
Page 1 of 89Texas Instruments Proprietary Information

DM648 VPORT Driver

USER’S GUIDE

Information in this document is subject to change without notice. Texas Instruments may
have pending patent applications, trademarks, copyrights, or other intellectual property
rights covering matter in this document. The furnishing of this document is given for usage
with Texas Instruments products only and does not give you any license to the intellectual
property that might be contained within this document. Texas Instruments makes no
implied or expressed warranties in this document and is not responsible for the products
based from this document

Page 2 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

Document Revision History

Rev
No

Author(s) Revision History Date Approval(s)

0.1 Sivaraj R
Grishma Parikh

Corrected some API descriptions May 7, 2007 Initial Draft

0.2 Vichu Formatted to new template and
corrected FVID API section

May 9, 2007 Draft

0.3 Sivaraj R Added HD configuration and new
sample applications.
Updated for patch 1.10.00.00

June 15, 2007 Draft

0.4 Sivaraj R Added HD loopback and VESA
application sample application
description.

July 10, 2007 Draft

0.5 Grishma Parikh
Sivaraj R

Added description for slice mode
capture IOCTLs and RAW capture
support. Separate section is added to
have detailed description for all
IOCTLs

August 30,
2007

Draft

0.6 Grishma Parikh Driver Porting section added September 13,
2007

Draft

0.7 Sivaraj R Changed XDC and BIOS versions in
system requirement

October 22,
2007

Draft

0.8 Sivaraj R Changed directory structure
according to new package

November 27,
2007

Draft

0.9 Sivaraj R Added description about THS7353
enable/disable macro in EDC driver

January 14,
2008

Draft

0.10 Sivaraj R Added TCI file driver initialization
illustration and added dependent
libraries for building video application

January 24,
2008

Draft

0.11 Sivaraj R Added description about HD capture
workaround in production EVM

February 20,
2008

Draft

0.12 Chandan Nath Updated for adding compiler switches
in build options

May 21, 2008 Draft

Page 3 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

TABLE OF CONTENTS

1 Introduction... 6

1.1 Terms & Abbreviations..6

1.2 References ..6

1.3 S/W Support..6

1.4 Driver Components...7

1.5 Default Driver Configuration ..7

1.6 Driver Capabilities ..8

1.7 System Requirements...8

2 Installation Guide... 9

2.1 Component Folder..9

2.2 Build...10

2.3 Build Options...10

3 DSP/BIOS VPORT DRIVER Structures .. 12

3.1.1 Initialization details ..12

3.1.2 VPORT_PortParams ..13

3.1.3 VPORT_VIntCbParams ..14

3.1.4 VPORT_CurrParams..14

3.1.5 VPORTCAP_Params...15

3.1.6 VPORTCAP_ParamsRaw...17

3.1.7 VPORTCAP_LinesCapturedInfo ...17

3.1.8 VPORTCAP_LineIntParam ..18

3.1.9 VPORTDIS_Params...18

4 FVID API’s.. 22

4.1 Constants & Enumerations ..22

4.1.1 Structure for Interlaced Frame...22

4.1.2 Structure for Progressive Frame...23

4.1.3 Structure for Interlaced Raw Frame..23

4.1.4 Structure for Raw Frame...23

4.1.5 Structure for FVID frame buffer descriptor...24

4.1.6 Enum for Color format ..25

4.1.7 Enum for Field Frame Modes..25

4.1.8 Enum for Bits Per Pixel for different Module ...26

4.1.9 Defines for IOM_Packet...26

4.2 API Definition ..27

4.2.1 FVID_ create ...27

4.2.2 FVID_delete ..30

Page 4 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.3 FVID_alloc...31

4.2.4 FVID_free..32

4.2.5 FVID_control ...33

4.2.6 FVID_exchange..47

4.2.7 FVID_dequeue ...48

4.2.8 FVID_queue ..49

4.2.9 FVID_allocBuffer ..50

4.2.10 FVID_freeBuffer ...51

4.2.11 Using FVID API’s ..52

5 External Device Control (EDC).. 55

5.1 Interface between VPORT and EDC Driver ...55

5.2 TVP5154 Decoder...57

5.2.1 Interface Functions...57

5.2.2 Data Structures ...58

5.2.3 Enumerations ..58

5.3 SAA7105 Encoder...60

5.3.1 Interface Functions...60

5.3.2 Data Structures ...61

5.3.3 Enumerations ..62

5.4 THS8200 Encoder...64

5.4.1 Interface Functions...64

5.4.2 Data Structures ...65

5.4.3 Enumerations ..66

5.5 TVP7000 Decoder...68

5.5.1 Interface Functions...68

5.5.2 Data Structures ...69

5.5.3 Enumerations ..70

6 Porting Description .. 72

6.1 Porting of DM648 VPORT driver to different DM648 EVM72

6.2 Porting of DM648 VPORT driver to different processor having same
VPORT IP as DM648 ...73

7 Example Applications ... 74

7.1 Writing Applications for VPORT...74

7.1.1 File Inclusion ...74

7.1.2 Buffer Allocation and Management ...75

7.1.3 Cache Coherency ...77

7.2 Sample Applications ...78

7.2.1 Introduction ..78

7.2.2 Configuration Parameters..88

Page 5 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

TABLE OF FIGURES

Figure 1. DM648 Video driver architecture ..7
Figure 2. VPORT Driver Directory Structure...9
Figure 3. Interface between VPORT and EDC Driver ...55
Figure 4. Porting of DM648 VPORT driver to different DM648 EVM72
Figure 5. Capture Driver Buffer Management...75
Figure 6. Display Driver Buffer Management ...76

Page 6 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

1 Introduction

This document is the reference guide for the video port driver and it explains how to
configure and use the driver.

DSP/BIOS applications use the driver typically through FVID APIs to perform frame
video capture and display. FVID was implemented as a simple wrapper on top of the
GIO class driver and provides an application-specific interface that has been
customized for frame video. For more information on the DSP/BIOS device driver
model and the GIO class driver, refer to the References section of this document.

A NOTE ON COMPATIBLITY: DM642 video drivers featured FVID APIs. For the
compatibility with other video drivers (DM64LC) and for future use, some APIs have
been added to the existing (DM642) FVID APIs set, without affecting the backward
compatibility (This needs recompilation of the application with new APIs header and
the new drivers) of DM642 applications. This document also describes the DM648s
FVID API descriptions.

1.1 Terms & Abbreviations
Term Description

 This bullet indicates important information.

Please read such text carefully.

 This bullet indicates additional information.

Legacy Mode DM642 API Compatibility mode

Normal Mode DM64LC API Compatibility mode

1.2 References
1. SPRA918A –

August 2003 –
Application Report

The TMS320DM642 Video Port Mini-Driver

2. SPRUEM1_Video_P
ort.pdf

DM648 Video Port Peripheral Reference Guide

1.3 S/W Support
This VPORT device driver has been developed for the DSP/BIOS operating system using the
TI supplied Chip Support Library. For more details on the version numbers refer to the
release notes in the root of the installation.

Page 7 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

1.4 Driver Components

The Video driver is constituted of following sub components:

VPORT Driver – application interface, VPORT and EDMA handling

EDC (External Device Control) Driver – Configures external Video Decoder and Encoder.
VPORT driver library calls EDC Driver APIs for external Decoder and Encoder configurations

System components:

PALOS – DSP/BIOS Abstraction
Below Figure shows DM648 Video driver architecture.

Class Driver

Mini Driver

Application

EDC Driver

FVID Class Driver Wrapper

GIO Class Driver

Video Port Driver

VPORT/EDMA Video
Codecs

PAL
OS

Figure 1. DM648 Video driver architecture

1.5 Default Driver Configuration

VPORT driver does not have any default configuration support. Before using the driver,
application should configure the driver with valid configurations. In case the driver
recognizes invalid configuration parameter it will return the corresponding error code.

All EDC drivers are having default configuration.
 TVP5154 decoders are configured for NTSC capture (with embedded sync – BT.656

mode).
 SAA7105 encoder is configured for NTSC display (with embedded sync – BT.656

mode) for SD display. And is put to power down state for HD display.
 If SAA7105 encoder is selected at the time of channel creation then THS8200

encoder is put in BT.656 bypass mode otherwise THS8200 encoder is by default
configured for 1080i 60Hz display.

 TVP7000 decoder is by default configured for 1080i 60Hz capture.

Page 8 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

1.6 Driver Capabilities

The significant driver features are:

 Supports Multiple Video Port Instances (4 captures and 1 display video port instances
are supported on DM648 EVM)

 Supports dual channel 8-bit BT.656, single channel 16-bit Y/C, dual channel 8-bit
RAW or single channel 16-bit RAW capture per Video Port

 Supports single channel 8-bit BT.656, single channel 16-bit Y/C, single channel 8-bit
RAW or single channel 16-bit RAW display per Video Port

 Supports enable/disable of video port global interrupt on all defined video port
events

 External Device Control Interface using EDC driver for seamless integration with
different video encoder or decoder devices

 Supports flipping of multiple frame buffers for seamless capture and display
operation

 Easy to maintain & re-target to new platforms

1.7 System Requirements

Details about the tools and the BIOS version that the driver is compatible with can be found
in the system Release Notes.

Page 9 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

2 Installation Guide

2.1 Component Folder

Upon installing the VPORT driver the following directory structure is found in the driver’s
directory.

Figure 2. VPORT Driver Directory Structure

 vport: This top level vport folder contains vport driver psp header files and XDC
package files (package.bld, package.xdc and package.xs).

 build: This folder contains VPORT driver library project file. The generated driver
library shall be included in the application where VPORT driver have to be used.

 docs: This folder contains architecture document, datasheet, release notes and
user guide.

Architecture document contains the driver details which can be helpful for the
developers as well as consumers to understand the driver design.

Datasheet gives the idea about the memory consumption by the driver and
description of the top level APIs.

Release Note gives the details about system requirements, steps to
Install/Uninstall the package. This document lists the known issues of the driver if
any.

User Guide provides information about how to use the driver. It contains
description of sample applications which guide the end user to make their
applications using this driver.

 lib: This folder contains libraries generated in all the configuration modes (debug,
idebug, irelease and release)

 package: This folder contains files generated by XDC tool.

 src: This folder contains VPORT driver source files. It also contains header files that
are used by the driver.

Page 10 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

2.2 Build

This section describes for each supported target environment, the applicable build options,
supported configurations and how to select the featured capabilities and how to enable the
allowed user customizations for the software to be installed and how the same can be
realized.

The component might be delivered to user in different formats:

 Source-less i.e. binary executables and object libraries only.

 Source-inclusive i.e.The entire source code used to implement the driver is
included in the delivered product.

 Source-selective ie. Only a part of the overall source is included. This delivery
mechanism might be required either because certain parts of the driver
require soruce level extensions and/or customization at the user’s end or
because specific parts of the driver is exposed to user at the source level to
insure user’s software development.

When source is included as part of the product delivery, the CCS project file is
provided as part of the package. When object format is distributed, the driver
header files are part of the “vport\” folder and the driver library is provided in
“vport\lib” folder.

2.3 Build Options

This driver does not have any specific build option.

The build folder contains a CCS project file that builds the driver into a library for debug and
release mode.

Build options – “iDebug” and “iRelease” are provide to enable VPORT Instrumentation in the
driver.

Following compiler switches are used to compile for different options.

 _DEBUG
This is used as a flag to compiler whether to include the debug statements
inserted in the code into the final image. This flag helps to build DEBUG image of
the program. For RELEASE images this is not passed to the compiler.
Reference: Project file for vport.vpfe etc

 CHIP_XXXX
The CSL layer is written in a common file for all the variants of a SOC. This flag
differentiates the variant we are compiling for, for e.g. - CHIP_DM648, and the
CSL definitions for that variant appropriately gets defined for register base
addresses, num of ports of a peripheral etc.
Reference : soc\DM648\dsp\inc\csl_vport_vphal.h

 VPORT_INSTRUMENTATION_ENABLED
This flag is passed to the compiler to include the instrumentation code parts into
the final image/lib of the program. This helps build the iRelease/iDebug versions
of the image/lib with a common code base

Page 11 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 VPORT_DEBUG
(un)definition of this macro in _vport.h disables/enables selectively the debug
statements for vport to be included into the final image/lib

Page 12 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

3 DSP/BIOS VPORT DRIVER Structures

This section discusses about the initialization details and initialization structures used in the
VPORT driver. Please note that for some structure member information/details, the DM648
video port peripheral reference guide might need to be referred.

Most members of these structures directly reflect the VPORT register settings. The driver
does not check the validity of these parameters. It is the application’s responsibility to pass
proper value according to the VPORT register description. Kindly refer VPORT Peripheral
Reference Guide for more details.

3.1.1 Initialization details
To use the capture or display VPORT device driver, a device entry must be added and
configured in the DSP/BIOS configuration tool.

To have VPORT device driver included in the application, corresponding TCI file have to be
included in BIOS TCF i.e. “dm648_vport0.tci”, “dm648_vport1.tci”, “dm648_vport2.tci”,
“dm648_vport3.tci” or “dm648_vport4.tci” must be included in BIOS TCF file of the
application for using VPORT 0, 1, 2, 3 or 4 instances of the driver respectively. These files
can be found in video sample directory.

The following are the device configuration settings required to use the capture driver. Note:
This has to be done for all of the required driver instances.

TCI Configuration Parameters Description
initFxn - Init Function Pointer to application function to initialize

DM648 video ports like module clock
enabling and enabling pin muxing.

fxnTable - Function Table Pointer VPORTCAP_Fxns. This is a global variable
which points to the VPORT driver APIs.

fxnTableType - Function Table Type IOM_Fxns
deviceId - Device Id Specify which video port to use. For example

to use VPORT 0 this should be given as 0.
params – Pointer to Port parameter An optional pointer to an object of type

VPORT_PortParams as defined in the header
file vport.h. This pointer will point to a device
parameter structure. In BIOS TCI files, this
structure object is passed as an argument.
Application should declare and initialize the
structure object properly.

Device Global Data Pointer N/A, not used by this driver

The capture driver initialization in BIOS TCF looks like this (assumed VPORT 0 as capture port):
bios.VP0CAPTURE = bios.UDEV.create("VP0CAPTURE");
bios.VP0CAPTURE.initFxn = prog.extern("VPORT0_init");
bios.VP0CAPTURE.fxnTable = prog.extern("VPORTCAP_Fxns");
bios.VP0CAPTURE.fxnTableType = "IOM_Fxns";
bios.VP0CAPTURE.params = prog.extern("vCapParamsPort");
bios.VP0CAPTURE.deviceId = 0x00;

Page 13 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

The following are the device configuration settings required to use the display driver:
Note: This has to be done for all of the required driver instances.

TCI Configuration Parameters Description
initFxn - Init Function Pointer to application function to initialize

DM648 video ports like module clock enabling
and enabling pin muxing.

fxnTable - Function Table Pointer VPORTDIS_Fxns. This is a global variable
which points to the VPORT driver APIs.

fxnTableType - Function Table
Type

IOM_Fxns

deviceId - Device Id Specify which video port to use. For example
to use VPORT 1 this should be given as 1.

params – Pointer to Port
parameter

Same as for the capture driver

Device Global Data Pointer N/A, not used by this driver

The display driver initialization in BIOS TCF looks like this (assumed VPORT 1 as display port):
bios.VP1DISPLAY = bios.UDEV.create("VP1DISPLAY");
bios.VP1DISPLAY.initFxn = prog.extern("VPORT1_init");
bios.VP1DISPLAY.fxnTable = prog.extern("VPORTDIS_Fxns");
bios.VP1DISPLAY.fxnTableType = "IOM_Fxns";
bios.VP1DISPLAY.params = prog.extern("vDisParamsPort");
bios.VP1DISPLAY.deviceId = 0x01;

Apart from the VPORT driver initialization, I2C driver should also be initialized in the BIOS
TCF file. For details on how to initialize I2C driver, refer I2C driver user guide –
BIOS_I2C_Driver_UserGuide.pdf.

3.1.2 VPORT_PortParams
“vport.h” file contains VPORT_PortParams data structure that is passed while mdBindDev
call which is defined with UDEV VPORT parameters in TCF file of application. The members
of this structure are explained below:

Structure Members Description

dualChanEnable Boolean:
TRUE = Dual channels enabled for capture
FALSE = Single channel enabled for capture or display. For
display driver this parameter should be always FALSE.

vc1Polarity VPORT control pin 1 polarity. This value should be
VPORT_POLARITY_ACTIVE_HIGH or
VPORT_POLARITY_ACTIVE_LOW depending on required
operation.

vc2Polarity VPORT control pin 2 polarity. Same as vc1Polarity.

vc3Polarity VPORT control pin 3 polarity. Same as vc1Polarity.

edcTbl Array of function tables of EDC module (refer to section
External Device Control section for details)

Page 14 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

3.1.3 VPORT_VIntCbParams
“vport.h” file contains VPORT_VIntCbParams data structure that is passed in
VPORT_CMD_SET_VINTCB IOCTL to configure VPORT interrupts. The members of this
structure are explained below:

Structure Members Description

cbArg Call-back argument is for the application to identify which
channel or device causes the interrupt

vIntCbFxn Pointer to the video port interrupt call-back function of type
VPORT_IntCallBack.

vIntMask Interrupt mask. This determines the interrupts for which the
application will be notified using the registered call back
function. Refer “vport.h”. All masks should be bitwise OR
together to indicate errors that need to be handled by the
call-back. By default the driver handles display under run and
capture over run errors. Application doesn’t have to do any
recovery if these errors occur. But this will be indicated to the
application if call backs are registered.

vIntLine Line number where vertical interrupt should occur when
VPORT_INT_VINT1 and VPORT_INT_VINT2 are enabled. Don't
care otherwise

irqId Hardware interrupt id at which Video Port Interrupt occurs.
This value is don’t care in the current driver as the driver
assumes the IRQ number for the Video Port – “8”. If the
application changes the ECM mapping then the macro defined
in “vport.h” should be changed accordingly and driver should
be recompiled. This is given to support backward
compatibility.

3.1.4 VPORT_CurrParams
“vport.h” file contains VPORT_CurrParams data structure that is passed while
VPORT_CMD_GET_PARAMS IOCTL call. The members of this structure are explained below:

Structure Members Description

mode Current video mode of driver – 8 bit BT.656, 8 bit YCbCr,
8/16 bit Raw modes.

fldOp Field or frame operation. Possible values are flied 1 only, field
2 only, frame (field 1 + field 2) and progressive

scale Boolean.
TRUE = Horizontal scaling enabled.
FALSE = Horizontal scaling disabled.

resmpl Boolean.
TRUE = Chroma re-sampling enabled.
FALSE = Chroma re-sampling disabled.

yPitch Luminance line pitch in bytes. This need not always be equal
to the display or capture line size. Due to hardware alignment
requirements, this will be a multiple of 8 bytes.

cPitch Chrominance line pitch in bytes. This need not always be

Page 15 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

equal to the display or capture chrominance line size. Due to
hardware alignment requirements, this will be a multiple of 8
bytes.

numLines Total number of lines per frame

numPixels Number of pixel in one line

bufSize Size of one FVID frame buffer

mergeFlds Field operation. Boolean:
TRUE = Fields are merged in interlaced operation
FALSE = Fields are separated in interlaced operation.
For progressive modes, this is always FALSE.

3.1.5 VPORTCAP_Params
“vportcap.h” file contains VPORTCAP_Params data structure that is passed while
FVID_create call. Most members of this structure directly reflect the VPORT register
settings. The driver does not check the validity of these parameters (Example cmode,
fldOp etc). Kindly refer VPORT Peripheral Reference Guide for more details. The values to be
used for most of the members are given in “vport.h” and “vportcap.h” files. The members of
this structure are explained below:

Structure Members Description

cmode Capture mode settings – 8 bit BT.656, 8 bit YCbCr, 8/16 bit
Raw modes. 10 and 20 bit modes are not supported by the
VPORT and driver

fldOp Field & frame operation. Possible values are flied 1 only, field
2 only, frame (field 1 + field 2) and progressive

scale Boolean.
TRUE = Horizontal scaling enabled.
FALSE = Horizontal scaling disabled.
Indicates whether to enable horizontal ½ scaling. The ½-
scaling mode is used to reduce the horizontal resolution of
captured luminance and chrominance data by a factor of two.
Note: Vertical ½ scaling should be done by application if
required. When scaling is enabled make sure the Luminance
and C line sizes are multiple of 8 for proper driver operation

resmpl Boolean.
TRUE = Chroma re-sampling enabled
FALSE = Chroma re-sampling disabled

bpk10Bit Bit pack mode. Don’t care as 10 bit modes are not supported

hCtRst Horizontal counter reset mode

vCtRst Vertical counter reset mode

fldDect Enable whether to use FID input or field detection logic based
on the timing relation of hsync and vsync

extCtl Enable external timing control

fldInv Enable inversion of the detected field

fldXStrt1 Field 1 X start

Page 16 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

fldYStrt1 Field 1 Y start

fldXStrt2 Field 2 X start

fldYStrt2 Field 2 Y start

fldXStop1 Field 1 X stop

fldYStop1 Field 1 Y stop

fldXStop2 Field 2 X stop

fldYStop2 Field 2 Y stop

thrld Video FIFO threshold in double words. This value is normally
equivalent to line size divided by 8. Represents number of
double words of Luminance data that are transferred per
EDMA event. C threshold is half the Y threshold if Y threshold
is even else will round to the nearest integer. When half line
size or quarter line size threshold are provided (as required
for HDTV and VESA modes), care should be taken to make
sure that the Y and C line size are multiple of threshold. If not
the driver will assume the threshold to be one line size.

numFrmBufs Number of frame buffers that the driver allocates. If this is 0,
then the driver operates in Normal mode. When this value is
other than 0, then driver operates in Legacy mode. In both
cases, minimum of 3 buffers are recommended for proper
driver operation

alignment Frame buffer alignment. Used at the time of allocating buffer

mergeFlds Field operation. Boolean:
TRUE = Fields are merged in interlaced operation
FALSE = Fields are separated in interlaced operation.
For progressive modes, this should be always FALSE

segId Memory segment ID, used at the time of buffer allocation

autoSyncEnable Boolean to enable auto sync operation for field operation.
When this is enabled, the driver will synchronize to field 1 for
every frame. When the field order changes (this may occur
when the input cable is removed and connected again), the
driver reconfigures the EDMA parameters to properly capture
field 1 first and then field 2. If this is not done, the captured
frame may contain field 2 of previous frame and field 1 of
next frame.

hEdma EDMA3 driver handle

Page 17 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

3.1.6 VPORTCAP_ParamsRaw
“vportcap.h” file contains VPORTCAP_ParamsRaw data structure that is passed while
FVID_create call if raw mode capture is required. The driver does not check the validity for
the parameters related to VPORT registers. The members of this structure are explained
below:

Structure Members Description

cmode Capture mode settings – This should be
VPORT_MODE_RAW_8BIT for 8-bit RAW capture or
VPORT_MODE_RAW_16BIT for 16-bit RAW capture

bpk10Bit 10-bit bit-pack mode as defined by video port. Don’t care as
10 bit modes are not supported

startupSyncEnable Boolean to enable start up sync or not

blankperiod Minimum time for CAPEN signal to stay inactive before
interpret it as vertical blanking only used when SSE is set

lineSz Number of pixels per line

numLines Number of lines per frame

thrld FIFO threshold value indicates number of double words to
generate DMA events. This value is normally equivalent to
line size divided by 8. Represents number of double words of
data that are transferred per EDMA event. When half line size
or quarter line size threshold are provided, care should be
taken to make sure that the line size is multiple of threshold.
If not the driver will assume the threshold to be one line size.

numFrmBufs Number of frame buffers to be used by driver. Minimum of 3
buffers are recommended for proper operation.

alignment Frame buffer alignment

segId Memory segment ID, used by driver to allocate video frame
buffer

hEdma EDMA3 driver handle

3.1.7 VPORTCAP_LinesCapturedInfo
“vportcap.h” file contains VPORTCAP_LinesCapturedInfo data structure that is passed with
line mode interrupt callback function. This structure is also used as an argument in
VPORTCAP_CMD_GET_NUMLINES_CAPTURED IOCTL. The members of this structure are
explained below:

Structure Members Description

frmPtr FVID_Frame pointer which is currently captured

numLines Number of lines captured in current frame

Page 18 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

3.1.8 VPORTCAP_LineIntParam
“vportcap.h” file contains VPORTCAP_LineIntParam data structure that is passed with
VPORTCAP_CMD_SET_LINE_INT IOCTL call to set line mode interrupt. The members of this
structure are explained below:

Structure Members Description

callBackFxn Callback function pointer to be called for line mode interrupt.
This pointer is of type VPORTCAP_LinesCapturedCB.

vIntFld1 Line number at which interrupt occurs in field1

vIntFld2 Line number at which interrupt occurs in field2

cbArg Call-back argument is for the application to identify which
channel or device causes the interrupt

errCheckEnable Enable short field detect error checking in EDMA ISR. This
should be set to TRUE to handle short field detect error.
Generally SFD error occurs when cable is plugged out/in or
when driver is configured for PAL and a NTSC input is
connected.
In normal scenario, this error handling is taken care in
FVID_dequeue(FVID_alloc)/FVID_queue(FVID_free) call to
driver. But when application is using slice mode capture, then
there is no call to the driver. Hence this flag should be set so
that the error is handled in EDMA ISR context.

3.1.9 VPORTDIS_Params
“vportdis.h” file contains VPORTDIS_Params data structure that is passed while FVID_create
call. Most of the members of this structure directly reflect the VPORT register settings. The
driver does not check the validity of these parameters (Example cmode, fldOp etc). Kindly
refer VPORT Peripheral Reference Guide for more details. The values to be used for most of
the members are given in “vport.h” and “vportdis.h” files. The members of this structure are
explained below:

Structure Members Description

dmode Display mode settings – 8 bit BT.656, 8 bit YCbCr, 8/16 bit
Raw modes. 10 and 20 bit modes are not supported by the
VPORT and driver

fldOp Field & frame operation. Possible values are flied 1 only, field
2 only, frame (field 1 + field 2) and progressive

scale Boolean.
TRUE = Horizontal scaling enabled.
FALSE = Horizontal scaling disabled.
Indicates whether to enable horizontal 2x scaling. The 2x
scaling mode is used to increase the horizontal resolution of
displayed luminance and chrominance data by a factor of two.
Note: Vertical 2x scaling should be done by application if
required. When scaling is enabled make sure the Luminance
and Chrominance line sizes are multiple of 8 for proper driver
operation

resmpl Boolean.
TRUE = Chroma re-sampling enabled

Page 19 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

FALSE = Chroma re-sampling disabled

defValEn Boolean.
TRUE = Default value enabled. yDefVal, cbDefVal, crDefVal
values will be displayed during non-active frame area
FALSE = Default value disabled. Blanking values will be used
during no-active frame area

bpk10Bit 10-bit bit-pack mode. This is a don’t care as 10 bit modes are
not supported

vctl1Config VCTL1 pin selection (Please refer to vportdis.h for available
values)

vctl2Config VCTL2 pin selection (Please refer to vportdis.h for available
values)

vctl3Config VCTL3 pin selection (Please refer to vportdis.h for available
values)

extCtl Enable external timing control. The current driver doesn’t
support external timing control of operation and hence this
should be always disabled.

frmHSize Frame horizontal size

frmVSize Frame vertical size

imgHOffsetFld1 Image horizontal offset field 1

imgVOffsetFld1 Image vertical offset field 1

imgHSizeFld1 Image line size field 1

imgVSizeFld1 Image total lines field 1

imgHOffsetFld2 Image horizontal offset field 2

imgVOffsetFld2 Image vertical offset field 2

imgHSizeFld2 Image line size field 2

imgVSizeFld2 Image total lines field 2

hBlnkStart Horizontal blanking start value

hBlnkStop Horizontal blanking stop value

vBlnkXStartFld1 Vertical blanking pixel start value field 1

vBlnkYStartFld1 Vertical blanking line start value field 1

vBlnkXStopFld1 Vertical blanking pixel stop value field 1

vBlnkYStopFld1 Vertical blanking line stop value field 1

vBlnkXStartFld2 Vertical blanking pixel start value field 2

vBlnkYStartFld2 Vertical blanking line start value field 2

vBlnkXStopFld2 Vertical blanking pixel stop value field 2

vBlnkYStopFld2 Vertical blanking line stop value field 2

xStartFld1 Pixel start field 1

yStartFld1 Line start field 1

Page 20 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

xStartFld2 Pixel start field 2

yStartFld2 Line start field 2

hSyncStart Horizontal sync start

hSyncStop Horizontal sync stop

vSyncXStartFld1 Vertical sync pixel start field 1

vSyncYStartFld1 Vertical sync line start field 1

vSyncXStopFld1 Vertical sync pixel stop field 1

vSyncYStopFld1 Vertical sync line stop field 1

vSyncXStartFld2 Vertical sync pixel start field 2

vSyncYStartFld2 Vertical sync line start field 2

vSyncXStopFld2 Vertical sync pixel stop field 2

vSyncYStopFld2 Vertical sync line stop field 2

yClipLow Luminance (Y) low clipping value

yClipHigh Luminance (Y) high clipping value

cClipLow Chrominance (CB/CR) low clipping value

cClipHigh Chrominance (CB/CR) high clipping value

yDefVal Luminance (Y) default value for non-RAW mode operation.
For RAW mode display, this represents bits 7-0 of the default
value.

cbDefVal Chrominance (CB) default value for non-RAW mode
operation.
For RAW mode display, this represents bits 15-8 of the
default value.

crDefVal Chrominance (CR) default value for non-RAW mode
operation.
For RAW mode display, this represents bits 19-16 of the
default value.

rgbX RGB extract enable/disable select. Used in RAW mode display
operation (1 enable, 0 disable)

incPix Pixel increment for RAW mode only (0 otherwise)

thrld Video FIFO threshold in double words. This value is normally
equivalent to line size divided by 8. Represents number of
double words of Luminance data that are transferred per
EDMA event. C threshold is half the Y threshold if Y threshold
is even else will round to the nearest integer. When half line
size or quarter line size threshold are provided (as required
for HDTV and VESA modes), care should be taken to make
sure that the Y and C line size are multiple of threshold. If not
the driver will assume the threshold to be one line size.

numFrmBufs Number of frame buffers that the driver allocates. If this is 0,
then the driver operates in Normal mode. When this value is
other than 0, then driver operates in Legacy mode. In both
cases, minimum of 3 buffers are recommended for proper

Page 21 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

driver operation

alignment Frame buffer alignment. This is used at the time of allocating
buffer

mergeFlds Field operation. Boolean:
TRUE = Fields are merged in interlaced operation
FALSE = Fields are separated in interlaced operation.
For progressive modes, this should be always FALSE

segId Memory segment ID, used by driver at the time of allocating
video frame buffer

hEdma EDMA3 driver handle

Page 22 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4 FVID API’s

This chapter describes the functions, data structures, enumerations and macros for the
VPORT driver module.

The following API functions are defined by the FVID module:

FVID_create Allocate buffers (optional) and initialize an FVID channel
object

FVID_delete De-allocate buffers (optional) and FVID channel object

FVID_alloc Get a pointer for allocated buffer from driver to application
(used only in Legacy Mode)

FVID_free Relinquish a video buffer back to the driver (used only in
Legacy Mode)

FVID_control Send a control command to the mini-driver

FVID_exchange Exchange an application-owned buffer for a driver-owned
buffer

FVID_dequeue Get a pointer for allocated buffer from driver to application
(used only in Normal Mode)

FVID_queue Relinquish a video buffer back to the driver (used only in
Normal Mode)

FVID_allocBuffer Allocate a frame buffer using the driver's memory allocation
routines

FVID_freeBuffer Free the buffer allocated via FVID_allocBuffer()

4.1 Constants & Enumerations

4.1.1 Structure for Interlaced Frame

typedef struct FVID_IFrame_t
{
 Char* y1; /* Character pointer for field 1 Y data */
 Char* cb1; /* Character pointer for field 1 Cb data */
 Char* cr1; /* Character pointer for field 1 Cr data */
 Char* y2; /* Character pointer for field 2 Y data */
 Char* cb2; /* Character pointer for field 2 Cb data */
 Char* cr2; /* Character pointer for field 2 Cr data */
} FVID_IFrame;

This structure will be used in case of interlaced video mode.

Page 23 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

If the driver is enabled for field separated mode (during initialization) then first 3
members will point to video data of field 1 and next 3 members will point to video
data of field 2.

If the field separate option is disabled (fields merged), then only the first 3 member
will point to video data of the whole frame and next 3 members are not used.
(Logically same as FVID_PFrame)

4.1.2 Structure for Progressive Frame

typedef struct FVID_PFrame_t
{
 Char* y; /* Character pointer for frame Y data */
 Char* cb; /* Character pointer for frame Cb data */
 Char* cr; /* Character pointer for frame Cr data */
} FVID_PFrame;

4.1.3 Structure for Interlaced Raw Frame

typedef struct FVID_RawIFrame
{
 Char* buf1; /* Character pointer for field 1 */
 Char* buf2; /* Character pointer for field 2 */
} FVID_RawIFrame;

 This structure is not used in the current DM648 VPORT driver as it doesn’t support
interlaced RAW capture or RAW display. This is meant for future purpose.

4.1.4 Structure for Raw Frame

typedef struct FVID_RawPFrame
{
 Char* buf; /* Character pointer for frame */
} FVID_RawPFrame;

Page 24 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.1.5 Structure for FVID frame buffer descriptor

typedef struct _FVID_Frame
{

 QUE_Elem queElement; /* for queuing */

 union
 {
 FVID_IFrame iFrm; /* In/Out y/c frame buffer */
 FVID_PFrame pFrm; /* In/Out y/c frame buffer */
 FVID_RawIFrame riFrm; /*In/Out raw frame buffer */
 FVID_RawPFrame rpFrm; /* In/Out raw frame buffer */
 Ptr frameBufferPtr; /* In/Out Raw Frame Buffer */
 } frame;

 Uint32 timeStamp; /* Out (during each dequeue) Time Stamp
*/

 Uint32 pitch; /* Out (during buffer alloc) Pitch
 parameters for given plane */

 Uint32 lines; /* Out (during buffer alloc) Pointer to
 frambuffer for given plane */

 FVID_bitsPerPixel bpp; /* Out (during buffer alloc) Bits per pixel
 support */

 FVID_colorFormat frameFormat; /* In/Out Frame Color Format */

 Ptr userParams; /* In/Out Additional User Parameters per
 frame */

 Ptr misc; /* For future use */
} FVID_Frame;

This structure is the descriptor which consolidates the buffer pointers and other
useful parameters.

The structure members bpp (bits per pixel), frameFormat, pitch and lines are
updated during the time of buffer allocation.

 The pitch member represents the Y-pitch of the FVID frame buffer. Since only YUV
422 planar format is supported, C- pitch will normally be half of Y-pitch, rounded to
the nearest multiple of 8 due to alignment requirements. For example, if line size is
720 and if ½ scaling is enabled, then Y-pitch will be 360 and C-pitch will be 184 (not
180 as expected).

The structure members timeStamp, userParams and queElement are used in DM648
drivers and applications. They are used/updated for every frame exchange
(queue/dequeue) operation.

The structure member misc is not used by the DM648 driver currently and is meant
for future purpose.

Page 25 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

DM648 VPORT driver only supports planar 422 formats. Planar format is used for all
of the frame types. YUV 422 planar format is used for Y/C frame buffer (iFrm and
pFrm). Note that Interleaved YUV 422 format is not supported. Frame types riFrm
and rpFrm use raw planar format.

YUV 420 planar or interleaved frame format is not supported.

The YUV frame format is independent of the endianness since Y, Cb and Cr of each
pixel are always 8 bit wide. For 16-bit raw frame format, each pixel data should be in
little endian byte ordering.

This structure is backward compatible with DM642 applications. But recompilation of
application with new API is required.

4.1.6 Enum for Color format

typedef enum _FVID_ColorFormat
{
 FVID_YCbCr422_INTERLEAVED = 0,
 FVID_YCbCr422_PLANAR,
 FVID_YCrCb422_INTERLEAVED,
 FVID_RGB_888_INTERLEAVED,
 FVID_RGB565_INTERLEAVED,
 FVID_DVD_MODE,
 FVID_CLUT_INDEXED,
 FVID_ATTRIBUTE,
 FVID_BAYER_PATTERN,
 FVID_RAW_FORMAT,
 FVID_COLORFORMAT_INVALID
} FVID_ColorFormat;

The ENUM string itself is self explanatory of the color format and this is not used in
DM648 driver and these are for future use or for other drivers that share the FVID
APIs. Only FVID_YCbCr422_PLANAR and FVID_RAW_FORMAT format are supported
for. 16-bit RGB raw format is used for VESA displays.

4.1.7 Enum for Field Frame Modes

typedef enum _FVID_FieldFrame
{
 FVID_FIELD_MODE = 0, /* Interlaced Mode */
 FVID_FRAME_MODE /* Progressive Mode */
} FVID_FieldFrame;

The ENUM string itself is self explanatory of the frame modes and this is not used
in DM648 driver and these are for future use or for other drivers that share the
FVID APIs.

Page 26 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.1.8 Enum for Bits Per Pixel for different Module

typedef enum _FVID_bitsPerPixel
{
 FVID_BPP_BITS1 = 1,
 FVID_BPP_BITS2 = 2,
 FVID_BPP_BITS4 = 4,
 FVID_BPP_BITS8 = 8,
 FVID_BPP_BITS16 = 16,
 FVID_BPP_BITS24 = 24
} FVID_bitsPerPixel;

The ENUM string itself is self explanatory of the bits per pixel and this is not used
in DM648 driver and these are for future use or for other drivers that share the
FVID APIs. Only FVID_BPP_BITS16 is supported.

4.1.9 Defines for IOM_Packet

#define FVID_BASE IOM_USER
#define FVID_ALLOC (FVID_BASE + 0)
#define FVID_FREE (FVID_BASE + 1)
#define FVID_EXCHANGE (FVID_BASE + 2)
#define FVID_QUEUE (FVID_BASE + 3)
#define FVID_DEQUEUE (FVID_BASE + 4)
#define FVID_ALLOC_BUFFER (FVID_BASE + 5)
#define FVID_FREE_BUFFER (FVID_BASE + 6)

These are command codes used in FVID to GIO API conversion macros.

Page 27 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2 API Definition

4.2.1 FVID_ create

Syntax
FVID_Handle FVID_create(

String name,
Int mode,
Int *status,
Ptr optArgs,
FVID_Attrs *attrs
);

Parameters
name

The name argument is the name specified for the device when it was created
in the configuration or at runtime. It is used to find a matching name in the
device table.
Note: strings are case sensitive.

For VPORT drivers the string is divided into 3 tokens separated by ‘/’.

 Video port driver or port instance
This identifies the Video port driver or port instance. For capture
drivers this will be typically “VP0CAPTURE”, “VP1CAPTURE” and so on.
For display this will be typically “VP0DISPLAY”, “VP1DISPLAY” and so
on. This string depends on the device registration string given in BIOS
driver TCI file.

 Video port channel instance
This identifies the channel to be opened in a port. Each Video capture
port has two channels – “A” and “B”. Display ports support only single
channel operation. Hence this token is not present for display drivers.

 EDC driver instance
This identifies the External Device Control driver to be opened and
linked to the video port driver instance. This token is typically more
dependent on the EVM schematics and external encoders and decoders
present in the EVM.

 If there is no requirement for EDC driver configuration for a VPORT
driver instance, this token can be absent.

In the present DM648 EVM, for capture this varies from “0” to “7” for
TVP5154 SD decoders, “0” for TVP7000 HD decoder and for display
this will be “SAA7105” or “THS8200” depending on the display mode of
operation. Use “SAA7105” for SD display and use “THS8200” for HD
and VESA display.

Page 28 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

The following table shows the typical names for the current DM648 EVM

String Name Description

“VP0CAPTURE/A/0”
VPORT 0 Channel A capture – SD (TVP5154 #1) or
HD (TVP7000) capture depends on EDC function
pointer registered during bind device

“VP0CAPTURE/B/1” VPORT 0 Channel B SD capture
“VP1DISPLAY/SAA7105” VPORT 1 SD (NTSC/PAL) display
“VP1DISPLAY/THS8200” VPORT 1 HD (720p, 1080i) and VESA display
“VP2CAPTURE/A/2” VPORT 2 Channel A SD capture
“VP2CAPTURE/B/3” VPORT 2 Channel B SD capture
“VP3CAPTURE/A/4” VPORT 3 Channel A SD capture
“VP3CAPTURE/B/5” VPORT 3 Channel B SD capture
“VP4CAPTURE/A/6” VPORT 4 Channel A SD capture
“VP4CAPTURE/B/7” VPORT 4 Channel B SD capture

mode
The mode argument specifies the mode in which the device is to be opened.
This may be IOM_INPUT or IOM_OUTPUT. IOM_INPUT mode is used for
capture and IOM_OUTPUT mode is used for display.

status
The status argument is an output parameter that this function fills with a
pointer to the status that was returned by the mini-driver.

optArgs
The optArgs parameter is a pointer that may be used to pass device or
domain-specific arguments to the mini-driver. The contents at the specified
address are interpreted by the mini-driver in a device-specific manner. The
memory segment id for memory allocation is also passed via this parameter.

For DM648, optArgs will be pointer of type VPORTCAP_Params for capture
driver (SD and HD) or VPORTCAP_ParamsRaw for raw capture driver or
VPORTDIS_Params for display driver.

The VPORT driver doesn’t assume any default value for this argument. This is
because EDMA handle and Segment ID (used for frame buffer allocation) are
passed to the driver only through this parameter. Hence VPORT driver will
return error value if application passes NULL for this parameter.

attrs
The attrs parameter is a pointer to a structure of type FVID_Attrs. This is not

supported and NULL should be passed.

Return Value
It returns the handle of type FVID_Handle on successful opening of a device. It
returns NULL if the device could not be opened.

Description
An application calls FVID_create to create and initialize a video driver channel to the
driver.

In Legacy mode this API is compatible to usage of DM642 FVID create API. The ‘no.
of buffers’ (“numFrmBufs” member) in the channel parameters is the flag used to

Page 29 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

identify this mode. The value must be greater than 0 for the driver to work in this
mode.

In Legacy mode, this call will allocate frame buffers (Number of Buffers provided as
parameter), initialize EDMA channels and configure video port registers. These frame
buffers will be used later for FVID exchange and other APIs.

In Normal mode (where the ‘numFrmBufs’ in the channel parameters is 0), the driver
will not allocate frame buffers for FVID exchange and other APIs. Applications have
to create buffers for this purpose. It is suggested that applications should use the
APIs FVID_allocBuffer and FVID_freeBuffer provided with driver for frame buffer
allocation purpose.

In both the modes, a minimum of 3 frame buffers should be used per driver instance
for proper operation.

FVID_create returns a handle to the channel if it is successfully opened. This handle
can then be used by subsequent FVID module calls to this channel.

For RAW capture operation, optArgs passed should be a pointer of
VPORTCAP_ParamsRaw structure.

Constraints
This function can only be called after the device has been loaded and initialized.

Example
The example below shows creation of Capture Channel for VPORT

FVID_Handle chanHandle;

VPORTCAP_Params vCapParamsChan =
CAP_PARAMS_CHAN_BT656_DEFAULT (NTSC);

chanHandle = FVID_create("/VP0CAPTURE/A/0", IOM_INPUT,
 NULL, (Ptr)&vCapParamsChan, NULL);

if (NULL == chanHandle)
{
 printf(" Failed create capture channel \r\n");
 return;
}

Page 30 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.2 FVID_delete

Syntax
int FVID_delete(FVID_Handle fvidChan);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to
FVID_create.

Return Value
IOM_COMPLETED on success, or negative value if an error occurred. This function is
a wrapper above GIO_delete() function. Since GIO_delete() always returns success
irrespective of VPORT driver return value, this function always returns
IOM_COMPLETED.

Description
This function call will close the logical channel associated with fvidChan parameter. It
will also free the buffers allocated by driver in Legacy mode i.e. DM642 compatibility
mode. For Normal mode, it is the applications responsibility to free the already
allocated buffers before channel deletion. Kindly note that, if capture/display
operation is started, then VPORT_CMD_STOP should be called before calling
FVID_delete.

EDC driver associated with the channel is also closed in this function call.

Constraints
This function can only be called after the device has been loaded, initialized and
created.

Example
The example below shows creation and deletion of Capture Channel for VPORT

FVID_Handle chanHandle;

VPORTCAP_Params vCapParamsChan =
CAP_PARAMS_CHAN_BT656_DEFAULT (NTSC);

chanHandle = FVID_create("/VP0CAPTURE/A/0", IOM_INPUT,
 NULL, (Ptr)&vCapParamsChan, NULL);

if (NULL == chanHandle)
{
 printf(" Failed create capture channel \r\n");
 return;
}

FVID_delete(chanHandle);

Page 31 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.3 FVID_alloc

Syntax
int FVID_alloc(FVID_Handle fvidChan, Ptr bufp);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to FVID_create

bufp
The bufp argument is an out parameter that this function fills with a pointer
to the structure of type FVID_Frame that is owned by the video port driver.

Return Value
FVID_alloc returns IOM_COMPLETED when it completes successfully. If an error
occurs, a negative value will be returned. If there is no buffer available with driver to
return to application, this function will be blocked.

Description
This API is valid only in Legacy mode (DM642 compatibility mode). In the Normal
mode FVID_dequeue should be used instead of this API and the DM648 driver will
return error for this API call.

An application will call FVID_alloc to request the video device driver to relinquish
ownership of a frame buffer. This API function will result in an mdSubmit call being
made to the mini-driver.

For display operation, the driver will return an empty frame buffer which the
application can use to fill the next frame data to be displayed. For capture operation,
the driver will return the most recently captured frame buffer which can be used by
the application for further processing.

Constraints
This function can only be called after the device has been loaded, initialized and
created. Cache coherency of the frame buffer should be taken care by the
application.

Example
FVID_Handle chanHandle;
FVID_Frame *capBuffer;

/* channel creation should be done here */

/* get a buffer from the device */
status = FVID_alloc(chanHandle, &capBuffer);

Page 32 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.4 FVID_free

Syntax
int FVID_free (FVID_Handle fvidChan, Ptr bufp);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to FVID_create

bufp
The bufp argument is a pointer to the structure of type FVID_Frame that was
previously allocated by the device driver and needs to be relinquished by the
application.

Return Value
FVID_free returns IOM_COMPLETED when it completes successfully. If an error
occurs, a negative value will be returned.

Description
This API is valid only in Legacy mode (DM642 compatibility mode). In the Normal
mode FVID_queue should be used instead of this API and the DM648 driver will
return error for this API call.

An application calls FVID_free to relinquish a video buffer back to the video device
driver. This API function will result in an mdSubmit call being made to the mini-
driver.

For display operation, the application gives a filled frame buffer that needs to be
displayed next. For capture operation, the application gives an empty buffer to the
driver for capturing the next frame data.

Constraints
This function can only be called after the device has been loaded, initialized and
created. Cache coherency of the frame buffer should be taken care by the
application.

The pointer that is passed as an argument to this call must point to a video buffer of
type FVID_Frame. This pointer should point to buffer already provided by the driver
through a call to FVID_alloc or FVID_exchange

Example
FVID_Handle chanHandle;
FVID_Frame *capBuffer;

/* channel creation & alloc should be done here */

status = FVID_free(chanHandle, &capBuffer);

Page 33 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.5 FVID_control

Syntax
int FVID_control (fvidChan, cmd, args);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to
FVID_create.

cmd
The cmd argument specifies the control command

args
The args argument is a pointer to the argument or structure of arguments

that are specific to the command being passed.

Return Value
IOM_COMPLETED on success, or negative value if an error occurred

Description
An application calls FVID_control to send device-specific control commands to the
mini-driver.

Below are the supported control commands by DM648 VPORT driver. The following
sections explain the commands in detail.

 VPORT_CMD_CONFIG_CHAN
Reconfigures capture or display channel. This command can be used to

change channel configuration at runtime. Note: Driver mode (Legacy or Normal)
cannot be changed at runtime

 VPORT_CMD_START
Start display/capture operation

 VPORT_CMD_STOP
Stop display/capture operation

 VPORT_CMD_SET_VINTCB
Configures VPORT interrupt settings and register a callback for sync

interrupts and error conditions

 VPORT_CMD_COVR_RECOVER
On Capture overrun this will reset VPORT for further operation

 VPORT_CMD_DUND_RECOVER
On Display under run, this will reset VPORT for further operation

 VPORT_CMD_GET_NUM_IORQST_PENDING
Gets the number of pending request at driver level

 VPORT_CMD_GET_PARAMS
Get the current channel configuration parameters of driver

Page 34 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 VPORTCAP_CMD_SET_LINE_INT
Register call-back function to get interrupts after specified number of lines

is captured by VPORT.

 VPORTCAP_CMD_GET_NUMLINES_CAPTURED
Returns the current video frame pointer and number of lines captured in

the current video frame

 Default IOCTL
Used to configure the external encoders and decoders. Interface will

depend on the encoder/decoder drivers

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create.

 This function is not re-entrant for a channel.

Example
FVID_Handle chanHandle;
/* channel creation should be done here */

/* start capture from video port */
status = FVID_control(chanHandle, VPORT_CMD_START, NULL);
if (IOM_COMPLETED != status)
{
 printf(" Failed start capture channel \r\n");
 return;
}

Below section describes different IOCTL commands supported by FVID_control():

4.2.5.1 VPORT_CMD_CONFIG_CHAN

Syntax
int FVID_control (fvidChan, VPORT_CMD_CONFIG_CHAN, args);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to
FVID_create.

cmd
VPORT_CMD_CONFIG_CHAN control command

args
The args argument is a pointer to structure containing the new configuration

and is of type VPORTCAP_Params for capture driver or VPORTCAP_ParamsRaw for
RAW capture driver or VPORTDIS_Params for display driver.

Return Value
IOM_COMPLETED on success, or negative value if an error occurred

Page 35 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

Description
This function call is used to change channel configuration at runtime. Application can
call this function to change video port configuration or number of buffers to be used
in Legacy mode. The argument to this command is similar to optargs parameter in
FVID_create.

In LEGACY MODE, if application calls this function when channel is started then
driver will start the channel again after reconfiguration. In Normal mode, if
application calls this function when channel is started then driver will reconfigure
channel but will not start channel. Application has to queue buffers before starting
channel again.

In LEGACY MODE, this call will free memory for all the buffers and allocate new
buffers as part of channel reconfiguration. In NORMAL MODE, it is application’s
responsibility to free memory for all the buffers before reconfiguring channel.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create.
Application can’t change driver mode (Legacy mode or Normal mode) using this
function. Application shall not change EDMA handle in argument to this function call.
Driver will use the EDMA handle passed at time of FVID_create only.

 This function is not re-entrant for a channel.

Example
FVID_Handle chanHandle;
VPORTCAP_Params vCapParamsChan =

CAP_PARAMS_CHAN_BT656_DEFAULT (NTSC);

/* channel creation should be done here */

/* configure capture channel */
status = FVID_control(chanHandle, VPORT_CMD_CONFIG_CHAN,
 &vCapParamsChan);

if (IOM_COMPLETED != status)
{
 printf(" Failed to configure capture channel \r\n");
 return;
}

Page 36 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.5.2 VPORT_CMD_START

Syntax
int FVID_control (fvidChan, VPORT_CMD_START, args);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to
FVID_create.

cmd
VPORT_CMD_START control command

args
None

Return Value
IOM_COMPLETED on success, or negative value if an error occurred

Description
This function call is used to start capture or display operation.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create.
In NORMAL MODE, this function can be called only after minimum required buffers
are queued up.

 This function is not re-entrant for a channel.

Example
FVID_Handle chanHandle;

/* channel creation should be done here */

/* configure capture channel */
status = FVID_control(chanHandle, VPORT_CMD_START, NULL);

if (IOM_COMPLETED != status)
{
 printf(" Failed to start capture channel \r\n");
 return;
}

Page 37 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.5.3 VPORT_CMD_STOP

Syntax
int FVID_control (fvidChan, VPORT_CMD_STOP, args);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to
FVID_create.

cmd
VPORT_CMD_STOP control command

args
None

Return Value
IOM_COMPLETED on success, or negative value if an error occurred

Description
This function call is used to stop capture or display operation.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create.
This function can be called only after capture or display operation has started.

 This function is not re-entrant for a channel.

Example
FVID_Handle chanHandle;

/* channel creation should be done here */

/* stop capture channel */
status = FVID_control(chanHandle, VPORT_CMD_STOP, NULL);
if (IOM_COMPLETED != status)
{
 printf(" Failed to stop capture channel \r\n");
 return;
}

Page 38 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.5.4 VPORT_CMD_SET_VINTCB

Syntax
int FVID_control (fvidChan, VPORT_CMD_SET_VINTCB, args);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to
FVID_create.

cmd
VPORT_CMD_SET_VINTCB control command

args
The args argument is a pointer to structure of type VPORT_VIntCbParams.

Return Value
IOM_COMPLETED on success, or negative value if an error occurred

Description
This function call is used to configure VPORT interrupt and register a callback for the
same. VPORT provides various interrupts for different sync scenarios and error
conditions.

Application can enable multiple interrupts simultaneously, but application can get a
common callback for all the interrupts registered per channel.

Register mask values for different interrupt are defined in vport.h. By default the
driver handles display under run and capture over run errors. Application doesn’t
have to do any recovery if these errors occur.

 If the application registers both VPORT_CMD_SET_VINTCB and
VPORTCAP_CMD_SET_LINE_INT IOCTLs with the driver, then the driver will take the
lastly passed vertical line number for VPORT interrupt generation. But the application
still receives two callbacks as these two callbacks are independent of each other
except for the vertical line number.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create.

Note: Vertical line interrupts are not supported for RAW capture.

 This function is not re-entrant for a channel.

Page 39 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

Example
FVID_Handle chanHandle;
VPORT_VIntCbParams setcbparams;

/* channel creation should be done here */

/* pointer to the video port interrupt call-back function */
setcbparams.vIntCbFxn = vport_intCallbackFunc;

/* vertical field 1 and field 2 line interrupts enabled */
setcbparams.vIntMask = (VPORT_INT_VINT2 | VPORT_INT_VINT1);

/* line number where vertical interrupt occurs */
setcbparams.vIntLine = 50;

/* configure vport interrupt callback */
status = FVID_control(chanHandle, VPORT_CMD_SET_VINTCB, &setcbparams);

if (IOM_COMPLETED != status)
{
 printf(" Failed to configure vport interrupt callback \r\n");
 return;
}

Page 40 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.5.5 VPORT_CMD_COVR_RECOVER

Syntax
int FVID_control (fvidChan VPORT_CMD_COVR_RECOVER, args);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to
FVID_create.

cmd
VPORT_CMD_COVR_RECOVER control command

args
NULL

Return Value
IOM_COMPLETED on success, or negative value if an error occurred

Description
On Capture over run error, this function call will reset Video Port for further
operation. If capture over run callback is enabled using VPORT_CMD_SET_VINTCB
command and if driver reports capture over run error to application then application
can call VPORT_CMD_COVR_RECOVER to reconfigure EDMA transfer and enable
capture operation again. By default the driver handles capture over run error.
Application doesn’t have to do any recovery if this error occurs.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create.
In NORMAL MODE, this function can be called only after minimum required buffers
are queued up.

 This function is not re-entrant for a channel.

Example
FVID_Handle chanHandle;

/* Below call is made if driver notifies capture over run error to application */
/* call capture over run recovery function */
status = FVID_control(chanHandle, VPORT_CMD_COVR_RECOVER, NULL);

if (IOM_COMPLETED != status)
{
 printf(" Failed in capture over run recovery \r\n");
 return;
}

Page 41 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.5.6 VPORT_CMD_DUND_RECOVER

Syntax
int FVID_control (fvidChan VPORT_CMD_DUND_RECOVER, args);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to
FVID_create.

cmd
VPORT_CMD_DUND_RECOVER control command

args
NULL

Return Value
IOM_COMPLETED on success, or negative value if an error occurred

Description
On Display under run error, this function call will reset Video Port for further
operation. If display under run callback is enabled using VPORT_CMD_SET_VINTCB
command and if driver reports display under run error to application then application
can call VPORT_CMD_DUND_RECOVER to reconfigure EDMA transfer and enable
display operation again. By default the driver handles display under run error.
Application doesn’t have to do any recovery if this error occurs.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create.
In NORMAL MODE, this function can be called only after minimum required buffers
are queued up.

 This function is not re-entrant for a channel.

Example
FVID_Handle chanHandle;

/* Below call is made if driver notifies display under run error to application */
/* call display under run recovery function */
status = FVID_control(chanHandle, VPORT_CMD_DUND_RECOVER, NULL);

if (IOM_COMPLETED != status)
{
 printf(" Failed in display under run recovery \r\n");
 return;
}

Page 42 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.5.7 VPORT_CMD_GET_NUM_IORQST_PENDING

Syntax
int FVID_control (fvidChan VPORT_CMD_GET_NUM_IORQST_PENDING, args);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to
FVID_create.

cmd
VPORT_CMD_GET_NUM_IORQST_PENDING control command

args
Pointer to Integer

Return Value
IOM_COMPLETED on success, or negative value if an error occurred

Description
This function call will get number of pending requests at driver level. It will provide
number of requests yet to be served by driver.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create.
In NORMAL MODE, this function can be called only after minimum required buffers
are queued up.

 This function is not re-entrant for a channel.

Example
FVID_Handle chanHandle;
Int numPendingReq;

/* channel creation should be done here */

/* call to get number of pending requests */
status = FVID_control(chanHandle, VPORT_CMD_GET_NUM_IORQST_PENDING,

&numPendingReq);
if (IOM_COMPLETED != status)
{
 printf(" Failed in getting pending requests \r\n");
 return;
}

Page 43 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.5.8 VPORT_CMD_GET_PARAMS

Syntax
int FVID_control (fvidChan VPORT_CMD_GET_PARAMS, args);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to
FVID_create.

cmd
VPORT_CMD_GET_PARAMS control command

args
Pointer to structure of type VPORT_CurrParams

Return Value
IOM_COMPLETED on success, or negative value if an error occurred

Description
This function will provide current channel configuration parameters of capture or
display driver.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create.

 This function is not re-entrant for a channel.

Example
FVID_Handle chanHandle;
VPORT_CurrParams currParams;

/* channel creation should be done here */

/* call to get number of pending requests */
status = FVID_control(chanHandle, VPORT_CMD_GET_PARAMS,

 &currParams);
if (IOM_COMPLETED != status)
{
 printf(" Failed in getting current params \r\n");
 return;
}

Page 44 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.5.9 VPORTCAP_CMD_SET_LINE_INT

Syntax
int FVID_control (fvidChan VPORTCAP_CMD_SET_LINE_INT, args);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to
FVID_create.

cmd
VPORTCAP_CMD_SET_LINE_INT control command

args
Pointer to structure of type VPORTCAP_LineIntParam

Return Value
IOM_COMPLETED on success, or negative value if an error occurred

Description
This command is used to enable line interrupt of video port and its callback to
application. This is similar to vertical interrupt enabled using
VPORT_CMD_SET_VINTCB, but its callback function will provide the current frame
buffer pointer to application. This function applies to capture driver only.

 If the application registers both VPORT_CMD_SET_VINTCB and
VPORTCAP_CMD_SET_LINE_INT IOCTLs with the driver, then the driver will take the
lastly passed vertical line number for VPORT interrupt generation. But the application
still receives two callbacks as these two callbacks are independent of each other
except for the vertical line number.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create.

 Note: This IOCTL is not valid for RAW capture.

 In the current driver implementation, this interrupt is based on Vertical Line
interrupts provided by VPORT. Hence when this interrupt occurs it is not necessary
that the EDMA has actually transferred that much number of lines due to latency
between VPORT FIFO and EDMA transfer to memory.

For the same reason even the frame buffer pointer could be invalid (point to previous
frame) if vertical interrupts are set near to the start of the frame.

 This function is not re-entrant for a channel.

Page 45 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

Example

FVID_Handle chanHandle;
VPORTCAP_LineIntParam vintparams;

/* channel creation should be done here */

/* pointer to the video port interrupt call-back function */
vintparams.callBackFxn = (VPORTCAP_LinesCapturedCB) lineIntCallbackFunc;

vintparams.cbArg = 6; /* callback argument */

/* line number where vertical interrupt occurs */
vintparams.vIntFld1 = 20;
vintparams.vIntFld2 = 70;

/* configure vport interrupt callback */
status = FVID_control(chanHandle, VPORTCAP_CMD_SET_LINE_INT,

&vintparams);

if (IOM_COMPLETED != status)
{
 printf(" Failed to configure vertical line interrupt callback \r\n");
 return;
}

Page 46 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.5.10 VPORTCAP_CMD_GET_NUMLINES_CAPTURED

Syntax
int FVID_control (fvidChan, VPORTCAP_CMD_GET_NUMLINES_CAPTURED, args);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to
FVID_create.

cmd
VPORTCAP_CMD_GET_NUMLINES_CAPTURED control command

args
Pointer to structure of type VPORTCAP_LinesCapturedInfo

Return Value
IOM_COMPLETED on success, or negative value if an error occurred

Description
This function will provide number of lines captured by EDMA for current frame buffer.
It will also provide current frame buffer pointer in which EDMA is transferring
captured data from Video port FIFO. This function applies to capture driver only.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to FVID_create.
This function can be called only after capture operation has started.

 This IOCTL reads the current EDMA channel parameters and determine the
number of lines captured by EDMA. Since EDMA reload of channel parameter is a
hardware event, correctness of the lines captured at the end of the frame cannot be
ensured. It is left to the application to determine whether the lines captured in the
current frame is proper especially at the end of the frame.

 This function is not re-entrant for a channel.

Example
FVID_Handle chanHandle;
VPORTCAP_LinesCapturedInfo capLineInfo;

/* channel creation should be done here */

/* call to get number of pending requests */
status =
FVID_control(chanHandle, VPORTCAP_CMD_GET_NUMLINES_CAPTURED,

&capLineInfo);
if (IOM_COMPLETED != status)
{
 printf(" Failed in getting number of lines captured by EDMA \r\n");
 return;
}

Page 47 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.6 FVID_exchange

Syntax
int FVID_exchange(FVID_Handle fvidChan, Ptr bufp);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to FVID_create

bufp
The bufp argument is an in/out parameter that points to the application-
owned buffer that is to be relinquished back to the driver. After the call
returns successfully, this function fills bufp with a pointer to the structure of
type FVID_Frame that was exchanged by the device driver.

Return Value
FVID_exchange returns IOM_COMPLETED when it completes successfully. If an error
occurs, a negative value will be returned.

Description
An application calls FVID_exchange to relinquish a video buffer back to the video
device driver. After the call returns successfully, this function fills bufp with a pointer
to the structure of type FVID_Frame that was exchanged by the device driver. This
API function will result in an mdSubmit call being made to the mini-driver.

This operation is similar to calling FVID_free (FVID_queue) and FVID_alloc
(FVID_dequeue) one after the other. Refer corresponding API description for details.

Constraints
This function can only be called after the device has been loaded, initialized and
created. Cache coherency of the frame buffer should be taken care by the
application.

Example
FVID_Handle chanHandle;
FVID_Frame* capBuffer;
/* channel creation & alloc should be done here */

status = FVID_exchange(chanHandle, &capBuffer);

Page 48 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.7 FVID_dequeue

Syntax
int FVID_dequeue (FVID_Handle fvidChan, Ptr bufp);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to FVID_create

bufp
The bufp argument is an out parameter that this function fills with a pointer
to the structure of type FVID_Frame that was allocated by the device driver.

Return Value
FVID_dequeue returns IOM_COMPLETED when it completes successfully. If an error
occurs, a negative value will be returned. If there is no buffer available with driver to
return to application, this function will be blocked. But if application calls
FVID_dequeue after calling VPORT_CMD_STOP and if there is no buffer available with
driver to return to application, then IOM_ENOPACKETS code will be returned.

Description
This API is NOT supported for Legacy mode (DM642 compatibility mode) and is
supported only in the Normal mode.

An application will call FVID_dequeue to request the video device driver to give
ownership of a data buffer. This API function will result in an mdSubmit call being
made to the mini-driver.

For display operation, the driver will return an empty frame buffer which the
application can use to fill the next frame data to be displayed. For capture operation,
the driver will return the most recently captured frame buffer which can be used by
the application for further processing.

After the channel is stopped, this function is used to get all the buffers owned by the
driver to free it by calling FVID_freeBuffer API.

Constraints
This function can only be called after the device has been loaded, initialized and
created. Cache coherency of the frame buffer should be taken care by the
application.

And this function should be called only after queuing minimum number of buffers to
the drivers.

Example
FVID_Handle chanHandle;
FVID_Frame *capBuffer;

/* channel creation should be done here */

/* get a buffer from the device */
status = FVID_dequeue(chanHandle, &capBuffer);

Page 49 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.8 FVID_queue

Syntax
int FVID_queue(FVID_Handle fvidChan, Ptr bufp);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to FVID_create

bufp
The bufp argument is a pointer to the structure of type FVID_Frame that was
previously allocated by the device driver and is not to be relinquished.

Return Value
FVID_queue returns IOM_COMPLETED when it completes successfully. If an error
occurs, a negative value will be returned.

Description
This API is NOT supported for Legacy mode (DM642 compatibility mode) and is
supported only in the Normal mode.

An application calls FVID_queue to submit a video buffer to the video device driver.
This API function will result in an mdSubmit call being made to the mini-driver.

For display operation, the application gives a filled frame buffer that needs to be
displayed next. For capture operation, the application gives an empty buffer to the
driver for capturing the next frame data.

Before the channel is started, this function is used to queue the required number of
buffers allocated by calling FVID_allocBuffer API.

Constraints
This function can only be called after the device has been loaded, initialized and
created. Cache coherency of the frame buffer should be taken care by the
application.

The pointer that is passed as an argument to this call must point to a video buffer of
type FVID_Frame. This pointer must point to either the buffer newly allocated or the
buffer already provided by the driver through a call to FVID_dequeue or
FVID_exchange or FVID_allocBuffer calls.

Example
FVID_Handle chanHandle;
FVID_Frame *capBuffer;

/* channel creation should be done here */

status = FVID_queue (chanHandle, &capBuffer);

Page 50 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.9 FVID_allocBuffer

Syntax
int FVID_allocBuffer (FVID_Handle fvidChan, Ptr bufp);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to FVID_create

bufp
The bufp argument is an out parameter which will contain pointer to the
allocated frame buffer from the segment ID provided in create parameter.

Return Value
FVID_allocBuffer returns IOM_COMPLETED when it completes successfully. If an
error occurs, a negative value will be returned.

Description
This API is not supported in Legacy mode (DM642 compatibility mode) and is
supported only in the Normal mode.

An application will call FVID_allocBuffer to request the video device driver to allocate
one data buffer. This function allocates memory for one frame buffer and one
structure variable of type FVID_Frame. This function fills buffer pointer in
FVID_Frame structure variable and assigns its pointer to the structure pointer of type
FVID_Frame passed as an argument. This API function will result in an mdControl
call being made to the mini-driver. The segment ID passed to the driver during
FVID_create will be used for allocation.

It is the responsibility of the application to dequeue the buffer from driver and free it
before the channel is deleted.

Constraints
This function can only be called after the device has been loaded, initialized and
created.

Example
FVID_Handle chanHandle;
FVID_Frame *capBuffer = NULL;

/* channel creation should be done here */

/* allocate a buffer from the device and get its pointer*/
status = FVID_allocBuffer (chanHandle, &capBuffer);

Page 51 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.10FVID_freeBuffer

Syntax
int FVID_freeBuffer (FVID_Handle fvidChan, Ptr bufp);

Parameters
fvidChan

Handle of the video driver channel that was created with a call to FVID_create

bufp
The bufp argument will contain pointer to the frame buffer that is to be
released.

Return Value
FVID_freeBuffer returns IOM_COMPLETED when it completes successfully. If an error
occurs, a negative value will be returned.

Description
This API is not supported in Legacy mode (DM642 compatibility mode) and is
supported in the Normal mode.

An application will call FVID_freeBuffer to request the video device driver to free
memory of one data buffer. Pointer to this data buffer will be passed as an argument
to FVID_freeBuffer. This API call will free memory of one data buffer and one
FVID_Frame structure variable. This API function will result in an mdControl call
being made to the mini-driver.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The pointer that is passed as an argument to this call must point to a video
buffer of type FVID_Frame. This pointer must point to buffer already allocated by the
driver through a call to FVID_allocBuffer.

Example
FVID_Handle chanHandle;
FVID_Frame *capBuffer;

/* channel creation and allocBuffer should be done here */

status = FVID_freeBuffer (chanHandle, &capBuffer);

Page 52 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

4.2.11Using FVID API’s

The following is a simplified example of an application that is capturing data from a
video source and displaying the data to a display device.

4.2.11.1 Examples for Legacy mode (DM642 compatibility mode) API usage

#include <std.h>
#include <fvid.h>

main(void)
{
/* DSP/BIOS scheduler starts at the termination of main() */
}

/* Video processing task */
void tskVLoopback()
{

/* capture/display channel objects */
FVID_Handle capChan, disChan;

/* capture/display frame buffers */
FVID_Frame *capFrameBuf, *disFrameBuf;

/* allocate buffers at the time of device create itself */
capParams.numFrmBufs = 3;
disParams.numFrmBufs = 3;

/* create and initialize the FVID channel objects */
capChan = FVID_create(”/VP0CAPTURE/A/0”, IOM_INPUT, NULL,

(Ptr)&capParams, NULL);
disChan = FVID_create(”/VP1DISPLAY/SAA7105”, IOM_OUTPUT, NULL,

(Ptr)&disParams, NULL);

/* start capture & display operation */
FVID_control(capChan, VPORT_CMD_START, NULL);
FVID_control(disChan, VPORT_CMD_START, NULL);

/* Let application have ownership of the first set of buffers */
FVID_alloc(capChan, &capFrameBuf);
FVID_alloc(disChan, &disFrameBuf);

while (j < NUM_FRAMES)
{

/* copy captured frame data to the display frame buffer */
FrameDataCopy(capFrameBuf, disFrameBuf);
FVID_exchange(capChan, &capFrameBuf);
FVID_exchange(disChan, &disFrameBuf);
j++;

}

Page 53 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

/* stop capture & display operation */
FVID_control(capChan, VPORT_CMD_STOP, NULL);
FVID_control(disChan, VPORT_CMD_STOP, NULL);

/* Delete channels and free buffers */
FVID_delete(capChan);
FVID_delete(disChan);

}

4.2.11.2 Example for Normal mode API usage

#include <std.h>
#include <fvid.h>
#include <tsk.h>

#define NUM_BUFFERS (3)

main(void)
{
/* DSP/BIOS scheduler starts at the termination of main() */
}

/* Video processing task */
void tskVLoopback(void)
{

/* capture/display channel objects */
FVID_Handle capChan, disChan;

/* capture/display frame buffers */
FVID_Frame *capFrameBuf, *disFrameBuf;

/* do not allocate buffers at the time of device create */
capParams.numFrmBufs = 0;
disParams.numFrmBufs = 0;

/* create and initialize the FVID channel objects */
capChan = FVID_create(”/VP0CAPTURE/A/0”, IOM_INPUT, NULL,

(Ptr)&capParams, NULL);
disChan = FVID_create(”/VP1DISPLAY/SAA7105”, IOM_OUTPUT, NULL,

(Ptr)&disParams, NULL);

for (i=0; i < NUM_BUFFERS; i++)
{

/* Allocate buffers */
FVID_allocBuffer(capChan, &capFrameBuf);
FVID_allocBuffer(disChan, &disFrameBuf);

/* Queue buffers to driver */
FVID_queue(capChan, &capFrameBuf);
FVID_queue(disChan, &disFrameBuf);

}

Page 54 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

/* start capture & display operation */
FVID_control(capChan, VPORT_CMD_START, NULL);
FVID_control(disChan, VPORT_CMD_START, NULL);

/* Let application have ownership of the first set of buffers */
FVID_dequeue(capChan, &capFrameBuf);
FVID_dequeue(disChan, &disFrameBuf);

while (j < NUM_FRAMES)
{

/* copy captured frame data to the display frame buffer */
FrameDataCopy(capFrameBuf, disFrameBuf);

FVID_exchange(capChan, &capFrameBuf);
FVID_exchange(disChan, &disFrameBuf);
j++;

}

/* stop capture & display operation */
FVID_control(capChan, VPORT_CMD_STOP, NULL);
FVID_control(disChan, VPORT_CMD_STOP, NULL);

/* Free the application owned buffer */
FVID_freeBuffer(capChan, &capFrameBuf);
FVID_freeBuffer(disChan, &disFrameBuf);

for (i=0; i < (NUM_BUFFERS - 1); i++)
{

/* Dequeue buffers from driver */
FVID_dequeue(capChan, &capFrameBuf);
FVID_dequeue(disChan, &disFrameBuf);

/* Free buffers */
FVID_freeBuffer(capChan, &capFrameBuf);
FVID_freeBuffer(disChan, &disFrameBuf);

}

/* Delete channels and free buffers*/
FVID_delete(capChan);
FVID_delete(disChan);

}

Page 55 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

5 External Device Control (EDC)

This chapter describes in detail about External Device Control (EDC) mechanism of VPORT
driver - EVM or hardware dependent components that are not built inside VPORT module
and VPORT has dependency on such peripherals. DM648 video port driver configures
external video decoders and encoders using I2C interface to capture or display video.

This chapter describes the functions, data structures and enumerations for the EDC module.

Most of the functionality and features supported by the EDC driver depends on the DM648
EVM schematics and VPORT support. Features which are not supported by the current
DM648 EVM and VPORT are mentioned as NOT SUPPORTED in the appropriate places. The
options which are not supported are given only for future purpose.

5.1 Interface between VPORT and EDC Driver
Below Figure shows interface between VPORT driver and EDC driver when any function is
being called from application. Here, EDC Open, EDC Control or EDC Close functions
represent corresponding encoder/decoder functions.

EDC Driver

FVID/GIO Driver

VPORT Driver

Application

FVID Create

Channel
Create Fxn

Video Encoder or Decoder Device

FVID Control FVID Delete

Channel
Control Fxn

Channel
Delete Fxn

EDC Open
Fxn

EDC Control
Fxn

EDC Close
Fxn

Figure 3. Interface between VPORT and EDC Driver

The EDC driver is associated with each instance of the VPORT driver through the edcTbl[2]
member (of type EDC_Fxns) of VPORT_PortParams. This is done during VPORT driver
registration through BIOS TCI file. Each VPORT can be associated with two EDC drivers, one
for each of the two channel of VPORT. Since dual channel is not supported for display
operation, only one EDC driver is associated with a display port.

Page 56 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

Below structure definition provides details about the function pointers where-in the external
encoder/decoder plugs-in.

typedef struct EDC_Fxns {
EDC_Handle (*open)(String name, Arg optArg);
Int (*close)(Ptr devHandle);
Int (*ctrl)(Ptr devHandle, Uns cmd, Arg arg);

} EDC_Fxns;

The DM648 EVM has the following external encoders and decoders. The details of each
driver interface are explained in the following section.

 Two TVP5154 Decoders
Used to capture 8 NTSC/PAL resolutions

 One SAA7105 Encoder
Used to display NTSC/PAL resolutions

 One THS8200 Encoder
Used to display HDTV 720P, HDTV 1080I and VESA resolutions

 One TVP7000 Decoder
Used to capture HDTV 720P and HDTV 1080I resolutions

Page 57 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

5.2 TVP5154 Decoder
TVP5154 is a 4-channel, low-power, NTSC/PAL/SECAM video decoder. Each channel of the
TVP5154 decoder converts NTSC, PAL, or SECAM video signals to 8-bit ITU-R BT.656
format.

The current DM648 EVM contains 2 TVP5154 decoders capable of capturing 8 (2 x 4) SD
video channels.

TVP5154 input and output interface details are given below:

Analog Input Interface:
 Composite video – Selectable Channel A or B (Channel B not supported)
 S-video (Not supported)

Digital Output Interface:
 8-bit BT656, With Embedded Sync
 8-bit BT656, With External Sync (Not supported)

TVP5154 video decoder is an independent interface which is being configured from the
VPORT driver. TVP5154 is I2C slave device. TVP5154 driver configures TVP5154 device
using I2C interface.

5.2.1 Interface Functions
TVP5154 exports its function table pointer through TVP5154_Fxns global variable as defined
below:

EDC_Fxns TVP5154_Fxns = {
 TVP5154_open,
 TVP5154_close,
 TVP5154_ctrl
};

To use TVP5154, application shall pass this function table pointer as part of device
parameters (edcTbl[2] of VPORT_PortParams) during driver registration using BIOS TCI file.
This will associate the EDC driver instance with the corresponding VPORT driver instance.

As shown in Figure 3, when application calls FVID_create, VPORT driver will internally call
TVP5154_open function. This will power on TVP5154 device and initialize I2C driver for
serial communication. One of strings “0” to “7” should be passed as argument to
TVP5154_open function to open the corresponding decoder channel.

To configure TVP5154, application has to call FVID_control function with
VPORT_CMD_EDC_BASE + TVP5154 IOCTL (as shown in below table) as command. This will
internally call TVP5154_ctrl function. Once the VPORT driver deletes the channel, it will
delete the TVP5154 driver instance and close the I2C driver as well.

TVP5154 driver provides support for different IOCTL commands as shown below. Application
can call FVID_control with one of below specified IOCTL command and corresponding
argument to configure TVP5154.

Page 58 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

TVP5154 IOCTL Command Argument Description
EDC_CONFIG Pointer to structure

variable of type
TVP5154_ConfParams

Configures TVP5154
decoder parameters
associated with this
channel

EDC_RESET NULL Resets TVP5154
decoder channel

TVP5154_POWERDOWN NULL Power down the
specified decoder
channel

TVP5154_POWERUP NULL Power up the specified
decoder channel

TVP5154_SET_ANALOG_CHAN Pointer to structure
variable of type
TVP5154_AnalogChan

Selects analog input
channel for TVP5154
decoder

5.2.2 Data Structures
This section describes TVP5154 data structures exposed to the application.

 TVP5154_ConfParams

“tvp5154.h” file contains TVP5154_ConfParams data structure that is passed as an
argument while calling EDC_CONFIG IOCTL for TVP5154 from the application. The members
of this structure are explained below:

Structure Members Description

mode Type of enum TVP5154_Mode, indicates analog input
standard for TVP5154

aFmt Type of enum TVP5154_AnalogFormat, indicates analog input
format for TVP5154

enableBT656Sync Boolean to select embedded or external sync for digital
output to VPORT
TRUE = Use embedded sync
FALSE = Use external sync (Not supported)

5.2.3 Enumerations

 TVP5154_AnalogFormat

“tvp5154.h” file contains TVP5154_AnalogFormat enum that is passed while calling
EDC_CONFIG IOCTL for TVP5154 from the application. The members of this enum are
explained below:

Enum Members Description

TVP5154_AFMT_COMPOSITE_A Analog channel A selection for composite video input

TVP5154_AFMT_COMPOSITE_B Analog channel B selection for composite video input (Not
supported)

TVP5154_AFMT_SVIDEO S-video selection (Not supported)

Page 59 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 TVP5154_AnalogChan

“tvp5154.h” file contains TVP5154_AnalogChan enum that is passed while calling
TVP5154_SET_ANALOG_CHAN IOCTL from the application. The members of this enum are
explained below:

Enum Members Description

TVP5154_AFMT_CHANNEL_A Analog channel A selection for composite video input

TVP5154_AFMT_CHANNEL_B Analog channel B selection for composite video input (Not
supported)

 TVP5154_Mode

“tvp5154.h” file contains TVP5154_Mode enum that is passed while calling EDC_CONFIG
IOCTL for TVP5154 from the application. The members of this enum are explained below:

Enum Members Description

TVP5154_MODE_NTSC Analog input standard is NTSC

TVP5154_MODE_PAL Analog input standard is PAL

TVP5154_MODE_SECAM Not supported

Page 60 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

5.3 SAA7105 Encoder
SAA7105 is an advanced next-generation video encoder which converts PC graphics data at
maximum 1280x1024 resolutions (optionally 1920x1080 interlaced) to PAL (50 Hz) or NTSC
(60 Hz) video signals. A programmable scalar and anti-flicker filter (maximum 5 lines)
ensures properly sized and flicker-free TV display as CVBS or S-video output.

In DM648 EVM, SAA7105 encoder is connected to the VPORT through THS8200 BT.656
bypass port. SAA7105 encoder is used for NTSC/PAL SD resolution displays and THS8200 is
used for EDTV, HDTV and VESA resolution displays.

SAA7105 input and output interface details are given below:

Analog Output Interface:
 S-video
 RGB (Not supported)
 YPBPR (Not supported)
 Composite (Not supported)

Digital Input Interface:
 8-bit BT656, Embedded Sync
 8-bit BT656, External Sync (Not supported)
 RGB 24 bit (Not supported)
 RGB 555 (Not supported)
 RGB 565 (Not supported)
 Color Index (Not supported)

SAA7105 video decoder is an independent interface which is being configured from the
VPORT driver. SAA7105 is I2C slave device. SAA7105 driver configures SAA7105 device
using I2C interface.

5.3.1 Interface Functions
For display devices, EDC driver is having one intermediate layer driver (decoder driver),
which takes care about lower layer encoder function calls. This intermediate decoder exports
its function table pointer through edcEncoder_Fxns global variable as defined below:

EDC_Fxns edcEncoder_Fxns = {
edcEncoder_open,
edcEncoder_close,
edcEncoder_ctrl

};

To use SAA7105, application shall pass this function table pointer as part of device
parameters (edcTbl[2] of VPORT_PortParams) during driver registration using BIOS TCI file.
This will associate the EDC driver instance with the corresponding VPORT driver instance.

As shown in Figure 3, when application calls FVID_create, VPORT driver will internally call
edcEncoder_open function. String “SAA7105” should be passed as argument to this function
to open SAA7105 for SD display. This will power on SAA7105 device and initialize I2C driver
for serial communication. Also THS8200 will be put into BT.656 bypass mode.

Page 61 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

To configure SAA7105, application has to call FVID_control function with
VPORT_CMD_EDC_BASE + SAA7105 IOCTL (as shown in below table) as command. This will
internally call SAA7105_ctrl function through edcEncoder_ctrl function. Once the VPORT
driver deletes the channel, it will delete the SAA7105 and THS8200 driver instances and
close the I2C driver as well.

SAA7105 driver provides support for different IOCTL commands as shown below. Application
can call FVID_control with one of below specified IOCTL command and corresponding
argument to configure SAA7105.

IOCTL Command Argument Description
EDC_CONFIG Pointer to structure

variable of type
SAA7105_ConfParams

Configures SAA7105
encoder for display
operation

EDC_RESET NULL Resets SAA7105
encoder

SAA7105_POWERDOWN NULL Power down SAA7105
SAA7105_POWERUP NULL Power up SAA7105
SAA7105_ENABLE_COLORBAR Boolean to enable or

disable color bar
TRUE = Enable color bar
FALSE = Disable color bar

Enables or disables
internal color bar of
SAA7105

5.3.2 Data Structures

 SAA7105_ConfParams

“saa7105.h” file contains SAA7105_ConfParams data structure that is passed while calling
EDC_CONFIG IOCTL for SAA7105 from the application. The members of this structure are
explained below:

Structure Members Description

aFmt Type of enum SAA7105_AnalogFormat, indicates analog
output interface

mode Type of enum SAA7105_Mode, indicates analog output
standard

iFmt Type of enum SAA7105_InputFormat, indicates digital input
format

enableSlaveMode Boolean to select master or slave mode
TRUE = Slave mode
FALSE = Master mode (Not supported)

enableBT656Sync Boolean to select embedded or external sync for digital input
TRUE = Embedded sync
FALSE = External sync (Not supported)

Page 62 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

5.3.3 Enumerations

 SAA7105_AnalogFormat

“saa7105.h” file contains SAA7105_AnalogFormat enum that is passed while calling
EDC_CONFIG IOCTL for SAA7105 from the application. The members of this enum are
explained below:

Enum Members Description

SAA7105_AFMT_SVIDEO S-video analog output

SAA7105_AFMT_RGB Component analog RGB output (Not supported)

SAA7105_AFMT_YPBPR Component analog YPBPR output (Not
supported)

SAA7105_AFMT_COMPOSITE Composite analog output (Not supported)

 SAA7105_InputFormat

“saa7105.h” file contains SAA7105_InputFormat enum that is passed while calling
EDC_CONFIG IOCTL for SAA7105 from the application. The members of this enum are
explained below:

Enum Members Description

SAA7105_IFMT_RGB24_YCBCR444 24/30 bit RGB888 or YUV444 (Not
supported)

SAA7105_IFMT_RGB555 15 bit RGB555 (Not supported)

SAA7105_IFMT_RGB565 16 bit RGB565 (Not supported)

SAA7105_IFMT_YCBCR422_NONEINTERLACED YUV 4:2:2 (Not supported)

SAA7105_IFMT_YCBCR422_INTERLACED YUV 4:2:2

SAA7105_IFMT_COLOR_INDEX Color look-up table index mode (Not
supported)

Page 63 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 SAA7105_Mode

“saa7105.h” file contains SAA7105_Mode enum that is passed while calling EDC_CONFIG
IOCTL for SAA7105 from the application. The members of this enum are explained below:

Enum Members Description

SAA7105_MODE_NTSC720 SDTV NTSC 720x480 interlaced at 30fps

SAA7105_MODE_PAL720 SDTV PAL 720x576 interlaced at 25fps

SAA7105_MODE_VGA VESA 640x480 (Not supported)

SAA7105_MODE_SVGA VESA 800x600 (Not supported)

SAA7105_MODE_XGA VESA 1024x768 (Not supported)

SAA7105_MODE_HD480P60F HDTV 720x480 progressive at 60fps (Not supported)

SAA7105_MODE_HD720P60F HDTV 1280x720 progressive at 60fps (Not supported)

SAA7105_MODE_HD1080I30F HDTV 1920x1080 interlaced at 30fps (Not supported)

SAA7105_MODE_HD720P24F HDTV 1280x720 progressive at 24fps (Not supported)

Page 64 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

5.4 THS8200 Encoder
THS8200 can accept a variety of digital input formats, in both 4:4:4 and 4:2:2 format, over
a 3 ×10-bit, 2 ×10-bit or 1 ×10-bit interface. The device synchronizes to incoming video
data either through dedicated Hsync or Vsync inputs or through extraction of the sync
information from embedded sync (SAV/EAV) codes inside the video stream. Alternatively,
when configured for generating PC graphics output, THS8200 also provides a master timing
mode in which it requests video data from an external (memory) source.

In DM648 EVM, THS8200 encoder is used for EDTV, HDTV and VESA resolution displays.
SAA7105 encoder which is connected to the VPORT through THS8200 BT.656 bypass port is
used for NTSC/PAL SD resolution displays.

THS8200 input and output interface details are given below:

Analog Output Interface:
 RGB without sync (used for VESA/PC graphics)
 RGB with sync on G
 RGB with sync on all
 YPbPr with sync on Y (used for HDTV/EDTV)
 YPbPr with sync on all (used for HDTV/EDTV)

Digital Input Interface:
 8/10-bit YCbCr 4:2:2 with Embedded Sync (Not supported)
 16/20-bit YCbCr 4:2:2 with External Sync (Not supported)
 16/20-bit YCbCr 4:2:2 with Embedded Sync
 24/30 bit YCbCr/RGB 4:4:4 (Not supported)
 16 bit RGB 565 with External Sync (Used for VESA displays)
 15 bit RGB 555 with External Sync (Not supported)

THS8200 video encoder is an independent interface which is being configured from the
VPORT driver. THS8200 is I2C slave device. THS8200 driver configures THS8200 device
using I2C interface.

5.4.1 Interface Functions
For display devices, EDC driver is having one intermediate layer driver (edcEncoder driver),
which takes care about lower layer encoder function calls. This intermediate edcEncoder
exports its function table pointer through edcEncoder_Fxns global variable as defined below:

EDC_Fxns edcEncoder_Fxns = {
edcEncoder_open,
edcEncoder_close,
edcEncoder_ctrl

};

To use THS8200, application shall pass this function table pointer as part of device
parameters (edcTbl[2] of VPORT_PortParams) during driver registration using BIOS TCI file.
This will associate the EDC driver instance with the corresponding VPORT driver instance.

As shown in Figure 3, when application calls FVID_create, VPORT driver will internally call
edcEncoder_open function. String “THS8200” should be passed as argument to this function
to open THS8200 for HD or VESA display. This will power on THS8200 device and initialize

Page 65 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

I2C driver for serial communication. Also THS8200 will be taken out of BT.656 bypass mode
and SAA7105 encoder will be power downed.

To configure THS8200, application has to call FVID_control function with
VPORT_CMD_EDC_BASE + THS8200 IOCTL (as shown in below table) as command. This will
internally call THS8200_ctrl function through edcEncoder_ctrl function. Once the VPORT
driver deletes the channel, it will delete the THS8200 and SAA7105 driver instances and
close the I2C driver as well.

THS8200 driver provides support for different IOCTL commands as shown below. Application
can call FVID_control with one of below specified IOCTL command and corresponding
argument to configure THS8200.

IOCTL Command Argument Description
EDC_CONFIG Pointer to structure

variable of type
THS8200_ConfParams

Configures THS8200
encoder for display
operation

EDC_RESET NULL Resets THS8200 encoder
THS8200_POWERDOWN NULL Power down THS8200
THS8200_POWERUP NULL Power up THS8200
THS8200_ENABLE_COLORBAR Pointer to structure

variable of type
THS8200_ColorbarParams

Enables or disables
internal color bar only in
PC Graphics mode (VESA).
THS8200 should be
configured as master for
this.

THS8200_ENABLE_BYPASS Boolean
TRUE - Enable bypass
mode
FALSE - Disable bypass
mode

To enable or disable
BT.656 bypass mode. Note
that the application
doesn’t have to call this,
as this is taken care by the
edcEncoder driver if
SAA7105 is configured for
SD display.

5.4.2 Data Structures

 THS8200_ConfParams

“ths8200.h” file contains THS8200_ConfParams data structure that is passed while calling
EDC_CONFIG IOCTL for THS8200 from the application. The members of this structure are
explained below:

Structure Members Description

mode Type of enum THS8200_Mode, indicates output video
resolution for THS8200

iFmt Type of enum THS8200_InputFormat, indicates digital input
format

aFmt Type of enum THS8200_AnalogFormat, indicates analog
output format

enableSlaveMode Boolean to select master or slave mode

Page 66 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

TRUE = Slave mode
FALSE = Master mode (Not supported)

enableBT656Sync Boolean to select embedded or external sync for digital input.
TRUE = Embedded sync (Used for HDTV resolutions)
FALSE = External sync (Used for VESA resolutions)

 THS8200_ColorbarParams

“ths8200.h” file contains THS8200_ColorbarParams data structure that is passed while
calling THS8200_ENABLE_COLORBAR IOCTL from the application. Note: Since the current
driver does not support slave mode of operation, internal color bar for VESA master mode is
not supported. The members of this structure are explained below:

Structure Members Description

enableColorbar Boolean to enable or disable color bar
TRUE = Enable color bar
FALSE = Disable color bar

colorbarWidth Width for each color bar

5.4.3 Enumerations

 THS8200_AnalogFormat

“ths8200.h” file contains THS8200_AnalogFormat enum that is passed while calling
EDC_CONFIG IOCTL for THS8200 from the application. The members of this enum are
explained below:

Enum Members Description

THS8200_AFMT_RGB_NO_SYNC RGB without sync – used for VESA display

THS8200_AFMT_RGB_SYNC_ON_GREEN RGB with sync on Green channel

THS8200_AFMT_RGB_SYNC_ON_ALL RGB with sync on all R, G, B channels

THS8200_AFMT_YPBPR_SYNC_ON_Y YPbPr with sync on Y channel – used for HDTV
display

THS8200_AFMT_YPBPR_SYNC_ON_ALL YPbPr with sync on all Y, Pb, Pr channels – used
for HDTV display

 THS8200_InputFormat

“ths8200.h” file contains THS8200_InputFormat enum that is passed while calling
EDC_CONFIG IOCTL for THS8200 from the application. The members of this enum are
explained below:

Enum Members Description

THS8200_IFMT_YCBCR422_10_BIT 10 bit YUV 4:2:2 (Not supported)

THS8200_IFMT_YCBCR422_20_BIT 16/20 bit YUV422

THS8200_IFMT_YCBCR444 24/30 bit YUV444 (Not supported)

Page 67 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

THS8200_IFMT_RGB444 24/30 bit RGB444 (Not supported)

THS8200_IFMT_RGB565 16 bit RGB565

THS8200_IFMT_RGB555 15 bit RGB555 (Not supported)

 THS8200_Mode

“ths8200.h” file contains THS8200_Mode enum that is passed while calling EDC_CONFIG
IOCTL for THS8200 from the application. The members of this enum are explained below:

Enum Members Description

THS8200_MODE _480P_60HZ EDTV 720x480 progressive at 60fps (Not supported)

THS8200_MODE _576p_50HZ EDTV 720x576 progressive at 50fps (Not supported)

THS8200_MODE _720p_60HZ HDTV 1280x720 progressive at 60fps

THS8200_MODE _720p_50HZ HDTV 1280x720 progressive at 50fps (Not supported)

THS8200_MODE _1080I_60HZ HDTV 1920x1080 interlaced at 30fps

THS8200_MODE _1080I_50HZ HDTV 1920x1080 interlaced at 25fps

THS8200_MODE _VGA_60HZ VESA 640x480 at 60Hz

THS8200_MODE _VGA_72HZ VESA 640x480 at 72Hz

THS8200_MODE _VGA_75HZ VESA 640x480 at 75Hz

THS8200_MODE _VGA_85HZ VESA 640x480 at 85Hz

THS8200_MODE _SVGA_60HZ VESA 800x600 at 60Hz

THS8200_MODE _SVGA_72HZ VESA 800x600 at 72Hz

THS8200_MODE _SVGA_75HZ VESA 800x600 at 75Hz

THS8200_MODE _SVGA_85HZ VESA 800x600 at 85Hz

THS8200_MODE _XGA_60HZ VESA 1024x768 at 60Hz

THS8200_MODE _XGA_70HZ VESA 1024x768 at 70Hz

THS8200_MODE _XGA_75HZ VESA 1024x768 at 75Hz (Not supported)

THS8200_MODE _XGA_85HZ VESA 1024x768 at 85Hz (Not supported)

THS8200_MODE _SXGA_60HZ VESA 1280x1024 at 60Hz

THS8200_MODE _SXGA_72HZ VESA 1280x1024 at 72Hz (Not supported)

THS8200_MODE _SXGA_75HZ VESA 1280x1024 at 75Hz (Not supported)

THS8200_MODE _SXGA_85HZ VESA 1280x1024 at 85Hz (Not supported)

Page 68 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

5.5 TVP7000 Decoder
TVP7000 decoder is a complete solution for digitizing video and graphic signals in RGB or
YPbPr color spaces. The device supports pixel rates up to 150 MHz.

DM648 EVM contains one TVP7000 capable of capturing HDTV modes (720p and 1080i).
VESA capture is not supported in the current DM648 EVM.

TVP7000 input and output interface details are given below:
Analog Input Interface:

 HDTV YPbPr Analog format
 VESA RGB Analog format (Not supported)

Digital Output Interface:
 YCbCr 422 - 16-bit YCbCr 4:2:2
 RGB/YCbCr 444 - 24-bit RGB 4:4:4 (Not supported)

TVP7000 video decoder is an independent interface which is being configured from the
VPORT driver. TVP7000 is I2C slave device. TVP7000 driver configures TVP7000 device
using I2C interface.

5.5.1 Interface Functions
TVP7000 exports its function table pointer through TVP7000_Fxns global variable as defined
below:

EDC_Fxns TVP7000_Fxns = {
 TVP7000_open,
 TVP7000_close,
 TVP7000_ctrl
};

To use TVP7000, application shall pass this function table pointer as part of device
parameters (edcTbl[2] of VPORT_PortParams) during driver registration using BIOS TCI file.
This will associate the EDC driver instance with the corresponding VPORT driver instance.

As shown in Figure 3, when application calls FVID_create, VPORT driver will internally call
TVP7000_open function. This will power on TVP7000 device and initialize I2C driver for
serial communication. Strings “0” should be passed as argument to TVP7000_open function
to open the TVP7000 decoder.

To configure TVP7000, application has to call FVID_control function with
VPORT_CMD_EDC_BASE + TVP7000 IOCTL (as shown in below table) as command. This will
internally call TVP7000_ctrl function. Once the VPORT driver deletes the channel, it will
delete the TVP7000 driver instance and close the I2C driver as well.

TVP7000 driver provides support for different IOCTL commands as shown below. Application
can call FVID_control with one of below specified IOCTL command and corresponding
argument to configure TVP7000.

 When TVP7000 is powered down, it stops generating clock. When the application is
reloaded after powering down TVP7000, it hangs because resetting VPORT requires the
clock to be active. To avoid this TVP7000 should be powered up using Gel file in this
scenario.

Page 69 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

IOCTL Command Argument Description
EDC_CONFIG Pointer to structure variable

of type
TVP7000_ConfParams

Configures
TVP7000 decoder
for capture
operation

EDC_RESET NULL Resets TVP7000
decoder

TVP7000_POWERDOWN NULL Power down
TVP7000

TVP7000_POWERUP NULL Power up TVP7000
TVP7000_SET_ANALOG_CHAN Pointer to structure variable

of type
TVP7000_AnalogChanParams

Selects analog
input channels for
TVP7000 decoder

5.5.2 Data Structures

 TVP7000_ConfParams

“tvp7000.h” file contains TVP7000_ConfParams data structure that is passed while calling
EDC_CONFIG IOCTL for TVP7000 from the application. The members of this structure are
explained below:

Structure Members Description

mode Type of enum TVP7000_Mode, indicates input analog video
mode

oFmt Type of enum TVP7000_OutputFormat, indicates output
digital video format

 TVP7000_AnalogChanParams

“tvp7000.h” file contains TVP7000_AnalogChanParams data structure that is passed while
calling TVP7000_SET_ANALOG_CHAN IOCTL from the application. The members of this
structure are explained below:

Structure Members Description

chanR Type of enum TVP7000_AnalogChan, analog channel selection
for R (Pr) input

chanG Type of enum TVP7000_AnalogChan, analog channel selection
for G (Y) input

chanB Type of enum TVP7000_AnalogChan, analog channel selection
for B (Pb) input

chanSOG Type of enum TVP7000_AnalogChan, analog channel selection
for SOG input

chanHsync Analog channel selection for Hsync input (Not supported)
TVP7000_AFMT_CHAN_A or TVP7000_AFMT_CHAN_B

chanVsync Analog channel selection for Vsync input (Not supported)
TVP7000_AFMT_CHAN_A or TVP7000_AFMT_CHAN_B

Page 70 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

5.5.3 Enumerations

 TVP7000_OutputFormat

“tvp7000.h” file contains TVP7000_OutputFormat enum that is passed while calling
EDC_CONFIG IOCTL for TVP7000 from the application. The members of this enum are
explained below:

Enum Members Description

TVP7000_OUTMODE_24BIT_RGB_YCBCR_444 Selection for RGB/YUV 4:4:4 output (Not
supported)

TVP7000_OUTMODE_16BIT_YCBCR_422 YUV 4:2:2 output

 TVP7000_AnalogChan

“tvp7000.h” file contains TVP7000_AnalogChan enum that is passed while calling
TVP7000_SET_ANALOG_CHAN IOCTL from the application. The members of this enum are
explained below:

Enum Members Description

TVP7000_AFMT_CHAN_A Decoder channel A selection

TVP7000_AFMT_CHAN_B Decoder channel B selection (Not supported)

TVP7000_AFMT_CHAN_C Decoder channel C selection (Not supported)

 TVP7000_Mode

“tvp7000.h” file contains TVP7000_Mode enum that is passed while calling EDC_CONFIG
IOCTL for TVP7000 from the application. The members of this enum are explained below:

Enum Members Description

TVP7000_MODE_480I_60HZ SDTV 720x480 interlaced at 30fps (Not supported)

TVP7000_MODE_576I_50HZ SDTV 720x576 interlaced at 25fps (Not supported)

TVP7000_MODE_480P_60HZ EDTV 720x480 progressive at 60fps (Not supported)

TVP7000_MODE_576P_50HZ EDTV 720x576 progressive at 50fps (Not supported)

TVP7000_MODE_720p_60HZ HDTV 1280x720 progressive at 60fps

TVP7000_MODE_720p_50HZ HDTV 1280x720 progressive at 50fps (Not supported)

TVP7000_MODE_1080I_60HZ HDTV 1920x1080 interlaced at 30fps

TVP7000_MODE_1080I_50HZ HDTV 1920x1080 interlaced at 25fps

TVP7000_MODE_1080p_60HZ HDTV 1920x1080 progressive at 60fps (Not supported)

TVP7000_MODE_1080p_50HZ HDTV 1920x1080 progressive at 50fps (Not supported)

TVP7000_MODE_VGA_60HZ VESA 640x480 at 60Hz (Not supported)

TVP7000_MODE_VGA_72HZ VESA 640x480 at 72Hz (Not supported)

TVP7000_MODE_VGA_75HZ VESA 640x480 at 75Hz (Not supported)

Page 71 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

TVP7000_MODE_VGA_85HZ VESA 640x480 at 85Hz (Not supported)

TVP7000_MODE_SVGA_60HZ VESA 800x600 at 60Hz (Not supported)

TVP7000_MODE_SVGA_72HZ VESA 800x600 at 72Hz (Not supported)

TVP7000_MODE_SVGA_75HZ VESA 800x600 at 75Hz (Not supported)

TVP7000_MODE_SVGA_85HZ VESA 800x600 at 85Hz (Not supported)

TVP7000_MODE_XGA_60HZ VESA 1024x768 at 60Hz (Not supported)

TVP7000_MODE_XGA_70HZ VESA 1024x768 at 70Hz (Not supported)

TVP7000_MODE_XGA_75HZ VESA 1024x768 at 75Hz (Not supported)

TVP7000_MODE_XGA_85HZ VESA 1024x768 at 85Hz (Not supported)

TVP7000_MODE_SXGA_60HZ VESA 1280x1024 at 60Hz (Not supported)

TVP7000_MODE_SXGA_70HZ VESA 1280x1024 at 70Hz (Not supported)

TVP7000_MODE_SXGA_75HZ VESA 1280x1024 at 75Hz (Not supported)

TVP7000_MODE_SXGA_85HZ VESA 1280x1024 at 85Hz (Not supported)

Page 72 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

6 Porting Description

This section describes the porting of VPORT driver on different TI platforms.

6.1 Porting of DM648 VPORT driver to different DM648 EVM
This section provides description for porting of VPORT driver on different DM648 EVM,
having decoders and encoders other than EVMDM648 board. The figure below shows
VPORT device driver architecture and changes those are required at the driver layers
while porting VPORT device driver to other EVM.

EDC Driver

FVID/GIO Driver

VPORT Driver

Application

FVID Create

Channel
Create Fxn

Video Encoder or Decoder Device

FVID Control FVID Delete

Channel
Control Fxn

Channel
Delete Fxn

EDC Open
Fxn

EDC Control
Fxn

EDC Close
Fxn

Figure 4. Porting of DM648 VPORT driver to different
DM648 EVM

User should take care of below mentioned points while porting DM648 VPORT driver on
different EVM:

 If any encoders and decoders are different than TVP7000, TVP5154, THS8200
& SAA7105, EDC driver for respective encoder or decoder should be
developed. The interface of EDC driver should be same as described in EDC
section.

 If encoders and decoders are same as EVMDM648, but if their hardware
interface with Video Port is different than EVMDM648 then corresponding
modifications should be done in EDC driver. For example, In EVMDM648,
SAA7105 is connected with VPORT via THS8200 bypass mode. If this interface
changes then corresponding modifications should be done in EDC driver.

Page 73 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

6.2 Porting of DM648 VPORT driver to different processor having
same VPORT IP as DM648

This section provides guidance for porting of VPORT driver on the DSP other than
DM648 with same VPORT IP.

Below mentioned points should be taken care of while porting VPORT driver on
different processor with EDMA3 IP same as DM648:

 Modify CSLR files for VPORT base addresses and EDMA events.

 Modify PortObj structure in VPORT driver as per number of video ports in new
processor.

 Change IRQ id in vport.h file which is used for VPORT interrupts.

 If ECM module is different than DM648 then ECM calls should be modified
accordingly in VPORT driver.

 If I2C layer functionality is changed in new processor then user shall modify
I2C interface for EDC driver.

 If EDMA IP in new processor is different than DM648 EDMA3 then data transfer
logic using EDMA should be modified in VPORT driver.

 Refer to section 6.1 for modifications required in EDC driver.

Page 74 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

7 Example Applications

This section describes the example applications that are included in the package. These
sample application can be run as is for quick demonstration, but the user will benefit most
by using these application as sample source code in developing new applications.

7.1 Writing Applications for VPORT
This section provides guidance to user for writing their own application for VPORT
capture and display drivers

7.1.1 File Inclusion
To write sample application user has to include following header files in the application:

1. fvid.h

This file contains FVID layer macros and structures. These macros are wrapper
macros specifically for Video above GIO Layer.

2. vport.h

This file contains video port parameters which are passed to driver at the time of
VPORT driver registration with BIOS. It also contains structures related to
interrupt generation and configuration.

3. vportcap.h

This file contains configuration structures and defines for capture channel
configuration.

4. vportdis.h

This file contains configuration structures and defines for display channel
configuration.

5. edc.h

This file contains EDC specific defines, data types and function pointer table
structure.

6. tvp5154.h

This file contains the interfaces, data types and symbolic definitions that are
needed by the application to configure the TVP5154 video decoder. This header
files needs to be added at the application only if the input to VPORT module is
from TVP5154 video decoder.

7. tvp7000.h

This file contains the interfaces, data types and symbolic definitions that are
needed by the application to configure the TVP7000 video decoder. This header
files needs to be added at the application only if the input to VPORT module is
from TVP7000 video decoder.

Page 75 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

8. edcEncoder.h

This file contains external function table declaration for encoder device functions.
This header files needs to be added at the application if display is required.

9. saa7105.h

This file contains the interfaces, data types and symbolic definitions that are
needed by the application to configure the SAA7105 video encoder. This header
files needs to be added at the application only if the video output is configured
from SAA7105 video encoder.

10.ths8200.h

This file contains the interfaces, data types and symbolic definitions that are
needed by the application to configure the THS8200 video encoder. This header
files needs to be added at the application only if the video output is configured
from THS8200 video encoder.

7.1.2 Buffer Allocation and Management

Frame buffers containing video data are allocated and initially owned by the drivers when
application creates channel. The number of frame buffers that drivers allocate is run-time
configurable by application with a minimum requirement of triple buffering.

Before allocation, drivers calculate the size of each buffer based on the channel
configuration parameters. For example, the size of a buffer that can hold an entire NTSC
video frame is 720x480x2.

If horizontal scaling is enabled, however, the size would be halved. Frame buffers are
exchanged among the application and the drivers by using the FVID_alloc (FVID_dequeue),
FVID_free (FVID_queue) and FVID_exchange functions. The buffer management strategies,
however, are different in the capture and display drivers, as showed in Figure 4 and Figure
5 below.

Figure 5. Capture Driver Buffer Management

Page 76 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

In the case of capture, all buffers are initially in the free queue and the driver cycles
through them in a circular fashion. This is illustrated in Figure 4(a).
When the application calls FVID_alloc and grabs the buffer with the most recent data from
the driver, the driver then cycles through the rest of buffers. This is illustrated in Figure 4
from (a) to (b) and from (b) to (e).

When the application calls FVID_free (FVID_queue), an empty buffer is returned by the
application to the driver’s free queue. This is illustrated in Figure 4 from (b) to (a) or from
(e) to (b). When the application calls FVID_exchange, an empty buffer is returned by the
application to the driver’s free queue, and a buffer with the most recent data is given to the
application. This is equivalent to calling FVID_free (FVID_queue) and FVID_alloc
sequentially, as shown in Figure 4 from (b) to (c) and from (c) to (d).

Figure 6. Display Driver Buffer Management

In the case of display, initially all buffers except one are in the output queue, ready to be
grabbed by the application. The driver repeatedly displays the current buffer. This is shown
in Figure 5(a). When the application calls FVID_alloc (FVID_dequeue), it gets a buffer from
the driver. Application starts to fill data to it while the driver is still displaying its current
buffer. This is shown in Figure 5(b) and (d).

When the application calls FVID_free (FVID_queue), it returns a buffer ready for display
back to the driver. The driver, in turn, will set this buffer as its current buffer after it
completes displaying the previous one. This is shown in Figure 5(b) to (c) to (d). When the
application calls FVID_exchange, it returns a buffer ready for display back to the drive and it
requires an empty buffer from the driver. This is equivalent to calling FVID_free
(FVID_queue) and FVID_alloc (FVID_dequeue) sequentially, as shown in Figure 5(d) to (e).

Page 77 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

7.1.3 Cache Coherency

Application is responsible to ensure cache coherency of video buffers, as the driver
does nothing in this respect. This is because data is typically moved by EDMA between fast
on-chip RAM and slow off-chip SD-RAM for faster CPU access. Furthermore, algorithms can
use ping-pong buffer schemes to parallel the EDMA transfer and the CPU execution, thus
hiding most or all overhead associated with the data movement. If this is the case, cache
flush and clean operations can be avoided by aligning the frame buffers to cache line
boundaries. However, if the application does access these buffers directly, the application
must flush or clean the cache to ensure cache coherency, the EDMA accesses external
memory directly through the EMIF, while the CPU goes through the cache when accessing
the data.

Recommended Cache Operation in Application:

In a simple loopback scenario, the application doesn’t have to do any cache
operations to ensure cache coherency if buffers are exchanged between drivers. But when
the application access the video buffers through CPU say to run an algorithm or to copy
capture buffer to display buffer using CPU, then the below cache operations are
recommended for proper operation.

 Capture driver
Before providing a buffer to capture driver, the entire buffer should be

invalidated. Below code snippet illustrate this.

 /* Invalidate the buffer before giving to capture driver */
 BCACHE_inv((Uint8 *)frame->frame.iFrm.y1, FRAME_SIZE, TRUE);

 /* Give the old capture frame buffer back to driver and get the
 recently captured frame buffer */
 status = FVID_exchange(chanHandle, &frame);

 Display driver

Before providing a buffer to display driver, the entire buffer should be flushed
and invalidated. Below code snippet illustrate this.

 /* Flush and invalidate the processed buffer so that the EDMA reads
 the processed data */
 BCACHE_wbInv((Uint8 *) frame->frame.iFrm.y1, FRAME_SIZE, TRUE);

 /* Give the captured frame buffer to display driver and get a
 free frame buffer for next capture */
 status = FVID_exchange(chanHandle, &frame);

Page 78 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

7.2 Sample Applications

7.2.1 Introduction

The sample application is a representative test program. Initialization of VPORT
driver is done by calling initialization function from BIOS.

1. SD Loop back

The SD loop back application configures capture & display drivers and
starts video loop back in NTSC/PAL resolution. By default the sample application
captures one channel and displays in NTSC resolution.

Configuration options are provided (macros defined at the start of
“psp_bios_vport_sd_loopback.c” file) to change the number of channel to
capture and to change loop back for PAL resolution. If the number of capture
channel is changed to more than one, the application will display each channel
one by one for a specified number of seconds (default to 4 seconds).

2. SD Compositor

The SD Compositor application configures capture and display drivers in
NTSC/PAL resolutions. By default the sample application captures four NTSC
channel and displays the four channel in NTSC resolution. This sample
application uses new FVID APIs (DM64LC mode of operation).

Configuration options are provided (macros defined at the start of
“psp_bios_vport_sd_compositor.c” file) to change the number of channel to
capture and to change application for PAL resolution. If the number of capture
channel is changed to more than one (Maximum 4), the application will club all
the capture channels into one frame (Uses half scaling of capture channel
depending upon on number of capture channel) and displays all the channels
simultaneously in NTSC D1 resolution.

3. HD Compositor

The HD Compositor application configures capture drivers in NTSC
resolution & display driver in 1080I 60Hz resolution. By default the sample
application captures one NTSC channel and displays in 1080I 60Hz resolution.
This sample application uses new FVID APIs (DM64LC mode of operation).

Configuration options are provided (macros defined at the start of
“psp_bios_vport_hd_compositor.c” file) to change the number of channel to
capture and to change application for PAL resolution. If the number of capture
channel is changed to more than one, the application will club all the capture
channels into one frame (Uses half scaling of capture channel depending upon
on number of capture channel) and displays all the channels simultaneously in
1080I resolution.

4. HD Loop back

The HD loop back application configures capture & display drivers and
starts video loop back in 720P/1080I resolution. By default the sample
application captures and displays in 1080I 60Hz resolution.

Configuration options are provided (macros defined at the start of
“psp_bios_vport_hd_loopback.c” file) to change loop back for 1080I 50 Hz or
720P 60Hz resolutions.

Page 79 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

5. VESA Color bar

The VESA color bar application configures display drivers and starts video
vertical color bar display in VESA resolutions. By default the sample application
displays in VGA 60Hz resolution. This sample application uses new FVID APIs
(DM64LC mode of operation).

Configuration options are provided (macros defined at the start of
“psp_bios_vport_vesa_colorbar.c” file) to change display for VGA 72/75/85Hz,
SVGA 60/72/75/85Hz, XGA 60/70Hz and SXGA 60Hz resolutions.

6. Raw Capture Loop back

This sample application illustrates the RAW capture capability of VPORT
driver. It contains two tasks. Task 1 captures NTSC/PAL video from
player/camera through VPORT 0 channel A and displays the same in VPORT 3 in
RAW format. The displayed data is loop backed to VPORT 4 channel A using
external cables through daughter card. Task 2 captures the loop backed data in
RAW format and displays the video through VPORT 1 which can be viewed in TV.

By default the sample application works in 8-bit RAW display/capture
mode and loop back in NTSC resolution.

Configuration options are provided (macros defined at the start of
“psp_bios_vport_raw_capture_loopback.c” file) to change the RAW
display/capture mode to 16-bit and to change loop back for PAL resolution.

 Build procedure

 Open CCS setup. Import proper CCS configuration file. Set the proper CCS
Gel file. Click on “Save & Quit” button and start CCS.

 Open
“<root>\packages\ti\sdo\pspdrivers\system\dm648\bios\evmDM648\vide
o\sample\build\sd_loopback\dm648_evm_vport_st_sd_loopback_sa
mple.pjt” for running SD Loop back sample application.

(OR)

Open
“<root>\packages\ti\sdo\pspdrivers\system\dm648\bios\evmDM648\vide
o\sample\build\sd_compositor\dm648_evm_vport_st_sd_compositor
_sample.pjt” for running HD Compositor sample application

(OR)

Open
“<root>\packages\ti\sdo\pspdrivers\system\dm648\bios\evmDM648\vide
o\sample\build\hd_compositor\dm648_evm_vport_st_hd_compositor
_sample.pjt” for running HD Compositor sample application

(OR)

Open
“<root>\packages\ti\sdo\pspdrivers\system\dm648\bios\evmDM648\vide
o\sample\build\hd_loopback\dm648_evm_vport_st_hd_loopback_sa
mple.pjt” for running HD Loop back sample application

(OR)

Page 80 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

Open
“<root>\packages\ti\sdo\pspdrivers\system\dm648\bios\evmDM648\vide
o\sample\build\vesa_colorbar\dm648_evm_vport_st_vesa_colorbar_
sample.pjt” for running VESA color bar sample application

(OR)

Open
“<root>\packages\ti\sdo\pspdrivers\system\dm648\bios\evmDM648\vide
o\sample\build\raw_capture_loopback\dm648_evm_vport_st_raw_cap
ture_loopback_sample.pjt” for running RAW capture loop back sample
application

 Compile the project using Project->Build

 Following are the dependent libraries/projects to successfully build video
application

o VPORT

o VPORT EDC

o I2C

o PAL_OS

o SoC specific PAL_SYS

o EDMA3 DRV

o EDMA3 RM

o EDMA3 DRV Sample

Page 81 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 Hardware setup and demo procedure for DM648 SD Loop back

 Connect XDS emulator to the JTAG connector on EVMDM648 board.
Switch on the power supply for board.

 Connect RCA video cables from TVP5154 #1 and TVP5154 #2 decoder
channels composite input of EVMDM648 to eight NTSC camera or a DVD
Player set in NTSC mode. For default application, only one input channel is
sufficient.

Connect the cables in the following sockets

 Channel 0 - J4 bottom RCA jack

 Channel 1 - J4 top RCA jack

 Channel 2 – J3 bottom RCA jack

 Channel 3 – J3 top RCA jack

 Channel 4 – J6 bottom RCA jack

 Channel 5 – J6 top RCA jack

 Channel 6 – J5 bottom RCA jack

 Channel 7 – J5 top RCA jack

 Connect Svideo cable from SAA7105 output of EVMDM648 (J13) to TV.

 Make sure the Video Clock is set to 27 MHz and the EVM mux are set
properly for SD operation using the GEL file.

 Load the generated video “.out” file
(dm648_evm_vport_st_sd_loopback_sample.out) and execute it.

 By default, demo will display video (in Svideo format from J13) captured
from TVP5154 #1 Channel 0 (J4 bottom jack) in NTSC D1 resolution.

 User can change the number of capture channel by changing
“CFG_NUM_CAP_CHANNEL” macro to any number between 1 and 8.

 Below are the other configurable options available in this sample
application

 “CFG_VIDEO_MODE” – Define this to “MODE_PAL” for PAL mode
of operation. Default value for this macro is “MODE_NTSC”

 “CFG_LOOP_TIME” - If “CFG_NUM_CAP_CHANNEL” is greater
than 1, then after “CFG_LOOP_TIME” second loop back operation
will switch to the next channel. Default value for this macro is 4
second.

 “CFG_ENABLE_SCALING” – Define this to 1 to enable ½ scaling
for capture and 2x scaling for display operation. Default value for
this macro is 0 (scaling disabled).

 “CFG_NUM_FRAME_COUNT” - This sample application will run
for “CFG_NUM_FRAME_COUNT” amount of frames. After which the
application will close. With the current value of 100000 frames, the
sample application will run for 55 minute of NTSC video or 66
minute of PAL video. After which the loop back operation will stop.

Page 82 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 Hardware setup and demo procedure for DM648 SD Compositor

 Connect XDS emulator to the JTAG connector on EVMDM648 board.
Switch on the power supply for board.

 Connect RCA video cables from TVP5154 #1 and TVP5154 #2 decoder
channels composite input of EVMDM648 to eight NTSC camera or a DVD
Player set in NTSC mode. For default application, four input channels are
required.

Connect the cables in the following sockets

 Channel 0 - J4 bottom RCA jack

 Channel 1 - J4 top RCA jack

 Channel 2 – J3 bottom RCA jack

 Channel 3 – J3 top RCA jack

 Connect Svideo cable from SAA7105 output of EVMDM648 (J13) to TV.

 Make sure the Video Clock is set to 27 MHz and the EVM mux are set
properly for SD operation using the GEL file.

 Load the generated video “.out” file
(dm648_evm_vport_st_sd_compositor_sample.out) and execute it.

 By default, demo will display video (in Svideo format from J13) captured
from all the four channels in a single frame in NTSC D1 resolution.

 User can change the number of capture channel by changing
“CFG_NUM_CAP_CHANNEL” macro to any number between 1 and 4.

 Below are the other configurable options available in this sample
application

 “CFG_VIDEO_MODE” – Define this to “MODE_PAL” for PAL mode
of operation. When PAL mode is selected, capture and display
drivers will be configured for PAL resolution. Default value for this
macro is “MODE_NTSC”.

 “CFG_NUM_FRAME_COUNT” - This sample application will run
for “CFG_NUM_FRAME_COUNT” amount of frames. After which the
application will close. With the current value of 100000 frames, the
sample application will run for 55 minute of NTSC video or 66
minute of PAL video. After which the loop back operation will stop.

Page 83 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 Hardware setup and demo procedure for DM648 HD Compositor

 Connect XDS emulator to the JTAG connector on EVMDM648 board.
Switch on the power supply for board.

 Connect RCA video cables from TVP5154 #1 and TVP5154 #2 decoder
channels composite input of EVMDM648 to eight NTSC camera or a DVD
Player set in NTSC mode. For default application, only one input is
sufficient.

Connect the cables in the following sockets

 Channel 0 - J4 bottom RCA jack

 Channel 1 - J4 top RCA jack

 Channel 2 – J3 bottom RCA jack

 Channel 3 – J3 top RCA jack

 Channel 4 – J6 bottom RCA jack

 Channel 5 – J6 top RCA jack

 Channel 6 – J5 bottom RCA jack

 Channel 7 – J5 top RCA jack

 Connect VGA to Component converter cable from THS8200 output of
EVMDM648 (J14) to a HDTV.

 Make sure the Video Clock is set to 74.25 MHz and the EVM mux are set
properly for HD operation using the GEL file.

 Load the generated video “.out” file
(dm648_evm_vport_st_hd_compositor_sample.out) and execute it.

 By default, demo will display NTSC D1 resolution video captured from
TVP5154 #1 Channel 0 (J4 bottom jack) in 1080I 60Hz resolution
(through J15).

 User can change the number of capture channel by changing
“CFG_NUM_CAP_CHANNEL” macro to any number between 1 and 8.
Depending on the number of capture channel, the compositor function will
accordingly copy the capture buffers to the display buffer.

 Below are the other configurable options available in this sample
application

 “CFG_VIDEO_MODE” – Define this to “MODE_PAL” for PAL mode
of operation. When PAL mode is selected, display driver will be
configured for 1080I 50Hz resolution. Default value for this macro
is “MODE_NTSC”.

 “CFG_NUM_FRAME_COUNT” - This sample application will run
for “CFG_NUM_FRAME_COUNT” amount of frames. After which the
application will close. With the current value of 100000 frames, the
sample application will run for 55 minute of NTSC video or 66
minute of PAL video. After which the loop back operation will stop.

Page 84 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 Hardware setup and demo procedure for DM648 HD Loop back

 Connect XDS emulator to the JTAG connector on EVMDM648 board.
Switch on the power supply for board.

 Connect Component to VGA converter cable from a HD player to TVP7000
input of EVMDM648 (J10).

 Connect VGA to Component converter cable from THS8200 output of
EVMDM648 (J14) to a HDTV.

 Make sure the Video Clock is set to 74.25 MHz and the EVM mux are set
properly for HD capture operation using the GEL file.

 Configuration macro (CFG_ENABLE_THS7353) is provided in TVP7000
driver (tvp7000.c file) to enable or disable THS7353 HD filter
configuration. In production EVM THS7353 HD filter is removed. Hence
this option is provided to facilitate the use of TVP7000 driver both in pre-
production EVMs and production EVMs. By default this macro is disabled –
library is built for production EVM. If the EDC driver has to be used for HD
capture operation in pre-production EVMs, then this macro should be set
to 1 and the EDC library should be recompiled. Also recompile the sample
application to include the generated library.

 Configuration macro (CFG_ENABLE_HDCAPTURE_WORKAROUND) is
provided in psp_bios_vport_hd_loopback.c and _tvp7000.c files to enable
or disable HD capture software workaround for proper HD capture
operation in production EVM. Ensure that this macro is same in both the
files. By default both these macros are enabled. If these macros are
changed, the VPORT EDC driver and HD Loopback sample application
should be recompiled.

 Load the generated video “.out” file
(dm648_evm_vport_st_hd_loopback_sample.out) and execute it.

 By default, demo will display video captured from TVP7000 in 1080I 60Hz
resolution.

 Below are the other configurable options available in this sample
application

 “CFG_VIDEO_MODE” – Change this to run HD loopback
application in 720P 60Hz or 1080I 50Hz resolutions

 “CFG_ENABLE_SCALING” – Define this to 1 to enable ½ scaling
for capture and 2x scaling for display operation. Default value for
this macro is 0 (scaling disabled).

 “CFG_NUM_FRAME_COUNT” - This sample application will run
for “CFG_NUM_FRAME_COUNT” amount of frames. After which the
application will close.

 “CFG_ENABLE_HDCAPTURE_WORKAROUND” – To enable or
disable HD capture software workaround for proper HD capture
operation in production EVM.

Page 85 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 Hardware setup and demo procedure for DM648 VESA Color bar

 Connect XDS emulator to the JTAG connector on EVMDM648 board.
Switch on the power supply for board.

 Connect VGA to VGA cable from THS8200 output of EVMDM648 (J14) to a
PC monitor.

 Make sure the Video Clock is set to required value (see below) and the
EVM mux are set properly for VESA display operation using the GEL file.
Following are the clock required for various VESA modes

 VGA 60Hz - 25.175 MHz

 VGA 72Hz/75Hz - 31.5 MHz

 VGA 85Hz - 36 MHz

 SVGA 60Hz - 40 MHz

 SVGA 72Hz - 50 MHz

 SVGA 75Hz - 49.5 MHz

 SVGA 85Hz - 56.25 MHz

 XGA 60Hz - 65 MHz

 XGA 70Hz - 75 MHz

 SXGA 60Hz - 108 MHz

 Load the generated video “.out” file
(dm648_evm_vport_st_vesa_colorbar_sample.out) and execute it.

 By default, demo will display video color bar in VGA 60Hz resolution.

 Below are the other configurable options available in this sample
application

 “CFG_VIDEO_MODE” – Change this to run VESA color bar
application in VGA 72/75/85Hz, SVGA 60/72/75/85Hz, XGA
60/70Hz and SXGA 60Hz resolutions

 “CFG_NUM_FRAME_COUNT” - This sample application will run
for “CFG_NUM_FRAME_COUNT” amount of frames. After which the
application will close.

Page 86 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 Hardware setup and demo procedure for DM648 RAW Capture Loop back

 Connect the daughter card to DM648 EVM (J15, J16 and J25). Connect
VPORT 3 and VPORT 4 pins according to the below table using external
cables/wires. Connection of VPORT data pins D12 to D19 is not required
for 8-bit loopback.

DC Pin (VPORT 3 Pin) DC Pin (VPORT 4 Pin)

P7:1 (VP3 GND) Connect to external clock source
Ground

P7:2 (VP3 CLK0)
Connect to external clock – 27
MHz for 8-bit, 13.5 MHz for 16-bit
operation

P7:3 (VP3 CTL0) P14:5 (VP4 CTL0)

P7:4 (VP3 D2) P14:9 (VP4 D2)

P7:5 (GND) P14:7 (GND)

P7:6 (GND) P14:8 (GND)

P7:7 (VP3 D3) P14:10 (VP4 D3)

P7:8 (VP3 D4) P14:11 (VP4 D4)

P7:9 (VP3 D5) P14:12 (VP4 D5)

P7:10 (VP3 D6) P15:1 (VP4 D6)

P7:11 (GND) P15:5 (GND)

P7:12 (GND) P15:6 (GND)

P7:13 (VP3 D7) P15:2 (VP4 D7)

P7:14 (VP3 D8) P15:3 (VP4 D8)

P8:1 (VP3 D9) P15:4 (VP4 D9)

P8:2 (VP3 CTL1) P15:7 (VP4 CTL1)

P8:3 (GND) P15:11 (GND)

P8:4 (GND) P15:12 (GND)

P8:5 (VP3 CLK1) P14:6 (VP3 CLK0)

P8:6 (VP3 CTL2) P15:9 (VP3 CTL2)

P8:7 (VP3 D12) P15:10 (VP4 D12)

P8:8 (VP3 D13) P15:13 (VP4 D13)

P8:9 (GND) P20:3 (GND)

P8:10 (GND) P20:4 (GND)

P8:11 (VP3 D14) P15:14 (VP4 D14)

P8:12 (VP3 D15) P20:1 (VP4 D15)

P8:13 (VP3 D16) P20:2 (VP4 D16)

Page 87 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

P8:14 (VP3 D17) P20:5 (VP4 D17)

P14:1 (GND) P20:9 (GND)

P14:2 (GND) P20:10 (GND)

P14:3 (VP3 D18) P20:6 (VP4 D18)

P14:4 (VP3 D19) P20:7 (VP4 D19)

 Connect XDS emulator to the JTAG connector on EVMDM648 board.
Switch on the power supply for board.

 Connect RCA video cable from TVP5154 #1 decoder channel composite
input of EVMDM648 to a NTSC camera or a DVD Player set in NTSC mode.

Connect the cable in J4 bottom RCA jack

 Connect Svideo cable from SAA7105 output of EVMDM648 (J13) to TV.

 Make sure the Video Clock (VPORT 1 display) is set to 27 MHz and the
EVM mux are set properly for SD operation using the GEL file.

 Connect VPORT 3 and VPORT 4 to daughter card by running
“Set_Muxes_5VideoPorts_VP34_Dcc” from GEL menu.

 Make sure the external clock to VPORT 3 display is set to 27 MHz for 8-bit
operation or to 13.5 MHz for 16-bit operation.

 Load the generated video “.out” file
(dm648_evm_vport_st_raw_capture_loopback_sample.out) and
execute it.

 By default, demo will display video (in Svideo format from J13) captured
from TVP5154 #1 Channel 0 (J4 bottom jack) in NTSC D1 resolution.

 User can change the RAW capture mode to 16-bit by changing
“CFG_RAW_LOOPBACK_MODE” to MODE_RAW_16BIT.

 Below are the other configurable options available in this sample
application

 “CFG_VIDEO_MODE” – Define this to “MODE_PAL” for PAL mode
of operation. Default value for this macro is “MODE_NTSC”

 “CFG_NUM_FRAME_COUNT” - This sample application will run
for “CFG_NUM_FRAME_COUNT” amount of frames. After which the
application will close. With the current value of 100000 frames, the
sample application will run for 55 minute of NTSC video or 66
minute of PAL video. After which the loop back operation will stop.

Page 88 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

7.2.2 Configuration Parameters
This section describes how TVP5154 video decoder chip, SAA7105 video encoder chip and
VPORT driver parameters are configured for SD (NTSC) loop back application.

 Video Capture Port Configuration Parameters

Capture port parameter used during VPORT driver registration with BIOS using TCI files.
Capture port is configured for dual channel operation.

#define CAP_PARAMS_PORT_DEFAULT { \
 TRUE, /* enableDualChan */ \
 VPORT_POLARITY_ACTIVE_HIGH, /* vport control pin 1 polarity */ \
 VPORT_POLARITY_ACTIVE_HIGH, /* vport control pin 2 polarity */ \
 VPORT_POLARITY_ACTIVE_HIGH, /* vport control pin 3 polarity */ \
 &TVP5154_Fxns, /* VPORT Channel A EDC driver */ \
 &TVP5154_Fxns, /* VPORT Channel B EDC driver */ \
}

 Video Display Port Configuration Parameters

Display port parameter used during VPORT driver registration with BIOS using TCI files.

#define DIS_PARAMS_PORT_DEFAULT { \
 FALSE, /* enableDualChan */ \
 VPORT_POLARITY_ACTIVE_HIGH, /* vport control pin 1 polarity */ \
 VPORT_POLARITY_ACTIVE_HIGH, /* vport control pin 2 polarity */ \
 VPORT_POLARITY_ACTIVE_HIGH, /* vport control pin 3 polarity */ \
 & edcEncoder_Fxns, /* VPORT Channel A EDC driver */ \
 INV, /* VPORT Channel B EDC driver */ \
}

 Driver naming convention used for Channel creation

Application calls FVID_create to create and initialize a video driver channel.

The name argument is the name specified for the device when it was created in the
configuration file or at run-time. The name contains three fields for Capture video port
within it like “/VP0CAPTURE/A/0”.

1. “VP0CAPTURE” - name of the video port same as UDEV name
2. “A” - channel of selected VPORT. It can be “A” or “B”.
3. “0” – Decoder channel number.

In EVMDM648, for TVP5154 using VP0, this can be 0 (For Channel A) or 1 (Channel
B).
In EVMDM648, for TVP5154 using VP2, this can be 2 or 3.
In EVMDM648, for TVP5154 using VP3, this can be 4 or 5.
In EVMDM648, for TVP5154 using VP4, this can be 6 or 7.
In EVMDM648, for TVP7000 using VP0, this value should be 0.

For Display, name argument will be “/VP1DISPLAY/SAA7105” for display using SAA7105 and
it will be “/VP1DISPLAY/THS8200” for display using THS8200.

Page 89 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 VPORT Capture Channel Configuration Parameters

Capture driver is configured to capture data in 8-bit BT656 mode. Here, capture driver is
configured in NTSC. For more details, please refer to psp_bios_vport_capParams.h

#define NTSC720_LINE_SZ 720
#define NTSC720_NUM_LINES_PER_FLD (480>>1)

#define CAP_PARAMS_CHAN_EMBEDDED_DEFAULT { \
 VPORT_MODE_BT656_8BIT, /* cmode:3 */ \
 VPORT_FLDOP_FRAME, /* fldOp:3 */ \
 VPORT_SCALING_DISABLE, /* scale:1 */ \
 VPORT_RESMPL_DISABLE, /* resmpl:1 */ \
 VPORTCAP_BPK_10BIT_ZERO_EXTENDED, /*bpk10Bit:2 */ \
 VPORTCAP_HRST_SAV, /* hCtRst:1 */ \
 VPORTCAP_VRST_EAV_V0, /* vCtRst:1 */ \
 VPORTCAP_FLDD_DISABLE, /* fldDect:1 */ \
 VPORTCAP_EXC_DISABLE, /* fldInv:1 */ \
 VPORTCAP_FINV_DISABLE, /* fldInv:1 */ \
 0, /* fldXStrt1 */ \
 3, /* fldYStrt1 */ \
 0, /* fldXStrt2 */ \
 3, /* fldYStrt2 */ \
 NTSC_LINE_SZ-1, /* fldXStop1 */ \
 NTSC_NUM_LINES_PER_FLD+2, /* fldYStop1 */ \
 NTSC_LINE_SZ-1, /* fldXStop2 */ \
 NTSC_NUM_LINES_PER_FLD+2, /* fldYStop2 */ \
 (NTSC_LINE_SZ>>3), /* thrld */ \
 3, /* numFrmBufs */ \
 128, /* alignment */ \
 VPORT_FLDS_MERGED, /* mergeFlds */ \
 NULL, /* segId */ \
 TRUE, /* autoSyncEnable */ \
 NULL /* EDMA handle */ \
}

Page 90 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 VPORT Display Channel Configuration Parameters

Display driver is configured to display data in 8-bit display mode. Here, display driver is
configured in NTSC mode. For more details, please refer to psp_bios_vport_disParams.h

#define DISPLAY_NTSC_LINE_SZ 720
#define DISPLAY_NTSC_NUM_LINES_PER_FLD 240

#define _DIS_PARAMS_CHAN_NTSC_DEFAULT { \
 VPORT_MODE_BT656_8BIT, /* dmode:3 */ \
 VPORT_FLDOP_FRAME, /* fldOp:3 */ \
 VPORT_SCALING_DISABLE, /* scale:1 */ \
 VPORT_RESMPL_DISABLE, /* resmpl:1 */ \
 VPORTDIS_DEFVAL_ENABLE, /* defValEn:1 */ \
 VPORTDIS_BPK_10BIT_NORMAL, /*bpk10Bit:1 */ \
 VPORTDIS_VCTL1_HSYNC, /* vctl1Config:2 */ \
 VPORTDIS_VCTL2_VSYNC, /* vctl2Config:2 */ \
 VPORTDIS_VCTL3_FLD, /* vctl3Config:1 */ \
 VPORTDIS_EXC_DISABLE, /* extCtl:3 */ \
 858, /* frmHSize */ \
 525, /* frmVSize */ \
 0, /* imgHOffsetFld1 */ \
 0, /* imgVOffsetFld1 */ \
 DISPLAY_NTSC_LINE_SZ, /* imgHSizeFld1 */ \
 DISPLAY_NTSC_NUM_LINES_PER_FLD, /* imgVSizeFld1 */ \
 0, /* imgHOffsetFld2 */ \
 0, /* imgVOffsetFld2 */ \
 DISPLAY_NTSC_LINE_SZ, /* imgHSizeFld2 */ \
 DISPLAY_NTSC_NUM_LINES_PER_FLD, /* imgVSizeFld2 */ \
 720, /* hBlnkStart */ \
 856, /* hBlnkStop */ \
 720, /* vBlnkXStartFld1 */ \
 1, /* vBlnkYStartFld1 */ \
 720, /* vBlnkXStopFld1 */ \
 21, /* vBlnkYStopFld1 */ \
 360, /* vBlnkXStartFld2 */ \
 263, /* vBlnkYStartFld2 */ \
 360, /* vBlnkXStopFld2 */ \
 284, /* vBlnkYStopFld2 */ \
 720, /* xStartFld1 */ \
 1, /* yStartFld1 */ \
 360, /* xStartFld2 */ \
 263, /* yStartFld2 */ \
 736, /* hSyncStart */ \
 800, /* hSyncStop */ \
 736, /* vSyncXStartFld1 */ \
 4, /* vSyncYStartFld1 */ \
 736, /* vSyncXStopFld1 */ \
 7, /* vSyncYStopFld1 */ \
 307, /* vSyncXStartFld2 */ \
 266, /* vSyncYStartFld2 */ \
 307, /* vSyncXStopFld2 */ \
 269, /* vSyncYStopFld2 */ \

Page 91 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 16, /* yClipLow */ \
 235, /* yClipHigh */ \
 16, /* cClipLow */ \
 240, /* cClipHigh */ \
 0x10, /* Default Y value */ \
 0x80, /* Default Cb value */ \
 0x80, /* Default Cr value */ \
 \
 VPORTDIS_RGBX_DISABLE, /* RGB extract disable */ \
 0, /* incPix, for raw mode only */ \
 (DISPLAY_NTSC_LINE_SZ>>3), /*thrld */ \
 3, /* numFrmBufs*/ \
 128, /* alignment */ \
 VPORT_FLDS_MERGED, /* mergeFlds */ \
 NULL, /* segId */ \
 NULL /* EDMA handle */ \
}

Display driver configuration for 1080I 60Hz.

#define DIS_1080I_LINE_SZ (1920)
#define DIS_1080I_NUM_LINES (1080)
#define DIS_1080I_NUM_LINES_PER_FLD (DIS_1080I_NUM_LINES >> 1)

#define DIS_PARAMS_CHAN_1080I_60HZ_DEFAULT { \
 VPORT_MODE_YCBCR_8BIT, /* dmode:3 */ \
 VPORT_FLDOP_FRAME, /* fldOp:3 */ \
 \
 VPORT_SCALING_DISABLE, /* scale:1 */ \
 VPORT_RESMPL_DISABLE, /* resmpl:1 */ \
 VPORTDIS_DEFVAL_ENABLE, /* defValEn:1 */ \
 VPORTDIS_BPK_10BIT_NORMAL, /* bpk10Bit:1 */ \
 \
 VPORTDIS_VCTL1_HSYNC, /* vctl1Config:2 */ \
 VPORTDIS_VCTL2_VSYNC, /* vctl2Config:2 */ \
 VPORTDIS_VCTL3_FLD, /* vctl3Config:1 */ \
 VPORTDIS_EXC_DISABLE, /* extCtl:3 */ \
 \
 2200, /* frmHSize */ \
 1125, /* frmVSize */ \
 \
 0, /* imgHOffsetFld1 */ \
 0, /* imgVOffsetFld1 */ \
 DIS_1080I_LINE_SZ, /* imgHSizeFld1 */ \
 DIS_1080I_NUM_LINES_PER_FLD, /* imgVSizeFld1 */ \
 \
 0, /* imgHOffsetFld2 */ \
 0, /* imgVOffsetFld2 */ \
 DIS_1080I_LINE_SZ, /* imgHSizeFld2 */ \
 DIS_1080I_NUM_LINES_PER_FLD, /* imgVSizeFld2 */ \
 \
 1920, /* hBlnkStart */ \
 2196, /* hBlnkStop */ \

Page 92 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 \
 0, /* vBlnkXStartFld1 */ \
 1, /* vBlnkYStartFld1 */ \
 0, /* vBlnkXStopFld1 */ \
 23, /* vBlnkYStopFld1 */ \
 \
 0, /* vBlnkXStartFld2 */ \
 563, /* vBlnkYStartFld2 */ \
 0, /* vBlnkXStopFld2 */ \
 586, /* vBlnkYStopFld2 */ \
 \
 0, /* xStartFld1 */ \
 1, /* yStartFld1 */ \
 \
 0, /* xStartFld2 */ \
 563, /* yStartFld2 */ \
 \
 2008, /* hSyncStart */ \
 2052, /* hSyncStop */ \
 \
 2008, /* vSyncXStartFld1 */ \
 2, /* vSyncYStartFld1 */ \
 2008, /* vSyncXStopFld1 */ \
 7, /* vSyncYStopFld1 */ \
 \
 908, /* vSyncXStartFld2 */ \
 505, /* vSyncYStartFld2 */ \
 908, /* vSyncXStopFld2 */ \
 505, /* vSyncYStopFld2 */ \
 \
 16, /* yClipLow */ \
 235, /* yClipHigh */ \
 16, /* cClipLow */ \
 240, /* cClipHigh */ \
 \
 0x10, /* Default Y value */ \
 0x80, /* Default Cb value */ \
 0x80, /* Default Cr value */ \
 \
 VPORTDIS_RGBX_DISABLE, /* RGB extract disable */ \
 0, /* incPix, for raw mode only */ \
 \
 (DIS_1080I_LINE_SZ >> 4), /* thrld */ \
 \
 3, /* numFrmBufs */ \
 128, /* alignment */ \
 VPORT_FLDS_MERGED, /* mergeFlds */ \
 \
 NULL, /* segId */ \
 NULL /* hEdma */ \
}

Page 93 of 89

DM648 VPORT Driver User Guide

Texas Instruments Proprietary Information

 TVP5154 Configuration Parameters

All 8 channels of two TVP5154 video decoders will be configured in NTSC 8-bit BT656,
Composite channel A input mode.

#define CAP_PARAMS_TVP5154_EMBEDDED_DEFAULT { \
 TVP5154_MODE_NTSC, /* Mode */ \
 TVP5154_AFMT_COMPOSITE_A, /* Analog format */ \
 TRUE /* enableBT656Sync */ \
}

 SAA7105 Configuration Parameters

SAA7105 video encoder will be configured in NTSC 8-bit YUV, S-video output mode.

#define DIS_PARAMS_SAA7105_SDTV_EMBEDDED_DEFAULT { \
 SAA7105_AFMT_SVIDEO, /* AnalogFormat */ \
 SAA7105_MODE_NTSC, /* Mode */ \
 SAA7105_IFMT_YCBCR422_INTERLACED, /* InputFormat */ \
 TRUE, /* enableSlaveMode */ \
 TRUE /* enableBT656Sync */ \
}

 THS8200 Configuration Parameters

THS8200 video encoder configuration for 1080I 60Hz display.

#define DIS_PARAMS_THS8200_1080I_60HZ_DEFAULT { \
 THS8200_MODE_1080I_60HZ, /* Mode */ \
 THS8200_IFMT_YCBCR422_20_BIT, /* InputFormat */ \
 THS8200_AFMT_YPBPR_SYNC_ON_ALL, /* AnalogFormat */ \
 TRUE, /* enableSlaveMode */ \
 TRUE /* enableBT656Sync */ \
}

 TVP7000 Configuration Parameters

TVP7000 video decoder configuration for 1080I 60Hz capture.

#define CAP_PARAMS_TVP7000_1080I_60HZ_DEFAULT { \
 TVP7000_MODE_1080I_60HZ, /* Analog Input Mode */ \
 TVP7000_OFMT_16BIT_YCBCR_422 /* Digital Output Format */ \
}

