Peripheral Driver Library
	Graphics Library
[bookmark: _Toc314663022]StellarisWare, Initialization and GPIO
IntroductionThis module will introduce you to StellarisWare. We will use several APIs from the driver library to set up the clock and the GPIO peripheral. We’ll use a different API to control the GPIO pins.

[bookmark: _Toc314663023]Module Topics
StellarisWare, Initialization and GPIO	3-1
Module Topics	3-2
StellarisWare	3-3
Peripheral Driver Library	3-4
Graphics Library	3-5
USB Library	3-6
IEC 60730	3-7
In System Programming	3-8
ROM Features	3-9
Stellaris Clock Sources	3-10
Clock Tree	3-11
GPIO	3-12
GPIO – Data Register Operation	3-14
Lab 3: Initialization and GPIO	3-16
Objective	3-16
Procedure	3-17
[bookmark: _Toc314663024][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]StellarisWare

[bookmark: _Toc314663025]Peripheral Driver Library

[bookmark: _Toc314663026]Graphics Library

[bookmark: _Toc314663027]USB Library

[bookmark: _Toc314663028]IEC 60730

[bookmark: _Toc314663029]In System Programming

[bookmark: _Toc314663030]ROM Features

[bookmark: _Toc314663031]Stellaris Clock Sources

[bookmark: _Toc314663032]Clock Tree

[bookmark: _Toc314663033]GPIO

[bookmark: _Toc314663034]
GPIO – Data Register Operation

[bookmark: _Toc314663035][bookmark: _Toc370113188][bookmark: _Toc394202380]Lab 3: Initialization and GPIO
[bookmark: _Toc314663036]Objective
In this lab we’ll learn how to initialize the clock system and the GPIO peripheral. We’ll then use the GPIO output to blink an LED on the evaluation board.

[bookmark: _Toc314663037]
Procedure
[bookmark: OLE_LINK4]Create New Project Folders
1. We need to create some folders to hold Lab 3.

Open Windows Explorer and navigate to C:\StellarisWare\boards\MyBoard. Right-click in the open space of the right-hand pane and select New Folder. Name the new folder MyLab3Project and press the Enter key.

Double click on MyLab3Project to enter the folder and then right-click in the wide open right-hand pane. Select New Folder. Name the new folder ccs and press the Enter key.
[image: 3-30-2011 8-39-12 PM]

Create MyLab3Project Project
2. Maximize Code Composer. On the CCS menu bar select File New CCS Project. Make the selections shown below. Make sure to uncheck the “Use default location” checkbox and select the correct path to the “ccs” folder you created. This step is important to making your project portable. Click Finish.
[image:]

Add Source Files to Project
3. Delete main.c from MyLab3Project.
4. From the CCS menu bar, click File New Source File. When the New Source File dialog appears, make the selections below to create the main C code file and click Finish.
[image:]
5. From the CCS menu bar, click File New Source File. When the New Source File dialog appears, make the selections below to create the startup file and click Finish.
[image:]

The previous two steps create and link the files into our project. Eclipse places a restriction on the process though … the file must be in the project directory. That means these two files will land in C:\StellarisWare\boards\MyBoard\MyLab3Project\ccs. That’s okay for the purposes of the workshop. If you want more control over the placement and linking of your files, use the steps in the previous lab.

Header Files
6. Type the following four lines into MyLab3Project.c to include the header files needed to access the StellarisWare APIs :
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"

If you’re prone to typing errors, it might be a good idea to cut/paste the code from the pdf file.

hw_memmap.h : Macros defining the memory map of the Stellaris device. This includes defines such as peripheral base address locations such as GPIO_PORTF_BASE
hw_types.h : Defines common types and macros such as tBoolean and HWREG(x).
sysctl.h : Defines and macros for System Control API of DriverLib. This includes API functions such as SysCtlClockSet and SysCtlClockGet.
gpio.h : Defines and macros for GPIO API of DriverLib. This includes API functions such as GPIOPinTypePWM and GPIOPinWrite.

Main() Function
7. Next, create your main application function and declare any variables that you will use later in the function:
int main(void)
{
 unsigned long ulPeriod;
 unsigned long ulDelay;
}
These two variables will be used later in calculating the period and delay needed for a 10 Hz signal. The return type needed for a main function varies depending on the tool chain. Since StellarisWare source can be built using several different tool chains, using the return type “int” is a good choice for flexibility in your code later.
Clock Setup
8. The system clock will default to running directly off of the internal oscillator after reset, which is not a precision oscillator. Configure the system clock to run directly from the Main Oscillator at 8 MHz (the crystal frequency on the 8962 eval board) with the following call.

Leave a blank line for spacing and enter this single line of code inside main() after the variable declarations above:
SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);
GPIO Configuration
9. Before calling any peripheral specific DriverLib function, we must enable the clock for that peripheral (RCGCn register). If you fail to do this, it will result in a Fault ISR (address fault).This is a common mistake for new Stellaris users. The second statement configures the GPIO as an output. Check the User’s manual for your evaluation board to find out which GPIO pin is connected to the LED. Leave a line for spacing, then enter these two lines of code inside main() after the line in the previous step.
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_0);

Period/Delay Calculation
10. To toggle a GPIO pin at 10 Hz and a 50% duty cycle, you need to generate a delay that is ½ of the period. We can perform this calculation at run time …

First, calculate the number of clocks cycles required for a 10 Hz period by calling SysCtlClockGet() and dividing it by your desired frequency.

Next, calculate the delay by dividing the period by two to get ½ of the period. Divide that result by 3 since the SysCtlDelay(ulCount) function takes 3 cycles per count. Finally, subtract an arbitrary amount from the delay to compensate for the delay added by the code in the rest of the loop. If you want, you can calculate this out based on the code the compiler generates, or take your best guess and then test it. Leave a line for spacing and enter the following two lines after the lines in the previous step:
ulPeriod = SysCtlClockGet() / 10;
ulDelay = ((ulPeriod / 2) / 3) - 4 ;
Toggle Loop
11. Finally, create a while (1) loop to send a “1” and “0” to the GPIO pin, with an equal delay between the two. To write the GPIO pin, use the GPIO API function call GPIOPinWrite. Make sure to read and understand how the GPIOPinWrite function is used. The third data argument is not simply a 1 or 0, but represents the entire 8-bit data port. The second argument is a bit-packed mask for data being written.
In our example below, we are writing only bit 0 of Port F. This looks rather simple and user’s make incorrect assumptions on how the function works. Now might be a good time to go to www.ti.com/stellaris , click on the Documentation tab, find and download the Datasheet for your StellarisWare device. Check out the GPIO chapter to understand the unique way the GPIO data register is designed and the advantages of this approach.

Leave a line for spacing, and then add this code after the code in the previous step.
 while(1)
 {
 // Turn on the LED
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0, 0x01);

 // Delay for a bit
 SysCtlDelay(ulDelay);

 // Turn off the LED
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0, 0x00);

 // Delay for a bit
 SysCtlDelay(ulDelay);
 }
12.
Click the Save button to save your work. Your code should look something like this:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"

int main(void)
{
 unsigned long ulPeriod;
 unsigned long ulDelay;

 SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_0);

 ulPeriod = SysCtlClockGet() / 10;
 ulDelay = ((ulPeriod / 2) / 3) - 4 ;

 while(1)
 {
 // Turn on the LED
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0, 0x01);

 // Delay for a bit
 SysCtlDelay(ulDelay);

 // Turn off the LED
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0, 0x00);

 // Delay for a bit
 SysCtlDelay(ulDelay);
 }

}
Sorry about the small font here, but any larger font made the SysCtlClockSet() instruction look funny. If you’re having problems, you can cut/paste this code into MyLab3Project.c.

Startup Code
13. In addition to the main file you have created, you will also need a startup file specific to the tool chain you are using. This file contains the vector table, startup routines to copy initialized data to RAM and clear the bss section, and default fault ISRs.

Since this application does not use any interrupts, you can easily copy the “startup_ccs.c” file from the hello or blinky example and use that file. This also makes a good template to start with for more complex application that might require interrupts and complex fault handling.

From the CCS menu bar, click File Open File and navigate to C:\StellarisWare\boards. Select the board that you are using (the ek-lm3s8962 in our case) and click on the blinky folder. Click on startup_ccs.c and click Open.

Copy and paste the entire contents of the reference file you just opened into your blank startup_ccs.c file. Close the reference file. Click the Save button.

Set the Build Options
14. Right-click on MyLab3Project in the Project Explorer pane and select Properties. Click the + left of TMS470 Compiler and click on Include Options. In the bottom, include search path pane, click the Add button [image: 2-21-2011 7-34-46 PM]and, one at a time, add the following two include search paths. You may want to copy/paste from the workbook pdf for the next few steps.

${PROJECT_ROOT}/../..
${PROJECT_ROOT}/../../../..

[image:]

15. Click File Search Path under TMS470 Linker. Add the following include library file to the top window:

${PROJECT_ROOT}/../../../../driverlib/ccs-cm3/Debug/driverlib-cm3.lib

[image:]

Click OK to save your changes.

Run the Code
16. [bookmark: OLE_LINK11][bookmark: OLE_LINK12]Compile and download your application by clicking the Debug button [image: 2-10-2011 3-36-11 PM] on the menu bar. If you have any issues, correct them, and then click the Debug button again. After a successful build, the CCS Debug perspective will appear.

Click the Run button [image: 2-10-2011 3-40-46 PM] to run the program that was downloaded to the flash memory of your device. The program will generate a 10 Hz square wave on Pin 0 of GPIO Port F. This pin is connected to the STATUS LED on the EK-LM3S8962.
When you’re done, click the Terminate [image:] button to return to the Editing perspective
17. Close any open editor windows. Then right-click on MyLab3Project in the Project pane and select Close to close the project. Minimize Code Composer Studio.

[image: j0252029] You’re done.

Getting Started with the Cortex-M3 and StellarisWare - StellarisWare, Initialization and GPIO	3 - 1
3 - 4	Getting Started with the Cortex-M3 and StellarisWare - StellarisWare, Initialization and GPIO
Getting Started with the Cortex-M3 and StellarisWare - StellarisWare, Initialization and GPIO	3 - 5
image3.wmf
u

High

-

level API interface to complete

peripheral set

u

License

-

free and royalty

-

free use for TI

parts

u

Simplifies and speeds development

of applications

u

Can be used for application

development or as a programming

example

u

Available as object library and as

source code

u

Compiles on ARM/

Keil

, IAR, Code

Red, CCS and GNU tools

u

Peripheral driver library functions

are preprogrammed in ROM on

select Stellaris MCUs

Peripheral Driver Library

Graphics Library …

image4.wmf
Graphics Library

u

Set of graphics primitives and widgets for use on Stellaris MCUs.

u

Three subsequent layers of functionality:

w

Display Driver Layer

w

Graphics Primitives Layer

w

Widget Layer

w

Each API in each layer is directly callable

u

Written entirely in C (except where not possible), self

-

contained, easy

-

to

-

understand, efficient.

u

Compiles on ARM/

Keil

, IAR, Code Red, CCS and GNU tools.

u

Computations that can be performed at compile time whenever

possible.

u

Graphics Primitives:

w

Point, Line, Rectangle, Circle, Font, Image, Context, Buffer

w

134 Computer Modern predefined fonts available

w

Up to 24

-

bit color (~150 common colors conveniently referenced in

GraphicsLib

)

u

Widgets:

w

Canvas, Checkbox, Container, Push Button, Radio Button, Slider,

ListBox

u

Special Utilities

w

ftrasterize

: render your own font to be recognized by

GraphicsLib

w

lmi

-

button

: predefined button shape with shadow and 3

-

D

w

pnmtoc

: Convert a

NetPBM

image file into a format recognized by

GraphicsLib

USB Library …

image5.wmf
USB Library Stacks and Examples

u

USB

-

IF Compliance

w

Stellaris has passed USB Device and Embedded Host compliance testing

u

Device Examples:

w

HID Keyboard

w

HID Mouse

w

CDC Serial

w

Generic Bulk

w

Audio class

w

Device Firmware Upgrade

w

Oscilloscope

u

Host Examples:

w

Mass Storage

w

HID Keyboard

w

HID Mouse

u

Windows INF for supported classes

w

Points to base Windows drivers

w

Sets

config

string

w

Sets PID/VID

w

Precompiled DLL saves development time

u

Device framework integrated into

USBLib

FREE

Vendor ID/

Product

ID

sharing

program

IEC60730 …

image6.wmf
•

IEC: World’s authority in

international standards for

household appliances

•

StellarisWare extension provides

support for IEC 60730 Class B

safety requirements

•

Class B covers most home

appliances, such as washers/dryers,

refrigerators, freezers, and

cookers/stoves

•

Free license and royalty

-

free use for

use on Stellaris MCUs

•

Library supports both startup and

periodic testing requirements of IEC

60730

The International

Electrotechnical

Commission (IEC)

http://www.iec.ch/index.html

Safe At Home With IEC 60730

Note: Watchdog timers are completely independent hardware timers

In System Programming …

image7.wmf
In System Programming Options

Stellaris Serial Flash Loader

u

Small piece of code that allows programming of the flash without the need for a

debugger interface.

u

All Stellaris MCUs ship with this pre

-

loaded in flash

u

Interface options include UART or SSI

u

TI supplies a Windows™ application (GUI or command line) that makes full use of

all commands supported by the serial flash loader (LMflash.exe)

u

See application note

AN01242

Stellaris Boot Loader

u

Small piece of code that can be programmed at the beginning of flash to act as an

application loader

u

Also used as an update mechanism for an application running on a Stellaris

microcontroller.

u

Interface options include UART (default), I

2

C, SSI, Ethernet, USB

u

Included in the Stellaris Peripheral Driver Library with full applications examples

u

Preloaded in ROM on select Stellaris Microcontrollers

ROM Features …

image8.wmf
ROM Features

StellarisWare

®

DriverLib

u

High

-

level API interface to complete peripheral

set.

u

Simplifies and speeds development of

applications.

u

Saves user flash by storing peripheral setup

and configuration code

u

Allows programmer focus to be on the

application

—

not setup

Other flash memory

-

saving options

u

Advanced Encryption Standard (AES) cryptographic

tables

w

Supported by the current AES example application

w

128, 192 and 256

-

bits

u

Cyclic Redundancy Check (CRC) functionality

–

for

error detection

Stored in ROM on select

Stellaris MCUs

Clock Sources …

image9.wmf
Stellaris Clock Sources

u

Internal Oscillator

w

12 MHz

±

30%

u

Main Oscillator with …

w

An external single

-

ended clock source connected to the

OSC0 input pin

w

An external crystal is connected across the OSC0 input

and OSC1 output pins

w

Observe crystal frequency restrictions

u

Internal 30 kHz Oscillator

w

30 kHz

±

50%

w

Intended for use during Deep

-

Sleep power

-

saving modes

u

External Real

-

Time Oscillator

w

Low

-

frequency accurate clock reference

w

Intended to provide the system with a real

-

time clock

source

w

Part of the Hibernation Module

SysClk Sources …

image10.wmf
System (CPU) Clock Sources

The CPU can be driven by any of the clock sources…

u

Internal 12 MHz

u

Main

u

Internal 30 kHz

u

External Real

-

Time

-

Plus

-

u

The main internal PLL

u

The internal 12 MHz oscillator divided by four (3 MHz

±

30%)

u

PLL clock reference restrictions apply

Clock Source

Drive PLL?

Used as SysClk?

Internal 12 MHz

No

Yes

Internal 12 Mhz/4

No

Yes

Main Oscillator

Yes

Yes

Internal 30 kHz

No

Yes

External Real

-

Time Osc

No

Yes

PLL

-

Yes

Clock tree…

image11.wmf
Stellaris Clock Tree

GPIO Features…

driverLib API SysCtlClockSet() selects:

u

SYSDIV divider setting

u

OSC or PLL

u

Main or Internal oscillator

u

Crystal frequency

image12.wmf
GPIO

-

Features

Module

block diagram…

u

Up to 42 GPIO pins

u

Inputs …

w

are 5V tolerant

w

are Schmitt Triggered

w

can be configured as Interrupts with

w

Edge triggering (Rising, Falling or Both)

w

Level triggering (High or Low)

w

can initiate ADC conversion

w

configurable with weak pull

-

up/pull

-

down resistors

u

Outputs …

w

have 2mA, 4mA or 8mA drive capability with slew control

for 8mA setting

w

have open

-

drain enable

image13.wmf
GPIO

-

Module Block Diagram

Port

block diagram

…

SSIClk

SSIFss

SSIRx

SSITx

SSI

U0Rx

U0Tx

UART0

PA0

PA1

PA2

PA3

PA4

PA5

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PWM2

PWM3

PWM1

I2CSCL

I2CSDA

I

2

C

C0

-

C0+

Analog

Comparator

C0o

PC0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PD0

PD1

PD2

PD3

PD4

PD5

PD6

PD7

PWM0

PWM1

PWM0

Fault

U1Rx

U1Tx

UART1

Timer0

CCP1

CCP0

Timer1

CCP3

CCP2

Timer2

CCP5

CCP4

TCK/SWCLK

TMS/SWDIO

TDI

TDO/SWO

TRST

PE0

PE1

PWM4

PWM5

PWM2

G

P

I

O

P

o

r

t

A

G

P

I

O

P

o

r

t

B

G

P

I

O

P

o

r

t

C

G

P

I

O

P

o

r

t

D

G

P

I

O

P

o

r

t

E

J

T

A

G

image14.wmf
GPIO Port Block Diagram

GPIODATA Reg…

Mode

Control

GPIOAFSEL

D

E

M

U

X

Digital

I/O

Pad

Pad Input

DATA

Control

GPIODATA

GPIODIR

Interrupt

Control

GPIOIS

GPIOIBE

GPIOIEV

GPIOIM

GPIORIS

GPIOMIS

GPIOICR

Pad

Control

GPIODR2R

GPIODR4R

GPIODR8R

GPIOSLR

GPIOPUR

GPIOPDR

GPIOODR

GPIODEN

Identification Registers

GPIOPeriphlD0

GPIOPeriphlD1

GPIOPeriphlD2

GPIOPeriphlD3

GPIOPeriphlD7

GPIOPeriphlD6

GPIOPeriphlD5

GPIOPeriphlD4

GPIOPCelllD3

GPIOPCelllD2

GPIOPCelllD1

GPIOPCelllD0

GPIO Input

Alternate Input

M

U

X

M

U

X

Alternate Output

Pad Output

Pad Output Enable

GPIO Output

GPIO Output Enable

Alternate Output Enable

Package I/O Pin

Interrupt

image15.wmf
GPIO

–

Data Register Operation

GPIO Write…

u

The

GPIO ports allow for the modification of individual bits in the

GPIO Data (GPIODATA)

register by using bits [9:2] of the address

bus as a mask (256 locations)

u

Software

can modify individual GPIO pins in a single instruction,

without affecting the state of the other pins

u

Only

bits with ADDR[9:2] that are equal to 1 will be read or written.

For example: A mask of 0xFF (ADDR[9:0] = 0x3FF) would affect all

bits on the port

image16.wmf
GPIO

–

Write

GPIO Read…

Write Example:

u

If the address bit associated with the data bit is set to 1, the GPIODATA

register bit is altered. If the address bit is cleared to 0, the GPIODATA

register bit is unchanged.

Example: Set GPIODATA bits 5 and 1 HIGH. Clear bit 2. Leave the rest

unchanged (u)

Process: Write a value of 0xEB to address GPIODATA + 0x098

0

0

1

0

0

1

1

0

0

0

ADDR[9:2]

0x098

1

1

1

0

1

0

1

1

9

8

7

6

4

3

2

1

0

5

0xEB

u

u

1

u

u

0

1

u

GPIODATA

7

6

4

3

2

1

0

5

image17.wmf
GPIO

–

Read

Lab 3…

Read Example:

u

If the address bit associated with the data bit is set to 1, the GPIODATA

register bit is read. If the address bit is cleared to 0, the GPIODATA

register bit is read as a zero.

Example: Read GPIODATA bits 5, 4 and 0

Process: Read address GPIODATA + 0x0C4

0

0

1

1

0

0

0

1

0

0

ADDR[9:2]

0x0C4

1

0

1

1

1

1

1

0

9

8

7

6

4

3

2

1

0

5

GPIODATA

0

0

1

1

0

0

0

0

Returned Value

7

6

4

3

2

1

0

5

image18.wmf
Lab 3: Initialization and GPIO

u

Configure the system clock

u

Enable and configure GPIO

u

Use a software delay to toggle the

GPIO pin connected to the LED on

the target board

Agenda…

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.wmf

image1.wmf
Agenda

StellarisWare

…

Introduction to Cortex

-

M3

®

and Peripherals

Code Composer Studio

Introduction to StellarisWare,

Initialization and GPIO

Interrupts and the Timer

Analog

-

to

-

Digital Converter

PWM

Graphics Library

Ethernet

image2.wmf
w

Peripheral Driver Library

w

Graphics Library

w

USB Library

w

Boot Loader

w

IEC 60730 Library

w

Flash Programming

w

On

-

Chip ROM Enhancements

License

-

free and Royalty

-

free source code

for TI Cortex

-

M3 devices:

Peripheral Driver Library …

