses more power?

Why would our new project take more power after following the advice from ULP Advisor?
What could account for the extra power it's requiring?

(Hint: Let your lab_07b_lpm_timer project. Run it again... and watch the LED’s.)

20. Terminate your debugging session.

21. Comment out the toggling of LED1.

Hopefully you figured out that our new Lab 7b project was toggling both LEDs, whereas the
Lab4 project only toggled one LED. In this case, it isn’t the toggling function that draws too
much power, but rather that we're expending energy to drive both LEDs.

To provide a fair comparison, we need to comment out one of the LED toggle functions. As
an example, we arbitrarily choose to comment out the LED1 function.

Open up the myTimer .c file and comment out the GPIO_toggleOutputPin() as shown here:

myTimers.c &3 %
=
52 f/*¥**¥*** Interrupt Service Routines ¥¥¥*¥F¥Fdrskstxstrsss Note
53 #pragma vector=TIMER1 A® WECTOR
4 __interrupt void ccr@ ISR (void) Shown here to the left
s{ is the ‘FR5969 code.
6 /f 4. Timer ISR and vector
;) Tomele LED1 onfate If using the ‘F5529,
oggle on/fo) ; :
9 //| GPI0_toggleQutputOnPin(GPIO_PORT_P4, GPIO_PING); you'll be using Timer0
2} and LED1 uses a
different Port/Pin.

ﬁ | 22. Build your project and fix any syntax errors.
%& 23. Start the debugger and then run to the __no_operation() inside the while{} loop.

Control ?

MSP430 Design Workshop - Low Power Optimization 7-37

Lab 7b — Reducing Power with ULP Advisor, LPM’s and Interrupts

24. Free Run your program and then click suspend when the EnergyTrace timer finishes
counting down from 10 seconds.

25. Save the new energy profile as: Lab7b_one_led

Once again, compare this to the Lab4c energy profile.

Project Energy Profile

Lab4c_free run

Lab7b _one led

Which project uses more power?

Here’s the comparison we found for the ‘FR5969 at the time of writing this exercise. As you
can see below, using the timer (versus the CPU running __delay_cycles) saved us 10% of

our energy.
FR5969 rEnerg],rTrace““ Profile
Mame Live Delta (%) Reference
4 Systern
Time 10 sec 10 sec
Energy 54.74 rnl = -10.0 60.82 rnl
4 Power
= -10.3 608 mW

Mean 546 mW

————
EnergyTrace™ Profile
F5529
Mame Live Delta (%) Reference

4 System
Time 10 sec 10 sec
Energy 110.33 m) = -85 121.92 m)
a Power
Mean 1098 mW I— S35 1215 mW

-14 7.7

Min B34

7-38 MSP430 Design Workshop - Low Power Optimization

Lab 7b — Reducing Power with ULP Advisor, LPM’s and Interrupts

Using Low-Power Mode (LPM3)

Once you've built your program to be interrupt-driven, it's often quite easy to utilize the MSP430
low-power modes.

We chose to use Low-Power Mode 3 (LPM3) because it provides a very low standby power,
keeps ACLK running (which we’re using to clock Timer_A), and makes it easy to return to Active
Mode when an interrupt occurs.

26. Modify lab_07b_lIpm_timer to use LPM3.

H

Control E 29

30.
31.

27.

In the program, you only need to replace __no_operation() with __low_power_mode_3().

I

L] main.c 52
__bis SR register(GIE);

=] T n

while(1) T

// no operation();
__low_power_mode_3();

Wwoeh

[xx]

As we learned during the Chapter 7 discussion:

— Executing the _low_power_mode_3() function changes a few bits in the Status Register
(SR), therefore putting the CPU into LPM3.

— The processor remains in that state until an interrupt occurs.

— Interrupt ISR’s automatically save and restore the SR context; therefore, unless we alter
the normal ISR flow, the CPU will automatically return to LPM3 upon exiting the ISR.

This means, we don’'t need the while(1){} loop anymore, but it doesn’t hurt to leave it there.

Build your code and fix any syntax errors.

. Start the debugger.

. Set your cursor on the __low_power_mode_3() function and then run to that line.

Free Run your code and then Suspend after the EnergyTrace capture duration.

Save the new energy profile as: Lab7b_Ipm

MSP430 Design Workshop - Low Power Optimization 7-39

Lab 7b — Reducing Power with ULP Advisor, LPM’s and Interrupts

32. Compare the current energy profile to your previous one.

Project Energy Profile Time

Lab7b_one_led 10 sec

Lab7b_lpm 10 sec

Which profile uses less power?

Our ‘FR6969 results show another 20% savings in energy by utilizing LPM3; while the
‘F5529 LPM3 results in amost 70% savings.

5962
3 Optional) Viewing ‘FR5969 EnergyTrace++ States

If you are using the “FR5969, try running EnergyTrace++ again with the lab_07b_lIpm_timer

project. The States is now more interesting since you can see the changes in the clocks and CPU
modes.

AP EnergyTrace™ Technology | Power [ue Energy [7 States &2

7-40 MSP430 Design Workshop - Low Power Optimization

Lab 7b — Reducing Power with ULP Advisor, LPM’s and Interrupts

(Optional) Directly Driving the LED from Timer_A

Note: We suggest that you skip this option lab exercise and continue on to Lab 7c. Then, if you
still have time after completing Lab 7c, you can try out this experiment.

Another interesting energy comparison would be a comparison between, effectively, a
comparison between lab_06b_upTimer and lab_06c_timerDirectDrive. In other words, can you
reduce power if you take away the CPU interrupt service routine and let the timer drive the LED
directly.

Rather than provide detailed, step-by-step directions for this optional exercise, we've written
down a few notes and will let you work through the details on your own.

Rough lab exercise procedural
e Import lab_06c_ledDirectDrive_solution.zip into CCS and rename imported
projectto lab_07b_timerDirectDrive.
e As with our previous exercise, change the following two lines of code:
— Comment out code that toggles LED?2 in timer ISR
— Replace __no_operation() function with LPM3 function call.
¢ Build and profile the energy usage

By the way, don't forget to connect LEDL to the timer output pin using a jumper wire. Please
see Lab 6c¢, if you have questions about how to connect the jumper wire.

e Compare to lab_07b_Ipm_timer energy profile results

When we did this, we found that (using the ‘FR5969 Launchpad) the directly driven LED
project took quite a bit more energy ... these results shocked us.

The key to our understanding this was to look at the Power graph differences between the
projects. We noted that the LED for one project consumed a lot more energy than for the
other project.

e Gobackto lab_07b_Ipm_timer and redo that lab exercise driving the other LED. In other
words, we wanted to make sure both labs are driving the same LED to get a better apples-to-
apples comparison.

When we did this, we found that directly driving the LED save a minute amount of energy.

MSP430 Design Workshop - Low Power Optimization 7-41

Lab 7c — Configuring Ports for Lowest Power

Lab 7c — Configuring Ports for Lowest Power

One of the other items ULP Advisor remarked was that our GPIO ports had not been properly
initialized. Referring back to Lab 7b Step 5 (on page 7-34), it's listed as rule ULP 4.1.

[Problems Advice 52

10 items

9

Description Resource

i Optimization Advice (3 items)
4 1 Power (ULP) Advice (7 items)
j =102 » D Netertad oo er o ~ - er e - 4 - han e 1ne |l DAA o ™o P erictar) ~ = L _(O4 =
i #10372-D (ULP 4.1) Detected uninitialized Port A in this project. Recommend initializing all unused ports to elim lab_04c_cry:
#10372-D (ULP 4.1) Detected uninitialized Port B in this project. Recommend initializing all unused ports to elimi lab_04c_crys

o i

i - ey 5 - .

#1527-D (ULP 2.1) Detected SW delay loop using __delay_cycles. Recommend using a timer module instead main.c
£1527-D (ULP 2.1) Detected SW delay loop using empty loop. Recommend using a timer module instead myClocks
#1535-D (ULP 8.1) variable "returnValue" is used as a constant. Recommend declaring variable as either 'static c¢c myClocks

e s e M

Once again, we're going to start with lab_04c_crystals and explore what affect GPIO initialization
might have on our system.

Import and Modify Program

1. Terminate the debugger if it running and close all open projects and files.
2. Open project: lab_04c_crystals_solution

3. Copy the project lab_04c_crystals_solution and rename it lab_07c_initPorts.
a) In CCS Project Explorer, right-click and copy lab_04c_crystals_solution
b) Then right-click and paste it
c) Enter the new name lab_07c_initPorts when CCS requests it

4. Replace the while{} loop with LPM3.

To focus specifically on the affects of GPIO initialization, we suggest removing the code that
blinks the LED - replacing it with a call to __low_power_mode_3().

[£ main.c 22

32

33 // Initialize clocks

34 initClocks();

35

36 _ low_power_mode_3();

37

38// while(1) {

39 // // Turn on LED

a@ [/ GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PING)
a1//

42 /7 /7 Wait about a second

a3z j/ __delay_cycles(HALF_SECOND);

Y

a5 /7 J// Turn off LED

a6 f/ GPIO setOutputLowOnPin(GPIO_PORT_P1l, GPIO_PIN®);
A7 _.."_..'

48 /7 // Wait another second

49/ _delay_cycles(HALF_SECOND };

58

MSP430 Design Workshop - Low Power Optimization

Lab 7c — Configuring Ports for Lowest Power

Capture Baseline Reference

ﬁ I % I 5. Build the project. Once any errors are fixed, launch the debugger.

6. Run the code until you reach the LPM3 function.
Set the cursor on the __low_power_optimization() function and then press Control R I

7. Free Run the program until the EnergyTrace capture has completed. Save the energy
profile as Lab7c_noinit.profxml and record the energy data.

we'll fill in the 2™ and 3" rows of this table in upcoming lab steps.

Capture
Project Energy Profile Duration
Time

Battery Life

Energy (Days)

(W)

Lab7c_noinit

Lab7c _initPortsAsOutputs

Lab7c_initPortsAsinputs

Add GPIO Port Initialization Code

Rather than ask you to type the same functions over and over again, we have already created a
port initialization file for you. The functions were the same ones discussed in Chapter 3, although
we utilized #ifdef statements to allow the same file to be used for most any MSP430 device.

8. Terminate your debug session if it's running.
9. Add three new files to your project.

Right-click on the project — Properties
Add Files..

Navigate to the appropriate directory for you processor:

C:\msp430_workshop\<target\lab_07c_ports

Select the following three files and click Open.

initPortsAsOutputs.c
s

-
initPorts.h %« File Operation
lab_07c_initPorts_readme.txt

When the Copy/Link dialog appears, Select how files should be imported into the project:
select “Copy” and click OK. . i
@ Copy files
You can delete the old readme file,

if you'd like. (1 Link to files

MSP430 Design Workshop - Low Power Optimization 7-43

Lab 7c — Configuring Ports for Lowest Power

10.

11.

Open and examine the initPortsAsOutputs.c function.

Notice that each port, if found for that device, is set so that all of the GPIO pins are set as
outputs in a low state.

Add initPorts() function call to main.c.

While we've added the files to the project, we haven't add the call to the initPorts() function,
yet. Immediately after the Watchdog hold function, add the new function to your program.

// Initialize 1/0 Ports
initPorts(Q;

Make sure you the new initPorts() function comes before the call to initGPIO(). We wrote the
initPorts() function to be a generic initialization routine, whereas the initGPIO() function sets
only the specific GPIO pins we need for our program.

While we could combine these files, it is often useful — especially during development — to
use a baseline initialization routine at the beginning of your program.

Your main() function should now look like this:

[*main.c 2

1 ._." ._." ___
2// main.c (for lab 87c_ports project)

5/ /F*FFF% Header Files
G #include <driverlib.h>

/! Stop watchdog timer
WDT A hold(WDT A BASE);

J# Initialize I/0 Ports
initPorts();

J/ Initialize GPIO
initGPIO();

/4 Initialize clocks
initClocks();

__low _power_mode_3(};

while({1} {
// Turn on LED
GPIO setOutputHighOnPin(GPIO PORT P1, GPIO PIN®)

MSP430 Design Workshop - Low Power Optimization

Lab 7c — Configuring Ports for Lowest Power

15

X

12. Build the project. Once any errors are fixed, launch the debugger.

13. Run the code until you reach the LPM3 function.

pr—

Set the cursor on the __low_power_optimization() function and then press Control R

14. Free Run the program until the EnergyTrace capture has completed. Save the energy
profile as Lab7c_initPortsAsOutputs.profxml and record the energy data.

Fill in the 2™ row of the table found in Step 7 on page 7-43.

Does initializing the I/O ports make much of a difference to energy consumption?

Improve on GPIO Port Initialization

While working on this lab exercise we found that our port initialization routine could be improved
upon. This last part of the exercise quickly examines this.

15. Add one more file to your project: initPorts.c

Follow the same steps as before to add this file — making sure you “Copy” the file into your
project

16. Open and briefly examine initPorts.c.

This file includes the same initPorts() function, although it configures GPIO in a different
mode. Rather than setting the GPIO pins as outputs, how does this new routine configure
them?

17. Exclude from build...

If you were to try and build the project right now, you should get an error. The initPorts()
function is defined twice. Rather than deleting one copy, we suggest that you just exclude
one file from being built.

Right-Click on the file initPortsAsOutputs.c — Exclude From Build
Now, when we click Build, CCS will ignore this file.
18. Build the project. Once any errors are fixed, launch the debugger.

19. Run the code until you reach the LPMS3 function.

pr—

Set the cursor on the __low_power_optimization() function and then press Control R

20. Free Run the program until the EnergyTrace capture has completed. Save the energy
profile as Lab7c_initPortsAslinputs.profxml and record the energy data.

Fill in the 3" row of the table found in Step 7 on page 7-43.

Does initializing the I/O ports as inputs (with a pulldown resistor) make much of a difference?

MSP430 Design Workshop - Low Power Optimization 7-45

Chapter 7 Appendix

Chapter 7 Appendix
Connecting MSP-FET to ‘F5529 USB Launchpad

Using the following two User’s Guide, we determined that you can connect the MSP-FET flash
emulation tool to the MSP-EXP430F5529 Launchpad’s isolation connector.

e MSP-EXP430F5529 Launchpad User's Guide (slau533b.pdf)

e MSP430 Hardware Tools User’s Guide (slau278r.pdf)

Connecting MSP-FET to ‘F5529 Launchpad

1aL/04L

LEDie2® ¥
=

I

017dl goty

o el !

p ¥
* R A
§ #R103

MSP-EXP438F5529LP

7001 DDA

MSP430 Design Workshop - Low Power Optimization

http://www.ti.com/lit/slau533
http://www.ti.com/lit/slau278

Chapter 7 Appendix

MSP430 Hardware Tools User’s Guide (SLAU287r.PDF)
B.36.6 MSP-FET JTAG Target Connector (pg 154)
Table B-40: JTAG Connector Pin State by Operating Mode

MSP-FET to ‘F5529 Launchpad
Summary of Pin Connections

‘F5529 Launchpad

MSP-FET (Isolation Jumper Block)

GND 9 —_- GND JP3

VCC_TOOL 2 —> 3V3 JP2
TDO/TDI 1 SBW_RST JP4.2
TCK 7 SBW_TST JP4.1

MSP-EXP430F5529 Launchpad User's Guide (SLAU533b .PDF)

2.2.7 Emulator and Target Isolation Jumper Block
Table 3: Isolation Block Connections (pg 19)

g -

e ot
BLIG6 JTAG Target Connector
Figurs D52 ihown e piagut of £ JTAG sonnectar

TOOTDI 1 2 VOO TooL

ToweR 3 4 VOC_TARGET
™5 8 & N
oK T & TESTAVERR
N0 0 10 LIART_CTS/SM CLIC SCL
nST 12 LART_TXINGR_SOMM2C S0A
UART_RTS 13 14 UART_RXDASPI_EING

Figpare BLUB. JTAS Earmasion Piesss

MSP430 Hardware Tools User’s Guide (SLAU287r.PDF)
B.36.6 MSP-FET JTAG Target Connector (pg 154)
Table B-40: JTAG Connector Pin State by Operating Mode

User Guide Reference Pages

Y am

o e

otution Jampe: Block

L YRR N Y ——

MSP-EXP430F5529 Launchpad User's Guide (SLAU533b .PDF)

2.2.7 Emulator and Target Isolation Jumper Block
Table 3: Isolation Block Connections (pg 19)

MSP430 Design Workshop - Low Power Optimization

Chapter 7 Appendix

Notes

7-48 MSP430 Design Workshop - Low Power Optimization

Chapter 7 Appendix

Lab 7 Debrief and Solutions
Lab 7a - Worksheet

1. What is the difference between Energy Trace and Energy Trace++7

Both support energy measurement; EnergyTrace++ also

supports tracing CPU and peripheral states

Which devices support Energy Trace++? MSP430FR5xxx devices

2. What hardware options are available that supports Energy Trace?

‘FR5969 Launchpad and any MSP430 connected to MSP-FET

3. How can you calculate energy without Energy Trace? Use a multi-meter to

measure current drawn by CPU multiplied by voltage and time

What is the downside to this method? Not as accurate as EnergyTrace

Lab 7a — Debrief (‘FR59609)

34. How do the two profiles compare?
Add your values to the chart below.
(Hint: You can copy the value for the Lab4a_free_run from step 24 (page 7-16).

Project Energy Profile

Lab4a_free_run 10 sec 62q0 MJ

Lab4c_free_run 10 sec 5‘{’01 MJ

Lab4c

Which version consumed less energy?

Why? The MSP430 clocks in lab_04c_crystals were running

at a lower frequency, which consumes less power

Hint: During the exercise steps for both Lab 4a and 4c we set breakpoints and recorded
the values of three variables. What variables did we track ... and how did they differ
between Lab 4a and Lab 4c?

MSP430 Design Workshop - Low Power Optimization 7-49

Chapter 7 Appendix

34.

Lab 7a — Debrief (‘F5529)

How do the two profiles compare?
Add your values to the chart below.

(Hint: You can copy the value for the Lab4a_free_run from step 24 (page 7-16).

10 sec 11828 MJ
10 sec 121q2 MJ

Very close, but Lab4a is slightly less

Which version consumed less energy?

Why? The two are essentially equal; the differences in clock speed

(4a to 4c) are less than they are for the ‘FR5969 solutions.

Hint: During the exercise steps for both Lab 4a and 4c we set breakpoints and recorded
the values of three variables. What variables did we track ... and how did they differ
between Lab 4a and Lab 4c?

7.

Lab 7b

Complete the table of lab exercises (from Chapters 1 - 7) in this workshop
which combined a timer with blinking an LED?

Lab Exercise Timer Module Used

Watchdog

lab_05b_wdtBlink (Interval Timer mode)

‘F5529: TimerAO

lab_06a_timer ‘FR5969: Timer_A1

‘F5529: TimerAO

lab_06b_upTimer ‘FR5969: Timer_A1

‘F5529: TimerAO
‘FR5969: Timer_A1

5529 TimetAO
FRSF69: Timet_Al

lab_06¢_timerDirectDrivelLed

lab_06d_simplePWM

MSP430 Design Workshop - Low Power Optimization

Chapter 7 Appendix

Lab 7b

19. Record the energy usage for each of these projects.

Project Energy Profile

Lab4c_free_run 10 sec

‘F5529 values are
shown here

12192 nJ

Lab7b_original 10 sec

146,26 nJ

Which project uses more power?

The timer code (Lab7b)

Why would our new project take more power after following the advice from ULP Advisor?

What could account for the extra power it's requiring?

(Hint: Let your lab_07b_Ipm_timer project. Run it again... and watch the LED’s.)

Watching Lab7b run, you might notice that both LEDs are

blinking — whereas in Lab4c, only one is blinking

Lab 7b

32. Compare the current energy profile to your previous one.

Project Energy Profile

Lab7b_one_led 10 sec

‘F5529 values are
shown here

110.33 wJ

Lab7b_Ipm 10 sec

3¢.81 mJ

Which profile uses less power?

Lab7b_lpm is much better

Our ‘FR6969 results show another 20% savings in energy by utilizing LPM3; while the

‘F5529 LPMS3 results in amost 70% savings.

MSP430 Design Workshop - Low Power Optimization

Chapter 7 Appendix

Lab 7¢ (‘FR5969)

7. Free Run the program until the EnergyTrace capture has completed. Save the energy
profile as Lab7¢_noinit. profxml and record the energy data.

We'll fill in the 2™ and 3 rows of this table in an upcoming lab step.

Capture Battery Life

Project Energy Profile Duration (Days)
Time

24.4

Lab7c_noinit

Lab7c _initPortsAsOutputs 10 sec 0.14 1920.4

Lab7c_initPortsAsInputs 10 sec 0.01 24553.6

Steps 13/19 asked if initializing the GPIO (and init as inputs)

made much of a different to energy usage... Absolutely YES!

Lab 7¢ (‘F5529)

7. Free Run the program until the EnergyTrace capture has completed. Save the energy
profile as Lab7c_neinit. prefxml and record the energy data.

We'll fill in the 2™ and 3 rows of this table in an upcoming lab step.

Capture Battery Life

Project Energy Profile Duration (Days)
Time

Lab7c_noinit

Lab7c _initPortsAsOutputs

Lab7c_initPortsAsinputs

Steps 13/19 asked if initializing the GPIO made much of a
different to energy usage... a little bit. On the ‘F5529, though,
no noticeable difference if GPIO was set as outputs or inputs
(unlike the ‘FR5969).

MSP430 Design Workshop - Low Power Optimization

	Low Power Optimization
	Low Power Modes (LPM)
	Low Power Concepts
	Follow the Rules (ULP Advisor™)
	EnergyTrace™
	Lab 7 – Low Power Optimization
	Lab 7a – Getting Started with Low-Power Optimization
	Lab 7b – Reducing Power with ULP Advisor, LPM’s and Interrupts
	Lab 7c – Configuring Ports for Lowest Power

	Chapter 7 Appendix
	Connect MSP-FET to F5529 Launchpad
	Lab Debrief and Solutions

