Lab 8: Grace
	Lab 8: Grace
[bookmark: _Toc347491833]Grace
IntroductionThis module will cover the Grace™ graphical user interface. Grace™ generates source code that can be used in your application and it eliminates manual configuration of peripherals. The lab will create a simple project using Grace™ and we will write an application program that utilizes the generated code.

[bookmark: _Toc347491834]Module Topics
Grace	8-1
Module Topics	8-2
Grace	8-3
Lab 8: Grace	8-8
[bookmark: _Toc347491835][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]Grace

[bookmark: _Toc370113188][bookmark: _Toc394202380]

[bookmark: _Toc347491836]Lab 8: Grace
Objective
The objective of this lab is to create a simple project using Grace. This project will be similar to an earlier project in that it will use the Timer to blink the LED. Using Grace to create the peripheral initialization code will simplify the process.

Procedure
[bookmark: OLE_LINK1]Create a Grace Project
1. Grace is part of your Code Composer Studio installation, although it is possible to run it in a stand-alone fashion. Starting with CCS version 5.3 it is called Grace2.

Create a new project by clicking:
File New CCS Project
Make the selections shown below (your dialog may look slightly different than this one). If you are using the MSP430G2231, make the appropriate choices for that part. Make sure to click Empty Grace (MSP430) Project, and then click Finish.
[image:]

Welcome to Grace™
2. The Grace Welcome screen will appear within the editor pane of CCS. If you ever manage to make this screen disappear, simply re-open *.cfg (main.cfg is the filename here). When a Grace project is opened, the tool creates this configuration file to store the changes you make. Click the Device Overview link at the top of the pane.

Grace presents you with a graphic representing the peripherals on the MSP430 device. This isn’t just a pretty picture … from here we’ll be able to configure the peripherals. Blue boxes denote peripherals that can be configured. Note that three of the blue boxes have a check mark in the lower left hand corner. These check marks denote a peripheral that already has a configuration. The ones already marked must be configured in any project in order for the MSP430 to run properly.
If you are using the MSP430G2231, your Grace window will look slightly different.
[image:]

DVCC
3. Let’s start at the top. Earlier in this workshop we measured the DVCC on the board at about 3.6VDC. Change the pull down at the top to reflect that.
[image:]
BCS+
4. Next, click on the blue Oscillators Basic Clock System + box.
Note the navigation hyperlinks at the top for the different views. These links may disappear if the window is large enough and you slide to the bottom of it. If they do, slide back to the top. Also note the navigation buttons on the top right of the Overview screen and the tabs at the bottom left. Take a look at the different views, but finish by clicking the Basic User link.

The default selections have the calibrated frequency at 1 MHz for the High Speed Clock Source and 12 kHz for the low. Note the simplified view of the MCLK, SMCLK and ACLK. If you need more detailed access, you can switch over to the Power User view. In any case, leave the selections at their defaults and click the Grace tab in the lower left.
[image: 9-9-2011 12-10-15 AM]

WDT+
5. Let’s configure the Watchdog Timer next. Click on the blue WatchDog WDT+ box in the Overview graphic. Note the selection at the top of the next window that enables the WDT+. Click the Basic User link. Stop Watchdog timer is the default selection … let’s leave it that way. Click the Grace tab in the lower left. Notice that the peripherals we’ve touched are adding tabs.
[image:]
GPIO
6. GPIO is next. For this lab, we want to enable the GPIO port/pin that is connected to the red LED (port 1, pin 0). Click on the upper right blue box marked GPIO. In the next screen, click the links marked Pinout 32-QFN, Pinout 20-TSSOP/20-PDIP and Pinout 28-TSSOP to view the packages with the pinouts clearly marked. If you are using the MSP430G2231, your package selections will be different. No databook is required. We could make our changes here, but let’s use another view.

Resize the Grace window if you need to do so. Click the P1/P2 link. The Direction Registers all default to inputs, so check the port 1, pin 0 Direction register to set it to an output. No other changes are required. Click the Grace tab in the lower left.
[image: 9-9-2011 12-21-54 AM]

Timer0_A3
7. We’re going to use the timer to give us a one second delay between blinks of the red LED. To configure the timer, click on the blue box marked Timer0_A3 (This will be Timer0_A2 if you are using the MSP430G2231). In the next screen, click the check box marked Enable Timer_A3 in my configuration at the top of the screen. When you do that, the view links will appear. Click on the Basic User link.

In our application code, we’re going to put the CPU into low-power mode LPM3. The timer will wake up the CPU after a one second delay and then the CPU will run the ISR that turns on the LED. Our main() code will then wait long enough for us to see the LED, turn it off and go back to sleep.

We need the following settings for the timer:
· Timer Selection: Interval Mode / TAO Output OFF
· Desired Timer period: 1000ms
· Enable the Capture/Compare Interrupt

[image:]
Grace creates an interrupt handler template for you at this step.
Then click the View All Interrupt Handlers link and you’ll see:
[image:]

Select Timer0_A3 CCR0 and then click on the Open Interrupt Vector File link.
Note the /* USER CODE START and /* USER CODE END comments in the TIMER0_A0_VECTOR template. These comments indicate to Grace that the code between them should not be overwritten during the code generation process.
The first line of code in the ISR will turn on the LED. When the ISR returns to the main code, we want the CPU to be awake. The second line of code will do that (like we used in Lab 6). Replace the middle comment in the template as shown below.

/*
 * ======== Timer0_A3 Interrupt Service Routine ========
 	*/
#pragma vector=TIMER0_A0_VECTOR
__interrupt void TIMER0_A0_ISR_HOOK(void)
{
 	/* USER CODE START (section: TIMER0_A0_ISR_HOOK) */
	P1OUT = BIT0;				 // Turn on LED on P1.0
	_bic_SR_register_on_exit(LPM3_bits); // Return awake
 	/* USER CODE END (section: TIMER0_A0_ISR_HOOK) */
}

Click the Save button on the menu bar, and then click the main.cfg tab in the upper left corner. Click the Grace tab in the lower left corner. Note that the configured peripherals all have a check mark in them. The Outline pane on the right of your screen also lists all the configured peripherals.
System Registers - GIE
8. You certainly remember that without the GIE (Global Interrupt Enable) bit enabled, no interrupts will occur. In the Outline pane on the right of your screen, click on System. Find the GIE bit in the Status Register and make sure that it is checked. If your MSP430G2231 configuration has an enable checkbox, make sure it’s checked. We’re done with the Grace configuration. Click the Save button on the menu bar to save your changes.
[image:]

Application Code
9. Grace automatically creates a main.c template for us with the appropriate Grace calls. Expand the Lab8 project and double click on main.c in the Project Explorer pane to open the file for editing. It should look like the screen capture below:
[image:]
The standard msp430.h definition file is included first, followed by the Grace.h Grace definitions. This includes all the Chip Support Library functions.

Inside main() is Grace_init() that runs all of the Grace initialization that we just configured. The main() function, of course, does not return anything … the return (0) is a C coding formality to assist with third-party compiler compatibility.
10.

11. The first thing we want the main code to do is to place the device into LPM3. When the timer expires, the time ISR code will turn on the red LED. Our main() code will wait a short time, then turn the red LED off. Replace the // … Fill-in user code here comment with the while() loop code shown below:

/*
* ======== Standard MSP430 includes ========
*/
#include <msp430.h>

/*
 * ======== Grace related includes ========
 */
#include <ti/mcu/msp430/Grace.h>

/*
* ======== main ========
*/
int main(void)
{
 Grace_init(); // Activate Grace-generated config

 while (1)
 {
 _bis_SR_register(LPM3_bits); // Enter LPM3
 _delay_cycles(10000);		 // 10ms delay
 P1OUT &= ~BIT0;		 // Turn off LED on P1.0
 }
 return (0);
}
12. [bookmark: _GoBack]Make sure that your LaunchPad board is plugged into your computer’s USB port. Build and Load the program by clicking the Debug [image:] button. If you are prompted to save any resources, do so now.
13. After the program has downloaded, click the Run button. If everything is correct, the red LED should flash once every second. Feel free to go back and vary the timing if you like. You could also go back and re-run the rest of the labs in the workshop using Grace.

If you’re so inclined, open the Lab8/src/grace folder in the Project Explorer pane and look at the fully commented C code generated for each of the initialization files. These could be cut/pasted into a non-Grace project if you choose.
This was a very simple example. In a more complex one, the power of Grace would be even greater and your project development will be much further along than it would have been if written entirely by hand. Terminate the debugger, close the Lab8 project and exit Code Composer.
[image: j0252029] You’re done.
Getting Started with the MSP430 LaunchPad - Grace	8 - 1
8 - 16	Getting Started with the MSP430 LaunchPad - Grace
Getting Started with the MSP430 LaunchPad - Grace	8 - 15
image2.wmf
Grace

TM

Grace

™

A free, graphical user interface that

generates source code and eliminates

manual peripheral configuration

Simplified Peripheral Config

58

image3.wmf
Simplified Peripheral Configuration

Fully harness MSP430 integration… for FREE

Create designs in familiar development environments

•

Visually enables and configures MSP430 peripherals

•

Generates fully commented C code on all F2xx and G2xx Value Line

microcontrollers

•

Provides various levels of abstraction

–

Basic, Power User, and Register Views

•

Provides rapid understanding of MSP430 peripherals and

configutation

options

•

Guides peripheral integration with tooltips and pop

-

ups

•

Prevents configuration conflicts or collisions between peripherals

•

Plug in for TI's Eclipse

-

based Code Composer Studio IDE

•

Seamlessly includes peripheral configuration code into a CCS project

•

Loads and debugs MSP430 devices just like traditionally generated code

Get started quickly and learn as you go

Visually Config and Enable …

59

image4.wmf
Visually Enable & Configure MSP430 Peripherals

Developers can interface

with buttons, drop downs,

and text fields to

effortlessly navigate high

above low

-

level register

settings

Grace generates fully

commented C code for all

F2xx and G2xx Value Line

Microcontrollers from

MSP430

Choose your View …

60

image5.wmf
Developers Can Choose Their View

Basic

View

Power

User

View

Register

View

Grace offers a variety of

views to accommodate

developers’ varying skill

levels and preferences

Developers spend less

time configuring low level

peripheral setup code

Allowing more time for

product differentiation,

full

-

featured user

experiences and faster

time to market

Get Started Quickly …

61

image6.wmf
Get Started Quickly & Learn As You Go

The content within Grace

™

, as

well as the look

-

and

-

feel, is

based on existing MSP430 user

guides and datasheets

Tooltips and pop

-

ups guide

peripheral integration

Grace makes it easy for both

those familiar with MSP430

documentation and those

new to it to get started

Example projects

can be used to

learn about Grace

and the Code

Composer Studio

™

environment,

,,

or

used as a starting

point for

application

development

Prevents Collisions …

62

image7.wmf
Prevents Collisions & Contradicting Configurations

•

Instant notification of

configuration errors

•

Ensures inter

-

peripheral

configurations are consistent

X

•

Edits/changes that are made in

one peripheral can be reflected

in other modules

•

Changes are reflected between

Basic, Power User, and

Register Views

Familiar Environments …

63

image8.wmf
Create Designs In Familiar Development Environments

•

The generated code can

then be debugged and

downloaded onto an

MSP430 just like

traditionally written code

•

Free Plug in for TI's

Eclipse

-

based Code

Composer Studio™ IDE

•

Code generated by

Grace is directly

inserted into an active

Code Composer Studio

project environment

Seamless Include

64

image9.wmf
Seamlessly Include Peripheral Configuration

Code into a CCS Project

•

Fully

-

commented, and

human

-

readable C code is

generated at build time

•

Seamlessly and

automatically inserted

directly into your active

CCS project

Debug &

download

just like

traditionally

written code

Supports …

65

image10.wmf
Grace

™

Supports MSP430’s Most Popular Tools

Grace supports all F2xx and G2xx Value

Line microcontrollers from MSP430

When paired with hardware tools such as

the $9.99 MSP

-

EXP430G2 LaunchPad,

the wireless eZ430

-

RF2500, or the eZ430

-

F2013, Grace offers a simple, intuitive,

and friendly user interface

Grace also works with MSP430’s Flash

Emulation Tool and Target Boards,

such as:

•

MSP

-

TS430PW28

•

MSP

-

TS430PW28A

•

MSP

-

TS430PW14

Download Grace at:

www.ti.com/Grace

Lab …

66

image11.wmf
Lab8: Grace

•

Use Grace to configure all the

required peripherals

•

Add application code to blink the LED

using the Grace initialization code

67

image12.png

image13.PNG

image14.PNG

image15.png

image16.PNG

image17.png

image18.PNG

image19.PNG

image20.png

image21.PNG

image22.png

image23.wmf

image1.wmf
Agenda

What is Grace?

Introduction to Value Line

Code Composer Studio

Initialization and GPIO

Analog

-

to

-

Digital Converter

Interrupts and the Timer

Low

-

Power Optimization

Serial Communications

Grace

FRAM

Optional: Capacitive Touch

57

