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IntroductionThis module will introduce you to StellarisWare. We will use several APIs from the driver library to set up the clock and the GPIO peripheral. We’ll use a different API to control the GPIO pins.
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[bookmark: _Toc314663036]Objective
In this lab we’ll learn how to initialize the clock system and the GPIO peripheral. We’ll then use the GPIO output to blink an LED on the evaluation board.
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Procedure
[bookmark: OLE_LINK4]Create New Project Folders
1. We need to create some folders to hold Lab 3. 

Open Windows Explorer and navigate to C:\StellarisWare\boards\MyBoard. Right-click in the open space of the right-hand pane and select New  Folder. Name the new folder MyLab3Project and press the Enter key.

Double click on MyLab3Project to enter the folder and then right-click in the wide open right-hand pane. Select New  Folder. Name the new folder ccs and press the Enter key. 
[image: 3-30-2011 8-39-12 PM]


Create MyLab3Project Project
2. Maximize Code Composer. On the CCS menu bar select File  New  CCS Project. Make the selections shown below. Make sure to uncheck the “Use default location” checkbox and select the correct path to the “ccs” folder you created. This step is important to making your project portable. Click Finish.
[image: ]



Add Source Files to Project
3. Delete main.c from MyLab3Project.
4. From the CCS menu bar, click File  New Source File. When the New Source File dialog appears, make the selections below to create the main C code file and click Finish.
[image: ]
5. From the CCS menu bar, click File  New Source File. When the New Source File dialog appears, make the selections below to create the startup file and click Finish.
[image: ]

The previous two steps create and link the files into our project. Eclipse places a restriction on the process though … the file must be in the project directory. That means these two files will land in C:\StellarisWare\boards\MyBoard\MyLab3Project\ccs. That’s okay for the purposes of the workshop. If you want more control over the placement and linking of your files, use the steps in the previous lab.


Header Files
6. Type the following four lines into MyLab3Project.c to include the header files needed to access the StellarisWare APIs :
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"

If you’re prone to typing errors, it might be a good idea to cut/paste the code from the pdf file.

hw_memmap.h : Macros defining the memory map of the Stellaris device. This includes defines such as peripheral base address locations such as GPIO_PORTF_BASE
hw_types.h : Defines common types and macros such as tBoolean and HWREG(x).
sysctl.h : Defines and macros for System Control API of DriverLib. This includes API functions such as SysCtlClockSet and SysCtlClockGet.
gpio.h : Defines and macros for GPIO API of DriverLib. This includes API functions such as GPIOPinTypePWM and GPIOPinWrite.

Main() Function
7. Next, create your main application function and declare any variables that you will use later in the function:
int main(void)
{
  unsigned long ulPeriod;
  unsigned long ulDelay;
}
These two variables will be used later in calculating the period and delay needed for a 10 Hz signal. The return type needed for a main function varies depending on the tool chain. Since StellarisWare source can be built using several different tool chains, using the return type “int” is a good choice for flexibility in your code later.
Clock Setup
8. The system clock will default to running directly off of the internal oscillator after reset, which is not a precision oscillator. Configure the system clock to run directly from the Main Oscillator at 8 MHz (the crystal frequency on the 8962 eval board) with the following call. 

Leave a blank line for spacing and enter this single line of code inside main() after the variable declarations above:
SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);    
GPIO Configuration
9. Before calling any peripheral specific DriverLib function, we must enable the clock for that peripheral (RCGCn register). If you fail to do this, it will result in a Fault ISR (address fault).This is a common mistake for new Stellaris users.  The second statement configures the GPIO as an output. Check the User’s manual for your evaluation board to find out which GPIO pin is connected to the LED. Leave a line for spacing, then enter these two lines of code inside main() after the line in the previous step.
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_0);

Period/Delay Calculation
10. To toggle a GPIO pin at 10 Hz and a 50% duty cycle, you need to generate a delay that is ½ of the period. We can perform this calculation at run time …

First, calculate the number of clocks cycles required for a 10 Hz period by calling SysCtlClockGet() and dividing it by your desired frequency. 

Next, calculate the delay by dividing the period by two to get ½ of the period. Divide that result by 3 since the SysCtlDelay(ulCount) function takes  3 cycles per count. Finally, subtract an arbitrary amount from the delay to compensate for the delay added by the code in the rest of the loop. If you want, you can calculate this out based on the code the compiler generates, or take your best guess and then test it. Leave a line for spacing and enter the following two lines after the lines in the previous step:
ulPeriod = SysCtlClockGet() / 10;
ulDelay = ((ulPeriod / 2) / 3) - 4 ;
Toggle Loop
11. Finally, create a while (1) loop to send a “1” and “0” to the GPIO pin, with an equal delay between the two. To write the GPIO pin, use the GPIO API function call GPIOPinWrite. Make sure to read and understand how the GPIOPinWrite function is used. The third data argument is not simply a 1 or 0, but represents the entire 8-bit data port. The second argument is a bit-packed mask for data being written. 
In our example below, we are writing only bit 0 of Port F. This looks rather simple and user’s make incorrect assumptions on how the function works. Now might be a good time to go to www.ti.com/stellaris , click on the Documentation tab, find and download the Datasheet for your StellarisWare device. Check out the GPIO chapter to understand the unique way the GPIO data register is designed and the advantages of this approach.

Leave a line for spacing, and then add this code after the code in the previous step.
    while(1)
    {
        // Turn on the LED
        GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0, 0x01);

        // Delay for a bit
        SysCtlDelay(ulDelay);

        // Turn off the LED
        GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0, 0x00);

        // Delay for a bit
        SysCtlDelay(ulDelay);
    }
12. 
Click the Save button to save your work. Your code should look something like this:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"

int main(void)
{
  unsigned long ulPeriod;
  unsigned long ulDelay;
  
  SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);
  
  SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
  GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_0);
  
  ulPeriod = SysCtlClockGet() / 10;
  ulDelay = ((ulPeriod / 2) / 3) - 4 ;
  
  while(1)
    {
        // Turn on the LED
        GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0, 0x01);

        // Delay for a bit
        SysCtlDelay(ulDelay);

        // Turn off the LED
        GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0, 0x00);

        // Delay for a bit
        SysCtlDelay(ulDelay);
    }
  
}
Sorry about the small font here, but any larger font made the SysCtlClockSet() instruction look funny. If you’re having problems, you can cut/paste this code into MyLab3Project.c.

Startup Code
13. In addition to the main file you have created, you will also need a startup file specific to the tool chain you are using. This file contains the vector table, startup routines to copy initialized data to RAM and clear the bss section, and default fault ISRs. 

Since this application does not use any interrupts, you can easily copy the “startup_ccs.c” file from the hello or blinky example and use that file. This also makes a good template to start with for more complex application that might require interrupts and complex fault handling. 

From the CCS menu bar, click File  Open File and navigate to C:\StellarisWare\boards. Select the board that you are using (the ek-lm3s8962 in our case) and click on the blinky folder. Click on startup_ccs.c and click Open.

Copy and paste the entire contents of the reference file you just opened into your blank startup_ccs.c file. Close the reference file. Click the Save button.


Set the Build Options
14. Right-click on MyLab3Project in the Project Explorer pane and select Properties. Click the + left of TMS470 Compiler and click on Include Options. In the bottom, include search path pane, click the Add button [image: 2-21-2011 7-34-46 PM]and, one at a time, add the following two include search paths. You may want to copy/paste from the workbook pdf for the next few steps.

${PROJECT_ROOT}/../..
${PROJECT_ROOT}/../../../..

[image: ]



15. Click File Search Path under TMS470 Linker. Add the following include library file to the top window:

${PROJECT_ROOT}/../../../../driverlib/ccs-cm3/Debug/driverlib-cm3.lib

[image: ]

Click OK to save your changes.


Run the Code
16. [bookmark: OLE_LINK11][bookmark: OLE_LINK12]Compile and download your application by clicking the Debug button [image: 2-10-2011 3-36-11 PM] on the menu bar. If you have any issues, correct them, and then click the Debug button again. After a successful build, the CCS Debug perspective will appear. 

Click the Run button [image: 2-10-2011 3-40-46 PM] to run the program that was downloaded to the flash memory of your device. The program will generate a 10 Hz square wave on Pin 0 of GPIO Port F. This pin is connected to the STATUS LED on the EK-LM3S8962.
When you’re done, click the Terminate [image: ] button to return to the Editing perspective
17. Close any open editor windows. Then right-click on MyLab3Project in the Project pane and select Close to close the project. Minimize Code Composer Studio.

[image: j0252029]   You’re done.
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