Stellaris MAC and PHY
	Stellaris MAC and PHY
[bookmark: _Toc314663775]Ethernet Peripheral
Introduction
This module covers the Ethernet peripheral, library and examples

[bookmark: _Toc314663776]Module Topics
Ethernet Peripheral	1
Module Topics	2
Common Protocols	3
Stellaris MAC and PHY	4
Hardware Design	6
IEEE1588 Precision Time Protocol	7
Ethernet Stacks	9
Open Source Ethernet Stacks	10
Lab8: Ethernet Lab	11
Description:	11
Procedure	12
Additional Web Server Information	21
[bookmark: _Toc314663777][bookmark: _Toc207597515]Common Protocols

[bookmark: _Toc314663778]Stellaris MAC and PHY

[bookmark: _Toc314663779]Hardware Design

[bookmark: _Toc314663780]IEEE1588 Precision Time Protocol

[bookmark: _Toc314663781]Ethernet Stacks

[bookmark: _Toc314663782]Open Source Ethernet Stacks

[bookmark: _Toc314663783]Lab8: Ethernet Lab
[bookmark: _Toc314663784]Description:
We’ll use the LM3S8962 evaluation board and connect it to our PC with an Ethernet cable. We’ll take a look at the lwip stack and the I/O web server. In the lab, we’ll alter the contents of the served web page and reprogram it into the 8962’s flash memory.

[bookmark: _Toc207597518][bookmark: _Toc314663785]
Procedure
Open Code Composer
1. Maximize Code Composer. Click on Project, and then select Import Existing CCS/CCE Eclipse Project. When the Import dialog appears, browse to C:\StellarisWare\driverlib\ccs-cm3 and click OK. Be sure that the checkbox next to driverlib-cm3 in the Discovered projects pane is checked and that Copy projects into workspace is checked. Click Finish.
2. Click on Project again, and then select Import Existing CCS/CCE Eclipse Project. When the Import dialog appears, browse to
C:\StellarisWare\boards\ek-lm3s8962\enet_io and click OK. Be sure that the checkbox next to enet_io in the Project pane is checked. Click Finish.

3. Maximize the IDE window if you haven’t already and expand the enet_io project by clicking on the + to the left of the name. Double-click on enet_io.c to open it for editing.

Read the example description starting around line number 50. This code handles both IO control demos.

enet_io.c is made up of several modules:

ControlCGIHandler()	 Called when the web browser requests LED or PWM control
SetTextCGIHandler()	 Called when the web browser requests to write test to OLED
SSIHandler()		 Called by the HTTP server when it encounters an SSI tag
DisplayIPAddress()	 Displays the lwIP type IP address
SysTickIntHandler()	 Handles the SysTick interrupt
lwIPHostTimerHandler() Supports host timer functions
main()			 Sets up the clock, ethernet and IO ports, inits the OLED,					 configures SysTick and enables interrupts

4. Before we change anything, let’s make sure that the project works as it is.

Connect the LM3S8962 board to your PC via the USB cable, as usual. Then, using the Ethernet cable included in the kit, connect the LM3S8962 board to the Ethernet port of your PC. If your PCs wireless connection is enabled, you should disable it now.

If you have problems connecting to the board in later steps, you may need to disable your firewall software.

Click the [image: screen] Debug button now to build and load the project to your board.
5. When the build and load completes, make sure that you are in the Debug perspective. Click the Run button to run the code on your board. You should see “Web-Based I/O Control” on the OLED display on the LM3S8962 board.

Minimize Code Composer Studio.
After 30 seconds or so, you should see the following on the OLED display (your IP address may be different):
Web-Based I/O Control
IP:		169.254.254.109
MASK:		255.255.0.0
GW:		0.0.0.0

6. There are two possibilities here: either your PCs Ethernet port and the board have compatible addresses, or they don’t. To find out, we need the IP address of your Ethernet port. By the way, if you have Wi-Fi or 3G wireless on your machine, now would be a good time to disable it.

In Windows XP, click Start Control Panel Network Connections Local Area Connection and then click the Support tab to see your IP address.

In Windows7, click Start Control Panel Network and Internet Network and Sharing Center Change adapter settings Local Area Connection Details and look for the IPv4 Address.

If the first three parts of your IP address are the same as the address shown on the LM3S8962 OLED display, you got lucky! The addresses are compatible and you can skip to step 9.
7. The lwIP stack has defaulted to a preprogrammed IP address. In order to communicate with that address, we need to give the PC’s Ethernet port a compatible address.

Your screen should still be displaying the Local Area Connections Status (or Details) from step 6.

In Windows XP, click the General tab, then Properties. Scroll down until you see Internet Protocol (TCP/IP) like shown on the left below and click on it.

In Windows 7, close the Network Connection Details window and click the Properties button. Scroll down until you see the Internet Protocol Version 4(TCP/IPv4) like shown on the right below and click on it.
[image:] [image:]

8. [image:]Click the Properties button. When the Internet Protocol (TCP/IP) Properties window appears, make a note of the settings you see in the space provided below, then make the selections shown below (if your boards’ IP address was different, simply make sure that the first three fields are the same, and the fourth is different):

Note your previous settings here:

Click OK. Close all the network status windows.

9. Start your web browser, and enter the address shown on your OLED display and press Enter. A web page served from the LM3S8962 should appear.
[image: browser]
If you are having issues seeing the web page on your browser, you may have one or more of the following going on:

1) You typed the IP address incorrectly for either your Ethernet port or the board. Remember that the Ethernet port’s address and the board address cannot be the same.
2) Your firewall software is getting in the way … disable it for now.
3) You didn’t disable your wireless ports and your browser is trying to access the address over that connection instead of the wired Ethernet connection.

4) You may not have the Java Runtime Engine installed. Go to www.java.com and install the JRE.
10. On the web page, click the link to I/O Control Demo 1 and then press the Toggle LED button a few times, noting the LED on the LM3S8962 board. You may also note the green activity light on the LM3S8962 Ethernet connector as you press the button. Try the other controls, but try not to annoy everyone with the PWM/speaker output.

On the web page, click the link to I/O Control Demo 2. Type the text of your choice (keep it clean) in the Display this text on the screen: box and click Send Text. The text that you typed should appear on the OLED screen. Try the other controls.

When you’re done fooling around, close your web browser.
11.
The embedded web server used in the enet_io example uses the open source lwIP TCP/IP stack. When you first start the application, the index.htm file is displayed in your web browser.
In this part of the lab, we will modify this web page using notepad as our editor. The easiest way to provide the html files to the application is by putting them on a microSD card. The enet_io application is coded to look for the file system there first. In the workshop, we’re not using a microSD card. So instead, we will create a new file system image to embed in the application itself. There is a command line tool in the \StellarisWare\tools\bin folder that will generate a header file with an array for each file in the \fs folder.
Using Windows Explorer, find index.htm file in the C:\StellarisWare\boards\ek-lm3s8962\enet_io\fs folder. Right click on index.htm and select Open with, then click Notepad to open the file for editing using Notepad.
12. Find the lines near the bottom of the file that look like this:
</p>
<p>Read more about us on the web at www.ti.com.
<p></p>

Add some code so that it looks like this:
</p>
<p>Read more about us on the web at www.ti.com.
<p></p>
</p>
<p>WooHoo! YourName was here!
<p></p>

Save the file and close your editor.
13.
Convert the HTML files to a Header File
In Code Composer Studio, examine the file lmi_fs.c in the enet_io project. You will find the command line and options that are needed to run the makefsfile utility in the comments towards the top of this file.
Open a DOS command prompt window using Start Run, type cmd and click OK.
Type cd\ and press Enter to return to the root directory C:\

Then type cd stellarisware\boards\ek-lm3s8962\enet_io and press Enter.

In the command window, type the command shown below to call the makefsfile utility.
C:\StellarisWare\tools\bin\makefsfile.exe -i fs -o io_fsdata.h -r -h
 This will create a new io_fsdata.h header file, with the changes that you made, which is included by io_fs.c . Close the command window when you are finished.
[image: command]
13. Rebuild the enet_io Example Application
Maximize Code Composer Studio. We just modified one of the files in the project without the IDE knowing it, so we need to perform a clean build.

Return to the C/C++ perspective. Right-click on enet_io in the Project Explorer window and select Clean Project. Click the [image: screen] Debug button to build/load the project.
Make sure your LM3S8962 evaluation board is connected and assure that CCS is in the Debug perspective.
14.
Load the Modified Website in your Browser
Make sure your Ethernet cable is connected and reset the LM3S8962 evaluation board (disconnect/reconnect the USB cable). Wait for the IP address to show up on your OLED, make sure that it is still compatible with your PCs IP address and type it into address bar:
[image: browser2]
Restore your network settings

Remember your original network settings on your PC? Restore those and re-enable your wireless connection (if necessary). Terminate the Debug session, close the enet_io project and exit CCS. Close any other open windows on your desktop.

[image: j0252029] You’re done

[bookmark: _Toc314663786]Additional Web Server Information
The following material is for your information and will not be covered during the regular workshop session.

Getting Started with the Cortex-M3 and StellarisWare - Ethernet Peripheral	8 - 1
8 - 4	Getting Started with the Cortex-M3 and StellarisWare - Ethernet Peripheral
Getting Started with the Cortex-M3 and StellarisWare - Ethernet Peripheral	8 - 5
image2.wmf
Five

-

Layer TCP/IP Model

–

Common Protocols

Application Layer:

DHCP, DNS, FTP, HTTP, IMAP4, IRC, NNTP,

XMPP, POP3, RTP, SIP, SMTP, SNMP, SSH, TELNET, RPC, RTCP,

RTSP, TLS (and SSL), SDP, SOAP, GTP, STUN, NTP, etc...

Transport Layer:

TCP, UDP, `DCCP, SCTP, RSVP, ECN, etc...

Network/Internet Layer:

IP (IPv4, IPv6), OSPF,IS

-

IS, BGP,

IPsec, ARP, RARP, RIP, ICMP, ICMPv6, IGMP, etc...

Data Link Layer:

Ethernet, 802.11 (WLAN), 802.16, Wi

-

Fi,

WiMAX, ATM, DTM, Token ring, FDDI, Frame Relay,

GPRS, EVDO, HSPA, HDLC, PPP, PPTP, L2TP, ISDN,

ARCnet, LLTD, etc...

Physical Layer:

Ethernet physical layer, Twisted pair,

Modems, PLC, SONET/SDH, G.709, Optical fiber,

Coaxial cable, etc...

MAC +

PHY Features

…

image3.wmf
Stellaris Ethernet MAC and PHY Features

u

Integrated 10/100 Mbps Transceiver (PHY)

u

IEEE 1588 PTP Hardware

-

Assisted Support

u

10BASE

-

T and 100BASE

-

TX/RX IEEE 802.3

Full/Half

-

Duplex support

u

Automatic MDI/MDI

-

X cross

-

over correction

u

Programmable MAC address

u

Promiscuous mode support

w

Ability to receive all packets sent on network

–

like

CAN, versus only those sent to specific MAC address

u

2KB Transmit FIFO / 2KB Receive FIFO

MAC + PHY…

image4.wmf
Stellaris Ethernet MAC and PHY

Transmitter

Buffers

Receiver

Buffers

MII

Management

Flow Control

PLL

Media Independent Interface (MII)

Transmitter

10BaseT

Receiver

Manchester

Encoding

Transmitter

100BaseTX

Receiver

4B/5B

encoding

Loopback

support

Media Access Control

(MAC)

MII is a standard to facilitate

the transfer of data

between the MAC and PHY

Ethernet PHY

image5.wmf
Stellaris Ethernet MAC and PHY

Ethernet & network layers

Application layer

Transport layer

Network/Internet layer

Data link layer

Physical layer

DHCP, DNS, FTP, HTTP, …

TCP, …

IP (IPv4, IPv6), …

Ethernet, 802.11 (WLAN), …

Ethernet physical layer, …

Ethernet system on Stellaris

Stellaris

HW Design…

image6.wmf
Stellaris Ethernet Hardware Design

Note: VCC PHY pins are not labeled in the reference design, but are needed

Required crystal not shown

PTP …

image7.wmf
Ethernet

-

IEEE1588 PTP

u

IEEE 1588 is “Precision Clock Synchronization

Protocol for Network and Control Systems” or

Precision Time Protocol (PTP)

u

IEEE 1588 is a protocol designed to synchronize

real

-

time clocks in the nodes of a distributed system

that communicate using a network (Ethernet) at a

high degree of accuracy

u

Microsecond accuracy is easily achievable using

low cost, small footprint implementations such as

Stellaris

image8.wmf
Visualizing IEEE 1588

u

Before IEEE 1588, Ethernet communication in control applications

occurred without absolute determinism:

w

Assume

Sender

sends a control instruction

Turn

to

Controller

w

Assume also that

Clock S

and

Clock C

are not synchronized

w

If

Sender

asks

Controller

to

Turn

upon receipt of the instruction, then

there is no telling when

Controller

will receive

Turn

.

w

Even if

Sender

asks

Controller

to

Turn

at a given time

alpha

, there is

still the problem of unsynchronized clocks.

w

But if

Sender

asks

Controller

to

Turn

at a given time

alpha

, and the

clocks are synchronized to a master, then determinism is achieved

ˆ

Sender

Clock S

“TURN at

alpha!”

�

Controller

Clock C

“Ok. I will TURN

at alpha.”

Alpha on Clock S

¹

Alpha on Clock C.

ˆ

Sender

Clock S

“TURN at

alpha.”

ˆ

Controller

Clock C

“Ok. I will TURN

at alpha.”

Alpha on Clock S = Alpha on Clock C.

ˆ

Sender

Clock S

“TURN!”

�

Controller

Clock C

(some ?? time

later)

“Ok”

Ethernet is non

-

deterministic by nature.

image9.wmf
PTP in Industrial Applications

u

Industry synchronization requirements for PTP Applications

u

PTP and motion control

w

Variable frequency drives require few 10s of microseconds

w

Software generally 5uS

w

44% of applications are networked, 63% use Ethernet TCP/IPB

w

Servo

-

controlled systems require 100s of nanoseconds

w

Requires significant hardware assist

w

36% of applications are networked, 56% use Ethernet TCP/IPC

u

Stellaris implementation

w

Open source lwIP + PTPd : within 500nS of master clock,

jitter +/

-

500nS

w

This represents a greater than ten fold improvement over typical SW

-

only implementations

Choosing a Stack …

image10.wmf
Choosing a Stack

–

Application Examples

u

“Transmission/Reception of information needs to be guaranteed.”

w

TCP over UDP

u

“Workers at each machine workstation to be able to monitor and

control the workstation from the workstation’s HMI computer.”

w

HTTP

u

“We need the ability to send system update files to each

workstation from our main control room.”

w

FTP

u

“We want the system to automatically send an email if certain

conditions are exceeded.”

w

ICMP

u

“We need our system to operate behind a firewall so that no one

can hack in from the outside.”

w

NAT

u

“We need to be able to add more workstations to the network with

ease.”

w

DHCP

Available Stacks…

image11.wmf
Communications Stacks for Stellaris

®

TPV

Product

Stack

A

R

P

A

u

t

o

I

P

B

O

O

T

P

B

S

D

D

H

C

P

D

N

S

F

T

P

H

T

T

P

I

C

M

P

I

G

M

P

I

K

E

I

P

I

P

S

e

c

N

A

T

P

O

P

3

P

P

P

P

T

P

R

A

R

P

R

I

P

R

T

P

S

L

I

P

S

M

T

P

S

N

M

P

S

N

T

P

S

S

L

T

C

P

T

e

l

n

e

t

T

F

T

P

U

D

P

8

0

2

.

1

1

CMX Systems

CMX

-

MicroNET

TCP/IP

·

·

·

·

·

·

·

·

·

CMX Systems

CMX

Add Ons

Networking

SW Options

·

·

·

·

·

·

·

·

·

·

·

Express Logic

NetX

TCP/IP

·

·

·

·

·

·

·

Express Logic

NetX Add Ons

Networking

SW Options

·

·

·

·

·

·

·

·

·

·

·

·

·

·

Interniche

NicheLITE

TCP/IP

·

·

·

·

·

·

·

·

·

Interniche

NicheStack

TCP/IP

·

·

·

·

·

·

·

·

·

·

·

·

·

Interniche

Interniche

Add

Ons

Networking

SW Options

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

Micri

µ

m

µ

C/UDP

-

IP

UDP/IP

·

·

·

·

·

Micri

µ

m

µ

C/TCP

-

IP

TCP/IP

·

·

·

·

·

·

Micri

µ

m

Micri

µ

m

Add Ons

Networking

SW Options

·

·

·

·

·

·

·

·

·

SEVENSTAX

SEVENSTAX

TCP/IP

TCP/IP

·

·

·

·

SEVENSTAX

SEVENSTAX Add

Ons

Networking

SW Options

·

·

·

·

·

·

·

·

·

SEGGER

embOS/IP

TCP/IP

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

uIP

open source

TCP/IP

·

·

·

·

·

lwIP

open source

TCP/IP

·

·

·

·

·

·

·

·

·

·

·

Open Source Stacks…

image12.wmf
Open Source TCP/IP Stacks

uip

–

Micro IP

•

Protocols supported

w

Transmission Control Protocol (TCP)

w

User Datagram Protocol (UDP)

w

Internet Protocol (IP)

w

Internet Control Message Protocol

(ICMP)

w

Address Resolution Protocol (ARP)

•

Memory requirements

w

Typical code size on the order of a few

kilobytes

w

RAM usage can be as low as a few

hundred bytes.

w

Memory conserved by limiting to one

outstanding transmit packet

lwip

–

Light

-

weight IP

•

Protocols supported

w

Internet Protocol (IP) including packet

forwarding over multiple network

interfaces

w

Internet Control Message Protocol (ICMP)

for network maintenance and debugging

w

User Datagram Protocol (UDP) including

experimental UDP

-

lite

extensions

w

Transmission Control Protocol (TCP) with

congestion control, RTT estimations, and

fast recovery/transmit

w

Dynamic Host Configuration Protocol

(DHCP)

w

Point

-

to

-

Point Protocol (PPP)

w

Address Resolution Protocol (ARP) for

Ethernet

w

Specialized raw API for enhanced

performance

w

Optional Berkeley

-

like socket API

•

Memory Requirements

w

Typical code size is on the order of 25 to

40 kilobytes

w

RAM requirements are approximately 15 to

a few tens of kilobytes

uip and lwip licenses

Ÿ

No restriction in shipping in real products

Ÿ

Redistribution of stack source or binaries

(such as in our kit) must carry copyright

Lab 8 …

image13.wmf
Lab 8: Modify the Web Page

u

Load and test the

enet_io

example that

controls the PWM, LED and OLED

u

Alter and reprogram the web page

contents and test

USB

Ethernet

image14.jpeg

image15.emf

image16.jpeg

image17.emf

image18.jpeg

image19.jpeg

image20.jpeg

image21.wmf

image22.wmf
I/O Control Demonstrations

u

The enet_io application illustrates two methods of

controlling board operations from the web browser:

w

I/O Control Demo 1 shows direct HTTP requests

generated via JavaScript code in the web page

(io_http.html).

w

I/O Control Demo 2 shows the use of Server Side Includes

(SSI) and Common Gateway Interface (CGI) to perform

the same operations (io_cgi.shtml)

u

All web site files are stored as a file system image

(io_fsdata.c) linked into the application image in

flash.

image23.wmf
I/O Control Demo 1

image24.wmf
Demo 1

–

HTTP Requests

u

JavaScript in the web page generates HTTP GET

requests for specific filenames.

u

lwIP web server passes these filenames to the file

system (

lmi_fs.c

) which recognizes them as

“special” and performs whichever task the filename

is intended to trigger.

w

Toggle LED state (

/cgi

-

bin/toggle_led

)

w

Set and report PWM frequency

(

/pwm_freq?value=

<frequency>)

u

JavaScript reads the response from the web server

and uses

<div>

tags to insert the relevant text into

the displayed page.

image25.wmf
Demo 1

–

HTTP Requests

u

Advantages:

w

Updates can be made without having to reload the whole

web page.

w

Quicker user feedback.

w

Lower network traffic.

u

Disadvantages:

w

Client browser must support JavaScript.

w

HTML files are more complex to develop and less easy to

understand.

image26.wmf
Embedded Control

u

Below is an example of the html code used for the Toggle LED button from

“io_http.html”

<table>

<

tr

>

<td>

<input id="toggle" value="Toggle LED“

onclick

="

toggle_led

()" type="button">

</td>

<td>

STATUS LED:

</td>

<td>

<div id="

ledstate

" align="center">

-

</div>

</td>

</

tr

>

</table>

image27.wmf
Embedded Control

u

Below is an example of the JavaScript code used for the Toggle LED button from

“io_http.html”

function

toggle_led

()

{

var

req

= false;

var

led = false;

function

ledComplete

() {

if(

led.readyState

== 4) {

if(

led.status

== 200) {

document.getElementById

("

ledstate

").

innerHTML

= "<div>" +

led.responseText

+

"</div>";

}

}

}

if(

window.XMLHttpRequest

){

req

= new

XMLHttpRequest

();

led = new

XMLHttpRequest

();

}

else if(

window.ActiveXObject

) {

req

= new

ActiveXObject

("

Microsoft.XMLHTTP

");

led = new

ActiveXObject

("

Microsoft.XMLHTTP

");

}

if(

req

){

req.open

("GET", "/

cgi

-

bin/

toggle_led?id

" +

Math.random

(), true);

req.send

(null);

}

if(led){

led.open

("GET", "/

ledstate?id

=" +

Math.random

(), true);

led.onreadystatechange

=

ledComplete

;

led.send

(null);

}

}

image28.wmf
Embedded Control

u

Below is an example of the C source code from lmi

-

fs.c that handles the request for

toggling the LED

//

// Process request to toggle STATUS LED

//

if

(

strncmp

(name, "/

cgi

-

bin/

toggle_led

", 19) == 0)

{

//

// Toggle the STATUS LED

//

io_set_led

(!

io_is_led_on

());

//

// Setup the file structure to return whatever.

//

ptFile

-

>data = NULL;

ptFile

-

>

len

= 0;

ptFile

-

>index = 0;

ptFile

-

>

pextension

= NULL;

//

// Return the file system pointer.

//

return

(

ptFile

);

}

image29.wmf
Demo 2

–

SSI/CGI

image30.wmf
Demo 2

–

SSI/CGI

u

HTML pages include “Server Side Include” tags

indicating values to be inserted in the page data as

it is served to the browser.

u

The application registers SSI and CGI handlers with

the HTTP server during initialization.

u

The HTTP server calls the SSI handler when a tag

from the registered list is detected and handler

returns the text to insert after the tag.

u

The HTTP server calls the registered CGI handler if

a URL matching the registered CGI name is

requested.

u

The HTML contains standard forms to gather user

input.

image31.wmf
Demo 2

–

SSI/CGI

u

Advantages

w

Client browser need not support JavaScript.

w

HTML is extremely simple and uses only standard forms

and some “comment

-

like” SSI tags (

<!

--

#

<tag>

--

>

).

w

Offloads work to the common HTTP server module (URL

checking, parameter parsing).

w

File system driver is independent of the application data

that it is managing.

u

Disadvantages

w

Page reload each time a form is submitted.

image32.wmf
Demo 2

–

SSI/CGI

u

Below is an example of the html code used to send a text

string to the browser in “io_cgi.shtml”

<form method="get" action="settxt.cgi" name="

settxt

">

<table>

<

tr

>

<td>

Display this text on the screen:<

br

>

<input

maxlength

="20" size="20" name="

DispText

">

<input name="Display" value="Send Text" type="submit">

</td>

</

tr

>

</table>

</form>

image33.wmf
Demo 2

–

SSI/CGI

u

Below is an example of the html code from “io_cgi.shtml”

which uses SSI tags to insert status information.

<

tr

>

<td >LED State</td>

<td>

<!

--

#

LEDtxt

--

>

</td>

<td>

<input name="

LEDOn

" value="1" type="checkbox">

</td>

</

tr

>

<

tr

>

<td>PWM State</td>

<td>

<!

--

#

PWMtxt

--

>

</td>

<td>

<input name="

PWMOn

" value="1" type="checkbox">

</td>

</

tr

>

The HTTP server parses the

SSI tags from the page as it is

being sent and passes them to

the application SSI handler.

The application returns an

appropriate block of text which

is inserted into the page

following the comment tag.

Note: The tag is

not

replaced.

The SSI text is inserted after the

closing “

--

>” This is different

from typical SSI

implementations but allows

operation without additional

buffering.

“

<!

--

#LEDtext

--

>

”

in the source is expanded to, for example “

<!

--

#LEDtext

--

>OFF

”

image34.wmf
Registering SSI Handlers

// SSI tag indices for each entry in the g_pcSSITags array.

#define

SSI_INDEX_PWMDUTY 0

#define

SSI_INDEX_PWMSTATE 1

// This array holds all the strings that are to be recognized as SSI tag

// names by the HTTPD server. The server will call SSIHandler to request a

// replacement string whenever the pattern <!

--

#tagname

--

> (where tagname

// appears in the following array) is found in ".ssi", ".shtml" or ".shtm"

// files that it serves.

static

const

char

*g_pcConfigSSITags[] =

{

"PWMDuty", // SSI_INDEX_PWMDUTY

"PWMtxt" // SSI_INDEX_PWMSTATE

};

// The number of individual SSI tags that the HTTPD server can expect to

// find in our configuration pages.

#define

NUM_CONFIG_SSI_TAGS (

sizeof

(g_pcConfigSSITags) /

sizeof

(

char

*))

// Prototype for the main handler used to process server

-

side

-

includes for the

// application's web

-

based configuration screens.

static

int

SSIHandler

(

int

iIndex,

char

*pcInsert,

int

iInsertLen);

// Register our SSI tags and handler with the HTTP server.

http_set_ssi_handler(SSIHandler, g_pcConfigSSITags, NUM_CONFIG_SSI_TAGS);

After initializing the HTTPD server, register the handler by calling…

image35.wmf
The SSI Handler Function

// This function is called by the HTTP server whenever it encounters an SSI

// tag in a web page. The

iIndex

parameter provides the index of the tag in

// the

g_pcConfigSSITags

array. This function writes the substitution text

// into the

pcInsert

array, writing no more than

iInsertLen

characters.

static

int

SSIHandler

(

int

iIndex

,

char

*

pcInsert

,

int

iInsertLen

)

{

unsigned

long

ulVal

;

// Which SSI tag have we been passed?

switch

(

iIndex

)

{

case

SSI_INDEX_PWMSTATE:

// Write the PWM state (ON or OFF) into the supplied insert buffer.

io_get_pwmstate

(

pcInsert

,

iInsertLen

);

break

;

case

SSI_INDEX_PWMDUTY:

// Get the current PWM duty cycle.

ulVal

=

io_get_pwmdutycycle

();

// Write it as an ASCII string into the supplied insert buffer.

usnprintf

(

pcInsert

,

iInsertLen

, "%d",

ulVal

);

break

;

}

// Tell the server how many characters our insert string contains.

return

(

strlen

(

pcInsert

));

}

image36.wmf
Registering CGI Handlers

// Prototypes for the various CGI handler functions.

static

char

*

ControlCGIHandler

(

int

iIndex

,

int

iNumParams

,

char

*

pcParam

[],

char

*

pcValue

[]);

static

char

*

SetTextCGIHandler

(

int

iIndex

,

int

iNumParams

,

char

*

pcParam

[], char *

pcValue

[]);

// CGI URI indices for each entry in the

g_psConfigCGIURIs

array.

#define

CGI_INDEX_CONTROL 0

#define

CGI_INDEX_TEXT 1

// This array is passed to the HTTPD server to inform it of special URIs

// that are treated as common gateway interface (CGI) scripts. Each URI name

// is defined along with a pointer to the function which is to be called to

// process it.

static

const

tCGI

g_psConfigCGIURIs

[] =

{

{ "/iocontrol.cgi",

ControlCGIHandler

}, // CGI_INDEX_CONTROL

{ "/settxt.cgi",

SetTextCGIHandler

} // CGI_INDEX_TEXT

};

// The number of individual CGI URIs that are configured for this system.

#define

NUM_CONFIG_CGI_URIS (

sizeof

(

g_psConfigCGIURIs

) /

sizeof

(

tCGI

))

// Register our CGI handlers with the HTTP server.

http_set_cgi_handlers(g_psConfigGGIURIs, NUM_CONFIG_CGI_TAGS);

After initializing the HTTPD server, register the handlers by calling…

image37.wmf
A CGI Handler Function

// This CGI handler is called whenever the web browser requests URI /iocontrol.cgi.

static

char

*

ControlCGIHandler

(

int

iIndex

,

int

iNumParams

,

char

*

pcParam

[],

char

*

pcValue

[])

{

tBoolean

bParamError

;

long

lPWMState,lPWMFrequency

;

// We have not encountered any parameter errors yet.

bParamError

= false;

// Get each of the expected parameters.

lPWMState

=

FindCGIParameter

("

PWMOn

",

pcParam

,

iNumParams

);

lPWMFrequency

=

GetCGIParam

("

PWMFrequency

",

pcParam

,

pcValue

,

iNumParams

,

&

bParamError

);

// Was there any error reported by the parameter parser?

if

(

bParamError

|| (

lPWMFrequency

< 200) || (

lPWMFrequency

> 20000))

{

// Return the URI of the parameter error page.

return

("/perror.html");

}

// We got all the parameters and the values were within the expected ranges

// so go ahead and make the changes.

io_pwm_freq

((

unsigned

long

)

lPWMFrequency

);

io_set_pwm

((

lPWMState

==

-

1) ? false : true);

// Send back the default response page.

return

("/io_cgi.shtml");

}

image1.wmf
Agenda

Protocols …

Introduction to Cortex

-

M3

®

and Peripherals

Code Composer Studio

Introduction to StellarisWare,

Initialization and GPIO

Interrupts and the Timer

Analog

-

to

-

Digital Converter

PWM

Graphics Library

Ethernet

