I3 TEXAS
INSTRUMENTS

Getting Started with the Stellaris®
EK-LM4F120XL LaunchPad Workshop

Student Guide and Lab Manual

Revision 1.10 O
March 2013

Technical Training
Organization

Important Notice

Important Notice

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright © 2012 Texas Instruments Incorporated

Revision History

September 2012 — Revision 1.00 Initial release

October 2012 —Revision 1.01 Added overall TOC, changed some lab3 steps, errata
October 2012 — Revision 1.02 Minor errata

November 2012 — Revision 1.03 Minor errata

December 2012 — Revision 1.04 CCS 5.3 changes, minor errata

January 2013 — Revision 1.05 Minor errata

March 2013 —Revision 1.10 Added SSI, UART and uDMA chapters and labs.

Mailing Address

Texas Instruments

Training Technical Organization
6550 Chase Oaks Blvd

Building 2

Plano, TX 75023

ii

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop

Important Notice

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - jii

Table of Contents

Table of Contents

Introduction to the ARM® Cortex -M4F and Peripherals 1-1
Code Composer StUAIOcccevveiiniiiiiieiiiniiieiiniiiereiireieteinrosasescnns 2-1
Hints and TiPS ..cceiveeiiieiiieienicineiieiossrosstsercsnsesssssssssssossssonsosses 2-18
Introduction to StellarisWare®, Initialization and GPIO 3-1
Interrupts and the TImerscccccevveiiiiiiiiiiiiiiiiiiiiieiiieiiircieeienienne 4-1
7 D 50 5-1
Hibernation Modulecccoiviiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiiiiiiieinenes 6-1
L0 S 2 7-1
A7 =) 1111 8-1
Floating-Pointccciieiiiiiiiiiiiiiniiiiiiiiiieiiiiiieieinieiareestsestonssnnsens 9-1
BoosterPacks and Graphics Libraryccccceiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnn 10-1
Synchronous Serial Interfaceccceveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiienenan 11-1
L1070 2 N 12-1
L1 7 N 13-1
Manual Driver Installationc.ccoeeivieiiiiiiieiiiiciniiineisiccarosnssnnsons Appendix
Stellaris LaunchPad Board Schematicsccccciveviniiinieiniiieiienioneennes Appendix

iv Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop

Introduction

Introduction

This chapter will introduce you to the basics of the Cortex-M4F and the Stellaris peripherals. The

lab will step you through setting up the hardware and software required for the rest of the

workshop.

Agenda

[Introduction to ARM® Cortex™-M4F and Peripherals]
Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers
ADC12
Hibernation Module
USB
Memory
Floating-Point

BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA

Portfolio ...

The Wiki page for this workshop is located here:

www.ti.com/StellarisLaunchPadWorkshop

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

http://www.ti.com/StellarisLaunchPadWorkshop

Chapter Topics

Chapter Topics

Introduction 1-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 1-2

TI Processor Portfolio and Stellaris ROGAMAPccceevieeiiiiiiieiii ettt 1-3
Stellaris LMAF 120 Series OVEFVIEWcc.cciiiiiiiiiiiieieieeie ittt 1-4
LMAFT20HS QR SPECIIICSvveeeeeiie et ettt ettt et e et e et e et e e baeesaeentaeassaeensaeessseesseesaeensseens 1-5
LaunchPad BOGFd.................c.cccooviiiiiiiiiiiiiiiiieeiiee ettt 1-7
Labl: Hardware and SOftware Set Up.............cccocuciiiiiiiiiiiiiiiniiist ettt 1-8

L0 10} 1< 15 4T SURTTRPRS 1-8
PIOCEAULE ..ottt 1-9

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

Tl Processor Portfolio and Stellaris Roadmap

Tl Processor Portfolio and Stellaris Roadmap

Tl Embedded Processing Portfolio
| cmbeddedProcessingPotile |

MCU: AR ased Processor Digital Signal Processor (DSP
Portfolio at a Glance Portfolio at a Glance

Software, Tools, Kits & Boards ®

ller
at a Glance

Ultra-low
16-bit ultra-low 32-bit 32-bit 32-bit ARM® 32-bit pen S e - e
power MCUs | real-time MCUs = ARM® MCUs safety MCUs ARM® MPUs MPUs SPs DSPs
S Hercules™ Sitara™ €6000™
w ino™ -e® itara i -
mspaso™ | Delfino® | Stellaris® | oy | AR Corcas | CoIntegra™ |, €8000" [c5000
Piccolo™ R Cortonigt, | & Cortex™iRAF o= DaVinci™ ks

| OveEw™ | “OveE |

1%

‘—ﬁ‘gﬁ‘—‘—
TSWERits | TSWEKits |

40 MHz to

25 MHZ 300 MHz
Flash Flash, RAM
1KBto 256 KB 16KB 1o 512KB
Analog 0, ADC, PWM,ADC,
LCD, USB CAN, SPI, FC
Measuremert, Motor control,
sensing, general digital power,

purpose hghhng ren. energy

$0.25t0 $9.00 $1.89t0 $20.00

SWEREE

F\xed/ﬂcahng Va\ue Lineto 300MHzto 1.5GHz Upto 10GHz Upto 300 MHz
B(l MHZ upto 220MHz 600 MHz floating DSP + multicore, fixed/ + accelerator
Perf. Lineto 15GHz |~ video accelerators fioating + accelerators
Flash Flash)
8KB1o 512KB 26KB10 3MB | UPto 32KBID cache | | 2Cache, mDDR, Uplo4MBSL2, | Uplo 320KB RAM
256KB 12, LPDDR, DDR2IDDR3 32KBL1,1MBL2 | Upto 128KBROM
USB,ENET, FlexRay, || “ D080 siomon
MAC+PHV C AN TimerPWM, PP USB 20 0TG, RapidIO®, PCle, MBSF, SBADC
ADC, PW, SPi ADC, CAN, LIN, GENAC, Ple1PHY, %E"PAAPCRSAPTS‘:;O‘ 107100 MAC, uPP, UART, MoBSP. SP G
SPI'EC, FMF S e Hyperlink, DDR2/3
Mation control, HMI, Safe! Industrial automation, - Video, audo, voice, vision, - Telecom, medical, Portable audiolvoice,

industrial automation,

fransporiation,

portable data terminals,

securi, conferencing,

mission criical,

fingerprint biometrics,

MPUs — Microprocessors

Smartgrid industrial & medical single-board computing | test & measuremet base stations portable medical
$1.00t0 $8.00 $5.00t0 $30.00 $5.00to $50.00 $5.00t0 $200.00 3010 §225.00 $1.95t0 $10.00
Roadmap ...

ARM Cortex-M3

Stellaris® Roadmap

ARM Cortex-M4F
Floating-Point

LM3S9000
LM3S8000

Mg§6000
TS

LM3S5000

bMSSBOO

leed Point
NET MAC & PHY

USB & CAN options

Fixed Point
EUESELN USB H/D/OTG
| CAN options
O
| LM352000 Fixed Point
ixed Poin
MUESIY General Purpose
CAN options

LM4F23x

LM4F21x
LM4F12x

RTP Feb ‘13 (TMX Now)
+ USB H/D/OTG + CAN

RTP Feb ‘13 (TMX Now)
+ 80 MHz

+ 256K Flash / 32K SRAM

+ Low-power hibernate

* 2x1 Msps 12-bit ADCs

+ Up to 2 x CAN

+ Motion control options

LM4F11x

Teoxas
INSTRUMENTS.

“LM4F29x

Toxs
INSTRUMENTS.

TMS / RTP 2H13
Ethernet + USB + CAN
+120 MHz

« 1MB Flash, 256KB SRAM
+10/100 ENET MAC + PHY

LM4F13x + USB H/D/OTG w/FS PHY & HS ULPI
e * 80 MHz +Upto2x CAN
(Sl 256K Flash / 32K SRAM - Parallel Bus Interface (EPI)
* Low-power hibernate «Crypto
* 2x1 Msps 12-bit ADCs
« Motion control options
“LMA4F29x TMS / RTP 2H13
USB + CAN
+ 120 MHz

+ 1MB Flash, 256KB SRAM

+ USB H/D/OTG w/FS PHY & HS ULPI
+Upto2xCAN

« Parallel Bus Interface (EPI)

*Crypto

Series ...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

Stellaris LM4F120 Series Overview

Stellaris LM4F120 Series Overview

Stellaris® LM4F120 Series MCUs

ARM® gnectivity features: \

Cortex™-M4F ¢ CAN, USB Device, SPI/SSI, I12C, UARTs
80 MHz

High-performance analog integration
¢ Two 1 MSPS 12-bit ADCs
+ Analog and digital comparators

JTAG MPU
NVIC ETM
SWDIT FPU

Best-in-class power consumption
Serial Interfaces System

3UARTS #As low as 370 }JA/MHZ
stem Control
4 i ¢ 500ps wakeup from low-power modes
1 CC

1CAN b Solid roadmap

USB Device @ RTC currents as low as 1.7pA

612C

+ Higher speeds
¢ Larger memory

¢ Ultra-low power /
E Battery-Backed
c Hibernate

Coreand FPU ...

M4 Core and Floating-Point Unit

32-bit ARM® Cortex™-M4 core
Thumb2 16/32-bit code: 26% less memory & 25 % faster than pure 32-bit
System clock frequency up to 80 MHz
100 DMIPS @ 80MHz

Flexible clocking system
¢ Internal precision oscillator
¢ External main oscillator with PLL support
¢ Internal low frequency oscillator
¢ Real-time-clock through Hibernation module

Saturated math for signal processing
Atomic bit manipulation. Read-Modify-Write using bit-banding
Single Cycle multiply and hardware divider
Unaligned data access for more efficient memory usage
Privileged and unprivileged modes

¢ Limits access to MPU registers, SysTick, NVIC & possibly memory/peripherals
IEEE754 compliant single-precision floating-point unit

JTW and Serial Wire Debug debugger access
¢ ETM available through Keil and IAR emulators

* 6 0 0 0

L 2R 2R JNK R 4

L 2 2

Memory ...

1-4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

LM4F120H5QR Specifics

LM4F120H5QR Specifics

LM4F120H5QR Memory

256KB Flash memory
¢ Single-cycle to 40MHz

¢ Pre-fetch buffer and speculative branch improves
performance above 40 MHz

32KB single-cycle SRAM with bit-banding
Internal ROM loaded with StellarisWare software

¢ Stellaris Peripheral Driver Library [0x00000000 Flash

¢ Stellaris Boot Loader
¢ Advanced Encryption Standard (AES) cryptography [0x01000000 ROM

LD [0x20000000 SRAM]
¢ Cyclic Redundancy Check (CRC) error

detection functionality [0x22000000 Bit-banded SRAM]
2KB EEPROM (fast, saves board space) [0x40000000 Peripherals & EEPROM]

¢ Wear-leveled 500K program/erase cycles = :
o 10 yoar data retention | 0x42000000 Bit-banded Peripherals |
4clock cycle read time A 0xE0000000 Instrumentation, ETM, etc. |
Peripherals ...

LM4F120H5QR Peripherals

ﬁattery-backed Hibernation Module

< Internal and external power control (through external voltage regu
¢ Separate real-time clock (RTC) and power source

¢ VDD3ON mode retains GPIO states and settings

¢ Wake on RTC or Wake pin

¢ 16 32-bit words of battery backed memory

¢ 5 pAHibernate current with GPIO retention. 1.7 pA without

Serial Connectivity
¢ USB 2.0 (Device)
o 8-UART
e 4-12C
* 4-SSI/SPI

KO CAN

lator)

More ...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

LM4F120H5QR Specifics

LM4F120H5QR Peripherals

Two 1MSPS 12-bit SAR ADCs

Twelve shared inputs

Single ended and differential measurement

Internal temperature sensor

4 programmable sample sequencers

Flexible trigger control: SW, Timers, Analog comparators, GPIO

VDDA/GNDA voltage reference

Optional hardware averaging

2 analog and 16 digital comparators

uDMA enabled

0 -43 GPIO] LR
¢ Any GPIO can be an external edge or level triggered '

interrupt

¢ Can initiate an ADC sample sequence or uDMA transfer
directly

¢ Toggle rate up to the CPU clock speed on the Advanced
High-Performance Bus

5-V-tolerant in input configuration :
Programmable Drive Strength (2, 4, 8 mA or 8 mA T T T e
with slew rate control) TN
¢ Programmable weak pull-up, pull-down, and open drain

L 2R 2R 2R 2R IR 2K R 2R 4

7

e |
o
=
=
=
==
=
=5
=
=
=
=)
=
v =
=
=

* 0

New Pin Mux GUI Tool: www.ti.com/StellarisPinMuxUtility

More ...

www.ti.com/StellarisPinMuxUtility

LM4F120H5QR Peripherals

Memory Protection Unit (MPU)

¢ Generates a Memory Management Fault on incorrect access to region
Timers

¢ 2 Watchdog timers with separate clocks

¢ SysTick timer. 24-bit high speed RTOS and other timer

¢ Six 32-bit and Six 64-bit general purpose timers

¢ PWM and CCP modes

¢ Daisy chaining

¢ User enabled stalling on CPU Halt flag from debugger for all timers
32 channel yDMA

¢ Basic, Ping-pong and scatter-gather modes

¢ Two priority levels

¢ 8,16 and 32-bit data sizes

¢ Interrupt enabled
Nested-Vectored Interrupt Controller

¢ 7 exceptions and 65 interrupts with 8 programmable priority levels

¢ Tail-chaining

¢ Deterministic: always 12 cycles or 6 with tail-chaining

¢ Automatic system save and restore

Board...

1-6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

http://www.ti.com/StellarisPinMuxUtility

LaunchPad Board

LaunchPad Board

Stellaris® LaunchPad

¢ ARM® Cortex™-M4F
64-pin 80MHz LM4F120H5QR

¢ On-board USB ICDI
(In-Circuit Debug Interface)

¢ Micro AB USB Device port
¢ Device/ICDI power switch

¢ BoosterPack XL pinout also supports
existing BoosterPacks

¢ 2 user pushbuttons

¢ Reset button

3 user LEDs (1 tri-color device)

¢ Current measurement test points
¢ 16MHz Main Oscillator crystal

¢ 32kHz Real Time Clock crystal

+ 3.3V regulator

¢ Support for multiple IDEs:

embedded %Y)glﬁw[é ARMITIKEIL Lol i"uveln

M PA7 PFY

vb Texas INSTRUMENTS

?7 Aus@ e 5
Stellans ~

aunc Pad

Lab...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

Lab1: Hardware and Software Set Up

Lab1: Hardware and Software Set Up

Objective

The objective of this lab exercise is to download and install Code Composer Studio, as well as
download the various other support documents and software to be used with this workshop. Then
we’ll review the contents of the evaluation kit and verify its operation with the pre-loaded
quickstart demo program. These development tools will be used throughout the remaining lab
exercises in this workshop.

Lab 1: Hardware and Software Setup

USB Emulation Connection

Install the software

Review the kit contents
Connect the hardware

Test the QuickStart application

L 2R JER JER 2

aunchPad

Agenda ...

1-8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

Lab1: Hardware and Software Set Up

Procedure

Hardware

1. You will need the following hardware:

e A 32 or 64-bit Windows XP or Windows7 laptop with 2G or more of free hard
drive space. 1G of RAM should be considered a minimum ... more is better.

e A laptop with Wi-Fi is highly desirable

e If you are working the labs from home, a second monitor will make the process
much easier. If you are attending a live workshop, you are welcome to bring one.

e Ifyou are attending a live workshop, please bring a set of earphones or ear-buds.
If you are attending a live workshop, you will receive an evaluation board,;
otherwise you need to purchase one. (http://www.ti.com/tool/EK-L M4F120XL)

e Ifyou are attending a live workshop, a digital multi-meter will be provided;
otherwise you need to purchase one like the inexpensive version here:

(http://www.harborfreight.com/catalogsearch/result?q=multimeter)

e Ifyou are attending a live workshop, you will receive a second A-male to micro-
B-male USB cable. Otherwise, you will need to provide your own to complete
Lab 7.

e If you are attending a live workshop, you will receive a Kentec 3.5” TFT LCD
Touch Screen BoosterPack (Part# EB-LLM4F120-1.35). Otherwise, you will
need to provide your own to complete Lab 10.

As you complete each of the following steps, check the box in the title, like the below, to
assure that you have done everything in order.

Download and Install Code Composer Studio O

2. Download and start the latest version of Code Composer Studio (CCS) 5.x web installer
from http://processors.wiki.ti.com/index.php/Download_CCS (do not download any beta
versions). Bear in mind that the web installer will require Internet access until it
completes. If the web installer version is unavailable or you can’t get it to work,
download, unzip and run the offline version. The offline download will be much larger
than the installed size of CCS since it includes all the possible supported hardware.

This version of the workshop was constructed using build number 5.3.0.00090. Your
version will likely be later. For this and the next few steps, you will need a my.TI account
(you will be prompted to create one or log into your existing account).

You should note that the 16K limitation on the free, code size limited version of CCS is
too small to work with most of the projects in this workshop.

Note that the evaluation license of CCS will operate with full functionality for free while
connected to a Stellaris evaluation board. Most Stellaris boards can also operate as an
emulator interface for your target system, although this function requires a licensed
version of CCS.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction 1-9

http://www.ti.com/tool/EK-LM4F120XL
http://www.harborfreight.com/catalogsearch/result?q=multimeter
http://processors.wiki.ti.com/index.php/Download_CCS

Lab1: Hardware and Software Set Up

3. If'you have downloaded the offline file, start the ccs setup 5.xxxxx.exe filein
the folder created when you unzipped the download.

4. Accept the Software License Agreement and click Next.

Code Composer Studio v3 Setup

License Agreement ‘

Please read the following license agreement carefully. i I I

Code Composer Studio 5.2 Software License Agreement

IMPCORTANT — PLEASE READ THE FOLLOWING LICENSE AGREEMENT CAREFULLY. THIS IS A
LEGALLY BINDING AGREEMENT. AFTER YOU READ THIS LICENSE AGREEMENT, YOU WILL BE
ASKED WHETHER YOU ACCEPT AND AGREE TO THE TERMS OF THIS LICENSE AGREEMENT. DO
MOT CLICK "I ACCEPT" UMLESS: (1) YOU ARE AUTHORIZED TO ACCEPT AND AGREE TO THE
TERMS OF THIS LICEMSE AGREEMENT OM BEHALF OF YOURSELF AND YOUR COMPANY; AND

(2) YOU INTEND TO ENTER INTC AND TO BE BOUMD BY THE TERMS OF THIS LEGALLY BINDING
AGREEMENT OM BEHALF OF YOURSELF AND YOUR COMPAMY., e

()1 accept the terms of the license agreement.;

()1 do not accept the terms of the license agreement,

[Mext >] [Cancel]

5. Unless you have a specific reason to install CCS in another location, accept the default
installation folder and click Next. If you have an another version of CCS and you want to
keep it, we recommend that you install this version into a different folder.

Code Composer Studio v3 Setup
Choose Installation Location . 1
Where should Code Composer Studio w5 be installed? \ I'

To change the main installation folder dick the Browse button.

CCS Install Folder

v

[install €C5 plugins into an existing Eclipse installation

< Back ” MNext =] ’ Cancel

1-10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

Lab1: Hardware and Software Set Up

6. Select “Custom” for the Setup type and click Next.

Code Composer Studio v3 Setup

Setup Type ':- t
Select the setup type that best suits your needs, § l l
Click the type of Setup you prefer,
Desaoten
[Complete Feature Set Select this option if you wish to
customize the individual features that
are installed.
[< Back l [Next =] [Cancel]

7. The next dialog, select the processors that your CCS installation will support. You should
select “Stellaris Cortex M MCUSs” in order to run the labs in this workshop. If you are
also attending the MSP430 workshop you should also select “MSP430 Low Power
MCUSs”. You can select other architectures, but the installation time and size will
increase. Click Next.

Code Composer Studio v Setup

Processor Support "

Selact Processor Architectures to be nstalled i I I
e Description
EA 15P 430 Low Power MCUS Processor Architectures
O c23x 32-bit Rreal-time MCUSs induded: Stelans

2

O cortexasr mous

[amMux Cortex-A and ARMS processars
D Cix DSP + ARM processors

D Davind Video Processors

[T Select Al

Doverdoad size: 538 MB. Instal size: 2421.0 MB.

[< Back _”_ Hext =][Cancel J

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction 1-11

Lab1: Hardware and Software Set Up

8. In the Component dialog, keep the default selections and click Next.

Code Composer Studio vh Setup

Select Components ‘

Select the components you want installed and deselect components you \ l I

want to leave out,

Description

|>

=2 Compiler Tools
TI M5P430 Compiler Tools
TI ARM Compiler Tools
Documentation

= Device Software
MSP430ware =
Grace

| RPN

Base Installation

| £

Download size: 732 MB. Install size: 3294.0 MB. Spedial: I:I

[< Back]| Mext = |[Canicel l

9. In the Emulators dialog, uncheck the Blackhawk and Spectrum Digital emulators, unless
you plan on using either of these.

Code Composer Studio v3 Setup

Select Emulators '

Select the emulators you want installed and deselect emulators you want to ,‘ l I

leave out.

/| Description

JTAG Emulator Suppart

= JTAG Emulator Support

Blackhawk Emulatars
Spectrum Digital Emulators
Stellaris Emulators

VSP430 Emulators
O wsp430 Paraliel Port FET =
MSP430 LISE FET
/|

<

Download size: 798 MB. Install size: 3591.0 MB.

[< Back H Mext = l[Cancel

1-12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

Lab1: Hardware and Software Set Up

10. When you reach the final installation dialog, click Next. The web installer process should
take 15 - 30 minutes, depending on the speed of your connection. The offline installation
should take 10 to 15 minutes. When the installation is complete, don’t start CCS.

CCS Install Options

Setup is ready to begin installation.

If you want to review or change any settings, dick Back. Click Next to begin installation.

Install Directory: C:\tijccsws -~
Setup Type: Custom
Total Download size: 732 MB.
Product Families selected:
MSP430 Low Power MCUs
Stellaris Cortex M MCUs

Components to be installed:

JRE
Elimen W

< Back ” Mext = l [Cancel

Install StellarisWare O

11. Download and install the latest full version of StellarisWare
from: http://www.ti.com/tool/sw-lm3s . This workshop was built using release number
9107. Your version will likely be a later one. If at all possible, please install StellarisWare
into the default C:\StellarisWare folder.

Install LM Flash Programmer O

12. Download, unzip and install the latest LM Flash Programmer
(LMFLASHPROGRAMMER) from http://www.ti.com/tool/Imflashprogrammer .
This workshop was built using version number 1381. Your version will likely be a later
one.

Download ICDI Drivers O

13. Download the latest version of the in-circuit debug interface drivers
from http://www.ti.com/tool/stellaris_icdi_drivers . Unzip the file and place the
stellaris icdi drivers folderinC:\StellarisWare.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction 1-13

http://www.ti.com/tool/sw-lm3s
http://www.ti.com/tool/lmflashprogrammer
http://www.ti.com/tool/stellaris_icdi_drivers

Lab1: Hardware and Software Set Up

Download and Install Workshop Lab Files [

14. Download the lab installation file from the workshop materials section of the Wiki site
below. The file will install your lab files in:
C:\StellarisWare\boards\MyLaunchPadBoard . So please be sure that you
have installed StellarisWare before installing the labs.

www.ti.com/StellarisLaunchPadWorkshop

Download Workshop Workbook [

15. Download a copy of the workbook pdf file from the workshop materials section of the
Wiki site below to your desktop. It will be handy for copying and pasting code.

www.ti.com/StellarisLaunchPadWorkshop

Terminal Program O

16. If you are running WindowsXP, you can use HyperTerminal as your terminal program.
Windows7 does not have a terminal program built-in, but there are many third-party
alternatives. The instructions in the labs utilize HyperTerminal and PuTTY. You can
download PuTTY from the address below.

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

Windows-side USB Examples O

17. Download and install the StellarisWare Windows-side USB examples from this site:

WWW.tl.com/sw-usb-win

Download and Install GIMP O

18. We will need a graphics manipulation tool capable of handing PNM formatted images.
GIMP can do that. Download and install GIMP from here:

WWW.gimp.org

LaunchPad Board Schematic

19. For your reference, the schematic is included at the end of this workbook.

1-14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

http://www.ti.com/StellarisLaunchPadWorkshop
http://www.ti.com/StellarisLaunchPadWorkshop
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://www.ti.com/sw-usb-win
http://www.gimp.org/

Lab1: Hardware and Software Set Up

Helpful Documents and Sites O

20. There are many helpful documents that you should have, but at a minimum you should
have the following documents at your fingertips.

Lookin C:\StellarisWare\docs and find:
Peripheral Driver User’s Guide (SW-DRL-UGxxxx.pdf)
USB Library User’s Guide (SW-USBL-UGxxxx.pdf)
Graphics Library User’s Guide (SW-GRL-UGxxxx.pdf)
LaunchPad Board User’s Guide (SW-EK-LM4F120XL-UG-xxxx.pdf)
21. Go here: http://www.ti.com/product/Im4f120h5qr and download the LM4F120H5QR

Data Sheet. Stellaris data sheets are actually the complete user’s guide for the device. So
expect a large document.

22. Download the ARM Optimizing C/C++ Compilers User Guide
from http://www.ti.com/lit/pdf/spnul51 (SPNU151). Of particular interest are the sizes
for all the different data types in table 6-2. You may see the use of “TMS470” here ...
that is the TI product number for its ARM devices.

23. You will find a “Hints” section at the end of chapter 2. You will find this information
handy when you run into problems during the labs.

24. Search the TI website for these additional documents of interest:

SPMU287: Stellaris Driver Installation Guide (for ICDI and FTDI drivers)
SPMU288: BoosterPack Development Guide
SPMU289: LaunchPad Evaluation Board User’s Manual (includes schematic)

You can find additional information at these websites:

Main page: www.ti.com/launchpad

Stellaris LP: www.ti.com/stellaris-launchpad

EK-LM4F120XL product page: http://www.ti.com/tool/EK-LM4F120XL

BoosterPack webpage: www.ti.com/boosterpack

LaunchPad WiKi: www.ti.com/launchpadwiki

LM4F120H5QR folder: http://www.ti.com/product/lm4f120h5qr

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction 1-15

http://www.ti.com/product/lm4f120h5qr
http://www.ti.com/lit/pdf/spnu151
http://www.ti.com/launchpad
http://www.ti.com/stellaris-launchpad
http://www.ti.com/tool/EK-LM4F120XL
http://www.ti.com/boosterpack
http://www.ti.com/launchpadwiki
http://www.ti.com/product/lm4f120h5qr

Lab1: Hardware and Software Set Up

Kit Contents O
25. Open up your kit

You should find the following in your box:

The LM4F120H5QR LaunchPad Board

USB cable (A-male to micro-B-male)

README First card

If you are in a live workshop, you should find a 2"* USB cable

Initial Board Set-Up O

26. Connecting the board and installing the drivers

The LM4F120 LaunchPad Board ICDI USB port (marked DEBUG and shown in
the picture below) is a composite USB port and consists of three connections:

Stellaris ICDI JTAG/SWD Interface - debugger connection
Stellaris ICDI DFU Device - firmware update connection
Stellaris Virtual Serial Port - a serial data connection

#3 TEXAS INSTRUMENTS 52 &
o S A0 s

o 777 Stellaris w

i gunchPad

Using the included USB cable, connect the USB emulation connector on your evaluation
board (marked DEBUG) to a free USB port on your PC. A PC’s USB port is capable of
sourcing up to 500 mA for each attached device, which is sufficient for the evaluation
board. If connecting the board through a USB hub, it must be a powered hub.

The drivers should install automatically. Manual driver installation steps are included in
the appendix of this workbook.

1-16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

Lab1: Hardware and Software Set Up

QuickStart Application

Your LaunchPad Board came preprogrammed with a quickstart application. Once you
have powered the board, this application runs automatically. You probably already no-
ticed it running as you installed the drivers.

27. Make sure that the power switch in the upper left hand cor- G
ner of your board is in the right-hand DEBUG position as ' el

shown: l‘_ﬁ ' |:|; l- |

: e
28. The software on the LM4F120H5QR uses the timers as u N M re
pulse-width modulators (PWMs) to vary the intensity of all B RER
three colors on the RGB LED (red, green, and blue) individually. By doing so,
your eye will perceive many different colors created by combining those primary
colors.

The two pushbuttons at the bottom of your board are marked SW1 (the left one)
and SW2 (the right one). Press or press and hold SW1to move towards the red-
end of the color spectrum. Press or press and hold SW2 to move towards the vio-
let-end of the color spectrum.

If no button is pressed for 5 seconds, the software returns to automatically chang-
ing the color display.

29. Press and hold both SW1 and SW2 for 3 seconds to enter hibernate mode. In this
mode the last color will blink on the LEDs for 2 second every 3 seconds. Be-
tween the blinks, the device is in the VDD3ON hibernate mode with the real-
time-clock (RTC) running. Pressing SW2 at any time will wake the device and re-
turn to automatically changing the color display.

30. We can communicate with the board through the UART. The UART is connected
as a virtual serial port through the emulator USB connection.

The following steps will show how to open a connection to the board using
HyperTerminal (in WinXP) and PuTTY (in Windows 7 or 8).

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction 1-17

Lab1: Hardware and Software Set Up

31. We need to find the COM port number of the Stellaris Virtual Serial Port in the
Device Manager. Skip to step 32 if you are using Windows 7 or 8.

Windows XP:

A. Click on the Windows Start button. Right-click on My Computer and select
Properties from the drop-down menu.

B. In the System Properties window, click the Hardware tab.

C. Click the Device Manager button.

The Device Manager window displays a list of hardware devices installed on your
computer and allows you to set the properties for each device.

Device Manage i |

File Action View Help
& @

-2 cnaD192895

+ Q Batteries

- g Computer

+-E@ Controlvault Device

+]-%g# Disk drives

+ @ Dizplary adapters

+ _Hé DWD/CD-ROM drives

+-{&g Human Interface Devices

+|-i=% IDE ATA/ATAPT controllers

+-&gp IEEE 1394 Bus host controllers

+-38 Imaging devices

+-%» Keyboards

+ '_:)' Mice and other pointing devices

+ L Modems

+ @ Manitors

+-E&@ Metwork adapters

= & Ports (COM &LPT)
néyi Dell Wireless 5520 (EV-DO-HSPA) Mabile Broadband Mini-Card Diagnostics {COM3)
Ay’ Dell wireless 5620 {EV-DO-HSPA) Mobile Broadband Mini-Card NMEA (COMS)
& ECP Printer Port (LPT1)
néyi RIM Virtual Serial Port w2 (COM7)
néyi RIM Virtual Serial Port w2 (COME)
r;f Stellaris Virtual Serial Port (COM30)
+ ﬂ Processors
+ g? SCSI and RAID controllers
+ Smart card readers
+- @)y Sound, video and game controllers
= § Stellaris In-Circuit Debug Interface

% stellaris ICD1 DFU Device
@ Stellaris ICDI TTAG/SWD Interface

+-%g® Storage volumes
+- iy System devices
+ Universal Serial Bus controllers

Expand the Ports heading and write number for the Stellaris Virtual Serial Port
here: COM

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

Lab1: Hardware and Software Set Up

32. Windows 7 or 8:

A. Click on the Windows Start button. Right-click on Computer and select Prop-
erties from the drop-down menu.

B. Click on Device Manager on the left of the dialog.

The Device Manager window displays a list of hardware devices installed on your
computer and allows you to set the properties for each device.

File Action View Help
&z | @ E B o @SS

4 = Scott-PC

i, @ Batteries

> M Computer

» g Disk drives

Iﬁ Display adapters

ey DVD/CD-ROM drives

E‘“:-‘:, Human Interface Devices
s g IDE ATAJATAPI controllers
55 Imaging devices

f Infrared devices

B T

'

L.

T

-ZZ Keyboards

> --ﬂ Mice and other pointing devices
| Monitors

JEF Metwork adapters

B Portable Devices

4 73 Ports (COM & LPT)

B v L =

T

~.JT7 Stellaris Virtual Serial Port (COMS)

> - Processors
-3 Sound, video and game controllers

-

A'-,', Stellaris In-Circuit Debug Interface

. ..M Stellaris ICDI DFU Device

{ = ‘;, Stellaris ICDLITAG/SWD Interface
> W& Systemn devices

p - ﬁ Universal Serial Bus controllers

Expand the Ports heading and write number for the Stellaris Virtual Serial Port
here: COM

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction 1-19

Lab1: Hardware and Software Set Up

33. In WinXP, open HyperTerminal by clicking Start = Run..., then type
hypertrm in the Open: box and click OK. Pick any name you like for your
connection and click OK. In the next dialog box, change the Connect using:
selection to COM##, where ## is the COM port number you noted earlier. Click
OK. Make the selections shown below and click OK.

COM48 Properties

Port Settings |

Bits per sscond: | 115200 v|
Dat bits: |2 v|
Pariy: | Noe v|

Stop bits: [1 v|

Restore Defaults

[oK H Cancel][Bpply]

When the terminal window opens, press Enter once and the LaunchPad board will
respond with a > indicating that communication is open. Skip to step 31.

34. In Win7 or 8, double-click on putty.exe. Make the settings shown below and
then click Open. Your COM port number will be the one you noted earlier

2 PuTTY Configuration

Category:

=R Session Basic options for your PUTTY session
Leaging Specify the destination you want to connect to

= Teminal Serial | Sresd
Keyboard erial line pes
Bell [com4s [[115200]
Features Connection type:

= Windaw O Raw O Telnet O Rlogin O 55H (&) Serial
.—q:pea!ance Load, save or delete a stored session
Behaviour
Translation Saved Sessions
Selection |
Colours

b q LO d

=~ Connection today
Promy
Rlogin

SSH
Senal Close window on exit:
O Aways O Never (8 Only on clean exit
About [Open l [Cancel]

When the terminal window opens, press Enter once and the LaunchPad board will

respond with a > indicating that communication is open.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

Lab1: Hardware and Software Set Up

35. You can communicate by typing the following commands and pressing enter:
help: will generate a list of commands and information

hib: will place the device into hibernation mode. Pressing SW2 will wake the
device.

rand: will start a pseudo-random sequence of colors

intensity: adjust the LED brightness between 0 to 100 percent. For instance
intensity 100 will change the LED to maximum brightness.

rgb: follow with a 6 hex character value to set the intensity of all three LEDs.
For instance: rgb FF0000 lights the red LED, rgb 00FFO00 lights the blue LED and
rgb 0000FF lights the green LED.

36. Close your terminal program.

You’re done.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction 1-21

Lab1: Hardware and Software Set Up

1-22 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Introduction

Code Composer Studio

Introduction

This chapter will introduce you to the basics of Code Composer Studio. In the lab, we will

explore some Code Composer features.

Introduction to ARM® Cortex™-M4F and Peripherals

Agenda

[Code Composer Studio]

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers

Hibernation Module

BoosterPacks and grLib
Synchronous Serial Interface

ADC12

uSB
Memory
Floating-Point

UART
uDMA

IDEs...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio

2-1

Chapter Topics

Chapter Topics

Code Composer Studio 2-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 2-2
Stellaris DevelOPMEnt TOOLSccooeciiioieeiiiecieeee ettt ettt et e e s eesabe e st eesaseestbeenssee e 2-3
COde COMPOSET STUTNOooocueeeeeeeiie ettt ete et et et e et e sb e e ebeessbeeesbeessbeeesbaessbeeesseessseensseenens 2-4
Lab2: Code COMPOSEE STUAIOcc.ooeeueeeeiiiiciiieie ettt aae et staeetteetaeetseessaeenaeens 2-7

[0)0] 1015 AU ST 2-7
L0ad the Lab 2 PrOJECL....ccueeiuieiieiieie ettt ettt ettt st st e s et e esteenseesseesaessaeseenseensennnes 2-8
LM FLASH PPOZGFAMINEcoeeeeeieeeeseeeieeset et eteetteeieestaeteensesnsesseesesesseessanseansesnsessaenseensennsesnsesnnas 2-15
Creating a bin File for the Flash Programmerccccccooieriinieniieiieiecieeeeee e 2-17
HINES QRA TEPS ..ottt 2-18

2-2

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio

Stellaris Development Tools

Stellaris Development Tools

embedded &?)Jﬁ\l}s ARM |>2|KE"- §ﬂomllg§§!
Eval Kit 30-day full | 32KB code size | 32KB code size Full function.
License function. limited. limited. Onboard
Upgradeable Upgradeable Upgradeable emulation limited
Compiler GNU C/C++ IAR C/C++ RealView C/C++ TI C/C++
C-SPY/ .
Debugger / . . CCS/Eclipse-
gdb / Eclipse Embedded MVision .
IDE Workbench based suite
99 USD
personal MDK-Basic (256
Full Upgrade edition / 2700 USD KB) = €2000 445 USD
2800 USD (2895 USD)
full support
JTAG . .
Debugger J-Link, 299 USD | U-Link, 199 USD | XDS100, 79 USD
Whatis CCS?...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio 2 -3

Code Composer Studio

Code Composer Studio

What is Code Composer Studio?

@grated development environment for Tl embedded processors \
¢ Includes debugger, compiler, editor, simulator, OS...

¢ The IDE is built on the Eclipse open source software framework

¢ Extended by Tl to support device capabilities
CCSv5 is based on “off the shelf” Eclipse (version 3.7 in CCS 5.2)

¢ Uses unmodified version of Eclipse
¢ Tl contributes changes directly to the open source community

¢ Drop in Eclipse plug-ins from other vendors or take Tl tools and drop them into an
existing Eclipse environment

¢ Users can take advantage of all the latest improvements in Eclipse
Integrate additional tools

¢ OS application development tools (Linux, Android, Sys/BIOS...)

¢ Code analysis, source control...
Runs under Windows and Linux

ws single seat. $99/year subscription fee

User Interface Modes...

User Interface Modes

ﬁmple Mode \

¢ By default CCS will open in simple/basic mode

¢ Simplified user interface with far fewer menu items, toolbar buttons

¢ Tl supplied CCS Edit and CCS Debug Perspectives
Advanced Mode

¢ Uses default Eclipse perspectives (similar to what existed in CCSv4)

¢ Recommended for users integrating other Eclipse based tools into CCS
Switching Modes

¢ On the CCS menu bar, select Window - Open Perspective - Other...
Check the “Show all” checkbox - —

“C/C++” and “Debug” are the —
\ advanced perspectives ?Eéig‘ /

[CCS Edit (default)
OV Repsitory Exploing
Deb

ory Exploring

EBRemot
[Resource
50 Team Synchronizing

stem Explorer

wskwail

Common Tasks...

2-4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio

Code Composer Studio

Common Tasks

@ating New Projects \

¢ Very simple to create a new project for a device using a template
Build options
¢ Simplified build options dialog from earlier CCS versions

¢ Updates to options are delivered via compiler releases and not dependent
on CCS updates

Sharing projects

¢ Easy for users to share projects, including working with version control
(portable projects)

¢ Setting up linked resources has been simplified from earlier CCS versiory

Workspaces and Projects...

Workspaces and Projects

Workspace Project Juink| Source files
Project 1 <|__i DIS Source files Code and Data
Project 2 LA Link| Header files
Project 3 HishlEs T Declarations/Defines
Settings and preferences Build and tool settings . = _
- Juink| Library files
Code and Data
A workspace contains A project contains your
your settings and build and tool settings,
preferences, as well as as well as links to your
links to your projects. input files. Deleting files
Deleting projects from from the workspace
the workspace deletes deletes the links, not the
the links, not the files* files*
* Unless you have located or copied files
into the workspace
Project Wizard...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio 2-5

Code Composer Studio

Project Wizard

& New CCS Project

€CS Project

@gle page wizard for majority of usg

¢ Next button will show up if a template
Pz [\ requires additional settings

Output type: |Exccutabie v .
Debugger setup included

Create 2 new CC3 Project

[]Use default lacation

Locaton: | C:\stelarisvizre \bozrds Wy aunchPadeoardiLab3iees | Coromse...] ¢ User chooses location, device and
oo connection
Fomily: [ARM 5|
Varianti [120 | | stellars L<F 120450R ~ ¢ A modifiable ccxml file is created
Connection: |Stellaris In-Crrcuit Debug Interface v Simple by default
”‘d“”‘g“j“"”gs o ¢ Compiler version, endianness... are
v Project templates and examples .
I | [Creates an empty project il italzed or K under advanced settings /
— the selected device. The project will contain
=-[=] Empty Projects an empty 'main.c source-fle.
[Empty Project

mpty Assembly-only Project
mpty DSP/BIOS v5.x Project
mpty RTSC Project

asic Examples

[Hello World

PC and 1/0 Examples

YS/BI0S

® .

Add Files...

Adding Files to Projects

W% A e $o project; CACCHnstal L Sed 2 1001 Bnewimodem ===
Iz)+ Compueer v LocaiDiak [C) » teselatve » mademTest = |5 | Seurch mdeTest 7
B ProjectExplorer 3] 0 & ~ — O [@ hello.c 53| E— - —
= New o surpts b - Diste modéeed .
SarrDvicadMLhau =
B Cof Ctrl+C snapshots b
- e mymbal cache et
Paste €A @ Sysem Vokume Infoimaticr
K Delete Delete tempDMPS
Source S bk ke 7
testinstallerdnatall b
Wrs testmstallerplfundle
Rename... 7] TstinstalFnps
testeltive
2 Import.. modemTest
o Export... Sl 3 - -
Build Project File game: “sinetsbh “medemiec” “modemis” “rmzedilc” ravedcor + |40 =
Clean Project Gpen v [Cancel
&1 Refresh F5 =
Close Project
Add Files to Project...

& Add Files to Project allows

¥ File Operation

Debug As
Team Select how files shoukd be imported into the project: users tO control hO_W the flle iS
Compare With i added to the project

Restore from Local History...

Source ek # Linking Files using built-in
. 9| Creste linklocation: elatieter [PROECTAOC = macros allows easy creation of
Run C/C+ + Code Analysis e e e portable projects

Show Build Settings... 3 =t

Properties

Lab...

2-6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio

Lab2: Code Composer Studio

Lab2: Code Composer Studio

Objective

The objective of this lab exercise is to explore the basics of how to use Code Composer Studio.

This lab will not discuss the actual C code. The following chapter will explore the code.

Lab 2: Code Composer Studio

USB Emulation Connection

¢ Create a new project

TEXAS INSTRUMENTS
Fnf~
¢ Use the LM Flash Programmer w77 Stellaris «

¢ Experiment with some CCS features

aunchPad

Agenda ...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio

2-7

Lab2: Code Composer Studio

Load the Lab 2 Project

Open Code Composer Studio

s
. :-’
1. Double click on the Code Composer shortcut on your desktop to start CCS. E :
When the “Select a workspace” dialog appears, browse to your My Documents folder:

(In WinXP) C:\Documents and Settings\<user>\My Documents

(In Win7) C:\Users\<user>\My Documents

Obviously, replace <user> with your own username. Click OK.

The name of your workspace isn’t critical, but let’s use MyWorkspaceLM4F120.

Do not check the “Use this as the default and do not ask again” checkbox. (If at some
point you accidentally check this box, it can be changed in CCS) The location of the
workspace folder is not important, but to keep your projects portable, you want to locate
it outside of the StellarisWare directory.

Note: The following screen captures show the correct options for WinXP. Few, if
any differences exist for Win7 and Vista.

" Workspace Launcher §|

Select a workspace

Code Composer Studio stores your projects in a folder called a workspace,
Choose a workspace folder to use for this session,

(IR : \Documents and Settings\a0 192895 kspa v| [Browse. ..

[Juse this as the default and do not ask again

Ok,] [Cancel

Click OK.

If you haven’t already licensed Code Composer, you’ll be asked to do so in the next few
installation steps. When that happens, select “Evaluation”. As long as your PC is
connected to the LaunchPad board, Code Composer will have full functionality, free of
charge. You can go back and change the license if needed by clicking Help = Code
Composer Studio Licensing Information > Upgrade tab > Launch License Setup...

When the “TI Resource Explorer” and/or “Grace” windows appear, close their tabs. At
this time these tools only support the MSP430.

2-8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio

Lab2: Code Composer Studio

Create Lab2 Project

2. Maximize Code Composer. On the CCS menu bar select File 2 New = CCS Project.
Make the selections shown below. Make sure to uncheck the “Use default location”
checkbox and select the correct path. This step is important to making your project
portable and in order for the links to work correctly. Type “120” in the variant box to
bring up the four versions of the device. Select “Empty Project (with main.c)” for the

project template. Click Finish.

¥ New CCS Project

CCS Project
Create a new CCS Project.

Project name: | Labz

Output type: | Executable

[Juse default location

Location: | Ci'\StellarisWare \boards MyLaunchPadBoard'Lab 2'ccs

Device

Famiy: | ARM

Variant: | 120

v | |stellaris LM4F 120H5GR

Connection: |Ste||aris In-Circuit Debug Interface

¥ Advanced settings

w Project templates and examples

ype filter text | Creates an empty project fully initialized for
the selected device. The project will contain
an empty ‘main.c’ source-file.

EI--- Empty Projects
: Empty Project
b E Empty Project {with main.c)

----- E Empty Aszembly-only Project
[Empty DSP/BIOS v5.x Project

------ [Empty RTSC Project
I';'I--- Basic Examples

- E Hello World

#-F= 16 and T/0 Evamnlag

I

MNext = L

m
[+T]
=

Finish J [Cancel

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio

2-9

Lab2: Code Composer Studio

The main. c file will be open in the editor tab. Delete the contents and type or
copy/paste the following code into the file. Don’t worry about the code now; we’ll go
over this in detail in lab 3. Note the question marks that appear to the left of the include
statements. These indicate that Code Composer does not know the path to these
resources. We’ll fix that in a moment.

{

#include "inc/hw_types.h"
#include "inc/hw memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"

int main (void)

int LED = 2;
SysCtlClockSet (SYSCTL SYSDIV 4|SYSCTL USE PLL|SYSCTL XTAL 16MHZ|SYSCTL OSC MAIN) ;

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF);
GPTIOPinTypeGPIOOutput (GPIO PORTF_BASE, GPIO PIN 1|GPIO PIN 2|GPIO PIN 3);

while (1)
{
// Turn on the LED
GPTOPinWrite (GPTO_PORTF BASE, GPTO PIN 1|GPTO_PIN 2|GPIO_PIN 3, LED);

// Delay for a bit
SysCtlDelay (2000000) ;

// Cycle through Red, Green and Blue LEDs
if (LED == 8) {LED = 2;} else {LED = LED*2;}

Click the Save button & on the menu bar to save your work. If you are having
problems, you can find this code in your Lab2/ccs folder in file main. txt.

If the indentation of your code doesn’t look right, press Ctrl-A (on your keyboard) to
select all the code. Then right-click on it and select Source = Correct Indentation.

Expand the project in the Project Explorer pane (on the left side of your screen) by
clicking the + or * next to Lab2. This list shows all the files that are used to build the
project. One of those files is startup ccs. c that we included in your lab folder (this
file is available in every StellarisWare example). Double-click on the file to open it for
editing. This file defines the stack and the interrupt vector table structure among other
things. These settings are essential for Code Composer to build your project. Close the
editor window by clicking on the X in the tab at the top of the editor window. Do not
save any changes if you accidentally made any.

2-10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio

Lab2: Code Composer Studio

Set the Build Options

5. Remember those question marks in the code? The next two steps will tell Code Composer
where to find the resources we need to compile the code.

Right-click on Lab2 in the Project Explorer pane and select Properties (the leftmost pane
in CCS). Click Include Options under ARM Compiler. In the bottom, include search

path pane, click the Add button] and add the following include search path. You may
want to copy/paste from the workbook pdf for the next two steps.

${PROJECT_ROOT}/...../..]..

® Properties for Lab2

| Include Options = -
Resource
General
= Build Configuration: |Debug [Active] v| [Manage Configurations...
= ARM Compiler
Processor Options
Optimization
Debug Options Specify a preindude file (—preinclude) £
Include Options
MISRA-C: 2004
Advanced Cptions
ARM Linker
Debug
Add dir to Finclude search path (—include_path, -I) & w8 i
"S${CG_TOOL _ROOT}/incude”
@ Show advanced settings OK] [Cancel

This path allows the compiler to correctly find the driverlib folder, which is four levels
up from your project folder. Note that if you did not place your project in the correct location,
this link will not work.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio 2 - 11

Lab2: Code Composer Studio

6. Under ARM Linker click File Search Path. Add the following include library file to the
top window:

${PROJECT_ROOT}/../...../../driverlib/ccs-cm4f/Debug/driverlib-cm4f.lib

% Properties for Lab2
| type filter text File Search Path

Resource
eneral
- Build
[ARM Compiler
. Processor Options

Configuration: |Debug [Active] V| [Manage Configurations...]

- Optimization

~ Debug Options Include library file or command file as input (--fibrary,) 28 8 &L

- Indude Options . -
libc.a

- MISRA-C: 2004 g

Lo Advanced Options

(=) ARM Linker

- Basic Options

- File Search Path

- Advanced Options

- Debug

Add <dir> to library search path (—search_path, - @ ID @ 'G| ,§|

"${CG_TOOL _ROCT}H/lib™

"S{CG_TOOL_ROOT} indude”

Reread libraries; resolve backward references (-reread_libs, -x)
[search libraries in priority order (--priarity, -priority)
[Disable automatic RTS selection {--disable_auto_rts)

L O] [Cancel

@ Show advanced settings

This step allows the linker to correctly find the lib file. Note that if you did not place your
project in the correct location, this link will not work either.

Click OK to save your changes.

2-12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio

Lab2: Code Composer Studio

Run the Code
7. Make sure that your LaunchPad board is plugged in. Check that Lab2 is the Active

Project by clicking on the project in the Project Explorer pane Click the Debug B
button on the CCS menu bar to build and download the L.ab2 project. When the process
completes, CCS will be in the Debug perspective. (Note the two tabs in the upper right of
your screen ... drag them to the left a little so you can see both of them completely) You
can create as many additional perspectives as you like for your specific needs. Only the
Debug and Edit perspectives are pre-defined.

8. Click the Run "™ button on the CCS menu bar to run the code. Observe the tri-color
LED blinking red, green, and blue on your LaunchPad board.

Some CCS Features

9. Click the Suspend " button on the CCS menu bar. If the code stops with a “No source
available ...” indication, click on the main.c tab. Most of the time in the while () loop
is spent inside the delay function and that source file is not linked into this project.

10. Breakpoints

In the code window in the middle of your screen, double-click in the gray area to the left
of the line number of the GPIOPinWrite () instruction to set a breakpoint (it will look

like this: |®). Click the Resume U¥ button to restart the code. The program will stop at
the breakpoint and you will see an arrow on the left of the line number, indicating that the
program counter has stopped on this line of code. Note that the current ICDI driver
does not support adding/removing breakpoints while the processor is running. Click
the Resume button a few times or press the F8 key to run the code. Observe the LED on
the LaunchPad board as you do this.

11. Register View

Click on View > Registers to see the core and peripheral register values. Resize the
window if necessary. Click on the plus sign on the left to view the registers. Note that
non-system peripherals that have not been enabled cannot be read. In this project you can
view Core Registers, GPIO_PORTA (where the UART pins are), GPIO_PORTF (where
the LEDs and pushbuttons are located), HIB, FLASH CTRL, SYSCTL and NVIC.

12. Memory View
Click on View -> Memory Browser to examine processor memory. Type 0x00 in the

entry box and press Enter. You can page through memory and you can click on a location
to directly change the value in that memory location.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio 2 - 13

Lab2: Code Composer Studio

13.

14.

Expressions View

Make sure that you can see the Expression pane in the upper right hand corner of your
screen. You may have to click on the Expressions tab. Right-click in the pane and select
Remove All to make sure there are no existing watch expressions.

In your code window, double-click on the variable LED around line 18. Right click on the
selected variable and select Add Watch Expression and then click OK. The window on
the upper right will switch to the Expression view and you should see the variable listed.
Run the code several times. Each time your code execution reaches the breakpoint, the
watch will update. Updated values are highlighted with a yellow background.

()= Variables | 57 Expressions 52 | 4} Registers 2k B | L %% or | £Y
Expression Type Value Address
()= LED int 2 (200000F8

ap Add new expression

Remove all the breakpoints you have set at once by clicking Run - Remove All
Breakpoints from the menu bar. Again, breakpoints can only be removed when the
processor is not running.

Click on Terminate ® to return to the editor perspective. Right-click on Lab2 in the
Project Explorer pane and select Close Project to close the project. Minimize CCS.

2 - 14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio

Lab2: Code Composer Studio

LM Flash Programmer

15. LM Flash Programmer is a standalone programming GUI that allows you to program the
flash of a Stellaris device through multiple ports. Creating the files required for this is a
separate build step in Code Composer that it shown on the next page.

If you have not done so already, install the LM Flash Programmer onto your PC.

16. Make sure that Code Composer Studio is not actively running code in the CCS Debug
perspective ... otherwise CCS and the Flash Programmer may conflict for control of the

USB port.

There should be a shortcut to the LM Flash Programmer on your ﬁ‘
desktop, double-click it to open the tool. If the shortcut does not appear, ——
go to Start > All Programs > Texas Instruments > Stellaris > LM Sl

Flash Programmer and click on LM Flash Programmer.

17. Your evaluation board should currently be running the Lab2 application. If the User LED
isn’t blinking, press the RESET button on the board. We’re going to program the original
application back into the LM4F120H5QR.

Click the Configuration tab. Select the LM4F120 LaunchPad from the Quick Set pull-
down menu under the Configuration tab. See the user’s guide for information on how to
manually configure the tool for targets that are not evaluation boards.

Configuration] Program] Flash Utilities | Other Utilities Help

Quick Set

|LM4F 120 LaunchPad]
Interface

Port: |ITAG

ICDI (Eval Board) |
Clock Source

5 16 MHz

' &000000

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio 2 - 15

Lab2: Code Composer Studio

18. Click on the Program tab. Then click the Browse button and navigate to:
C:\StellarisWare\boards\ek-1m4f120XL\gs-rgb\ccs\Debug\gs-rgb.bin

This is the application that was programmed into the flash memory of the LM4F120XL
during the evaluation board assembly process.

Note that there are applications here which have been built with each supported IDE.
Make sure that the following checkboxes are selected:

Options
Erase Method:
{* FErase Entire Flash - (faster)
" Erase Mecessary Pages - (slower)

[+ Verify After Program
v Reset MCU After Program

Program Address Offset: 0x |0

19. Click the Program button.

You should see the programming and verification status at the bottom of the window.
After these steps are complete, the quickstart application should be running on your
evaluation kit.

20. Close the LM Flash Programmer.

2-16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio

Lab2: Code Composer Studio

Optional: Creating a bin File for the Flash Programmer

If you want to create a bin file for use by the stand-alone programmer in any of the labs in
this workshop or in your own project, use these steps below. Remember that the project will
have to be open before you can change its properties.

In Code Composer 5.2 and Earlier:

In Code Composer, in the Project Explorer, right-click on your project and select Properties.
On the left, click Build and then the Steps tab. Paste the following commands into the Post-
build steps Command box:

"S{CCS_INSTALL_ROOT}/utils/tiobjZbin/tioijbin"
"S{BuildArtifactFileName}" "S${BuildArtifactFileBaseName}.bin"
"${CG_TOOL ROOT}/bin/ofd470" "${CG TOOL ROOT}/bin/hex470"
"${CCS_INSTALL ROOT}/utils/tiobj2bin/mkhex4bin"

In Code Composer 5.3 and Later:

In Code Composer, in the Project Explorer, right-click on your project and select Properties.
On the left, click Build and then the Steps tab. Paste the following commands into the Post-
build steps Command box:

"${CCS_INSTALL ROOT}/utils/tiobj2bin/tiobj2bin"
"S{BuildArtifactFileName}" "S${BuildArtifactFileBaseName}.bin"
"${CG_TOOL ROOT}/bin/armofd" "${CG TOOL ROOT}/bin/armhex"
"${CCS_INSTALL ROOT}/utils/tiobj2bin/mkhex4bin"

Each command is enclosed by quotation marks and there is a space between each one. These
steps will run after your project builds and the bin file will be in the ...Labx/ccs/debug folder.
You can access this in the CCS Project Explorer in your project by clicking the Debug folder.

You’re done.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio 2 - 17

Lab2: Code Composer Studio

Hints and Tips

There are several issues and errors that users commonly run into during the class. Here are a
few and their solutions:

1. Header files can’t be found

When you create the main.c file and include the header files, CCS doesn’t know the
path to those files and will tell you so by placing a question mark left of those lines.
After you change the Compiler and Linker options, these question marks should go
away and CCS should find the files during the build. If CCS reports that your header
files can’t be found, check the following:

a. Under the Project Properties click Resource on the left. Make sure that your
project is located in ...\MyLaunchPadBoard\Labx\ccs. If you located it in the
Lab9 folder you can adjust the Include and File Search paths. If you located
the project in the workspace, your best bet is to remake the project.

b. Under the Project Properties, click on Include Options. Make sure that you
added the correct search paths to the bottom window.

c. Under the Project Properties, click on File Search Path. Make sure that you
placed the path to the include library file(s) in the top window.

2. Unresolved symbols

This is usually the result of step 1¢ above or you are using a copy of the startup ccs.c
file that includes the ISR name used in the Interrupts lab. You’ll have to remove the
extern declaration and change the timer ISR link back to the default.

3. Frequency out of range

This usually means that CCS tried to connect to the evaluation board and couldn’t.
This can be the result of the USB drivers or a hardware issue:

Unplug and re-plug the board from your USB port to refresh the drivers.
b. Open your Device Manager and verify that the drivers are correctly installed.

c. Assure that your emulator cable is connected to the DEBUG microUSB port,
not the DEVICE port, and make sure the PWR SELECT switch is set to the
rightmost DEBUG position.

d. Your board should be connected by its orange emulator connector, not the
user connector. Also, check your USB cable. It may be faulty.

4. Error loading dll file

This can happen in Windows7 when attempting to connect to the evaluation board.
This is a Win7 driver installation issue and can be resolved by copying the files:
FTCJTAG.d11l and ftd2xx.d1l1 to:

C:\CCS5.x\ccsv5\ccs base\DebugServer\drivers

and

C:\Windows\System32

Download these files from http://www.ti.com/tool/Im ftdi driver .

2-18 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio

http://www.ti.com/tool/lm_ftdi_driver

Lab2: Code Composer Studio

5. Program run tools disappear in the Debug perspective

The tools aren’t part of the perspective, but part of the Debug window. Somehow you
closed the window. Click View = Debug from the menu bar.

6. CCS doesn’t prompt for a workspace on startup

You checked the “don’t ask anymore” checkbox. You can switch workspaces by
clicking File = Switch workspace ... or you can do the following: In CCS, click
Window - Preferences. Now click the + next to General, Startup and Shutdown, and

then click Workspaces. Check the “Prompt for workspace on startup” checkbox and
click OK.

7. The windows have changed in the CCS Edit or Debug perspective from the
default and you want them back

On the CCS menu bar, click Window = Reset Perspective ... and then Yes.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio 2 - 19

Lab2: Code Composer Studio

2-20 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Code Composer Studio

StellarisWare, Initialization and GPIO

Introduction

This chapter will introduce you to StellarisWare. The lab exercise uses StellarisWare API

functions to set up the clock, and to configure and write to the GPIO port.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers
ADC12
Hibernation Module
USB
Memory

Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA

StellarisWare...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization

Chapter Topics

Chapter Topics

StellarisWare, Initialization and GPIO 3-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 3-2
STEIIAVISWATC ... e e e 3-3
CLOCKITG ...ttt ettt ettt e ea ettt e ne e e et et e et enne e 3-5
GPIO ...ttt ettt ettt ettt e e reeneenne 3-7
Lab 3: Initialization and GPIOc....ocooeioeeeeeeeeeeeee e 3-9

L0 10} 1< 15 4R SRRUTSPRSR 3-9
PIOCEAUIE ..ottt ettt ettt e bt et e et esaee s st e st e esseanseenseesaensaenseenseensesnsesneesseanseenes 3-10

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization

StellarisWare

StellarisWare

StellarisWare®

/ License-free and Royalty-free source code\
for Tl Cortex-M devices:

+ Peripheral Driver Library
+ Graphics Library

+ USB Library

+ Ethernet stacks

_ + In-System Programming %

Features...

StellarisWare Features

Peripheral Driver Library

+ High-level API interface to complete peripheral set
License & royalty free use for Tl Cortex-M parts

+ Available as object library and as source code

Programmed in the on-chip ROM

(" USB Stacks and Examples 0
USB Device and Embedded Host compliant
Device, Host, OTG and Windows-side examples
_ ¢ Free VID/PID sharing program Y,
(" Ethernet) 2
+ Iwip and uip stacks with 1588 PTP modifications “
L + Extensive examples)
(" Extras N
SimpliciTl wireless protocol
+ 1Q math examples
Bootloaders
__* Windows side applications J ISP...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization 3-3

StellarisWare

In System Programming Options

/Stellaris Serial Flash Loader \

. Small piece of code that allows programming of the flash without the need for a
debugger interface.

* All Stellaris MCUs ship with this pre-loaded in flash

* UART or SSI interface option

* The LM Flash Programmer interfaces with the serial flash loader
\0 See application note SPMA029

)
/Stellaris Boot Loader \

* Preloaded in ROM or can be programmed at the beginning of flash to act
as an application loader

* Can also be used as an update mechanism for an application running on a
Stellaris microcontroller.

* Interface via UART (default), 12C, SSI, Ethernet, USB (DFU H/D)

* Included in the Stellaris Peripheral Driver Library with full applications

\ examples

Fundamental Clocks...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization

Clocking

Clocking

Fundamental Clock Sources

ﬂecision Internal Oscillator (PIOSC) \‘
/28
3

¢ 16 MHz £ 3% s

. 0 . ®y ‘\\4’”}—\
Main Oscillator (MOSC) using... /Ef 2\ 0

An external single-ended clock source 7 . R

¢ An external crystal W

Internal 30 kHz Oscillator

¢ 30 kHz + 50%

¢ Intended for use during Deep-Sleep power-saving modes
Hibernation Module Clock Source

¢ 32,768Hz crystal
K ¢ Intended to provide the system with a real-time clock source

SysClk Sources...

System (CPU) Clock Sources

ﬁl’he CPU can be driven by any of the fundamental clocks \

¢ Internal 16 MHz

¢ Main

¢ Internal 30 kHz

¢ External Real-Time

- Plus -

¢ The internal PLL (400 MHz)

Ko The internal 16MHz oscillator divided by four (4MHz + 3%) /
Clock Source Drive PLL? Used as SysClk?
Internal 16MHz Yes Yes
Internal 16Mhz/4 No Yes
Main Oscillator Yes Yes
Internal 30 kHz No Yes
Hibernation Module No Yes
PLL - Yes

Clock Tree...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization 3-5

Clocking

Stellaris Clock Tree

XTAL>
USBPWRDN®

USB PLL
(480 MHz)

XTAL®
PWRDNE

USB Clock

i
BN PLL [BveAss b |
4 L
—
)I_ ¢ System Clock
Precision)
Inte | OSC = E T
" i) .4 /
Internal OSG S
(30 kHz) -
— —— SSlIBaud Clock
<25
B Fmemanon .
osc OSCSRCE -
] 32.768 kH -
Bkt 2 [os™]
—— ADC Clock
driverLib APl SysCtiClockSet() selects: ¢ SYSDIV divider setting
¢ OSCorPLL
¢ Main or Internal oscillator
¢ Crystal frequency GPIO...

3-6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization

GPIO

GPIO

General Purpose 10

KAny GPIO can be an interrupt: \

¢ Edge-triggered on rising, falling or both
¢ Level-sensitive on high or low values

¢ Can directly initiate an ADC sample sequence or uDMA transfer

¢ Toggle rate up to the CPU clock speed on the Advanced
High-Performance Bus. 2 CPU clock speed on the Standard.

¢ 5V tolerant in input configuration

¢ Programmable Drive Strength (2, 4, 8mA or 8mA with slew rate
control)

¢ Programmable weak pull-up, pull-down, and open drain
¢ Pin state can be retained during Hibernation mode /

New Pin Mux GUI Tool: www.ti.com/StellarisPinMuxUtility

Masking...

www.ti.com/StellarisPinMuxUtility

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization

http://www.ti.com/StellarisPinMuxUtility

GPIO

GPIO Address Masking

Each GPIO port has a base address. You can write an 8-bit value directly to this base
address and all eight pins are modified. If you want to modify specific bits, you can use a
bit-mask to indicate which bits are to be modified. This is done in hardware by mapping
each GPIO port to 256 addresses. Bits 9:2 of the address bus are used as the bit mask.

/ GPIO Port D (0x4005.800(N
The register we want to change is GPIO Port D (0x4005.8000) mmmnnnmn

Current contents of the register is:

Write Value (0xEB)

The value we will write is OXEB: N ENEE

Instead of writing to GPIO Port D directly, write to l l
0x4005.8098. Bits 9:2 (shown here) become a bit-mask ---;|0|0|0|0|1 |0|0|1 |1 |0|0|0|

for the value you write.

Only the bits markiﬂ::g‘gc‘i"in the bit-mask are |0|0|1 |1 |1 |0|1 |1 I

New value in GPIO Port D (note
\ that only the red bits were writtey

GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_5|GPIO_PIN_2|GPIO_PIN_1, 0xEB);

Note: you specify base address, bit mask, and value to write.
The GIPOPinWrite() function determines the correct address for the mask.

Lab...

The masking technique used on ARM Cortex-M GPIO is similar to the “bit-banding” technique
used in memory. To aid in the efficiency of software, the GPIO ports allow for the modification
of individual bits in the GPIO Data (GPIODATA) register by using bits [9:2] of the address bus
as a mask. In this manner, software can modify individual GPIO pins in a single, atomic read-
modify-write (RMW) instruction without affecting the state of the other pins. This method is
more efficient than the conventional method of performing a RMW operation to set or clear an
individual GPIO pin. To implement this feature, the GPIODATA register covers 256 locations in
the memory map.

3-8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

Lab 3: Initialization and GPIO
Objective

In this lab we’ll learn how to initialize the clock system and the GPIO peripheral. We’ll then use
the GPIO output to blink an LED on the evaluation board.

Lab 3: Initialization and GPIO

USB Emulation Connection

¢ Configure the system clock

¢ Enable and configure GPIO ‘ * Texas INs‘r:ngms
= S 030~
¢ Use a software delay to toggle an LED Fe Ol A7 stellaris o
on the evaluation board gunchPad

Agenda ...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization 3-9

Lab 3: Initialization and GPIO

Procedure

Create Lab3 Project

Maximize Code Composer. On the CCS menu bar select File = New = CCS Project.
Make the selections shown below. Make sure to uncheck the “Use default location”
checkbox and select the correct path to the “ccs” folder you created. This step is
important to make your project portable and in order for the include paths to work
correctly. In the variant box, just type “120” to narrow the results in the right-hand box.

In the Project templates and examples window, select Empty Project (with main.c). Click
Finish.

% New CCS Project - BX
CCS Project =
Create a new CCS Project.] /

Project name: | Lab3 |

Cutput type: | Executable w |

[Juse default location

Location: | Custellarisvare \boards|MyLaunchPadBoard \Lab3\ocs | ’ Browse...]
Device
Famiy: | ARM v/
Variant: | 120 ~ | | stellaris LM4F 120H5QR v|
Connection; |Stellaris In-Circuit Debug Interface b |

b Advanced settings

= Project templates and examples

| Creates an empty project fully initialized for
— the selected device. The project will contain
&= Empty Projects || | an empty 'main.c’ source-file,

E Empty Project
=
E Empty Assembly-only Project
|5 Empty DSP/BIOS v5.x Praject
[Empty RTSC Project

(=-[5] Basic Examples
E Hello World

#-=] 18 and Tin Fvamnlas —

@ [Fnsh][conel]

When the wizard completes, close the Grace tab if it appears, then click the + or * next
to Lab3 in the Project Explorer pane to expand the project. Note that Code Composer has
automatically added main. c file to your project. We placed startup ccs.c in the
folder beforehand, so it was automatically added to the project. We also placed a file
called main. txt in the folder which contains the final code for the lab. If you run into
trouble, you can refer to this file.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

Header Files

2. Delete the current contents of main. c. Type (or cut/paste from the pdf file) the
following lines into main. ¢ to include the header files needed to access the
StellarisWare APIs as well as a variable definition:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"

int PinData=2;

hw_memmap . h : Macros defining the memory map of the Stellaris device. This includes
defines such as peripheral base address locations such as GPIO PORTF BASE.

hw_types.h : Defines common types and macros such as tBoolean and HWREG(x).

sysctl.h: Defines and macros for System Control API of DriverLib. This includes
API functions such as SysCtlClockSet and SysCtlClockGet.

gpio.h : Defines and macros for GPIO API of DriverLib. This includes API functions
such as GPIOPinTypePWM and GPIOPinWrite.

int PinData=2;: Creates an integer variable called PinData and initializes it to 2.
This will be used to cycle through the three LEDs, lighting them one at a time.

You will see question marks to the left of the include lines in main. c displayed in Code
Composer. We have not yet defined the path to the include folders, so Code Composer
can’t find them. We’ll fix this later.

Main() Function

3. Next, we’ll drop in a template for our main function. Leave a line for spacing and add
this code after the previous declarations:

int main (void)
{
}

If you type this in, notice that the editor will add the closing brace when you add the
opening one. Why wasn’t this thought of sooner?

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization 3-11

Lab 3: Initialization and GPIO

Clock Setup

4. Configure the system clock to run using a 16 MHz crystal on the main oscillator, driving
the 400MHz PLL. The 400MHz PLL oscillates at only that frequency, but can be driven
by crystals or oscillators running between 5 and 25MHz. There is a default /2 divider in
the clock path and we are specifying another /5, which totals 10. That means the System
Clock will be 40MHz. Enter this single line of code inside main ():

SysCtlClockSet (SYSCTL_SYSDIV_5|SYSCTL USE_ PLL|SYSCTL XTAL 16MHZ|SYSCTL OSC_MAIN) ;

The diagram below is an abbreviated drawing of the clock tree to emphasize the System
Clock path and choices.

l I"

Main OSC 14012' MHZ) UART Bansd Clock
Sysbem Clock
Intermal OSC I
= EP
L - -
intemal OSC
(30 kHz) r - 5o Bawd Clock
- 3
I osc C'-»-CSR'C ;
(32.768 kHz) __

The diagram below is an excerpt from the LaunchPad board schematic. Note that the
crystal attached to the main oscillator inputs is 16MHz, while the crystal attached to the
real-time clock (RTC) inputs is 32,768Hz.

o0
RESET
—
| T JTEREEn
c12
— R T
oMT
— L
- — —E FEEET WAREE-
] - 21 s AERE
050 -
2 VBAT—
§3e S xasco 5
—38 | GNDX VDDA =
Y2 ﬁu_ g;u_ EEE——— P 5.5 8] 1"
ke 8% | 8% voo 2
3 2
O HHH e BES
I doe &
—212 o
c31 —— caz 27 | o
T WeF T 10eF iD} T ey vope -2
I vooo 22
J2 768K
L 1 i LM4F120

3-12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

GPIO Configuration

5. Before calling any peripheral specific driverLib function, we must enable the clock
for that peripheral. If you fail to do this, it will result in a Fault ISR (address fault).This is
a common mistake for new Stellaris users. The second statement below configures the
three GPIO pins connected to the LEDs as outputs. The excerpt below of the LaunchPad
board schematic shows GPIO pins PF1, PF2 and PF3 are connected to the LEDs.

s
pF1 22 FED
PF2 -2 PET
PF3 | 2] E
PF4 -2 PE3
iPE4,
LVAF120
0o, R e .
TRAAAS:# {USR _SW2!
VW ED
TVVV—F{Q ED.B
TRAAA K ;:IFI’!(“ .
—WW USR_SWi

Leave a line for spacing, then enter these two lines of code inside main () after the line
in the previous step.

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF) ;
GPIOPinTypeGPIOOutput (GPIO PORTF BASE, GPIO PIN 1|GPIO_PIN 2|GPIO_PIN 3);

The base addresses of the GPIO ports listed in the User Guide are shown below. Note
that they are all within the memory map’s peripheral section shown in module 1. APB
refers to the Advanced Peripheral Bus, while AHB refers to the Advanced High-
Performance Bus. The AHB offers better back-to-back performance than the APB bus.
GPIO ports accessed through the AHB can toggle every clock cycle vs. once every two
cycles for ports on the APB. In power sensitive applications, the APB would be a better
choice than the AHB. In our labs, GPIO PORTF BASE is 0x40025000.

GPIO Port A (APB): 0x4000.4000
GPIO Port A (AHB): 0x4005.8000
GPIO Port B (APB): 0x4000.5000
GPIO Port B (AHB): 0x4005.9000
GPIO Port C (APB): 0x4000.6000
GPIO Port C (AHB): 0x4005.A000
GPIO Port D (APB): 0x4000.7000
GPIO Port D (AHB): 0x4005.B000
GPIO Port E (APB): 0x4002.4000
GPIO Port E (AHB): 0x4005.C000
GPIO Port F (APB): 0x4002.5000 <:

GPIO Port F (AHB): 0x4005.D000

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization 3-13

Lab 3: Initialization and GPIO

While() Loop

6. Finally, create a while (1) loop to send a “1”” and “0” to the selected GPIO pin, with an

equal delay between the two.

SysCtlDelay () is a loop timer provided in StellarisWare. The count parameter is the
loop count, not the actual delay in clock cycles.

To write to the GPIO pin, use the GPIO API function call GPIOPinWrite. Make sure to
read and understand how the GPIOPinWrite function is used in the Datasheet. The third
data argument is not simply a 1 or 0, but represents the entire 8-bit data port. The second
argument is a bit-packed mask of the data being written.

In our example below, we are writing the value in the PinData variable to all three GPIO
pins that are connected to the LEDs. Only those three pins will be written to based on the
bit mask specified. The final instruction cycles through the LEDs by making PinData
equal to 2, 4, 8, 2, 4, 8 and so on. Note that the values sent to the pins match their
positions; a “one” in the bit two position can only reach the bit two pin on the port.

Now might be a good time to look at the Datasheet for your Stellaris device. Check out
the GPIO chapter to understand the unique way the GPIO data register is designed and
the advantages of this approach.

Leave a line for spacing, and then add this code after the code in the previous step.

while (1)

{

GPIOPinWrite (GPIO_PORTF_BASE, GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3, PinData);
SysCtlDelay (2000000) ;

GPIOPinWrite (GPIO_ PORTF BASE, GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3, 0x00);
SysCtlDelay (2000000) ;

if (PinData==8) {PinData=2;} else {PinData=PinData*2;}

If you find that the indentation of your code doesn’t look quite right, select all of your
code by clicking CTRL-A and then right-click on the selected code. Select Source >
Correct Indentation. Also notice the other great stuff under the Source and Surround
With selections.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

7. Click the Save button to save your work. Your code should look something like this:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
int PinData=2;

int main(void)
{
SySCthlockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLLISYSCTL_XTAL_16MHZISYSCTL_OSC_MAIN);

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF);
GPIOPinTypeGPIOOutput (GPIO PORTF BASE, GPIO PIN 1|GPIO PIN 2|GPIO PIN 3);

while (1)

{
GPIOPinWrite(GPIOiPORTFiBASE, GPIOiPINil|GPIOiPIN72IGP107PIN73, PinData) ;
SysCtlDelay (2000000) ;
GPIOPinWrite (GPIO PORTF BASE, GPIO PIN 1|GPIO PIN 2|GPIO PIN 3, 0x00);
SysCtlDelay (2000000) ;
if (PinData==8) {PinData=2;} else {PinData=PinData*2;}

Sorry about the small font here, but any larger font made the SysCt1ClockSet ()
instruction look strange. If you’re having problems, you can cut/paste this code into main.c
or you can cut/paste from the main.txt file in your Lab3/ccs folder.

If you were to try building this code now (please don’t), it would fail. Note the question
marks next to the include statements ... CCS has no idea where those files are located. We
still need to add the start up code and set our build options.

Startup Code

8. In addition to the main file you have created, you will also need a startup file specific to
the tool chain you are using. This file contains the vector table, startup routines to copy
initialized data to RAM and clear the bss section, and default fault ISRs. We included this
file in your folder.

Double-click on startup_ccs.c in your Project Explorer pane and take a look
around. Don’t make any changes at this time.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization 3-15

Lab 3: Initialization and GPIO

Set the Build Options
9. Right-click on Lab3 in the Project Explorer pane and select Properties. Click Include
Options under ARM Compiler. In the bottom, include search path pane, click the Add
button] and add the following search path:

${PROJECT_ROOT}/...../..]..

If you followed the instructions when you created the Lab3 project, this path, 4 levels
above the project folder, will give your project access to the inc and driverlib

folders. Otherwise you will have to adjust the path. You can check it for yourself using
Windows Explorer.

Avoid typing errors and copy/paste from the workbook pdf for this and the next
step.

'# Properties for Lab3

| type filter text Include Options = =
[#- Resource
- General
E| Build Configuration: |DEbUQ [Active]
| & ARM Compiler
rocessor Options
Optimization
ebug Options
nclude Options
MISRA-C: 2004
[Advanced Cptions
ARM Linker

V| [Manage Configurations...]

Specify a preindude file (--preinclude) @ ID @ 'G| §|

Add dir to #indude search path (—-indude_path, -I) @ ID @ GI §|

@ Show advanced settings [OK] [Cancel

Click OK. After a moment, CCS will refresh the project and you should see the question
marks disappear from the include lines in main. c.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

10. Right-click on Lab3 again in the Project Explorer pane and select Properties. Under
ARM Linker, click File Search Path. We need to provide the project with the path to
the MA4F libraries. Add the following include library file to the top window:

${PROJECT_ROOT}/../...../../[driverlib/ccs-cm4f/Debug/driverlib-cm4f.lib

Of course, if you did not follow the directions when creating the Lab3 project, this path
will have to be adjusted like the previous one.

%’ Properties for Lab3

| type filter text File Search Path P =7

[#- Resource

- General
- Build Configuration: |Debug [Active] V| [Manage Configurations. ..]
. [ARM Compiler
= ARM Linker
; - Basic Options
File Search Path Indlude library file or command file as input (—library,) & = 8 'ﬁ| §|
; [#- Advanced Options Tbc.a™
i Debug "S{PROJECT_ROQTH.. [/.. /.. fdriverlibjccs-cm4f Debugfdriverlib-cm4f ib™

Add <dir> to library search path (-search_path, -} & = 8 'ﬁ| §|

"${CG_TOOL ROOTHlib™

"${CG_TOOL_ROOT}/include”™

[¥]Reread libraries; resolve backward references (-reread_libs, -x)
[search libraries in priority order {~priority, -priority)
[Disable automatic RTS selection (--disable_auto_rts)

@ Show advanced settings L OK.] [Cancel

Click OK to save your changes.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization 3-17

Lab 3: Initialization and GPIO

Compile, Download and Run the Code

11. Compile and download your application by clicking the Debug button %% on the menu
bar. If you are prompted to save changes, do so. If you have any issues, correct them, and
then click the Debug button again (see the hints page in section 2). After a successful
build, the CCS Debug perspective will appear.

Click the Resume button "™ to run the program that was downloaded to the flash
memory of your device. You should see the LEDs flashing. If you want to edit the code
to change the delay timing or which LEDs that are flashing, go ahead.

If you are playing around with the code and get the message “No source available for
... 7, close that editor tab. The source code for that function is not present in our project. It
is only present as a library file.

Click on the Terminate button ™ to return to the CCS Edit perspective.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

Examine the Stellaris Pin Masking Feature
Note that the following steps differ slightly from the workshop video.
12. Let’s change the code so that all three LEDs are on all the time. Make the following
changes:

Find the line containing int PinData=2; and changeitto int PinData=14;

Find the line containing 1 f (PinData ... and comment it out by adding // to the start
of the line.

Save your changes.

13. Compile and download your application by clicking the Debug button %% on the menu

bar. Click the Resume button ¥ to run the code. With all three LEDs being lit at the
same time, you should see them flashing an almost white color.

14. Now let’s use the pin masking feature to light the LEDs one at the time. We don’t have to
go back to the CCS Edit perspective to edit the code. We can do it right here. In the code
window, look at the first line containing GPIOPinWrite () . The pin mask here is
GPIO_PIN 1| GPIO_PIN 2| GPIO PIN 3, meaning that all three of these bit
positions, corresponding to the positions of the LED will be sent to the GPIO port.
Change the bit mask to GPTIO PIN 1. The line should look like this:

GPIOPinWrite (GPIO PORTF BASE, GPIO PIN 1, PinData);

15. Compile and download your application by clicking the Debug button %% on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to flash:

Click the Resume button "™ If you predicted red, you were correct.

16. In the code window, change the first GPIOPinWrite() line to:

GPIOPinWrite (GPIO PORTF BASE, GPIO PIN 2, PinData);

17. Compile and download your application by clicking the Debug button %% on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to flash:

Click the Resume button ¥ If you predicted blue, you were correct.

18. In the code window, change the first GPIOPinWrite() line to:

GPIOPinWrite (GPIO PORTF BASE, GPIO PIN 3, PinData);

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization 3-19

Lab 3: Initialization and GPIO

19.

20.

21.

22.

Compile and download your application by clicking the Debug button %% on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to flash:

Click the Resume button "™ If you predicted green, you were correct.

Change the code back to the original set up: Make the following changes:
Find the line containing int PinDatal4; and changeitto int PinData=2;

Find the line containing i f (PinData ... and uncomment it

Find the line containing the first GPIOPinWrite() and change it back to:

GPIOPinWrite (GPIO PORTF BASE, GPIO PIN 1| GPIO PIN 2| GPIO_PIN 3, PinData);

Compile and download your application by clicking the Debug button %% on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes. Click the Resume button ™ and verify that the
code works like it did before.

Homework idea: Look at the use of the ButtonsPoll () APIcall inthe gs-rgb.c
file in the quickstart application (gqs-rgb) folder. Write code to use that API function to
turn the LEDs on and off using the pushbuttons.

You’re done.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Initialization

Interrupts and the Timers

Introduction

This chapter will introduce you to the use of interrupts on the ARM® Cortex-M4" and the general
purpose timer module (GPTM). The lab will use the timer to generate interrupts. We will write a
timer interrupt service routine (ISR) that will blink the LED.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers
ADC12
Hibernation Module
USB
Memory

Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA

NVIC...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers 4-1

Chapter Topics

Chapter Topics

Interrupts and the Timers 4-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 4-2
COTLEX-ME INVIC ...ttt ettt ettt et ettt et et e en et et e e e enneennen 4-3
Cortex-M4 Interrupt Handing GNd VECOFS............cc.cccuioiiiiiieiieie ettt 4-7
Genral Purpose Timer MOGUIEcccooeuiiiiieeieieiie ettt sve e saseesebaeenaee e 4-9
Lab 4: Interrupts And the TIMETccuoceeiiiuieeiie ettt et e st e b e eseesbeeenseeenseas 4-10

L0 10} 115 AR 4-10
PIOCEAULIE ...ttt ettt ettt bbbt ea ettt st b e s bt bt et e st e e nae b e 4-11

4-2

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers

Cortex-M4 NVIC

Cortex-M4 NVIC
Nested Vectored Interrupt Controller (NVIC)

Handles exceptions and interrupts \
8 programmable priority levels, priority grouping

7 exceptions and 65 Interrupts

Automatic state saving and restoring

Automatic reading of the vector table entry
Pre-emptive/Nested Interrupts

Tail-chaining

Deterministic: always 12 cycles or 6 with tail-chaining /

K000000>

Motor control ISRs (e.g. PWM, ADC)

Communication ISRs (e.g. CAN)

Main 1pp|ication (foreground)
t

Tail Chaining...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers 4-3

Cortex-M4 NVIC

Interrupt Latency - Tail Chaining

o N

Priority | TRQ1

1RQ2

Tail-chaining

Cortex-M4 - ISR 1 l ISR 2
InterruptHl‘\zndlmg in * 12 # # 6 }« F 12 »‘

k Cycles Cycles Cycles /

Pre-emption ...

In the above example, two interrupts occur simultaneously.

In most processors, interrupt handling is fairly simple and each interrupt will start a

PUSH PROCESSOR STATE — RUN ISR — POP PROCESSOR STATE process. Since IRQ1 was
higher priority, the NVIC causes the CPU to run it first. When the interrupt handler (ISR) for the
first interrupt is complete, the NVIC sees a second interrupt pending, and runs that ISR. This is
quite wasteful since the middle POP and PUSH are moving the exact same processor state back
and forth to stack memory. If the interrupt handler could have seen that a second interrupt was
pending, it could have “tail-chained” into the next ISR, saving power and cycles.

The Stellaris NVIC does exactly this. It takes only 12 cycles to PUSH and POP the processor
state. When the NVIC sees a pending ISR during the execution of the current one, it will “tail-
chain” the execution using just 6 cycles to complete the process.

If you are depending on interrupts to be run quickly, the Stellaris devices offer a huge advantage
here.

4-4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers

Cortex-M4 NVIC

Interrupt Latency — Pre-emption

Priority IRQ1

~

IRQ2

Typical processor ISR 1 POP m POP

Cortex-M4 [ISR 1 m ISR 2
| Dy 12~

k | Cyicfes‘ Cycles Cycles /

Late arrival...

In this example, the processor was in the process of popping the processor status from the stack
for the first ISR when a second ISR occurred.

In most processors, the interrupt controller would complete the process before starting the entire
PUSH-ISR-POP process over again, wasting precious cycles and power doing so.

The Stellaris NVIC is able to stop the POP process, return the stack pointer to the proper location
and “tail-chain” into the next ISR with only 6 cycles.

Again, this is a huge advantage for interrupt handling on Stellaris devices.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers 4-5

Cortex-M4 NVIC

Interrupt Latency — Late Arrival

-

Priority

o

Highest| IRQ1———

~

IRQ2

Typical processor -

Cortex-M4 . ISR1

ISR 2

6l 12+

Cycles Cycles

/

Interrupt handling...

In this example, a higher priority interrupt has arrived just after a lower priority one.

In most processors, the interrupt controller is smart enough to recognize the late arrival of a

higher priority interrupt and restart the interrupt procedure accordingly.

The Stellaris NVIC takes this one step further. The PUSH is the same process regardless of the
ISR, so the Stellaris NVIC simply changes the fetched ISR. In between the ISRs, “tail chaining”

is done to save cycles.

Once more, Stellaris devices handle interrupts with lower latency.

4-6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers

Cortex-M4 Interrupt Handing and Vectors

Cortex-M4 Interrupt Handing and Vectors

Cortex-M4® Interrupt Handling

Interrupt handling is automatic. No instruction overhead.

(Entry h
¢ Automatically pushes registers R0O-R3, R12, LR, PSR, and PC onto the
stack
¢ In parallel, ISR is pre-fetched on the instruction bus. ISR ready to start
_ executing as soon as stack PUSH complete)
(" Exit N
¢ Processor state is automatically restored from the stack
In parallel, interrupted instruction is pre-fetched ready for execution
upon completion of stack POP
Exception types...
Cortex-M4® Exception Types
Vector Exception Priority Vector Descriptions
Number Type address
1 Reset -3 0x04 Reset
2 NMI -2 0x08 Non-Maskable Interrupt
3 Hard Fault -1 0x0C Error during exception processing
4 Memory Programmable 0x10 MPU violation
Management
Fault
5 Bus Fault Programmable 0x14 Bus error (Prefetch or data abort)
6 Usage Fault Programmable 0x18 Exceptions due to program errors
7-10 Reserved - 0x1C - 0x28
1" Svcall Programmable 0x2C SVC instruction
12 Debug Monitor | Programmable 0x30 Exception for debug
13 Reserved - 0x34
14 PendSV Programmable 0x38
15 SysTick Programmable 0x3C System Tick Timer
16 and above | Interrupts Programmable 0x40 External interrupts (Peripherals)

Vector Table...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers

4-7

Cortex-M4 Interrupt Handing and Vectors

Cortex-M4® Vector Table
Exception number IRQ number Offset Vector
154 138 IRQ131
0x0268
ﬂfter reset, vector table is located at \ . RS .
address 0 : - -
0x004C
18 2 IRQ2
X 0x0048
« Each entry contains the address of the 7 ! 0x0044 IRa1
function to be executed e O 00 IR0
15 -1 Systick
0x003C
i) 14 -2 PendSV
¢ The value in address 0x00 is used as 13 0x0038 Reserved
starting address of the Main Stack 12 Reserved for Debug
Pointer (MSP) 11 5 SvCal
0x002C
10
¢ Vector table can be relocated by writing 9 Reserved
to the VTABLE register 8
(must be aligned on a 1KB boundary) 7
6 -10 Usage fault
0x0018
5 1 ’ Bus fault
¢ Open startup_ccs.c to see vector table 4 PR T ——
i 0x0010
Qdmg 3 -13 Hard fault
0x000C
2 -14 NMI
0x0008
1 0x0004 Reset
Initial SP value
0x0000
GPTM...

4-8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers

General Purpose Timer Module

General Purpose Timer Module

General Purpose Timer Module

ﬁSix 16/32-bit and Six 32/64-bit general purpose timers \
¢ Twelve 16/32-bit and Twelve 32/64-bit capture/compare/PWM pins
¢ Timer modes:
- One-shot
- Periodic
- Input edge count or time capture with 16-bit prescaler NS

- PWM generation (separated only) : 8
- Real-Time Clock (concatenated only) 4

Count up or down) -]
¢ Simple PWM (no deadband generation)

¢ Support for timer synchronization, daisy-chains, and stalling
during debugging

¢ May trigger ADC samples or DMA transfers /

Lab...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers 4-9

Lab 4: Interrupts and the Timer

Lab 4: Interrupts and the Timer

Objective

In this lab we’ll set up the timer to generate interrupts, and then write the code that responds to
the interrupt ... flashing the LED. We’ll also experiment with generating an exception, by
attempting to configure a peripheral before it’s been enabled.

Lab 4: Interrupts and the GP Timer

USB Emulation Connection

¢ Enable and configure the Timer

¢ Enable and configure Interrupts , ™ —

+ Write the ISR code and test P8 g Fnf~
. i w77 Stellaris'

¢ Generate an exception gunchPad

Agenda ...

4-10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers

Lab 4: Interrupts and the Timer

Procedure

Import Lab4 Project

1. We have already created the Lab4 project for you with an empty main. c, a startup file
and all necessary project and build options set. Maximize Code Composer and click
Project = Import Existing CCS Eclipse Project. Make the settings show below and click
Finish. Make sure that the “Copy projects into workspace” checkbox is unchecked.

% Import CCS Eclipse Projects |._||‘E|[Z|
Select Existing CCS Eclipse Project _h*
Select a directory to search for existing CCS Eclipse projects, rﬁ
-
() select search-directory: | Cstellarisware \hoards\MyLaunchPadBoard \Lab4\ocs | [Browse,..]
() select archive file: | |

Discovered projects:

BT Lab4 [C:\stellarisWare \boards MyLaunchPadBoard\Lab4\ccs] Select Al
Deselect Al

Refresh

fllt

|:| Copy projects into workspace
[] automatically import referenced projects

Cpen the Resource Explorer and browse available example projects. ..

@ Finish] [Cancel

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers 4-11

Lab 4: Interrupts and the Timer

Header Files

2. Expand the lab by clicking the + or * to the left of Lab4 in the Project Explorer pane.

Open main.c for editing by double-clicking on it. Type (or copy/paste) the following
seven lines into main . c to include the header files needed to access the StellarisWare
APIs :

#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/interrupt.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"

hw_ints.h : Macros that define the interrupt assignment on Stellaris devices (NVIC)

hw_memmap . h : Macros defining the memory map of the Stellaris device. This includes
defines such as peripheral base address locations, e.g., GPIO PORTF BASE

hw_types.h : Defines common types and macros such as tBoolean and HWREG(x)

sysctl.h: Defines and macros for System Control API of driverLib. This includes
API functions such as SysCtlClockSet and SysCtlClockGet.

interrupt.h : Defines and macros for NVIC Controller (Interrupt) API of DriverLib.
This includes API functions such as IntEnable and IntPrioritySet.

gpio.h : Defines and macros for GPIO API of driverLib. This includes API functions
such as GPIOPinTypePWM and GPIOPinWrite.

timer.h : Defines and macros for Timer API of driverLib. This includes API functions
such as TimerConfigure and TimerLoadSet.

4-12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers

Lab 4: Interrupts and the Timer

Main() Function

3. We’re going to compute our timer delays using the variable Period. Create main()
along with an unsigned-long variable (that’s why the variable is called ulPeriod) for this
computation. Leave a line for spacing and type (or cut/paste) the following after the
previous lines:

int main (void)

{

unsigned long ulPeriod;

Clock Setup

4. Configure the system clock to run at 40MHz (like in Lab3) with the following call.

Leave a blank line for spacing and enter this line of code inside main ():

SysCtlClockSet (SYSCTL SYSDIV_5|SYSCTL _USE PLL|SYSCTL XTAL 16MHZ|SYSCTL_OSC MAIN) ;

GPIO Configuration

5. Like the previous lab, we need to enable the GPIO peripheral and set the pins connected
to the LEDs as outputs. Leave a line for spacing and add these lines after the last ones:

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF) ;
GPIOPinTypeGPIOOutput (GPIO_PORTF_BASE, GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3);

Timer Configuration

6. Again, before calling any peripheral specific driverLib function we must enable the clock
to that peripheral (RCGCn register). If you fail to do this, it will result in a Fault ISR
(address fault). The second statement configures Timer 0 as a 32-bit timer in periodic
mode. Note that when Timer 0 is configured as a 32-bit timer, it combines the two 16-bit
timers Timer OA and Timer OB. See the General Purpose Timer chapter of the device
datasheet for more information. TIMERO BASE is the start of the timer registers for
TimerO0 in, you guessed it, the peripheral section of the memory map. Add a line for
spacing and type the following lines of code after the previous ones:

SysCtlPeripheralEnable (SYSCTL PERIPH TIMERO) ;
TimerConfigure (TIMERO BASE, TIMER CFG_32 BIT PER);

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers 4-13

Lab 4: Interrupts and the Timer

Calculate Delay

7. To toggle a GPIO at 10Hz and a 50% duty cycle, you need to generate an interrupt at /2
of the desired period. First, calculate the number of clock cycles required for a 10Hz
period by calling SysCtlClockGet() and dividing it by your desired frequency. Then
divide that by two, since we want a count that is % of that for the interrupt.

This calculated period is then loaded into the Timer’s Interval Load register using the
TimerLoadSet function of the driverLib Timer API. Note that you have to subtract one
from the timer period since the interrupt fires at the zero count.

Add a line for spacing and add the following lines of code after the previous ones:

ulPeriod = (SysCtlClockGet() / 10) / 2;
TimerLoadSet (TIMERO BASE, TIMER A, ulPeriod -1);

Interrupt Enable

8. Next, we have to enable the interrupt ... not only in the timer module, but also in the
NVIC (the Nested Vector Interrupt Controller, the Cortex M4’s interrupt controller).
IntMasterEnable is the master interrupt enable for all interrupts. IntEnable enables the
specific vector associated with the Timer. TimerIntEnable, enables a specific event
within the timer to generate an interrupt. In this case we are enabling an interrupt to be
generated on a timeout of Timer 0A. Add a line for spacing and type the following three
lines of code after the previous ones:

IntEnable (INT_TIMEROA) ;
TimerIntEnable (TIMERO_BASE , TIMER_TIMA_TIMEOUT) ;
IntMasterEnable() ;

Timer Enable

9. Finally we can enable the timer. This will start the timer and interrupts will begin

triggering on the timeouts. Add a line for spacing and type the following line of code
after the previous ones:

TimerEnable (TIMERO BASE, TIMER A);

Main Loop

10. The main loop of the code is simply an empty while(1) since the toggling of the GPIO
will happen in the interrupt routine. Add a line for spacing and add the following lines of
code after the previous ones:

while (1)
{
}

4-14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers

Lab 4: Interrupts and the Timer

Timer Interrupt Handler

11. Since this application is interrupt driven, we must add an interrupt handler for the Timer.
In the interrupt handler, we must first clear the interrupt source and then toggle the GPIO
pin based on the current state. Just in case your last program left any of the LEDs on, the
first GRIOPinWrite () call turns off all three LEDs. Writing a 4 to pin 2 lights the blue
LED. Add a line for spacing and add the following lines of code after the final closing
brace of main () .

void TimerOIntHandler (void)

{

// Clear the timer interrupt
TimerIntClear (TIMERO_BASE, TIMER TIMA TIMEOUT) ;

// Read the current state of the GPIO pin and
// write back the opposite state

if (GPIOPinRead (GPIO_PORTF BASE, GPIO PIN 2))

{
GPIOPinWrite (GPIO_PORTF_BASE, GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3, 0);

}

else

{
GPIOPinWrite (GPIO PORTF BASE, GPIO PIN 2, 4);
}

}

If your indentation looks wrong, remember how we corrected it in the previous lab.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers 4-15

Lab 4: Interrupts and the Timer

12.

Click the Save button to save your work. Your code should look something like this:

#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/interrupt.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"

int main(void)
{

unsigned long ulPeriod;
SysCtlClockSet (SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL XTAL_16MHZ|SYSCTL_OSC_MAIN) ;

SysCtlPeripheralEnable (SYSCTL_ PERIPH GPIOF) ;
GPIOPinTypeGPIOOutput (GPIO_PORTF_BASE, GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3);

SysCtlPeripheralEnable (SYSCTL_PERIPH_TIMERO) ;
TimerConfigure (TIMERO BASE, TIMER CFG_32 BIT PER);

ulPeriod = (SysCtlClockGet() / 10) / 2;
TimerLoadSet (TIMERO BASE, TIMER A, ulPeriod -1);

IntEnable (INT_TIMEROA) ;
TimerIntEnable(TIMERO_BASE, TIMER_IIMA_IIMEOUT);
IntMasterEnable () ;

TimerEnable (TIMERO_BASE, TIMER A);

while (1)
{
}

}

void TimerOIntHandler (void)

{
// Clear the timer interrupt
TimerIntClear(TIMERO_BASE, TIMER_IIMA_IIMEOUT);

// Read the current state of the GPIO pin and
// write back the opposite state
if (GPIOPinRead (GPIO_PORTF_BASE, GPIO_PIN 2))
{
GPIOPinWrite (GPIO_PORTF_BASE, GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3, 0);

GPIOPinWrite (GPIO_PORTF_BASE, GPIO_PIN 2, 4);

4-16

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers

Lab 4: Interrupts and the Timer

Startup Code

13. Open startup_ccs.c for editing. This file contains the vector table that we discussed
during the presentation. Browse the file and look for the Timer 0 subtimer A
vector.

When that timer interrupt occurs, the NVIC will look in this vector location for the
address of the ISR (interrupt service routine). That address is where the next code fetch
will happen.

You need to carefully find the appropriate vector position and replace
IntDefaultHandler with the name of your Interrupt handler (We suggest that you
copy/paste this). In this case you will add TimerO0IntHandler to the position with the
comment “Timer O subtimer A” as shown below:

IntDefaultHandler, S/ BDC Sequence 2
IntDefaultHandler, S/ BDC Sequence 3
IntDefaultHandler, S Watechdog timer
TimerOIntHandler, S/ Timer 0 subtimer A
IntDefaultHandler, /4 Timer 0 subtimer B
IntDefaultHandler, Sf Timer 1 subtimer &

You will also need to declare this function at the top of this file as external. This is

necessary for the compiler to resolve this symbol. Find the line containing:

extern void _c_int00 (void);

and add:

extern void TimerOIntHandler (void) ;

right below it as shown below:
7 [/ External declaration for the reset handler that is to be called when the

processor 13 started

41 extern void ¢ int00(wvoid);
42 extern wvoid IimEIOIntHandler[voidjd

Click the Save button.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers 4-17

Lab 4: Interrupts and the Timer

Compile, Download and Run The Code

14. Compile and download your application by clicking the Debug button % on the menu
bar. If you have any issues, correct them, and then click the Debug button again.(You
were careful about that interrupt vector placement, weren’t you?) After a successful
build, the CCS Debug perspective will appear.

Click the Resume button "® to run the program that was downloaded to the flash
memory of your device. The blue LED should be flashing on your LaunchPad board.

When you’re done, click the Terminate B button to return to the Editing perspective.

4-18 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers

Lab 4: Interrupts and the Timer

Exceptions
15. Find the line of code that enables the GPIO peripheral and comment it out as shown
below:
13 SysCtlClockSet (SYSCTL SYSDIV 5|SYSCTL_USE_PLL|SYSCTL XTAL 16MHZ|SYSCTL OSC MAIN);
15 // SysCtlPeripheralEnable (5Y5CTL_PERIPH GPIOF):
16 GPIOPinTypeGPIOOutput (GPI0 _FORTF BASE, GPIO PIN 1|GPIO PIN 2|GPIO PIN 3);

Now our code will be accessing the peripheral without the peripheral clock being
enabled. This should generate an exception.

16. Compile and download your application by clicking the Debug button % on the menu

bar, then click the Resume button UB to run the program. What?! The program seems to
run just fine doesn’t it? The blue LED is flashing. The problem is that we enabled the
peripheral in our earlier run of the code ... we never disabled it or power cycled the part.

17. Click the Terminate ® button to return to the editing perspective. Remove/reinstall the
micro-USB cable on the LaunchPad board to cycle the power. This will return the
peripheral registers to their default power-up states.

The code that you just downloaded is running, but note that the blue LED isn’t flashing
now.

18. Compile and download your application by clicking the Debug button % on the menu
bar, then click the Resume button UB to run the program. Nothing much should appear

to be happening. Click the Suspend button ! to stop execution. You should see that
execution has trapped inside the Fault ISR () interrupt routine. All of the exception
ISRs trap in while(1) loops in the provided code. That probably isn’t the behavior you
want in your production code.

19. Remove the comment and compile, download and run your code again to make sure
everything works properly. When you’re done, click the Terminate ® putton to return

to the Editing perspective and close the Lab4 project. Minimize CCS.

20. Homework Idea: Investigate the Pulse-Width Modulation capabilities of the general
purpose timer. Program the timer to blink the LED faster than your eye can see, usually
above 30Hz and use the pulse width to vary the apparent intensity. Write a loop to make
the intensity vary periodically.

ST

You’re done.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers 4-19

Lab 4: Interrupts and the Timer

4-20 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Interrupts & Timers

ADC12

Introduction

This chapter will introduce you to the use of the analog to digital conversion (ADC) peripheral on
the Stellaris M4F. The lab will use the ADC and sequencer to sample the on-chip temperature

SEnsor.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers
ADC12
Hibernation Module
USB
Memory
Floating-Point

BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA

ADC...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12

Chapter Topics

Chapter Topics
ADC12 5-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 5-2
ADCI2 .ttt bbb 5-3
SAMPLE SEGUERICETS. ..ottt ettt et e e ettt e s tb e et e e s tbeeeabeestbeensbeessbeenaseessbeensseenens 5-4
LAD 5: ADCI2. ...t 5-5
[0)0] 1015 AU ST 5-5
PIOCEAULEceiiiiciee ettt nens 5-6
Hardware QVerGZING................c.cccoviiiiiiiiiiiieet ettt 5-17
Calling APIS from ROM...........c.cccooiiiiiiiiiiiiieeee sttt e 5-18
5-2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12

ADC12

ADC12

¢ Stellaris LM4F MCUs feature two ADC
modules (ADCO0 and ADC1) that can be
used to convert continuous analog
voltages to discrete digital values

and can:
Execute different sample sequences

Sample any of the shared analog input
channels

Generate interrupts & triggers

12

Input —~——»
Channels ADCO —LntTerrirgug'grssl
—>
Interrupts/
Triggers
Triggers ®

¢ Each ADC module has 12-bit resolution
¢ Each ADC module operates independently

Analog-to-Digital Converter

e

AV

)

Vin

101
100
3 011
N
010
001

000
t

Features...

LM4F120H5QR ADC Features

¢ Two 12-bit 1IMSPS ADCs
¢ 12 shared analog input channels

¢ Single ended & differential input
configurations

¢ On-chip temperature sensor

¢ Maximum sample rate of one million
samples/second (1MSPS).

¢ Fixed references (VDDA/GNDA) due to
pin-count limitations

¢ 4 programmable sample conversion
sequencers per ADC

erarate analog power & ground pins

¢ Flexible trigger control
Controller/ software
Timers
Analog comparators
GPIO

¢ 2x to 64x hardware averaging

~

+ 8 Digital comparators / per ADC
¢ 2 Analog comparators
¢ Optional phase shift in sample time,

between ADC modules ...
programmable from 22.5 ° to 337.5°

/

AV

Vin

Vour

Sequencers...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12

Sample Sequencers

Sample Sequencers

ADC Sample Sequencers

¢ Stellaris LM4F ADC's collect and sample data using programmable sequencers.
¢ Each sample sequence is a fully programmable series of consecutive (back-to-back)
samples that allows the ADC module to collect data from multiple input sources without
having to be re-configured.
¢ Each ADC module has 4 sample sequencers that control sampling and data capture.
¢ All sample sequencers are identical except for the number of samples they can capture
and the depth of their FIFO.
¢ To configure a sample sequencer, the following information is required:
Input source for each sample
Mode (single-ended, or differential) for each sample
Interrupt generation on sample completion for each sample
Indicator for the last sample in the sequence

¢ Each sample sequencer can transfer data Number of
kndepender;tly thcr"ough a dedicated uDMA channel. By Samples Depth of FIFO
SS3 1 1
SS2 4 4
SS1 4 4
SS0 8 8
Lab...

5-4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12

Lab 5: ADC12

Lab 5: ADC12
Objective

In this lab we’ll use the ADC12 and sample sequencers to measure the data from the on-chip

temperature sensor. We’ll use Code Composer to display the changing values.

Lab 5: ADC12

USB Emulation Connection

¢ Enable and configure ADC and
sequencer

¢ Measure and display values from
internal temperature sensor

TEXAS INSTRUMENTS
o A0 ey
T612

Use ROM peripheral driver library V o A7 Seflaris w

L 2

Add hardware averaging

*

agunchra

calls and note size difference

Agenda ...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12

Lab 5: ADC12

Procedure

Import Lab5 Project

1. We have already created the Lab5 project for you with an empty main. c, a startup file
and all necessary project and build options set. Maximize Code Composer and click
Project = Import Existing CCS Eclipse Project. Make the settings shown below and
click Finish. Make sure that the “Copy projects into workspace” checkbox is

unchecked.
P Import CCS Eclipse Projects |._|@|E|
Select Existing CCS Eclipse Project —{
Select & directory to search for existing CCS Edipse projects, E :
-
(%) Select search-directory: | Ci\stellarisWare \boards \MyLaunchPadBoard \Lab5\ccs | I Browse... I
() Select archive file: | |

Discovered projects:

& Labs [C:\StellarisWareboardsMyLaunchPadBoard\Lab5ocs] Select Al
Deselect Al
Refresh

|:| Copy projects into workspace
[] Automatically import referenced projects

Cpen the Resource Explorer and browse available example projects...

@:l Finish] [Cancel

Header Files

2. Delete the current contents of main. c. Add the following lines into main.c to include
the header files needed to access the StellarisWare APIs:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/adc.h"

adc.h: definitions for using the ADC driver

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12

Lab 5: ADC12

Driver Library Error Routine

3. Run-time parameter checking by the Peripheral Driver Library is fairly cursory since
excessive checking would have a negative effect on cycle count. But, during the debug
process, you may find that you have called a driver library API with incorrect parameters
or a library function generates an error for some other reason. The following code will be
called if the driver library encounters such an error. In order for the code to run, DEBUG
needs to be added to the pre-defined symbols for the project ... we’ll do that later.

Leave a blank line for spacing and add these lines of code after the lines above:

#ifdef DEBUG
void error (char *pcFilename, unsigned long ulLine)
{

}
#endif

Main()

4. Set up the main() routine by adding the three lines below:

int main (void)
{
}

5. The following definition will create an array that will be used for storing the data read
from the ADC FIFO. It must be as large as the FIFO for the sequencer in use. We will be
using sequencer 1 which has a FIFO depth of 4. If another sequencer was used with a
smaller or deeper FIFO, then the array size would have to be changed. For instance, se-
quencer 0 has a depth of 8.

Add the following line of code as your first line of code inside main () :
unsigned long ulADCOValue[4];

6. We’ll need some variables for calculating the temperature from the sensor data. The first
variable is for storing the average of the temperature. The remaining variables are used to
store the temperature values for Celsius and Fahrenheit. All are declared as 'volatile' so
that each variable will not be optimized out by the compiler and will be available to the
'Expression' or 'Local' window(s) at run-time. Add these lines after that last line:

volatile unsigned long ulTempAvg;
volatile unsigned long ulTempValueC;
volatile unsigned long ulTempValueF;

7. Set up the system clock again to run at 40MHz. Add a line for spacing and add this line
after the last ones:

SysCtlClockSet (SYSCTL_SYSDIV_5|SYSCTL USE_PLL|SYSCTL OSC_MAIN|SYSCTL XTAL 16MHZ) ;

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12 5-7

Lab 5: ADC12

10.

11.

12.

13.

14.

Let’s enable the ADCO module next. Add a line for spacing and add this line after the last
one:

SysCtlPeripheralEnable (SYSCTL PERIPH ADCO) ;

As an example, let’s set the ADC sample rate to 250 kilo-samples per second (since
we’re measuring temperature, a slower speed would be fine, but let’s go with this). The
SysCt1ADCSpeedSet () API can also set the sample rate to additional device specific
speeds (125KSPS, S00KSPS and 1MSPS)..

Add the following line directly after the last one:

SysCtlADCSpeedSet (SYSCTL ADCSPEED_ 250KSPS) ;

Before we configure the ADC sequencer settings, we should disable ADC sequencer 1.
Add this line after the last one:

ADCSequenceDisable (ADCO_BASE, 1);

Now we can configure the ADC sequencer. We want to use ADCO0, sample sequencer 1,
we want the processor to trigger the sequence and we want to use the highest priority.
Add a line for spacing and add this line of code:

ADCSequenceConfigure (ADCO_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);

Next we need to configure all four steps in the ADC sequencer. Configure steps 0 - 2 on
sequencer 1 to sample the temperature sensor (ADC_CTL_TS). In this example, our code
will average all four samples of temperature sensor data on sequencer 1 to calculate the
temperature, so all four sequencer steps will measure the temperature sensor. For more
information on the ADC sequencers and steps, reference the device specific datasheet.
Add the following three lines after the last:

ADCSequenceStepConfigure (ADCO_BASE, 1, 0, ADC CTL_TS);
ADCSequenceStepConfigure (ADCO_BASE, 1, 1, ADC CTL_TS);
ADCSequenceStepConfigure (ADCO_BASE, 1, 2, ADC CTL_TS);

The final sequencer step requires a couple of extra settings. Sample the temperature
sensor (ADC_CTL_TS) and configure the interrupt flag (ADC_CTL_IE) to be set when
the sample is done. Tell the ADC logic that this is the last conversion on sequencer 1
(ADC_CTL_END). Add this line directly after the last ones:

ADCSequenceStepConfigure (ADCO_BASE, 1, 3, ADC CTL TS | ADC_CTL IE | ADC_CTL END);

Now we can enable the ADC sequencer 1. Add this line directly after the last one:

ADCSequenceEnable (ADCO_BASE, 1)

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12

Lab 5: ADC12

15. Still withinmain (), add a while loop to your code. Add a line for spacing and enter
these three lines of code:
while (1)
{

}

16. Save your work. As a sanity-check, right-click on main. c in the Project pane and select
Build Selected File(s). If you are having issues, check the code below:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctL.h"
#include "driverlib/adc.h"

#ifdef DEBUG
void__error__(char *pcFilename, unsigned long ulLine)

{
}
#endif

int main(void)

{
unsigned long ulADCOValue[4];
volatile unsigned long ulTempAvg;
volatile unsigned long ulTempValueC;
volatile unsigned long ulTempValueF;

SysCtlClockSet(SYSCTL _SYSDIV_5|SYSCTL USE_PLL|SYSCTL OSC_MAIN|SYSCTL XTAL 16MHZ);

SysCtlPeripheralEnable(SYSCTL_PERIPH ADCO);
SysCtIADCSpeedSet(SYSCTL_ADCSPEED_250KSPS);
ADCSequenceDisable(ADCO_BASE, 1);

ADCSequenceConfigure(ADCO_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
ADCSequenceStepConfigure(ADCO_BASE, 1, 0, ADC_CTL_TS);
ADCSequenceStepConfigure(ADCO_BASE, 1, 1, ADC_CTL_TS);
ADCSequenceStepConfigure(ADCO_BASE, 1,2, ADC_CTL _TS);
ADCSequenceStepConfigure(ADCO_BASE, 1, 3, ADC_CTL_TS | ADC_CTL IE | ADC_CTL END);
ADCSequenceEnable(ADCO_BASE, 1);

while(1)

When you build this code, you may get a warning “ulADCOValue was declared
but never referenced”. Ignore this warning for now, we’ll add code to use this
array later.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12 5-9

Lab 5: ADC12

Inside the while(1) Loop

17.

18.

19.

20.

21.

Inside the while (1) we’re going to read the value of the temperature sensor and
calculate the temperature endlessly.

The indication that the ADC conversion is complete will be the ADC interrupt status flag.
It’s always good programming practice to make sure that the flag is cleared before
writing code that depends on it. Add the following line as your first line of code inside
the while (1) loop:

ADCIntClear (ADCO_BASE, 1);

Then we can trigger the ADC conversion with software. ADC conversions can also be
triggered by many other sources. Add the following line after the last:

ADCProcessorTrigger (ADCO_BASE, 1);

Then we need to wait for the conversion to complete. Obviously, a better way to do this
would be to use an interrupt, rather than burn CPU cycles waiting, but that exercise is left
for the student. Add a line for spacing and add the following three lines of code:

while ('ADCIntStatus (ADCO_BASE, 1, false))

{
}

When code execution exits the loop in the previous step, we know that conversion is
complete and we can read the ADC value from the ADC Sample Sequencer 1 FIFO. The
function we’ll be using copies data from the specified sample sequencer output FIFO to a
buffer in memory. The number of samples available in the hardware FIFO are copied into
the buffer, which must be large enough to hold that many samples. This will only return
the samples that are presently available, which might not be the entire sample sequence if
you attempt to access the FIFO before the conversion is complete. Add a line for spacing
and add the following line after the last:

ADCSequenceDataGet (ADCO_BASE, 1, ulADCOValue) ;

Calculate the average of the temperature sensor data. We’re going to cover floating point
operations later, so this math will be fixed-point.

The addition of 2 is for rounding. Since 2/4 = 1/2 = 0.5, 1.5 will be rounded to 2.0 with
the addition of 0.5. In the case of 1.0, when 0.5 is added to yield 1.5, this will be rounded
back down to 1.0 due to the rules of integer math.

Add this line after the last on a single line:

ulTempAvg = (ulADCOValue[0] + ulADCOValue[l] + ulADCOValue[2] +
ulADCOValue[3] + 2)/4;

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12

Lab 5: ADC12

22. Now that we have the averaged reading from the temperature sensor, we can calculate the

23.

Celsius value of the temperature. The equation below is shown in section 13.3.6 of the
LM4F120H5QR datasheet. Division is performed last to avoid truncation due to integer
math rules. A later lab will cover floating point operations.

TEMP = 147.5 — ((75 * (VREFP — VREFN) * ADCVALUE) / 4096)

We need to multiply everything by 10 to stay within the precision needed. The divide by
10 at the end is needed to get the right answer. VREFP — VREFN is Vdd or 3.3 volts.
We’ll multiply it by 10, and then 75 to get 2475.

Enter the following line of code directly after the last:
ulTempValueC = (1475 - ((2475 * ulTempAvg)) / 4096)/10;

Once you have the Celsius temperature, calculating the Fahrenheit temperature is easy.
Hold the division until the end to avoid truncation.

The conversion from Celsius to Fahrenheit is F = (C * 9)/5 +32. Adjusting that a little
gives: F=((C*9)+160)/5

Enter the following line of code directly after the last:

ulTempValueF = ((ulTempValueC * 9) + 160) / 5;

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12 5-11

Lab 5: ADC12

24. Save your work and compare it with our code below:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctL.h"
#include "driverlib/adc.h"

#ifdef DEBUG
void__error__(char *pcFilename, unsigned long ulLine)

{

}

#endif

int main(void)

unsigned long ulADCOValue[4];
volatile unsigned long ulTempAvg;
volatile unsigned long ulTempValueC;
volatile unsigned long ulTempValueF;

SysCtIClockSet(SYSCTL _SYSDIV_5|SYSCTL USE_PLL|SYSCTL OSC_MAIN|SYSCTL XTAL 16MHZ);

SysCtlPeripheralEnable(SYSCTL_PERIPH ADCO);
SysCtIADCSpeedSet(SYSCTL_ADCSPEED_250KSPS);
ADCSequenceDisable(ADCO_BASE, 1);

ADCSequenceConfigure(ADCO_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
ADCSequenceStepConfigure(ADCO_BASE, 1, 0, ADC_CTL_TS);
ADCSequenceStepConfigure(ADCO_BASE, 1, I, ADC_CTL _TS);
ADCSequenceStepConfigure(ADCO_BASE, 1,2, ADC_CTL _TS);
ADCSequenceStepConfigure(ADCO_BASE, 1, 3, ADC_CTL_TS | ADC_CTL IE | ADC_CTL END);
ADCSequenceEnable(ADCO_BASE, 1);

while(1)

{
ADCIntClear(ADCO_BASE, 1);
ADCProcessorTrigger(ADCO_BASE, 1);

while(!ADClIntStatus(ADCO_BASE, 1, false))

{
1

ADCSequenceDataGet(ADCO_BASE, 1, ulADCOValue);

ulTempAvg = (ulADCOValue[0] + ulADCOValue[1] + ulADCOValue[2] + ulADCOValue[3] + 2)/4;
ulTempValueC = (1475 - ((2475 * ulTempAvg)) / 4096)/10;

ulTempValueF = ((ulTempValueC * 9) + 160) / 5;

You can also find this code in mainl.txt in your project folder.

5-12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12

Lab 5: ADC12

Add Pre-defined Symbol

25. Right-click on Lab5 in the Project Explorer pane and select Properties. Under Build -
ARM Compiler, click the + next to Advanced Options. Then click on Predefined
Symbols. In the top Pre-define NAME window, add the symbol DEBUG as shown below
and click OK. In future labs, the project will already have this symbol defined.

2 Properties for Lab3

| Predefined Symbols hd

Resource
General
= Build Configuration: |Debug [Active] v| [Manage Configurations...]
[=- ARM Compiler
Processor COptions
Optimization
Debug Options Pre-define MAME {--define, -0} & w3
Indude Options

MISRA-C: 2004
= Advanced Options
Language Options
Parser Preprocessing Option
Predefined Symbols
Diagnostic Cptions
Runtime Model Options
Advanced Optimizations
Entry /Exit Hook Options
Library Function Assumption
Assembler Options
File Type Specifier
Directory Specifier
Default File Extensions
Command Files
= ARM Linker
Basic Options
File Search Path
Advanced Options
Debug

Undefine NAME (-undefine, -U) {.‘D

<
@ Show advanced settings O] [Cancel

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12 5-13

Lab 5: ADC12

Build and Run the Code

26. Compile and download your application by clicking the Debug button % on the menu
bar. If you have any issues, correct them, and then click the Debug button again. After a
successful build, the CCS Debug perspective will appear.

27. Click on the Expressions tab (upper right). Remove all expressions (if there are any) from
the Expressions pane by right-clicking inside the pane and selecting Remove All.

Find the ulADCOValue, ulTempAvg, ulTempValueC and ulTempValueF
variables in the last four lines of code. Double-click on a variable to highlight it, then
right-click on it, select Add Watch Expression and then click OK. Do this for all four

variables.
(9= Variables | S Expressions &3 | 8 Registers B = e &P | Ci et 82 T O
Expression Type Value Address
+ [3 ulADCOValue unsigned long[4] D 20000 100 Do 20000 100
(= ulTempavg unsigned long [u} D 20000110
()= uTempyalueC unsigned long 309215548 DX 20000114
0= ulTempValueF unsigned long 3056202613 Ox20000118

=P Add new expression

5-14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12

Lab 5: ADC12

28. We’d like to set the debugger up so that it will update the windows each time the code
runs. Since there is no line of code after the calculations, we’ll choose one right before
them and display the result of the last calculation.

Click on the first line of code in the while(1) loop;
ADCIntClear (ADCO_BASE, 1);

and then right-click on it. Select Breakpoint (Code Composer Studio) then Breakpoint to
set a breakpoint on this line.

335 while (1)
35 7 ADCIntClear (ADCO BASE, 1):
38 ADCProcesscoxTrigger (ADCO BASE, 1):

Right-click on the breakpoint symbol # and select Breakpoint Properties ... Find the
line that contains Action and click on the Remain Halted value. That’s the normal way a
breakpoint should act, but let’s change it to Update View (look up and down in the list).
In the dialog below, note that only the Expressions window will be updated. Now the
variables in the Expression window will be updated and the code will continue to
execute. Click OK.

% Properties for |._| |'E| ['5__(|
Breakpoint Properties @ Targetis not accessible —
Properties Values
= Hardware Configuration
Type Breakpoint
= Debugger Response
Condition
Skip Count i}
= Action Update view
View Expressions
=2 Miscellaneous
Group Default Group
Mame Breakpoint
All settings under this are handled by the target without intruding on the target's execution
3
@) OK l [Cancel

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12 5-15

Lab 5: ADC12

29. Click the Resume button "™ to run the program.

You should see the measured value of ul TempAvg changing up and down slightly.
Changed values from the previous measurement are highlighted in yellow. Use your
finger (rub it briskly on your pants), then touch the

LM4F120 device on the LaunchPad board to warm it. Press your fingers against a cold
drink, then touch the device to cool it. You should quickly see the results on the display.

(®)= Variables | &4 Expressions 52 | i Registers | ®@ Breakpoints = S& @' Y % "%«3 ¥ =8
Expression Type Value Address
+ @ ulADCOValue unsigned long[4] Ox 20000080 Ox 200000ED
()= uTempavg unsigned long 531 Ox 200000F0
(= uTempyalusC unsigned long 30 Ox200000F4
(= UTempvalusF unsigned long 36 Ox200000F2

57 Add new expression

Bear in mind that the temperature sensor is not calibrated, so the values displayed are not
exact. That’s okay in this experiment, since we’re only looking for changes in the
measurements.

Note how much ul TempAvg is changing (not the rate, the amount). We can reduce the
amount by using hardware averaging in the ADC.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12

Hardware averaging

Hardware averaging
30. Click the Terminate button to return to the CCS Edit perspective.

Find the ADC initialization section of your code as shown below:

Sy=CtlPeripheralEnable (5Y5CTL F
SysCtlADCSpeedSet (5Y5CTL ADCSPE
ADCSequnenceDi=zable (ADCO _BASE, 1)

|

Right after the SysCtIADCSpeedSet() call, add the following line:
ADCHardwareOversampleConfigure (ADCO _BASE, 64);

Your code will look like this:

SysCtlPeripheralEnable (SYSCTL FERIFH ADCO) ;
Sy=Ct1ADCSpeedSet (SYSCTL ADCSPEED 250ESFPS) ;
ADCHardwareOversampleConfigure (RDCO BASE, &€4);

an o

ADCSegunenceDisable (RDCO BLSE, 1);

The last parameter in the API call is the number of samples to be averaged. This number
can be 2, 4, 8, 16, 32 or 64. Our selection means that each sample in the ADC FIFO will
be the result of 64 measurements averaged together.

31. Build, download and run the code on your LaunchPad board. Observe the ul TempAvg
variable in the Expressions window. You should notice that it is changing at a much
slower rate than before.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12 5-17

Calling APIs from ROM

Calling APIs from ROM

32.

33.

34.

35.

Before we make any changes, let’s see how large the code section is for our existing

project. Click the Terminate & button to return to the CCS Edit perspective. In the
Project Explorer, expand the Debug folder under the Lab5 project. Double-click on
Lab5.map.

Code Composer keeps a list of files that have changed since the last build. When you
click the build button, CCS compiles and assembles those files into relocatable object
files. (You can force CCS to completely rebuild the project by either cleaning the project
or rebuilding all). Then, in a multi-pass process, the linker creates the output file (.out)
using the device’s memory map as defined in the linker command (.cmd) file. The build
process also creates a map file (.map) that explains how large the sections of the program
are (.text = code) and where they were placed in the memory map.

In the Lab5 .map file, find the SECTION ALLOCATION MAP and look for . text
like shown below:

SECTICH ALLOCATICH MAF

output

section page origin length

intwvecs 0 00000000 0000026c
00000000 0000026c

Cext 0 Q000026c 000006830
0000026c 0000013c
000003a8 000000ec

The length of our . text section is 690h. Check yours and write it here:

Remember that the M4F on-board ROM contains the Peripheral Driver Library. Rather
than adding those library calls to our flash memory, we can call them from ROM. This
will reduce the code size of our program in flash memory. In order to do so, we need to
add support for the ROM in our code.

In main.c, add the following include statement as the last one in your list of includes at
the top of your code:

#include "driverlib/rom.h"

Open your properties for Lab5 by right-clicking on Lab5 in the Project Explorer pane
and clicking Properties. Under Build - ARM Compiler = Advanced Options, click on
Predefined Symbols. Add the following symbol to the top window:

TARGET IS BLIZZARD RAl

Blizzard is the internal TI product name for the LM4F series. This symbol will give the
libraries access to the API’s in ROM. Click OK.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12

Calling APIs from ROM

36. Back in main.c, add ROM _to the beginning of every DriverLib call as shown below:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/adc.h"
#include "driverlib/rom.h"

#ifdef DEBUG

void error (char *pcFilename, unsigned long ulLine)
{

}

#endif

int main(void)

{

unsigned long ulADCOValue[4];
volatile unsigned long ulTempAvg;
volatile unsigned long ulTempValueC;
volatile unsigned long ulTempValueF;

ROM SysCtlClockSet (SYSCTL SYSDIV 5|SYSCTL USE PLL|SYSCTL OSC MAIN|SYSCTL XTAL 16MHZ);

ROM_SysCtlPeripheralEnable (SYSCTL_PERIPH_ADCO) ;
ROM_SysCtlADCSpeedSet (SYSCTL_ADCSPEED 250KSPS) ;
ROM_ADCHardwareOversampleConfigure (ADCO BASE, 64);
ROM ADCSequenceDisable (ADCO_BASE, 1);

ROM_ADCSequenceConfigure (ADCO _BASE, 1, ADC TRIGGER PROCESSOR, O0);
ROM_ADCSequenceStepConfigure (ADCO BASE, 1, 0, ADC CTL TS);
ROM_ADCSequenceStepConfigure (ADCO_BASE, 1, 1, ADC CTL TS);
ROM_ADCSequenceStepConfigure (ADCO_BASE, 1, 2, ADC CTL TS);
ROM_ADCSequenceStepConfigure (ADCO BASE, 1, 3, ADC CTL TS |
ROM_ADCSequenceEnable (ADCO_BASE, 1);

ADC CTL IE | ADC CTL END);

’

while (1)

{

ROM ADCIntClear (ADCO BASE, 1);

ROM ADCProcessorTrigger (ADCO_BASE, 1);

while (!ROM ADCIntStatus (ADCO BASE, 1, false))
{
}

ROM_ADCSequenceDataGet (ADCO_BASE, 1, ulADCOValue);

ungmpAvg = (ulADCOValue[0] + ulADCOValue[l] + ulADCOValue[2] + ulADCOValue[3] + 2)/4;
ulTempValueC = (1475 - ((2475 * ulTempAvg)) / 4096)/10;
ulTempValueF = ((ulTempValueC * 9) + 160) / 5;

}

If you’re having issues, this code is saved in your lab folder as main2 . txt.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12 5-19

Calling APIs from ROM

Build, Download and Run Your Code

37. Click the Debug button % to build and download your code to the LM4F120HSQR

flash memory. When the process is complete, click the Resume button U to run your
code. When you’re sure that everything is working correctly, click the Terminate button

B {6 return to the CCS Edit perspective.

38. Check the SECTION ALLOCATION MAP in Lab5.map. Our results are shown below:

SECTICH ALLOCATICH MAP

output

section page origir length

intvecs a alelalelelalale] Qo0002&8c
Qoo00000 Q0000260

LCext] 000002&6c 0000038
Q000026 Q0000130
00000339c Q00000%9c
Q0000438 Q0000094

The new size for our . text section is 3e8h. That’s 40% smaller than before.
Write your results here:

39. The method shown in these steps is called “direct ROM calls”. It is also possible to make
mapped ROM calls when you are using devices (like the TI ARM Cortex-M3) that may
or may not have a ROM. Check out section 32.3 in the Peripheral Driver Library User’s
Guide for more information on this technique.

40. When you’re finished, , close the Lab5 project and minimize Code Composer Studio.

ST

You’re done.

5-20 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - ADC12

Hibernation Module

Introduction

In this chapter we’ll take a look at the hibernation module and the low power modes of the M4F.
The lab will show you how to place the device in sleep mode and you’ll measure the current draw

as well.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers
ADC12
[Hibernation Module
USB
Memory

Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA

Key Features...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module

6-1

Chapter Topics

Chapter Topics

Hibernation Module 6-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 6-2
LOW POWEE MOUES...........ccceeiiiieeieee ettt ettt e et e e e e e 6-3
Lab 6: LOW POWEE MOMESoooeeiiiiiieeeeee ettt 6-5

[0)0] 1015 A RSP PUURRPR 6-5
PLOCEAUIE ...ttt e e e e et e e e e e e ettt e e e e e esestaareeeeeesennaaareeeeeeaan 6-6

6-2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module

Low Power Modes

Low Power Modes

Key Features

ﬂeal Time Clock is a 32-bit seconds
counter with a 15-bit sub seconds
counter & add-in trim capability

¢ Dedicated pin for waking using an
external signal

¢ RTC operational and hibernation
memory valid as long as Vg, is valid

¢ GPIO pins state retention provided
during VDD3ON mode

¢ Two mechanisms for power control

- System Power Control for CPU
and other on-board hardware

- On-chip Power Control for CPU
only

D

¢ Low-battery detection, signaling, arh
interrupt generation, with optional
wake on low battery

¢ 32,768 Hz external crystal or an
external oscillator clock source

¢ 16 32-bit words of battery-backed
memory are provided for you to save
the processor state to during
hibernation

¢ Programmable interrupts for RTC
match, external wake, and low
battery events.

»t-zz' j

Low Power Modes...

Power Modes

KRun mode

¢ Sleep mode stops the
processor clock
- 2 SysClk wakeup time
¢ Deep Sleep mode stops the
system clock and switches
off the PLL and Flash

1.25 — 350 uS wakeup time

¢ Hibernate mode with only
hibernate module powered
(VDD3ON, RTC and no RTC)

k - ~500uS wakeup time /

~

35

Ipp (Current Consumption in mA)

1.05
0.005 0.0017 0.0016

RunMode Sleep DeepSleep Hibernate Hibernate Hibernate
Mode Mode VDD3ON (RTC) (noRTC)

Power Mode Comparison...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module

Low Power Modes

Power Mode Comparison

Deep Sleep Hibernation Hibernation Hibernation

RUDIOCC RS el Ode Mode (VDD30ON) (RTC) (no RTC)

I

Voo 33V 33v 33V 33V I ov ov
I
I
I

Vear N.A. N.A. N.A. 3V | 3V 3V
I
I
I

System Clockl40 MHz with PLL40 MHz with PLL| 30 kHz off I off off
I
I
I

Powered On Powered On Powered On Off I off off
Core !

Clocked Not Clocked Not Clocked Not Clocked : Not Clocked Not Clocked
I
Peripherals All On All Off All Off All Off I All Off All Off

Il

Code while{1} N.A. N.A. N.A. : N.A. N.A.

I__lB denot d ilabl L hPad board
| | Box denotes power modes available on LaunchPa oar LaunchPad Considerations ...

-

LaunchPad Considerations

¢ The low-cost LaunchPad board does not have a battery holder

¢ VDD and VBAT are wired together on the board
(this disables battery-only powered low-power modes)

¢ Device current is measured between test points H24 and H25

00 POR
(‘)
RESET '%5% =)
RESET L? H24 and H25 installed as a single 1:2
o ﬁ“—‘i* TR header on 100 mil center with jumper
J— B TGU PN
S]
o ?‘ il T I? T' .
= v =
- 1 et =5 .
= [—_1F3 R0
I soser FEIE E ’ ki
asco o
%
2
1

g3e xsco o
o . P — ;
8. 8.
Eﬂz 8% Hﬁj oo BET Lo Lo L= i:mr:Lm 1o

1 -1 2loe o TooT aw [oo oue [aous] 1or
o L | 2ao :

T 7% —0— I e LA

1 1 27 S Lo Ten Lo

Lab ...

6-4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module

Lab 6: Low Power Modes

Lab 6: Low Power Modes

Objective

In this lab we’ll use the hibernation module to place the device in a low power state. Then we’ll

wake up from both the wake-up pin and the Real-Time Clock (RTC). We’ll also measure the

current draw to see the effects of the different power modes.

USB Emulation Connection

Place device in low power modes
Wake from pin

Wake from RTC

Measure current

® 6 6 o o

No battery holder on board

Lab 6: Low Power Modes

Power
Measurement
Jumper

3 TEXAS INSTRUMENTS
=

v,.% Stellaris*

aunchPad

Agenda ...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module

6-5

Lab 6: Low Power Modes

Procedure

Import Lab6

1. We have already created the Lab6 project for you with an empty main. c, a startup file
and all necessary project and build options set. Maximize Code Composer and click
Project = Import Existing CCS Eclipse Project. Make the settings shown below and
click Finish. Make sure that the “Copy projects into workspace” checkbox is

unchecked.
P Import CCS Eclipse Projects |._|E]
Select Existing CCS Eclipse Project —w
Select a directory to search for existing CC5 Eclipse projects, E ,E-’
-
@'Select search-directory: | Ci\stellarisWare \boards \MyLaunchPadBoard'\Laba | l Browse...]
() select archive file: | |

Discovered projects:
[#] & Labs [C:'\Stellarisware \boards MyLaunchPadBoard \Labs\ccs] Select all

|:| Copy projects into workspace
[] automatically import referenced projects

COipen the Resource Explorer and browse available example projects. ..

@:l Finish I [Cancel

Limitations

2. In order to keep the cost of the LaunchPad board ultra-low, the battery holder was
omitted. We will be evaluating the following power modes and wake events:

e Run

e Hibernate (VDD3ON)
e Wake from pin (no RTC)
e Wake from RTC

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module

Lab 6: Low Power Modes

Header Files

3. Open main.c for editing and delete the current contents. Type (or copy/paste) the
following lines into main.c to include the header files needed to access the

StellarisWare APIs :
#include "utils/ustdlib.h"
#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin map.h"
#include "driverlib/debug.h"
#include "driverlib/hibernate.h"
#include "driverlib/gpio.h"
#include "driverlib/systick.h"
Error Function

4. Performing error checking on function calls is good programming practice. Skip a line
after the previous includes, and add the following code. DEBUG has already been added
to the project’s pre-defined symbols.

#ifdef DEBUG
void error (char *pcFilename, unsigned long ulLine)

{

}
#endif

Main Function

5. Skip a line and add this main () template after the error function:

int main (void)

{
}

Clock Setup

6. Configure the system clock to 40MHz again. Add this line as the first line of code in

main () :

SysCtlClockSet (SYSCTL_SYSDIV_5|SYSCTL USE_PLL|SYSCTL_XTAL 16MHZ|SYSCTL_OSC_MAIN) ;

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module 6-7

Lab 6: Low Power Modes

GPIO Configuration

7.

8.

We’re going the use the green LED (2=red=pinl, 4=blue=pin2 and 8=green=pin3) as an
indicator that the device is in hibernation (off for hibernate and on for wake). Add a line
for spacing and add these lines of code after the last:

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF);
GPIOPinTypeGPIOOutput (GPIO PORTF BASE, GPIO PIN 1|GPIO PIN 2|GPIO PIN 3);
GPIOPinWrite (GPIO PORTF BASE,GPIO PIN 1|GPIO PIN 2|GPIO PIN 3, 0x08);

Hibernate Configuration

We want to set the wake condition to the wake pin. Take a look at the board schematics
and see how the WAKE pin is connected to user pushbutton 2 (SW2) on the LaunchPad
board.

The code below has the following functions:

Line 1: enable the hibernation module

Line 2: defines the clock supplied to the hibernation module

Line 3: Calling this function enables the GPIO pin state to be maintained during hiberna-
tion and remain active even when waking from hibernation.

Line 4: delay 4 seconds for you to observe the LED

Line 5: set the wake condition to the wake pin

Line 6: turn off the green LED before the device goes to sleep

Add a line for spacing and add these lines after the last ones inmain () :

SysCtlPeripheralEnable (SYSCTL PERIPH HIBERNATE) ;
HibernateEnableExpClk (SysCtlClockGet()) ;
HibernateGPIORetentionEnable() ;

SysCtlDelay (64000000) ;
HibernateWakeSet(HIBERNATE_WAKE_PIN);
GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_3, 0x00) ;

6-8

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module

Lab 6: Low Power Modes

Hibernate Request

9. Finally we need to go into hibernation mode. The HibernateRequest () function re-

quests the Hibernation module to disable the external regulator, removing power from the
processor and all peripherals. The Hibernation module remains powered from the battery
or auxiliary power supply. If the battery voltage is low (or off) or if interrupts are current-
ly being serviced, the switch to hibernation mode may be delayed. If the battery voltage
is not present, the switch will never occur.

The while() loop acts as a trap while any pending peripheral activities shut down (or oth-
er conditions exist). Add a line for spacing and add these lines after the last ones in
main():

HibernateRequest () ;
while (1)

{

}

Click the Save button to save your work. Your code should look something like this:

#include "utils/ustdlib.h"
#include "inc/hw types.h"
#include "inc/hw _memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin map.h"
#include "driverlib/debug.h"
#include "driverlib/hibernate.h"
#include "driverlib/gpio.h"
#include "driverlib/systick.h"

#ifdef DEBUG
void error_ (char *pcFilename, unsigned long ulline)

{
}

#endif

int main (void)

{

SysCtlClockSet (SYSCTL SYSDIV_5|SYSCTL_USE PLL|SYSCTL XTAL 16MHZ|SYSCTL_OSC MAIN) ;

SysCtlPeripheralEnable (SYSCTL_ PERIPH GPIOF) ;
GPIOPinTypeGPIOOutput (GPIO PORTF BASE, GPIO PIN 1|GPIO PIN 2|GPIO PIN 3);
GPIOPinWrite (GPIO PORTF BASE,GPIO PIN 1|GPIO PIN 2|GPIO PIN 3, 0x08);

SysCtlPeripheralEnable (SYSCTL PERIPH HIBERNATE) ;
HibernateEnableExpClk (SysCtlClockGet ()) ;
HibernateGPIORetentionEnable () ;

SysCtlDelay (64000000) ;

HibernateWakeSet (HIBERNATE WAKE PIN);
GPIOPinWrite(GPIOiPORTFiBASE,GPIOiPIN73, 0x00) ;

HibernateRequest () ;
while (1)

{

}

This code is saved in the Lab6/ccs folder asmainl. txt. Don’t forget that you can
auto-correct the indentations:

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module 6-9

Lab 6: Low Power Modes

Build, Download and Run the VDD3ON (no RTC) Code

10.

11.

12.

13.

Compile and download your application by clicking the Debug button % on the menu
bar. If you have any issues, correct them, and then click the Debug button again. After a
successful build, the CCS Debug perspective will appear.

Delete the watch expressions by right-clicking in the Expressions pane and clicking
Remove All, then click Yes.

Note: Code Composer Studio has some issues connecting to hibernating devices (and re-
connecting) since they essentially power off in the middle of the debugging process.
We’ll try to step around those issues, but you may see CCS terminate abruptly. If this
happens, you can restart CCS and try again, or you can use the LM Flash Programmer to
reprogram the device with the gs-rgb (non-hibernation) program. In either case, you need
to hold SW2 down to keep the LM4F device awake in order for either tool to connect.

We’re going to step around those hibernate/CCS issues now. Press the Terminate =
button in CCS to return to the editing mode. When you do this the LaunchPad will be
issued a reset. Observe the LED on the board and cycle power on the LaunchPad by
removing/replacing the USB emulator cable. The green LED should light.

After about 4 seconds the green LED will go out. Press the SW2 button located at the
lower right corner of the LaunchPad board. The processor will wake up and start the code
again, lighting the green LED.

Note that this wakeup process is the same as powering up. We will not be using the
battery-backed memory in this lab, but that feature is essential to applications that need to
know how they “woke up”. Your code can save/restore the processor state to that
memory. When your code starts, you can determine that the processor woke from sleep
and restore the processor state from the battery-backed memory.

Now that we know the code is running properly, we can take some current measurements.
Before we do, let’s comment out the line of code that lights the green LED so that the
LED current won’t be part of our measurement. In main. c, comment out the line of
code shown below:

SysCtlPeripheralEnakle (S¥YSCTL PERIPH GFICE);
GEFIOFinTypeGFIOOntpnt (GFIC_FORTF BASE, GPIO_FIN 1|GFIC PIN 2|GFIC_FIN 3);
GFICFinWrite (GFIC_PORTF_BASE,GPIC FIN 1|GPIC_FIN 2 |GPIO_FIN 3, 0x08);

14.

Save your work.

Press and hold SW2 on the LaunchPad board (to make sure it is awake), then compile
and download your application by clicking the Debug button %% on the menu bar. Press

the Terminate ™ button in CCS to return to the editing mode. Remove the USB
emulator cable from the LaunchPad board.

6-10

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module

Lab 6: Low Power Modes

Measure the Current

15. Remove the jumper located on the LaunchPad
board near the DEVICE USB port and put it
somewhere for safekeeping.

Connect your Digital Multi-Meter (DMM)
test leads to the pins with the positive lead
nearest the DEVICE USB port. Double check
the lead connections on the meter. Switch the
meter to measure DC current around 20mA.

16. Watch the meter display and plug the USB
emulator cable into the LaunchPad. During
the first four seconds the LM4F device is in
Run mode (in the software delay loop).

L
* TEXAS INSTRUMENTS

_ Do @ g A0 s
Record this reading in the first row of the 0 O A stellaris «
= ™ A4 qunchPad

chart below.

17. After four seconds the device goes into the VDD3ON hibernate mode. Switch your meter
to measure 10uA and record your reading in the second row of the chart below.

18. Remove the USB emulator cable from the LaunchPad board, disconnect your DMM and
replace the jumper on the power measurement pins.

Mode Workbook Step | Your Reading | Our Reading
Run 15
mA 21.4 mA
VDD3ON 17
(no RTC) HA 6.0 nA
VDD3ON 27
(RTC) HA 6.3 nA

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module 6-11

Lab 6: Low Power Modes

Wake Up on RTC

19. Plug the USB emulator cable into the LaunchPad board.

20. Inmain. c, find this line of code: HibernateWakeSet (HIBERNATE WAKE PIN) ;
Right above that line of code, enter the three lines below. These lines configure the RTC
wake-up parameters; reset the RTC to 0, turn the RTC on and set the wake up time for 5
seconds in the future.

HibernateRTCSet (0) ;
HibernateRTCEnable () ;
HibernateRTCMatchOSet (5) ;

21. We also need to change the wake-up parameter from just the wake-up pin to add the
RTC. Find:

HibernateWakeSet (HIBERNATE WAKE PIN) ;

and change it to:

HibernateWakeSet (HIBERNATE WAKE PIN | HIBERNATE_WAKE_RTC) ;
22. Uncomment the line of code that turns on the green LED, as shown below:
SysCtlPeripheralEnable (SYSCTL_PERIPH GPICF);

GPIOPinWrite (GPIO PORTF BASE,GPIC PIN 1|GPIC PIN 2|GPIC PIN 3, Ox08);

Save your changes.

6-12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module

GPIOPinTypeGPIOOntput (GPIO_PORTF BASE, GPIO PIN 1|GBIO PIN 2|GPIO PIN 3);

Lab 6: Low Power Modes

Your code should look like this:

#include "utils/ustdlib.h"
#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin map.h"
#include "driverlib/debug.h"
#include "driverlib/hibernate.h"
#include "driverlib/gpio.h"
#include "driverlib/systick.h"

#ifdef DEBUG
void error__ (char *pcFilename, unsigned long ulline)

{
}

#fendif

int main (void)

{

SysCtlClockSet (SYSCTL SYSDIV_5|SYSCTL _USE PLL|SYSCTL XTAL 16MHZ|SYSCTL_OSC MAIN) ;

SysCtlPeripheralEnable (SYSCTL_ PERIPH GPIOF) ;
GPIOPinTypeGPIOOutput (GPIO PORTF BASE, GPIO PIN 1|GPIO PIN 2|GPIO PIN 3);
GPIOPinWrite (GPIO PORTF BASE,GPIO PIN 1|GPIO PIN 2|GPIO PIN 3, 0x08);

SysCtlPeripheralEnable (SYSCTLiPERIPHiHIBERNATE) ;
HibernateEnableExpClk (SysCtlClockGet ());
HibernateGPIORetentionEnable () ;

SysCtlDelay (64000000) ;

HibernateRTCSet (0) ;

HibernateRTCEnable () ;

HibernateRTCMatchOSet (5) ;
HibernateWakeSet(HIBERNATE7WAKE7PIN | HIBERNATE7WAKE7RTC);
GPIOPinWrite (GPIO PORTF BASE, GPIOiPIN73, 0x00) ;

HibernateRequest () ;
while (1)

{

}

If you’re having problems, this code is saved as main2 . txt in your Lab6/ccs folder.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module 6-13

Lab 6: Low Power Modes

23.

24,

25.
26.

27.

28.

Press and hold the SW2 button on your evaluation board to assure the LM4F120
is awake. Compile and download your application by clicking the Debug button ﬁ;
on the menu bar.

CCS can’t talk to the device while it’s asleep. If you accidentally do this, you’ll see the
following when CCS attempts to communicate:

@ Stellaris In-Circuit Debug Interface/CORTEX_M4 0

Errar connecting to the target:
Freguency is out of range.

Cancel l[Retry]

If this happens, press and hold the SW2 button and click Retry. Release the SW2 button
when the debug controls appear in CCS.

Press the Terminate button in CCS to return to the editing mode. When the Debugger
terminated, it reset the LM4F120. You should see the green LED turning on for 4
seconds, then off for about 5 seconds. The real-time-clock (RTC) is waking the device up
from hibernate mode after 5 seconds. Also note that you can wake the device with SW2
at any time.

Disconnect your LaunchPad board from the USB emulator cable.

Remove the jumper located on the LaunchPad board near the DEVICE USB port and put
it somewhere for safekeeping.

Connect your DMM test leads to the pins with the positive lead nearest the DEVICE
USB port. Double check the lead connections on the DMM itself. Switch the DMM to
measure DC current around 20mA.

Plug the USB emulator cable into your LaunchPad board. When the green LED goes off,
quickly switch the DMM to measure 10uA and record your reading in the last row of the
chart in step 18. The equivalent series resistance on most DMMs will be too high in the
low current mode to allow the device to go back to run mode.

Remove the USB emulator cable from the LaunchPad board, disconnect and turn off your
DMM, then replace the jumper on the power measurement pins.

6-14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module

Lab 6: Low Power Modes

29. To make things easier for the next lab, use the LM Flash Programmer to program the
gs-rgb bin file into the device (as shown in lab 2). Don’t forget to hold SW2 down
while this process completes.

30. Close the Lab6 project and minimize Code Composer Studio.

31. Homework Idea: Experiment with the RTC to create a time-of-day clock at the lowest
possible power.

ST

You’re done.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module 6-15

Lab 6: Low Power Modes

6-16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Hibernation Module

USB

Introduction

This chapter will introduce you to the basics of USB and the implementation of a USB port on
Stellaris devices. In the lab you will experiment with sending data back and forth across a bulk
transfer-mode USB connection.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers
ADC12
Hibernation Module
USB
Memory
Floating-Point

BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA

USB Basics...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB

Chapter Topics

Chapter Topics
USB 7-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 7-2
LAY 0 1R T TSRS 7-3
LMAFI20HSOR USB......coeiiiieiieee ettt 7-4
USB Hardware And LIDVATY.............cccooecuieeieeiiiieeie et ee ettt nive e siae e sivaesaseesiseesaseessbaenasee e 7-5
LAD 7: USB..oeeeeeeee ekttt 7-7
L0 10} 1< 15 4R SRRUTSPRSR 7-7
PIOCEAULE ..ottt 7-8
7-2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB

USB Basics

USB Basics

USB Basics

Multiple connector sizes
4 pins — power, %round and 2 data lines ey [
(5t pin ID for USB 2.0 connectors) s e B
Configuration connects power 1st, then data T
Mini-A Mini-B
Standards:
Micro- -AB Micro-B

* New connector(s) o L
» Separate transmit/receive data lines -
USB Basics...

+ USB 1.1

* Defines Host (master) and Device (slave) ,—|7,
+ Speeds to 12Mbits/sec ﬁé =
* Devices can consume 500mA (100mA for startup)| —————

Different types of USB

+uUsB2.0 connectors from left to right
« Speeds to 480Mbits/sec i‘;{ﬂ;‘;;’:
* OTG addendum T

+ USB 3.0 S

* Speeds to 4.8Gbits/sec kel
~rrra.

@B Device ... most USB products are slaves

\. Process is called Enumeration ... allows Plug-and-Play /

USB Basics

USB Host ... usually a PC, but can be embedded _- _

USB OTG ... On-The-Go
+ Dynamic switching between host and device roles
« Two connected OTG ports undergo host negotiation

Host polls each Device at power up. Information from Device
includes:
« Device Descriptor (Manufacturer & Product ID so Host can find
driver)
« Configuration Descriptor (Power consumption and Interface
descriptors)
« Endpoint Descriptors (Transfer type, speed, etc)

-

LM4F120H5QR USB...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB

LM4F120H5QR USB

LM4F120H5QR USB
LM4F120H5QR USB

¢ USB 2.0 Device mode full speed (12 Mbps) and low speed
(1.5 Mbps) operation

¢ Integrated PHY
¢ Transfer types: Control, Interrupt, Bulk and Isochronous
¢ Device Firmware Update (DFU) device in ROM

Stellaris collaterals mm@j

¢ Texas Instruments is a member of the
USB Implementers Forum.

¢ Stellaris is approved to use the
USB logo FREE

(VendorlProduct ID sharing Vendor ID/ -

http://www.ti.com/lit/pdf/spmli001

Product ID
sharing program

Block Diagram...

Sublicense application: http://www.ti.com/lit/pdf/spml001

7-4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB

http://www.ti.com/lit/pdf/spml001

USB Hardware and Library

USB Hardware and Library
USB Peripheral Block Diagram

DMA

Requests
Endpoint Control
CPU Interface
Transmit
Interrupt
EP0- 15 M
Control —_—
=
EP Reg. Interrupts
I ‘ Decoder
UtM Packet FIFO RAM Common
Synchronization Encode/Decode Controller Regs ’
USE PHY AHB bus —
[PacketEncode]
Packet Encode Cyoe Slave mode
[Control
Packet Decode
USB FSILS
PHY [[CRC Gen/Check | [Cycle Contral]

USB Data Lines
D+ and D-

Integrated USB Controller and PHY with up to 16 Endpoints

+ 1 dedicated control IN endpoint and 1 dedicated control OUT endpoint

+ Up to 7 configurable IN endpoints and 7 configurable OUT endpoints

+ 4 KB dedicated endpoint memory (not part of device SRAM)

+ Separate DMA channels (up to three IN Endpoints and three OUT Endpoints)

+ 1 endpoint may be defined for double-buffered 1023-bytes isochronous packet size

USBLib...
StellarisWare USBLib
¢ License-free & royalty-free drivers, stack and / _ \
example applications for Stellaris MCUs De"'°ej’5a;'e";§iard
¢ USBLib supports Host/Device and OTG, but the g'gcﬂgou?el
LM4F120H5QR USB port is Device only Mass Storage
+ Builds on DriverLib API Generic Bulk
Adds framework for generic Host and Device 32‘352:;2;‘;"” Upgrade
functionality \éVin‘dows INF for supported
Includes implementations of common USB ev'cezqints to base Windows
rivers
classes Sets config string
¢ Layered structure Sets PID/VID
: Precompiled DLL saves
¢ Drivers and .inf files included where appropriate ~ developmenttime
. . Device framework integrated into
o Stellaris MCUs have passed USB Device and k USBLib /

Embedded Host compliance testing

Abstraction Levels...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB 7-5

USB Hardware and Library

Passes simplified Passes key info to Uses existing Implements

data to a higher the Driver API. API for generic its own USB
level API. host/device protocol using

(Custom HID all lower level
mouse) functions for the Uses DriverLib (Third part

HIGH

Level of
abstraction

covered by
'S Host Class/ Device (Custom HID these APIS.
Class APls device)
Custom

Host Class Driver/Device Class Driver

Low USB DriverLib API

USB API Abstraction Levels

Driver API handles operation. Driverlib.

chosen class. for features not USB stack

lasses)

APIs

USB Host Controller API/USB Device API

Low

Level of customization HIGH ™

Lab...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB

Lab 7: USB

Lab 7: USB
Objective

In this lab you will experiment with sending data back and forth across a bulk transfer-mode USB

connection.

Lab 7: USB

USB Emulation Connection

¢ Runusb_bulk_example code
and windows side app

+ Inspect stack setup , ?a'"“:;jfg'f? i

i 1 Stellaris*
¢ Observe data on device bk

Agenda ...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB

Lab 7: USB

Procedure

Example Code

1.

There are four types of transfer/endpoint types in the USB specification: Control transfers
(for command and status operations), Interrupt transfers (to quickly get the attention of
the host), Isochronous transfers (continuous and periodic transfers of data) and Bulk
transfers (to transfer large, bursty data).

Before we start poking around in the code, let’s take the usb bulk example fora
test drive. We’ll be using a Windows host command line application to transfer strings
over the USB connection to the LaunchPad board. The program there will change upper-
case to lower-case and vice-versa, then transfer the data back to the host.

Import The Project

2. Theusb bulk example project is one of the StellarisWare examples. When you

import the project, note that it will be automatically copied into your workspace,
preserving the original files. If you want to access your project files through Windows
Explorer, the files you are working on are in your workspace, not StellarisWare. If you
delete the project in CCS, the imported project will still be in your workspace unless you
tell the dialog to delete the files from the disk.

Click Project = Import Existing CCS Eclipse Project. Make the settings shown below
and click Finish

% Import CCS nse Proje E
Select Existing CCS Eclipse Project h‘]
Select a directory to search for existing CCS Edipse projects, /]
-
(#) Select search-directory: | Ci\stellarisvare \boards\ek-Im4f 120%L wsb _dev_bulk | ’ Browse...]
() Select archive file: | |

Discovered projects:
tl usb_dev_bulk [C:\StellarisWWare \boards\ek-m4f 120X \ush_dev_bulk\ccs] Select Al
Refresh

[automatically import referenced projects

Open the Resource Explorer and browse available example projects. ..

@ Finish] [Canicel

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB

Lab 7: USB

Build, Download and Run The Code
3. Make sure your evaluation board’s USB DEBUG port is connected to your PC. Build and

download your application by clicking the Debug button 3 on the menu bar (make sure
your device is awake if you still have hibernate code programmed in the flash).

4. Click the Terminate button = , and when CCS returns to the CCS Edit perspective,
unplug the USB cable from the LaunchPad’s DEBUG port. Move the PWR SELECT
switch on the board to the DEVICE position (nearest the outside of the board). Plug your
USB cable into the USB DEVICE connector on the side of the LaunchPad board. The
green LED in the emulator section of the LaunchPad should be lit, verifying that the
board is powered.

V)
0.00

R4 11 RE’

.llrwwvji.tl.gqm/ste

DEVICE o

5. In a few moments, your computer will detect that a generic bulk device has been plugged
into the USB port. Similar to the driver installation process in module 1, install the driver
for this device from C: \StellarisWare\windows drivers . In your Windows
Device Manager, you should verify that the Stellaris Bulk Device is correctly installed.

6. Make sure that you installed the StellarisWare Windows-side USB examples
from www.ti.com/sw-usb-win as shown in module one. In Windows, click Start 2> All
Programs - Texas Instruments = Stellaris > USB Examples > USB Bulk Example.
The window below should appear:

o BEE

Btellaris Bulk USE Device Example

Uersion 9187

This is a partner application to the ush_dev_bulk example
ishipped with StellarisWare software releases for USB-enabled
hoards. Strings entered here are sent to the hoard which
inverts the case of the characters in the string and returns
ithem to the host.

Enter a string (EXIT to exit>:

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB 7-9

http://www.ti.com/sw-usb-win

Lab 7: USB

7.

Type something in the window and press Enter. For instance “TI” as shown below:

u REE
[« |

Stellaris Bulk USE Device Example .

This iz a partner application to the ush_dev_bulk example
shipped with StellarisWare software releases for USB-enabled
hoards. Strings entered here are sent to the board which
inverts the case of the characters in the string and returns
ithem to the host.

Enter a string (EXIT to exitd>: TI

llrote 2 bytes to the device. Expected 2
Read 2 bytes from device. Expected 2

Returned string: "ti"

Enter a string (EXIT to exit):

The host application will send the two bytes representing TI over the USB port to the
LaunchPad board. The code there will change uppercase to lowercase and echo the
transmission. Then the host application will display the returned string. Feel free to
experiment. Now that we’re assured that our data is traveling across the DEVICE USB
port, we can look into the code more.

Digging a Little Deeper

8.

10.

11.

Type EXIT to terminate the USB Bulk Example program on your laptop.

Connect your other USB cable from your PC to the DEBUG USB port the on the
LaunchPad and move the PWR SELECT switch on the board to the DEBUG position .
The green LED in the emulator section of the LaunchPad should be lit, verifying that the
board is powered. You should now have both ports connected to your PC.

In CCS, if usb_dev bulk.c is not open, expand the usb dev bulk project in the
Project Explorer pane and double-click on usb _dev bulk.c.

The program is made up of five sections:

SysTickIntHandler —an ISR that handles interrupts from the SysTick timer to
keep track of “time”.

EchoNewDataToHost — a routine that takes the received data from a buffer, flips the
case and sends it to the USB port for transmission.

TxHandler — an ISR that will report when the USB transmit process is complete.

RxHandler — an ISR that handles the interaction with the incoming data, then calls the
EchoNewDataHost routine.

main () — primarily initialization, but a while loop keeps an eye on the number of bytes
transferred

Note the UARTprintf () APIs sprinkled throughout the code. This technique “instru-
ments” the code, allowing us to monitor its status.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB

Lab 7: USB

Watching the Instrumentation

12. As shown earlier in module 1, start your terminal program and connect it to the Stellaris
Virtual Serial Port. Arrange the terminal window so that it takes up no more than a
quarter of your screen. Position it in the upper left of your screen.

13. Resize CCS so that it takes up the lower half of your screen. Click the Debug button to
build and download the code and reconnect to your LaunchPad. Run the code by clicking
the Resume button.

14. Start the USB Bulk Example Windows application as shown in step 6. Place the window
in the upper right corner of your screen. This would all be so much easier with multiple
screens, wouldn’t it?

15. Note the status on your terminal display and type something, like
TEXAS INSTRUMENTS into the USB Bulk Example Windows application and press
Enter. Note that the terminal program will display

Stellari=s USE bulk device examp

Configuring U
Waiting for
Host connected.
T=x: 17

a partner application to the ush_dev_bulk example
with Stellarizllare software vreleaszes for USB-enabled
. Strings entered here are sent to the hoard which
inverts the case of the characters in the string and returns
them to the host.

string (ENIT to exit>: TEXAS INSTRUMENTE

Wrote 17 bytes to the device. Expected 17
Read 17 bytes from device. Expected 17

Returned string: “texas instruments®

Enter a string (EXIT to exit):

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB 7-11

Lab 7: USB

16. Click the Suspend button in CCS to halt the program.

As a summary, we’re sending bulk data across the DEVICE USB connection. At the
same time we are performing emulation control and sending UART serial data across the
DEBUG USB connection.

If you get things out of sync here and find that the USB Bulk Example won’t run,
remember that it must be started after the code on the LaunchPad is running.

Watch the Buffers

17. Remove all expressions (if there are any) from the Expressions pane by right-clicking
inside the pane and selecting Remove All.

18. At about line 503 in the code, find the following:

USBEufferInit | (tUSEBuffer =)&g sTxBuffer);

One at the time, highlight g sTxBuffer and g sRxBuffer and add them as watch
expressions by right-clicking on them, selecting Add Watch Expression ... and then OK
(by the way, we could have watched the buffers in the Memory Browser, but this method
is more elegant).

7-12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB

Lab 7: USB

19. Expand both buffers as shown below:

9= Variables |54 Expressions &3 | 1M Registers

Expression

2 (= g_sTxBuffer
B4= bTransmitBuffer

»

»
»
»
»

BHEHEBBHBE

»

pfCalback
pwCBData
pfrTransfer
pfnavailable
pvHandle
pcBuffer

()= ulBuffersSize

»

m
fp =

pviWWorkspace

g_sRxBuffer

B4= bTransmitBuffer

»

»
»
»
»

BHEHEBBHBE

»

pfCalback
pwCBData
pfrTransfer
pfnavailable
pvHandle
pcBuffer

()= ulBuffersSize

[=

pviWWorkspace

Type

struct unknown

unsigned char

unsigned lang {*){void*,unsigned long,unsigned long, void™)
woid *

unsigned long {*){void*,unsigned char*,unsigned long,unsigned char)
unsigned long () (void*)

wvoid *

unsigned char *

unsigned long

wvoid *

struct unknown

unsigned char

unsigned lang {*){void*,unsigned long,unsigned long, void™)
woid *

unsigned long {*){void*,unsigned char*,unsigned long,unsigned char)
unsigned long () (void*)

void *

unsigned char *

unsigned long

wvoid *

Value

L}

0x0000287D
0x00002DB3
Ox00D01EAS
0x00002931
Ox000020DBS
0x20000500
256
0x20000740
Lok
0x00001811
0x00002DB3
0x00001961
0x0000266F
Ox00002DBS
0x20000400
256
Ox2000072C

Address

O 0000 2EQ0
O0x00002EQ0
0x00002EQ4
0x00002E03
O0x00002EQC
Ox00002E 10

Ox00002E14
“texas inst’ 02E13
Ox00002E1C

Ox00002E20
Ox000020DC
Ox0000200C
Ox000020ED
Ox00002DE4
Ox000020ES
Ox00002DEC

Ox00002DF0
"TEXAS INST” 02DF4
0x00002DF8

The arrows above point out the memory addresses of the buffers as well as the contents.
Note that the Expressions window only shows the first 10 bytes in the buffer.

The LM4F120H5QR code uses both buffers as “circular” buffers ... rather than clearing
out the buffer each time data is received, the code appends the new data after the previous
data in the buffer. When the end of the buffer is reached, the code starts again from the
beginning. You can use the Memory Browser to view the rest of the buffers, if you like.

20. Resize the code window in the Debug Perspective so you can see a few lines of code.
Around line 331 in usb_dev bulk. c, find the line containing i f (ulEvent . This
is the first line in the TxHandler ISR. At this point the buffers hold the last received
and transmitted values. Double-click in the gray area to the left on the line number to set
a breakpoint. Resize the windows again so you can see the entire Expressions pane.

Right-click on the breakpoint and select Breakpoint Properties ... Click on the Action
property value Remain Halted and change it to Update View. Click OK.

21. Click the Core Reset button - to reset the LM4F120H5QR. Make sure your buffers
are expanded in the Expressions pane and click the Resume button to run the code. The
previous contents of the buffers shown in the Expressions pane will be erased when the
code runs for the first time.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB

Ox000020FC

Lab 7: USB

22. Restart your USB Bulk example Windows application so that it can reconnect with our
device.

23. Since the Expressions view will only display 10 characters, type something short into the
USB Bulk Example window like “TI”.

24. When the code reaches the breakpoint, the Expressions pane will update with the contents
of the buffer. Try typing “IS” and “AWESOME”. Notice that the “E” is the 11" character
and will not be displayed in the Expressions pane.

25. When you are done, close the USB Bulk Example and Terminal program windows. Click
the Terminate button in CCS to return to the CCS Edit perspective. Close the
usb_dev_bulk project in the Project Explorer pane. Minimize Code Composer Studio.

26. Disconnect and store the USB cable connected to the DEVICE USB port.

ST

You’re done.

7-14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- USB

Memory

Introduction

In this chapter we will take a look at some memory issues:

How to write to FLASH in-system.

How to read/write from EEPROM.

How to use bit-banding.

How to configure the Memory Protection Unit (MPU) and deal with faults.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers
ADC12
Hibernation Module
USB
Memory
Floating-Point

BoosterPacks and grLib

Synchronous Serial Interface
UART
uDMA

Memory Control...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8-1

Chapter Topics

Chapter Topics

Memory 8-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens §8-2
TREEINAL MEMIOTY ...ttt ettt e et e e bt e et e e ssaeestseesaeessaeessaeansseesaeensseens 8-3
FLAST ...ttt 8-4
EEPROM ...ttt ettt 8-5
SRAM ...ttt 8-6
Bit-BANING ..ottt ettt 8-7
Memory Protection URILcccccciiiiiiiiiiiiiiit ittt §8-8
PFIOFIEY LOVEILS ..ottt ettt et et 8-9
Lab 8: Memory and the MPUccccocioiiiiiiiiiiiieeee ettt 8-10

L0 10} 115 AR 8-10
PIOCEAULEcuiiiieice ettt st sttt s 8-11

8-2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Internal Memory

Internal Memory

Cortex-M4F

Icods Bus

Flash Control
FMA

Dcode Bus

FMD

— —

ROM Array

FMC

System
Bus

Bridge

FCRIS
FCIM
FCMISC
FSIZE
3SIZE

Flash Write Buffer

FMC2

FWBVAL

|

Flash Array

SRAM Array

Flash Protection

n|o
=|=
|3
|
m|m
5|3

|

|

|

l

| User Registers

4.1‘ BOOTCFG

USER_REGO
USER_REG1
USER_REG2
USER_REG3

Flash, SRAM and ROM Control

Memory Blocks and
Control Logic for:

¢ SRAM
¢ ROM
¢ Flash

EEPROM Control...
EEPROM Control [_ < p| EEPROM Array
EESIZE N Security “—> “—> | Block 0 |
e e
EEOFFSET
| Block 2 I
EERDWR
EERDWRING
EEDONE -
EESUPP
EEUNLOCK
EEPROT
EEPASSOD
EEPASST ¢ EEPROM Block and Control Logic
EEPASS2
TEINT ¢ EEPROM block is connected to the
e AHB (Advanced High Performance
EEDBGME Bus)

Flash Features...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Flash

Flash

Flash

0000}

Yo

256KB / 40MHz starting at 0x00000000 \
Organized in 1KB independently erasable blocks

Code fetches and data access occur over separate buses

Below 40MHz, Flash access is single cycle

Above 40MHz, the prefetch buffer fetches two 32-bit words/cycle.
No wait states for sequential code.

Branch speculation avoids wait state on some branches
Programmable write and execution protection available

Simple programming interface
0x00000000 Flash

% 0x01000000 ROM]
[020000000 SRAM]
[0x22000000 Bit-banded SRAM]
|)
|)
[]

0x40000000 Peripherals & EEPROM
0x42000000 Bit-banded Peripherals
0xE0000000 Instrumentation, ETM, etc.

ARARRAARARRRE

St 8

EEPROM...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

EEPROM

EEPROM

EEPROM

K 2KB of memory starting at 0x400AF000 in Peripheral space \
¢ Accessible as 512 32-bit words
¢ 32 blocks of 16 words (64 bytes) with access protection per block
¢ Built-in wear leveling with endurance of 500K writes
.

Lock protection option for the whole peripheral as well as per
block using 32-bit to 96-bit codes

¢ Interrupt support for write completion to avoid polling
¢ Random and sequential read/write access (4 cycles max/word)

0x00000000 Flash

0x01000000 ROM

|

[]
[0x20000000 SRAM]
[022000000 Bit-banded SRAM]
[040000000 Peripherals & EEPROM]
[)
[]

ARARRAARARRRE

St 8

0x42000000 Bit-banded Peripherals
0xE0000000 Instrumentation, ETM, etc.

SRAM...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8-5

SRAM

SRAM

SRAM

ﬁ 32KB / 80MHz starting at 0x20000000 \
+ Bit banded to 0x22000000
¢ Can hold code or data

[0x00000000 Flash —

0x01000000 ROM

0x40000000 Peripherals & EEPROM
[0x42000000 Bit-banded Peripherals]
[0xE0000000 Instrumentation, ETM, etc.] Bit-Banding...

8-6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Bit-Banding

Bit-Banding

Bit-Banding

¢ Reduces the number of read-modify-write operations

¢ SRAM and Peripheral space use address aliases to access
individual bits in a single, atomic operation

¢ SRAM starts at base address 0x20000000
Bit-banded SRAM starts at base address 0x2200000

¢ Peripheral space starts at base address 0x40000000
Bit-banded peripheral space starts at base address 0x42000000

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 0x20) + (bit number * 4)

For example, bit-7 at address 0x20002000 is:

0x20002000 + (0x2000 * 0x20) + (7 * 4) = 0x2204001C

MPU...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Memory Protection Unit

Memory Protection Unit
Memory Protection Unit (MPU)

¢ Defines 8 separate memory regions plus a background region
accessible only from privileged mode
¢ Regions of 256 bytes or more are divided into 8 equal-sized
sub-regions
¢ MPU definitions for all regions include:
Location
Size
Access permissions
Memory attributes
¢ Accessing a prohibited region causes a memory management
fault

Privilege Levels...

8-8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Priority Levels

Priority Levels

Cortex M4 Privilege Levels

¢ Privilege levels offer additional protection for software,
particularly operating systems

¢ Unprivileged : software has ...
Limited access to the Priority Mask register
No access to the system timer, NVIC, or system control block
Possibly restricted access to memory or peripherals (FPU, MPU, etc)
¢ Privileged: software has ...
use of all the instructions and has access to all resources

¢ ISRs operate in privileged mode

¢ Thread code operates in unprivileged mode unless the level is
changed via the Thread Mode Privilege Level (TMPL) bit in the
CONTROL register

Lab...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

Lab 8: Memory and the MPU

Objective
In this lab you will

write to FLASH in-system.
read/write EEPROM.
Experiment with using the MPU
Experiment with bit-banding

Lab 8: Memory and the MPU

USB Emulation Connection

¢ Create code to write to Flash 4
¢ Create code to read/write EEPROM . TEXAS INSTRUMENTS

8 ma e 400 ~5
¢ Experiment with MPU and Fe " O A7 stellaris «

bit-banding aunchPad

Agenda ...

8-10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

Procedure

Import Lab8

1. We have already created the Lab8 project for you with an empty main. c, a startup file

and all necessary project and build options set. Maximize Code Composer and click

Project = Import Existing CCS Eclipse Project. Make the settings shown below and
click Finish. Make sure that the “Copy projects into workspace” checkbox is unchecked.

P Import CCS Eclipse Projects

Select Existing CCS Eclipse Project

select a directory to search for existing CCS Edipse projects.

R

-

(%) select search-drectory: | T \StellarisWareboards MyLaunchPadBoard \Labs

|

Browse. ..]

() select archive file: |

Discovered projects:

tl' Labd [C:\5tellarisWare\boards\MylaunchPadBoard L abdocs)

i=

D Copy projects into workspace
[] automatically import referenced projects

Open the Resource Explorer and browse available example projects...

ik

Select All

Deselect Al

Refresh

@ Finish

J

Cancel

B

2. Expand the project by clicking the + or next to Lab8 in the Project Explorer pane.

Double-click on main.c to open it for editing.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

3.

Let’s start out with a straightforward set of starter code. Copy the code below and paste it
into your empty main. c file.

#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin map.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"

int main(void)

{

SysCtlClockSet (SYSCTL_SYSDIV_5|SYSCTL USE_PLL|SYSCTL XTAL 16MHZ|SYSCTL OSC_MAIN) ;

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF) ;

GPIOPinTypeGPIOOutput (GPIO_PORTF_BASE, GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3);
GPIOPinWrite (GPIO_PORTF_BASE,GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3, 0x00);
SysCtlDelay (20000000) ;

while (1)
{
}

You should already know what this code does, but a quick review won’t hurt. The
included header files support all the usual stuff including GPIO. Inside main(), we set the
clock for 40MHz, set the pins connected to the LEDs as outputs and then make sure all
three LEDs are off. Next is a two second (approximately) delay followed by a while(1)
trap.

Save your work.

If you’re having problems, this code is in your Lab8/ccs folder as mainl . txt.

Writing to Flash

4.

We need to find a writable block of flash memory. Right now, that would be flash
memory that doesn’t currently hold the program we want to execute. Under Project on
the menu bar, click Build All. This will build the project without attempting to download
it to the LM4F120H5QR memory.

As we’ve seen before, CCS creates a map file of the program during the build process.
Look in the Debug folder of Lab8 in the Project Explorer pane and double-click on
Lab8.map to open it.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

6. Find the MEMORY CONFIGURATION and SEGMENT ALLOCATION MAP sections
as shown below:

MEMCRY CONFIGURATICH

From the map file we can see that the amount of flash memory used is 0x086A in length
that starts at 0x 0. That means that pretty much anywhere in flash located at an address
greater than 0x1000 (for this program) is writable. Let’s play it safe and pick the block
starting at 0x10000. Remember that flash memory is erasable in 1K blocks. Close
Lab8.map.

7. Backinmain.c, add the following include to the end of the include statement to add
support for flash APIs:

#include "driverlib/flash.h"

8. Atthetopofmain (), enter the following four lines to add buffers for read and write
data and to initialize the write data:

unsigned long pulData[2];
unsigned long pulRead[2];
pulData[0] = 0x12345678;
pulData[l] = 0x56789%abc;

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8-13

Lab 8: Memory and the MPU

9.

10.

Just above the while(1) loop at the end of main(), add these four lines of code:

FlashErase (0x10000) ;

FlashProgram(pulData, 0x10000, sizeof (pulData))

GPIOPinWrite (GPIO_PORTF BASE,GPIO_PIN_1|GPIO_PIN 2|GPIO_PIN 3, 0x02);
SysCtlDelay (20000000) ;

Line:

1: Erases the block of flash we identified earlier.

2: Programs the data array we created, to the start of the block, of the length of the array.
3: Lights the red LED to indicate success.

4: Delays about two seconds before the program traps in the while (1) loop.

Your code should look like the code below. If you’re having issues, this code is located in
the Lab8/ccs folderasmain?2 . txt.

#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin map.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/flash.h"

int main (void)

{

unsigned long pulData([2];
unsigned long pulRead[2];
pulData[0] = 0x12345678;
pulData[l] = 0x56789%abc;

SysCtlClockSet (SYSCTL SYSDIV 5|SYSCTL USE PLL|SYSCTL XTAL 16MHZ|SYSCTL OSC MAIN);

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF);
GPIOPinTypeGPIOOutput (GPIO PORTF BASE, GPIO PIN 1|GPIO PIN 2|GPIO PIN 3);
GPIOPinWrite (GPIO PORTF BASE,GPIO_PIN 1|GPIO_PIN 2|GPIO PIN 3, 0x00);
SysCtlDelay (20000000) ;

FlashErase (0x10000) ;

FlashProgram(pulData, 0x10000, sizeof (pulData));

GPIOPinWrite (GPIO PORTF BASE,GPIO PIN 1|GPIO PIN 2|GPIO PIN 3, 0x02);
SysCtlDelay (20000000) ;

while (1)
{
}

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

Build, Download and Run the Flash Programming Code

11. Click the Debug button to build and download your program to the LM4F120H5QR
memory. Ignore the warning about variable pulRead not being referenced. When the
process is complete, set a breakpoint on the line containing the FlashProgram () API
function call.

12. Click the Resume button to run the code. Execution will quickly stop at the breakpoint.
On the CCS menu bar, click View = Memory Browser. In the provided entry window,
enter 0x10000 as shown below and click Go:

0 x =0
4F - grep et

| 0x10000 v| [1vew Tab |

0w 10000 <Memory Rendering 1= 2
|Hex 32 Bit - 1 Style v|

0200010000 FFFFFFFF ~
0x00010008 FEEFFEFEFEE FEFEFEEEE
0x00010010 FFFFFFFF FFFFFFFE
0x00010018 FEEFFEFEFEE FEFEFEEEE
0x00010020 FFFFFFFF FEFFFFFFE
0x00010028 FEEFFEFEFEE FEFEFEEEE
0x00010030 FFFFFFFF FEFFFFFFE
0x00010038 FEEFFEFEFEE FEFEFEEEE
0x00010040 FFFFFFFF FEFFFFFFE
Ox00010048 FFEFEFFEEFFE FEEFEFEEEE
0x00010050 FFFFFFFF FEFFFFFE
0x00010058 FEEFFEFEFEE FEFEFEEEE
0x00010060 FFFFFEFFF FEFFFFFFE
0x00010068 FEFEFEFEFEEE FEEFEEEEE
0x00010070 FFFFFFFF FEFFEFEFE

0x00010078 FFFFFFFF FFFEFFEE
0x00010080 FFFFFFFF FEFFFFFFE
0x00010088 FFFFFFFF FEFFFFFFE
0x00010080 FFFFFFFF FEFFFFFFE
0x00010098 FFFFFEFFF FEFFFFFE w

Erased flash should read as all ones. Programming flash only programs zeros. Because of
this, writing to un-erased flash memory will produce unpredictable results.

13. Click the Resume button to run the code. The last line of code before the while (1)
loop will light the red LED. Click the Suspend button. Your Memory Browser will
update, displaying your successful write to flash memory.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8-15

Lab 8: Memory and the MPU

D Memory Browser &3 =g
£ - e il e
010000 v
Ox 10000 <Memaory Rendering 1> &3
Hex 32 Bit - TI Style b
12345673 26T38ABC L
FFFEFFFEF FEEFFEFEFE

0x00010010 FFFFFFFF FEFFFFFFE
0x00010018 FFFFFFFF FFFFFFFEE

14. Remove your breakpoint.

15. Make sure you have clicked the Terminate button to stop debugging and return to the
CCS Edit perspective. Bear in mind that if you repeat this exercise, the values you just
programmed in flash will remain there until that flash block is erased.

Reading and Writing EEPROM

16. Backinmain.c, add the following line to the end of the include statements to add
support for EEPROM APIs:

#include "driverlib/eeprom.h"

17. Just above the while(1) loop, enter the following seven lines of code:

SysCtlPeripheralEnable (SYSCTL PERIPH EEPROMO) ;

EEPROMInit () ;

EEPROMMassErase () ;

EEPROMRead (pulRead, 0x0, sizeof (pulRead)) ;

EEPROMProgram (pulData, 0x0, sizeof (pulData));

EEPROMRead (pulRead, 0x0, sizeof (pulRead))

GPIOPinWrite (GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN 2|GPIO_PIN 3, 0x04);
Line:

1: Turns on the EEPROM peripheral.

2: Performs a recovery if power failed during a previous write operation.

3: Erases the entire EEPROM. This isn’t strictly necessary because, unlike flash,
EEPROM does not need to be erased before it is programmed. But this will allow
us to see the result of our programming more easily in the lab.

: Reads the erased values into pulRead (offset address)

: Programs the data array, to the beginning of EEPROM, of the length of the array.
: Reads that data into array pulRead.

: Turns off the red LED and turns on the blue LED.

~N N Dn b

8-16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

18. Your code should look like the code below. If you’re having issues, this code is located in

the Lab8/ccs folderasmain3. txt.

{

#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin map.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/flash.h"
#include "driverlib/eeprom.h"

int main (void)

unsigned long pulData[2];
unsigned long pulRead[2];
pulData[0] = 0x12345678;
pulData[l] = 0x56789%abc;

SysCtlClockSet (SYSCTL SYSDIV 5|SYSCTL USE PLL|SYSCTL XTAL 16MHZ|SYSCTL OSC MAIN);

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF);
GPIOPinTypeGPIOOutput (GPIO PORTF BASE, GPIO PIN 1|GPIO_PIN 2|GPIO PIN 3);
GPIOPinWrite (GPIO PORTF BASE,GPIO_PIN 1|GPIO PIN 2|GPIO PIN 3, 0x00);
SysCtlDelay (20000000) ;

FlashErase (0x10000) ;

FlashProgram(pulData, 0x10000, sizeof (pulData));

GPIOPinWrite (GPIO PORTF BASE,GPIO PIN 1|GPIO PIN 2|GPIO PIN 3, 0x02);
SysCtlDelay (20000000) ;

SysCtlPeripheralEnable (SYSCTL PERIPH EEPROMO) ;

EEPROMInit () ;

EEPROMMassErase () ;

EEPROMRead (pulRead, 0x0, sizeof (pulRead)):;

EEPROMProgram (pulData, 0x0, sizeof (pulData));

EEPROMRead (pulRead, 0x0, sizeof (pulRead));

GPIOPinWrite (GPIO PORTF BASE,GPIO PIN 1|GPIO PIN 2|GPIO PIN 3, 0x04);

while (1)
{
}

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

Build, Download and Run the Flash Programming Code

19. Click the Debug button to build and download your program to the LM4F120H5QR
memory. Code Composer does not currently have a browser for viewing EEPROM
memory located in the peripheral area. The code we’ve written will let us read the values
and display them as array values.

20. Click on the Variables tab and expand both of the arrays by clicking the + next to them.
Right-click on the first variable’s row and select Number Format = Hex. Do this for all
four variables.

9= Yarisbles 53 | G Expressions | 1 Registers o5 [0 | @ ;]
Name Type Value Location
2 (= pulData unsigned long[2] 0x20000100 020000100
9= [0] unsigned lang 0x00000B1D (Hex) 020000100
&)= [1] unsigned long 0x000008 10 (Hex) 0x20000104
= (* puRead unsigned long[2] 0x20000108 0x20000108
)= [0] unsigned long Dx00000000 {Hex) 0x20000 103
select Al ctri+a 2000 10
=) Copy Variables Cirl+C
[] Disable
Number Format [d ® Default
@, CastTo Type... Hex

Dedimal
Octal
Binary

View Memory

Memory at Value

Find... Ctrl+F
String
Restore To Preference
Q-Values 4
Y Watch
[Graph
Breakpoint (Code Composer Studia) >

21. Set a breakpoint on the line containing EEPROMProgram () . We want to verify the
previous contents of the EEPROM. Click the Resume button to run to the breakpoint.

22. Since we included the EEPROMMassErase () in the code, the values read from
memory should be all Fs as shown below:

()= 5 & Expressions | M Registers =k B c*%; - i
Mame Type Yalue Location
= bﬂ pulData unsigned long[2] Ox 200000E8 Ox 200000E5
()= [0] unsigned long 0x12345573 (Hex) 0% 200000E2
(9= [1] unsignad long Ox56730ABC (Hex) 0% 200000EC
2 (= puRead unsigned long[2] O 200000F0 0% 200000F0
()= [0] unsigned long OxFFFFFFFF (Hex) Ox 200000F0
= [1] unsigned long OxFFFFFFFF (Hex) Ox200000F4

23. Click the Resume button to run the code from the breakpoint. When the blue LED on the
board lights, click the Suspend button. The values read from memory should now be the
same as those in the write array:

9= variables I3 |4 Expressions | 8 Reisters 0| & 5 i
MName Type Value Location
= @ pulData unsigned long[2] Ox200000E8 O0x200000E3
()= [0] unsigned long 0% 12345673 (Hex) Ox200000E3
(9= [1] unsigned long Ox56TESABC (Hex) Ox200000EC
= @ pulRead unsigned long[2] 0x200000F0 0x200000F0
()= [i] unsigned long Ox 12345678 (Hex) 0x200000F0
()= [1] unsigned long Ox5ETESABC (Hex) 0x200000F4

8-18 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

Further EEPROM Information

24. EEPROM is unlocked at power-up. Your locking scheme, if you choose to use one, can
be simple or complex. You can lock the entire EEPROM or individual blocks. You can
enable reading without a password and writing with one if you desire. You can also hide
blocks of EEPROM, making them invisible to further accesses.

25. EEPROM reads and writes are multi-cycle instructions. The ones used in the lab code are
“blocking calls”, meaning that program execution will stall until the operation is
complete. There are also “non-blocking” calls that do not stall program execution. When
using those calls you should either poll the EEPROM or enable an interrupt scheme to
assure the operation completes properly.

26. Remove your breakpoint, click Terminate to return to the CCS Edit perspective and close
the Lab8 project.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8-19

Lab 8: Memory and the MPU

Bit-Banding

27. The LaunchPad board Stellaris examples include a bit-banding project. Click Project 2>
Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.

rt CCS Eclipse Projects - [B]x]
Select Existing CCS Eclipse Project ¥
Select a directory to search for existing CCS Edlipse projects. /
-
(%) Select search-directory: | C:\StellarisWare \boards \ek-Im4f 1 2051 \bitband | [Browse...]
(O select archive file: | |

Discovered projects:

Til' bitband [C:\Stellaris\Ware \boardsek-Im4f120%L \bitbandccs] Select All
Deselect Al
[automatically import referenced projects
Open the Resource Explorer and browse available example projects...
® Finish Cancel

28. Expand the project in the Project Explorer pane and double-click on bitband. c to
open it for viewing. Page down until you reach main () . You should recognize most of
the setup code, but note that the UART is also set up. We’ll be able to watch the code run
via UARTprintf () statements that will send data to a terminal program running on
your laptop. Also note that this example uses ROM API function calls.

8-20 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

29. Continue paging down until you find the for (ulIdx=0;ulIdx<32;ulldx++)
loop. This 32-step loop will write Oxdecafbad into memory bit by bit using bit-
banding. This will be done using the HWNREGBITW () macro.

Right-click on HWREGBITW () and select Open Declaration.

The HWREGBITW (x,b) macro is an alias from:

HWREG (((unsigned long) (x) & 0xF0000000) | 0x02000000 |
(((unsigned long) (x) & OxOO0O0OFFFFF) << 5) | ((b) << 2))

which is C code for:

bit-band alias = bit-band base + (byte offset * 0x20) + (bit number * 4)

This is the calculation for the bit-banded address of bit b of location x. HWREG is a
macro that programs a hardware register (or memory location) with a value.

The loop in bitband. c reads the bits from 0xdecafbad and programs them into the
calculated bit- band addresses of g ulValue. Throughout the loop the program trans-
fers the value in g_ulValue to the UART for viewing on the host. Once all bits have
been written to g ulValue, the variable is read directly (all 32 bits) to make sure the value
is Oxdecafbad. There is another loop that reads the bits individually to make sure that
they can be read back using bit-banding

30. Click the Debug button to build and download the program to the LM4F120H5QR.

31. If you are using Windows 7, skip to step 32. In WinXP, open HyperTerminal by
clicking Start = Run..., then type hypertrm in the Open: box and click OK. Pick any
name you like for your connection and click OK. In the next dialog box, change the
Connect using: selection to COM##, where ## is the COM port number you noted in
Labl. Click OK. Make the selections shown below and click OK.

Port Settings

Bits per second: | 115200 i
Data bits: |8 -
Parity: | None “

Stop bits: |1 “

Fow cortrol: | (TSN v

Restore Defaults

0K H Cancel][Apply]

Skip to step 33.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8-21

Lab 8: Memory and the MPU

32. In Win7, double-click on putty.exe. Make the settings shown below and then click
Open. Your COM port number will be the one you noted in Labl.

28 PuTTY Configuration

Category:
= Basic options far your PUTTY session
Leaging Specify the destination you wart to connect to
= Terminal Serial Sesd
Keyboard erial line pEE
Bl [com4a [[115200]
Festurss Connection type:
= Window O Raw O Telnet O Rlogn (OSSH @ Serial
Appearance
e . Load, save or delete a stored session
Behaviour
Translation Saved Sessions
Selection | |
Coleurs Load
=~ Connection today
ves
oy
Rlogin
S5H
Serial Close window on exit:
O Mways O MNever (%) Only on clean exit
About [COpen l [Cancel

33. Click the Resume button in CCS and watch the bits drop into place in your terminal
window. The Delay () in the loop causes this to take about 30 seconds.

34. Close your terminal window. Click Terminate in CCS to return to the CCS Edit
perspective and close the bitband project.

8-22 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

Memory Protection Unit (MPU)

35. The LaunchPad board Stellaris examples include an mpu_fault project. Click Project >
Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.
Note that this project is automatically copied into your workspace.

% Import CCS Eclipse Projects |._|[’E|E|
Select Existing CCS Eclipse Project _h*
Select a directory to search for existing CCS Eclipse projects. E 5
-
(%) Select search-directory: | Ci\Stellarisyare \boards \ek-m4f120%L ympu_fault | [Browse. ..]

(O select archive file: | |

Discovered projects:

EI' mpu_fault [C:'\StellarisWare\boards\ek-m4f 120X \mpu_fault\ccs] Select all
Deselect Al

[automatically import referenced projects

Open the Resource Explorer and brawse available example projects...

@j [Finish][Cancel]

36. Expand the project and double-click on mpu_fault.c for viewing.

Again, things should look pretty normal in the setup, so let’s look at where things are
different.

Find the function called MPUFaultHandler. This exception handler looks just like an ISR.
The main purpose of this code is to preserve the address of the problem that caused the
fault, as well as the status register.

Open startup_ccs.c and find where MPUFaultHandler has been placed in the
vector table. Close startup ccs.c.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8-23

Lab 8: Memory and the MPU

37. Inmpu_fault.c,findmain (). Using the memory map shown, the
MPURegionSet () calls will configure 6 different regions and parameters for the MPU.
The code following the final MPURegionSet () call triggers (or doesn’t trigger) the

fault conditions. Status messages are sent to the UART for display on the host.
MPURegionSet () uses the following parameters:

e Region number to set up
e Address of the region (as aligned by the flags)
.

Flags

Flags are a set of parameters (OR’d together) that determine the attributes of the region
(size | execute permission | read/write permission | sub-region disable | enable/disable)

The size flag determines the size

MPU_RGN_SIZE_32B
MPU_RGN_SIZE_64B
MPU_RGN_SIZE_128B
MPU_RGN_SIZE_256B
MPU_RGN_SIZE_512B
MPU_RGN_SIZE_1K
MPU_RGN_SIZE_2K
MPU_RGN_SIZE_4K
MPU_RGN_SIZE_8K
MPU_RGN_SIZE_16K
MPU_RGN_SIZE_32K
MPU_RGN_SIZE_64K
MPU_RGN_SIZE_128K
MPU_RGN_SIZE_256K

of a region and must be one of the following:

MPU_RGN_SIZE_512K
MPU_RGN_SIZE_1M
MPU_RGN_SIZE_2M
MPU_RGN_SIZE_4M
MPU_RGN_SIZE_8M
MPU_RGN_SIZE_16M
MPU_RGN_SIZE_32M
MPU_RGN_SIZE_64M
MPU_RGN_SIZE_128M
MPU_RGN_SIZE_256M
MPU_RGN_SIZE_512M
MPU_RGN_SIZE_1G
MPU_RGN_SIZE_2G
MPU_RGN_SIZE_4G

The execute permission flag must be one of the following:

MPU_RGN_PERM_EXEC enables the region for execution of code
MPU_RGN_PERM_NOEXEC disables the region for execution of code

The read/write access permissions are applied separately for the privileged and user
modes. The read/write access flags must be one of the following:

MPU_RGN_PERM_PRV_NO_USR_NO - no access in privileged or user mode
MPU_RGN_PERM_PRV_RW_USR_NO - privileged read/write, no user access
MPU_RGN_PERM_PRV_RW_USR_RO - privileged read/write, user read-only
MPU_RGN_PERM_PRV_RW_USR_RW - privileged read/write, user read/write
MPU_RGN_PERM_PRV_RO_USR_NO - privileged read-only, no user access
MPU_RGN_PERM_PRV_RO_USR_RO - privileged read-only, user read-only

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

Each region is automatically divided into 8 equally-sized sub-regions by the MPU. Sub-
regions can only be used in regions of size 256 bytes or larger. Any of these 8 sub-
regions can be disabled, allowing for creation of “holes” in a region which can be left
open, or overlaid by another region with different attributes. Any of the 8 sub-regions can
be disabled with a logical OR of any of the following flags:

MPU_SUB_RGN_DISABLE_0
MPU_SUB_RGN_DISABLE_1
MPU_SUB_RGN_DISABLE_2
MPU_SUB_RGN_DISABLE_3
MPU_SUB_RGN_DISABLE_4
MPU_SUB_RGN_DISABLE_5
MPU_SUB_RGN_DISABLE_6
MPU_SUB_RGN_DISABLE_7

Finally, the region can be initially enabled or disabled with one of the following flags:

MPU_RGN_ENABLE
MPU_RGN_DISABLE

38. Start your terminal program as shown earlier. Click the Debug button to build and
download the program to the LM4F120H5QR. Click the Resume button to run the
program.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8-25

Lab 8: Memory and the MPU

39. The tests are as follows:

e Attempt to write to the flash. This should cause a protection fault due to the fact
that this region is read-only. If this fault occurs, the terminal program will show
OK.

e Attempt to read from the disabled section of flash. If this fault occurs, the
terminal program will show OK.

e Attempt to read from the read-only area of RAM. If a fault does not occur, the
terminal program will show OK.

e Attempt to write to the read-only area of RAM. If this fault occurs, the terminal
program will show OK.

RAM write...
1

Success!

40. When you are done, close your terminal program. Click the Terminate button in CCS to
return to the CCS Edit perspective. Close the mpu_fault project and minimize Code
Composer Studio.

ST

You’re done.

8-26 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Floating-Point Unit

Introduction

This chapter will introduce you to the Floating-Point Unit (FPU) on the LM4F series devices. In
the lab we will implement a floating-point sine wave calculator and profile the code to see how

many CPU cycles it takes to execute.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers

ADC12
Hibernation Module
USB
Memory

Floating-Point

BoosterPacks and grLib
Synchronous Serial Interface

UART
uDMA

What is Floating-Point?...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

9-1

Chapter Topics

Chapter Topics

Floating-Point Unit 9-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 9-2
What is Floating-Point nd IEEE-7547c.cccuooiiieeeeee ettt 9-3
FIOQHING-POIRNE URIL...........ooeeieieeiee ettt ettt ettt e e et ene e enae e 9-4
CMSIS DSP Library PerfOrMANCE.cccueevuieciiieeiieeiiieesieeeieeeaeesteestaesveesveesisaeanseessbaesnseeseseenssee e 9-6
LD 9: FPU ..ottt ettt bt et ekt R e n et a ekttt n ettt naeere e e 9-7

L0 10} 1< 15 4R SRRUTSPRSR 9-7
PIOCEAULIE ...ttt ettt st b e s bt e b ettt b saeebe e b ebt et etenbe e 9-8

9-2

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

What is Floating-Point and IEEE-7547?

What is Floating-Point and IEEE-7547?

What is Floating-Point?

¢ Floating-point is a way to represent real numbers on
computers

¢ IEEE floating-point formats:

sign exponent fraction
n

r —
+ Half (16-bit) > (LTI OSSR
o Single (32-bit) > T T
+ Double (64-bit) > (0T T 6N RRRARATATANN ., TN

exponent fraction

p

& Quadruple (128-bit) > ' _

What is IEEE-7547...

What is IEEE-7547

Bit 31 3029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
Symbol Sign (s) Exponent (e) Fraction (f)
\ J\)

Y Y
1 bit 8 bits 23 bits

Decimal Value = (-1)s (1+f) 2¢-bias

where: f=3[(b;)27] Vie (1,23)
bias = 127 for single precision floating-point

Symbol s e f
Example 0 1 0 0 0 01 101101000010000O000O0O0O0O0OO0OO0O
LYJ\ J\ J
Y Y
sign = (-1)° exponent = [10000110], = [134],, fraction = [0.110100001000000000000000],= [0.814453],,

=[1ho
Decimal Value = (-1)% x (1+f) x 2¢-bias
=[1140 X ([1]4o + [0.814453],0) x [2134127]
=[1. 814453],, x 128
= [232.249],,

FPU...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

Floating-Point Unit

Floating-Point Unit

Floating-Point Unit (FPU)
¢ The FPU provides floating-point
computation functionality that is compliant N
with the IEEE 754 standard]
¢ Enables conversions between fixed-point o
and floating-point data formats, and floating- E i
point constant instructions - -
¢ The Cortex-M4F FPU fully supports single- o m
precision: (5o _ 0
* Add |: g - Bus Matrix — j
o ode f M &
¢ Subtract 0o S peripheral I/F]
+ Multiply SRR ECECRCEC SRR
¢ Divide
¢ Single cycle multiply and accumulate (MAC)
¢ Square root
s v) C_vowr)(_vewre) (_wor) (_voe JC_vov) (C_voow)(_vor)
(L | G | G | G D | G LI | G | G | G | G
) (Cvror) (C_weusn) (_vesaar) (v) (C_wm) (_ws) Cortex-M4F
Modes of Operation...
Modes of Operation
¢ There are three different modes of operation for the FPU:
KFUII-CompIiance mode - In Full-Compliance mode, the FPU
processes all operations according to the IEEE 754 standard in
hardware. No support code is required.
= Flush-to-Zero mode — A result that is very small, as described in the
IEEE 754 standard, where the destination precision is smaller in
magnitude than the minimum normal value before rounding, is
replaced with a zero.
= Default NaN (not a number) mode — In this mode, the result of any
arithmetic data processing operation that involves an input NaN, or
\that generates a NaN result, returns the default NaN. (0 /0 = NaN)
FPU Registers...

9-4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

Floating-Point Unit

FPU Registers

S0
51
52
& Sixteen 64-bit double-word =

registers, D0-D15 =
Thirty-two 32-bit single-word >
registers, S0-S31

- Do -

D14

D2

D3 4

528

529
S30
531

L D14

L D15

Usage...

FPU Usage

¢ The FPU is disabled from reset. You must enable it* before you
can use any floating-point instructions. The processor must be in
privileged mode to read from and write to the Coprocessor Access
Control (CPAC) register.

¢ Exceptions: The FPU sets the cumulative exception status flag in
the FPSCR register as required for each instruction. The FPU does
not support user-mode traps.

¢ The processor can reduce the exception latency by using lazy
stacking*. This means that the processor reserves space on the
stack for the FPU state, but does not save that state information to
the stack.

* with a StellarisWare API function call

CMSIS...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

CMSIS DSP Library Performance

CMSIS DSP Library Performance

* L
CMSIS’ DSP Library Performance
* - ARM® Cortex™ Microcontroller Software Interface Standard
¢ DSP Library Benchmark: Cortex M3 vs. Cortex M4 (SIMD + FPU)
¢ Fixed-point ~ 2x faster packed data packed data
¢ Floating-point ~ 10x faster
) 2 2 T 8 mEx — 2
n n =] = o
~ (] © ~ G:J
L] 1] L] L]
R o
= 3 g g o @ 2 5
o N - ~ ol = o % B &
© o~ = o~ © o~ -] o~ = -
| S . - I . 0 = B
FIR q15 PID q15 IIR g31 Matrix Mul Correlation
fixed point fixed point fixed point fixed paint floating point
Cycles: smaller numbers are better Cortex-M4
Source: ARM CMSIS Partner i World, Rei Keil
Lab...

9-6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

Lab 9: FPU

Lab 9: FPU

Objective

In this lab you will enable the FPU to run and profile floating-point code.

Lab 9: FPU

USB Emulation Connection

¢ Experiment with the FPU . ‘
+ Profile floating-point code "% TEXAS INSTRUMENTS

a1

- ,e‘ga@ s

77 stellaris'
P aunchPad >

Agenda ...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit 9-7

Lab 9: FPU

Procedure

Import Lab9

1. We have already created the Lab9 project for you with main. c, a startup file and all
necessary project and build options set. Maximize Code Composer and click Project >
Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.
Make sure that the “Copy projects into workspace” checkbox is unchecked.

) Import CCS Eclipse Projects |-_||'E| El
Select Existing CCS Eclipse Project _*
Select a directory to search for existing CCS Edlipse projects. :-: 5
A
(*) Select search-directory: | Ch\stellarisware\boards WMyLaunchPadBoard'Labs\zcs | [Browse...]

() Select archive file: | |

Discovered projects:
tl' Labg [C:\stellarisWareboards \MyLaunchPadBoard'Lab2ccs] Select Al

|:| Copy projects into workspace
[Automatically import referenced projects

Cpen the Resource Explorer and browse available example projects. ..

@ Finish] [Cancel

The code is fairly simple. We’ll use the FPU to calculate a full cycle of a sine wave
inside a 100 datapoint long array.

9-8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

Lab 9: FPU

Browse the Code

2. In order to save some time, we’re going to browse existing code rather than enter it line
by line. Open main. c in the editor pane and copy/paste the code below into it.

#include <math.h>

#include "inc/hw_memmap.h"
#include "inc/hw types.h"
#include "driverlib/fpu.h"
#include "driverlib/sysctl.h"
#include "driverlib/rom.h"

#ifndef M PI
#define M PI 3.14159265358979323846
#endif
#define SERIES LENGTH 100
float gSeriesData[SERIES LENGTH];
int dataCount = 0;
int main (void)
{
float fRadians;

ROM FPULazyStackingEnable () ;
ROM_FPUEnable () ;

ROM SysCtlClockSet (SYSCTL SYSDIV 4|SYSCTL USE PLL|SYSCTL XTAL 16MHZ|SYSCTL_OSC MAIN) ;
fRadians = ((2 * MﬁPI) / SERIESiLENGTH);

while (dataCount < SERIES_ LENGTH)

{

gSeriesData[dataCount] = sinf (fRadians * dataCount);

dataCount++;

}

while (1)
{
}

3. Atthetop ofmain.c, look first at the includes, because there are a couple of new ones:
e math.h—the code uses the sinf () function prototyped by this header file

e fpu.h —support for Floating Point Unit

4. Nextis an ifndef construct. Justin case M_PT is not already defined, this code will do
that for us.

5. Types and defines are next:
e SERIES LENGTH - this is the depth of our data buffer

e float gSeriesData[SERIES_ LENGTH] — an array of floats
SERIES_LENGTHlong

e dataCount — a counter for our computation loop

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit 9-9

Lab 9: FPU

6. Now we’ve reached main():
e We’ll need a variable of type float called fRadians to calculate sine
e Turn on Lazy Stacking (as covered in the presentation)
e Turn on the FPU (remember that from reset it is off)
e Set up the system clock for SOMHz
o A full sine wave cycle is 27 radians. Divide 27 by the depth of the array.

e Thewhile () loop will calculate the sine value for each of the 100 values of the
angle and place them in our data array

e An endless loop at the end

Build, Download and Run the Code

7. Click the Debug button to build and download the code to the LM4F120HS5QR flash
memory. When the process completes, click the Resume button to run the code.

8. Click the Suspend button to halt code execution. Note that execution was trapped in the
while (1) loop.

while (1)

9. If your Memory Browser isn’t currently visible, Click View = Memory Browser on the
CCS menu bar. Enter gSeriesData in the address box and click Go. In the box that
says Hex 32 Bit — TI Style, click the down arrow and select 32 Bit Float. You will see the
sine wave data in memory like the screen capture below:

] x - O
- e it~

| gSeriesData v| [New Tab]

0x 20000000 <Memory Rendering 1= 57

| 325it Float v|

0=x20000000 gSeriesData ~
0 0.06273052

0=x20 0.1253332

0=x20 0.1873813

0=x20 0.248689%9

0=x20 0.309017

0=x20 0.3681246

0=x20 0.4257793

0=x20 0.4817537

0x20 0.53582689 B

0=x20 0.5877852

0=x20 0.637424

0=x20 0.6845472

0=x20 0.7289687

0=x20 0.7705133

0=x2000003C O.B0OS017 "

9-10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

Lab 9: FPU

10. Is that a sine wave? It’s hard to see from numbers alone. We can fix that. On the CCS
menu bar, click Tools = Graph = Single Time. When the Graph Properties dialog
appears, make the selections show below and click OK.

Graph Properties

Property Value
=l Data Properties
Arcquisition Buffer Size 100
Dsp Data Type 32 bit floating paint
Index Increment 1
Q_Value]
Sampling Rate Hz 1
Start Address n5eriesData
[= Display Properties
Axis Display true
Data Plot Style Line
Display Data Size 100
Grid Style Mo Grid
Magnitude Display Scale Linear
Time Display Unit sample
IUse Dc Value For Graph [] false

You will see the graph below at the bottom of your screen:

El consale | e Single Time -0 £3

1.100

2.000x10°%
7.000x10-% o
5.000x10-% o
3.000x10-% o
1.000x10-% o
-1.000x10-91 o
-3.000x 10791 o
-5.000x10°71
-7.000x10-91 o
-3.000x 10-% o

fo
e
Jo
Bh
%
%]
i)
®
[
-

-1.100

" T T T T T T T T T T T T T T T
o +5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 +60 +65 +70 +75 +30 +35 +50 +95
sample

Profiling the Code

11. An interesting thing to know would be the amount of time it takes to calculate those 100
sine values.

On the CCS menu bar, click View = Breakpoints. Look in the upper right area of the
CCS display for the Breakpoints tab.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit 9-11

Lab 9: FPU

12. Remove any existing breakpoints by clicking Run - Remove All Breakpoints. In the
main. c, set a breakpoint by double-clicking in the gray area to the left of the line
containing:

fRadians = ((2 * M _PI) / SERIES LENGTH);

fRadian=s = ((2 * M PI) / SERIES LENGIH):
while (dataCount <« SERIES LENGTH)

gSeriesData[dataCount] = =inf (fRadian=s * dataCount):

dataCount++;

>
13. Click the Restart button “=' to restart the code frommain (), and then click the
Resume button to run to the breakpoint.

14. Right-click in the Breakpoints pane and Select Breakpoint (Code Composer Studio) =
Count event. Leave the Event to Count as Clock Cycles in the next dialog and click OK.

15. Set another Breakpoint on the line containing while (1) atthe end of the code. This
will allow us to measure the number of clock cycles that occur between the two
breakpoints.

fRadians = ((2 * M PI) / 3SERIES LENGTH);
while (dataCount < SERIES LENGTH)
gSeriesData[dataCount] = =inf(fRadians * dataCount) ;

dataCount++;

while (1)

16. Note that the count is now 0 in the Breakpoints pane. Click the Resume button to run to
the second breakpoint. When code execution reaches the breakpoint, execution will stop
and the cycle count will be updated. Our result is show below:

(9= Variables | 59" Expressions | 18} Registers | ®g Breakpaints 52 & - 8‘& || - =] <,=|'=§ |
Identity Mame Condition Count Action
ﬁ) CountEvent CountEvent 34950
? main.c, ine 27 { Breakpoint 0 (o) Remain Halted
& main.c, line 36 { Breakpoint LR (1)] Remain Halted

9-12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

Lab 9: FPU

17. A cycle count of 34996 means that it took about 350 clock cycles to run each calculation
and update the dataCount variable (plus some looping overhead). Since the System Clock
is running at 50Mhz, each loop took about 7uS, and the entire 100 sample loop required
about 700 puS.

18. Right-click in the Breakpoints pane and select Remove All, and then click Yes to remove
all of your breakpoints.

19. Click the Terminate button to return to the CCS Edit perspective.
20. Right-click on Lab9 in the Project Explorer pane and close the project.

21. Minimize Code Composer Studio.

ST

You’re done.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit 9-13

Lab 9: FPU

9-14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Floating Point Unit

BoosterPacks and grLib

Introduction

This chapter will take a look at the currently available BoosterPacks for the LaunchPad board.
We’ll take a closer look at the Kentec Display LCD TouchScreen BoosterPack and then dive into

the StellarisWare graphics library.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers
ADC12
Hibernation Module
USB
Memory

Floating-Point

BoosterPacks and grLib

Synchronous Serial Interface
UART
uDMA

LaunchPad Boards...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 1

Chapter Topics

Chapter Topics

BoosterPacks and grLib 10-1
CRAPICE TOPICS..cc.vv ettt ettt et e ettt e s b e e e st e e s b e e esseesabeeenbeeesbeeeaseesabeesnseessseeanseesnseas 10-2
LaunchPad Boards and BOOSIETPACKSc..ccceeiuieiiiiiiiieciee ettt avaesvaeenseesnnees 10-3
KenTec TOUCRSCEEN TFT LCDcccoooouieeiiiiiie ettt eenbaesnbaesabaesnseeenneas 10-7
GFAPRICS LIDFATY ..ottt st e et e e sbe e et e e eabeeenseesnbeeenseesnseas 10-8
Lab 10: GFAPRICS LIDVATYoocevveivieeiie ettt ettt ettt e e sibeesabeestbeesabeesabeenasee e 10-11

ODJCCHIVE. .. e euteeuteeiieeeteetie it et et et e et e s et e bt e b e esaeeaeesaeesseanseenseanseesseesaeseenseenseensesneesseenseenseenseensennaenneens 10-11
PIOCEAULE ...ttt ettt st b et ettt st besbe bttt e e neeeaes 10-12

10 -2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

LaunchPad Boards and BoosterPacks

LaunchPad Boards and BoosterPacks

Tl LaunchPad Boards

MSP430 Stellaris C2000 Piccolo
$9.99US $12.99US $17.00US

BoosterPack Connectors...

BoosterPack Connectors

¢ Original Format (MSP430)
- VCC and Ground
14 GPIO
Emulator Reset and Test
Crystal inputs or 2 more GPIO

¢ XL Format (Stellaris/C2000) is a
superset of the original, adding
two rows of pins with:

USB Vgys and Ground
18 additional GPIO

Available Boosterpacks...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 3

LaunchPad Boards and BoosterPacks

Some of the Available BoosterPacks

Solar Energy RF Module w/
Harvesting LCD TMP006 IR
TED Matr Temperature
8x8 LED Matrix Sensor
Universal '
Energy Inductive
Harvesting Charging Sub-_1GHz RF
Wireless C5000 Audio
o e ‘ Capacitive Touch
= TPL0401 SPI TPL0501 SPI
%‘.% Bpggtr% Digital Pot. Digital Pot.

Available Boosterpacks...

Some of the Available BoosterPacks

Proto board ZigBee Networking OLED Display

LCD Controller MOD Board Click Board

Development Package Adapter Adapter
Kentec LCD Display...

See http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/default.aspx for a list of TI
boosterpacks.

10 - 4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/default.aspx

LaunchPad Boards and BoosterPacks

Solar Energy
Harvesting: http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymb
et-enerchip-cc-solar-energy-harvesting-evaluation-kit-cbc-eval-10.aspx

Universal Energy Harvesting:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-
ep-universal-energy-harvesting-evaluation-kit-cbc-eval-09.aspx

Capacitive Touch:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/04/17/430boost 2d00 se

nsel.aspx

RF Module w/ LCD:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/07/13/golden-ic-rf-
module-with-lcd-boosterpack.aspx

Inductive Charging:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-
ep-universal-energy-harvesting-evaluation-kit-cbc-eval-11.aspx

Proto Board:
http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html

Olimex 8x8 LED Matrix:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/09/07/8x8-led-matrix-
boosterpack-from-olimex.aspx

Sub-1GHz Wireless:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/12/01/texas-instruments-
sub-1ghz-rf-wireless-boosterpack-430boost-cc110l.aspx

TPL0401 SPI Digital Potentiometer:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-
tpl0401-based-i2c-digital-potentiometer-tpl0401evm.aspx

TMP006 IR Temperature Sensor:
http://www.ti.com/tool/430boost-tmp006

C5000 Audio Capacitive Touch:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2012/03/27/texas-instruments-
¢5000-audio-capacitive-touch-boosterpack-430boost-c55audiol .aspx

TPLO0501 SPI Digital Potentiometer:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-
tpl0501-based-spi-digital-potentiometer-tpl0501evm.aspx

Proto Board:
http://store-ovhh2.mybigcommerce.com/ti-booster-packs/

LCD Controller Development Package:
http://www.epson.jp/device/semicon_e/product/lcd_controllers/index.htm

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 5

http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-cc-solar-energy-harvesting-evaluation-kit-cbc-eval-10.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-cc-solar-energy-harvesting-evaluation-kit-cbc-eval-10.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-09.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-09.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/04/17/430boost_2d00_sense1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/04/17/430boost_2d00_sense1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/07/13/golden-ic-rf-module-with-lcd-boosterpack.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/07/13/golden-ic-rf-module-with-lcd-boosterpack.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-11.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-11.aspx
http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/09/07/8x8-led-matrix-boosterpack-from-olimex.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/09/07/8x8-led-matrix-boosterpack-from-olimex.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/12/01/texas-instruments-sub-1ghz-rf-wireless-boosterpack-430boost-cc110l.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/12/01/texas-instruments-sub-1ghz-rf-wireless-boosterpack-430boost-cc110l.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0401-based-i2c-digital-potentiometer-tpl0401evm.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0401-based-i2c-digital-potentiometer-tpl0401evm.aspx
http://www.ti.com/tool/430boost-tmp006
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2012/03/27/texas-instruments-c5000-audio-capacitive-touch-boosterpack-430boost-c55audio1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2012/03/27/texas-instruments-c5000-audio-capacitive-touch-boosterpack-430boost-c55audio1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0501-based-spi-digital-potentiometer-tpl0501evm.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0501-based-spi-digital-potentiometer-tpl0501evm.aspx
http://store-ovhh2.mybigcommerce.com/ti-booster-packs/
http://www.epson.jp/device/semicon_e/product/lcd_controllers/index.htm

LaunchPad Boards and BoosterPacks

ZigBee Networking:
http://www.anaren.com/

MOD Board adapter:
https://www.olimex.com/dev/index.html

OLED Display:
http://www.kentecdisplay.com/plus/view.php?aid=74

Click Board Adapter:
http://www.mikroe.com/eng/categories/view/102/click-boards/

10- 6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

http://www.anaren.com/
https://www.olimex.com/dev/index.html
http://www.kentecdisplay.com/plus/view.php?aid=74
http://www.mikroe.com/eng/categories/view/102/click-boards/

KenTec TouchSceen TFT LCD

KenTec TouchSceen TFT LCD

KenTec TouchScreen TFT LCD Display

¢ Part# EB-LM4F120-L35
¢ Designed for XL BoosterPack pinout

¢ 3.5” QVGA TFT 320x240x16 color LCD
with LED backlight

¢ Driver circuit and connector are
compatible with 4.3”, 57, 7” & 9”displays

¢ Resistive Touch Overlay
grLib Overview...

For more information go to: http://www.kentecdisplay.com/

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10-7

http://www.kentecdisplay.com/

Graphics Library

Graphics Library

Graphics Library Overview

The Stellaris Graphics Library provides graphics primitives and widgets sets
for creating graphical user interfaces on Stellaris controlled displays.

Note that Stellaris devices do not have an LCD interface. The interface to
smart displays is done through serial or EPI ports.

The graphics library consists of three layers to interface your application to
the display:

Your Application Code*

y

Widget Layer

Graphics Primitives Layer
Display Driver Layer* :>

* = user written or modified

grLib Overview...

Graphics Library Overview

Theldesign of the graphics library is governed by the following
goals:

@

*
¢ The graphics library is easy to understand.
.

\

Components are written entirely in C except where absolutely not possible.
Your application can call any of the layers.

The components are reasonably efficient in terms of memory and processor
usage.

*

Components are as self-contained as possible.
Where possible, computations that can be performed at compile time are

*
\ done there instead of at run time. /

Display Driver...

10 - 8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Graphics Library

Display Driver

Low level interface to the display hardware

ﬁ)utines for display-dependent operations like: \

¢ Initialization

¢ Backlight control

¢ Contrast

¢ Translation of 24-bit RGB values to screen dependent color map

Drawing routines for the graphics library like:
¢ Flush
¢ Line drawing
¢ Pixel drawing
¢ Rectangle drawing
User-modified Hardware Dependent Code
¢ Connectivity of the smart display to the LM4F

¢ Changes to the existing code to match your
display (like color depth and size)

Graphics Primitives...

This document: http://www.ti.com/lit/an/spma039/spma039.pdf has suggestions for modifying
the display driver to connect to your display.

Graphics Primitives

Low level drawing support for:

¢
»

KLines, circles, text and bitmap images
+ Support for off-screen buffering
¢ Foreground and background drawing contexts
Color is represented as a 24-bit RGB value (8-bits per color)
¢ ~150 pre-defined colors are provided
¢ 153 pre-defined fonts based on the Computer Modern typeface
QSupport for Asian and Cyrillic languages

i
¢!

AGEEEELST
PUO0UYPR

EBEVITI

6660-ouGOuyhy

Widgets...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 -9

http://www.ti.com/lit/an/spma039/spma039.pdf

Graphics Library

Widget Framework

- Widgets are graphic elements that provide user
control elements

- Widgets combine the graphical and touch screen
elements on-screen with a parent/child hierarchy so
that objects appear in front or behind each other
correctly

@nvas — a simple drawing surface with no user \

interaction

Checkbox — select/unselect
Container — a visual element to group on-screen widgets

Push Button — an on-screen button that can be pressed
to perform an action

Radio Button — selections that form a group; like low,
medium and high

Slider — vertical or horizontal to select a value from a
predefined range

@tBox — selection from a list of options /

Special Utilities...

Special Utilities

Utilities to produce graphics library compatible data structures

ﬁasterize \
¢ Uses the FreeType font rendering package to convert your font into a graphic

library format.

¢ Supported fonts include: TrueType®, OpenType®, PostScript® Type 1 and
Windows® FNT.

Imi-button

¢ Creates custom shaped buttons using a script plug-in for GIMP. Produces
images for use by the pushbutton widget.

pnmtoc
¢ Converts a NetPBM image file into a graphics library compatible file.

* NehtPBM image formats can be produced by: GIMP, NetPBM, ImageMajik and
others.

mkstringtable
¢ Converts a comma separated file (.csv) into a table of strings usable by graphics
library for pull down menus.

Lab...

10 - 10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Lab 10: Graphics Library

Lab 10: Graphics Library
Objective

In this lab you will connect the KenTec display to your LaunchPad board. You will experiment
with the example code and then write a program using the graphics library.

Lab 10: Graphics Library

USB Emulation Connection

¢ Connect Kentec Display

¢ Experiment with demo
project

¢ Write graphics library code

Agenda ...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 11

Lab 10: Graphics Library

Procedure

Connect the KenTec Display to your LaunchPad Board

1. Carefully connect the KenTec display to your LaunchPad board. Note the part numbers
on the front of the LCD display. Those part numbers should be at the end of the
LaunchPad board that has the two pushbuttons when oriented correctly. Make sure that
all the BoosterPack pins are correctly engaged into the connectors on the bottom of the
display.

Import Project

2. We’re going to use the Kentec example project provided by the manufacturer. Maximize
Code Composer and click Project = Import Existing CCS Eclipse Project. Make the
settings shown below and click Finish. Note that this project will be automatically copied
into your workspace.

rt CCS Ecli Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CCS Edlipse projects,

A

(®) Select search-directory: |C:'ﬁtellaris'\-'-a'are'Jnoards'£k4m4fl20>€L'.b005tx|_kentec_|35 | ’ Browse...

() select archive file: | |

Discovered projects:

& orlib_demo [C:\StellarisWare \boards'ek-m4f 120X hoostxl_kentec_|35%ccs] Select all
Deselect All
[] automatically import referenced projects
Open the Resource Explorer and browse available example projects. ..
@ Finish l ’ Cancel

10 - 12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Lab 10: Graphics Library

3. Expand the project in the Project Explorer pane, and then expand the drivers folder. The
two files in this folder; Kentec320x240x16 ssd2119 8bit.cand touch.c are
the driver files for the display and the touch overlay. Open the files and take a look
around. Some of these files were derived from earlier StellarisWare examples, so you
may see references to the DK-LM3S9B96 board.

Kentec320x240x16 ssd2119 8bit.c contains the low level Display Driver
interface to the LCD hardware, including the pin mapping, contrast controls and simple
graphics primitives.

Build, Download and Run the Demo

4. Make sure your board is connected to your computer, and then click the Debug button to
build and download the program to the LM4F120H5QR device. The project should build
and link without any warnings or errors.

5. Watch your LCD display and click the Resume button to run the demo program. Using
the + and — buttons on-screen, navigate through the eight screens. Make sure to try out
the checkboxes, push buttons, radio buttons and sliders. When you’re done
experimenting, click Terminate on the CCS menu bar to return to the CCS Editing
perspective.

Writing Our Own Code

6. The first task that our lab software will do is to display an image. So we need to create an
image in a format that the graphics library can understand. If you have not done so
already, download GIMP from www.gimp.org and install it on your PC. The steps below
will go through the process of clipping the photo below and displaying it on the LCD
display. If you prefer to use an existing image or photograph, or one taken from your
smartphone camera now, simply adapt the steps below.

7. Make sure that this page of the workbook pdf is open for viewing and press PrtScn on
your keyboard. This will copy the screen to your clipboard. The dimensions of the photo
below approximate that of the 320x240 KenTec LCD.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 13

http://www.gimp.org/

Lab 10: Graphics Library

8.

10.

11.

12.

Open GIMP (make sure it is version 2.8 or later) and click Edit = Paste. In the toolbox
window, click the Rectangle Select tool, and select tightly around the border of the photo.
Zoom in if that is easier for you. Click Image = Crop to selection. Click Image = Scale
Image and make sure that the image size width/height is 320x240 and click Scale. You
may need to click the “chain” symbol to the right of the pixel boxes to stop GIMP from
preserving the wrong dimensions.

Convert the image to indexed mode by clicking Image > Mode - Indexed. Select
Generate optimum palette and change the Maximum number of colors box to 16 (the
color depth of the LCD). Click Convert.

Save the file by clicking File = Export... Name the image pic, change the save folder to
C:\StellarisWare\tools\bin and select PNM image as the file type using the
+ Select File Type just above the Help button. Click Export. When prompted, select
Raw as the data formatting and click Export. Close GIMP.

Now that we have a source image file in PNM format, we can convert it to something that
the graphics library can handle. We’ll use the pnmtoc (PNM to C array) conversion
utility to do the translation.

Open a command prompt by clicking Start - Run. Type cmd in the window and click
Open. The pnmtoc utility is in C: \StellarisWare\tools\bin. Type (Ctrl-V
will not work) cd C:\StellarisWare\tools\bin inthe command window,
then press Enter to change the folder to that location.

Finally, perform the conversion by typing pnmtoc -c pic.pnm > pic.cinthe
command window and hit Enter. When the process completes correctly, the cursor will
simply drop to a new line. Close the DOS window.

Using Windows Explorer, find the CCS workspace in your My Documents folder. Open
the folder and find the gr1ib demo folder that was copied here when you imported this
project. Copy pic.c from C:\StellarisWare\tools\bin tothe grlib demo
folder.

Look back in the expanded gr1ib demo project in the CCS Project Explorer. If the
pic.c file does not appear there, right-click on the project and select Refresh.

10 - 14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Lab 10: Graphics Library

Modify pic.c

13. Open pic. c and add the following include to the very top of the file:

#include "grlib/grlib.h"

Your pic. c file should look something like this (your data will vary greatly):

#include "grlib/grlib.h"

const unsigned char g puclmage[] =
{

IMAGE FMT 4BPP COMP,

96, 0O,

64, 0,

15,

0x00, 0x02, 0x00,
0x18, Oxla, 0x19,
0x28, 0x2a, 0x28,
0x38, Ox3a, 0x38,
0x44, 0x46, 0x44,
0x54, 0x57, 0x55,
0x62, 0x65, 0x63,
0x72, 0x75, 0x73,
0x81, 0x84, 0x82,
0x93, 0x96, 0x94,
Oxa2, Oxa5, Oxa3,
0xb3, 0xb6, 0xb4,
Oxc4, Oxc7, 0xc5,
0xd7, Oxda, 0xd8,
Oxe8, Oxeb, Oxe9,
0xf4, 0xf8, Oxf5,

0xff, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, Oxff, 0x07, 0x07,
0x07, 0x07, 0x07, 0x07, 0x07, 0x07, Oxff, 0x07, 0x07, 0x07, 0x07, 0x07,
0x07, 0x07, 0x07, Oxfc, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x03, 0x77,
0x23, 0x77, 0x77, Oxe9, 0x77, 0x78, 0x70, 0x07, 0x07, Oxcl, 0x77, Ox2c,
0x04, Oxde, Oxee, Oxee, Oxee, 0xe9, 0x3c, Oxee, Oxal, 0x07, 0x07, 0x77,
0x2c, 0x03, Oxcf, 0x00, Oxee, Oxee, Oxee, Oxef, Oxee, Oxef, Oxfe, 0xal,
0xf0, 0x07, 0x07, 0x77, 0x2c, 0x03, Oxcf, Oxee, Oxee, 0x4f, Oxee, 0xe9,
Oxee, Oxa0, 0x07, 0x07, 0x77, O0x2c, 0x04, 0x03, Oxcf, Oxee, Oxee, Oxee,
Oxe9, Oxee, 0x90, O0xf0, 0x07, 0x07, 0x77, O0x2c, 0x03, Oxcf, Oxee, Oxee,
0x4f, Oxee, Oxe9, Oxee, 0x90, 0x07, 0x07, 0x77, Ox2c, 0x04, 0x03, Oxcf,

many, many more lines of this data ..

0x77, Ox2c, 0x19, Oxfe, Oxee, Oxef, 0x03, Oxee, Oxee, Oxee, Oxee, 0xfb,
0x20, 0x07, 0x07, Oxcl, 0x77, 0x2c, 0x05, Oxdf, Oxee, Oxee, Oxee, 0xe9,
0x78, 0xf9, 0x07, 0x07, 0x77, 0x2d, 0x01l, 0x8d, Oxee, 0x2f, Oxee, Oxee,
Oxe9, O0xf7, 0x07, 0x07, 0x77, Ox2e, 0x00, 0x39, Oxef, Oxee, Oxee, Oxee,
Oxee, Oxee, O0xf7, 0xf0, 0x07, 0x07, 0x77, Ox2e, 0x06, Oxdf, Oxee, Oxee,
0x0f, Oxee, Oxee, Oxee, 0xf6, 0x07, 0x07, 0x77, O0x2f, 0x01, 0x7d, Oxfe,
Oxee, Oxee, Oxee, Oxee, 0xf7, 0x07, Oxe0, 0x07, 0x77, O0x2f, 0x17, Oxdf,
Oxee, Oxee, Oxee, 0x3c, Oxee, 0xf7, 0x07, 0x07, 0x77, 0x2f, 0x01, 0x7d,
0x03, Oxee, Oxee, Oxee, Oxee, 0xf9, 0x10, 0x07, 0x07, OxcO, 0x77, O0x2f,
0x05, Oxad, Oxee, Oxfe, Oxee, Oxfc, 0x78, 0x20, 0x07, 0x07, 0x77, O0x2f,
0x00, 0x27, 0x9d, 0x0f, Oxed, Oxee, Oxec, 0x40, 0x07, 0x07, 0x77, Ox2f,
0x01, 0x00, 0x00, 0x28, 0x9a, Oxcc, O0xa9, 0x30, 0x07, Oxff, 0x07, 0x77,
0x2f, 0x07, 0x07, 0x07, 0x07, 0x07, OxcO, 0x07, 0x07,

Save your changes and close the pic. ¢ editor pane. If you’re having issues with this, you can
find a pic. c file in the Lab10 folder.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 15

Lab 10: Graphics Library

Main.c

14.

15.

16.

To speed things up, we’re going to use the entire demo project as a template for our own
main () code. But we can’t have grlib demo. c in the project since it already has a
main () . In the Project Explorer, right-click on grlib demo. c and select Resource
Configurations = Exclude from Build... Click the Select All button to select both the
Debug and Release configurations, and then click OK. In this manner we can keep the
old file in the project, but it will not be used during the build process. This is a valuable
technique when you are building multiple versions of a system that shares much of the
code between them.

On the CCS menu bar, click File > New = Source File. Make the selections shown
below and click Finish:

e

Source File

- [B]
Create a new source file, C
=

3 (cortpee

Source folder: | grlib_demo

Source file: main.c
Template: <Mone = e

@) I Finish H Cancel]

Open main.c for editing. Add (or copy/paste) the following lines to the top:
#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "grlib/grlib.h"

#include "drivers/Kentec320x240x16_ssd2119 8bit.h"

Pointer to the Image Array

17.

The declaration of the image array needs to be made, as well as the declaration of two
variables. The variables defined below are used for initializing the Context and Rect
structures. Context is a definition of the screen such as the clipping region, default
color and font. Rect is a simple structure for drawing rectangles. Look up these APIs in
the Graphics Library users guide .

Add a line for spacing and add the following lines after the includes:
extern const unsigned char g _pucImage[];

tContext sContext;
tRectangle sRect;

10 - 16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Lab 10: Graphics Library

Driver Library Error Routine
18. The following code will be called if the driver library encounters an error.
Leave a line for spacing and enter these line of codes after the lines above:

#ifdef DEBUG
void error (char *pcFilename, unsigned long ulline)

{

}
#fendif

Main()

19. The main() routine will be next. Leave a blank line for spacing and enter these lines of
code after the lines above:

int main (void)

{
}

Initialization

20. Set the clocking to run at 50 MHz using the PLL (400MHz + 2 + 4). Leave a line for
spacing, then insert this line as the first inside main():

SysCtlClockSet (SYSCTL_SYSDIV_4 | SYSCTL USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL 16MHZ);

Initialize the display driver. Skip a line and insert this line after the last:

Kentec320x240x16_SSD2119Init();

This next function initializes a drawing context, preparing it for use. The provided dis-
play driver will be used for all subsequent graphics operations, and the default clipping
region will be set to the extent of the LCD screen. Insert this line after the last:
GrContextInit (&sContext, &g_sKentec320x240x16_SSD2119) ;

21. Let’s add a call to a function that will clear the screen. We’ll create that function in a

moment. Add the following line after the last one:

ClrScreen() ;

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 17

Lab 10: Graphics Library

22.

23.

The following function will create a rectangle that covers the entire screen, set the fore-
ground color to black, and fill the rectangle by passing the structure sRect by reference.
The top left corner of the LCD display is the point (0,0) and the bottom right corner is
(319,239). Add the following code after the final closing brace of the program in main.c.

void ClrScreen()
{
sRect.sXMin = O;
sRect.sYMin = O;
sRect.sXMax = 319;
sRect.sYMax = 239;
GrContextForegroundSet (&sContext, ClrBlack) ;
GrRectFill (&sContext, &sRect);
GrFlush (&sContext) ;

}

Declare the function at the top of your code right below your variable definitions:

void ClrScreen (void) ;

Displaying the Image

24.

25.

26.

Display the image by passing the global image variable g_puclmage into
GrlmageDraw(...) and place the image on the screen by locating the top-left corner at
(0,0) ...we’ll adjust this later if needed. Leave a line for spacing, then insert this line after
the ClrScreen() call in main():

GrImageDraw (&sContext, g _pucImage, 0, 0);

The function call below flushes any cached drawing operations. For display drivers that
draw into a local frame buffer before writing to the actual display, calling this function
will cause the display to be updated to match the contents of the local frame buffer. Insert
this line after the last:

GrFlush (&sContext) ;

We will be stepping through a series of displays in this lab, so we want to leave each
display on the screen long enough to see it before it is erased. The delay below will give
you a chance to appreciate your work. Leave a line for spacing, then insert this line after
the last:

SysCtlDelay (SysCtlClockGet()) ;

In previous labs we’ve simply passed a number to the SysCt1Delay () API call, but if
you were to change the CPU clock speed, your delay time would change. SysCt-
1ClockGet () will return the system clock speed and we can use that as our delay ba-
sis. Obviously, you could have your delay be twice, half, 1/5th or some other multiple of
this.

10 - 18 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Lab 10: Graphics Library

27. Before we go any further, we’d like to take the code for a test run. With that in mind
we’re going to add the final code pieces now, and insert later lab code in front of this.

LCD displays are not especially prone to burn in, but clearing the screen will mark a clear
break between one step in the code and the next. This performs the same function as step
24 and also flushes the cache. Leave several lines for spacing and add this line below the
last:

ClrScreen() ;

28. Add a while loop to the end of the code to stop execution. Leave a line for spacing, then
insert these line after the last:

while (1)
{
}

Don’t forget that you can auto-correct the indentation if needed.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 19

Lab 10: Graphics Library

If you’re having issues, you can find this code in mainl . txt in the Lab10 folder.
Your code should look like this:

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "grlib/grlib.h"

#include "drivers/Kentec320x240x16_ssd2119 8bit.h"

extern const unsigned char g _pucImagel];
tContext sContext;
tRectangle sRect;

void ClrScreen (void) ;

#ifdef DEBUG
void__error__ (char *pcFilename, unsigned long ulLine)
{

}
#endif

int main(void)
{
SysCthlockSet(SYSCTL_SYSDIV;4|SYSCTL_USE_PLLISYSCTL_QSC_MAINISYSCTL_XTAL_lGMHZ);

Kentec320x240x16_SSD2119Init();
GrContextInit (&sContext, &g sKentec320x240x16_SSD2119) ;
ClrScreen() ;

GrImageDraw (&sContext, g pucImage, 0, 0);
GrFlush (&sContext) ;

SysCtlDelay (SysCtlClockGet()) ;
// Later lab steps go between here

// and here
ClrScreen() ;
while (1)
{
}

}

void ClrScreen()

{

sRect.sXMin = 0;
sRect.sYMin = 0;
sRect.sXMax = 319;
sRect.sYMax = 239;

GrContextForegroundSet (&sContext, ClrBlack) ;
GrRectFill (&sContext, &sRect);
GrFlush (&sContext) ;

10 - 20 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Lab 10: Graphics Library

Check the Build Options

29. Now would be a good time to check the build options that have been set in this demo
code. You should know how to do this without explicit steps by now. Take a look in the
Linker’s File Search Path and note that the . 1ib file for the graphics library has been
included.

Y ou might notice the use of two “new” path variables:
e CG TOOL ROOT
e SW ROOT

Take at look in the project properties under Resource > Linked Resources to see where
these paths are defined.

Run the Code

30. Make sure grlib demo is the active project. Compile and download your application
by clicking the Debug button. Click the Resume button to run the program that was
downloaded to the flash memory of your LM4F120H5QR. If your coding efforts were
successful, you should see your image appear on the LCD display for a few seconds, then
disappear.

When you’re finished, click the Terminate button to return to the CCS Edit perspective.

“*LaunchPad

When you are including images in your projects, remember that they can be quite large in
terms of memory space. This might possibly require a larger flash device, and increase
your system cost.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 21

Lab 10: Graphics Library

Display Text On-Screen

31.

32.

Refer back to the code on page 10-20. Inmain. c in the area marked:
// Later lab steps go between here

// and here

insert the following function call to clear the screen and flush the buffer:

ClrScreen() ;

Next we’ll display the text. Display text starting at (x,y) with the no background color.
The third parameter (-1) simply tells the API function to send the entire string, rather than
having to count the characters.

GrContextForegroundSet (.. .) : Setthe foreground for the text to be red.
GrContextFontSet (...) : Set the font to be a max height of 30 pixels.
GrRectDraw (. . .) : Put a white border around the screen.

GrFlush(...) : And refresh the screen by matching the contents of the local frame
buffer.

Note the colors that are being used. If you’d like to try other colors, fonts or sizes, look in
the back of the Graphics Library User’s Guide. Add the following lines after the previous
ones:

sRect.sXMin = 1;

sRect.s¥YMin 1;

sRect.sXMax 318;

sRect.sYMax = 238;

GrContextForegroundSet (&sContext, ClrRed) ;
GrContextFontSet (&sContext, &g_sFontCmss30Db) ;
GrStringDraw (&sContext, "Texas", -1, 110, 2, 0);
GrStringDraw (&sContext, "Instruments", -1, 80, 32, 0);
GrStringDraw (&sContext, "Graphics", -1, 100, 62, 0);
GrStringDraw (&sContext, "Lab", -1, 135, 92, 0);
GrContextForegroundSet (&sContext, ClrWhite) ;
GrRectDraw (&sContext, &sRect);

GrFlush (&sContext) ;

33. Add a delay so you can view your work.

SysCtlDelay (SysCtlClockGet()) ;

Save your file.

10 - 22 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Lab 10: Graphics Library

If you’re having issues, you can find this code in main?2 . txt in the Lab10 folder.

Your added code should look like this:

ClrScreen() ;

sRect.sXMin = 1;
sRect.s¥YMin = 1;
sRect.sXMax = 318;
sRect.sYMax = 238;

GrStringDraw (&sContext,
GrStringDraw (&sContext,
GrStringDraw (&sContext,
GrStringDraw (&sContext,

GrRectDraw (&sContext,
GrFlush (&sContext) ;

// and here

// Later lab steps go between here

GrContextForegroundSet (&sContext, ClrRed) ;
GrContextFontSet (&sContext, &g_sFontCmss30b) ;

110, 2, 0);
-1, 80, 32, 0);
100, 62, 0);

92/ 0)/

"Texas", -1,
"Instruments",

"Graphics", -1,
"Lab", -1, 135,

GrContextForegroundSet (&sContext, ClrWhite) ;
&sRect) ;

SysCtlDelay (SysCtlClockGet()) ;

Build, Load and Test

34. Build, load and run your code. If your changes are correct, you should see the image
again for a few seconds, followed by the on-screen text in a box for a few seconds. Then
the display will blank out. Return to the CCS Edit perspective when you’re done.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 23

Lab 10: Graphics Library

Drawing Shapes

35.

36.

37.

Let’s add a filled-in yellow circle. Make the foreground yellow and center the circle at
(80,182) with a radius of 50. Add a line for spacing and then add these lines after the
SysCtlDelay () added in step 33:

GrContextForegroundSet (&sContext, ClrYellow) ;
GrCircleFill (&sContext, 80, 182, 50);

Draw an empty green rectangle starting with the top left corner at (160,132) and finishing
at the bottom right corner at (312,232). Add a line for spacing and add the following lines
after the last ones:

sRect.sXMin = 160;
sRect.s¥YMin = 132;
sRect.sXMax = 312;

sRect.sYMax = 232;
GrContextForegroundSet (&sContext, ClrGreen) ;
GrRectDraw (&sContext, &sRect);

Add a short delay to appreciate your work. Add a line for spacing and add the following
line after the last ones:

SysCtlDelay (SysCtlClockGet()) ;

Save your work.

10 - 24 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Lab 10: Graphics Library

If you’re having issues, you can find this code in main3. txt in the Lab10 folder.

Your added code should look like this:

// Later lab steps go between here
ClrScreen() ;

sRect.sXMin = 1;

sRect.s¥YMin 1;

sRect.sXMax 318;

sRect.sYMax = 238;

GrContextForegroundSet (&sContext, ClrRed) ;
GrContextFontSet (&sContext, &g_sFontCmss30b) ;
GrStringDraw (&sContext, "Texas", -1, 110, 2, 0);
GrStringDraw (&sContext, "Instruments", -1, 80, 32, 0);
GrStringDraw (&sContext, "Graphics", -1, 100, 62, 0);
GrStringDraw (&sContext, "Lab", -1, 135, 92, 0);
GrContextForegroundSet (&sContext, ClrWhite) ;
GrRectDraw (&sContext, &sRect);

GrFlush (&sContext) ;

SysCtlDelay (SysCtlClockGet()) ;

GrContextForegroundSet (&sContext, ClrYellow) ;
GrCircleFill (&sContext, 80, 182, 50);

sRect.sXMin = 160;
sRect.s¥YMin = 132;
sRect.sXMax = 312;

sRect.sYMax = 232;

GrContextForegroundSet (&sContext, ClrGreen) ;
GrRectDraw (&sContext, &sRect);

SysCtlDelay (SysCtlClockGet()) ;

// and here

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 25

Lab 10: Graphics Library

For reference, the final code should look like this:

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "grlib/grlib.h"

#include "drivers/Kentec320x240x16_ssd2119_8bit.h"

extern const unsigned char g_pucImagel[];
tContext sContext;
tRectangle sRect;

void ClrScreen(void) ;

#ifdef DEBUG

void error__ (char *pcFilename, unsigned long ulLine)
{

}

#endif

int main(void)
{
SysCtlClockSet (SYSCTL_SYSDIV_4|SYSCTL_USE_ PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL 16MHZ) ;

Kentec320x240x16_SSD2119Init () ;
GrContextInit (&sContext, &g_sKentec320x240x16_SSD2119) ;

ClrScreen() ;

GrImageDraw (&sContext, g_pucImage, 0, 0);
GrFlush (&sContext) ;

SysCtlDelay (SysCtlClockGet()) ;
// Later lab steps go between here

ClrScreen() ;

sRect.sXMin = 1;
sRect.sYMin = 1;
sRect.sXMax = 318;
sRect.sYMax = 238;

GrContextForegroundSet (&sContext, ClrRed);
GrContextFontSet (&sContext, &g_sFontCmss30b) ;
GrStringDraw (&sContext, "Texas", -1, 110, 2, 0);
GrStringDraw (&sContext, "Instruments", -1, 80, 32, 0);
GrStringDraw (&sContext, "Graphics", -1, 100, 62, 0);
GrStringDraw (&sContext, "Lab", -1, 135, 92, 0);
GrContextForegroundSet (&sContext, ClrWhite);
GrRectDraw (&sContext, &sRect);

GrFlush (&sContext) ;

SysCtlDelay (SysCtlClockGet()) ;

GrContextForegroundSet (&sContext, ClrYellow) ;
GrCircleFill (&sContext, 80, 182, 50);

sRect.sXMin = 160;
sRect.sYMin = 132;
sRect.sXMax = 312;
sRect.sYMax = 232;

GrContextForegroundSet (&sContext, ClrGreen) ;
GrRectDraw (&sContext, &sRect);

SysCtlDelay (SysCtlClockGet()) ;

// and here
ClrScreen() ;
while (1)

{

}

}

void ClrScreen()

{
sRect.sXMin = 0;
sRect.sYMin = 0;
sRect.sXMax = 319;
sRect.sYMax = 239;
GrContextForegroundSet (&sContext, ClrBlack) ;
GrRectFill (&sContext, &sRect);
GrFlush (&sContext) ;

}

This is the code inmain3. txt.

10 - 26 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Lab 10: Graphics Library

Build, Load and Test

38. Build, load and run your code to make sure that your changes work. Return to the CCS
Edit perspective when you are done.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 27

Lab 10: Graphics Library

Widgets

39.

40.

41.

42.

43.

44,

Let’s play with some widgets. In this case, we’ll create a screen with a nice header and a
large rectangular button that will toggle the red LED on and off. Modifying the existing
code would be a little tedious, so we’ll create a new file.

In the Project Explorer, right-click on main . ¢ and select Resource Configurations =
Exclude from Build... Click the Select All button to select both the Debug and Release
configurations, and then click OK.

On the CCS menu bar, click File 2 New = Source File. Make the selections shown
below and click Finish:

Source File)
Create 3 new source file, C
=]
Source folder: |gr|ib_dem0 | ’ Browse...]
Source file: | MyWidget.c |
Template: |<:None> v| ’ Configure. ..]
® [Finish l [Cancel

Add the following support files to the top of MyWidget. c:

#include "inc/hw _memmap.h"
#include "inc/hw_types.h"
#include "driverlib/interrupt.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "grlib/grlib.h"
#include "grlib/widget.h"
#include "grlib/canvas.h"
#include "grlib/pushbutton.h"
#include "drivers/Kentec320x240x16 ssd2119 8bit.h"
#include "drivers/touch.h"

The next two lines provide names for structures needed to create the background canvas
and the button widget. Add a line for spacing, then add these lines below the last:

extern tCanvasWidget g_sBackground;
extern tPushButtonWidget g sPushBtn;

When the button widget is pressed, a handler called OnButtonPress() will toggle the
LED. Add a line for spacing, then add this prototype below the last:

void OnButtonPress (tWidget *pWidget) ;

10 - 28 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Lab 10: Graphics Library

45. Widgets are arranged on the screen in order of a parent-child relationship, where the
parent is in the back. This relationship can extend multiple levels. In our example, we’re
going to have the background be the parent or root and the heading will be a child of the
background. The button will be a child of the heading. Add a line for spacing and then
add the following two global variables (one for the background and one for the button)
below the last:

Canvas (g_sHeading, &g_sBackground, 0, &g_sPushBtn,
&g_sKentec320x240x16_ssD2119, 0, 0, 320, 23,
(CANVAS_STYLE_FILL | CANVAS_STYLE_OUTLINE | CANVAS_STYLE_TEXT),
ClrBlack, ClrWhite, ClrRed, g_pFontCm20, "LED Control", 0, 0);

Canvas (g_sBackground, WIDGET_ ROOT, 0, &g_sHeading,
&g_sKentec320x240x16_sSsD2119, 0, 23, 320, (240 - 23),
CANVAS_STYLE_FILL, ClrBlack, 0, 0, O, 0, 0, 0);

Rather than re-print the parameter list for these declarations, refer to section 5.2.3.1 in the
Stellaris Graphics Library User’s Guide (SW-GRL-UG-xxxx.pdf). The short description
is that there will be a black background. In front of that is a white rectangle at the top of
the screen with “LED Control” inside it.

46. Next up is the definition for the rectangular button we’re going to use. The button is
functionally in front of the heading, but physically located below it (refer to the picture in
step 50). It will be a red rectangle with a gray background and “Toggle red LED” inside
it. When pressed it will fill with white and the handler named OnButtonPress will be
called. Add a line for spacing and then add the following code below the last:

RectangularButton (g_sPushBtn, &g sHeading, 0, O,
&g_sKentec320x240x16_sSsD2119, 60, 60, 200, 40,
(PB_STYLE OUTLINE | PB_STYLE TEXT OPAQUE | PB_STYLE TEXT |
PB_STYLE FILL), ClrGray, ClrWhite, ClrRed, ClrRed,
g_pFontCmss22b, "Toggle red LED", 0, 0, O, O, OnButtonPress)

Refer to section 10.2.3.33 in the Stellaris Graphics Library User’s Guide (spmu018n.pdf)
for more detail.

47. The last detail before the actual code is a flag variable to indicate whether the LED is on
or off. Add a line for spacing and then add the following code below the last:

tBoolean g_RedLedOn = false;

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 29

Lab 10: Graphics Library

48.

49.

When the button is pressed, a handler called OnButton Press() will be called. This
handler uses the flag to switch between turning the red LED on or off. Add a line for
spacing and then add the following code below the last:

void OnButtonPress (tWidget *pWidget)

{
g_RedLedOn = 'g_RedLedOn;

if (g_RedLedOn)

{
GPIOPinWrite (GPIO_PORTF_BASE, GPIO PIN 1, 0x02);

}

else

{
GPIOPinWrite (GPIO_PORTF BASE, GPIO_PIN 1, 0x00);

}

Lastly is the main () routine. The steps are: initialize the clock, initialize the GPIO,
initialize the display, initialize the touchscreen, enable the touchscreen callback so that
the routine indicated in the button structure will be called when it is pressed, add the
background and paint it to the screen (parents first, followed by the children) and finally,
loop while the widget polls for a button press. Add a line for spacing and then add the
following code below the last:

int main(void)
{

SysCt-
1ClockSet (SYSCTL_SYSDIV_ 4|SYSCTL USE_PLL|SYSCTL OSC_MAIN|SYSCTL XTAL 16MHZ) ;

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF) ;
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO PIN 1|GPIO PIN 2|GPIO PIN 3);

GPIOPinWrite (GPIO_PORTF BASE, GPIO PIN 1|GPIO_PIN_2|GPIO_PIN 3, 0x00);
Kentec320x240x16_SSD2119Init();

TouchScreenInit () ;

TouchScreenCallbackSet (WidgetPointerMessage) ;

WidgetAdd (WIDGET ROOT, (tWidget *)&g_sBackground) ;

WidgetPaint (WIDGET_ ROOT) ;

while (1)

{

WidgetMessageQueueProcess () ;

}

Save your file.
If you’re having issues, you can find this code in MyWidget . txt in the Lab10 folder.

Your added code should look like the next page:

10 - 30 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Lab 10: Graphics Library

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/interrupt.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "grlib/grlib.h"
#include "grlib/widget.h"
#include "grlib/canvas.h"
#include "grlib/pushbutton.h"
#include "drivers/Kentec320x240x16_ssd2119 8bit.h"
#include "drivers/touch.h"

extern tCanvasWidget g_sBackground;
extern tPushButtonWidget g_sPushBtn;

void OnButtonPress (tWidget *pWidget) ;

Canvas (g_sHeading, &g_sBackground, 0, &g_sPushBtn,
&g_sKentec320x240x16_ssDp2119, 0, 0, 320, 23,
(CANVAS_STYLE FILL | CANVAS_STYLE OUTLINE | CANVAS_STYLE TEXT),
ClrBlack, ClrWhite, ClrRed, g pFontCm20, "LED Control", 0, 0);

Canvas (g_sBackground, WIDGET ROOT, 0, &g_sHeading,
&g _sKentec320x240x16_ssD2119, 0, 23, 320, (240 - 23),
CANVAS STYLE FILL, ClrBlack, 0, O, O, O, O, 0);

RectangularButton (g_sPushBtn, &g _sHeading, 0, O,
&g_sKentec320x240x16_sSsD2119, 60, 60, 200, 40,
(PB_STYLE OUTLINE | PB_STYLE TEXT OPAQUE | PB_STYLE TEXT |
PB_STYLE FILL), ClrGray, ClrWhite, ClrRed, ClrRed,
g_pFontCmss22b, "Toggle red LED", 0, O, O, O, OnButtonPress);

tBoolean g RedLedOn = false;

void OnButtonPress (tWidget *pWidget)

{
g_RedLedOn = 'g_RedLedOn;

if (g_RedLedOn)

{
GPIOPinWrite (GPIO_PORTF BASE, GPIO_PIN 1, 0x02);

}

else

{
GPIOPinWrite (GPIO_PORTF BASE, GPIO_PIN 1, 0x00);

}
}

int main(void)
{
SysCtlClockSet (SYSCTL_SYSDIV_4|SYSCTL USE_PLL|SYSCTL OSC_MAIN|SYSCTL XTAL 16MHZ) ;
SysCtlPeripheralEnable (SYSCTL_PERIPH GPIOF) ;
GPIOPinTypeGPIOOutput (GPIO_PORTF_BASE, GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3);
GPIOPinWrite (GPIO_PORTF BASE, GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3, 0x00);
Kentec320x240x16_SSD2119Init();
TouchScreenInit () ;
TouchScreenCallbackSet (WidgetPointerMessage) ;
WidgetAdd (WIDGET_ ROOT, (tWidget *) &g _sBackground) ;
WidgetPaint (WIDGET_ ROOT) ;
while (1)
{

WidgetMessageQueueProcess () ;

}

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 31

Lab 10: Graphics Library

Build, Load and Test

50. Build, load and run your code to make sure that everything works. Press the rectangular
button and the red LED on the LaunchPad will light, press it again and it will turn off.

51. Click the Terminate button to return to the CCS Edit perspective when you are done.
Close all open lab projects and minimize Code Composer Studio.

52. If you want to reprogram the gs—rgb application that was originally on the LaunchPad
board, the steps are in section two of this workshop.

53. Homework Ideas:

e Change the red background of the button so that it stays on when the LED is lit

e Add more buttons to control the green and blue LEDs.

e Use the Lab5 ADC code to display the measured temperature on the LCD in real
time.

e Use the RTC to display the time of day on screen.

e Use the Lab6 Hibernation code to make the device sleep, and the backlight go
off, after no screen touch for 10 seconds

e Use the Lab7 USB code to send data to the LCD and touch screen presses back to
the PC.

e Use the Lab9 sine wave code to create a program that displays the sine wave data
on the LCD screen.

ST

You’re done.

10 - 32 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Synchronous Serial Interface

Introduction

This chapter will introduce you to the capabilities of the Synchronous Serial Interface (SSI) . The
lab uses an Olimex 8x8 LED BoosterPack to explore programming the SPI portion of the SSI. In
order to do the lab you will need to purchase the BoosterPack and make some modification to it.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers
ADC12
Hibernation Module
USB
Memory
Floating-Point
BoosterPacks and grLib

[Synchronous Serial Interface

UART
uDMA

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SS/

11-1

Chapter Topics

Chapter Topics

Synchronous Serial Interface 11-1
CRAPICE TOPICS..cc.vv ettt ettt et e ettt e s b e e e st e e s b e e esseesabeeenbeeesbeeeaseesabeesnseessseeanseesnseas 11-2
Features and BIOCK DiG@FAM..................cccoooiiiiiiiiiiei ettt 11-3
Interrupts and UDMA OPEFALIONc..ccceeieuieeciiieiie et eeeeteeetee et e saeesbaesaaeabaeeseesbeeenseeenseas 11-4
SEIGNAT FOFIALS ...ttt et ettt ettt e e et e bt et ettt e st naeenae s 11-5
Lab 11: SPI Bus and the Olimex LED BOOStErPACKccoociiiiiieiiiiiie i 11-7

L0 10} 115 AR 11-7
PIOCEAULIE ...ttt ettt ettt bbbt ea ettt st b e s bt bt et e st e e nae b e 11-8

11-2

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

Features and Block Diagram

Features and Block Diagram

LM4F120H5QR SSI Features

Four SSI modules. Each with:

Master or Slave operation

® ¢ 6 O o o

Interrupts and yDMA support

Freescale SPI, MICROWIRE or Tl Synchronous Serial interfaces

Programmable bit clock rate and pre-scaler
Programmable data frame size from 4 to 16-bits
Separate Tx and Rx FIFOs (8 x16-bits)

Block Diagram ...

TXFIFO
[ssm | 8x16
[ssmis_|
<
S8ITx
SSICRO — —
SSIRx
[sssR] - Transmiy (¢—
o] Receve
SSICKk
Logic e p
SSIFss
RxFIFO —
8x16 1
Clock Prescaler
Clock Control
SsicC SSICPSR
88l Baud Clock.
Identification Registers
SSIPCelllD0 SSIPeriphiD0 SSIPeriphiD4
SSIPCelllD1 SSIPeriphiD1 SSIPeriphiD5
SSIPCelllD2 SSiPeriphiD2 SSIPeriphiD6
SSIPCallD3 SSIPeriphiD3 8SIPeriphlD7

SSI Block Diagram

Signal Pinout (n=0to 3) ...

SSInClk: SSI Module n Clock
SSInFss: SSI Module n Frame Signal
SSInRx: SSI Module n Receive
SSInTx: SSI Module n Transmit

Note that the LM4F120H5QR pins are
extensively muxed with other signals.

The Pin Mux Utility can ease the
programming. See:

www.ti.com/stellarispinmuxutility

el Pidac Uty

Welcome to the Stellaris® Pintux Utiity!

ick Go

i3 Texas
INSTRUMENTS
Stellaris MCU

Interrupts...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SS/

11-3

Interrupts and uDMA QOperation

Interrupts and yuDMA Operation

SSI Interrupts

Single interrupt per module, cleared automatically
Interrupt conditions:

Transmit FIFO service (when the transmit FIFO is half full or less)
Receive FIFO service (when the receive FIFO is half full or more)
Receive FIFO time-out

Receive FIFO overrun

End of transmission

Receive DMA transfer complete

® ¢ 6 6 06 0 o

Transmit DMA transfer complete

Interrupts on these conditions can be enabled individually

Your handler code must check to determine the source
of the SSlI interrupt and clear the flag(s)

Operation...

SSI uDMA Operation

¢ Separate channels for Tx and Rx

¢ When enabled, the SSI will assert a DMA request on either channel
when the Rx or Tx FIFO can transfer data

¢ For Rx channel: A single transfer request is made when any data is in the
Rx FIFO. A burst transfer request is made when 4 or more items is in the Rx
FIFO.

¢ For Tx channel: A single transfer request is made when there is at least
one empty location in the Tx FIFO. A burst transfer request is made when 4
or more slots are empty.

1 = 2

Signal Formats...

11-4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

Signal Formats

Signal Formats

Freescale SPI Signal Formats

¢ Four wire interface. Full duplex.
¢ SSIFss acts as chip select

¢ Inactive state and clock phasing are programmable via the
SPO and SPH bits (SSI_FRF_MOTO_MODE_0-3 parameter)

¢ SPO = 0: SSICIk low when inactive. SPO = 1: high
¢ SPH = 0: Data is captured on 1t SSICIk transition. SPH = 1: 2nd

SPO=0 ssicik I \ (e L
SPH=0 SSIFss | ,,
. SSIRx] MsE,‘1 X \ \ ¥ Y ¥ s @
SIngle 41016 bits —
ssix ves Y ¥ ¥ Y X—(h*, ey |
Transfer — L : - (e u
SPO =0 ssox L L
SPH =1 SSIFss |
Single L T T e
Transfer sem [vee_ ¥ X A X s

Tl Signal Formats ...

Tl Synchronous Serial Signal Formats

¢ Three wire interface
¢ Devices are always slaves

¢ SSICIlk and SSIFss are forced low and SSITx is tri-stated
when the SSl is idle

S AU (R VR U VU (R UL (R W
Single ssiFss | N
Transfer i o
anste SSITWSSIRX MSB L tss
410 16 bils =

ssiek _J O\ U
Continuous SSiFss
Transfer oo oo MSB 53 \;

A

4 10 16 bits

Microwire Signal Formats...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SS/ 11-5

Signal Formats

Microwire Signal Formats

¢ Four wire interface
¢ Similar to SPI, except transmission is half-duplex
¢ Master — Slave message passing technique

ssiclk JFU_\Jr\JF\JW\JmF\JP\JF\JrL,A\JF\JF\JP\JF\JF\JF\JFL
Single
ssimx | fwsB(_) s
Transfer - soans | Lo OGS
[L ST Tebis BN
i outpr dala‘ i

VAV AV AV AN AN AN AW AU aU AU AU AT AU AU AU AU AN AW AW R

Continuous **f

sSiTx_| JisB) fase1 X I KEss)
Transfer Bt control
SSIRx fse Y i) Mse)_
| e 2t i5bis !]
| 71 ouputdata | i

Lab...

11-6

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

Lab 11: SPI Bus and the Olimex LED BoosterPack

Lab 11: SPI Bus and the Olimex LED BoosterPack

Objective

In this lab you will use the Olimex LED BoosterPack to explore the capabilities and
programming of the SPI bus on the SSI peripheral.

Lab 11 : SPI Bus and the Olimex LED Boosterpack

. USB Emulation Connection

¢ Carefully install pin-modified
Olimex BoosterPack

*

Run faces program (SoftSSlI)

*

Carefully install proto-board
modified Olimex BoosterPack

¢ Create program to utilize SSI SPI

Agenda ...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI 11-7

Lab 11: SPI Bus and the Olimex LED BoosterPack

Procedure

Hardware

1. If you want to do this lab, you’re going to need a BoosterPack with a SPI connection. 1
chose the Olimex 8x8 LED BoosterPack:
(https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-
BOOSTERPACKY/).

This BoosterPack is also available from Mouser Electronics
(http://www.mouser.com/new/olimex/olimex LED8x8&/)

The LED BoosterPack is cheap and fun, but there are two issues with it out of the box.
The first is that it has male Molex pins rather than Molex female connectors. You can get
two of these
(http://www.mouser.com/ProductDetail/FCI/66951 -
010LF/?qs=sGAEpiMZZMs%252bGHIn7q6pmxAVkKtO
EC39jD0m1rF2xGE%3d) and solder them directly to the
male pins. This way you can import, build and run the
“faces” program located at
C:\StellarisWare\boards\ek-1m4£f120x1-
boost-olimex-8x8

This program is pretty cool but it has one little issue, which
brings us back to the second problem with the Olimex
BoosterPack. The pin-out on the Olimex BoosterPack does
not match with any of the SSI module pin-sets on the
Stellaris LaunchPad board (it actually matches an early
version of the MSP430 LaunchPad).

So the author of the “faces” program did what any good engineer would do, they made it
work ... with a software SPI port (SoftSSI). The programming of SoftSSI is virtually the
same as programming the actual hardware, but for the purposes of this lab, that’s not
good enough.

2. So we need to connect the pins on the Olimex BoosterPack to the female headers that will
mount on top of the LaunchPad board. Any small perf-board will do, but Joe’s Bytes
(' http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html) has a nice proto-
board that fits perfectly. I soldered the female headers on one side of the board in one
direction and the Olimex BoosterPack on the other side with a 90 degree turn.

1DDDDIDIDID]
DD PDIIIY

X
X
20
96
o6

11-8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/
http://www.mouser.com/new/olimex/olimexLED8x8/
http://www.mouser.com/ProductDetail/FCI/66951-010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtOEC39jD0m1rF2xGE%3d
http://www.mouser.com/ProductDetail/FCI/66951-010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtOEC39jD0m1rF2xGE%3d
http://www.mouser.com/ProductDetail/FCI/66951-010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtOEC39jD0m1rF2xGE%3d
http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html

Lab 11: SPI Bus and the Olimex LED BoosterPack

3. Comparing the Olimex BoosterPack schematic found
at https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-
BOOSTERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf to the
Stellaris LaunchPad schematic, I came up with the following connections for the proto-
board (There are a number of possible solutions here). Bear in mind that the correct way
to number the BoosterPack pins is 1 to 10 from the top of the board to the bottom.

Olimex Olimex LaunchPad | LM4F120H5QR Pin

Header Function Header Pin Pin Name Function
Pin
J1-7 SR_SCK > J2-10 PA2 SSIOCLK
J1-6 SR_LATCH > J2-9 PA3 SSIOFss
J2-7 SR_DATA IN S J1-8 PAS SSI0Tx
J1-2 A IN S J2-3 PEO AIN3
J1-3 BUZ PIN1 S J1-9 PA6 GPIO
J1-4 BUZ PIN2 > J1-10 PA7 GPIO
J2-1 Ground S J2-1 Ground -
J1-1 Vce > J1-1 Vce -

4. While you’ve got the Olimex BoosterPack schematic out, take a look at the circuit.
You’ll see that the board is pretty simple; 16-bits of shift register, a Darlington seven
transistor array (for drive strength) plus one more single transistor to make 8 and the 8x8
LED array. In order for the LEDs to light properly, the upper byte of the 16-bit word
must be the bit-reversed version of the lower byte. That will be done in software.

Since this lab concerns the SPI port, we’re going to ignore the connections for the mic
and buzzer.

Faces Code

5. If you have one of the Olimex BoosterPacks and have connected the female headers to it,
carefully connect it to your LaunchPad board. In Code Composer, import the faces
project from C:\StellarisWare\boards\ek-1m4f120x1-boost-olimex-8x8
into your workspace. Build, load and run the project. Poke around in the code if you like,
but we’ll go into detail building Lab11 that uses the SSI peripheral instead of the SoftSSI.

When you’re done, close the faces project.

Disconnect your LaunchPad board from the USB port, carefully remove the Olimix
BoosterPack and re-connect your LaunchPad.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SS/ 11-9

https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf

Lab 11: SPI Bus and the Olimex LED BoosterPack

Import Lab11

6. If you have a proto-board modified Olimex BoosterPack, carefully connect it to the
LaunchPad with the expansion pins towards the top of the LaunchPad as shown below.
You may need to bend the power measurement jumper out of the way slightly:

7. Maximize Code Composer. Import Lab11 with the settings shown below. Make sure the
Copy projects into workspace checkbox is not checked and click Finish.

(«+ Import CCS Eclipse Projects | = =X _|1
Select Existing CCS Eclipse Project E% 7
Select a directory to search for existing CC5 Eclipse projects. : J
1@ Select search-directory: C:\StellarisWare\boards\MylaunchPadBeard\Labl1 Browse...
() Select archive file: Browse...
Discovered projects:
& Labll [Ch\StellarisWare\boards\MylLaunchPadBoard'Labl1ices] Select All

Deselect All

Refresh

[T Copy projects into workspace
[7] Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

Cancel

@ Finish |

11-10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

Lab 11: SPI Bus and the Olimex LED BoosterPack

8. Expand the project and open main. c for editing. Place the following includes at the top
of the file:

#include "inc/hw_memmap.h"
#include "inc/hw_ssi.h"
#include "inc/hw_types.h"
#include "driverlib/ssi.h"
#include "driverlib/gpio.h"
#include "driverlib/pin _map.h"
#include "driverlib/sysctl.h"

We’re going to need all the regular include files along with the ones that give us access to
the SSI peripheral.

9. Skip a line for spacing and add the next three lines:

#tdefine NUM_SSI_DATA 8

const unsigned char ulDataTx[NUM_SSI_DATA] =
{ox88, OxF8, OXF8, 0x88, 0x01, OXx1F, Ox1F, 0x01};
unsigned short g_pusTxBuffer[16];

The “third” line is really part of the second one. This array of 8-bit numbers defines
which of the LEDs in the array will be on or off in the following fashion, where red is on
and the open circle is off. The last line defines our transmit buffer:

{A7-0, B7-0, C7-0, D7-0, E7-0, F7-0, G7-0, H7-0}
TOP

<

|

9000000 L
00000000 -
00000000 -
0000000 X
L S00] O00r
Q0000D D)~
Q000000 =
000 00"

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI 11-11

Lab 11: SPI Bus and the Olimex LED BoosterPack

10.

1.

12.

13.

14.

15.

Leave a line for spacing and add the following code. This code will take the 8-bit number
from the array above and bit-reverse it front to back .Then those 8-bits will be
concatenated (in the code that calls this function) with the original number to create a 16-
bit number that will be sent over the SPI port.

// Bit-wise reverses a number.
unsigned char
Reverse (unsigned char ucNumber)

{

unsigned short ucIndex;
unsigned short ucReversedNumber = 0;
for (ucIndex=0; ucIndex<8; ucIndex++)

{
ucReversedNumber = ucReversedNumber << 1;

ucReversedNumber |= ((1 << ucIndex) & ucNumber) >> ucIndex;
}

return ucReversedNumber;

Leave a line for spacing and add the template for main() below:

int main (void)
{
}

Insert the next two lines as the first ones in main(). We’ll need these variables for
temporary data and index purposes.

unsigned long ulindex;
unsigned long ulData;

Leave a line for spacing and set the clock to S0MHz as we’ve done before:

SysCtlClockSet (SYSCTL_SYSDIV_4 | SYSCTL USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL 16MHZ);

Space down a line and add the next two lines. Since SSIO is on GPIO port A, we’ll need
to enable both peripherals:

SysCtlPeripheralEnable (SYSCTL_PERIPH SSIO) ;
SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOA) ;

Space down a line and add the following four lines. These will configure the muxing and
GPIO settings to bring the SSI functions out to the pins. Since the BoosterPack only
accepts data, we won’t program the receive pin (pin 4).

GPIOPinConfigure (GPIO PAZ SSIOCLK) ;
GPIOPinConfigure (GPIO PA3 SSIOFSS) ;
GPIOPinConfigure (GPIO PA5 SSIOTX);
GPIOPinTypeSSI (GPIO PORTA BASE,GPIO PIN 5|GPIO PIN 3|GPIO PIN 2);

11-12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

Lab 11: SPI Bus and the Olimex LED BoosterPack

16. Next we need to configure the SPI port on SSIO for the type of operation that we want.
Given that there are two bits (SPH — clock polarity and SPO — idle state), there are four
modes (0-3). Leave a line for spacing and add the next two lines after the last. Then
double-click on SST FRF MOTO_MODE 0 and press F3 to see all four definitions in
ssi.h:

SSIConfigSetExpClk (SSI0_BASE, SysCtlClockGet () ,SSI_FRF_MOTO MODE 0,SSI_MODE_MASTER, 10000,16);
SSIEnable (SSI0 BASE);

The API specifies the SSI module, the clock source (this is hard wired), the mode, master
or slave, the bit rate and the data width.

17. The LED array has no latch, so the data must be continuously streamed in order for a
static image to appear. We’ll do that with a while() loop, so add a lines for spacing and
then add the while() loop below:

while (1)
{
}

18. We’re going to need to step through the data, sending each 16-bit word on at the time.
Add the following for() construct inside the while() loop you just added:

for(ulindex = 0; ulindex < NUM SSI DATA; ulindex++)
{

}

19. Place the five lines below inside the for() construct you just added. Those lines have
these functions:

1) Create the 16-bit data word using the Reverse() function we added earlier

2) Place the data in the transmit FIFO using a blocking function (a non-blocking version
is also available)

3) Wait until the data has been transmitted

ulData = (Reverse (ulDataTx[ulindex]) << 8) + (1 << ulindex);
SSIDataPut (SSIO_BASE, ulData);
while (SSIBusy (SSIO_BASE))

{
}

Admittedly, this isn’t the most efficient technique. It would be less wasteful of CPU
cycles to use the pDMA to perform these transfers, but we haven’t covered the uDMA
yet.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI 11-13

Lab 11: SPI Bus and the Olimex LED BoosterPack

Build and Load

20.

Build and load the code. If you have errors, compare your main. c to the code below:

{

int

#include "inc/hw_memmap.h"
#include "inc/hw_ssi.h"
#include "inc/hw types.h"
#include "driverlib/ssi.h"
#include "driverlib/gpio.h"
#include "driverlib/pin map.h"
#include "driverlib/sysctl.h"

#define NUM_SSI_DATA 8

const unsigned char ulDataTx[NUM SSI DATA] =
{0x88, 0xF8, 0xF8, 0x88, 0x01, O0xl1lF, Ox1F, 0x01};
unsigned short g pusTxBuffer[16];

// Bit-wise reverses a number.
unsigned char
Reverse (unsigned char ucNumber)

unsigned short ucIndex;
unsigned short ucReversedNumber = 0;
for (ucIndex=0; ucIndex<8; ucIndex++)
{
ucReversedNumber = ucReversedNumber << 1;
ucReversedNumber |= ((1 << ucIndex) & ucNumber) >> uclndex;
}

return ucReversedNumber;

main (void)

unsigned long ulindex;
unsigned long ulData;

SysCtlClockSet (SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

SysCtlPeripheralEnable (SYSCTL PERIPH SSIO);
SysCtlPeripheralEnable (SYSCTL_ PERIPH GPIOA);

GPIOPinConfigure (GPIO PA2 SSIOCLK) ;
GPIOPinConfigure (GPIO PA3 SSIOFSS);
GPIOPinConfigure (GPIO PA5 SSIOTX);
GPIOPinTypeSSI (GPIO PORTA BASE,GPIO PIN 5|GPIO_PIN 3|GPIO PIN 2);

SSIConfigSetExpClk (SSI0 BASE, SysCtlClockGet (),SSI FRF MOTO MODE 0,SSI_MODE MASTER,10000,16);
SSIEnable (SSI0 BASE);

while (1)
{
for (ulindex = 0; ulindex < NUM SSI DATA; ulindex++)
{
ulData = (Reverse (ulDataTx[ulindex]) << 8) + (1 << ulindex);
SSIDataPut (SSI0 BASE, ulData);
while (SSIBusy (SSI0O BASE))
{
}

If you’re still having problems you can find this code in the Lab11/ccs folder as
main. txt.

11-14

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

Lab 11: SPI Bus and the Olimex LED BoosterPack

Run and Test

21. Run the code by clicking the Resume button. You should see “TI” displayed on the LED
array. If you like you can play with the data structure to draw something different. Keep
it clean.

22. If you have a SPI protocol analyzer, now would be a good time to dust it off and take a
look at the serial data stream. These analyzers can save weeks troubleshooting
communication problems. The screen captures on the next page were taken with a Saleae
Logic8 logic analyzer/communications analyzer made by Saleae LLC (www.saleae.com)
Beware of counterfeits!

23. When you’re done, click the Terminate button to return to the CCS Edit perspective.
24. Right-click on Lab11 in the Project Explorer pane and close the project.

25. Disconnect your LaunchPad board from the USB port, carefully remove the Olimix
BoosterPack and re-connect your LaunchPad.

26. Minimize Code Composer Studio.

ST

You’re done.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI 11-15

http://www.saleae.com/

Lab 11: SPI Bus and the Olimex LED BoosterPack

SJUFRINSEIN &

L)

X0

UL

80" OP0. . 080

1

il

3

1L

4140

Il

-

ey NVLIVOES -2

LT

HOLY1Y5 - 0

ARy NIVIVAYS-£

ASHS-T

HAVTH5-0

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

11-16

UART

Introduction

This chapter will introduce you to the capabilities of the Universal Asynchronous
Receiver/Transmitter (UART). The lab uses the LaunchPad board and the Stellaris Virtual Serial
Port running over the debug USB port.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers
ADC12
Hibernation Module
USB
Memory
Floating-Point

BoosterPacks and grLib
Synchronous Serial Interface
(UART)
uDMA

Features...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12-1

UART Features and Block Diagram

Chapter Topics

0 R 121

UART Features and BIOCK Di@QIram.............c.ououueui i 12-3

L= 1Y (ol @ o= 1 (o o R 12-4

UART INterrupts @Nnd FIFOS ... e e e e 12-5

UART “stdio” Functions and Other FEAtUIesSeeee oo 12-6

I T o T SRR 12-7

(0] o] [=Te3 111/ PSR TP PR 12-7

12-2

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

UART Features and Block Diagram

UART Features and Block Diagram

UART Features

¢ Separate 16x8 bit transmit and receive FIFOs

¢ Programmable baud rate generator

¢ Auto generation and stripping of start, stop, and
parity bits

¢ Line break generation and detection

¢ Programmable serial interface

¢ 5,6, 7, or 8 data bits

¢ even, odd, stick, or no parity bits

¢ 1 or 2 stop bits

¢ baud rate generation, from DC to processor clock/16
¢ Modem control/flow control
¢ IrDA and EIA-495 9-bit protocols

¢ uDMA support

Block Diagram...

Block Diagram

Fiosc Clock Control
System Clock "
— Saud Ciock
DMA Request DMA Contral
UARTOMPETL
Intemupt Intarrupt Control TxFFO
168
ARTIFLE
[UARTIM
UARTMIS
2 UARTRIS
identification Ragistars WA
UARTPCEIDD —
UARTPCAIIDN
UARTPCEND2 BaudRate]
| | Generator
UARTRCEIIDS UARTOR, URRTERD
UARTPerphing 1 UARTPERD.
UARTPenphiD1 ControUstatus
e r— UARTRSRIECR —
UARTFR s
UARTPeriphiD3 UARTLCRH | [— L
UARTPENENIDS UARTCTL
L
UARTPeIpnIDS UARTILPR
UARTPeIpnIDS UARTLCTL
UsRTLES
UARTPephIDT
UARTLTIM
UARTSSITADDR
UARTSBITAMASK
UARTFP

T

Basic Operation...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

12-3

Basic Operation

Basic Operation

Basic Operation

¢ Initialize the UART
¢ Enable the UART peripheral, e.g.

SysCtlPeripheralEnable (SYSCTL_PERIPH_UARTO) ;
SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOA);

¢ Set the Rx/Tx pins as UART pins
GPIOPinConfigure (GPIO_PAO_UORX) ;
GPIOPinConfigure (GPIO_PAl UOTX) ;
GPIOPinTypeUART (GPIO_PORTA BASE, GPIO_PIN 0 | GPIO_PIN 1);

¢ Configure the UART baud rate, data configuration
ROM _UARTConfigSetExpClk (UARTO_BASE, ROM_ SysCtlClockGet(), 115200,
UART_CONFIG_WLEN 8 | UART CONFIG_STOP ONE |
UART_CONFIG_PAR NONE)) ;

¢ Configure other UART features (e.g. interrupts, FIFO)
¢ Send/receive a character
Single register used for transmit/receive

+ Blocking/non-blocking functions in driverlib:
UARTCharPut (UARTO_BASE, ‘a’);
newchar = UARTCharGet (UARTO_BASE) ;
UARTCharPutNonBlocking (UARTO_BASE, ‘a’);
newchar = UARTCharGetNonBlocking (UARTO_BASE) ;

Interrupts...

12-4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

UART Interrupts and FIFOs

UART Interrupts and FIFOs

L 4

L 2BR 2R 2R 2

L 2

*

UART Interrupts

Single interrupt per module, cleared automatically
Interrupt conditions:

Overrun error

Break error

Parity error

Framing error

Receive timeout — when FIFO is not empty and no further data is
received over a 32-bit period

Transmit — generated when no data present (if FIFO enabled, see next
slide)

Receive — generated when character is received (if FIFO enabled, see
next slide)

Interrupts on these conditions can be enabled individually

Your handler code must check to determine the source
of the UART interrupt and clear the flag(s)

FIFOs...

Using the UART FIFOs

Transmit FIFO Level
FIFO

Select

¢ Both FIFOs are accessed via the

UART Data register (UARTDR)
UART_FIFO_TX1_8

¢ After reset, the FIFOs are enabled*,

UART_FIFO_TX2_8 you can disable by resetting the FEN

bit in UARTLCRH, e.g.

UARTFIFODisable (UARTO_BASE) ;

UART_FIFO_TX4_8

¢ Trigger points for FIFO interrupts can

be set at 1/8, 1/4, 1/2,3/4, 7/8 full, e.g.

UARTFIFOLevelSet (UARTO_BASE,

UART_FIFO_TX6_8 UART FIFO TX4 8,

UART_FIFO_RX4_8);

UART_FIFO_TX7_8

* Note: the datasheet says FIFOs are disabled at reset

stdio Functions...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

12-5

UART “stdio” Functions and Other Features

UART “stdio” Functions and Other Features

UART “stdio” Functions

¢ StellarisWare “utils” folder contains functions for C

stdio console functions:
c:\StellarisWare\utils\uartstdio.h
c:\StellarisWare\utils\uartstdio.c

¢ Usage example:
UARTStdioInit (0); //use UARTO, 115200
UARTprintf (“Enter text: “);

& See uartstdio.n for other functions

¢ Notes:

¢ Use the provided interrupt handler varTstdioIntHandler ()
code in uartstdio.c

¢ Buffering is provided if you define UART_BUFFERED
symbol

¢ Receive buffer is 128 bytes
¢ Transmit buffer is 1024 bytes

Other UART Features...

Other UART Features

¢ Modem control/flow control
¢ IrDA serial IR (SIR) encoder/decoder

¢ External infrared transceiver required

¢ Supports half-duplex serial SIR interface

¢ Minimum of 10-ms delay required between transmit/receive, provided by software
¢ [ISA 7816 smartcard support

¢ UnTX signal used as a bit clock

¢ UnRx signal is half-duplex communication line

¢ GPIO pin used for smartcard reset, other signals provided by your system design
¢ LIN (Local Interconnect Network) support: master or slave

¢ pDMA support

¢ Single or burst transfers support

¢ UART interrupt handler handles DMA completion interrupt
¢ EIA-495 9-bit operation

¢ Multi-drop configuration: one master, multiple slaves

¢ Provides “address” bit (in place of parity bit)

¢ Slaves only respond to their address

Lab...

12-6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

Lab 12

Lab 12

Objective

In this lab you will use the LaunchPad board, and the virtual serial port that runs over the debug

USB cable.

Lab 12: UART

USB Emulation Connection

¢ |Initialize UART and echo
characters using polling

*3 TExAS INSTRUMENTS

¢ Use interrupts = A0 s
o Use stdio utility, e.g. UARTprintf() | it

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

12-7

Lab 12

Procedure

Import Lab12

1. We have already created the Lab12 project for you with a main. c file, a startup file, and all
the necessary project and build options set. Maximize Code Composer and click Project —
Import Existing CCS Eclipse Project. Make the settings shown below and click Finish. Make
sure that the “Copy projects into workspace” checkbox is unchecked.

[Import CCS Eclipse Projects B

Select Existing CCS Eclipse Project

Select a directory to search for existing CCS Eclipse projects.

I Lk
o

@) Select search-directory: C:\StellarisWare\boards\MylaunchPadBoard\Labl 2\ ccs Browse...

() Select archive file: Browse...
Discovered projects:
&7 Lab12 [C\StellarisWare\boards\MylaunchPadBoard\Labl2\ccs] Select All

Deselect All

Refresh

[7] Copy projects into workspace
[7] Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

@ Finish |

Cancel

2. Expand the project by clicking on the + or * next to Lab12 in the Project Explorer pane.
Double-click on main.c to open it for review. The code looks like the next page:

12-8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

Lab 12

#tinclude
#include
#include
#include
#include
#include

int main

whil

UARTCharPut (UART@_BASE,
UARTCharPut (UART@_BASE,
UARTCharPut (UART@_BASE,
UARTCharPut (UART@_BASE,
UARTCharPut (UART@_BASE,
UARTCharPut (UART@_BASE, ' ');
UARTCharPut (UART@_BASE,
UARTCharPut (UART@_BASE
UARTCharPut (UART@_BASE,
UARTCharPut (UART@_BASE
UARTCharPut (UART@_BASE, ':');
UARTCharPut (UART@_BASE, ' ');

"inc/hw_memmap.h"
"inc/hw_types.h"
"driverlib/gpio.h"
"driverlib/pin_map.h"
"driverlib/sysctl.h"
"driverlib/uart.h"

(void) {

SysCtlClockSet(SYSCTL_SYSDIV 4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

SysCtlPeripheralEnable (SYSCTL_PERIPH_UART®);
SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOA);

GPIOPinConfigure(GPIO_PA®_UORX);
GPIOPinConfigure(GPIO_PAl_UOTX);
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_© | GPIO_PIN_ 1);

UARTConfigSetExpClk (UARTO_BASE, SysCtlClockGet(), 115200,

(UART_CONFIG_WLEN 8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));

S M > m
~
-

A X o -
<
S

e (1)

if (UARTCharsAvail(UART@_BASE)) UARTCharPut(UART®_BASE, UARTCharGet(UART®_BASE));

3. Inmain(), notice the initialization sequence for using the UART:

Set up the system clock

Enable the UARTO and GPIOA peripherals (the UART pins are on GPIO Port A)
Configure the pins for the receiver and transmitter using GPIOPinConfigure
Initialize the parameters for the UART: 115200, 8-1-N

Use simple “UARTCharPut()” calls to create a prompt.

An infinite loop. In this loop, if there is a character in the receiver, it is read, and then
written to the transmitter. This echos what you type in the terminal window.

Build, Download, and Run the UART Example Code
4. Click the Debug button to build and download your program to the LM4F120H5QR memory.

5. We

can communicate with the board through the UART. The UART is connected as a virtual

serial port through the emulator USB connection. You can find the COM port number for this
serial port back in chapter one of this workbook on page 18 or 19.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12-9

Lab 12

6. In WinXP, open HyperTerminal by clicking Start > Run..., then type hypertrm in the Open:
box and click OK. Pick any name you like for your connection and click OK. In the next dialog
box, change the Connect using: selection to COM##, where ## is the COM port number you
noted earlier from Device Manager. Click OK. Make the selections shown below and click
OK.

COM48 Properties

Port Settings |
Bits per second: |1152:C v|
Data bits: | g v |
Parity: |None v|
Stop bits: | 1 v |
Flow cortrol: | [N v
[ok [Cancel || sty |

When the terminal window opens click the Resume button in CCS, then type some
characters and you should see the characters echoed into the terminal window. Skip to step
8.

7. In Win7, double-click on putty.exe. Make the settings shown below and then click Open.
Your COM port number will be the one you noted earlier in chapter one.

ﬁ PUTTY Configuration = @ PuTTY Configuration =
Categary: Category:
= Sgssiun Basic options for your PuTTY session =3 Sgssmn Options cortroling local senial lines
- Logging Specify the destination you want to connect to : - Logging Select a serial line
(=)~ Teminal (=) Teminal
i~ Keyboard Senal line Speed Keyboard Serial line to connect to COM48
Bl COM48 115200 ol
- Features Connection type | i Fealures Configure the serial ine
(= Window) Raw () Telnet) Rlogin) SSH @ Serial £ Window Speed {paud) 115200
--Fppea!ance Load, save or delete a stored session Appea!ance Data bits 8
Behaviour ; Behaviour
- Translation Saved Sessions i e Translation Stop bits 1
-- Selection i - Selection Party
H a
- Colours Defautt Setings Load CD\E!.H’E
=)~ Connection (=) Connection Flow control
--Data B Data
e Mot
Tas Tene
- Rlogin -~ Rlogin
-S5H - 55H
Sertal Close window on exit:]
(C) Mways () MNever @ Only on clean exit
o e[coes o

When the terminal window opens click the Resume button in CCS, then type some
characters and you should see the characters echoed into the terminal window.

12-10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

Lab 12

Using UART Interrupts

Instead of continually polling for characters, we’ll make some modifications to our code to allow
the use of interrupts to receive and transmit characters. In the first part of this lab, the only
indication we had that our code was running was to open the terminal window to type characters
and see them echoed back. In this part of the lab, we’ll add a visual indicator to show that we
received and transmitted a character. So we’ll need to add code similar to previous labs to blink
the LED inside the interrupt handler.

8. First, let’'s add the code in main() to enable the UART interrupts we want to handle. Click on
the Terminate button to return to the CCS Edit perspective. We need to add two additional
header files at the top of the file:

#include "inc/hw_ints.h"
#include "driverlib/interrupt.h"

9. Now we need to add the code to enable processor interrupts, then enable the UART
interrupt, and then select which individual UART interrupts to enable. We will select receiver
interrupts (RX) and receiver timeout interrupts (RT). The receiver interrupt is generated when
a single character has been received (when FIFO is disabled) or when the specified FIFO
level has been reached (when FIFO is enabled). The receiver timeout interrupt is generated
when a character has been received, and a second character has not been received within a
32-bit period. Add the following code just below the UARTConfigSetExpClk() function call:

IntMasterEnable();
IntEnable(INT_UARTO);
UARTIntEnable(UART® BASE, UART_INT RX | UART_INT_RT);

10. We also need to initialize the GPIO peripheral and pin for the LED. Just before the
function UARTConfigSetExpClk() is called, add these two lines:

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO PORTF_BASE, GPIO PIN 2);

11. Finally, we can create an empty while(1) loop at the end of main by commenting out the
line of code that’s already there:

while (1)
{

// if (UARTCharsAvail (UART@ BASE)) UARTCharPut(UART@_BASE,UARTCharGet(UARTO BASE));
}

12. Save the changes you made to main. c (but leave it open for making additional edits).

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12-11

Lab 12

13.

Now we need to write the UART interrupt handler. The interrupt handler needs to read the
UART interrupt status register to know which specific interrupt event(s) just occurred. This
value is then used to clear the interrupt status bits (we only enabled RX and RT interrupts, so
those are the only possible sources for the interrupt). The next step is to receive and transmit
all the characters that have been received. After each character is “echoed” to the terminal,
the LED is blinked for about 1 millisecond. Insert this code below the include statements and
above main():

void UARTIntHandler(void)

{

14.

15.

unsigned long ulStatus;
ulStatus = UARTIntStatus(UARTO_BASE, true); //get interrupt status
UARTIntClear (UARTO_BASE, ulStatus); //clear the asserted interrupts

while(UARTCharsAvail (UARTO_BASE)) //loop while there are chars

{
UARTCharPutNonBlocking (UARTO_BASE, UARTCharGetNonBlocking(UARTO_BASE));

//echo character
GPIOPinWrite(GPIO_PORTF_BASE, GPIO PIN 2, GPIO PIN 2); //blink LED
SysCtlDelay(SysCtlClockGet() / (1000 * 3)); //delay ~1 msec
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, ©); //turn off LED

We’re almost done. We've added all the code we need. The final step is to insert the address
of the UART interrupt handler into the interrupt vector table. To do this, open up

the startup_ccs. c file. Just below the prototype for ¢ int00 (void), add the UART
interrupt handler prototype:

extern void UARTIntHandler(void);

On about line 68, you'll find the interrupt vector table entry for “UARTO Rx and Tx”. It’s just
below the entry for “GPIO Port E”. The default interrupt handler is named
IntDefaultHandler. All we need to do is replace this name with UARTIntHandler so the
line looks like:

UARTIntHandler, // UARTO Rx and Tx

12-12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

Lab 12

16. Save your work. Your main.c code should look like this.

#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"

void UARTIntHandler(void)

{

unsigned long ulStatus;
ulStatus = UARTIntStatus(UARTO_BASE, true); //get interrupt status
UARTIntClear(UARTO_BASE, ulStatus); //clear the asserted interrupts

while(UARTCharsAvail (UARTO_BASE)) //loop while there are chars

{
UARTCharPutNonBlocking (UARTO_BASE, UARTCharGetNonBlocking(UARTO BASE)); //echo character
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2); //blink LED
SysCtlDelay(SysCtlClockGet() / (1000 * 3)); //delay ~1 msec
GPIOPinWrite(GPIO_PORTF_BASE, GPIO PIN_2, ©); //turn off LED

int main(void) {
SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

SysCtlPeripheralEnable (SYSCTL_PERIPH_UART®);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

GPIOPinConfigure(GPIO_PA®_UORX);
GPIOPinConfigure(GPIO_PAl_UOTX);
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_© | GPIO_PIN_ 1);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); //enable GPIO port for LED
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2); //enable pin for LED PF2

UARTConfigSetExpClk (UARTO_BASE, SysCtlClockGet(), 115200,
(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));

IntMasterEnable(); //enable processor interrupts
IntEnable(INT_UART®); //enable the UART interrupt
UARTIntEnable (UART@_BASE, UART_INT_RX | UART_INT_RT); //only enable RX and TX interrupts

UARTCharPut (UART@_BASE, 'E
UARTCharPut (UART@_BASE, 'n
UARTCharPut (UART@_BASE, 't'
UARTCharPut (UART@_BASE, 'e
UARTCharPut (UART@_BASE, 'r
UARTCharPut (UART@_BASE, '
UARTCharPut (UART@_BASE, 'T
UARTCharPut (UART@_BASE, ‘e’
UARTCharPut (UART@_BASE, 'x
UARTCharPut (UART@_BASE, 't
UARTCharPut (UART@_BASE, ':'
UARTCharPut (UART@_BASE, '

while (1) //let interrupt handler do the UART echo function

{
// if (UARTCharsAvail (UART@_BASE)) UARTCharPut(UART@_BASE, UARTCharGet(UARTO_ BASE));

}

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12-13

Lab 12

17. Click the Debug button to build and download your program to the LM4F120H5QR memory.
18. If you've closed it, open Hyperterminal or puTTY, and configure it as before.

19. Click the Resume button. Type some characters and you should see the characters echoed
into the terminal window. Note the LED.

12- 14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

Lab 12

Add Formatting, Enable FIFOs, use UARTprintf

20. In these final steps, we’ll add some formatting to make our terminal window a little better
behaved. When a “CR” carriage return character is received (Enter key), we can detect that
and also echo a “LF” line feed character. CR is character 13 decimal, LF is 10 decimal. To do
this we can’t simply echo the character in the interrupt handler. We need to read the
character into a variable, echo it, then test to see if it was “CR” and issue the “LF”. Click the
Terminate button to return to the CCS Edit perspective. Inmain.c, look in
the UARTIntHandler, and replace the single line that calls UARTCharPutNonBlocking ()
with these lines of code:

received_character = UARTCharGet(UARTO_BASE);
UARTCharPutNonBlocking (UARTO_BASE, received_character); //echo character
if (received_character == 13) UARTCharPutNonBlocking(UARTO_BASE, 10);

21. The variable received_character must be defined as well. Just below the variable
declaration for ulStatus, insert this line:

unsigned char received_character;

22. To enable the FIFOs, add these lines in main() just after the call to
UARTConfigSetExpClk():

UARTFIFOLevelSet(UARTO_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8); // FIFO 8 chars
UARTFIFOEnable (UARTO_BASE); //enable FIFOs

23. The final step is to experiment with UARTprintf () . There are some stdio console functions
defined in the StellarisWare /utils folder. To create the “Enter Text: ” prompt we can use a
simple function call to UARTprintf (). We can also clean up the formatting within the
terminal window using ANSI escape sequences. We'll use two of these, one to erase the
screen, the other to return the cursor to the (0,0) upper left corner of the screen. For more
information on ANSI escape sequences, go to http:/ascii-table.com/. We need a header file,
so add the following line:

#tinclude "utils/uartstdio.h"

24. We can replace the simple prompt created in the previous code. Remove all 12 calls
to UARTCharPut () . Then add these two lines of code in their place:

UARTStdioInit(@); //tells uartstdio functions to use UARTO
UARTprintf("\033[2J\033[HEnter Text: "); //erase screen, cursor at (0,0)

Note: When using UARTStdio functions, please see the the uartstdio. c file to understand
how the buffers work, whether or not FIFOs are enabled, and especially notice that there
is a UART interrupt handler provided there that works differently than the one we're using
in this example. The two function calls we used here seem to work o.k. but other
functions may not work as documented unless you define the proper symbols, e.g.
UART_BUFFERED, and provide the proper interrupt vector

25. Save your work. Your code should look like this.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART 12-15

http://ascii-table.com/

Lab 12

#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"

void UARTIntHandler(void)

{

unsigned long ulStatus;
unsigned char received_character;

ulStatus = UARTIntStatus(UARTO_BASE, true); //get interrupt status
UARTIntClear(UARTO_BASE, ulStatus); //clear the asserted interrupts

while(UARTCharsAvail (UART@_BASE)) //loop while there are characters in the receive FIFO
{
received_character = UARTCharGet(UARTO_BASE);
UARTCharPutNonBlocking (UART@_BASE, received_character); //echo character
if (received_character == 13) UARTCharPutNonBlocking(UART@_BASE, 10); //if CR received,
issue LF as well

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2); //blink LED
SysCtlDelay(SysCtlClockGet() / (1000 * 3)); //delay ~1 msec
GPIOPinWrite(GPIO_PORTF_BASE, GPIO PIN_2, ©); //turn off LED

¥
int main(void) {
SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

SysCtlPeripheralEnable (SYSCTL_PERIPH_UART®);
SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOA);

GPIOPinConfigure(GPIO_PA®_UORX);
GPIOPinConfigure(GPIO_PAl_UOTX);
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_© | GPIO_PIN_ 1);

SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOF); //enable GPIO port for LED
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2); //enable pin for LED PF2

UARTConfigSetExpClk (UARTO_BASE, SysCtlClockGet(), 115200,
(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));

UARTFIFOLevelSet(UART@_BASE, UART_FIFO_TX4_ 8, UART_FIFO_RX4 8); //set FIFO level to 8 charac-
ters
UARTFIFOEnable(UARTO_BASE); //enable FIFOs

IntMasterEnable(); //enable processor interrupts
IntEnable(INT_UART®); //enable the UART interrupt

UARTIntEnable (UARTO BASE, UART_INT_RX | UART_INT_RT); //enable Receiver interrupts

UARTStdioInit(®); //tells uartstdio functions to use UARTO

UARTprintf("\033[2J\033[HEnter Text: "); // erase screen, put cursor at home position (0,0),
prompt

while (1) //let interrupt handler do the UART echo function

{
// if (UARTCharsAvail (UART@_BASE)) UARTCharPut(UART@_BASE, UARTCharGet(UARTO_ BASE));

12-16

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

Lab 12

26. Before we can compile/build this example, we need to add the uartstdio. c file from the
/utils folder into our project. Click on Project — Add files.... Then navigate to

c:\StellarisWare\utils and select uartstdio.c. Then click Open.

®

@ - . v Computer » OS5 (C) » StellarisWare » utils hd
= ~ .@.

Organize » New folder

, ProgramData MName
J StellarisWare [softssih
| boards | softuart.c

softuart.h

=

. boot_loader

, docs i
= spesxlib.c
. driverlib speexlib.h

=]

J examples L swupdate.c
J grlib | swupdate.h

4 Inc E] tf'tp.c

. IQmath tftp.h
 SimpliciTI-111 = uartstdio.c
J third_party uartstdio.h

J tools
. ushblib

ustdlib.c

=

| ustdlib.h

. utils .
L | utils.sgpe

. windows_drivers ~ (W]

Date modified

2/20/2013 3:11 PM
2/20/2013 3:11 PM
2/20/2013 3:11 PM
2/20/2013 3:11 PM
2/20/2013 3:11 PM
2/20/2013 3:11 PM
2/20/2013 3:11 PM
2/20/2013 3:11 PM
2/20/2013 3:11 PM
2/20/2013 3:11 PM
2/20/2013 3:11 PM
2/20/2013 3:11 PM
2/20/2013 3:11 PM
2/20/2013 3:11 PM

x

File name: uartstdio.c - l*-"

[Open

|v] [Cancel

When you are asked how to import the file, make the selections below and click OK.

v+ File Operation

Py

Select how files should be imported into the project:
(7 Copy files

@ Link to files

Create link locations relative to: [PROJECT_LOC

Configure Drag and Drop Settings...

@ [ok

Cancel]

s

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

12-17

Lab 12

27. You can create folders within your project to organize the added files and make things easier
to understand. Right-click on Lab12 and select New - Folder. Name the folder utils and click
Finish. You can then drag uartstdio. c to the utils folder in your Project Explorer.

we New Folder =l PG
Folder —
" L
Create a new folder resource, f ¥
Enter or select the parent folder:
Lab12 a = Labl2
= : q;’f‘ Binaries
s .
» Iﬁ, CoolerProject . |E|! Includes
- 1= faces _
- 2 Labll - [= Debug
- 1= Lab12 [Active - Debug] . [= targetConfigs
4 = utils
Folder name: utils : ﬁ uartstdio.c
— . Imdf232h5qc.cmd
Advanced > > ﬁ . 9
- gl main.c
- L] startup_ccs.c
=] mainl.tet
~ maind.tet
'@,‘ [Finish] | Cancel | |_| .
[E] main3.bet

28. Click the Debug button to build and download your program to the LM4F120H5QR memory.
29. If you've closed it, open Hyperterminal or puTTY, and set it up as before.

30. Click the Resume button. You should now see the prompt to enter some text at the top left
corner of the terminal window. Type some characters and you should see the characters
echoed into the terminal window. When you press the “Enter” key (carriage return), you
should now see the line feed character issues as well.

31. At this point you may be wondering why you don’t see any effects of turning on the FIFOs. It
appears that the characters are still being received and transmitted one at a time. In fact,
we're still getting RT (receiver timeout) interrupts because we’re just entering characters from
the terminal very slowly, compared to a continuous stream of characters. If you want to
experiment with the FIFO, you could try a couple of additional things. First, don’t enable RT
interrupts, only enable RX interrupts. If you have the FIFO level set to 8 characters as we did
in our code, you will need to enter 8 characters before they are all echoed back to you. The
interrupt occurs after at least 8 characters have been received in the FIFO. You could also
experiment with setting the FIFO levels to 2 characters, 4 characters, 12 characters, 14
characters. Have fun.

32. Close puTTY or HyperTerminal. Click the Terminate button to return to the CCS Edit
perspective. Close the Lab12 project and minimize Code Composer Studio.

ST

You're done.

12-18 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - UART

LDMA

Introduction

This chapter will introduce you to the micro DMA (uDMA) peripheral on Stellaris devices. In the
lab we’ll experiment with the uDMA transfers in memory and to/from the UART.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers
ADC12
Hibernation Module
USB
Memory
Floating-Point

BoosterPacks and grLib
Synchronous Serial Interface
UART
[HDMA]

Features...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA 13-1

Chapter Topics

Chapter Topics
pDMA 13-1
CRAPICE TOPICS..cc.vv ettt ettt et e ettt e s b e e e st e e s b e e esseesabeeenbeeesbeeeaseesabeesnseessseeanseesnseas 13-2
Features and TrANSTEr TYDESc.ccceeicuieeeie ettt et e e aae et e esseeeabeeenseeenreas 13-3
Block Diagram and Channel ASSIGRIMENLc.cccveviiiiioiiiieeieee ettt 13-4
Channel CORIGUIATIONc.ccoueiiiiiiii ettt ettt ettt ettt 13-5
LAD 12 UDMA ...t 13-7
L0 10} 115 AR 13-7
PIOCEAULE ...c..oeiiiiiee et ettt ettt sttt s 13-8
13-2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA

Features and Transfer Types

Features and Transfer Types

MDMA Features

¢ 32 channels

SRAM to SRAM , SRAM to peripheral and peripheral to
SRAM transfers (no Flash or ROM transfers are possible)

*

L 2

Basic, Auto (transfer completes even if request is removed),
Ping-Pong and Scatter-gather (via a task list)

Two priority levels

8, 16 and 32-bit data transfer sizes

Transfer sizes of 1 to 1024 elements (in binary steps)
CPU bus accesses outrank DMA controller

® 6 6 o o

Source and destination address increment sizes:
size of element, half-word, word, no increment

Interrupt on transfer completion (per channel)
Hardware and software triggers
Single and Burst requests

* 6 o o

Each channel can specify a minimum # of transfers before
relinquishing to a higher priority transfer.
Known as “Burst” or “Arbitration”

Transfer types...

Transfer Types

Basic
Single to Single
Single to Array
+ Array to Single
¢ Array to Array
Auto

¢ Same as Basic but the transfer completes even if the
request is removed
Ping-Pong
Single to Array (and vice-versa). Normally used to stream
data from a peripheral to memory. When the PING array is

full the uDMA switches to the PONG array, freeing the
PING array for use by the program.

Scatter-Gather

¢ Many Singles to an Array (and vice-versa). May be used to
read elements from a data stream or move objects in a
graphics memory frame.

Block diagram...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA 13-3

Block Diagram and Channel Assignment

Block Diagram and Channel Assignment

MDMA Block Diagram

uDMA System Memory
DMA error Controller
CH Control Table
DMASTAT
Peripheral [~ DMACFG DMASRCENDP
DMA Channel 0 <L ¢ done DMACTLBASE DDMMAA%SJ(E?RDLP
. DMAALTBASE
. DMAWAITSTAT .
. DMASWREQ .
Peripheral [~*“***| [DMAUSEBURSTSET] |, | .
DMA Channel N-1 | «-d2ne | [DMAUSEBURSTCLR DMASRCENDP
DMAREQMASKSET DMADSTENDP
DMAREQMASKCLR DMACHCTRL
DMAENASET
Nested s | DMAENACLR
Vectored enera request DMAALTSET
Interrupt [#R2| PeripheralN [DMAALTCLR Transfer Buffers
Controller done DMAPRIOSET Used by uDMA
(NVIC) DMAPRIOCLR
, DMAERRCLR
i DMACHASGN
DMACHIS
ARM DMACHMAPR
Cortex-M4F

Channels...

MDMA Channels

¢ Each channel has 5 possible assignments made in the DMACHMAPN register

Enc. 0 1 2 3 4
Ch#| Peripheral |Type| Peripheral |Type| Peripheral |Type| Peripheral |Type| Peripheral |Type

0 |USBOEP1RX | SB |UART2RX SB |Software B |GPTimer 4A B |Software B

1 |USBOEPT TX B |UART2TX SB |Software B |GPTimer 4B B |Software B

2 |USBOEP2RX B |GPTimer 3A B |Software B |Software B |Software B

3 |USBOEP2TX B |GPTimer 3B B |Software B |Software B [Software B

4 |USBOEP3 RX B |GPTimer2A B |Software B |GPIOA B |Software B

5 |USBOEP3 TX B |GPTimer 25 B |Software B |GPIOB B |Software B

6 |Software B |GPTimer2A B |UARTSRX SB |GPIOC B [Software B

7 |Software B |GPTimer 28 B |UARTS TX SB |GPIOD B |Software B

8 |UARTORX SB |UARTTRX SB | Software B |GPTimer 5A B |Software B

9 |UARTOTX SB |UARTTTX SB |Software B |GPTimer 5B B [Software B

10 [SsioRx SB [SSITRX SB |UARTG RX SB | GPTimer 6A B |Software B S= Slngle
11 |SSI0TX SB [SSITTX SB |UART6 TX SB | GPTimer 68 B |Software B

12 |Software B |UART2RX SB |SSIZRX SB | GPTimer 7A B |Software B B = Burst
13 |Software B |UART2TX SB |SSI2TX SB | GPTimer 78 B |Software B

14 |ADCO SS0 B |GPTimer2A B |SSI3RX SB |GPIOE B |Software B SB = Both
15 |ADCO SS1 B |GPTimer 2B B |SSI3TX SB |GPIOF B [Software B

16 |ADCO SS2 B |Software B |UART3RX SB | GPTimer 8A B |Software B

17 |ADCO SS3 B |Software B |UARTS TX SB | GPTimer 8B B |Software B

18 |GPTimer 0A B |GPTimer 1A B |UART4RX SB |GPIOB B [Software B

19 |GPTimer 08 B |GPTimer 1B B |UART4 TX SB | Software B |Software B

20 |GPTimer 1A B |Software B |UART7RX SB | Software B [Software B

21 [GPTimer 18 B |Software B |UART7 X SB | Software B |Sofware B

22 |UARTI RX SB [Software B |Software B |Software B |Software B

23 |UART1 TX SB [Software B |Software B |Software B |Software B

24 [SSI1RX SB |ADCT SSO B |Software B |GPTimer 9A B |Software B

25 [SSI1TX SB |ADC1 SS1 B |Software B |GPTimer 9B B |Software B

26 |Software B |ADCTSS2 B |Software B |GPTimer 10A B |Software B

27 [Software B |ADC1SS3 B |Software B |GPTimer 108 B |Software B

28 |Software B |Software B |Software B |GPTimer 11A B |Software B

29 [Software B |Software B |Software B |GPTimer 118 B |Software B

30 |Software B |Software B |Software B |Software B |Software B . .
31 [Reserved B |Reserved B |Reserved B |Reserved 8 |Reserved 8 Conflguratlon...

13-4

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA

Channel Configuration

Channel Configuration

Channel Configuration

¢ Channel control is done via a set of control structures in a table
¢ The table must be located on a 1024-byte boundary
¢ Each channel can have one or two control structures; a primary and an alternate
¢ The primary structure is for BASIC and AUTO transfers. Alternate is for Ping-Pong
and Scatter-gather
Control Structure Memory Map Channel Control Structure
Offset Channel Offset Description
0x0 0, Primary 0x000 Source End Pointer
0x10 1, Primary 0x004 Destination End Pointer
- 0x008 Control Word
0x1FO0 31, Primary 0x00C Unused
0x200 0, Alternate -
210 1, Aternate Control word contains:
Source and Dest data sizes
Ox;FO 31 Alternate Source and Dest addr increment size

of transfers before bus arbitration
Total elements to transfer
Useburst flag

Transfer mode

L R JER JER JER R 2

Lab...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA 13-5

Channel Configuration

13-6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA

Lab 13: uDMA

Lab 13: uDMA

Objective

In this lab you will experiment with the uDMA, transferring arrays of data in memory and then

transferring data to and from the UART.

Lab 13: Transferring Data with the yDMA

USB Emulation Connection

" & Perform an array to array memory

transfer
B A tiad
& Transfer data to and from the UART 6 me o L7 Rl =

Wrap-up ...

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA

13-7

Lab 13: uDMA

Procedure

Import Lab13

1. We have already created the Lab13 project for you with main. c, a startup file and all
necessary project and build options set. Maximize Code Composer and click Project >
Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.
Make sure that the “Copy projects into workspace” checkbox is unchecked.

r %

«« Import CCS Eclipse Projects

o
£

Select Existing CCS Eclipse Project =
Select a directory to search for existing CC5 Eclipse projects.

(@) Select search-directory: C:\StellarisWare\boards\MylLaunchPadBoard'\Lab13 Browse...
) Select archive file: Browse...
Discovered projects:

BT Labl3 [CA\StellarisWare\boards\MyLaunchPadBoardi\Labl3\ccs] Select All

Deselect All

Refresh

[C] Copy projects into workspace
[[] Automatically import referenced projects

(Inen the Recnurce Frnlorer and hrowee available examnle nroiecte...

@ | Finish |

Cancel

13-8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA

Lab 13: uDMA

Browse the Code

2. In order to save some time, we’re going to browse this existing code rather than enter it
line by line. Open main. c in the editor pane and we’ll get started. If you accidentally
make a change, this code is also inmainl. txt in the Lab13\ccs folder.

This code is actually a stripped-down version of the uDMA_demo example in
C:\StellarisWare\boards\ek-1m4f120x1 . To make things a little simpler the
UART portion of the code was removed.

At the top of the code you’ll find all the normal includes, especially udma. h since we’ll
be using that peripheral.

3. Just under includes are the definitions for the source and destination buffers, two error
counter variables and a counter to track the number of transfers.

#tdefine MEM_BUFFER_SIZE 1024
static unsigned long g ulSrcBuf[MEM_BUFFER_SIZE];
static unsigned long g ulDstBuf[MEM_BUFFER_SIZE];

static unsigned long g _uluDMAErrCount = 0;
static unsigned long g ulBadISR = O;
static unsigned long g_ulMemXferCount = 0;

4. Below that, the phDMA control table is defined. Remember that the table must be aligned
to a 1024-byte boundary. The #pragma will do that for us. If you are using a different
IDE, this construct may be different. The table probably doesn’t need to be 1K in length,
but that’s fine for this example.

#pragma DATA_ALIGN(ucControlTable, 1024)
unsigned char ucControlTable[1024];

5. Below the control table definition is the library error handler that we’ve covered earlier.

Next is the uDMA error handler code. If the uDMA controller encounters a bus or memory
protection error as it attempts to perform a data transfer, it disables the WuDMA channel that
caused the error and generates an interrupt on the uDMA error interrupt vector. The handler here
will clear the error and increment the error count.

void uDMAErrorHandler(void)
{
unsigned long ulStatus;
ulStatus = ROM_uDMAErrorStatusGet();
if(ulStatus)
{
ROM_uDMAErrorStatusClear();
g _UluDMAErrCount++;
}
}

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA 13-9

Lab 13: uDMA

6. Below the error handler is the uDMA interrupt handler. The interrupt that runs this
handler is triggered by the completion of the programmed transfer. The code first checks
to see if the uDMA channel is in stop mode. If it is, the transfer count is incremented, the
uDMA is set up for another transfer and the next transfer is triggered. If this interrupt was
triggered in error, the bad ISR variable will be incremented.

The last two lines inside the if () trigger the second and every subsequent uDMA

request.
void
uDMAIntHandler(void)
{
unsigned long ulMode;
ulMode = ROM_uDMAChannelModeGet (UDMA CHANNEL_ SW);
if(ulMode == UDMA_MODE_STOP)
{
g _ulMemXferCount++;
ROM_uDMAChannelTransferSet (UDMA_CHANNEL_SW, UDMA_MODE_AUTO,
g_ulSrcBuf, g ulDstBuf, MEM_BUFFER_SIZE);
ROM_uDMAChannelEnable (UDMA_CHANNEL_SW);
ROM_uDMAChannelRequest (UDMA_CHANNEL_SW);
}
else
{
g ulBadISR++;
}
j

13-10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA

Lab 13: uDMA

7. Next is the InitSWTransfer () function. This code initializes the uDMA software

channel to perform a memory to memory transfer. We’ll be triggering these transfers
from software, so we’ll use the software uDMA channel (UDMA_CHANNEL_SW).

The for () construct at the top initializes the source array with a simple pattern.
The next line enables the uDMA interrupt to the NVIC.

The next line disables the listed attributes of the software uDMA channel so that it’s in a
known state.

The ROM_uDMAChannelControlSet() API sets up the control parameters for the software
channel pDMA control structure. Notice that we’ll be using the primary (not the alternate set)
and that the element size and increment sizes are 32-bits. The arbitration count is 8.

The ROM_uDMAChannelTransferSet () API sets up the transfer parameters for the software
channel pDMA control structure. Again, this is for the primary set, auto mode (continue
transfer until completion even if request is removed ... common for software requests),
the source and destination buffer addresses and the size of the transfer.

Finally, the code enables the software channel and makes the first uDMA request.

{

void
InitSWTransfer(void)

unsigned int uIdx;

for(uldx = @; uldx < MEM_BUFFER_SIZE; uIdx++)

{
}

ROM_IntEnable(INT_UDMA);

g ulSrcBuf[uldx] = uldx;

ROM_uDMAChannelControlSetAttributeDisable (UDMA_CHANNEL_SW,
UDMA_ATTR_USEBURST | UDMA_ATTR_ALTSELECT |
(UDMA_ATTR_HIGH_PRIORITY |
UDMA_ATTR_REQMASK));

ROM_uDMAChannelControlSet (UDMA_CHANNEL_SW | UDMA_PRI_SELECT,
UDMA_SIZE_32 | UDMA_SRC_INC_32 | UDMA_DST_INC_32 |
UDMA_ARB_8);

ROM_uDMAChannelTransferSet (UDMA_CHANNEL_SW | UDMA_PRI_SELECT,
UDMA_MODE_AUTO, g_ulSrcBuf, g ulDstBuf,
MEM_BUFFER_SIZE);

ROM_uDMAChannelEnable (UDMA_CHANNEL_SW);
ROM_uDMAChannelRequest (UDMA_CHANNEL_SW);

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA 13- 11

Lab 13:

UDMA

8. Lastly, we’ll look at the code inmain().

Lazy stacking allows floating point to be used inside interrupt handlers, but uses
additional stack space. This isn’t strictly needed since we aren’t doing any
floating-point operations in the handler.

Set up the clock to SOMHz.
Enable the uDMA peripheral.

ROM_SysCt1lPeripheralSleepEnable() enables the clock to reach this peripheral
while the CPU is sleeping. This isn’t strictly required here, but if you forget it and put the
CPU to sleep, it will be horrible to track down the problem.

Then enable the uDMA error interrupt and then the uDMA itself.
Make sure the control channel base address is set to the one we created.

Call the InitSWTransfer() function and start the first transfer, then have the
CPU wait in the while(1) loop. In your actual code this would be where you’d
either sleep or do something else with those CPU cycles.

int

main(void)

{
ROM_FPULazyStackingEnable();
ROM_SysCtlClockSet(SYSCTL_SYSDIV 4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |

SYSCTL_XTAL_16MHZ);

ROM_SysCtlPeripheralClockGating(true);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);
ROM_IntEnable(INT_UDMAERR);
ROM_uDMAEnable();
ROM_uDMAControlBaseSet(ucControlTable);
InitSWTransfer();
while(1)
{
}

i

13-12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA

Lab 13: uDMA

Build, Download and Run the Code

9.

10.

11.

12.

13.

14.

15.

16.

17.

Click the Debug button to build and download the code to the LM4F120H5QR flash
memory.

On the CCS menu bar click View = Memory Browser. Move/resize the window if you
have to. Enter g_ulSrcBuf in the box below the Memory Browser tab and click the Go
button. Click the New Tab button, enter g_ulDstBuf in the box and click Go again.
Note that both arrays are clear. Click on the g_ulSrcBuf tab to view the source array.

Set a breakpoint inside the InitSWTransfer () function on the line containing
ROM_IntEnable(INT_UDMA); (about line 98). This will let us see the contents of the
source array before any transfers begin.

Click the Resume button to run to the breakpoint. In the Memory Browser, note the
initialized values in the source array. Check the destination array to make sure it’s still
clear.

Remove the breakpoint you just set and set another one inside the uDMAIntHandler
function on the line containing ROM_uDMAChannelTransferSet() . This breakpoint will
occur after the transfer is completed and the transfer count has been incremented, but
before the next transfer has been initiated.

Add a watch expression on g_ulMemXferCount, switch the Memory Browser to the
destination tab and click the Resume button. You’ll see the destination buffer update with
the previous contents of the source buffer and the transfer count variable will now be 1.

You can click Resume a few times and watch the transfer count increment, but since the
source buffer never changes, the destination buffer will look the same after each transfer.

Delete the breakpoint you just added. Add watch expressions on g_ulBadIsr and
g_ulubDMAErrCount. Click Resume. After a few moments, click the Suspend button. We
saw over 200,000 transfers and 0 errors.

Remove all of the watch expressions by right-clicking in the Expressions pane and
selecting Remove All 2 Yes. Close the Memory Browser pane.

Click the Terminate button to return to the CCS Edit perspective.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA 13-13

Lab 13: uDMA

Streaming Data To and From the UART using a Ping-Pong Buffer

In real-world applications, incoming or outgoing data doesn’t usually stop. If you are receiving
data from an ADC or sending/receiving data to/from a UART, the best way to make sure the data
always has a place to go to or from is to use a Ping-Pong buffer. Take a filtering application like
the one shown below:

e o e o) e o= =g

CPU

e
c
—

Here the DMA on the left is responsible for bringing data from the ADC into memory. When the
PING IN buffer is full, the DMA signals the CPU (with an interrupt) and switches its destination
to the PONG IN buffer (and vice versa). The CPU filters the frame of data from the PING IN
buffer, sends the result to the PING OUT buffer and triggers the DMA on the right to send it to
the DAC (and vice versa). This is a straight-forward Input — Process — Output technique. When
properly synchronized and timed, all three processes happen simultaneously and there is no
chance for a “skip” or “miss” of even a single bit a data, as long as the CPU is capable of
processing the buffer of data in the same amount of time that it takes to fill or empty the buffer
from/to the outside world.

This example will be a little simpler. We’ll have a single transmit buffer, since the data in it won’t
change. The transmit DMA will send that buffer to the UART transmit register continuously. The
UART will be configured in loopback mode so that data will be streaming back in continuously.
The receive DMA will stream the data received from the UART data receive register into a Ping-
Pong buffer that we can observe.

What makes this DMA programming interesting is that the primary and alternate modes must be
used in order for the DMA to switch Ping-Pong buffers automatically. Also, the DMA transfers
that point to the UART must not increment, otherwise they would write data into the wrong
location. At the same time, the DMA must increment through the Ping and Pong buffer to fill
them.

13- 14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA

Lab 13: uDMA

18. Delete all the code in main. c. Double-click on main2.txt in your Project Explorer
pane to open it for editing. Copy the contents of main2.txt into your now empty
main.c. Close main2.txt and save your work.

19. In order for this code to build and run, we’ll need to make a couple of changes to the in-
terrupt vectors used in startup_ccs.c . Open startup_ccs. c for editing.

20. It’s very easy to make an error in the next three steps. Cut and paste if you can.
Find the two lines near the top of the file shown below:

extern void uDMAErrorHandler(void);
extern void uDMAIntHandler(void);

and change them to read:

extern void uDMAErrorHandler(void);
extern void UART1IntHandler(void);

21. Around line 131, find the uDMAIntHandler entry for the uDMA Software Transfer
vector and change it to IntDefaultHandler.

22. Around line 91, find the IntDefaultHandler entry for the UART1 Rx and Tx vector
and change it to UART1IntHandler. Save your work and close startup_ccs.c.
Follow these last four steps in reverse if you want to go back to the memory to memory
transfer example.

Browse the Code

23. Starting at the top, notice the additional includes to handle the UART. Just below them
are the definitions for the single Tx and two Rx Ping and Pong buffers. Then you’ll find
the uDMA error count and transfer count variables.

24. Next is the allocation for the uDMA control table. This table is read by the uDMA
peripheral hardware and must be aligned on a 1024-byte boundary.

25. Below the table allocation is the familiar library error routine and the same uDMA error
handler from the first part of this lab.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA 13-15

Lab 13: uDMA

26. The heart of this code is the UART interrupt handler. This ISR is run when the receive
ping (primary) or pong (alternate) buffer is full or when the transmit buffer is empty.
Note the ulMode = lines that determine which event triggered the interrupt.

In the receive buffers the mode is verified to be stopped and the proper transfer count is
incremented. You’ll see in the initialization that both the primary and alternate
parameters are already set up. When the Ping side of the transfer causes an interrupt, the
uDMA is already processing the Pong side, so the TransferSet API resets the
parameters for the flowing Ping transfer. Note that the source is the UART data register.

The transmit transfer is a basic transfer and needs to be re-enabled each time it completes.
Note that the destination is the same UART data register.

void
UART1IntHandler(void)
{

unsigned long ulStatus;
unsigned long ulMode;

ulStatus = ROM_UARTIntStatus(UART1_BASE, 1);
ROM_UARTIntClear(UART1_BASE, ulStatus);
ulMode = ROM_uDMAChannelModeGet (UDMA_CHANNEL_UARTIRX | UDMA_PRI_SELECT);

if(ulMode == UDMA_MODE_STOP)

{
g ulRxPingCount++;
ROM_uDMAChannelTransferSet (UDMA_CHANNEL_UARTIRX | UDMA_PRI_SELECT,
UDMA_MODE_PINGPONG,
(void *)(UART1_BASE + UART_O DR),
g_UcRxPing, sizeof(g_ucRxPing));
}

ulMode = ROM_uDMAChannelModeGet(UDMA CHANNEL_UART1RX | UDMA_ALT_SELECT);

if(ulMode == UDMA_MODE_STOP)

{
g ulRxPongCount++;
ROM_uDMAChannelTransferSet (UDMA_CHANNEL_UARTIRX | UDMA_ALT_SELECT,
UDMA_MODE_PINGPONG,
(void *)(UART1_BASE + UART_O DR),
g_ucRxPong, sizeof(g_ucRxPong));
}
if(!ROM_uDMAChannelIsEnabled(UDMA_CHANNEL_UART1TX))
{
ROM_uDMAChannelTransferSet (UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
UDMA_MODE_BASIC, g ucTxBuf,
(void *)(UART1_BASE + UART_O DR),
sizeof(g_ucTxBuf));
ROM_uDMAChannelEnable(UDMA_CHANNEL_UART1TX);
}

13- 16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA

Lab 13: uDMA

27. The uDMA and UART must be initialized and the next function,
InitUART1Transfer() does that.

The for () loop at the beginning initializes the transmit buffer with some count data.

The next two lines enable UART1 and make sure that the clock to the peripheral will still
be available even if the CPU is sleeping. This last step isn’t strictly needed, but many
programs utilizing the DMA do sleep and if you forget this step, if will not be easy to
track down.

The next six lines configure the UART clock, the FIFO utilization, enable it, enable it to
use the DMA, set loopback mode and enable the interrupt.

Next up are the uDMA control and transfer programming steps.

ROM_uDMAChannelAttributeDisable() turns off all the indicated parameters to
assure the starting point.

The next two ROM_uDMAChannelControlSet() lines set up the control parameters for
the Ping (primary) and Pong (alternate) sets. Note that the transfer element size is 8-bits,
the source increment is none (since it should be pointing to the UART data register all the
time) and the destination increment is 8-bits.

The next two ROM_uDMAChannelTransferSet () lines program the transfer
parameters for both the Ping (primary) and Pong (alternate) sets. Note that the mode is
PINGPONG, the source is the UART data register and the destination is the appropriate
Ping or Pong buffer.

The next four lines set up the control and transfer parameters for the transmit channel.
Note that the destination is the UART data register and the source is the single transmit
buffer. The element transfer size is 8-bits, the source increment is 8-bits and the
destination increment is none.

In all of these setting the priority has been left as HIGH. It doesn’t make sense to
prioritize the transmit over the receive or vice versa.

The final two lines enable both uDMA transfers.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA 13- 17

Lab 13: uDMA

void InitUART1Transfer(void)

{

unsigned int uldx;

for(uldx = 0; uldx < UART_TXBUF_SIZE; uIdx++)

{
}

ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1);
ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART1);

g ucTxBuf[uldx] = uldx;

ROM_UARTConfigSetExpClk (UART1_BASE, ROM_SysCtlClockGet(), 1152090,
UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE);

ROM_UARTFIFOLevelSet(UART1_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);

ROM_UARTEnable(UART1_BASE);
ROM_UARTDMAEnable (UARTL_BASE, UART DMA RX | UART DMA TX);

HWREG(UART1_BASE + UART O CTL) |= UART_CTL_LBE;
ROM_IntEnable(INT UART1);

ROM_uDMAChannelAttributeDisable (UDMA CHANNEL UARTIRX,
UDMA_ATTR_ALTSELECT | UDMA_ATTR_USEBURST |
UDMA_ATTR_HIGH_PRIORITY |
UDMA_ATTR_REQMASK) ;

ROM_uDMAChannelControlSet (UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT,
UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_ 8 |
UDMA_ARB_4);

ROM_uDMAChannelControlSet (UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT,
UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 |
UDMA_ARB_4);

ROM_uDMAChannelTransferSet (UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT,
UDMA_MODE_PINGPONG,
(void *)(UART1_BASE + UART_O_DR),
g_UcRxPing, sizeof(g_ucRxPing));

ROM_uDMAChannelTransferSet (UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT,
UDMA_MODE_PINGPONG,
(void *)(UART1_BASE + UART_O_DR),
g_UucRxPong, sizeof(g_ucRxPong));

ROM_uDMAChannelAttributeDisable (UDMA_CHANNEL_UART1TX,
UDMA_ATTR_ALTSELECT |
UDMA_ATTR_HIGH_PRIORITY |
UDMA_ATTR_REQMASK) ;

ROM_uDMAChannelAttributeEnable (UDMA_CHANNEL_UART1TX, UDMA_ATTR_USEBURST);

ROM_uDMAChannelControlSet (UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE |
UDMA_ARB_4);

ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
UDMA_MODE_BASIC, g ucTxBuf,
(void *)(UART1_BASE + UART_O_DR),
sizeof(g_ucTxBuf));

ROM_uDMAChannelEnable (UDMA_CHANNEL UARTLRX);
ROM_uDMAChannelEnable (UDMA_CHANNEL UARTLTX);

13-18

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA

Lab 13: uDMA

28. Finally we’re in main().

Starting at the top we have the lazy stacking enable, which probably isn’t necessary since
we’re not using the PFU in the handlers.

The clock is set up to SOMHz and the peripherals are allowed to be clocked during sleep
mode.

GPIO port F is enabled and set up for the LEDs. We’ll only be using the blue LED.
The next five lines set up the hardware for the UART on port A pins 0 and 1.

The five lines afterwards enable the uDMA clock, allow it to operate during sleep modes,
enable the error interrupt, enable the uDMA for operation and sets the base address for
the uDMA control table.

Then the initialization function is called for the transfers.

The while (1) loop simply blinks the blue LED while the transfers are happening to let
us know the code is alive.

int main(void)
{
volatile unsigned long ulloop;
ROM_FPULazyStackingEnable();
ROM_SysCt1ClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
SYSCTL_XTAL_16MHZ);
ROM_SysCtlPeripheralClockGating(true);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN 2);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UARTO);
GPIOPinConfigure(GPIO_PA®_UORX);
GPIOPinConfigure(GPIO_PAl_UOTX);
ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO PIN © | GPIO PIN 1);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);
ROM_IntEnable(INT_UDMAERR);
ROM_uDMAEnable();
ROM_uDMAControlBaseSet(ucControlTable);
InitUART1Transfer();
while(1)
{
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN 2);
SysCtlDelay(SysCtlClockGet() / 20 / 3);
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);
SysCtlDelay(SysCtlClockGet() / 20 / 3);
}
¥

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA 13-19

Lab 13:

UDMA

Build, Load and Run

29.
30.

31.

32.

33.

34.

35.

36.

37.

Click the Debug button to build and load the program.

In order to determine of the program is operating properly, we need to see the buffers.
One the CCS menu bar, click View > Memory Browser. Enter g_ucRxPing in the box
below the Memory Browser tab and click the Go button. The RxPing, RxPong and Tx
buffers are all close together, so you should be able to see them in the same window.
Resize if necessary.

Notice that the Tx buffer is clear. Set a breakpoint in the InitUART1Transfer()
function on the line containing
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1); . This is right after the
Tx buffer is initialized with data.

Click the Resume button to run to the breakpoint. Note in the Memory Browser that the
Tx buffer is now filled with data.

Remove the breakpoint and set another in UART1IntHandler () on the line containing
ulStatus = . This breakpoint will trip when the first (Pong) transfer completes

Click the Resume button to run to the breakpoint. Note in the Memory Browser that the
RxPing buffer is now filled with data. Click Resume again and the RxPong buffer will
fill.

Add a watch expressions on g_ulRxPingCount and g_ulRxPingCount found in
UART1IntHandler() . Add another watch expression on g uluDMAErrCount found
in uDMAErrorHandler () . Change the properties of the breakpoint so that its Action is
Refresh All Windows.

Click Resume. The transfer counters should track and the error count should be zero.
You’ll also notice that the LED on the LaunchPad stops blinking. Since the CPU is
stopping at the breakpoint and transferring data to the PC, the next uDMA interrupt
occurs before any code can run in the while(1) loop. Consider that when using this
technique to debug.

The Memory browser isn’t very interesting since the Tx buffer never changes. Let’s fix
that.

Halt the code and find the Tx buffer portion of the UART1IntHandler. Add the line
highlighted below. This will increment the first location in the Tx buffer (and yes, I know
that it’s cast as a character):

if (!ROM_uDMAChannelIsEnabled (UDMA_CHANNEL_UART1TX))

{
- g UCTXBUf[0]++;
ROM_uDMAChannelTransferSet (UDMA CHANNEL UART1TX | UDMA PRI_SELECT,

UDMA_MODE_BASIC, g ucTxBuf,
(void *)(UART1_BASE + UART_O_DR),
sizeof(g_ucTxBuf));

ROM_uDMAChannelEnable (UDMA_CHANNEL_UART1TX);

13-20

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA

Lab 13: uDMA

38. Build, load and Run. You may need to click the Go button in the Memory Browser again.
The first location in all three buffers should be incrementing.

39. When you’re done, click the Terminate button to return to the CCS Edit perspective. Now
that the CCS windows aren’t being updated, the blue LED will start blinking again.

40. Right-click on Lab13 in the Project Explorer pane and close the project.
41. Close Code Composer Studio.

ST

You’re done.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA 13- 21

Lab 13: uDMA

13- 22 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- uDMA

Appendix

Manual Driver Installation

If you have problems with the Windows drivers and need to install them manually, the steps for
Windows XP and 7 are here. Windows 8 should mirror the Windows 7 steps.

Windows XP Driver Installation

1.

To see which drivers are installed on your host computer, check the hardware
properties using the Windows Device Manager. Do the following:

A. Click on the Windows Start button. Right-click on My Computer and select
Properties from the drop-down menu.

B. In the System Properties window, click the Hardware tab.
C. Click the Device Manager button.

The Device Manager window displays a list of hardware devices installed on your
computer and allows you to set the properties for each device. When the evalua-
tion board is connected to the computer for the first time, the computer detects the
onboard ICDI interface and the Stellaris® LM4F120H5QR microcontroller.

Drivers that are not yet installed display a yellow exclamation mark in the Device
Manager window.

Using the included USB cable, connect the USB emulation connector on your
evaluation board (marked DEBUG) to a free USB port on your PC. A PC’s USB
port is capable of sourcing up to 500 mA for each attached device, which is suffi-
cient for the evaluation board. If connecting the board through a USB hub, it must
be a powered hub.

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Appendix Appendix - 1

Windows will start the Found New Hardware Wizard as shown below. Select
“No, not this time” and then click “Next”.

Found Mew Hardware Wizard

Welcome to the Found New
Hardware Wizard

looking an your computer, on the hardware installation CDY, or an
the Windows Update Web site fwith your pemission).
Read our privacy policy

Can Windows connect to Windows Update to search for
software?

) Yes, this time only
() Yes, now and every time | connect a device
(&) Mo, not this time

Click Mext to continue.

[MNezg =][Cancel]

The next dialog will ask where the drivers can be found. Select “Install from a list
or specific location” and then click “Next”.

Found New Hardware Wizard

This wizard helps you install software for:

Stellans Vitual Seral Fort

{ .'\J i your hardware came with an installation CD

u

2 or floppy disk. insert it now.

What do you want the wizard to do?

() Install the software automatically (Recommended)
(®) Install from a list or specific location {Advanced)

Click Mest to continue.

< Back ” Mext =][Cancel

Appendix - 2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Appendix

Direct the wizard to the drivers that you downloaded earlier as shown below.
Then click “Next”.

F.Eund New Hardware Wizard

Please choose your search and installation options.

{(*) Search for the best driver in these locations.

lse the check boxes below to limit or expand the default search, which includes local
paths and removable media. The best driver found will be installed.

[] 5earch removable media floppy, CO-ROM..)
Include this location in the seanch:

|C:"-.Ste||aris"-"'.u'are"-stellaﬁs_icdi_dﬁvers V| [Browse

) Dont search. | will choose the driver to install.

Choose this option to select the device driver from a list. Windows does not guarantee that
the driver you choose wil be the best match for your hardware.

[< Back][Meat =][Cancel]

When the following Windows Logo Testing box appears, click “Continue Any-

bAl
Hardware Installation

way’.
L] "-l., The software you are installing for this hardware:
-

Stellars Virtual Seral Port

has not passed Windows Logo testing to verify its compatibility
with Windows XP. (Tell me why this testing is impartarnt .}

Continuing your installation of this software may impair
or destabilize the comect operation of your system
either immediately or in the future. Microsoft strongly
recommends that you stop this installation now and
contact the hardware vendor for software that has

passed Windows Logo testing.

[Continue Armyway] [STOP Installation

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Appendix Appendix - 3

When the wizard completes, click “Finish”.

f <

Completing the Found New
!‘g Hardware Wizard
3

The wizard has finished installing the software for:

(3 Stellaris Virtual Serial Port

Click Finish to close the wizard.

Finish

Repeat this process for the other two drivers (the Windows Logo testing box may
not appear again).

Appendix - 4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Appendix

Note that the drivers now appear under the “Ports” and “Stellaris In-Circuit De-
bug Interface” headings.

File Acton View Help

= W & 2HE A

=8 Cnan1a258s

+ Batteries
- &g Computer
H ControlVault Device
[+] e Disk drives
§ Dizplay adapters
[/ DVDCD-ROM drives
--ﬁ Human Interface Devices
-2 IDE ATA/ATAPI controllers
[+]-#5p IEEE 1324 Bus host controllers
:jﬁ Imaging devices
[& Keyboards
---';j Mice and other pointing devices
Modems
Manitors
! Metwork adapters
Ports (COM &LPT)
“Qi Dell Wirgless 5620 (EV-DO-HSPA) Mobile Broadband Mini-Card Diagnostics (COM3)
Dell Wireless 5620 (EV-DO-HSPA) Mobile Broadband Mini-Card MMEA {COMS)
5 ECP Printer Port (LPT1)
“Qi RIM Virtual Serial Part w2 (COMT)
RIM Virtual Serial Port w2 (COM3)
Stellaris virtual Serial Port (COM30)
[+ %% Processars
[]--g-? 5CST and RAID controllers
[+ Smart card readers
[]---‘B; Sound, video and game controllers
[=] § Stellaris In-Circuit Debug Interface
: Stellaris ICDI DFU Device

Stellaris ICDI JTAG/SWD Interface

[+]-“g Storsge volumes

- & System devices
[+ Universal Serial Bus controllers

If you have driver difficulties later, you can try the “Update driver...” process
(right-click on each driver). If that fails, you can delete all three drivers and re-
install them. The drivers will only appear in the Device Manager when the board
is connected to the USB port.

Write down the COM port number that Windows assigned for the Stellaris Virtual
Serial Port here:

Close your Device Manager window(s).

Skip the Windows 7 installation step and continue with the quickstart application
in step Error! Reference source not found..

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Appendix Appendix - 5

Windows 7 Driver Installation

2.

To see which drivers are installed on your host computer, check the hardware
properties using the Windows Device Manager. Do the following:

A. Click on the Windows Start button. Right-click on Computer and select Prop-
erties from the drop-down menu.

B. Click on Device Manager on the left of the dialog.

The Device Manager window displays a list of hardware devices installed on your
computer and allows you to set the properties for each device. When the evalua-
tion board is connected to the computer for the first time, the computer detects the
onboard ICDI interface and the Stellaris® LM4F120H5QR microcontroller.

Drivers that are not yet installed display a yellow exclamation mark in the Device
Manager window.

Using the included USB cable, connect the USB emulation connector on your
evaluation board (marked DEBUG) to a free USB port on your PC. A PC’s USB
port is capable of sourcing up to 500 mA for each attached device, which is suffi-
cient for the evaluation board. If connecting the board through a USB hub, it must
be a powered hub.

Appendix - 6

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Appendix

After a moment, all three drivers should appear under the “Other devices” head-
ing as shown below:

File Action View Help
| "
4 3 Scott-PC

b % Batteries
& -8 Computer

by Disk drives

» B Display adapters

b -5 DVD/CD-ROM drives

! E‘ﬁ Hurnan Interface Devices
b g [DE ATASATAPI controllers
- -2 Imaging devices

b ﬂF Infrared devices

b Keyboards

--ﬂ Mice and other pointing devices
- - Monitore
: l_-'f' Metwork adapters
-|[l5) Other devices
i@y In-Circuit Debug Interface
|l In-Circuit Debug Interface
| In-Circuit Debug Interface
. I Portable Devices
» 75 Parts (COM &LLPT)
: n Processors
! -&| Sound, video and game controllers
» /M Systemn devices
B i Universal Serial Bus controllers

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Appendix Appendix - 7

Right-click on the top instance of “In-Circuit Debug Interface” and then click on
“Update Driver Software...” in the drop-down menu that appears.

File Action View Help
ol A0 RERN ? N AN AL

I 4 g2 Scott-PC
b5 Batteries
& {8 Computer

::> - Disk drives
»» B Display adapters
[-L_i-g DVD/CD-ROM drives
[l‘:% Human Interface Devices
[- IDE ATASATAPI controllers
I % Imaging devices
f Infrared devices

b2 Keyboards

&> - Mice and other pointing devices
: A Moniters
; ¥ Metwork adapters
- -|[l5 Other devices
@ In-Circuit -De.bgg_lhterf.acg r
5 In-Circuit Debug Interface
|t In-Circuit Debug Interface Disable
i B Portable Devices Uninstall

|
-5 Ports (COM & LPT)
& é Processors Scan for hardware changes

Update Driver Software...

-& Sound, video and game contr

’ Properties
1M Systern devices

[s - i Universal Serial Bus controllers

! Launches the Update Driver Software Wiza

Appendix - 8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Appendix

Click “Browse my computer for driver software” in the window that appears.

How do you want to search for driver software?

= Search automatically for updated driver software
Windows will search your computer and the Internet for the latest driver software
for your device, unless you've disabled this feature in your device installation
settings.

= Browse my computer for driver software
Locate and install driver software manually.

Direct the wizard to the drivers that you downloaded earlier as shown below.
Then click “Next”.

Browse for driver software on your computer

Search for driver software in this location:

C:\StellarisWare\stellaris_icdi_drivers

Include subfolders

2 Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category as the device.,

I Mext |[Cancel

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Appendix Appendix - 9

When the Windows Security windows appears, click “Install this driver software
anyway”

= Don'tinstall this driver software
You should check your manufacturer's website for updated driver software
for your device.

Install this driver software anyway

Only install driver software obtained frem your manufacturer's website or
disc. Unsigned software frem other sources may harm your computer or steal
information.

.j:\-r:j- See details

When the completion window appears, click “Close”. Note that your serial port
number may be different than shown below.

f W . e S
| = - —
kf) [l Update Driver Software - Stellaris Virtual Serial Port (COME) .
-

Windows has successfully updated your driver software
Windows has finished installing the driver software for this device:

Stellaris Virtual Serial Port

| |

Repeat this process for the other two drivers.

Appendix - 10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Appendix

Note that the drivers now appear under the “Ports” and “Stellaris In-Circuit De-
bug Interface” headings.

File Action View Help
e T E HE ® FE&RS

4 ﬂ Scott-PC
[;@' Batteries
- .M Computer

» g Disk drives

&, Display adapters

ey DVD/CD-ROM drives

E‘l‘;-‘} Hurnan Interface Devices
» g IDE ATA/ATAPI controllers
%5 Imaging devices

B

'

B

f Infrared devices

T

~ZZ Keyboards

'

> --B Mice and other pointing devices

& Menitors

- &} Network adapters

i Portable Devices

2T Ports (COM &L LPT)

‘? Communications Port (COML)

E ‘? Stellaris Virtual Serial Port (COME)

B

» - Processors
-% Sound, video and game controllers

o

A'-,-, Stellaris In-Circuit Debug Interface

. . Stellaris ICDI DFU Device

:) K. Stellaris ICDIITAG/SWD Interface
> M Systern devices

b - ﬁ Universal Serial Bus controllers

If you have driver difficulties later, you can try the “Update Driver Software...”
process (right-click on each driver). If that fails, you can delete all three drivers
and re-install them. The drivers will only appear in the Device Manager when the
board is connected to the USB port.

Write down the COM port number that Windows assigned for the Stellaris Virtual
Serial Port here:

Close your Device Manager window(s)

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop - Appendix Appendix - 11

€40 | AX0CHAYNI-MT | Yos'y A8Y 1X02Z H4¥INT-M3 =
133Hs ON 14vd IWVNI I
aH1 pue suonng ‘uoisuedx3 ‘gSN ‘48l[0AU00IOIN
SUB||9]S/LUOD" [} MMM
NOLLdINOS3a 91133711010 8 g a3
9728L XL NILSNY 20
05€ 31INS ‘aVOH NISYE G1IM 80} pedyoune sleja1s oce 3
103r0ud ARA
SHITIOHLNODOHIINg SIHVTILS W
SINIWNYLSNI SYX3L . eroeieeis Ho 100 =
e NOISIAZH yINoISIa
g _
ouIIH L0 o a3
VOO 00 37T 80
oge S
= DIYM [N I a— oge
8d Vo € >mm<
- - W _
00} 0L NOO 00} 0L NOO —l— AH_ 2ZMS SN 1a —_—
o7 LZEN dE!
aaYe3d ams snan+
adYy23d
DdYT3d
wn ma 91133711010 g ENeER]
E\ gaek 10
59y 10
EEN QUes — 9
T3 = _ e
= Wy
23 Mﬁ I_I ey
I (] tms usn
° _°
IMS
snan+
00011 "NOD 001041 NOD
o SLN ¢AL
EVdY9vd
T/ 5 o
E| 184 [>———W——] 104
(] LsH13ouvL £ 0
N g . 64 -
LEEN g2 8d > ——MA— <] 0ad IS HSN g
REEN foc 0 5-a7
= d a3 gty
4 a3l Ly
2MS Esn y
oldo ™=
suonouny xnw uid Jo 8|qe} 818|dWo J0) [BNUBW J8SN PIBOq 8U} 89S
‘pJeoq S|y} 0} O}4108ds SUONOUN) PapUBIXe = 0214
201A8(] gSN Pelemod-}jas & se painbiyuo
apinoid 0} g pue | Spisul S|iW 001 ¥S ¥ pue g 34l EEE
usym uonoslep SNEA 10} pasn v rad 2 s
pedyoune 0gydSIN 10} peubisep syoed Jeisoog vy oa e &3 =
== 0€ ¢3d
_ 13d 13d
yum Aujgeredwod apinoid gr pue | nagsn - MM o oo mm
_ W 1
4a78sn 0 Lad 10d
> {oad 90d o
Sz 4a8sn £ Jsad 50d o
- B na“esn £ 1yad +0d e
t0d o] 539 €9d oy OMS/OaIE0d DNaTa
204 69| %0d @dIos TA125d DNEaa
Tad 29099 coas OTAMSSNITOd
P 0ad 19 25 STOMSIOL00d
== PN R v_ o 184 vd
= 0E W =
£ sad Gvd
d 75 2 v
vad 85| 78d vl Iz d
€dd 8 €ad evd 02 d
2dd Ly ead gvd 61 d
184 Ivd
= e e B
6r ogg=—

€40 ¢ 534S X0 H4YINT-M3 ON Luvd

Yos'y A8y 1X02 H4YINT-M3
INYNITIS

SUE|[91S/LUOD" I} MMM

9¥/8. ‘XL NILSNY
0S€ 3LINS ‘aVOH NISYE aTIM 8014

Juswabeuey Jomod

NOILdIHOS3a

pedysune sue|e1S

103rodd
SHITIOHLNODOHDINg SIHV113LS H
SININNYLSNI SYX3L ¢ioe/Ler Ho 190
alva NOISIA3H Y3NDIS3a
® ®
% OH €
2H HH
.. 4n0°L — - -
umww l_! l_! u__:,ol_! u__:,ol_r 0z44v LA _ T
1_1 210 1_1 110 1_1 010 l_v 245189.°28
= 55]200A ano |
|_| mv 0QaA NOW+ mEL|mNonn_> m__nm 53 EC EC
Y5 260
u__s._l_!u_:_ovox_ru_:_.ol_!u_:_ovol_!uivol_mzs.ol_r =aan ANO =57 |‘ T
aan VaND
20 80 90 s0 0 €0 oy €
B I I B B B e 9 ®g ot
" 1080X |5 Te bl A
—¥aaA XOND &
00SOX |¢
75| Lven
0050 [
e aiH g 10S0
oss T €€ 7 -
YW S| 2vM L3S [fa
3=z gin
neer Divm o |
SeH veH ieH
\ €10 l_v
HMd NOW+
1SH13OHVL Il
Jadwinf yim J8juad (1w 00} Uo Japeay ASHIZOHVL [D e _©°
2x| olbuIs & se pa|[eIsul GgH PUE y2H 13s3y
%0k
o0z 3 13s34

Vel

pra-}

71001
1557100 _Hv|m<v_n_x

€
ssuuzonv [>——PpH

aa,
._.wmwm

€08ATL

AEEH
snan+

HMd NOW+

9 _ -
Q = =
S
H _e||_H ot
4100
o m_ol_v avd aNo vi0
S e NI
—{Lno NI
GHASEIELSAL
8N
22H Jojenbay Ywoor AEE+ €2H LIH
snan+
ems 6LH
snan+ 109|898 Jamod —
SNEATIQ0
8IH
snaA asn+

€40 ¢ X0 H4YINT-M3

133HS

‘ON Ldvd

Yos'y A8y 1X02 H4YINT-M3
INYNITIS

SUE|[91S/LUOD" I} MMM

9¥/8. ‘XL NILSNY
0S€ 3LINS ‘aVOH NISYE aTIM 8014

aoepalU| Bngag HNJIID U SUE(RISS
NOILJIHOS3a

pedysune sue|e1S

—

0
ozd

103ro8d
SHITIOHLNODOHIINg SIHVTILS ai -
SININNYLSNI SYX3L ¢ioe/Ler Ho 190 T
ava NOISIAZH yINOISIA ot -
Nz’ =
! mw I_! I_! ane I_! dne A_! 0214vWT
T T =T =T
= 551 00aA aNO ==
- _|mw 0aan ano 22 Jdoy 1do)
MUN 72 920 620
EL u_:_ovol_!u_:_.ol_!u_:_ovol_!%_.ol_rm:_ovox_r qan et
- aan vaNo _H_
10 &ol_vomol_vm_ol_vtot_vm_ot_v aaa €
- - - 2
- IN-0QI-050201 — T daA = HAoL
P 100X |-z SA
18571001 F— B L Z]vaan ewm% H_wm
— SWLTIa0! Aee 75 Lven
10171001 ¢ — 0080 |5~
B »o171a0l 8 1080 ¥
oaL a0 [> -
= S DM 1383 |
s a2n
| 1IN0
ov.iriadl AEEF 4n10
€0 l_v
Yam Pyl
0L
614
AEE+
— e
§3d f= _
—{rad vad 2 oaL a0l
= o]0 _ —a{edd £3d o= aL 1aol
5 MTOMS/MOL/00d_®NE3a e {zad 23d f— T SWL 10Ol
B OIOMS/SWL/10d ©Na3a 13d 13d fe— MO171al
62 8
v gz |%d 03d 5~
9y < o] al
AA 0L 0L
W o e o149 £0d Iy 22 1
o H |al+a oMs/0aL/edd onaaa [H>—2fead 90d
o £ 1sad 60d [
2 [id Sk
o| -a - vad 0d o
. B 804 ey
an —ead 20d 1ot
= iad 10d .
~[—~£2-{oad 00d {2 Aee
——48d Lvd f8——— <] 9801X3
—oad 9vd (42 viH (] sui3oHvL
7o |jad vl Tq120d_ONa3d
85] mmu_ m«m LS OMS/OQLEDd DNEd
T iy o e T OIAMS/SWL/TOd D83
~a i3 o1 STOMSHOL05d ONaad
W 5 18d 1vd 5
ved o Skl s LS ol
L van s2d S 8l
SneA 1aor+ o
(1a91) depa1u| Bngag HN2AID-U| S1E||RlS rnoovonasa
HMd NOW*

XL dOA_XH0N/0vdY

axd dOA XI10N/ivd

	LM4F-LaunchPad-00
	Important Notice
	Revision History
	Mailing Address

	Table of Contents

	LM4F-LaunchPad-01
	Introduction
	Chapter Topics
	TI Processor Portfolio and Stellaris Roadmap
	Stellaris LM4F120 Series Overview
	LM4F120H5QR Specifics
	LaunchPad Board
	Lab1: Hardware and Software Set Up
	Objective
	Procedure
	Hardware
	Download and Install Code Composer Studio (
	Install StellarisWare (
	Install LM Flash Programmer (
	Download ICDI Drivers (
	Download and Install Workshop Lab Files (
	Download Workshop Workbook (
	Terminal Program (
	Windows-side USB Examples (
	Download and Install GIMP (
	LaunchPad Board Schematic
	Helpful Documents and Sites (
	Kit Contents (
	Initial Board Set-Up (
	QuickStart Application

	LM4F-LaunchPad-02
	Code Composer Studio
	Chapter Topics
	Stellaris Development Tools
	Code Composer Studio
	Lab2: Code Composer Studio
	Objective
	Load the Lab 2 Project
	Open Code Composer Studio
	Create Lab2 Project
	Set the Build Options
	Run the Code
	Some CCS Features

	LM Flash Programmer

	Optional: Creating a bin File for the Flash Programmer

	LM4F-LaunchPad-03
	StellarisWare, Initialization and GPIO
	Chapter Topics
	StellarisWare
	Clocking
	GPIO
	Lab 3: Initialization and GPIO
	Objective
	Procedure
	Create Lab3 Project
	Header Files
	Main() Function
	Clock Setup
	SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);
	GPIO Configuration
	The base addresses of the GPIO ports listed in the User Guide are shown below. Note that they are all within the memory map’s peripheral section shown in module 1. APB refers to the Advanced Peripheral Bus, while AHB refers to the Advanced High-Perfor...
	While() Loop
	Startup Code
	Set the Build Options
	Compile, Download and Run the Code
	Examine the Stellaris Pin Masking Feature

	LM4F-LaunchPad-04
	Interrupts and the Timers
	Chapter Topics
	Cortex-M4 NVIC
	Cortex-M4 Interrupt Handing and Vectors
	General Purpose Timer Module
	Lab 4: Interrupts and the Timer
	Objective
	Procedure
	Import Lab4 Project
	Header Files
	Main() Function
	Clock Setup
	GPIO Configuration
	Timer Configuration
	Calculate Delay
	ulPeriod = (SysCtlClockGet() / 10) / 2; TimerLoadSet(TIMER0_BASE, TIMER_A, ulPeriod -1);
	Interrupt Enable
	Timer Enable
	Main Loop
	Timer Interrupt Handler
	Startup Code
	Compile, Download and Run The Code
	Exceptions

	LM4F-LaunchPad-05
	ADC12
	Chapter Topics
	ADC12
	Sample Sequencers
	Lab 5: ADC12
	Objective
	Procedure
	Import Lab5 Project
	Header Files
	Driver Library Error Routine
	Main()
	Inside the while(1) Loop
	Add Pre-defined Symbol
	Build and Run the Code

	Hardware averaging
	Calling APIs from ROM
	Build, Download and Run Your Code

	LM4F-LaunchPad-06
	Hibernation Module
	Chapter Topics
	Low Power Modes
	Lab 6: Low Power Modes
	Objective
	Procedure
	Import Lab6
	Limitations
	Header Files
	#include "utils/ustdlib.h" #include "inc/hw_types.h" #include "inc/hw_memmap.h" #include "driverlib/sysctl.h" #include "driverlib/pin_map.h" #include "driverlib/debug.h" #include "driverlib/hibernate.h" #include "driverlib/gpio.h" #include "driverlib/...
	Error Function
	Main Function
	Clock Setup
	GPIO Configuration
	Hibernate Configuration
	SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE); HibernateEnableExpClk(SysCtlClockGet()); HibernateGPIORetentionEnable(); SysCtlDelay(64000000); HibernateWakeSet(HIBERNATE_WAKE_PIN); GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_3, 0x00);
	Hibernate Request
	Click the Save button to save your work. Your code should look something like this:
	Build, Download and Run the VDD3ON (no RTC) Code
	Measure the Current
	Wake Up on RTC

	LM4F-LaunchPad-07
	USB
	Chapter Topics
	USB Basics
	LM4F120H5QR USB
	USB Hardware and Library
	Lab 7: USB
	Objective
	Procedure
	Example Code
	Import The Project
	Build, Download and Run The Code
	Digging a Little Deeper
	Watch the Buffers

	LM4F-LaunchPad-08
	Memory
	Chapter Topics
	Internal Memory
	Flash
	EEPROM
	SRAM
	Bit-Banding
	Memory Protection Unit
	Priority Levels
	Lab 8: Memory and the MPU
	Objective
	Procedure
	Import Lab8
	Writing to Flash
	Build, Download and Run the Flash Programming Code
	Reading and Writing EEPROM
	Build, Download and Run the Flash Programming Code
	Further EEPROM Information
	Bit-Banding
	Memory Protection Unit (MPU)

	LM4F-LaunchPad-09
	Floating-Point Unit
	Chapter Topics
	What is Floating-Point and IEEE-754?
	Floating-Point Unit
	CMSIS DSP Library Performance
	Lab 9: FPU
	Objective
	Procedure
	Import Lab9
	Browse the Code
	Build, Download and Run the Code
	Profiling the Code

	LM4F-LaunchPad-10
	BoosterPacks and grLib
	Chapter Topics
	LaunchPad Boards and BoosterPacks
	KenTec TouchSceen TFT LCD
	Graphics Library
	Lab 10: Graphics Library
	Objective
	Procedure
	Connect the KenTec Display to your LaunchPad Board
	Import Project
	Build, Download and Run the Demo
	Writing Our Own Code
	Modify pic.c
	Main.c
	Pointer to the Image Array
	Driver Library Error Routine
	Main()
	Displaying the Image
	Check the Build Options
	Run the Code
	Display Text On-Screen
	// and here
	Build, Load and Test
	Drawing Shapes
	Build, Load and Test
	Widgets
	Build, Load and Test

	LM4F-LaunchPad-11
	Synchronous Serial Interface
	Chapter Topics
	Features and Block Diagram
	Interrupts and µDMA Operation
	Signal Formats
	Lab 11: SPI Bus and the Olimex LED BoosterPack
	Objective
	Procedure
	Hardware
	Faces Code
	Import Lab11
	Build and Load
	Run and Test

	LM4F-LaunchPad-12
	UART
	UART Features and Block Diagram
	Basic Operation
	UART Interrupts and FIFOs
	UART “stdio” Functions and Other Features
	Lab 12
	Objective
	Procedure
	Import Lab12
	Build, Download, and Run the UART Example Code
	Using UART Interrupts
	Add Formatting, Enable FIFOs, use UARTprintf

	LM4F-LaunchPad-13
	µDMA
	Chapter Topics
	Features and Transfer Types
	Block Diagram and Channel Assignment
	Channel Configuration
	Lab 13: µDMA
	Objective
	Procedure
	Import Lab13
	Browse the Code
	Build, Download and Run the Code
	Streaming Data To and From the UART using a Ping-Pong Buffer
	Browse the Code
	Build, Load and Run

	LM4F-LaunchPad-Appendix
	Appendix
	Windows XP Driver Installation
	Windows 7 Driver Installation

	Z-EK-LM4F120XL Rev A

