Analog-to-Digital Converter
	Lab 4: Analog-to-Digital Converter
[bookmark: _Toc347491669]Analog-to-Digital Converter
IntroductionThis module will cover the basic details of the MSP430 Value Line analog-to-digital converter.  In the lab exercise you will write the necessary code to configure and run the converter.



[bookmark: _Toc347491670]Module Topics
Analog-to-Digital Converter	4-1
Module Topics	4-2
Analog-to-Digital Converter	4-3
Fast Flexible ADC10	4-3
Sample Timing	4-4
Autoscan + DTC Performance Boost	4-4
Lab 4: Analog-to-Digital Converter	4-5
Objective	4-5
Procedure	4-6
[bookmark: _Toc347491671][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]Analog-to-Digital Converter
[bookmark: _Toc347491672]Fast Flexible ADC10


[bookmark: _Toc347491673]Sample Timing

[bookmark: _Toc347491674]Autoscan + DTC Performance Boost


[bookmark: _Toc347491675][bookmark: _Toc370113188][bookmark: _Toc394202380]Lab 4: Analog-to-Digital Converter
[bookmark: _Toc347491676]Objective
The objective of this lab is to learn about the operation of the on-chip analog-to-digital converter.  In this lab exercise you will write and examine the necessary code to run the converter.  The internal temperature sensor will be used as the input source.


[bookmark: _Toc347491677]
Procedure
[bookmark: OLE_LINK1]Create a New Project
1. Create a new project by clicking:
File  New  CCS Project
Make the selections shown below (your dialog may look slightly different than this one). If you are using the MSP430G2231, make the appropriate choices for that part. Make sure to click Empty Project (with main.c), and then click Finish.
[image: ]


Source File
Most coding efforts make extensive use of the “cut and paste” technique, or commonly known as “code re-use”.  The MSP430 family is probably more prone to the use of this technique than most other processors.  There is an extensive library of code example for all of the devices in both assembly and C.  So, it is extremely likely that a piece of code exists somewhere which does something similar to what we need to do.  Additionally, it helps that many of the peripherals in the MSP430 devices have been deliberately mapped into the same register locations.  In this lab exercise we are going to re-use the code from the previous lab exercise along with some code from the code libraries and demo examples.
1. We need to open the files containing the code that we will be using in this lab exercise.  Open the following two files using File  Open File…
· C:\MSP430_LaunchPad\Labs\Lab3\Files\OPT_VLO.txt

· C:\MSP430_LaunchPad\Labs\Lab2\Files\Temperature_Sense_Demo.txt
2. Copy all of the code in OPT_VLO.txt and paste it into main.c, erasing all the existing code in main.c.  This will set up the clocks:
· ACLK = VLO
· MCLK = DCO/8 (1MHz/8)
3. Next, make sure the SMCLK is also set up:
Change:	BCSCTL2 |= SELM_0 + DIVM_3;
To:		BCSCTL2 |= SELM_0 + DIVM_3 + DIVS_3;
The SMCLK default from reset is sourced by the DCO and DIVS_3 sets the SMCLK divider to 8.  The clock set up is:
· ACLK = VLO
· MCLK = DCO/8 (1MHz/8)
· SMCLK = DCO/8 (1MHz/8)
4. If you are using the MSP430G2231, make sure to make the appropriate change to the header file include at the top of the code.
5. As a test – build, load, and run the code.  If everything is working correctly the green LED should blink very quickly.  When done, halt the code and click the Terminate button [image: ] to return to the “CCS Edit” perspective.

Set Up ADC Code
Next, we will re-use code from Temperature_Sense_Demo.txt to set up the ADC.  This demo code has the needed function for the setup.
6. From Temperature_Sense_Demo.txt copy the first four lines of code from the ConfigureAdcTempSensor() function and paste it as the beginning of the while(1) loop, just above the P1OUT line. Those lines of code are:

  ADC10CTL1 = INCH_10 + ADC10DIV_3;        
  	  ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE;
  	  _delay_cycles(1000);
  	  ADC10CTL0 |= ENC + ADC10SC;
7. We are going to examine these code lines one at the time to make sure they are doing what we need them to do.  You will need to open the User’s Guide and header file for reference again.  (It might be easier to keep the header file open in the editor for reference). 
First, change ADC10DIV_3 to ADC10DIV_0.
ADC10CTL1 = INCH_10 + ADC10DIV_0;
ADC10CTL1 is one of the ADC10 control registers.  INCH_10 selects the internal temperature sensor input channel and ADC10DIV_0 selects divide-by-1 as the ADC10 clock.  Selection of the ADC clock is made in this register, and can be the internal ADC10OSC (5MHz), ACLK, MCLK or SMCLK.  The ADC10OSC is the default oscillator after PUC.  So we will use these settings.
[bookmark: OLE_LINK3]ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE;
ADC10CTL0 is the other main ADC10 control register:
· SREF_1: selects the range from Vss to VREF+ (ideal for the temperature sensor)
· ADC10SHT_3: maximum sample-and-hold time (ideal for the temperature sensor)
· REFON: turns the reference generator on (must wait for it to settle after this line)
· ADC10ON: turns on the ADC10 peripheral
· ADC10IE: turns on the ADC10 interrupt – we do not want interrupts for this lab exercise, so change the line to:
ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON;


The next line allows time for the reference to settle.  A delay loop is not the best way to do this, but for the purposes of this lab exercise, it’s fine.
_delay_cycles(1000);
Note that the compiler will accept a single or double underscore.
Referring to the User’s Guide, the settling time for the internal reference is < 30s.  As you may recall, the MCLK is running at DCO/8.  That is 1MHz/8 or 125 kHz.  A value of 1000 cycles is 8ms, which is much too long.  A value of 5 cycles would be 40s.  Change the delay time to that value:
_delay_cycles(5);
The next line:
ADC10CTL0 |= ENC + ADC10SC;
enables the conversion and starts the process from software.  According to the user’s guide, we should allow thirteen ADC10CLK cycles before we read the conversion result. Thirteen cycles of the 5MHz ADC10CLK is 2.6s.  Even a single cycle of the DCO/8 would be longer than that.  We will leave the LED on and use the same delay so that we can see it with our eyes. Leave the next two lines alone:
P1OUT = 0x40;
_delay_cycles(100);
8. When the conversion is complete, the encoder and reference need to be turned off.  The ENC bit must be off in order to change the REF bit, so this is a two step process.  Add the following two lines right after the first __delay_cycles(100); :

ADC10CTL0 &= ~ENC;
ADC10CTL0 &= ~(REFON + ADC10ON);
9. Now the result of the conversion can be read from ADC10MEM.  Next, add the following line to read this value to a temporary location:
tempRaw = ADC10MEM;
Remember to declare the tempRaw variable right after the #endif line at the beginning of the code:
volatile long tempRaw;
The volatile modifier forces the compiler to generate code that actually reads the ADC10MEM register and place it in tempRaw.  Since we’re not doing anything with tempRaw right now, the compiler optimizer could decide to eliminate that line of code.  The volatile modifier prevents this from happening.
10. The last two lines of the while(1) loop turn off the green LED and delays for the next reading of the temperature sensor.  This time could be almost any value, but we will use about 1 second in between readings.  MCLK is DCO/8 is 125 kHz.  Therefore, the delay needs to be 125,000 cycles:
P1OUT = 0;
      _delay_cycles(125000);
11. 
At this point, your code should look like the code below.  We have added the comments to make it easier to read and understand.  Click the Save button on the menu bar to save the file.
#include <msp430g2553.h>

#ifndef TIMER0_A1_VECTOR
#define TIMER0_A1_VECTOR    TIMERA1_VECTOR
#define TIMER0_A0_VECTOR    TIMERA0_VECTOR
#endif

volatile long tempRaw;

void FaultRoutine(void);

void main(void)
{
  WDTCTL = WDTPW + WDTHOLD;           // Stop watchdog timer
  P1DIR = 0x41;                       // P1.0&6 outputs
  P1OUT = 0;                          // LEDs off

  if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
   FaultRoutine();		        // If cal data is erased
 				               // run FaultRoutine()
  BCSCTL1 = CALBC1_1MHZ; 		  // Set range
  DCOCTL = CALDCO_1MHZ;  		  // Set DCO step + modulation

  BCSCTL3 |= LFXT1S_2;                 // LFXT1 = VLO
  IFG1 &= ~OFIFG;                      // Clear OSCFault flag
  BCSCTL2 |= SELM_0 + DIVM_3 + DIVS_3; // MCLK = DCO/8

  while(1)
  {
	ADC10CTL1 = INCH_10 + ADC10DIV_0;   // Temp Sensor ADC10CLK
	ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON;
	_delay_cycles(5);                  // Wait for ADC Ref to settle
	ADC10CTL0 |= ENC + ADC10SC;         // Sampling & conversion start

   P1OUT = 0x40; 			   // green LED on
   _delay_cycles(100);

   ADC10CTL0 &= ~ENC;
   ADC10CTL0 &= ~(REFON + ADC10ON);
   tempRaw = ADC10MEM;

   P1OUT = 0; 		                // green LED off
   _delay_cycles(125000);
  }
}

void FaultRoutine(void)
 {
   P1OUT = 0x01;                       // red LED on
   while(1); 			         // TRAP
 }
Note: for reference, this code can found in Lab4.txt.
12. Close the OPT_VLO.txt and Temperature_Sense_Demo.txt reference files.  They are no longer needed.
Build, Load, and Run the Code
13. Click the “Debug” button [image: ]. When the ULP Advisor appears, click Proceed. The “CCS Debug” perspective should open, the program will load automatically, and you should now be at the start of main().
14. Run the code.  If everything is working correctly the green LED should be blinking about once per second.  Click Suspend [image: ] to stop the code.
Test the ADC Conversion Process
15. Next we will test the ADC conversion process and make sure that it is working.  In the code line containing:    tempRaw = ADC10MEM;
double-click on tempRaw to select it.  Then right-click on it and select Add Watch Expression then click OK. If needed, click on the Expressions tab near the upper right of the CCS screen to see the variable added to the watch window. 
16. Right-click on the next line of code:    P1OUT = 0;
and select Breakpoint (Code Composer Studio)  Breakpoint.  When we run the code, it will hit the breakpoint and stop, allowing the variable to be read and updated in the watch window.
17. Make sure the Expressions window is still visible and run the code.  It will quickly stop at the breakpoint and the tempRaw value will be updated.  Do this a few times, observing the value.  (It might be easier to press F8 rather than click the Run button).  The reading should be pretty stable, although the lowest bit may toggle.  A typical reading is about 734 (that’s decimal), although your reading may be a little different.  You can right-click on the variable in the watch window and change the format to hexadecimal, if that would be more interesting to you. Each time the value changes it will be highlighted in yellow.
18. Just to the left of the P1OUT = 0; instruction you should see a symbol [image: ] indicating a breakpoint has been set. It might be a little hard to see with the Program Counter arrow in the way. Right-click on the [image: ] symbol and select Breakpoint Properties... We can change the behavior of the breakpoint so that it will stop the code execution, update our watch expression and resume execution automatically. Change the Action parameter to Update View as shown below and click OK.
[image: ]
19. Run the code. Warm your finger up, like you did in the Lab2 exercise, and put it on the device.  You should see the measured temperature climb, confirming that the ADC conversion process is working. Every time the variable value changes, CCS will highlight it in yellow.
Terminate Debug Session and Close Project
20. Terminate the active debug session using the Terminate button [image: ].  This will close the debugger and return CCS to the “CCS Edit” perspective.
21. Next, close the project by right-clicking on Lab4 in the Project Explorer pane and select Close Project.
[image: j0252029]   You’re  done.


Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter	4 - 1
4 - 4	Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter
Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter	4 - 5
image2.wmf
Fast Flexible ADC10

u

10

-

bit 8 channel SAR ADC

u

6 external channels

u

Vcc and internal temperature

u

200 ksps+

u

Selectable conversion clock

u

Autoscan

u

Single

u

Sequence

u

Repeat

-

single

u

Repeat

-

sequence 

u

Internal or External reference

u

Timer

-

A triggers 

u

Interrupt capable

u

Data Transfer Controller (DTC)

u

Auto power

-

down

RAM

, 

Flash

, 

Peripherals 

S

/

H

10

-

bit SAR

ADC

10

SC

TA

1

TA

2

TA

0

Direct 

Transfer 

Controller

V

R

-

V

R

+

A

VCC

A

VSS

1

.

5

V or 

2

.

5

V

Auto

Batt

Temp

Direct

Transfer

Controller

Data

Transfer

Controller

Sample Timing

…

32


image3.wmf
Sample Timing 

u

Reference must settle for 

<

30uS

u

Selectable hold time

u

13 clock conversion process

u

Selectable clock source

-

ADC10OSC (~5MHz)

-

ACLK

-

MCLK

-

SMCLK

Autoscan and DTC

…

33


image4.wmf
70 Cycles / Sample

Fully Automatic

Autoscan + DTC Performance Boost

Data2

Data1

Data0

Data2

ADC

DTC

A

U

T

O

// Autoscan + DTC

_BIS_SR(CPUOFF);

// Software

Res[

pRes

++] = ADC10MEM;

ADC10CTL0 &= ~ENC; 

if (

pRes

< NR_CONV)     

{

CurrINCH

++;

if (

CurrINCH

== 3) 

CurrINCH

= 0;

ADC10CTL1 &= ~INCH_3; 

ADC10CTL1 |= 

CurrINCH

; 

ADC10CTL0 |= ENC+ADC10SC;

}

Lab

…

34


image5.wmf
Lab4: ADC

Agenda

…

•

Measure internal temperature

•

Set timing requirements

•

Additional CCS features

35


image6.PNG

image7.png

image8.png

image9.png

image10.png

image11.PNG

image12.wmf

image1.wmf
Agenda

ADC10

…

Introduction to Value Line

Code Composer Studio

Initialization and GPIO

Analog

-

to

-

Digital Converter

Interrupts and the Timer

Low

-

Power Optimization

Serial Communications

Grace

FRAM

Optional: Capacitive Touch

31


