Low-Power Optimization
	Low-Power Optimization
[bookmark: _Toc347491745]Low-Power Optimization
IntroductionThis module will explore low-power optimization. In the lab exercise we will show and experiment with various ways of configuring the code for low-power optimization.

[bookmark: _Toc347491746]Module Topics
Low-Power Optimization	6-1
Module Topics	6-2
Low-Power Optimization	6-3
Low-Power Modes	6-3
Low-Power Operation	6-3
System MCLK & Vcc	6-5
Pin Muxing	6-5
Unused Pin Termination	6-6
Ultra-Low-Power Advisor	6-6
Lab 6: Low-Power Modes	6-7
Objective	6-7
Procedure	6-8
[bookmark: _Toc347491747][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]Low-Power Optimization
[bookmark: _Toc347491748]Low-Power Modes

[bookmark: _Toc347491749]Low-Power Operation

[bookmark: _Toc347491750]
System MCLK & Vcc

[bookmark: _Toc347491751]Pin Muxing

[bookmark: _Toc347491752]
Unused Pin Termination

[bookmark: _Toc347491753]Ultra-Low-Power Advisor

[bookmark: _Toc347491754][bookmark: _Toc370113188][bookmark: _Toc394202380]Lab 6: Low-Power Modes
[bookmark: _Toc347491755]Objective
The objective of this lab is to learn various techniques for making use of the low-power modes. We will start with the code from the previous lab exercise and reconfigure it for low-power operation. As we modify the code, measurements will be taken to show the effect on power consumption.

[bookmark: _Toc347491756]
Procedure
[bookmark: OLE_LINK1]Create a New Project
1. Create a new project by clicking:
File New CCS Project
Make the selections shown below (your dialog may look slightly different than this one). If you are using the MSP430G2231, make the appropriate choices for that part. Make sure to click Empty Project (with main.c), and then click Finish.
[image:]

Source File
We’ll use the solution file from the last lab exercise as the starting point for this lab exercise.
1. Open the Lab5_Finish.txt file using File Open File…
· C:\MSP430_LaunchPad\Labs\Lab5\Files\Lab5_Finish.txt
2. Copy all of the code in Lab5_Finish.txt and paste it into main.c, erasing the original contents of main.c. This will be the starting point for this lab exercise.
3. Close the Lab5_Finish.txt file. It’s no longer needed. If you are using the MSP430G2231, make sure to make the appropriate change to the header file include at the top of the main.c.
Reconfigure the I/O for Low-Power
If you have a digital multimeter (DMM), you can make the following measurements; otherwise you will have to take our word for it. The sampling rate of one second is probably too fast for most DMMs to settle, so we’ll extend that time to three seconds.
4. Find and change the following lines of code:
· In ConfigTimerA2() :
Change:	CCR0 = 12000;
To:		CCR0 = 36000;
· In the Timer ISR :
Change:	CCR0 += 12000;
To:		CCR0 += 36000;
5. The current drawn by the red LED is going to throw off our current measurements, so comment out the two P1OUT lines inside the while(1) loop.
6. As a test – build, load, and run the code. If everything is working correctly the green LED should blink about once every three or four seconds. When done, halt the code and click the Terminate button [image:] to return to the “CCS Edit” perspective.

Baseline Low-Power Measurements
7. Turn on your DMM and measure the voltage between Vcc and GND at header J6. You should have a value around 3.6 Vdc. Record your measurement here: _____________
8. [bookmark: OLE_LINK6]Now we’ll completely isolate the target area from the emulator, except for ground. Remove all five jumpers on header J3 and put them aside where they won’t get lost. Set your DMM to measure A. Connect the DMM red lead to the top (emulation side) Vcc pin on header J3 and the DMM black lead to the bottom (target side) Vcc pin on header J3. Press the Reset button on the LaunchPad board.
If your DMM has a low enough effective resistance, the green LED on the board will flash normally and you will see a reading on the DMM. If not, the resistance of your meter is too high. Oddly enough, we have found that low-cost DMMs work very well. You can find one on-line for less than US$5.
Now we can measure the current drawn by the MSP430 without including the LEDs and emulation hardware. (Remember that if your DMM is connected and turned off, the MSP430 will be off too). This will be our baseline current reading. Measure the current between the blinks of the green LED.
 	You should have a value around 106 A.
Record your measurement here: _____________
Remove the meter leads and carefully replace the jumpers on header J3.
If you forget to replace the jumpers, Code Composer will not be able to connect to the MSP430.

Configure Unused Pins
We need to make sure that all of the device pins are configured to draw the lowest current possible. Referring to the device datasheet and the LaunchPad board schematic, we notice that Port1 defaults to GPIO. Only P1.3 is configured as an input to support push button switch S2, and the rest are configured as outputs. P2.6 and P2.7 default to crystal inputs. We will configure them as GPIO.
9. Rename the ConfigLEDs() function declaration, call, and function name to ConfigPins().
10. Delete the contents of the ConfigPins() function and insert the following lines:
[bookmark: OLE_LINK5][bookmark: OLE_LINK11]P1DIR = ~BIT3;
P1OUT = 0;
(Sending a zero to an input pin is meaningless).
11. There are two pins on Port2 that are shared with the crystal XIN and XOUT. This lab will not be using the crystal, so we need to set these pins to be GPIO. The device datasheet indicates that P2SEL bits 6 and 7 should be cleared to select GPIO. Add the following code to the ConfigPins() function:
[bookmark: OLE_LINK7][bookmark: OLE_LINK9]P2SEL = ~(BIT6 + BIT7);
P2DIR |= BIT6 + BIT7;	
P2OUT = 0;		
12. At this point, your code should look like the code below. We’ve added the comments to make it easier to read and understand. Click the Save button on the menu bar to save the file. The middle line of code will result in an “integer conversion resulted in truncation” warning at compile time that you can ignore.
void ConfigPins(void)
 {
[bookmark: OLE_LINK2] P1DIR = ~BIT3; // P1.3 input, others output
 P1OUT = 0; // clear output pins	
 P2SEL = ~(BIT6 + BIT7); // P2.6 and 7 GPIO
 P2DIR |= BIT6 + BIT7;	 // P2.6 and 7 outputs
 P2OUT = 0;		 // clear output pins
 }
13. Now build, load and run the code. Make sure the green LED blinks once every three or four seconds. Click the Terminate button to return to the “CCS Edit” perspective.
14. Next, remove all the jumpers on header J3 and connect your meter leads. Press the Reset button on the LaunchPad board and measure the current between the blinks of the green LED.
You should have a value around 106 A.
Record your measurement here: _____________
No real savings here, but there is not much happening on this board to cause any issues.
Remove the meter leads and carefully replace the jumpers on header J3.

MSP430G2553 Current Consumption
The current consumption of the MSP430G2553 looks something like the graph below (ignoring the LED). The graph is not to scale in either axis and our code departs from this timing somewhat. With the CPU active, 106 A is being consumed all the time. The current needed for the ADC10 reference is 250 A, and is on for 33 s out of each sample time. The conversion current of 600 A is only needed for 3 s (our code isn’t quite this timing now). If you could limit the amount of time the CPU is active, the overall current requirement would be significantly reduced. (Always refer to the datasheet for design numbers. And remember, the values we are getting in the lab exercise might be slightly different than what you get.)

[image:]

Replace the while(1) loop with a Low-Power Mode
The majority of the power being used by the application we are running is spent in the while(1) loop waiting for an interrupt. We can place the device in a low-power mode during that time and save a considerable amount of power.
15. Delete all of the code from the while(1) loop.
Delete _BIS_SR(GIE); from above the loop.
Delete volatile unsigned int i; from the top of main.c.

Then add the following line of code to the while(1) loop:
[bookmark: OLE_LINK10][bookmark: OLE_LINK3][bookmark: OLE_LINK12]_bis_SR_register(LPM3_bits + GIE);
This code will turn on interrupts and put the device in LPM3 mode. Remember that this mode will place restrictions on the resources available to us during the low power mode. The CPU, MCLK, SMCLK and DCO are off. Only the ACLK (sourced by the VLO in our code) is still running.
You may notice that the syntax has changed between this line and the one we deleted. MSP430 code has evolved over the years and this line is the preferred format today; but the syntax of the other is still accepted by the compiler.
16. At this point, the entire main() routine should look like the following:
void main(void)
{
 ConfigWDT();
 ConfigClocks();
 ConfigPins();
 ConfigADC10();
 ConfigTimerA2();

 while(1)
 {
 _bis_SR_register(LPM3_bits + GIE); // Enter LPM3 with interrupts
 }
}

17. The Status Register (SR) bits that are set by the above code are:
· SCG0: turns off SMCLK
· SCG1: turns off DCO
· CPUOFF: turns off the CPU
When an ISR is taken, the SR is pushed onto the stack automatically. The same SR value will be popped, sending the device right back into LPM3 without running the code in the while(1) loop. This would happen even if we were to clear the SR bits during the ISR. Right now, this behavior is not an issue since this is what the code in the while(1) does anyway. If your program drops into LPM3 and only wakes up to perform interrupts, you could just allow that behavior and save the power used jumping back to main(), just so you could go back to sleep. However, you might want the code in the while(1) loop to actually run and be interrupted, so we are showing you this method.
Add the following code to the end of your Timer ISR:
[bookmark: OLE_LINK8]_bic_SR_register_on_exit(LPM3_bits);
This line of code clears the bits in the popped SR.
More recent versions of the MSP430 clock system, like the one on this device, incorporate a fault system and allow for fail-safe operation. Earlier versions of the MSP430 clock system did not have such a feature. It was possible to drop into a low-power mode that turned off the very clock that you were depending on to wake you up. Even in the latest versions, unexpected behavior can occur if you, the designer, are not aware of the state of the clock system at all points in your code. This is why we spent so much time on the clock system in the Lab3 exercise.
18. The Timer ISR should look like the following:
// Timer_A0 interrupt service routine
#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
{
 ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON;
 _delay_cycles(5); // Wait for ADC Ref to settle
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
 P1OUT |= BIT6; 			 // P1.6 on (green LED)
 _delay_cycles(100);
 ADC10CTL0 &= ~ENC;			 // Disable ADC conversion
 ADC10CTL0 &= ~(REFON + ADC10ON); // Ref and ADC10 off
 tempRaw = ADC10MEM;		 // Read conversion value
 P1OUT &= ~BIT6; 			 // green LED off
 CCR0 += 36000; // Add one second to CCR0
[bookmark: OLE_LINK13][bookmark: OLE_LINK14] _bic_SR_register_on_exit(LPM3_bits); // Clr LPM3 bits from SR on exit
}

19. Now build, load and run the code. Make sure the green LED blinks once every three seconds. Halt the code and click the Terminate button to return to the “CCS Edit” perspective. This code is saved as Lab6a.txt in the Files folder.
20. Next, remove all the jumpers on header J3 and connect your meter leads. Press the Reset button on the LaunchPad board and measure the current between the blinks of the green LED.
You should have a value around 0.6 A.
Record your measurement here: _____________

This is a big difference! The CPU is spending the majority of the sampling period in LPM3, drawing very little power.

Remove the meter leads and carefully replace the jumpers on header J3.
A graph of the current consumption would look something like the below. Our code still isn’t generating quite this timing, but the DMM measurement would be the same.
[image:]

Fully Optimized Code for Low-Power
The final step to optimize the code for low-power is to remove the software delays in the ISR. The timer can be used to implement these delays instead and save even more power. It is unlikely that we will be able to measure this current savings without a sensitive oscilloscope, since it happens so quickly. But we can verify that the current does not increase.
There are two more software delays still in the Timer ISR; one for the reference settling time and the other for the conversion time.

21. The _delay_cycles(5); statement should provide about 40uS delay, although there is likely some overhead in the NOP loop that makes it slightly longer. For two reasons we’re going to leave this as a software delay;

1) the delay is so short that any timer setup code would take longer than the timer delay 2) the timer can only run on the ACLK (VLO) in LPM3.

At that speed the timer has an 83uS resolution … a single tick is longer than the delay we need. But we can optimize a little. Change the statement as shown below to reduce the specified delay to 32uS:

Change:	_delay_cycles(5);
To:		_delay_cycles(4);

22. The final thing to tackle is the conversion time delay in the Timer_A0 ISR. The ADC can be programmed to provide an interrupt when the conversion is complete. That will provide a clear indication that the conversion is complete. The power savings will be minimal because the conversion time is so short, but this is fairly straightforward to do, so why not do it?
Add the following ADC10 ISR template to the bottom of main.c:
// ADC10 interrupt service routine
#pragma vector=ADC10_VECTOR
__interrupt void ADC10 (void)
{

}
23.
Copy all of the lines in the Timer ISR below delay_cycles(100); and paste them into the ADC10 ISR.
24. In the Timer ISR delete the code from the _delay_cycles(100); line through the P1OUT |= BIT6; line.
25. At the top of the ADC10 ISR, add ADC10CTL0 &= ~ADC10IFG; to clear the interrupt flag.
26. In the ADC10 ISR delete the P1OUT &= ~BIT6; and CCR0 += 36000; lines.
27. Lastly, we need to enable the ADC10 interrupt. In the Timer ISR, add + ADC10IE to the ADC10CTL0 register line.
The Time and ADC10 ISRs should look like this:
#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
 {
 ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE ;
 _delay_cycles(4); // Wait for ADC Ref to settle
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
 CCR0 +=36000;				 // add 12 seconds to the timer
 _bic_SR_register_on_exit(LPM3_bits);
 }

// ADC10 interrupt service routine
#pragma vector=ADC10_VECTOR
__interrupt void ADC10 (void)
 {
 ADC10CTL0 &= ~ADC10IFG; 		 // clear interrupt flag
 ADC10CTL0 &= ~ENC;			 // Disable ADC conversion
 ADC10CTL0 &= ~(REFON + ADC10ON); // Ref and ADC10 off
 tempRaw = ADC10MEM;			 // Read conversion value
 _bic_SR_register_on_exit(LPM3_bits);
 }
28. Build and load the project. Eliminate any breakpoints and run the code. We eliminated the flashing of the green LED since it flashes too quickly to be seen. Set a breakpoint on the _bic_SR line in the ADC10 ISR and verify that the value in tempRaw is updating as shown earlier. Click the Terminate button to halt the code and return to the “CCS Edit” perspective. If you are having a difficult time with the code modifications, this code can be found in Lab6b.txt in the Files folder.

29. Remove the jumpers on header J3 and attach the DMM leads as before. Press the Reset button on the LaunchPad board and measure the current between the blinks of the green LED.
You should have a value around 0.6 A.
Record your measurement here: _____________

A graph of the current consumption would look something like this:
[image:]
That may not seem like much of a savings, but every little bit counts when it comes to battery life. To quote a well-known TI engineer: “Every joule wasted from the battery is a joule you will never get back”.
Replace all the jumpers on header J3.

ULP Advisor
We’ve been ignoring the ULP Advisor for long enough. Let’s review the results
30. Resize the Problems pane so that you can see the contents. Click on the [image:]left of Warnings and Infos.

Our Problems pane looked like this:

[image:]
31. The first warning is due to the following statement in main() :
P2SEL = ~(BIT6 + BIT7); P2SEL is 8 bits while the defines for BIT6 and BIT7 are 16. That results in a truncation as noted. There are several things we could do to re-cast, etc. to make the warning go away, but since it’s pretty readable as-is, we’ll just live with this warning. Either way there is no impact to the device current.
32. The next ten warnings result from un-programmed interrupt vectors. If one of these interrupts accidentally triggered, it could result in our device running in a very unexpected way. We’ll leave the ISR unpopulated with code, but you might want to implement a reset or other fault handling system. That will likely cause a very small stack memory leak, but if you’re experiencing unexpected interrupts from un-programmed sources, you have larger problems.
Add the code on the following page to the end of your code in main.c . The
asm(“JMP $”); instruction traps code execution at that point by jumping to itself. A while(1) loop would have done the same thing, but the ULP Advisor will flag that as a software loop.

// Comparator A interrupt service routine
 #pragma vector=COMPARATORA_VECTOR
__interrupt void COMPA_VECT (void)
{
	asm(“JMP $”);
}

// NMI interrupt service routine
#pragma vector=NMI_VECTOR
__interrupt void NMI_VECT (void)
{
	asm(“JMP $”);
}

// PORT1 interrupt service routine
#pragma vector=PORT1_VECTOR
__interrupt void PORT1_VECT (void)
{
	asm(“JMP $”);
}

// PORT2 interrupt service routine
#pragma vector=PORT2_VECTOR
__interrupt void PORT2_VECT (void)
{
	asm(“JMP $”);
}

// TIMER0_A1 interrupt service routine
#pragma vector=TIMER0_A1_VECTOR
__interrupt void TIMER0_A1_VECT (void)
{
	asm(“JMP $”);
}

// TIMER1_A0 interrupt service routine
#pragma vector=TIMER1_A0_VECTOR
__interrupt void TIMER1_A0_VECT (void)
{
	asm(“JMP $”);
}

// TIMER1_A1 interrupt service routine
#pragma vector=TIMER1_A1_VECTOR
__interrupt void TIMER1_A1_VECT (void)
{
	asm(“JMP $”);
}

// USCIAB0RX interrupt service routine
#pragma vector=USCIAB0RX_VECTOR
__interrupt void USCIAB0RX_VECT (void)
{
	asm(“JMP $”);
}

// USCIAB0TX interrupt service routine
#pragma vector=USCIAB0TX_VECTOR
__interrupt void USCIAB0TX_VECT (void)
{
	asm(“JMP $”);
}

// WDT interrupt service routine
#pragma vector=WDT_VECTOR
__interrupt void WDT_VECT (void)
{
	asm(“JMP $”);
}

33. The last item in the Infos section says that we’re using a software delay loop. This refers to the while(1) loop in the FaultRoutine() . If you want to replace that with the assembly instruction used in the last step, go ahead. Otherwise we’ll just live with it.
34. The first item in the Infos section says that Port 3 is uninitialized. Actually, the 20-pin device only has two ports as I/O, larger devices have a third. We can prevent this ULP Advisor issue by initializing the third port. Add the last two lines shown below to the ConfigPins() function.

void ConfigPins(void)
{
	P1DIR = ~BIT3;
	P1OUT = 0;
	P2SEL = ~(BIT6 + BIT7);
	P2DIR |= BIT6 + BIT7;
	P2OUT = 0;
	P3DIR = 0xFF;			// Set P3 GPIO to outputs
	P3OUT = 0;			// Clear P3 outputs
}

35. Rebuild your code and look at the Problems pane. You should only see the single truncation warning and info about the software delay. It’s doubtful that any power was saved during this ULP Advisor exercise, but it is certainly worthwhile to pay attention to the ULP Advisor output.
[image:]

Summary
Our code is now as close to optimized as it gets, but again, there are many, many ways to get to this point. Often, the need for hardware used by other code will prevent you from achieving the very lowest power possible. This is the kind of cost/capability trade-off that engineers need to make all the time. For example, you may need a different peripheral – such as an extra timer – which costs a few cents more, but provides the capability that allows your design to run at its lowest possible power, thereby providing a battery run-time of years rather than months.
36. Remove the jumpers on header J3 and attach the DMM leads as before. Press the Reset button on the LaunchPad board and measure the current between the blinks of the green LED.
You should have a value around 0.6 A.
Record your measurement here: _____________

Congratulations on completing this lab! Remove and turn off your meter and replace all of the jumpers on header J3. We are finished measuring current.
37. Close the project by right-clicking on Lab6 in the Project Explorer pane and select Close Project.
[image: j0252029] You’re done.
Getting Started with the MSP430 LaunchPad - Low-Power Optimization	6 - 1
6 - 4	Getting Started with the MSP430 LaunchPad - Low-Power Optimization
Getting Started with the MSP430 LaunchPad - Low-Power Optimization	6 - 5
image2.wmf
Low

-

Power Modes

Mode

CPU and Clocks

Active

CPU active. All enabled clocks active

LPM0

CPU, MCLK disabled. SMCLK, ACLK active

LPM1

CPU, MCLK disabled. DCO disabled if not used for

SMCLK. ACLK active

LPM2

CPU, MCLK, SMCLK, DCO disabled. ACLK active

LPM3

CPU, MCLK, SMCLK, DCO disabled. ACLK active

LPM4

CPU and all clocks disabled

Operation

…

43

image3.wmf
Low

-

Power Operation

u

Power

-

efficient MSP430 apps:

u

Minimize instantaneous current draw

u

Maximize time spent in low power modes

u

The MSP430 is inherently low

-

power, but your

design has a big impact on power efficiency

u

Proper low

-

power design techniques make the

difference

Operation …

“Instant on” clock

44

image4.wmf
Low

-

Power Operation

u

Power draw increases with…

u

Vcc

u

CPU clock speed (MCLK)

u

Temperature

u

Slowing MCLK reduces instantaneous power, but

usually increases active duty cycle

u

Power savings can be nullified

u

The ULP ‘sweet spot’ that maximizes performance for the

minimum current consumption per MIPS:

8 MHz MCLK

u

Full operating range (down to 2.2V)

u

Optimize core voltage for chosen MCLK speed

MCLK and Vcc

…

45

image5.wmf
System MCLK & Vcc

Pin Muxing

…

u

Match needed clock speed with required Vcc to achieve the lowest power

u

External LDO regulator required

u

Unreliable execution results if Vcc < the minimum required for the selected frequency

u

All G2xxx device operate up to 16MHz

46

image6.wmf
Pin Muxing

u

Each pin has up to four functions

u

Top selection (above) is default

u

Register bits (below) select pin function

Unused pins

…

47

image7.wmf
Unused Pin Termination

u

Digital input pins subject to

shoot

-

through current

u

Input voltages between VIL and VIH cause shoot

-

through if

input is allowed to “float” (left unconnected)

u

Port I/Os should

u

Driven as outputs

u

Be driven to

Vcc

or ground by an external device

u

Have a pull

-

up/down resistor

ULP Advisor

…

48

image8.emf
Ultra-Low-Power Advisor

Integrated into CCS build flow

Checks your code against

a thorough checklist to achieve the lowest power possible

Provides detailed

notifications and remarks

Lab…

49

image9.wmf
Lab6: Low

-

Power Modes

Agenda

…

•

Implement LPM3 during while(1) loop

•

Eliminate software delays

•

Measure current draw (optional

)

•

Review ULP Advisor notifications

50

image10.PNG

image11.png

image12.jpeg

image13.jpeg

image14.PNG

image15.PNG

image16.PNG

image17.wmf

image1.wmf
Agenda

Low Power Modes

…

Introduction to Value Line

Code Composer Studio

Initialization and GPIO

Analog

-

to

-

Digital Converter

Interrupts and the Timer

Low

-

Power Optimization

Serial Communications

Grace

FRAM

Optional: Capacitive Touch

42

