
Page 1 of 87

User Guide

BIOS PSP DA830 02.00.00.04

December 12, 2008

Page 2 of 87

BIOS PSP DA830 User Guide

This page has been intentionally left blank.

Page 3 of 87

BIOS PSP DA830 User Guide

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make
corrections, modifications, enhancements, improvements, and other changes to its products
and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should
verify that such information is current and complete. All products are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is
not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers
are responsible for their products and applications using TI components. To minimize the
risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted
under any TI patent right, copyright, mask work right, or other TI intellectual property right
relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third–party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other
intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if
reproduction is without alteration and is accompanied by all associated warranties,
conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered
documentation.

Resale of TI products or services with statements different from or beyond the parameters
stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright ©2008, Texas Instruments Incorporated

Page 4 of 87

BIOS PSP DA830 User Guide

This page has been intentionally left blank.

Page 5 of 87

BIOS PSP DA830 User Guide

TABLE OF CONTENTS

1 Top level Information... 8
1.1 Introduction ..8
1.2 Installation Guide...9
1.3 Integration Guide...12

2 UART driver.. 16
2.1 Introduction ..16
2.2 Installation..17
2.3 Features ...17
2.4 Configurations ...18
2.5 Control Commands...19
2.6 Use of UART driver through Stream APIs...20
2.7 Sources that need re-targeting ..22
2.8 Use of Hwi_disable and Hwi_restore ...22
2.9 EDMA3 Dependency ...22
2.10 Known Issues ..22
2.11 Limitations ..22
2.12 Uart Sample application ..22

3 I2C driver... 24
3.1 Introduction ..24
3.2 Installation..24
3.3 Features ...24
3.4 Configurations ...25
3.5 Control Commands...27
3.6 Use of I2C driver through Stream APIs ...27
3.7 Sources that need re-targeting ..29
3.8 EDMA3 Dependency ...29
3.9 Known Issues ..29
3.10 I2C Sample application ...29

4 SPI driver... 31
4.1 Introduction ..31
4.2 Installation..31
4.3 Features ...32
4.4 Configurations ...32
4.5 Control Commands...34
4.6 Use of SPI driver through Stream APIs..34
4.7 Sources that need re-targeting ..35
4.8 Use of GPIO as chip select...35
4.9 EDMA3 Dependency ...35
4.10 Known Issues ..36
4.11 Limitations ..36
4.12 Spi Sample application..36

5 GPIO driver .. 38

Page 6 of 87

BIOS PSP DA830 User Guide

5.1 Introduction ..38
5.2 Installation..38
5.3 Features ...39
5.4 Configurations ...39
5.5 Use of GPIO driver through module APIs ...40
5.6 Sources that need re-targeting ..40
5.7 EDMA3 Dependency ...40
5.8 I/O operations ...40
5.9 Interrupt handler registration ..41
5.10 Known Issues ..41
5.11 Limitations ..41

6 PSC driver .. 42
6.1 Introduction ..42
6.2 Installation..42
6.3 Features ...42
6.4 Configurations ...43
6.5 Use of PSC driver through module APIs...43
6.6 Sources that need re-targeting ..44
6.7 EDMA3 Dependency ...44
6.8 Known Issues ..44
6.9 Limitations ..44

7 Mcasp driver... 45
7.1 Introduction ..45
7.2 Installation..45
7.3 Features ...46
7.4 IDLE Time Data Patterns ...50
7.5 Explicit control of IO PINS ...50
7.6 Clocking McASP..51
7.7 Clock Configuration (EVM - DA830) ..52
7.8 Configurations ...52
7.9 IO Request Format ...55
7.10 CACHE Control...56
7.11 Control Commands...56
7.12 Use of McASP driver through Stream APIs ...57
7.13 Timeline of Frame Sync, High Clock and or Bit Clock generation.................58
7.14 Porting Guide...59
7.15 Sources that need re-targeting ..59
7.16 EDMA3 Dependency ...59
7.17 How to support “NEW” data format...59
7.18 Known Issues ..59
7.19 Limitations ..59
7.20 Mcasp DIT Sample application ...60

8 Audio driver ... 61
8.1 Introduction ..61
8.2 Installation..61

Page 7 of 87

BIOS PSP DA830 User Guide

8.3 Features ...61
8.4 Configurations ...62
8.5 Use of Audio driver through Stream APIs...63
8.6 Control Commands...64
8.7 Sources that need re-targeting ..64
8.8 EDMA3 Dependency ...65
8.9 Known Issues ..65
8.10 Limitations ..65
8.11 Audio Sample application ..65

9 AIC31 CODEC driver ... 66
9.1 Introduction ..66
9.2 Installation..66
9.3 Features ...67
9.4 Configurations ...67
9.5 Control Commands...68
9.6 Use of AIC31 driver through Stream APIs..69
9.7 Sources that need re-targeting ..70
9.8 EDMA3 Dependency ...70
9.9 Known Issues ..70
9.10 Limitations ..70

10 LCDC Raster Controller Driver .. 71
10.1 Introduction ..71
10.2 Installation..71
10.3 Features ...72
10.4 Configurations ...72
10.5 Control Commands...75
10.6 Use of RASTER driver through Stream APIs ...77
10.7 Sources that need re-targeting ..78
10.8 EDMA3 Dependency ...78
10.9 Known Issues ..78
10.10 Limitations ..78
10.11 Raster Sample Application...79

11 LCDC LIDD Controller Driver .. 80
11.1 Introduction ..80
11.2 Installation..80
11.3 Features ...81
11.4 Configurations ...81
11.5 Control Commands...83
11.6 Use of LIDD driver through Stream APIs ...84
11.7 Sources that need re-targeting ..85
11.8 EDMA3 Dependency ...86
11.9 Known Issues ..86
11.10 Limitations ..86
11.11 LIDD Sample Application...86

Page 8 of 87

BIOS PSP DA830 User Guide

1 Top level Information

1.1 Introduction

This chapter introduces the DA830 BIOS PSP to the user by providing a brief overview of
the purpose and construction of the DA830 BIOS PSP along with hardware and software
environment specifics in the context of DA830 BIOS PSP deployment.

1.1.1 Overview

The DA830 BIOS PSP is aimed at providing fundamental software abstractions for
on-chip resources and plugs the same into DSP/BIOS operating system so as to
enable and ease application development by providing suitably abstracted interfaces.

1.1.2 Terms and Abbreviations

API Application Programmer’s Interface

CSL TI Chip Support Library – primitive h/w abstraction.

IP Intellectual property

ISR Interrupt Service Routine

OS Operating System

ID Installation Directory

1.1.3 References

1 SPRS483 DA830 SoC reference Guide

1.1.4 Supported Services and features

DA830 BIOS PSP provides the following:

 Device drivers for UART, I2C, SPI, McASP, GPIO, PSC, LCDC Raster and LCDC
LIDD controllers.

 Sample applications that demonstrate use of drivers for UART (loop back &
Echo Test), I2C (writes to on board EEPROM), SPI (writes to on board Serial
Flash), McASP (Plays a tone), GPIO (user switch and led interaction), LCDC
Raster (displays a baby image with a scrolling line over it) and LCDC LIDD
(displays a welcome message on the HDM24216H-2 24x2 character display)

 rCSL and Examples for selected peripherals

1.1.5 System Requirements

The following products are required to be installed prior to using DA830 BIOS PSP

 EDMA 3 LLD – This package (DA830 BIOS PSP) is compatible with EDMA 3
LLD versioned 2.00.00.02

 DSP-BIOS versioned 6.10

 XDC Tools versioned 3.10.02

 CCS version 4.0.0.8.3

Page 9 of 87

BIOS PSP DA830 User Guide

 Code Generation Tools 6.1.5

 XDS 510 USB Emulator (Optional) – EVM has on board emulator

 DA830 EVM CPU Board (Revision B)

 DA830 User Interface Module

 HDM24216H-2 24X2 character display

1.2 Installation Guide

This chapter discusses the DA830 BIOS PSP installation, how and what software
and hardware components to be availed in order to complete a successful installation
(and un-installation) of DA830 BIOS PSP.

1.2.1 Installation and Usage Procedure

1.2.1.1 Installation procedure for DSP/BIOS

1. Install the following products mentioned in system requirements sections, as per
instructions provided along with the products.

2. Install the PSP package (BIOSPSP_xx_yy_zz_bb_DA830_Setup.exe)using the self
extracting installer

3. Install EDMA-3 LLD Device Driver into preferred drive / folder

4. The environment variable ‘EDMA3LLD_BIOS6_INSTALLDIR’ is used in the sample
application projects for referring to the EDMA3 driver libraries. This
environmental variable is created and updated by the EDMA3 LLD driver during
its installation. Please ensure that this environmental variable is pointing to the
EDMA3 LLD driver install directory intended to be used along with this package.
This is more important when there are multiple EDMA3 LLD installations as the
EDMA3 LLD installer updates this environment variable with latest installation
version. (e.g. If EDMA3 LLD Driver is installed into c:\edma3_lld\ then
environment variable EDMA3LLD_BIOS6_INSTALLDIR=c:\edma3_lld\)

5. For building the downloadable images refer to section 1.3

6. Download the executable image, with file extension .x674 (as the soc is of C674
ISA) of required application onto platform using CCS.

7. Run the program

8. Please avail the help on package locations and API information help from
cdoc help that is available at
<install dir>\packages\docs\cdoc\index.html

1.2.1.2 Un-Installation

1. Uninstall the PSP package by using the uninstall.exe in the package directory.

2. Un-install the products (listed in system requirements) as per instructions
provided with the product(optional and at user’s discretion)

Page 10 of 87

BIOS PSP DA830 User Guide

1.2.2 PSP Component Folder

This section details the files and directory structure of the installed DA830
BIOS PSP in the system. A view graph of the actual directory tree (as seen in
the final deployed environment is inserted here for clarity.

1.2.2.1 Top level PSP Directory structure:

Figure 1: BIOS PSP Top level directory structure

The sections below describe the folder contents.
pspdrivers_

Contains the device drivers and other PSP components. Top level
installation directory

docs
Contains release notes and users’ guide for this PSP package.

cslr
Contains the register level chip support for DA830 and usage
examples.

examples
Contains the sample applications for drivers provided as part of this
package

platforms
Contains platform specific modules like codec drivers, interface
modules etc., which may be specific to the EVM/Platform

All drivers are organized under ti/psp/ directory under their individual directories. For
example, UART driver falls under ti/psp/uart.

1.2.2.2 Driver Directory structure:

Each driver directory (ti/psp/<peripheral>) is further organized as follows:

Figure 2: DA830 PSP driver directory structure

Page 11 of 87

BIOS PSP DA830 User Guide

docs
Contains peripheral specifically documentation like Architecture
documentation, datasheet etc.

lib
Contains generated driver library file(s)

src
Contains the source file(s) for the BIOS PSP driver module

1.2.2.3 examples Directory structure:

Each driver sample application (ti/psp/examples/<peripheral>) is
further organized as follows

Figure 3: DA830 PSP driver sample application directory structure

evmDA830
Contains the EVM/platform specific examples

.settings
Contains CCS project settings and preferences

<few project files>
CCS4 project files

src
Contains the source file(s) for sample application program

Debug/Release
Contains the Debug/Release optimization profile level executables

1.2.2.4 platforms Directory structure:

Each platform related specific driver modules are further organized as

docs
Contains documentation related to the component

lib
Contains generated library file(s)

src
Contains source file(s)

Page 12 of 87

BIOS PSP DA830 User Guide

1.3 Integration Guide

This chapter discusses the DA830 BIOS PSP package usage. As part of the PSP package, a
demo application is provided to check the basic functionality for each of the device/driver.

1.3.1 Building the PSP Sample Applications

The PSP package contains separate sample applications for each of the BIOS drivers
provided BIOS driver components (except PSC).

To build the BIOS sample application

 CCS v4 GUI based compilation:
1. Build the required libraries in the command line (Please refer to section “Building

the BIOS PSP Driver Modules”)
2. Setup the CCS4 to set DA830 platform and use the appropriate DSP gel

file.
3. Load CCS project.

o Open C/C++ perspective
o “CCS-> Project->Open Existing Project” menu item.
o Point to the directory of the sample application needed to run.

 Example:
z:\pspdrivers_xx_yy_zz_bb\packages\ti\psp\examples\evmDA8
30\uart

o Set required Debug/Release configuration.
o “CCS-> Project->Rebuild Active Project” This builds the .x674

executable
 Example: uartSample.x674

4. Run->Launch TI Debugger. Right Click on 674X debug profile and set it
the debug scope for the same.

5. Use – “Target->Connect” to connect to DSP target, the GEL would
configure and setup DSP to be used by the DSP window.

6. Use “Target->Load Program” to download the .x674 executable.
o Example:

Z:\pspdrivers\pspdrivers_\packages\ti\psp\examples\evmDA830\uart\
<Debug/Release>/uartSample.x674

 Command line based compilation:

1. For building all examples at one go:
1. Go to the examples directory:

o Example:
Z:\pspdrivers\pspdrivers_\packages\ti\psp\examples\evmDA830

2. Execute the following command
Z:\pspdrivers\pspdrivers_\packages\ti\psp\examples\evmDA830>xdc clean
–PR . (optional – only for clean build)
Z:\pspdrivers\pspdrivers_\packages\ti\psp\examples\evmDA830> xdc -PR .

Page 13 of 87

BIOS PSP DA830 User Guide

2. For building individual examples:
Z:\pspdrivers\pspdrivers_\packages\ti\psp\examples\evmDA830\uart> xdc
clean (optional – only for clean build)
Z:\pspdrivers\pspdrivers_\packages\ti\psp\examples\evmDA830\uart > xdc

1.3.2 Building the BIOS PSP Driver Modules

1. For building all modules at one go:(please note: this also builds
examples)
1. Go to the package install directory:

o Example:
Z:\pspdrivers\pspdrivers_

2. Execute the following command
Z:\pspdrivers\pspdrivers_> xdc clean –PR . (Optional – only for clean build;
this also cleans the executables generated by sample application)
Z:\pspdrivers\pspdrivers_> xdc -PR .

2. For building individual modules
1. Go to the example directory

o Example:
Z:\pspdrivers\pspdrivers_\packages\ti\psp\uart

2. Execute the following command
Z:\pspdrivers\pspdrivers_\packages\ti\psp\uart> xdc clean (optional – only
for clean build)
Z:\pspdrivers\pspdrivers_\packages\ti\psp\uart > xdc

NOTE:

1. Build (compilation) output

a. The examples/sample applications when compiled, generate by
default, executables, with extension .x674, with “debug” and
“whole_program” profiles in the directory Debug and Release
respectively

b. The driver modules (or libraries) when compiled, by default generate
libraries (archives), with extension .a674, in the lib directory. The
profile for libraries will always be “whole_program_debug”.

2. Building libraries using CCSv4 GUI

a. Building the libraries (driver modules) via CCSv4 is not supported in
the current BIOSPSP package (due to the limitation of CCS4 to support
xdc library pjt)

3. Ensure the following for a proper building of libraries and sample
applications

a. pspdrivers_\packages\config.bld

i. contains the root directories for the Code Generation tools. It
may be needed to edit and set the same to point to the same.

Page 14 of 87

BIOS PSP DA830 User Guide

Example: If the code generation tools are installed in
“C:\Program Files\C6000Code Generation Tools 6.1.2” then edit
the config.bld file as shown:

rootDirPre = “C:\Program Files\”

rootDirPost = “Code Generation Tools 6.1.2”

by default the rootDir shall point to:

C:\ProgramFiles\Texasnstruments\CCSv4\tools\compiler\c6000

ii. Target selection

Currently only C674 target is supported, hence all other target
options in “Build.targets” should be commented

b. The following environmental variables must be set

i. XDCPATH – Should include BIOS v6 package installation
directory, XDC tools package directory, EDMA3 2.00.00
package directory and this PSP package installation directory.

Example:

ii. EDMA3LLD_BIOS6_INSTALLDIR – Should be set to point
the EDMA3 v 2.00.00 package installation directory.

Example: c:\Program Files\Texas Instruments\edma3_lld_2_00_00

The default installation directory for the EDMA package is
c:\Program Files\Texas Instruments\edma3_lld_<version_string>

c. BIOS, Code Generation Tools and XDC versions selection

i. Ensure that the BIOS and XDC version mentioned in this guide
in the section “System Requirements” is already installed in the
users PC.

ii. The CCS version 4 enables selection of the DSP/BIOS and XDC
version selection for the project, when multiple installations are
present. In the “Project->Properties->TI Build Settings” menu
ensure that the appropriate selections for DSP/BIOS support
and RTSC support are made. One can also ensure other
properties like Code Generation Tools version, device variant
etc are properly selected.

d. Other options (“Project->Properties->C/C++ Build”)

i. Ensure that the xdcpath options, under XDC are correctly
pointing to the BIOS PSP package, EDMA package (if using
EDMA).

ii. Ensure that the build configuration file path point the BIOSPSP
package config.bld

Page 15 of 87

BIOS PSP DA830 User Guide

iii. Target is set to ti.targets.C674

iv. Platforms is set to ti.platforms.evmDA830

v. Under advanced options for XDC, ensure that the build profile is
as required (debug or whole_program).

vi. The BIOSPSP executables are, by default configured to be,
generated with .x674 option. This can be changed to .out or
any other extension as required in the “Build Settings” tab in
“artifact extension” field

e. Target configuration (CCS setup in previous versions of CCS)

i. Proper target configuration should be chosen and setup. CCSv4,
enables this by “Target->New Target Configuration” menu.
Import the new configuration for your EVM (dskDA830 in this
case) from: C:\Program Files\Texas
Instruments\CCSv4\common\targetdb\configurations

f. Compilation order

i. The libraries or the modules on which the sample application
depends must be compiled first before compiling the sample
application. For example, the audio sample application depends
upon, McASP driver module, the audio and codec platform
specific modules, the PSC module. These should be built before
the application is built.

1.3.3 CSL Layer usage example

Sample code is provided to demonstrate the usage of CSL Register Layer with
selected peripherals examples. The sample application building for CSL examples are
similar to that of the driver sample applications explained above. For more
information on CSL layer usage, please refer to the user guide located at,
pspdrivers_\tp\psp\cslr\docs\cslr_userguide.doc.

1.3.4 On board DIP Switch Configuration

The following is the default switch configuration. Please refer EVM reference guide
from the EVM manufacture for more information on these switches.

CPU Board KEY DIP Switches Configurations

SW3

1 ■

2 ■

3 ■

4 ■

SW5

1 ■

Page 16 of 87

BIOS PSP DA830 User Guide

2 ■

3 ■

4 ■

5 ■

6 ■

SW2

1 ■

2 ■

3 ■

4 ■

5 ■

6 ■

2 UART driver

2.1 Introduction
This section is the reference guide for the UART device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by Stream
layer, to transmit and receive serial data. The following sections describe in detail,
procedures to use this driver, configure among others…. It is recommended to go
through the sample application to get a feel of initializing and using the Uart driver.

2.1.1 Key Features

 Multi-instantiable and re-entrant driver

 Each instance can operate as an receiver and or transmitter

 Supports Polled, Interrupt and DMA Interrupt Mode of operation

 Supports buffering on Transmit operation if enabled

Page 17 of 87

BIOS PSP DA830 User Guide

2.2 Installation
The UART device driver is a part of PSP package for DA830 platform and would be
installed as part of whole package installation. For high level design information
please refer to the driver architecture guide that came with this package (available at
<ID>\ti\psp\uart\docs)

2.2.1 UART Component folder

On installation of PSP package for DA830, the UART driver can be found at <ID>\
ti\psp\uart\

As show above the uart folder contains sub-folder, contents of which are described
below.

 uart - The uart folder is the place holder for the entire UART driver,
documents and the build configuration files. UART driver is implemented as
IDriver under DSP/BIOS™ operating system. Stream defined APIs could be
used to interface to UART driver. This folder contains the build configuration
file (package.bld), the UART module specification file (Uart.xdc),the module
script file (Uart.xs) and the miscellaneous files required for compiling the
UART library.

 docs – Holds UART driver’s architecture. Please note that the API reference
would be found as a part of cdoc help (<install
dir>\packages\docs\cdoc\index.html)

 src – Place holder for UART driver’s source code.

2.2.2 Build Options

UART device driver will be built with “whole_program_debug” mode. When built
successfully the respective library will be available at <ID>\ti\psp\uart\lib\ <
ti.psp.uart.a674>

2.3 Features
This section details the features of UART and how to use them in detail.

2.3.1 Multi-Instance

The UART driver can operate on all the instance of UART on DA830. Different
instances are specified during driver creation time. Supported instance are 0 through
2 with device ID 0 through 2 respectively.

These instances could be operated simultaneously with configurations supported by
UART driver.

The device ID could be specified using the instNum field of structure Uart_Params.
There are two ways in which a new instance of the UART driver can be created.

1. Static creation – static creation of the driver is done in the “cfg” file of the
application. The creation happens at compile time.

2. Dynamic creation – Dynamic creation of driver is done in the application source
files and the creation happens at runtime.

(i.e. Uart_Params.instNum = 0x0, Uart_Params.instNum = 0x1, so on…)

Page 18 of 87

BIOS PSP DA830 User Guide

2.3.2 Each Instance as Transmitter and / or receiver

Each instance of the UART driver can be used for simultaneous transmit and receive
operation. This could be achieved by opening a stream Channel as an INPUT channel
and opening a stream Channel as an OUTPUT channel. The type of Channel is
specified while creating the channel (using Stream_create ()specify
“DriverTypes_OUTPUT” or “DriverTypes_INPUT”). The configuration parameters
are explained in the sections to follow.

2.4 Configurations
Following tables document some of the configurable parameter of UART. Please refer
to Uart.h (Uart.xdc) for complete configurations and explanations.

2.4.1 Uart_Params

2.4.2 This structure defines the device configurations, expected to supply while instantiating
the driver (formerly known as devparams)

Members Description

instNum Instance number of the driver.

fifoEnable Whether the HW FIFO for the device is to enabled

opMode Whether the UART driver should operate in Polled or
Interrupt or DMA Interrupt Mode

loopbackEnabled If the driver/device works in loopback mode

baudRate The baudrate to be set for the HW Instance

stopBits Number of stop bits for data transfer

charLen Data word length for Tx/Rx

Parity Should Even/Odd parity or No parity should be used

rxThreshold FIFO data threshold for RX to raise a receive data
interrupt

fc Whether any flowcontrol for data transfer should be
used

edmaRxTC/edmaRxTC EDMA TCs for transmit and receive

hwiNumber The hardware interrupt number assigned for UART
events

polledModeTimeout The data transfer timeout for polled mode of operation

Apart from the instance parameters described above one can/should configure the modules for features
that is common for all instances. A list of such option can be found in CDOC help for Uart module.
For example, MAX_ISR_LOOP can be configured to change the number of iterations inside the ISR to
process pending interrupts. This is optional. However, the edmaEnable should be configured to true if the
operational mode for the UART is configured to be DMA interrupt mode.

Page 19 of 87

BIOS PSP DA830 User Guide

2.4.3 Uart_ChanParams

Applications could use this structure to configure the channel specific configurations.
This is provided when driver channels are created (e.g. stream_create)

Members Description
hEdma The handle to the EDMA driver. Required only when operating

in DMA interrupt mode. Also, note that when operating in DMA
interrupt mode, that module configuration variable
edmaEnable should be set to true.

2.4.4 Polled Mode

The configurations required for polled mode of operation are:

Instance configuration opMode should be set to Uart_OpMode_POLLED. Additionally
the timeout parameter for the data transfer operation can be configured as required.
For example, polledModeTimeout could be set to 1000000 ticks, while the default
value is BIOS_WAIT_FOREVER.

2.4.5 Interrupt Mode

The configurations required for interrupt mode of operation are:

Instance configuration opMode should be set to Uart_OpMode_INTERRUPT.
Additionally the hwiNumber assigned by the application for the UART CPU events
group should be passed, so that the driver can enable proper interrupts. It is
recommended to start from the sample application and modify it further to meet the
need of the actual application.

2.4.6 DMA Interrupt Mode

The configurations required for DMA Interrupt mode of operation are:

Instance configuration opMode should be set to Uart_OpMode_DMAINTERRUPT.
Additionally the hwiNumber assigned by the application for the UART CPU events
group should be passed, so that the driver can enable proper interrupts. The module
configuration variable edmaEnable should be set to true. Also, as part of
chanParams, the handle to the EDMA driver, hEdma, should be passed by the
application. Note that “UART_EDMA_SUPPORT” variable should be supplied as a
compiler switch for proper operation in this mode so the sample application initializes
the edma driver and passes the appropriate chanParams.

2.5 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the IOCTL defined in Uart.h(Uart.xdc).

Command Arguments Description

Uart_IOCTL_SET_BAUD Uart_BaudRate
*

Configures the baud rate for
the UART instance

Page 20 of 87

BIOS PSP DA830 User Guide

Uart_IOCTL_SET_STOPBITS Uart_NumStopB
its *

Configures the number of stop
bits for the instance

Uart_IOCTL_SET_DATABITS Uart_NumStopB
its *

Configures the word length for
transmission and reception

Uart_IOCTL_SET_PARITY Uart_Parity * Configures the parity for data
transmission and reception

Uart_IOCTL_SET_FLOWCONT
ROL

Uart_FlowCont
rol *

Configures the flow control for
the data transmission/reception

Uart_IOCTL_SET_TRIGGER_
LEVEL

Uart_RxTrigLv
l *

Configures the trigger level
the receive fifo full level

Uart_IOCTL_RESET_RX_FIF
O

None Resets the hardware receive
FIFO

Uart_IOCTL_RESET_TX_FIF
O

None Resets the hardware transmit
FIFO

Uart_IOCTL_CANCEL_CURRE
NT_IO

None Cancels the current IO
operation request I progress

Uart_IOCTL_GET_STATS Uart_Stats * Passes the statistics of driver
operation to the user

Uart_IOCTL_CLEAR_STATS None Resets/Clears the driver
statistics

Uart_IOCTL_FLUSH_ALL_RE
QUEST

None Cancels all the I/O operations
queued

Uart_IOCTL_SET_POLLEDMO
DETIMEOUT

Uint32 * Change the value for polled
mode timeout

2.6 Use of UART driver through Stream APIs
Following sections explain the use of parameters of Stream calls in the context of
UART driver. Note that no effort is made to document the use of Stream calls; any
UART specific requirements are covered below.

2.6.1 Stream_create

Parameter
Number

Parameter Specifics to UART

1 Device Name string Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through CFG or Uart_create ()

2 IO Type Should be “DriverTypes_INPUT” when UART
requires to received data and
“DriverTypes_OUTPUT” when UART requires
to transmit

3 Stream_Params * Parameters required for the creation of the
stream (e.g. channel parameters)

4 Error_Block * Pointer to the application supplied error

Page 21 of 87

BIOS PSP DA830 User Guide

block

2.6.2 Stream_control

Parameter
Number

Parameter Specifics to UART

1 Stream_handle Handle returned by
Stream_create

2 Command IOCTL command defined by UART
driver

3 Arguments Misc arguments if required by the
command

4 Error_Block * Pointer to the Application supplied
error block

2.6.3 Stream_write/read

Parameter
Number

Parameter Specifics to UART

1 Channel Handle Handle returned by
Stream_create

3 Pointer to buffer Should be pointer to variable of
type pointer to Buffer.

4 Size Size of the transaction

5 Error_Block * Pointer to the Application supplied
error block

2.6.4 Uart_create

Parameter
Number

Parameter Specifics to UART

1 Uart_params * Pointer to the Uart_params
structure required for the Driver
creation

Page 22 of 87

BIOS PSP DA830 User Guide

2.7 Sources that need re-targeting

2.7.1 SoC level changes

When the driver has to adapt to SoC level changes the two files Uart.xs (Module
Script File) and the SoC script file soc.xs need to be updated with the changes.

2.7.2 EVM level changes

None

2.8 Use of Hwi_disable and Hwi_restore
In functions like uartCancelCurrentIo and uartCancelAllIo, some parts of the code are
guarded with Hwi_diable and Hwi_restore. This is because these functions are
dynamically called during IOCTL calls. To avoid from any new interrupts, the
Hwi_disable is called and after the IOCTL command is serviced, interrupts are
resumed through Hwi_restore call.

2.9 EDMA3 Dependency
When the UART driver is configured in EDMA mode (compile time configuration is
needed) UART driver relies on EDMA3 LLD driver to move data from/to application
buffers to peripheral; Please note that EDMA3 LLD driver would not be part of this
release. Please ensure that current PSP release is compliant with version of EDMA3
driver being used from the system requirements section of this document.

2.9.1 Used Paramset of EDMA 3

UART driver uses TWO paramsets of EDMA3; if there are no paramsets are available
the UART driver creation would fail. These paramsets are used through the life time
of UART driver. No link paramsets are used.

2.10 Known Issues
Please refer to the top level release notes that came with this release.

2.11 Limitations
Please refer to the top level release notes that came with this release.

2.12 Uart Sample application

2.12.1 Description

This sample demonstrates the use of the Uart driver in polled, interrupt and edma
modes.

The Uart driver is configured statically in uartSample.cfg file. The uartParams used in
Uart.create is globally declared in uartSample.cfg file.

The uartSample.cfg file contains the remaining BIOS configuration. The most
important lines in this file which the application may need to pull into his cfg file are
as follows.

ECM.eventGroupHwiNum[0] = 7;

ECM.eventGroupHwiNum[1] = 8;

ECM.eventGroupHwiNum[2] = 9;

Page 23 of 87

BIOS PSP DA830 User Guide

ECM.eventGroupHwiNum[3] = 10;

These lines configure the ECM module and map Uart events to CPU interrupts. For
example the Uart event number is 69 which falls in ECM group 2. Here ECM group 2
is mapped to HWI_INT9.

The main() function configures the PINMUX and uses the Psc module to enable the
Uart peripheral.

The echo() task exercises the Uart driver. It uses Stream APIS to create uart
channels and read and write to them.

2.12.2 Build

This sample can be built using the path

<ID>/psp/examples/evmDA830/uart

IMPORTANT NOTE: .cdtbuild contains references to
%EDMA3LLD_BIOS6_INSTALLDIR% environment variable and links with edma3
libraries. This is required because by default the Uart driver library is built with –
EDMA ENABLE.

There is also another XDC based project file available for users familiar with XDC
build

<ID>/psp/examples/evmDA830/uart/package.bld

This project file includes uartSample.cfg which brings in all the required packages.

This project requires setup of XDCPATH environment variable. The XDCPATH must
contain the following -

<EDMA3_INSTALL_DIR>/packages; <PSPDRIVERS_INSTALL_DIR>/packages;

2.12.3 Setup

You need to connect a NULL Model cable from the evmDA830 platform to a host PC.
On the host an application like HyperTerminal needs to be setup for appropriate COM
port, baud rate etc.

2.12.4 Output

When the sample runs, it will output the following string to the Uart output channel.

“UART Demo Starts: INPUT a file of size 1000 bytes".

The user needs to type or send 1000 bytes. This sample application will echo the
received characters to the terminal

Page 24 of 87

BIOS PSP DA830 User Guide

3 I2C driver

3.1 Introduction
This document is the reference guide for the I2C device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by Stream
layer, to transmit and receive serial data. The following sections describe in detail,
procedures to use this driver, configure among others…. It is recommended to go
through the sample application to get a feel of initializing and using the I2c driver

3.1.1 Key Features

 Multi instantiable and re-entrant driver

 Each instance can operate as an receiver and/or transmitter

 Supports Polled, Interrupt and DMA Interrupt Mode of operation

3.2 Installation
The I2c device driver is a part of PSP package for DA830 platform and would be
installed as part of whole package installation. For high level design information
please refer to the driver architecture guide that came with this package (available at
<ID>\ti\psp\i2c\docs)

3.2.1 I2C Component folder

On installation of PSP package for DA830, the I2C driver can be found at <ID>\
ti\psp\i2c\

As show above the i2c folder contains sub-folder, contents of which are described
below.

 i2c - The i2c folder is the place holder for the entire I2C driver, documents
and the build configuration files. I2C driver is implemented as IDriver under
DSP/BIOS™ operating system. Stream defined APIs could be used to interface
to I2C driver. This folder contains the build configuration file(package.bld),the
I2C module specification file (I2c.xdc),the module script file (I2c.xs) and the
miscellaneous files required for compiling the I2C library.

 docs – Holds I2c driver’s architecture. Please note that the API reference
would be found as a part of cdoc help (<install dir>\packages\docs\cdoc\
index.html)

 src – Place holder for I2C driver’s source code.

3.2.2 Build Options

I2C device driver will be built with “whole_program_debug” mode. When built
successfully the respective library will be available at <ID>\ti\psp\i2c\lib\ <
ti.psp.i2c.a674>

3.3 Features
This section details the features of I2C and how to use them in detail.

Page 25 of 87

BIOS PSP DA830 User Guide

3.3.1 Multi-Instance

The I2C driver can operate on all the instance of I2C on DA830. Different instances
are specified during driver creation time. Supported instance are 0 through 2 with
device ID 0 through 2 respectively.

These instances could be operated simultaneously with configurations supported by
I2C driver.

The device ID could be specified using the instNum field of structure I2c_Params.
There are two ways in which a new instance of the I2C driver can be created.

3. Static creation – static creation of the driver is done in the “cfg” file of the
application. The creation happens at compile time.

4. Dynamic creation – Dynamic creation of driver is done in the application source
files and the creation happens at runtime.

(i.e. I2c_Params.instNum = 0x0, I2c_Params.instNum = 0x1, so on…)

3.3.2 Each Instance as Transmitter and/or receiver

Each I2C driver instance can be used for transmit and receive operation (only in half
duplex mode due to nature of I2C peripheral). This could be achieved by opening a
stream Channel as an INPUT channel and opening a stream Channel as an OUTPUT
channel. The type of Channel is specified while creating the channel (using
Stream_create ()specify “DriverTypes_OUTPUT” or “DriverTypes_INPUT”).
The configuration parameters are explained in the sections to follow.

3.4 Configurations
Following tables document some of the configurable parameter of I2C. Please refer
to I2c.h (I2c.xdc) for complete configurations and explanations.

3.4.1 I2c_Params

This structure defines the device configurations, expected to supply while creating
the driver. This is provided when driver channels are created (e.g. stream_create).

Members Description

instNum Instance number of the driver.

opMode Whether the I2C driver should operate in Polled or
Interrupt or DMA Interrupt Mode

ownAddr The slave address of the device application is
addressing

loopbackEnabled If the driver/device works in loopback mode

numBits The number of data bits

busFreq The frequency at which the clock (SCL) is operating

addressing Whether 7 bit addressing or extended (10-bit)
addressing mode is used

edma3EventQueue The EDMA event queue the application will use in DMA
Interrupt mode of operation mode

hwiNumber The hardware interrupt number assigned for I2C
events

polledModeTimeout The data transfer timeout for polled mode of operation

Page 26 of 87

BIOS PSP DA830 User Guide

Apart from the instance parameters described above one can/should configure the modules for features.
For example, peripheralClkFreq can be configured to change the operating frequency of the I2C clock on
SCL. However, the edmaEnable should be configured to true if the operational mode for the I2C is
configured to be DMA interrupt mode. Communication mode of operation whether the instance is acting
as a slave or master may also be configured. Other options can be seen in module wide configs in
I2c.xdc file.

3.4.2 I2c_ChanParams

Applications could use this structure to configure the channel specific configurations.

Members Description
hEdma The handle to the EDMA driver. Required only when operating

in DMA interrupt mode. Also, note that when operating in DMA
interrupt mode, that module configuration variable
edmaEnable should be set to true.

masterOrSlave Whether the instance/channel is in Master mode or Slave
mode

3.4.3 Polled Mode

The configurations required for polled mode of operation are:

Instance configuration opMode should be set to I2c_OpMode_POLLED. Additionally
the timeout parameter for the data transfer operation can be configured as required.
For example, polledModeTimeout could be set to 1000 Ticks, while the default value
is BIOS_WAIT_FOREVER.

3.4.4 Interrupt Mode

The configurations required for interrupt mode of operation are:

Instance configuration opMode should be set to I2c_OpMode_INTERRUPT.
Additionally the hwiNumber assigned by the application for the I2C CPU events group
should be passed, so that the driver can enable proper interrupts.

It is recommended to start from the sample application and modify it further to meet
the need of the actual application.

3.4.5 DMA Interrupt Mode

The configurations required for DMA Interrupt mode of operation are:

Instance configuration opMode should be set to I2c_OpMode_DMAINTERRUPT.
Additionally the hwiNumber assigned by the application for the I2C CPU events group
should be passed, so that the driver can enable proper interrupts. The module
configuration variable edmaEnable should be set to true. Also, as part of
chanParams, the handle to the EDMA driver, hEdma, should be passed by the
application.

Note that “I2C_EDMA_SUPPORT” variable should be supplied as a compiler switch for
proper operation in this mode so the sample application initializes the edma driver
and passes the appropriate chanParams.

Page 27 of 87

BIOS PSP DA830 User Guide

3.5 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the ICOTL defined in I2c.h(I2c.xdc).

Command Arguments Description

I2c_IOCTL_SET_BIT_RATE UInt32 * Configures the bus frequency
for the I2C instance

I2c_IOCTL_GET_BIT_RATE UInt32 * Passes the current bus
frequency for the I2C instance

I2c_IOCTL_CANCEL_PENDIN
G_IO

None Cancels all the pending I/O
requests

I2c_IOCTL_BIT_COUNT UInt32 * Configures the data bit length
for transmission and reception

I2c_IOCTL_NACK None Configures the I2C instance to
generate NACK when required

I2c_IOCTL_SET_OWN_ADDR UInt32 * Configures the own address for
current instance

I2c_IOCTL_GET_OWN_ADDR UInt32 * Passes the current own address
set for the current instance

I2c_IOCTL_SET_POLLEDMOD
ETIMEOUT

UInt32 * Change the value for polled
mode timeout

3.6 Use of I2C driver through Stream APIs
Following sections explain the use of parameters of Stream calls in the context of I2C
driver. Note that no effort is made to document the use of Stream calls; any I2C
specific requirements are covered below.

3.6.1 Stream_create

Parameter
Number

Parameter Specifics to I2C

1 Device Name string Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through CFG or I2c_create ()

2 IO Type Should be “DriverTypes_INPUT” when I2C
requires to received data and
“DriverTypes_OUTPUT” when I2C requires to
transmit

3 Stream_Params * Parameters required for the creation of the
stream (e.g. channel parameters)

4 Error_Block * Pointer to the application supplied error
block

Page 28 of 87

BIOS PSP DA830 User Guide

3.6.2 Stream_control

Parameter
Number

Parameter Specifics to I2C

1 Stream_handle Handle returned by
Stream_create

2 Command IOCTL command defined by I2C
driver

3 Arguments Misc arguments if required by the
command

4 Error_Block * Pointer to the Application supplied
error block

3.6.3 Stream_write/read

Parameter
Number

Parameter Specifics to I2C

1 Channel Handle Handle returned by
Stream_create

3 Pointer to buffer Should be pointer to type
DataParam Structure that holds
the I2C transfer information like
buffer, slave address and other
flag.

4 Size Size of the transaction

5 Error_Block * Pointer to the Application supplied
error block

3.6.4 I2c_create

Parameter
Number

Parameter Specifics to I2C

1 I2c_params * Pointer to the I2c_params
structure required for the Driver
creation

Page 29 of 87

BIOS PSP DA830 User Guide

3.7 Sources that need re-targeting

3.7.1 SoC level changes

When the driver has to adapt to SoC level changes the two files I2c.xs (Module Script
File) and the SoC script file soc.xs need to be updated with the changes.

3.7.2 EVM level changes

None

3.8 EDMA3 Dependency
When the I2C driver is configured in EDMA mode (compile time configuration is
needed) I2C driver relies on EDMA3 LLD driver to move data from/to application
buffers to peripheral; Please note that EDMA3 LLD driver would not be part of this
release. Please ensure that current PSP release is compliant with version of EDMA3
driver being used from the system requirements section of this document.

3.8.1 Used Paramset of EDMA 3

I2C driver uses TWO paramsets of EDMA3; if there are no paramsets are available
the I2C driver creation would fail. These paramsets are used through the life time of
I2C driver. No link paramsets are used.

3.9 Known Issues
Please refer to the top level release notes that came with this release.

3.10 I2C Sample application

3.10.1 Description

This sample demonstrates the use of the I2c driver in polled, interrupt and edma
modes.

This example uses the I2c bus to write an array of data to the CAT24WC256 EEPROM
memory of the evmDA830. Once the data has been written, the I2c bus again is
used to read the same data from the EEPROM memory. The data read is then
compared with the data that was written, and if it matches then the operation is
considered a success.

The reads and writes to the EEPROM memory are accomplished by use of both the
I2c and the Stream modules, in combination. The I2c driver is used to configure and
set up the I2c bus, and the Stream module APIs are used to perform the actual
reads and writes to the EEPROM memory, via the I2c bus.

The I2c driver is configured statically in the i2cSample.cfg file.

The i2cSample.cfg file contains important BIOS configuration settings, which are
required in order for the I2c driver to work properly. The most important lines in
this file are:

Page 30 of 87

BIOS PSP DA830 User Guide

ECM.eventGroupHwiNum[0] = 7;

ECM.eventGroupHwiNum[1] = 8;

ECM.eventGroupHwiNum[2] = 9;

ECM.eventGroupHwiNum[3] = 10;

The above configuration settings are needed to correctly set up the ECM module and
map the I2c event to CPU interrupt. For example the I2c event number is 36, which
falls under ECM group 1. Here ECM group 1 is mapped to HWI_INT8, and this is the
HWI number used when configuring i2cParams at runtime (explained further below).

Further I2c static configuration is done in the i2cSample.cfg file, which uses the I2c
instance parameters (i2cParams) to create I2C instance using I2c.create API.

Once initialization has completed, the main() function runs, configuring the PINMUX.
Following this, the user defined task “echoTask()” runs, which creates Stream I2c
read and write handles. These handles are then used when calling the
Stream_write() and Stream_read() APIs to actually write and read data to and from
the EEPROM memory.

3.10.2 Build

This sample can be built using path

<ID>/psp/examples/evmDA830/i2c

IMPORTANT NOTE: .cdtbuild contains references to
%EDMA3LLD_BIOS6_INSTALLDIR% environment variable and links with edma3
libraries. This is required because by default the I2c driver library is built with EDMA
ENABLE.

There is also another XDC based project file available for users familiar with XDC
build.

<ID>/psp/examples/evmDA830/i2c/package.bld

This project file includes i2cSample.cfg which brings in all the required packages.

This project requires setup of XDCPATH environment variable. The XDCPATH must
contain the following -

<EDMA3_INSTALL_DIR>/packages; <PSPDRIVERS_INSTALL_DIR>/packages;

3.10.3 Setup

No special setup is needed to run the I2c example

3.10.4 Output

After the completion of read/write operation with the following messages are printed
on the CCS console

I2C :Start of I2C sample application

Page 31 of 87

BIOS PSP DA830 User Guide

I2C CAT24WC256 EEPROM write/read test started

I2C CAT24WC256 EEPROM Read/write test passed

I2C :End of I2C sample application

4 SPI driver

4.1 Introduction
This section is the reference guide for the SPI device driver which explains the
features and tips to use them.

DSP/BIOS applications use the SPI driver typically through APIs provided by Stream
layer, to transmit and receive serial data. The following sections describe in detail,
procedures to use this driver, configure among others…. It is recommended to go
through the sample application to get a feel of initializing and using the Spi driver

4.1.1 Key Features

 Multi-instantiable and re-entrant driver

 Each instance can operate as an receiver and or transmitter

 Supports Polled, Interrupt and DMA Interrupt Mode of operation

4.2 Installation
The Spi device driver is a part of PSP package for DA830 platform and would be
installed as part of whole package installation. For high level design information
please refer to the driver architecture guide that came with this package (available at
<ID>\ti\psp\spi\docs).

4.2.1 SPI Component folder

On installation of PSP package for DA830, the SPI driver can be found at <ID>\
ti\psp\spi\

As show above the spi folder contains sub-folder, contents of which are described
below.

 spi - The spi folder is the place holder for the entire SPI driver, documents
and the build configuration files. SPI driver is implemented as IDriver under
DSP/BIOS™ operating system. Stream defined APIs could be used to interface
to SPI driver. This folder contains the build configuration file(package.bld),the
SPI module specification file (Spi.xdc),the module script file (Spi.xs) and the
miscellaneous files required for compiling the SPI library.

 docs – Holds Spi driver’s architecture. Please note that the API reference
would be found as a part of cdoc help (<install dir>\packages\docs\cdoc\
index.html)

 src – Place holder for SPI driver’s source code.

4.2.2 Build Options

SPI device driver will be built with “whole_program_debug” mode. When built
successfully the respective library will be available at <ID>\ti\psp\spi\lib\ <
ti.psp.spi.a674>

Page 32 of 87

BIOS PSP DA830 User Guide

4.3 Features
This section details the features of SPI and how to use them in detail.

4.3.1 Multi-Instance

The SPI driver can operate on all the instance of SPI on DA830. Different instances
are specified during driver creation time. Supported instance are 0 through 2 with
device ID 0 through 2 respectively.

These instances could be operated simultaneously with configurations supported by
SPI driver.

The device ID could be specified using the instNum field of structure Spi_Params.
There are two ways in which a new instance of the SPI driver can be created.

5. Static creation – static creation of the driver is done in the “cfg” file of the
application. The creation happens at compile time.

6. Dynamic creation – Dynamic creation of driver is done in the application source
files and the creation happens at runtime.

(i.e. Spi_Params.instNum = 0x0, Spi_Params.instNum = 0x1, so on…)

4.3.2 Each Instance as Transmitter and / or receiver

Each SPI instance can be used for simultaneous transmit and receive operation. This
could be achieved by opening a stream Channel as an INPUT/OUTPUT channel . The
type of Channel is specified while creating the channel (using Stream_create
()specify “DriverTypes_INOUT”). The configuration parameters are explained in
the sections to follow.

4.4 Configurations
Following tables document some of the configurable parameter of SPI. Please refer to
Spi.h (Spi.xdc) for complete configurations and explanations.

4.4.1 Spi_Params

This structure defines the device configurations, expected to supply while creating
the driver.

Members Description

instNum Instance number of the driver.

opMode Whether the SPI driver should operate in Polled or
Interrupt or DMA Interrupt Mode

outputClkFreq The clock frequency the SPI instance should generate
in case of master mode of operation

loopbackEnabled If the driver/device works in loopback mode

spiHWCfgData The configuration of hardware instance specifc options

hwiNumber The hardware interrupt number assigned for SPI
events

polledModeTimeout The data transfer timeout for polled mode of operation

Apart from the instance parameters described above one can/should configure the modules for features.
For example, edmaEnable should be configured to true if the operational mode for the SPI is configured
to be DMA interrupt mode. Communication mode of operation whether the instance is acting as a slave or
master may also be configured. Other options can be seen in module wide configs in Spi.xdc file.

Page 33 of 87

BIOS PSP DA830 User Guide

4.4.2 Spi_ChanParams

Applications could use this structure to configure the channel specific configurations.

Members Description
hEdma The handle to the EDMA driver. Required only when operating

in DMA interrupt mode. Also, note that when operating in DMA
interrupt mode, that module configuration variable
edmaEnable should be set to true.

4.4.3 Polled Mode

The configurations required for polled mode of operation are:

Instance configuration opMode should be set to Spi_OpMode_POLLED. Additionally
the timeout parameter for the data transfer operation can be configured as required.
For example, polledModeTimeout could be set to 1000 Ticks, while the default value
is WAIT_FOREVER.

For polled mode of operation the driver does not implement the task sleeping in in
between checks for data ready status, during data transfer. This is because, while in
sleep the data may arrive and the data may go unread. This can be more prevalent
with increasing data clock frequencies. This non use of task sleep result in a tight
while loop for checking data ready status during transfers and may block out other
tasks in the system from executing, for the timeout duration set by the user. Hence,
it is advised that in slave mode interrupt mode of operation may be used.

4.4.4 Interrupt Mode

The configurations required for interrupt mode of operation are:

Instance configuration opMode should be set to Spi_OpMode_INTERRUPT.
Additionally the hwiNumber assigned by the application for the SPI CPU events group
should be passed, so that the driver can enable proper interrupts.

4.4.5 DMA Interrupt Mode

The configurations required for DMA Interrupt mode of operation are:

Instance configuration opMode should be set to Spi_OpMode_DMAINTERRUPT.
Additionally the hwiNumber assigned by the application for the SPI CPU events group
should be passed, so that the driver can enable proper interrupts. The module
configuration variable edmaEnable should be set to true. Also, as part of
chanParams, the handle to the EDMA driver, hEdma, should be passed by the
application. It is recommended to start from the sample application and modify it
further to meet the need of the actual application.

4.4.6 Slave Mode

The option of slave mode (or master mode) of operation, should be supplied along
with the HWConfig (device parameter) structure (masterOrSlave field) in device
parameters, while instantiation of the module. This is because the mode of operation
is fixed for one instance and cannot be changed dynamically or per-channel per
instance. Also note that in slave mode of the device only one channel can be opened.
Note that “SPI_EDMA_SUPPORT” variable should be supplied as a compiler switch for

Page 34 of 87

BIOS PSP DA830 User Guide

proper operation in this mode so the sample application initializes the edma driver
and passes the appropriate chanParams.

4.5 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the ICOTL defined in Spi.h(Spi.xdc).

Command Arguments Description

Spi_IOCTL_CANCEL_PENDIN
G_IO

None Cancels all the pending I/O
requests

Spi_IOCTL_SET_CS_POLARI
TY

Bool * Configures the CS polarity to
High or Low

Spi_IOCTL_SET_POLLEDMOD
ETIMEOUT

UInt32 * To change the value for polled
mode timeout

4.6 Use of SPI driver through Stream APIs
Following sections explain the use of parameters of Stream calls in the context of SPI
driver. Note that no effort is made to document the use of Stream calls; any SPI
specific requirements are covered below.

4.6.1 Stream_create

Parameter
Number

Parameter Specifics to SPI

1 Device Name string Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through CFG or Spi_create ()

2 IO Type Should be “DriverTypes_INPUT” when SPI
requires to received data and
“DriverTypes_OUTPUT” when SPI requires to
transmit

3 Stream_Params * Parameters required for the creation of the
stream (e.g. channel parameters)

4 Error_Block * Pointer to the application supplied error
block

4.6.2 Stream_control

Parameter
Number

Parameter Specifics to SPI

1 Stream_handle Handle returned by
Stream_create

2 Command IOCTL command defined by SPI
driver

Page 35 of 87

BIOS PSP DA830 User Guide

3 Arguments Misc arguments if required by the
command

4 Error_Block * Pointer to the Application supplied
error block

4.6.3 Stream_write/read

Parameter
Number

Parameter Specifics to SPI

1 Channel Handle Handle returned by
Stream_create

3 Pointer to buffer Should be pointer to DataParam
structure that holds the buffer,
Chipselect and other flag

4 Size Size of the transaction

5 Error_Block * Pointer to the Application supplied
error block

4.6.4 Spi_create

Parameter
Number

Parameter Specifics to SPI

1 Spi_params * Pointer to the Spi_params
structure required for the Driver
creation

4.7 Sources that need re-targeting

4.7.1 SoC level changes

When the driver has to adapt to SoC level changes the two files Spi.xs (Module Script
File) and the SoC script file soc.xs need to be updated with the changes.

4.7.2 EVM level changes

None

4.8 Use of GPIO as chip select
Any available GPIO pin can be configured as SPI Chip select pin. The user can select
any free available GPIO pin and set the gpioChipselectFlag, to use that GPIO pin as
SPI chip select pin.

4.9 EDMA3 Dependency
When the SPI driver is configured in EDMA mode (compile time configuration is
needed) SPI driver relies on EDMA3 LLD driver to move data from/to application

Page 36 of 87

BIOS PSP DA830 User Guide

buffers to peripheral; Please note that EDMA3 LLD driver would not be part of this
release. Please ensure that current PSP release is compliant with version of EDMA3
driver being used from the system requirements section of this document.

4.9.1 Used Paramset of EDMA 3

SPI driver uses TWO paramsets of EDMA3; if there are no paramsets are available
the SPI driver creation would fail. These paramsets are used through the life time of
SPI driver. No link paramsets are used.

4.10 Known Issues
Please refer to the top level release notes that came with this release.

4.11 Limitations
Please refer to the top level release notes that came with this release.

4.12 Spi Sample application

4.12.1 Description

This sample demonstrates the use of the Spi driver in polled, interrupt and edma
modes.

This example uses the Spi bus to write an array of data to the W25X32 Spi Flash
memory of the evmDA830. Once the data has been written, the Spi bus again is
used to read the same data from the Spi Flash memory. The data read is then
compared with the data that was written, and if it matches then the operation is
considered a success.

The reads and writes to the Spi Flash memory are accomplished by use of both the
Spi and the Stream modules, in combination. The Spi driver is used to configure and
set up the Spi bus, and the Stream module APIs are used to perform the actual
reads and writes to the Spi Flash memory, via the Spi bus.

The Spi driver is configured both statically in the spiSample.cfg file, as well as at run
time in the spiSample_main.c and spiSample_io.c files.

The spiSample.cfg file contains important BIOS configuration settings, which are
required in order for the Spi operations to work properly. The most important lines
in this file are:

ECM.eventGroupHwiNum[0] = 7;

ECM.eventGroupHwiNum[1] = 8;

ECM.eventGroupHwiNum[2] = 9;

ECM.eventGroupHwiNum[3] = 10;

Page 37 of 87

BIOS PSP DA830 User Guide

The above configuration settings are needed to correctly set up the ECM module and
map the Spi event to CPU interrupt. For example the Spi event number is 37, which
falls under ECM group 1. Here ECM group 1 is mapped to HWI_INT8, and this is the
HWI number used when configuring spi Params (explained further below).

Further Spi static configuration is done in the spiSample.cfg file, which uses the Spi
instance parameters (spi Params) to create Spi instance using Spi.create API.

Once initialization has completed, the main() function runs, configuring the PINMUX.
Following this, the user defined task “echoTask()” runs, which creates Stream Spi
read and write handles. These handles are then used when calling the
Stream_write() and Stream_read() APIs to actually write and read data to and from
the Spi Flash memory.

4.12.2 Build

This sample can be built using path

<ID>/psp/examples/evmDA830/spi

IMPORTANT NOTE: .cdtbuild contains references to
%EDMA3LLD_BIOS6_INSTALLDIR% environment variable and links with edma3
libraries. This is required because by default the Spi driver library is built with EDMA
ENABLE.

There is also another XDC based project file available for users familiar with XDC
build.

<ID>/psp/examples/evmDA830/spi/package.bld

This project file includes spiSample.cfg which brings in all the required packages.

This project requires setup of XDCPATH environment variable. The XDCPATH must
contain the following -

<EDMA3_INSTALL_DIR>/packages; <PSPDRIVERS_INSTALL_DIR>/packages;

4.12.3 Setup

No special setup is needed to run the I2c example

4.12.4 Output

After successful completion of read/write operation following message is printed on
the CCS console.

BIOS SPI:SPI sample transceive ended succesfully

Page 38 of 87

BIOS PSP DA830 User Guide

5 GPIO driver

5.1 Introduction
This document is the reference guide for the device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by Stream
layer, to transmit and receive serial data. The following sections describe in detail,
procedures to use this driver, configure among others…. It is recommended to go
through the sample application to get a feel of initializing and using the Gpio driver.

5.1.1 Key Features

 Multi-instanceable and re-entrant driver

 Standalone module (driver) ; does not inherit IDriver and does not require
streams

 Each instance can be used to operate upon GPIO settings

 Supports registering of interrupts and setting of GPIO availability status

5.2 Installation
The Gpio device driver is a part of PSP package for DA830 platform and would be
installed as part of whole package installation. For high level design information
please refer to the driver architecture guide that came with this package (available at
<ID>\ti\psp\gpio\docs)

5.2.1 GPIO Component folder

On installation of PSP package for DA830, the GPIO driver can be found at <ID>\
ti\psp\gpio\

As show above the gpio folder contains sub-folder, contents of which are described
below.

 gpio - The gpio folder is the place holder for the entire GPIO driver,
documents and the build configuration files. GPIO driver is implemented as
IDriver under DSP/BIOS™ operating system. Stream defined APIs could be
used to interface to GPIO driver. This folder contains the build configuration
file(package.bld),the GPIO module specification file (Gpio.xdc),the module
script file (Gpio.xs) and the miscellaneous files required for compiling the
GPIO library.

 docs – Holds Spi driver’s architecture. Please note that the API reference
would be found as a part of cdoc help (<install dir>\packages\docs\cdoc\
index.html)

 src – Place holder for GPIO driver’s source code.

5.2.2 Build Options

GPIO device driver will be built with “whole_program_debug” mode. When built
successfully the respective library will be available at <ID>\ti\psp\gpio\lib\ <
ti.psp.gpio.a674>

Page 39 of 87

BIOS PSP DA830 User Guide

5.3 Features
This section details the features of GPIO and how to use them in detail.

5.3.1 Multi-Instance

The GPIO driver can operate on all the instance of GPIO on DA830. Different
instances are specified during driver creation time. Supported instance are 0 only
with instNum (or device ID) 0 only.

These instances could be operated simultaneously with configurations supported by
GPIO driver.

The device ID could be specified using the instNum field of structure Gpio_Params.
There are two ways in which a new instance of the GPIO driver can be created.

1. Static creation – static creation of the driver is done in the “cfg” file of the
application. The creation happens at compile time.

2. Dynamic creation – Dynamic creation of driver is done in the application source
files and the creation happens at runtime.

(i.e. Gpio_Params.instNum = 0x0)

5.3.2 Operating on each Instance

GPIO driver can be operated upon as a standalone module. This could be achieved
by calling the GPIO driver APIs directly by the application. The instance creation
needs configuration parameters. The configuration parameters are explained in the
sections to follow.

5.4 Configurations
Following tables document some of the configurable parameter of GPIO. Please refer
to Gpio.h (Gpio.xdc) for complete configurations and explanations.

5.4.1 Gpio_Params

This structure defines the device configurations, expected to supply while creating
the driver instance.

Members Description

instNum Instance number of the driver.

BankParams The bank configuration parameters. This contains the
availability of a bank and/or its associated pins as a
GPIO as yes or no and the HWI number assigned to
this bank or pin as applicable. The pin/bank must be
marked as GPIO_InUse_Yes to let the driver know that
the said GPIO bank/pin is not available as a GPIO or
the pin/bank must be marked as GPIO_InUse_No to
let the driver know that the said GPIO bank/pin is
available as a GPIO. By default, all the GPIO
bank/pin(s) are marked as not available, by the driver
in the BankParams. Hence, it is sufficient for the
application to pass the information of those
bank/pin(s) which are available as GPIO. This can be
done in the CFG file of the application while static
instantiation (as shown by the sample application) or
during dynamic instantiation

Page 40 of 87

BIOS PSP DA830 User Guide

hwiNumber The hardware interrupt number assigned for GPIO
events of the bank and the associated pins. By default,
the HWI numbers for all the banks and/or the
associated pins are marked as invalid (by
Gpio_NO_EVENT, equals -1).

5.5 Use of GPIO driver through module APIs
Following sections explain the use of parameters of module calls in the context of
GPIO driver. Any GPIO specific requirements are covered below.

5.5.1 Gpio_create

Parameter
Number

Parameter Specifics to GPIO

1 Gpio_params * Pointer to the Gpio_params
structure required for the Driver
creation

This call returns the instance handle to the GPIO module. In the sample application
provided with this package, the static creation of the GPIO instance is shown, using
Gpio.create, which also return a handle to the GPIO module instance. This handle is
used for any further API calls of the GPIO module. In the sample application
provided, the GPIO instance handle obtained statically in the CFG file
(Program.global.gpio0) is accessed in the C file, by reference it as an extern variable
(extern GPIO_Handle gpio0;)

5.6 Sources that need re-targeting

5.6.1 SoC level changes

When the driver has to adapt to SoC level changes the two files Gpio.xs (Module
Script File) and the SoC script file soc.xs need to be updated with the changes.

5.6.2 EVM level changes

None

5.7 EDMA3 Dependency
The GPIO driver does not depend on the EDMA3 LLD driver. It does not support any
data transfer operations.

5.8 I/O operations
The GPIO driver does not support any streaming read or write operations over GPIO
pins or banks. It just facilitates the user to form any such APIs as wrappers around
the basic GPIO data in and out operation APIs on its pins/group of pins. For example,
if a scenario exists for the application to use a GPIO pin for continuously sending a
pulse train over it, then the user could use GPIO_setPinVal() API to set the value at
that GPIO pin to 1 and 0 alternatively. However, the pulse width (on and off times)
must be taken care of by the user by introducing suitable delays between successive
call to the GPIO_setPinVal(). Thus the user needs to write a wrapper around the
GPIO APIs to suit the needs of usage scenario.

Page 41 of 87

BIOS PSP DA830 User Guide

5.9 Interrupt handler registration
The GPIO module facilitates the registration of interrupt handlers for GPIO pin/bank as
applicable. Some (or all) of the GPIO bank or pins support rising of interrupt events to the CPU.
These events should be mapped to a particular HWI interrupt by the application (if required to use
the interrupts) and the same information is passed to the GPIO driver via BankParams during
instantiation. The user application then may register interrupt handlers for this interrupt event by
using the GPIO_regIntHandler() API. The user needs to give the function which should be
register as the handler. The GPIO driver validates if the GPIO bank or pin has a valid event and
hence can rise and interrupt or not, and then dispatches the interrupt handler for this event and
enables the interrupt. However, note that the GPIO driver just registers the function and does not
handle the interrupt by itself. There is no interrupt context in the GPIO driver.

5.10 Known Issues
Please refer to the top level release notes that came with this release.

5.11 Limitations

5.11.1 Multi-instance support

The GPIO driver now supports only one instance, fixed number of banks (eight) and
fixed number of pins per bank (sixteen). This is a limitation, as there are issues in
getting initialization done for variable length arrays (inside structures, instance
parameters etc) through the RTSC framework.

5.11.2 In Use status

The GPIO driver provides the APIs, Gpio_(get/set)PinUseStatus and
Gpio_(get/set)BankUseStatus for checking if the pin or bank is in use (as a functional
pin and hence not available as GPIO). These, APIs should be used before calling any
GPIO module APIs on setting data or status for the pins/banks. Though, GPIO driver
shall make explicit check for use status for individual pin operations, it does not do it
for group (or all pins in a bank) operations since it becomes an overkill every time,
especially if the group of pins is used for data transfer etc. Hence, the application
should make this check at least once before use of the required GPIO pins and then
can proceed.

Please refer to the top level release notes that came with this release.

Page 42 of 87

BIOS PSP DA830 User Guide

6 PSC driver

6.1 Introduction
This document is the reference guide for the device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by Stream
layer, to transmit and receive serial data. The following sections describe in detail,
procedures to use this driver, configure among others… It is recommended to go
through the sample application to get a feel of initializing and using the Psc driver.

6.1.1 Key Features

 Multi-instanceable and re-entrant driver

 Standalone module (driver) ; does not inherit IDriver and does not require
streams

 Each instance can be used to operate upon PSC settings

6.2 Installation
The Psc device driver is a part of PSP package for DA830 platform and would be
installed as part of whole package installation. For high level design information
please refer to the driver architecture guide that came with this package (available at
<ID>\ti\psp\psc\docs)

6.2.1 PSC Component folder

On installation of PSP package for DA830, the PSC driver can be found at <ID>\
ti\psp\psc\

As show above the psc folder contains sub-folder, contents of which are described
below.

 psc - The psc folder is the place holder for the entire PSC driver, documents
and the build configuration files. PSC driver is implemented as IDriver under
DSP/BIOS™ operating system. Stream defined APIs could be used to interface
to PSC driver. This folder contains the build configuration
file(package.bld),the PSC module specification file (Psc.xdc),the module script
file (Psc.xs) and the miscellaneous files required for compiling the PSC library.

 docs – Holds Psc driver’s architecture. Please note that the API reference
would be found as a part of cdoc help (<install dir>\packages\docs\cdoc\
index.html)

 src – Place holder for PSC driver’s source code.

6.2.2 Build Options

PSC device driver will be built with “whole_program_debug” mode. When built
successfully the respective library will be available at <ID>\ti\psp\psc\lib\ <
ti.psp.psc.a674>

6.3 Features
This section details the features of PSC and how to use them in detail.

Page 43 of 87

BIOS PSP DA830 User Guide

6.3.1 Multi-Instance

The PSC driver can operate on all the instance of PSC on DA830. Different instances
are specified during driver creation time. Supported instance are 0 and 1 only with
instNum (or device ID) 0 and 1 only.

These instances could be operated simultaneously with configurations supported by
PSC driver.

The device ID could be specified using the instNum field of structure Psc_Params.
There are two ways in which a new instance of the PSC driver can be created.

3. Static creation – static creation of the driver is done in the “cfg” file of the
application. The creation happens at compile time.

4. Dynamic creation – Dynamic creation of driver is done in the application source
files and the creation happens at runtime.

(i.e. Psc_Params.instNum = 0x0)

6.3.2 Operating on each Instance

PSC driver can be operated upon as a standalone module. This could be achieved by
calling the PSC driver APIs directly by the application. The instance creation needs
configuration parameters. The configuration parameters are explained in the sections
to follow.

6.4 Configurations
Following tables document some of the configurable parameter of PSC. Please refer
to Psc.h (Psc.xdc) for complete configurations and explanations.

6.4.1 Psc_Params

This structure defines the device configurations, expected to supply while creating
the driver instance.

Members Description

instNum Instance number of the driver.

6.5 Use of PSC driver through module APIs
Following sections explain the use of parameters of module calls in the context of
PSC driver. Any PSC specific requirements are covered below.

6.5.1 Psc_create

Parameter
Number

Parameter Specifics to PSC

1 Psc_params * Pointer to the Psc_params
structure required for the Driver
creation

This call returns the handle to the PSC module instance. The PSC module is a
support module which provides APIs for clock control of the peripherals. The sample
applications (PSC does not have a separate sample application. Users could refer to
GPIO sample application for the same) provided shows the creation of an instance
statically in CFG file. This instance handle (Program.global.psc0) is accessed in C file
by referencing this handle as an external variable (extern Psc_Handle psc0;). This

Page 44 of 87

BIOS PSP DA830 User Guide

handle should be used to further reference this instance for any PSC module API
calls.

6.6 Sources that need re-targeting

6.6.1 SoC level changes

When the driver has to adapt to SoC level changes the two files Psc.xs (Module
Script File) and the SoC script file soc.xs need to be updated with the changes.

6.6.2 EVM level changes

None

6.7 EDMA3 Dependency
The PSC driver does not depend on the EDMA3 LLD driver. It does not support any
data transfer operations.

6.8 Known Issues
Please refer to the top level release notes that came with this release.

6.9 Limitations

Please refer to the top level release notes that came with this release.

Page 45 of 87

BIOS PSP DA830 User Guide

7 Mcasp driver

7.1 Introduction
This document is the reference guide for the device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by Stream
layer, to transmit and receive serial data. The following sections describe in detail,
procedures to use this driver, configure among others…. It is recommended to go
through the sample application to get a feel of initializing and using the Mcasp driver

7.1.1 Key Features

 Multi-instance able and re-entrant driver

 Each instance can operate as an receiver and or transmitter

 Supports multiple data formats

 Can be configured to operate in multi-slot TDM, I2S, DSP and DIT (S/PDIF)

 Mechanism to transmit desired data (such as NULL tone) when idle

 Explicit control of PIN directions for High Clock, Bit Clock and Frame Sync
PINS

7.1.2 Terms and Abbreviations

API Application Programmer’s Interface

CSL TI Chip Support Library – primitive h/w abstraction.

IP Intellectual property

ISR Interrupt Service Routine

OS Operating System

S/PDIF Sony Philips Digital Interface

TDM Time Division Multiplexing

I2S Inter-Integrated Sound Format

ID Installation Directory

7.1.3 References

1 SPRUFM1 DA830 McASP Reference Guide

2 TLV320AIC31IRHBRG4_3960631 Stereo Audio Codec Data Manual

7.2 Installation
The Mcasp device driver is a part of PSP package for DA830 platform and would be
installed as part of whole package installation. For high level design information
please refer to the driver architecture guide that came with this package(available at
<ID>\ti\psp\mcasp\docs)

7.2.1 McASP Component folder

On installation of PSP package for DA830, the McASP driver can be found at <ID>\
ti\psp\mcasp\

Page 46 of 87

BIOS PSP DA830 User Guide

As show above the McASP folder contains sub-folder, contents of which are described
below.

 Mcasp - The Mcasp folder is the place holder for the entire mcasp driver,
documents and the build configuration files. McASP driver is implemented as
IDriver under DSP/BIOS™ operating system. Stream defined APIs could be
used to interface to McASP driver. This folder contains the build configuration
file(package.bld),the McASP module specification file (Mcasp.xdc),the runtime
configuration file (Mcasp.xs) and the miscellaneous files required for
compiling the Mcasp library.

 docs – Holds Mcasp driver’s architecture. Please note that the API reference
would be found as a part of cdoc help (<install
dir>\packages\docs\cdoc\index.html)

 src – Place holder for McASP driver’s source code.

7.2.2 Build Options

McASP device driver will be built with “whole_program_debug” mode. When built
successfully the respective library will be available at <ID>\ti\psp\mcasp\lib\ <
ti.psp.mcasp.a674>

7.3 Features
This section details the features of McASP and how to use them in detail.

7.3.1 Multi-Instance

The McASP driver can operate on all the instance of McASP on DA830. Different
instances are specified during driver creation time. Supported instance are 0 through
2 with device ID 0 through 2 respectively.

These instances could be operated simultaneously with configurations supported by
McASP driver.

The device ID could be specified using the instNum field of structure Mcasp_Params.
There are two ways in which a new instance of the Mcasp driver can be created.

1. Static creation – static creation of the driver is done in the “cfg” file of the
application. The creation happens at compile time.

2. Dynamic creation – Dynamic creation of driver is done in the application source
files and the creation happens at runtime.

(i.e. Mcasp_Params.instNum = 0x0, Mcasp_Params.instNum = 0x1, so on…)

7.3.2 Each Instance as Transmitter and / or receiver

Each instance of the driver can be used for simultaneous transmit and receive
operation. This could be achieved by opening a stream Channel as an INPUT channel
and opening a stream Channel as an OUTPUT channel. The type of Channel is
specified while creating the channel (using Stream_create ()specify
“DriverTypes_OUTPUT” or “DriverTypes_INPUT”).

The key configuration would be to specify if the transmission section and reception
sections clocks are synchronous are not. This is specified by
Mcasp_HwSetupData.clk.clkSetupHiClk by clearing the BIT 6 or setting the bit for
asynchronous mode.

Page 47 of 87

BIOS PSP DA830 User Guide

7.3.3 Supported Data Formats

McASP driver expects the data (samples) to be arranged in a specific format when
requesting for an IO transfer. These formats are explained under scenario of using 1
serializer and 2 or more serializer. Some of the multi-channel DACs (such as
WM8746) expects the samples for all the channels to be received over single
serializers. To support these DACs, McASP provides support for couple of more data
formats. The required buffer format could be configured at driver creation time. The
sections below capture the details of supported data formats.

McASP Mode Single Serializer Multiple Serializer

Burst Mode /

DSP Mode

Interleaved Data Format Non-interleaved data format

TDM 1 Slot Interleaved Data Format Non-interleaved data format

Multi-Slots
TDM

Interleaved Data Format

Non-interleaveddata format

Non-interleaved data format

Semi-interleaved data format

DIT Interleaved Data Format Non-interleaved data format

7.3.3.1 Interleave Data Format (Burst Mode / 1 Slot TDM mode / Multi-Slots TFM / DIT mode)

When configured as interleaved format, it is expected that McASP is configured to
use 1 serializer. The expected data format is as depicted below.

[<Slot1-Sample1>, <Slot1-Sample2>…<Slot1-SampleN>]

The size (number of bytes) that would be required to specify during an IO request is
computed using the formula size = <word width>*<number of samples N>. The
sample application that came with this package demonstrates the use of this data
format.File audioSample_io.c implements the functions which configure McASP to use
this buffer format.

The key configurations are

 Mcasp_ChanParams.noOfChannels = 0x00

 Mcasp_ChanParams.noOfSerRequested = 0x01

 Mcasp_ChanParams.indexOfSersRequested[0] = SERIALIZER_0

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples >. This value should be given as a size parameter of
Stream_submit ()

 Idle Time7.4 data pattern length computation. Minimum length should be
<word width in bytes> or an integral multiple of computed value. While
allocating buffer, allocate <computed value> * <no of slots enabled>.

7.3.3.2 Non-Interleaved Data Format (Burst Mode / 1 Slot TDM mode / Multi-Slots TDM / DIT mode)

When configured as non-interleaved format, it is expected that McASP driver is
configured to use multiple serializers. The expected data format is as depicted below.
When configured to use multiple serializers, the samples are expected to be

Page 48 of 87

BIOS PSP DA830 User Guide

contiguous for a serializer, as depicted below. The assumption here is no of
serializers is 2 and no of samples is N

[<Seriliazer1-Sample1>, <Seriliazer1-Sample2>…<Seriliazer1-SampleN>,

 <Seriliazer2-Sample1>, <Seriliazer2-Sample2>, <Seriliazer2-SampleN>,

 <Seriliazer3-Sample1>, <Seriliazer3-Sample2>…<Seriliazer3-SampleN>]

The key configurations are

 Mcasp_ChanParams.noOfChannels = 0x00

 Mcasp_ChanParams.noOfSerRequested = 0x03

 Mcasp_ChanParams.indexOfSersRequested[0] = SERIALIZER_0

 Mcasp_ChanParams.indexOfSersRequested[1] = SERIALIZER_6

 Mcasp_ChanParams.indexOfSersRequested[2] = SERIALIZER_8

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples per Serializer>. This value should be given as a size
parameter of Stream_submit ()

 Idle Time7.4 data pattern length computation. Minimum length should be
<word width in bytes> or an integral multiple of computed value. While
allocating the buffer allocate computed value * no of serializers
enabled.

7.3.3.3 Non-Interleaved Data Format (Multiple Slots Single serializer)

When configured to use multiple slots, one serializer and non-interleaved format. The
samples are expected to be contiguous for a slot, as depicted below. The assumption
here is no of slots is 2 and no of samples is N

[<Slot1-Sample1>, <Slot1-Sample2>…<Slot1-SampleN>,

 <Slot2-Sample1>, <Slot2-Sample2>, <Slot2-SampleN>]

i.e. The samples of Slot1 are contiguous followed by contiguous samples of Slot 2

The key configurations are

 Mcasp_ChanParams.noOfChannels = 0x00

 Mcasp_ChanParams.noOfSerRequested = 0x01

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples per Slot>. This value should be given as a size parameter
of Stream_submit ()

 Idle Time7.4 data pattern length computation. Minimum length should be
<number of slots enabled> * <word width in bytes> or an integral
multiple of computed value. While allocating the buffer, allocate <compute
value> * <no of slots>

Consider as an example where the no of slots are 3 and no of samples per slot is N

[<Slot1-Sample1>, <Slot1-Sample2>…<Slot1-SampleN>,

 <Slot2-Sample1>, <Slot2-Sample2>, <Slot2-SampleN>,

 <Slot3-Sample1>, <Slot3-Sample2>…<Slot3-SampleN>]

Page 49 of 87

BIOS PSP DA830 User Guide

7.3.3.4 Semi-Interleaved Data Format (Multiple Slots Multiple serializer)

When configured to use multi-slots with multi-serializer, the sample for all serializer
for a give slot is contiguous, further the samples for all slots are interleaved. The
following representation specifies the expected data format. The assumption in this
example is we have enabled 2 serializer and two slots in each serializer.

[<Slot1-Sample1-Serializer1>, <Slot1-Sample1-Serializer2>,

 <Slot2-Sample2-Serializer1>, <Slot2-Sample2-Serializer2>,…

 <Slot1-SampleN-Serializer1>, <Slot2-SampleN-Serializer2>]

The key configurations are

 Mcasp_ChanParams.noOfChannels = 0x00

 Mcasp_ChanParams.noOfSerRequested = 0x02

 The size of the IO request is computed as <No of Bytes per Sample> * <
No of Samples per Slot>. This value should be given as a size parameter
of Stream_submit ()

 Idle Time7.4 data pattern length computation. Minimum length should be
<number of slots enabled> * <word width in bytes> or an integral
multiple of computed value. While allocating memory for the loopJobBuffer
allocate the computed size * no of serializers enabled.

7.3.4 Operational Modes (multi-slot TDM, I2S, DSP and DIT (S/PDIF)

7.3.4.1 Multi-Slot TDM

To configure McASP to operate with multi-slot, use the
Mcasp_HwSetupData.tx/rx.frSyncCtl, this variable represents McASPs
AFRCTL/AFXCTL. Refer section 7.3.3 for details on the supported data format. The
sample application (audioSample_io.c) file demonstrates the required configurations.

7.3.4.2 I2S

To configure McASP to operate in I2S format, use the
Mcasp_HwSetupData.tx/rx.frSyncCtl and Mcasp_HwSetupData.tx/rx.xfmt. This
variable represents McASPs AFRCTL/AFXCTL and XFMT / RFMT registers. Please refer
to sample application (audioSample_io.c) for the required configurations.

7.3.4.3 DSP

To configure McASP to operate in DSP format, use the
Mcasp_HwSetupData.tx/rx.frSyncCtl the fields RMOD/XMOD should be 0 and FRWID
/ FXWID should be 0. This variable represents McASPs AFRCTL/AFXCTL. Refer
section 7.3.3 for details on the supported data format.

The initialization time configurable parameter noOfChannels could be used to
specify the no of channels that 32 bit is split into. E.g if 32 bit is to be interpreted as
2 16 bit samples, the noOfChannels should be set to 2.

7.3.4.4 DIT (S/PDIF)

To change the User Bits and Channel Status Bits that would be embedded by the
S/PDIF stream, applications are expected to give the following parameters

 Mcasp_PktAddrPayload.writeDitParams = TRUE;

 Mcasp_PktAddrPayload.chStat = Address of structure of type
Mcasp_ChStatusRam.

Page 50 of 87

BIOS PSP DA830 User Guide

 Mcasp_PktAddrPayload.userData = Address of structure of type
Mcasp_UserDataRam.

Driver would update the User Bits and Channel Status bits immediately. Applications
using the driver are in complete control change/update of User Bits and Channel
Status bits.

7.4 IDLE Time Data Patterns
IDLE Time in the context of McASP could be better explained under the CREATE Time
and Run Time. The sections below explain the behavior of Clock, Frame Sync and
Data signals.

7.4.1 Create Time

On successful creations of Stream channel, the McASP driver starts generating the
clock, Frame Sync and data (if configured as source / if configured as sink McASP
expects theses signals). The data that would be sent out at this point can be
configured using Mcasp_ChanParams.userLoopJobBuffer and Mcasp_ChanParams
.userLoopJobLength. Optionally this could be set NULL and 0x0 respectively, the
McASP driver uses driver’s internal buffers and length of these NULL buffers is 4
bytes.

7.4.2 Run Time

If the applications could not meet the real time needs of transmission/reception of
data, McASP steps in to consume to received the data or transmit a know data
pattern.

McASP driver could be configured to send out a know pattern when ever the above
situation arises using Mcasp_ChanParams.userLoopJobBuffer and
McaspChanParams .userLoopJobLength. Optionally this could be set NULL and 0x0
respectively, the McASP driver uses driver’s internal buffers and length of these NULL
buffers is 4 bytes.

7.4.3 IDLE Time buffer size

This IDLE Time data patterns could possibly have un-intended effects, if used in-
correctly. It is recommended that following method is used to calculate the size of
the IDLE time buffers.

Size of Idle Time buffers = <width of slot in bytes> * <no of serializer enabled> *
<no of slots enabled>

If the application does not supply the idle time buffers, the McASP driver would use
its internal buffer of length 4 bytes when operating in TDM mode and 8 bytes when
operating in DIT mode.

CAUTION: If the computed size does not match the logical end of slots, the
channels could be swapped. A quick way to check would be to monitor the frame
sycn and data line/s on scope and send out unique pattern in each slot of the idle
time buffer.

7.5 Explicit control of IO PINS
McASP drivers provide explicit control on the directions of the following McASP pins.

Signal Pin Description

AFSR Frame Sync signal for reception. Direction should be explicitly set when
channel opened for READ

Page 51 of 87

BIOS PSP DA830 User Guide

AHCLKR High Clock signal for reception. Direction should be explicitly set when
channel opened for READ

ACLKR Bit Clock signal for reception. Direction should be explicitly set when
channel opened for READ

AFSX Frame Sync signal for reception. Direction should be explicitly set when
channel opened for WRITE

AHCLKX High Clock signal for reception. Direction should be explicitly set when
channel opened for WRITE

ACLKX Bit Clock signal for reception. Direction should be explicitly set when
channel opened for WRITE

There could be scenarios where the applications would require the McASP to be
configured as MASTER (one generating the Frame Sync, Bit Clock and High Clock)
and yet not drive these pins. This feature allows achieving this.

Use Mcasp_HwSetup.glb.pdir to set the directions. This variable maps to PDIR
register of McASP

7.6 Clocking McASP
The McASP peripheral requires two clocks to operate. The peripheral clock used to
drive the peripherals functional, the second clock (also called as auxiliary clock /
internal clock source) used to generate the high clock and the bit clocks for the serial
data-bit streams.

Alternatively, McASP could be configured to use an external clock source to derive
the bit clock for the serial data-bit streams. This external clock would be received via
the High Clock Pin. This setup is referred to as External Clock in this document.

7.6.1 Internal Clock

The Auxiliary clock passes thorough a two stage divider to generate bit clock for the
serial data stream. Please refer the data manual for McASP, section 2.2.1 Transmit
Clock and 2.2.2 Receive Clock. The configurations that would be required are
explained in the context of the example below.

Assumption: McASP is configured as output channel and would require to output the
High Clock (used as the system clock for the DACs), Bit clock and the frame sync.
For these setup following are the key configurations

 Mcasp_HwSetup.glb.pdir = 0x1C000000; With this we are selecting AFSX,
AHCLKX, CLKX as out pins and AFSR, AHCLKR, CLKR as input pins.

 Mcasp_HwSetupData.clk.clkSetupHiClk = 0x000080XX; With this we are
configuring McASP high clock to be sourced from internal clock (auxiliary clock
divided by the divisor specified by bits 0-11 of this register, is interpreted as
High Clock)

 Mcasp_HwSetupData.clk.clkSetupClk = 0x0000002X; With this we are
configuring McASP to source bit clock from the output of High clock (High
Clock divided by the divisor specified by divisor specified by the bits 0-4 of
this value)

 If it’s desired that the High Clock, Frame Sync and Bit Clock signal should not
be outputted, change the pin functionality as an input pin.

7.6.2 External Clock

7.6.2.1 External Frame Sync & External Bit Clock

McASP could be programmed to source the Frame Sync (for both reception and
transmission) from an external source such as DAC/ADC. The condition being that

Page 52 of 87

BIOS PSP DA830 User Guide

the Bit Clock is also sourced from the same entity, failing which the behavior is un-
predictable (i.e. we could see clock failure condition). To configure the McASP to
source Bit clock and Frame Sync from an external entity following are the important
configurations.

Assuming that McASP is configured to transmit data and High Clock is ignored.(i.e.
External entity is generating Frame Sync and Bit clocks only)

 Mcasp_HwSetup.glb.pdir = 0x00000000; With this we are selecting AFSX,
AHCLKX, CLKX as input pins and AFSR, AHCLKR, CLKR could be ignored if
the receive section of McASP is un-used.

 Mcasp_HwSetupData.clk.clkSetupHiClk = 0x00000000; With this we are
configuring McASP Bit clock to be sourced from ACLKX Pin. (Typically, in this
scenario we would not want to divide bit clock, we could out of Sync and not
meet the needs of the external device)

 Mcasp_HwSetupData.clk.clkSetupClk = 0xXXXXXXXX; Since we are sourcing
the Bit clock from the external AHCLK Pin, this register will not have any
effect on the Bit Clock and Frame Sync.

7.6.2.2 External High Clock

McASP could be programmed to source the High Clock from an external entity.
Typically if the High Clock is sourced from an external entity, the Bit Clock and
Frame Sync would be generated the McASP. The Bit Clock and the Frame Sync in
turn could feed into a serials data consumption unit such as a DAC. The
configurations mentioned below are the important configurations that are to
configured to use the external High Clock

Assuming that McASP is configured to transmit data and High Clock is sourced from
an external entity.

 Mcasp_HwSetup.glb.pdir = 0x14000000; With this we are selecting
AHCLKX as input pins, AFSX / ACLKX as output pins and AFSR, AHCLKR,
CLKR could be ignored if the receive section of McASP is un-used.

 Mcasp_HwSetupData.clk.clkSetupHiClk = 0x000000XX; With this we are
configuring McASP high clock to be sourced from AHCLKX Pin (The output of
clock divided by the divisor specified by bits 0-11 of this register, is
interpreted as High Clock)

 Mcasp_HwSetupData.clk.clkSetupClk = 0x0000002X; With this we are
configuring McASP to source bit clock from the output of High clock (High
Clock divided by the divisor specified by divisor specified by the bits 0-4 of
this value)

7.7 Clock Configuration (EVM - DA830)
McASP drivers sample application that came with this release is configured to use
external Clock. The configurations are as explained in section 7.6.1. The sample
application demonstrates the audio data capturing through the line in and transmits
the same data through the line out Pin.

7.8 Configurations
Following tables document some of the configurable parameter of McASP. Please
refer to Mcasp.h (Mcasp.xdc) for complete configurations and explanations.

Page 53 of 87

BIOS PSP DA830 User Guide

7.8.1 Mcasp_Params

This structure defines the device configurations, expected to supply while creating
the driver. This is provided when driver channels are created (e.g. stream_create).

Members Description

instNum Instance number of the driver.

hwiNumber Maps HWI event number to the ECM group. Please
note that no validation is done by the driver.

enablecache Specifies if the applications supplied buffers required
to be FLUSHED/INVALIDATED.

isDataBufferPayloadStructure Specifies to use to use User Bits, Channel Status bit
and flag update DIT params of the IO request.

mcaspHwSetup Hardware configurations of McASP driver.

7.8.2 Mcasp_HwSetup
Members Description
Glb Specifies the device configurations that are common

for both the reception and transmission section.
Rx Specifies the configurations that are specific to the

reception section.
Tx Specifies the configurations that are specific to the

transmission section.
Emu Power down emulation mode control

7.8.3 Mcasp_HwSetupGbl
Members Description
pfunc Kept for future use. Driver decides the functionality of

the McASP PINS.
pdir Applications could decide the PIN directions of Frame

Sync, High Clock and Bit Clock for both reception and
transmission. The directions are determined the
driver.

Ctl Kept for future use. Recommended to be 0x0 for now.
Ditctl Kept for future use. Recommended to be 0x0 for now.

7.8.3.1 Mcasp_HwSetupData

This structure defines the channel specific configurations for reception section and
transmission section.

Members Description
Mask The driver applies the value supplied by this register

Page 54 of 87

BIOS PSP DA830 User Guide

to RMASK/XMASK
Fmt The driver applies the value supplied by this register

to RFMT/XFMT
frSyncCtl The driver applies the value supplied by this register

to AFSRCTL/AFSXCTL
Tdm The driver applies the value supplied by this register

to RTDM/XTDM
intCtl The driver applies the value supplied by this register

to RINTCTL /XINTCTL
Stat The driver applies the value supplied by this register

to RSTAT/XSTAT
evtCtl The driver applies the value supplied by this register

to REVTCTL/XEVTCTL
Clk Configure the BIT clock, the High clock configuration

and Clock failure detection

7.8.4 Mcasp_HwSetupData

Members Description
clkSetupClk The driver applies the value supplied by this register

to ACLKRCTL/ACLKXCTL
clkSetupHiClk The driver applies the value supplied by this register

to AHCLKRCTL/AHCLKXCTL
clkChk The driver applies the value supplied by this register

to RCLKCHK/XCLKCHK

7.8.5 Mcasp_ChanParams

Applications could use this structure to configure the channel specific configurations.

Members Description
noOfSerRequested The number of serializers required to used by the channels.
indexOfSersRequested Index of the serializer that would be required.
mcaspSetup The hardware configurations required for the channel

specifically. Please refer section PSP_McaspHwSetupData.

channelMode To operate in DIT/TDM mode
wordWidth Required wordwidth in the slots.
isDmaDriven whether the channel is DMA driven.
userLoopJobBuffer Buffer to be transferred when the loop job is running.
userLoopJobLength Number of bytes of the userloopjob buffer for each serializer.
edmaHandle Handle to PSP EDMA LLD driver
gblCbk callback required when global error occurs and this must be

callable from the ISR context

Page 55 of 87

BIOS PSP DA830 User Guide

noOfChannels No of channels of data to be transmitted. Please refer section
7.3.4.3 for details.

dataFormat The buffer format is specified by the application
enableHwFifo This parameter is used by the application to specify if the

McASP Hw FIFO is to be used or not.
isDataPacked This variable is used to specify if the data supplied by the

buffer is to be packed to the nearest slot width or is it to be
rounded to the nearest 32,16 bit width.

7.8.6 Mcasp_PktAddrPayload

Application are expected to pass pointer to this structure in Stream_submit ()
function calls. It is recommends that these packets are allocated on the heap, since
the driver would return a pointer to this structure when the IO request is
completed/flushed/aborted.

Members Description
chStat Applicable to DIT mode, should point to a channel status bits

associated with S/PDIF stream.
userData Applicable to DIT mode, should point to a user bits associated

with S/PDIF stream.
writeDitParams Flag to indicate if the user bits and channel status bits is to be

updated/re-configured with the supplied values.
Addr Pointer to data that requires to be transmitted. Please refer

section 7.3.3 for details on the supported data formats.

7.9 IO Request Format
While creating the McASP device driver (either through CFG file statically or using the
API Mcasp_create) it’s required to configure as to how the data buffers would be
supplied by the application.

7.9.1 TDM Mode

Application could pass the address of the audio buffer to McASP via the stream_write
() API. On completion of transmission/reception the application supplied callback
would be called with address of the audio buffer as the parameter. The behavior
described above could be configured using the create time configuration
Mcasp_params.isDataBufferPayloadStructure = FALSE

If Mcasp_Params.isDataBufferPayloadStructure is set to TRUE the audio data is
expected to be encapsulated in structure PSP_Mcasp_PktAddrPayload. The member
writeDitParams should be set to FALSE.

7.9.2 DIT Mode

Applications could use the structure Mcasp_PktAddrPayload to pass a pointer to the
data buffer and specify User Bits / Channel Status Bits. In DIT mode, this could be
specified with configuration Mcasp_Params.isDataBufferPayloadStructure =
TRUE, the driver would interpret the data buffer passed in function call
Stream_submit () as a pointer to structure Mcasp_PktAddrPayload and all its
members are populated.

Page 56 of 87

BIOS PSP DA830 User Guide

7.10 CACHE Control
MCASP could be configured to FLUSH/INVALIADTE the application supplied buffers
while creating the drivers () with configuration parameter
Mcasp_Params.enablecache = TRUE/FALSE. When set to TRUE for every request
the data buffer is FLUSHED/INVALIDATED. One could improve the latency of
Stream_submit () call by providing pre-flushed/pre-invalidate data and disabling the
cache option.

7.11 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the IOCTL defined in Mcasp.h(Mcasp.xdc).

Command Arguments Description

Mcasp_IOCTL_CNTRL_AMUTE Uint32 * Writes the supplied Uint32
value into AMUTE register of
McASP peripheral.

Mcasp_IOCTL_STOP_PORT None Stops the
transmission/reception. The
current IO request in the QUE
is completed.

Mcasp_ICOTL_START_PORT None Re-Starts the transmission /
reception. When there are no
pending IO requests, the clocks
are stopped and re-started.

Mcasp_IOCTL_CTRL_MODIFY
_LOOPJOB

Mcasp_ChanPar
ams *

Used to modify the existing
know data pattern. Parameters
userLoopJobBuffer and
userLoopJobLength are used.

Mcasp_IOCTL_CTRL_MUTE_O
N

None Applicable to Transmit channel
only. The current IO request is
completed and MUTE Data pattern
is sent out

Mcasp_
IOCTL_CTRL_MUTE_OFF

None Applicable to Transmit channel
only which is muted. Configures
to play the next pending IO
request, else configures to
play the LoopJobBuffers.

Mcasp_IOCTL_PAUSE None Pause the Mcasp channel
operations

Mcasp_IOCTL_RESUME None Resume the Mcasp channel
operations

Mcasp_IOCTL_CHAN_RESET None De-activates the
transmission/reception and
returns all the queued request
with status of the IO request
set as FLUSHED/ABORTED

Mcasp_IOCTL_CNTRL_SET_F
ORMAT_CHAN

Mcasp_HwSetup
Data *

Re-Configures the channel with
new configurations specified.
Takes no effect on the pending
/ current IO request.

Page 57 of 87

BIOS PSP DA830 User Guide

PSP_MCASP_CNTRL_GET_FOR
MAT_CHAN

Mcasp_HwSetup
Data *

Return the current channel
configurations

Mcasp_IOCTL_DEVICE_RESE
T

None Icotl command to reset the
Mcasp device

Mcasp_ IOCTL_QUERY_MUTE Uint32 * Ioctl command to query the
current settings of the AMUTE
register.

Mcasp_
IOCTL_SET_DIT_MODE

Uint32 * Icotl command to set the DIT
mode of operation

Mcasp_IOCTL_CHAN_TIMEDO
UT

None Ioctl command to handle the
channel timeout condition.

Mcasp_IOCTL_ABORT None This IOCTL aborts all the
pending request of the channel
and stops the state machine.
The EDMA transfer is also
stopped.

Mcasp_IOCTL_SET_DLB_MOD
E

None This command is used to set the
McASP in to the loopback mode.

Mcasp_IOCTL_CNTRL_SET_G
BL_REGS

Mcasp_HwSetup
*

Command to set the global
control registers

7.12 Use of McASP driver through Stream APIs
Following sections explain the use of parameters of Stream calls in the context of
McASP driver. Note that no effort is made to document the use of Stream calls; any
McASP specific requirements are covered below.

7.12.1 Stream_create

Parameter
Number

Parameter Specifics to McASP

1 Device Name string Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through CFG or Mcasp_create ()

2 IO Type Should be “DriverTypes_INPUT” when
McASP requires to received data and
“DriverTypes_OUTPUT” when McASP
requires to transmit

3 Stream_Params * Parameters required for the creation of the
stream (e.g. channel parameters)

4 Error_Block * Pointer to the application supplied error
block

7.12.2 Stream_control

Page 58 of 87

BIOS PSP DA830 User Guide

Parameter
Number

Parameter Specifics to McASP

1 Stream_handle Handle returned by
stream_create

2 Command IOCTL command defined by Mcasp
driver

3 Arguments Misc arguments if required by the
command

4 Error_Block * Pointer to the Application supplied
error block

7.12.3 Stream_write/Read

Parameter
Number

Parameter Specifics to McASP

1 channel Handle Handle returned by
Stream_create

3 Pointer to buffer Should be pointer to variable of
type Mcasp_PktAddrPayload OR
Uint32 * that holds the audio
data.

4 Size Size of the transaction

5 Error_Block * Pointer to the Application supplied
error block

7.12.4 Mcasp_create

Parameter
Number

Parameter Specifics to McASP

1 Mcasp_params * Pointer to the Mcasp_params
structure required for the Driver
creation

7.13 Timeline of Frame Sync, High Clock and or Bit Clock generation
The behavior of McASP drivers is better explained under these two sections.

7.13.1 McASP sourcing Frame Sync, High clock and or Bit Clock

On successful creation of McASP device driver, the Frame Sync, Bit Clock and High
Clock are started. In EVM designs such as DA830, the High Clock is fed into On board
DAC/ADC (Such as AIC31). Applications are expected to create the driver first, (after
recommended delay) applications could program the DACs.

7.13.2 McASP sinking Frame Sync, High clock and or Bit Clock

When McASP is sinking the Frame Sync, Bit Clock and or High Clock, applications
should ensure that clocks are being fed into McASP before creating the device driver.

Page 59 of 87

BIOS PSP DA830 User Guide

Failing which the McASP will not pull transmit/reception section out of re-set.
Effectively the driver creation would fail.

7.14 Porting Guide
This section describes the major changes that would be required to port the McASP
driver from DS/BIOS™ operating system to a different operating system.

The McASP Device Driver is based upon the DSP BIOS IDriver framework. The driver
is tightly coupled with the DSP BIOS operating system

7.15 Sources that need re-targeting

7.15.1 SoC level changes

When the driver has to adapt to SoC level changes the two files Mcasp.xs (Module
Script File) and the SoC script file soc.xs need to be updated with the changes.

7.15.2 EVM level changes

None

7.16 EDMA3 Dependency
When the MCASP driver is configured in EDMA mode (compile time configuration is
needed) MCASP driver relies on EDMA3 LLD driver to move data from/to application
buffers to peripheral; Please note that EDMA3 LLD driver would not be part of this
release. Please ensure that current PSP release is compliant with version of EDMA3
driver being used from the system requirements section of this document.

7.16.1 Used Paramset of EDMA 3
McASP driver uses TWO paramsets of EDMA3; if there are no paramsets are available the
McASP driver creation would fail. These paramsets are used through the life time of McASP
driver.

7.17 How to support “NEW” data format
If a custom data format is to be supported, one would require to follow these steps.

 Add an enumeration in Mcasp_BufferFormats defined in Mcasp.xdc

 Update the function mcaspValidateBufferConfig() implemented in Mcasp.c
to recognize this new data format.

 Update the function mcaspGetIndicesSyncType()implemented in
mcasp_edma.c to provide the EDMA 3 indices required to configure EDMA3.

7.18 Known Issues
Please refer to the top level release notes that came with this release.

7.19 Limitations
Please refer to the top level release notes that came with this release.

Page 60 of 87

BIOS PSP DA830 User Guide

7.20 Mcasp DIT Sample application

7.20.1.1 Description:

This sample demonstrates the use of the Mcasp driver in DIT mode. Mcasp driver
supports only DMA mode of operation. Also note that the Mcasp driver application
also supports only transmission in DIT mode.

The Mcasp driver along with the required component modules are configured
statically in mcaspDitSample.cfg file. The required task for the audio play and the
memory for the heap are also created here.

The mcaspDitSample.cfg file contains the remaining BIOS configuration like the
configuration of the event combiner etc. This helps to map the Mcasp events to the
CPU interrupts.

The main () function configures the PINMUX and uses the Psc module to enable the
Mcasp peripheral.

The Audio_echo_Task () task exercises the Mcasp driver. It uses Stream APIS to
create mcasp driver channels and also to perform the IO operations.

7.20.1.2 Build:

 This sample can be built using the CCS4 interface.

IMPORTANT NOTE: The mcaspDitSample project contains the references to
%EDMA3LLD_BIOS6_INSTALLDIR% environment variable and links with edma3
libraries. This is required because audio driver by default requires that the EDMA be
present.

There is also facility for users to compile the project using the command line. The file
package.bld takes care of the necessary steps to compile the project from command
line.

Please refer to the “Integration Guide” section for more details about building the
project.

7.20.1.3 Setup:

You need an “audio board” to be connected to the evmDA830. The DIT OUT port
should be connected to the IN port of the “Flying cow” (a DIT data receiver) device.
The OUT port of the “Flying cow” should be connected to the Headphones
(speakers).

7.20.1.4 Output:

When the sample is run. A sine tone should be heard at the speaker continuously

Page 61 of 87

BIOS PSP DA830 User Guide

8 Audio driver

8.1 Introduction
This document is the reference guide for the device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by Stream
layer, to transmit and receive serial data. The following sections describe in detail,
procedures to use this driver, configure among others… It is recommended to go
through the sample application to get a feel of initializing and using the Audio driver

8.1.1 Key Features

 Multi-instanceable and re-entrant driver

 Each instance can be used to configure a complete receive and transmit
section of an audio configuration consisting of an audio device and multiple
audio codecs

8.2 Installation
The Audio device driver is a part of PSP package for DA830 platform and would be
installed as part of whole package installation. For high level design information
please refer to the driver architecture guide that came with this package(available at
<ID>\ti\psp\platforms\evmDA830\audio\docs)

8.2.1 Audio Component folder

On installation of PSP package for DA830, the Audio driver can be found at <ID>\
ti\psp\platforms\evmDA830\audio

As show above the audio folder contains sub-folder, contents of which are described
below.

 audio - The audio folder is the place holder for the entire Audio driver,
documents and the build configuration files. Audio driver is implemented as
IDriver under DSP/BIOS™ operating system. Stream defined APIs could be
used to interface to Audio driver. This folder contains the build configuration
file(package.bld),the Audio module specification file (Audio.xdc),the module
script file (Audio.xs) and the miscellaneous files required for compiling the
Audio library.

 docs – Holds Audio driver’s architecture. Please note that the API reference
would be found as a part of cdoc help (<install dir>\packages\docs\cdoc\
index.html).

 src – Place holder for Audio driver’s source code.

8.2.2 Build Options

Audio device driver will be built with “whole_program_debug” mode. When built
successfully the respective library will be available at
<ID>\ti\psp\platforms\evmDA830\lib\ < ti.psp.platforms.evmDA830.audio.a674>

8.3 Features
This section details the features provided by audio driver and how to use them in
detail.

Page 62 of 87

BIOS PSP DA830 User Guide

8.3.1 Multi-Instance

The Audio driver can operate on all the instance of Audio configurations available on
DA830. Different instances are specified during driver creation time. Supported
instance are 0 through 2 with device ID 0 through 2 respectively.

These instances could be operated simultaneously with configurations supported by
Audio driver.

The device ID could be specified using the instNum field of structure Audio_Params.
There are two ways in which a new instance of the Audio driver can be created.

1. Static creation – static creation of the driver is done in the “cfg” file of the
application. The creation happens at compile time.

2. Dynamic creation – Dynamic creation of driver is done in the application source
files and the creation happens at runtime.

(i.e. Audio_Params.instNum = 0x0, Auido_Params.instNum = 0x1, so on…)

8.3.2 Each Instance as Transmitter and / or receiver

Each Audio interface driver instance can be used for simultaneous transmit and
receive operation. This could be achieved by opening a stream Channel as an INPUT
channel and opening a stream Channel as an OUTPUT channel. The type of Channel
is specified while creating the channel (using Stream_create ()specify
“DriverTypes_OUTPUT” or “DriverTypes_INPUT”). The configuration parameters
are explained in the sections to follow.

8.4 Configurations
Following tables document some of the configurable parameter of Audio. Please refer
to Audio.h (Audio.xdc) for complete configurations and explanations.

8.4.1 Audio_Params

This structure defines the device configurations, expected to supply while creating
the driver instance. This is provided when driver channels are created (e.g.
stream_create).

Members Description

instNum Instance number of the driver.

adDevType Audio device to be used in the configuration
(Mcasp/Mcbsp)

adDevName Name of the audio device driver in the driver table

acNumCodecs Number of codecs in the current audio configuration

acDevname Name of the audio codec device in the driver table

Apart from the instance parameters described above one can/should configure the modules for features.
For example, “paramCheckEnable” can be configured to enable or disable the checking of the input
parameters in a function.

8.4.2 Audio_ChannelConfig

Applications could use this structure to configure the channel specific configurations
required by the individual channels.

Page 63 of 87

BIOS PSP DA830 User Guide

Members Description
chanParam Pointer to the channel structure needed by the audio device.

(This structure needs to be identified by the device in use in
the current configuration).

acChannelConfig The structure holding the audio codec driver’s channel
parameters.

8.5 Use of Audio driver through Stream APIs
Following sections explain the use of parameters of Stream calls in the context of
Audio driver. Note that no effort is made to document the use of Stream calls; any
Audio specific requirements are covered below.

8.5.1 Stream_create

Parameter
Number

Parameter Specifics to Audio

1 Device Name string Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through CFG or Audio_create ()

2 IO Type Should be “DriverTypes_INPUT” when Audio
requires to received data and
“DriverTypes_OUTPUT” when Audio requires
to create a transmit channel.

3 Stream_Params * Parameters required for the creation of the
stream (e.g. channel parameters)

4 Error_Block * Pointer to the application supplied error
block

8.5.2 Stream_control

Parameter
Number

Parameter Specifics to Audio

1 Stream_handle Handle returned by
Stream_create

2 Command IOCTL command defined by device
driver to which the command is
intented.

3 Audio_ IoctlParam * Pointer to the structure containing
the information about the device
to which the command is intended
and also the extra information
required in case of certain IOCTL
commands.

4 Error_Block * Pointer to the Application supplied

Page 64 of 87

BIOS PSP DA830 User Guide

error block

8.5.3 Stream_write/read

Parameter
Number

Parameter Specifics to Audio

1 Channel Handle Handle returned by
Stream_create

3 Pointer to buffer Should be pointer to variable of
type that holds the data to be
transmitted.

4 Size Size of the transaction

5 Error_Block * Pointer to the Application supplied
error block

8.5.4 Audio_create

Parameter
Number

Parameter Specifics to Audio

1 Audio_params * Pointer to the Audio_params
structure required for the Driver
creation

8.6 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the IOCTL defined in Audio.h(Audio.xdc).

Command Arguments Description

Audio_IOCTL_SAMPLE_RATE None Configures the sample rate for
the entire audio
configuration(both the audio
device and the audio codec)

8.7 Sources that need re-targeting

8.7.1 SoC level changes

When the driver has to adapt to SoC level changes the two files Audio.xs (Module
Script File) and the SoC script file soc.xs need to be updated with the changes.

8.7.2 EVM level changes

When the platform/EVM changes, the platform.xs file needs to be updated, with
information relevant to that platform

Page 65 of 87

BIOS PSP DA830 User Guide

8.8 EDMA3 Dependency
The Audio driver does not depend on the EDMA3 LLD driver directly. But, the
underlying audio driver might be dependent on the EDMA driver.

8.9 Known Issues
Please refer to the top level release notes that came with this release.

8.10 Limitations
Please refer to the top level release notes that came with this release.

8.11 Audio Sample application

8.11.1.1 Description:

This sample demonstrates the use of the audio driver in DMA mode only.

The Audio driver along with the required component modules are configured
statically in audioSample.cfg file. The required task for the audio play and the
memory for the heap are also created here.

The audioSample.cfg file contains the remaining BIOS configuration like the
configuration of the event combiner etc. This helps to map the Mcasp events to the
CPU interrupts.

The main () function configures the PINMUX and uses the Psc module to enable the
Mcasp peripheral.

The Audio_echo_task () task exercises the Audio driver. It uses Stream APIS to
create audio driver channels and also to perform the IO operations.

8.11.1.2 Build:

 This sample can be built using the CCS4 interface.

IMPORTANT NOTE: The audioSample project contains the references to
%EDMA3LLD_BIOS6_INSTALLDIR% environment variable and links with edma3
libraries. This is required because audio driver by default requires that the EDMA be
present.

There is also facility for users to compile the project using the command line. The file
package.bld takes care of the necessary steps to compile the project from command
line.

Please refer to the “Integration Guide” section for more details about building the
project.

8.11.1.3 Setup:

You need to connect a LINE IN cable to the line-in port available on the EVM. An
audio source (like an mp3 player) needs to be connected to the other end of the
LINE IN cable. Connect a speaker to the Line-out port or alternatively you may even
connect a headphone to the HPOUT port available on the EVM.

8.11.1.4 Output:

When the sample is run and the audio is input to the line-in cable, the audio will be
in loop back and output through the connected speaker or headphones

Page 66 of 87

BIOS PSP DA830 User Guide

9 AIC31 CODEC driver

9.1 Introduction
This document is the reference guide for the device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by Stream
layer, to configure the transmit and receive sections. The following sections describe
in detail, procedures to use this driver, configure among others… It is recommended
to go through the provided sample application to get a feel of initializing and using
the Aic31 driver

9.1.1 Key Features

 Multi-instanceable and re-entrant driver

 Independent configuration of transmit and receive sections

 Interfaces to control the codec specific features like sample rate etc

 Appropriate interfaces to configure the initial values of gain, sample rate etc

9.2 Installation
The Aic31 device driver is a part of PSP package for DA830 platform and would be
installed as part of whole package installation. For high level design information
please refer to the driver architecture guide that came with this package (available at
<ID>\ti\psp\platform\evmDA830\codec\docs)

9.2.1 Codec Component folder

On installation of PSP package for DA830, the codec driver can be found at <ID>\
ti\psp\platforms\evmDA830\codec

As show above the Codec folder contains sub-folder, contents of which are described
below.

 codec - The codec folder is the place holder for the entire codec driver,
documents and the build configuration files. Codec driver is implemented as
IDriver under DSP/BIOS™ operating system. Stream defined APIs could be
used to interface to codec driver. This folder contains the build configuration
file(package.bld),the Codec module specification file (Aic31.xdc),the module
script file (Aic31.xs) and the miscellaneous files required for compiling the
Aic31 codec driver library.

 docs – Holds Aic31 driver’s architecture. Please note that the API reference
would be found as a part of cdoc help (<install dir>\packages\docs\cdoc\
index.html).

 Aic31_src – Place holder for Aic31 driver’s source code.

9.2.2 Build Options

Aic31 codec device driver will be built with “whole_program_debug” mode. When
built successfully the respective library will be available at

Page 67 of 87

BIOS PSP DA830 User Guide

<ID>\ti\psp\platforms\evmDA830\codec\lib\
<ti.psp.platform.evmDA830.Aic31.a674>

9.3 Features
This section details the features of Aic31 codec driver and how to use them in detail.

9.3.1 Multi-Instance

The Aic31 codec driver can operate on all the instances of Aic31 on DA830 board.
Different instances are specified during driver creation time. Supported instance
currently are 0 with instance id 0.

These instances could be operated simultaneously with configurations supported by
AIc31 driver.

The device ID could be specified using the instNum field of structure Aic31_Params.
There are two ways in which a new instance of the Aic31 driver can be created.

1. Static creation – static creation of the driver is done in the “cfg” file of the
application. The creation happens at compile time.

2. Dynamic creation – Dynamic creation of driver is done in the application source
files and the creation happens at runtime.

(i.e. Aic31_Params.instNum = 0x0)

9.3.2 Independent configuration of transmit and receive sections

Aic31 driver can be used to configure the transmitter and receiver section of the
Aic31 codec independently. Each of the sections can be configured independently by
opening a stream Channel as an INPUT channel and opening a stream Channel as an
OUTPUT channel. The type of Channel is specified while creating the channel (using
Stream_create ()specify “DriverTypes_OUTPUT” or “DriverTypes_INPUT”).
The configuration parameters are explained in the sections to follow.

9.3.3 Interfaces to control the codec

The Aic31 driver provides the interface to control the specific features of the codec
through a well defined set of IOCTL commands.The IOCTL commands supported are
listed in the section 9.5

9.4 Configurations
Following tables document some of the configurable parameter of AIC31. Please
refer to Aic31.h (Aic31.xdc) for complete configurations and explanations.

9.4.1 Aic31_Params

This structure defines the device configurations, expected to supply while creating
the driver. This is provided when driver channels are created (e.g. stream_create).

Members Description

acType Type of the codec

instNum Instance number of the codec to use.

acControlBusType Control bus to be used by the AIC for configuring of

Page 68 of 87

BIOS PSP DA830 User Guide

the codec(I2C/SPI)

acOpMode Operational mode of the codec(Master/slave)

acSerialDataType Data transfer format(DSP/TDM/I2c etc)

acSlotWidth Slot width of the data

acDataPath Mode to configure the codec.

isRxTxClockIndependent is the clocks for the RX and TX sections independent

Apart from the instance parameters described above one can/should configure the modules for features.
For example, “paramCheckEnable” can be configured to enable/disable the checking of the input
parameters in the functions. Other options can be seen in module wide configs in AIc31.xdc file.

9.4.2 Aic31_ChannelConfig

Applications could use this structure to configure the channel specific configurations.

Members Description

samplingRate Audio data sampling rate to be used

chanGain The initial gain to be programmed(To be specified in percent)

bitClockFreq Bit clock frequency to be used

numSlots Number of slots for the audio data

9.4.3 Codec Configuring

The codec usually is configured using an I2C bus or a SPI bus. Hence the codec
internally uses an I2c or SPI driver to configure the codec. The codec uses only the
interrupt mode of the driver to configure the codecs. It also uses a call back function
to synchronize each access done to/with the control bus.

9.5 Control Commands
Following table describes some of important the control commands, for a
comprehensive list please refer the ICOTL defined in ICodec.h (ICodec.xdc).

Command Arguments Description

Aic31_AC_IOCTL_MUTE_ON None Configures the mute for the
codec

Aic31_AC_IOCTL_MUTE_OFF None Disables the

Aic31_AC_IOCTL_SET_VOLU
ME

UInt32 * Set the required volume for the
codec

Aic31_AC_IOCTL_SET_LOOP
BACK

None Not supported

Aic31_AC_IOCTL_SET_SAMP
LERATE

UInt32 * Gets the current sample rate
for the audio codec

Aic31_AC_IOCTL_REG_WRIT Aic31_RegData Writes to the specified

Page 69 of 87

BIOS PSP DA830 User Guide

E * register

Aic31_AC_IOCTL_REG_READ Aic31_RegData
*

Reads from the specified
register

Aic31_AC_IOCTL_REG_WRIT
E_MULTIPLE

Aic31_RegData
*

Writes to the specified number
of registers

Aic31_AC_IOCTL_REG_READ
_MULTIPLE

Aic31_RegData
*

Reads from the specified number
of registers

Aic31_AC_IOCTL_SELECT_O
UTPUT_SOURCE

Aic31_OutputD
est

The output audio port can be
specified(HPOUT,LINOUT or both)

AC_IOCTL_SELECT_INPUT_S
OURCE

Aic31_InputDe
st

The input audio port selection
can be specified(MIC IN or LINE
IN)

9.6 Use of AIC31 driver through Stream APIs
Following sections explain the use of parameters of Stream calls in the context of
AIC31 driver. Note that no effort is made to document the use of Stream calls; any
AIC31 specific requirements are covered below.

9.6.1 Stream_create

Parameter
Number

Parameter Specifics to AIC31

1 Device Name string Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through CFG or Aic31_create ()

2 IO Type Should be “DriverTypes_INPUT” when
AIC31 requires to configure the receive
section and “DriverTypes_OUTPUT” when
AIC31 requires to configure transmit section.

3 Stream_Params * Parameters required for the creation of the
stream (e.g. channel parameters)

4 Error_Block * Pointer to the application supplied error
block

9.6.2 Stream_control

Parameter
Number

Parameter Specifics to AIC31

1 Stream_handle Handle returned by
Stream_create

2 Command IOCTL command defined by Aic31
driver

Page 70 of 87

BIOS PSP DA830 User Guide

3 Arguments Misc arguments if required by the
command

4 Error_Block * Pointer to the Application supplied
error block

9.6.3 Aic31_create

Parameter
Number

Parameter Specifics to AIC31

1 Aic31_params * Pointer to the Aic31_params
structure required for the Driver
creation

9.7 Sources that need re-targeting

9.7.1 SoC level changes

When the driver has to adapt to SoC level changes the two files Aic31.xs (Module
Script File) and the SoC script file soc.xs need to be updated with the changes.

9.7.2 EVM level changes

When the platform/EVM changes, then platform.xs needs to updated with the
relevant information

9.8 EDMA3 Dependency
Aic31 driver does not use the EDMA mode of transfer. It does not handle any kind of
data transfer requests.

9.9 Known Issues
Please refer to the top level release notes that came with this release.

9.10 Limitations
Please refer to the top level release notes that came with this release.

Page 71 of 87

BIOS PSP DA830 User Guide

10 LCDC Raster Controller Driver

10.1 Introduction
This document is the reference guide for the device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by Stream
layer, to transmit and receive serial data. The following sections describe in detail,
procedures to use this driver, configure among others…. It is recommended to go
through the sample application to get a feel of initializing and using the LCDC Raster
driver

10.1.1 Key Features

 Multi-instance able, asynchronous and re-entrant driver

 Each instance operates as a raster controller instance of the LCDC

 Supports multiple frame sizes – only limited by the hardware

10.1.2 References

1 SPRUFM0 DA830 LCDC User’s Guide

10.2 Installation
The LCDC Raster device driver is a part of PSP package for DA830 platform and
would be installed as part of whole package installation. For high level design
information please refer to the driver architecture guide that came with this package
(available at <ID>\ti\psp\lcdcrasater\docs)

10.2.1 LCDC Raster Component folder

On installation of PSP package for DA830, the LCDC Raster Controller driver can be
found at <ID>\ ti\psp\lcdcraster\

As show above the LCDC Raster contains sub-folder, contents of which are described
below.

 lcdcraster - The lcdcraster folder is the place holder for the entire lcdcraster
driver, documents and the build configuration files. LCDC Raster driver is
implemented as IDriver under DSP/BIOS™ operating system. Stream defined
APIs could be used to interface to LCDC Raster driver. This folder contains the
build configuration file (package.bld),the LCDC Raster module specification file
(Raster.xdc),the module configuration file (Raster.xs) and the miscellaneous
files required for compiling the LCDC Raster library.

 docs – Holds LCDC Raster driver’s architecture. Please note that the API
reference would be found as a part of cdoc help
(<ID>\packages\docs\cdoc\index.html)

 src – Place holder for LCDC Raster driver’s source code.

Page 72 of 87

BIOS PSP DA830 User Guide

10.2.2 Build Options

LCDC Raster device driver will be built with “whole_program_debug” mode. When
built successfully the respective library will be available at
<ID>\ti\psp\lcdcraster\lib\< ti.psp.lcdcraster.a674>

10.3 Features
This section details the features of LCDC Raster (henceforth also referred to as
Raster) and how to use them in detail.

10.3.1 Multi-Instance

The Raster driver can operate on all the instance of LCDC Raster Controller on
DA830. Different instances are specified during driver creation time. Supported
instance are 0 only with device ID 0 only.

This instance could be operated with configurations supported by Raster driver.

The device ID could be specified using the instNum field of structure Raster_Params.
There are two ways in which a new instance of the Raster driver can be created.

3. Static creation – static creation of the driver is done in the “cfg” file of the
application. The creation happens at compile time.

4. Dynamic creation – Dynamic creation of driver is done in the application source
files and the creation happens at runtime.

(i.e. Raster_Params.instNum = 0x0)

10.3.2 I/O using raster driver

The Raster driver can operate only in output mode. This is because, the LCDC Raster
controller can only output image data onto the Raster LCD displays, using the
concept of frame buffers. There is nothing to be read. Hence, the driver only
supports a “write” channel creation.

10.4 Configurations
Following tables document some of the configurable parameter of LCDC raster
device. Please refer to Raster.h (Raster.xdc) for complete configurations and
explanations.

10.4.1 Device Parameters

This structure defines the device configurations, expected to supply while
instantiating the driver (formerly known as devparams)

Raster_Params

Serial
Number

Parameter Description

1 instNum The hardware instance
number

2 devConf
The device configuration
provided as a DeviceConf

structure

10.4.1.1 DeviceConf

This structure defines the LCDC device setting configuration.

Page 73 of 87

BIOS PSP DA830 User Guide

Serial
Number

Parameter Description

1 clkFreqHz The output pixel clock
frequency desired to be set

2 opMode Mode of operation

3 hwiNum
The HWI event number

assigned to the group the
LCDC CPU event belongs to

4 dma

Configuration for the DMA
controller internal to LCDC.

This is provided as a
DmaConfig structure

Note: The only mode of operation supported by the LCDC raster driver is
DMAINTERRUPT mode. This utilizes the independent DMA controller that the LCDC
controller is provided with. This DMA is different from the EDMA peripheral of the
DA830. This DMA takes care of transferring the data in terms of frame buffer from
external RAM to the display. This DMA can be configured as noted above in via
DeviceConf structure and as described below via DmaConfig structure. For further
details refer to DA830 LCDC User’s Guide.

10.4.1.2 Internal DMA Configuration

This structure defines the parameters to configure the DMA operation, internal to the
LCDC controller.

DmaConfig

Serial
Number

Parameter Description

1 fbMode

The device should operate
in single frame buffer mode

or double frame buffer
mode (ping-pong mode)

2 burstSize
The chunks of 4-bytes in
which the DMA should

transfer the data

3 bigEndian The operation is big endian
mode or little India mode

4 eofInt To enable End Of Frame
interrupts

Note: The driver supports only little endian mode of operation. Hence big-Endian
should be set to false.

10.4.2 Channel Parameters

The channel parameters configure the raster controller operation and are described
below.

ChanParams

Serial Parameter Description

Page 74 of 87

BIOS PSP DA830 User Guide

Number

1 Controller

The controller type to be
configured. This should be

configured as a raster
controller

2 chanConf
The Raster controller

configuration, given as
RasterConf

3 heapHandle

The heap handle to be used
if the driver was to allocate
the frame buffer memory on

application’s behalf

Note:

The allocation of memory for the frame buffer is purely on application’s behalf. This
happens, when the application asks the driver to allocate memory for the frame
buffers it requires, via IOCTL calls. In such cases, dynamic allocation happens from
heap. The heap from which the allocation should be made, should be defined by the
application. For this, the application should create a heap instance and pass the
handle to this heap via heapHandle. In case the heapHandle is NULL and the
application requests for allocation, then the driver tries to allocate the frame buffer
from the default heap of the system. However, the application may choose not to
allocate the frame buffers via driver and instead just pass the buffers it has
populated to the driver. The driver shall simple processes these buffers and no
dynamic allocation happens in the driver.

10.4.2.1 Raster controller configuration

RasterConf

Serial
Number

Parameter Description

1 outputFormat Right aligned or left aligned,
TFT or STN data format

2 intface The physical data interface
with the display

3 panel
Whether STN or TFT type of
panel. For raster It should

be TFT

4 display If monochrome or colour
display is interfaced

5 bitsPP The number of bits per pixel

6 fbContent If the frame buffer contains
frame data, pallete, or both

7 dataOrder
The order of data is

arranged is ‘LSB to MSB’ or
‘MSB to LSB’

8 nibbleMode If the nibble mode should
be enabled. This is true for

Page 75 of 87

BIOS PSP DA830 User Guide

bits per pixel less than 8
bits

9 subPanel The configuration required
for sub-panel, when enabled

10 timing2
The configuration required
for SYNC signals and their

polarity control

11 fifoDmaDelay

The delay after which the
raster should generate DMA
request to the internal DMA

controller

12 intMask Interrupts which need to be
enabled

13 hFP
Horizontal front porch

length in terms of number
of pixel clock cycles

14 hBP
Horizontal back porch

length in terms of number
of pixel clock cycles

15 hSPW
Horizontal sync pulse width
in terms of number of pixel

clock cycles

16 pPL Number of pixels per line

18 vFP
vertical front porch length in

terms of number of line
clock cycles

19 vBP
vertical back porch length in

terms of number of line
clock cycles

20 vSPW
vertical sync pulse width in

terms of number of line
clock cycles

21 lPP Number of lines per panel

10.5 Control Commands
Following some of the important control commands for the raster controller driver

Command Arguments Description

Raster_IOCTL_GET_DEVICE_CONF Pointer to DeviceConf
structure

To get the current
device configuration

Raster_IOCTL_GET_RASTER_CONF Pointer to RasterConf
structure

To get the current raster
configuration

Raster_IOCTL_GET_RASTER_SUBPANEL_CONF Pointer to SubPanel
structure

To get the current raster
sub panel configuration

Page 76 of 87

BIOS PSP DA830 User Guide

Raster_IOCTL_SET_RASTER_SUBPANEL_EN Pointer to boolean
variable

If boolean is true then
enables subpanel, else
disables subpanel

Raster_IOCTL_SET_RASTER_SUBPANEL_POS Pointer to SubpanelPos
enum variable

To configure the
position of the raster
subpanel

Raster_IOCTL_SET_RASTER_SUBPANEL_LPPT Pointer to interger
variable

To configure the number
of lines to be refreshed
in the subPanel

Raster_IOCTL_SET_RASTER_SUBPANEL_DATA Pointer to interger
variable

To configure the default
pixel data outside the
subPanel

Raster_IOCTL_GET_DMA_CONF Pointer to DmaConfig
structure

To get the current DMA
configuration setting

Raster_IOCTL_SET_DMA_FB_MODE Pointer to DmaFb enum
variable

To set the frame buffer
mode for the

Raster_IOCTL_SET_DMA_BURST_SIZE Pointer to the
DmaBurstSize enum

To set the DMA burst
size

Raster_IOCTL_SET_DMA_EOF_INT Pointer to Boolean
variable

To enable/disable the
end-of-frame interrupt

Raster_IOCTL_ADD_RASTER_EVENT Pointer to Integer
variable containing the
interrupt mask

To enable a specific
event interrupt enable

Raster_IOCTL_REM_RASTER_EVENT Pointer to integet
variable containing
interrupt mask

To disable a specific
event interrupt disable

Raster_IOCTL_GET_EVENT_STAT Pointer to EvenStat
structure

To get the current event
statistics

Raster_IOCTL_CLEAR_EVENT_STAT None Clears the current event
statistics

Raster_IOCTL_RASTER_ENABLE None To enable the raster
controller

Raster_IOCTL_RASTER_DISABLE None To disable the raster
controller

Raster_IOCTL_GET_DEVICE_VERSION Pointer to Interger
variable

To get the current
version of the controller

Raster_IOCTL_ALLOC_FB Pointer to a frame
buffer pointer

To allocate a frame
buffer on application’s
behalf

Raster_IOCTL_FREE_FB Pointer to a frame
buffer

To de-allocate a frame
buffer in application’s
behalf

Page 77 of 87

BIOS PSP DA830 User Guide

10.6 Use of RASTER driver through Stream APIs

10.6.1 Stream_create

Parameter
Number

Parameter Specifics to Raster

1 Device Name string Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through CFG or Raster_create ()

2 IO Type Should be “DriverTypes_OUTPUT”

3 Stream_Params * Parameters required for the creation of the
stream (e.g. channel parameters)

4 Error_Block * Pointer to the application supplied error
block

10.6.2 Stream_control

Parameter
Number

Parameter Specifics to Raster

1 Stream_handle Handle returned by
Stream_create

2 Command IOCTL command defined by
RASTER driver

3 Arguments Misc arguments if required by the
command

4 Error_Block * Pointer to the Application supplied
error block

10.6.3 Stream_issue/reclaim

Parameter
Number

Parameter Specifics to Raster

1 Channel Handle Handle returned by
Stream_create

3 Pointer to buffer Should be pointer to framebuffer

Page 78 of 87

BIOS PSP DA830 User Guide

of type

4 Size Size of the transaction

5 Error_Block * Pointer to the Application supplied
error block

10.6.4 Raster_create

Parameter
Number

Parameter Specifics to Raster

1 Raster_params * Pointer to the Raster_params
structure required for the Driver
creation

10.7 Sources that need re-targeting

10.7.1 SoC level changes

When the driver has to adapt to SoC level changes the two files Raster.xs (Module
Script File) and the SoC script file soc.xs need to be updated with the changes.

10.7.2 EVM level changes

None

10.8 EDMA3 Dependency
The raster controller driver does not rely on the EDMA LLD driver. The raster
controller interacts with an independent DMA controller provided to it and does not
use any EDMA3 paramsets.

10.9 Known Issues
Please refer to the top level release notes that came with this release.

10.10 Limitations
 The LCDC controller on DA830 has two modes of operation. One is the Raster

mode and the other is the LIDD mode. However, only one mode can be
operation can be chosen at a time. Following this constraint, the drivers for
these two modes have been separated out and the each mode has a different
driver/module , namely Raster and Lidd. Only one driver should be used at a
time.

For other limitations, please refer to the top level release notes that came with this
release.

Page 79 of 87

BIOS PSP DA830 User Guide

10.11 Raster Sample Application

10.11.1.1 Description:

This sample demonstrates the use of the LCDC Raster.

The LCDC Raster driver along with the required component modules are configured
statically in rasterSample.cfg file. It also instantiates the I2C driver to configure the
I2C GPIO expander on UI board, to configure it to select routing of signals the raster
display.

The rasterSample.cfg file contains the remaining BIOS configuration like the
configuration of the event combiner etc. This helps to map the LCDC events to the
CPU interrupts.

The main () function configures the PINMUX and uses the Psc module to enable the
LCDC peripheral. It creates a task ‘rasterSampleTask()’ to run the sample
application.

The rasterSampleTask() task exercises the Raster driver. It also, utilizes the I2C
driver to read/write to the I2C GPIO expander on the UI board to route the LCDC
signals to the display.

It uses Stream APIS to create I2C and LCDC Raster driver channels and also to
perform the IO operations.

10.11.1.2 Build:

 This sample can be built using the CCS4 interface.

IMPORTANT NOTE: The I2C driver contains EDMA references. and hence, user should
ensure that the EDMA package path is properly taken care of in the project.

There is also facility for users to compile the project using the command line. The file
package.bld takes care of the necessary steps to compile the project from command
line.

Please refer to the “Integration Guide” section for more details about building the
project.

10.11.1.3 Setup:

The sample does not need any special setup apart from plugging in the DA830 User
Interface module.

10.11.1.4 Output:

When the sample is run a baby image with a scrolling line on the image is displayed
on the raster display

Page 80 of 87

BIOS PSP DA830 User Guide

11 LCDC LIDD Controller Driver

11.1 Introduction
This document is the reference guide for the device driver which explains the
features and tips to use them.

DSP/BIOS applications use the driver typically through APIs provided by Stream
layer, to transmit and receive serial data. The following sections describe in detail,
procedures to use this driver, configure among others…. It is recommended to go
through the sample application to get a feel of initializing and using the LIDD driver

11.1.1 Key Features

 Multi-instance able, asynchronous and re-entrant driver

 Each instance operates as a LIDD controller instance of the LCDC

 Supports multiple display types

11.1.2 References

1 SPRUFM0 DA830 LCDC User’s Guide

11.2 Installation
The LCDC LIDD device driver is a part of PSP package for DA830 platform and would
be installed as part of whole package installation. For high level design information
please refer to the driver architecture guide that came with this package (available at
<ID>\ti\psp\lcdclidd\docs)

11.2.1 LCDC LIDD Component folder

On installation of PSP package for DA830, the LCDC LIDD Controller driver can be
found at <ID>\ ti\psp\lcdclidd\

As show above the LIDD folder contains sub-folder, contents of which are described
below.

 lcdclidd - The lcdclidd folder is the place holder for the entire lcdclidd driver,
documents and the build configuration files. LCDC LIDD driver is implemented
as IDriver under DSP/BIOS™ operating system. Stream defined APIs could be
used to interface to LCDC Raster driver. This folder contains the build
configuration file (package.bld),the LCDC LIDD module specification file
(Lidd.xdc),the module configuration file (Lidd.xs) and the miscellaneous files
required for compiling the LCDC LIDD library.

 docs – Holds LCDC LIDD driver’s architecture. Please note that the API
reference would be found as a part of cdoc help
(<ID>\packages\docs\cdoc\index.html)

 src – Place holder for LCDC LIDD driver’s source code.

Page 81 of 87

BIOS PSP DA830 User Guide

11.2.2 Build Options

LCDC LIDD device driver will be built with “whole_program_debug” mode. When built
successfully the respective library will be available at <ID>\ti\psp\lcdclidd\lib\<
ti.psp.lcdclidd.a674>

11.3 Features
This section details the features of LCDC LIDD (henceforth also referred to as LIDD)
and how to use them in detail.

11.3.1 Multi-Instance

The LIDD driver can operate on all the instance of LCDC LIDD Controller on DA830.
Different instances are specified during driver creation time. Supported instance are
0 only with device ID 0 only.

This instance could be operated with configurations supported by Raster driver.

The device ID could be specified using the instNum field of structure Lidd_Params.
There are two ways in which a new instance of the LIDD driver can be created.

5. Static creation – static creation of the driver is done in the “cfg” file of the
application. The creation happens at compile time.

6. Dynamic creation – Dynamic creation of driver is done in the application source
files and the creation happens at runtime.

(i.e. Lidd_Params.instNum = 0x0)

11.3.2 I/O using LIDD driver

The LIDD driver can operate only in output mode. This is because, the LCDC LIDD
controller can only output data onto the passive LCD displays. There is nothing to be
read. Hence, the driver only supports a “write” channel creation.

11.4 Configurations
Following tables document some of the configurable parameter of LCDC raster
device. Please refer to Lidd.h (Lidd.xdc) for complete configurations and
explanations.

11.4.1 Device Parameters

This structure defines the device configurations, expected to supply while
instantiating the driver (formerly known as devparams)

Raster_Params

Serial
Number

Parameter Description

1 instNum The hardware instance
number

2 devConf
The device configuration
provided as a DeviceConf

structure

11.4.1.1 DeviceConf

This structure defines the LCDC device setting configuration.

Serial Parameter Description

Page 82 of 87

BIOS PSP DA830 User Guide

Number

1 displayType Type of display interfaced

2 clkFreqHz MCLK frequency desired

3 hwiNum
The HWI event number

assigned to the group the
LCDC CPU event belongs to

4 funcSet
Function configuration for

character LCD display
interface

5 addressArray
Array of line start addresses

for each line incase of
character LCD

Note: Currently maximum of four line display is supported. The user needs to fill in
the addresses for all the lines even if using less than 4 lines. In this case, the user
can fill zero for the address for lines not used.

11.4.2 Channel Parameters

The channel parameters configure the raster controller operation and are described
below.

ChanParams

Serial
Number

Parameter Description

1 Controller

The controller type to be
configured. This should be

configured as a LIDD
controller

2 chanConf
The LIDD controller

configuration, given as
DisplayConf

11.4.2.1 Display Configuration configuration

DisplayConf

Serial
Number

Parameter Description

1 cs0Timing

Strobe signal timong
configuration for device
connected on CS0 chip

select

2 cs1Timing

Strobe signal timing
configuration for device

connected on the CS1 chip
select

Page 83 of 87

BIOS PSP DA830 User Guide

11.5 Control Commands
Following some of the important control commands for the raster controller driver

Command Arguments Description

IOCTL_CLEAR_SCREEN Pointer to ioctlCmdArg
type variable.

To clear the display
screen, connected on
chipSelect specified by
the ioctlCmdArg

IOCTL_CURSOR_HOME Pointer to ioctlCmdArg
type variable.

To set the cursor to
home position, for the
display connected on
the chipsel specified by
the ioctlCmdArg

IOCTL_SET_CURSOR_POSITION Pointer to
CursorPosition structure

To set the cursor to a
particular position in the
display

IOCTL_SET_DISPLAY_ON Pointer to ioctlCmdArg
type variable.

To turn the display on
for the chipsel specified
by the ioctlCmdArg

IOCTL_SET_DISPLAY_OFF Pointer to ioctlCmdArg
type variable.

To turn the display off
for, the chipsel specified
by the ioctlCmdArg

IOCTL_SET_BLINK_ON Pointer to ioctlCmdArg
type variable.

To turn the cursor blink
on for display, on the
chipsel specified by the
ioctlCmdArg

IOCTL_SET_BLINK_OFF Pointer to ioctlCmdArg
type variable.

To turn the cursor blink
off for display, on the
chipsel specified by the
ioctlCmdArg

IOCTL_SET_CURSOR_ON Pointer to ioctlCmdArg
type variable.

To show the cursor for
display, on the chipsel
specified by the
ioctlCmdArg

IOCTL_SET_CURSOR_OFF Pointer to ioctlCmdArg
type variable.

To not show the cursor
for display, on the
chipsel specified by the
ioctlCmdArg

IOCTL_SET_DISPLAY_SHIFT_ON Pointer to ioctlCmdArg
type variable.

To turn the display shift
on for display, on the
chipsel specified by the
ioctlCmdArg

IOCTL_SET_DISPLAY_SHIFT_OFF Pointer to ioctlCmdArg
type variable.

To turn the display shift
off for display, on the
chipsel specified by the

Page 84 of 87

BIOS PSP DA830 User Guide

ioctlCmdArg

IOCTL_CURSOR_MOVE_LEFT Pointer to ioctlCmdArg
type variable.variable
containing the interrupt
mask

To move the cursor left
display, on the chipsel
specified by the
ioctlCmdArg

IOCTL_CURSOR_MOVE_RIGHT Pointer to ioctlCmdArg
type variable.variable
containing the interrupt
mask

To move the cursor
right display, on the
chipsel specified by the
ioctlCmdArg

IOCTL_DISPLAY_MOVE_LEFT Pointer to ioctlCmdArg
type variable.variable
containing the interrupt
mask

To move the display
left, on the chipsel
specified by the
ioctlCmdArg

IOCTL_DISPLAY_MOVE_RIGHT Pointer to ioctlCmdArg
type variable.variable
containing the interrupt
mask

To move the display
right, on the chipsel
specified by the
ioctlCmdArg

IOCTL_COMMAND_REG_WRITE

Pointer to Integer type
variable

A generic IOCTL to write
a command word to the
Character display

11.6 Use of LIDD driver through Stream APIs

11.6.1 Stream_create

Parameter
Number

Parameter Specifics to Lidd

1 Device Name string Unique identifier used to identify this driver.
Please note the name should be same as
specified while creating the driver. (Either
through CFG or Lidd_create ()

2 IO Type Should be “DriverTypes_OUTPUT”

3 Stream_Params * Parameters required for the creation of the
stream (e.g. channel parameters)

4 Error_Block * Pointer to the application supplied error
block

11.6.2 Stream_control

Page 85 of 87

BIOS PSP DA830 User Guide

Parameter
Number

Parameter Specifics to Lidd

1 Stream_handle Handle returned by
Stream_create

2 Command IOCTL command defined by LIDD
driver

3 Arguments Misc arguments if required by the
command

4 Error_Block * Pointer to the Application supplied
error block

11.6.3 Stream_issue/reclaim

Parameter
Number

Parameter Specifics to Raster

1 Channel Handle Handle returned by
Stream_create

3 Pointer to buffer Should be pointer to a buffer of
data

4 Size Size of the transaction

5 Error_Block * Pointer to the Application supplied
error block

11.6.4 Lidd_create

Parameter
Number

Parameter Specifics to Raster

1 Lidd_params * Pointer to the Lidd_params
structure required for the Driver
creation

11.7 Sources that need re-targeting

11.7.1 SoC level changes

When the driver has to adapt to SoC level changes the two files Lidd.xs (Module
Script File) and the SoC script file soc.xs need to be updated with the changes.

11.7.2 EVM level changes

None

Page 86 of 87

BIOS PSP DA830 User Guide

11.8 EDMA3 Dependency
The LIDD controller driver does not rely on the EDMA LLD driver. The raster
controller interacts with an independent DMA controller provided to it and does not
use any EDMA3 paramsets.

11.9 Known Issues
Please refer to the top level release notes that came with this release.

11.10 Limitations
 The LCDC controller on DA830 has two modes of operation. One is the Raster

mode and the other is the LIDD mode. However, only one mode can be
operation can be chosen at a time. Following this constraint, the drivers for
these two modes have been separated out and the each mode has a different
driver/module, namely Raster and Lidd. Only one driver should be used at a
time.

For other limitations, please refer to the top level release notes that came with this
release.

11.11 LIDD Sample Application

11.11.1.1 Description

This sample demonstrates the use of the LCDC LIDD driver.

The LCDC LIDD driver along with the required component modules are configured
statically in liddSample.cfg file. It also instantiates the I2C driver to configure the
I2C GPIO expander on UI board, to configure it to select routing of signals the raster
display.

The liddSample.cfg file contains the remaining BIOS configuration like the
configuration of the event combiner etc. This helps to map the LCDC events to the
CPU interrupts.

The main () function configures the PINMUX and uses the Psc module to enable the
LCDC peripheral. It creates a task ‘liddSampleTask()’ to run the sample application.

The liddSampleTask() task exercises the LIDD driver. It also, utilizes the I2C driver
to read/write to the I2C GPIO expander on the UI board to route the LCDC signals to
the display.

It uses Stream APIS to create I2C and LCDC LIDD driver channels and also to
perform the IO operations.

11.11.1.2 Build:

 This sample can be built using the CCS4 interface.

IMPORTANT NOTE: The I2C driver contains EDMA references, and hence, user should
ensure that the EDMA package path is properly taken care of in the project.

Page 87 of 87

BIOS PSP DA830 User Guide

There is also facility for users to compile the project using the command line. The file
package.bld takes care of the necessary steps to compile the project from command
line.

Please refer to the “Integration Guide” section for more details about building the
project.

11.11.1.3 Setup:

 The Raster display should be removed from the DA830 Interface Module (UI
board)

 The HDM24216-H 24x2 character display should be plugged into J2 on the UI
board.

 The R55 potentiometer should be adjusted to provide sufficient voltage (4.5-
4.7V). To verify ensure this see that first line of display shows 24 squares
glowing brightly.

11.11.1.4 Output:

When the sample is run a Welcome scrolling message is displayed on the character
display module and the sample application performs some operations on the same.

