Capacitive Touch
	Capacitive Touch
[bookmark: _Toc347491954]Capacitive Touch
IntroductionThis module will cover the details of the new capacitive touch technique on the MSP430. In the lab exercise we will observe the Capacitive Touch element response, characterize the Capacitive Touch elements and implement a simple touch key application.

[bookmark: _Toc347491955]Module Topics
Capacitive Touch	10-1
Module Topics	10-2
Capacitive Touch	10-3
Capacitive Touch Methods	10-3
Capacitive Measurement	10-4
RO Implementations	10-5
Details	10-5
Change in Capacitance	10-6
Change in Counts	10-6
Robustness	10-7
Noise Immunity	10-7
PinOsc CPU Overhead	10-8
RC Implementation	10-9
Change in Counts	10-9
Duty Cycle vs. Current	10-10
Library Overview	10-11
Element Definition	10-11
Sensor Definition	10-12
Summary	10-12
Booster Pack Layout	10-13
Lab 10: Capacitive Touch	10-15
Lab10a – Observe Element Reponse	10-18
Lab10b – Characterize the Elements	10-23
Lab10c – Capacitive Touch Project from a Blank Page	10-28
[bookmark: _Toc347491956][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]Capacitive Touch

[bookmark: _Toc347491957]Capacitive Touch Methods

[bookmark: _Toc347491958]Capacitive Measurement

[bookmark: _Toc347491959]
RO Implementations

[bookmark: _Toc347491960]Details

[bookmark: _Toc347491961]Change in Capacitance

[bookmark: _Toc347491962]Change in Counts

[bookmark: _Toc347491963]Robustness

[bookmark: _Toc347491964]Noise Immunity

[bookmark: _Toc347491965]PinOsc CPU Overhead

[bookmark: _Toc347491966]
RC Implementation

[bookmark: _Toc347491967]Change in Counts

[bookmark: _Toc347491968]Duty Cycle vs. Current

[bookmark: _Toc347491969]
Library Overview

[bookmark: _Toc347491970]Element Definition

[bookmark: _Toc347491971]Sensor Definition

[bookmark: _Toc347491972]Summary

[bookmark: _Toc347491973]Booster Pack Layout

[bookmark: _Toc370113188][bookmark: _Toc394202380][bookmark: _Toc347491974]
Lab 10: Capacitive Touch
Objective
The objective of this lab is to learn the hardware and software utilized by the capacitive touch technique on the MSP430 LaunchPad and Capacitive Touch BoosterPack.

Procedure
[bookmark: OLE_LINK1]Install Hardware and Software
1. You will need the Capacitive Touch BoosterPack (430BOOST-CAPTOUCH1) available here for US$10.
2. The 1.5 version of the LaunchPad kit already has Molex male-male connectors soldered to the pin-outs on the sides of the board. If you have an earlier version of the LaunchPad kit, you will have to solder the included Molex connectors onto the board.
3. Back in chapter one, you should have downloaded and installed the following files:
· BoosterPack User’s Guide - http://www.ti.com/lit/pdf/slau337
· Demo code, GUI, etc - http://www.ti.com/litv/zip/slac490
· Capacitive Touch Library - http://www.ti.com/litv/zip/slac489
· CT Lib Programmer’s Guide - http://www.ti.com/litv/pdf/slaa490a
· Getting Started with Capacitive Touch - http://www.ti.com/lit/slaa491
4. The Capacitive Touch BoosterPack includes an MSP430G2452 that is pre-programmed with a capacitive touch demo. If you have version 1.4 of the LaunchPad board (or earlier), very carefully replace the ‘G2231 device with the ‘G2452. (The ‘G2231 GPIO does not have the PinOsc feature.) If you have version 1.5 of the LaunchPad board, we will simply reprogram the ‘G2553 already on your board, and eliminate the potential to break the pins of your devices.
5. Plug the BoosterPack PCB onto the top of the Molex male-male pins you soldered earlier. Make sure the Texas Instruments logo is nearest the buttons on the LaunchPad board. Plug the board into your computer’s USB port using the cable included with the LaunchPad. If you are using version 1.4 of the LaunchPad, skip to step 7.
6. Open Code Composer in your usual workspace. Click on Project Import Existing CCS/CCE Eclipse Project. In the Import dialog that opens, change the search directory to C:\MSP430_LaunchPad\Labs\Lab10-2553. Make sure that the single discovered project is selected and click Finish. Click on the project in the Project Explorer pane to make it active, and then click the Debug button on the menu bar to build and program the code into your ‘G2553 device. Click the Terminate button on the CCS menu bar to return to the debug perspective. Close Lab10-2553. Cycle the power on the LaunchPad board by removing and re-inserting the USB connection.
7. Pass your hand close over the Capacitive Touch surface. You should see the LEDs illuminate in sequence. Touch your fingertip to the rocket button in the center circle and note the LED under it and the red LED on the LaunchPad PCB light. Touch again to turn them off.

Touch between the inner and outer circle to momentarily illuminate LEDs on the outside ring.

8. In the SLAC490 folder that you downloaded (and unzipped), find the Software folder and the CapTouch_BoosterPack_UserExperience_GUI folder beneath that. Double-click on the CapTouch_BoosterPack_UserExperience_GUI.exe file that you find there. Give the tool a few moments to link with your LaunchPad, and then touch any of the Capacitive Touch buttons. Note that gestures are also recognized.

Exit the GUI tool when you are done and close the Lab10-2553 project in Code Composer.
[bookmark: _Toc347491975]
Lab10a – Observe Element Reponse
Import Project
9. In this lab and the next, we will be observing the response of the Capacitive Touch elements. We will also dig into the code to see how it operates. Finally in the last lab, we’ll get a chance to get back to writing some code.

Open Code Composer Studio with your usual workspace and maximize CCS.
10. Import the Lab10a project by clicking Project Import Existing CCS/CCE Eclipse Project on the menu bar.
Change the directory to C:\MSP430_LaunchPad\Labs\Lab10a-2452 if you are using the ‘G2452 device and C:\MSP430_LaunchPad\Labs\Lab10a-2553 if you are using the ‘G2553 device. Make sure that the checkbox for Lab10a is checked in the Discovered Projects area and click Finish.
11. Expand the Lab10a project in the Project Explorer pane by clicking on the [image:] next to the project name.
Inspect Structure Files
12. Double-click on structure.c in the Project Explorer pane to open the file for editing.

The file is split into two main sections: the top portion is the Element section and the bottom is the Sensor section.

In the Element section you’ll see individual structures for each of the six buttons on the Capacitive Touch BoosterPack circuit board: down, right, up, left, middle and proximity. Inside these structures, the port/pin definition is made that assigns MSP430 GPIO hardware to the defined button and a threshold is set that defines what change in operation is an event. Note that the threshold is set to zero for the middle and proximity elements. For the wheel or slider implementation, the maxResponse variable normalizes the capacitive measurement to a percentage, so that the dominant element in the sensor can be identified. This variable has no function for single elements.
In the Sensor section, groups of Elements are defined as sensors like the wheel, one_button and proximity sensor. These structures define which and how many Elements will be used, what sensing method is used, which clock is used and how many cycles over which the measurement should be made.
This file has been created especially for the BoosterPack button layout. When you create your own board, this file must be modified.
Close structure.c .
13.
Double-click on structure.h in the Project Explorer pane to open the file for editing.

This file contains a number of sections. Many of the definitions used by the Capacitive Touch library are done here and made external. There are also several user-defined flags that allow you to tailor the code for your application. There are several definitions that allow you to trade RAM size for Flash size conserve memory and select MSP430 variant. Value-line parts typically have small Flash sizes and much smaller RAM sizes to achieve low cost, so using this space effectively is a design imperative.
Check out the three warnings at the bottom of the file.

This file has been created especially for the BoosterPack button layout. When you create your own board, this file must be modified.
Close structure.h .
For more detailed information on these files, look in user guides SLAA490a and SLAA491.
Open LAB10a.c
14. Open Lab10a.c in the Project Explorer pane to open the file for editing. The purpose of this code is to let us view the proximity sensor, middle button and wheel sensor response when they are touched.

Note the following:
· CTS_Layer.h is included to provide access to the Capacitive Touch APIs
· Three defined variables to hold the button/sensor raw count values
· Watchdog timer, DCO calibration, SMCLK and LFXT1 setup
· Both GPIO ports are set to outputs and zero is written to all pins
· An infinite loop where calls are made to measure the timer count (and the capacitance) of the proximity sensor, middle button and wheel sensor. The API call to TI_CAPT_Raw() represents the lowest level of abstraction available from the Capacitive Touch library and it is particularly useful for characterizing the behavior of the buttons and sensors. Zeroing the threshold variable in structure.c also disables any further abstraction by Capacitive Touch functions.

Build, Load
15. Make sure your LaunchPad board is connected to your PC and that the Capacitive Touch BoosterPack board is securely connected. Build and load the program by clicking the Debug button on the menu bar.
Setup Watch Window and Breakpoint Action
16. In the Expressions pane, right-click and select Add Global Variables. One at the time, select the variables in which the raw counts will be stored; proximityCnt, buttonCnt and wheelCnt and click OK. Expand the wheelCnt array so that you can see all four elements.
17. Find the __no_operation(); line of code in Lab10a.c and place a breakpoint there. We want the code to stop here, update the watch window and resume. To do that we’ll change the behavior of the breakpoint. Right-click on the breakpoint symbol (left of the line of code) and select Breakpoint Properties … Click on the value “Remain Halted” for the property “Action”. Change the action to “Refresh All Windows” and click OK.
Run
18. Click on the Run button to run the program. You should see the values in the watch window highlighted in yellow as they update. Black denotes unchanged values.

[image: 8-17-2011 10-33-58 PM]

Slowly bring your finger close to the board as you watch the proximityCnt variable. Ours started out around 37000 and dropped to around 36000 as we neared and touched the board.

Watch the buttonCnt variable as you touch the middle button. The value should drop as you touch it.
The wheel is comprised of the up, left, right and down elements. Watch the response as you move your finger around the wheel. 0=up, 1=right, 2=down and 3= left.

Graphs
19. A graph would make these changes easier to see and CCS provides that functionality. Suspend the code (not Terminate) by clicking the Suspend [image: 8-17-2011 10-45-16 PM] button. Add a graph by clicking Tools Graph Single Time on the menu bar. When the Graph Properties box appears, make the changes shown below.
[image:]
and click OK. The graph should appear at the bottom of your screen. If you don’t like the colors, you can change them by right-clicking on the graph and selecting Display Properties. But be careful, you can render the data invisible.
Click the Resume button and watch the graph of the buttonCnt variable. Allow a few moments for the graph to build. You should see minor fluctuations in the variable that look large in the graph since it is auto-sizing the y-axis. This will change when you touch the middle Capacitive Touch button. The graph below shows three touches of the button.

The graph is plotting the number of relaxation oscillator cycles within a fixed duration of time (the measurement window). As the capacitance increases (when you come near to the electrode), the frequency of the relaxation oscillator decreases and the number of cycles also decreases.
[image: 8-17-2011 11-25-31 PM]
20.
Suspend the code (not Terminate) by clicking the Suspend [image: 8-17-2011 10-45-16 PM] button and then click the X on the Single-Time graph tab to delete the graph. Now let’s add a graph of the proximityCnt variable. It’s possible to export and import graph properties to speed the process up, and we’ll use that here. Add a graph by clicking Tools Graph Single Time on the menu bar. When the Graph Properties box appears, click the Import button and select the cts_lab_proximity.graphProp file from C:\MSP430_LaunchPad\Labs\Lab10a and click Open. Sweet, huh? Click OK in the Graph Properties box and the graph should appear at the bottom of your screen.
21. Click the Run button and watch the graph of the proximityCnt variable. Allow a few moments for the graph to build. The behavior should look much the same as the middle button did. Bring your finger near to the board and watch the response on the graph. The graph below shows three close approaches to the board.
[image: 8-17-2011 11-39-07 PM]
22. Experiment as much as you like, but only display one graph at the time. Remove the watched expressions by clicking the Remove All Expressions button [image:] above the Expressions pane. Click the Terminate button to stop debugging and return to the “CCS Edit” perspective. Close the Lab10a project.
[bookmark: _Toc347491976]
Lab10b – Characterize the Elements
In Lab10a we observed changes in capacitance. In Lab10b we will focus on a ‘touch’, setting an appropriate threshold for detecting a touch. We will use the TI_CAPT_Custom function to measure the deviation in capacitance from the baseline. The library will track the baseline capacitance with each measurement. This configuration is only interested in fast (relative) and large magnitude increases in capacitance. Decreases and slow increases in capacitance are treated as environmental changes and are used to update the baseline.
Import Project
1. Import the Lab10b project by clicking Project Import Existing CCS/CCE Eclipse Project on the menu bar.
Change the directory to C:\MSP430_LaunchPad\Labs\Lab10b-2452 if you are using the ‘G2452 device and C:\MSP430_LaunchPad\Labs\Lab10b-2553 if you are using the ‘G2553 device. Make sure that the checkbox for Lab10b is checked in the Discovered Projects area and click Finish.
2. Expand the Lab10b project in the Project pane by clicking on the [image:] next to the project name and open structure.h for editing.

If you’re going to do baseline tracking (as we are in this lab), RAM space needs to be allocated for it to function, for each element (there are 6 on the BoosterPack). At line 50, uncomment the line:

// #define TOTAL_NUMBER_OF_ELEMENTS 6

Of course, this uses precious RAM space. If you are not using baseline tracking, commenting this line out will save RAM.

Close and save structure.h.
3. Open structure.c for editing. Remember from Lab10a (step 12) that in order to characterize an element, its threshold should be set to zero. Find the threshold values for the proximity sensor and middle button and verify that they are zero.
Close and save (if needed) structure.c.
4. Open Lab10b.c for editing and make sure that only the TI_CAPT_Custom() call for the proximity sensor in the while() loop is uncommented. The calls for the middle button and wheel should remain commented out for now. Save your changes if necessary.

while (1)
 {
 TI_CAPT_Custom(&proximity_sensor,&proximityCnt);
 //TI_CAPT_Custom(&one_button,&buttonCnt);
 //TI_CAPT_Custom(&wheel,wheelCnt);
 __no_operation();
 }
Build, Load
5. Make sure that Lab10b is the active project, then build and load the program by clicking the Debug button on the menu bar.
Setup Watch Window and Breakpoint Action
6. If you’ve closed the Expressions pane, click View Expressions from the menu bar. In the Expressions pane, right-click and select Add Global Variables. One at the time, select the variables in which the raw counts will be stored; proximityCnt, buttonCnt and wheelCnt and click OK. Expand the wheelCnt array so that you can see all four elements.
7. Find the __no_operation(); line of code and place a breakpoint there. We want the code to stop here, update the watch window and resume. Right-click on the breakpoint symbol (left of the line of code) and select Breakpoint Properties … Click on the value “Remain Halted” for the property “Action”. Change the action to “Refresh all Windows” and click OK.
Graphs
8. Let’s start with the proximity sensor. Add a graph by clicking Tools Graph Single Time on the menu bar. When the Graph Properties box appears, click the Import button, and then locate cts_lab_proximity.graphProp in C:\MSP430_LaunchPad\Labs\Lab10b. Select it, click Open and then click OK in the Graph Properties window.
9. Run the program and allow a few moments for the graph to build. Take a look at the table below. Let’s characterize the different responses of the proximity sensor: the noise when no one is near the sensor, when your finger is 2cm and 1cm away and finally when you touch the sensor. Remember that the element is not only the pad, but also the connection (trace) to the pad. The proximity sensor wraps the entire board. Write what you see on the graph in the table below. Our results are shown for comparison.
[image:]

	
	Observed Noise
	2cm
	1 cm
	Touch

	Your Results
	
	
	
	

	Our Results
	0-50
	30-80
	75-140
	1250-1325

Gate Time: ACLK/512 (default)
10. Click the Terminate button to stop debugging and return to the “CCS Edit” perspective.
11. Open Lab10b.c for editing and look in the while() loop. Comment out the TI_CAPT_Custom() call for the proximity sensor and uncomment the one for the middle button.

 while (1)
 {
 //TI_CAPT_Custom(&proximity_sensor,&proximityCnt);
 TI_CAPT_Custom(&one_button,&buttonCnt);
 //TI_CAPT_Custom(&wheel,wheelCnt);
 __no_operation();
 }
Save your changes. Build and load the program.
12. Click on the single-time graph tab. Click on the Show the Graph Properties button [image: 8-19-2011 11-00-19 AM] on the right side of the graph. It’s funny, but this is not the same thing as right-clicking on the graph and selecting Display Properties. When the Graph Properties box appears, click the Import button, and then locate cts_lab_button.graphProp in C:\MSP430_LaunchPad\Labs\Lab10b. Select it, click Open and then click OK in the Graph Properties window.
13. Run the program and allow a few moments for the graph to build. Now we’ll characterize the middle button touch sensor similar to what we did with the proximity sensor. Our results are shown for comparison.

	
	Observed Noise
	Light Touch
	Heavy Touch
	Molex Connector (right side)

	Your Results
	
	
	
	

	Our Results
	67-73
	326-330
	371-381
	115-124

Gate Time: SMCLK/512 (default)
14. Click the Terminate button to stop debugging and return to the editing perspective.

Changing the Measurement Window Time
15. Open structure.c for editing and close any other open editor windows.
The MSP430G2452 and Capacitive Touch BoosterPack hardware design implements an RO with the PinOsc peripheral. The hardware abstraction in the Capacitive Touch libraries utilizes Timer_A2 and WDT+ for clock sources. The Capacitive Touch measurement window or “gate time” is a function of the WDT+ peripheral.
The WDT+ can be sourced by the ACLK and SMCLK.
The gate time can be varied among the following settings: 64, 512, 8192 and 32768 cycles.
Below is the sensor structure for the proximity sensor:

const struct Sensor proximity_sensor =
 {
 .halDefinition = RO_PINOSC_TA0_WDTp,
 .numElements = 1,
 .baseOffset = 5,
 // Pointer to elements
 .arrayPtr[0] = &proximity, // point to first element
 // Timer Information
 //.measGateSource= GATE_WDT_SMCLK, // SMCLK
 .measGateSource= GATE_WDT_ACLK, // ACLK
 //.accumulationCycles= WDTp_GATE_32768 //32768
 //.accumulationCycles= WDTp_GATE_8192 // 8192
 .accumulationCycles= WDTp_GATE_512 //512 default
 //.accumulationCycles= WDTp_GATE_64 //64
 };
The data taken in the previous steps used the default gate timings. Make the following changes to structure.c and we’ll repeat those measurements.
In the one_button structure in the sensor section, uncomment:

.accumulationCycles= WDTp_GATE_8192 // 8192
and comment out:
.accumulationCycles= WDTp_GATE_512 //512, default

Do the same thing in the proximity_sensor structure in the sensor section. We’ll leave the source unchanged for both sensors.
Save your changes.
These settings will select SMCLK/8192 for the one_button and ACLK/8192 for the proximity sensor.

Build, Load, Run and Graph
16. Build and load the program. Make sure your graph is displaying data for the middle button. Run the program and fill in the table below. Our results are shown for comparison

	
	Observed Noise
	Light Touch
	Heavy Touch
	Molex Connector (right side)

	Your Results
	
	
	
	

	Our Results
	70-120
	3800-4000
	4270-4500
	1200-1280

Gate Time: SMCLK/8192
17. Click the Terminate button to stop debugging and return to the editing perspective. Open Lab10b.c for editing and look in the while() loop. Comment out the TI_CAPT_Custom() call for the middle button and uncomment the one for the proximity sensor. Save your changes.
18. Build and load the program. Make sure your graph is displaying data for the proximity sensor. Run the program and fill in the table below. Our results are shown for comparison

	
	Observed Noise
	2cm
	1 cm
	Touch

	Your Results
	
	
	
	

	Our Results
	54900-5510
	55390-55490
	60300-60400
	4000-4400

Gate Time: ACLK/8192
Note: Most of these values are very close to the 16-bit (65535) limit. If fact the Touch measurement we made rolled the counter past the limit. Watch for this kind of behavior during your experiments.
19. Compare these results with your earlier tests. The longer the gate time, the easier it is to differentiate between noise and touch or proximity. There are many more measurements that you could make here. You could check the effect of varying the gate time on the responsiveness of the buttons. Or you could test the effect on power consumption. These are tests that you will likely want to pursue with your design before finalizing it.

Click the Terminate button to return to the “CCS Edit” perspective. Close the Lab10b project.

[bookmark: _Toc347491977]
Lab10c – Capacitive Touch Project from a Blank Page
In this section, we’ll learn how to build a simple Capacitive Touch project from the beginning, with a blank folder. We’ll use the middle button on the BoosterPack board to light the middle LED and the red LED on the LaunchPad board.
Copy/Create Files
1. Using Windows Explorer, open the Lab10c folder in C:\MSP430_LaunchPad\Labs and observe that it is empty.
2. Open the folder containing the unzipped SLAC489 files. Copy the Source folder and paste it into the Lab10c folder. This is the Capacitive Touch Source folder.
3. Again in the SLAC489 folder, open the Examples/RO_PINOSC_TA0_WDTp folder. Copy both the structure.c and .h files and paste them into the Lab10c folder. We could have used any of the examples, but for the purposes of the lab, let’s choose these. These structure files contain all the definitions and structures for the entire Capacitive Touch BoosterPack board. Rather than create these files from scratch, we’re going to modify them to meet our needs, which is what you’ll likely do when you implement your own design.

Create Project
4. In Code Composer Studio, create a new project by clicking:
File New CCS Project
Make the selections shown below (your dialog may look slightly different than this one). If you are using the MSP430G2452, make the appropriate choices. Make sure to click Empty Project (with main.c), and then click Finish.
[image:]
5. Expand the Lab10c project in the Project Explorer pane to see that all of the files we placed in the Lab10c folder have been automatically added to the project, along with main.c created by Code Composer.

Build Properties
6. Right-click on Lab10c in the Project Explorer pane and select Properties.

Under Build / MSP430 Compiler, click on the [image:] next to Advanced Options and then click on Language Options. Check the “Enable support for GCC extensions (-gcc)” checkbox. This enables the program to access uninitialized structures in structure.c, allowing element three (for example) to be accessed without having to access elements one and two. For more information, see: http://processors.wiki.ti.com/index.php/GCC_Extensions_in_TI_Compilers

7. Under Build / MSP430 Compiler, click on Include Options. You must add two paths in the search path, one for where the structure files are located and one for where the CTS library file are located.

Click on the Add button [image: 8-23-2011 8-18-14 PM] in the bottom window and click on the Workspace… button. Select the Lab10c folder and click OK. This is where the structure files are located. Click OK again.
Click on the Add button [image: 8-23-2011 8-18-14 PM] again in the bottom window and click on the Workspace… button. Select the Source folder under Lab10c and click OK. This is where the CTS library files are located. Click OK again.
Your search path window should look like this:
[image:]
Click OK to save your changes to the project properties.

Lab10c main.c
We’re going to write a fairly minimal program that will light the LED when the middle button on the Capacitive Touch board is touched. In order to conserve power, we’ll have the MSP430 wake from sleep using a timer every 500ms to check the button. We’ll also want to characterize the element, so there will be a small amount of code for that too.

This implementation is a relaxation oscillator using the PinOsc feature. It uses Timer_A0 and the WDT+ for gate times.
8. Open the empty main.c for editing. Remember that you can cut/paste from the pdf file. Let’s start out by adding some includes and defines. Delete the current code in main.c and add the next three lines:
#include "CTS_Layer.h"	// include Capacitive Touch libraries
#define CHAR_MODE		// used in ifdefs to run characterization code
#define DELAY 5000		// timer delay – 500ms
9. Add a line for spacing, and then add the following ifdef/declaration. This declaration will only be compiled if the CHAR_MODE definition is present, which it is now.
#ifdef CHAR_MODE
unsigned int dCnt;		// characterization count held here
#endif
10. Add a line for spacing, and then we’ll get started on the main() routine. We need to set up the watchdog timer, DCO, etc. Add this code after the spacing line:
void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
 BCSCTL1 = CALBC1_1MHZ; // 1MHz DCO calibration
 DCOCTL = CALDCO_1MHZ;
 BCSCTL2 |= DIVS_2; // divide SMCLK by 4 for 250khz
 BCSCTL3 |= LFXT1S_2; // LFXT1 = VLO
11.
Next, we need to set up the GPIO. A quick look at the schematic of the BoosterPack (in SLAU337) would be helpful:
[image: 8-23-2011 11-10-45 PM]
Add a line for spacing, and then add the following GPIO setup code:
 P1OUT = 0x00;			// Clear Port 1 bits
 P1DIR |= BIT0;			// Set P1.0 as output pin
 P2SEL &= ~(BIT6 + BIT7);	// Configure XIN & XOUT to GPIO
 P2OUT = 0x00;			// Drive all Port 2 pins low
 P2DIR = 0xFF;			// Configure all Port 2 pins outputs
12. Before we jump into the button detection while() loop, we need to make a baseline measurement for the Capacitive Touch button. The first API call makes the initial measurement and the second makes five more measurements to ensure accuracy. Add a line for spacing, and then add the next two lines of code below the last ones:
 TI_CAPT_Init_Baseline(&middle_button);
 TI_CAPT_Update_Baseline(&middle_button,5);
13.
Let’s start out the button detection while() loop with the ifdef code to characterize the middle button. You’ve see this API in the last two labs. Remember that this code will only compile if the CHAR_MODE definition is in place. Add a line for spacing and add this code to main.c:
while (1)
{
 #ifdef CHAR_MODE
 TI_CAPT_Custom(&middle_button,&dCnt);
 __no_operation(); 				 // Set breakpoint here
 #endif
14. If the CHAR_MODE definition is not in place, we want to run the button detection code. This code will look at the value from the middle button and compare it against the threshold set in structure.c to determine if the button has been touched. If a touch is detected, the red LED will be lit (checked the schematic above). Also note that the red LED on the LaunchPad is connected to the same port pin, so it will light also. Add a line for spacing, and then add this code after the others:
#ifndef CHAR_MODE
if(TI_CAPT_Button(&middle_button))
{
 P1OUT |= BIT0; // Turn on center LED
}
else
{
 P1OUT &= ~BIT0; // Turn off center LED
}
15. Finally in the while() loop, once the button action is complete, we need to go to sleep to conserve power. Add a line for spacing, then add the following code:
 sleep(DELAY);				// LPM3 for 500ms delay time
 #endif
 }					 	// close while loop
 }						// close main
16. We need a function for the sleep() call above. This function will configure Timer_A to run off the ACLK, count in UP mode, place the CPU in LPM3 mode and enables the interrupt vector to jump to when the timeout occurs. Don’t take our word for it, crack open that Users Guide. Add this code right above your main() code:
void sleep(unsigned int time)
{
 TA0CCR0 = time;
 TA0CTL = TASSEL_1+MC_1+TACLR;
 TA0CCTL0 &= ~CCIFG;
 TA0CCTL0 |= CCIE;
 __bis_SR_register(LPM3_bits+GIE);
}
17. Lastly we need the ISR for the timer interrupt. The purpose of the timer interrupt is simply to wake the CPU from LPM3 so the Capacitive Touch code in the while() loop can run. Open that Users Guide again and verify the functionality. Add a line for spacing, and then add this function to the bottom of your code:
//***
// Timer0_A0 ISR: Disables the timer and exits LPM3
//***
#pragma vector=TIMER0_A0_VECTOR
__interrupt void ISR_Timer0_A0(void)
{
 TA0CTL &= ~(MC_1);
 TA0CCTL0 &= ~(CCIE);
 __bic_SR_register_on_exit(LPM3_bits+GIE);
}
18. Save your changes.

Right-click on main.c in the Project Explorer pane and click Build Selected File(s). If you have any problems, check the code on the next page to correct your issues.

#include "CTS_Layer.h"	 		// include Capacitive Touch libraries
#define CHAR_MODE		 	// used in ifdefs to run characterization code
#define DELAY 5000		 	// timer delay – 500ms

#ifdef CHAR_MODE
unsigned int dCnt;		 	// characterization count held here
#endif

void sleep(unsigned int time)
{
 TA0CCR0 = time;
 TA0CTL = TASSEL_1+MC_1+TACLR;
 TA0CCTL0 &= ~CCIFG;
 TA0CCTL0 |= CCIE;
 __bis_SR_register(LPM3_bits+GIE);
}

void main(void)
{
 WDTCTL = WDTPW + WDTHOLD; 		// Stop watchdog timer
 BCSCTL1 = CALBC1_1MHZ; 		// 1MHz DCO calibration
 DCOCTL = CALDCO_1MHZ;
 BCSCTL2 |= DIVS_2; 		// divide SMCLK by 4 for 250khz
 BCSCTL3 |= LFXT1S_2; 		// LFXT1 = VLO

 P1OUT = 0x00;			// Clear Port 1 bits
 P1DIR |= BIT0;			// Set P1.0 as output pin
 P2SEL &= ~(BIT6 + BIT7);	 	// Configure XIN & XOUT to GPIO
 P2OUT = 0x00;			// Drive all Port 2 pins low
 P2DIR = 0xFF;			// Configure all Port 2 pins outputs

 TI_CAPT_Init_Baseline(&middle_button);
 TI_CAPT_Update_Baseline(&middle_button,5);

while (1)
{
 #ifdef CHAR_MODE
 TI_CAPT_Custom(&middle_button,&dCnt);
 __no_operation(); 		 	// Set breakpoint here
 #endif

 #ifndef CHAR_MODE
 if(TI_CAPT_Button(&middle_button))
 {
 P1OUT |= BIT0; 		// Turn on center LED
 }
 else
 {
 P1OUT &= ~BIT0; 		// Turn off center LED
 }

 sleep(DELAY);			// LPM3 for 500ms delay time
 #endif
 }					// close while loop
}					// close main

//***
// Timer0_A0 ISR: Disables the timer and exits LPM3
//***
#pragma vector=TIMER0_A0_VECTOR
__interrupt void ISR_Timer0_A0(void)
{
 TA0CTL &= ~(MC_1);
 TA0CCTL0 &= ~(CCIE);
 __bic_SR_register_on_exit(LPM3_bits+GIE);
}

Structure.c
19. Open structure.c for editing and find the structure for the middle element. On the line above the threshold element, change:
.maxResponse = 350+655,
to
.maxResponse = 0+655,
This defines the maximum expected response from the element. When using an abstracted function to measure the element, 100* (maxResponse – threshold) <0xFFFF. So maxResponse – threshold < 655. Also note that the threshold is currently 0 since we will be characterizing the response in a few steps.
Also, change the threshold from 350 to 0.
20. Since we’re only going to be using the middle button, delete all of the element structures except for the middle_element structure. Then delete the wheel and proximity sensor structures. Your structure.c file should look like the below; some comments were removed to fit the page. Save your work.

#include "structure.h"

//PinOsc Wheel: middle button P2.5
const struct Element middle_element = {

 .inputPxselRegister = (unsigned char *)&P2SEL,
 .inputPxsel2Register = (unsigned char *)&P2SEL2,
 .inputBits = BIT5,
 // When using an abstracted function to measure the element
 // the 100*(maxResponse - threshold) < 0xFFFF
 // ie maxResponse - threshold < 655
 .maxResponse = 0+655,
 .threshold = 0
};

//*** Sensor

const struct Sensor middle_button =
 {
 .halDefinition = RO_PINOSC_TA0_WDTp,
 .numElements = 1,
 .baseOffset = 4,
 // Pointer to elements
 .arrayPtr[0] = &middle_element, // point to first element
 // Timer Information
 .measGateSource= GATE_WDT_SMCLK, //0->SMCLK, 1-> ACLK
 //.accumulationCycles= WDTp_GATE_32768 //32768
 .accumulationCycles= WDTp_GATE_8192 //8192
 //.accumulationCycles= WDTp_GATE_512 //512
 //.accumulationCycles= WDTp_GATE_64 //64
 };

Structure.h
21. Open structure.h for editing. In the Public Globals area, remove all the declarations except for the middle element and the middle_button sensor.
22. In the Ram Allocation area, make sure that the definition for TOTAL_NUMBER_OF_ELEMENTS is uncommented and is “1”.
23. Also in the Ram Allocation area, make sure that the definition for RAM_FOR_FLASH is uncommented.
24. In the Structure Array Definition area, make sure that the definition for MAXIMUM_NUMBER_OF_ELEMENTS_PER_SENSOR is “1”. Save your changes. The top portion of your code should look like our code below:

#ifndef CTS_STRUCTURE
#define CTS_STRUCTURE

#include "msp430.h"
//#include "msp430g2452.h"
#include <stdint.h>

/* Public Globals */
extern const struct Element middle_element;

extern const struct Sensor middle_button;

//****** RAM ALLOCATION **
// TOTAL_NUMBER_OF_ELEMENTS represents the total number of elements used, even if
// they are going to be segmented into seperate groups. This defines the
// RAM allocation for the baseline tracking. If only the TI_CAPT_Raw function
// is used, then this definition should be removed to conserve RAM space.
#define TOTAL_NUMBER_OF_ELEMENTS 1
// If the RAM_FOR_FLASH definition is removed, then the appropriate HEAP size
// must be allocated. 2 bytes * MAXIMUM_NUMBER_OF_ELEMENTS_PER_SENSOR + 2 bytes
// of overhead.
#define RAM_FOR_FLASH
//****** Structure Array Definition **
// This defines the array size in the sensor strucure. In the event that
// RAM_FOR_FLASH is defined, then this also defines the amount of RAM space
// allocated (global variable) for computations.
#define MAXIMUM_NUMBER_OF_ELEMENTS_PER_SENSOR 1
//****** Choosing a Measurement Method **
// These variables are references to the definitions found in structure.c and
// must be generated per the application.

Build, Load, Run and Test
25. Click the debug button to build and load the program to the MSP430. Correct any errors that you find.
26. In the Expression pane, delete all the expressions by clicking the Remove All Expressions button [image:]. Then add the dCnt global variable as an expression.
27. Close any graphs that you may have from earlier labs.
28. Find the __no_operation(); line of code around line 39 and place a breakpoint there. Right-click on the breakpoint symbol (left of the line of code) and select Breakpoint Properties … Click on the value “Remain Halted” for the property “Action”. Change the action to “Refresh all Windows” and click OK.
29. Run the code and watch the dCnt variable in the watch window as you touch the middle button on the Capacitive Touch board. If adding a graph will help you visualize things, use the following properties:
[image:]

30. Fill in the table for dCnt below. Our results are shown for comparison.

	
	Observed Noise
	Middle Button Touch

	Your Results
	
	

	Our Results
	50-95
	5000-5700

Threshold
31. Now we can finalize the code and set the threshold. We want to pick a threshold that is high enough above the noise so that it doesn’t trigger erroneously, but low enough not to miss any actual touches. Based on our results above, we’re going to pick 1000. Your number may be different.
32. Suspend the program. Remove the graph if you added one, remove the dCnt watch expression and remove the breakpoint you set. Click the Terminate button to return to the “CCS Edit” perspective.
33. In main.c , comment out the #define CHAR_MODE definition. This will allow our normal button code to compile and run. Save your changes.
34. In structure.c ,make the following changes. Remember to use your own threshold choice instead of 1000 if it is different.
.maxResponse = 2500+655,
.threshold = 2500
Save your changes.
35. Build, load and run the code. Touch the middle button. If everything is working properly, the middle LED on the BoosterPack board and the red LED on the LaunchPad should light. Sweet!
36. Feel free to experiment with the sleep time, gate time, threshold, etc. Checking the power is a little problematic unless you have an oscilloscope since the code spends the majority of its time in LPM3.
37. Terminate the active debug session using the Terminate [image:] button. Close the Lab10c project and close Code Composer Studio.

[image: j0252029] You’re done.

Getting Started with the MSP430 LaunchPad - Capacitive Touch	10 - 1
10 - 4	Getting Started with the MSP430 LaunchPad - Capacitive Touch
Getting Started with the MSP430 LaunchPad - Capacitive Touch	10 - 5
image2.wmf
What is Capacitive Touch?

text

C1

C2

C3

C4

A

change

in Capacitance …

u

When a conductive element is present

-

Finger or stylus

•

Add C3 and C4, resulting in an increase in capacitance C1 + C2 + C3||C4

•

This becomes part of the free space coupling path to earth ground

u

When the dielectric (typically air) is displaced

•

Thick gloves or liquid results in air displacement and change in dielectric

•

Capacitance is directly proportional to dielectric, capacitance (C2) increases

(air ~1, everything else > 1)

Options

…

88

image3.wmf
MSP430 Capacitive Touch Methods

Pin oscillator method

(

PinOsc

with internal RO)

No external components required

Timer used

Currently MSP430G2xx2 and MSP430G2xx3

1uA/Button

10uA/Button

< 3uA/Button

RO method

Most robust against interference

Timer used, comparator used

MSP430 devices with comparator

RC method

Lowest power method

Supports up to 16 keys

GPIO plus timer used

Any MSP430 device

Capacitive Measurement

…

89

image4.wmf
Capacitive Measurement with the MSP430

u

Relaxation Oscillator (RO)

•

Measure frequency of multiple R/C

charge/discharge cycles

•

Measurement window is fixed

•

Capacitance is a function of timer

frequency

A change in capacitance

equals as a change in timer counts

u

Resistor Capacitor (RC)

•

Measure

charge/discharge time from

Vit

+ to

Vit

-

and

Vit

-

to

Vit

+

•

The timer frequency is fixed

•

Capacitance is a function of the RC

charge/discharge time

RO Implementations

…

90

image5.wmf
MSP430 RO Implementations

Capture

result

Timer

_

A

Gate

Vref

u

Requires:

u

A Timer for the gate time

u

A Timer to count cycles

u

A Pin Oscillator (MSP430G2x)

or

Comparator for the relaxation oscillator

u

Very low power consumption

u

Sensitivity is limited by the gate time:

longer = greater sensitivity

u

Slow scan rates: the longer the gate

time the longer it takes to scan the

elements

u

High noise immunity

u

Inherently immune to low frequency

noise

u

Hysteresis in relaxation oscillator

provides high frequency noise immunity

Capture

result

Timer

_

A

Gate

PRxEN

PRxEN

PRxEN

COMPB

PinOsc

RO Details

…

91

image6.wmf
RO Implementation Details

u

Relaxation Oscillator

u

Comparator

u

Reference

u

Feedback circuit

u

Timer for frequency counter

u

Timer for measurement

window

u

Frequency

Measurement

u

F is a function of C

u

For a given interval the

Frequency decreases with

an increase in capacitance

SMCLK/x

TIMERAx

RC Filter

V

c

c

G

N

D

DIGITAL IO

0

1

Change in Capacitance

…

92

image7.wmf
9.6

9.8

10

10.2

10.4

10.6

10.8

9.6

9.8

10

10.2

10.4

10.6

10.8

Measured

Capacitance

Base

Capacitance

Environmental

Changes

Absolute Threshold: Touch Detection,

Missed Detection, False Trigger

Relative Threshold with Baseline Tracking: No false

triggers and accounts for environmental drift.

Interpreting Change in Capacitance RO

Change in Counts

…

93

image8.wmf
Interpreting Changes in Counts RO

9.6

9.8

10

10.2

10.4

10.6

10.8

Capacitance

3750

3800

3850

3900

3950

4000

4050

4100

4150

4200

Timer Counts

Inverse Relationship

RO Robustness

…

94

image9.wmf
RO Robustness

SMCLK

(Hz)

R

(ohms)

Capacitance Change

(11pF

-

11.22pF)

Gate Time

(ms)

Change in

Counts

Margin (threshold

is 150)

1.00E6

35000

2%

8.192

301

50.2%

1.06E6

35000

2%

7.728

284

47.2%

0.94E6

35000

2%

8.7415

320

53.1%

1.06E6

50000

2%

7.728

199

24.6%

0.94E6

20000

2%

8.7415

560

73.2%

u

Limit the variables to capacitance

–

DCO calibrated constants +/

-

6% over Vcc and temperature

–

Integrated Resistance varies from 20Kohms to 50Kohms

RO Noise Immunity

…

95

image10.wmf
RO Noise Immunity

u

Hysteresis

u

Noise must occur at the relaxation oscillator frequency in order to

influence measurement

u

Noise must be fairly large in magnitude to overcome hysteresis

(typically 1V)

u

Natural Integration and Filtering

u

Gate window of milliseconds represents many charge/discharge

cycles of the relaxation oscillator

u

Example: 2mS*1.8Mhz = 3600 cycles (samples)

u

Baseline Tracking automatically calibrates system

u

Slowly tracks changes, filtering noise

PinOsc CPU Overhead

…

96

image11.wmf
RO CPU Overhead Using PinOsc

u

99% of the measurement time is performed in a low power mode

with no CPU interaction

u

RO integration performed 100% in hardware

u

Calculation dependent on number of sensors, typically <<1%

u

CPU available for other tasks

RC Implementation

…

97

image12.wmf
MSP430 RC Implementation

u

Timer and comparator or Schmidt trigger

GPIO

u

Timer capture inputs

u

Comparator Inputs

u

Simple interface

u

Two sensor scan share a single resistor

u

Very, very low power consumption

u

Sensitivity is limited to clock speed

u

2xx family 16Mhz

u

5xx 25MHz

u

Timer D 256Mhz

u

Thick laminates require faster clock or

other additional processing

u

Fast scan rates

u

Poor noise immunity and not

recommended for applications that are

connected to mains

Delta

TAR

Timer

_

A

DCO

Changes in Counts

…

98

image13.wmf
Interpreting Changes in Counts: RC

9.6

9.8

10

10.2

10.4

10.6

10.8

Capacitance

3800

3850

3900

3950

4000

4050

4100

4150

4200

4250

4300

Timer Counts

Direct Relationship

Duty Cycle vs. Current

…

99

image14.wmf
Importance of Duty Cycle vs. Current

Sleep Time

(

LPM

3

)

G

a

t

e

T

i

m

e

Processing Time

(

Active

)

1

/

Scan Rate

C

u

r

r

e

n

t

PinOsc RO

Current

Gate

PinOsc

70uA

4ms

Sleep(LPM3)

0.7uA

96ms

1 Sensor @ 2Hz Interval

Sensor = 70uA*0.008 ~ 0.60uA

Sleep = 0.7uA*0.992 ~ 0.70uA

Average = ~ 1.30uA

Processing insignificant

Library Overview

…

100

image15.wmf
Capacitive Touch Library Overview

B

u

t

t

o

n

S

l

i

d

e

r

USER DEFINED APPLICATION LAYER

Calculate Delta capacitance

Baseline Tracking

R

C

_

P

A

I

R

_

T

A

O

R

O

_

C

O

M

P

A

p

_

T

A

0

_

W

D

T

p

f

R

O

_

P

I

N

O

S

C

_

T

A

0

_

S

W

W

h

e

e

l

C

A

P

T

O

U

C

H

L

A

Y

E

R

H

A

L

Filter HAL Selection

B

u

t

t

o

n

s

Dominant Element

C

u

s

t

o

m

R

a

w

R

O

_

P

I

N

O

S

C

_

T

A

0

_

W

D

T

p

R

O

_

C

O

M

P

B

_

T

A

0

_

W

D

T

A

R

O

_

P

I

N

O

S

C

_

T

A

0

I

n

i

t

/

U

p

d

a

t

e

B

a

s

e

l

i

n

e

B

a

s

e

l

i

n

e

T

r

a

c

k

i

n

g

C

o

n

t

r

o

l

R

O

_

C

O

M

P

B

_

T

A

0

_

W

D

T

A

USER DEFINED HW CONFIGURATION

Abstraction

Timer

(Ax/Bx)

Comparator

(COMPx)

Watchdog

Timer (WDTx)

Pin

Oscillator

…

…

H

W

…

Element Definition

…

101

image16.wmf
Library Configuration Element Definition

Element Definition

•

Port Definition

•

Bit Definition

structure.c

//PinOsc Middle P2.5

const struct Element middle =

{

.inputPxselRegister = (uint8_t *)&

P2SEL

,

.inputPxsel2Register = (uint8_t *)&

P2SEL2

,

.inputBits =

BIT5

,

.threshold = 0

};

structure.h

extern const struct Element middle;

Sensor Definition

…

102

image17.wmf
Library Configuration Sensor Definition

Sensor Definition

•

Elements within Sensor

•

Gate Source: SMCLK = 1Mhz

•

Gate Interval: 8192 (~8.2ms)

structure.c

const struct Sensor wheel =

{

.halDefinition = RO_PINOSC_TA0_WDTp,

.numElements = 4,

.baseOffset = 0,

// Pointers to elements

.arrayPtr[0] = &up,

.arrayPtr[1] = &right,

.arrayPtr[2] = &down,

.arrayPtr[3] = &left,

// Timer Information

.measGateSource= GATE_WDT_SMCLK,

// 0

-

>SMCLK, 1

-

> ACLK

.accumulationCycles= WDTp_GATE_8192

};

structure.h

extern const struct Sensor wheel;

SMCLK/x

Summary

…

103

image18.wmf
Summary

u

Capacitive Touch solutions can be implemented in a number of

ways on the MSP430

u

Tradeoff between available peripherals, IO requirements, sensitivity, and

power consumption

u

Capacitive Touch IO (PinOsc function of the digital IO peripheral) in the

Value Line family is the most recent peripheral addition.

u

No external components or connections

u

Low power implementation of the relaxation oscillator

u

The Capacitive Touch library offers several levels of abstraction

for different capacitance measurement applications

u

Raw capacitance measurements

u

Measurements with integrated baseline tracking

u

Button, wheel, and slider abstractions

u

Download library and examples from

www.ti.com/captouch

Layout

…

104

image19.wmf
P2.0

(proximity)

P2.5

(middle)

Wheel

P2.4 (up)

P2.1 (left)

P2.3 (right)

P2.2 (down)

Capacitive Touch BoosterPack Layout

u

6 touch sensors

u

Cap touch IOs create RO (

PinOsc

)

u

9 LEDs

Lab 10

…

105

image20.wmf
Lab10: Capacitive Touch

Lab10a

: Observe element response

Lab10b

: Characterize the elements

Lab10c

: Implement a simple touch key

application

106

image21.PNG

image22.jpeg

image23.jpeg

image24.png

image25.jpeg

image26.jpeg

image27.png

image28.png

image29.png

image30.PNG

image31.png

image32.PNG

image33.png

image34.png

image35.png

image36.wmf

image1.wmf
Agenda

What is Capacitive Touch?

Introduction to Value Line

Code Composer Studio

Initialization and GPIO

Analog

-

to

-

Digital Converter

Interrupts and the Timer

Low

-

Power Optimization

Serial Communications

Grace

FRAM

Optional: Capacitive Touch

87

