Code Composer Studio
	Lab2: Code Composer Studio
[bookmark: _Toc314662886]Code Composer Studio
IntroductionThis module will introduce you to the basics of Code Composer Studio. In the lab, we will set up a project from a blank page and try out some Code Composer features.

[bookmark: _Toc314662887]Module Topics
Code Composer Studio	2-1
Module Topics	2-2
Stellaris Development Tools	2-3
Code Composer Studio	2-4
Lab2: Code Composer Studio	2-7
Objective	2-7
Test the Example blinky Project	2-8
Starting a Project from a Blank Page	2-11
LM Flash Programmer	2-17
[bookmark: _Toc314662888][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]Stellaris Development Tools

[bookmark: _Toc314662889]Code Composer Studio

[bookmark: _Toc314662890]Lab2: Code Composer Studio
[bookmark: _Toc314662891]Objective
The objective of this lab exercise is to learn how to create a portable, easy to use Code Composer Studio project and utilize some of the CCS features.
This will not be a lab covering the code itself.
In any IDE, many of the underlying details are hidden from view. Sometimes that’s a good thing, and sometimes it’s not. In this lab we’ll try to pull back the curtains and reveal the underlying issues involved.

[bookmark: _Toc471016612]

[bookmark: _Toc286175443][bookmark: _Toc314662892]
Test the Example blinky Project
Open Code Composer Studio
1. Double click on the Code Composer shortcut on your desktop to start CCS. [image: 2-10-2011 2-50-13 PM]

When the “Select a workspace” dialog appears, type

C:\Documents and Settings\<user>\My Documents\MyWorkspace

Obviously, replace <user> with your own username.

Do not check the “Use this as the default and do not ask again” checkbox. (If at some point you accidentally check this box, see the Workshop Appendix for hints) Click OK. The location of the workspace folder is not critical, but to make the project portable, we want to locate the workspace outside the StellarisWare directory.
[image: 3-18-2011 1-24-19 PM]
In the next few steps you will be asked to license Code Composer. When that happens, select “Free License”. As long as your PC is connected to the evaluation board (not as a target emulator), Code Composer will have full functionality, free of charge.
If the “TI Resource Explorer” window appears, close the tab. At this time it only offers MSP430 resources.
Maximize the Code Composer window.
[bookmark: OLE_LINK2][bookmark: OLE_LINK4]
Import blinky Project
2. [bookmark: OLE_LINK6]On the CCS menu bar select Project Import Existing CCS/CCE Eclipse Project. In the search-directory box, browse to C:\StellarisWare\boards\ek-lm3s8962\blinky and click OK. Click Finish.
[image:]

Your Code Composer project pane should look like the below:

[image:]

[bookmark: OLE_LINK5]

Set Active Project
3. Click on blinky in the Project Explorer pane to make the project Active.
Debug, Download and Run
4. Make sure that your evaluation board is plugged in, then click the Debug [image: 2-10-2011 3-36-11 PM] button on the CCS menu bar to build and download the blinky project. When the process completes, CCS will be in the Debug perspective. (Note the two tabs in the upper right of your screen) You can create as many additional perspectives as you like for your specific needs. Only the Debug and Edit perspectives are pre-defined.
5. [bookmark: OLE_LINK11][bookmark: OLE_LINK12]Click the Run [image: 2-10-2011 3-40-46 PM] button on the CCS menu bar to run the code. Observe the LED blinking on right side of your evaluation board.
Some CCS Features
6. In the code window in the middle of your screen, find the while(1) loop starting around line 66. There are four lines of code in the loop that blinks the LED. Click the Halt [image: 2-11-2011 5-50-09 PM] button on the CCS menu bar. Pick a line of code inside the while loop and double-click in the gray area to the left of the line number to set a breakpoint. Click the Run [image: 2-10-2011 3-40-46 PM] button to restart the code. The program will stop at the breakpoint and you will see an arrow on the left of the line number, indicating that the program counter has stopped on this line of code. Note that the current driver for the evaluation board does not support adding/removing breakpoints while the processor is running. Click the Run button a few times or press the F8 key to run the code. Observe the LED on the eval board as you do this.

Remove all the breakpoints you have set at once by clicking Run Remove All Breakpoints. Again, breakpoints can only be removed when the processor is not running.
7. [bookmark: OLE_LINK7]Click on View Registers to see the core and peripheral register values. Resize the windows if necessary. Click on the plus sign left of Core Registers to view the registers. Only the peripherals that are enabled can be read. In this project you can view Core Registers, GPIO_PORTF (where the LED is located), HIB, FLASH_CTRL, SYSCTL and NVIC.
8. Click on View Memory Browser to examine processor memory. Type 0x00 in the entry box and press Enter. You can page through memory and you can click on a location to directly change the value in that memory location.
9. Double click on the variable ulLoop in the code window around line 88. Right click on the selected variable and select Add Watch Expression and then click OK. The window on the upper right will switch to the Watch view and you should see the variable listed. It should report “identifier not found” if your code is running. Halt your code and the watch will update.
10. Click on Terminate [image:] to return to the editor perspective. Right-click on blinky in the Project Explorer pane and select Close Project.

[bookmark: _Toc286175444][bookmark: _Toc314662893]
Starting a Project from a Blank Page

An easy way to start a new project can be to simply take an existing project, like blinky, and modify it. But that can hide issues that may become a problem later, like fixed paths and portability.
So, engineers often want to start with a new project and just bring in the parts of the example they need to make their design work. This can lead to some common problems – so here is how to avoid them.
Create a New Project
1. We need to create some folders on the hard drive where our project and files will reside. If you take a moment and look at the folder structure of existing StellarisWare boards and projects, you’ll see that this arrangement mirrors it precisely.

Open Windows Explorer and navigate to C:\StellarisWare\boards. Right-click in the open space of the right-hand pane and select New Folder. Name the new folder MyBoard and press the Enter key.

Double click on MyBoard to enter the folder and then right-click in the wide open right-hand pane. Select New Folder. Name the new folder MyLab2Project and press the Enter key.

Double click on MyLab2Project to enter the folder and then right-click in the wide open right-hand pane. Select New Folder. Name the new folder ccs and press the Enter key.
Some folders were removed to make the screen shot below easier to see:
[image:]

2.
On the CCS menu bar select File New CCS Project. Make the selections shown below. Make sure to uncheck the “Use default location” checkbox and select the correct path to the “ccs” folder you created. This step is critical to making your project functional and portable. Click Finish.

[image:]
Code Composer will add your project to the workspace, add a file called main.c and open it for editing:
[image:]

Add New Source Files
3. The main.c file was added by the New Project wizard to make it easy to start programming. Unfortunately the file is in the wrong location for our purposes. Right-click on main.c in the Project Explorer pane and delete the file. Click on MyLab2Project to make the project active.
4. Since we’re not doing any programming, let’s do this the easy way by cutting and pasting our two source files; the code file and the CCS startup file. Open Windows Explorer and navigate to C:\StellarisWare\boards\ek-lm3s8962\blinky. Copy blinky.c and startup_ccs.c and paste them into your C:\StellarisWare\boards\MyBoard\MyLab2Project folder.
[image:]

[image:]

5. When you add a file to your project in any IDE, ask yourself; “how is this file located by the tool?” Is your file located with an absolute path or a relative path? If the answer is an absolute path, that will mean some problems will occur when you try to share your project with a colleague. Let’s start out by adding the files that you pasted into the MyLab2Project folder.
Right-click on MyLab2Project in the Project Explorer pane and select Add Files… . File Naviagate to the C:\StellarisWare\boards\MyBoard\MyLab2Project folder and, using the Ctrl key, select both blinky.c and startup_ccs.c. Click Open.
You will see a File Operation dialog. This dialog allows you to select how the file should be imported into the project. Let’s link them relative to the location of the project in C:\StellarisWare\boards\MyBoard\MyLab2Project\ccs. Make the selections as shown below and click OK.
[image:]

If you want to link files into your project, this is how it should be done, so that the linked files can be packaged quickly for portability.

Set the Build Options
6. Right-click on MyLab2Project in the Project Explorer pane and select Properties. Click the + left of TMS470 Compiler and click on Include Options. In the bottom, include search path pane, click the Add button [image: 2-21-2011 7-34-46 PM]and, one at a time, add the following two include search paths. You may want to copy/paste from the workbook pdf for the next few steps.

${PROJECT_ROOT}/../..
${PROJECT_ROOT}/../../../..

[image:]

7. Click File Search Path under TMS470 Linker. Add the following include library file to the top window:

${PROJECT_ROOT}/../../../../driverlib/ccs-cm3/Debug/driverlib-cm3.lib

[image:]
[bookmark: _Toc286175445]

[bookmark: _Toc314662894]LM Flash Programmer
8. To use the LM Flash Programmer, Code Composer needs to generate a compatible output file. If you are just using Code Composer to load the program to your device, which is generally the case during development, this step is not needed.

On the left, click Build. Add the following to the Post-build steps Command entry box:
[bookmark: OLE_LINK8][bookmark: OLE_LINK9]"${CCE_INSTALL_ROOT}/utils/tiobj2bin/tiobj2bin.bat" "${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.bin" "${CG_TOOL_ROOT}/bin/ofd470.exe" "${CG_TOOL_ROOT}/bin/hex470.exe" "${CCE_INSTALL_ROOT}/utils/tiobj2bin/mkhex4bin.exe"

Note that there is a space between the quotation marks of each statement. These changes would look like the screen capture below:

[image:]

Click OK to save all your changes.
Build
9. Run a test build to make sure that the project builds cleanly, with no errors, by clicking Project Build All on the CCS menu bar. Keep an eye on the Console window that appears at the bottom of your screen. Any errors will appear there.

Alternately, you could have clicked the Debug [image: 2-13-2011 12-11-22 AM] button, which would have built the project, and if there were no errors, automatically loaded it to your device.

Debug
10. Click the Debug [image: 2-13-2011 12-11-22 AM] button. Since the project has already been built, the switch to debug mode will happen very quickly. Code Composer will open a connection and download the executable program to the Flash memory on your device.
11. Click the Run button [image: 2-10-2011 3-40-46 PM] to run the program. If you’ve done everything correctly, the LED should be flashing just like the blinky project did. Click on Terminate [image:] to return to the editor perspective.
12. Close any open editor windows. Then right-click on MyLab2Project in the Project pane and select Close Project. Minimize CCS.
LM Flash Programmer
13. If you have not done so already, install the LM Flash Programmer onto your PC.
14. [image: Image1]Make sure that Code Composer Studio is not actively debugging … otherwise CCS and the Flash Programmer may conflict for control of the USB port.

There should be a shortcut to the LM Flash Programmer on your desktop, double-click it to open the tool. If the shortcut does not appear, go to Start All Programs Texas Instruments LM Flash Programmer and click on LM Flash Programmer.
15. In order to know that we’re programming something different than what is already in the devices Flash memory, let’s program the board with the original QuickStart application. Select your evaluation board (in our case, the LM3S8962 Ethernet and CAN Evaluation Board) from the Quick Set pull-down menu under the Configuration tab. You can also manually configure the tool for targets that are not evaluation boards.
[image: 2-21-2011 8-40-29 PM]
16.
Click on the Program tab. Then click the Browse button and navigate to:

C:\StellarisWare\boards\ek-lm3s8962\qs_ek-lm3s8962\ccs\Debug\qs_ek-lm3s8962.bin

This is the QuickStart application that was programmed into the flash memory of the LM3S8962 at the factory. If you are using a different board, use the QuickStart bin file for that board.

Note that there are applications here which have been built with each supported IDE. Make sure that the following checkboxes are selected:
[image:]
17. Assure that your board is properly connected to your computer’s USB port and the evaluation boards Debug port. Click the Program button.

You should see the programming and verification status at the bottom of the window. After these steps are complete, the QuickStart application should be running on your evaluation kit.
18. Select the .bin file that you created in this lab. Click the Browse button and navigate to:

 C:\StellarisWare\boards\MyBoard\MyLab2Project\ccs\Debug

and select MyLab2Project.bin. Click Open.
19. Program the device with your newly built .bin file by clicking the Program button. The LED on the board should blink as before. At the conclusion of this workshop, you can return the board to its originally programmed state by following the steps above to reprogram the QuickStart application into the Flash memory of the device.

Close the LM Flash Programmer..

[image: j0252029] You’re done.

Getting Started with the Cortex-M3 and StellarisWare - Code Composer Studio	2 - 1
2 - 6	Getting Started with the Cortex-M3 and StellarisWare - Code Composer Studio
Getting Started with the Cortex-M3 and StellarisWare - Code Composer Studio	2 - 7
image3.emf
What is Code Composer Studio?

Integrated development environment for TI embedded processors

Includes debugger, compiler, editor, simulator, OS…The IDE is built on the Eclipse open source software frameworkExtended by TI to support device capabilities

CCSv5 is based on “off the shelf” Eclipse (version 3.7 in CCS 5.1)

Future CCS versions will use unmodifiedversions of Eclipse

TI contributes changes directly to the open source community

Drop in Eclipse plug-ins from other vendors or take TI tools and drop them

into an existing Eclipse environment

Users can take advantage of all the latest improvements in Eclipse

Integrate additional tools

OS application development tools (Linux, Android…)Code analysis, source control…

Linux support soonLow cost!

User Interface Modes…

image4.emf
User Interface Modes

Simple Mode

By default CCS will open in simple/basic modeSimplified user interface with far fewer menu items, toolbar buttonsTI supplied Edit and Debug Perspectives

Advanced Mode

Uses default Eclipse perspectivesVery similar to what exists in CCSv4Recommended for users who will be integrating other Eclipse based

tools into CCS

Possible to switch Modes

Users can decide that they are ready to move from simple to

advanced mode or vice versa

Common Tasks…

image5.emf
Common tasks

Creating New Projects

Very simple to create a new project for a device using a template

Build options

Many users have difficulty using the build options dialog and find it

overwhelming

Updates to options are delivered via compiler releases and not

dependent on CCS updates

Sharing projects

Easy for users to share projects, including working with version

control (portable projects)

Setting up linked resources has been simplified

Workspaces and Projects…

image6.wmf
Project

Source

files

Header Files

Library files

Build and tool settings

Project

Source

files

Header Files

Library files

Build and tool settings

Workspaces and Projects

Workspace

Project 1

Project 2

Project 3

S

ettings and preferences

A workspace contains

your

s

ettings and

preferences, as well as

links to your projects.

Deleting projects from

the workspace deletes

the links, not the files

Project

Source

files

Header files

Library files

Build and tool settings

A project contains your

build and tool

s

ettings,

as well as links to your

input files.

Deleting files from the

workspace deletes the

links, not the files

Source files

Code and Data

Header files

Declarations

/Defines

Library files

Code and Data

Link

Link

Link

Link

Project Wizard…

image7.emf
Project Wizard

Single page wizard for majority of users

Next button will show up if a

template requires additional settings

Debugger setup included

If a specific device is selected,

then user can also choose their connection, ccxmlfile will be created

Simple by default

Compiler version, endianness…

are under advanced settings

Add Files…

image8.emf
Adding Files to Projects

Add Files to Project allows users to control howthe file is added to the project

Linking Files using built-in macros

allows easy creation of portable projects

Lab 2…

image9.wmf
Lab 2: Code Composer Studio

Agenda …

u

Run blinky example from StellarisWare

u

Experiment with some CCS features

u

Create the blinky project from a blank page

u

Use the LM Flash Programmer

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.jpeg

image30.png

image31.emf

image32.wmf

image1.wmf
Agenda

Support IDEs …

Introduction to Cortex

-

M3

®

and Peripherals

Code Composer Studio

Introduction to StellarisWare,

Initialization and GPIO

Interrupts and the Timer

Analog

-

to

-

Digital Converter

PWM

Graphics Library

Ethernet

image2.wmf
Development Tools for Stellaris MCUs

Eval Kit

License

30

-

day full

function.

Upgradeable

32KB code size

limited.

Upgradeable

32KB code size

limited.

Upgradeable

30

-

day full

function.

Upgradeable

Full function.

Onboard

emulation

limited

Compiler

GNU C/C++

IAR C/C++

RealView C/C++

GNU C/C++

TI C/C++

Debugger /

IDE

gdb / Eclipse

C

-

SPY /

Embedded

Workbench

µVision

code_probe /

Eclipse

-

based

tool

suite

CCS/Eclipse

-

based suite

Full Upgrade

199 USD

personal

edition /

3000 USD

full support

2700 USD

MDK

-

Basic (256

KB) =

€

2000

(

2895 USD)

999 USD (upgrade

to run on customer

platform)

445 USD

JTAG

Debugger

J

-

Link, ~299

USD

U

-

Link, ~199

USD

Red Probe, 150

USD

XDS510

/XDS560

CCS …

