Serial Communications
	Serial Communications
[bookmark: _Toc347491774]Serial Communications
IntroductionThis module will cover the details of serial communications. In the lab exercise we will implement a software UART and communicate with the PC through the USB port.

[bookmark: _Toc347491775]Module Topics
Serial Communications	7-1
Module Topics	7-2
Serial Communications	7-3
USCI	7-3
Protocols	7-3
Software UART Implementation	7-4
USB COM Port Communication	7-4
Lab 7: Serial Communications	7-5
Objective	7-5
Procedure	7-6
[bookmark: _Toc347491776][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]Serial Communications
[bookmark: _Toc347491777]USCI

[bookmark: _Toc347491778]Protocols

[bookmark: _Toc347491779]Software UART Implementation

Application note: http://focus.ti.com/lit/an/slaa078a/slaa078a.pdf
[bookmark: _Toc347491780]USB COM Port Communication
[bookmark: _Toc370113188][bookmark: _Toc394202380]
[bookmark: _Toc347491781]
Lab 7: Serial Communications
[bookmark: _Toc347491782]Objective
The objective of this lab is to learn serial communications with the MSP430 device. In this lab exercise we will implement a software UART and communicate with the PC using the USB port. It would be possible to do this on the MSP430G2553 since it has a USCI peripheral with a UART ports. But often developers want to minimize cost to the greatest degree possible. Implementing a UART in software could save several crucial pennies from the bill of materials.

[bookmark: _Toc347491783]
Procedure
[bookmark: OLE_LINK1]Create a New Project
1. Create a new project by clicking:
File New CCS Project
Make the selections shown below (your dialog may look slightly different than this one). If you are using the MSP430G2231, make the appropriate choices for that part. Make sure to click Empty Project (with main.c), and then click Finish.
[image:]

Source File
In this lab exercise we will be building a program that transmits “HI”, “LO” or “IN” using the software UART code. This data will be communicated through the USB COM port and then to the PC for display on a terminal program. The UART code utilizes TIMER_A2, so we will need to remove the dependence on that resource from our starting code. Then we will add some “trip point” code that will light the red or green LED indicating whether the temperature is above or below some set temperature. Then we will add the UART code and send messages to the PC. The code file from the last lab exercise will be used as the starting point for this lab exercise.
1. Open the Lab6a.txt file using File Open File…
· C:\MSP430_LaunchPad\Labs\Lab6\Files\Lab6a.txt
2. Copy all of the code from Lab6a.txt and paste it into main.c, erasing the previous contents of main.c. This will be the starting point for this lab exercise. You should notice that this is not the low-power optimized code that we created in the latter part of the Lab6 exercise and we will be ignoring the warnings from the ULP Advisor. The software UART implementation requires Timer_A2, so using the fully optimized code from Lab6 will not be possible. But we can make a few adjustments and still maintain fairly low-power.

Close the Lab6a.txt file. If you are using the MSP430G2231, make sure to make the appropriate change to the header file include at the top of the main.c.
3. As a test – build, load, and run the code. Ignore the ULP Advisor warnings. Remove tempRaw from the Expression pane. If everything is working correctly, the green LED will blink once every three or four seconds, but the blink duration will be very, very short. The code should work exactly the same as it did in the previous lab exercise. When you’re done, halt the code and click the Terminate [image:] button to return to the “CCS Edit” perspective.
Remove Timer_A2 and Add WDT+ as the Interval Timer
4. We need to remove the previous code’s dependence on Timer_A2. The WDT+ can be configured to act as an interval timer rather than a watchdog timer. Change the ConfigWDT() function so that it looks like this:
void ConfigWDT(void)
 {
 WDTCTL = WDT_ADLY_250; // <1 sec WDT interval
 IE1 |= WDTIE; // Enable WDT interrupt	
 }
The selection of intervals for the WDT+ is somewhat limited, but WDT_ADLY_250 will give us a little less than a 1 second delay running on the VLO.
WDT_ADLY_250 sets the following bits:
· WDTPW:	 WDT password
· WDTTMSEL:	 Selects interval timer mode
· WDTCNTCL:	 Clears count value
· WDTSSEL:	 WDT clock source select

5. The code in the Timer_A0 ISR now needs to run when the WDT+ interrupts trigger:
· Change this:
// Timer_A2 interrupt service routine
#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
{
· To this:
// WDT interrupt service routine
#pragma vector=WDT_VECTOR
__interrupt void WDT(void)
{
6. There is no need to handle CCRO in the WDT ISR. Delete the CCR0 += 36000; line.
7. There is no need to set up Timer_A2 now. Delete all the code inside the ConfigTimerA2() function.
8. Build, load, and run the code. Make sure that the code is operating like before, except that now the green LED will blink about once per second. When you’re done, click the Terminate button [image:] to return to the “CCS Edit” perspective. If needed, this code can be found in Lab7a.txt in the Files folder.
Add the UART Code
9. Delete both P1OUT lines from the WDT ISR. We are going to need both LEDs for a different function in the following steps.
10. We need to change the Transmit and Receive pins (P1.1 and P1.2) on the MSP430 from GPIO to TA0 function. Add the first line shown below to your ConfigPins() function and change the second line as follows:
void ConfigPins(void)
 {
 	P1SEL |= TXD + RXD;		// P1.1 & 2 TA0, rest GPIO
	P1DIR = ~(BIT3 + RXD);		// P1.3 input, other outputs
	P1OUT = 0;				// clear outputs
	P2SEL = ~(BIT6 + BIT7); 	// make P2.6 & 7 GPIO
	P2DIR |= BIT6 + BIT7;		// P2.6 & 7 outputs
	P2OUT = 0;				// clear outputs
 }

11. We need to create a function that handles the UART transmit side. Adding a lot of code tends to be fairly error-prone. So add the following function by copying and pasting it from here or from Transmit.txt in the Files folder to the end of main.c:
// Function Transmits Character from TXByte
void Transmit()
{
 BitCnt = 0xA; // Load Bit counter, 8data + ST/SP
 while (CCR0 != TAR) // Prevent async capture
 CCR0 = TAR; // Current state of TA counter
 CCR0 += Bitime; // Some time till first bit
 TXByte |= 0x100; // Add mark stop bit to TXByte
 TXByte = TXByte << 1; // Add space start bit
 CCTL0 = CCIS0 + OUTMOD0 + CCIE; // TXD = mark = idle
 while (CCTL0 & CCIE); // Wait for TX completion
}
Be sure to add the function declaration at the beginning of main.c:
void Transmit(void);
12. Transmission of the serial data occurs with the help of Timer_A2 (Timer A2 creates the timing that will give us a 2400 baud data rate). Cut/paste the code below or copy the contents of Timer_A2 ISR.txt and paste it to the end of main.c:
// Timer A0 interrupt service routine
#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
{
 CCR0 += Bitime; // Add Offset to CCR0
 if (CCTL0 & CCIS0) // TX on CCI0B?
 {
 if (BitCnt == 0)
 {
 CCTL0 &= ~ CCIE ; // All bits TXed, disable interrupt
 }

 else
 {
 CCTL0 |= OUTMOD2; // TX Space
 if (TXByte & 0x01)
 CCTL0 &= ~ OUTMOD2; // TX Mark
 TXByte = TXByte >> 1;
 BitCnt --;
 }
 }
}

13. Now we need to configure Timer_A2. Enter the following lines to the ConfigTimerA2() function in main.c so that it looks like this:
[bookmark: OLE_LINK2]void ConfigTimerA2(void)
 {
 CCTL0 = OUT; // TXD Idle as Mark
 TACTL = TASSEL_2 + MC_2 + ID_3; // SMCLK/8, continuos mode
 }

14. To make this code work, add the following definitions at the top of main.c:
#define TXD BIT1				// TXD on P1.1
#define RXD	BIT2 			// RXD on P1.2
#define Bitime 13*4			// 0x0D

unsigned int TXByte;
unsigned char BitCnt;

15. Since we have added a lot of code, let’s do a test build. In the Project Explorer pane, right-click on main.c and select Build Selected File(s). Check for syntax errors in the Console and Problems panes (other than the ULP Advisor issues).

16. Now, add the following declarations to the top of main.c:
volatile long tempSet = 0;
volatile int i;
The tempSet variable will hold the first temperature reading made by ADC10. The code will then compare future readings against it to determine if the new measured temperature is hotter or cooler than that set value. Note that we are starting the variable out at zero. That way, we can use its non-zero value after it’s been set to make sure we only set it once. We’ll need the “i” in the code below.
17. Add the following control code to the while(1) loop right after line containing
_bis_SR_register(LPM3_bits + GIE);
This code is available in while.txt:
 if (tempSet == 0)
 {
 	tempSet = tempRaw;	 // Set reference temp
 }
 if (tempSet > tempRaw + 5)	 // test for lo
 {
 	P1OUT = BIT6;		 // green LED on
 	P1OUT &= ~BIT0;		 // red LED off
 	for (i=0;i<5;i++)
 	 {	
 	 TXByte = TxLO[i];
 	 Transmit();
 	 }
 }
 if (tempSet < tempRaw - 5)	 // test for hi
 {
 	P1OUT = BIT0;		 // red LED on
 	P1OUT &= ~BIT6;		 // green LED off
 	for (i=0;i<5;i++)
 	 {	
 	 TXByte = TxHI[i];
 	 Transmit();
 	 }
 }
 if (tempSet <= tempRaw + 2 & tempSet >= tempRaw - 2)
 {					 // test for in range
 	P1OUT &= ~(BIT0 + BIT6); // both LEDs off
 	for (i=0;i<5;i++)
 	 {	
 	 TXByte = TxIN[i];
 	 Transmit();
 	 }
 }
This code sets three states for the measured temperature; LO, HI and IN that are indicated by the state of the green and red LEDs. It also sends the correct ASCII sequence to the Transmit() function.

18. The ASCII sequences that will be transmitted to the PC are:
· LO<LF><BS><BS>:	0x4C, 0x4F, 0x0A, 0x08, 0x08
· HI<LF><BS><BS>:	0x48, 0x49, 0x0A, 0x08, 0x08
· IN<LF><BS><BS>:	0x49, 0x4E, 0x0A, 0x08, 0x08
The terminal program on the PC will interpret the ASCII code and display the desired characters. The extra Line Feeds and Back Spaces are used to format the display on the Terminal screen.

Add the following arrays to the top of main.c:
[bookmark: OLE_LINK5]unsigned int TxHI[]={0x48,0x49,0x0A,0x08,0x08};
unsigned int TxLO[]={0x4C,0x4F,0x0A,0x08,0x08};
unsigned int TxIN[]={0x49,0x4E,0x0A,0x08,0x08};
19. Finally, we need to asure that the MCLK and SMCLK are both running on the DCO. In the ConfigClocks() function, make sure that the BCSCTL2 clock control register is configured as shown below:

BCSCTL2 = 0;

Test the Code
20. Build and load the code. If you’re having problems, compare your code with Lab7Finish.txt found in the Files folder. Don’t take the easy route and copy/paste the code. Figure out the problem … the process will pay off for you later.
21. Next, we need to find out what COM port your LaunchPad board is connected to. In Windows, click Start Run (if you don’t see Run, type it in the Search box and the Run link will appear at the top of the list) and enter devmgmt.msc into the dialog box, then click OK. This should open the Windows Device Manager.
Click the [image:] symbol next to Ports and find the port named MSP430 Application UART. Write down the COM port number here_________. (The one on our PC was COM14). Close the Device Manager.
View the UART Output in a Terminal Program
22. On the CCS menu bar, click View Other … Find Terminal in the window that appears and click the [image:] symbol to the left. When you see [image:], click on it to select it and then click OK.
23. A Terminal tab will appear at the bottom of your screen next to the Console tab. On the far right you’ll see a series of Terminal control buttons. Click the [image:] Settings button. Make the settings shown below, except for your COM port number, and click OK.

[image:]
24. In the terminal display, you will likely see IN displayed over and over again. This means that the measured temperature is within a couple of degrees of the temperature that was measured when the code started.

Warm the MSP430 with your finger. After a moment the red LED should light and the Terminal should display HI. Now the MSP430 is a couple of degrees warmer than the initial temperature. While your finger is still on the MSP430, click the [image:] Reset CPU button and then the [image:] Resume button. The code will then record the initial temperature while the chip is warm. Remove your finger from the MSP430.

You should see IN displayed in the Terminal window. But when the MSP430 cools down, the green LED will light and the Terminal will display LO. .
25. This would also be a good time to note the size of the code we have generated. Click the Console tab to view the pane at the bottom of your screen.
MSP430: Loading complete. Code Size - Text: 976 bytes Data: 6 bytes.
Based on what we have done so far, you could create a program more than sixteen times the size of this code and still fit comfortably inside the MSP430G2553 memory.
Terminate Debug Session and Close Project
26. Terminate the active debug session using the Terminate button[image:]. This will close the debugger and return CCS to the “CCS Edit” perspective.
27. Close the Lab7 project in the Project Explorer pane.
[image: j0252029] You’re done.

Getting Started with the MSP430 LaunchPad - Serial Communications	7 - 1
7 - 4	Getting Started with the MSP430 LaunchPad - Serial Communications
Getting Started with the MSP430 LaunchPad - Serial Communications	7 - 5
image2.wmf
Universal Serial Communication Interface

u

USCI_A0 supports:

u

SPI (3 or 4 wire)

u

UART

u

IrDA

u

USCI_B0 supports:

u

SPI (3 or 4 wire)

u

I2C

Protocols

…

USCI

A

B

52

image3.wmf
USCI Serial Protocols

u

SPI

•

Serial Peripheral Interface

•

Single Master/Single Slave

SPI

Master

SPI

Slave

SCLK

MOSI

MISO

SSN

m

C

Master

DAC

Slave

ADC

Slave

m

C

Slave

R

R

SCL

SDA

Vdd

S/W UART Implementation

…

u

UART

•

Universal

Asynchronous

Receiver/Transmitter

•

Full duplex

R/T

R/T

Tx

R

x

R

x

T

x

u

I2C

•

Inter

-

Integrated Circuit Interface

•

Single Master/Multiple Slaves

53

image4.wmf
Software UART Implementation

u

A simple UART implementation, using the Capture &

Compare features of the Timer to emulate the UART

communication

u

Half

-

duplex and relatively low baud rate (9600 baud

recommended limit), but 2400 baud in our code (1 MHz DCO

and no crystal)

u

Bit

-

time (how many clock ticks one baud is) is calculated

based on the timer clock & the baud rate

u

One CCR register is set up to TX in Timer Compare mode,

toggling based on whether the corresponding bit is 0 or 1

u

The other CCR register is set up to RX in Timer Capture

mode, similar principle

u

The functions are set up to TX or RX a single byte (8

-

bit)

appended by the start bit & stop bit

Application note:

http://focus.ti.com/lit/an/slaa078a/slaa078a.pdf

USB COM Port

…

54

image5.wmf
USB COM Port Communication

u

Emulation hardware implements emulation features

as well as a serial communications port

u

Recognized by Windows as part of composite driver

u

UART Tx/Rx pins match Spy

-

Bi

-

Wire JTAG interface

pins

Lab

…

HI, LO, IN

55

image6.wmf
Lab7: Serial Communication

•

Alter code to run on WDT+ interval

timer

•

Add code to detect

above/below/within temperature range

•

Add UART code to send data to PC

via USB COM port

Agenda

…

56

image7.PNG

image8.png

image9.PNG

image10.png

image11.PNG

image12.PNG

image13.PNG

image14.PNG

image15.wmf

image1.wmf
Agenda

USI

…

Introduction to Value Line

Code Composer Studio

Initialization and GPIO

Analog

-

to

-

Digital Converter

Interrupts and the Timer

Low

-

Power Optimization

Serial Communications

Grace

FRAM

Optional: Capacitive Touch

51

