I3 TEXAS
INSTRUMENTS

Getting Started with the
MSP430 LaunchPad

Student Guide and Lab Manual

Revision 2.10 O
February 2013

Technical Training
Organization

Important Notice

Important Notice

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright © 2013 Texas Instruments Incorporated

Revision History

Oct 2010 — Revision 1.0

Dec 2010 —Revision 1.1 errata

Jan 2011 —Revision 1.2 errata

Feb 2011 — Revision 1.21 errata

June 2011 — Revision 1.30 update to include new parts

August 2011 — Revision 1.31 fixed broken hyperlinks, errata

August 2011 — Revision 1.40 added module 8 CapTouch material

September 2011 —Revision 1.50 added Grace module 9 and FRAM lunch session
September 2011 —Revision 1.51 errata

October 2011 —Revision 1.52 added QR codes

October 2011 —Revision 1.53 errata

January 2012 —Revision 2.0 update to CCS 5.1 and version 1.5 hardware
February 2012 —Revision 2.01 minor errata

February 2013 —Revision 2.10 price change, update to CCS5.3, minor errata

Mailing Address

Texas Instruments

Training Technical Organization
6550 Chase Oaks Blvd

Building 2

Plano, TX 75023

ii

Getting Started with the MSP430 LaunchPad

Introduction to Value Line

Introduction

This module will cover the introduction to the MSP430 Value Line series of microcontrollers. In
the exercise we will download and install the required software for this workshop and set up the

hardware development tool — MSP430 LaunchPad.

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization

Serial Communications

Grace

FRAM

I: Capacitive Touc

2

For future reference, the main Wiki for this workshop is located here:

www.ti/com/LaunchPad-workshop

Getting Started with the MSP430 LaunchPad - Introduction to Value Line

http://processors.wiki.ti.com/index.php/Getting_Started_with_the_MSP430_LaunchPad_Workshop

Module Topics

Module Topics

Introduction to Value Line 1-1
MOUIE TOPICS.......oveeeeeeiee ettt ettt ettt e et e et e et e e bt e e abseessaeestaeansaeensaeessaeensseesaeenseeens 1-2
INIPOAUCTION 10 VAIUE LINE ...ttt et et e et e e tae et e e taeetseessaeenseens 1-3

TT ProceSSOT POTTIOLI0. ... ciitiieiie ittt ettt et e e e et e et eeaeeeataeesseeensaeenseeennes 1-3
MSPA30 RelEaSEA DEVICES ...eeevvieriiieeiiieeiieeiie et eeiee st esteesteeebeessbeessseessseessseessseessseesnsaessseessessnseenns 1-4
MSPA30G2XX Value LiNe PartS........cccuieiiiiiiiieiiieciie ettt ettt et esveesbeesbeesebeeenseesseesnsee e 1-4
IMISPA30 CPU ...ttt ettt ettt et et e e et e st esse et e e s e ensessaesseesseenseenseanseessensaensaenseensennsennnas 1-5
IMEIMOTY VAP ..ttt ettt e s ettt e st e sttt e sab e e s at e e sab e e sabeesabeesabeesabeesabeesabeeeatee e 1-5
Value Line PEripheralsc.ccciiiiiiiiiieiiecieit ettt sttt et ente e ssaessaeseenseennesnnes 1-6
LaunchPad Development BOArdccoocvevieriieiieiieieeieseeeee et 1-7
Lab 1: Download Software and Setup Hardwarecccocoviioiiiiioiiicniniiiiiieeeeeeeee e 1-9
L0 10} 1< 15 4R SUTTSPRS 1-9
PrOCEAUIE ... ettt et ettt e st e ettt e st e ettt e ssbeesbeessaeensseessseesseesssaesseenssaessean 1-10

1-2 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Introduction to Value Line

Introduction to Value Line

Tl Processor Portfolio

Microcontroller (MCU)

Portfolio at a Glance

16-bit ultra-low 32-bit ‘ 32-bit
power MCUs | real-time MCUs = ARM® MCUs
C2000™
MSP430™ Delfino™ | stellaris”
Concerto AR Cortex ™-h3
Piccolo™ | ARM Cortex-M4F

32-bit ARM®
safety MCUs

Hercules”

ARM® Cartex ™-M3

& Cortex ™-R4F

32-bit
ARM® MPUs

Sitara™
ARME Cortex ™A%
ARMI™

Tl Embedded Processing Portfolio

ARM®-Based Processor Di
Portfolio at a Glance

Software, Tools, Kits & Boards

DSP+ARMD
MPUs

Cc6000™

Cé-Integra™

DaVIncI“

ital Signal Processor (DSP;
Portfolio at a Glance

Ultra-low
Multicore power
DSPs DSPs
CBODD"‘ csouu“"

| Highperformance

Uplo 40 MHz to Upto
25MHz 300 MHz B0MHz
Flash Flash, RAM Flash
1 KBto 256KB 16KB10512KB 8KB1o 512KB
Analogli0, ADC, PIM,ADC LSB, ENET
o MAC+PHY CAN,
LCD, UsB CAN, 5P, G A0 PSPl
Weasuremert, Motorcantrol, Mation control, Hil,
sensing, generéal digital power, industrial auternalion,
pumose lighting, ren. energy Smart gnd
$02510§200 $1.8510 52000 $1.0010$8.00

MPLs - Microprocessors

Fixedffioating
uploZ20 MHz

Flash
256KBto 3IMB

USB, ENET, FlexRay,
TuTer}P\WL

G, AN, LIN,
SPI, \76 EMF’
Safely,
Iransporfation,
indusinal &medical
$5.00t0$3000

ValueLineto
600 MHz
Perf. Lineto 1.5 GHz

Uplo 32 KBIID cache
256 KBL2 LPDDR,
DDR213 support
GEMAC, PGle+PHY,
SATAYPHY CAN,
USB+PHY, PRU

Industrial automation, deo, audo, voce, vision - Telecom, medical,

3)1] MHzto 1 5GHz
floating DSP +
wideo accelerators

L2 Ca:he mDDR,
tDDRa

GEMAC, sm, SPL
UPP PRU. PCIe20,
MeBSP Moas?

poriable dala lerminals, 'security, conferencing,
single-board computing | test & measuremel

$5.00t0 $50.00

$50010$20000

UpluWDGHz Up103'JU MHz
mutticore, ficed/ “+accelerator
floating + accelerators
Upto 4 MB SL2, Upto 320 KB RAM
JZKBL1L IMBL2 Upto 128KBROM
Rapid 0%, P, USE, ADC,
10100 MAC, @
hyoeion DORBIS MeBSP, SPI, %G
Portable audiohioice,
m\sswuncrmca\ fingerprint hmmelrr.s
base stations portable medical
$4010 20000 §1.9510$1000

Released Devices ...

Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Introduction to Value Line

MSP430 Released Devices

MSP430 Released Devices

300+ Ultra-Low Power Devices Starting @ $0.25USD
Featuring: Up to 256kB Flash, 18kB RAM, 25+ Package Options, Up to 113 pins, High integration

— Ultra-Low Power Performance — Analog Integration — Easy-to-Use —

MSP430
16-vitrisccpu | LO92 G2xx ag ﬁ%
oo 120
[we |

0.9V-1.65V Speed 16Mhz
All devices feature: | Speed 4Mhz [55 JFiasho.5-16ke
B-b ROM to 2kB RAM o 256B
RAM to 2kB GPIO 10-16 [usa |
GPIO 11
FSxx [] CC430
Speed 25Mhz Speed 20Mhz
Flash 8-256kB Flash 8-32kB
Flash 4-120kB 512kB coming RAM to 4kB
m RAM to Bk soon. GPIO 40
Flxx Speed 16Mhz GPIO 14-80 RAM to 18kB
FRAM m Speed BMhz Flash 1-120kB GPIO 32-83
100} Fiash 1-60ks RAM to 8kB
Speed 24Mhz RAM to 10kB GPIO 10-64
FRAM 4-16kB GPIO 1448
GPIO 14-28
Non-volatile
memory
| All Devices |
Value Line Parts...

I

MSP430G2xx Value Line Parts

Value Line Parts

Part Flash SRAM LEC L

Comp Temp
Family Number (KB) = GPIO Timers WDT 95:’:1[? (1I2CIsSPIN) s (rper
G2xx1 | G2x01 | 051 128 10 1 % Y
G2x21 e 128 10 1 ¥ ¥ i i =
G2x11 iz =8 10 1 ¥ . = Slope =
g ch
@ G2x31 1.2 128 10 1 Y i - Y ADE10 -
G2xx2 G2x02 1-8 256 16 1 Y Y = - - Captouch /O
G2x12 18 256 16 1 ¥ ¥ ¥ - Slepe | Captouch /O
- ach - -
Goxaz 18 56 16 1 ¥ ¥ ¥ Any | captoucn o
= e - Bch - .
52x52 1-8 256 16 1 ¥ ¥ v Abeqg | Captouch o
G2xx3 | G2x03 2438 2586.512 24 2 ol e = Captouch /O
G2x13 | 24,816 | 256512 | 24 2 ¥ Slope | Captouch O
Bch B =
.16 |25 24 -
G2x33 1-16 | 258512 | 24 2 ¥ 57 ¥ Ao | Captouch o
. G2x53 1-16 |256512| 24 2 Y Y Y Y A|:8)(t::hm Captouch /O

Power consumption @ 2.2V:
+ 0.1 JARAM retention

+ 0.4 pA Standby mode (VLO)

+ 0.7 JAreal-time clock mode

+ 220 pA/ MIPS active

+ Ultra-Fast Wake-Up From Standby Mode in <1 ps CPU ...

1-4 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Introduction to Value Line

MSP430 CPU
FaN VAN
| RO /PC (Program Counter) ‘
0 . - | R1/ SP (Stack Pointer) |
¢ 100% code compatible with] —— ‘
earlier versions I S |
¢ 1MB unified memory map R4 R4 |
- No paging . : :: }
¢ Extended addressing modes | |5 & R7 &
- Page-free 20-bit reach s [re Re |5
« Improved code density & LRe R9 I
- Faster execution | :: ::: }
¢ Full tools support through Ri2 R12 \
IAR and CCS R13 R13 |
R14 R14 |
[Ri5 R15 \
N B
Memory Map ...
4]
Memory Map
Memory Map
MSP430G2553 shown
¢ Flash programmable via JTAG or OFFFFh| Interupt Vector Table
In-System (ISP) OFFEOh
¢ ISP down to 2.2V. Single-byte or FFDFh AL
Word 0C000h
¢ Interruptible ISP/Erase | |
¢ Main memory: 512 byte segments Inf &
(0-n). Erasable individually or all O Ooonl emery "
¢ Information memory: 64 byte
segments (A-D) i:[
Section A contains device-specific 03FFh RAM
calibration data and is lockable 0200h
¢ Programmable Flash Memory 01FFh 16-bit
Timing Generator 0100h Peripherals
8-bit
%I:I(:)n Periphtlerals
OFh 8-bit Special
Function
oh Registers
Peripherals ...

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-5

Introduction to Value Line

Value Line Peripherals

Value Line Peripherals

* General Purpose I/O
Independently programmable

= Any combination of input, output, and interrupt (edge
selectable) is possible

Read/write access to port-control registers is supported by
all instructions

Each I/O has an individually programmable pull-up/pull-down
resistor

Some parts/pins are touch-sense enabled (PinOsc)
* 16 bit Timer_A2 or A3
= 2/3 capture/compare registers
= Extensive interrupt capabilities
¢ WDT+ Watchdog Timer
= Also available as an interval timer
¢ Brownout Reset
Provides correct reset signal during power up and down
Power consumption included in baseline current draw

Peripherals ...

Value Line Peripherals

¢ Serial Communication
= USI with I12C and SPI support
= USCI with 12C, SPI and UART support
¢ Comparator_A+
Inverting and non-inverting inputs
= Selectable RC output filter
= Output to Timer_A2 capture input
Interrupt capability

¢ 8 Channel/10-bit 200 ksps SAR ADC
8 external channels (device dependent)
. Voltage and Internal temperature sensors
= Programmable reference

= Direct transfer controller send results to conversion memory
without CPU intervention

Interrupt capable
= Some parts have a slope converter

Board ...

1-6 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Introduction to Value Line

LaunchPad Development Board

LaunchPad Development Board

USB Emulator

Connection ﬂ

Embedded Emulation

6-pin eZ430
- 512B RAM Connector
+ 2 Timer_A%¥s
+ 8 Ch. Comp_A+ — Crystal Pads
- 8 Ch. ADC10 Chip ‘
. uscl Pinouts

Py -

_ Part and Socket

p

P1.3 Button |:> B ot : Power Connector

LEDs and Jumpers £ E Reset Button

P1.0 & P1.6

Lab ...

Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Introduction to Value Line

1-8 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Lab 1: Download Software and Setup Hardware

Lab 1: Download Software and Setup Hardware

Objective

The objective of this lab exercise is to download and install Code Composer Studio, as well as
download the various other support documents and software to be used with the MSP430
LaunchPad. Then we will review the contents of the MSP430 LaunchPad kit and verify its
operation with the pre-loaded demo program. Basic features of the MSP430 LaunchPad running
the MSP430G2231 will be explored. Specific details of Code Composer Studio will be covered
in the next lab exercise. These development tools will be used throughout the remaining lab
exercises in this workshop.

Lab1: Hardware Setup

* Download and install tools
and documentation

* Review kit contents
» Connect hardware
+ Test preloaded software

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-9

Lab 1: Download Software and Setup Hardware

Procedure

Note:

If you have already installed CCSv5.3 or higher, please skip the CCS installation

procedure.

Download and Install Code Composer Studio 5.x

L.

Click the following link to be directed to the CCS download Wiki:

http://processors.wiki.ti.com/index.php/Download CCS

You can use either the web installer or offline installer. Using the web installer will limit
your download to only the components that you select. The offline installer contains all
the possible content, so will be much larger than the web installation. The following steps
will cover the web installation method. Click the web installer link as shown below:

CCSv5.3.x

9.3.0 5.3.0.00090 |Nov 26, Web
2012 Installers:
Windows &
Linux e

Off-line

Installers:
Windows &
Linux &

This will direct you to the “my.TI Account” where you will need to log in (note you must
have a TI log in account to proceed). Once you agree to the export conditions you will
either be e-mailed a link or be directed to a web page with the link. Click on the link.

Be sure to disconnect any evaluation board that you have connected to your PCs USB
port(s). When you are prompted to run or save the executable file, select Run.

When the installation program runs, accept the license agreement and click Next.

Getting Started with the MSP430 LaunchPad - Introduction to Value Line

http://processors.wiki.ti.com/index.php/Download_CCS

Lab 1: Download Software and Setup Hardware

6. When the Choose Installation Location dialog appears, we suggest that you install Code
Composer in the default C: /t1 folder. Click Next.

Choose Installation Location

Tty
Where should Code Compaser Studio v5 be installed? , .

To change the main installation folder dick the Browse button.

~CCS Install Folder
C:\t

[1nstall CCs plugins into an existing Edipse installation

Texas Instruments

< Back.] [MNext =] [Cancel

7. In the Setup Type dialog, select Custom and click Next.

Code Composer Studio v5 Setup I EE
Setup Type !
Select the setup type that best suits your needs.
Click the type of Setup vou prefer.
e —Description -
Complete Feature Set Select this option if you wish to
customize the individual features that
are installed.
Texas Instruments
< Back] [Mext =] [Cancel

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-11

Lab 1: Download Software and Setup Hardware

8. In the Select Processor Support dialog, you will select the devices that Code Composer
will support. More devices mean a larger installation and a longer installation time. The
free 16kb code size limited version is available if you only select MSP430. If you are also
attending another workshop, like the Stellaris LaunchPad workshop, you should also se-
lect Stellaris Cortex M MCUSs. At a minimum, select MSP430 Low Power MCUs and

click Next.

Code Composer Studio w5 Setup

Processor Support
Select Processor Architectures to be installed

+ Description

Processor Architectures
induded: M3P430

[c28x 32-it Real-time MCUs

O stellaris Cortex M MCUs

O cortex-rar McUs

D AMx Cortex-A and ARMS processors
D Céx DSP + ARM processors

O pavind video Processars

[~ Select Al

Download size: 339 ME. Install size: 1525.5MB.

Texas Instruments

’ < Back I [Next =] [Cancel

9. When the Select Components dialog appears, click Next.

10. When the Select Emulators dialog appears, unselect MSP430 Parallel Port FET (un-
less you actually have one) and click Next.

Code Composer Studio v5 Setup

Select Emulators
Select the emulators you want installed and deselect emulators you want to
leave out.
— Description -
=] JTAG Emulator Support 3
: ; : System driver for the MSP430 Parallel
B }15P430 Parall=l Port FET Port interface (MSP-FFET430PIF)
M3P430 USE FET
Download size: 339 ME. Install size: 1525.5 MB.
Texas Instruments
< Back I ’ Mext =] [Cancel

Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Lab 1: Download Software and Setup Hardware

11. The CCS Install Options dialog summarizes the installation. In our case, the total down-
load size will be 339MB. Click Next to start the download/installation process. The in-
stallation time will depend greatly on your download speed. When you are done with the
installation, do not start Code Composer ... we’ll cover the startup and licensing issues in
a later module.

Download and Install Workshop Lab and Solution Files

12. Click the following link to be directed to the MSP430 LaunchPad Workshop download
Wiki and save the MSP430 LaunchPad_Workshop.exe file to your desktop:

http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430 LaunchPad Wo
rkshop/MSP430 LaunchPad Workshop.exe

13. Double-click the MSP430 LaunchPad Workshop.exe file to install the labs and solutions
for this workshop. Once installed, you can delete the installation file from the desktop.
The workshop files will be installed in C:\MSP430 LaunchPad and the directory
structure is as follows:

=l | M5P430_LaunchPad
=l) Labs

4 [Lab2
4 () Lab3
[) Lab4g
| Labs
H () Lab&
) Lab7
) Labg

) Lab10a

I Lab10b

[Lab10c
=) Solutions
() Lab2
I Lab3
| Lab4
| Labs
|2 Lab&
| Lab7
| Laba

| Lab10oc

| Workspace

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-13

http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430_LaunchPad_Workshop/MSP430_LaunchPad_Workshop.exe
http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430_LaunchPad_Workshop/MSP430_LaunchPad_Workshop.exe

Lab 1: Download Software and Setup Hardware

Capacitive Touch Software

14. Download and install the following Capacitive Touch support files:
e BoosterPack User’s Guide - http://www.ti.com/lit/pdf/slau337

e Demo code, GUI, etc - http://www.ti.com/litv/zip/slac490

e Capacitive Touch Library - http://www.ti.com/litv/zip/slac489

e CT Lib Programmer’s Guide - http://www.ti.com/litv/pdf/slaa490a

e Getting Started with Capacitive Touch - http://www.ti.com/lit/slaa491

Download Supporting Documents and Software

15. Next, download and save the following documents and software to your computer:

e LaunchPad User’s Guide: http://www.ti.com/lit/slau3 18
e MSP430x2xx User’s Guide: http://www.ti.com/lit/slau144
e C Compiler User’s Guide http://www.ti.com/lit/slaul32
e MSP430G2xx code examples: http://www.ti.com/lit/zip/slac463

e Temperature demo source and GUI: http://www.ti.conV/lit/zip/slac435

e A copy of the workshop workbook pdf: http://www.ti.com/launchpad-workshop

Additional information: www.ti.com/launchpadwiki
www.ti.com/launchpad
www.tl.com/captouch

Third Party Websites

16. There are many, many third party MSP430 websites out there. A couple of good ones are:

e http://www.joesbytes.com
e http://www.430h.com

1-14 Getting Started with the MSP430 LaunchPad - Introduction to Value Line

http://www.ti.com/lit/pdf/slau337
http://www.ti.com/litv/zip/slac490
http://www.ti.com/litv/zip/slac489
http://www.ti.com/litv/pdf/slaa490a
http://www.ti.com/lit/slaa491
http://www.ti.com/lit/slau318
http://www.ti.com/lit/slau144
http://www.ti.com/lit/slau132
http://www.ti.com/lit/zip/slac463b
http://www.ti.com/lit/zip/slac435
http://www.ti.com/launchpad-workshop
http://www.ti.com/launchpadwiki
http://www.ti.com/launchpad
http://www.ti.com/captouch
http://www.joesbytes.com/
http://www.43oh.com/

Lab 1: Download Software and Setup Hardware

MSP-EXP430G2 LaunchPad Experimenter Board

The MSP-EXP430G2 is a low-cost experimenter board, also known as LaunchPad. It
provides a complete development environment that features integrated USB-based emulation
and all of the hardware and software necessary to develop applications for the MSP430G2xx
Value Line series devices.

17. Look on the side of your LaunchPad kit and find the revision number. At the time this
workshop was written, version 1.5 is the current version. The steps in this workshop will
cover both the 1.4 and 1.5 revisions.

Open the MSP430 LaunchPad kit box and inspect the contents. The kit includes:

LaunchPad emulator socket board (MSP-EXP430G2)
Mini USB-B cable

In the Revision 1.5 kit...
A MSP430G2553 (pre-installed and pre-loaded with demo program) and
a MSP430G2452

In the Revision 1.4 kit...
A MSP430G2231 (pre-installed and pre-loaded with demo program) and
a MSP430G2211

In the Revision 1.5 Kkit...
10-pin PCB connectors are soldered to the board and two female also
included

In the Revision 1.4 kit...
Two male and two female 10-pin PCB connectors

32.768 kHz micro crystal

Quick start guide and two LaunchPad stickers

Hardware Setup

The LaunchPad experimenter board includes a pre-programmed MSP430 device which is
already located in the target socket. When the LaunchPad is connected to your PC via USB,
the demo starts with an LED toggle sequence. The on-board emulator generates the supply
voltage and all of the signals necessary to start the demo.

18. Connect the MSP430 LaunchPad to your PC using the included USB cable. The driver
installation starts automatically. If prompted for software, allow Windows to install the
software automatically.

19. At this point, the on-board red and green LEDs should toggle back and forth. This lets us
know that the hardware is working and has been set up correctly.

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-15

Lab 1: Download Software and Setup Hardware

Running the Application Demo Program

The pre-programmed application demo takes temperature measurements using the internal
temperature sensor. This demo exercises the various on-chip peripherals of the MSP430
device and can transmit the temperature via UART to the PC for display.

20.

21.

22.

23.

24.

25.

Press button P1.3 (lower-left) to switch the application to the temperature measurement
mode. A temperature reference is taken at the beginning of this mode and the LEDs on
the LaunchPad signal a rise or fall in temperature by varying the brightness of the on-
board red LED for warmer or green LED for colder.

Rub your fingertip on your pants to warm it up and place it on the top of the MSP430
device on the LaunchPad board. After a few seconds the red Led should start to light,
indicating a temperature rise. When the red LED is solidly lit, remove your finger and
press button P1.3 again. This will set the temperature reference at the higher temperature.
As the part cools, the green LED will light, indicating decreasing temperature. Bear in
mind that ambient temperatures will affect this exercise.

Determine the COM port used for the board by clicking (in Windows XP) Start > Run
then type devmgmt.msc in the box and select OK. (In Windows 7, just type
devmgmt.msc into the Search programs and files box)

In the Device Manager window that opens, left-click the symbol left of
Ports (COM & LPT) and record the COM port number for
MSP430 Applications UART (COMxx): . Close the Device Manager.

Next we will be using the GUI to display the temperature readings on the PC. Be sure
that you have installed the downloaded GUI source files (LaunchPad Temp GUI.zip).

Start the GUI by clicking on LaunchPad_Temp GUlLexe. This file is found under
<Install Directory>\LaunchPad Temp GUI\application.window. You may have to select
Run in the “Open File — Security Warning” window.

It will take a few seconds for the GUI to start. Be sure that the MSP430 application is
running (i.e. button P1.3 has been pressed). In the GUI, select the COM port found in
step 16 and press Enter (this is a DOS window; your mouse will not work in it). The
current temperate should be displayed. Try increasing and decreasing the temperature on
the device and notice the display reading changes. Note that the internal temperature
sensor is not calibrated, so the reading displayed will not be accurate. We are just
looking for the temperature values to change.

Close the temperature GUI .

ST

You’re done.

Getting Started with the MSP430 LaunchPad - Introduction to Value Line

Code Composer Studio

Introduction

This module will cover a basic introduction to Code Composer Studio. In the lab exercise we
show how a project is created and loaded into the flash memory on the MSP430 device.

Additionally, as an optional exercise we will provide details for soldering the crystal on the

LaunchPad.

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization

Serial Communications

Grace

FRAM

I: Capacitive Touc

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Module Topics

Module Topics

Code Composer Studio 2-1
MOUIE TOPICS.......oveeeeeeiee ettt ettt ettt e et e et e et e e bt e e abseessaeestaeansaeensaeessaeensseesaeenseeens 2-2
COde COMPOSET STUTNOooccuveeeieeiie ettt e et et e e b e st e sbeessbeeesbeessbeeesseessbeeesseensseensseenens 2-3
Lab 2: Code COMPOSET STUATOc..cocveeeieiciii ettt et et eetaeetaeetseessaeenneeens 2-7

[0)0] 1015 A RSP PUURRPR 2-7
PTOCEAULIE ...ttt ettt s a e b et e et et eateea e e sbe e b e et e enteenaesaees 2-8
Optional Lab Exercise — CryStal OSCIIIALOFcccccceriiiiiiiiiiiiiieieeee et 2-14
L0 10} 115 AR 2-14
PIOCEAULIE ...ttt ettt ettt bbbt bttt ettt b e s bt bttt e e e b e 2-14

2-2 Getting Started with the MSP430 LaunchPad - Code Composer Studio

Code Composer Studio

Code Composer Studio

What is Code Composer Studio?

*

*

*

Integrated development environment for Tl embedded processors
= Includes debugger, compiler, editor, simulator, OS...
The IDE is built on the Eclipse open source software framework
Extended by Tl to support device capabilities
CCSv5.x is based on “off the shelf” Eclipse (version 3.7 in CCS 5.3)

Future CCS versions will use unmodified versions of Eclipse
Tl contributes changes directly to the open source community

= Drop in Eclipse plug-ins from other vendors or take Tl tools and drop them
into an existing Eclipse environment

Users can take advantage of all the latest improvements in Eclipse
Integrate additional tools
= 08S application development tools (Linux, Android...)
Code analysis, source control...

Linux Support soon . Code Composer™ Studio

Low cost! $445 or $495 -

Py —
N -l ==
- v tw

h, |

User Interface Modes. ..

User Interface Modes

¢ Simple Mode
= By default CCS will open in simple/basic mode
= Simplified user interface with far fewer menu items, toolbar buttons
= Tl supplied Edit and Debug Perspectives
4 Advanced Mode
= Uses default Eclipse perspectives
= Very similar to what exists in CCSv4

= Recommended for users who will be integrating other Eclipse based
tools into CCS

Possible to switch Modes

= Users can decide that they are ready to move from simple to advanced
mode or vice versa

Common Tasks.'..

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Code Composer Studio

Common tasks

¢ Creating New Projects
Very simple to create a new project for a device using a template
¢ Build options

Many users have difficulty using the build options dialog and find it
overwhelming

Updates to options are delivered via compiler releases and not
dependent on CCS updates

¢ Sharing projects

Easy for users to share projects, including working with version
control (portable projects)

Setting up linked resources has been simplified

Workspaces and Projects. ..
13

Workspaces and Projects

Workspace Project Source files
Project 1 Link | source files Code and Data
Project 2 Header files Header fi|es
Project3 Library files Declarations/Defines
Settings and preferences Build and tool settings | = -
i Library files
|
Code and Data
A workspace contains A prog)eq}dconaainsl
your seftings and ottings, as well as
preferences, as well as links t% vour input
links to your projects. files y P
R‘eéﬁlgﬁ(gsg{:eechserg?g Deleting files from the
the links, not the files workspace deletes the
’ links, not the files
Project Wizard...

16

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Code Composer Studio

Project Wizard

&% New CCS Project

Project
Output type | Evecutabie

7] Use defult location

Add Files...

17

| Project Explorer = Sk
. e
0 New
= Copy
Paste
® Delete
Source
Move..

Rename...

iag Import...

4 Bport..
Build Project
Clean Project
Refresh
Close Project
Debug As
Team

Compare With

Source

Refactor

Show Build Settings.
Properties

‘Add Files to Project... 1]

Adding Files to Projects

T = 0 |[@ hello.c &2

Restore from Local History...

Run C/Cs.+ Code Analysis

Alt+Enter

Cri=C

@ File Operation -
Select hw s houid b imparted o the resect:
Copy fhes
® Link to s
| Creste link locations relstive te: | PROJECT_LOC
- Drop Sezings
2 [Cancel

4 Add Files to Project allows
users to control how the file
is added to the project

Linking Files using built-in
macros allows easy creation
of portable projects

IAR Kickstart...

18

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Code Composer Studio

IAR Kickstart

1AR Embedded Workbench IDE

Fle Edit Vew Project Emuator Tools Window Hep

D@ S B 2 ¥uzEe @ T & D

[Debug =]
B

| e @maine
| L@ BvLo_Libranys43
L& Caouput

o 4kB Compiler =
¢ Supports all MSP430 variants
¢ Assembler/Linker -
+ Editor S

¢ Debugger

Lab2...

2-6 Getting Started with the MSP430 LaunchPad - Code Composer Studio

Lab 2: Code Composer Studio

Lab 2: Code Composer Studio

Objective

The objective of this lab is to learn the basic features of Code Composer Studio. In this exercise
you will create a new project, build the code, and program the on-chip flash on the MSP430
device. An optional exercise will provide details for soldering the crystal on the LaunchPad.

Since none of the Value Line MSP430 devices have more than 16K of flash memory, the free,
16K license of Code Composer Studio can be considered fully functional. If you want to work
with larger MSP430 (or other) devices, you’ll need to purchase a license.

Lab2: Code Composer Studio

*Lab
*Re-create temperature sense demo
‘Program part and test
*Close Grace pane
*Optional
* Add microcrystal to board
* Program part to test crystal

. o
%2 LaunchPad *

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2-7

Lab 2: Code Composer Studio

Procedure

Note: CCS5.x should have already been installed during the Lab1 exercise.

Start Code Composer Studio and Open a Workspace

1. Start Code Composer Studio (CCS) by double clicking the icon on the desktop or
selecting it from the Windows Start menu. When CCS loads, a dialog box will prompt
you for the location of a workspace folder. Browse to:

C:\MSP430 LaunchPad\WorkSpace and do not check the “Use this as the default ...”
checkbox. Click OK.

Select a workspace

Code Composer Studio stores your projects in a felder called a workspace. |
Choose a workspace folder to use for this session.

Workspace: CA\MSP430_LaunchPad\WorkSpace -

[] Use this as the default and do not ask again

[ok][concet |

This folder contains all CCS custom settings, which includes project settings and views
when CCS is closed, so that the same projects and settings will be available when CCS is

opened again. It also contains a list of your current projects. The workspace is saved
automatically when CCS is closed.

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Lab 2: Code Composer Studio

2. The first time CCS opens, the “License Setup Wizard” should appear. In case you started
CCS before and made the wrong choices, you can open the wizard by clicking Help >
Code Composer Studio Licensing Information then click the Upgrade
tab and the Launch License Setup...

«+ License Setup Wizard l=1=] =

Select a license option

Select one of the following license options:

) ACTIVATE
- Select this if you have an activation code, license file or license server

) EXTENSION - Your current license has expired. Choose this option to extend the
Code Composer Studio Evaluation period for 30 more days.
(Note: This can only be perfermed once. Internet Access is required.)

") FREE LICENSE - for use with
- XD5100 JTAG ernulators
- Onboard emulators on EVMs/D5Ks/5tellaris/eZdsp/MAVRK development kits. Does not support 7430,
- Linux/Android Application Development using GDB
- Simulators

@ CODE SIZE LIMITED (MSP430)
- Free 16KB code size limited tools for M5P430

@) < Bacl Net > [Finisn 1[cCancer |

Okl

If you’re planning on working with the LaunchPad and value-line parts only, the
CODE SIZE LIMITED version of Code Composer with its 16kB code size limit will
fully support every chip in the family.

If you are attending another workshop in conjunction with this one, like the Stellaris
LaunchPad workshop, you can return here and change this to the FREE LICENSE
version. This license is free when connected to the Stellaris LaunchPad (and many other
boards), but not the MSP430 LaunchPad board. When not connected to those boards, you
will have 30 days to evaluate the tool, but you can extend that period by 90 days.

Select the CODE SIZE LIMITED radio button and click Finish.

You can change your CCS license at any time by following the steps above.

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2-9

Lab 2: Code Composer Studio

3. You should now see the open TT Resource Explorer tab openin Code Composer.

The Resource Explorer provides easy access to code examples, support and Grace2™,
Grace2™ will be covered in a later module. Click the X in the tab to close the
Resource Explorer.

At this point you should see an empty CCS workbench. The term workbench refers to
the desktop development environment. Maximize CCS to fill your screen.

m— = = | D
€C5 Edit - Code Composer Studio .
File Edit View MNavigate Project Run Scripts Window Help
s T S & [CCs |
[Project Bxplorer 32| = & ¥ = O =
[£: Problems &3 S|
0 tems
Description = Resource Path Location Type
1* Licensed

The workbench will open in the “CCS Edit” view. Notice the tab in the upper right-hand
corner. A perspective defines the initial layout views of the workbench windows,
toolbars, and menus which are appropriate for a specific type of task (i.e. code
development or debugging). This minimizes clutter to the user interface. The “CCS
Edit” perspective is used to create or build C/C++ projects. A “CCS Debug” perspective
will automatically be enabled when the debug session is started. This perspective is used
for debugging your projects. You can customize the perspectives and save as many as
you like.

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Lab 2: Code Composer Studio

Create a New Project
5. A project contains all the files you will need to develop an executable output file (.out)
which can be run on the MSP430 hardware. To create a new project click:
File = New > CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to click Empty Project (with main.c) andthen click Finish.

¥+ New CCS Project CRES

CCS Project —
Create a new CC5 Project. ; S

Project name: Temperature_Sense_Demo

Output type: | Executable v]

[7] Use default location
Location: C:\MSP£30_LaunchPadhLabs\Lab2\Project-TS
Device
Family [MsP430 -
Variant: 2553 v [Mspa30G2553 -
Connection: [TIMSP430 USBI. [Defaul] -

» Advanced settings

* Project templates and examples

type filter text Creates an empty project fully initialized ~ »
= for the selected device. The project will
4 [[=] Empty Projects * | contain an empty 'main.c’ source-file.

& Empty Project
|z Empty Project (with main.c)
et Empty Assembly-only Project
|5 Empty Grace (MSP430) Project
|z Empty RTSC Project

4 |.=| Basic Bxamples
|5 Blink The LED = .-

m

@ < Back Next > [Fnish][Cancel |

\

6. Code Composer will add the named project to your workspace and display it in the
Project Explorer pane. Based on your template selection, it will also add a file
called main.c and open it for editing. Click on Temperature Sense Demo in the
Project Explorer pane to make the project active. Click on the * left of the project name
to expand the project.

@ CCS Edit - Temperature_Sense_demo/main.c - Code Composer Studio

File Edit View Mavigate Project Run Scripts Window Help

il iR it i P E G-
[Project Explarer 52 = G==g'> ~ = 0| [main.c 5

¥ main.c

[Includes
g Ink_msp430g2553.cmd
@ main.c

[#] MSP430G2553.ccxml [Active /Default]

void main (wvoid)

[O BT T

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2-11

Lab 2: Code Composer Studio

Source Files

7. Next, we will add code to main.c. Rather than create a new program, we will use the
original source code that was preprogrammed into the MSP430 device (i.e. the program
used in Labl).

Click File - Open File..and navigate to
C:\MSP430 LaunchPad\Labs\Lab2\Files.

Open the Temperature Sense Demo.txt file. Copy and paste its contents into
main.c, erasing the original contents of main. c, then close the
Temperature_Sense Demo.txt file.

Near the top of the file, note the statement
#include “msp430g2553.h”

If you are using an earlier revision of the board, change this statement to:
#include “msp430g2231.h"

Be sure to save main.c by clicking the Save button &l in the upper left.

Build and Load the Project

8. CCS can automatically save modified source files, build the program, open the debug
perspective view, connect and download it to the target (flash device), and then run the
program to the beginning of the main function.

Click on the “Debug” button ¥ . When the Ultra-Low-Power Advisor (ULP Advisor)
appears, click the Proceed button. We’ll take a look at the MSP430°s ultra-low-power
abilities in a later lab.

When the download completes, CCS is in the Debug perspective. Notice the Debug tab
in the upper right-hand corner indicating that we are now in the “CCS Debug” view.
Click and drag the perspective tabs to the left until you can see all of both tabs. The
program ran through the C-environment initialization routine in the runtime support
library and stopped at main() in main.c.

2-12 Getting Started with the MSP430 LaunchPad - Code Composer Studio

Lab 2: Code Composer Studio

Debug Environment

9. The basic buttons that control the debug environment are located in the top of the Debug
pane. If you ever accidentally close the pane, your Debug controls will vanish. They can
be brought back by clicking View = Debug on the menu bar.

35 Debug 52 O] @ | 2 33 2 d-& e~ =0

= k¢ Temperature_sense_Demo [Code Composer Studio - Device Debugging]
=g TI MSP430 USB1,MSP430 (Suspended)
= main(at main, 24 0xFE00
= c_intd0_noexit() 0xFC0 {the entry point was reached)

Hover over each button to see its function.

10. At this point your code should be at the beginning of main(). Look for a small blue arrow
left of the opening brace of main() in the middle window. The blue arrow indicates where

the Program Counter (PC) is pointing to. Click the Resume button U¥ to run the code.
Notice the red and green LEDs are toggling, as they did before.

11. Click Suspend . The code should stop somewhere in the PreApplicationMode()
function.

12. Next single-step . (Step Into) the code once and it will enter the timer ISR for
toggling the LEDs. Single-step a few more times (you can also press the F5 key) and
notice that the red and green LEDs alternate on and off.

13. Click Reset CPU - and you should be back at the beginning of main().

Terminate Debug Session and Close Project

14. The Terminate button will terminate the active debug session, close the debugger and
return CCS to the “CCS Edit” perspective. It also sends a reset to the LaunchPad board,
and you will see the LEDs flashing again. Click the Terminate button: C

15. Next, close the project by right-clicking on Temperature Sense Demo in the
Project Explorer window and select Close Project.

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2-13

Optional Lab Exercise — Crystal Oscillator

Optional Lab Exercise — Crystal Oscillator

Objective

The MSP430 LaunchPad kit includes an optional 32.768 kHz clock crystal that can be soldered
on the board. The board as-is allows signal lines XIN and XOUT to be used as multipurpose
I/Os. Once the crystal is soldered in place, these lines will be a digital frequency input. Please
note that this is a delicate procedure since you will be soldering a very small surface mount
device with leads 0.5mm apart on to the LaunchPad.

The crystal was not pre-soldered on the board because these devices have a very low number of
general purpose I/O pins available. This gives the user more flexibility when it comes to the
functionality of the board directly out of the box. It should be noted that there are two 0 ohms
resistors (R28 and R29) that extend the crystal pin leads to the single-in-line break out connector
(J2). In case of oscillator signal distortion which leads to a fault indication at the basic clock
module, these resistors can be used to disconnect connector J2 from the oscillating lines.

Procedure

Solder Crystal Oscillator to LaunchPad

1. Very carefully solder the included clock crystal to the LaunchPad board. The crystal
leads provides the orientation. They are bent in such a way that only one position will
have the leads on the pads for soldering. Be careful not to bridge the pads. The small size
makes it extremely difficult to manage and move the crystal around efficiently so you
may want to use tweezers and tape to arranging it on the board. Be sure the leads make
contact with the pads. You might need a magnifying device to insure that it is lined up
correctly. You will need to solder the leads to the two small pads, and the end opposite
of the leads to the larger pad.

Click this link to see how one user soldered the crystal to their board:

http://justinstech.org/2010/07/msp430-launchpad-dev-kit-how-too/

Getting Started with the MSP430 LaunchPad - Code Composer Studio

http://justinstech.org/2010/07/msp430-launchpad-dev-kit-how-too/

Optional Lab Exercise — Crystal Oscillator

Verify Crystal is Operational

2. Create a new project by clicking File - New > CCS Project and then make the

selections shown below. Again, if you are using the MSP430G2231, make the proper

choices. Make sure to select the Empty Project
Finish.

(with main.c) template. Click

wr Mew CCS Project

CCS Project

Create a new CC5 Project.

Project name: Verify_Crystal

Output type: ’ Executable

)

[T Use default location

Device

Location: C:\MSP430_LaunchPad\Labs\Lab2\Project-VC

Browse...

Family: [MsP430

Variant: 2553 -

MSP430G2553 -

Connection: ’TI MSP430 USBL [Default]

» Advanced settings

* Project templates and examples

type filter text

4 | =| Empty Projects -
&y Empty Project
| &y Empty Project (with main.c)

&y Empty Assembly-only Project |5
&y Empty Grace (M5P430) Project
|y Empty RTSC Project
4 | =| Basic Examples
|5 Blink The LED -

MNext =

Creates an empty project fully initialized =«
for the selected device. The project will
contain an empty 'main.c’ source-file,

Finish] ’ Cancel

erasing all the previous contents of main.c. Then close the Verify Crystal.txt

statement near the top of the code and replace it with #include <msp430g2231.h>

3. Click File = Open File.. and navigate to
C:\MSP430 LaunchPad\Labs\Lab2\Files.
Open the Verify Crystal.txt file. Copy and paste its contents into main.c,
file — it is no longer needed.

4. Ifyou are using the MSP430G2231, find the #include <msp430g2553.h>
Save your changes to main.c.

5.

Click the “Debug” button g When the Ultra-Low-Power Advisor (ULP Advisor)
appears, click the Proceed button. The “CCS Debug” view should open, the program will
load automatically, and you should now be at the start of main ().

Getting Started with the MSP430 LaunchPad - Code Composer Studio

Optional Lab Exercise — Crystal Oscillator

6. Run the code. If the crystal is installed correctly the red LED will blink slowly. (It
should not blink quickly). If the red LED blinks quickly, you’ve probably either failed to
get a good connection between the crystal lead and the pad, or you’ve created a solder
bridge and shorted the leads. A good magnifying glass will help you find the problem.

Terminate Debug Session and Close Project

7. Terminate the active debug session using the Terminate button B This will close
the debugger and return CCS to the “CCS Edit” view.

8. Next, close the project by right-clicking on Verify Crystal inthe Project
Explorer pane and select Close Project.

ST

You’re done.

2-16 Getting Started with the MSP430 LaunchPad - Code Composer Studio

Initialization and GPIO

Introduction

This module will cover the steps required for initialization and working with the GPIO. Topics
will include describing the reset process, examining the various clock options, and handling the
watchdog timer. In the lab exercise you will write initialization code and experiment with the
clock system.

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization

Serial Communications

Grace

FRAM

I: Capacitive Touc

Reset State ...
21

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-1

Module Topics

Module Topics

Initialization and GPIO 3-1
MOUIE TOPICS.......oveeeeeeiee ettt ettt ettt e et e et e et e e bt e e abseessaeestaeansaeensaeessaeensseesaeenseeens 3-2
Tnitialization ARA GPIOccoouueiiiiiieeee ettt 3-3

Reset and Software INTtIAlIZAtIONeiiiiiiiiiiiiiiece et e et e e e e e e e e e e e s eenaaaeeeeeeeean 33
(0] 10 T0) [] 1<) 4 PO USRS RR 3-4
G2xxX - No Crystal Required - DCOccouiiiiiiiiiiiiieeie ettt ete et iee e eaee st eeaeeetaeesaeenees 3-4
Run Time Calibration 0f the VLOooooiiiiiee e e 3-5
SYSTEM MOCLK & VCC 1.ttt ettt ettt et e ht e st e bt e st e e bt e sabeesateesabeebeeas 3-5
1] T Lo e 111 0TS, oSSR URRTI 3-6
Lab 3: Initialization and GPILOcccooeooiiieeeeeeeeeeeee e e et 3-7
L0 10} 1< 15 LSRR TTSURRS 3-7
PIOCEAUIE ... e ettt e e e e et e e e eetaeeeeetaeeeeeaneeeeenneeeeeareeeenns 3-8

3-2 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Initialization and GPIO

Initialization and GPIO

Reset and Software Initialization

System State at Reset

¢ At power-up (PUC), the brownout circuitry holds device in reset until
Vcc is above hysteresis point

RST/NMI pin is configured as reset

I/O pins are configured as inputs

Clocks are configured

Peripheral modules and registers are initialized (see user guide for
specifics)

Status register (SR) is reset

Watchdog timer powers up active in watchdog mode

¢ Program counter (PC) is loaded with address contained at reset vector
location (OFFFEhR). If the reset vector content is OFFFFh, the device will
be disabled for minimum power consumption

* ¢ 0

* o

SW Init ...
22

Software Initialization

After a system reset the software must:

¢ Initialize the stack pointer (SP), usually to the top of
RAM

¢ Reconfigure clocks (if desired)

¢ Initialize the watchdog timer to the requirements of
the application, usually OFF for debugging

¢ Configure peripheral modules

Clock System ...
23

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-3

Initialization and GPIO

Clock System

Clock System

¢ Very Low Power/Low Frequency VLO
Oscillator (VLO)*
¢ 4 — 20kHz (typical 12kHz) Mi:_-ltPuls ' H/;Cl_-Kh |
& 500nA standby = eripherals
¢ 0.5%/ C and 4%/Volt drift
¢ Not in ’21x1 devices OSC_Fault MCLK
¢ Crystal oscillator (LFXT1) = g CPU
¢ Programmable capacitors
¢ Failsafe OSC_Fault
+ Minimum pulse filter 18“(:"5'2 > f,rrfp"htrals
¢ Digitally Controlled Oscillator
(DCO) 0
n PUC, MCLK and SMCLK are
¢ 0-to-16MHz sourced from DCOCLK at ~1.1 MHz.

ACLK is sourced from LFXT1CLK in
LF mode with an internal load
capacitance of 6pF. If LFXT1 fails,
ACLK defaults to VLO.

¢ + 3% tolerance
¢ Factory calibration in Flash

* Not on all devices. Check the datasheet DCO ...

24

G2xxx - No Crystal Required - DCO
G2xxx - No Crystal Required DCO

DCO Calibration Data (provided from factory in flash info memory segment A)
DCO Frequency Calibration Register Size Address
1 MHz CALBC1_1MHz byte 010FFh
CALDCO_1MHz byte 010FEh
8 MHz CALBC1_8MHz byte 010FDh
CALDCO_8MHz byte 010FCh
12 MHz CALBC1_12MHz byte 010FBh
CALDCO_12MHz byte 010FAh
16 MHz CALBC1_16MHz byte 010F9h
CALDCO_16MHz byte 010F8h
// Setting the DCO to IMHz
if (CALBCl_lMHZ ==0xFF || CALDCO_lMHZ == 0XFF)

while(1l) ;
BCSCTL1 = CALBCl_1MHZ ;
DCOCTL = CALDCO_1MHE ;

// Erased calibration data? Trap!
// Set range
// Set DCO step + modulation

& G2xx1 devices have 1MHz DCO constants only. Higher frequencies must be

manually calibrated

& G2xx2 & G2xx3 (like the G2553) have all 4 constants + calibration values for the
ADC & temperature sensor

VLOCAL ...

23

Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Initialization and GPIO

Run Time Calibration of the VLO

Run Time Calibration of the VLO

Calibrated 1 MHz DCO

TAR
i f, o = 8MHz/Counts ! v
| [— CCRx

ACLK/8 from VLO

Calibrate the VLO during runtime

Clock Timer_A runs on calibrated 1MHz DCO
Capture with rising edge of ACLK/8 from VLO
fyLo = 8MHz/Counts

Code library on the web (SLAA340)

L R IR R R 4

MCLK & Vcc ...

26

System MCLK & Vcc

System MCLK & Vcc

A
Legend:
16 MHz
y Supply voltage range,
w 7 during flash memory
= y programming
] 12 MHz ;
oy
€
: / Supply voltage range
] during program execution
w
§ emnz
2
5]
18V 22V 27V 33V 36V

Supply Voltage -V

4 Match needed clock speed with required Vecc to achieve the lowest power

External LDO regulator required

4 Unreliable execution results if Vec < the minimum required for the selected frequency
@ All G2xxx device operate up to 16 MHz

WDT failsafe ...
27

Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Initialization and GPIO

Watchdog Timer

Watchdog Timer Failsafe Operation

¢ If ACLK / SMCLK fail, clock
source = MCLK

(WDT+ fail safe feature) o
¢ If MCLK is sourced from a LK
crystal, and the crystal A
fails, MCLK = DCO T Fail.Safe
(XTAL fail safe feature) MC'—""’{ Logic
..... I
SMCLK—»{1
ACLK—»{ 1

WDTSSEL A EN WDTHOLD

WDT clock source ...
28

Watchdog Timer Clock Source

WDTCTL (16-Bit)

WDTHOLD
WDTNMIES

WDTNMI

Clock — MCLK Active

WDTTMSEL » Request —> SMCLK Active
WDTCNTCL — Logic |, acikActive
WDTSSEL

WDTIS1

WDTISO

¢ Active clock source cannot be disabled (WDT mode)
¢ May affect LPMx behavior & current consumption
¢ WDT(+) always powers up active

Lab ...
29

3-6 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Lab 3: Initialization and GPIO

Lab 3: Initialization and GPIO

Objective

The objective of this lab is to learn about steps used to perform the initialization process on the
MSP430 Value Line devices. In this exercise you will write initialization code and run the device
using various clock resources.

Lab3: Initialization

» Write initialization code

* Run CPU on MCLK sourced by:
+VLO
» 32768Hz crystal
- DCO

» Program part

» Observe LED flash speed

! 2
¥ INSTRUMENTS

7 s
W

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-7

Lab 3: Initialization and GPIO

Procedure

Create a New Project

1. Create a new project by clicking:
File = New = CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to select the Empty Project (with main.c)template, and then click

Finish.
“
% New CCS Project CIR
CCS Project — g
Create a new CCS Project.
Project name: Lab3
Output type: | Executable vl

[7] Use default location

Location: C:\MSP430_LaunchPad\Labs\Lab3\Project

Device

Family: | MSP430 -
Variant: 2553 * | M5P430G2553 v]
Connection: [T[MM5P430 LUSEL [Default] v]

b Advanced settings

* Project templates and examples

type filter text Creates an empty project fully initialized =«
for the selected device. The project will
contain an empty ‘main.c’ source-file.

4 E Empty Projects

[\ [Empty Project

[Empty Project (with main.c)

[Empty Assembly-only Project

|/ [Empty Grace (MSP430) Project
[E Empty RTSC Project

4 ||=| Basic BExamples

[& Blink The LED - -

| »

m

@ < Back Next > | Finsh || Cancel

3-8 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Lab 3: Initialization and GPIO

Source File

2. In the main.c editing window, replace the existing code with the following code. Again, if
you are using the MSP430G2231, use that include header file. The short #ifdef structure
corrects an inconsistency between the 2231 and 2553 header files. This inconsistency
should be corrected in future releases. Rather than typing all the following code, you can
feel free to cut and paste it from the workbook pdf file.

#include <msp430g2553.h>

#ifndef TIMERO Al VECTOR

#define TIMERO Al VECTOR TIMERAL VECTOR
#define TIMERO A0 VECTOR TIMERAO VECTOR
#endif

void main (void)
{

// code goes here

Running the CPU on the VLO

We will initially start this lab exercise by running the CPU on the VLO. This is the slowest clock
which runs at about 12 kHz. So, we will visualize it by blinking the red LED slowly at a rate of
about once every 3 seconds. We could have let the clock system default to this state, but instead
we’ll set it specifically to operate on the VLO. This will allow us to change it later in the
exercise. We won’t be using any ALCK clocked peripherals in this lab exercise, but you should
recognize that the ACLK is being sourced by the VLO.

3. In order to understand the following steps, you need to have the following two resources
at hand:
e MSP430G2553.h header file — search your drive for the msp430g2553.h
header file and open it (or msp430g2231.h). This file contains all the register
and bit definitions for the MSP430 device that we are using.

e MSP430G2xx User’s Guide — this document (slaul44h) was downloaded in
Labl. This is the User’s Guide for the MPS430 Value Line family. Open the
.pdf file for viewing.

4. For debugging purposes, it would be handy to stop the watchdog timer. This way we
need not worry about it. In main.c right at type:

WDTCTL = WDTPW + WDTHOLD;
(Be sure not to forget the semicolon at the end).

The WDTCTL is the watchdog timer control register. This instruction sets the password
(WDTPW) and the bit to stop the timer (WDTHOLD). Look at the header file and User’s
Guide to understand how this works. (Please be sure to do this — this is why we asked
you to open the header file and document).

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-9

Lab 3: Initialization and GPIO

Next, we need to configure the LED that’s connected to the GPIO line. The green LED
is located on Port 1 Bit 6 and we need to make this an output. The LED turns on when
the output is set to a “1”. We’ll clear it to turn the LED off. Leave a line for spacing and
type the next two lines of code.

x40;

’

P1DIR = 0
P1OUT = O
(Again, check the header file and User’s Guide to make sure you understand the
concepts).

Now we’ll set up the clock system. Enter a new line, then type:

BCSCTL3 |= LFXT1S_2;

The BCSCTL3 is one of the Basic Clock System Control registers. In the User’s Guide,
section 5.3 tells us that the reset state of the register is 005h. Check the bit fields of this
register and notice that those settings are for a 32768 Hz crystal on LEXT1 with 6pF
capacitors and the oscillator fault condition set. This condition would be set anyway
since the crystal would not have time to start up before the clock system faulted it.
Crystal start-up times can be in the hundreds of milliseconds.

The operator in the statement logically OR’s LEXT1S 2 (which is 020h) into the
existing bits, resulting in 025h. This sets bits 4 & 5 to 10b, enabling the VLO clock.
Check this with the documents.

The clock system will force the MCLK to use the DCO as its source in the presence of a
clock fault (see the User’s Guide section 5.2.7). So we need to clear that fault flag. On
the next line type:

IFGl &= ~OFIFG;

The IFG1 is Interrupt Flag register 1. A bit field in the register is the Oscillator Fault
Interrupt Flag - OFIFG (the first letter is an “O”, and not a zero). Logically ANDing
IFG1 with the NOT of OFIFG (which is 2) will clear bit 1. Check this in section 5 of
the User’s Guide and in the header file.

We need to wait about 50 ps for the clock fault system to react. Running on the 12kHz
VLO, stopping the DCO will buy us that time. On the next line type:

_bis SR register(SCGl + SCGO) ;

SR is the Status Register. Find the bit definitions for the status register in the User’s
Guide (section 4). Find the definitions for SCG0 and SCG1 in the header file and notice
how they match the bit fields to turn off the system clock generator in the register. By the
way, the underscore before bis defines this is an assembly level call from C. _bis is a bit
set operation known as an intrinsic.

There is a divider in the MCLK clock tree. We will use divide-by-eight. Type this
statement on the next line and look up its meaning:

BCSCTL2 |= SELM 3 + DIVM 3;

The operator logically ORs the two values with the existing value in the register.
Examine these bits in the User’s Guide and header file.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Lab 3: Initialization and GPIO

10. At this point, your code should look like the code below. We have added the comments
to make it easier to read and understand. Click the Save button on the menu bar to save
the file.

#include "msp430g2553.h"

#ifndef TIMERO Al VECTOR

#define TIMERO Al VECTOR TIMERA1 VECTOR
#define TIMERO AO VECTOR TIMERAQ VECTOR
#endif

void main (void)

{

WDTCTL = WDTPW + WDTHOLD; // watchdog timer setup
PI1IDIR = 0x40; // I/0 setup

P1OUT = 0;

BCSCTL3 |= LFXT1S 2; // clock system setup

IFGl &= ~OFIFG;
_bis SR register (SCGl + SCGO);

BCSCTL2 |= SELM 3 + DIVM 3;

11. Just one more thing — the last piece of the puzzle is to toggle the green LED. Leave
another line for spacing and enter the following code:

while (1)

{
P1OUT = 0x40; // LED on
_delay cycles(100);
P1OUT = O; // LED off

_delay cycles(5000) ;
}

The P10OUT instruction was already explained. The delay statements are built-in intrinsic
function for generating delays. The only parameter needed is the number of clock cycles
for the delay. Later in the workshop we will find out that this isn’t a very good way to
generate delays — so don’t get used to using it. The while(1) loop repeats the next four
lines forever.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-11

Lab 3: Initialization and GPIO

12.

Now, the complete code should look like the following. Be sure to save your work.

#include "msp430g2553.h"

#ifndef TIMERO Al VECTOR

#define TIMERO Al VECTOR TIMERA1 VECTOR
#define TIMERO A0 VECTOR TIMERAQ VECTOR
#endif

void main (void)

{

WDTCTL = WDTPW + WDTHOLD; // watchdog timer setup
P1DIR = 0x40; // I/0 setup

P1OUT = 0;

BCSCTL3 |= LFXT1S 2; // clock system setup

IFGl &= ~OFIFG;
_bis SR register (SCGl + SCGO);

BCSCTL2 |= SELM 3 + DIVM 3;

while (1)

{
P10OUT = 0x40; // LED on
_delay cycles (100);
P1OUT = 0; // LED off

_delay cycles(5000);
}

13.

14.

15.

Great job! You could have just cut and pasted the code from VLO.txt in the Files folder,
but what fun would that have been? ©

Click the “Debug” button > . Click the Proceed button when the ULP Advisor
appears. The “CCS Debug” view should open, the program will load automatically, and
you should now be at the start of main ().

Run the code. If everything is working correctly the green LED should be blinking about
once every three or four seconds. Running the CPU on the other clock sources will speed
this up considerably. This will be covered in the remainder of the lab exercise.

Click on the Terminate button ™ to stop debugging and return to the “CCS Edit”
perspective. Save your work by clicking File - Save As and select the parent
folder as Lab3. Name the file Lab3a.c. Click OK.

Expand the Lab3 project by clicking on " to the left of the Lab3 project name.
Close the Lab3a.c editor tab and double click on main.c in the Project Explorer pane.
Unfortunately, Eclipse has added Lab3a. ¢ to our project, which will cause us grief later

on (you can’t have two main () functions in the same program).

Right-click on Lab3a.c in the Project Explorer pane and select Resource
Configurations, then Exclude from build... Check both boxes and click OK.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Lab 3: Initialization and GPIO

Note: If you have decided NOT to solder the crystal on to LaunchPad, then skip to the
“Running the CPU on the DCO without a Crystal” section. But, you should
reconsider; as this is important information to learn.

Running the CPU on the Crystal

The crystal frequency is 32768 Hz, about three times faster than the VLO. If we run the previous
code using the crystal, the green LED should blink at about once per second. Do you know why
32768 Hz is a standard? It is because that number is 2'°, making it easy to use a simple digital
counting circuit to get a once per second rate — perfect for watches and other time keeping.
Recognize that we will also be sourcing the ACLK with the crystal.

16. This part of the lab exercise uses the previous code as the starting point. We will start at
the top of the code and will be using both LEDs. Make both LED pins (P1.0 and P1.6)

outputs by
Changing: P1DIR = 0x40;
To: P1DIR = 0x41;

And we also want the red LED (P1.0) to start out ON, so

Change: P1OUT = 0;
To: P1OUT = 0x01;

17. We need to select the external crystal as the low-frequency clock input.
Change: BCSCTL3 |= LFXT1S_2;
To: BCSCTL3 |= LFXT1S 0 + XCAP_3;

Check the User’s Guide to make sure this is correct. The XCAP_3 parameter selects the
12pF load capacitors. A higher load capacitance is needed for lower frequency crystals.

18. In the previous code we cleared the OSCFault flag and went on with our business, since
the clock system would default to the VLO anyway. Now we want to make sure that the
flag stays cleared, meaning that the crystal is up and running. This will require a loop
with a test. Modify the code to

Change: IFGl &= ~OFIFG;
To: while (IFG1 & OFIFG)
{

IFGl &= ~OFIFG;
_delay cycles(100000);
}

The statement while (IFG1 & OFIFG) tests the OFIFG in the IFGI register. If that
fault flag is clear we will exit the loop. We need to wait 50 ps after clearing the flag until
we test it again. The _delay cycles(100000) ; is much longer than that. We need it
to be that long so we can see the red LED light at the beginning of the code. Otherwise it
would flash so quickly that we wouldn’t be able to see it.

19. Finally, we need to add a line of code to turn off the red LED, indicating that the fault test
has been passed. Add the new line after the while loop:

P1OUT = O;

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-13

Lab 3: Initialization and GPIO

20. Since we made a lot of changes to the code (and had a chance to make a few errors),
check to see that your code looks like:

#include "msp430g2553.h"

#ifndef TIMERO Al VECTOR

#define TIMERO Al VECTOR TIMERAl VECTOR
#define TIMERO A0 VECTOR TIMERAO VECTOR
#endif

void main (void)

{
WDTCTL = WDTPW + WDTHOLD; // watchdog timer setup

P1DIR 0x41; // I/0 setup
P10OUT = 0x01;

BCSCTL3 |= LFXT1S 0 + XCAP_3; // clock system setup

while (IFGl1 & OFIFG) // wait for OSCFault to clear
{

IFGl &= ~OFIFG;

_delay cycles (100000);
}

P1OUT = 0; // both LEDs off
_bis SR register (SCGl + SCGO); // clock system setup
BCSCTL2 |= SELM 3 + DIVM 3;
while (1)
{

P10OUT = 0x40; // LED on

_delay cycles (100);

P1OUT = 0; // LED off

_delay cycles(5000);
}

Again, you could have cut and pasted from XT.txt, but you’re here to learn. ©

21. Click the “Debug” button i . Click the Proceed button in the ULP Advisor. The “CCS
Debug” perspective should open, the program will load automatically, and you should
now be at the start of main ().

22. Look closely at the LEDs on the LaunchPad and Run the code. If everything is working
correctly, the red LED should flash very quickly (the time spent in the delay and waiting
for the crystal to start) and then the green LED should blink every second or so. That’s
about three times the rate it was blinking before due to the higher crystal frequency.

When done, halt the code by clicking the suspend button

3-14 Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Lab 3: Initialization and GPIO

23. Click on the Terminate button ™ to stop debugging and return to the “CCS Edit”
perspective. Save your work by clicking File - Save As and select the parent
folder as Lab3. Name the file Lab3b.c and click OK. Make sure to exclude Lab3b.c
from the build. Close the Lab3b editor tab and double click on main. c in the Project
Explorer pane.

Running the CPU on the DCO and the Crystal

The slowest frequency that we can run the DCO is about 1MHz (this is also the default speed).
So we will get started switching the MCLK over to the DCO. In most systems, you will want the
ACLK to run either on the VLO or the 32768 Hz crystal. Since ACLK in our current code is
running on the crystal, we will leave it that way and just turn on and calibrate the DCO.

24. We could just let the DCO run, but let’s calibrate it. Right after the code that stops the
watchdog timer, add the following code:

if (CALBCl_lMHZ ==0xFF || CALDCO_lMHZ == 0xFF)
{

while (1) ; // If cal constants erased, trap CPU!!
}

BCSCTL1 = CALBCl_1MHZ; // Set range
DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation

Notice the trap here. It is possible to erase the segment A of the information flash
memory. Blank flash memory reads as OxFF. Plugging OxFF into the calibration of the
DCO would be a real mistake. You might want to implement something similar in your
own fault handling code.

25. We need to comment out the line that stops the DCO. Comment out the following line:
// __bis_SR register (SCGl + SCGO) ;

26. Finally, we need to make sure that MCLK is sourced by the DCO.

Change: BCSCTL2 |= SELM 3 + DIVM 3;
To: BCSCTL2 |= SELM 0 + DIVM 3;

Double check the bit selection with the User’s Guide and header file.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-15

Lab 3: Initialization and GPIO

27. The code should now look like:

#include "msp430g2553.h"

#ifndef TIMERO Al VECTOR

#define TIMERO Al VECTOR TIMERA1 VECTOR
#define TIMERO A0 VECTOR TIMERAQ VECTOR
#endif

void main (void)

{

WDTCTL = WDTPW + WDTHOLD; // watchdog timer setup
if (CALBClilMHZ ==0xFF || CALDCOilMHZ == 0xFF)
{
while (1) ; // If cal constants erased,
} // trap CPU!!
BCSCTL1 = CALBC1 1MHZ; // Set range
DCOCTL = CALDCO_ 1MHZ; // Set DCO step + modulation
P1DIR = 0x41; // I/0 setup

P1OUT = 0x01;

BCSCTL3 |= LFXT1S 0 + XCAP_3; // clock system setup

while (IFGl1 & OFIFG) // wait for OSCFault to clear

{

IFGl &= ~OFIFG;

_delay cycles (100000);
}

P10OUT = 0; // both LEDs off
// bis SR register (SCGl + SCGO); // clock system setup
BCSCTL2 |= SELM 0 + DIVM 3;
while (1)
{
P1OUT = 0x40; // LED on
_delay cycles(100);
P10OUT = 0; // LED off

_delay cycles(5000);
}

The code can be found in DCO XT.txt, if needed. Save your changes.

28. Click the “Debug” button > . Click the Proceed button in the ULP Advisor. The “CCS
Debug” perspective should open, the program will load automatically, and you should
now be at the start of main ().

Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Lab 3: Initialization and GPIO

29. Look closely at the LEDs on the LaunchPad and Run the code. If everything is working
correctly, the red LED should be flash very quickly (the time spent in the delay and
waiting for the crystal to start) and the green LED should blink very quickly. The DCO
is running at 1MHz, which is about 33 times faster than the 32768 Hz crystal. So the
green LED should be blinking at about 30 times per second.

30. Click the Terminate ™ button to stop debugging and return to the “CCS Edit”
perspective. Save your work by clicking File - Save As and select the parent
folder as Lab3. Name the file Lab3c.c. Click OK. Make sure to exclude Lab3c.c from
the build. Close the Lab3c.c editor tab and double click on main.c in the Project Explorer
pane.

Optimized Code Running the CPU on the DCO and the Crystal

The previous code was not optimized, but very useful for educational value. Now we’ll look at
an optimized version. Delete the code from your main.c editor window (click anywhere in the
text, Ctrl-A, then delete). Copy and paste the code from OPT XT.txt into main.c. Examine the
code and you should recognize how everything works. A function has been added that
consolidates the fault issue, removes the delays and tightens up the code. Build, load, and run as
before. The code should work just as before. If you would like to test the fault function, short the
XIN and XOUT pins with a jumper before clicking the Run button. That will guarantee a fault
from the crystal. You will have to power cycle the LaunchPad to reset the fault.

Click on the Terminate button ™ to stop debugging and return to the “CCS Edit”
perspective. Save your work by clicking File - Save As and select the parent folder as
Lab3. Name the file Lab3d.c. Click OK. Make sure to exclude Lab3d.c from the build. Close the
Lab3d.c editor tab.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-17

Lab 3: Initialization and GPIO

Running the CPU on the DCO without a Crystal

The lowest frequency that we can run the DCO is IMHz. So we will get started switching the
MCLK over to the DCO. In most systems, you will want the ACLK to run either on the VLO or
the 32768 Hz crystal. Since ACLK in our current code is running on the VLO, we will leave it
that way and just turn on and calibrate the DCO.

31.

32.

Double-click on main.c in the Project Explorer pane. Delete all the code from the file
(Ctrl-A, Delete). Copy and paste the code from your previously saved Lab3a.c into
main.c.

We could just let the DCO run, but let’s calibrate it. Right after the code that stops the
watchdog timer, add the following code:

if (CALBC1l 1MHZ ==0xFF || CALDCO 1MHZ == OxFF)
{

while (1) ; // If cal constants erased,
} // trap CPU!!

BCSCTL1 = CALBCl 1MHZ; // Set range

DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation

33.

34.

Notice the trap here. It is possible to erase the segment A of the information flash
memory that holds the calibration constants. Blank flash memory reads as OxFF.
Plugging OxFF into the calibration of the DCO would be a real mistake. You might want
to implement something similar in your own fault handling code.

We need to comment out the line that stops the DCO. Comment out the following line:
// __bis_SR register(SCGl + SCGO) ;

Finally, we need to make sure that MCLK is sourced by the DCO.

Change: BCSCTL2 |= SELM 3 + DIVM 3;
To: BCSCTL2 |= SELM 0 + DIVM 3;

Double check the bit selection with the User’s Guide and header file. Save your work.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Lab 3: Initialization and GPIO

35. The code should now look like:

#include "msp430g2553.h"

#ifndef TIMERO Al VECTOR

#define TIMERO Al VECTOR TIMERA1 VECTOR
#define TIMERO A0 VECTOR TIMERAQ VECTOR
#endif

void main (void)

{

WDTCTL = WDTPW + WDTHOLD; // watchdog timer setup
if (CALBCl 1MHZ ==0xFF || CALDCO 1MHZ == OxFF)
{
while (1) ; // If cal constants erased,
} // trap CPU!!
BCSCTL1 = CALBC1 1MHZ; // Set range
DCOCTL = CALDCO_ 1MHZ; // Set DCO step + modulation
P1DIR = 0x40; // I/0 setup
P10OUT = 0;
BCSCTL3 |= LFXT1S 2; // clock system setup

IFGl &= ~OFIFG;
// bis SR register (SCGl + SCGO);

BCSCTL2 |= SELM 0 + DIVM 3;

while (1)

{
P1OUT = 0x40; // LED on
_delay cycles(100);
P1OUT = 0; // LED off

_delay cycles (5000);
}

The code can be found in DCO_VLO.txt, if needed. Save your changes.

36. Click the “Debug” button s . Click the Proceed button in the ULP Advisor. The
“CCS Debug” perspective should open, the program will load automatically, and you
should now be at the start of main ().

37. Run the code. If everything is working correctly, the green LED should blink very
quickly. With the DCO running at IMHz, which is about 30 times faster than the 32768
Hz crystal. So the green LED should be blinking at about 30 times per second. When
done halt the code.

38. Click on the Terminate button to stop debugging and return to the “CCS Edit”
perspective. Save your work by clicking File - Save As and select the parent
folder as Lab3. Name the file Lab3e.c. Click OK. Make sure to exclude Lab3e.c from
the build. Close the Lab3e.c editor tab and double click on main.c in the Project Explorer
pane.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-19

Lab 3: Initialization and GPIO

Optimized Code Running the CPU on the DCO and VLO

This is a more optimized version of the previous step’s code. Delete the code from your main.c
editor window (click anywhere in the text, Ctrl-A, then delete). Copy and paste the code from
OPT_ VLO.txt into main.c. Examine the code and you should recognize how everything works.
A function has been added that consolidates the fault issue, removes the delays and tightens up
the code. Build, load, and run as before. The code should work just as before. There is no real
way to test the fault function, short of erasing the information segment A Flash — and let’s not do
that ... okay?.

Click on the Terminate button ™ to stop debugging and return to the “CCS Edit”
perspective. Save your work by clicking File - Save As and select the parent folder as
Lab3. Name the file Lab3f.c. Click OK and then close the Lab3f.c editor pane. Make sure to
exclude Lab3f.c from the build.

Right-click on Lab3 in the Project Explorer pane and select Close Project.

ST

You’re done.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO

Analog-to-Digital Converter

Introduction

This module will cover the basic details of the MSP430 Value Line analog-to-digital converter.
In the lab exercise you will write the necessary code to configure and run the converter.

Analog-to-Digital Converter |

Interrupts and the Timer
Low-Power Optimization
Serial Communications
Grace
FRAM
I: Capacitive Touc

ADC10...

31

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4-1

Module Topics

Module Topics

Analog-to-Digital Converter 4-1
MOUIE TOPICS.......oveeeeeeiee ettt ettt ettt e et e et e et e e bt e e abseessaeestaeansaeensaeessaeensseesaeenseeens 4-2
ANAlOG-10-DiGitAl CONMVEFLET ..ottt ettt ettt 4-3

Fast FIEXibDIE ADCT0coiiiiiiiiiieee ettt sttt ettt et sbe e b et et eeae e 4-3
SAMPIE TIMING ..evieiiieiiieeieeeteeee ettt e et e e sttt esbeestbeessbeessseessbeessseesssaessseessseessseesssaessseensseenssenn 4-4
Autoscan + DTC Performance BOOSEcc.eoiuiiiiiiiiiiiieieeeeee e 4-4
Lab 4: Analog-to-Digital COMVEFLETcccccouiriiiiiiiieieieeeeete ettt e 4-5
L0 10} 1< 15 LSRR TTSPRS 4-5
PIOCEAUIE ...ttt ettt st b e s bt e b ettt s e b saeebe e bt ebt et et enbenaea 4-6

4-2 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter

Analog-to-Digital Converter

Analog-to-Digital Converter
Fast Flexible ADC10
Fast Flexible ADC10

¢ 10-bit 8 channel SAR ADC

¢ 6 external channels :|1.5Vor2.5v
¢ Vcc and internal temperature
¢ 200 ksps+ Avee Avee
¢ Selectable conversion clock 7 v
¢ Autoscan T T
+ Single S/H [10-bit SAR
¢ Sequence

ADC10SC
¢ Repeat-single ma
¢ Repeat-sequence TA2
¢ Internal or External reference B R >
. . Batt Tempi 1
¢ Timer-A triggers 0 4 1
: Data RAM, Flash, 1
¢ Interrupt capable o reanster | | Peripherals |}
: 1
¢ Data Transfer Controller (DTC) L Controller |)
e e e e e e e e e e e e
¢ Auto power-down
Sample Timing ...

32

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4-3

Analog-to-Digital Converter

Sample Timing

Sample Timing

4 Reference must settle for <30us
@ Selectable hold time

% 13 clock conversion process

% Selectable clock source

- ADC100SC (~5MHz)

-ACLK
= Lzl S oy Comvenion s
- SMCLK
E '_|
|
SAMPCON _,7 13 xADC10CLKs
_J +— lsanple — Pt tonyan————P|
—
Ii]‘nf
moeo [\ O\ ‘\u_ el

Autoscanand DTC ..
3

Autoscan + DTC Performance Boost

70 Cycles / Sample

Autoscan + DTC Performance Boost

i Data2
- , Data1
- L Data0
pTC Data2
// Software // Autoscan + DTC
Res[pRes++] = ADC10MEM; _BIS SR(CPUOFF) ;
ADC10CTLO &= ~ENC;
if (pRes < NR;CONV)
{ Fully Automatic
Curr INCH++ ;
if (CurrINCH == 3)
CurrINCH = 0;
ADC10CTL1 &= ~INCH 3;
ADC10CTL1 |= CurrINCH;
ADC10CTLO |= ENC+ADC10SC;

Lab ...
34

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter

Lab 4: Analog-to-Digital Converter

Lab 4: Analog-to-Digital Converter

Objective

The objective of this lab is to learn about the operation of the on-chip analog-to-digital converter.
In this lab exercise you will write and examine the necessary code to run the converter. The
internal temperature sensor will be used as the input source.

Lab4: ADC

* Measure internal temperature
« Set timing requirements
+ Additional CCS features

WpTexas -
INSTRUMENTS
=

£
W

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4-5

Lab 4: Analog-to-Digital Converter

Procedure

Create a New Project

1. Create a new project by clicking:
File = New = CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to click Empty Project (with main.c), and then click Finish.

| &% New ces project = = ||
CCS Project —
Create a new CCS Project.
Project name: Lab4
Output type: | Executable v]

[T] Use default lecation

Location: C:\MSP430_LaunchPad\Labs\Labd'Project

Device

Family: | MSP430 -
Variant: 2553 - | M5P430G2553 v]
Connection: [TI MSP430 USEL [Default] v]

b Advanced settings

¥ Project templates and examples

type filter text Creates an empty project fully initialized — »
for the selected device. The project will
contain an empty ‘'main.c’ source-file,

4 [Z] Empty Projects
[& Empty Project
[Empty Project (with main.c)
[& Empty Assembly-only Project
[z Empty Grace (MSP430) Project
[3 Erpty RTSC Project

4 E Basic Examples
[& Blink The LED - -

m

@ < Back Mext = [Finish] ’ Cancel

4-6 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter

Lab 4: Analog-to-Digital Converter

Source File

Most coding efforts make extensive use of the “cut and paste” technique, or commonly known as
“code re-use”. The MSP430 family is probably more prone to the use of this technique than most
other processors. There is an extensive library of code example for all of the devices in both
assembly and C. So, it is extremely likely that a piece of code exists somewhere which does
something similar to what we need to do. Additionally, it helps that many of the peripherals in
the MSP430 devices have been deliberately mapped into the same register locations. In this lab
exercise we are going to re-use the code from the previous lab exercise along with some code
from the code libraries and demo examples.

1. We need to open the files containing the code that we will be using in this lab exercise.
Open the following two files using File > Open File..

e C:\MSP430_LaunchPad\Labs\Lab3\Files\OPT_VLO.txt

e C:\MSP430 LaunchPad\Labs\Lab2\Files\Temperature Sense Demo.txt

2. Copy all of the code in OPT VLO. txt and paste it intomain.c, erasing all the
existing code in main.c. This will set up the clocks:

e ACLK=VLO
e MCLK =DCO/8 (IMHz/8)
3. Next, make sure the SMCLK is also set up:

Change: BCSCTL2 |= SELM 0 + DIVM 3;
To: BCSCTL2 |= SELM 0 + DIVM 3 + DIVS_3;

The SMCLK default from reset is sourced by the DCO and DIVS 3 sets the SMCLK
divider to 8. The clock set up is:

e ACLK=VLO
e MCLK = DCO/8 (IMHz/8)
e SMCLK = DCO/8 (IMHz/8)

4. If you are using the MSP430G2231, make sure to make the appropriate change to the
header file include at the top of the code.

5. As atest —build, load, and run the code. If everything is working correctly the green
LED should blink very quickly. When done, halt the code and click the Terminate

button ™ to return to the “CCS Edit” perspective.

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4-7

Lab 4: Analog-to-Digital Converter

Set Up ADC Code

Next, we will re-use code from Temperature Sense Demo.txt to setup the ADC. This
demo code has the needed function for the setup.

6.

From Temperature Sense Demo.txt copy the first four lines of code from the
ConfigureAdcTempSensor () function and paste it as the beginning of the while (1)
loop, just above the P1OUT line. Those lines of code are:

ADCIOCTL1 = INCH 10 + ADC10DIV_ 3;

ADC10CTLO SREF_l + ADClOSHT_3 + REFON + ADC100N + ADCI1O0IE;
_delay cycles(1000) ;

ADC10CTLO |= ENC + ADC10SC;

We are going to examine these code lines one at the time to make sure they are doing
what we need them to do. You will need to open the User’s Guide and header file for
reference again. (It might be easier to keep the header file open in the editor for
reference).

First, change ADC10DIV_3 to ADC10DIV_0.

ADC10CTL1 = INCH_10 + ADC1ODIV_0;

ADC10CTL1 is one of the ADC10 control registers. INCH 10 selects the internal
temperature sensor input channel and ADC10DIV_ 0 selects divide-by-1 as the ADC10
clock. Selection of the ADC clock is made in this register, and can be the internal
ADCI100SC (5MHz), ACLK, MCLK or SMCLK. The ADC100SC is the default
oscillator after PUC. So we will use these settings.
ADC10CTLO = SREF_1 + ADC10SHT 3 + REFON + ADC10ON + ADC1O0IE;
ADC10CTLO is the other main ADC10 control register:
e SREF 1:selects the range from V to Vggr: (ideal for the temperature sensor)
e ADCIOSHT 3:maximum sample-and-hold time (ideal for the temperature sensor)
e REFON: turns the reference generator on (must wait for it to settle after this line)
e ADCI100N: turns on the ADC10 peripheral
e ADCI10IE: turns on the ADCI10 interrupt — we do not want interrupts for this lab
exercise, so change the line to:

ADC10CTLO = SREF_1 + ADC10SHT 3 + REFON + ADC1OON;

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter

Lab 4: Analog-to-Digital Converter

The next line allows time for the reference to settle. A delay loop is not the best way to
do this, but for the purposes of this lab exercise, it’s fine.

_delay cycles(1000);
Note that the compiler will accept a single or double underscore.

Referring to the User’s Guide, the settling time for the internal reference is < 30us. As
you may recall, the MCLK is running at DCO/8. That is IMHz/8 or 125 kHz. A value of
1000 cycles is 8ms, which is much too long. A value of 5 cycles would be 40ps. Change
the delay time to that value:

_delay cycles(5);

The next line:

ADC10CTLO |= ENC + ADC1l0SC;

enables the conversion and starts the process from software. According to the user’s
guide, we should allow thirteen ADC10CLK cycles before we read the conversion result.
Thirteen cycles of the SMHz ADC10CLK is 2.6us. Even a single cycle of the DCO/8
would be longer than that. We will leave the LED on and use the same delay so that we
can see it with our eyes. Leave the next two lines alone:

P1OUT = 0x40;
_delay cycles(100);

8. When the conversion is complete, the encoder and reference need to be turned off. The
ENC bit must be off in order to change the REF bit, so this is a two step process. Add the
following two lines right after the first __delay cycles(100) ;

ADC10CTLO &= ~ENC;
ADC10CTLO &= ~(REFON + ADC100N) ;

9. Now the result of the conversion can be read from ADC10MEM. Next, add the following
line to read this value to a temporary location:

tempRaw = ADC10MEM;

Remember to declare the tempRaw variable right after the #endif line at the beginning
of the code:

volatile long tempRaw;

The volatile modifier forces the compiler to generate code that actually reads the
ADC10MEM register and place it in tempRaw. Since we’re not doing anything with
tempRaw right now, the compiler optimizer could decide to eliminate that line of code.
The volatile modifier prevents this from happening.

10. The last two lines of the while (1) loop turn off the green LED and delays for the next
reading of the temperature sensor. This time could be almost any value, but we will use
about 1 second in between readings. MCLK is DCO/S8 is 125 kHz. Therefore, the delay
needs to be 125,000 cycles:

P10OUT = O;
_delay cycles(125000) ;

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4-9

Lab 4: Analog-to-Digital Converter

11. At this point, your code should look like the code below. We have added the comments

to make it easier to read and understand. Click the Save button on the menu bar to save
the file.

#include <msp430g2553.h>

#ifndef TIMERO Al VECTOR

#define TIMERO Al VECTOR TIMERAL VECTOR
#define TIMERO AQ VECTOR TIMERAO VECTOR
#endif

volatile long tempRaw;
void FaultRoutine (void) ;

void main (void)

{
WDTCTL = WDTPW + WDTHOLD;
P1DIR
P1OUT

// Stop watchdog timer
0x41; // P1.0&6 outputs
0; // LEDs off

if (CALBCl_lMHZ ==0xFF
FaultRoutine () ;

| CALDCO_lMHZ == (0xFF)
// If cal data is erased
// run FaultRoutine ()
// Set range
// Set DCO step + modulation

BCSCTL1 = CALBCl 1MHZ;
DCOCTL = CALDCO 1MHZ;

BCSCTL3 |= LFXT1S 2; // LFXT1 = VLO

IFGl &= ~OFIFG; // Clear OSCFault flag
BCSCTL2 |= SELM 0 + DIVM 3 + DIVS 3; // MCLK = DCO/8

while (1)

{

ADCI1O0CTL1 = INCH 10 + ADC10DIV 0; // Temp Sensor ADCIOCLK

ADCI10CTLO = SREF 1 + ADCIOSHT 3 + REFON + ADCIO0OON;

_delay cycles(5); // Wait for ADC Ref to settle
ADC10CTLO |= ENC + ADC10SC; // Sampling & conversion start

P1OUT = 0x40;

// green LED on
_delay cycles(100);

ADC10CTLO &= ~ENC;
ADC10CTLO &= ~(REFON + ADC100N) ;
tempRaw = ADC10MEM;

P1OUT = 0;
_delay cycles(125000);
}

// green LED off

}

void FaultRoutine (void)

{
P10OUT = 0x01; // red LED on
while (1) ; // TRAP

}

Note: for reference, this code can found in Lab4.txt.

12. Close the OPT VLO. txt and Temperature Sense Demo.txt reference files.
They are no longer needed.

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter

Lab 4: Analog-to-Digital Converter

Build, Load, and Run the Code

13. Click the “Debug” button g . When the ULP Advisor appears, click Proceed. The
“CCS Debug” perspective should open, the program will load automatically, and you
should now be at the start of main () .

14. Run the code. If everything is working correctly the green LED should be blinking about

once per second. Click Suspend to stop the code.

Test the ADC Conversion Process

15. Next we will test the ADC conversion process and make sure that it is working. In the
code line containing: tempRaw = ADC10MEM;

double-click on tempRaw to select it. Then right-click on it and select Add Watch
Expression then click OK. If needed, click on the Expressions tab near the upper
right of the CCS screen to see the variable added to the watch window.

16. Right-click on the next line of code: P1OUT = 0;

and select Breakpoint (Code Composer Studio) =2 Breakpoint. When
we run the code, it will hit the breakpoint and stop, allowing the variable to be read and
updated in the watch window.

17. Make sure the Expressions window is still visible and run the code. It will quickly
stop at the breakpoint and the tempRaw value will be updated. Do this a few times,
observing the value. (It might be easier to press F8 rather than click the Run button).

The reading should be pretty stable, although the lowest bit may toggle. A typical
reading is about 734 (that’s decimal), although your reading may be a little different.

You can right-click on the variable in the watch window and change the format to
hexadecimal, if that would be more interesting to you. Each time the value changes it will
be highlighted in yellow.

18. Just to the left of the P1OUT = 0; instruction you should see a symbol % indicating a
breakpoint has been set. It might be a little hard to see with the Program Counter arrow in

the way. Right-click on the ﬁ symbol and select Breakpoint Properties...
We can change the behavior of the breakpoint so that it will stop the code execution,
update our watch expression and resume execution automatically. Change the Action
parameter to Update View as shown below and click OK.

Properties Values

a4 Hardware Configuration

. Type Simple
4 Debugger Response
Condition
. Skip Count 0
4 Action Update View
View Expressions
a4 Miscellaneous
Group Default Group
MName Breakpeint

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4-11

Lab 4: Analog-to-Digital Converter

19. Run the code. Warm your finger up, like you did in the Lab2 exercise, and put it on the
device. You should see the measured temperature climb, confirming that the ADC
conversion process is working. Every time the variable value changes, CCS will highlight
it in yellow.

Terminate Debug Session and Close Project

20. Terminate the active debug session using the Terminate button B This will close
the debugger and return CCS to the “CCS Edit” perspective.

21. Next, close the project by right-clicking on Lab4 in the Project Explorer pane and
select Close Project.

ST

You’re done.

4-12 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter

Interrupts and the Timer

Introduction

This module will cover the details of the interrupts and the timer. In the lab exercise we will
configure the timer and alter the code to use interrupts.

Analog-to-Digital Converter

| Interrupts and the Timer
Low-Power Optimization

Serial Communications

Grace
FRAM
I: Capacitive Touc

Timer Architecture ...
36

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5-1

Module Topics

Module Topics

Interrupts and the Timer 5-1
MOUIE TOPICS.......oveeeeeeiee ettt ettt ettt e et e et e et e e bt e e abseessaeestaeansaeensaeessaeensseesaeenseeens 5-2
INLrTUPLS ANA THE TUMET ...ttt ettt ettt e et e et e e taeetteetaeesseesseesseens 5-3

TIMET A2/AZ FEALUIESeentiiiiieiieeiieettet ettt ettt b b et ettt st e sbe e bt et et e eateebeenaeens 5-3
INterrupts And the STACKeiivuiiiiieeie et e et e et e et e etee e taeenseeennes 5-3
VECHOT TADIE ...ttt ettt st s h e bt ettt ea e e et e sbe e b e e beebeenaeeaees 5-4
ISR COQINE ...ttt ettt ettt ettt e st e st e bt easeenbeessesseeseenseensesnsesnsesseeseenseenseansenssenseens 5-4
Lab 5: Timer QRd INIEFFUPLS..........c..ccciiiiiiiiieieeet ettt e 5-5
L0 10} 1< 15 4 PR STTRPRRSR 5-5
PIOCEAULIE ...ttt bbbttt st b e s bt bt ettt s e besatebe e bt eb s et etenbenaea 5-6

5-2 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer

Interrupts and the Timer

Interrupts and the Timer

Timer_A2/A3 Features

Timer_A2 and A3 Features

Stop/Halt Continuous

Timsr is halted Timer continuously counts up

¢ Asynchronous 16-bit
timer/counter

¢ Continuous, up-down,
up count modes

¢ 2 or 3 capture/compare
registers Up UpDown
Timer counts between 0 and CCRO Timer counts between 0 and CCRO and 0
+ PWM outputs G

¢ Two interrupt vectors .
for fast decoding M L

OFFFFh URIDOWHM ale

Interrupts and Stack ...
37

Interrupts and the Stack

Interrupts and the Stack

Entering Interrupts

Any currently executing instruction is completed

@ The PC, which points to the next instruction, is pushed onto the stack

4 The SR is pushed onto the stack

@ The interrupt with the highest priority is selected

The interrupt request flag resets automatically on single-source flags;
Multiple source flags remain set for servicing by software

The SR is cleared; This terminates any low-power mode; Because the
GIE bit is cleared, further interrupts are disabled

The content of the interrupt vector is loaded into the PC; the program
continues with the interrupt service routine at that address

Before After
Interrupt Interrupt
Item1 Item1
SP—» ltem2 TOS ltem2
PC
sp—» SR TOS
Vector Table ...

56

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5-3

Interrupts and the Timer

Vector Table

MSP430G2553 Vector Table
Interrupt Source | Interrupt Flag | System Word Priority
Interrupt Address
Power-up PORIFG
External Reset RSTIFG
Watchdog Timer+ WDTIFG Reset OFFFEh 31
Flash key violation KEYV (highest)
PC out-of-range
NMI NMIIFG Non-maskable
Oscillator Fault OFIFG Non-maskable OFFFCh 30
Flash memory access ACCVIFG Non-maskable
violation
Timer1_A3 TA1CCRO CCIFG maskable OFFFAh 29
Timer1_A3 TA1CCR2 TA1CCR1 maskable OFFF8h 28
CCIFG, TAIFG
Comparator_A+ CAIFG maskable OFFF6h 27
Watchdog Timer+ WDTIFG maskable OFFF4h 26
Timer0_A3 TAOCCRO CCIFG maskable OFFF2h 25
Timer0_A3 TAOCCR1 TAOCCR1 maskable OFFFOh 24
CCIFG TAIFG
USCI_A0/USCI_BO receive UCAORXIFG, UCBORXIFG maskable OFFEEh 23
USCI_BO 12C status
USCI_A0/USCI_BO transmit UCAOTXIFG, UCBOTXIFG maskable OFFECh 22
USCI_BO I12C receive/transmit
ADC10 ADC10IFG maskable OFFEAh 21
OFFE8h 20
1/0 Port P2 (up to 8) P2IFG.0 to P2IFG.7 maskable OFFE6h 19
1/0 Port P1 (up to 8) P1IFG.0 to P1IFG.7 maskable OFFE4h 18
OFFE2h 17
OFFEOh 16
Boot Strap Loader Security OFFDEh 15
Key
Unused OFFDEh to OFFCDh 14-0
ISR Coding ...
39
ISR Coding
ISR Coding
#pragma vector=WDT_VECTOR
__interrupt void WDT_ISR(void)
{
IEl1 &= ~WDTIE; // disable interrupt
IFGl &= ~WDTIFG; // clear interrupt flag
WDTCTL = WDTPW + WDTHOLD; // put WDT back in hold state
BUTTON_IE |= BUTTON; // Debouncing complete
}
#pragma vector - the following function is an ISR for the listed vector
_interrupt void - identifies ISR name
No special return required
Lab ...
40

5-4 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer

Lab 5: Timer and Interrupts

Lab 5: Timer and Interrupts

Objective

The objective of this lab is to learn about the operation of the on-chip timer and interrupts. In this
lab exercise you will write code to configure the timer. Also, you will alter the code so that it

operates using interrupts.

Lab5: Timer and Interrupts

+ Configure timer
« Alter code to operate using interrupts
* Build and test

WpTexas -
INSTRUMENTS
=

£
W

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5-5

Lab 5: Timer and Interrupts

Procedure

Create a New Project

1. Create a new project by clicking:
File 2 New > CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to click Empty Project (with main.c), and then click Finish.

= . -
7 New CCS Project Bl 3

CCS Project &%=

Create a new CCS Project.

Project name: Lah5

Output type: | Executable v]

[7] Use default location

Location: C:A\MSP430_LaunchPad\Labs\Lab5\Project

Device

Family | MSP430 -
Variant: 2553 ~+ | msPaz062553 -
Connection: ’TI M5P430 USBL [Default] v]

b Advanced settings

= Project ternplates and examples

type filter text Creates an empty project fully initialized =«
for the selected device, The project will
| contain an empty ‘'main.c’ source-file

*

4 ||=| Empty Projects

55 Empty Project
| 5= Empty Project (with main.c)
55 Empty Assembly-only Project
55 Empty Grace (M5P430]) Project
5= Empty RTSC Project
Basic Examples

l55r Blink The LED - -

m

@ ey Next > [Finsh || Cancel

5-6 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer

Lab 5: Timer and Interrupts

Source File

The solution file from the last lab exercise will be used as the starting point for this lab exercise.
We’ve cleaned up the file slightly to make it a little more readable by putting the initialization
code into individual functions.

1. Openthe Lab5 Start.txt fileusing File = Open File..
e C:\MSP430 LaunchPad\Labs\Lab5\Files\Lab5_ Start.txt

2. Copy all of the code in Lab5 Start.txt and paste it into main. c, erasing all the
existing code in main. c. This will be the starting point for this lab exercise.

3. Closethe Lab5 Start.txt file. Itis no longer needed.

4. As atest — build, load, and run the code. If everything is working correctly the green
LED should be blinking about once per second and it should function exactly the same as
the previous lab exercise. When done, halt the code and click the Terminate button

B to return to the “CCS Edit” perspective.

Using the Timer to Implement the Delay

5. In the next few steps we’re going to implement the one second delay that was previously
implemented using the delay intrinsic with the timer.

Find _delay cycles(125000) ; and delete that line of code.

6. We need to add a function to configure the Timer. Add a declaration for this new
function to top of the code, underneath the one for ConfigADC10:

void ConfigTimerA2 (void) ;
Then add a call to the function underneath the call to ConfigADC10;

ConfigTimerA2 () ;

And add a template for the function at the very bottom of the program:
void ConfigTimerA2 (void)

{

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5-7

Lab 5: Timer and Interrupts

7. Next, we need to populate the ConfigTimera2 () function with the code to configure
the timer. We could take this from the example code, but it’s pretty simple, so let’s do it
ourselves. Add the following code as the first line:

CCTLO = CCIE;

This enables the counter/compare register 0 interrupt in the CCTLO capture/compare
control register. Unlike the previous lab exercise, this one will be using interrupts. Next,
add the following two lines:

CCRO = 12000;
TACTL = TASSEL_1 + MC_2;

We’d like to set up the timer to operate in continuous counting mode, sourced by the
ACLK (VLO), and generate an interrupt every second. Reference the User’s Guide and
header files and notice the following:

e TACTL is the Timer A control register
e TASSEL 1 selects the ACLK
e MC_2 sets the operation for continuous mode

When the timer reaches the value in CCRO, an interrupt will be generated. Since the
ACLK (VLO) is running at 12 kHz, the value needs to be 12000 cycles.

8. We have enabled the CCRO interrupt, but global interrupts need to be turned on in order
for the CPU to recognize it. Right before the while(1) loop in main(), add the following:

_BIS_SR(GIE);

Create an Interrupt Sevice Routine (ISR)

9. At this point we have set up the interrupts. Now we need to create an Interrupt Service
Routine (ISR) that will run when the Timer interrupt fires. Add the following code
template to the very bottom of main.c:

#pragma vector=TIMERO_AO_VECTOR
__interrupt void Timer A (void)

{
}

These lines identify this as the TIMER ISR code and allow the compiler to insert the
address of the start of this code in the interrupt vector table at the correct location. Look
it up in the C Compiler User’s Guide. This User’s Guide was downloaded in lab 1.

10. Remove all the code from inside the while (1) loop in main() and paste it into the ISR
template. This will leave the while (1) loop empty for the moment.

11. Almost everything is in place for the first interrupt to occur. In order for the 2™, 3",
4™ .. to occur at one second intervals, two things have to happen:

a) The interrupt flag has to be cleared (that’s automatic)
b) CCRO has to be set 12,000 cycles into the future

So add the following as the last line in the ISR:

CCRO +=12000;

5-8 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer

Lab 5: Timer and Interrupts

12. We need to have some code running to be interrupted. This isn’t strictly necessary, but
the blinking LEDs will let us know that some part of the code is actually running. Add
the following code to the while (1) loop:

P1OUT |= BITO;
for (1 = 100; i > 0; i--);
P1OUT &= ~BITO;
for (i = 5000; i > 0; i--);

This routine does not use any intrinsics. So when we’re debugging the interrupts, they
will look fine in C rather than assembly. Don’t forget to declare i at the top of main.c:

volatile unsigned int i;

Modify Code in Functions and ISR

13. Let’s make some changes to the code for readability and LED function.

In FaultRoutine (),

e Change: P1lOUT = 0x01;

o To: P1OUT = BITO;
In ConfigLEDs (),

e Change: PI1DIR = 0x41;

e To: P1DIR = BIT6 + BITO;
In the Timer ISR,

e Change: P1OUT = 0x40;

e To: P1OUT |= BIT6;

and

e Change: PlOUT = 0;
e To: P1OUT &= ~BIT6;

14. At this point, your code should look like the code on the next two pages. We’ve added
the comments to make it easier to read and understand. Click the Save button on the
menu bar to save the file.

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5-9

Lab 5: Timer and Interrupts

#include <msp430g2553.h>

#ifndef TIMERO Al VECTOR

#define TIMERO Al VECTOR TIMERA1 VECTOR
#define TIMERO A0 VECTOR TIMERAO VECTOR
#endif

volatile long tempRaw;
volatile unsigned int i;

void FaultRoutine (void) ;
void ConfigWDT (void) ;
void ConfigClocks (void) ;
void ConfigLEDs (void) ;
void ConfigADC10 (void) ;
void ConfigTimerA2 (void) ;

void main (void)

{
ConfigWDT () ;
ConfigClocks () ;
ConfigLEDs () ;
ConfigADC10() ;
ConfigTimerA2 () ;

_BIS_SR(GIE);

while (1)
{
P1OUT |= BITO;
for (1 = 100; 1 > 0; i--);
P1OUT &= ~BITO;
for (i = 5000; i > 0; i--);
}
}

void ConfigWDT (void)

{
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

}

void ConfigClocks (void)
{

if (CALBCl_lMHZ ==0xFF || CALDCO_].MHZ == 0xFF)
FaultRoutine () ; // If calibration data is erased
// run FaultRoutine ()
BCSCTL1 = CALBCl 1MHZ; // Set range
DCOCTL = CALDCO_ 1MHZ; // Set DCO step + modulation
BCSCTL3 |= LFXT].S_Z; // LEXT1 = VLO
IFGl &= ~OFIFG; // Clear OSCFault flag
BCSCTL2 |= SELM 0 + DIVM 3 + DIVS 3; // MCLK = DCO/8, SMCLK = DCO/8

5-10 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer

Lab 5: Timer and Interrupts

void FaultRoutine (void)
{
P1OUT = BITO; // P1.0 on (red LED)
while (1) ; // TRAP
}

void ConfigLEDs (void)
{
PIDIR = BIT6 + BITO; // Pl.6 and P1.0 outputs
P10OUT 0; // LEDs off
}

void ConfigADC10 (void)
{
ADC10CTL1 = INCH 10 + ADC10DIV_O; // Temp Sensor ADC10CLK
}

void ConfigTimerA2 (void)
{
CCTLO = CCIE;
CCRO = 12000;
TACTL = TASSEL 1 + MC_2;
}

#pragma vector=TIMERO A0 VECTOR
__interrupt void Timer A (void)
{
ADCIOCTLO = SREF 1 + ADC10SHT 3 + REFON + ADC10ON;

_delay cycles(5); // Wait for ADC Ref to settle
ADC10CTLO |= ENC + ADC10SC; // Sampling and conversion start
P1OUT |= BIT6; // Pl.6 on (green LED)

_delay cycles(100);

ADC10CTLO &= ~ENC; // Disable ADC conversion
ADC10CTLO &= ~ (REFON + ADC10ON) ; // Ref and ADC10 off

tempRaw = ADC10MEM; // Read conversion value

P10UT &= ~BIT6; // green LED off

CCRO +=12000; // add 12 seconds to the timer

Note: for reference, the code can found in Lab5_Finish.txt in the Files folder.

Build, Load, and Run the Code

15. Click the “Debug” button g . When the ULP Advisor appears, click Proceed. The
“CCS Debug” view should open, the program will load automatically, and you should
now be at the start of main ().

16. Run the code and observe the LEDs. If everything is working correctly, the red LED
should be blinking about twice per second. This is the while (1) loop that the Timer is
interrupting. The green LED should be blinking about once per second. This is the rate

that we are sampling the temperature sensor. Click Suspend to stop the code.

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5-11

Lab 5: Timer and Interrupts

Test the Code

17. Make sure that the tempRaw variable is still in the Expressions window. If not, then
double-click tempRaw on the code line tempRaw = ADC10MEM; to select it. Then right-
click on it and select Add Watch Expression. and click OK. If needed, click on the
Expressions tab near the upper right of the CCS screen to see the variable added to
the watch window.

18. In the Timer_ A2 ISR, find the line with P1OUT &= ~BIT6; and place a breakpoint
there. Right-click on the breakpoint symbol and select Breakpoint
Properties... Change the Action parameter to Update View as shown below
and click OK.

Properties Values

4 Hardware Configuration

- Type Simple
4 Debugger Response
Condition
- Skip Count 0
4 Action Update View
View Expressions
4 Miscellanecus
Group Default Group
Name Breakpoint

19. Run the code. The debug window should quickly stop at the breakpoint and the
tempRaw value will be updated. Observe the watch window and test the temperature
sensor as in the previous lab exercise.

Terminate Debug Session and Close Project

20. Terminate the active debug session using the Terminate B button. This will close
the debugger and return to the “CCS Edit” perrspective.

21. Close the project by right-clicking on LabS5 in the Project Explorer pane and
select Close Project.

ST

You’re done.

5-12 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer

Low-Power Optimization

Introduction

This module will explore low-power optimization. In the lab exercise we will show and
experiment with various ways of configuring the code for low-power optimization.

Analog-to-Digital Converter
Interrupts and the Timer
| Low-Power Optimization

Serial Communications

Grace
FRAM

I: Capacitive Touc

Low Power Modes ...

42

Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Module Topics

Module Topics

Low-Power Optimization 6-1
MOUIE TOPICS.......oveeeeeeiee ettt ettt ettt e et e et e et e e bt e e abseessaeestaeansaeensaeessaeensseesaeenseeens 6-2
LOW-POWET ODUIIZALIONcveeeeeieeiie e eieeeee et e etee et e estae et e e st e eabaeasaeensaeasaeessseessseensseesseenseeens 6-3

LOW-POWET MOAESeeeiiiiiiieiiieiie ettt ettt e st e st e e seaeeesteessbeeesbeessseessseesnsaesssaesnsaessseesnseesnseenns 6-3
LOW-POWET OPCIALION ...vvieiiieiiieiieeeiiieete et e ste e ettt este e sttt e saeeesbeessseessseessseeasseesnsaessseesnsesssseessessnseenns 6-3
SYSIEM IMOCLK & VCC 1eviiiiiiiiiieite ettt ettt ettt s e e sttt e steessbeessbeessbeessbaessseessseessseesssaensseenssasnssenn 6-5
PN IVIUKIIIE .ottt ettt et e et e st e e b e et e enseensesseesseesseenseenseanseesseesaensaenseensennsennnas 6-5
UnNUuSed Pin TerMUNAtIONc.veeviiiiiieiiesiiesitete et eteetee st este e e ebessaeseaesseesseenseenseanseessesseeseenseensennsesnnes 6-6
URTa-LOW-POWET AQVISOTeetiiiiiieiiesiiestt ettt ettt et e te et essaesetesseesseenseenseensesssesseeseenseensesnsesnnas 6-6
LaAD 6: LOW-POWEF MOGES............cc.oooceeeicieeaieeeeieeeeee ettt ettt et eaae e 6-7
L0 10} 1< 15 LSRR TTSURRS 6-7
PLOCEAULE ..ottt et ettt e et e bt e e essessaesstesseesseenseenseanseesseesaesaenseensesnsennnes 6-8

6-2 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Low-Power Optimization

Low-Power Optimization

Low-Power Modes

RSTNMI

Reset Active

Low-Power Modes

CPU and Clocks

CPU active. All enabled clocks active

CPU, MCLK disabled. SMCLK, ACLK active

CPU, MCLK disabled. DCO disabled if not used for
SMCLK. ACLK active

CPU, MCLK, SMCLK, DCO disabled. ACLK active

Mode
Active
LPMO
LPM1
LPM2
LPM3
LPM4
(&

@ CPU, MCLK, SMCLK, DCO disabled. ACLK active
woT -
Time Expired, Overiow) WDTFG = 1 WDTIFG =0 CPU and all clocks disabled
) FST/NMI is Reset Pin
WOTIFG=1_~ WDT is Active:
VIDT Active, —
Sacurity Key Viclation
Active Mode
CPU Is Aciive CPUOFF = 1
FF =
CP;‘?GE - ; Peripheral Modules Are Active | OSCOFF = 1
SCG1=0 SCGO=1
— s . SCG1=1
"l / Y NN
cPU or%p::\?‘u(o Y 4 \ N b LPu4
s MR D / N\ CPU Off, MCLK Off, DCO
SMCLK On, ACLK On / \ s
i /S NN Off, SMCLK Of,
YA NN ACLK Oft
cPUOFF=1 / / \ N P o
ics?? / / CPUOFE = 1\ '\ enerator
8681=0/ / cpuorr-1 50G0=1 N

o M D6 G Of Operation ...
43
Low-Power Operation
Low-Power Operation
¢ Power-efficient MSP430 apps:
4 Minimize instantaneous current draw
¢ Maximize time spent in low power modes
¢ The MSP430 is inherently low-power, but your
design has a big impact on power efficiency
¢ Proper low-power design techniques make the
difference
T MSP430 S & -"
32768 | Always-on : :)
i ACLK 230uA : > |
E low-power peripherals | ‘ ‘
! On demand | HIE ; ‘
5 SCLK)| R I— | N —
H CPU and peripherals A ¥ ¥ ¥
! g
“Instant on” clock
QOperation ...
A4

Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Low-Power Optimization

Low-Power Operation

¢ Power draw increases with...
+ Vcc
¢ CPU clock speed (MCLK)
¢ Temperature

¢ Slowing MCLK reduces instantaneous power, but
usually increases active duty cycle
+ Power savings can be nullified

4 The ULP ‘sweet spot’ that maximizes performance for the
minimum current consumption per MIPS: 8 MHz MCLK
Full operating range (down to 2.2V}

¢ Optimize core voltage for chosen MCLK speed

MCLK and Vee ...

45

Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Low-Power Optimization

System MCLK & Vcc

System MCLK & Vcc

Supply Voltage -V

A
Legend:
16 MHz
" /
I
T 12MHz ;
5
g
s
g 7
2
[}
& L
E
6 MHz
2 vy
w
-
>
18V 22V 27V 33V 36V

Supply voltage range,
during flash memory
programming

Supply voltage range,
during program execution

External LDO regulator required

4 Match needed clock speed with required VVce to achieve the lowest power

4 Unreliable execution results if Vec < the minimum required for the selected frequency
@ All G2xxx device operate up to 16MHz

Pin Muxing ...
45

Pin Muxing

Table 2. Terminal Functions

Pin Muxing

TERMINAL
N - ¥ DESCRIPTION
NEME W | .
N PW| RS&
] Genera-purpase aigia 10 pin
TACCLIC | Trer_A. cock sigral TACLK Input
\CLK ACLK gl outpu
a0 ADC10 ansicg iput 401"

Pt SCLCTME O 7

¢ Each pin has up to four functions
+ Top selection (above) is default
¢ Register bits (below) select pin function

Table 18. Port P1 (P1.0 to P1.2) Pin Functions - M5P430G2x31

CONTROL BITS / SIGNALS
PRNAME P13) |t FUNCTION oioRx | PiseLx ﬁ?&i‘fﬂ
Fib Fix(¥0) L0 0 0
TALCLK TAOTACLK 0 1 g
ACLK/ a ACLK 1]
0 4 x x tiy=0)

Unused pins. ..
a7

Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Low-Power Optimization

Unused Pin Termination

Unused Pin Termination

+ Digital input pins subject to shoot-through current

4 Input voltages between VIL and VIH cause shoot-through if
input is allowed to “float” (left unconnected)

4 Port l/Os should
¢ Driven as outputs
Be driven to Vecc or ground by an external device
+ Have a pull-up/down resistor

(Digital) CMOS Inverter
Vee Vin

Vg

Vin | Vout

I—‘

|||—

ULP Advisor-...
48

Ultra-Low-Power Advisor

Ultra-Low-Power Advisor

¢ Integrated into CCS build é ULP Advisor™
flow

¢ Checks your code against ULP Advisor - Rule Table foc]
a thorough CheCKIISt to ULP 1.1 Ensure LPM usage

achieve the Iowest power ULP 2.1 Leverage timer medule for delay loops
ULP 3.1 Use ISRs instead of flag polling

pOSSIble ULP 4.1 Terminate unused GPIOs
ULP 5.1 Avoid processing-intensive operations: modulo, divide.

’ PI’OVideS detailed ULP 5.2 Avoid processing-intensive operations: floating point
nOtificationS and remarks ULP 5.3 Avoid processing-intensive operations: (s)printf()

ULP 6.1 Avoid multiplication on devices without hardware multiplier
ULP 7.1 Use local instead of global variables where possible

ULP 8.1 Use 'static' & 'const’ modifiers for local variables
ULP 9.1 Use pass by reference for large variables

ULP 10.1 Minimize function calls from within ISRs

ULP 11.1 Use lower bits for loop program control flow
ULP 11.2 Use lower bits for port bit-banging

ULP 12.1 Use DMA for large memcpy() calls

ULP 12.1b Use DMA for potentially large memcpy() calls
ULP 12.2 Use DMA for repetitive transfer

ULP 13.1 Count down in loops

ULP 14.1 Use unsigned variables for indexing

ULP 15.1 Use bit-masks instead of bit-fields

Let us know what you think! Feedback, suggestions & comments
are welcome @ ULPAdvisorFeedback@list ti.com

Lab...
49

6-6 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Lab 6: Low-Power Modes

Lab 6: Low-Power Modes

Objective

The objective of this lab is to learn various techniques for making use of the low-power modes.
We will start with the code from the previous lab exercise and reconfigure it for low-power
operation. As we modify the code, measurements will be taken to show the effect on power
consumption.

Lab6: Low-Power Modes

» Implement LPM3 during while(1) loop
+» Eliminate software delays

» Measure current draw (optional)

» Review ULP Advisor notifications

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6-7

Lab 6: Low-Power Modes

Procedure

Create a New Project

1. Create a new project by clicking:
File = New = CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to click Empty Project (with main.c), and then click Finish.

| & Newccs Project Cl %

CCS Project —
Create a new CCS Project. :_"I 5

Project name: Labb

Output type: | Executable hd]

[T Use default lecation

Location: C:\MSP430_LaunchPad\Labs\Lab6\Project

Device

Family: | MSP430 -
Variant: 2553 | MSP430G2553 vl
Connection: [T[M5P430 USEL [Default] v]

b Advanced settings

* Project templates and examples

type filter text Creates an empty project fully initialized — »
for the selected device. The project will
contain an empty ‘'main.c’ source-file.

Empty Projects

=
4 =]

[Empty Project

[Empty Project (with main.c)

[Empty Assembly-only Project
[Empty Grace (MSP430) Project
[Empty RTSC Project

Basic Examples

[& Blink The LED o =

| »

m

]

@ < Back Next > | Finish || Concel

6-8 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Lab 6: Low-Power Modes

Source File
We’ll use the solution file from the last lab exercise as the starting point for this lab exercise.
1. Openthe Lab5 Finish.txt fileusingFile = Open File..
e C:\MSP430 LaunchPad\Labs\Lab5\Files\Lab5 Finish.txt

2. Copy all of the code in Lab5 Finish.txt and paste itintomain.c, erasing the
original contents of main.c. This will be the starting point for this lab exercise.

3. Close the Lab5 Finish.txt file. It’s no longer needed. If you are using the
MSP430G2231, make sure to make the appropriate change to the header file include at
the top of the main. c.

Reconfigure the I/O for Low-Power

If you have a digital multimeter (DMM), you can make the following measurements; otherwise
you will have to take our word for it. The sampling rate of one second is probably too fast for
most DMMs to settle, so we’ll extend that time to three seconds.

4. Find and change the following lines of code:

e InConfigTimerA2() :

Change: CCRO = 12000;
To: CCRO = 36000;

e In the Timer ISR :

Change: CCRO += 12000;
To: CCRO += 36000;

5. The current drawn by the red LED is going to throw off our current measurements, so
comment out the two P1OUT lines inside the while (1) loop.

6. Asatest—build, load, and run the code. If everything is working correctly the green
LED should blink about once every three or four seconds. When done, halt the code and

click the Terminate button ™ to return to the “CCS Edit” perspective.

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6-9

Lab 6: Low-Power Modes

Baseline Low-Power Measurements

7. Turn on your DMM and measure the voltage between Vcc and GND at header J6. You

should have a value around 3.6 Vdc. Record your measurement here:

8. Now we’ll completely isolate the target area from the emulator, except for ground.

Remove all five jumpers on header J3 and put them aside where they won’t get lost. Set
your DMM to measure pA. Connect the DMM red lead to the top (emulation side) Vce

pin on header J3 and the DMM black lead to the bottom (target side) Vcc pin on header

J3. Press the Reset button on the LaunchPad board.

If your DMM has a low enough effective resistance, the green LED on the board will
flash normally and you will see a reading on the DMM. If not, the resistance of your
meter is too high. Oddly enough, we have found that low-cost DMMs work very well.
You can find one on-line for less than US$5.

Now we can measure the current drawn by the MSP430 without including the LEDs and
emulation hardware. (Remember that if your DMM is connected and turned off, the
MSP430 will be off too). This will be our baseline current reading. Measure the current
between the blinks of the green LED.

You should have a value around 106 pA.
Record your measurement here:
Remove the meter leads and carefully replace the jumpers on header J3.

If you forget to replace the jumpers, Code Composer will not be able to connect to
the MSP430.

Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Lab 6: Low-Power Modes

Configure Unused Pins

We need to make sure that all of the device pins are configured to draw the lowest current
possible. Referring to the device datasheet and the LaunchPad board schematic, we notice that
Port1 defaults to GPIO. Only P1.3 is configured as an input to support push button switch S2,
and the rest are configured as outputs. P2.6 and P2.7 default to crystal inputs. We will configure
them as GPIO.

9. Rename the ConfigLEDs () function declaration, call, and function name to
ConfigPins ().

10. Delete the contents of the ConfigPins () function and insert the following lines:

P1DIR ~BIT3;
P1OUT 0;

(Sending a zero to an input pin is meaningless).

11. There are two pins on Port2 that are shared with the crystal XIN and XOUT. This lab
will not be using the crystal, so we need to set these pins to be GPIO. The device
datasheet indicates that P2SEL bits 6 and 7 should be cleared to select GPIO. Add the
following code to the ConfigPins () function:

P2SEL = ~(BIT6 + BIT7);
P2DIR |= BIT6 + BIT7;
P20OUT = O0;

12. At this point, your code should look like the code below. We’ve added the comments to
make it easier to read and understand. Click the Save button on the menu bar to save the
file. The middle line of code will result in an “integer conversion resulted in truncation”
warning at compile time that you can ignore.

void ConfigPins (void)

{

P1DIR = ~BIT3; // P1.3 input, others output
P1OUT = 0; // clear output pins

P2SEL = ~(BIT6 + BIT7); // P2.6 and 7 GPIO

P2DIR |= BIT6 + BIT7; // P2.6 and 7 outputs
P20UT = 0; // clear output pins
}

13. Now build, load and run the code. Make sure the green LED blinks once every three or
four seconds. Click the Terminate button to return to the “CCS Edit” perspective.

14. Next, remove all the jumpers on header J3 and connect your meter leads. Press the Reset
button on the LaunchPad board and measure the current between the blinks of the green
LED.

You should have a value around 106 pA.
Record your measurement here:
No real savings here, but there is not much happening on this board to cause any issues.

Remove the meter leads and carefully replace the jumpers on header J3.

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6-11

Lab 6: Low-Power Modes

MSP430G2553 Current Consumption

The current consumption of the MSP430G2553 looks something like the graph below (ignoring
the LED). The graph is not to scale in either axis and our code departs from this timing
somewhat. With the CPU active, 106 pA is being consumed all the time. The current needed for
the ADC10 reference is 250 pA, and is on for 33 ps out of each sample time. The conversion
current of 600 pA is only needed for 3 pus (our code isn’t quite this timing now). If you could
limit the amount of time the CPU is active, the overall current requirement would be significantly
reduced. (Always refer to the datasheet for design numbers. And remember, the values we are
getting in the lab exercise might be slightly different than what you get.)

Not to scale

Current

Time

3s

ADC10 conversion
600uA for 3uS

ADC10 reference ON
250uA for 33uS

CPU active at 125kHz
106uA for 3 seconds

Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Lab 6: Low-Power Modes

Replace the while(1) loop with a Low-Power Mode

The majority of the power being used by the application we are running is spent in the while (1)
loop waiting for an interrupt. We can place the device in a low-power mode during that time and
save a considerable amount of power.

15. Delete all of the code from the while (1) loop.

Delete _BIS_SR(GIE) ; from above the loop.
Delete volatile unsigned int i; from the top of main.c.
Then add the following line of code to the while (1) loop:

_bis SR register (LPM3 bits + GIE);

This code will turn on interrupts and put the device in LPM3 mode. Remember that this
mode will place restrictions on the resources available to us during the low power mode.
The CPU, MCLK, SMCLK and DCO are off. Only the ACLK (sourced by the VLO in

our code) is still running.

You may notice that the syntax has changed between this line and the one we deleted.

MSP430 code has evolved over the years and this line is the preferred format today;
the syntax of the other is still accepted by the compiler.

16. At this point, the entire main () routine should look like the following:

but

{

}

void main (void)

ConfigWDT () ;
ConfigClocks () ;
ConfigPins () ;
ConfigADC10() ;
ConfigTimerAa2 () ;

while (1)
{
_bis_SR register (LPM3 bits + GIE); // Enter LPM3 with interrupts

}

Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Lab 6: Low-Power Modes

17. The Status Register (SR) bits that are set by the above code are:

e SCGO: turns off SMCLK
e SCG1: turns off DCO
e CPUOFF: turns off the CPU

When an ISR is taken, the SR is pushed onto the stack automatically. The same SR value
will be popped, sending the device right back into LPM3 without running the code in the
while (1) loop. This would happen even if we were to clear the SR bits during the ISR.
Right now, this behavior is not an issue since this is what the code in the while (1) does
anyway. If your program drops into LPM3 and only wakes up to perform interrupts, you
could just allow that behavior and save the power used jumping back to main (), just so
you could go back to sleep. However, you might want the code in the while (1) loop to
actually run and be interrupted, so we are showing you this method.

Add the following code to the end of your Timer ISR:
_bic_SR register_on_exit (LPM3 bits);
This line of code clears the bits in the popped SR.

More recent versions of the MSP430 clock system, like the one on this device,
incorporate a fault system and allow for fail-safe operation. Earlier versions of the
MSP430 clock system did not have such a feature. It was possible to drop into a low-
power mode that turned off the very clock that you were depending on to wake you up.
Even in the latest versions, unexpected behavior can occur if you, the designer, are not
aware of the state of the clock system at all points in your code. This is why we spent so
much time on the clock system in the Lab3 exercise.

18. The Timer ISR should look like the following:

// Timer AO0 interrupt service routine
#pragma vector=TIMERO_AO_VECTOR
__interrupt void Timer A (void)
{
ADC10CTLO = SREF_l + ADClOSHT_3 + REFON + ADC10ON;

_delay cycles(5); // Wait for ADC Ref to settle
ADC10CTLO |= ENC + ADC10SC; // Sampling and conversion start
P1OUT |= BIT6; // P1.6 on (green LED)

_delay cycles(100);

ADC10CTLO &= ~ENC; // Disable ADC conversion
ADC10CTLO &= ~(REFON + ADCI1O0ON) ; // Ref and ADC10 off

tempRaw = ADC10MEM; // Read conversion value

P1OUT &= ~BIT6; // green LED off

CCRO += 36000; // Add one second to CCRO

_bic_SR register on_exit(LPM3 bits); // Clr LPM3 bits from SR on exit
}

6-14 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Lab 6: Low-Power Modes

19. Now build, load and run the code. Make sure the green LED blinks once every three
seconds. Halt the code and click the Terminate button to return to the “CCS Edit”
perspective. This code is saved as Lab6a. txt in the Files folder.

20. Next, remove all the jumpers on header J3 and connect your meter leads. Press the Reset
button on the LaunchPad board and measure the current between the blinks of the green
LED.

You should have a value around 0.6 pA.

Record your measurement here:

This is a big difference! The CPU is spending the majority of the sampling period in
LPM3, drawing very little power.

Remove the meter leads and carefully replace the jumpers on header J3.

A graph of the current consumption would look something like the below. Our code still
isn’t generating quite this timing, but the DMM measurement would be the same.

r 3

Not to scale ADC10 conversion

600uA for 3uS

ADC10 reference ON
250uA for 33uS

CPU active at 125kHz
JOouA for 3 seconds

Current

Time 3s

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6-15

Lab 6: Low-Power Modes

Fully Optimized Code for Low-Power

The final step to optimize the code for low-power is to remove the software delays in the ISR.
The timer can be used to implement these delays instead and save even more power. It is
unlikely that we will be able to measure this current savings without a sensitive oscilloscope,
since it happens so quickly. But we can verify that the current does not increase.

There are two more software delays still in the Timer ISR; one for the reference settling time and
the other for the conversion time.

21.

22.

The delay cycles (5); statement should provide about 40uS delay, although there
is likely some overhead in the NOP loop that makes it slightly longer. For two reasons
we’re going to leave this as a software delay;

1) the delay is so short that any timer setup code would take longer than the timer delay
2) the timer can only run on the ACLK (VLO) in LPM3.

At that speed the timer has an 83uS resolution ... a single tick is longer than the delay we
need. But we can optimize a little. Change the statement as shown below to reduce the
specified delay to 32uS:

Change: _delay cycles(5);
To: _delay cycles(4);
The final thing to tackle is the conversion time delay in the Timer AO ISR. The ADC

can be programmed to provide an interrupt when the conversion is complete. That will
provide a clear indication that the conversion is complete. The power savings will be
minimal because the conversion time is so short, but this is fairly straightforward to do,
so why not do it?

Add the following ADC10 ISR template to the bottom of main.c:

// ADC10 interrupt service routine
#pragma vector=ADC10_VECTOR
__interrupt void ADC10 (void)

{

}

Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Lab 6: Low-Power Modes

23. Copy all of the lines in the Timer ISR below delay cycles (100) ; and paste them into
the ADC10 ISR.

24. In the Timer ISR delete the code from the PLOUT |= BIT6; line through the
P1OUT &= ~BIT6; line.

25. At the top of the ADCI10 ISR, add ADC10CTLO &= ~ADC10IFG; to clear the interrupt
flag.

26. In the ADC10 ISR delete the P1OUT &= ~BIT6; and CCRO += 36000; lines.

27. Lastly, we need to enable the ADC10 interrupt. In the Timer ISR, add + ADC10IE to the
ADCI10CTLO register line.

The Time and ADC10 ISRs should look like this:

#pragma vector=TIMERO A0 VECTOR
__interrupt void Timer A (void)
{
ADC10CTLO = SREF 1 + ADCI10SHT 3 + REFON + ADCI10ON + ADCIOIE ;

_delay cycles(4); // Wait for ADC Ref to settle
ADC10CTLO |= ENC + ADC10SC; // Sampling and conversion start
CCRO +=36000; // add 12 seconds to the timer

_bic_SR register on_exit (LPM3 bits);
}

// ADC10 interrupt service routine
#pragma vector=ADC10 VECTOR
__interrupt void ADC10 (void)

{

ADC10CTLO &= ~ADCLOIFG; // clear interrupt flag
ADC10CTLO &= ~ENC; // Disable ADC conversion
ADC10CTLO &= ~(REFON + ADC100N) ; // Ref and ADC10 off
tempRaw = ADC10MEM; // Read conversion value

_bic SR register on exit (LPM3 bits);

}

28. Build and load the project. Eliminate any breakpoints and run the code. We eliminated
the flashing of the green LED since it flashes too quickly to be seen. Set a breakpoint on
the _bic_SR line in the ADC10 ISR and verify that the value in tempRaw is updating as
shown earlier. Click the Terminate button to halt the code and return to the “CCS
Edit” perspective. If you are having a difficult time with the code modifications, this
code can be found in Lab6b.txt in the Files folder.

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6-17

Lab 6: Low-Power Modes

29. Remove the jumpers on header J3 and attach the DMM leads as before. Press the Reset

button on the LaunchPad board and measure the current between the blinks of the green
LED.

You should have a value around 0.6 pA.

Record your measurement here:

A graph of the current consumption would look something like this:

Current

Not to scale ADC10 conversion
600uA for 3uS
CPU in LPM3 ADC10 reference ON
TiiieE i VIO 250uA for 33uS
.6uA for 3 seconds CPU active at 125kHz
106uA for a few uS
Time 3s

That may not seem like much of a savings, but every little bit counts when it comes to
battery life. To quote a well-known TI engineer: “Every joule wasted from the battery is
a joule you will never get back”.

Replace all the jumpers on header J3.

Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Lab 6: Low-Power Modes

ULP Advisor

We’ve been ignoring the ULP Advisor for long enough. Let’s review the results

30. Resize the Problems pane so that you can see the contents. Click on the " left of
Warnings and Infos.

Our Problems pane looked like this:

1%/ Problems &2
0 errors, 11 warnings, 2 others
Description
a & Warnings (11 items)
& #70-D integer conversion resulted in truncation
& #10374-0 Interrupt vector "COMPARATORA" does not have an interrupt handler routine,
& #10374-0 Interrupt vector "NMI" does not have an interrupt handler routine,
& #10374-0 Interrupt vector "PORT1" does not have an interrupt handler routine.
&y #10374-0 Interrupt vector "PORT2" does not have an interrupt handler routine.
@ #10374-D Interrupt vector "TIMERD_A1" does not have an interrupt handler routine.
@ #10374-D Interrupt vector "TIMERL_AD" does not have an interrupt handler routine.
& 210374-D Interrupt vector "TIMERL_A1" does not have an interrupt handler routine,
& #10374-D Interrupt vector "USCIABORX" does not have an interrupt handler routine.
& #10374-0 Interrupt vector "USCIABOTX" does not have an interrupt handler routine,
& #10374-0 Interrupt vector "WDT" does not have an interrupt handler routine,
a 1 Infos(2items)

i #10372-D (ULP 4.1) Detected uninitialized Port 3 in this project. Recommend initializing all unused ports to eliminate wasted current consurption on unused pins.
i #1527-D (ULP 2.1) Detected SW delay loop using empty loop. Recommend using a timer module instead

31. The first warning is due to the following statement in main () :
P2SEL = ~(BIT6 + BIT7); P2SEL is 8 bits while the defines for BIT6 and BIT7
are 16. That results in a truncation as noted. There are several things we could do to re-
cast, etc. to make the warning go away, but since it’s pretty readable as-is, we’ll just live
with this warning. Either way there is no impact to the device current,

32. The next ten warnings result from un-programmed interrupt vectors. If one of these
interrupts accidentally triggered, it could result in our device running in a very
unexpected way. We’ll leave the ISR unpopulated with code, but you might want to
implement a reset or other fault handling system. That will likely cause a very small stack
memory leak, but if you’re experiencing unexpected interrupts from un-programmed
sources, you have larger problems.

Add the code on the following page to the end of your code inmain.c . The

asm(" JMP $"); instruction traps code execution at that point by jumping to itself. A
while (1) loop would have done the same thing, but the ULP Advisor will flag that as a
software loop.

NOTE: Depending on your system and Adobe Acrobat you may have an issue with the
quote signs in the following code. Sometimes they paste into CCS as “curved” quotes
signs rather than the straight” ones. In that case you will need to find/replace the
offending characters in your code.

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6-19

Lab 6: Low-Power Modes

// Comparator A interrupt service routine
#pragma vector=COMPARATORA VECTOR
__interrupt void COMPA VECT (void)
{
asm(" JMP $");
}

// NMI interrupt service routine
#pragma vector=NMI_VECTOR
__interrupt void NMI_VECT (void)
{

asm(" JMP $");
}

// PORT1 interrupt service routine
#pragma vector=PORT1 VECTOR
__interrupt void PORT1_VECT (void)
{

asm (" JMP $");
}

// PORT2 interrupt service routine
#pragma vector=PORT2_ VECTOR
__interrupt void PORT2_VECT (void)
{

asm(" JMP $");
}

// TIMERO Al interrupt service routine
#pragma vector=TIMERO_Al VECTOR
__interrupt void TIMERO_Al VECT (void)
{

asm(" JMP $");
}

// TIMER1 AQO interrupt service routine
#pragma vector=TIMER1 A0 VECTOR
__interrupt void TIMER1_AO_VECT (void)
{

asm(" JMP $");
}

// TIMER1 Al interrupt service routine
#pragma vector=TIMER1 Al VECTOR
__interrupt void TIMER1_Al VECT (void)
{

asm(" JMP $");
}

// USCIABORX interrupt service routine
#pragma vector=USCIABORX VECTOR
__interrupt void USCIABORX VECT (void)
{

asm(" JMP $");
}

// USCIABOTX interrupt service routine
#pragma vector=USCIABOTX VECTOR
__interrupt void USCIABOTX VECT (void)
{

asm (" JMP $");
}

// WDT interrupt service routine
#pragma vector=WDT VECTOR
__interrupt void WDT VECT (void)
{

asm (" JMP $");
}

Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Lab 6: Low-Power Modes

33. The last item in the Infos section says that we’re using a software delay loop. This refers
to the while (1) loop inthe FaultRoutine () . If you want to replace that with the
assembly instruction used in the last step, go ahead. Otherwise we’ll just live with it.

34. The first item in the Infos section says that Port 3 is uninitialized. Actually, the 20-pin
device only has two ports as I/O, larger devices have a third. We can prevent this ULP
Advisor issue by initializing the third port. Add the last two lines shown below to the
ConfigPins () function.

void ConfigPins(void)
{
P1DIR = ~BIT3;
P1OUT = ©;
P2SEL = ~(BIT6 + BIT7);
P2DIR |= BIT6 + BIT7;
P20UT = 0;
P3DIR = OxFF; // Set P3 GPIO to outputs
P30UT = 0; // Clear P3 outputs
}

35. Rebuild your code and look at the Problems pane. You should only see the single
truncation warning and info about the software delay. It’s doubtful that any power was
saved during this ULP Advisor exercise, but it is certainly worthwhile to pay attention to
the ULP Advisor output.

= problerms &2

il
0 errors, 1 warning, 1 other
Description
4 & Warnings (1 itern)
&y #70-D integer conversion resulted in truncation
4 1 Infos(litem)
i #1527-D (ULP 21) Detected SW delay loop using empty loop. Recammend using a timer maodule instead

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6-21

Lab 6: Low-Power Modes

Summary

Our code is now as close to optimized as it gets, but again, there are many, many ways to get to
this point. Often, the need for hardware used by other code will prevent you from achieving the
very lowest power possible. This is the kind of cost/capability trade-off that engineers need to
make all the time. For example, you may need a different peripheral — such as an extra timer —
which costs a few cents more, but provides the capability that allows your design to run at its
lowest possible power, thereby providing a battery run-time of years rather than months.

36. Remove the jumpers on header J3 and attach the DMM leads as before. Press the Reset
button on the LaunchPad board and measure the current between the blinks of the green
LED.

You should have a value around 0.6 pA.

Record your measurement here:

Congratulations on completing this lab! Remove and turn off your meter and replace all
of the jumpers on header J3. We are finished measuring current.

37. Close the project by right-clicking on Lab6 in the Project Explorer pane and
select Close Project.

ST

You’re done.

6-22 Getting Started with the MSP430 LaunchPad - Low-Power Optimization

Serial Communications

Introduction

This module will cover the details of serial communications. In the lab exercise we will
implement a software UART and communicate with the PC through the USB port.

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization

Serial Communications

Grace
FRAM
I: Capacitive Touc

uslt...

51

Getting Started with the MSP430 LaunchPad - Serial Communications 7-1

Module Topics

Module Topics

Serial Communications 7-1
MOUIE TOPICS.......oveeeeeeiee ettt ettt ettt e et e et e et e e bt e e abseessaeestaeansaeensaeessaeensseesaeenseeens 7-2
SErial COMMUNICATIONSoooeeeeeeee ettt e et e e e et e e e e 7-3

L6151 O3 PR OPPRRRRTRRN 7-3
S Ce) reTeTe) KT RSP RRRR 7-3
Software UART IMPlementation........ccc.eeicueeriieiiieeniieiieesieesieesiieesteesiteesteessseessaeessseesssaessseesssesnseens 7-4
USB COM Port COMMUINICATIONuvveeeeereeeeeereeeeeteeeeeetreeeeeaeeeeeeseeeeeeseeeeeseeesensseeeeeseeseenreesensreeeens 7-4
Lab 7: Serial COMMUINICATIONSoovvieeiireeeiereeeeeiteeeeeeeeeeeeeeeeeeteeeeeeeeeeeeseeesesseeeesreeseeseeesensreeeens 7-5
L0 10} 1< 15 4 PR STTRPRRSR 7-5
PIOCEAUIE ... e et e e e e e e et e e et e e e eetaeeeeetaeeeeeaneeeeenaeeeeenaneeeenes 7-6

7-2 Getting Started with the MSP430 LaunchPad - Serial Communications

Serial Communications

Serial Communications

USCI
Universal Serial Communication Interface
¢ USCI_AO supports: uscl
¢ SPI (3 or 4 wire)
¢ UART A
¢ [rDA
¢ USCI_BO supports: B
¢ SPI (3 or 4 wire)
¢ 12C
Protocols ...
52
Protocols
USCI Serial Protocols
SCLK
¢ SPI SPI MOSL_,1 SPI
Serial Peripheral Interface Master |« VISSI\? 4 slave
Single Master/Single Slave
vdd 9
rml L
¢ 12C <on |
Inter-Integrated Circuit Interface Sch T T T T
Single Master/Multiple Slaves nc DAC ADC ilc
Master| | Slave | | Slave | | Slave
¢ UART . .
Uni I Asynch X 2
Receiver/Transmitter RT [Re T RT
Full duplex
S/W UART Implementation ...
53

Getting Started with the MSP430 LaunchPad - Serial Communications

Serial Communications

Software UART Implementation

Software UART Implementation

¢ Asimple UART implementation, using the Capture &
Compare features of the Timer fo emulate the UART
communication

¢ Half-duplex and relatively low baud rate (9600 baud
recommended limit), but 2400 baud in our code (1 MHz DCO
and no crystal)

Bit-time (how many clock ticks one baud is) is calculated
based on the timer clock & the baud rate

One CCR register is set up to TX in Timer Compare mode,
toggling based on whether the corresponding bit is 0 or 1
The other CCR register is set up to RX in Timer Capture
mode, similar principle

The functions are set up to TX or RX a single byte (8-bit)
appended by the start bit & stop bit

* 6 o o

PV J TN WGl http://focus.ti.com/lit/an/slaa078al/slaa078a.pdf

USB COM Port ...

54

Application note: http://focus.ti.com/lit/an/slaa078a/slaa078a.pdf

USB COM Port Communication
USB COM Port Communication

¢ Emulation hardware implements emulation features
as well as a serial communications port

¢ Recognized by Windows as part of composite driver

¢ UART Tx/Rx pins match Spy-Bi-Wire JTAG interface
pins

HI, LO, IN

Lab ...
a5

7-4 Getting Started with the MSP430 LaunchPad - Serial Communications

http://focus.ti.com/lit/an/slaa078a/slaa078a.pdf

Serial Communications

Lab 7: Serial Communications

Objective

The objective of this lab is to learn serial communications with the MSP430 device. In this lab
exercise we will implement a software UART and communicate with the PC using the USB port.
It would be possible to do this on the MSP430G2553 since it has a USCI peripheral with a UART
ports. But often developers want to minimize cost to the greatest degree possible. Implementing a
UART in software could save several crucial pennies from the bill of materials.

Lab7: Serial Communication

«+ Alter code to run on WDT+ interval
timer

» Add code to detect
above/below/within temperature range

» Add UART code to send data to PC
via USB COM port

Getting Started with the MSP430 LaunchPad - Serial Communications 7-5

Serial Communications

Procedure

Create a New Project

1. Create a new project by clicking:
File = New = CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to click Empty Project (with main.c), and then click Finish.

wr Mew CCS Project = %

CCS Project —
Create a new CC5 Project. ; ,E-"

Project name: Lab7

Output type: | Executable -]

[7] Use default location

Location: C:A\MSP430_LaunchPad\Labs\Lab7\Project

Device

Family: | MSP430 -
Varnant: 2553 * [MSP430G2553 v]
Connection: [T[MSP430 USBL [Default] vl

» Advanced settings

w Project templates and examples

type filter text Creates an empty project fully initialized =
for the selected device, The project will
| contain an empty ‘main.c’ source-file,

|3

a E Emnpty Projects
[Empty Project
[Empty Project {with main.c)

m

[Empty Assembly-only Project
[Empty Grace (MSP430) Project
[& Empty RTSC Project

4 [[5] Basic Bxamples

[& Blink The LED = -

@ < Back Mext = [Finish] [Cancel

7-6 Getting Started with the MSP430 LaunchPad - Serial Communications

Serial Communications

Source File

In this lab exercise we will be building a program that transmits “HI”, “LO” or “IN” using the
software UART code. This data will be communicated through the USB COM port and then to
the PC for display on a terminal program. The UART code utilizes TIMER A2, so we will need
to remove the dependence on that resource from our starting code. Then we will add some “trip
point” code that will light the red or green LED indicating whether the temperature is above or
below some set temperature. Then we will add the UART code and send messages to the PC.
The code file from the last lab exercise will be used as the starting point for this lab exercise.

1. Openthe Lab6a.txt fileusing File = Open File..
e C:\MSP430 LaunchPad\Labs\Lab6\Files\Labé6a.txt

2. Copy all of the code from Lab6a . txt and paste it into main. c, erasing the previous
contents of main. c. This will be the starting point for this lab exercise. You should
notice that this is not the low-power optimized code that we created in the latter part of
the Lab6 exercise and we will be ignoring the warnings from the ULP Advisor. The
software UART implementation requires Timer A2, so using the fully optimized code
from Lab6 will not be possible. But we can make a few adjustments and still maintain
fairly low-power.

Close the Lab6a . txt file. If you are using the MSP430G2231, make sure to make the
appropriate change to the header file include at the top of the main. c.

3. Asatest— build, load, and run the code. Ignore the ULP Advisor warnings. Remove
tempRaw from the Expression pane. If everything is working correctly, the green LED
will blink once every three or four seconds, but the blink duration will be very, very
short. The code should work exactly the same as it did in the previous lab exercise.

When you’re done, halt the code and click the Terminate B button to return to the
“CCS Edit” perspective.

Remove Timer_A2 and Add WDT+ as the Interval Timer

4. We need to remove the previous code’s dependence on Timer A2. The WDT+ can be
configured to act as an interval timer rather than a watchdog timer. Change the
ConfigWDT () function so that it looks like this:

void ConfigWDT (void)
{
WDTCTL = WDT_ADLY 250; // <1 sec WDT interval
IEl |= WDTIE; // Enable WDT interrupt
}

The selection of intervals for the WDT+ is somewhat limited, but WDT_ADLY 250 will
give us a little less than a 1 second delay running on the VLO.

WDT_ADLY_ 250 sets the following bits:

WDTPW: WDT password
WDTTMSEL: Selects interval timer mode
WDTCNTCL: Clears count value
WDTSSEL: WDT clock source select

Getting Started with the MSP430 LaunchPad - Serial Communications 7-7

Serial Communications

5. The code in the Timer AOQ ISR now needs to run when the WDT+ interrupts trigger:

e Change this:

// Timer A2 interrupt service routine
#pragma vector=TIMERO_AO_VECTOR
__interrupt void Timer A (void)

{

e To this:

// WDT interrupt service routine
#pragma vector=WDT_ VECTOR
__interrupt void WDT (void)

{

6. There is no need to handle CCRO in the WDT ISR. Delete the CCRO += 36000 ; line.

7. There is no need to set up Timer A2 now. Delete all the code inside the
ConfigTimerA2 () function.

8. Build, load, and run the code. Make sure that the code is operating like before, except
that now the green LED will blink about once per second. When you’re done, click the

Terminate button ® to return to the “CCS Edit” perspective. If needed, this code
can be found in Lab7a.txt in the Files folder.

Add the UART Code

9. Delete both P1OUT lines from the WDT ISR. We are going to need both LEDs for a
different function in the following steps.

10. We need to change the Transmit and Receive pins (P1.1 and P1.2) on the MSP430 from
GPIO to TAO function. Add the first line shown below to your ConfigPins ()
function and change the second line as follows:

void ConfigPins (void)

{
P1SEL |= TXD + RXD; // P1.1 & 2 TAO, rest GPIO
P1DIR = ~(BIT3 + RXD); // P1.3 input, other outputs
P1OUT = O0; // clear outputs
P2SEL = ~(BIT6 + BIT7); // make P2.6 & 7 GPIO
P2DIR |= BIT6 + BIT7; // P2.6 & 7 outputs
P20UT = O0; // clear outputs

}

7-8 Getting Started with the MSP430 LaunchPad - Serial Communications

Serial Communications

11. We need to create a function that handles the UART transmit side. Adding a lot of code
tends to be fairly error-prone. So add the following function by copying and pasting it
from here or from Transmit . txt in the Files folder to the end of main. c:

// Function Transmits Character from TXByte

void Transmit ()

{
BitCnt = OxA; // Load Bit counter, 8data + ST/SP
while (CCRO != TAR) // Prevent async capture

CCRO = TAR; // Current state of TA counter

CCRO += Bitime; // Some time till first bit
TXByte |= 0x100; // Add mark stop bit to TXByte
TXByte = TXByte << 1; // Add space start bit
CCTLO = CCISO + OUTMODO + CCIE; // TXD = mark = idle
while (CCTLO & CCIE); // Wait for TX completion

}

Be sure to add the function declaration at the beginning of main.c:

void Transmit (void) ;

12. Transmission of the serial data occurs with the help of Timer A2 (Timer A2 creates the
timing that will give us a 2400 baud data rate). Cut/paste the code below or copy the
contents of Timer A2 ISR.txt and paste it to the end of main.c:

// Timer A0 interrupt service routine
#pragma vector=TIMERO_AO_VECTOR
__interrupt void Timer A (void)
{
CCRO += Bitime; // Add Offset to CCRO
if (CCTLO & CCISO) // TX on CCIOB?
{
if (BitCnt == 0)
{

CCTLO &= ~ CCIE ; // All bits TXed, disable interrupt
}
else
{

CCTLO |= OUTMOD2; // TX Space

if (TXByte & 0x01)

CCTLO &= ~ OUTMODZ2; // TX Mark

TXByte = TXByte >> 1;

BitCnt --;

Getting Started with the MSP430 LaunchPad - Serial Communications 7-9

Serial Communications

13. Now we need to configure Timer A2. Enter the following lines to the
ConfigTimerA2 () functionin main. c so that it looks like this:

void ConfigTimerA2 (void)

{
CCTLO = OUT; // TXD Idle as Mark

TACTL TASSEL 2 + MC_2 + ID_3; // SMCLK/8, continuos mode
}

14. To make this code work, add the following definitions at the top of main. c:

#idefine TXD BIT1 // TXD on P1.1
#define RXD BIT2 // RXD on P1.2
#define Bitime 13*4 // 0x0D

unsigned int TXByte;
unsigned char BitCnt;

15. Since we have added a lot of code, let’s do a test build. In the Project Explorer
pane, right-click on main.c and select Build Selected File (s) . Check for
syntax errors in the Console and Problems panes (other than the ULP Advisor issues).

Getting Started with the MSP430 LaunchPad - Serial Communications

Serial Communications

16. Now, add the following declarations to the top of main.c:

volatile long tempSet = 0;
volatile int i;

The tempset variable will hold the first temperature reading made by ADC10. The
code will then compare future readings against it to determine if the new measured
temperature is hotter or cooler than that set value. Note that we are starting the variable
out at zero. That way, we can use its non-zero value after it’s been set to make sure we
only set it once. We’ll need the “1” in the code below.

17. Add the following control code to the while (1) loop right after line containing
_bis SR register (LPM3 bits + GIE);

This code is available in while. txt:

if (tempSet == 0)
{
tempSet = tempRaw; // Set reference temp
}
if (tempSet > tempRaw + 5) // test for lo
{
P1OUT = BIT6; // green LED on
P1OUT &= ~BITO; // red LED off
for (i=0;i<5;i++)
{
TXByte = TxLO[i];
Transmit () ;
}
}
if (tempSet < tempRaw - 5) // test for hi
{
P1OUT = BITO; // red LED on
P1OUT &= ~BIT6; // green LED off
for (i=0;i<5;i++)
{
TXByte = TxHI[i];
Transmit () ;
}
}
if (tempSet <= tempRaw + 2 & tempSet >= tempRaw - 2)
{ // test for in range
P1OUT &= ~(BITO + BIT6); // both LEDs off
for (i=0;i<5;i++)
{
TXByte = TxIN[i];
Transmit () ;
}
}

This code sets three states for the measured temperature; LO, HI and IN that are indicated by the
state of the green and red LEDs. It also sends the correct ASCII sequence to the Transmit()
function.

Getting Started with the MSP430 LaunchPad - Serial Communications 7-11

Serial Communications

18. The ASCII sequences that will be transmitted to the PC are:

19.

e LO<LF><BS><BS>: 0x4C, 0x4F, 0x0A, 0x08, 0x08
o HI<LF><BS><BS>: 0x48, 0x49, 0x0A, 0x08, 0x08
o IN<LF><BS><BS>: 0x49, 0x4E, 0x0A, 0x08, 0x08

The terminal program on the PC will interpret the ASCII code and display the desired
characters. The extra Line Feeds and Back Spaces are used to format the display on the
Terminal screen.

Add the following arrays to the top of main.c:

unsigned int TxHI[]={0x48,0x49,0x0A,0x08,0x08};
unsigned int TxLO[]={0x4C,0x4F,0x0A,60x08,0x08};
unsigned int TxIN[]={0x49,0x4E,0x0A,0x08,0x08};

Finally, we need to asure that the MCLK and SMCLK are both running on the DCO. In
the ConfigClocks() function, make sure that the BCSCTL2 clock control register is
configured as shown below:

BCSCTL2 = O0;

Getting Started with the MSP430 LaunchPad - Serial Communications

Serial Communications

Test the Code

20. Build and load the code. If you’re having problems, compare your code with
Lab7Finish. txt found in the Files folder. Don’t take the easy route and copy/paste
the code. Figure out the problem ... the process will pay off for you later.

21. Next, we need to find out what COM port your LaunchPad board is connected to. In
Windows, click Start - Run (if you don’t see Run, type it in the Search box and
the Run link will appear at the top of the list) and enter devmgmt.msc into the dialog
box, then click OK. This should open the Windows Device Manager.

Click the * symbol next to Ports and find the port named MSP430 Application UART.
Write down the COM port number here . (The one on our PC was COM14).
Close the Device Manager.

View the UART Output in a Terminal Program

22. On the CCS menu bar, click View = Other ... Find Terminal in the window that

appears and click the * symbol to the left. When you see o Terminal , click on it to
select it and then click OK.

23. A Terminal tab will appear at the bottom of your screen next to the Console tab. On

the far right you’ll see a series of Terminal control buttons. Click the B Settings
button. Make the settings shown below, except for your COM port number, and click

OK.

s+ Terminal Settings &
View Settings:
View Title: UART Display
Encoding: 150-8859-1 -
Connection Type:
Serial A
Settings:
Port: COom14 -
Baud Rate: | 2400 - |
Data Bits: [8 v]
Stop Bits: [1 v]
Parity: [None v]
Flow Control: [None v]
Timeout (sec): 5

oK l [Cancel

Getting Started with the MSP430 LaunchPad - Serial Communications 7-13

Serial Communications

24.

25.

26.

27.

In the terminal display, you will likely see IN displayed over and over again. This means
that the measured temperature is within a couple of degrees of the temperature that was
measured when the code started.

Warm the MSP430 with your finger. After a moment the red LED should light and the
Terminal should display HI. Now the MSP430 is a couple of degrees w~rmer than the

-
initial temperature. While your finger is still on the MSP430, click the Reset CPU
i
button and then the Resume button. The code will then record the initial

temperature while the chip is warm. Remove your finger from the MSP430.

You should see IN displayed in the Terminal window. But when the MSP430 cools
down, the green LED will light and the Terminal will display LO. .

This would also be a good time to note the size of the code we have generated. Click the
Console tab to view the pane at the bottom of your screen.

MSP430: Loading complete. Code Size - Text: 976 bytes Data: 6 bytes.

Based on what we have done so far, you could create a program more than sixteen times
the size of this code and still fit comfortably inside the MSP430G2553 memory.

Terminate Debug Session and Close Project

Terminate the active debug session using the Terminate button B This will close
the debugger and return CCS to the “CCS Edit” perspective.

Close the Lab7 project in the Project Explorer pane.

ST

You’re done.

Getting Started with the MSP430 LaunchPad - Serial Communications

Grace

Introduction

This module will cover the Grace™ graphical user interface. Grace™ generates source code that
can be used in your application and it eliminates manual configuration of peripherals. The lab will
create a simple project using Grace™ and we will write an application program that utilizes the
generated code.

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization

Serial Communications

Grace

FRAM

I: Capacitive Touc

Whatis Grace?
57

Getting Started with the MSP430 LaunchPad - Grace 8-1

Module Topics

Module Topics

Grace

Getting Started with the MSP430 LaunchPad - Grace

Grace

Grace

Grace™

Grace™

A free, graphical user interface that
generates source code and eliminates
manual peripheral configuration

Simplified Peripheral Config
a8

Simplified Peripheral Configuration

Fully harness MSP430 integration... for FREE

* Visually enables and configures MSP430 peripherals

* Generates fully commented C code on all F2xx and G2xx Value Line
microcontrollers

* Provides various levels of abstraction — Basic, Power User, and Register Views

Get started quickly and learn as you go

* Provides rapid understanding of MSP430 peripherals and configutation opticns
* Guides peripheral integration with tooltips and pop-ups
* Prevents configuration conflicts or collisions between peripherals

| . Plug in for Tl's Eclipse-based Code Composer Studio IDE
* Seamlessly includes peripheral configuration code into a CCS project
* Loads and debugs MSP430 devices just like traditicnally generated code

Visually Config and Enable ...
BE

Getting Started with the MSP430 LaunchPad - Grace

Grace

Visually Enable & Configure MSP430 Peripherals

0

41 ADC10 - 10-bit SAR, - Overview

Twiank to use the ADC10in my configuration
 Introduction 53

The ADC10 modue supperts Fast, 10-62 analog-to-digtal
The DTC dllows ADCLO samgles to be converted snd store

Developers can interface
with buttons, drop downs,
and text fields to
effortlessly navigate high
above low-level register
settings

Grace generates fully
commented C code for all
F2xx and G2xx Value Line
Microcontrollers from
MSP430

Choose your View ...

G0

Developers Can Choose Their View

Basic

Register

View .

Grace offers a variety of
views to accommodate
developers’ varying skKill
levels and preferences

Developers spend less
time configuring low level
peripheral setup code

Allowing more time for
product differentiation,
full-featured user
experiences and faster
time to market

Get Started Quickly ...

61

Getting Started with the MSP430 LaunchPad - Grace

Grace

Get Started Quickly & Learn As You Go

The content within Grace™, as
well as the look-and-feel, is
' based on existing MSP430 user
guides and datasheets

\ Aocios | merout | AER usc | Rerasv [merow | ASCI | aocwe

el m] m] [m] =]
i

| Regis{fADC10 semplig rate. This bt selects the reference buffer drive capabilty for

the maximum sampling rate, Setting ADC10SR reduces the current
consumption: of the reference buffer.

P New CCS Project

Project Templates
Select ane of the avaisble project templates.

[k Empty RTSC-Configuration Project 4|
[Empky M5P430 Grace Project
-1 Basic Examples
Grace Examples
i+ [ADC10 temperatire measurement
- [Blink LED from the CPU

-1 5Y5/BI0S -

4] »

‘;

0 Reference buffer supports up to ~200 ksps
1 Reference buffer supports up to ~50 ksps

Example projects
can be used to
learn about Grace
and the Code
Composer Studio™
environment,or
used as a starting

Tooltips and pop-ups guide
peripheral integration

Grace makes it easy for both
those familiar with MSP430

| i1 it T point for documentation and those
L Echo characters to the L.mRT a |ication N
L[Lowpomer mode cperation PP new to it to get started
& 5PI communication toffrom the CC25(development

Prevents Collisions ...
62

Prevents Collisions & Contradicting Configurations

PixP2x PAAPAX P1xPIx PIxPdx
28 2 28 28,
A AT A £
A4 A 4 A4 A4
FotsFiP2 FotsPara Forsp153
oao,0m || 2800 2010 cno.onl || 280 2mi0
: Intermupt upidoun| Interrugt pul-upidown|
2 0p Amps | | copabity, resigtors | . | |2 op amws | | copavity, resisors
upida I-pidown
sistors sisors
i = T 11

¥

| [| 55025

e lE

,
USCI_AD:
e | [|

+ Instant notification of .
configuration errors

Edits/changes that are made in
one peripheral can be reflected

i . in other modules
+ Ensures inter-peripheral
configurations are consistent + Changes are reflected between
Basic, Power User, and

Register Views

Familiar Environments ...
63

Getting Started with the MSP430 LaunchPad - Grace

Grace

Create Designs In Familiar Development Environments

+ Free Plug infor Tl's
Eclipse-based Code
Composer Studio™ |DE

+ Code generated by
Grace is directly
inserted into an active
Code Composer Studio
project environment

+ The generated code can
then be debugged and

downloaded onto an
MSP430 just like
traditionally written code

Seamless Include
64

Seamlessly Include Peripheral Configuration
Code into a CCS Project

e ” 4 Debug &
., Debug Active Project download
%§ Launch TI Debugger just like
traditionally
e written code
QOrganize Favorites...
/- Ao 10_ it Code Composer st
SEL] $-9 Plrplr i
i+ praeas e P oo |

void ABCIO_inis (veid)

ADCIOCTLO &= ~ENC:

+ Fully-commented, and
human-readable C code is
generated at build time

+ Seamlessly and
automatically inserted
directly into your active
CCS project

T Avadathe Fackages 11 #0(ec a0z, /20

Supports ...
65

Getting Started with the MSP430 LaunchPad - Grace

Grace

Grace™ Supports MSP430’s Most Popular Tools

Grace supports all F2xx and G2xx Value
Line microcontrollers from MSP430

When paired with hardware tools such as
the $9.99 MSP-EXP430G2 LaunchPad,
the wireless eZ430-RF2500, or the eZ430-
F2013, Grace offers a simple, intuitive,
and friendly user interface

Grace also works with MSP430's Flash
Emulation Tool and Target Boards,
such as:

+ MSP-TS430PW28
+ MSP-TS430PW28A
+ MSP-TS430PW14

Download Grace at:

Lab ...
(13

Getting Started with the MSP430 LaunchPad - Grace

Lab 8: Grace

Lab 8: Grace

Objective

The objective of this lab is to create a simple project using Grace. This project will be similar to
an earlier project in that it will use the Timer to blink the LED. Using Grace to create the

peripheral initialization code will simplify the process.

Lab8: Grace

» Use Grace to configure all the
required peripherals

» Add application code to blink the LED
using the Grace initialization code

$p Texas .
INSTRUMENTS
=

¥
W

67

Getting Started with the MSP430 LaunchPad - Grace

Lab 8: Grace

Procedure

Create a Grace Project

1. Grace is part of your Code Composer Studio installation, although it is possible to run it
in a stand-alone fashion. Starting with CCS version 5.3 it is called Grace2.

Create a new project by clicking:
File = New = CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2231, make the appropriate choices for that part. Make
sure to click Empty Grace (MSP430) Project, and then click Finish.

% New CCS Project

CCS Project =
Create a new CCS Project,

Project name: | Labsd |

Qutput type: | Executshle w |

[JUse default location

Location: |C:HMSP‘}SD_LaunchPad'nJ.at-s'n,I.abB'-Prc-je-:t | [Browse...]
Device
Family: |MSP430 v|
Variant: | 2553 v | |MsP430G2553 |
Connection: |TI MSP430 USB1 [Default] w |

» Advanced settings

w Project templates and examples

| type filter text Enables the use of Grace within your project
so that you can graphically configure your

= Empty Projects || | peripherals, generate runtime initialization
L E Empty Praject code, and call this code from your application.

[Empty Assembly-only Project _ || | This project's application code simply calls the
; - [Empty RTSC Project = | | generated initialization code and exits.
> [Empty Grace (MSP430) Project , ,

EME] Basic Examples Many more peripheral-specific examples are
il =Sl ; R — | | available in the Grace Examples section of the
o [Blink The LED TI Resource Explorer (accessed via the
[Hello World View->TI Resource Explorer menu).

lflﬂi] frare Fvamnles]

@ < Back [Mext > H Finish ” Cancel

Getting Started with the MSP430 LaunchPad - Grace 8-9

Lab 8: Grace

Welcome to Grace™

2. The Grace Welcome screen will appear within the editor pane of CCS. If you ever
manage to make this screen disappear, simply re-open * .cfg (main.cfg is the
filename here). When a Grace project is opened, the tool creates this configuration file to
store the changes you make. Click the Device Overview link at the top of the pane.

Grace presents you with a graphic representing the peripherals on the MSP430 device.
This isn’t just a pretty picture ... from here we’ll be able to configure the peripherals.
Blue boxes denote peripherals that can be configured. Note that three of the blue boxes
have a check mark in the lower left hand corner. These check marks denote a peripheral
that already has a configuration. The ones already marked must be configured in any
project in order for the MSP430 to run properly.

If you are using the MSP430G2231, your Grace window will look slightly different.

Grace (MSP430) - MSP430G2553 *

Welcome

¥IN - XOUT Dvee DVSS aveC P x P2 P3x
| I | 48 At 48

S S S A S S

GPRIC
Osdllsors [P ACLK Flash ADC10

: . Port P1 Port P2 Paort P3

Basic Clock RAM 10-Bit 810 810 810

System+ 16kB
—PsucLl | g 5128 | |8Channels| | IMemuet - Intemupt
@ capahility capability Pullupf
4kB 256kB Autoscan 5 d

MECLK HB 1 ch DA ull-upidown - Pull-upidown 0w

d’en gors resigors resigors

CPU

A F 3 A A A A A F 3
16MHz MAB T

1ME A ¢ ‘
ind. 16 |« y y
Registers I mDB
[T | { 1| { { |
Emulation [
EP USCI AD:
(EP) < LARTILIM,
I Comp_»A+ Watchdog Timer0_A&3 | | Timer1_A3 I A, SPI
=
JTas = Brownot WDT+
Interface ot — Protedion 8 acc JCC
Channels 15Bit Regisers Registers Usc| BO
— o SPIJ2C
Wire

|
RSTM

L]l

8-10 Getting Started with the MSP430 LaunchPad - Grace

Lab 8: Grace

DVCC

3. Let’s start at the top. Earlier in this workshop we measured the DVCC on the board at
about 3.6VDC. Change the pull down at the top to reflect that.

XM KOUT 36V = |[DVCC DWSS
J |

e

Osdillaors [P ACLK Flash

Basic Clock RAM
System+ 16kB

o P SMCLK £k 512kB

L =] 256kB

BCS+
4. Next, click on the blue Oscillators Basic Clock System + box.

Note the navigation hyperlinks at the top for the different views. These links may
disappear if the window is large enough and you slide to the bottom of it. If they do, slide
back to the top. Also note the navigation buttons on the top right of the Overview screen
and the tabs at the bottom left. Take a look at the different views, but finish by clicking
the Basic User link.

The default selections have the calibrated frequency at 1 MHz for the High Speed Clock
Source and 12 kHz for the low. Note the simplified view of the MCLK, SMCLK and
ACLK. If you need more detailed access, you can switch over to the Power User view. In
any case, leave the selections at their defaults and click the Grace tab in the lower left.

High Speed Clock Source cpU

Seled callbrated 1MHz & 1000 kHz
frequency

ar

manually configure* | 1000.0 kH=z

* Manually coniguring the frequency . . i
can resultin a +~10 % frequency High-Speed Peripherals
deviation 1000 kHz

Low Speed Clock Source** Low-Speed Peripherals
Select available 17 kHz e 12 kHz
preset frequency

or

manudly configure kHz

** This setting uses an intemal lowfreguency

osdllator. Fregquency can vary between 4kHz to

20kHz. See spedfic device datasheet.

Getting Started with the MSP430 LaunchPad - Grace 8-11

Lab 8: Grace

WDT+

5. Let’s configure the Watchdog Timer next. Click on the blue WatchDog WDT+ box in
the Overview graphic. Note the selection at the top of the next window that enables the
WDTH+. Click the Basic User link. Stop Watchdog timer is the default selection ... let’s
leave it that way. Click the Grace tab in the lower left. Notice that the peripherals we’ve

touched are adding tabs.

WD T+ Mode Select

Stop Watchdog Timer

Interval Timer Mode
Watchdaog Timer Maode

Interrupt Enables

WDT= Interrupt Enable

Generate Interrupt Handler Code

View All Interrupt Handlers

Note: By enabling the interrupt handler, Grace generates a fully working
interrupt service routine in InterruptVectors_init.c file inside src folder, User
could insert code inside the specified area of the ISR and the code is
preserved, When a user disables the interrupt handler, the user's inserted

GPIO

the code when it is no longer needed.

code remains at the bottom of the file which is automatically re-inserted if
the user re-enables the interrupt handler. User could also manually remove

GPIO is next. For this lab, we want to enable the GPIO port/pin that is connected to the
red LED (port 1, pin 0). Click on the upper right blue box marked GPIO. In the next
screen, click the links marked Pinout 32-QFN, Pinout 20-TSSOP/20-PDIP and Pinout
28-TSSOP to view the packages with the pinouts clearly marked. If you are using the
MSP430G2231, your package selections will be different. No databook is required. We
could make our changes here, but let’s use another view.

Resize the Grace window if you need to do so. Click the P1/P2 link. The Direction
Registers all default to inputs, so check the port 1, pin 0 Direction register to set it to an
output. No other changes are required. Click the Grace tab in the lower left.

FPORT 1
Output Reqister
7 &] 4 3 2 1 [}
OUTx
O O O O O O O O
Direction Register
7] 5 4 3 2 1 [}
Difx
O O O O O O O

Getting Started with the MSP430 LaunchPad - Grace

Lab 8: Grace

Timer0_A3

7. We’re going to use the timer to give us a one second delay between blinks of the red
LED. To configure the timer, click on the blue box marked Timer0 A3 (This will be
Timer0 A2 if you are using the MSP430G2231). In the next screen, click the check box
marked Enable Timer_A3 in my configuration at the top of the screen. When you do
that, the view links will appear. Click on the Basic User link.

In our application code, we’re going to put the CPU into low-power mode LPM3. The
timer will wake up the CPU after a one second delay and then the CPU will run the ISR

that turns on the LED. Our main () code will then wait long enough for us to see the
LED, turn it off and go back to sleep.

We need the following settings for the timer:

e Timer Selection: Interval Mode / TAO Output OFF

e Desired Timer period: 1000ms

e Enable the Capture/Compare Interrupt

Timer Capture/Compare Block #0

Timer Selection:

Timer 2FF TAD 0 Qutput OFF

Interval Mode F1.1,/TAD.D

PWM Mode F1.5/TADD

Custom F3.4/TAD.D

Desired Timer Period: 1000.0 ms Calculated Timer Period: 1s
Calculated Timer Frequency: 1 Hz

Interrupt Enables

Capture/compare interrupt enable 0 [Remove Interrupt Handler Code

View All Interrupt Handlers

Grace creates an interrupt handler template for you at this step.

Then click the View All Interrupt Handlers link and you’ll see:

Interrupt Vector List

Open Interrupt Vector File

This is a consolidated view of all interrupt vectors for M5P430G2553 device. To view each interrupt handler in more detail, click on each item in the list of All Interrupts,

~ All Interrupts ~ Interrupt Details
Mon-maskable The current interrupt priority is 25
E::giﬁ EEE?-Z [Remove Interrupt Handler Code
Comparator & CCIED

[¥] Capture/compare interrupt enable 0

Timer)_A3 CCR1-2
USCT AQ-BO Receive
USCT A0-BO Transmit
ADC10

Port 2

Portl

Getting Started with the MSP430 LaunchPad - Grace

Lab 8: Grace

Select Timer0_A3 CCRO and then click on the Open Interrupt Vector File link.

Note the /* USER CODE START and /* USER CODE END comments in the
TIMERO_AO_VECTOR template. These comments indicate to Grace that the code
between them should not be overwritten during the code generation process.

The first line of code in the ISR will turn on the LED. When the ISR returns to the main
code, we want the CPU to be awake. The second line of code will do that (like we used in
Lab 6). Replace the middle comment in the template as shown below.

*/
#ipragma vector=TIMERO_AO VECTOR
__interrupt void TIMERO_A®_ISR_HOOK(void)

{

/* USER CODE START (section: TIMER@ A@ ISR _HOOK) */

P10OUT = BITO; // Turn on LED on P1l1.0
_bic_SR_register_on_exit(LPM3_bits); // Return awake

/* USER CODE END (section: TIMER@_A® ISR_HOOK) */

i

Click the Save button on the menu bar, and then click the main. cfg tab in the upper
left corner. Click the Grace tab in the lower left corner. Note that the configured
peripherals all have a check mark in them. The Outline pane on the right of your screen
also lists all the configured peripherals.

System Registers - GIE

8.

You certainly remember that without the GIE (Global Interrupt Enable) bit enabled, no
interrupts will occur. In the Outline pane on the right of your screen, click on System.
Find the GIE bit in the Status Register and make sure that it is checked. If your
MSP430G2231 configuration has an enable checkbox, make sure it’s checked. We’re
done with the Grace configuration. Click the Save button on the menu bar to save your
changes.

SR, Status Register

15 i 13 iz i1 i a] 7] 5 4 k] 2 1

Resarvad W sCG1 f=eei] QSCOFF | CPUDFF GIE M z

Getting Started with the MSP430 LaunchPad - Grace

Lab 8: Grace

Application Code

9. Grace automatically creates a main . c template for us with the appropriate Grace calls.
Expand the Lab8 project and double click on main. c in the Project Explorer pane to
open the file for editing. It should look like the screen capture below:

Ll R}
I
I
I
I
I
I
I
[}
[Py}
+
i
3
[«
51
]
(=8
LA
sl
B
L
]
-
3
[l
=
=
[«
m
A
I
I
I
I
I
I
I
In

o

=]

¥ ======== Grace related includes ========

*

#include <ti/mcu/msp43e/Grace.h:

woca

L]

FES

12 ======== Main ========

13 */

14 int main(void)

15 {

16 Grace_init(); // Activate Grace-generated configuration
18 ff rxer» Fill-in user code here <<<<<

19

28 return (8);

21}

22

The standard msp4 30 . h definition file is included first, followed by the Grace . h Grace
definitions. This includes all the Chip Support Library functions.

Inside main () is Grace init () that runs all of the Grace initialization that we just
configured. The main () function, of course, does not return anything ... the return (0) isa
C coding formality to assist with third-party compiler compatibility.

Getting Started with the MSP430 LaunchPad - Grace 8-15

Lab 8: Grace

11.

12.

13.

The first thing we want the main code to do is to place the device into LPM3. When the
timer expires, the time ISR code will turn on the red LED. Our main () code will wait a
short time, then turn the red LED off. Replace the // ... Fill-in user code here comment
with the while () loop code shown below:

*/

*/

*/
int main(void)
{

Grace_init(); // Activate Grace-generated config

while (1)
{
_bis_SR_register(LPM3_bits); // Enter LPM3
_delay_cycles(10000); // 1l@ms delay
P10OUT &= ~BITO; // Turn off LED on P1l.0
}

return (0);

}

Make sure that your LaunchPad board is plugged into your computer’s USB port. Build

and Load the program by clicking the Debug ¥ button. If you are prompted to save
any resources, do so now.

After the program has downloaded, click the Run button. If everything is correct, the red
LED should flash once every second. Feel free to go back and vary the timing if you like.
You could also go back and re-run the rest of the labs in the workshop using Grace.

If you’re so inclined, open the Lab8/src/grace folder in the Project Explorer pane
and look at the fully commented C code generated for each of the initialization files.
These could be cut/pasted into a non-Grace project if you choose.

This was a very simple example. In a more complex one, the power of Grace would be
even greater and your project development will be much further along than it would have
been if written entirely by hand. Terminate the debugger, close the Lab8 project and exit
Code Composer.

STOP ng]]

You’re done.

Getting Started with the MSP430 LaunchPad - Grace

FRAM Overview

Introduction

This module will give you a quick overview of an exciting new memory technology from Texas
Instruments. Although FRAM is not currently available in the Value-Line parts, it is shipping in
other MSP430 devices

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization

Serial Communications

Grace

FRAM

I: Capacitive Touc

68

Getting Started with the MSP430 LaunchPad - FRAM Overview 9-1

Module Topics

Module Topics

FRAM Overview 9-1
MOUIE TOPICS.......oveeeeeeiee ettt ettt ettt e et e et e et e e bt e e abseessaeestaeansaeensaeessaeensseesaeenseeens 9-2
FRAM — Next GEReration MeEMOTYccceecuieeueeiieeeeeeeieeesieeeeiteesiteestseassaeesaeessaeesseessseensseessseensseens 9-3

FRAM CONIOLLET ...ttt ettt ettt s b ettt et e b e et e b et e eteennesnees 9-5
FRAM and the CaChecc.eeiuiiiiiiiiie ettt sttt ettt sb ettt 9-6
IMIPU ettt ettt et ettt etttk e ekt eb e e h e e a e e a e et et e Rt eR e eR e eR e e aten b et e ke ebeeaeebeentens e teteaneeaea 9-7
WIIEE SPEEA ..ottt ettt et e e et e e stesaaesaee st enseenseenseesseesaansaenseenseensennnas 9-8
LOW POWET ...ttt ettt et et et sae e b b e e e 9-9
Increased Flexibility and ENdUIanCe..........coevieiieiiiiiiiiiiriesiet ettt 9-10
Reflow and Reliability........cccoeviiiiiiienieiieeee ettt ettt snaesaeense e 9-11

Getting Started with the MSP430 LaunchPad - FRAM Overview

FRAM — Next Generation Memory

FRAM - Next Generation Memory
FRAM - The Next Generation Memory

¢ Why is there a need for a new memory technology?
- Address 21st century macro trends — Wireless, Low Power,
Security

Drive new applications in our highly networked world (Energy
Harvesting)

Improve time to market & lower total cost of ownership
(Universal memory)

¢ What are the requirements for a new memory

technology?

Lower power consumption
Faster Access speeds
Higher Write Endurance
Higher inherent security
Lower total solution cost

Not currently available in Value-Line parts

69

FRAM - Technology Attributes

¢ Non-Volatile — retains data without power

¢ Fast Write / Update — RAM like performance.
Up to ~ 50ns/byte access times today
(> 1000x faster than Flash/EEPROM)

+ Low Power - Needs 1.5V to write compared to
> 10-14V for Flash/EEPROM - no charge

pump

¢ Superior Data Reliability - ‘Write Guarantee’ in
case of power loss and > 100 Trillion
read/write cycles

rRAMTRON
Auromotive F-KAM Memory

70

Getting Started with the MSP430 LaunchPad - FRAM Overview 9-3

FRAM — Next Generation Memory

Target Applications

+ Data logging, remote sensor applications
{High Write endurance, Fast writes)

+ Digital rights management
{High Write Endurance — need >10M write cycles)

+ Battery powered consumer/mobile electronics
{low power)

¢ Energy harvesting, especially wireless
{Low Power & Fast Memory Access, especially Writes)

+ Battery Backed SRAM Replacement
{Non- Volatility, High Write Endurance, Low power, Fast
Writes)

71

Understanding FRAM Technology

/" Programming Data to FRAM WRITE: Apply voltage to
; plate line (write ‘0') or
Plate line bit line (write ‘1’

Large Induced

)t/ Charge (Q)
it

READ: Apply a voltage to th
plate line, sense the induced
charge on the bitline

Reading Data from FRAM

Plate line No dipole flip

Small Induced Dipole
/ Charge (Q) «~ Flip
‘A‘STTIQ:“O bit P ‘A- LgQ="1" bit

Ferroelectric
—

Capacitor
Bit lin

72

9-4 Getting Started with the MSP430 LaunchPad - FRAM Overview

FRAM — Next Generation Memory

Non-volatile
Retains data without
power Yes
Write speeds
10ms

Average active
Power [uAMHZ] 110
Write endurance 100

Trillion+
Dynamic
Bit-wise programmable Yes
Unified memory
Flexible code and data Yes

partitioning

Data is representative of embedded memory performance within

<10ms

No Yes

2secs

All-in-one: FRAM MCU Delivers Max Benefits

I N el

Yes

1 sec

<60 50mA+ 230

Unlimited 100,000

Yes No

No No

device

No

No

10,000

73

FRAM Controller

FRAM Controller (FRCTL)

*

*
*

Functions of FRCTL.:

FRAM reads and writes like
standard RAM (but)
Read/Write frequency < 8MHz
For MCLK > 8MHz, wait states
activated

4 Manual or automatic
Seamless and transparent
integration of cache
Error checking and correction
(ECC) built into FRAM read/write
cycle

Control Registers

MAB

 meu |

Violation

Controller

FRAM

MDB

FRAM
Memory
Array

74

Getting Started with the MSP430 LaunchPad - FRAM Overview

FRAM — Next Generation Memory

FRAM and the Cache

FRAM and the Cache

¢ Built-in 2 way 4-word cache; transparent to the user, always enabled
¢ Cache helps:

¢ Lower power by executing from SRAM

¢ Increase throughput overcoming the 8MHz limit set for FRAM accesses

¢ Increase endurance specifically for frequently accessed FRAM locations e.g.
short loops (JMP$)

Active Power Vs MCLK
4 -
35 /
3
g /"/ ——RAM/ 100% Cache Hit
225 M
§ 2 —m—75% Cache Hit
15 "
g / Typicall 66% Cache Hit
1+ —
o)
0.5 W 50% Cache Hit
0 ‘ ‘ 0% Cache Hit
1 4 8 16 20 24
MCLK (MHz)

75

Unified Memory

Before FRAM " With FRAM
: : : : One device supporting multiple
Multiple device variants may be required options “slide the bar as
needed”
el e !
rogram i ¢ .
e 16kB Uhjversal FRAM
T i
agg;?;g, ‘1kB kB ~ Data vs. program memol
o Chip L EEPRO 14kB Flash ‘ jEAM partitioned as needed
o ; + Easier, simpler inventory
1 SKE management
24KB Flash | SRAM + Lower cost of issuance /
il ownership
To get more SRAM you may have + Faster time to market for
to buy more FLASH ROM memory modifications

76

Getting Started with the MSP430 LaunchPad - FRAM Overview

FRAM — Next Generation Memory

Setting Up Code and Data Memory

¢ Case 1: all global variables are assigned to FRAM

¢ Advantage: All variables are non-volatile, no special handling
required for backing up specific data

¢ Disadvantage: Uses up code space, increased power,
decreased throughput if MCLK > 8MHz
¢ Case 2: all global variables are assigned to SRAM

¢ Advantage: Some variables may need to be volatile e.g.
state machine, frequently used variables do not cause a
throughput, power impact

¢ Disadvantage: User has to explicitly define segments to
place variables in FRAM
¢ Achieving an optimized user experience is a work
in progress...

7

MPU

Memory Protection Unit (MPU)

¢ FRAM is so easy to write to...

¢ Both code and non-volatile data need protection

¢ MPU protects against accidental writes [read, write
and execute only permissions]

¢ Features include:

+ Configuration of main memory in three variable sized
segments

¢ Independent access rights for each segment
+ MPU registers are password protected

I Control Registers |

ac
wag .
e W'V §
T Main
Memory
Array/
‘\ﬂcﬂallan Controller
MDB
A N
G/

7a

Getting Started with the MSP430 LaunchPad - FRAM Overview 9-7

FRAM — Next Generation Memory

Write Speed
Maximizing FRAM Write Speed

+ FRAM Write Speeds are mainly limited by communication
protocol or data handling overhead, etc.

¢ For in-system writes FRAM can be written to as fast as 16MBps
¢ The write speed is directly dependent on:
¢ DMA usage Wiite Speed Vs CPU Clock
+ System speed 180
+ Block size 0

ond

MegaBytnsisoc:

Refer to Application
Regort titled “Maximizing o
FRAM Write Speed on 207
the MSP430FR573x” 000

2 32 84 128 2% 51z 1024 4086 gisz |WENHz
Ho. of bytes in one block DMA transfer o 16HHz
D 24NHz

79

FRAM = Ultra-Fast Writes

Case Example: MSP430FR5739 vs. MSP430F2274
Both devices use System clock = 8MHz
Maximum Speed FRAM = 1.4MB ps [100x faster]
Maximum Speed Flash = 13kBps

Max. Throughput: e
1,000
100
m .
1
FRAM Flash

a0

Getting Started with the MSP430 LaunchPad - FRAM Overview

FRAM — Next Generation Memory

Low Power

FRAM = Low Active Write Duty Cycle

Use Case Example: MSP430FR5739 vs. MSP430F2274
Both devices write to NV memory @ 13kBps
FRAM remains in standby for 99% of the time

Power savings: >200x of flash

10,000

Consumption @ 13kBps:

1,000

100

1 -]

FRAM Flash

a1

FRAM = Ultra-Low Power

Use Case Example: MSP430FR5739 vs. MSP430F2274
Average power FRAM = 720pA @ 1400kBps
Average power Flash = 2200pA @ 13kBps

100 times faster using half the power

Enables more unique energy sources
FRAM = Non-blocking writes 4
CPU is not held i

Interrupts allowed 2000 1

2200 A

1400 kBps

1500 ¢

1000 ¢

13 kBps

LEE R E L EEE L Er L X

Data Throughput Power Consumation

a2

Getting Started with the MSP430 LaunchPad - FRAM Overview 9-9

FRAM — Next Generation Memory

Increased Flexibility and Endurance

FRAM = Increased Flexibility

Use Case Example: MSP430FR5739 vs. EEPROM
Many systems require a backup procedure on power fail

FRAM IP has built-in circuitry to complete the current 4 word write
Supported by internal FRAM LDO & Capacitor

In-system backup is an order of magnitude faster with FRAM

15

F-RAM: ~50,000 writes
T EEPROM: 1 write

mO»-r0<

1000 uF, 13002 Fast power down ramp

O Bs2 604 006 008 B0 GA2 BM 016 616 020 02 OM 626 08 O3 632 034 0% 0%
TIME is)

Write comparison during power fail events*
+ Source: EE Times Europe, An Engineer’s Guide to FRAM by Duncan Bennett

a3

FRAM = High Endurance

Use Case Example: MSP430FR5739 vs. MSP430F2274

FRAM Endurance >= 100 Trillion [10*14]

Flash Endurance < 100,000 [10/5]

Comparison: write to a 512 byte memory block @ a speed of 12kBps

Flash = 6 minutes

FRAM = 100+ years 100.000000,000
10,000,000,000
1,000,000,000

100,000,000 114,000

10,000,000 years
1,000,000
100,000
10,000
1,000
100

10
) |
fmin]
FRAM Flash

84

Getting Started with the MSP430 LaunchPad - FRAM Overview

FRAM — Next Generation Memory

Reflow and Reliability
What about Reflow?

¢ Tl factory programming is not available for the MSP430FR57xx devices
¢ Customer and CMs should program after reflow or other soldering
activity
¢ Tl will provide reference documentation that should be followed during
reflow soldering activity
¢ Hand soldering is not recommended. However it can be achieved by
following the guidelines
v Be mindful of temperature: FRAM can be effected above 260 deg
C for long periods of time
v Using a socket to connect to evaluation board during prototyping

is also a best practice

85

FRAM: Proven, Reliable

¢ Endurance
¢ Proven data retention
to 10 years @ 85°C
¢ Less vulnerable to attacks
+ Fast access/write times
+ Radiation resistance

+ Terrestrial Soft Error Rate
(SER) is below detection limits

+ Immune to magnetic fields
¢ FRAM does not contain iron

For more info on
TI's FRAM technology

a6

Getting Started with the MSP430 LaunchPad - FRAM Overview 9-11

FRAM — Next Generation Memory

9-12 Getting Started with the MSP430 LaunchPad - FRAM Overview

Capacitive Touch

Introduction

This module will cover the details of the new capacitive touch technique on the MSP430. In the
lab exercise we will observe the Capacitive Touch element response, characterize the Capacitive
Touch elements and implement a simple touch key application.

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization

Serial Communications

Grace

FRAM

I: Capacitive Touc

What is Capacitive Touch?
87

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10- 1

Module Topics

Module Topics

Capacitive Touch 10-1
MOAUIE TOPICS....c..eeiveeeee ettt ettt e et e et e e e e e abe e e ab e e easeesabeeeasaeenbaesnsaesabeesnseesnseas 10-2
CAPACTIIVE TOUCH ...t ettt et e st e et e e et e e e abeesabeeesseesnbeeenseennseas 10-3

Capacitive TOUCHh MEthOdSooiiiieiiiiiieciie ettt e e sbeeebeesbeeebeesnsaeensee e 10-3
CapacitiVe IMEASUICINCILccvieiiieeiieeiieetteeteeeiteesteeeteessseessseesssaeasseessseeasseesnseesseessesssseessesssseesns 10-4
RO IMPIEMENTATIONSeeviieiiieiiieeie et eeie ettt e steestteesaeessaeessaeesseeessseessseessseessseessseessseensseenssens 10-5
DIELAIIS ..ttt bbbttt b e bbbt e h et b e bbbt bt ettt na b 10-5
Change i CAPACITAINICEeeruiereieiieteeieeiiesieeieeteeteseeseeesseeseesseasseessesssesseenseeseensesnsesssesssesseenseenes 10-6
Change 1N COUNES........ccveiieriieriiete et eteeteste bt e e esestesaeesseesseesseenseanseessesssessaenseenseensesnsesnsessseseenseenes 10-6
RODUSINESS ...ttt ettt bbbt ettt ettt b e bt eb et e st e e nae b e 10-7
INOISE TMIMIUNILY ...e.eieiieiieii ettt ettt et e et e esaesseesse e seenseensessaesseesseenseenseensenssenseens 10-7
PinOSC CPU OVETREAd ..ottt ettt st st ettt 10-8
J RO B010] (5350153 017216 o) o OSSR RUUSUS 10-9
CRANEE 1N COUNLS...cuviieiieiiieeiieeieeeieeeteeetee s teeebeessteeesbeessseessseesssaessseesssaeasseesnseessseesnseessseesnsesanseesns 10-9
DULY CYCLe VS. CUITENE ..ueiieiiiiieeiie ettt ettt estte et ette et e etee e taeeaaeestbeessaeestseeseesnsseenseesnsaeenseesnses 10-10
LIDTATY OVEIVIEW ..eeeviiiiiieiieeiiieeciie ettt eetteetteestte e teeeaeeetaeesaeessaeesseeessseesseesnsseenseesnsseenseesnsaeenseesnses 10-11
Element DefINTtioncceoiiiiiiiiiii ettt 10-11
SeNSOT DETINTION ...ttt ettt ettt ettt e b et e e et st esbeesaeeeeenes 10-12
SUIMITIATY ...ttt et ettt ettt e e bt e e bt e s bt e eabte s bt e eabeesabeeeabeesabeeenbeesabeesabeesabeesnseesas 10-12
BOOStEr PACK LAYOUL......eeiiiiieiicie ettt sttt ettt e eaaessae st e eseensesnsesnnas 10-13
Lab 10: CaAPACIIVE TOUCH.c.oocueeieiiieeieeee ettt ettt et ettt ebeebeenseenae s 10-15
Lab10a — Observe Element REPONSE........cccuvevuieiieieeiieciieiieie ettt sttt eeee s sse e ene e 10-18
Lab10b — Characterize the EICMENtSccoccieriieiiiiiiiieieeee e 10-23
Lab10c — Capacitive Touch Project from a Blank Pageccccoociiiniiniiiiiiieececeeee, 10-28

10-2

Getting Started with the MSP430 LaunchPad - Capacitive Touch

Capacitive Touch

Capacitive Touch

What is Capacitive Touch?

A change in Capacitance ...

¢ When a conductive element is present - Finger or stylus
» Add C3 and C4, resulting in an increase in capacitance C1 + C2 + C3||C4
* This becomes part of the free space coupling path to earth ground
¢ When the dielectric (typically air) is displaced
* Thick gloves or liquid results in air displacement and change in dielectric
» Capacitance is directly proportional to dielectric, capacitance (C2) increases
(air ~1, everything else™ 1

Options ...
88

Capacitive Touch Methods

MSP430 Capacitive Touch Methods

< 3uA/Button

Pin oscillator method

(PinOsc with internal RO)

No external components required

Timer used

Currently MSP430G2xx2 and MSP430G2xx3

RO method

Most robust against interference

MSP430

Timer used, comparator used

act] |

MSP430 devices with comparator

TAR

RC method —— TuA/Button
'a

Lowest power method
Supports up to 16 keys
Pxy

GPIO plus timer used 5 7
_ Csenson RZ
Any MSP430 device <

MSP430

Capacitive Measurement . ..
53

Getting Started with the MSP430 LaunchPad - Capacitive Touch

10-3

Capacitive Touch

Capacitive Measurement

Capacitive Measurement with the MSP430

A change in capacitance
equals as a change in timer counts

Relaxation Oscillator (RO) B e S WY S

Measure frequency of multiple R/C
charge/discharge cycles

Measurement window is fixed !

Capacitance is a function of timer Vir.
frequency !
VB -
el
+ Resistor Capacitor (RC) v P N
. . VCC o TaR; TAR v
Measure charge/discharge time from /T
Vit+ to Vit- and Vit- to Vit+ Vi ‘
The timer frequency is fixed
Capacitance is a function of the RC
charge/discharge time Vi
Vss + + + »
o ¥ t

RO Implementations ...
90

10-4

Getting Started with the MSP430 LaunchPad - Capacitive Touch

Capacitive Touch

RO Implementations

MSP430 RO Implementations

¢ Requires: PinOsc
4 A Timer for the gate time
4 ATimer to count cycles & w
4 A Pin Oscillator (MSP430G2x) or :&
Comparator for the relaxation oscillator -_C:
+ Very low power consumption -
¢ Sensitivity is limited by the gate time:
longer = greater sensitivity
¢ Slow scan rates: the longer the gate

time the longer it takes to scan the

elements

¢ High noise immunity

4 Inherently immune to low frequency E
noise

& Hysteresis in relaxation oscillator
provides high frequency noise immunity

RO Details ...
Details
RO Implementation Details
. . TR
+ Relaxation Oscillator _
¢ Comparator -
Reference & | rm
Feedback circuit e

¢ Timer for frequency counter
& Timer for measurement

window
(SLOW)
'S Frequency SMCLK woT
Mea Su reme nt measurement window
¢ Fis afunctionof C };tpm : rd TaR
¢ For agiven interval the v ¥ (FAST)

Frequency decreases with
an increase in capacitance

Oscillator Output Signal
(CAQUT = TACLK)

Change in Capacitance ...
92

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10-5

Capacitive Touch

Change in Capacitance

Interpreting Change in Capacitance RO

Absolute Threshold: Touch Detection,
Missed Detection, False Trigger

]

G <

\

/

Measured
Capacitan /

Environmental R . . .
Changes Relative Threshold with Baseline Tracking: No false

triggers and accounts for environmental drift.

< Base
Capacitance

Change in Counts ...
93

Change in Counts

Interpreting Changes in Counts RO

Capacitance

Timer Counts

Inverse Relationship

RO Robustness ...
94

10-6 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Capacitive Touch

Robustness

RO Robustness

¢ Limit the variables to capacitance
— DCO calibrated constants +/-6% over Vcc and temperature
— Integrated Resistance varies from 20Kohms to 50Kohms

SMCLK | R Capacitance Change | Gate Time | Change in | Margin (threshold
(Hz) (ohms) [(11pF-11.22pF) (ms) Counts is 150)
1.00E6 | 35000 2% 8.192 301 50.2%
1.06E6 | 35000 2% 7.728 284 47.2%
0.94E6 | 35000 2% 8.7415 320 53.1%
1.06E6 | 50000 2% 7.728 199 24.6%
0.94E6 |20000 2% 8.7415 560 73.2%

RO Noise Immunity ...

95

Noise Immunity

RO Noise Immunity

¢ Hysteresis

¢ Noise must occur at the relaxation oscillator frequency in order to
influence measurement

¢ Noise must be fairly large in magnitude to overcome hysteresis
(typically 1V)
¢ Natural Integration and Filtering

¢ Gate window of milliseconds represents many charge/discharge
cycles of the relaxation oscillator

¢ Example: 2mS*1.8Mhz = 3600 cycles (samples)
¢ Baseline Tracking automatically calibrates system
+ Slowly tracks changes, filtering noise

PinOsc CPU Overhead ...

96

Getting Started with the MSP430 LaunchPad - Capacitive Touch

10-7

Capacitive Touch

PinOsc CPU Overhead
RO CPU Overhead Using PinOsc

¢ 99% of the measurement time is performed in a low power mode
with no CPU interaction

¢ RO integration performed 100% in hardware
4 Calculation dependent on humber of sensors, typically <<1%
¢ CPU available for other tasks

RC Implementation ...
97

10-8 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Capacitive Touch

RC Implementation

MSP430 RC Implementation

¢ Timer and comparator or Schmidt trigger
GPIO

4 Timer capture inputs
4 Comparator Inputs
¢ Simple interface
4 Two sensor scan share a single resistor
¢ Very, very low power consumption
¢ Sensitivity is limited to clock speed
& 2xx family 16Mhz
& 5xx 25MHz
& Timer D 256Mhz
¢ Thick laminates require faster clock or
other additional processing
& Fast scan rates
¢ Poor noise immunity and not

recommended for applications that are
connected to mains

Changesin Counts ...
98

Change in Counts

Interpreting Changes in Counts: RC

Capacitance

Timer Counts

Direct Relationship

Duty Cycle vs. Current ...
99

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10-9

Capacitive Touch

10- 10

Duty Cycle vs. Current

Importance of Duty Cycle vs. Current

PinOsc RO Current | Gate
PinOsc 70uA

4ms
Sleep(LPM3) | 0.7uA 96ms

1 Sensor @ 2Hz Interval
Sensor =70uA*0.008 ~ 0.60uA
Sleep =0.7uA*0.992 ~ 0.70uA
i A A Average = ~1.30uA

Current

Processing insignificant

[=-Gate Time—

leep Time (LPM3;

1/Scan R

Library Overview ...
100

Getting Started with the MSP430 LaunchPad - Capacitive Touch

Capacitive Touch

Library Overview

Capacitive Touch Library Overview
Abstraction 4-|

- . I
55 i||8 | i
8 | |

HAL
RO_PINOSC_TAQ
RC_PAIR_TAO

fRO_PINOSC_TAO_SW

RO_COMPB_TAO_WDTA

o

g
2 2
o m
8 o
2 -
o o
o o
13 '3

B |
] marmmrEm

e |["8][mmermiobe | [_oscileer]

Element Definition ...
10

Element Definition

Library Configuration Element Definition

structure.c
//Pin0Osc Middle P2.5

Element Definition _
const struct Element middle =
+ Port Definition {
« Bit Definition .inputPxselRegister = (uint8_t *)&P2SEL,
.inputPxsel2Register = (uint8_t *)&P2SELZ,
.inputBits = BITS5,
.threshold = 0

structure.h

oveer] 1 sofnovss extern const struct Element middle;

ELKACLKIAC" CA0 Off 2 19§00 XINPZBITAD.1
P1TADQIATCA1 Of 3 180 xXouUTP2T
P 2/TAD AMA2*ICAZ (1) 4 170 TEST/SBWTCK
WEREF-* AT ICAI Y 5 16 JO0RSTINMISBWTDIO
IVEREF+"CAtTCK O 6 1500 P1.7/SDISDAICAOUTIAT ICATIT
[TAD DIAS*CAS/TMS ()} 7 140071 &TAD SDOVSCLMEY CAGITI

P2o0f 8 13

P2108 9 12

22§10 1

Sensor Definition ...
102

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10- 11

Capacitive Touch

Sensor Definition

Library Configuration Sensor Definition

o structure.c
Sensor Deflnltlon const struct Sensor wheel =

- Elements within Sensor {
. Gate Source: SMCLK = 1Mhz -halDefinition = RO_PINOSC TAO_WDTp,

.numElements = 4
+ Gate Interval: 8192 (~8.2ms) !
.baseoffset = 0,

// Pointers to elements
.arrayPtr[0] = &up,
(SLow) .arrayPtr[l] = &right,
ACLK woT

i .arrayPtr[2] = &down,

.arrayPtr[3] = &left,

measurement window

1st TAR 2nd TAR
| Capture | Capture .measGateSource= GATE_WDT_SMCLK,

; tlv (FAST)
¥ // 0->SMCLK, 1-> ACLK
.accumulationCycles= WDTp_GATE_8192

// Timer Information

SMCLK/x

Oscillator Output Signal I 2
(CAQUT = TACLK)

structure.h

extern const struct Sensor wheel;

Summary ...
103

Summary

Summary

¢ Capacitive Touch solutions can be implemented in a number of
ways on the MSP430

¢ Tradeoff between available peripherals, 10 requirements, sensitivity, and
power consumption

¢ Capacitive Touch 10 (PinOsc function of the digital 10 peripheral) in the
Value Line family is the most recent peripheral addition.
¢ No external components or connections
¢ Low power implementation of the relaxation oscillator
¢ The Capacitive Touch library offers several levels of abstraction
for different capacitance measurement applications
¢ Raw capacitance measurements
¢ Measurements with integrated baseline tracking
¢ Button, wheel, and slider abstractions

¢ Download library and examples from

Layout...

104

10-12 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Capacitive Touch

Booster Pack Layout

Capacitive Touch BoosterPack Layout

P2.0
(proximity)
P2.5
Wheel (middle)
P2.4 (up)
P2.1 (left)
P2.3 (right)
P2.2 (down)

¢ 6 touch sensors
¢ Cap touch IOs create RO (PinOsc)
¢ 9LEDs

Lab 10 ...
105

Getting Started with the MSP430 LaunchPad - Capacitive Touch

10- 13

Capacitive Touch

10 - 14 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Lab 10: Capacitive Touch

Lab 10: Capacitive Touch

Objective

The objective of this lab is to learn the hardware and software utilized by the capacitive touch
technique on the MSP430 LaunchPad and Capacitive Touch BoosterPack.

Lab10a: Observe element response
Lab10b: Characterize the elements

Lab10c: Implement a simple touch key
application

Lab10: Capacitive Touch

Tous ®

INSTRUMENTS

——

106

Getting Started with the MSP430 LaunchPad - Capacitive Touch

10- 15

Lab 10: Capacitive Touch

Procedure

Install Hardware and Software

1.

You will need the Capacitive Touch BoosterPack (430BOOST-CAPTOUCH1) available
here for US$10.

The 1.5 version of the LaunchPad kit already has Molex male-male connectors soldered
to the pin-outs on the sides of the board. If you have an earlier version of the LaunchPad
kit, you will have to solder the included Molex connectors onto the board.

Back in chapter one, you should have downloaded and installed the following files:
e BoosterPack User’s Guide - http://www.ti.com/lit/pdf/slau337
e Demo code, GUI, etc - http://www.ti.com/litv/zip/slac490

e Capacitive Touch Library - http://www.ti.com/litv/zip/slac489

e CT Lib Programmer’s Guide - http://www.ti.com/litv/pdf/slaa490a

e Getting Started with Capacitive Touch - http://www.ti.com/lit/slaa491

The Capacitive Touch BoosterPack includes an MSP430G2452 that is pre-programmed
with a capacitive touch demo. If you have version 1.4 of the LaunchPad board (or
earlier), very carefully replace the ‘G2231 device with the ‘G2452. (The ‘G2231 GPIO
does not have the PinOsc feature.) If you have version 1.5 of the LaunchPad board, we
will simply reprogram the ‘G2553 already on your board, and eliminate the potential to
break the pins of your devices.

Plug the BoosterPack PCB onto the top of the Molex male-male pins you soldered
carlier. Make sure the Texas Instruments logo is nearest the buttons on the LaunchPad
board. Plug the board into your computer’s USB port using the cable included with the
LaunchPad. If you are using version 1.4 of the LaunchPad, skip to step 7.

Open Code Composer in your usual workspace. Click on Project > Import Existing
CCS/CCE Eclipse Project. In the Import dialog that opens, change the search directory to
C:\MSP430 LaunchPad\Labs\Labl0-2553. Make sure that the single
discovered project is selected and click Finish. Click on the project in the Project
Explorer pane to make it active, and then click the Debug button on the menu bar to build
and program the code into your ‘G2553 device. Click the Terminate button on the CCS
menu bar to return to the debug perspective. Close Lab10-2553. Cycle the power on the
LaunchPad board by removing and re-inserting the USB connection.

Pass your hand close over the Capacitive Touch surface. You should see the LEDs
illuminate in sequence. Touch your fingertip to the rocket button in the center circle and
note the LED under it and the red LED on the LaunchPad PCB light. Touch again to turn
them off.

Touch between the inner and outer circle to momentarily illuminate LEDs on the outside
ring.

10- 16

Getting Started with the MSP430 LaunchPad - Capacitive Touch

https://estore.ti.com/430BOOST-CAPTOUCH1-Capacitive-Touch-BoosterPack-P2361.aspx
http://www.ti.com/lit/pdf/slau337
http://www.ti.com/litv/zip/slac490
http://www.ti.com/litv/zip/slac489
http://www.ti.com/litv/pdf/slaa490a
http://www.ti.com/lit/slaa491

Lab 10: Capacitive Touch

8. In the SLAC490 folder that you downloaded (and unzipped), find the Software folder
and the CapTouch BoosterPack UserExperience GUI folder beneath that.
Double-click on the CapTouch BoosterPack UserExperience GUI.exe file
that you find there. Give the tool a few moments to link with your LaunchPad, and then
touch any of the Capacitive Touch buttons. Note that gestures are also recognized.

Exit the GUI tool when you are done and close the Lab10-2553 project in Code
Composer.

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10- 17

Lab 10: Capacitive Touch

Lab10a — Observe Element Reponse

Import Project

9.

10.

11.

In this lab and the next, we will be observing the response of the Capacitive Touch
elements. We will also dig into the code to see how it operates. Finally in the last lab,
we’ll get a chance to get back to writing some code.

Open Code Composer Studio with your usual workspace and maximize CCS.

Import the Lab10a project by clicking Project = Import Existing CCS/CCE Eclipse
Project on the menu bar.

Change the directory to C: \MSP430 LaunchPad\Labs\Labl0a-2452 ifyouare
using the ‘G2452 device and C: \MSP430 LaunchPad\Labs\Labl0a-2553 if
you are using the ‘G2553 device. Make sure that the checkbox for Lab10a is checked in
the Discovered Projects area and click Finish.

Expand the Lab10a project in the Project Explorer pane by clicking on the * next to the
project name.

Inspect Structure Files

12.

13.

Double-click on structure. c in the Project Explorer pane to open the file for editing.

The file is split into two main sections: the top portion is the Element section and the
bottom is the Sensor section.

In the Element section you’ll see individual structures for each of the six buttons on the
Capacitive Touch BoosterPack circuit board: down, right, up, left, middle and proximity.
Inside these structures, the port/pin definition is made that assigns MSP430 GPIO
hardware to the defined button and a threshold is set that defines what change in
operation is an event. Note that the threshold is set to zero for the middle and proximity
elements. For the wheel or slider implementation, the maxResponse variable normalizes
the capacitive measurement to a percentage, so that the dominant element in the sensor
can be identified. This variable has no function for single elements.

In the Sensor section, groups of Elements are defined as sensors like the wheel,

one button and proximity sensor. These structures define which and how many Elements
will be used, what sensing method is used, which clock is used and how many cycles
over which the measurement should be made.

This file has been created especially for the BoosterPack button layout. When you create
your own board, this file must be modified.

Close structure.c.

10- 18

Getting Started with the MSP430 LaunchPad - Capacitive Touch

Lab 10: Capacitive Touch

Double-click on structure.h in the Project Explorer pane to open the file for editing.

This file contains a number of sections. Many of the definitions used by the Capacitive
Touch library are done here and made external. There are also several user-defined flags
that allow you to tailor the code for your application. There are several definitions that
allow you to trade RAM size for Flash size conserve memory and select MSP430 variant.
Value-line parts typically have small Flash sizes and much smaller RAM sizes to achieve
low cost, so using this space effectively is a design imperative.

Check out the three warnings at the bottom of the file.

This file has been created especially for the BoosterPack button layout. When you create
your own board, this file must be modified.

Close structure.h.

For more detailed information on these files, look in user guides SLAA490a and
SLAA491.

Open LAB10a.c

14. Open Labl0a. c in the Project Explorer pane to open the file for editing. The purpose of
this code is to let us view the proximity sensor, middle button and wheel sensor response
when they are touched.

Note the following:
e CTS Layer.hisincluded to provide access to the Capacitive Touch APIs
e Three defined variables to hold the button/sensor raw count values
¢ Watchdog timer, DCO calibration, SMCLK and LFXT1 setup
e Both GPIO ports are set to outputs and zero is written to all pins

¢ An infinite loop where calls are made to measure the timer count (and the
capacitance) of the proximity sensor, middle button and wheel sensor. The API
call to TI CAPT Raw() represents the lowest level of abstraction available from
the Capacitive Touch library and it is particularly useful for characterizing the
behavior of the buttons and sensors. Zeroing the threshold variable in structure.c
also disables any further abstraction by Capacitive Touch functions.

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10- 19

Lab 10: Capacitive Touch

Build, Load

15.

Make sure your LaunchPad board is connected to your PC and that the Capacitive Touch
BoosterPack board is securely connected. Build and load the program by clicking the
Debug button on the menu bar.

Setup Watch Window and Breakpoint Action

16.

17.

Run

18.

In the Expressions pane, right-click and select Add Global Variables. One at the time,
select the variables in which the raw counts will be stored; proximityCnt,
buttonCnt and wheelCnt and click OK. Expand the wheelCnt array so that you
can see all four elements.

Findthe no operation () ; line of code in Labl0a.c and place a breakpoint there.
We want the code to stop here, update the watch window and resume. To do that we’ll
change the behavior of the breakpoint. Right-click on the breakpoint symbol (left of the
line of code) and select Breakpoint Properties ... Click on the value “Remain Halted” for
the property “Action”. Change the action to “Refresh All Windows” and click OK.

Click on the Run button to run the program. You should see the values in the watch
window highlighted in yellow as they update. Black denotes unchanged values.

= P2.0 (proximity)

— P2.5 (middle)

P2.2 (down) — |

Slowly bring your finger close to the board as you watch the proximityCnt variable.
Ours started out around 37000 and dropped to around 36000 as we neared and touched
the board.

Watch the but tonCnt variable as you touch the middle button. The value should drop
as you touch it.

The wheel is comprised of the up, left, right and down elements. Watch the response as
you move your finger around the wheel. 0=up, 1=right, 2=down and 3= left.

10 - 20

Getting Started with the MSP430 LaunchPad - Capacitive Touch

Lab 10: Capacitive Touch

Graphs

19. A graph would make these changes easier to see and CCS provides that functionality.

Suspend the code (not Terminate) by clicking the Suspend U button. Add a graph by
clicking Tools = Graph - Single Time on the menu bar. When the Graph Properties
box appears, make the changes shown below.

Graph Properties

X

Property

[= Data Properties
Acquisition Buffer Size
Dsp Data Type
Index Increment
Q_value

Yalue

1
16 bit unsigned integer
1
a

sampling Rate HZ 12

start Address &buttonCnt
[= Display Properties

Axiz Display W] true

Data Plot Style Line

Display Data Size 50

Grid Style Major Grid

Magnitude Display Scale Linear

Time Display Unit sample

lUse Dc Value For Graph [] false

and click OK. The graph should appear at the bottom of your screen. If you don’t like the
colors, you can change them by right-clicking on the graph and selecting Display
Properties. But be careful, you can render the data invisible.

Click the Resume button and watch the graph of the but tonCnt variable. Allow a few
moments for the graph to build. You should see minor fluctuations in the variable that
look large in the graph since it is auto-sizing the y-axis. This will change when you touch
the middle Capacitive Touch button. The graph below shows three touches of the button.

The graph is plotting the number of relaxation oscillator cycles within a fixed duration of
time (the measurement window). As the capacitance increases (when you come near to
the electrode), the frequency of the relaxation oscillator decreases and the number of
cycles also decreases.

Consale | B¢ Single Time -4 53
3550
3500
3450
3400
3350
3300
3250
3200 |

— T
1211 1213.5

T T
1216 1218.5

T T — T
1201 1203.5

T
1206 1208.5

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 21

Lab 10: Capacitive Touch

20. Suspend the code (not Terminate) by clicking the Suspend ““ button and then click the

21.

22.

X on the Single-Time graph tab to delete the graph. Now let’s add a graph of the
proximityCnt variable. It’s possible to export and import graph properties to speed
the process up, and we’ll use that here. Add a graph by clicking Tools = Graph > Single
Time on the menu bar. When the Graph Properties box appears, click the Import button
and select the cts lab proximity.graphProp file from

C:\MSP430 LaunchPad\Labs\Labl0a and click Open. Sweet, huh? Click OK in
the Graph Properties box and the graph should appear at the bottom of your screen.

Click the Run button and watch the graph of the proximityCnt variable. Allow a few
moments for the graph to build. The behavior should look much the same as the middle
button did. Bring your finger near to the board and watch the response on the graph. The
graph below shows three close approaches to the board.

Conscle | [Single Time -5 34

32460
32410 \ /
32300
32310
32260
32210
32160 !

T T T T T T T T
291 293.5 298 298.5 301 303.5 308 308.5 E30) 313.5 318 318.5 321 323.5
sample

Experiment as much as you like, but only display one graph at the time. Remove the

watched expressions by clicking the Remove All Expressions button % above
the Expressions pane. Click the Terminate button to stop debugging and return to the
“CCS Edit” perspective. Close the Lab10a project.

10 - 22

Getting Started with the MSP430 LaunchPad - Capacitive Touch

Lab 10: Capacitive Touch

Lab10b — Characterize the Elements

In Lab10a we observed changes in capacitance. In Lab10b we will focus on a ‘touch’, setting an
appropriate threshold for detecting a touch. We will use the TI CAPT Custom function to
measure the deviation in capacitance from the baseline. The library will track the baseline
capacitance with each measurement. This configuration is only interested in fast (relative) and
large magnitude increases in capacitance. Decreases and slow increases in capacitance are treated
as environmental changes and are used to update the baseline.

Import Project

1. Import the Lab10b project by clicking Project > Import Existing CCS/CCE Eclipse
Project on the menu bar.
Change the directory to C: \MSP430 LaunchPad\Labs\Labl0b-2452 ifyou are
using the ‘G2452 device and C: \MSP430_ LaunchPad\Labs\Labl0b-2553 if
you are using the ‘G2553 device. Make sure that the checkbox for Lab10b is checked in
the Discovered Projects area and click Finish.

2. Expand the Lab10b project in the Project pane by clicking on the * next to the project
name and open structure.h for editing.

If you’re going to do baseline tracking (as we are in this lab), RAM space needs to be
allocated for it to function, for each element (there are 6 on the BoosterPack). At line 50,
uncomment the line:

// #define TOTAL NUMBER OF ELEMENTS 6

Of course, this uses precious RAM space. If you are not using baseline tracking,
commenting this line out will save RAM.

Close and save structure.h.

3. Open structure. c for editing. Remember from Lab10a (step 12) that in order to
characterize an element, its threshold should be set to zero. Find the threshold values for
the proximity sensor and middle button and verify that they are zero.

Close and save (if needed) structure.c.

4. Open Lab10b.c for editing and make sure that only the TT CAPT Custom() call for
the proximity sensor in the while () loop is uncommented. The calls for the middle
button and wheel should remain commented out for now. Save your changes if necessary.

while (1)
{
TI CAPT Custom(&proximity sensor, &proximityCnt) ;
//TI CAPT Custom(&one button, &buttonCnt);
//TI CAPT Custom(&wheel,wheelCnt);

__no_operation();

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 23

Lab 10: Capacitive Touch

Build, Load

5.

Make sure that Lab10b is the active project, then build and load the program by clicking
the Debug button on the menu bar.

Setup Watch Window and Breakpoint Action

6.

If you’ve closed the Expressions pane, click View = Expressions from the menu bar. In
the Expressions pane, right-click and select Add Global Variables. One at the time, select
the variables in which the raw counts will be stored; proximityCnt, buttonCnt and
wheelCnt and click OK. Expand the wheelCnt array so that you can see all four elements.

Findthe no operation () ; line of code and place a breakpoint there. We want the
code to stop here, update the watch window and resume. Right-click on the breakpoint
symbol (left of the line of code) and select Breakpoint Properties ... Click on the value
“Remain Halted” for the property “Action”. Change the action to “Refresh all Windows”
and click OK.

Graphs

8.

Let’s start with the proximity sensor. Add a graph by clicking Tools = Graph = Single
Time on the menu bar. When the Graph Properties box appears, click the Import button,
and then locate cts_lab proximity.graphProp in

C:\MSP430 LaunchPad\Labs\Labl0b. Select it, click Open and then click OK in
the Graph Properties window.

Run the program and allow a few moments for the graph to build. Take a look at the table
below. Let’s characterize the different responses of the proximity sensor: the noise when
no one is near the sensor, when your finger is 2cm and 1cm away and finally when you
touch the sensor. Remember that the element is not only the pad, but also the connection
(trace) to the pad. The proximity sensor wraps the entire board. Write what you see on the
graph in the table below. Our results are shown for comparison.

Observed Noise 2cm 1 cm Touch

Your Results

Our Results 0-50 30-80 75-140 1250-1325

Gate Time: ACLK/512 (default)

10- 24

Getting Started with the MSP430 LaunchPad - Capacitive Touch

Lab 10: Capacitive Touch

10. Click the Terminate button to stop debugging and return to the “CCS Edit” perspective.

11. Open Lab10b. c for editing and look in the while () loop. Comment out the
TI CAPT Custom() call for the proximity sensor and uncomment the one for the
middle button.

while (1)

{
//TI_CAPT Custom(&proximity sensor, &proximityCnt);

TI CAPT Custom(&one button, &ébuttonCnt) ;
//TI CAPT Custom(&wheel,wheelCnt) ;

__no_operation();

}

Save your changes. Build and load the program.

12. Click on the single-time graph tab. Click on the Show the Graph Properties button ==l
on the right side of the graph. It’s funny, but this is not the same thing as right-clicking on
the graph and selecting Display Properties. When the Graph Properties box appears, click
the Import button, and then locate cts lab button.graphProp in
C:\MSP430 LaunchPad\Labs\Labl0b. Select it, click Open and then click OK in
the Graph Properties window.

13. Run the program and allow a few moments for the graph to build. Now we’ll characterize
the middle button touch sensor similar to what we did with the proximity sensor. Our
results are shown for comparison.

Observed Noise | Light Touch | Heavy Touch Molex
Connector
(right side)
Your Results
Our Results 67-73 326-330 371-381 115-124

Gate Time: SMCLK/512 (default)

14. Click the Terminate button to stop debugging and return to the editing perspective.

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 25

Lab 10: Capacitive Touch

Changing the Measurement Window Time

15. Open structure. c for editing and close any other open editor windows.

The MSP430G2452 and Capacitive Touch BoosterPack hardware design implements an
RO with the PinOsc peripheral. The hardware abstraction in the Capacitive Touch
libraries utilizes Timer A2 and WDT+ for clock sources. The Capacitive Touch
measurement window or “gate time” is a function of the WDT+ peripheral.

The WDT+ can be sourced by the ACLK and SMCLK.

The gate time can be varied among the following settings: 64, 512, 8192 and 32768
cycles.

Below is the sensor structure for the proximity sensor:

const struct Sensor proximity sensor =

{
.halDefinition = RO_PINOSC TAQO_WDTp,
.numElements = 1,
.baseOffset = 5,
// Pointer to elements
.arrayPtr[0] = s&proximity, // point to first element
// Timer Information
// .measGateSource= GATE WDT SMCLK, // SMCLK
.measGateSource= GATE WDT ACLK, // ACLK
//.accumulationCycles= WDTp GATE 32768 //32768
//.accumulationCycles= WDTp GATE 8192 // 8192
.accumulationCycles= WDTp GATE 512 //512 default
//.accumulationCycles= WDTp_ GATE_ 64 //64

}i

The data taken in the previous steps used the default gate timings. Make the following
changes to structure. c and we’ll repeat those measurements.

In the one button structure in the sensor section, uncomment:

.accumulationCycles= WDTp GATE 8192 // 8192
and comment out:
.accumulationCycles= WDTp GATE 512 //512, default

Do the same thing in the proximity sensor structure in the sensor section. We’ll
leave the source unchanged for both sensors.

Save your changes.

These settings will select SMCLK/8192 for the one_button and ACLK/8192 for the
proximity sensor.

10 - 26

Getting Started with the MSP430 LaunchPad - Capacitive Touch

Lab 10: Capacitive Touch

Build, Load, Run and Graph

16. Build and load the program. Make sure your graph is displaying data for the middle
button. Run the program and fill in the table below. Our results are shown for comparison

Observed Noise | Light Touch | Heavy Touch Molex
Connector
(right side)
Your Results
Our Results 70-120 3800-4000 4270-4500 1200-1280

Gate Time: SMCLK/8192

17. Click the Terminate button to stop debugging and return to the editing perspective. Open
Lab10b. c for editing and look in the while () loop. Comment out the
TI CAPT Custom/() call for the middle button and uncomment the one for the
proximity sensor. Save your changes.

18. Build and load the program. Make sure your graph is displaying data for the proximity
sensor. Run the program and fill in the table below. Our results are shown for comparison

Observed Noise 2cm 1cm Touch

Your Results

Our Results 54900-5510 55390-55490 | 60300-60400 4000-4400

Gate Time: ACLK/8192

Note: Most of these values are very close to the 16-bit (65535) limit. If fact the Touch
measurement we made rolled the counter past the limit. Watch for this kind of
behavior during your experiments.

19. Compare these results with your earlier tests. The longer the gate time, the easier it is to
differentiate between noise and touch or proximity. There are many more measurements
that you could make here. You could check the effect of varying the gate time on the
responsiveness of the buttons. Or you could test the effect on power consumption. These
are tests that you will likely want to pursue with your design before finalizing it.

Click the Terminate button to return to the “CCS Edit” perspective. Close the Lab10b
project.

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 27

Lab 10: Capacitive Touch

Lab10c — Capacitive Touch Project from a Blank Page

In this section, we’ll learn how to build a simple Capacitive Touch project from the beginning,
with a blank folder. We’ll use the middle button on the BoosterPack board to light the middle
LED and the red LED on the LaunchPad board.

Copy/Create Files

1. Using Windows Explorer, open the Lab10c folder in
C:\MSP430 LaunchPad\Labs and observe that it is empty.

2. Open the folder containing the unzipped SLAC489 files. Copy the Source folder and
paste it into the Lab1 0c folder. This is the Capacitive Touch Source folder.

3. Againin the SLAC489 folder, open the Examples/RO_PINOSC TAO WDTp folder.
Copy both the structure.c and .h files and paste them into the Lab10c folder. We
could have used any of the examples, but for the purposes of the lab, let’s choose these.
These structure files contain all the definitions and structures for the entire Capacitive
Touch BoosterPack board. Rather than create these files from scratch, we’re going to
modify them to meet our needs, which is what you’ll likely do when you implement your
own design.

10 - 28 Getting Started with the MSP430 LaunchPad - Capacitive Touch

Lab 10: Capacitive Touch

Create Project

4. In Code Composer Studio, create a new project by clicking:
File 2 New = CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the MSP430G2452, make the appropriate choices. Make sure to click
Empty Project (with main.c), and then click Finish.

&0 New CCS Project CIR

CCS Project — g
Create a new CC5 Project.

Project name: Labl0c

Output type: | Executable VI

[T Use default location

Location: C:\MSP430_LaunchPad\Labs\Labl0c

Device

Famil: |MSP430 -
Variant: 2553 * | M5P430G2553 hd]
Connection: [T[MSP430 USBL [Default] vl

b Advanced settings

= Project templates and examples

type filter text Creates an empty project fully initialized -
for the selected device. The project will
| contain an empty ‘main.c’ source-file,

»

4 | = Empty Projects
s Empty Project
55 Empty Project (with main.c)
5= Empty Assembly-only Project
5 Empty Grace (M5P430) Project
5y Empty RTSC Project

4 | = Basic Examples
|5 Blink The LED -

m

@:l < Back Mext = [Finish] [Cancel]

A, i

5. Expand the Lab10c project in the Project Explorer pane to see that all of the files we
placed in the Lab10c folder have been automatically added to the project, along with
main.c created by Code Composer.

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 29

Lab 10: Capacitive Touch

Build Properties

6. Right-click on Lab10c in the Project Explorer pane and select Properties.

Under Build / MSP430 Compiler, click on the ¥ next to Advanced Options and then
click on Language Options. Check the “Enable support for GCC extensions (-gcc)”
checkbox. This enables the program to access uninitialized structures in structure.c,
allowing element three (for example) to be accessed without having to access elements
one and two. For more information, see:
http://processors.wiki.ti.com/index.php/GCC_Extensions_in_TI_Compilers

Under Build / MSP430 Compiler, click on Include Options. You must add two paths in
the search path, one for where the structure files are located and one for where the CTS
library file are located.

Click on the Add button Q in the bottom window and click on the Workspace... button.
Select the Lab10c folder and click OK. This is where the structure files are located.
Click OK again.

Click on the Add button Q again in the bottom window and click on the Workspace...
button. Select the Source folder under Lab10c and click OK. This is where the CTS
library files are located. Click OK again.

Your search path window should look like this:

Add dir to #Finclude search path (--include_path, -I)
"S{CCS_BASE_ROOTY mspd30/include”

"Sfworkspace_locy/S{ProjMame}}”
"Yworkspace_loc/¥ ProjMame)/Source}”

"S{CG_TOOL_ROOTYinclude"

Click OK to save your changes to the project properties.

10- 30

Getting Started with the MSP430 LaunchPad - Capacitive Touch

http://processors.wiki.ti.com/index.php/GCC_Extensions_in_TI_Compilers

Lab 10: Capacitive Touch

Lab10c main.c

We’re going to write a fairly minimal program that will light the LED when the middle
button on the Capacitive Touch board is touched. In order to conserve power, we’ll have
the MSP430 wake from sleep using a timer every 500ms to check the button. We’ll also
want to characterize the element, so there will be a small amount of code for that too.

This implementation is a relaxation oscillator using the PinOsc feature. It uses Timer AOQ
and the WDT+ for gate times.

8. Open the empty main. c for editing. Remember that you can cut/paste from the pdf file.
Let’s start out by adding some includes and defines. Delete the current code inmain.c
and add the next three lines:

#include "CTS Layer.h" // include Capacitive Touch libraries
#define CHAR MODE // used in ifdefs to run characterization code
#define DELAY 5000 // timer delay — 500ms

9. Add a line for spacing, and then add the following ifdef/declaration. This declaration will
only be compiled if the CHAR MODE definition is present, which it is now.

#ifdef CHAR MODE

unsigned int dCnt; // characterization count held here
fendif

10. Add a line for spacing, and then we’ll get started on the main () routine. We need to set
up the watchdog timer, DCO, etc. Add this code after the spacing line:

void main (void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

BCSCTL1 = CALBC1l 1MHZ; // 1MHz DCO calibration
DCOCTL = CALDCO_1MHZ;

BCSCTL2 |= DIVS 2; // divide SMCLK by 4 for 250khz
BCSCTL3 |= LFXT1S 2; // LFEXT1=VLO

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 31

Lab 10: Capacitive Touch

11. Next, we need to set up the GPIO. A quick look at the schematic of the BoosterPack (in
SLLAU337) would be helpful:

1 | 2 3 4
- P14
A h’“—?— 1 :2 A
R Pi7 | S
P22 _%L
- R12 e o N N
- e . Nﬂ ﬂ ﬂﬁ#fﬂ i et
P2.4 R13 4 [! T o Q]
——1
P25 R4 [a] o o (]
R I e] w w w w
R15 SEwSawRL WAt me MmE
: SBR[[
CND GND
B1.3 . . - . -
1
- Jee
1 o—f
12
¢] F— -
4 P15
[0 P2.0
| Yo |
FE10LSMD FE10HSMD
D Revl.2
430BOOST_SENSE1 430BO0ST_SENSEL
3/14/2811 12:27:413 FNM
Sheet: 1/1 |
1 | 2 | 3 [4

Add a line for spacing, and then add the following GPIO setup code:

P10OUT = 0x00; // Clear Port 1 bits

P1DIR |= BITO; // Set P1.0 as output pin

P2SEL &= ~(BIT6 + BIT7); // Configure XIN & XOUT to GPIO
P20UT = 0x00; // Drive all Port 2 pins low

P2DIR = OxFF; // Configure all Port 2 pins outputs

12. Before we jump into the button detection while () loop, we need to make a baseline
measurement for the Capacitive Touch button. The first API call makes the initial
measurement and the second makes five more measurements to ensure accuracy.