
MSP430 Workshop - Using Energia (Arduino) 8 - 1

Using Energia (Arduino)

Introduction
This chapter of the MSP430 workshop explores
Energia, the Arduino port for the Texas Instruments
Launchpad kits.

After a quick definition and history of Arduino and
Energia, we provide a quick introduction to Wiring – the
language/library used by Arduino & Energia.

Most of the learning comes from using the Launchpad
board along with the Energia IDE to light LED’s, read
switches and communicate with your PC via the serial
connection.

Learning Objectives, Requirements, Prereq’s

Prerequisites & Objectives
 Prerequisites

 Basic knowledge of C language
 Basic understanding of using a C library and header files
 This chapter doesn’t explain clock, interrupt, and GPIO features in detail,

this is left to the other chapters in the MSP430 workshop

 Requirements - Tools and Software
 Hardware

 Windows (XP, 7, 8) PC with available USB port
 MSP430F5529 Launchpad

 Software
 Energia Download
 Launchpad drivers
 (Optional) MSP430ware / Driverlib

 Objectives
 Define ‘Arduino’ and describe what is was created for
 Define ‘Energia’ and explain what it is ‘forked’ from
 Install Energia, open and run included example sketches
 Use serial communication between the board & PC
 Add an external interrupt to an Energia sketch
 Modify CPU registers from an Energia sketch

Already installed, if you
have installed CCSv5.x

What is Arduino

8 - 2 MSP430 Workshop - Using Energia (Arduino)

Chapter Topics

Using Energia (Arduino) ... 8-1

What is Arduino ... 8-3

Energia .. 8-4

Programming Energia (and Arduino) .. 8-7
Programming with ‘Wiring’ .. 8-7
Wiring Language/Library Reference ... 8-8
How Does ‘Wiring’ Compare? ... 8-9
Hardware pinout .. 8-10

Energia IDE ... 8-12
Examples, Lots of Examples ... 8-13

Energia/Arduino References ... 8-14

Lab 8 ... 8-15
Installing Energia ... 8-16

Installing the LaunchPad drivers ... 8-16
Installing Energia ... 8-16
Starting and Configuring Energia .. 8-17

Lab 8a – Blink ... 8-20
Your First Sketch ... 8-20
Modifying Blink .. 8-23

Lab 8b – Pushing Your button .. 8-24
Examine the code ... 8-24
Reverse button/LED action ... 8-25

Lab 8c – Serial Communication (and Debugging) .. 8-26
What if the Serial Monitor is blank? (’G2553 Launchpad Configuration) 8-27
Blink with Serial Communication ... 8-28
Another Pushbutton/Serial Example ... 8-28

Lab 8d – Using Interrupts .. 8-29
Adding an Interrupt .. 8-29

Lab 8e – Using TIMER_A ... 8-31

Appendix – Looking ‘Under the Hood’ .. 8-32
Where, oh where, is Main ... 8-32
Two ways to change the MSP430 clock source ... 8-34
Sidebar – initClocks() .. 8-35
Sidebar Cont’d - Where is F_CPU defined? .. 8-36

Lab Debrief .. 8-37

 What is Arduino

MSP430 Workshop - Using Energia (Arduino) 8 - 3

What is Arduino
Physical Computing … Hardware Hacking … a couple of the names given to Arduino.

 Our home computers are great at communicating with other computers and (sometimes) with
us, but they have no idea what is going on in the world around them. Arduino, on the other
hand, is made to be hooked up to sensors which feed it physical information.1 These can be

as simple as pressing a button, or as complex as using ultrasound to detect distance, or
maybe having your garage door tweet every time it’s opened.

 So the Arduino is essentially a simple computer with eyes and ears. Why is it so popular?

Because the hardware is cheap, it’s easy to program and there is a huge web community,

which means that beginners can find help and download myriad programs.1

What is Arduino?
Hardware
Open source C boards with pins and I/O

 Physical Computing
Software that interacts with the real world

 Open-source ecosystem
Tools, Software, Hardware (Creative Commons)

 Popular solution for…
Open-source programmers, hobbyists,
rapid prototyping

Tools
IDE: write, compile, upload

Code
‘Wiring’ Language includes:
 C/C++ software
 Arduino library of functions

 The idea is to write a few lines of code, connect a few electronic components to the Wiring
hardware and observe how a light turns on when person approaches it, write a few more

lines, add another sensor, and see how this light changes when the illumination level in a
room decreases. This process is called sketching with hardware; explore lots of ideas very
quickly, select the more interesting ones, refine and produce prototypes in an iterative

process.2

In the end, Arudino is basically an ecosystem for easy, hardware-oriented, real-world
programming. It combines the Tools, Software and Hardware for talking to the world.

1 http://www.wired.com/gadgetlab/2008/04/just-what-is-an/
2 http://en.wikipedia.org/wiki/Wiring_%28development_platform%29

Energia

8 - 4 MSP430 Workshop - Using Energia (Arduino)

Energia
/enerˈɡia/ ; e‧ner‧gi‧a

Energia (Russian: Энергия, Energiya, "Energy") was a Soviet rocket that was designed by NPO
Energia to serve as a heavy-lift expendable launch system as well as a booster for the Buran
spacecraft.3

Energia – Arduino for TI

 Energia is a fork of Arduino for
Texas Instruments MicroControllers
 Software – Wiring programming language
 Tools – Energia IDE

 Hardware (supported MCU’s)
 MSP430 LaunchPad (‘G2553)
 MSP430 FRAM “FraunchPad” (‘FR5739)
 MSP430 USB Launchpad (‘F5529)
 Stellaris/Tiva Cortex-M4F Launchpad

 Dev’l Project – energia.github.com/Energia/

 Support – forum.43oh.com

Energia was a
Soviet Rocket

Energia is a rapid electronics prototyping platform for the Texas Instruments msp430 LaunchPad.
Energia is based on Wiring and Arduino and uses the Processing IDE. It is a fork of the Arduino
ecosystem, but centered around the popular TI microntrollers: MSP430 and ARM Cortex-M4F.

Similar to it’s predecessor, it an open-sourced project. It’s development is community supported,
being hosted on github.com.

3 http://en.wikipedia.org/wiki/Energia

http://en.wikipedia.org/wiki/Russian_language
http://en.wikipedia.org/wiki/Soviet_Union
http://en.wikipedia.org/wiki/NPO_Energia
http://en.wikipedia.org/wiki/NPO_Energia
http://en.wikipedia.org/wiki/Expendable_launch_system
http://en.wikipedia.org/wiki/Buran_%28spacecraft%29
http://en.wikipedia.org/wiki/Buran_%28spacecraft%29
http://www.github.com/

 Energia

MSP430 Workshop - Using Energia (Arduino) 8 - 5

Sidebar – Energia Lineage

Energia Lineage

DBN
(1990’s)

Processing
(2001)

Wiring
(2003)

• Language
• Design By Numbers

programming language
• Teaching experiment

for non-programmers
• MIT (USA)

• Language, Tools
• Processing language

builds on Java, but with
simplified syntax

• Sketchbook mini-IDE
• For non-programmers
• Former MIT’ers (USA)

• Language, Tools, H/W
• Developed for single-

chipController
• Prototypingplatformfor

quick iterative design
• C++ plus Wiring library
• Java-based IDE
• Columbia

Arduino
(2005)

Fritzing
(2009)

• EDA Tools
• C++ w/Qt components

• Language, Tools, H/W
• Teaching, hobbyist,

Rapid prototyping
• C/C++ plus Wiring library
• Java-based IDE
• AVR C
• Ivrea (Italy)

Arduino and Energia
 Wiring-based language (syntax and libraries), similar

to C++ with some slight simplifications and mod’s
 Sketchbook (Processing-based) integrated

development environment

Energia
(2012)

• Language, Tools, H/W
• Direct fork of Arduino
• TI C Launchpad boards
• California (USA)

Design By Numbers (or DBN programming language) was an influential experiment in teaching
programming initiated at the MIT Media Lab during the 1990s. Led by John Maeda and his
students they created software aimed at allowing designers, artists and other non-programmers
to easily start computer programming. The software itself could be run in a browser and published
alongside the software was a book and courseware.4

Processing (2001) - One of the stated aims of Processing is to act as a tool to get non-
programmers started with programming, through the instant gratification of visual feedback.5

 This process is called sketching with hardware; explore lots of ideas very quickly, select the
more interesting ones, refine and produce prototypes in an iterative process.

Wiring (2003)6 - The Wiring IDE is a cross-platform application written in Java which is derived
from the IDE made for the Processing programming language. It is designed to introduce
programming and sketching with electronics to artists and designers. It includes a code editor …
capable of compiling and uploading programs to the board with a single click.

 The Wiring IDE comes with a C /C++ library called "Wiring", which makes common
input/output operations much easier. Wiring programs are written in C/C++, although users
only need to define two functions to make a runnable program: setup() and loop().

 When the user clicks the "Upload to Wiring hardware" button in the IDE, a copy of the code is
written to a temporary file with an extra include header at the top and a very simple main()
function at the bottom, to make it a valid C++ program.

4 http://en.wikipedia.org/wiki/Design_By_Numbers_%28programming_language%29
5 http://en.wikipedia.org/wiki/Processing_(programming_language)
6 http://en.wikipedia.org/wiki/Wiring_%28development_platform%29

Energia

8 - 6 MSP430 Workshop - Using Energia (Arduino)

Energia Lineage (cont’d)

Arduino7 - In 2005, in Ivrea, Italy, a project was initiated to make a device for controlling student-
built interaction design projects with less expense than with other prototyping systems available
at the time. Founders Massimo Banzi and David Cuartielles named the project after Arduin of
Ivrea, the main historical character of the town.

 The Arduino project is a fork of the open source Wiring platform and is programmed using a
Wiring-based language (syntax and libraries), similar to C++ with some slight simplifications
and modifications, and a Processing-based integrated development environment.

Energia (2012) – As explained in the previous section of this chapter, Energia is a fork of Arduino
which utilizes the Texas Instruments microcontroller Launchpad development boards.

Fritzing (2009)8 - An open-source initiative to support designers, artists, researchers and
hobbyists to take the step from physical prototyping to actual product.

 It’s essentially an Electronic Design Automation software with a low entry barrier, suited for
the needs of designers and artists. It uses the metaphor of the breadboard, so that it is easy
to transfer your hardware sketch to the software. From there it is possible to create PCB
layouts for turning it into a robust PCB yourself or by help of a manufacturer.

7 http://en.wikipedia.org/wiki/Arduino
8 http:// Fritzing.org

 Programming Energia (and Arduino)

MSP430 Workshop - Using Energia (Arduino) 8 - 7

Programming Energia (and Arduino)

Programming with ‘Wiring’

 Arduino programs are called
sketches
From the idea that we’re…

Sketching with hardware
 Sketches require only two

functions to run cyclically:
 setup()
 loop()

 Are C/C++ programs that can
use Arduino’s Wiring library
Library included with IDE

 If necessary, you can access
H/W specific features of C,
but that hurts portability

 Blink is C’s ‘Hello World’ ex.
 ‘Wiring’ makes this simple
 Like most first examples,

it is not optimized

// Most boards have LED and resistor connected
// between pin 14 and ground (pinout on later slide)
#define LED_PIN 14
void setup () {

// enable pin 14 for digital output
pinMode (LED_PIN, OUTPUT);

}
void loop () {

digitalWrite (LED_PIN, HIGH); // turn on LED
delay (1000); // wait one second (1000ms)
digitalWrite (LED_PIN, LOW); // turn off LED
delay (1000); // wait one second

}

Energia / Arduino Programming

Programming in Arduino is relatively easy. Essentially, it is C/C++ programming, but the Wiring
library simplifies many tasks. As an example, we use the Blink sketch (i.e. program) that is one of
examples that is included with Arduino (and Energia). In fact, this example is so ubiquitous that
most engineers think of it as “Hello World” of embedded programming.

How does the ‘Wiring’ library help to make things easier? Let’s examine the Blink code above:

 A sketch only requires two functions:
o setup() – a function run once at the start of a program which can be used to

define initial environment settings
o loop() – a function called repeatedly until the board is powered off

 Reading and Writing pins (i.e. General Purpose Input Output – GPIO) is encapsulated in
three simple functions: one function defines the I/O pin, the other two let you read or write
the pin. In the example above, this allows us to turn on/off the LED connected to a pin on
our microcontroller.

 The delay() function makes it simple to pause program execution for a given number of
microseconds. In fact, in the Energia implementation, the delay() function even utilizes a
timer which allows the processor to go into low power mode while waiting.

 Finally, which not shown here, Arduino/Energia makes using the serial port as easy as
using printf() in standard C programs.

About the only difference between Arduino and Energia programming is that you might see some
hardware specific commands in the sketch. For example, in one of the later lab exercises, you will
see how you can change the clock source for the TI MSP430 microcontroller. Changing clocks is
often done on the MSP430 so that you can balance processing speed against long battery life.

Programming Energia (and Arduino)

8 - 8 MSP430 Workshop - Using Energia (Arduino)

Wiring Language/Library Reference
What commands are available when programming with ‘Wiring’ in Arduino and Energia?

Arduino provides a language reference on their website. This defines the operators, controls, and
functions needed for programming in Arduino (and Energia).9 You will also find a similar HTML
reference available in the Energia installation zip file.

Wiring Library Reference

9 http://arduino.cc/en/Reference/HomePage

http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage

 Programming Energia (and Arduino)

MSP430 Workshop - Using Energia (Arduino) 8 - 9

How Does ‘Wiring’ Compare?
How does the ‘Wiring’ language compare to standard C code?

MSP430 C Code vs Wiring Language

Background
Loop

Setup
Code

void setup() {
// Setup pin for output
pinMode (LED_PIN, OUTPUT);

}

void loop() {
digitalWrite (LED_PIN, HIGH); // LED on
delay (1000); // wait 1 second
digitalWrite (LED_PIN, LOW); // LED off
delay (1000);

}

void main() {
// Setup pin for output
P1DIR = 0x40;
P1OUT = 0;
// Disable watchdog timer
WDTCTL = WDTPW | WDTHOLD;
// Setup Master Clock (MCLK)
BCSCTL1 = CALBC1_16MHZ;
DCOCTL = CALDCO_16MHZ;
BCSCTL2 &= ~(DIVS_0);
// Setup ACLK
BCSCTL3 |= LFXT1S_2;

while(1) {
P1OUT = 0x40; // LED on
_delay_cycles(1000); // wait 1 sec
P1OUT = 0; // LED off
_delay_cycles(1000);

}
}

This comparison helps to demonstrate the simplicity of programming with Energia. As stated
before, this can make for very effective rapid prototyping.

Later, during one of the lab exercises, we will examine some of the underpinings of Wiring.
Although the language makes programming easier, the same actual code is required for both
sides of this diagram. In the case of Wiring, this is encapsulated by the language/library. You will
see later on where this is done; armed with this knowledge, you can change the default values
defined by the folks who ported Arduino over to Energia for the TI microcontrollers.

Programming Energia (and Arduino)

8 - 10 MSP430 Workshop - Using Energia (Arduino)

Hardware pinout
Arduino programming refers to Arduino “pins” throughout the language and examples. In the
original implementation, these refer directly to the original hardware platform.

When adapting the Arduino library/language over to other processors, such as the TI
microcontrollers, these pins must be mapped to the available hardware. The following screen
capture from the Energia wiki shows the mapping for the MSP430 (v1.5 ‘G2553) Launchpad
development board. There are similar diagrams for the other supported TI boards; please find
these at wiki page: https://github.com/energia/Energia/wiki/Hardware.

MSP430F5529 Launchpad : Energia Pinout
http://energia.nu/Guide_MSP430F5529LaunchPad.html

Arduino/Energia logical pin #’s

Color Coded Pin Mapping

The wiki authors have color coded the pins to try and make things easier. The Black numbers
represent the Arduino Pin Numbers. Thus, you can write to the pins using the pin numbers:

 pinMode(2, OUTPUT);
 digitalWrite(2, HIGH);

The Grey values show the hardware elements that are being mapped, such as the LED’s or
PushButton. You can use these alternative names: RED_LED; GREEN_LED; PUSH2; and
TEMPSENSOR. Thus, to turn on the red LED, you could use:

 pinMode(RED_LED, OUTPUT);
 digitalWrite(RED_LED, HIGH);

Pins can also be address by there alternative names, such as P1_0. These correlate to the GPIO
port (P1) and pin (0) names (P1.0) as defined by the MSP430. (In fact, the Launchpads
conveniently show which I/O pins are mapped to the Boosterpack header connectors.) Using
these symbols, we can write to pins using the following:

 pinMode(P1_0, OUTPUT);
 digitalWrite(P1_0, HIGH);

https://github.com/energia/Energia/wiki/Hardware

 Programming Energia (and Arduino)

MSP430 Workshop - Using Energia (Arduino) 8 - 11

The remaining colored items show how various pins are used for digital, analog or
communications purposes. The color legend on the right side of the diagram demonstrates the
meaning of the various colors.

 Green indicates that you can use the associated pins with the digitalRead() and
digitalWrite() functions.

 Purple is similar to Green, though you can also use the analogWrite() function with these
pins.

 Yellow , Orange , and Red specify these pins are used for serial communication: UART,

I2C, and SPI protocols, respectively.

 Finally, Blue demonstrates which pins are connected to the MSP430’s ADC (analog to
digital converter).

Should you do Pullups or Not?

To reduce power consumption, MSP430 Value-Line Launchpads (version V1.5 and later) are
shipped without pull-up resistors on PUSH2 (S2 or P1_3 or pin 5). This saves (77uA) if port P1_3
is driven LOW. (On your LaunchPad just below the "M" in the text "MSP-EXP430G2" see if R34 is
missing.) For these newer launchpads, sketches using PUSH2 should enable the internal pull-up
resistor in the MSP430. This is a simple change; for example:

pinMode(PUSH2, INPUT); now looks like pinMode(PUSH2, INPUT_PULLUP);

Hardware Pin References

As stated above, the Energia wiki (https://github.com/energia/Energia/wiki/Hardware) and Energia site
(http://energia.nu/Guide_MSP430F5529LaunchPad.html) shows these pin mapping diagrams for each
of the Energia supported boards. You can also refer to the source code which defines this pin
mapping; look for Energia/hardware/msp430/variants/launchpad/pins_energia.h.
This header file can be found on github, or in the files installed with Energia.

Sidebar

How can some ‘pins’ be connected to various pieces of hardware? (For example, PUSH2 and A3
(analog input 3) are both mapped to pin 5.)

Well, most processors today have multiplexed pins; i.e. each pin can have multiple functionality.
While a given ‘pin’ can only be used for one function at a time, the chip designers give users
many options to choose from. In an ideal world, we could just put as many pins as we want on a
device; but unfortunately this costs too much, therefore multiplexing is a common
cost/functionality tradeoff.

Orange

https://github.com/energia/Energia/wiki/Hardware
http://energia.nu/Guide_MSP430F5529LaunchPad.html
https://github.com/energia/Energia/blob/master/hardware/msp430/variants/launchpad/pins_energia.h

Energia IDE

8 - 12 MSP430 Workshop - Using Energia (Arduino)

Energia IDE
The Energia IDE (integrated debugger and editor; integrated development environment) has been
written in Java. This is how they can provide versions of the tools for multiple host platforms
(Wndows, Mac, Linux).

Energia Debugger

 Installation
 Simply unzip Energia package
 Everything is included: debugger, libraries,

board files, compilers
 Download button…

 Performs compile and downloads the
program to the target

 Debugging – Use common open-src methods
 Write values to serial port: Serial.println()
 Toggle pins & watch with o-scope

New
Open

Save

Verify/Compile
Download

Installation of the tools couldn’t be much simplier – unzip the package … that’s it. (Though, if you
have not already installed TI’s Code Composer Studio IDE, you may have to install drivers so that
the Energia debugger can talk to the TI Launchpad board.)

Editing code is straightforward. Syntax highlighting, as well as brace matching help to minimize
errors.

Compiling and downloading the program is as simple as clicking the Download button.

Debugging code is handled in the common, open-source fashion: printf() style. Although, rather
than using printf(), you can use the Serial print functions to keep track of what is going on with
your programs. Similarly, we often use LED’s to help indicate status of program execution. And, if
you have an oscilloscope or logic analyzer, you can also toggle other GPIO pins to evaluate the
runtime state of your program sketches. (We explore using LED’s and serial communications in
the upcoming lab exercises.)

 Energia IDE

MSP430 Workshop - Using Energia (Arduino) 8 - 13

Examples, Lots of Examples
Energia ships with many examples. These are great for getting started with programming – or
when trying to learn a new functionality. Our upcoming lab exercises will follow with this tradition
of starting from these simple examples.

Energia Sketches (Examples)

 Basic Sketches

 Blink is the ‘hello
world’ of micro’s

 BareMinimum is just
setup() and loop()

 Selecting example…

 Opens sketch in
debugger window

 Click download to
compile, download
and run

Energia/Arduino References

8 - 14 MSP430 Workshop - Using Energia (Arduino)

Energia/Arduino References
There are many more Arduino references that could possibly be listed here, but this should help
get you started.

Where To Go For More Information

 Energia
 Home: http://energia.nu/
 Download: http://energia.nu/download/
 Wiki: https://github.com/energia/Energia/wiki
 Getting Started: https://github.com/energia/Energia/wiki/Getting-Started
 Support Forum: http://forum.43oh.com/forum/28-energia/

 Launchpad Boards
 MSP430: http://www.ti.com/tool/msp-exp430g2 (wiki) (eStore)
 ARM Cortex-M4F: Launchpad Wiki eStore

 Arduino:
 Site: http://www.arduino.cc/
 Comic book: http://www.jodyculkin.com/.../arduino-comic-latest3.pdf

Energia

 Home: http://energia.nu/

 Download: http://energia.nu/download/

 Wiki: https://github.com/energia/Energia/wiki

 Supported Boards: https://github.com/energia/Energia/wiki/Hardware

 (H/W pin mapping)

 Getting Started: https://github.com/energia/Energia/wiki/Getting-Started

 Support Forum: http://forum.43oh.com/forum/28-energia/

Arduino

 Site: http://www.arduino.cc/

 Comic book: http://www.jodyculkin.com/.../arduino-comic-latest3.pdf

http://energia.nu/
http://energia.nu/
http://energia.nu/
http://energia.nu/download/
https://github.com/energia/Energia/wiki
https://github.com/energia/Energia/wiki/Hardware
https://github.com/energia/Energia/wiki/Hardware
https://github.com/energia/Energia/wiki/Hardware
https://github.com/energia/Energia/wiki/Getting-Started
https://github.com/energia/Energia/wiki/Getting-Started
https://github.com/energia/Energia/wiki/Getting-Started
http://forum.43oh.com/forum/28-energia/
http://forum.43oh.com/forum/28-energia/
http://forum.43oh.com/forum/28-energia/
http://www.arduino.cc/
http://www.arduino.cc/
http://www.jodyculkin.com/wp-content/uploads/2011/09/arduino-comic-latest3.pdf

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 15

Lab 8
This set of lab exercises will give you the chance to start exploring Energia: the included
examples, the ‘Wiring’ language, as well as how Arduino has been adapted for the TI Launchpad
boards.

The lab exercises begin with the installation of Energia, then give you the opportunity to try out
the basic ‘Blink’ example included with the Energia package. Then we’ll follow this by trying a few
more examples – including trying some of our own.

Lab Exercises

Installing Energia

A. Blinking the LED

B. Pushing the Button

C. Serial Communication & Debugging

D. PushButton Interrupt

E. Timer Interrupt (Uses Non-Energia Code)

Lab 8

8 - 16 Gettings Started with the MSP430 - Using Energia (Arduino)

Installing Energia
If you already installed Energia as part of the workshop prework, then you can skip this step and
continue to Lab 8a – Blink.

These installation instructions were adapted from the Energia Getting Started wiki page. See this
site for notes on Mac OSX and Linux installations.

https://github.com/energia/Energia/wiki/Getting-Started

Note: If you are attending a workshop, the following files should have been downloaded as part
of the workshop’s pre-work. If you need them and do not have network access, please
check with your instructor.

Installing the LaunchPad drivers

1. To use Energia you will need to have the LaunchPad drivers installed.

 For Windows Users

 If TI's Code Composer Studio 5.x with MSP430 suport is already installed on your computer
then the drivers are already installed. Skip to the next step.

a) Download the LaunchPad drivers for Windows:
 LaunchPad CDC drivers zip file for Windows 32 and 64 bit

b) Unzip and double click DPinst.exe for Windows 32bit or DPinst64.exe for Windows 64 bit.

c) Follow the installer instructions.

Installing Energia

2. Download Energia, if you haven’t done so already.

 The most recent release of Energia can be downloaded from the download page.

 Windows Users

 Double click and extract the energia-0101EXXXX-windows.zip file to a desired location.

 (We recommend unzipping it to: C:\TI\energia-0101E00xx).

https://github.com/energia/Energia/wiki/Getting-Started
https://github.com/energia/Energia/raw/gh-pages/files/EZ430-UART.zip
http://energia.nu/download

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 17

Starting and Configuring Energia

3. Double click Energia.exe (Windows users).

 Energia will start and an empty Sketch window will appear.

Lab 8

8 - 18 Gettings Started with the MSP430 - Using Energia (Arduino)

4. Set your working folder in Energia.

 It makes it easier to save and open files if Energia defaults to the folder where you want to
put your sketches.

 The easiest way to set this locations is via Energia’s preferences dialog:

File  Preferences

 Then set the Sketchbook location to:

C:\msp430_workshop\<target>\energia

 Which opens:

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 19

5. Selecting the Serial Port

 Select Serial Port from the Tools menu to view the available serial ports.

 For Windows, they will be listed as COMXXX port and usually a higher number is the
LaunchPad com port. On Mac OS X they will be listed as /dev/cu.uart-XXXX.

6. Select the board you are using – most likely the msp430f5529 (16MHz).

 To select the board or rather the msp430 in your LaunchPad, select Board from the Tools
menu and choose the board that matched the msp430 in the LaunchPad.

Lab 8

8 - 20 Gettings Started with the MSP430 - Using Energia (Arduino)

Lab 8a – Blink
Don’t blink, or this lab will go by without you seeing it. It’s a very simple lab exercise – that
happens to be one of the many examples included with the Energia package.

As simple as this example is, it’s a great way to begin. In fact, if you have followed the flow of this
workshop, you may recognize the Blink example essentially replicates the lab exercise we
created in Chapter 3 and 4 of this workshop.

As we pointed out during the Energia chapter discussion, the Wiring language simplifies the code
quite a bit.

Your First Sketch

1. Open the Blink sketch (i.e. program).

 Load the Blinky example into the editor; select Blink from the Examples menu.

File  Examples  1.Basics  Blink

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 21

2. Examine the code.

 Looking at the Blink sketch, we see the code we quickly examined during our chapter
discussion. This code looks very much like standard C code. (In Lab8d we examine some of
the specific differences between this sketch and C code.)

 At this point, due to their similarity to standard C language code, we will assume that you
recognize most of the elements of this code. By that, we mean you should recognize and
understand the following items:

 #define – to declare symbols

 Functions – what a function is, including: void, () and {}

 Comments – declared here using // characters

 What we do want to comment on is the names of the two functions defined here:

 setup(): happens one time when program starts to run

 loop(): repeats over and over again

 This is the basic structure of an Energia/Arduino sketch. Every sketch should have – at the
very least – these two functions. Of course, if you don’t need to setup anything, for example,
you can leave it empty.

/*

 Blink

 Turns on an LED on for one second, then off for one second,
 repeatedly. This example code is in the public domain.

 */

void setup () {

 // initialize the digital pin as an output.

 // Pin 14 has an LED connected on most Arduino boards:

 pinMode (RED_LED, OUTPUT);
}

void loop () {

 digitalWrite (RED_LED, HIGH); // turn on LED

 delay (1000); // wait one second (1000ms)

 digitalWrite (RED_LED, LOW); // turn off LED

 delay (1000); // wait one second
}

Lab 8

8 - 22 Gettings Started with the MSP430 - Using Energia (Arduino)

3. Compile and upload your program to the board.

 To compile and upload the Sketch to the LaunchPad click the button.

Do you see the LED blinking? What color LED is blinking? __________________________

What pin is this LED connected to? ___

 (Be aware, in the current release of Energia, this could be a trick question.)

Hint: We recommend you check out the Hardware Pin Mapping to answer this last
question. There’s a copy of it in the presentation. Of course, the original is on the
Energia wiki.

https://github.com/energia/Energia/wiki/Hardware%23wiki-LaunchPad_MSP430G2553

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 23

Modifying Blink

4. Copy sketch to new file before modification.

 We recommend saving the original Blink sketch to a new file before modifying the code.

File  Save As…

 Save it to:

C:\msp430_workshop\<target>\energia\Blink_Green

Hint: This will actually save the file to:

C:\msp430_workshop\<target>\energia\Blink_Green\Blink_Green.ino

Energia requires the sketch file (.ino) to their to be in a folder named for the project.

5. How can you change which color LED blinks?

 Examine the H/W pin mapping for your board to determine what needs to change.

Please describe it here: __

 __

6. Make the other LED blink.

 Change the code, to make the other LED blink.

 When you’ve changed the code, click the Upload button to: compile the sketch; upload the
program to the processor’s Flash memory; and, run the program sketch.

Did it work? ___

 (We hope so. Please ask for help if you cannot get it to work.)

Lab 8

8 - 24 Gettings Started with the MSP430 - Using Energia (Arduino)

Lab 8b – Pushing Your button
Next, let’s figure out how to use the button on the Launchpad. It’s not very difficult, but since
there’s already a sketch for that, we’ll go ahead and use it.

1. Open the Button sketch (i.e. program).

 Load the Button example into the editor.

File  Examples  2.Digial  Button

2. Try out the sketch.

 Before we even examine the code, let’s try it out. (You’re probably just like us … going to try
it out right away, too.)

When you push the button the (GREEN or RED) LED goes (ON or OFF)? ______________

By the way, you probably know this already from earlier in the workshop, but which button are
we using? If you’re using the F5529 Launchpad, then the “user” buttons are called PUSH1
and PUSH2; the example uses PUSH2 (the board silkscreen says P1.1) as shown here:

Examine the code

3. The author of this sketch used the LED in a slightly different fashion.

How is the LED defined differently in the Button Sketch versus the Blink sketch?

4. Looking at the pushbutton…

How is the pushbutton created/used differently from the LED? ________________________

What “Energia” pin is the button connected to? ___________________________________

What is the difference between INPUT and INPUT_PULLUP? ________________________

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 25

5. A couple more items to notice…

 Just like standard C code, we can create variables. What is the global variable used for in this
example?

 Finally, this is a very simple way to read and respond to a button. What would be a more
efficient way to handle responding to a pushbutton? (And why would this be important to
many of us MSP430 users?)

 __

(Note, we will look at this ‘more efficient’ method in a later part of the lab.)

Reverse button/LED action

Do you find this example to be the reverse of what you expected? Would you prefer the LED to
go ON when the button is pushed, rather than the reverse. Let’s give that a try.

6. Save the example to sketch new file before modification.

 Once again, we recommend saving the original sketch before modification. Save it to:

C:\msp430_workshop\<target>\energia\Button_reversed

7. Make the LED light only when the button is pressed.

 Change the code as needed.

Hint: The changes required are similar to what you would do in C, they are not unique to
Energia/Arduino.

8. When your changes are finished, upload it to your Launchpad.

Did it work? ___

Lab 8

8 - 26 Gettings Started with the MSP430 - Using Energia (Arduino)

Lab 8c – Serial Communication (and Debugging)
This lab uses the serial port (UART) to send data back and forth to the PC from the Launchpad.

In and of itself, this is a useful and common thing we do in embedded processing. It’s the most
common way to talk with other hardware. Beyond that, this is also the most common debugging
method in Arduino programming. Think of this as the “printf” for the embedded world of
microcontrollers.

1. Open the DigitalReadSerial example.

 Once again, we find there’s a (very) simple example to get us started.

File  Examples  1.Basics  DigitalReadSerial

2. Save sketch as myDigitalReadSerial.

3. Examine the code.

 This is a very simple program, but that’s good since it’s very easy to see what
Energia/Arduino needs to get the serial port working.

/* DigitalReadSerial

 Reads a digital input on pin 2, prints the result to the
 serial monitor (This example code is in the public domain) */

void setup() {

 Serial.begin(9600); // msp430g2231 must use 4800

 pinMode(PUSH2, INPUT_PULLUP);
}

void loop() {

 int sensorValue = digitalRead(PUSH2);

 Serial.println(sensorValue);
}

 As you can see, serial communication is very simple. Only one function call is needed to
setup the serial port: Serial.begin(). Then you can start writing to it, as we see here in the
loop() function.

Note: Why are we limited to 9600 baud (roughly, 9600 bits per second)?

The G2553 Launchpad’s onboard emulation (USB to serial bridge) is limited to 9600
baud. It is not a hardware limitation of the MSP430 device. Please refer to the wiki for
more info: https://github.com/energia/Energia/wiki/Serial-Communication.

If you’re using other Launchpads (such as the ‘F5529 Launchpad), your serial port can
transmit at much higher rates.

https://github.com/energia/Energia/wiki/Serial-Communication

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 27

4. Download and run the sketch.

 With the code downloaded and (automatically) running on the Launchpad, go ahead and
push the button.

 But, how do we know it is running? It doesn’t change the LED, it only sends back the current
pushbutton value over the serial port.

Hint: After running the sketch and looking at the Serial Monitor (in the next step), you might
find that nothing is showing up. Try switching “pin 5” for “PUSH2” in the code. Look at the
mapping diagrams between the ‘G2553 and ‘F5529 Launchpads to see the mismatch.

5. Open the serial monitor.

 Energia includes a simple serial
terminal program. It makes it easy to
view (and send) serial streams via
your computer.

 With the Serial Monitor open, and
the sketch running, you should see
something like this:

 You should see either a “1” or “0”
depending upon whether the putton
is up or down.

 Also, notice that the value is updated continuously, since the sketch reads the button and
writes it to port in the loop() function.

Do you see numbers in the serial monitor?

 __

What if the Serial Monitor is blank? (’G2553 Launchpad Configuration)
If this is the case, your Launchpad is most likely configured incorrectly. For serial communications to work
correctly, the J3 jumpers need to be configured differently than how the board is configured out-of-the-box.
(This fooled us, too.) Refer to these diagrams for correct operation. (This does not affect other Launchpads.)

https://github.com/energia/Energia/wiki/Hardware%23wiki-Serial_port_communication_Hardware_UART

Lab 8

8 - 28 Gettings Started with the MSP430 - Using Energia (Arduino)

Blink with Serial Communication

Let’s try combining a couple of our previous sketches: Blink and DigitalReadSerial.

6. Open the Button sketch.

 Load the Button from the Examples menu.

File  Examples  2.Digial  Button

7. Save it to a new file before modification.

 Once again, we recommend saving the original sketch before modification. Save it to:

C:\msp430_workshop\<target>\energia\Serial_Button

8. Add ‘serial’ code to your Serial_Button sketch.

 Take the serial communications code from our previous example and add it to your new
Serial_Button sketch. (Hint, it should only require two lines of code.)

9. Download and test the example.

 Did you see the Serial Monitor and LED changing when you push the button?

 __

10. Considerations for debugging…

 How you can use both of these items for debugging?

 Serial Port; LED (And, what if you didn’t have an LED available on your board?):

Another Pushbutton/Serial Example

Before finishing Lab 8C, let’s look at one more example.

11. Open the StateChangeDetection sketch.

 Load the sketch from the Examples menu.

File  Examples  2.Digial  StateChangeDetection

12. Examine the sketch, download and run it.

How is this sketch different? What makes it more efficient? __________________________

 __

How is this (and all our sketches, up to this point) inefficient? ________________________

 __

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 29

Lab 8d – Using Interrupts
Interrupts are a key part of embedded systems. It is responding to external events and
peripherals that allow our programs to ‘talk’ to the real world.

Thusfar, we have actually worked with a couple different interrupts without having to know
anything about them. Our serial communications involved interrupts, although the Wiring
language insulates us from needing to know the details. Also, there is a timer involved in the
delay() function; thankfully, it is also managed automatically for us.

In this part of the lab exercise, you will setup two different interrupts. The first one will be triggered
by the pushbutton; the second, by one of the MSP430 timers.

1. Once again, let’s start with the Blink code.

File  Examples  1.Basics  Blink

2. Save the sketch to a new file.

File  Save As…

 Save it to:

C:\msp430_workshop\<target>\energia\Interrupt_PushButton

3. Before we modify the file, run the sketch to make sure it works properly.

4. To setup(), configure the GREEN_LED and then initialize it to LOW.

 This requires two lines of code which we have used many times already.

Adding an Interrupt
Adding an interrupt to our Energia sketch requires 3 things:

 An interrupt source – what will trigger our interrupt. (We will use the pushbutton.)

 An ISR (interrupt service routine) – what to do when the interrupt is triggered.

 The interruptAttach() function – this function hooks a trigger to an ISR. In our case, we

will tell Energia to run our ISR when the button is pushed.

5. Interrupt Step 1 - Configure the PushButton for input.

 Look back to an earlier lab if you don’t remember how to do this.

6. Interrupt Step 2 – Create an ISR.

 Add the following function to your sketch; it will be your interrupt service routine. This is about
as simple as we could make it.

void myISR()
{
 digitalWrite(GREEN_LED, HIGH);
}

 In our function, all we are going to do is light the GREEN_LED. If you push the button and the
Green LED turns on, you will know that successfully reached the ISR.

Lab 8

8 - 30 Gettings Started with the MSP430 - Using Energia (Arduino)

7. Interrupts Step 3 – Connect the pushbutton to our ISR.

 You just need to add one more line of code to your setup() routine, the attachInterrupt()
function. But what arguments are needed for this function? Let’s look at the Arduino
reference to figure it out.

Help  Reference

 Look up the attachInterrupt() function. What three parameters are required?

1. ___

2. ___

3. ___

 One you have figured out the parameters, add the function to your setup() function.

8. Compile & download your code and test it out.

Does the green RED_LED flash continuously? ____________________________________

When you push the button, does the GREEN_LED light? ___________________________

When you push reset, the code should start over again. This should turn off the
GREEN_LED, which you can then turn on again by pushing PUSH2.

Note: Did the GREEN_LED fail to light up? If so, that means you are not getting an
interrupt.

First, check to make sure you have all three items – button is configured;
attachInterrupt() function called from setup(); ISR routine that lights the GREEN_LED

The most common error involves setting up the push button incorrectly. The button
needs to be configured with INPUT_PULLUP. In this way, the button is held high
which lets the system detect when the value falls as the button is pressed.

Missing the INPUT_PULLUP is especially common since most Arduino examples –
like the one shown on the attachInterrupt() reference page only show INPUT. This is
because many boards include an external pullup resistor, Since the MSP430
contains an internal pullup, you can save money by using it instead.

 Lab 8

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 31

Lab 8e – Using TIMER_A
9. Create a new sketch and call it Interrupt_TimerA

File  New

File  Save As…

C:\msp430_workshop\<target>\energia\Interrupt_TimerA

10. Add the following code to your new sketch.

#include <inttypes.h>

uint8_t timerCount = 0;

void setup()
{
 pinMode(RED_LED, OUTPUT);

 TA0CCTL0 = CCIE;
 TA0CTL = TASSEL_2 + MC_2;
}

void loop()
{
 // Nothing to do.
}

__attribute__((interrupt(TIMER0_A0_VECTOR)))
void myTimer_A(void)
{
 timerCount = (timerCount + 1) % 80;
 if(timerCount ==0)
 P1OUT ^= 1;
}

 In this case, we are not using the attachInterrupt() function to setup the interrupt. If you
double-check the Energia reference, it states the function is used for ‘external’ interrupts. In
this case, the MSP430’s Timer_A is an internal interrupt.

 In essense, though, the same three steps are required:

a) The interrupt source must be setup. In our example, this means seting up TimerA0’s
CCTL0 (capture/compare control) and TA0CTL (TimerA0 control) registers.

b) An ISR function – which, in this case, is named “myTimer_A”.

c) A means to hook the interrupt source (trigger from TimerA0) to our function. In this case,
we need to plug the Interrupt Vector Table ourselves. The GCC compiler uses the
__attribute__((interrupt(TIMER_A0_VECTOR))) line to plug the Timer_A0 vector.

Note: You might remember that we introduced Interrupts in Chapter 5 and Timers in
Chapter 6. In those labs, the syntax for the interrupt vector was slightly different from
what we are using here. This is because the other chapters use the TI compiler.
Energia uses the open-source GCC compiler, which uses a slightly different syntax.

Appendix – Looking ‘Under the Hood’

8 - 32 Gettings Started with the MSP430 - Using Energia (Arduino)

Appendix – Looking ‘Under the Hood’
We are going to create three different lab sketches in Lab 8d. All of them will essentially be our
first ‘Blink’ sketch, but this time we’re going to vary the system clock – which will affect the rate of
blinking. We will help you with the required C code to change the clocks, but if you want to study
this further, please refer to Chapter 3 – Inititialization and GPIO.

Where, oh where, is Main

How does Energia setup the system clock?

Before jumping into how to change the MSP430 system clock rate, let’s explore how Energia sets
up the clock in the first place. Thinking about this, our first question might be…

 What is the first function in every C program? (This is not meant to be a trick question)

If Energia/Arduino is built around the C language, where is the main() function? Once we answer
this question, then we will see how the system clock is initialized.

Open main.cpp …

C:\TI\energia-0101E0010\hardware\msp430\cores\msp430\main.cpp

The “C:\TI\energia-0101E0010” may be different if you unzipped the Energia to a different location.

When you click the Download button, the tools combine your setup() and loop() functions into the
main.cpp file included with Energia for your specific hardware. Main should look like this:

main.cpp

// main.cpp

#include < Energia.h >

int main(void)

{
init();

setup();

for (;;) {

loop();

if (serialEventRun) {
serialEventRun();

}
}

return 0;
}

Clicking download
combines sketch with
main.cpp to create a
valid c++ program

We have already seen setup()
and loop(). This is how Energia
uses them.

Energia.h contains the #defines,
enums, prototypes, etc.

System initalization is
done in wiring.c

(see next slide)

C:\TI\energia-0101E0010\hardware\msp430\cores\msp430\

Where do you think the MSP430 clocks are initialized? _____________________________

 Appendix – Looking ‘Under the Hood’

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 33

Follow the trail. Open wiring.c to find how init() is implemented.

C:\TI\energia-0101E0010\hardware\msp430\cores\msp430\wiring.c

 The init() function implements the essential code required to get the MSP430 up and running.
If you have already completed Chapter 4 – Clocking and Initialization, then you should
recognize most of these activities. At reset, you need to perform two essential activies:

 Initialize the clocks (choose which clock source you want use)

 Turn off the Watchdog timer (unless you want to use it, as a watchdog)

 The Energia init() function takes this three steps further. They also:

 Setup the Watchdog timer as a standard (i.e. interval) timer

 Setup two GPIO pins

 Enable interrupts globally

init() in wiring.c
C:\TI\energia-0101E0010\hardware\msp430\cores\msp430\

// wiring.c
void init()
{

disableWatchDog();
initClocks();
enableWatchDogIntervalMode();
// Default to GPIO (P2.6, P2.7)
P2SEL &= ~(BIT6|BIT7);
__eint();

}
enableWatchDogIntervalMode()
initClocks()
disableWatchDog()
enableWatchDog()
delayMicroseconds()
delay()
watchdog_isr ()

 wiring.c provides the core files for
device specific architectures

 init() is where the default
initializations are handled

 As discussed in Ch 3 (Init & GPIO)
 Watchdog timer (WDT+) is

disabled
 Clocks are initialized (DCO 16MHz)
 WDT+ set as interval timer

Appendix – Looking ‘Under the Hood’

8 - 34 Gettings Started with the MSP430 - Using Energia (Arduino)

Two ways to change the MSP430 clock source

There are two ways you can change your MSP430 clock source:

 Modify the initClocks() function defined in wiring.c

 Add the necessary code to your Setup() function to modify the clock sources

Advantages

 Do not need to re-modify wiring.c after updating to new revision of Energia

 Changes are explicitly shown in your own sketch

 Each sketch sets its own clocking, if it needs to be changed

 In our lab, it allows us to demonstrate that you can modify hardware registers – i.e.
processor specific hardware – from within your sketch

Disdvantages

 Code portability – any time you add processor specific code, this is something that will

need to be modified whenever you want to port your Arduino/Energia code to another
target platform

 A little less efficient in that clocking gets set twice

 You have to change each sketch (if you always want a different clock source/rate)

 Appendix – Looking ‘Under the Hood’

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 35

Sidebar – initClocks()

Here is a snippet of the initClocks() function found in wiring.c (for the ‘G2553 Launchpad). We
call it a snippet, since we cut out the other CPU speeds that are also available (8 & 12 MHz).

The beginning of this function starts out by setting the calibration constants (that are provided in
Flash memory) to their associated clock configuration registers.

(Sidebar): initClocks() in wiring.c

void initClocks(void)
{
#if (F_CPU >= 16000000L)
BCSCTL1 = CALBC1_16MHZ;
DCOCTL = CALDCO_16MHZ;

#elif (F_CPU >= 1000000L)
BCSCTL1 = CALBC1_1MHZ;
DCOCTL = CALDCO_1MHZ;

#endif

BCSCTL2 &= ~(DIVS_0);
BCSCTL3 |= LFXT1S_2;

CSCTL2 &= ~SELM_7;
CSCTL2 |= SELM__DCOCLK;
CSCTL3 &= ~(DIVM_3|DIVS_3);

#if F_CPU >= 16000000L
CSCTL1 = DCORSEL;

#elif F_CPU >= 1000000L
CSCTL1 = DCOFSEL0|DCOFSEL1;
CSCTL3 |= DIVM_3;

#endif
}

Select correct calibration
constants based on chosen clock
frequency

 F_CPU defined in boards.txt
 Select ‘board’ via: ToolsBoards

Set MCLK as per F_CPU

 Set SMCLK to F_CPU
Set ACLK to VLO (12Khz)

 Clear main clock (MCLK)
Use DCO for MCLK
Clear divide clock bits

If you work your way through the second and third parts of the code, you can see the BCS (Basic
Clock System) control registers being set to configure the clock sources and speeds. Once again,
there are more details on this in Clocking chapter and its lab exercise.

Appendix – Looking ‘Under the Hood’

8 - 36 Gettings Started with the MSP430 - Using Energia (Arduino)

Sidebar Cont’d - Where is F_CPU defined?

We searched high & low and couldn’t find it. Finally, after reviewing a number of threads in the
Energia forum, we found that it is specified in boards.txt. This is the file used by the debugger
to specifiy which board (i.e. target) you want to work with. You can see the list from the
ToolsBoard menu.

C:\TI\energia-0101E0010\hardware\msp430\boards.txt

 Lab Debrief

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 37

Lab Debrief

Q&A: Lab8A (1)
Lab A
3. Do you see the LED blinking? What color LED is blinking? _____________________

What pin is this LED connected to? _______________________________________

(Be aware, in the current release of Energia, this could be a trick question.)

Red

P1_0
(Code says Pin14, it was RED that blinked)

Q&A: Lab8A (2)
5. How can you change which color LED blinks?

Examine the H/W pin mapping for your board to determine what needs to change.
Please describe it here: ___

6. Make the other LED blink.
Did it work? ____________________________________

Change from P1_0 to P4_7, for the green LED to blink

(Easier yet, just use the pre-defined symbol: GREEN_LED)

Yes

Lab Debrief

8 - 38 Gettings Started with the MSP430 - Using Energia (Arduino)

Q&A: Lab8B (1)
2. Try out the sketch.

When you push the button the (GREEN or RED) LED goes (ON or OFF)?

Examine the code
3. How is the LED defined differently in the ‘Button’ Sketch versus the ‘Blink’ sketch?

4. How is the pushbutton created/used differently from the LED?

What “Energia” pin is the button connected to? _______________________________
What is the difference between INPUT and INPUT_PULLUP?

Green LED goes OFF

In ‘Blink’, the LED was #defined (as part of Energia);
in ‘Button’, it was defined as a const integer. Both work equally well.

In Setup() it is configured as an ‘input’; in loop() we use digitalRead()
P1_1

INPUT config’s the pin as a simple input – e.g. allowing you to read pushbutton.
Using INPUT_PULLUP config’s the pin as an input with a series pullup resitor;
(many TI C provide these resistors as part of their hardware design).

Q&A: Lab8B (2)
5. Just like standard C code, we can create variables. What is the global variable used

for in the ‘Button’ example?

What would be a more efficient way to handle responding to a pushbutton? (And why
would this be important to many of us MSP430 users?)

(Note, we will look at this later.)

Reverse Button/LED action
8. Did it work? _________________

‘buttonState’ global variable holds the value of the button returned by digitalRead().
We needed to store the button’s value to perform the IF-THEN/ELSE command.

It would be more efficient to let the button ‘interrupt’ the processor, as opposed to
reading the button over and over again. This is as the processor cannot SLEEP
while polling the pushbutton pin. If using an interrupt, the processor could sleep until
being woken up by a pushbutton interrupt.

Yes (it should)

 Lab Debrief

Gettings Started with the MSP430 - Using Energia (Arduino) 8 - 39

Q&A: Lab8C (1)
5. Did you see numbers in the serial monitor? ___________________________

If using ‘G2553 LP you might not have seen anything in the Serial Monitor. If so, change:

Yes

Change the serial-port jumpers

Note – changing jumpers is only needed for ‘G2553 Value-Line Launchpad

Q&A: Lab8C (2)
Blink with Serial Communication (Serial_Button sketch)
9. Did you see the Serial Monitor and LED changing when you push the button?

10. Considerations for debugging… How you can use both of these items for debugging?
(Serial Port and LED)
__

__

__

You (we hope so)

Use the serial port to send back info, just as you might use printf() in your C code.
An LED works well to indicate you reached a specific place in code. For example,
later on we’ll use this to indicate our program has jumped to an ISR (interrupt routine)
Similarly, many folks hook up an oscilloscope or logic analyzer to a pin, similar to
using an LED. (Since our boards have more pins than LEDs.)

Lab Debrief

8 - 40 Gettings Started with the MSP430 - Using Energia (Arduino)

Q&A: Lab8C (3)
Another Pushbutton/Serial Example (StateChangeDetection sketch)
12. Examine the sketch, download and run it.

How is this sketch different? What makes it more efficient?

How is this (and all our sketches, up to this point) inefficient?

It only sends data over the UART whenever the button changes

Our pushbutton sketchs – thusfar – have used polling to determine the state of the
button. It would be more efficient to let the processor sleep; then be woken up by an
interrupt generated when the pushbutton is depressed.

Q&A: Lab8D
Interrupt Example (Interrupt_PushButton)
7. Look up the attachInterrupt() function. What three parameters are required?

1. ___

2. ___

3. ___

8. Compile & download your code and test it out.
Does the green RED_LED flash continuously? _____________________________
When you push the button, does the GREEN_LED light? _____________________

Notes:
 Use reset button to start program again and clear GREEN_LED
 Most common error, not configuring PUSH2 with INPUT_PULLUP.

Interrupt source – in our case, it’s PUSH2
ISR function to be called when int is triggered – for our ex, it’s “myISR”
Mode – what state change to detect; the most common is “FALLING”

	Using Energia (Arduino)
	What is Arduino
	Energia
	Programming Energia (and Arduino)
	Energia IDE
	Energia/Arduino References

	MSP430mod08L ENERGIA.pdf
	Using Energia (Arduino)
	Lab 8
	Installing Energia
	Installing the LaunchPad drivers
	Installing Energia
	Starting and Configuring Energia

	Lab 8a – Blink
	Your First Sketch
	Modifying Blink

	Lab 8b – Pushing Your button
	Examine the code
	Reverse button/LED action

	Lab 8c – Serial Communication (and Debugging)
	What if the Serial Monitor is blank? (’G2553 Launchpad Configuration)
	Blink with Serial Communication
	Another Pushbutton/Serial Example

	Lab 8d – Using Interrupts
	Adding an Interrupt

	Lab 8e – Using TIMER_A

	Appendix – Looking ‘Under the Hood’
	Where, oh where, is Main
	How does Energia setup the system clock?
	Open main.cpp …
	Follow the trail. Open wiring.c to find how init() is implemented.
	Two ways to change the MSP430 clock source
	Advantages
	Disdvantages

	Sidebar – initClocks()
	Sidebar Cont’d - Where is F_CPU defined?

	Lab Debrief

