Code Composer Studio
	Code Composer Studio
[bookmark: _Toc347491589]Code Composer Studio
IntroductionThis module will cover a basic introduction to Code Composer Studio. In the lab exercise we show how a project is created and loaded into the flash memory on the MSP430 device. Additionally, as an optional exercise we will provide details for soldering the crystal on the LaunchPad.

[bookmark: _Toc347491590]Module Topics
Code Composer Studio	2-1
Module Topics	2-2
Code Composer Studio	2-3
Lab 2: Code Composer Studio	2-7
Objective	2-7
Procedure	2-8
Optional Lab Exercise – Crystal Oscillator	2-14
Objective	2-14
Procedure	2-14
[bookmark: _Toc347491591][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]Code Composer Studio

[bookmark: _Toc347491592][bookmark: _Toc370113188][bookmark: _Toc394202380]Lab 2: Code Composer Studio
[bookmark: _Toc347491593]Objective
The objective of this lab is to learn the basic features of Code Composer Studio. In this exercise you will create a new project, build the code, and program the on-chip flash on the MSP430 device. An optional exercise will provide details for soldering the crystal on the LaunchPad.
Since none of the Value Line MSP430 devices have more than 16K of flash memory, the free, 16K license of Code Composer Studio can be considered fully functional. If you want to work with larger MSP430 (or other) devices, you’ll need to purchase a license.

[bookmark: _Toc347491594]
Procedure
Note: CCS5.x should have already been installed during the Lab1 exercise.
Start Code Composer Studio and Open a Workspace
1. Start Code Composer Studio (CCS) by double clicking the icon on the desktop or selecting it from the Windows Start menu. When CCS loads, a dialog box will prompt you for the location of a workspace folder. Browse to: C:\MSP430_LaunchPad\WorkSpace and do not check the “Use this as the default …” checkbox. Click OK.
[image:]
This folder contains all CCS custom settings, which includes project settings and views when CCS is closed, so that the same projects and settings will be available when CCS is opened again. It also contains a list of your current projects. The workspace is saved automatically when CCS is closed.

2. The first time CCS opens, the “License Setup Wizard” should appear. In case you started CCS before and made the wrong choices, you can open the wizard by clicking Help Code Composer Studio Licensing Information then click the Upgrade tab and the Launch License Setup… .
[image:]

If you’re planning on working with the LaunchPad and value-line parts only, the
CODE SIZE LIMITED version of Code Composer with its 16kB code size limit will fully support every chip in the family.

If you are attending another workshop in conjunction with this one, like the Stellaris LaunchPad workshop, you can return here and change this to the FREE LICENSE version. This license is free when connected to the Stellaris LaunchPad (and many other boards), but not the MSP430 LaunchPad board. When not connected to those boards, you will have 30 days to evaluate the tool, but you can extend that period by 90 days.
Select the CODE SIZE LIMITED radio button and click Finish.
You can change your CCS license at any time by following the steps above.

3. You should now see the open TI Resource Explorer tab open in Code Composer. The Resource Explorer provides easy access to code examples, support and Grace2™. Grace2™ will be covered in a later module. Click the X in the tab to close the Resource Explorer.

4. At this point you should see an empty CCS workbench. The term workbench refers to the desktop development environment. Maximize CCS to fill your screen.

[image:]
The workbench will open in the “CCS Edit” view. Notice the tab in the upper right-hand corner. A perspective defines the initial layout views of the workbench windows, toolbars, and menus which are appropriate for a specific type of task (i.e. code development or debugging). This minimizes clutter to the user interface. The “CCS Edit” perspective is used to create or build C/C++ projects. A “CCS Debug” perspective will automatically be enabled when the debug session is started. This perspective is used for debugging your projects. You can customize the perspectives and save as many as you like.
[bookmark: OLE_LINK1]
Create a New Project
5. A project contains all the files you will need to develop an executable output file (.out) which can be run on the MSP430 hardware. To create a new project click:
File New CCS Project
Make the selections shown below (your dialog may look slightly different than this one). If you are using the MSP430G2231, make the appropriate choices for that part. Make sure to click Empty Project (with main.c) and then click Finish.
[image:]
6. Code Composer will add the named project to your workspace and display it in the
Project Explorer pane. Based on your template selection, it will also add a file called main.c and open it for editing. Click on Temperature_Sense_Demo in the Project Explorer pane to make the project active. Click on the [image:] left of the project name to expand the project.

[image:]
Source Files
7. Next, we will add code to main.c. Rather than create a new program, we will use the original source code that was preprogrammed into the MSP430 device (i.e. the program used in Lab1).
Click File Open File… and navigate to C:\MSP430_LaunchPad\Labs\Lab2\Files.
Open the Temperature_Sense_Demo.txt file. Copy and paste its contents into main.c, erasing the original contents of main.c, then close the Temperature_Sense_Demo.txt file.
Near the top of the file, note the statement
#include “msp430g2553.h”

If you are using an earlier revision of the board, change this statement to:
#include “msp430g2231.h”
Be sure to save main.c by clicking the Save button [image: Image5] in the upper left.
Build and Load the Project
8. CCS can automatically save modified source files, build the program, open the debug perspective view, connect and download it to the target (flash device), and then run the program to the beginning of the main function.
Click on the “Debug” button [image:]. When the Ultra-Low-Power Advisor (ULP Advisor) appears, click the Proceed button. We’ll take a look at the MSP430’s ultra-low-power abilities in a later lab.
When the download completes, CCS is in the Debug perspective. Notice the Debug tab in the upper right-hand corner indicating that we are now in the “CCS Debug” view. Click and drag the perspective tabs to the left until you can see all of both tabs. The program ran through the C-environment initialization routine in the runtime support library and stopped at main() in main.c.

Debug Environment
9. The basic buttons that control the debug environment are located in the top of the Debug pane. If you ever accidentally close the pane, your Debug controls will vanish. They can be brought back by clicking View Debug on the menu bar.
 [image:]
Hover over each button to see its function.
10. At this point your code should be at the beginning of main(). Look for a small blue arrow left of the opening brace of main() in the middle window. The blue arrow indicates where the Program Counter (PC) is pointing to. Click the Resume button [image:] to run the code. Notice the red and green LEDs are toggling, as they did before.
11. Click Suspend [image:]. The code should stop somewhere in the PreApplicationMode() function.
12. Next single-step [image:] (Step Into) the code once and it will enter the timer ISR for toggling the LEDs. Single-step a few more times (you can also press the F5 key) and notice that the red and green LEDs alternate on and off.
13. Click Reset CPU [image: 1-19-2011 10-48-51 AM] and you should be back at the beginning of main().
Terminate Debug Session and Close Project
14. The Terminate button will terminate the active debug session, close the debugger and return CCS to the “CCS Edit” perspective. It also sends a reset to the LaunchPad board, and you will see the LEDs flashing again. Click the Terminate button: [image:]
15. Next, close the project by right-clicking on Temperature_Sense_Demo in the Project Explorer window and select Close Project.

[bookmark: _Toc347491595]Optional Lab Exercise – Crystal Oscillator
[bookmark: _Toc347491596]Objective
The MSP430 LaunchPad kit includes an optional 32.768 kHz clock crystal that can be soldered on the board. The board as-is allows signal lines XIN and XOUT to be used as multipurpose I/Os. Once the crystal is soldered in place, these lines will be a digital frequency input. Please note that this is a delicate procedure since you will be soldering a very small surface mount device with leads 0.5mm apart on to the LaunchPad.
The crystal was not pre-soldered on the board because these devices have a very low number of general purpose I/O pins available. This gives the user more flexibility when it comes to the functionality of the board directly out of the box. It should be noted that there are two 0 ohms resistors (R28 and R29) that extend the crystal pin leads to the single-in-line break out connector (J2). In case of oscillator signal distortion which leads to a fault indication at the basic clock module, these resistors can be used to disconnect connector J2 from the oscillating lines.
[bookmark: _Toc347491597]Procedure
Solder Crystal Oscillator to LaunchPad
1. Very carefully solder the included clock crystal to the LaunchPad board. The crystal leads provides the orientation. They are bent in such a way that only one position will have the leads on the pads for soldering. Be careful not to bridge the pads. The small size makes it extremely difficult to manage and move the crystal around efficiently so you may want to use tweezers and tape to arranging it on the board. Be sure the leads make contact with the pads. You might need a magnifying device to insure that it is lined up correctly. You will need to solder the leads to the two small pads, and the end opposite of the leads to the larger pad.

Click this link to see how one user soldered the crystal to their board:

http://justinstech.org/2010/07/msp430-launchpad-dev-kit-how-too/

Verify Crystal is Operational
2. Create a new project by clicking File New CCS Project and then make the selections shown below. Again, if you are using the MSP430G2231, make the proper choices. Make sure to select the Empty Project (with main.c) template. Click Finish.
[image:]

3. Click File Open File… and navigate to C:\MSP430_LaunchPad\Labs\Lab2\Files.
Open the Verify_Crystal.txt file. Copy and paste its contents into main.c, erasing all the previous contents of main.c. Then close the Verify_Crystal.txt file – it is no longer needed.
4. If you are using the MSP430G2231, find the #include <msp430g2553.h> statement near the top of the code and replace it with #include <msp430g2231.h> Save your changes to main.c.
5. Click the “Debug” button [image:] When the Ultra-Low-Power Advisor (ULP Advisor) appears, click the Proceed button. The “CCS Debug” view should open, the program will load automatically, and you should now be at the start of main().
6. Run the code. If the crystal is installed correctly the red LED will blink slowly. (It should not blink quickly). If the red LED blinks quickly, you’ve probably either failed to get a good connection between the crystal lead and the pad, or you’ve created a solder bridge and shorted the leads. A good magnifying glass will help you find the problem.
Terminate Debug Session and Close Project
7. Terminate the active debug session using the Terminate button [image:]. This will close the debugger and return CCS to the “CCS Edit” view.
8. Next, close the project by right-clicking on Verify_Crystal in the Project Explorer pane and select Close Project.

[image: j0252029] You’re done.
Getting Started with the MSP430 LaunchPad - Code Composer Studio	2 - 1
2 - 4	Getting Started with the MSP430 LaunchPad - Code Composer Studio
Getting Started with the MSP430 LaunchPad - Code Composer Studio	2 - 5
image2.wmf
What is Code Composer Studio?

u

Integrated development environment for TI embedded processors

§

Includes debugger, compiler, editor, simulator, OS…

§

The IDE is built on the Eclipse open source software framework

§

Extended by TI to support device capabilities

u

CCSv5.x

is based on “off the shelf” Eclipse (version 3.7 in

CCS 5.3)

§

Future CCS versions will use

unmodified

versions of Eclipse

§

TI contributes changes directly to the open source community

§

Drop in Eclipse plug

-

ins from other vendors or take TI tools and drop them

into an existing Eclipse environment

§

Users can take advantage of all the latest improvements in Eclipse

u

Integrate additional tools

§

OS application development tools (Linux, Android…)

§

Code analysis, source control…

u

Linux support soon

u

Low cost! $445 or $495

User Interface Modes…

13

image3.wmf
User Interface Modes

u

Simple Mode

§

By default CCS will open in simple/basic mode

§

Simplified user interface with far fewer menu items, toolbar buttons

§

TI supplied Edit and Debug Perspectives

u

Advanced Mode

§

Uses default Eclipse perspectives

§

Very similar to what exists in CCSv4

§

Recommended for users who will be integrating other Eclipse based

tools into CCS

u

Possible to switch Modes

§

Users can decide that they are ready to move from simple to advanced

mode or vice versa

Common Tasks…

14

image4.wmf
Common

tasks

u

Creating New Projects

§

Very simple to create a new project for a device using a template

u

Build options

§

Many users have difficulty using the build options dialog and find it

overwhelming

§

Updates to options are delivered via compiler releases and not

dependent on CCS updates

u

Sharing projects

§

Easy for users to share projects, including working with version

control (portable projects)

§

Setting up linked resources has been simplified

Workspaces and Projects…

15

image5.emf
Project

SourcefilesHeader FilesLibrary filesBuild and tool settings

Project

SourcefilesHeader FilesLibrary filesBuild and tool settings

Workspaces and Projects

Workspace

Project 1Project 2Project 3Settings and preferences

A workspace contains your settings and preferences, as well as links to your projects. Deleting projects from the workspace deletes the links, not the files

Project

SourcefilesHeader filesLibrary filesBuild and tool settings

A project contains your build and tool settings, as well as links to your input files. Deleting files from the workspace deletes the links, not the files

Source files

Code and Data

Header files

Declarations/Defines

Library files

Code and Data

LinkLinkLinkLinkProject Wizard…

16

image6.wmf
Project Wizard

u

Single page wizard for majority of

users

§

Next button will show up if a template

requires additional settings

u

Debugger setup included

§

If a specific device is selected, then

user can also choose their

connection,

ccxml

file will be created

u

Simple by default

§

Compiler version,

endianness

… are

under advanced settings

Add Files…

17

image7.wmf
Adding Files to Projects

u

Add

Files to Project allows

users

to control

how

the file

is added

to the project

u

Linking

Files using built

-

in

macros allows easy creation

of portable projects

IAR

Kickstart

…

18

image8.wmf
IAR Kickstart

u

4kB Compiler

u

Supports all MSP430 variants

u

Assembler/Linker

u

Editor

u

Debugger

Lab 2

…

19

image9.wmf
Lab2: Code Composer Studio

Agenda

…

•

Lab

•

Re

-

create temperature sense demo

•

Program part and test

•

Close Grace pane

•

Optional

•

Add microcrystal to board

•

Program part to test crystal

20

image10.jpeg

image11.jpeg

image12.jpeg

image13.PNG

image14.PNG

image15.png

image16.jpeg

image17.png

image18.png

image19.png

image20.png

image21.png

image22.jpeg

image23.png

image24.PNG

image25.png

image26.wmf

image1.wmf
Agenda

Introduction to Value Line

Code Composer Studio

Initialization and GPIO

Analog

-

to

-

Digital Converter

Interrupts and the Timer

Low

-

Power Optimization

Serial Communications

Grace

FRAM

Optional: Capacitive Touch

12

