General Purpose Timer Module (GPTM)
	GPTM Block Diagram
[bookmark: _Toc314663225]Interrupts and the Timer
IntroductionThis module will introduce you to the use of interrupts on the Cortex-M3® and the general purpose timer module (GPTM). The lab will use the timer to generate interrupts which the Interrupt Service Routine code we write will respond to … blinking the LED.

[bookmark: _Toc314663226]Module Topics
Interrupts and the Timer	4-1
Module Topics	4-2
Cortex-M3® Exceptions and Vector Table	4-3
General Purpose Timer Module (GPTM)	4-4
GPTM Block Diagram	4-5
Lab 4: Interrupts and the Timer	4-6
Objective	4-6
Procedure	4-7
Run The Code	4-18
[bookmark: _Toc336411695][bookmark: _Toc370113176][bookmark: _Toc394202368]
[bookmark: _Toc314663227]Cortex-M3® Exceptions and Vector Table

[bookmark: _Toc314663228]General Purpose Timer Module (GPTM)

[bookmark: _Toc314663229]GPTM Block Diagram

[bookmark: _Toc314663230][bookmark: _Toc370113188][bookmark: _Toc394202380]Lab 4: Interrupts and the Timer
[bookmark: _Toc314663231]Objective
In this lab we’ll set up the timer to generate interrupts, and then write the code that responds to the interrupt … blinking the LED at 10 Hz.

[bookmark: _Toc314663232]
Procedure
Create New Project Folders
1. We need to create some folders to hold Lab 4.

Open Windows Explorer and navigate to C:\StellarisWare\boards\MyBoard. Right-click in the open space of the right-hand pane and select New Folder. Name the new folder MyLab4Project and press the Enter key.

Double click on MyLab4Project to enter the folder and then right-click in the wide open right-hand pane. Select New Folder. Name the new folder ccs and press the Enter key.
[image: 3-31-2011 5-37-42 PM]
.

Create MyLab4Project Project
2. Maximize Code Composer. On the CCS menu bar select File New CCS Project. Make the selections shown below. Make sure to uncheck the “Use default location” checkbox and select the correct path to the “ccs” folder you created. This step is important to making your project portable. Click Finish.
[image:]

Add Source Files to Project
3. Delete main.c from MyLab4Project.
4. From the CCS menu bar, click File New Source File. When the New Source File dialog appears, make the selections below to create the main C code file and click Finish.

[image:]

5. From the CCS menu bar, click File New Source File. When the New Source File dialog appears, make the selections below to create the startup file and click Finish.

[image:]

Header Files
6. Type (or cut/paste) the following seven lines into MyLab4Project.c to include the header files needed to access the StellarisWare APIs :
[bookmark: OLE_LINK1]#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/interrupt.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"
hw_ints.h : Macros that define the interrupt assignment on Stellaris device (NVIC)
hw_memmap.h : Macros defining the memory map of the Stellaris device. This includes defines such as peripheral base address locations such as GPIO_PORTF_BASE
hw_types.h : Defines common types and macros such as tBoolean and HWREG(x)
sysctl.h : Defines and macros for System Control API of DriverLib. This includes API functions such as SysCtlClockSet and SysCtlClockGet.
interrupt.h : Defines and macros for NVIC Controller (Interrupt) API of DriverLib. This includes API functions such as IntEnable and IntPrioritySet.
gpio.h : Defines and macros for GPIO API of DriverLib. This includes API functions such as GPIOPinTypePWM and GPIOPinWrite.
timer.h : Defines and macros for Timer API of DriverLib. This includes API functions such as TimerConfigure and TimerLoadSet.

Main() Function
7. Next, create your main application function and declare any variables that you will use later in the function. Leave a line for spacing and type the following:
int main(void)
{
 unsigned long ulPeriod;
}
This variable will be used later in calculating the period and delay needed for a 10 Hz signal.
Clock Setup
8. The system clock defaults to the internal oscillator as its source after reset. This is not a precision internal oscillator. Configure the system clock to run directly from the Main Oscillator at 8 MHz with the following call.

Leave a blank line for spacing and enter this single line of code inside main() after the variable declaration above:
[bookmark: OLE_LINK2]SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);
GPIO Configuration
9. Before calling any peripheral specific DriverLib function, we must enable the clock for that peripheral (RCGCn register). If you fail to do this, it will result in a Fault ISR (address fault). The second statement configures the GPIO where the board’s STATUS LED is connected as an output. Leave a line for spacing, then enter these two lines of code inside main() after the line in the previous step.
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_0);

Timer Configuration
10. Again, before calling any peripheral specific DriverLib function we must enable the clock to that peripheral (RCGCn register). If you fail to do this, it will result in a Fault ISR (address fault). The second statement configures Timer 0 as a 32-bit timer in periodic mode. Note that when Timer 0 is configured as 32-bit timer, it combines the two 16-bit timers Timer 0A and Timer 0B. See the General Purpose Timer chapter of the device datasheet for more information. Add a line for spacing and type the following two lines of code after the previous ones:
SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);
TimerConfigure(TIMER0_BASE, TIMER_CFG_32_BIT_PER);
Period Calculation
11. To toggle a GPIO at 10Hz and a 50% duty cycle, you need to generate an interrupt at ½ of the desired period. First, calculate the number of clocks cycles required for a 10Hz period by calling SysCtlClockGet() and dividing it by your desired frequency. Then divide that by two, since we want a count that is ½ of that for the interrupt.

This calculated period is then loaded into the Timer’s Interval Load register using the TimerLoadSet function of the DriverLib Timer API. Note that you have to subtract one from the timer period since this value is directly loaded into the timer interval load register. In periodic mode, it takes one extra clock to “reload” the value.

Add a line for spacing and type the following two lines of code after the previous ones:
ulPeriod = (SysCtlClockGet() / 10) / 2;
TimerLoadSet(TIMER0_BASE, TIMER_A, ulPeriod -1);

Interrupt Enable
12. Next, we have to enable the interrupt … not only in the timer module, but also in the NVIC (Nested Vector interrupt controller, Cortex M3’s interrupt controller). IntMasterEnable is the master interrupt enable for the interrupts. IntEnable enables the specific vector associated with the Timer. TimerIntEnable, enables a specific event within the timer to generate an interrupt. In this case we are enabling an interrupt to be generated on a timeout of Timer 0A. Add a line for spacing and type the following three lines of code after the previous ones:
IntMasterEnable();
IntEnable(INT_TIMER0A);
TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);
Timer Enable
13. Finally we can enable the timer. This will start the timer and interrupts will begin triggering on the timeouts. Add a line for spacing and type the following line of code after the previous ones:
TimerEnable(TIMER0_BASE, TIMER_A);
Main Loop
14. The main processing loop of the code is simply an empty while(1) since the toggling of the GPIO will happen in the interrupt routine. Add a line for spacing and type the following lines of code after the previous ones:
 while(1)
 {
 }

Timer Interrupt Handler
15. Since this application is interrupt driven, we must add an interrupt handler for the Timer. In the interrupt handler, we must first clear the interrupt source and then toggle the GPIO pin based on the current state. Add a line for spacing and type the following lines of code after the final closing brace of the program.
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]void Timer0IntHandler(void)
{
	// Clear the timer interrupt
TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

// Read the current state of the GPIO pin and
// write back the opposite state
if(GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_0))
{
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0, 0);
}
	else
	{
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0, 1);
 }
}
16.
Click the Save button to save your work. Your code should look something like this:

#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/interrupt.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"

int main(void)
{
 unsigned long ulPeriod;

 SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_0);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);
 TimerConfigure(TIMER0_BASE, TIMER_CFG_32_BIT_PER);

 ulPeriod = (SysCtlClockGet() / 10) / 2;
 TimerLoadSet(TIMER0_BASE, TIMER_A, ulPeriod -1);

 IntMasterEnable();
 IntEnable(INT_TIMER0A);
 TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

 TimerEnable(TIMER0_BASE, TIMER_A);

 while(1)
 {
 }
}

void Timer0IntHandler(void)
{

 // Clear the timer interrupt
 TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

 // Read the current state of the GPIO pin and
 // write back the opposite state
 if(GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_0))
 {
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0, 0);
 }
 else
 {
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_0, 1);
 }
}

Startup Code
17. In addition to the main file you have created, you will also need a startup file specific to the tool chain you are using. This file contains the vector table, startup routines to copy initialized data to RAM, clears the bss section and contains the default fault routine ISRs. You can easily copy the “startup_ccs.c” file from the hello or blinky example and use this file as a starting template. You should note that the default fault routines in the start up code are endless while() loops. This may not be the behavior you want in a production system.

Right-click on MyLab3Project in the Project Explorer pane and select Open Project. Double-click on startup_ccs.c. When the editor window opens, copy the contents of the file into your empty MyLab4Project startup_ccs.c file. Close the MyLab3Project and make sure your MyLab4Project is the Active project.
You need to find the appropriate vector position and replace IntDefaultHandler with the name of your Interrupt handler. In this case you will add Timer0IntHandler to the position with the comment “Timer 0 subtimer A” as shown below:
[image: 2-28-2011 9-28-04 PM]
You will also need to declare this function at the top of this file as external. This is necessary for the compiler to resolve this symbol. Find

extern void _c_int00(void);

and add the

extern void Timer0IntHandler(void);

declaration as shown below:
[image: 2-28-2011 9-30-24 PM]
Click the Save button.

Set the Build Options
18. Right-click on MyLab4Project in the Project Explorer pane and select Properties. Click the + left of TMS470 Compiler and click on Include Options. In the bottom, include search path pane, click the Add button [image: 2-21-2011 7-34-46 PM]and, one at a time, add the following two include search paths.

${PROJECT_ROOT}/../..
${PROJECT_ROOT}/../../../..

[image:]

19. Click File Search Path under TMS470 Linker. Add the following include library file to the top window:

${PROJECT_ROOT}/../../../../driverlib/ccs-cm3/Debug/driverlib-cm3.lib

[image:]

Click OK to save your changes.
[bookmark: _Toc314663233]Run The Code
20. Compile and download your application by clicking the Debug button [image: 2-10-2011 3-36-11 PM] on the menu bar. If you have any issues, correct them, and then click the Debug button again. After a successful build, the CCS Debug perspective will appear.

Click the Run button [image: 2-10-2011 3-40-46 PM] to run the program that was downloaded to the flash memory of your device. The program will generate a 10 Hz PWM type signal on Pin 0 of GPIO Port F. This pin is connected to the STATUS LED on the EK-LM3S8962.
Click the Terminate [image:] button to return to the Editing perspective, close the MyLab4Project project and minimize Code Composer Studio.

[image: j0252029] You’re done.
Getting Started with the Cortex-M3 and StellarisWare - Interrupts and the Timer	4 - 1
4 - 4	Getting Started with the Cortex-M3 and StellarisWare - Interrupts and the Timer
Getting Started with the Cortex-M3 and StellarisWare - Interrupts and the Timer	4 - 5
image3.wmf
Cortex

-

M3

®

Vector Table

address

Vector

0x00

Initial Main SP

0x04

Reset

0x08

NMI

0x0C

Hard Fault

0x10

Memory Management

Fault

0x14

Bus Fault

0x18

Usage Fault

0x1C

-

0x28

Reserved

0x2C

SVCall

0x30

Debug Monitor

0x34

Reserved

0x38

PendSV

0x3C

SysTick

0x40

Interrupt (IRQ)

…

Other

IRQs

u

After

reset,

vector

table

is

located

in

address

0

u

Each

entry

contains

the

address

of the

function

to

be

executed

u

Address

0x00

is

used

as the

starting

value of Main

Stack

Pointer (MSP)

u

Vector

table

is

relocatable

u

Open

startup_ccs.c

to see

vector table coding

GPTM Features…

image4.wmf
General Purpose Timer Module (GPTM)

-

Features

GPTM Modes…

u

GPTM, System Timer (

SysTick

) & PWM timer are all timing resources

u

GPTM contains 4 timers (0

-

3)

u

Each timer provides two 16

-

bit timer/counters (A/B)

u

Timers can operate:

u

independently as timers or event counters

u

together as a 32

-

bit timer

u

together as a 32

-

bit

Real

-

Time

Clock (RTC)

u

Timers can also be used for:

u

Pulse Width Modulation

u

To trigger analog to digital conversions

image5.wmf
GPTM

-

Modes

GPTM Block Diagram…

u

16 and 32

-

bit Timer modes

u

Programmable one

-

shot

u

Programmable periodic

u

Real

-

Time Clock when external 32768 Hz clock is the input

u

User

-

enabled stalling when controller asserts CPU Halt flag

during

debug

u

ADC event trigger

u

16

-

bit Capture modes

u

Input edge count capture

u

Input edge time capture

u

16

-

bit PWM mode

u

Simple PWM with s/w output inversion

image6.wmf
GPTM

–

Block

Diagram

Lab 4…

image7.wmf
Lab 4: Interrupts and the Timer

u

Enable and configure Timer

u

Enable and configure Interrupts

u

Write the ISR code

Agenda…

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.wmf

image1.wmf
Agenda

Exceptions …

Introduction to Cortex

-

M3

®

and Peripherals

Code Composer Studio

Introduction to StellarisWare,

Initialization and GPIO

Interrupts and the Timer

Analog

-

to

-

Digital Converter

PWM

Graphics Library

Ethernet

image2.wmf
Cortex

-

M3

®

Exceptions

N

°

Exception Type

Priority

Vector

address

Descriptions

1

Reset

-

3

0x04

Reset

2

NMI

-

2

0x08

Non

-

Maskable Interrupt

3

Hard Fault

-

1

0x0C

Error during exception

processing

4

Memory

Management

Fault

Configurable

0x10

MPU violation

5

Bus Fault

Configurable

0x14

Bus error (Prefetch or data

abort)

6

Usage Fault

Configurable

0x18

Exceptions due to program

errors

7

-

10

Reserved

-

0x1C

-

0x28

11

SVCall

Configurable

0x2C

SVC instruction

12

Debug Monitor

Configurable

0x30

Exception for debug

13

Reserved

-

0x34

14

PendSV

Configurable

0x38

15

SysTick

Configurable

0x3C

System Tick Timer

16 and

above

Interrupt (IRQ)

Configurable

0x40

External

interrupt

Vector Table…

