
Timers

Introduction
Timers are often thought of as the heartbeat of an embedded system.

Whether you need a periodic wake-up call, a one-time delay, or need a means to verify that the
system is running without failure, Timers are the solution.

This chapter begins with a brief summary of the MSP430 Timers. Most of the chapter, though, is
spent digging into the details of the MSP430’s TIMER_A module. Not only does it provide
rudimentary counting/timing features, but provides sophisticated capture and compare features
that allow a variety of complex waveforms – or interrupts – to be generated. In fact, this timer can
even generate PWM (pulse width modulation) signals.

Along the way, we examine the MSP430ware DriverLib code required to setup and utilize
TIMER_A.

As the chapter nears conclusion, there’s a brief summary of the differences between TIMER_A
and TIMER_B. Bottom line, if you know how to use TIMER_A, then you can use TIMER_B; but,
there are a couple of extra features that TIMER_B provides.

Learning Objectives

Objectives

- List the different types of MSP430 timers
- Describe how a basic timer/counter works
- Define the concepts of Capture & Compare
- Explain the nomenclature for Timer_A
- Enumerate the 4 steps to programming Timer_A
- List 3 differences between Timer_A and Timer_B
- Write a program to:

- Generate (and handles) a periodic interrupt
- Generate a simple PWM waveform

MSP430 Workshop - Timers 6 - 1

Prerequisites and Tools

Chapter Topics
Timers .. 6-1

Prerequisites and Tools .. 6-2
Overview of MSP430 Timers .. 6-3

TIMER_A/B Nomenclature .. 6-4
Timer Summary ... 6-5

Timer Basics: How Timers Work ... 6-6
Counter.. 6-6

Frequency, Time-Period, Resolution .. 6-7
Capture.. 6-8
Compare.. 6-9

Timer Details: Configuring TIMER_A .. 6-12
1. Counter: TIMER_A_configure…() .. 6-13

Timer Counting Modes .. 6-14
Summary of Timer Setup Code – Part 1 ... 6-18

2a. Capture: TIMER_A_initCapture() ... 6-19
2b. Compare: TIMER_A_initCompare() ... 6-21

Summary of Timer Setup Code – Part 2 ... 6-23
Output Modes .. 6-24
PWM anyone? ... 6-29

3. Clear Interrupt Flags and TIMER_A_startTimer() ... 6-30
4. Interrupt Code (Vector & ISR) ... 6-31

TIMER_A DriverLib Summary ... 6-32
Differences between Timer’s A and B ... 6-33
Lab Exercise ... 6-35

Prerequisites and Tools
To get full entitlement from this chapter, we expect that you are already familiar with
MSP430ware’s DriverLib as well as MSP430 clocking and interrupts. The “extra” piece of
hardware required for this chapter is a single jumper wire.

6 - 2 MSP430 Workshop - Timers

 Overview of MSP430 Timers

Overview of MSP430 Timers
The MSP430F5529 timers are highlighted in the following block diagram.
• Yellow marks the three instances of the TIMER_A module.
• Pink was used for TIMER_B.
• Dark brown highlights the real-time clock (RTC_A).
• Light brown differentiates the Watchdog timer inside the SYS block

The “Timers in Training” callout box describes where the various timers are discussed in this
workshop. Timers A and B are covered in this chapter. We have already covered the Watchdog
timer in a previous chapter.

The RTC module will be discussed in a future chapter. A brief description of the RTC tells us that
it’s a very low-power clock; has built-in calendar functions; and often includes “alarms” that can
interrupt the CPU. It is frequently used for keeping a time-base while the CPU is in low-power
mode.

Nomenclature is
discussed on the

next page

MSP430 Workshop - Timers 6 - 3

Overview of MSP430 Timers

TIMER_A/B Nomenclature
The nomenclature of the TIMER_A and _B peripherals is a little unusual. First of all, you may
have already noticed that the MSP430 team often adds one of two suffixes to their peripheral
names to indicate when features have been added (or modified).
• Some peripherals, such as the Watchdog Timer go from “WDT” to “WDT+”. That is, they add

a “+” to indicate the peripheral has been updated (usually with additional features).

• Other peripherals are enumerated with letters. For example, three sophisticated MSP430
timers have been introduced: TIMER_A, TIMER_B, and TIMER_D. (What happened to _C?
Even I don’t know that. <ed>)

The use of a suffix is the generic naming convention found on the MSP430. With the timers,
though, there are a couple more naming variations to be discussed.

As we will cover in great detail during this chapter, these timers contain one or more Capture and
Compare Registers (CCR); these are useful for creating sophisticated timings, interrupts and
waveforms. The more CCR registers a timer contains, the more independent waveforms that can
be generated. To this end, the documentation often includes the number of CCR registers when
listing the name of the timer. For example, if TIMER_A on a given device has 5 CCR registers,
they often name it:

Timer_A5

But wait, that’s not all. What happens when a device, such as the ‘F5529 has more than one
instance of TIMER_A? Each of these instances needs to be enumerated as well. This is done by
appending the instance number after the word “Timer”, as in Timer0.

To summarize, here’s the long (and short) names for each of the ‘F5529 TIMER_A modules:

Instance Long Name Short Name

0 Timer0_A5 TA0

1 Timer1_A3 TA1

2 Timer2_A3 TA2

6 - 4 MSP430 Workshop - Timers

 Overview of MSP430 Timers

Timer Summary
The ‘F5529 contains most of the different types of timers found across the MSP430 family; in fact,
the only type of timer not present on this device is the high-resolution TIMER_D.

The following summary provides a snapshot of what timers are found on various MSP430
devices. You’ll find our ‘F5529 and ‘FR5969 devices in the last two columns of the table.

A one-line summary of each type of timer is listed below the table.

MSP430 Timers
L092 G2553 FR4133 F5172 F5529 FR5969

Timer_A 2 x A3 2 x A3 2 x A3 1 x A3 1 x A5
2 x A3

2 x A3
2 x A2*

Timer_B 1 x B7 1 x B7

Timer_D 2 x D3

Real-Time
Clock

RTC
Counter RTC_A RTC_B

Watchdog WDT_A WDT+ WDT_A WDT_A WDT_A WDT_A

Timer_A: ‘A3’ means it has 3 Capture/Compare Registers (used to generate signals & ints)
Timer_B: Same as A, but improves PWM
Timer_D: Same as B, adding hi-res timing
WDT+: Watchdog or Interval Modes; PSW Protected; Can stop; Select Clk; Clk fail-safe
WDT_A: Same as WDT+, but with 8 timer intervals rather than 4
BT1/RTC: Basic timer has 2x8-bit counters (can use as 1x16-bits) with calendar functions
RTC_A: 32-bit counter with a calendar, flexible programmable alarm, and calibration
RTC_B: Same as RTC_A, but adds switchable battery backup in case main-power fails

MSP430 Workshop - Timers 6 - 5

Timer Basics: How Timers Work

Timer Basics: How Timers Work
Before we discuss the details of TIMER_A, let’s begin with a quick overview describing how
timers work. Specifically, we will start by describing how a timer is constructed using a Counter.
Next, we’ll investigate the Capture and Compare capabilities found in many timers.

Counter
A counter is the fundamental hardware element found inside a timer.

The other essential element is a clock input. The counter is incremented each time a clock pulse
is applied to its clock input. Therefore, a 16-bit timer will count from zero (0x0000) up to 64K
(0xFFFF).

When the counter reaches it reaches its maximum value, it overflows – that is, it returns to zero
and starts counting upward again. Most timer peripherals can generate an interrupt when this
overflow event occurs; on TIMER_A, the interrupt flag bit for this event is called TAIFG (TIMER_A
Interrupt Flag).

Timer/Counter Basics

/ounter
Register

15 0

/ounter
Overflow Action
 Interrupt (TAICG)

FFFF

FFFE

FFFD

04

03

02

01 01

Each pulse
of clock input

increments the
counter register

Interrupt occurs when
timer overflows back
to zero

Notes
 Timers are often called “Timer//ounters” as a counter is the essential element
 “Timing” is based on counting inputs from a known clock rate
 Actions don’t occur when writing value to counter

TAR

Can I 'capture' a count/time value?

/lock Input
 /lock
 GtIO tin (TA/LK)

The clock input signal for TIMER_A (named TACLK) can be one of the internal MSP430 clocks or
a signal coming from a GPIO pin.

Many engineers call these peripherals “Timer/Counters” as they provide both sets of functionality.
They can generate interrupts or waveforms at a specific time-base – or could be used to count
external events occurring in your system.

One final note about the MSP430 timers: they do not generate interrupts (or other actions) when
you write to the counter register. For example, writing “0” to the counter won’t generate the TAIFG
interrupt.

6 - 6 MSP430 Workshop - Timers

 Timer Basics: How Timers Work

Frequency, Time-Period, Resolution
The Timer’s ability to create a consistent, periodic interrupt is quite valuable to system designers.
Frequency and Time Period are two terms that are often used to describe the rate of interrupts.
• How many times per second that a timer creates an interrupt defines its Frequency.
• Conversely, the amount of time in-between interrupt events is defined as the Time Period.

Frequency, Time Period, Resolution

 timer interrupt  timer interrupt  timer interrupt

Time teriod

Definitions
 Frequency: How many times per second
 Time teriod: Amount of time between successive events
 Resolution: Granularity in determining system events

With what resolution can
we determine if an

event occurred here?

If a timer only consisted of a single counter, its resolution would be limited to the size of the
counter.

If some event were to happen in a system – say, a user pushed a button – we could only
ascertain if that event occurred within a time period. In other words, we can only determine if it
happened between two interrupts.

Looking at the above diagram, we can see that there is “more data” available – that is, if we were
to read the actual counter value when the event occurred. Actually, we can do this by setting up a
GPIO interrupt; then, having the ISR read the value from the counter register. In this case the
resolution would be better, but it is still limited by:

• It takes more hardware (an extra GPIO pin is needed)

• The CPU has to execute code – this consumes power and processing cycles

• The resolution is less deterministic because it’s based upon the latency of the interrupt
response; in other words, how fast can the CPU get to reading the counter … and how
consistent can this be each time it occurs

There is a better way to implement this in your system … turn the page and let’s examine the
timer’s Capture feature.

MSP430 Workshop - Timers 6 - 7

Timer Basics: How Timers Work

Capture
The Capture feature does just that. When a capture input signal occurs, a snapshot of the
Counter Register is captured; that is, it is copied into a capture register (CCR for Capture and
Compare Register). This is ideal since it solves the problems discussed on the previous page; we
get the timer counter value captured with no latency and very, very little power used (the CPU
isn’t even needed, so it can even remain in low-power mode).

The diagram below builds upon our earlier description of the timer. The top part of the diagram is
the same; you should see the Counter Register flanked by the Clock Input to the left and TAIFG
action to the right.

The bottom portion of the slide is new. In this case, when a Capture Input signal occurs, the value
from the Counter Register is copied to a capture register (i.e. CCR).

Capture/Compare
Register (CCRn)

Counter
Register

15 0TAR

Counter
Overflow Action
 Interrupt (TAIFG)

Capture Input signal triggers
transfer:

Counter → Capture

Notes
 Capture time (i.e. count value) when Capture Input signal occurs
 When capture is triggered, count value is placed in CCR and an interrupt is generated
 Capture Overflow (COV): indicates 2nd capture to CCR before 1st was read

Capture Input
 CCInA
 CCInB
 Software

Capture Actions
 Interrupt (CCIFGn)
 Signal peripheral
 Modify pin (TAx.n)

FMpture BMsics

AlternMtively, use FFR for compMre...

Clock Input
 Clock
 GtIO tin (TACLK)

A few notes about the capture feature:
• As we discussed earlier, the MSP430 timers (TIMER_A, TIMER_B, and TIMER_D)

have multiple CCR registers; check your datasheet to determine how many are available per
timer peripheral. Each CCR, though, has its own capture input signal.

• The Capture Input signal can be connected to a couple of different signals (CCInA, CCInB) or
triggered in software

• The Capture Input hardware signals (CCInA, CCInB) are connected differently for each CCR
register and device. You need to reference the datasheet to verify what options are available
on your specific device.

• When a capture occurs, the CCR can trigger further actions. This “action” signal can generate
an interrupt to the CPU, trigger another peripheral, and/or modify the value of a pin.

6 - 8 MSP430 Workshop - Timers

 Timer Basics: How Timers Work

As we just discussed, the Capture feature provides a deterministic method of capturing the count
value when triggered. While handy, there is another important requirement for timers…

Compare
A key feature for timers is the ability to create a consistent, periodic interrupts.

As we know, TIMER_A can do this, but the timer’s frequency (i.e. time period) is limited to
dividing the input clock by 216. So, while the timer may be consistent, but not very flexible.
Thankfully, the Compare feature of TIMER_A (TIMER_B & TIMER_D) solves this problem.

Compare Basics

Compare Actions
 Interrupt (CCICGn)
 Signal peripheral
 aodify pin (TAx.n)

Capture/Compare
Register (CCRn)

Counter
Register

15 0

Clock Input
 Clock
 GPIO Pin (TACLK)

Counter
Overflow Action
 Interrupt (TAICG)

when Counter = Compare
Compare Actions can occur

Notes
 There are usually 2 to 7 compare registers (CCR’s), therefore

up to 8 interrupts or signals can be generated
 Counter must count-to Compare value to generate action

TAR

Once again, the top portion of this diagram remains the same (Clock Input + Counter Register).

The bottom portion of the diagram differs from the previous diagrams. In this case, rather than
using the CCR register for capture, it’s used as a compare register. In this mode, whenever a
match between the Counter and Compare occurs, a compare action is triggered. The compare
actions include generating an interrupt, signaling another peripheral (e.g. triggering an ADC
conversion), or changing the state of an external pin.

The “modify pin” action is a very powerful capability. Using the timer’s compare feature, we can
create sophisticated PWM waveforms. (Don’t worry, there’s more about this later in the chapter.)

MSP430 Workshop - Timers 6 - 9

Timer Basics: How Timers Work

Timer Summary – showing multiple CCR’s
The following example of a Timer0_A7 provides us a way to summarize the timer’s hardware.

15 0

Example: Timer0_A7

16-bit Counter
(TA0R)

Interrupt
(TA0IFG)

5ivide
by 5-bits

(up to ÷ 64)
Enable
(TA0IE)

CCR0

CCR1

CCR2

CCR3

CCR4

CCR5

CCR6

Remember:
• Timer0 means it’s the first instance of Timer_A on the device.

• _A7 means that it’s a Timer_A device and has 7 capture/compare registers (CCR’s)

• The clock input, in this example, can be driven by a TACLK signal/pin, ACLK, SMCLK or
another internal clock called INCLK.

• The clock input can be further divided down by a 5-bit scalar.

• The TA0IE interrupt enable can be used to allow (or prevent) an interrupt (TA0IFG) from
reaching the CPU whenever the counter (TA0R) rolls over.

6 - 10 MSP430 Workshop - Timers

 Timer Basics: How Timers Work

This next diagram allows us to look more closely at the Capture and Compare functions.

Timer_A7 Summary

 Timer0_A7:
 Is the first instance (Timer0 or TA0) of Timer_A7 on the device
 _A7 means it has 7 Capture/Compare Registers (CCR’s)

 CCR registers can be configured for:
 Compare (set when CAP=0) generates interrupt (CCnIFG) and

modifies OUT signal when TAR = CCRn
 Capture (when CAP=1) grabs the TAR value and sets an interrupt (CCnIFG)

when triggered by the selected CCIx input

15 0

16-bit Counter
(TAR)

Interrupt
(TAIFG)

5ivide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0

CCR6
 CAP=1
 Ca
 SCS
 COV

CC0IFGCC0IE

TA0.0...
CAP=0

CC6IFGCC6IE

TA0.6

Every CCR register has its own control register. Notice above, that the “CAP” bit configures
whether the CCR will be used in capture (CAP=1) or compare mode (CAP=0).

You can also see that each CCR has an interrupt flag, enable, and output signal associated with
it. The output signal can be routed to a pin or a number of other internal peripherals.

As we go through the rest of this chapter, we’ll examine further details of the CCR registers as
well as the various “actions” that the timer generates.

In the next section, we’ll begin examining how to configure the timer using the MSP430ware
DriverLib API.

MSP430 Workshop - Timers 6 - 11

Timer Details: Configuring TIMER_A

Timer Details: Configuring TIMER_A
There are four steps required to get Timer_A working in your system:

1. Configure the main Timer/Counter by programming the TACTL control register.

2. Setup each CCR that is needed for your application. We will examine this step from both the
Capture and Compare perspective.

3. Next, you need to start the timer. (We also listed clearing the timer IFG bits, which is normally
done right before starting the timer.)

4 Steps to Program Timer_A

16-bit Counter (TAR)

CCR0 (TACCR0)
...

Timer_A Ctrl Reg (TACTL)

CCR0 Ctrl Reg (TACCTL0)

CCR6 (TACCR6)
CCR6 Ctrl Reg (TACCTL6)

Timer Setup Code
1. Configure Timer/Counter (TACTL)

 Clocking
 Which Count aode
 Interrupt on TAR rollover?

2. Setup Capture and/or Compare Registers
 Capture (TACCTL):

 Input
 Interrupt on Capture?

 Compare (TACCTL, TACCR):
 Compare-to Value
 Output mode (How output signal

changes at compare (EQU) events)
 Interrupt on Compare?

3. Clear interrupt Flags & Start Timer

Timer Interrupt Service Routine(s)
4. Write 1-2 ISR’s (CCR0, others)

4. Finally, if your timer is generating interrupts, you need to have an associated ISR for each

one. (While interrupts were covered in the last chapter, we briefly summarize this again in context of
the Timer_A.)

We will intermix how to write code for the timer with further examination of the timer’s features.

6 - 12 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

1. Counter: TIMER_A_configure…()
The first step to using TIMER_A is to program the main timer/counter control register. The
MSP430ware Driver Library provides 3 different functions for setting up the main part of the timer:

TIMER_A_configureContinuousMode()
TIMER_A_configureUpMode()
TIMER_A_configureUpDownMode()

We will address the different modes on the next page. For now, let’s choose ‘continuous’ mode
and see how we can configure the timer using the DriverLib function.

15 0

1. Configure Timer/Counter

16-bit /ounter
(TAR)

Interrupt
(TAICG)

5ivide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

Timer_A_init/ontinuousModetaram inittaram = { 0 };
inittaram.clockSource = TIMER_A_/LO/KSOUR/E_A/LK;
inittaram.clockSource5ivider = TIMER_A_/LO/KSOUR/E_5IVI5ER_1;
inittaram.timerInterruptEnable_TAIE = TIMER_A_TAIE_INTERRUtT_ENA.LE;
inittaram.timer/lear = TIMER_A_5O_/LEAR;
inittaram.startTimer = false;

Timer_A_init/ontinuousMode(TIMER_A0_.ASE, &inittaram);

From the diagram, we can see that 3 different hardware choices need to be made for our timer
configuration; the arrows demonstrate how the function parameters relate to these choices. Let’s
look at each parameter one-by-one:
• The first parameter chooses which Timer_A instance you want to program. In our example,

we have chosen to program TA0 (i.e. Timer0_A). Conveniently, the DriverLib documentation
provides enumerations for all the supported choices. (This is the same for all DriverLib
parameters, so we won’t keep repeating this statement. But, this is very handy to know!)

• The 2nd parameter lets you choose which clock source you want to use. We chose SMCLK.

• The next parameter picks one of the provided clock pre-scale values. The h/w lets you
choose from one of 20 different values; we picked ÷ 64.

• Parameter four lets us choose whether to interrupt the processor
when the counter (TA0R) rolls over to zero. This parameter ends up
setting the TA0IE bit.

• Finally, do you want to have the timer counter register (TA0R) reset
when the other parameters are configured?

Remember…
TAR: Timer_A count Register

TA0R: Name for count register
when referring to instance “0”
(i.e. Timer0_A)

MSP430 Workshop - Timers 6 - 13

Timer Details: Configuring TIMER_A

Timer Counting Modes
There are three different ways that the timer counter (TAR) can be incremented. These correlate
to the three configuration functions listed on the previous page. This page provides a single-slide
summary of the different modes – but we’ll examine each one over the following three pages.

Timer_A_initContinuousModeParam initParam = { 0 };
initParam.clockSource = TIMER_A_CLOCKSOURCE_ACLK;
initParam.clockSourceDivider = TIMER_A_CLOCKSOURCE_DIVIDER_1;
initParam.timerInterruptEnable_TAIE = TIMER_A_TAIE_INTERRUPT_ENABLE;
initParam.timerClear = TIMER_A_DO_CLEAR;
initParam.startTimer = false;

Timer_A_initContinuousMode(TIMER_A0_BASE, &initParam);

1D 0

1B Configure TimerCCounPer

16-bit Counter
(TAR)

Interrupt
(TAICG)

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

TOere Mre 4 differenP counP modes ...

Timer Counting Modes Summary

CCR0 is special !!!

6 - 14 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

Continuous Mode
Thus far we have described the timer’s counter operating in the Continuous mode; in fact, this
was the configuration example we just discussed.

TAR in Continuous Mode
16-bit Counter

(TAR) TA0ICG
Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

Interrupt

FFFFh

0h

TA0ICG TA0ICG

 Continuous mode
TAR runs full range of
16-bit counter

 INT occurs at count to 0
TAR must transition to
zero – it won’t happen
if you write 0 to TAR

TIMER_A_configureContinuousMode();

What differs with Up mode?

The different counting modes describe how the timer counter register (TAR) is incremented or
decremented. For example, in Continuous mode, the timer counts from 0x0 up to 0xFFF and then
rolls back to 0x0, where it begins counting up again. (This is shown in the diagram above.)

As you can see, every time the counter rolls back to zero, the TAIFG bit gets set; which, if
enabled, interrupts the processor every 216 input clocks. (Since our previous example was for
Timer0_A, the diagram shows TA0IFG getting set.)

MSP430 Workshop - Timers 6 - 15

Timer Details: Configuring TIMER_A

Up Mode
The Up counting mode differs from the Continuous mode by resetting back to zero whenever the
counter matches CCR0 (Capture and Compare Register 0).

You can see the different waveforms compared on the slide below. The green waveform
counts Up to the value found in CCR0, and then resets back to zero.

On the other hand, the grey dotted waveform shows how, when in Continuous mode, the counter
goes past CCR0 and all the way to 0xFFFF.

TAR in UP Mode
16-bit Counter

(TAR) TA0IFG
Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0 CC0IFGCC0IE

Interrupts

FFFFh

CCR0

0h

 UP mode
Ints at ‘custom’ (higher)
frequencies

 Both interrupts are
generated 1-cycle apart
 CC0IFG when TAR = CCR0
 TA0IFG when TAR0h

 CCR0 is special CCR
hnly CCR0 affects TAR’s
count in this way

 CCR0 is a dedicated IFG,
the rest are grouped

CC0IFG
TA0IFG

CC0IFG
TA0IFG

Timer_A_initUpMode();

In Up mode, since we are using the CCR0 register, the timer can actually generate two interrupts:
• CC0IFG (for Timer0_A, this bit is actually called TA0CC0IFG)

• TAIFG (for Timer0_A, this bit is called TA0IFG)

You’re not seeing a color misprint; the two interrupts do not happen at the exact same time, but
rather 1 cycle apart. The CC0IFG occurs when there is a compare match, while the TA0IFG
interrupt occurs once the counter goes back to zero.

If you compare these two Up mode interrupts to the one generated in the Continuous mode, you’ll
see they occur at a more rapid frequency. This is a big advantage of the Up mode; your
frequency is not limited to 216 counts, but rather can be anywhere within the 16-bit counter’s
range. (The downside is that you also have to configure the CCR0 registers.)

Note: The CCR0 (Capture and Control Register 0) is special. That is, it is special in comparison to the
other CCR registers. It is only CCR0 that can be used to define the upper limit of the counter in Up
(or UpDown) count mode.

The other special feature of CCR0 is that it provides a dedicated interrupt (CC0IFG). In other
words, there is an Interrupt Vector location dedicated to CC0IFG. All the other Timer_A interrupts
share a common vector location (i.e. they make up a grouped interrupt).

6 - 16 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

Up/Down Mode
The UpDown count mode is similar to Up in that the counter only reaches the value in CCR0
before changing. In this case, though, it actually changes direction and starts counting down
rather than resetting immediately back to zero.

Not only does this double the time period (i.e. half the timer’s frequency), but it also spreads out
the two interrupts. Notice how CC0IFG occurs at the peak of the waveform, while TAIFG occurs
at the base of the waveform.

16-bit Counter
(TAR) TAIFG

Divide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0 CC0IFGCC0IE

Interrupts

FFFFh

CCR0

0h

TAR in UPCGOWN Mode

 UP/DhWN mode
TAR counts up & down

 2x period of UP mode
i.e. half the interrupts

 Remembers count dir
If TAR stopped then
started, it keeps going
in same direction TA0IFG

TIMER_A_iniPUpDownMode();

CC0IFG CC0IFG

In our diagram we show all three counter mode waveforms. The UpDown mode is shown in red;
Up is shown in green; and the Continuous mode is shown in grey.

.

 Which Count Mode Should I Use?
When using TIMER_A (or TIMER_B), you have a choice as to which counter mode to use. Here are
some things to keep in mind.
• Using Continuous mode doesn’t “tie up” your CCR0 register. It also means you don’t have

program the CCR0 register.

• Up mode allows you better control the timer’s frequency – that is, you can now control the time
period for when the counter resets back to zero.

• On the other hand, the UpDown mode not only lets you control the frequency better, but it also
allows for lower frequencies – since it effectively halves the frequency of the Up mode.

• Two more considerations of UpDown mode are:
− The two interrupts are spaced at ½ the time period from each other.
− When using multiple CCR registers, you can get two compare interrupts per cycle. (We’ll see more on this later.)

MSP430 Workshop - Timers 6 - 17

Timer Details: Configuring TIMER_A

Summary of Timer Setup Code – Part 1
Let’s summarize Part 1 of the timer setup code – which configures the timer’s count options. First
of all, as you can see below, we chose to place our timer setup code into its own function.
Obviously, this is not a requirement, but it’s how we wanted to organize our code examples.

Timer Code Example (Part 1)
#include <driverlib.h>

void main(void) {
// Setup/Hold Watchdog Timer (WDT+ or WDT_A)
initWatchdog();

// Configure GPIO ports/pins
initGPIO();

// Setup Clocking: ACLK, SMCLK, MCLK (BCS+, UCS, or CS)
initClocks();

//--
// Then, configure any other required peripherals and GPIO
initTimers();

__bis_SR_register(GIE);

while(1) {
...
}

Our earlier example for the Timer/Counter setup code demonstrated using the Continuous mode.
The following example shows using the Up mode. Here’s a quick comparison between the two
functions – notice that the Up mode requires two additional parameters.

Parameter ContinuousMode Function UpMode Function
Which Timer? TIMER_A0_BASE
Clock Source TIMER_A_CLOCKSOURCE_SMCLK
Clock Pre-scaler TIMER_A_CLOCKSOURCE_DIVDER_xx
Timer Period Not applicable Used to set the CCR0 value
Enable the TAIE interrupt? TIMER_A_TAIE_INTERRUPT_xxxxxx
Enable the CCR0 interrupt? Not applicable Used to set TA0CC0IFG
Clear the counter (TAR) ? TIMER_A_DO_CLEAR

6 - 18 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

2a. Capture: TIMER_A_initCapture()
Before we try writing the code to setup a CCR register for Capture, let’s first examine the timer’s
hardware options.
• Most importantly, when wanting to use the Capture features, you need to set CAP = 1.

• The CM bit indicates which clock edge to use for the capture input signal.

• Do you want the capture input signal sync’d with the clock input? If so, that’s what SCS is for.

• While you don’t configure COV, this bit indicates if a capture overflow occurred. In other
words, did a 2nd capture occur before you read the captured value from the CCR register?

• Finally, you can select what hardware signal you want to have “trigger” the capture.

15 0

Timer_A7: Capture Mode

16-bit Counter
(TAR)

Interrupt
(TAICG)

5ivide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0

CCR1

CCR2

CCR3

CCR4

CCR5

CCR6

 Capture or Compare (CAt)
CAt=1 for capture

 Which Edge (Ca)
Rising, Calling, or Both

 Sync’d to Clock (SCS)
Is capture sync or async?

 Capture Overflow (COV)
5id you miss a capture?

 CAt=1
 Ca
 SCS
 COV

Interrupt
(CC6ICG)CC6IE

Hint: Each CCR can be configured independently. The flip side to this is that you must
configure each one that you want to use; this might involve calling the ‘capture’ and/or
‘compare’ configuration functions multiple times.

Use one for capture and the rest for compare. Or, use all for capture. You get to decide
how they are used.

Warning: If you are using Up or UpDown count modes, you should not configure CCR0. Just
remember that the TIMER_A_configureUpMode() and TIMER_A_configureUpDownMode()
configuration functions handle this for you.

MSP430 Workshop - Timers 6 - 19

Timer Details: Configuring TIMER_A

Capture Code Example
With the Capture mode details in mind, let’s examine the code.

To configure a CCR register for Capture mode, use the TIMER_A_initCapture() function.
Thankfully, when using DriverLib the code is pretty easy to read (and maintain). Hopefully
between the diagram and the following table, you can make sense of the parameters.

Example’s Parameter Value What is Parameter For? Value

TIMER_A0_BASE Which timer are you using? TA0

TIMER_A_CAPTURECOMPARE_REGISTER_6 Which CCR is being configured? CCR6

TIMER_A_CAPTUREMODE_RISING_EDGE Which edge of the capture signal are you using? Rising

TIMER_A_CAPTURE_INPUTSELECT_CCIxA The signal used to trigger the capture CCIn6A

TIMER_A_CAPTURE_ASYNCHRONOUS Sync the signal to the input clock? No, don’t sync

TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE Enable the CCR interrupt? CC6IE = 1

TIMER_A_OUTPUTMODE_OUTBITVALUE How should the output signal be handled? OUTMOD=0x0

We’ve briefly talked about every feature (i.e. function parameter) found in this function except
OutputMode. The “OUTBITVALUE” (for CCR6) indicates that the value of CCR6’s IFG bit should
be output to CCR6’s Output signal. The output signal can be used by other peripherals or routed
to the TA0.6 pin.

Note: With regards to OutputMode, this is just the tip-of-the-iceberg. There are actually 8
possible output mode settings. We will take you through them later in the chapter.

6 - 20 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

2b. Compare: TIMER_A_initCompare()
The other use of CCR is for comparisons to the main timer/counter (TAR).

Timer_A7: Compare Mode
15 0

16-bit Counter
(TAR)

Interrupt
(TAICG)

5ivide
by 5-bits

(up to ÷ 64)
Enable

(TAIE)

CCR0

CCR1

CCR2

CCR3

CCR4

CCR5

CCR6

CAP=0
OUT

(TA0.2)

Interrupt
(CC2ICG)

Enable
(CC2IE)

OUT
(TA0.2)

 CAP=0 (Capture off)
Compare mode on

 If CCR2 = TAR (named EQU2):
 Interrupt occurs (if enabled)
 OUT is set/reset/toggled

 OUT can be:
 Connected to pin (TA0.2)
 Routed to peripherals
 OUT bit can be polled I

 aany OUT signal options
5iscussed later in the chapter

Once again, before we walk through the function that initializes CCR for Compare, let’s examine
its options:
• Set CAP=0 for the CCR to be configured for Compare Mode. (Opposite from earlier.)

• You must set the CCR2 register to a 16-bit value. When TAR = CCR2:

− An internal signal called EQU2 is set.

− If enabled, EQU2 drives the interrupt flag high (CC2IFG).

− Similar to the Capture mode, the CCR’s output signal is modified by EQU2. Again, this
signal is available to other internal peripherals and/or routed to a pin (in this case, TA0.2).

− Again, similar to the Capture mode, there are a variety of possible output modes for the
OUT2 signal (which will be discussed shortly).

MSP430 Workshop - Timers 6 - 21

Timer Details: Configuring TIMER_A

Compare Code Example
Let’s look at the code required to setup CCR2 for use in a Compare operation.

One thing you might notice about the TIMER_A_initCompare() function is that it requires fewer
parameters than the complementary initCompare function.

Example’s Parameter Value What is Parameter For? Value

TIMER_A0_BASE Which timer are you using? TA0

TIMER_A_CAPTURECOMPARE_REGISTER_2 Which CCR is being configured? CCR2

TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE Enable the CCR interrupt? CC2IE = 1

TIMER_A_OUTPUTMODE_SET_RESET How should the output signal be handled? OUTMOD=0x3

0xBEEF What ‘compare’ value will be written to CCR2? CCR2 = 0xBEEF

The OutputMode setting will be configured using the “Set/Reset” mode (which correlates to the
value 0x3). Once again, with so many different output mode choices, we’ll defer the full
explanation of this until the next topic.

6 - 22 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

Summary of Timer Setup Code – Part 2
Here’s a summary of the timer setup code we have looked at thus far.

Timer Code Example (Part 2 - Compare)
#include <driverlib.h>

void initTimerA0(void) {
// Setup TimerA0 in Up mode with CCR2 compare
TIMER_A_configureUpMode(TIMER_A0_BASE,

TIMER_A_CLOCKSOURCE_SMCLK,
TIMER_A_CLOCKSOURCE_DIVIDER_1,
TIMER_PERIOD,
TIMER_A_TAIE_INTERRUPT_ENABLE,
TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE,
TIMER_A_DO_CLEAR);

TIMER_A_initCompare(TIMER_A0_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_2,
TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMER_A_OUTPUTMODE_SET_RESET,
0xBEEF // Compare Value

);

}

1

2

Old API – Slide will be updated on next workshop revison

Part 1 of our code configures the timer/counter; i.e. the main element of Timer_A.

Part 2 configures the various Capture/Compare registers (CCR). Due to limited space on the slide
we have only included the initCompare function for CCR2. In a real application, you might use all
of the CCR registers – in which case, our initTimerA0() function would become a lot longer.

Before we move onto Part 3 of our timer configuration code, let’s spend a few pages explaining
the 8 different output mode options available when configuring Capture/Compare Registers.

MSP430 Workshop - Timers 6 - 23

Timer Details: Configuring TIMER_A

Output Modes
As you may have already seen, each CCR register has its own associated pin. For CCR1 on
Timer0 this pin would be named “TA0.1”. Depending upon which mode you put the CCR into; this
pin can be used as an input (for Capture) or an output (for either Capture or Compare).

When the pin is used as an output, its value is determined by the OUT bit-field in its control
register. The exact details for this are TA0.1 = TA0CCTL1.OUT. (Sometimes you’ll just see this
OUT bit abbreviated as OUT1.)

Besides routing the CCR OUT signal to a pin, it can also be used by other MSP430 peripherals.
For example, on some devices the A/D converter could be triggered by the timer directly.

So, what is the value of OUT for any given CCR register?
The value of OUT is determined by the OutputMode, as we discussed earlier. (Each CCR control
register has its own OUTMOD bit-field). This setting tells the OUT bit how to react as each
compare or capture occurs. As previously stated, there are 8 different OutputMode choices.

For example, setting OUTMOD = 0 mean it’s not changed by the timer’s hardware. That is, it’s
under software control. You can set OUT to whatever you like by writing to it in the CCRx control
register.

What happens to OUT when OUTMOD = 1 (“Set” mode)?

Timer CCR (Compare) Output Mode 01

Output
aode

(CCRn.OUTaOD)

01 Set

Note: Interrupts don’t vary
with OUTaOD, only the
OUTput signal changes

Output aode 1
 OUTaOD = 01 is called “Set”
 This means that OUT (e.g. TA0.1) is

set on EQU1
 That is, whenever TAR=CCR1

 Each CCR has it’s own
signal (e.g. TA0.1)
 Input for capture (CCI)
 Output for compare (OUT)

 Used as output, the value
in register bit CCRn.OUT is
routed to TA0.n

 Value of OUT is affected
by Output aode
(CCRn.OUTaOD) as described
over the next few slides

 If OUTaOD=0, then OUT bit
(and hence the signal) is under
software control

As we can see from the diagram above, when the timer/counter (TAR) counts up to the value in
CCR1 (i.e. TAR = CCR1), then a valid comparison is true.

The enumeration for OUTMOD = 1 is called “Set”; whenever TAR=CCR1, then OUT will be “Set”
(i.e. OUT = 1). In fact, OUT will remain = 1 until the CCR is reconfigured.

Why use “Set” mode? You might find this mode useful in creating a one-shot type of signal.

6 - 24 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

EQU
Before we examine OutputMode 2, let’s consider the nomenclature used in the MSP430 User’s
Guide.

Apparently, there is an EQU (equate) signal inside the timer for each CCR. For example, the
equate signal for CCR1 would be called EQU1. While these EQU values cannot be read directly
from any of the timer control registers, the documentation makes use of them to describe when a
comparison becomes true.

Therefore, when the timer counter (TAR) becomes equal to a compare register (CCR), the
associated EQU signal becomes true.

This can be seen in the following diagram captured from the TIMER_A documentation. Notice
how EQU0 becomes true when TAR=CCR0; likewise, EQU1 becomes true when TAR=CCR1.

MSP430 Workshop - Timers 6 - 25

Timer Details: Configuring TIMER_A

OUTMOD = 2 (“Toggle/Reset” mode)
OutputMode 2 is a bit more interesting than the previous output modes. Notice how this mode is
called “Toggle/Reset”. Each of these names corresponds to a different event.
• Toggle - This means that OUTn should be toggled whenever TAR=CCRn

• Reset - This implies that OUT=0 (i.e. reset) whenever TAR=CCR0

In other words, when the OutputModes are defined by two names, the first one dictates the value
of OUTn whenever the TAR=CCRn (i.e. whenever EQUn becomes true). The second name
describes what happens to OUTn whenever TAR=CCR0.

Note: Remember what we said earlier, CCR0 is often used in a special way. This is another
example of how CCR0 behaves differently than the rest of the CCR’s.

Looking at the diagram below, we can see that in OutputMode 2, the OUT1 signal appears to be
a pulse whose duty cycle (i.e. width) is proportional to the difference between CCR0 and CCR1.

01 Set

02 Toggle/
Reset

Timer CCR (Compare) Output Mode 02

Output
aode

(CCRn.OUTaOD)

 OUT is actually affected
by two events:
 EQUn : when TAR=CCRn
 EQU0 : when TAR=CCR0

 In other words, the two
events are CCRnICG and
CCR0ICG, respectively

 Output aode 02 is called:

 As stated earlier, CCR0 is special
It affects all other CCR compare
outputs in this same way

 Note: In this example, EQU0 and
TAICG happen at the same time;
but TAICG does not affect OUT

Toggle Reset

on EQUn

on CCR0

Output aode 2
 OUTaOD = 02 is called “Toggle/Reset”
 This means that OUT (e.g. TA0.1) is

Toggled upon EQU1
 And Reset on EQU0 (i.e. CCR0 match)

Putting tOis out on a GPIO pin ...

By showing both OUTMOD=1 and OUTMOD=2 in the same diagram, you can see how the value
of OUTn can be very different depending upon the OutputMode selected.

6 - 26 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

Routing the OUT signal to a pin, as shown here, lets us drive external hardware directly from the
output of the timer. (In fact, we’ll use this feature to let the timer directly drive an LED during one
of the upcoming lab exercises.)

02 Toggle/
Reset

Timer CCR (Compare) Output Mode 02

Output
aode

(CCRn.OUTaOD)

 OUT is actually affected
by two events:
 EQUn : when TAR=CCRn
 EQU0 : when TAR=CCR0

 In other words, the two
events are CCRnICG and
CCR0ICG, respectively

 Output aode 02 is called:
Toggle/Reset

Here’s an example of routine TA0.2 (i.e. OUT2) to a GtIO pin:

 Completely automatic
 Independent frequencies with different

duty cycles can be generated for each CCR

Iooking at all tOe Output Modes…

MSP430 Workshop - Timers 6 - 27

Timer Details: Configuring TIMER_A

Summary of Output Modes
While we have only studied a couple of the output modes, we hope you will be able to decipher
the remaining modes based on their names. Here is a comparison of all the different OUTput
waveforms based upon the value of OUTMOD.

Capture “Output Modes” Summary

Output
aode

(CCRn.OUTaOD)

01 Set

02 Toggle/
Reset

03 Set/
Reset

04 Toggle

05 Reset

06 Toggle/
Set

07 Reset/
Set

 Use different OUTaOD
settings to create
various signal patterns

 Output modes 2, 3, 6,
and 7 are not useful for
output unit 0 because
EQUn = EQU0

 This summary is for the “Ut”
mode. User’s Guide has similar
diagrams for Continuous and
UpDown counter modes

Do tOese look like PWM signals?
Here's a simple PWM example...

 Point of Clarification – Only use modes 1, 4, and 5 for CCR0
The second bullet, in the diagram above, states that four of the Output Modes (2, 3, 6, and 7)
are not useful when you are working with CCR0.

Why are they not useful?

All four of these OutputModes include two actions:
• One action when: CCRn=TAR

• A second action when: CCR0=TAR

In this case, though, CCRn = CCR0. That means these modes could be trying to change OUT0
in two different ways at the same time.

Bottom Line: When using CCR0, only set OUTMOD to 0, 1, 4, or 5.

6 - 28 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

PWM anyone?
PWM, or pulse-width modulation, is commonly used to control the amount of energy going into a
system. For example, by making the pulse widths longer, more energy is supplied to the system.

Looking again at the previous example where OUTMOD = 2, we can see that by changing the
difference between the values of CCR0 and CCRn we can set the width of OUTn.

PWM Signals – Up to one per CCR
0xCCCC

TA0CCR0

TA0CCR1

TA0CCR2

0x0

OUT1

 Duty cycle (“on” time) is set by selecting Output aode and varying CCRx value
 In this example, CCR0 – CCR1 = amount of time Signal is High

CCR0 sets the time period

CCRn sets duty cycle

In the case of the MSP430, any timer can generate a PWM waveform by configuring the CCR
registers appropriately. In fact, if you are using a Timer_A5, you could output 4 or 5 different
PWM waveforms.

PWM Signals – Up to one per CCR
0xCCCC

TA0CCR0

TA0CCR1

TA0CCR2

0x0

OUT1

OUT2

 Duty cycle (“on” time) is set by selecting Output aode and varying CCRx value
 In this example, CCR0 – CCR1 = amount of time Signal is High

MSP430 Workshop - Timers 6 - 29

Timer Details: Configuring TIMER_A

3. Clear Interrupt Flags and TIMER_A_startTimer()
Part 3 of our timer configuration code is for clearing the interrupt flags and starting the timer.

As described earlier in the workshop, you are not required to clear interrupt flags before enabling
an interrupt, but once again, this is common practice. In Part 3 of the example below, we first
clear the Timer flag (TA0IFG) using the function call provided by DriverLib. Then, we clear all the
CCR interrupts using a single function; notice that the “+” operator tells the function that we want
to clear both of these IFG bits.

Timer Code Ex. (Part 3 – Clear IFG’s/Start)
#include <driverlib.h>

void initTimerA0(void) {
// Setup TimerA0 in Up mode with CCR2 Compare
TIMER_A_configureUpMode(TIMER_A0_BASE,

TIMER_A_CLOCKSOURCE_SMCLK,
TIMER_A_CLOCKSOURCE_DIVIDER_1,
TIMER_PERIOD,
TIMER_A_TAIE_INTERRUPT_ENABLE,
TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE,
TIMER_A_DO_CLEAR);

TIMER_A_initCompare(TIMER_A0_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_2,
TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE,
TIMER_A_OUTPUTMODE_SET_RESET,
0xBEEF); // Compare Value

TIMER_A_clearTimerInterruptFlag(
TIMER_A0_BASE);

TIMER_A_clearCaptureCompareInterruptFlag(
TIMER_A0_BASE,
TIMER_A_CAPTURECOMPARE_REGISTER_0 +
TIMER_A_CAPTURECOMPARE_REGISTER_2);

TIMER_A_startCounter(TIMER_A0_BASE,
TIMER_A_UP_MODE); //Make sure this

} // matches config fxn

1

2

3
Old API – Slide will be updated on next workshop revison

We conclude the code for Part 3 by starting the timer. The start function only has two parameters:
• It’s probably obvious that you need to specify which timer that needs to be started.

• The other parameter specifies, once again, the count mode for the timer’s counter.

Warning!
Did we get your attention? The timer “start” function ended up being one of the biggest problems
during the development of this workshop.

As dumb as it sounds, we missed the fact that you need to set the counter mode (e.g. “UP”) in this
function. When we cut/pasted this function from another example, we never thought to change this
parameter.

Why, because we thought it had already been specified by using the TIMER_A_configureUpMode()
function. Well, we found out the hard way that you need to do both. Use the correct function AND
specify the correct count mode in the start function.

6 - 30 MSP430 Workshop - Timers

 Timer Details: Configuring TIMER_A

4. Interrupt Code (Vector & ISR)
The last part of our timer code is actually a review since interrupts were covered, in detail, in a
previous workshop chapter.

Remember, TIMER_A has two interrupt vectors: one dedicated to CCR0; another shared by
TAIFG and all the other CCR’s. Below, we provide a simple example of handling both.

Timer Code Example (Part 4 – ISR’s)
#pragma vector=TIMER0_A0_VECTOR
__interrupt void myISR_TA0_CCR0(void) {

GPIO_toggleOutputOnPin(...);
}

#pragma vector=TIMER0_A1_VECTOR
__interrupt void myISR_TA0_Other(void) {

switch(__even_in_range(TA0IV, 10)) {
case 0x00: break; // None
case 0x02: break; // CCR1 IFG
case 0x04: // CCR2 IFG

GPIO_toggleOutputOnPin(…);
break;

case 0x06: break; // CCR3 IFG
case 0x08: break; // CCR4 IFG
case 0x0A: break; // CCR5 IFG
case 0x0C: break; // CCR6 IFG
case 0x0E: // TA0IFG

GPIO_toggleOutputOnPin(…);
break;

default: _never_executed();
}

}

4

//w0
I{w

I{w for
//w2

and TA0ICG

MSP430 Workshop - Timers 6 - 31

TIMER_A DriverLib Summary

TIMER_A DriverLib Summary
This diagram attempts to summarize the functions found in the TIMER_A module of the
MSP430ware Driver Library.

Many of the functions have arrows pointed to/from the three main parts of the timer peripheral:
TAR (the main timer/counter); CCR (used for Compare); and CCR (used for Capture). The arrows
indicate whether the function reads or writes the associated registers.

MSP430ware TIMER_A Summary
TIaEw_A_configureContinuousaode()

TIaEw_A_configureUpaode()
TIaEw_A_configureUpDownaode()

16-bit Counter
(TAw)

CCw0

CCw6

...

Timer_A Ctrl weg

CCw0 Ctrl weg

CCw6 Ctrl wegTIaEw_A_initCapture()

TIaEw_A_startCounter()
TIaEw_A_clear()
TIaEw_A_stop()

aISC Functions
TIaEw_A_getSynchronizedCaptureCompareInput()
TIaEw_A_getOutputForOutputaodeOut.itValue()
TIaEw_A_setOutputForOutputaodeOut.itValue()

TIaEw_A_getCounterValue()

TIaEw_A_initCompare()
TIaEw_A_setCompareValue

TIaEw_A_getCaptureCompareCount()

Interrupt Functions
TIaEw_A_enableInterrupt()
TIaEw_A_disableInterrupt()
TIaEw_A_getInterruptStatus()
TIaEw_A_enableCaptureCompareInterrupt()
TIaEw_A_disableCaptureCompareInterrupt()
TIaEw_A_getCaptureCompareInterruptStatus()
TIaEw_A_clearCaptureCompareInterruptFlag()
TIaEw_A_clearTimerInterruptFlag()

TIaEw_A_generatePWa()

Old API – Slide will be updaPed on nexP worksOop revison

The bottom of the slide contains two boxes: one summarizes the Interrupt related functions while
the other contains three functions that read/write the input and output bit values.

6 - 32 MSP430 Workshop - Timers

 Differences between Timer’s A and B

Differences between Timer’s A and B
The Timer_A and Timer_B peripherals are very similar. The following slide highlights the few
differences between them.

Timer_A vs Timer_B

 “Sampling Mode” acts like a digital sample & hold
 Timer_A can latch CCI input (to SCCI) upon compare
 Makes it easy to implement software UART’s
 Timer_B cannot latch CCI directly, but most devices with Timer_B have dedicated

communication peripherals

Timer_A specific feMtures

 Compare (CCRx) registers are double-buffered & can be updated in groups
 treserves tWM “dead time” between driving complementary outputs (H-bridge)
 More care is needed when implementing edge-aligned tWM with Timer_A

 TBR configurable for 8, 10, 12 or 16-bits counter (default is 16-bits)
 trovides range of periods when used in ‘Continuous’ mode

 Tri-state function from external pin
 External TBOUTH pins puts all Timer_B pins into high-impedance
 With Timer_A, you would need to reconfigure pins in software

Timer_B specific feMtures

 Timer_B’s default functionality is identical to Timer_A
 Names are (almost) the same: TAR → TBR, TA0CTL → TB0CTL, etc.

SimilMrities

Hint: For a more complete understanding of these differences, we highly recommend that you
refer to MSP430 Microcontroller Basics. John Davies does a great job of describing the
differences between these timers. Furthermore, his discussion of generating PWM
waveforms using these timers is extremely good. If you’ve never heard of the differences
between edge-aligned and centered PWM waveforms, check out his MSP430 book.

MSP430 Microcontroller Basics by John H. Davies, (ISBN-10 0750682760) Link

MSP430 Workshop - Timers 6 - 33

http://www.amazon.com/MSP430-Microcontroller-Basics-John-Davies/dp/0750682760
http://www.amazon.com/MSP430-Microcontroller-Basics-John-Davies/dp/0750682760

Differences between Timer’s A and B

Notes

6 - 34 MSP430 Workshop - Timers

 Lab 6 – Using Timer_A

Lab 6 – Using Timer_A

Note: The solutions exist for all of these exercises, but the instructions for Lab 6d are not yet
included. These will appear in a future version of the course.

MSP430 Workshop - Timers 6 - 35

Lab 6 – Using Timer_A

Lab Topics
Timers .. 6-33

Lab 6 – Using Timer_A ... 6-35
Lab 6a – Simple Timer Interrupt ... 6-37

Lab 6a Worksheet ... 6-37
Lab 6a Procedure .. 6-42
Edit myTimers.c .. 6-43
Debug/Run .. 6-44

(Extra Credit) Lab 6b – Timer using Up Mode .. 6-45
Lab 6b Worksheet ... 6-45
File Management .. 6-48
Change the Timer Setup Code ... 6-49
Debug/Run .. 6-49
Archive the Project .. 6-50
Timer_B (Optional) ... 6-51

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer .. 6-52
Lab 6c Abstract ... 6-52
Lab 6c Worksheet ... 6-53
File Management .. 6-57
Change the GPIO Setup ... 6-57
Change the Timer Setup Code ... 6-58
Debug/Run .. 6-59
(Optional) Lab 6c – Portable HAL .. 6-63

(Optional) Lab 6d – Simple PWM (Pulse Width Modulation) .. 6-64
Chapter 6 Appendix .. 6-65

6 - 36 MSP430 Workshop - Timers

 Lab 6a – Simple Timer Interrupt

Lab 6a – Simple Timer Interrupt
Similarly to lab_05a_buttonInterrupt, we want to toggle an LED based upon an interrupt. In
this case, though, we'll use TIMER_A to generate an interrupt; during the interrupt service
routine, we'll toggle the GPIO value that drives an LED on our Launchpad board.

As we write the ISR code, you should see that TIMER_A has two interrupts:
− One is dedicated to CCR0 (capture and compare register 0).
− The second handles all the other timer interrupts

This first TIMER_A lab will use the main timer/counter rollover interrupt (called TA0IFG). As with
our previous interrupt lab (with GPIO ports), this ISR should read the TimerA0 IV register (TA0IV)
and decipher the correct response using a switch/case statement.

Lab 6a Worksheet
Goal: Write a function setting up Timer_A to generate an interrupt every two seconds.

1. How many clock cycles does it take for a 16-bit counter to ‘rollover’? (Hint: 16-bits)

 __

2. Our goal is to generate a two second interrupt rate based on the timer clock input
diagramed above.

 Using myClocks.c provided for this lab, we created a table of example clock & timer rates:

15 0

16-bit /ounter
(TAR)

5ivide
by 5-bits

(up to ÷ 64)

Input
Clock

Timer
Clock

Input /lock Timer /lock Timer Rate
Source Crequency 5ivider Resolution Crequency teriod

SM/LK 8 MIz 1 ⅛ ms 122 Iz 8 ms

SM/LK 8 MIz 8 1 ms 15 Iz 66 ms

A/LK 32 KIz 2 62 ms ½ Iz 4 s

A/LK 32 KIz 8 240 ms ⅟16 Iz 16 s

Timer
Rate

 Pick a source clock for the timer. (Hint: At 2 seconds, a slow clock might work best.)

Clock input (circle one): ACLK SMCLK

MSP430 Workshop - Timers 6 - 37

Lab 6a – Simple Timer Interrupt

3. Calculate the Timer settings for the clocks & divider values needed to create a timer
interrupt every 2 seconds. (That is, how can we get a timer period rate of 2 seconds.)

Which clock did you choose in the previous step? Write its frequency below and then
calculate the timer period rate.

 Input Clock: __________________ running at the frequency = ________________

Timer Clock = ÷ =
 input clock frequency timer clock divider timer clock freq

Timer Rate = x 65536 =

 timer clock period
(i.e. 1 / timer clock freq)

 counts for timer to
rollover

 timer rate period

4. Which Timer do you need to use for this lab exercise?

 In a later lab exercise we will output the timer directly to a BoosterPack pin. Unfortunately, the
two Launchpad’s map different timers to their BoosterPack pinouts. (This is due to the
‘FR5969 having few pins and only using the 20-pin BoosterPack layout; versus the 40-pin XL
layout for the ‘F5529.)

 Here are the recommended timers:

Launchpad Timer Short Name Timer’s Enum

‘F5529 Timer0_A3 TA0 TIMER_A0_BASE

‘FR4133 Timer0_A3 TA0 TIMER_A0_BASE

‘FR5969 Timer1_A5 TA1 TIMER_A1_BASE

Write down the timer enumeration you need to use: TIMER_ _______ _BASE

i.e. 64K

ACLK

6 - 38 MSP430 Workshop - Timers

 Lab 6a – Simple Timer Interrupt

5. Write the TIMER_A_initContinuousMode() function.

 The first part of our timer code is to setup the Timer control registers (TAR, TACTL). Fill in the
code to specify the clock and dividers we just figured out. Also, enable the TAIE interrupt and
clear the counter – but don’t start the timer, yet.

Timer_A_initContinuousModeParam initContParam = { 0 };

 initContParam.clockSource = ___;

 initContParam.clockSourceDivider = ___;

 initContParam.timerInterruptEnable_TAIE = _______________________________________;

 initContParam.timerClear = TIMER_A_DO_CLEAR;

 initContParam.startTimer = false;

Timer_A_initContinuousMode(TIMER_ _____ _BASE, &initContParam);

Hint: Where do you get help writing this function? We highly recommend the MSP430ware
DriverLib Users Guide. (See ‘docs’ folder inside MSP430ware’s driverlib folder.)
Another suggestion would be to examine the header file: (timer_a.h).

6. Skip this step … it’s not required.

 We outlined 4 steps to configure Timer_A. The second step is where you would set up the
Capture and Compare features. Since this exercise doesn’t need to use those features, you
can skip this step.

7. Complete the code to for the 3rd part of the “Timer Setup Code”.

 The third part of the timer setup code includes:
− Enable the interrupt (IE) … we don’t have to do this, since it’s done by the

TIMER_A_configureContinuousMode() function (from question 5 on page 6-39).

− Clear the appropriate interrupt flag (IFG)

− Start the timer

// Clear the timer interrupt flag

_______________________________________ (TIMER_____BASE); // Clear TA0IFG

// Start the timer

_______________________________________ (// Function to start timer

 TIMER_____BASE, // Which timer?

 _______________________________ // Run in Continuous mode

MSP430 Workshop - Timers 6 - 39

Lab 6a – Simple Timer Interrupt

8. Change the following interrupt code to toggle LED2 when Timer_A rolls-over.

 ‘F5529 LP ‘FR5969 LP Color

LED1 (Jumper) P1.0 P4.6 Red

LED2 P4.7 P1.0 Green

Button 1 P2.1 P4.5

Button 2 P1.1 P1.1

a) Fill in the details for your Launchpad.

Port/Pin number for LED2: Port _____, Pin _____

Timer Interrupt Vector: #pragma vector = ________________ _VECTOR

Timer Interrupt Vector register: ________________

 (Hint: We previously used P1IV for GPIO Port 1)

Hint:

6 - 40 MSP430 Workshop - Timers

 Lab 6a – Simple Timer Interrupt

b) Here is the interrupt code that exists from a previous exercise, change it as
needed.

Mark up the following code – crossing out what is old or not needed and writing in the
modifications needed for our timer interrupt.

#pragma vector=PORT1_VECTOR

__interrupt void pushbutton_ISR (void)

{

 switch(__even_in_range(P1IV , 16)) {

 case 0: break; // No interrupt

 case 2: break; // Pin 0

 case 4: // Pin 1

 GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);

 break;

 case 6: break; // Pin 2

 case 8: break; // Pin 3

 case 10: break; // Pin 4

 case 12: break; // Pin 5

 case 14:

 break; // Pin 6

 case 16: break; // Pin 7

 default: _never_executed();

 }

}

 Please verify your answers before moving onto the lab exercise.

MSP430 Workshop - Timers 6 - 41

Lab 6a – Simple Timer Interrupt

Lab 6a Procedure
File Management
1. Verify that all projects (and files) in your workspace are closed.

 If some are open, we recommend closing them.

2. Import the lab_06a_timer project.

 We have already created the initial lab project for you to import.

C:\msp430_workshop\<target>\lab_06a_timer

 It doesn’t matter whether you copy this project into your workspace or not. If you “copy” it into
your workspace, the original files will remain untouched. If do not copy, but rather “link” to the
project, you will only have one set of files and any changes you make inside of CCS will be
reflected in the C:\msp430_workshop\<target>\lab_06a_timer directory.

3. Briefly examine the project files

 This project uses code we have written earlier in the workshop, though we have partitioned
some of this code into separate files:
• myGpio.c

− The LED pins are configured as outputs and set to Low.

− For the ‘FR5969, the LFXT pins are set as clock inputs; and, the pins are unlocked.

• myClocks.c

− For ‘F5529 users, this is the same code you wrote in the Clocks chapter.

− For ‘FR5969 users, we used the file from Lab4c so that ACLK uses the 32KHz crystal
rather than VLO. Also, MCLK and SMCLK are set to 8MHz.

6 - 42 MSP430 Workshop - Timers

 Lab 6a – Simple Timer Interrupt

Edit myTimers.c
4. Edit the myTimers.c source file.

We want to setup the timer to generate an interrupt two seconds. The TAIFG interrupt service
routine will then toggle LED2 on/off.

void initTimers(void)

{

 // 1. Setup Timer (TAR, TACTL)in Continuous mode using ACLK

 TIMER_A_ _______________________(

 TIMER_A__BASE, // Which timer

 TIMER_A_ ________________, // Which clock

 TIMER_A_ _____________________, // Clock divider

 TIMER_A_ _____________________, // Enable INT on rollover?

 TIMER_A_DO_CLEAR // Clear timer counter

);

 // 2. Setup Capture & Compare features

 // This example does not use these features

 // 3. Clear/enable flags and start timer

 TIMER_A_ _______________________(TIMER_A1_BASE); // Clear Timer Flag

 TIMER_A_startCounter(

 TIMER__BASE,

 TIMER_A_ _______________ // Which timer mode

);

}

//****** Interrupt Service Routine **

#pragma vector=TIMER1_A1_VECTOR

__interrupt void timer1_ISR (void)

{

 // 4. Timer ISR and vector

 switch(__even_in_range(_____, 14)) { // Read timer IV register
 case 0: break; // None
 case 2: break; // CCR1 IFG
 case 4: break; // CCR2 IFG
 case 6: break; // CCR3 IFG
 case 8: break; // CCR4 IFG
 case 10: break; // CCR5 IFG
 case 12: break; // CCR6 IFG
 case 14: // TAR overflow

 // Toggle LED2 (Green) on/off

 GPIO_toggleOutputOnPin(_____________, _______________);

 break;

 default: _never_executed();

 }

}

Worksheet
Question #5
(page 6-39)

Worksheet
Question #7

Worksheet
Question #8

MSP430 Workshop - Timers 6 - 43

Lab 6a – Simple Timer Interrupt

5. Modify the Unused Interrupts source file.

 Since our timer code uses an interrupt, we need to comment out its associated vector from
the unused_interrupts.c file.

6. Build your code and repair any errors.

Debug/Run
7. Launch the debugger.

 Notice that you may still see the clock variables in the Expressions pane. This is convenient,
if you want to double-check the MSP430 clock rates.

8. Set a breakpoint inside the ISR.

 We found it worked well to set a breakpoint on the ‘switch’ statement (in the myTimer.c file).

9. Run your code.

 If all worked well, when the counter rolled over to zero, an interrupt occurred … which
resulted in the processor halting at a breakpoint inside the ISR.

 If the breakpoint occurred, skip to the next step …

 If you did not reach the breakpoint inside your ISR, here are a few things to look for:
− Is the interrupt flag bit (IFG) set?

− Is the interrupt enable bit (IE) set?

− Are interrupts enabled globally?

10. If the breakpoint occurred, then resume running again.

 You should always verify that your interrupts work by taking more than ‘one’ of them. A
common cause of problems occurs when the IFG bit is not cleared. This means you take one
interrupt, but never get a second one.

 In our current example, reading the TA1IV (or TA0IV for ‘F5529 users) should clear the flag,
so the likelihood of this problem occurring is small, but sometimes the problem still occurs
due to a logical error while coding the interrupt routine.

11. Did the LED toggle?
 If you are executing the ISR (i.e. hitting the breakpoint) and the LED is not toggling, try single-

stepping from the point where the breakpoint occurs. Make sure your program is executing
the GPIO instruction.

 A common error, in this case, is accidentally putting the “do something” code (in our case, the
GPIO toggle function) into the wrong ‘case’ statement.

12. Once you’ve got the LED toggling, you can terminate your debug session.

6 - 44 MSP430 Workshop - Timers

 (Extra Credit) Lab 6b – Timer using Up Mode

 (Extra Credit) Lab 6b – Timer using Up Mode
In this timer lab we switch our code from counting in the "Continuous" mode to the "Up" mode.
This gives us more flexibility on the frequency of generating interrupts and output signals.

From the discussion you might remember that TIMER_A has two interrupts:
• One is dedicated to CCR0 (capture and compare register 0).
• The second handles all the other timer interrupts

In our previous lab exercise, we created an ISR for the grouped (non-dedicated) timer interrupt
service routine (ISR). This lab adds an ISR for the dedicated (CCR0 based) interrupt.

Each of our two ISR's will toggle a different colored LED.

The goal of this part of the lab is to:
 // Timer_A in Up mode using ACLK
 // Toggle LED1 on/off every second using CCR0IFG
 // Toggle LED2 on/off every second using TA0IFG (or TA1IFG for ‘FR5969)

Lab 6b Worksheet
1. Calculate the timer period (for CCR0) to create a 1 second interrupt rate.

 Here’s a quick review from our discussion.

 Timer_A’s counter (TAR) will count up until it reaches the value in the CCR0 capture register,

then reset back to zero. What value do we need to set CCR0 to get a ½ second interval?

Timer Clock = 32 KHz ÷ 1 = 32 KHz
 input clock frequency timer clock divider timer clock freq

Timer Rate = 1/32768 x = 1 second
 timer clock period

(i.e. 1 / timer clock freq)
 timer counter period

(i.e. CCRO value)
 timer rate period

 MSP430 Workshop - Timers 6 - 45

(Extra Credit) Lab 6b – Timer using Up Mode

2. Complete the TIMER_A_initUpMode() function?

 This function will replace the TIMER_A_configureContinuousMode() call we made in our
previous lab exercise.

Hint: Where to get help for writing this function? Once again, we recommend the
MSP430ware DriverLib users guide (“docs” folder inside MPS430ware’s DriverLib).

Another suggestion would be to examine the timer_a.h header file.

Timer_A_initUpModeParam initUpParam = { 0 };

 initUpParam.clockSource = TIMER_A_CLOCKSOURCE_ACLK;

 initUpParam.clockSourceDivider = TIMER_A_CLOCKSOURCE_DIVIDER_1;

 initUpParam.timerPeriod =______________________________; // (calculated in previous question)

 initUpParam.timerInterruptEnable_TAIE = TIMER_A_TAIE_INTERRUPT_ENABLE;

 initUpParam.captureCompareInterruptEnable_CCR0_CCIE =

 __; // Enable CCR0 compare interrupt

 initUpParam.timerClear = TIMER_A_DO_CLEAR;

 initUpParam.startTimer = false;

Timer_A_initUpMode(TIMER____BASE, &initUpParam););

3. Modifying our previous code, we need to clear both interrupts and start the timer.
 We copied the following code from the previous exercise. It needs to be modified to meet the

new objectives for this lab.

 Here are some hints:
− Add an extra line of code to clear the CCR0 flag (we left a blank space below for this)

− Don’t make the mistake we made … look very carefully at the ‘startCounter’ function.
Is there anything that needs to change when switching from Continuous to Up mode?

// Clear the timer flag and start the timer

Timer_A_clearTimerInterruptFlag(TIMER____BASE); // Clear TA0IFG

__ (// Clear CCR0IFG

 TIMER______BASE,

 __);

Timer_A_startCounter(TIMER____BASE, // Start timer in

 TIMER_A_______MODE); // ____ mode

6 - 46 MSP430 Workshop - Timers

 (Extra Credit) Lab 6b – Timer using Up Mode

4. Add a second ISR to toggle the LED1 whenever the CCR0 interrupt fires.

On your Launchpad, what Port/Pin number does the LED1 use? ______________

 Hints:
 What port/pin does your LED1 use? Look back at question 8 (page 6-40).
 Look at the unused_interrupts.c file for a list of interrupt vector symbol names.

 Here we’ve given you a bit of code to get you started:

#pragma vector= _________________________________

__interrupt void ccr0_ISR (void)

{

 // Toggle the LED1 on/off

}

 Please verify your answers before moving onto the lab exercise.

MSP430 Workshop - Timers 6 - 47

(Extra Credit) Lab 6b – Timer using Up Mode

File Management
5. Copy/Paste lab_06a_timer to lab_06b_upTimer.

a) In CCS Project Explorer, right-click on the lab_06a_timer project and select “Copy”.

b) Then, click in an open area of Project Explorer pane and select “Paste”.
This will create a new copy of your project inside the Workspace directory.

c) Finally, rename the copied project to lab_06b_upTimer.

Note: If you didn’t complete lab_06a_timer – or you just want a clean starting solution –
you can import the lab_06a_timer archived solution.

6. Close the previous project: lab_06a_timer

7. Delete the old, readme file and import the new one.
 You can import the new readme text file from this folder:

C:\msp430_workshop\<target>\lab_06b_upTimer

8. Make sure the project is selected (i.e. active) and build it to verify no errors were
introduced during the copy.

6 - 48 MSP430 Workshop - Timers

 (Extra Credit) Lab 6b – Timer using Up Mode

Change the Timer Setup Code
In this part of Lab 6, we will be setting up TimerA in Up Mode.

9. Modify the timer configuration function, configuring it for ‘Up’ mode.
 You should have a completed copy of this code in the Lab 6b Worksheet.

 Please refer to the Lab Worksheet for assistance. (Question2, Page 6-46).

10. Modify the rest of the timer set up code, where we clear the interrupt flags, enable the
individual interrupts and start the timer.

 Please refer to the Lab Worksheet for assistance. (Question 3, Page 6-46).

11. Add the new ISR we wrote in the Lab Worksheet to handle the CCR0 interrupt.

 When this step is complete, you should have two ISR’s in your main.c file.

 Please refer to the Lab Worksheet for assistance. (Question 4, Page 6-47).

12. Don’t forget to modify the “unused” vectors (unused_interrupts.c).

 Failing to do this will generate a build error. (Most of us saw this error back during the
Interrupts chapter lab exercise.)

13. Build the code to verify that there are no syntax (or any other kind of) errors; fix any
errors, as needed.

Debug/Run
Follow the same basic steps as found in the previous lab for debugging.

14. Launch the debugger and set a breakpoint inside both ISR’s.

15. Run your code.

 If all worked well, when the counter rolled over to zero, an interrupt should occur. Actually,
two interrupts should occur. Once you reach the first breakpoint, resume running your code
and you should reach the other ISR.

Which ISR was reached first? ___

Why? __

16. Remove the breakpoints and let the code run. Do both LED’s toggle?

 An easy way to quickly remove all of the breakpoints is to open the Breakpoints View
window:

View → Breakpoints

 Then click the Remove all Breakpoints toolbar button.

MSP430 Workshop - Timers 6 - 49

(Extra Credit) Lab 6b – Timer using Up Mode

Archive the Project
Thus far in this workshop, we have imported projects from archives … but we haven’t asked you
to create an archive, yet. It’s not hard, as you’ll see.

17. Terminate the debugger, if it’s still open.

18. Export your project to the lab’s file folder.
− Right-click the project and select ‘Export’

− Select ‘Archive File’ for export, then click Next

− Fill out the dialog as shown below, choosing: the ‘upTimer’ lab; “Save in zip format”,

“Compress the contents of the file”; and the following destination:

C:\msp430_workshop\<target>\lab_06b_upTimer\my_lab_06b_upTimer.zip

6 - 50 MSP430 Workshop - Timers

 (Extra Credit) Lab 6b – Timer using Up Mode

Timer_B (Optional)

Note: Since the ‘FR4133 does not include the Timer_B peripheral, you can skip this exercise if
you’re using the MSP-EXP430FR4133 Launchpad.

Do you remember during the discussion that we said Timer_A and Timer_B were very similar? In
fact, the timer code we have written can be used to operate Timer_B … with 4 simple changes:
• It’s a different API … but not really.

 Rather than using the TIMER_A module from DriverLib, you will need to use TIMER_B;
unless you’re using one of the few unique features of TIMER_B, the rest of the API is the
same. In other words, you can carefully search and replace TIMER_A for TIMER_B.

• Specify a different timer.

 Since you’re using a different timer, you need to specify a different timer ‘base’. For either
the ‘F5529 or ‘FR5969 you should use TIMER_B0_BASE to specify the timer instance you
want to use.

• You need to use the TIMER_B interrupt vector.

 This changes the #pragma line where we specify the interrupt vector.
• You need to use the TIMER_B interrupt vector register.

 You need to read the TB0IV register to ascertain which TIMER_B flag interrupted the CPU.

All of these are simple changes. Try implementing TIMER_B on your own.

Note: While we don’t provide step-by-step directions, we did create a solution file for this
challenge.

MSP430 Workshop - Timers 6 - 51

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

Lab 6c Abstract
This lab is a minor adaptation of the TIMER_A code in the previous exercise. The main difference
is that we'll connect the output of Timer_A CCR2 (TA0.2 or TA1.2) directly to a GPIO pin.

We are still using Up mode, which means that CCR0 is used to reset TAR back to 0. We needed
to choose another signal to connect to the external pin… we arbitrarily chose to use CCR2 to
generate our output signal for this exercise.

In our case, we want to drive an LED directly from the timer’s output signal…

…unfortunately, the Launchpad does not have an LED connected directly to a timer output pin,
therefore we'll need to use a jumper in order to make the proper connection. As we alluded to
earlier in the chapter, in the case of Timer_A, the Launchpad’s route different timer pins to the
BoosterPack pin-outs.

 Here's an excerpt from the ‘F5529 lab solution:
 // When running this lab exercise, you will need to pull the JP8 jumper and

 // use a jumper wire to connect signal from pin ____ (on boosterpack pinouts) to

 // JP8.2 (bottom pin) of LED1 jumper ... this lets the TA0.2 signal drive the

 // LED1 directly (without having to use interrupts)

And a similar statement from the ‘FR5969 lab solution:
 // When running this lab exercise, you will need to pull the J6 jumper and

 // use a jumper wire to connect signal from pin ____ (on boosterpack pinouts) to

 // J6.2 (bottom pin) of the LED1 jumper ... this lets the TA1.2 signal drive

 // LED1 directly (without having to use interrupts)

And for those of you using the ‘FR4133:
 // When running this lab exercise, you will need to pull the JP1 jumper and

 // use a jumper wire to connect signal from pin _____ (on boosterpack pins) to

 // JP1.2 (bottom pin) of LED1 jumper ... this lets the TA1.2 signal drive

 // LED1 directly (without having to use interrupts)

(Note: Later in the lab instructions, we’ll show a picture of connecting the jumper wire.)

6 - 52 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Drive GPIO Directly From Timer

Lab 6c Worksheet
1. Figure out which BoosterPack pin will be driven by the timer’s output.

 To accomplish our goal of driving the LED from a timer, we need to choose which Timer CCR
register to output to a pin on the device. In the lab abstract (on the previous page) we stated
that for this lab writeup, we arbitrarily chose to use CCR2.

 Based on the choice of CCR2, we know that the timer’s output signal will be: TAn.2.

 We’ve summarized this information in the following table:

Device Timer CCRx Signal GPIO
Port/Pin

Is Pin on
Boosterpack?

‘F5529 TimerA0 CCR2 TA0.2

‘FR4133 TimerA1 CCR2 TA1.2

‘FR5969 TimerA1 CCR2 TA1.2

 Your job is to fill in the remaining two columns for the device that you are using.

a) Looking at the datasheet, which GPIO port/pin is combined with TA0.2 (or TA1.2)?
For example, here we see that P1.1 is combined with TA0.0:

Look for the correct pin in your device’s datasheet and enter it in the table above.

Hint: There are a couple places in the datasheet to find this information. We
recommend searching your device’s datasheet for “TA0.2” or “TA1.2”.

b) Next, is that signal output to the BoosterPack?

This information can be found directly from the Launchpad. Look for the silkscreened
labels next to each BoosterPack pin. When you find it, write YES/NO in the column above.

(If you’re getting a little older, you may need a magnifying glass to answer this
 question…or you may need to zoom in on the Launchpad’s photo.)

Sidebar – Choosing a Timer For This Exercise
Our choice of TimerA0 (for ‘F5529) and TimerA1 (for ‘FR5969 & ‘FR4133) was not arbitrary. Even
further, our choice of CCR2 was not entirely arbitrary.

Bottom line, we wanted to choose a Timer pin that was connected to the BoosterPack pinout since it
would make it easy for us to jumper that signal over to LED1.

The problem was that neither board connected the same TimerA outputs to its Boosterpack pinout.
In looking carefully at the datasheets for both devices, as well as the Boosterpack pinouts for each
Launchpad, we found a timer that we could use. The only issue is that one device mapped TA0.2 to
a pin, while the other mapped out TA1.2.

MSP430 Workshop - Timers 6 - 53

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

Did you find the correct pins on your Launchpad’s BoosterPack?

‘F5529F5529

‘FR5969FR5969

FR4133

2. Complete the following function to “select” P1.3 as a timer function (as opposed to GPIO).

 Hint: We discussed the port select function in the GPIO chapter. You can also find the details
of this function in the Driver Library User’s Guide.

‘F5529 Users, here’s the function you need to complete:

GPIO_setAs________________________________(

 ___________________,

 ___________________);

‘FR5969 or ‘FR4133 Users, your function requires one more argument:

GPIO_setA s________________________________(

 ___________________,

 ___________________,

 __);

F5529

FR5969

FR4133

6 - 54 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Drive GPIO Directly From Timer

3. Modify the TIMER_A_configureUpMode() function?

 Here is the code we wrote for the previous exercise. We only need to make one change to it.
Since we will drive the signal directly from the timer, we don’t need to generate the CCR0
interrupt anymore.

 Mark up the code below to disable the interrupt. (We’ll bet you can make this change without
even looking at the API documentation. Intuitive code is one of the benefits of using DriverLib!)

4. What ‘compare’ value does CCR2 need to equal in order to toggle the output signal at
a ½ second?

CCR0=0x8000

CCR2

0x0

5. Add a new function call to set up Capture and Compare Register 2 (CCR2). This should
be added to initTimers().

Timer_A_init___________________ initCcr2Param = { 0 };

 initCcr2Param.compareRegister = ___;

 initCcr2Param.compareInterruptEnable = TIMER_A_CAPTURECOMPARE_INTERRUPT_DISABLE;

 initCcr2Param.compareOutputMode = TIMER_A_OUTPUTMODE_TOGGLE_RESET;

 initCcr2Param.compareValue = _______________________________________;

Timer_A_init___________________(TIMER____BASE, &initCcr2Param);

½ Second

CCR2 = __________________

1 Second

CCR2 value we
calculated above

goes here

Timer_A_initUpModeParam initUpParam = { 0 };

 initUpParam.clockSource = TIMER_A_CLOCKSOURCE_ACLK;

 initUpParam.clockSourceDivider = TIMER_A_CLOCKSOURCE_DIVIDER_1;

 initUpParam.timerPeriod = 0xFFFF / 2;

 initUpParam.timerInterruptEnable_TAIE = TIMER_A_TAIE_INTERRUPT_ENABLE;

 initUpParam.captureCompareInterruptEnable_CCR0_CCIE = TIMER_A_CCIE_CCR0_INTERRUPT_DISABLE;

 initUpParam.timerClear = TIMER_A_DO_CLEAR;

 initUpParam.startTimer = false;

Timer_A_initUpMode(TIMER____BASE, &initUpParam);

MSP430 Workshop - Timers 6 - 55

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

6. Compare your ISR code from myTimers.c in the previous lab to the code below. What
is different in the code shown here?

What did we change? ___

Note, this is the ‘F5529 code example. The ‘FR5969 uses a slightly different interrupt vector symbol and
interrupt vector register.

#pragma vector=TIMER0_A1_VECTOR

__interrupt void timer0_ISR(void)

{

 switch(__even_in_range(TA0IV, 14)) {

 case 0: break; // No interrupt

 case 2: break; // CCR1 IFG

 case 4: // CCR2 IFG

 _no_operation();

 break;

 case 6: break; // CCR3 IFG

 case 8: break; // CCR4 IFG

 case 10: break; // CCR5 IFG

 case 12: break; // CCR6 IFG

 case 14: break; // TAR overflow

 GPIO_toggleOutputOnPin(GPIO_PORT_P4, GPIO_PIN7);

 break;

 default: _never_executed();

 }

}

 During debug, we will ask you to set a breakpoint on ‘case 4’.

 Why should case 4 not occur in our program, and thus, the breakpoint never reached?

7. Why is it better to toggle the LED directly from the timer, as opposed to using an interrupt
(as we’ve done in previous lab exercises)?

6 - 56 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Drive GPIO Directly From Timer

File Management
1. Copy/Paste the lab_06b_upTimer to lab_06c_timerDirectDriveLed.

a) In Project Explorer, right-click on the lab_06b_upTimer project and select “Copy”.

b) Then, click in an open area of Project Explorer and select paste.

c) Finally, rename the copied project to lab_06c_timerDirectDriveLed.

Note: If you didn’t complete lab_06b_upTimer – or you just want a clean starting solution
– you can import the archived solution for it.

2. Close the previous project: lab_06b_upTimer

3. Delete old, readme file.

 Delete the old readme file and import the new one from:

C:\msp430_workshop\<target>\lab_06c_timerDirectDriveLed

4. Build the project to verify no errors were introduced.

Change the GPIO Setup
Similar to the parts A and B of this lab, we will make the changes discussed in the lab worksheet.

5. Modify the initGPIO function, defining the appropriate pin to be configured for the
timer peripheral function.

 Please refer to the Lab6c Worksheet for assistance. (Question 2, Page 6-54).

MSP430 Workshop - Timers 6 - 57

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

Change the Timer Setup Code
6. Modify the timer configuration function; we are still using ‘Up’ mode, but we can

eliminate one of the interrupts.

 Please refer to the Lab Worksheet for assistance. (Step 3, Page 6-55).

7. Add the TIMER_A function to your code that configures CCR2.

 Please refer to the Lab Worksheet for assistance. (Step 5, Page 6-55).

8. Delete or comment out the call to clear the CCR0IFG flag.

 We won’t need this because the timer will drive the LED directly – that is, no interrupt is
required where we need to manually toggle the GPIO with a function call.

TIMER_A_clearCaptureCompareInterruptFlag(TIMER_A0_BASE,
 TIMER_A_CAPTURECOMPARE_REGISTER_0 //Clear CCR0IFG
);

 Then again, it doesn’t hurt anything if you leave it in the code… if so, an unused bit gets
cleared.

9. Make the minor modification to the timer isr function as shown in the worksheet.

 Please refer to the Lab Worksheet for assistance. (Step 6, Page 6-56).

 ‘FR5969 users – we only showed the ‘F5529 code in the worksheet. Please be careful that
you do not change the interrupt vector or IV register values in your code. That’s not what
we’re asking you to do in this step.

10. Build the code verifying there are no syntax errors; fix any as needed.

6 - 58 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Drive GPIO Directly From Timer

Debug/Run
11. Launch the debugger and set three breakpoints inside the two ISR’s.

• When we run the code, the first breakpoint will indicate if we received the CCR0 interrupt.
If we wrote the code properly, we should NOT stop here.

• We should NOT stop at the second breakpoint either. CCR2 was set up to change the
Output Signal, not generate an interrupt.

• We should stop at the 3rd breakpoint. We left the timer configured to break whenever TAR
rolled-over to zero. (That is, whenever TA0IFG or TA1IFG gets set.)

Note: As of this writing, due to an emulator bug with the ‘FR5969 – as we discussed in an
earlier lab exercise – terminating, restarting, or resetting the ‘FR5969 with two or
more breakpoints set may cause an error. If this occurs, load a different program,
then reload the current one again.

12. Remove the breakpoints and let the code run. Do both LED’s toggle?

Why doesn’t the LED1 toggle? __

MSP430 Workshop - Timers 6 - 59

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

13. Add the jumper wire to your board to connect the timer output pin to LED1.

a) Remove the jumper (JP8 or J6) that connects the LED1 to P1.0 (or P4.6).
(We recommend reconnecting it to the top pin of the jumper so that you don’t lose it.)

b) On the ‘F5529 Launchpad, connect P1.3 (fifth pin down, right-side of board,
inside row of pins) to the bottom of the LED1 jumper (JP8) using the jumper wire.
(See the next page for the ‘FR5969 Launchpad.)

Ask your instructor
for a jumper wire,

when you need one

6 - 60 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Drive GPIO Directly From Timer

c) On the ‘FR5969 (not shown), connect P1.3 (in the lower, right-hand corner of the
BoosterPack pins to the LED1 jumper (J6).

d) We didn’t include a picture showing the ‘FR4133 pin P8.3 being connected to LED1. It’s
fairly easy to find, though as it’s in the lower-left corner of the Boosterpack pins.

14. Run your code.

 Hopefully both LED’s are now blinking. LED1 should toggle first, then the LED2.

Do they both blink at the same rate? __

Why or why not? ___

MSP430 Workshop - Timers 6 - 61

(Extra Credit) Lab 6c – Drive GPIO Directly From Timer

15. Terminate the debugger and go back to your main.c file.

16. Modify one parameter of the function that configures CCR2, changing it to use the
mode:

TIMER_A_OUTPUTMODE_TOGGLE

 Hint, if you haven’t already tried this trick, delete the last part of the parameter and hit

Ctrl_Space:

TIMER_A_OUTPUTMODE_ then hit Control-Space

Eclipse will provide the possible variations. Double-click on one (or select one and hit return)
to enter it into your code.

6 - 62 MSP430 Workshop - Timers

 (Extra Credit) Lab 6c – Drive GPIO Directly From Timer

17. Build and run your code with the new Output Mode setting.

Do they both blink at the same rate? __

 If a compare match (TAR = CCR2) causes the output to be SET (i.e. LED goes ON), what
causes the output to be RESET (LED going OFF)?

 __

 How would this differ if you used the “TIMER_A_OUTPUTMODE_SET_RESET” mode …

If a compare match (TAR = CCR2) causes the output to be SET (i.e. LED goes ON),
what causes the RESET (LED going OFF)?

 __

 __

You may want to experiment with a few other output mode settings. It can be fun to see them
in action.

18. When done experimenting, terminate and close the project.

(Optional) Lab 6c – Portable HAL
Can you create a single timer source file that would work on multiple platforms?

For the most part, “Yes”. This is often done by creating a HAL (hardware abstraction layer).
We’ve created a rudimentary HAL version of Lab 6c. You can find this in the solution file:

lab_06c_timerHal_solution.zip

While the timer file is shared between the two HAL solutions, we didn’t get too fancy with this.
There are a couple of things we didn’t handle; for example, we didn’t do anything with
unused_interrupts.c and so it hade to be edited manually when porting between processors.

Play with it as you wish…

MSP430 Workshop - Timers 6 - 63

(Optional) Lab 6d – Simple PWM (Pulse Width Modulation)

(Optional) Lab 6d – Simple PWM (Pulse Width Modulation)
While we don’t have a complete write-up for our Simple PWM lab exercise, we created a solution
that shows off the TIMER_A_simplePWM() DriverLib function.

The lab_06d_simplePWM project uses this DriverLib function to create a single PWM
waveform. As with Lab 6c, the output is routed to LED1 using a jumper wire. By default, it creates
a 50% duty cycle … which means it blinks the light on/off (50% on, 50% off) similar (but slightly
faster) than our previous lab exercise.

One big change, though, is that we added two arguments to the initTimers() function. These
values are the “Period” and “Duty Cycle” values that are passed to the simplePWM function. We
also rewrote the main while{} loop so that it calls initTimers() every second.

The purpose of these changes was to allow you to have an easy way to experiment with different
Period & Duty Cycle values without having to re-build and re-start the program over-and-over
again. The values for period and duty-cycle were created as global variables – again, this makes
it easier to change them while debugging the project.

The easiest way to experiement with this program once you’ve started it running is to:
− Halt (i.e. Suspend) the program

− View the two values in the Expressions watch window

− Change the values, as desired

− Continue running the program – in a second, literally, the values should take effect

By the way, if you change the period to something smaller, you won’t be able to see the LED
going on/off anymore – it will just appear to stay on. At this point, changing the duty cycle will
cause the LED to appear bright (or dim).

As the name implies, this is a simple example, using a Driver Library function to quickly get PWM
running.

Both Timer_A and Timer_B peripherals can create multiple/complex PWM (pulse-width
modulation) waveforms. At some point, we may add additional PWM examples to the workshop,
but if you want to learn more right now, we highly recommend that you review the excellent
discussion in John Davies book: MSP430 Microcontroller Basics by John H. Davies, (ISBN-10
0750682760) Link

6 - 64 MSP430 Workshop - Timers

http://www.amazon.com/MSP430-Microcontroller-Basics-John-Davies/dp/0750682760
http://www.amazon.com/MSP430-Microcontroller-Basics-John-Davies/dp/0750682760

 Chapter 6 Appendix

Chapter 6 Appendix
Lab6a Answers

Lab 6a Worksheet (1-2)

216 = 64K

Ln Lab 4c we configured
ACLK for 32KHz

Lab 6a Worksheet (3)

32KHz 1 32K / sec

1 sec
32K cycles 2 sec

32 KHz

MSP430 Workshop - Timers 6 - 65

Chapter 6 Appendix

Lab 6a Worksheet (4-5)

TLaER_A_CLhCKShURCE_ACLK

TLaER_A_CLhCKShURCE_5LVL5ER_1

TLaER_A_TALE_LbTERRUtT_EbABLE

tick the one req’d for your board: Ah or A1

AO/A1

Lab 6a Worksheet (7)

Timer_A_clearTimerLnterruptFlag

Timer_A_startCounter

Ah or A1

TLaER_A_ChbTLbUhUS_ahDE

6 - 66 MSP430 Workshop - Timers

 Chapter 6 Appendix

Lab 6a Worksheet (8a)
‘F5529 Solution

‘FR5969 Solution

4 7

TIMER0_A1

TA0IV

1 0

TIMER1_A1

TA1IV

Lab 6a Worksheet (8b)
TLaER1_A1_VECThR

timer_LSR TA1LV 14

GtLh_togglehutputhntin(GtLh_thRT_t1, GtLh_tLb0);

TA0LV (for ‘F5529 and ‘FR4133)
TA1LV (for ‘FR5969)

or for the ‘F5529:
GtLh_togglehutputhntin(GtLh_thRT_t4, GtLh_tLb7);

 ‘FR5969 Answers are shown
 For ‘FR4133, use:

 TLaER1_A1_VECThR
 TA1LV
 t4.0

 For ‘F5529, use:
 TLaER0_A1_VECThR
 TA0LV
 t4.7

MSP430 Workshop - Timers 6 - 67

Chapter 6 Appendix

Lab6b Answers

Lab 6b Worksheet (1)

0x8000

For a 1 second timer rate and a 32KHz
input clock frequency, we need the
timer to count 32K (or 32768) times:
1/32768 * 32768 = 1 sec

A 16-bit counter rolls over at 216 counts
(which is 64K or 0xFFFF). We just need
to divide this by 2 to get 32K:
Period = 0xFFFF/2 = 0x8000

Lab 6b Worksheet (2)

TLaER_A_CCLE_CCR0_LbTERRUtT_EbABLE

0xFFFF / 2

Ah or A1

6 - 68 MSP430 Workshop - Timers

 Chapter 6 Appendix

Lab 6b Worksheet (3)

Timer_A_clearCaptureCompareLnterruptFlag

Ut Ut

Ah or A1

TIMER_A_CAPTURECOMPARE_REGISTER_0

Lab 6b Worksheet (4)

t4.6 (for ‘FR5969)
t1.0 (for ‘F5529 & FR4133)

TLaER1_A0_VECThR (or TLaER1_A0_VECThR for ‘F5529)

GtLh_togglehutputhntin(GtLh_thRT_t____, GtLh_tLb____);

Reflects the value
from above

MSP430 Workshop - Timers 6 - 69

Chapter 6 Appendix

Lab 6b : Lab Debrief

LED1 then LED2

Because the CCR0 interrupt occurs before the TALFD interrupt

This is shown on the slide entitled “TAR in UP aode”. Since they occur at
nearly the same instant in time, you have to set breakpoints in order to see
that LED1 happens before LED2.

6 - 70 MSP430 Workshop - Timers

 Chapter 6 Appendix

Lab6c Answers

Lab 6c Worksheet (1)

t1.3

t8.3

Yes

Yes

F5529

FR5969

t1.3 Yes

Lab 6c Worksheet (2)

PeripheralModuleFunctionOutputPin

GtLh_tLb3

GtLh_thRT_t1

GtLh_tLb3

GtLh_thRT_t1

GtLh_tRLaARY_ahDULE_FUbCTLhb

PeripheralModuleFunctionOutputPin

PeripheralModuleFunctionOutputPin

GtLh_tLb3

GtLh_thRT_t1

GtLh_tRLaARY_ahDULE_FUbCTLhb

MSP430 Workshop - Timers 6 - 71

Chapter 6 Appendix

Lab 6c Worksheet (3)

We changed ‘EbABLE’ to ‘DLSABLE’

Lab 6c Worksheet (4-5)

0x4000

0x8000 / 2 = 0x4000

CompareModeParam
TLaER_A_CAtTUREChatARE_REGLSTER_2

0x4000
CompareMode

6 - 72 MSP430 Workshop - Timers

 Chapter 6 Appendix

Lab 6c Worksheet (6)
Added _no_operation() – something to breakpoint on

We disabled the LbT because we’re driving the signal directly to the pin

Lab 6c Worksheet (7)

 Lower tower:
When the Timer drives the pin; no need to wake up the CtU. (Either
that, or it leaves the CtU free for other processing.)

 Less Latency:
When the CtU toggles the pin, there is a slight delay that occurs since
the CtU must be interrupted, then go run the LSR.

 aore Deterministic:
The delay caused by generating/responding to the interrupt may vary
slightly. This could be due to another interrupt being processed (or a
higher priority interrupt occurring simultaneously). Directly driving the
output removes the variance and makes it easy to “determine” the time
that the output will change!

MSP430 Workshop - Timers 6 - 73

Chapter 6 Appendix

Lab 6c Debrief

We removed the interrupt that caused us to run the DPLO toggle
function and replaced it with code to let the timer directly drive
the LED … but we haven’t hooked up the LED, yet.

bo

LED2 is based on the timer counting up to the value in CCR0 (0x8000); while
LED1 toggles when the counter reaches CCR2 (set to 0x4000) and is reset
whenever the counter reaches CCR0.

Lab 6c Debrief

Yes (although offset by ½ second)

The next time TAR equals CCR2

Ln this case, the “RESET” occurs when TAR = CCR0

6 - 74 MSP430 Workshop - Timers

	0BTimers
	Prerequisites and Tools
	Overview of MSP430 Timers
	Timer Basics: How Timers Work
	Timer Details: Configuring TIMER_A
	TIMER_A DriverLib Summary
	Differences between Timer’s A and B
	Lab Exercise

	MSP430m06L TIMERS.pdf
	0BTimers
	Lab 6 – Using Timer_A
	Lab 6a – Simple Timer Interrupt
	 (Extra Credit) Lab 6b – Timer using Up Mode
	(Extra Credit) Lab 6c – Drive GPIO Directly From Timer
	(Optional) Lab 6d – Simple PWM (Pulse Width Modulation)
	Chapter 6 Appendix

