Initialization and GPIO
	Initialization and GPIO
[bookmark: _Toc347491630]Initialization and GPIO
IntroductionThis module will cover the steps required for initialization and working with the GPIO. Topics will include describing the reset process, examining the various clock options, and handling the watchdog timer. In the lab exercise you will write initialization code and experiment with the clock system.

[bookmark: _Toc347491631]Module Topics
Initialization and GPIO	3-1
Module Topics	3-2
Initialization and GPIO	3-3
Reset and Software Initialization	3-3
Clock System	3-4
G2xxx - No Crystal Required - DCO	3-4
Run Time Calibration of the VLO	3-5
System MCLK & Vcc	3-5
Watchdog Timer	3-6
Lab 3: Initialization and GPIO	3-7
Objective	3-7
Procedure	3-8
[bookmark: _Toc347491632][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]Initialization and GPIO
[bookmark: _Toc347491633]Reset and Software Initialization

[bookmark: _Toc347491634]Clock System

[bookmark: _Toc347491635]G2xxx - No Crystal Required - DCO

[bookmark: _Toc347491636]
Run Time Calibration of the VLO

[bookmark: _Toc347491637]System MCLK & Vcc

[bookmark: _Toc347491638]
Watchdog Timer

[bookmark: _Toc347491639][bookmark: _Toc370113188][bookmark: _Toc394202380]Lab 3: Initialization and GPIO
[bookmark: _Toc347491640]Objective
The objective of this lab is to learn about steps used to perform the initialization process on the MSP430 Value Line devices. In this exercise you will write initialization code and run the device using various clock resources.

[bookmark: _Toc347491641]
Procedure
[bookmark: OLE_LINK1]Create a New Project
1. Create a new project by clicking:
File New CCS Project
Make the selections shown below (your dialog may look slightly different than this one). If you are using the MSP430G2231, make the appropriate choices for that part. Make sure to select the Empty Project (with main.c)template, and then click Finish.
[image:]

Source File
2. In the main.c editing window, replace the existing code with the following code. Again, if you are using the MSP430G2231, use that include header file. The short #ifdef structure corrects an inconsistency between the 2231 and 2553 header files. This inconsistency should be corrected in future releases. Rather than typing all the following code, you can feel free to cut and paste it from the workbook pdf file.
#include <msp430g2553.h>

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

void main(void)
{
// code goes here
	
}
Running the CPU on the VLO
We will initially start this lab exercise by running the CPU on the VLO. This is the slowest clock which runs at about 12 kHz. So, we will visualize it by blinking the red LED slowly at a rate of about once every 3 seconds. We could have let the clock system default to this state, but instead we’ll set it specifically to operate on the VLO. This will allow us to change it later in the exercise. We won’t be using any ALCK clocked peripherals in this lab exercise, but you should recognize that the ACLK is being sourced by the VLO.
3. In order to understand the following steps, you need to have the following two resources at hand:
· MSP430G2553.h header file – search your drive for the msp430g2553.h header file and open it (or msp430g2231.h). This file contains all the register and bit definitions for the MSP430 device that we are using.

· MSP430G2xx User’s Guide – this document (slau144h) was downloaded in Lab1. This is the User’s Guide for the MPS430 Value Line family. Open the .pdf file for viewing.
4. For debugging purposes, it would be handy to stop the watchdog timer. This way we need not worry about it. In main.c right at //code goes here type:
WDTCTL = WDTPW + WDTHOLD;
(Be sure not to forget the semicolon at the end).
The WDTCTL is the watchdog timer control register. This instruction sets the password (WDTPW) and the bit to stop the timer (WDTHOLD). Look at the header file and User’s Guide to understand how this works. (Please be sure to do this – this is why we asked you to open the header file and document).
5. Next, we need to configure the LED that’s connected to the GPIO line. The green LED is located on Port 1 Bit 6 and we need to make this an output. The LED turns on when the output is set to a “1”. We’ll clear it to turn the LED off. Leave a line for spacing and type the next two lines of code.
P1DIR = 0x40;
P1OUT = 0;
	(Again, check the header file and User’s Guide to make sure you understand the concepts).
6. Now we’ll set up the clock system. Enter a new line, then type:
BCSCTL3 |= LFXT1S_2;
The BCSCTL3 is one of the Basic Clock System Control registers. In the User’s Guide, section 5.3 tells us that the reset state of the register is 005h. Check the bit fields of this register and notice that those settings are for a 32768 Hz crystal on LFXT1 with 6pF capacitors and the oscillator fault condition set. This condition would be set anyway since the crystal would not have time to start up before the clock system faulted it. Crystal start-up times can be in the hundreds of milliseconds.
The operator in the statement logically OR’s LFXT1S_2 (which is 020h) into the existing bits, resulting in 025h. This sets bits 4 & 5 to 10b, enabling the VLO clock. Check this with the documents.
7. The clock system will force the MCLK to use the DCO as its source in the presence of a clock fault (see the User’s Guide section 5.2.7). So we need to clear that fault flag. On the next line type:
IFG1 &= ~OFIFG;
The IFG1 is Interrupt Flag register 1. A bit field in the register is the Oscillator Fault Interrupt Flag - OFIFG (the first letter is an “O”, and not a zero). Logically ANDing IFG1 with the NOT of OFIFG (which is 2) will clear bit 1. Check this in section 5 of the User’s Guide and in the header file.
8. We need to wait about 50 s for the clock fault system to react. Running on the 12kHz VLO, stopping the DCO will buy us that time. On the next line type:
_bis_SR_register(SCG1 + SCG0);
SR is the Status Register. Find the bit definitions for the status register in the User’s Guide (section 4). Find the definitions for SCG0 and SCG1 in the header file and notice how they match the bit fields to turn off the system clock generator in the register. By the way, the underscore before bis defines this is an assembly level call from C. _bis is a bit set operation known as an intrinsic.
9. There is a divider in the MCLK clock tree. We will use divide-by-eight. Type this statement on the next line and look up its meaning:
BCSCTL2 |= SELM_3 + DIVM_3;
The operator logically ORs the two values with the existing value in the register. Examine these bits in the User’s Guide and header file.
10. At this point, your code should look like the code below. We have added the comments to make it easier to read and understand. Click the Save button on the menu bar to save the file.
#include "msp430g2553.h"

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

void main(void)
{
	WDTCTL = WDTPW + WDTHOLD;		// watchdog timer setup

	P1DIR = 0x40;				// I/O setup
	P1OUT = 0;

	BCSCTL3 |= LFXT1S_2;			// clock system setup
	IFG1 &= ~OFIFG;
	_bis_SR_register(SCG1 + SCG0);
	BCSCTL2 |= SELM_3 + DIVM_3;
}
11. Just one more thing – the last piece of the puzzle is to toggle the green LED. Leave another line for spacing and enter the following code:
while(1)
{
 P1OUT = 0x40; 			 // LED on
 _delay_cycles(100);
 P1OUT = 0; 			 // LED off
 _delay_cycles(5000);
}
The P1OUT instruction was already explained. The delay statements are built-in intrinsic function for generating delays. The only parameter needed is the number of clock cycles for the delay. Later in the workshop we will find out that this isn’t a very good way to generate delays – so don’t get used to using it. The while(1) loop repeats the next four lines forever.
12.
Now, the complete code should look like the following. Be sure to save your work.
#include "msp430g2553.h"

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

void main(void)
{
	WDTCTL = WDTPW + WDTHOLD;		// watchdog timer setup

	P1DIR = 0x40;				// I/O setup
	P1OUT = 0;

	BCSCTL3 |= LFXT1S_2;			// clock system setup
	IFG1 &= ~OFIFG;
	_bis_SR_register(SCG1 + SCG0);
	BCSCTL2 |= SELM_3 + DIVM_3;
	
	while(1)
	{
	 P1OUT = 0x40; 			 	// LED on
	 _delay_cycles(100);
	 P1OUT = 0; 			 	// LED off
	 _delay_cycles(5000);
	}
}
Great job! You could have just cut and pasted the code from VLO.txt in the Files folder, but what fun would that have been?
13. Click the “Debug” button [image:]. Click the Proceed button when the ULP Advisor appears. The “CCS Debug” view should open, the program will load automatically, and you should now be at the start of main().
14. Run the code. If everything is working correctly the green LED should be blinking about once every three or four seconds. Running the CPU on the other clock sources will speed this up considerably. This will be covered in the remainder of the lab exercise.
15. Click on the Terminate button [image:] to stop debugging and return to the “CCS Edit” perspective. Save your work by clicking File Save As and select the parent folder as Lab3. Name the file Lab3a.c. Click OK.

Expand the Lab3 project by clicking on [image:] to the left of the Lab3 project name.

Close the Lab3a.c editor tab and double click on main.c in the Project Explorer pane. Unfortunately, Eclipse has added Lab3a.c to our project, which will cause us grief later on (you can’t have two main() functions in the same program).

Right-click on Lab3a.c in the Project Explorer pane and select Resource Configurations, then Exclude from build… Check both boxes and click OK.
Note:
If you have decided NOT to solder the crystal on to LaunchPad, then skip to the “Running the CPU on the DCO without a Crystal” section. But, you should reconsider; as this is important information to learn.
Running the CPU on the Crystal
The crystal frequency is 32768 Hz, about three times faster than the VLO. If we run the previous code using the crystal, the green LED should blink at about once per second. Do you know why 32768 Hz is a standard? It is because that number is 215, making it easy to use a simple digital counting circuit to get a once per second rate – perfect for watches and other time keeping. Recognize that we will also be sourcing the ACLK with the crystal.
16. This part of the lab exercise uses the previous code as the starting point. We will start at the top of the code and will be using both LEDs. Make both LED pins (P1.0 and P1.6) outputs by
Changing:	P1DIR = 0x40;
To:		P1DIR = 0x41;
And we also want the red LED (P1.0) to start out ON, so
Change:	P1OUT = 0;
To:		P1OUT = 0x01;
17. We need to select the external crystal as the low-frequency clock input.
Change:	BCSCTL3 |= LFXT1S_2;
To:		BCSCTL3 |= LFXT1S_0 + XCAP_3;

Check the User’s Guide to make sure this is correct. The XCAP_3 parameter selects the 12pF load capacitors. A higher load capacitance is needed for lower frequency crystals.
18. In the previous code we cleared the OSCFault flag and went on with our business, since the clock system would default to the VLO anyway. Now we want to make sure that the flag stays cleared, meaning that the crystal is up and running. This will require a loop with a test. Modify the code to
Change:	IFG1 &= ~OFIFG;
To:		while(IFG1 & OFIFG)
 		{
 		 IFG1 &= ~OFIFG;
 _delay_cycles(100000);
}
The statement while(IFG1 & OFIFG) tests the OFIFG in the IFG1 register. If that fault flag is clear we will exit the loop. We need to wait 50 s after clearing the flag until we test it again. The _delay_cycles(100000); is much longer than that. We need it to be that long so we can see the red LED light at the beginning of the code. Otherwise it would flash so quickly that we wouldn’t be able to see it.
19. Finally, we need to add a line of code to turn off the red LED, indicating that the fault test has been passed. Add the new line after the while loop:
P1OUT = 0;
20.
Since we made a lot of changes to the code (and had a chance to make a few errors), check to see that your code looks like:
#include "msp430g2553.h"

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

void main(void)
{
	WDTCTL = WDTPW + WDTHOLD;		// watchdog timer setup

	P1DIR = 0x41;				// I/O setup
	P1OUT = 0x01;

	BCSCTL3 |= LFXT1S_0 + XCAP_3;		// clock system setup

	while(IFG1 & OFIFG)			// wait for OSCFault to clear
	{
	 IFG1 &= ~OFIFG;
	 _delay_cycles(100000);
	}

	P1OUT = 0;					// both LEDs off

	_bis_SR_register(SCG1 + SCG0);	// clock system setup
	BCSCTL2 |= SELM_3 + DIVM_3;
	
	while(1)
	{
	 P1OUT = 0x40; 			 	// LED on
	 _delay_cycles(100);
	 P1OUT = 0; 			 	// LED off
	 _delay_cycles(5000);
	}
}
Again, you could have cut and pasted from XT.txt, but you’re here to learn.
21. Click the “Debug” button [image:]. Click the Proceed button in the ULP Advisor. The “CCS Debug” perspective should open, the program will load automatically, and you should now be at the start of main().
22. Look closely at the LEDs on the LaunchPad and Run the code. If everything is working correctly, the red LED should flash very quickly (the time spent in the delay and waiting for the crystal to start) and then the green LED should blink every second or so. That’s about three times the rate it was blinking before due to the higher crystal frequency. When done, halt the code by clicking the suspend button [image:].

23. Click on the Terminate button [image:] to stop debugging and return to the “CCS Edit” perspective. Save your work by clicking File Save As and select the parent folder as Lab3. Name the file Lab3b.c and click OK. Make sure to exclude Lab3b.c from the build. Close the Lab3b editor tab and double click on main.c in the Project Explorer pane.
Running the CPU on the DCO and the Crystal
The slowest frequency that we can run the DCO is about 1MHz (this is also the default speed). So we will get started switching the MCLK over to the DCO. In most systems, you will want the ACLK to run either on the VLO or the 32768 Hz crystal. Since ACLK in our current code is running on the crystal, we will leave it that way and just turn on and calibrate the DCO.
24. We could just let the DCO run, but let’s calibrate it. Right after the code that stops the watchdog timer, add the following code:
 if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
 {
 while(1); // If cal constants erased, trap CPU!!
 }

 BCSCTL1 = CALBC1_1MHZ; // Set range
 DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation
Notice the trap here. It is possible to erase the segment A of the information flash memory. Blank flash memory reads as 0xFF. Plugging 0xFF into the calibration of the DCO would be a real mistake. You might want to implement something similar in your own fault handling code.
25. We need to comment out the line that stops the DCO. Comment out the following line:
// __bis_SR_register(SCG1 + SCG0);
26. Finally, we need to make sure that MCLK is sourced by the DCO.
Change:	BCSCTL2 |= SELM_3 + DIVM_3;
To:		BCSCTL2 |= SELM_0 + DIVM_3;
	Double check the bit selection with the User’s Guide and header file.
27.
The code should now look like:
#include "msp430g2553.h"

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

void main(void)
{
	WDTCTL = WDTPW + WDTHOLD;		// watchdog timer setup

	if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
	{
	 while(1); 			// If cal constants erased,
	}						// trap CPU!!

	BCSCTL1 = CALBC1_1MHZ; 			// Set range
	DCOCTL = CALDCO_1MHZ; 			// Set DCO step + modulation

	P1DIR = 0x41;				// I/O setup
	P1OUT = 0x01;

	BCSCTL3 |= LFXT1S_0 + XCAP_3;		// clock system setup

	while(IFG1 & OFIFG)			// wait for OSCFault to clear
	{
	 IFG1 &= ~OFIFG;
	 _delay_cycles(100000);
	}

	P1OUT = 0;					// both LEDs off

//	_bis_SR_register(SCG1 + SCG0);	// clock system setup
	BCSCTL2 |= SELM_0 + DIVM_3;
	
	while(1)
	{
	 P1OUT = 0x40; 			 	// LED on
	 _delay_cycles(100);
	 P1OUT = 0; 			 	// LED off
	 _delay_cycles(5000);
	}
}
The code can be found in DCO_XT.txt, if needed. Save your changes.
28. Click the “Debug” button [image:]. Click the Proceed button in the ULP Advisor. The “CCS Debug” perspective should open, the program will load automatically, and you should now be at the start of main().

29. Look closely at the LEDs on the LaunchPad and Run the code. If everything is working correctly, the red LED should be flash very quickly (the time spent in the delay and waiting for the crystal to start) and the green LED should blink very quickly. The DCO is running at 1MHz, which is about 33 times faster than the 32768 Hz crystal. So the green LED should be blinking at about 30 times per second.
30. Click the Terminate [image:] button to stop debugging and return to the “CCS Edit” perspective. Save your work by clicking File Save As and select the parent folder as Lab3. Name the file Lab3c.c. Click OK. Make sure to exclude Lab3c.c from the build. Close the Lab3c.c editor tab and double click on main.c in the Project Explorer pane.
Optimized Code Running the CPU on the DCO and the Crystal
The previous code was not optimized, but very useful for educational value. Now we’ll look at an optimized version. Delete the code from your main.c editor window (click anywhere in the text, Ctrl-A, then delete). Copy and paste the code from OPT_XT.txt into main.c. Examine the code and you should recognize how everything works. A function has been added that consolidates the fault issue, removes the delays and tightens up the code. Build, load, and run as before. The code should work just as before. If you would like to test the fault function, short the XIN and XOUT pins with a jumper before clicking the Run button. That will guarantee a fault from the crystal. You will have to power cycle the LaunchPad to reset the fault.
Click on the Terminate button [image:] to stop debugging and return to the “CCS Edit” perspective. Save your work by clicking File Save As and select the parent folder as Lab3. Name the file Lab3d.c. Click OK. Make sure to exclude Lab3d.c from the build. Close the Lab3d.c editor tab.

Running the CPU on the DCO without a Crystal
The lowest frequency that we can run the DCO is 1MHz. So we will get started switching the MCLK over to the DCO. In most systems, you will want the ACLK to run either on the VLO or the 32768 Hz crystal. Since ACLK in our current code is running on the VLO, we will leave it that way and just turn on and calibrate the DCO.
31. Double-click on main.c in the Project Explorer pane. Delete all the code from the file (Ctrl-A, Delete). Copy and paste the code from your previously saved Lab3a.c into main.c.
32. We could just let the DCO run, but let’s calibrate it. Right after the code that stops the watchdog timer, add the following code:
	if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
	{
	 while(1); 			// If cal constants erased,
	} 						// trap CPU!!

	BCSCTL1 = CALBC1_1MHZ; 			// Set range
	DCOCTL = CALDCO_1MHZ; 			// Set DCO step + modulation
Notice the trap here. It is possible to erase the segment A of the information flash memory that holds the calibration constants. Blank flash memory reads as 0xFF. Plugging 0xFF into the calibration of the DCO would be a real mistake. You might want to implement something similar in your own fault handling code.
33. We need to comment out the line that stops the DCO. Comment out the following line:
// __bis_SR_register(SCG1 + SCG0);
34. Finally, we need to make sure that MCLK is sourced by the DCO.
Change:	BCSCTL2 |= SELM_3 + DIVM_3;
To:		BCSCTL2 |= SELM_0 + DIVM_3;
Double check the bit selection with the User’s Guide and header file. Save your work.
35.
The code should now look like:
#include "msp430g2553.h"

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

void main(void)
{
	WDTCTL = WDTPW + WDTHOLD;		// watchdog timer setup

	if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
	{
	 while(1); 			// If cal constants erased,
	} 						// trap CPU!!

	BCSCTL1 = CALBC1_1MHZ; 			// Set range
	DCOCTL = CALDCO_1MHZ; 			// Set DCO step + modulation

	P1DIR = 0x40;				// I/O setup
	P1OUT = 0;

	BCSCTL3 |= LFXT1S_2;			// clock system setup
	IFG1 &= ~OFIFG;
//	_bis_SR_register(SCG1 + SCG0);
	BCSCTL2 |= SELM_0 + DIVM_3;

	while(1)
	{
	 P1OUT = 0x40; 			 	// LED on
	 _delay_cycles(100);
	 P1OUT = 0; 			 	// LED off
	 _delay_cycles(5000);
	}
}
The code can be found in DCO_VLO.txt, if needed. Save your changes.
36. Click the “Debug” button [image:]. Click the Proceed button in the ULP Advisor. The “CCS Debug” perspective should open, the program will load automatically, and you should now be at the start of main().
37. Run the code. If everything is working correctly, the green LED should blink very quickly. With the DCO running at 1MHz, which is about 30 times faster than the 32768 Hz crystal. So the green LED should be blinking at about 30 times per second. When done halt the code.
38. Click on the Terminate button [image:] to stop debugging and return to the “CCS Edit” perspective. Save your work by clicking File Save As and select the parent folder as Lab3. Name the file Lab3e.c. Click OK. Make sure to exclude Lab3e.c from the build. Close the Lab3e.c editor tab and double click on main.c in the Project Explorer pane.

Optimized Code Running the CPU on the DCO and VLO
This is a more optimized version of the previous step’s code. Delete the code from your main.c editor window (click anywhere in the text, Ctrl-A, then delete). Copy and paste the code from OPT_VLO.txt into main.c. Examine the code and you should recognize how everything works. A function has been added that consolidates the fault issue, removes the delays and tightens up the code. Build, load, and run as before. The code should work just as before. There is no real way to test the fault function, short of erasing the information segment A Flash – and let’s not do that … okay?.
Click on the Terminate button [image:] to stop debugging and return to the “CCS Edit” perspective. Save your work by clicking File Save As and select the parent folder as Lab3. Name the file Lab3f.c. Click OK and then close the Lab3f.c editor pane. Make sure to exclude Lab3f.c from the build.
Right-click on Lab3 in the Project Explorer pane and select Close Project.

[image: j0252029] You’re done.
Getting Started with the MSP430 LaunchPad - Initialization and GPIO	3 - 1
3 - 4	Getting Started with the MSP430 LaunchPad - Initialization and GPIO
Getting Started with the MSP430 LaunchPad - Initialization and GPIO	3 - 5
image2.wmf
System State at Reset

u

At power

-

up (PUC), the brownout circuitry holds device in reset until

Vcc is above hysteresis point

u

RST/NMI pin is configured as reset

u

I/O pins are configured as inputs

u

Clocks are configured

u

Peripheral modules and registers are initialized (see user guide for

specifics)

u

Status register (SR) is reset

u

Watchdog timer powers up active in watchdog mode

u

Program counter (PC) is loaded with address contained at reset vector

location (0FFFEh). If the reset vector content is 0FFFFh, the device will

be disabled for minimum power consumption

S/W Init

…

22

image3.wmf
Software Initialization

After a system reset the software must:

u

Initialize the stack pointer (SP), usually to the top of

RAM

u

Reconfigure clocks (if desired)

u

Initialize the watchdog timer to the requirements of

the application, usually OFF for debugging

u

Configure peripheral modules

Clock System

…

23

image4.wmf
MCLK

CPU

SMCLK

Peripherals

ACLK

Peripherals

16

MHz

DCO

Min

.

Puls

Filter

VLO

OSC

_

Fault

Clock System

u

Very Low Power/Low Frequency

Oscillator (VLO)*

u

4

–

20kHz (typical 12kHz)

u

500nA standby

u

0.5%/

?

C and 4%/Volt drift

u

Not in ’21x1 devices

u

Crystal oscillator (LFXT1)

u

Programmable capacitors

u

Failsafe OSC_Fault

u

Minimum pulse filter

u

Digitally Controlled Oscillator

(DCO)

u

0

-

to

-

16MHz

u

+

3% tolerance

u

Factory calibration in Flash

DCO

…

On PUC, MCLK and SMCLK are

sourced from DCOCLK at ~1.1 MHz.

ACLK is sourced from LFXT1CLK in

LF mode with an internal load

capacitance of 6pF. If LFXT1 fails,

ACLK defaults to VLO.

* Not on all devices. Check the datasheet

24

image5.wmf
G2xxx

-

No Crystal Required DCO

// Setting the DCO to 1MHz

if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)

while(1); // Erased calibration data? Trap!

BCSCTL1 = CALBC1_1MHZ; // Set range

DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation

VLO CAL

…

u

G2xx1 devices have 1MHz DCO constants only. Higher frequencies must be

manually calibrated

u

G2xx2 &

G2xx3 (like the G2553)

have all 4 constants + calibration values for the

ADC

& temperature

sensor

25

image6.wmf
Run Time Calibration of the VLO

u

Calibrate the VLO during runtime

u

Clock

Timer_A

runs on calibrated 1MHz DCO

u

Capture with rising edge of ACLK/8 from VLO

u

f

VLO

= 8MHz/Counts

u

Code library on the web (SLAA340)

TAR

Calibrated

1 MHz DCO

CCRx

ACLK/8 from VLO

f

VLO

 = 8MHz/Counts

MCLK & Vcc

…

26

image7.wmf
System MCLK & Vcc

WDT failsafe

…

u

Match needed clock speed with required Vcc to achieve the lowest power

u

External LDO regulator required

u

Unreliable execution results if Vcc < the minimum required for the selected frequency

u

All G2xxx device operate up to 16MHz

27

image8.wmf
Watchdog Timer Failsafe Operation

u

If ACLK / SMCLK fail, clock

source = MCLK

(WDT+ fail safe feature)

u

If MCLK is sourced from a

crystal, and the crystal

fails, MCLK = DCO

(XTAL fail safe feature)

Fail

-

Safe

Logic

16

-

bit

Counter

A

EN

SMCLK

ACLK

MCLK

1

1

CLK

WDTSSEL

WDTHOLD

WDT clock source

…

28

image9.wmf
Watchdog Timer Clock Source

u

Active clock source cannot be disabled (WDT mode)

u

May affect LPMx behavior & current consumption

u

WDT(+)

always

powers up active

Clock

Request

Logic

SMCLK Active

MCLK Active

ACLK Active

WDTIS

0

WDTIS

1

WDTSSEL

WDTCNTCL

WDTTMSEL

WDTNMI

WDTNMIES

WDTHOLD

WDTCTL

(

16

-

Bit

)

Lab

…

29

image10.wmf
Lab3: Initialization

Agenda

…

•

Write initialization code

•

Run CPU on MCLK sourced by:

•

VLO

•

32768Hz

crystal

•

DCO

•

Program part

•

Observe LED flash speed

30

image11.PNG

image12.png

image13.png

image14.PNG

image15.png

image16.wmf

image1.wmf
Agenda

Reset State

…

Introduction to Value Line

Code Composer Studio

Initialization and GPIO

Analog

-

to

-

Digital Converter

Interrupts and the Timer

Low

-

Power Optimization

Serial Communications

Grace

FRAM

Optional: Capacitive Touch

21

