Pulse Width Modulation Basics
	Block Diagrams
[bookmark: _Toc314663469]Pulse Width Modulation
IntroductionThis module will introduce you to the use of the PWM module on Stellaris devices. PWM is an extremely useful technique used to control lighting, motors, servos and other positioning devices. The Stellaris PWM implementation is extremely flexible and can be easily programmed to operate independently of CPU control when desired.

[bookmark: _Toc314663470]Module Topics
Pulse Width Modulation	6-1
Module Topics	6-2
Pulse Width Modulation Basics	6-3
Stellaris PWM Module	6-4
Stellaris PWM Module Features	6-5
Block Diagrams	6-6
Count Modes	6-7
Lab 6: Pulse Width Modulation	6-8
Objective	6-8
Procedure	6-9
Add Source Files to Project	6-11
Set the Build Options	6-15
[bookmark: _Toc314663471][bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]Pulse Width Modulation Basics

[bookmark: _Toc314663472]
Stellaris PWM Module

[bookmark: _Toc314663473]Stellaris PWM Module Features

[bookmark: _Toc314663474]Block Diagrams

[bookmark: _Toc314663475]Count Modes

[bookmark: _Toc314663476][bookmark: _Toc370113188][bookmark: _Toc394202380]Lab 6: Pulse Width Modulation
[bookmark: _Toc314663477]Objective
In this lab we’ll set up generator 0 of the PWM module to output a 1Hz, 50% duty cycle signal to the LED.

[bookmark: _Toc314663478]
Procedure
Create New Project Folders
1. We need to create some folders to hold Lab 6.

Open Windows Explorer and navigate to C:\StellarisWare\boards\MyBoard. Right-click in the open space of the right-hand pane and select New Folder. Name the new folder MyLab6Project and press the Enter key.

Double click on MyLab6Project to enter the folder and then right-click in the wide open right-hand pane. Select New Folder. Name the new folder ccs and press the Enter key.
[image: 4-27-2011 3-09-04 PM]

Create MyLab6Project Project
2. Maximize Code Composer. On the CCS menu bar select File New CCS Project. Make the selections shown below. Make sure to uncheck the “Use default location” checkbox and select the correct path to the “ccs” folder you created. Click Finish.

[image:]
[bookmark: _Toc313450618][bookmark: _Toc314663479]Add Source Files to Project
3. Delete main.c from MyLab6Project. Click on MyLab6Project to make it active.
4. From the CCS menu bar, click File New Source File. When the New Source File dialog appears, make the selections below to create the main C code file and click Finish.

[image:]

5. From the CCS menu bar, click File New Source File. When the New Source File dialog appears, make the selections below to create the startup file and click Finish.

[image:]

6. Copy the contents of startup_ccs.c in MyLab3Project (not MyLab4Project) into your blank startup_ccs.c file. Copy the contents of MyLab3Project.c into your MyLab6Project.c. Click Save.

Includes and Defines
7. Delete all the code inside the while(1) loop. Make sure to leave the opening and closing braces.
8. Add (or copy/paste) the following lines to the include area of MyLab6Project.c :
[bookmark: OLE_LINK1]#include "driverlib/debug.h"
#include "driverlib/pwm.h"

debug.h : Macros for assisting debug of the driver library.
pwm.h : API function prototypes for Pulse Width Modulation (PWM) ports
9. We’re going to start out with the LED blinking at 1Hz. Add the following definition right below the includes:

#define PWM_FREQUENCY	 1
Driver Library Error Routine
10. During the debug process, you may find that you have called a driver library API with incorrect parameters or a library function generates an error for some other reason. The following code will be called if the driver library encounters such an error.

Leave a blank line for spacing and enter these line of codes after the lines above:

#ifdef DEBUG
void
__error__(char *pcFilename, unsigned long ulLine)
{
}
#endif
Main()

11. The following variables will be used to program the PWM. They are cast as “volatile” to guarantee that the compiler will not eliminate them, regardless of the optimization setting. Replace the first two lines in main() with these:

volatile unsigned long ulLoad;
volatile unsigned long ulPWMClock;

Then delete the two lines shown below:

ulPeriod = SysCtlClockGet() / 10;
ulDelay = ((ulPeriod / 2) / 3) - 4 ;
12.
The current clock setting runs the CPU at 8MHz. The PWM module is clocked by the system clock through a divider. That divider has a range of 2 to 64. In order for the LED to flash slowly enough for us to see it, we’ll have to run the PWM fairly slowly. Backing into the system clock speed tells us that we need to run it at 1MHz. Change the divider value as shown below.
SysCtlClockSet(SYSCTL_SYSDIV_8 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);
13. Since we’re setting up clocks, let’s set up the PWM clock with a value of 16 for the divider. That will run the PWM at 62.5kHz. Add the following line right after the previous one:

SysCtlPWMClockSet(SYSCTL_PWMDIV_16);
14. The code to enable the GPIOF peripheral is already there. We need to enable the PWM module. Add the following line of code just before the GPIO enable:

SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM);
15. The last line of existing code configures the pin that’s connected to the LED as an output. We want to send the output from the PWM to that pin instead. Change that line of code to match the code below:

GPIOPinTypePWM(GPIO_PORTF_BASE, GPIO_PIN_0);
16. To do some further settings, we need to calculate the PWM Clock based on the system clock. We set the PWM divider to 16, so we need to divide the system clock by 16. Add this line after the last one:

ulPWMClock = SysCtlClockGet() / 16;
17. Next, we must calculate the number of PWM clock ticks for the desired output frequency. Then subtract one since the counter starts from zero. Add this line after the last:

 ulLoad = (ulPWMClock / PWM_FREQUENCY) - 1;
18. Now we can configure PWM generator 0 as a down counter. It will count down to zero from the value that we load into the period register, and then start again at the load value. Add these two lines after the last:

PWMGenConfigure(PWM_BASE, PWM_GEN_0, PWM_GEN_MODE_DOWN);
PWMGenPeriodSet(PWM_BASE, PWM_GEN_0, ulLoad);
19. We need to set the pulse width. Loading the pulse width setting with half the ulLoad value will create a 50% duty cycle. Add this line after the last:
PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, ulLoad / 2);
20.
In order for the PWM signal to reach the output pin, it must be enabled. Add this line after the last:
PWMOutputState(PWM_BASE, PWM_OUT_0_BIT, true);
21. Finally, we can turn on the PWM generator. Add this line after the last:
PWMGenEnable(PWM_BASE, PWM_GEN_0);
Note that there is no code inside the while(1) loop, the PWM generator will be completely autonomous once it has been programmed. Click the Save button to save your work.

Since we aren’t using interrupts, the generic startup code and vector table, startup_ccs.c will work fine for this lab.
 (
#include

"inc/hw_memmap.h"
#include

"inc/hw_types.h"
#include

"driverlib/sysctl.h"
#include

"driverlib/gpio.h"
#include

"driverlib/debug.h"
#include

"driverlib/pwm.h"
#define
 PWM_FREQUENCY
 1
// Driver library error routine
#ifdef
 DEBUG
void
__error__(
char
 *pcFilename,
unsigned

long
 ulLine)
{
}
#endif
int
 main(
void
)
{

volatile

unsigned

long
 ulLoad;

volatile

unsigned

long
 ulPWMClock;

 SysCtlClockSet(SYSCTL_SYSDIV_8 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);
 SysCtlPWMClockSet(SYSCTL_PWMDIV_16);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 GPIOPinTypePWM(GPIO_PORTF_BASE, GPIO_PIN_0);

 ulPWMClock = SysCtlClockGet() / 16;
 ulLoad = (ulPWMClock / PWM_FREQUENCY) - 1;
 PWMGenConfigure(PWM_BASE, PWM_GEN_0, PWM_GEN_MODE_DOWN);

 PWMGenPeriodSet(PWM_BASE, PWM_GEN_0, ulLoad);
 PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, ulLoad / 2);
 PWMOutputState(PWM_BASE, PWM_OUT_0_BIT,
true
);

 PWMGenEnable(PWM_BASE, PWM_GEN_0);

while
(1)
 {
 }

}
)Your final code should look something like this:
[bookmark: _Toc313450623][bookmark: _Toc314663480]Set the Build Options
22. Right-click on MyLab6Project in the Project Explorer pane and select Properties. Click the + left of TMS470 Compiler and click on Include Options. In the bottom, include search path pane, click the Add button [image: 2-21-2011 7-34-46 PM]and, one at a time, add the following two include search paths.

${PROJECT_ROOT}/../..
${PROJECT_ROOT}/../../../..

[image:]

23. Click File Search Path under TMS470 Linker. Add the following include library file to the top window:

${PROJECT_ROOT}/../../../../driverlib/ccs-cm3/Debug/driverlib-cm3.lib

[image:]

Click OK to save your changes.

Run the Code
24. Compile and download your application by clicking the Debug button [image: 2-10-2011 3-36-11 PM] on the menu bar. If you have any issues, correct them, and then click the Debug button again. After a successful build, the CCS Debug perspective will appear. Remove the expressions in the Expressions window by right-clicking on the first and selecting Remove All.

Click the Run button [image: 2-10-2011 3-40-46 PM] to run the program that was downloaded to the flash memory of your device. The program will generate a 1 Hz PWM signal on Pin 0 of GPIO Port F. This pin is connected to the STATUS LED on the EK-LM3S8962.
Feel free to experiment with the value of PWM_FREQUENCY or the calculation of the pulse width. Once you exceed a frequency of about 30Hz, the LED will appear to be illuminated continuously. You can use the pulse width to vary the apparent brightness of the LED. Try a duty cycle of 100% with u1Load down to 1% with u1Load/100.
When you’re finished, click the Terminate [image:] button to return to the Editing perspective, close the MyLab6Project project and minimize Code Composer Studio.

[image: j0252029] You’re done.

Getting Started with the Cortex-M3 and StellarisWare - PWM	6 - 1
6 - 4	Getting Started with the Cortex-M3 and StellarisWare - PWM
Getting Started with the Cortex-M3 and StellarisWare - PWM	6 - 5
image2.wmf
Pulse Width Modulation

Pulse Width Modulation (PWM) is a method of encoding analog signal

levels. High

-

resolution digital counters are used to generate a square

wave of a given frequency, and the duty cycle of that square wave is

modulated to encode the analog signal.

Typical applications for PWM are switching power supplies,

motor control, servo positioning and lighting control.

Stellaris PWM…

image3.wmf
Stellaris PWM Module

The Stellaris PWM module consists of:

u

Three PWM generator blocks

u

A control block which determines the polarity of the signals and

which signals are passed to the pins

Each PWM generator block produces:

u

Two independent output signals of the same frequency or

u

A pair of c

omplementary signals with dead

-

band generation

(for protection of H

-

bridge circuits)

Module Features…

Three generator blocks can produce the full 6 signals of gate control

needed for 3

-

phase inverter bridges

image4.wmf
Stellaris PWM Module Features

u

One hardware fault input for low

-

latency shutdown

u

One 16

-

bit counter

u

Down or Up/Down count modes

u

Output frequency controlled by a 16

-

bit load value

u

Load value updates can be synchronized

u

Produces output signals at zero and load value

u

Two PWM comparators

u

Comparator value updates can be synchronized

u

Produces output signals on match

u

PWM generator

u

Output PWM signal is constructed based on actions taken as a

result of the counter and PWM comparator output signals

u

Produces two independent PWM signals

image5.wmf
Stellaris PWM Module Features (cont)

u

Dead

-

band generator

u

Produces two PWM signals with programmable dead

-

band delays suitable for

driving a half

-

H bridge

u

Can be bypassed, leaving input PWM signals unmodified

u

Flexible output control block with PWM output enable of each PWM signal

u

PWM output enable of each PWM signal

u

Optional output inversion of each PWM signal (polarity control)

u

Optional fault handling for each PWM signal

u

Synchronization of timers in the PWM generator blocks

u

Synchronization of timer/comparator updates across the PWM generator blocks

u

Interrupt status summary of the PWM generator blocks

u

Can initiate an ADC sample sequence

PWM Block Diagram…

image6.wmf
PWM Block Diagram

Generator Block Diagram…

image7.wmf
PWM Generator Block

Counting Modes…

image8.wmf
PWM Counting Modes

u

Count

-

down

mode

u

Count

-

Up/Down

mode

Lab 6…

image9.wmf
Lab 6: Pulse Width Modulation

u

Enable and configure

PWM

u

Configure PWM output to LED

u

Run and test

Agenda…

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.wmf

image1.wmf
Agenda

PWM Basics …

Introduction to Cortex

-

M3

®

and Peripherals

Code Composer Studio

Introduction to StellarisWare,

Initialization and GPIO

Interrupts and the Timer

Analog

-

to

-

Digital Converter

PWM

Graphics Library

Ethernet

