ADC Block Diagram
	Lab 5: Analog to Digital Converter
[bookmark: _Toc314663442]Analog to Digital Converter
IntroductionThis module will introduce you to the use of the ADC module on Stellaris devices. In the lab we’ll write the code to utilize the ADC and the sequencer to measure the value of the internal temperature sensor.

[bookmark: _Toc314663443]Module Topics
Analog to Digital Converter	5-1
Module Topics	5-2
ADC Module Features	5-3
ADC Block Diagram	5-4
Sample Sequencers	5-4
Lab 5: Analog to Digital Converter	5-5
Objective	5-5
Procedure	5-6
Create New Project Folders	5-6
Create MyLab5Project Project	5-7
Add Source Files to Project	5-8
Includes and Defines	5-9
Driver Library Error Routine	5-9
Main()	5-9
Inside the while(1) Loop	5-13
Set the Build Options	5-16
Build and Run the Code	5-18
[bookmark: _Toc314663444][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]ADC Module Features

[bookmark: _Toc314663445]ADC Block Diagram

[bookmark: _Toc314663446]Sample Sequencers

[bookmark: _Toc314663447][bookmark: _Toc370113188][bookmark: _Toc394202380]Lab 5: Analog to Digital Converter
[bookmark: _Toc314663448]Objective
In this lab we’ll set up the ADC to measure the value of the on-chip temperature sensor. We’ll calculate degrees Celsius and Fahrenheit and display them in a watch window.

[bookmark: _Toc314663449]
Procedure
[bookmark: _Toc314663450]Create New Project Folders
1. We need to create some folders to hold Lab 5.

Open Windows Explorer and navigate to C:\StellarisWare\boards\MyBoard. Right-click in the open space of the right-hand pane and select New Folder. Name the new folder MyLab5Project and press the Enter key.

Double click on MyLab5Project to enter the folder and then right-click in the wide open right-hand pane. Select New Folder. Name the new folder ccs and press the Enter key.
[image:]
[bookmark: _Toc314663451]Create MyLab5Project Project
2. Maximize Code Composer. On the CCS menu bar select File New CCS Project. Make the selections shown below. Make sure to uncheck the “Use default location” checkbox and select the correct path to the “ccs” folder you created. This step is important to making your project portable. Click Finish.
[image:]

[bookmark: _Toc314663452]Add Source Files to Project
3. Delete main.c from MyLab5Project. Click on MyLab5Project to make it active.
4. From the CCS menu bar, click File New Source File. When the New Source File dialog appears, make the selections below to create the main C code file and click Finish.

[image:]

5. From the CCS menu bar, click File New Source File. When the New Source File dialog appears, make the selections below to create the startup file and click Finish.

[image:]

6. Copy the contents of startup_ccs.c in MyLab3Project (not MyLab4Project) into your blank startup_ccs.c file. Click Save.

[bookmark: _Toc314663453]Includes and Defines
7. Add (or copy/paste) the following 5 lines to the top of MyLab5Project.c :
[bookmark: OLE_LINK1]#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/adc.h"

adc.h: headers for using the ADC driver
[bookmark: _Toc314663454]Driver Library Error Routine
8. During the debug process, you may find that you have called a driver library API with incorrect parameters or a library function generates an error for some other reason. The following code will be called if the driver library encounters such an error.

Leave a blank line for spacing and enter these lines of code after the lines above:

#ifdef DEBUG
void
__error__(char *pcFilename, unsigned long ulLine)
{
}
#endif
[bookmark: _Toc314663455]Main()

9. Set up the main() routine by typing in the three lines below:

int main(void)
{
}

10. The following definition will create an array that will be used for storing the data read from the ADC FIFO. It must be as large as the FIFO for the sequencer in use. We will be using sequencer 1 which has a FIFO depth of 4. If another sequencer was used with a smaller or deeper FIFO, then the array size would have to be changed. For instance, sequencer 0 has a depth of 8. Add the following line of code as your first line in main() .

unsigned long ulADC0Value[4];
11.
We’ll need some variables for calculating the temperature from the sensor data. The first variable is for storing the average of the temperature. The remaining variables are used to store the temperature values for Celsius and Fahrenheit. All are declared as 'volatile' so that each variable will not be optimized out by the compiler and will be available to the 'Watch' or 'Local' window(s) at run-time. Leave a line for spacing and add these lines after that last line:
volatile unsigned long ulTempAvg;
volatile unsigned long ulTempValueC;
volatile unsigned long ulTempValueF;
12. The ADC must be clocked from the PLL or directly from a 14MHz - 18MHz clock source to operate properly. While the ADC works in a 14-18 MHz range, to maintain a 1MSPS sampling rate, the ADC must be provided a 16-MHz clock source (for 1MSPS supported devices. See the device specific datasheet for ADC speed specifications). Set the clocking to run at 20 MHz (200 MHz / 10) using the PLL. Then the SYSCTL_XTAL value must be changed to match the value of the crystal on the board. The EK-LM3S8962 has an 8.0MHz crystal and has a maximum ADC speed of 500ksps. Add a line for spacing and add this line after the last one:

SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);
13. Let’s enable the ADC0 module next. Add a line for spacing and add this line after the last one:

SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
14. As an example, let’s set ADC sample rate to 250 kilo-samples per second (since we’re measuring temperature, a slower speed would be fine, but let’s go with this). The SysCtlADCSpeedSet() API can also set the sample rate to additional device specific speeds. These speeds are noted in the device datasheet in the ADC section. In the case of the LM3S8962 the following additional speeds are supported: SYSCTL_ADCSPEED_500KSPS or SYSCTL_ADCSPEED_125KSPS. Add the following line directly after the last one:

SysCtlADCSpeedSet(SYSCTL_ADCSPEED_250KSPS);
15. Before we configure the ADC sequencer settings, we should disable ADC sequencer 1. Add this line after the last one:

ADCSequenceDisable(ADC0_BASE, 1);

16. The first step in programming the ADC sequencer is to set the ADC to trigger after a processor event for sequencer 1 with priority level 0, highest priority. All sequencers can have a unique priority level. By default sequencer 0 has priority 0 (highest) and sequencer 3 has priority 3 (lowest). Add a line for spacing and add this line of code:
ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
17. Next we need to configure all four steps in the ADC sequencer. Configure steps 0 - 2 on sequencer 1 to sample the temperature sensor (ADC_CTL_TS). In this example, we will be averaging all four steps of temperature sensor data on sequencer 1 to calculate the temperature, so all four sequencer steps will measure the temperature sensor. For more information on the ADC sequencers and steps, reference the device specific datasheet. Add the following three lines after the last:
ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_TS);
ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_TS);
ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_TS);
18. The final sequencer step requires a couple of extra settings. Sample the temperature sensor (ADC_CTL_TS) and configure the interrupt flag (ADC_CTL_IE) to be set when the sample is done. Tell the ADC logic that this is the last conversion on sequencer 1 (ADC_CTL_END). Add this line directly after the last ones:

ADCSequenceStepConfigure(ADC0_BASE, 1, 3, ADC_CTL_TS | ADC_CTL_IE | ADC_CTL_END);
19. Now we can re-enable the ADC sequencer 1. Add this line directly after the last one:

ADCSequenceEnable(ADC0_BASE, 1);
20. Still within main(), add a while loop to your code. Add a line for spacing and enter these three lines of code:
while(1)
{
}
21. Save your work. As a sanity-check, right-click on MyLab5Project.c in the Project pane and select Build Selected File(s). You should have one fatal error; that hw_memmap.h can’t be opened. That’s okay because we haven’t set the build properties yet. If you are having issues, check the code on the following page:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/adc.h"

#ifdef DEBUG
void
__error__(char *pcFilename, unsigned long ulLine)
{
}
#endif

int main(void)
{
 unsigned long ulADC0Value[4];
	
 volatile unsigned long ulTempAvg;
 volatile unsigned long ulTempValueC;
 volatile unsigned long ulTempValueF;

 SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
 SysCtlADCSpeedSet(SYSCTL_ADCSPEED_250KSPS);
 ADCSequenceDisable(ADC0_BASE, 1);

 ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 3, ADC_CTL_TS | ADC_CTL_IE | ADC_CTL_END);
 ADCSequenceEnable(ADC0_BASE, 1);
	
 while(1)
 {
 }
}
I’m sorry about the text sizing, but that’s the only way I could fit the code on a single line.

[bookmark: _Toc314663456]Inside the while(1) Loop
Inside the while(1) we’re going to read the value of the temperature sensor endlessly.

22. The indication that the ADC conversion is complete will be the ADC interrupt status flag. It’s good programming practice to make sure that the flag is cleared. Add the following line as your first line of code inside the while(1) loop:
ADCIntClear(ADC0_BASE, 1);
23. Then we can trigger the ADC conversion. Add the following line after the last:

ADCProcessorTrigger(ADC0_BASE, 1);
24. Then we need to wait for the conversion to complete. Obviously, a better way to do this would be to use an interrupt, rather than burn CPU cycles waiting, but that exercise is left for the student. Add a line for spacing and add the following three lines of code:
while(!ADCIntStatus(ADC0_BASE, 1, false))
{
}
25. Now that the conversion is complete, we can read the ADC value from the ADC_SSFFIO1. The function we’ll be using copies data from the specified sample sequencer output FIFO to a memory resident buffer. The number of samples available in the hardware FIFO are copied into the buffer, which must be large enough to hold that many samples. This will only return the samples that are presently available, which might not be the entire sample sequencer if it is in the process of being executed. Add a line for spacing and add the following line after the while loop in step 23:

ADCSequenceDataGet(ADC0_BASE, 1, ulADC0Value);
26. Calculate the average of the temperature sensor data. The addition of 2 is for rounding. Since 2/4 = 1/2 = 0.5, 1.5 will be rounded to 2.0 with the addition of 0.5 and in the case of 1.0, when 0.5 is added to yield 1.5, this will be rounded back down to 1.0 due to the rules of integer math. Add this line after the last on a single line:

ulTempAvg = (ulADC0Value[0] + ulADC0Value[1] + ulADC0Value[2] + ulADC0Value[3] + 2)/4;

27. Now that we have the averaged reading from the temperature sensor, we can calculate the Celsius value of the temperature. The equation below is the result of a combination of the Internal Temperature Sensor Characteristic mentioned in the device datasheet and the voltage representation of the sampled temperature sensor data based on a 3.0V reference. Division is performed last to avoid truncation due to integer math rules.
Example:
Let: 	A = ulTempAvg
 	B = Senso (The voltage at the output terminal)
 	C = ulTempValueC
For: 	B = (A/1023)3.0V 	(1)
 	B = 2.7 - [(C + 55)/75] 	(2)
Then: 	C = ({2.7 - [(A/1023)3.0V]}75) - 55 (3)
 	 = {2.7*75 - [3.0V*75(A/1023]} – 55
 	 = {27*75/10 - [225(A/1023)]} – 55
 	 [2025*1023 - (225*10*A)] - 55*10*1023 = C*10*1023
 	 (2025 - 550)1023 - 2250*A = C*10230
 	 C = [(1475 * 1023) - (2250 * A)] / 10230 (4)
Enter the following line of code directly after the last:
ulTempValueC = ((1475 * 1023) - (2250 * ulTempAvg)) / 10230;
28. Once you have the Celsius temperature, calculating the Fahrenheit temperature is easy. Hold the division until the end to avoid truncation.
 	Let: 	C = ulTempValueC
 		F = ulTempValueF
For: 	F = (C*9/5)+32 (5)
Then:	F = [(C*9) + 32*5] / 5
 	F = [(C*9) + 160] /5 (6)
Enter the following line of code directly after the last:
ulTempValueF = ((ulTempValueC * 9) + 160) / 5;

29. Save your work and compare it with our code below:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/adc.h"

#ifdef DEBUG
void
__error__(char *pcFilename, unsigned long ulLine)
{
}
#endif

int main(void)
{
 unsigned long ulADC0Value[4];
	
 volatile unsigned long ulTempAvg;
 volatile unsigned long ulTempValueC;
 volatile unsigned long ulTempValueF;

 SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
 SysCtlADCSpeedSet(SYSCTL_ADCSPEED_250KSPS);
 ADCSequenceDisable(ADC0_BASE, 1);

 ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 3, ADC_CTL_TS | ADC_CTL_IE | ADC_CTL_END);
 ADCSequenceEnable(ADC0_BASE, 1);
	
 while(1)
 {
 ADCIntClear(ADC0_BASE, 1);
 ADCProcessorTrigger(ADC0_BASE, 1);
		
 while(!ADCIntStatus(ADC0_BASE, 1, false))
	{
	}
		
 ADCSequenceDataGet(ADC0_BASE, 1, ulADC0Value);
 ulTempAvg = (ulADC0Value[0] + ulADC0Value[1] + ulADC0Value[2] + ulADC0Value[3] + 2)/4;
 ulTempValueC = ((1475 * 1023) - (2250 * ulTempAvg)) / 10230;
 ulTempValueF = ((ulTempValueC * 9) + 160) / 5;
 }
}

[bookmark: _Toc314663457]Set the Build Options
30. Right-click on MyLab5Project in the Project Explorer pane and select Properties. Click the + left of TMS470 Compiler and click on Include Options. In the bottom, include search path pane, click the Add button [image: 2-21-2011 7-34-46 PM]and, one at a time, add the following two include search paths.

${PROJECT_ROOT}/../..
${PROJECT_ROOT}/../../../..

[image:]

31. Click File Search Path under TMS470 Linker. Add the following include library file to the top window:

${PROJECT_ROOT}/../../../../driverlib/ccs-cm3/Debug/driverlib-cm3.lib

[image:]

Click OK to save your changes.
[bookmark: _Toc314663458]Build and Run the Code
32. Compile and download your application by clicking the Debug button [image: 2-10-2011 3-36-11 PM] on the menu bar. If you have any issues, correct them, and then click the Debug button again. After a successful build, the CCS Debug perspective will appear.
33. You should see the local variables displayed in the Variables display pane (upper right); ulADC0Value, ulTempAvg, ulTempValueC and ulTempValueF. If you do not see these, you can add them in a watch expression. Find the variables in the last four lines of code, highlight a variable, then right-click on it and select Add Watch Expression for all four variables. Both the Variables and Expressions windows are shown below:

[image:]
[image:]

34. We’d like to set the debugger up so that it will update the Local and Watch windows each time the code runs. Since there is no line of code after the calculations, we’ll choose one right before them and display the last calculation.

Click on the first line of code in the while(1) loop;
ADCIntClear(ADC0_BASE, 1); and then right-click on it. Select Breakpoint (Code Composer Studio) then Breakpoint to set a breakpoint on this line.

[image:]

Right-click on the breakpoint symbol [image:] and select Breakpoint Properties … Find the line that contains Action and click on the Remain Halted value. That’s the normal way a breakpoint should act, but let’s change it to Update View (look at the top of the list). In the value below, note that only the Expressions window will be updated. Now the variables in the Expression window will be updated and the code will continue to execute. Click OK.
[image:]

35. Click the Run button [image: 2-10-2011 3-40-46 PM] to run the program.
You should see the measured value of U1TempAvg toggling over a couple of bits. Changed values from the previous measurement are highlighted in yellow. Use your finger (rub it briskly on your pants), then touch the
LM3S-8962 device on the board to warm it. Press your fingers against a cold drink, then touch the LM3S-8962 device to cool it. You should quickly see the results on the display.
[image:]

Bear in mind that the temperature sensor is not calibrated, so the values displayed are not exact. That’s okay in this experiment, since we’re only looking for changes in the measurements.
When you’re finished, click the Terminate [image:] button to return to the Edit perspective, close the MyLab5Project project and minimize Code Composer Studio.

[image: j0252029] You’re done.

Getting Started with the Cortex-M3 and StellarisWare - ADC	5 - 1
5 - 4	Getting Started with the Cortex-M3 and StellarisWare - ADC
Getting Started with the Cortex-M3 and StellarisWare - ADC	5 - 5
image2.wmf
Stellaris ADC Module Features

The Stellaris ADC module features:

u

10

-

bit, 500KSPS resolution

u

4 input channels plus an internal temperature sensor

u

Single or Differential inputs

u

4 programmable sequencers

u

Configurable inputs sources

u

Trigger events

u

Interrupt generation

u

Sequence priority

u

Variable FIFO depth from 1 to 8 samples

image3.wmf
Stellaris ADC

Module Features (cont)

u

Flexible trigger control

u

Software

u

Timers

u

Analog Comparators

u

PWM

u

GPIO

u

Hardware averaging of up to 64 samples

u

3V internal reference

u

Separate analog power and ground for greater noise immunity

ADC Block Diagram…

image4.wmf
ADC Block Diagram

Sample Sequencers…

image5.wmf
Sample Sequencers

Lab 5…

All of the sequencers are identical in implementation except for the number

of samples that can be captured and the depth of the FIFO. Each FIFO

entry is a 32

-

bit word, with the lower 10 bits containing the conversion result.

image6.wmf
Lab 5: Analog to Digital Conversion

u

Enable and configure

ADC

u

Enable and configure sequencer

u

Measure and display internal

temperature sensor values

Agenda…

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.wmf

image1.wmf
Agenda

ADC Module Features…

Introduction to Cortex

-

M3

®

and Peripherals

Code Composer Studio

Introduction to StellarisWare,

Initialization and GPIO

Interrupts and the Timer

Analog

-

to

-

Digital Converter

PWM

Graphics Library

Ethernet

