Graphics Library Layers
	Graphics Library Layers
[bookmark: _Toc314663596]Graphics Library
IntroductionThis module will introduce you to the use of the graphic library. Unfortunately the 8962 evaluation board doesn’t have the large, color touch-screen that other boards do, so this will be a simple overview of those capabilities. The lab will utilize the graphics library to initialize and draw text and shapes on the OLED display.

[bookmark: _Toc314663597]Module Topics
Graphics Library	7-1
Module Topics	7-2
StellarisWare Graphics Library	7-3
Graphics Library Layers	7-4
Special Utilities	7-6
Lab 7: Graphics Library	7-7
Objective	7-7
Procedure	7-8
[bookmark: _Toc314663598][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]StellarisWare Graphics Library

[bookmark: _Toc314663599]Graphics Library Layers

[bookmark: _Toc314663600]Special Utilities

[bookmark: _Toc314663601][bookmark: _Toc370113188][bookmark: _Toc394202380]Lab 7: Graphics Library
[bookmark: _Toc314663602]Objective
In this lab we’ll use the lower two layers of the graphics library to place shapes, text and an image on the OLED display of the 8962 evaluation board.

[bookmark: _Toc314663603]
Procedure
Create New Project Folders
1. You know the drill … we need to create some folders to hold Lab 7.

Open Windows Explorer and navigate to C:\StellarisWare\boards\MyBoard. Right-click in the open space of the right-hand pane and select New Folder. Name the new folder MyLab7Project and press the Enter key.

Double click on MyLab7Project to enter the folder and then right-click in the wide open right-hand pane. Select New Folder. Name the new folder ccs and press the Enter key.
[image:]
Add Source Files to Folder
2. There is an existing driver for the OLED display in StellarisWare, but it was written for another board. We’ll copy the .c and .h files into our folder and then modify them.

Navigate to C:\StellarisWare\boards\rdk-bdc\bdc-ui and copy rit128x96x4.c and rit128x96x4.h. Paste them into the C:\StellarisWare\boards\MyBoard\MyLab7Project\ccs folder.
Copy the startup_ccs.c file from the MyLab6Project folder into the C:\StellarisWare\boards\MyBoard\MyLab7Project\ccs folder.

Close Windows Explorer.

Image Conversion
3. The first task that we’re going to have the lab software do is to display an image. So we need to covert an image into a format that the graphics library can understand. If you have not done so already, download GIMP from www.gimp.org and install it on your PC. Steps 4 and 5 go through the process of clipping the TI logo below and displaying it on the 8962 evaluation board’s OLED display. If you prefer to use an existing image or photograph, or one taken from your smartphone camera now, simply adapt the steps below.
4. Press PrtScn on your keyboard. This will copy the screen to your clipboard.
[image:]

Open GIMP and click Edit Paste. In the toolbox window, click the rectangular selection tool, and select tightly around the TI logo as shown above. Zoom in if that is easier for you. Click Image Crop to selection. Click Image Scale Image and make sure that the image size width/height are less than 128, 96. Then click Colors Invert Colors to invert TI logo black and white colors. If you are using a photograph, you can skip this.

Convert the image to indexed mode by clicking Image Mode Indexed. Select Generate optimum palette and select 16 which is the gray scale resolution of the OLED. Click Convert.

Save the file by clicking File Save As. Name the image pic, change the save folder to C:\StellarisWare\tools\bin and select PNM image as the file type using the selection right above the Help button. Click Save. When prompted, select Raw as the data formatting and click Save. Close GIMP.
5. Now that we have a source image file in PNM format, we can convert it to something that the graphics library can handle. We will use the pnmtoc (PNM to C array) conversion utility to do the translation.

Open a command prompt by clicking Start Run. Type cmd in the window and click Open.
The pnmtoc utility is in C:\StellarisWare\tools\bin. So type
cd C:\StellarisWare\tools\bin in the command window, then hit Enter to change the folder to that location.
Finally, perform the conversion by typing pnmtoc –c pic.pnm > pic.c in the command window and hit Enter. If the process works correctly the cursor will simply drop to a new line.
6. Copy pic.c from C:\StellarisWare\tools\bin to your MyLab7\ccs folder.

Create MyLab7Project Project
7. Maximize Code Composer. On the CCS menu bar select File New CCS Project. Make the selections shown below. Make sure to uncheck the “Use default location” checkbox and select the correct path to the “ccs” folder you created. Click Finish.

[image:]

Add Files to Project
8. Delete main.c from the project. Note that pic.c, rit128x96x4.c and rit128x96x4.h were found in the folder and automatically added to the project.
9. From the CCS menu bar, click File New Source File. When the New Source File dialog appears, make the selections below to create the main C code file and click Finish.
[image:]

Modify the Display Driver

10. The lowest level of the graphics library is the display driver. The display driver functions are implemented in rit128x96x4.c. Open the file and look for the functions needed to make the display operate; initialization, communication with the display controller, buffer control, etc. This display driver file was written for another board that used a slightly different pin-out, so we need to make a couple of minor changes. In rit128x96x4.c, find the following definitions:

#define SYSCTL_PERIPH_GPIO_OLEDDC SYSCTL_PERIPH_GPIOC
#define GPIO_OLEDDC_BASE GPIO_PORTC_BASE
#define GPIO_OLEDDC_PIN GPIO_PIN_7
#define GPIO_OLEDEN_PIN GPIO_PIN_6

Change these lines to read as follows. The differences are highlighted in red:
#define SYSCTL_PERIPH_GPIO_OLEDDC SYSCTL_PERIPH_GPIOA
#define GPIO_OLEDDC_BASE GPIO_PORTA_BASE
#define GPIO_OLEDDC_PIN GPIO_PIN_6
#define GPIO_OLEDEN_PIN GPIO_PIN_7
Save your changes and close the editor pane for this file.

Modify pic.c
11. Open pic.c and add the following include to the very top of the file:

#include "grlib/grlib.h"

Your pic.c file should look something like this (your data will vary greatly):

#include "grlib/grlib.h"

const unsigned char g_pucImage[] =
{
 IMAGE_FMT_4BPP_COMP,
 86, 0,
 77, 0,

 15,
 0x00, 0x01, 0x00,
 0x18, 0x1a, 0x19,
 0x28, 0x2a, 0x28,
 0x38, 0x3a, 0x38,
 0x44, 0x46, 0x44,
 0x54, 0x57, 0x55,
 0x62, 0x65, 0x63,
 0x72, 0x75, 0x73,
 0x81, 0x84, 0x82,
 0x93, 0x96, 0x94,
 0xa2, 0xa5, 0xa3,
 0xb3, 0xb6, 0xb4,
 0xc4, 0xc7, 0xc5,
 0xd7, 0xda, 0xd8,
 0xe8, 0xeb, 0xe9,
 0xf4, 0xf8, 0xf5,

 0xff, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0xff, 0x07, 0x07,
 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0xff, 0x07, 0x07, 0x07, 0x07, 0x07,
 0x07, 0x07, 0x07, 0xfc, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x03, 0x77,
 0x23, 0x77, 0x77, 0xe9, 0x77, 0x78, 0x70, 0x07, 0x07, 0xc1, 0x77, 0x2c,
 0x04, 0xde, 0xee, 0xee, 0xee, 0xe9, 0x3c, 0xee, 0xa1, 0x07, 0x07, 0x77,
 0x2c, 0x03, 0xcf, 0x00, 0xee, 0xee, 0xee, 0xef, 0xee, 0xef, 0xfe, 0xa0,
 0xf0, 0x07, 0x07, 0x77, 0x2c, 0x03, 0xcf, 0xee, 0xee, 0x4f, 0xee, 0xe9,
 0xee, 0xa0, 0x07, 0x07, 0x77, 0x2c, 0x04, 0x03, 0xcf, 0xee, 0xee, 0xee,
 0xe9, 0xee, 0x90, 0xf0, 0x07, 0x07, 0x77, 0x2c, 0x03, 0xcf, 0xee, 0xee,
 0x4f, 0xee, 0xe9, 0xee, 0x90, 0x07, 0x07, 0x77, 0x2c, 0x04, 0x03, 0xcf,

 many, many more lines of this data …

 0x77, 0x2c, 0x19, 0xfe, 0xee, 0xef, 0x03, 0xee, 0xee, 0xee, 0xee, 0xfb,
 0x20, 0x07, 0x07, 0xc1, 0x77, 0x2c, 0x05, 0xdf, 0xee, 0xee, 0xee, 0xe9,
 0x78, 0xf9, 0x07, 0x07, 0x77, 0x2d, 0x01, 0x8d, 0xee, 0x2f, 0xee, 0xee,
 0xe9, 0xf7, 0x07, 0x07, 0x77, 0x2e, 0x00, 0x39, 0xef, 0xee, 0xee, 0xee,
 0xee, 0xee, 0xf7, 0xf0, 0x07, 0x07, 0x77, 0x2e, 0x06, 0xdf, 0xee, 0xee,
 0x0f, 0xee, 0xee, 0xee, 0xf6, 0x07, 0x07, 0x77, 0x2f, 0x01, 0x7d, 0xfe,
 0xee, 0xee, 0xee, 0xee, 0xf7, 0x07, 0xe0, 0x07, 0x77, 0x2f, 0x17, 0xdf,
 0xee, 0xee, 0xee, 0x3c, 0xee, 0xf7, 0x07, 0x07, 0x77, 0x2f, 0x01, 0x7d,
 0x03, 0xee, 0xee, 0xee, 0xee, 0xf9, 0x10, 0x07, 0x07, 0xc0, 0x77, 0x2f,
 0x05, 0xad, 0xee, 0xfe, 0xee, 0xfc, 0x78, 0x20, 0x07, 0x07, 0x77, 0x2f,
 0x00, 0x27, 0x9d, 0x0f, 0xed, 0xee, 0xec, 0x40, 0x07, 0x07, 0x77, 0x2f,
 0x01, 0x00, 0x00, 0x28, 0x9a, 0xcc, 0xa9, 0x30, 0x07, 0xff, 0x07, 0x77,
 0x2f, 0x07, 0x07, 0x07, 0x07, 0x07, 0xc0, 0x07, 0x07,
};

Save your changes and close the pic.c editor pane.

MyLab7Project .c Includes
12. Add (or copy/paste) the following lines to the top of MyLab7Project.c :

[bookmark: OLE_LINK1]#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "grlib/grlib.h"
#include "rit128x96x4.h"

grlib.h : graphics library definitions
rit128x96x4.h : API function prototypes for display driver file
Pointer to Image Array
13. Line a line for spacing, then add the following global declaration of the image array after the lines above:

extern const unsigned char g_pucImage[];
Driver Library Error Routine
14. The following code will be called if the driver library encounters an error.

Leave a blank line for spacing and enter these line of codes after the lines above:

#ifdef DEBUG
void
__error__(char *pcFilename, unsigned long ulLine)
{
}
#endif
Main()

15. The main() routine will be next. Leave a blank line for spacing and enter these line of codes after the lines above:

int main(void)
{
}

Variables
16. The variables defined below are used for initializing the Context and Rect structures in this example. Context is a definition of the screen such as the clipping region, default color and font. Rect is a simple structure for drawing rectangles. Insert these two lines as the first inside main():

tContext sContext;
tRectangle sRect;

Initialization
17. Set the clocking to run at 50 MHz using the PLL. System clock must be at least 7MHz (see the next step for more detail). Leave a line for spacing, then insert this line after the last ones:

SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);

18. Using the display driver initialization, set the bit rate for the SSI interface to 3.5MHz or 3500000. The clock for the SSI will be the same as system clock and the system clock must be greater than or equal to twice the bit rate in master mode (7MHz vs 3.5MHz). If this were one of the slave modes then the system clock would have to be 12 times the bit rate. Insert this line after the last:

RIT128x96x4Init(3500000);

19. Initialize the graphics context. This function initializes a drawing context, preparing it for use. The provided display driver will be used for all subsequent graphics operations, and the default clipping region will be set to the extent of the OLED screen. Insert this line after the last:

GrContextInit(&sContext, &g_sRIT128x96x4Display);

20. Clear the entire screen. The following code will create a rectangle that covers the entire screen, sets the foreground color to black, and fills the rectangle by passing the structure sRect by reference. The top left corner of the OLED Display, in between the 'RESET' button and the '^' (up arrow) represents the point (0,0) and the bottom right corner near the 'STATUS' LED represents the point (127,95). Leave a line for spacing, then insert these lines after the last ones:

sRect.sXMin = 0;
sRect.sYMin = 0;
sRect.sXMax = 127;
sRect.sYMax = 95;
GrContextForegroundSet(&sContext, ClrBlack);
GrRectFill(&sContext, &sRect);

Displaying the Image
21. Display the image by passing the global image variable g_pucImage generated from pnmtoc.exe into GrImageDraw(...) and approximately center the image on the screen by locating the top-left corner at (20,3) …we’ll adjust this later if needed. Leave a line for spacing, then insert this line after the last:

GrImageDraw(&sContext, g_pucImage, 20, 3);

22. The function call below flushes any cached drawing operations. For display drivers that draw into a local frame buffer before writing to the actual display, calling this function will cause the display to be updated to match the contents of the local frame buffer. Leave a line for spacing, then insert this line after the last:

GrFlush(&sContext);

23. We want to leave the image on the screen long enough to see it, so add this 9 second delay. Leave a line for spacing, then insert this line after the last:

SysCtlDelay(SysCtlClockGet() * 3);

24. Before we go any further, we’d like to take the code we have for a test run. With that in mind we’re going to add the final code pieces now, and insert later lab code in front of this.

Since an OLED display is prone to burn-in, it would be best to clear the display right before the code ends. This performs the same function as step 24 and also flushes the cache. Leave several lines for spacing and add this code below the last:

sRect.sXMin = 0;
sRect.sYMin = 0;
sRect.sXMax = 127;
sRect.sYMax = 95;
GrContextForegroundSet(&sContext, ClrBlack);
GrRectFill(&sContext, &sRect);
GrFlush(&sContext);

25. Add a while loop to the end of the code to stop execution. Leave a line for spacing, then insert this line after the last:

while(1)
{
}

Your code should look like this:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "grlib/grlib.h"
#include "rit128x96x4.h"

extern const unsigned char g_pucImage[];

#ifdef DEBUG
void
__error__(char *pcFilename, unsigned long ulLine)
{
}
#endif

int main(void)
{
 tContext sContext;
 tRectangle sRect;
	
 SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);
 RIT128x96x4Init(3500000);
 GrContextInit(&sContext, &g_sRIT128x96x4Display);

 // Clear the screen	
 sRect.sXMin = 0;
 sRect.sYMin = 0;
 sRect.sXMax = 127;
 sRect.sYMax = 95;
 GrContextForegroundSet(&sContext, ClrBlack);
 GrRectFill(&sContext, &sRect);

 // Draw image on OLED
 GrImageDraw(&sContext, g_pucImage, 20, 3);
	
 GrFlush(&sContext);
	
 // Delay 9 seconds
 SysCtlDelay(SysCtlClockGet() * 3);
	
 // Later lab steps go between here

 // and here
	
 // Clear the screen
 sRect.sXMin = 0;
 sRect.sYMin = 0;
 sRect.sXMax = 127;
 sRect.sYMax = 95;
 GrContextForegroundSet(&sContext, ClrBlack);
 GrRectFill(&sContext, &sRect);
 GrFlush(&sContext);
	
 // Loop forever
 while(1)
 {
 }
}

Set the Build Options
26. Right-click on MyLab7Project in the Project Explorer pane and select Properties. Click the + left of TMS470 Compiler and click on Include Options. In the bottom, include search path pane, click the Add button [image: 2-21-2011 7-34-46 PM]and, one at a time, add the following two include search paths.

${PROJECT_ROOT}/../..
${PROJECT_ROOT}/../../../..

[image:]

27. Click File Search Path under TMS470 Linker. Add the following include library files to the top window:

${PROJECT_ROOT}/../../../../driverlib/ccs-cm3/Debug/driverlib-cm3.lib
${PROJECT_ROOT}/../../../../grlib/ccs-cm3/Debug/grlib-cm3.lib

[image:]

28. Click Basic Options under TMS470 Linker. Change the C system stack size from 256 to 512. Click OK to save your changes.

Run the Code
29. Compile and download your application by clicking the Debug button [image: 2-10-2011 3-36-11 PM] on the menu bar. If you have any issues, correct them, and then click the Debug button again. After a successful build, the CCS Debug perspective will appear.

Click the Run button [image: 2-10-2011 3-40-46 PM] to run the program that was downloaded to the flash memory of your device. If your coding efforts were successful, you should see your image appear on the OLED display for about 9 seconds, then disappear.

If you want to adjust the position if the image on the screen, go back to the code we entered in step 24 and tweak the numbers.

When you’re finished, click the Terminate [image:]button to return to the Edit perspective.
[image:]

Display Text On-Screen
30. Refer back to the code on page 7-16. In MyLab7Project.c in the area marked:

// Later lab steps go between here

// and here

insert the following code to clear the screen and flush the buffer:

sRect.sXMin = 0;
sRect.sYMin = 0;
sRect.sXMax = 127;
sRect.sYMax = 95;
GrContextForegroundSet(&sContext, ClrBlack);
GrRectFill(&sContext, &sRect);
GrFlush(&sContext);
31. Next we’ll display the introduction text. Display text starting at (x,y) coordinates (11,7) and (27,23) with background of each character turned off, or set to 0. The third (-1) parameter allows a portion of the string to be examined without having to insert a NULL character at the stopping point (which would not be possible if the string was located in flash).
GrRectDraw(...): Put a border around the screen.
GrContextForegroundSet(...): Set the foreground for the text to be white.
GrContextFontSet(...): Set the font to be a max width of 6 pixels with a max height of 8 pixels.
GrFlush(...): And refresh the screen by matching the contents of the local frame buffer.
Add the following lines after the previous ones:

sRect.sXMin = 1;
sRect.sYMin = 1;
sRect.sXMax = 126;
sRect.sYMax = 94;
GrContextForegroundSet(&sContext, ClrWhite);
GrContextFontSet(&sContext, &g_sFontFixed6x8);
GrStringDraw(&sContext, "Texas Instruments", -1, 11, 7, 0);
GrStringDraw(&sContext, "Graphics Lab", -1, 27, 23, 0);
GrRectDraw(&sContext, &sRect);
GrFlush(&sContext);
32. Add a three second delay so that we can appreciate our work.

SysCtlDelay(SysCtlClockGet() * 1);

Your added code should look like this:

	// Later lab steps go between here
	
	// Clear the screen and flush the buffer
	sRect.sXMin = 0;
	sRect.sYMin = 0;
	sRect.sXMax = 127;
	sRect.sYMax = 95;
	GrContextForegroundSet(&sContext, ClrBlack);
	GrRectFill(&sContext, &sRect);
	GrFlush(&sContext);
	
	// Write text to the OLED
	sRect.sXMin = 1;
	sRect.sYMin = 1;
	sRect.sXMax = 126;
	sRect.sYMax = 94;
	GrContextForegroundSet(&sContext, ClrWhite);
	GrContextFontSet(&sContext, &g_sFontFixed6x8);
	GrStringDraw(&sContext, "Texas Instruments", -1, 11, 7, 0);
	GrStringDraw(&sContext, "Graphics Lab", -1, 27, 23, 0);
	GrRectDraw(&sContext, &sRect);
	GrFlush(&sContext);
	
	// 3 second delay
	SysCtlDelay(SysCtlClockGet() * 1);

 // and here
Build, Load and Test
33. Build, load and run your code. If your changes are correct, you should see the image again for 9 seconds, followed by the on-screen text in a box for 3 seconds. Then the display will blank out. Return to the edit perspective when you’re done.
[image:] [image:]

Other Drawing
34. Let’s add a circle. Make the foreground white and center the circle at (35,70) with a radius of 10. Add a line for spacing and add these lines after the one in step 32:

GrContextForegroundSet(&sContext, ClrWhite);
GrCircleDraw(&sContext, 35, 70, 10);

35. Draw another rectangle starting with the top left corner at (60,60) and finishing at the bottom right corner nearest the 'STATUS' LED on the board at (110,80). Note that since we have not refreshed the screen yet with GrFlush(...) we did not need to call GrContextForegroundSet(...). However, this is entered here for the sake of copy/paste for portability of code. Add a line for spacing and add the following lines after the last ones:
 sRect.sXMin = 60;
 sRect.sYMin = 60;
 sRect.sXMax = 110;
 sRect.sYMax = 80;
 GrContextForegroundSet(&sContext, ClrWhite);
 GrRectDraw(&sContext, &sRect);
36. Draw a pixel at the center of the circle. Add a line for spacing and add this one after the ones above:
GrPixelDraw(&sContext, 35, 70);
37. Draw a horizontal line from (60,70) to (70,70). Add a line for spacing and add this one after the one above:
GrLineDrawH(&sContext, 60, 70, 70);
38. Draw a vertical line from (80,60) to (80,80). Add a line for spacing and add this one after the one above:
GrLineDrawV(&sContext, 80, 60, 80);
39. Draw a line from (90,60) to (100,80) and update the screen to show everything that has been drawn. Add a line for spacing and add the following lines after the last ones:
GrLineDraw(&sContext, 90, 60, 100, 80);
GrFlush(&sContext);
40. Add a short delay to appreciate your work. Add a line for spacing and add the following line after the last ones:

SysCtlDelay(SysCtlClockGet() * 1);

Build, Load and Test
41. Build, load and run your code to make sure that your changes work. Return to the edit perspective when you are done.

[image:] [image:] [image:]

Final Touches
42. Fill the circle and rectangle with GrCircleFill(...) and GrRectFill(...) by passing the same coordinates and delay for 3 seconds. Add a line for spacing, then add the following lines after the one added in step 40:
GrCircleFill(&sContext, 35, 70, 10);
GrRectFill(&sContext, &sRect);
GrFlush(&sContext);

SysCtlDelay(SysCtlClockGet() * 1);
43. Display the original text, all the shapes drawn and add 'Completed.' starting at (40,39) and delay for 6 seconds. Add a line for spacing and add the following lines after the last ones:

GrContextForegroundSet(&sContext, ClrWhite);
GrContextFontSet(&sContext, &g_sFontFixed6x8);
GrStringDraw(&sContext, "Texas Instruments", -1, 11, 7, 0);
GrStringDraw(&sContext, "Graphics Lab", -1, 27, 23, 0);
GrStringDraw(&sContext, "Completed", -1, 40, 39, 0);
GrFlush(&sContext);

SysCtlDelay(SysCtlClockGet() * 2);

The code that we added starting in step 30 should look like the code on the following page:

	// Later lab steps go between here

	// Clear the screen and flush the buffer
	sRect.sXMin = 0;
	sRect.sYMin = 0;
	sRect.sXMax = 127;
	sRect.sYMax = 95;
	GrContextForegroundSet(&sContext, ClrBlack);
	GrRectFill(&sContext, &sRect);
	GrFlush(&sContext);
	
	// Write text to the OLED
	sRect.sXMin = 1;
	sRect.sYMin = 1;
	sRect.sXMax = 126;
	sRect.sYMax = 94;
	GrContextForegroundSet(&sContext, ClrWhite);
	GrContextFontSet(&sContext, &g_sFontFixed6x8);
	GrStringDraw(&sContext, "Texas Instruments", -1, 11, 7, 0);
	GrStringDraw(&sContext, "Graphics Lab", -1, 27, 23, 0);
	GrRectDraw(&sContext, &sRect);
	GrFlush(&sContext);
	
	SysCtlDelay(SysCtlClockGet() * 1); // Delay 3 seconds
	
	// Draw a circle
	GrContextForegroundSet(&sContext, ClrWhite);
	GrCircleDraw(&sContext, 35, 70, 10);

	// Draw a Rectangle	
 	sRect.sXMin = 60;
 	sRect.sYMin = 60;
 	sRect.sXMax = 110;
 	sRect.sYMax = 80;
 	GrContextForegroundSet(&sContext, ClrWhite);
 	GrRectDraw(&sContext, &sRect);

	// Draw a pixel at the center of the circle	
	GrPixelDraw(&sContext, 35, 70);
	
 	// Draw a horizontal line
 	GrLineDrawH(&sContext, 60, 70, 70);

 	// Draw a vertical line
 	GrLineDrawV(&sContext, 80, 60, 80);

 	// Draw a line, then display all
 	GrLineDraw(&sContext, 90, 60, 100, 80);
 	GrFlush(&sContext);

 	SysCtlDelay(SysCtlClockGet() * 1); // Delay 3 seconds

 	// Fill the circle and rectangle
 	GrCircleFill(&sContext, 35, 70, 10);
	GrRectFill(&sContext, &sRect);
	GrFlush(&sContext);

	SysCtlDelay(SysCtlClockGet() * 1); // Delay 3 seconds

	
	// Display original text and shapes and add text 'Completed.'
 	GrContextForegroundSet(&sContext, ClrWhite);
 	GrContextFontSet(&sContext, &g_sFontFixed6x8);
 	GrStringDraw(&sContext, "Texas Instruments", -1, 11, 7, 0);
 	GrStringDraw(&sContext, "Graphics Lab", -1, 27, 23, 0);
 	GrStringDraw(&sContext, "Completed", -1, 40, 39, 0);
 	GrFlush(&sContext);
	
 	SysCtlDelay(SysCtlClockGet() * 2); // Delay for 6 seconds

	// and here
Build, Load and Test
44. Build, load and run your code to make sure that your changes work. Return to the edit perspective when you are done. Close MyLab7Proect and minimize Code Composer Studio. Congratulations! That was a lot of work!

[image:] [image:] [image:]
	9 seconds		 3 seconds			 3 seconds

[image:] [image:]
	 3 seconds		 6 seconds, then blank

[image: j0252029] You’re done.

Getting Started with the Cortex-M3 and StellarisWare - Graphics Library	7 - 1
7 - 4	Getting Started with the Cortex-M3 and StellarisWare - Graphics Library
Getting Started with the Cortex-M3 and StellarisWare - Graphics Library	7 - 5
image2.wmf
Graphics Library Overview

The Stellaris Graphics Library provides graphics primitives and widgets sets for

creating graphical user interfaces on Stellaris controlled displays.

Note that Stellaris devices do not have an LCD interface.

The interface to smart

displays is done through serial or EPI ports.

The graphics library consists of three layers to interface your application to the

display:

Display Driver Layer*

Graphics Primitives Layer

Widget Layer

Your Application Code*

* = user written or modified

image3.wmf
Graphics Library Overview

Display Driver…

Your application can call any of the layers.

The design of the graphics library is governed by the following goals:

u

Components are written entirely in C except where absolutely not possible.

u

The graphics library is easy to understand.

u

The components are reasonably efficient in terms of memory and processor

usage.

u

Components are as self

-

contained as possible.

u

Where possible, computations that can be performed at compile time are

done there instead of at run time.

u

The graphics library can be built with more than one tool chain.

image4.wmf
Display Driver

Graphics Primitives…

Provides:

u

Routines for display

-

dependant operations like:

u

Initialization

u

Backlight control

u

Contrast

u

Translation of 24

-

bit RGB values to screen dependent color map

u

Drawing routines for the graphics library like:

u

Flush

u

Line drawing

u

Pixel drawing

u

Rectangle drawing

Low level interface to the display hardware

image5.wmf
Graphics Primitives

Widget Framework…

Low level drawing operations

u

Drawing support for:

u

Lines, circles, text and bitmap images

u

Support for off

-

screen buffering

u

Foreground and background drawing contexts

u

Color is represented as a 24

-

bit RGB value (8

-

bits per color)

u

~150

p

re

-

defined colors are provided

u

134 pre

-

defined fonts based on the Computer Modern typeface

image6.wmf
Widget Framework

Special utilities…

Ties an on

-

screen element to user input

u

Canvas

–

a simple drawing surface with no user

interaction

u

Checkbox

–

select/unselect

u

Container

–

a visual element to group on

-

screen widgets

u

Push Button

–

an on

-

screen button that can be pressed

to perform an action

u

Radio Button

–

selections that form a group; like low,

medium and high

u

Slider

–

vertical or horizontal to select a value from a

predefined range

u

ListBox

–

selection from a list of options

image7.wmf
Special Utilities

Lab 7…

Utilities to produce graphics library compatible data structures

u

ftrasterize

u

uses the

FreeType

font rendering package to convert a font into a graphic library format

u

Supported fonts include: TrueType®,

OpenType

®, PostScript® Type 1 and Windows® FNT

u

lmi

-

button

u

a script

-

fu plug

-

in for the

GAIMp

image processing tool (

www.gimp.org

)

u

produces images for use by the push button widget

u

pnmtoc

u

converts a

NetPBM

image file into a graphics library compatible file

u

NetPBM

image formats can be produced by:

u

GIMP (

www.gimp.org

) ,

NetPBM

(netpbm.sourceforge.net) ,

ImageMajik

(

www.imagemagick.org

) and many others

u

mkstringtable

u

converts a comma separated file (.

csv

) into a table of strings usable by graphics library

image8.wmf
Lab 7: Graphic Library

u

Utilize the Display Driver and Graphics

Primitives layers of the graphics library to

draw text and shapes on the OLED screen

u

The OLED is not a

touchscreen

, so

widgets will not be used

Agenda…

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.jpeg

image20.jpeg

image21.jpeg

image22.jpeg

image23.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.wmf

image1.wmf
Agenda

Overview

…

Introduction to Cortex

-

M3

®

and Peripherals

Code Composer Studio

Introduction to StellarisWare,

Initialization and GPIO

Interrupts and the Timer

Analog

-

to

-

Digital Converter

PWM

Graphics Library

Ethernet

