Interrupts and the Timer
	Lab 5: Timer and Interrupts
[bookmark: _Toc347491704]Interrupts and the Timer
IntroductionThis module will cover the details of the interrupts and the timer. In the lab exercise we will configure the timer and alter the code to use interrupts.

[bookmark: _Toc347491705]Module Topics
Interrupts and the Timer	5-1
Module Topics	5-2
Interrupts and the Timer	5-3
Timer_A2/A3 Features	5-3
Interrupts and the Stack	5-3
Vector Table	5-4
ISR Coding	5-4
Lab 5: Timer and Interrupts	5-5
Objective	5-5
Procedure	5-6
[bookmark: _Toc347491706][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]Interrupts and the Timer
[bookmark: _Toc347491707]Timer_A2/A3 Features

[bookmark: _Toc347491708]Interrupts and the Stack

[bookmark: _Toc347491709]Vector Table

[bookmark: _Toc347491710]ISR Coding

[bookmark: _Toc347491711][bookmark: _Toc370113188][bookmark: _Toc394202380]Lab 5: Timer and Interrupts
[bookmark: _Toc347491712]Objective
The objective of this lab is to learn about the operation of the on-chip timer and interrupts. In this lab exercise you will write code to configure the timer. Also, you will alter the code so that it operates using interrupts.

[bookmark: _Toc347491713]
Procedure
[bookmark: OLE_LINK1]Create a New Project
1. Create a new project by clicking:
File New CCS Project
Make the selections shown below (your dialog may look slightly different than this one). If you are using the MSP430G2231, make the appropriate choices for that part. Make sure to click Empty Project (with main.c), and then click Finish.
[image:]

Source File
The solution file from the last lab exercise will be used as the starting point for this lab exercise. We’ve cleaned up the file slightly to make it a little more readable by putting the initialization code into individual functions.
1. Open the Lab5_Start.txt file using File Open File…
· C:\MSP430_LaunchPad\Labs\Lab5\Files\Lab5_Start.txt
2. Copy all of the code in Lab5_Start.txt and paste it into main.c, erasing all the existing code in main.c. This will be the starting point for this lab exercise.
3. Close the Lab5_Start.txt file. It is no longer needed.
4. As a test – build, load, and run the code. If everything is working correctly the green LED should be blinking about once per second and it should function exactly the same as the previous lab exercise. When done, halt the code and click the Terminate button [image:] to return to the “CCS Edit” perspective.
Using the Timer to Implement the Delay
5. In the next few steps we’re going to implement the one second delay that was previously implemented using the delay intrinsic with the timer.
Find _delay_cycles(125000); and delete that line of code.
6. We need to add a function to configure the Timer. Add a declaration for this new function to top of the code, underneath the one for ConfigADC10:
void ConfigTimerA2(void);
Then add a call to the function underneath the call to ConfigADC10;
ConfigTimerA2();
And add a template for the function at the very bottom of the program:
void ConfigTimerA2(void)
 {

 }

7. Next, we need to populate the ConfigTimerA2() function with the code to configure the timer. We could take this from the example code, but it’s pretty simple, so let’s do it ourselves. Add the following code as the first line:
CCTL0 = CCIE;
This enables the counter/compare register 0 interrupt in the CCTL0 capture/compare control register. Unlike the previous lab exercise, this one will be using interrupts. Next, add the following two lines:
CCR0 = 12000;
TACTL = TASSEL_1 + MC_2;
We’d like to set up the timer to operate in continuous counting mode, sourced by the ACLK (VLO), and generate an interrupt every second. Reference the User’s Guide and header files and notice the following:
· TACTL		is the Timer_A control register
· TASSEL_1	selects the ACLK
· MC_2		sets the operation for continuous mode
When the timer reaches the value in CCR0, an interrupt will be generated. Since the ACLK (VLO) is running at 12 kHz, the value needs to be 12000 cycles.
8. We have enabled the CCR0 interrupt, but global interrupts need to be turned on in order for the CPU to recognize it. Right before the while(1) loop in main(), add the following:
_BIS_SR(GIE);
Create an Interrupt Sevice Routine (ISR)
9. At this point we have set up the interrupts. Now we need to create an Interrupt Service Routine (ISR) that will run when the Timer interrupt fires. Add the following code template to the very bottom of main.c:
#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
{

}
These lines identify this as the TIMER ISR code and allow the compiler to insert the address of the start of this code in the interrupt vector table at the correct location. Look it up in the C Compiler User’s Guide. This User’s Guide was downloaded in lab 1.
10. Remove all the code from inside the while(1) loop in main() and paste it into the ISR template. This will leave the while(1) loop empty for the moment.
11. Almost everything is in place for the first interrupt to occur. In order for the 2nd, 3rd, 4th,… to occur at one second intervals, two things have to happen:
a) The interrupt flag has to be cleared (that’s automatic)
b) CCR0 has to be set 12,000 cycles into the future
So add the following as the last line in the ISR:
CCR0 +=12000;
12. We need to have some code running to be interrupted. This isn’t strictly necessary, but the blinking LEDs will let us know that some part of the code is actually running. Add the following code to the while(1) loop:
P1OUT |= BIT0;
for (i = 100; i > 0; i--);
P1OUT &= ~BIT0;
for (i = 5000; i > 0; i--);
This routine does not use any intrinsics. So when we’re debugging the interrupts, they will look fine in C rather than assembly. Don’t forget to declare i at the top of main.c:
volatile unsigned int i;
Modify Code in Functions and ISR
13. Let’s make some changes to the code for readability and LED function.
In FaultRoutine(),
· Change: P1OUT = 0x01;
· To:	 P1OUT = BIT0;
In ConfigLEDs(),
· Change: P1DIR = 0x41;
· To:	 P1DIR = BIT6 + BIT0;
In the Timer ISR,
· Change: P1OUT = 0x40;
· To:	 P1OUT |= BIT6;
and
· Change: P1OUT = 0;
· To:	 P1OUT &= ~BIT6;

14. At this point, your code should look like the code on the next two pages. We’ve added the comments to make it easier to read and understand. Click the Save button on the menu bar to save the file.

#include <msp430g2553.h>

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR TIMERA1_VECTOR
#define TIMER0_A0_VECTOR TIMERA0_VECTOR
#endif

volatile long tempRaw;
volatile unsigned int i;

void FaultRoutine(void);
void ConfigWDT(void);
void ConfigClocks(void);
void ConfigLEDs(void);
void ConfigADC10(void);
void ConfigTimerA2(void);

void main(void)
{
 ConfigWDT();
 ConfigClocks();
 ConfigLEDs();
 ConfigADC10();
 ConfigTimerA2();

 _BIS_SR(GIE);

 while(1)
 {
 P1OUT |= BIT0;
 for (i = 100; i > 0; i--);
 P1OUT &= ~BIT0;
 for (i = 5000; i > 0; i--);
 }
}

void ConfigWDT(void)
 {
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
 }

void ConfigClocks(void)
 {
 if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
 FaultRoutine();		 // If calibration data is erased
 				 // run FaultRoutine()
 BCSCTL1 = CALBC1_1MHZ; 		 // Set range
 DCOCTL = CALDCO_1MHZ; 		 // Set DCO step + modulation
 BCSCTL3 |= LFXT1S_2; // LFXT1 = VLO
 IFG1 &= ~OFIFG; // Clear OSCFault flag
 BCSCTL2 |= SELM_0 + DIVM_3 + DIVS_3; // MCLK = DCO/8, SMCLK = DCO/8
 }

void FaultRoutine(void)
 {
 P1OUT = BIT0; // P1.0 on (red LED)
 while(1); 			 // TRAP
 }

void ConfigLEDs(void)
 {
 P1DIR = BIT6 + BIT0; // P1.6 and P1.0 outputs
 P1OUT = 0; // LEDs off
 }

void ConfigADC10(void)
 {
 ADC10CTL1 = INCH_10 + ADC10DIV_0; // Temp Sensor ADC10CLK
 }

void ConfigTimerA2(void)
 {
 CCTL0 = CCIE;
 CCR0 = 12000;
 TACTL = TASSEL_1 + MC_2;
 }

#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
{
 ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON;
 _delay_cycles(5); // Wait for ADC Ref to settle
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
 P1OUT |= BIT6; 			 // P1.6 on (green LED)
 _delay_cycles(100);
 ADC10CTL0 &= ~ENC;			 // Disable ADC conversion
 ADC10CTL0 &= ~(REFON + ADC10ON); // Ref and ADC10 off
 tempRaw = ADC10MEM;			 // Read conversion value
 P1OUT &= ~BIT6; 			 // green LED off
 CCR0 +=12000;				 // add 12 seconds to the timer
}
Note: for reference, the code can found in Lab5_Finish.txt in the Files folder.
Build, Load, and Run the Code
15. Click the “Debug” button [image:]. When the ULP Advisor appears, click Proceed. The “CCS Debug” view should open, the program will load automatically, and you should now be at the start of main().
16. Run the code and observe the LEDs. If everything is working correctly, the red LED should be blinking about twice per second. This is the while(1) loop that the Timer is interrupting. The green LED should be blinking about once per second. This is the rate that we are sampling the temperature sensor. Click Suspend [image:] to stop the code.
Test the Code
17. Make sure that the tempRaw variable is still in the Expressions window. If not, then double-click tempRaw on the code line tempRaw = ADC10MEM; to select it. Then right-click on it and select Add Watch Expression. and click OK. If needed, click on the Expressions tab near the upper right of the CCS screen to see the variable added to the watch window.
18. In the Timer_A2 ISR, find the line with P1OUT &= ~BIT6; and place a breakpoint there. Right-click on the breakpoint symbol and select Breakpoint Properties... Change the Action parameter to Update View as shown below and click OK.
[image:]
19. Run the code. The debug window should quickly stop at the breakpoint and the tempRaw value will be updated. Observe the watch window and test the temperature sensor as in the previous lab exercise.
Terminate Debug Session and Close Project
20. Terminate the active debug session using the Terminate [image:] button. This will close the debugger and return to the “CCS Edit” perrspective.
21. Close the project by right-clicking on Lab5 in the Project Explorer pane and select Close Project.
[image: j0252029] You’re done.
Getting Started with the MSP430 LaunchPad - Interrupts and the Timer	5 - 1
5 - 4	Getting Started with the MSP430 LaunchPad - Interrupts and the Timer
Getting Started with the MSP430 LaunchPad - Interrupts and the Timer	5 - 5
image2.wmf
Timer_A2 and A3 Features

u

Asynchronous 16

-

bit

timer/counter

u

Continuous, up

-

down,

up count modes

u

2 or 3 capture/compare

registers

u

PWM outputs

u

Two interrupt vectors

for fast decoding

Interrupts and Stack

…

37

image3.wmf
Interrupts and the Stack

Entering Interrupts

u

Any currently executing instruction is completed

u

The PC, which points to the next instruction, is pushed onto the stack

u

The SR is pushed onto the stack

u

The interrupt with the highest priority is selected

u

The interrupt request flag resets automatically on single

-

source flags;

Multiple source flags remain set for servicing by software

u

The SR is cleared; This terminates any low

-

power mode; Because the

GIE bit is cleared, further interrupts are disabled

u

The content of the interrupt vector is loaded into the PC; the program

continues with the interrupt service routine at that address

Vector Table …

38

image4.wmf
MSP430G2553 Vector Table

Interrupt Source

Interrupt Flag

System

Interrupt

Word

Address

Priority

Power

-

up

External Reset

Watchdog Timer+

Flash key violation

PC out

-

of

-

range

PORIFG

RSTIFG

WDTIFG

KEYV

Reset

0FFFEh

31

(highest)

NMI

Oscillator Fault

Flash memory access

violation

NMIIFG

OFIFG

ACCVIFG

Non

-

maskable

Non

-

maskable

Non

-

maskable

0FFFCh

30

Timer1_A3

TA1CCR0 CCIFG

maskable

0FFFAh

29

Timer1_A3

TA1CCR2 TA1CCR1

CCIFG, TAIFG

maskable

0FFF8h

28

Comparator_A

+

CAIFG

maskable

0FFF6h

27

Watchdog Timer+

WDTIFG

maskable

0FFF4h

26

Timer0_A3

TA0CCR0 CCIFG

maskable

0FFF2h

25

Timer0_A3

TA0CCR1

TA0CCR1

CCIFG TAIFG

maskable

0FFF0h

24

USCI_A0/USCI_B0 receive

USCI_B0 I2C status

UCA0RXIFG, UCB0RXIFG

maskable

0FFEEh

23

USCI_A0/USCI_B0 transmit

USCI_B0 I2C receive/transmit

UCA0TXIFG, UCB0TXIFG

maskable

0FFECh

22

ADC10

ADC10IFG

maskable

0FFEAh

21

0FFE8h

20

I/O Port P2 (up to 8)

P2IFG.0 to P2IFG.7

maskable

0FFE6h

19

I/O Port P1 (up to 8)

P1IFG.0 to P1IFG.7

maskable

0FFE4h

18

0FFE2h

17

0FFE0h

16

Boot Strap Loader Security

Key

0FFDEh

15

Unused

0FFDEh to 0FFCDh

14

-

0

ISR Coding …

39

image5.wmf
ISR Coding

#pragma vector=WDT_VECTOR

__interrupt void WDT_ISR(void)

{

IE1 &= ~WDTIE; // disable interrupt

IFG1 &= ~WDTIFG; // clear interrupt flag

WDTCTL = WDTPW + WDTHOLD; // put WDT back in hold state

BUTTON_IE |= BUTTON; // Debouncing complete

}

#pragma vector

-

the following function is an ISR for the listed vector

_interrupt void

-

identifies ISR name

No special return required

Lab …

40

image6.wmf
Lab5: Timer and Interrupts

Agenda

…

•

Configure

timer

•

Alter code to operate using interrupts

•

Build and test

41

image7.PNG

image8.png

image9.png

image10.png

image11.PNG

image12.wmf

image1.wmf
Agenda

Timer Architecture

…

Introduction to Value Line

Code Composer Studio

Initialization and GPIO

Analog

-

to

-

Digital Converter

Interrupts and the Timer

Low

-

Power Optimization

Serial Communications

Grace

FRAM

Optional: Capacitive Touch

36

