Cortex – M3® Sleep Modes
	Hibernation Module
[bookmark: _Toc297030311]Low-Power Modes
IntroductionThis module will introduce you to the low-power modes on Stellaris devices. The board that we’re using in this workshop (the 8962 evaluation board), does not have the pin-out needed to measure the current. We’ll look in the databook to approximate our power savings.

[bookmark: _Toc297030312]Module Topics
Low-Power Modes	8-1
Module Topics	8-2
Low Power on Stellaris Devices	8-3
Cortex – M3® Sleep Modes	8-4
Hibernation Module	8-5
Power Savings	8-6
Lab 8: Low Power Modes	8-7
Objective	8-7
Procedure	8-8
[bookmark: _Toc297030313][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]Low Power on Stellaris Devices

[bookmark: _Toc297030314]Cortex – M3® Sleep Modes

[bookmark: _Toc297030315]Hibernation Module

[bookmark: _Toc297030316]Power Savings

[bookmark: _Toc297030317][bookmark: _Toc370113188][bookmark: _Toc394202380]Lab 8: Low Power Modes
[bookmark: _Toc297030318]Objective
In this lab we’ll run the processor in three modes: Active, Sleep and Deep-Sleep. We’ll visualize the modes using the blinking LED and we’ll look to the databook to approximate the current draw. If everything works correctly, the frequency of the LED will not change from active mode, to sleep to deep sleep.

[bookmark: _Toc297030319]
Procedure
Create New Project Folders
1. We need to create some folders to hold Lab 8.

Open Windows Explorer and navigate to C:\StellarisWare\boards\MyBoard. Right-click in the open space of the right-hand pane and select New Folder. Name the new folder MyLab8Project and press the Enter key.

Double click on MyLab8Project to enter the folder and then right-click in the wide open right-hand pane. Select New Folder. Name the new folder ccs and press the Enter key.
[image:]
Add Source Files
2. In this lab, we’re going to use the files from Lab 6, the PWM lab, and change them to save power.

In Windows Explorer, navigate to: C:\StellarisWare\boards\MyBoard\MyLab6Project
Copy MyLab6Project.c to the MyLab8Project folder and rename it to MyLab8Project.c.
Copy the startup_ccs.c file to the MyLab8Project folder.

Close Windows Explorer.

Open Code Composer
3. Open Code Composer Studio with the existing workspace shown below.
[image: 3-30-2011 8-56-24 PM]
Again, substitute your user name for <user>.
When the Splash screen appears, click the Code Composer symbol in the upper right of your screen.

Create MyLab8Project Project
4. On the CCS menu bar select File New CCS Project. Make the selections shown below. Make sure to uncheck the “Use default location” checkbox and select the correct path to the “ccs” folder you created. Click Next.
[image:]
5. In the next dialog, select the ARM tool chain. Click Next.
[image: 2-28-2011 3-09-14 PM]

6. In the next dialog, we will indicate that our new project will not be referencing any other projects. We will be handling dependencies in the header files in our code instead. Click Next.
[image: 2-28-2011 3-09-43 PM]
7. Select the proper device variant for the project settings. In our case, we are using the LM3S8962. Leave the rest of the settings at their defaults. Click Finish.
[image: 2-28-2011 3-10-10 PM]

Add Source Files to Project
8. [image:]We need to add the source files we copied earlier to our project. Click File New File (NOT File New File) from the menu bar. Click on MyLab8Project to select it as the parent folder.

Click the Advanced >> button and check the “Link to file in the file system” checkbox. Click the Variables button.
Click on SW_ROOT – C:\StellarisWare in the Select Path Variable dialog as shown below and click the Extend… button.
[image: 2-21-2011 6-02-04 PM]

[image:]Select the startup_ccs.c file that you created in the MyLab8Project folder and click OK.

Finally, click Finish.

9. Follow the procedure in the previous step for MyLab8Project.c.

Change PWM Code to be Interrupt Driven
10. In order to sleep or deep-sleep, the CPU needs to shut down, so the while(1) loop used in the code simply won’t work. We need to alter the code to work with an interrupt. Let’s do that now and verify the operation.

Right underneath the line containing #define PWM_FREQUENCY 1 // 1Hz enter the following prototype for the PWM interrupt service routine:

void IntPWM0(void);

11. Now add the actual ISR code that will clear the PWM interrupt flag. Add a line for spacing and add this code below the previous lien:

void IntPWM0(void)
{
 PWMGenIntClear(PWM_BASE, PWM_GEN_0, PWM_INT_GEN_0);
}

12. Next we need to change the vector table to point the PWM interrupt vector to the correct ISR. In the timer lab, we did this by changing the startup_ccs.c file. But this can also be done at run-time. In main(), right below the prototypes of the two variables, add a line for spacing and add the line below. This function pointer will be used to point to the interrupt service routine for the PWM module.

void (*IntPWM)(void) = IntPWM0;

13. Now we need to register the PWM ISR function pointer as the PWM interrupt handler. We also need to configure the PWM to generate an interrupt when the load value is reached. Finally we need to enable the PWM0 interrupt. Find the line in your code that contains the PWMOutputState() API. Right below this line, add a line for spacing and add the following three lines of code:

PWMGenIntRegister(PWM_BASE, PWM_GEN_0, IntPWM);
PWMGenIntTrigEnable(PWM_BASE, PWM_GEN_0, PWM_INT_CNT_LOAD);
PWMIntEnable(PWM_BASE, PWM_INT_GEN_0);

	

Check your code against the print out on the next page:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "driverlib/debug.h"
#include "driverlib/pwm.h"

#define PWM_FREQUENCY	 1

void IntPWM0(void);

// PWM ISR
void IntPWM0(void)
{
 PWMGenIntClear(PWM_BASE, PWM_GEN_0, PWM_INT_GEN_0);
}

// Driver library error routine
#ifdef DEBUG
void
__error__(char *pcFilename, unsigned long ulLine)
{
}
#endif

int main(void)
{
 volatile unsigned long ulLoad;
 volatile unsigned long ulPWMClock;

 void (*IntPWM)(void) = IntPWM0;

 SysCtlClockSet(SYSCTL_SYSDIV_8 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);
 SysCtlPWMClockSet(SYSCTL_PWMDIV_16);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 GPIOPinTypePWM(GPIO_PORTF_BASE, GPIO_PIN_0);

 ulPWMClock = SysCtlClockGet() / 16;
 ulLoad = (ulPWMClock / PWM_FREQUENCY) - 1;
 PWMGenConfigure(PWM_BASE, PWM_GEN_0, PWM_GEN_MODE_DOWN);

 PWMGenPeriodSet(PWM_BASE, PWM_GEN_0, ulLoad);
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, ulLoad/2);

 PWMGenIntRegister(PWM_BASE, PWM_GEN_0, IntPWM);
 PWMGenIntTrigEnable(PWM_BASE, PWM_GEN_0, PWM_INT_CNT_LOAD);
 PWMIntEnable(PWM_BASE, PWM_INT_GEN_0);

 PWMOutputState(PWM_BASE, PWM_OUT_0_BIT, true);

 PWMGenEnable(PWM_BASE, PWM_GEN_0);

 while(1)
 {
 }

}

New Target Configuration
14. On the CCS menu bar, click Target New Target Configuration. When the New Target Configuration dialog box appears, name the new configuration target_config.ccxml as shown below. If /MyLab8Project is not already selected as the location, unclick the “Use shared location” checkbox and click the Workspace… button. Select the MyLab6Project folder and click OK.

Your New Target Configuration dialog should look like this:
[image:]
Click Finish.

15.
Close the cheat sheet that appears on the right side of your screen so that we can see all the controls for the configuration general setup. Select Stellaris In-Circuit Debug Interface and your target device (LM3S8962 in our case) and click the Save button.
[image: 2-21-2011 7-20-30 PM]
You can close the target_config.ccxml tab now.

Set the Build Options
16. On the CCS menu bar, click Project Properties. Click C/C++ Build and then click the Tool Settings tab. Click Predefined Symbols under TMS470 Compiler.

By default, ccs and your part (PART_LM3S8962 in our case) should already be listed as predefined symbols. If you are using a Stellaris device with ROM, like the 9000 series, add the symbol TARGET_IS_TEMPEST_RB1 to tell StellarisWare what functions are available in ROM. Since our LM3S8962 device does not have an internal ROM, we will make no changes. For more information on the ROM, see the section “Using the ROM” in the Stellaris® Peripheral Driver Library USER’S GUIDE.
17. Click Include Options under TMS470 Compiler. Click the Add button [image: 2-21-2011 7-34-46 PM]and, one at a time, add the following two include paths in the bottom window:

${PROJECT_ROOT}/../..
${PROJECT_ROOT}/../../../..
[image: 2-21-2011 7-53-10 PM]
18. Click File Search Path under TMS470 Linker. Add the following library to the top window:
${PROJECT_ROOT}/../../../../driverlib/ccs/Debug/driverlib.lib
[image: 2-21-2011 7-57-15 PM]
Click OK to save all these build options.
Run the Code
19. Compile and download your application by clicking the Debug button [image: 2-10-2011 3-36-11 PM] on the menu bar. If you have any issues, correct them, and then click the Debug button again. After a successful build, the CCS Debug perspective will appear.
Find the line of code containing the PWMGenIntClear() API in the PWM ISR and set a breakpoint on it.

Click the Run button [image: 2-10-2011 3-40-46 PM] to run the program. If you’ve done everything correctly, program execution should stop at the breakpoint (verifying that your interrupt and ISR setup is correct) and the LED should toggle its state. Click the run button a few more times to be sure.
When the code is not running, clear the breakpoint and run the code. You should see the LED on the evaluation board blink at about a 1 Hz rate.
Now we know that our changes worked and the PWM code is now interrupt driven. We can move on to putting the CPU into sleep mode next.
When you’re finished, click the Terminate All button [image: 2-12-2011 8-51-17 PM] to return to the Editing perspective.

Sleep Mode
20. Back in the editing perspective, we’re going to make a few changes to the MyLab8Project.c code. In most cases, the Stellaris peripherals will not be clocked during sleep mode. That’s fine unless you expect to use them … especially to wake back up. We need to enable clock gating during sleep mode and make sure the PWM and GPIO will work. That way we can see the LED toggle. Add the next two lines of code just above the while(1) loop:
SysCtlPeripheralClockGating(true);
SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_PWM | SYSCTL_PERIPH_GPIOF);
21. Finally we need to enter sleep mode. The while(1) loop at the bottom of your code is a good time to do that. Add the following line inside the while(1) loop:

SysCtlSleep();

Check your main() code against this:

int main(void)
{
 volatile unsigned long ulLoad;
 volatile unsigned long ulPWMClock;

 void (*IntPWM)(void) = IntPWM0;

 SysCtlClockSet(SYSCTL_SYSDIV_8 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);
 SysCtlPWMClockSet(SYSCTL_PWMDIV_16);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 GPIOPinTypePWM(GPIO_PORTF_BASE, GPIO_PIN_0);

 ulPWMClock = SysCtlClockGet() / 16;
 ulLoad = (ulPWMClock / PWM_FREQUENCY) - 1;
 PWMGenConfigure(PWM_BASE, PWM_GEN_0, PWM_GEN_MODE_DOWN);

 PWMGenPeriodSet(PWM_BASE, PWM_GEN_0, ulLoad);
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, ulLoad/2);

 PWMGenIntRegister(PWM_BASE, PWM_GEN_0, IntPWM);
 PWMGenIntTrigEnable(PWM_BASE, PWM_GEN_0, PWM_INT_CNT_LOAD);
 PWMIntEnable(PWM_BASE, PWM_INT_GEN_0);

 PWMOutputState(PWM_BASE, PWM_OUT_0_BIT, true);

 PWMGenEnable(PWM_BASE, PWM_GEN_0);

 SysCtlPeripheralClockGating(true);
 SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_PWM | SYSCTL_PERIPH_GPIOF);

 while(1)
 {
 SysCtlSleep();	
 }

}
Run the Code
22. Hit the Debug button to build and load your code. As before, add a breakpoint to the line of code in the PWM ISR and press the run button. If you’ve done everything correctly, program execution should halt at the breakpoint and the LED on the evaluation board should toggle states.

Remove the breakpoint and run the code. The LED should toggle at about a 1Hz rate.

When you’re finished, click the Terminate All button [image: 2-12-2011 8-51-17 PM] to return to the Editing perspective.

Deep Sleep Mode
23. We need to configure the deep sleep settings for the clock. Find the SysCtlPeripheralClockGating() API in your code and add the following line right before it:

SysCtlDeepSleepClockSet(SYSCTL_DSLP_DIV_8 | SYSCTL_DSLP_OSC_MAIN);

24. Find the SysCtlPeripheralSleepEnable() API and change it to:
SysCtlPeripheralDeepSleepEnable(SYSCTL_PERIPH_PWM | SYSCTL_PERIPH_GPIOF);
25. Find the SysCtlSleep(); API and change it to:
SysCtlDeepSleep();
	
Check your main() code against this:
int main(void)
{
 volatile unsigned long ulLoad;
 volatile unsigned long ulPWMClock;

 void (*IntPWM)(void) = IntPWM0;

 SysCtlClockSet(SYSCTL_SYSDIV_8 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);
 SysCtlPWMClockSet(SYSCTL_PWMDIV_16);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 GPIOPinTypePWM(GPIO_PORTF_BASE, GPIO_PIN_0);

 ulPWMClock = SysCtlClockGet() / 16;
 ulLoad = (ulPWMClock / PWM_FREQUENCY) - 1;
 PWMGenConfigure(PWM_BASE, PWM_GEN_0, PWM_GEN_MODE_DOWN);

 PWMGenPeriodSet(PWM_BASE, PWM_GEN_0, ulLoad);
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, ulLoad/2);

 PWMGenIntRegister(PWM_BASE, PWM_GEN_0, IntPWM);
 PWMGenIntTrigEnable(PWM_BASE, PWM_GEN_0, PWM_INT_CNT_LOAD);
 PWMIntEnable(PWM_BASE, PWM_INT_GEN_0);

 PWMOutputState(PWM_BASE, PWM_OUT_0_BIT, true);

 PWMGenEnable(PWM_BASE, PWM_GEN_0);

 SysCtlDeepSleepClockSet(SYSCTL_DSLP_DIV_8 | SYSCTL_DSLP_OSC_MAIN);

 SysCtlPeripheralClockGating(true);
 SysCtlPeripheralDeepSleepEnable(SYSCTL_PERIPH_PWM | SYSCTL_PERIPH_GPIOF);

 while(1)
 {
 SysCtlDeepSleep();	
 }

}

Run the Code
26. Hit the Debug button to build and load your code. As before, add a breakpoint to the line of code in the PWM ISR and press the run button. If you’ve done everything correctly, program execution should halt at the breakpoint and the LED on the evaluation board should toggle states.

Remove the breakpoint and run the code. The LED should toggle at about a 1Hz rate.
When you’re finished, click the Terminate All button [image: 2-12-2011 8-51-17 PM] to return to the Editing perspective.
Power
27. Page 728 of the LM3S8962 datasheet has the following table. Accurate power estimates are the result of many considerations, so these exact numbers may not apply perfectly to the situation on the evaluation board. The important concept is that sleep modes can save a significant amount of power for you when correctly utilized.

[image:]

28. Close Code Composer … [image: j0252029] you’re done.
Getting Started with the Cortex-M3 and StellarisWare - Low-Power Modes	8 - 1
8 - 4	Getting Started with the Cortex-M3 and StellarisWare - Low-Power Modes
Getting Started with the Cortex-M3 and StellarisWare - Low-Power Modes	8 - 5
image2.wmf
Low Power on Stellaris Devices

Sleep modes…

There are two fundamental ways to implement low

-

power on Stellaris devices:

Cortex

-

M3® Sleep Modes

u

Sleep mode stops the processor clock

u

Deep

-

sleep mode stops the system clock,

switches off the PLL and Flash memory

Hibernation Module

u

Controls system power with a discrete external regulator

u

Dedicated external wake

-

up pin with interrupt generation

u

Independent battery or auxiliary power supply with low battery detection,

signaling and interrupt generation

u

32

-

bit real time clock with two 32

-

bit match registers for timed wake

-

up

and interrupt generation

u

Clock source from 32,768Hz ext oscillator or 4.194304MHz crystal with

pre

-

divider trim for fine adjusting clock rate

u

64 32

-

bit words of non

-

volatile memory

image3.wmf
Cortex

-

M3® Sleep Modes

Hibernation module…

The SLEEPDEEP bit in the SYSCTRL register controls which sleep

mode is used

To enter sleep modes:

u

Execute a Wait For Interrupt (WFI) instruction

u

Execute a Wait For Event (WFE) instruction. Processor checks the event

register before going to sleep

u

Set the SLEEPEXIT bit in the SYSCNTRL register. An exit from an ISR

causes immediate sleep mode entry

Waking from sleep modes:

u

In SLEEPEXIT or WFI, any interrupt will wake the processor

u

In WFE, any exception with sufficient priority to cause exception

entry will wake the processor

image4.wmf
Hibernation Module Block Diagram

u

The HIBN output signals on/off to an external regulator

u

The module must be clocked by an external source

u

The module chooses the higher of the

Vcc

or battery voltages

u

Hibernation is initiated by setting the HIBREQ bit in the HIBCTL register

image5.wmf
Example Hibernation Module Circuits

Power savings…

u

Wake up via

u

RTC match

u

External signal on WAKEN pin

Crystal Clock Source

Oscillator Clock Source

image6.wmf
Stellaris Power Savings

Lab 8…

Operating Mode

Sandstorm Class

Fury Class

Dust Devil Class

Tempest Class*

Run

< 120 mA

160 mA (w/ETH)

120 mA

60 mA (w/o ETH)

80 mA (w/ETH)

Sleep

20 mA

20 mA (w/ETH)

20 mA

8 mA

Deep Sleep

700 µA

5 mA (w/ETH)

350uA

600 µA

Hibernate

—

10 to 18 µA

10 to 18 µA

10 to 18 µA

* Preliminary

LM3S8962

The Hibernation module external connections are unconnected on the

EK

-

LM3S8962 evaluation board.

Due to this restriction,

lab 8

will implement Sleep and Deep Sleep modes

and will not use the Hibernation Module.

LM3S

-

8962

image7.wmf
Lab 8: Low Power Modes

u

Alter PWM lab code to use interrupts

and verify operation

u

Implement Sleep mode and verify

operation

u

Implement Deep

-

Sleep mode and

verify operation

Agenda…

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.wmf

image1.wmf
Agenda

Low Power Modes…

Introduction to Cortex

-

M3

®

and Peripherals

Code Composer Studio

Introduction to StellarisWare,

Initialization and GPIO

Interrupts and the Timer

Analog

-

to

-

Digital Converter

PWM

Graphics Library

Low Power

Ethernet

