

 VPORT Device Driver

Page 1 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

VPORT BIOS Device Driver

User's Manual
U s e r ' s G u i d e

VPORT
Architecture/Design

Document

U s e r ' s G u i d e

VPORT
Architecture/Design

Document

 VPORT Device Driver

Page 2 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

Revision History

Document
Version

Author(s) Date Comments

0.1 Grishma Parikh April 26, 2007 Initial Draft

0.2 Grishma Parikh June 14, 2007 Updated for FVID NORMAL Mode
description

0.3 Grishma Parikh August 6, 2007 Updated to add detailed flow charts for
mdcontrolchan() and mdsubmitchan()

0.4 Grishma Parikh September 14,
2007

Updated for review comments

0.5 Sivaraj R October 22, 2007 Changed XDC and BIOS versions in
system requirements

0.6 Sivaraj R November 27, 2007 Removed system environment from this
document and made reference to system
release notes

 VPORT Device Driver

Page 3 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any combination,
machine, or process in which TI products or services are used. Information published by TI regarding
third–party products or services does not constitute a license from TI to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party
under the patents or other intellectual property of the third party, or a license from TI under the patents
or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI
for that product or service voids all express and any implied warranties for the associated TI product or
service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©2007, Texas Instruments Incorporated

 VPORT Device Driver

Page 4 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

Table of Contents

1 System Context ...7

1.1 Terms and Abbreviations.. 7

1.2 Related Documents ... 7

1.3 Hardware.. 8

1.4 Software... 9
1.4.1 Operating Environment and dependencies... 9
1.4.2 System Architechture... 10

1.5 Component Interfaces... 10
1.5.1 IOM Interface and Generic Layer ... 11
1.5.2 CSLR Interface .. 11

1.6 Design Philosophy .. 12
1.6.1 The Port and Channel Concept .. 12
1.6.2 Design Constrains.. 13

2 VPORT Driver Software Architecture ..14

2.1 Static View ... 14
2.1.1 Functional Decomposition.. 14
2.1.2 Data Structures.. 15

2.2 Dynamic View .. 25
2.2.1 The Execution Threads.. 25
2.2.2 Capture/Display using VPORT driver ... 25
2.2.3 Functional Decomposition.. 26

3 APPENDIX A – IOCTL commands...62

 VPORT Device Driver

Page 5 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

List Of Figures

Figure 1 DM648 block diagram for Video.. 8
Figure 2 Video Port Block Diagram... 9
Figure 3 System Architecture ... 10
Figure 4 Port and Capture Channel Object ... 13
Figure 5 Port and Display Channel Object .. 13
Figure 6 VPORT Capture driver static view .. 14
Figure 7 VPORT Display driver static view ... 15
Figure 8 mdBindDev () flow diagram .. 27
Figure 9 mdCreateChan () flow diagram... 28
Figure 10 mdDeleteChan () flow diagram ... 29
Figure 11 mdControlChan () flow diagram .. 30
Figure 12 VPORT_CMD_START flow diagram... 31
Figure 13 VPORT_CMD_STOP flow diagram... 31
Figure 14 VPORT_CMD_SET_VINTCB flow diagram... 32
Figure 15 VPORT_CMD_COVR_RECOVER flow diagram... 32
Figure 16 VPORT VPORT_CMD_CONFIG_CHAN flow diagram.. 33
Figure 17 VPORT_CMD_GET_NUM_IORQST_PENDING flow diagram 34
Figure 18 VPORT_CMD_GET_PARAMS flow diagram .. 34
Figure 19 FVID_ALLOC_BUFFER flow diagram... 35
Figure 20 FVID_FREE_BUFFER flow diagram... 35
Figure 21 VPORTCAP_CMD_SET_LINE_INT flow diagram... 36
Figure 22 VPORTCAP_CMD_GET_NUMLINES_CAPTURED flow diagram................................. 37
Figure 23 mdSubmitChan () flow diagram... 38
Figure 24 FVID_alloc()/FVID_dequeue() flow diagram.. 39
Figure 25 FVID_free()/FVID_queue() flow diagram... 40
Figure 26 FVID_exchange() flow diagram... 41
Figure 27 captureEdmaISR () flow diagram .. 43
Figure 28 captureISR () flow diagram ... 44
Figure 29 mdBindDev () flow diagram... 45
Figure 30 mdCreateChan () flow diagram... 46
Figure 31 mdDeleteChan () flow diagram ... 47
Figure 32 mdControlChan () flow diagram .. 48
Figure 33 VPORT_CMD_START flow diagram... 49
Figure 34 VPORT_CMD_STOP flow diagram... 49
Figure 35 VPORT_CMD_SET_VINTCB flow diagram... 50
Figure 36 VPORT_CMD_DUND_RECOVER flow diagram... 50
Figure 37 VPORTDIS_CMD_ASYNC_MODE_ENABLE flow diagram .. 51
Figure 38 VPORTDIS_CMD_ASYNC_MODE_DISABLE flow diagram ... 52
Figure 39 VPORTDIS_CMD_ASYNC_MODE_RESET_FRAMECT flow diagram.......................... 52
Figure 40 VPORT_CMD_CONFIG_CHAN flow diagram... 53
Figure 41 VPORT_CMD_GET_NUM_IORQST_PENDING flow diagram 54
Figure 42 VPORT_CMD_GET_PARAMS flow diagram .. 54
Figure 43 FVID_ALLOC_BUFFER flow diagram... 55

 VPORT Device Driver

Page 6 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

Figure 44 FVID_FREE_BUFFER flow diagram... 55
Figure 45 mdSubmitChan () flow diagram... 56
Figure 46 FVID_alloc()/FVID_dequeue() flow diagram.. 57
Figure 47 FVID_free()/FVID_queue() flow diagram... 58
Figure 48 FVID_exchange() flow diagram... 59
Figure 49 displayEdmaISR () flow diagram... 60
Figure 50 displayISR () flow diagram.. 61

 VPORT Device Driver

Page 7 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

1 System Context

The purpose of this document is to explain the device driver design for Video Port used
in DM648 SoC using DSP/BIOS operating system running on DSP 64+ joule.

Note: The usage of structure names and field names used throughout this design
document is only for indicative purpose. These names shall not necessarily be matched
with the names used in source code.

1.1 Terms and Abbreviations

Term Description

API Application Programmer’s Interface

CSL TI Chip Support Library – primitive h/w abstraction

DDC TI terminology for portion of device driver that is
abstracted of any given OS

IOM TI terminology for portion of device driver that is specific to
target OS. This constitutes “adaptation” of the generic
DDC to identified target OS.

IP Intellectual Property

ISR Interrupt Service Routine

EDC External Device Control

VPORT Video Port

EDMA Enhanced Direct Memory Access

OS Operating System

1.2 Related Documents

1. SPRU616 DSP/BIOS Driver Developer’s Guide

2. DM648_PSP_VideoportDriver_SRD.pdf Video Driver Requirement Document

3. spruem1_Video_Port.pdf Video Port Datasheet

 VPORT Device Driver

Page 8 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

1.3 Hardware

The VPORT driver architecture presented in this document is situated in the context of
DM648 SoC targeted for various video applications. The driver design is in the context
of DSP/BIOS running on DSP 64x+ joule core. The below figure shows DM648
Architecture shall be used for Video application.

Figure 1 DM648 block diagram for Video

The VPORT module used in DM648 SoC core has the following blocks:

 VPORT Device Driver

Page 9 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

Figure 2 Video Port Block Diagram

1.4 Software

The VPORT mini-driver discussed here is targeted at the DM648 device, running
DSP/BIOS on the 64x+ DSP. More details can be found in the later part of this section.

1.4.1 Operating Environment and dependencies

Details about the tools and the BIOS version that the driver is compatible with can be
found in the system Release Notes.

 VPORT Device Driver

Page 10 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

1.4.2 System Architechture

The block diagram below shows the overall system architecture.

Class Driver

IOM Mini Driver

Application

EDC Driver

FVID Class Driver Wrapper

GIO Class Driver

Video Port Driver

VPORT/EDMA Video
Codecs

PAL
OS

Figure 3 System Architecture

The Application would invoke the driver routines through the FVID Wrapper
Calls. FVID Wrapper internally calls GIO APIs. This layer is called as OS based
adaptation layer. Device drivers are accessed by the applications for performing
I/O using BIOS through the above mentioned layers.

IOM is the component that performs the device specific operations. IOM Mini
Driver directly controls Video Port and indirectly controls External devices like
encoders and decoders through EDC driver.

Figure 5 shows the overall DSP/BIOS device driver architecture. For more
information about the IOM device driver model, see the DSP/BIOS Device
Driver Developer’s Guide (SPRU616). The rest of the document elaborates on
the architecture of the Device driver by TI.

1.5 Component Interfaces

In the following subsections, the interfaces implemented by each of the sub-component
are specified. Refer to VPORT device driver User Guide documentation for complete
details on APIs.

 VPORT Device Driver

Page 11 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

1.5.1 IOM Interface and Generic Layer

The IOM constitutes the Device Driver Manifest to Application. The user may not look
into IOM interface, especially the upper-edge services exposed to the Application/OS.
All other interfaces discussed later in this document are more of interest to people
developing/maintaining the device driver.

The IOM can be modified to re-target Driver and/or customize to specific Apps
framework by doctoring the upper-edge services.

The mdBindDev () populates static settings in driver object, creates the necessary
interrupt handler, attaches the Driver Core interfaces. All these operations in effect,
constitute the “loading” of VPORT Driver implementation. The VPORT Driver contains
separate Capture and Display drivers at IOM layer. Capture and Display drivers
interface is same to class driver. The IOM mini-driver implements the following API
interfaces to the class driver.

S.No IOM Interfaces Description

1 mdBindDev () Allocates and configures the
Video Port specified by devid.

2 mdCreateChan () Creates a communication
channel in specified mode to
communicate data between the
application and VPORT device
instance. It also configures
VPORT channel and allocates
required resources.

3 mdDeleteChan () Frees a channel and all its
associated resources

4 mdControlChan () Implements the IOCTLS for
VPORT IOM mini driver.

5 mdSubmitChan () Submits/retrieves an I/O packet
to a channel for processing.

1.5.2 CSLR Interface

The CSL register interface (CSLR) provides register level implementations. CSLR is
used by the IOM mini driver to configure VPORT registers. CSLR is implemented as a
header file that has CSLR macros and register overlay structure.

 VPORT Device Driver

Page 12 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

1.6 Design Philosophy

This device driver is written in conformance to the DSP/BIOS IOM device driver model
and handles communication to and from the VPORT hardware.

1.6.1 The Port and Channel Concept

The IOM model provides the concept of the Port and Channel for the realization of the
device and its communication path as a part of the driver implementation. The VPORT
driver provides simultaneous capture or display operations on five video ports. This is
supported by providing two Capture channels and one Display channel per port in order
to perform IO operations.

The Port Object maintains the state of the VPORT device or an instance. The port can
also be called as instance or device and the names can be used interchangeably.
DM648 SoC contains five instances of VPORT, and the driver for this needs to maintain
five port objects. The following figure shows the generic port-channel-hardware
mapping for VPORT Capture driver.

Port Object

VPORT Hardware

Capture
Channel A

Capture
Channel B

Capture
Channel A

Capture
Channel B

 VPORT Device Driver

Page 13 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

Figure 4 Port and Capture Channel Object

The following figure shows the generic port-channel-hardware mapping for VPORT
Display driver

 Figure 5 Port and Display Channel Object

1.6.2 Design Constrains

VPORT mini-driver imposes the following constraint(s).

 VPORT driver doesn’t support synchronization to another video port.

Port/Channel Object

VPORT Hardware

D isplay
Channel

D isplay
Channel

 VPORT Device Driver

Page 14 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

2 VPORT Driver Software Architecture

This section details the data structures used in the VPORT mini-driver and the interface
it presents to the GIO layer. A diagrammatic representation of the mini driver functions
is presented and then the usage scenario is discussed in some more details.

Following this, we’ll discuss the deployed driver or the dynamic view of the driver where
the driver operational scenarios are presented.

2.1 Static View

2.1.1 Functional Decomposition

The driver is designed keeping a device, also called port and channel concept in mind.
The instance of VPORT is treated as a device, which each can have a single display
and dual capture channels for DM648 SoC.

The Capture driver uses two internal data structures, port object and channel objects.
Display driver uses one channel object to maintain its state during execution. The
VPORT peripheral needs the port instance to maintain its state. The channel object
holds the IOM channel state during execution. These are explained in greater detail in
the following Data Structures sub-section. The following figure shows the static view of
DM648 VPORT Capture driver.

Figure 6 VPORT Capture driver static view

P o r t O b je c t

V P O R T In s t a n c e

C a p tu r e
C h a n n e l A

C a p tu r e
C h a n n e l A

G IO c a lls

F V ID c a lls f r o m A p p lic a tio n

C a p tu re
C h a n n e l B

C a p tu re
C h a n n e l B

 VPORT Device Driver

Page 15 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

The following figure shows the static view of DM648 VPORT Display driver.

Figure 7 VPORT Display driver static view

2.1.2 Data Structures

The mini-driver employs the PortObj and ChannelObj structures to maintain state of the
port and channel respectively.

In addition, the driver has two other structures defined – the device params and channel
params. The device params structure is used to pass on data to initialize the driver
during DSP-BIOS initialization. The channel params structure is used to specify
required characteristics while creating a channel.

The following sections provide major data structures maintained by IOM interface. For
more details about IOM data structures and their usage can be found in the API
reference guide.

2.1.2.1 The Port Object(IOM) Capture Driver

Port/Ch ann el O bject

V PO RT Instance

G IO calls

FV ID calls fro m Ap plicatio n

D isp la y
C ha nne l

D isp la y
C ha nne l

 VPORT Device Driver

Page 16 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

S.No Structure Elements
(PortObj)

Description

1 status Port status register, contains
information on whether port
is opened, configured, etc

2 vportBase Points to base address of
Video Port

3 chanObj [] Holds two channel objects for
capture channels only

2.1.2.2 The Channel Object(IOM)

S.No Structure Elements
(_VPORT_ChanObj)

Description

1 status Channel status. Channel
opened, configured,
allocated, etc...

2 portNum Port number for which
channel is created

3 chanNum Channel number to
distinguish from one of the
two capture channel

4 vportRegs Points to Video Port base
address

5 edmaChanNum [] Array to store edma channel
number

6 edmaAddr [] Array to store VPORT FIFO
address for EDMA transfer

7 evtQueue EDMA Transfer Controller to
use for the channel

8 hEdmaChan [] To store EDMA channel
handle

9 edmaLinkChanNum To store EDMA link channel
number

 VPORT Device Driver

Page 17 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

10 vIntMask To store Video Port interrupt
mask value

11 viops [] Object type of FVID_Frame
to store image frame buffers
in LEGACY Mode

12 qIn Queue element for queue in

13 qOut Queue element for queue out

14 qPullDown Queue element

15 hEdma To store EDMA driver handle

16 tcc [] To store EDMA tcc number

17 mergeFlds Flag to identify fields are
merged or separated

18 interlaced Flag to identify fields are
interlaced or progressive

19 cbFxn IOM callback function

20 cbArg IOM callback Argument

21 vIntFxn Callback function for VPORT
interrupt

22 queEmpty To reflect queue status

23 scale Flag to indicate scaling
enabled or disabled

24 resmpl Flag to indicate resampling
enabled or disabled

25 yPitch Luminance pitch

26 cPitch Chrominance pitch

27 numLines Number of lines in one frame

28 numPixels Number of pixels per line

29 numLinesFld1 Number of lines in one field

30 numFrms Number of frame buffers
used by driver

31 numEvents Number of EDMA events

 VPORT Device Driver

Page 18 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

32 numEventsFld1 Number of EDMA events for
one field

33 yThrld Luminance FIFO threshold
value

34 cThrld Chrominance FIFO threshold
value

35 curViop Pointer to current video
input/output packet

36 nextViop Pointer to next video
input/output packet

37 mrViop Pointer to most recent video
input/output packet

38 mode Mode of operation of channel

39 edcFxns Function pointer table of
EDC (encoder or decoder)

40 edcHandle Handle of EDC device

41 packetIOM Pointer to IOM packet

42 vIntCbArg Argument of VPORT
interrupt callback function

43 segId Memory segment ID in which
buffers to be allocated

44 bufSz Size of buffer

45 lastLineNum Number of recent line
captured or displayed

44 nextEDMARlds Next EDMA reload
parameter

45 numTotalLinesFld1 Number of total lines in one
field

46 autoSyncEnable Flag to indicate auto sync
enabled or disabled

47 asyncModeEnable Flag to indicate asynchronous
enabled or disabled

48 pullDownMode To select pull down mode for

 VPORT Device Driver

Page 19 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

display

49 asyncFrameCt Async frame counter

50 asyncCallBackFxn Asynchronous mode callback
function

51 frmSz Frame line size for vertical
interrupt

52 asyncCbArg Argument for asynchronous
transfer callback function

53 startFlag Start flag for asynchronous
transfer mode

54 driverMode Driver operation mode 0 =
normal mode, 1 = legacy
mode

55 numQueBuf Number of queued buffer in
normal mode

56 alignment Frame buffer alignment

57 fldOp Flag for field operation or
frame operation

58 vportChanRegs Points to respective channel
base of Vport

59 lineIntInfo Line interrupt parameters
structure

2.1.2.3 The Device Params

The application passes a data structure VPORT_PortParams that is used to
initialization function of the driver. The params are explained below:

S.No Structure Elements
(PortObj)

Description

1 dualChanEnable Dual channel mode enable

2 vc1Polarity Vport control pin 1 polarity

3 vc2Polarity Vport control pin 2 polarity

4 vc3Polarity Vport control pin 3 polarity

5 edcTbl [] function tables for EDC driver

 VPORT Device Driver

Page 20 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

modules

2.1.2.4 Capture Channel Params

The application passes a data structure VPORTCAP_Params at time of
channel creation. The params are explained below:

S.No Structure Elements
(PortObj)

Description

1 cmode Capture mode settings

2 fldOp Field & frame
operation(Please refer to
vport.h for available values)

3 scale Indicates whether to enable
horizontal ½ scaling. The ½-
scaling mode is used to
reduce the horizontal
resolution of captured
luminance and chrominance
data by a factor of two.

4 resmpl Indicates whether to enable
chrominance sub-sampling

5 bpk10Bit 10-bit bit-pack mode(Please
refer to vportcap.h for
available values)

6 hCtRst Horizontal counter reset
mode

7 vCtRst Vertical counter reset mode

8 fldDect Enable whether to use FID
input or field detection logic
based on the timing relation
of hsync and vsync

9 extCtl Enable external timing
control

10 fldInv Enable inversion of the
detected fid

 VPORT Device Driver

Page 21 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

11 fldXStrt1 Field 1 X start

12 fldYStrt1 Field 1 Y start

13 fldXStrt2 Field 2 X start

14 fldYStrt2 Field 2 Y start

15 fldXStop1 Field 1 X stop

16 fldYStop1 Field 1 Y stop

17 fldXStop2 Field 2 X stop

18 fldYStop2 Field 2 Y stop

19 thrld Video FIFO threshold

20 numFrmBufs Number of frame buffers that
the driver allocates. Minimum
of 3 buffers are
recommended for proper
operation

21 alignment Frame buffer alignment

22 mergeFlds Indicates whether to store
two fields in interleaved
manner or to store them
separately

23 segId Memory segment ID, used by
driver to allocate video frame
buffer

24 autoSyncEnable Boolean to enable auto sync

25 hEdma EDMA3 driver handle

2.1.2.5 Display Channel Params

The application passes a data structure VPORTDIS_Params at time of channel
creation. The params are explained below:

S.No Structure Elements
(PortObj)

Description

1 dmode Display mode settings

 VPORT Device Driver

Page 22 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

2 fldOp Field & frame
operation(Please refer to
vport.h for available values)

3 scale
Indicates whether to enable
2x scaling. The 2x-scaling
mode is used to double the
horizontal resolution of
output luminance and
chrominance data.

4 resmpl Indicates whether to enable
Chroma sub-sampling

5 defValEn Default value enable

6 bpk10Bit 10-bit bit-pack mode(Please
refer to vportdis.h for
available values)

7 vctl1Config VCTL1 pin selection(Please
refer to vportdis.h for
available values)

8 vctl2Config VCTL2 pin selection(Please
refer to vportdis.h for
available values)

9 vctl3Config VCTL3 pin selection(Please
refer to vportdis.h for
available values)

10 extCtl Enable external timing
control

11 frmHSize Frame horizontal size

12 frmVSize Frame vertical size

13 imgHOffsetFld1 Image horizontal offset field 1

14 imgVOffsetFld1 Image vertical offset field 1

15 imgHSizeFld1 Image line size field 1

16 imgVSizeFld1 Image total lines field 1

17 imgHOffsetFld2 Image horizontal offset field 2

18 imgVOffsetFld2 Image vertical offset field 2

 VPORT Device Driver

Page 23 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

19 imgHSizeFld2 Image line size field 2

20 imgVSizeFld2 Image total lines field 2

21 hBlnkStart Horizontal blanking start
value

22 hBlnkStop Horizontal blanking stop
value

23 vBlnkXStartFld1 Vertical blanking pixel start
value field 1

24 vBlnkYStartFld1 Vertical blanking line start
value field 1

25 vBlnkXStopFld1 Vertical blanking pixel stop
value field 1

26 vBlnkYStopFld1 Vertical blanking line stop
value field 1

27 vBlnkXStartFld2 Vertical blanking pixel start
value field 2

28 vBlnkYStartFld2 Vertical blanking line start
value field 2

29 vBlnkXStopFld2 Vertical blanking pixel stop
value field 2

30 vBlnkYStopFld2 Vertical blanking line stop
value field 2

31 xStartFld1 Pixel start field 1

32 yStartFld1 Line start field 1

33 xStartFld2 Pixel start field 2

34 yStartFld2 Line start field 2

35 hSyncStart Horizontal sync start

36 hSyncStop Horizontal sync stop

37 vSyncXStartFld1 Vertical sync pixel start field
1

38 vSyncYStartFld1 Vertical sync line start field 1

39 vSyncXStopFld1 Vertical sync pixel stop field

 VPORT Device Driver

Page 24 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

1

40 vSyncYStopFld1 Vertical sync line stop field 1

41 vSyncXStartFld2 Vertical sync pixel start field
2

42 vSyncYStartFld2 Vertical sync line start field 2

43 vSyncXStopFld2 Vertical sync pixel stop field
2

44 vSyncYStopFld2 Vertical sync line stop field 2

45 yClipLow Luminance (Y) low clipping
value

46 yClipHigh Luminance (Y) high clipping
value

47 cClipLow Chrominance (CB/CR) low
clipping value

48 cClipHigh Chrominance (CB/CR) high
clipping value

49 yDefVal Luminance (Y) default value

50 cbDefVal Chrominance (CB) default
value

51 crDefVal Chrominance (CR) default
value

52 rgbX RGB extract enable/disable
select (1 enable, 0 disable)

53 incPix Pixel increment for RAW
mode only (0 else)

54 thrld Video FIFO threshold

55 numFrmBufs Number of frame buffers to
be used in driver

56 alignment Frame buffer alignment

57 mergeFlds Separated or merged fields
(0 separated fields, 1 merged
fields)

58 segId Memory segment ID, used by

 VPORT Device Driver

Page 25 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

driver to allocate video frame
buffer

59 hEdma EDMA3 driver handle

2.2 Dynamic View

2.2.1 The Execution Threads

The device drivers typically implement Synchronous interface to the user. The VPORT
device driver operation involves following execution threads:

BIOS thread: Function to load VPORT driver will be under BIOS OS initialization.

Application thread: Creation of channel, Control of channel, deletion of channel and
processing of VPORT data will be under application thread. All Synchronous IO occur in
the application thread of control, the calling thread may suspend for the requested
transaction to complete.

2.2.2 Capture/Display using VPORT driver

With VPORT driver, the application can perform IO operation using one of below
supported modes:

- LEGACY Mode

- NORMAL Mode

Below table provides list of APIs supported by VPORT driver:

API Description

FVID_create Allocate (optional) and initialize an FVID channel
object

FVID_delete De-allocate (optional) an FVID channel object

FVID_alloc Get a pointer for allocated buffer from driver to
application. Supported in LEGACY mode only

FVID_free Relinquish a video buffer back to the driver.
Supported in LEGACY mode only

FVID_control Send a control command to the mini-driver

FVID_exchange Exchange an application-owned buffer for a
driver-owned buffer

 VPORT Device Driver

Page 26 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

FVID_dequeue Get a pointer for allocated buffer from driver to
application. Supported in NORMAL mode only

FVID_queue Relinquish a video buffer back to the driver.
Supported in NORMAL mode only

FVID_allocBuffer Allocate a frame buffer using the driver's memory
allocation routines. Supported in NORMAL mode
only

FVID_freeBuffer Free the buffer allocated via FVID_allocBuffer().
Supported in NORMAL mode only

In LEGACY mode, application can perform IO operation using FVID_exchange,
FVID_alloc and FVID_free calls (corresponding GIO call is GIO_submit and
corresponding IOM function is mdSubmitChan ()). This LEGACY Mode is compatible to
DM642 VPORT driver API calls.

In NORMAL mode, application can perform IO operation using FVID_exchange,
FVID_queue and FVID_dequeue calls (corresponding GIO call is GIO_submit and
corresponding IOM function is mdSubmitChan ())

The buffers to be captured or displayed should be passed as argument in
FVID_exchange, FVID_alloc or FVID_free calls. Driver will return the status of buffer
exchanged for capture or display operation. e.g. IOM_COMPLETED for success.

2.2.3 Functional Decomposition

There are separate functions at IOM layer for Capture and Display driver that are
described below.

2.2.3.1 Capture Driver

2.2.3.1.1 mdBindDev

During mdBindDev, the mini-driver has access only to pointers of device parameters.
Memory for these structures is to be allocated outside the driver by the application.

 VPORT Device Driver

Page 27 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

DEV_init

mdBindDev()

Validate port number

Call _configPort() function to configure
video port

Assign global port object’s pointer to devp

Return IOM_COMPLETED on success
else suitable error code

Figure 8 mdBindDev () flow diagram

2.2.3.1.2 mdCreateChan

When application calls FVID_create(), mdCreateChan() will get called internally.
Application has to pass proper channel configuration parameters as an argument to
FVID_create().

In Legacy mode this API is compatible to usage of DM642 FVID create API. The ‘no. of
buffers’ (‘numFrmBufs’ member) in the channel parameters is the flag used to identify
this mode. The value must be greater than or equal to 3 for the driver to work in this
mode.

In this legacy mode, this call will allocate frame buffers (Number of Buffers provided as
parameter), initialize EDMA channels and configure video port registers. These frame
buffers will be used later for FVID exchange and other APIs.

In the normal mode (where the ‘numFrmBufs’ in the channel parameters is 0), the driver
will not allocate frame buffers for FVID exchange and other APIs. Applications have to
create buffers for this purpose. It is suggested that applications should use the APIs
provided with driver for frame buffer allocation purpose.

 VPORT Device Driver

Page 28 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

As part of channel creation, VPORT driver will request 3 EDMA channels and 12 (3*4)
EDMA parameter tables. Here, Y, Cb and Cr each data transfer will use 1 EDMA
channel and 4 EDMA parameter tables.

After successful operation of create channel, handle is returned to the application. This
handle is used afterwards to make calls for different channel operations.

YES

NO

FVID_create()/GIO_create()

mdCreateChan()

Validate mode, name and channel number

Check if EDC function pointer is NULL or
not

If port status is not opened then reset both
channels

Return IOM_COMPLETED on success
else suitable error code

Is Fxn Ptr NULL?
Call EDC open

function to open
external device

If channel status is not opened then create
EDMA channels and Param tables

Call _configChan() function to configure
vport channel and to configure EDMA

transfer in case of LEGACY mode

Assign global channle object’s pointer to
chanp

Set driver mode(NORMAL or LEGACY) as
per numFrmBufs passed from application

Enable Capture Overrun error handling

Figure 9 mdCreateChan () flow diagram

 VPORT Device Driver

Page 29 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

2.2.3.1.3 mdDeleteChan

mdDeleteChan will release all resources created for Capture channel and make
channel status closed.

FVID_delete()/GIO_delete()

mdDeleteChan()

If channel status is not opened make
channel status closed

Call _stopVPCapture() function to stop
capture operation

Disable EDMA transfer

Return IOM_COMPLETED on success
else suitable error code

Free EDMA Channels and PaRam Tables

Free memory for all frame buffers in case
of LEGACY Mode

Call EDC close function to close external
device

If both the vport channels are closed then
make port status as closed

Figure 10 mdDeleteChan () flow diagram

 VPORT Device Driver

Page 30 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

2.2.3.1.4 mdControlChan

mdControlChan is used to call different ioctls supported by driver. External device
configuration is also done by calling mdControlChan with EDC specific control
commands.

FVID_control()/GIO_control()

mdControlChan()

Check for valid command

Call respective function to perform the
requested operation

Return IOM_COMPLETED on success
else suitable error code

Figure 11 mdControlChan () flow diagram

mdControlChan is supporting following ioctls:

1) VPORT_CMD_START
2) VPORT_CMD_STOP
3) VPORT_CMD_SET_VINTCB
4) VPORT_CMD_COVR_RECOVER
5) VPORT_CMD_CONFIG_CHAN
6) VPORT_CMD_GET_NUM_IORQST_PENDING
7) VPORT_CMD_GET_PARAMS
8) FVID_ALLOC_BUFFER
9) FVID_FREE_BUFFER
10) VPORTCAP_CMD_SET_LINE_INT
11) VPORTCAP_CMD_GET_NUMLINES_CAPTURED

The detailed flow diagrams of above ioctls are as follow:

 VPORT Device Driver

Page 31 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

VPORT_CMD_START

Enable channel interrupts and event

Set channel status as started

Return IOM_COMPLETED

Enable the capture channel

Figure 12 VPORT_CMD_START flow diagram

VPORT_CMD_STOP

Disable channel and disable interrupt
generation

Reconfigure EDMA channel

Return IOM_COMPLETED on success
else suitable error code

Block event generation

Set channel status as not started

Figure 13 VPORT_CMD_STOP flow diagram

 VPORT Device Driver

Page 32 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

YES

NO

VPORT_CMD_SET_VINTCB

Plug isr with interrupt

Enabling interrupts

Return IOM_COMPLETED

Vertical interrupt
enabled?

Enable vertical interrupt
register

Figure 14 VPORT_CMD_SET_VINTCB flow diagram

VPORT_CMD_COVR_RECOVER

Reconfigure EDMA channel parameters

Return IOM_COMPLETED on success
else suitable error code

Disable EDMA events

Enable EDMA events

Figure 15 VPORT_CMD_COVR_RECOVER flow diagram

 VPORT Device Driver

Page 33 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

NO

YES

VPORT_CMD_CONFIG_CHAN

Configure Video port registers

Return IOM_COMPLETED on success
else suitable error code

Configure EDMA Legacy mode?

Legacy mode ?
Number of buffers <

minimum and number
of buffers > maximum

allowed buffer?

YES
YES

Set return value
IOM_EBADARGS

NO

NO

Normal mode and
number of buffers != 0 ?

YES

NO

If channelstatus started?
YES

Stop channel operation
and free frame buffers

Previous channel status
started?

Start channel operation

YES

NO
NO

Figure 16 VPORT VPORT_CMD_CONFIG_CHAN flow diagram

 VPORT Device Driver

Page 34 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

VPORT_CMD_GET_NUM_IORQST_PENDING

Return IOM_COMPLETED

Get number of request pending in queue

Figure 17 VPORT_CMD_GET_NUM_IORQST_PENDING flow diagram

VPORT_CMD_GET_PARAMS

Return IOM_COMPLETED

Return the current parameters from global
channel structure

Figure 18 VPORT_CMD_GET_PARAMS flow diagram

 VPORT Device Driver

Page 35 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

FVID_ALLOC_BUFFER

Return IOM_COMPLETED on success
else return suitable error code

Allocate frame buffer structure

Allocate frame buffer and assign it to frame
buffer structure

Figure 19 FVID_ALLOC_BUFFER flow diagram

FVID_FREE_BUFFER

Return IOM_COMPLETED on success
else suitable error code

Free frame buffer

Free frame buffer structure

Figure 20 FVID_FREE_BUFFER flow diagram

 VPORT Device Driver

Page 36 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

VPORTCAP_CMD_SET_LINE_INT

Plug isr with interrupt

Enabling interrupts

Return IOM_COMPLETED

Set vertical interrupt register for vertical
interrupts

Figure 21 VPORTCAP_CMD_SET_LINE_INT flow diagram

 VPORT Device Driver

Page 37 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

YES

VPORTCAP_CMD_GET_NUMLINES_CA
PTURED

Get number of lines remaining to capture
by EDMA

Return IOM_COMPLETED on success
else suitable error code

Get current viop packet address

Number of lines captured–
Number of lines in field 2

(For field 1)

TCC interrupt enable?
NO

Get TCC interrupt status

Number of lines captured = Total number of
lines in frame – Lines remaining

Figure 22 VPORTCAP_CMD_GET_NUMLINES_CAPTURED flow diagram

2.2.3.1.5 mdSubmitChan

This function handles buffer management and exchange between video driver and
application. In case of NORMAL mode, FVID_allocBuffer and FVID_freeBuffer calls can
be used to allocate and free frame buffers.

 VPORT Device Driver

Page 38 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

FVID_exchange()/ FVID_alloc()/
FVID_free()/FVID_dequeue()/

FVID_queue()

mdSubmitChan()

Check for valid command

Call respective function to perform the
requested operation

Return IOM_COMPLETED on success
else suitable error code

Figure 23 mdSubmitChan () flow diagram

mdSubmitChan is called by three different FVID layer calls for LEGACY Mode:

 1) FVID_alloc

2) FVID_exchange

3) FVID_free

mdSubmitChan is called by three different FVID layer calls for NORMAL Mode:

 1) FVID_dequeue

2) FVID_exchange

 3) FVID_queue

The detailed flow diagram of above FVID layer calls are as follow:

 VPORT Device Driver

Page 39 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

NO

NO

FVID_alloc()/FVID_dequeue()

Next viop pointer and
most recent viop

pointer not same?

NO

YES

Capture operation is
not close to end of

frame?

YES Assign most recent viop
packet address to

IOM_Packet address

Assign current viop packet
address to next viop packet

address Assign INV to most recent
viop packet address

Assign INV to most recent
viop packet

Assign INV to most recent
viop packet

Assign most recent viop
packet address to

IOM_Packet address

Return with set return value

Set return value
IOM_COMPLETED

Video port status
started?

YES

Get buffers from queueNO

Queue empty?

Get buffers from viop
pointers

YES

Modify EDMA reload
entries

YES

Video port status
started and Short field

detected?

Reconfigure EDMA
transfer

Set return value
IOM_PENDING

NO

Figure 24 FVID_alloc()/FVID_dequeue() flow diagram

 VPORT Device Driver

Page 40 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

FVID_free/FVID_queue()

Video port status
ready?

YES

NO

Number of queued
buffer equals minimum
required buffers?

YES

NO

Configure EDMA

Modify EDMA reload
entries

Add the given buffer into
the queue

Return IOM_COMPLETED if
success else return suitable

error

NO

YES Video port status
started and Short field

detected?

Reconfigure EDMA
transfer

Add the given buffer
into the queue

Is queue empty and
not at the and of

buffer?

YES

NO

Figure 25 FVID_free()/FVID_queue() flow diagram

 VPORT Device Driver

Page 41 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

FVID_exchange()

Video port status
ready?

YES

NO
Number of queued
buffer equals minimum
required buffers?

NO

Configure EDMA

Modify EDMA reload
entries

Add the given buffer into
the queue

Next viop pointer and
most recent viop
pointer not same

YES

NO

Capture operation is
not close to end of

frame

Assign most recent viop
packet address to

IOM_Packet address

YES

NO
Assign current viop packet
address to next viop packet

address Assign INV to most recent
viop packet address

Assign INV to most recent
viop packet

Assign INV to most recent
viop packet

Assign most recent viop
packet address to

IOM_Packet address

Set return value
IOM_PENDING

Return with assigned return
value

Set return value
IOM_COMPLETED

YES

NO

Video port status
started and Short field

detected?

Synchronize frames

YES

Modify EDMA reload
entries

Figure 26 FVID_exchange() flow diagram

 VPORT Device Driver

Page 42 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

2.2.3.1.6 captureEdmaISR

captureEdmaISR is called when Capture EDMA interrupts are generated. These EDMA
interrupts are generated after EDMA transfer completion for single frame capture.
captureEdmaISR updates EDMA parameters of EDMA channels and manages frame
buffers.

 VPORT Device Driver

Page 43 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

NO

YES

NO

YES

captureEdmaISR()

Check for port and channel number and
verify TCC number

Re-sync tcc with activeEDMARlds

Is async mode
enabled?

Is there any
outstanding pending

request?

Update the EDMA reload entry

Call _autoSync()
function

Update the current and next viop pointers

Update the most recent viop

call the channel's
callback function

END

NO

YESIs error check flag
enabled?

NO

YESShort field
detected?

Reconfigure
EDMA transfer

Check SW and HW
buffers are in sync?

NO

Re sync SW and
HW buffers

YES

Figure 27 captureEdmaISR () flow diagram

2.2.3.1.7 captureISR

captureISR is called when VPORT generates any interrupt. If application has enabled
any video port interrupt then on interrupt generation captureISR is called.

 VPORT Device Driver

Page 44 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

YES

YES

NO

NO

NO

YES

YES

captureISR()

Check for port and channel number and
verify TCC number

Is Channel 0 interrupt
triggered and callback

function not INV?

Call channel 0
callback
function

Is Channel 1 interrupt
triggered and callback

function not INV?

Call channel 1
callback
function

Is Channel 0 line
interruptoccurred?

Call line interrupt
callback function

Is Channel 1 line
interruptoccurred?

Call line interrupt
callback function

YES

YES

NO

NO

NO

Is Channel 0 overrun
error occurred?

Call
_covrRecover()

function

Is Channel 1 overrun
error occurred?

Call
_covrRecover()

function

END

Figure 28 captureISR () flow diagram

 VPORT Device Driver

Page 45 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

2.2.3.2 Display Driver

2.2.3.2.1 mdBindDev

DEV_init

mdBindDev()

Validate port number

Call _configPort() function to configure
video port

Assign global port object’s pointer to devp

Return IOM_COMPLETED on success
else suitable error code

Figure 29 mdBindDev () flow diagram

2.2.3.2.2 mdCreateChan

When application calls FVID_create(), mdCreateChan() will get called internally.
Application has to pass proper channel configuration parameters as an argument to
FVID_create().

In Legacy mode this API is compatible to usage of DM642 FVID create API. The ‘no. of
buffers’ (‘numFrmBufs’ member) in the channel parameters is the flag used to identify
this mode. The value must be greater than or equal to 3 for the driver to work in this
mode.

In this legacy mode, this call will allocate frame buffers (Number of Buffers provided as
parameter), initialize EDMA channels and configure video port registers. These frame
buffers will be used later for FVID exchange and other APIs.

In the normal mode (where the ‘numFrmBufs’ in the channel parameters is 0), the driver
will not allocate frame buffers for FVID exchange and other APIs. Applications have to
create buffers for this purpose. It is suggested that applications should use the APIs
provided with driver for frame buffer allocation purpose.

 VPORT Device Driver

Page 46 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

As part of channel creation, VPORT driver will request 3 EDMA channels and 12 (3*4)
EDMA parameter tables. Here, Y, Cb and Cr each data transfer will use 1 EDMA
channel and 4 EDMA parameter tables.

After successful operation of create channel, handle is returned to the application. This
handle is used afterwards to make calls for different channel operations.

YES

NO

FVID_create()/GIO_create()

mdCreateChan()

Validate mode, name and channel number

Check if EDC function pointer is NULL or
not

If port status is not opened then reset both
channels

Return IOM_COMPLETED on success
else suitable error code

Is Fxn Ptr NULL?
Call EDC open

function to open
external device

If channel status is not opened then create
EDMA channels and Param tables

Call _configChan() function to configure
vport channel and to configure EDMA

transfer in case of LEGACY mode

Assign global channle object’s pointer to
chanp

Set driver mode(NORMAL or LEGACY) as
per numFrmBufs passed from application

Enable Capture Overrun error handling

Figure 30 mdCreateChan () flow diagram

 VPORT Device Driver

Page 47 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

2.2.3.2.3 mdDeleteChan

mdDeleteChan will release all resources created for Display channel and make channel
status closed.

FVID_delete()/GIO_delete()

mdDeleteChan()

If channel status is not opened make
channel status closed

Call _stopVPCapture() function to stop
capture operation

Disable EDMA transfer

Return IOM_COMPLETED on success
else suitable error code

Free EDMA Channels and PaRam Tables

Free memory for all frame buffers in case
of LEGACY Mode

Call EDC close function to close external
device

Figure 31 mdDeleteChan () flow diagram

2.2.3.2.4 mdControlChan

mdControlChan is used to call different ioctls supported by driver. External device
configuration is also done by calling mdControlChan with EDC specific control
commands.

 VPORT Device Driver

Page 48 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

FVID_control()/GIO_control()

mdControlChan()

Check for valid command

Call respective function to perform the
requested operation

Return IOM_COMPLETED on success
else suitable error code

Figure 32 mdControlChan () flow diagram

mdControlChan is supporting following ioctls:

1) VPORT_CMD_START
2) VPORT_CMD_STOP
3) VPORT_CMD_SET_VINTCB
4) VPORT_CMD_DUND_RECOVER
5) VPORTDIS_CMD_ASYNC_MODE_ENABLE
6) VPORTDIS_CMD_ASYNC_MODE_DISABLE
7) VPORTDIS_CMD_ASYNC_MODE_RESET_FRAMECT
8) VPORT_CMD_CONFIG_CHAN
9) VPORT_CMD_GET_NUM_IORQST_PENDING
10) VPORT_CMD_GET_PARAMS
11) FVID_ALLOC_BUFFER
12) FVID_FREE_BUFFER

The detailed flow diagrams of above ioctls are as follow:

 VPORT Device Driver

Page 49 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

VPORT_CMD_START

Enable channel interrupts and event

Set channel status as started

Return IOM_COMPLETED

Enable the capture channel

Figure 33 VPORT_CMD_START flow diagram

VPORT_CMD_STOP

Disable channel and disable interrupt
generation

Reconfigure EDMA channel

Return IOM_COMPLETED on success
else suitable error code

Block event generation

Set channel status as not started

Figure 34 VPORT_CMD_STOP flow diagram

 VPORT Device Driver

Page 50 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

YES

NO

VPORT_CMD_SET_VINTCB

Plug isr with interrupt

Enabling interrupts

Return IOM_COMPLETED

Vertical interrupt
enabled?

Enable vertical interrupt
register

Figure 35 VPORT_CMD_SET_VINTCB flow diagram

VPORT_CMD_DUND_RECOVER

Reconfigure EDMA channel parameters

Return IOM_COMPLETED on success
else suitable error code

Disable EDMA events

Enable EDMA events

Figure 36 VPORT_CMD_DUND_RECOVER flow diagram

 VPORT Device Driver

Page 51 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

YES

NO

VPORTDIS_CMD_ASYNC_MODE_ENABLE

Plug isr with interrupt number

Return IOM_COMPLETED on success
else suitable error code

Set async mode enable flag and
Set vertical interrupt before last 30 lines

Queue buffers in queue outQueue not empty?

Dequeue from queue in

Figure 37 VPORTDIS_CMD_ASYNC_MODE_ENABLE flow diagram

VPORTDIS_CMD_ASYNC_MODE_DISABLE

Plug isr with interrupt number

Return IOM_COMPLETED

Clear async mode enable flag and
Clear vertical interrupt

Put all buffers in queue out

 VPORT Device Driver

Page 52 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

Figure 38 VPORTDIS_CMD_ASYNC_MODE_DISABLE flow diagram

VPORTDIS_CMD_ASYNC_MODE_RESET_FRAMECT

Return IOM_COMPLETED

Put all buffers in queue out

Figure 39 VPORTDIS_CMD_ASYNC_MODE_RESET_FRAMECT flow diagram

 VPORT Device Driver

Page 53 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

NO

YES

VPORT_CMD_CONFIG_CHAN

Configure Video port registers

Return IOM_COMPLETED on success
else suitable error code

Configure EDMA Legacy mode?

Legacy mode ?
Number of buffers <

minimum and number
of buffers > maximum

allowed buffer?

YES
YES

Set return value
IOM_EBADARGS

NO

NO

Normal mode and
number of buffers != 0 ?

YES

NO

If channelstatus started?
YES

Stop channel operation
and free frame buffers

Previous channel status
started?

Start channel operation

YES

NO
NO

Figure 40 VPORT_CMD_CONFIG_CHAN flow diagram

 VPORT Device Driver

Page 54 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

VPORT_CMD_GET_NUM_IORQST_PENDING

Return IOM_COMPLETED

Get number of request pending in queue

Figure 41 VPORT_CMD_GET_NUM_IORQST_PENDING flow diagram

VPORT_CMD_GET_PARAMS

Return IOM_COMPLETED

Return the current parameters from global
channel structure

Figure 42 VPORT_CMD_GET_PARAMS flow diagram

 VPORT Device Driver

Page 55 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

FVID_ALLOC_BUFFER

Return IOM_COMPLETED on success
else return suitable error code

Allocate frame buffer structure

Allocate frame buffer and assign it to frame
buffer structure

Figure 43 FVID_ALLOC_BUFFER flow diagram

FVID_FREE_BUFFER

Return IOM_COMPLETED on success
else suitable error code

Free frame buffer

Free frame buffer structure

Figure 44 FVID_FREE_BUFFER flow diagram

2.2.3.2.5 mdSubmitChan

This function handles buffer management and exchange between video driver and
application. In case of NORMAL mode, FVID_allocBuffer and FVID_freeBuffer calls can
be used to allocate and free frame buffers.

 VPORT Device Driver

Page 56 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

FVID_exchange()/ FVID_alloc()/
FVID_free()/ FVID_dequeue()/

FVID_queue()

mdSubmitChan()

Check for valid command

Call respective function to perform the
requested operation

Return IOM_COMPLETED on success
else suitable error code

Figure 45 mdSubmitChan () flow diagram

mdSubmitChan is called by three different FVID layer calls for LEGACY Mode:

 1) FVID_alloc

2) FVID_exchange

3) FVID_free

mdSubmitChan is called by three different FVID layer calls for LEGACY Mode:

 1) FVID_dequeue

2) FVID_exchange

 3) FVID_queue

The detailed flow diagram of above FVID layer calls are as follow:

 VPORT Device Driver

Page 57 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

FVID_alloc()/FVID_dequeue()

Queue out empty?
YES

NO

Dequeue from queue out and
return it to application

Set return value
IOM_PENDING

Return with set return value

Set return value
IOM_COMPLETED

Video port status
started?

YES

Get buffers from queue
NO

Queue empty?

YES

Get buffers from viop
pointers

NO

Figure 46 FVID_alloc()/FVID_dequeue() flow diagram

 VPORT Device Driver

Page 58 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

FVID_free/FVID_queue()

Video port status
ready?

YES

NO

Number of queued
buffer equals minimum
required buffers?

YES

NO

Configure EDMA

Set return value
IOM_EINUSE

Return IOM_COMPLETED if
success else return suitable

error

Async mode enabled?

YES

Modify edma reload entries

Video port status
started and not ate the

end of buffer?

YES

NO

Put the given buffer in
queue

Figure 47 FVID_free()/FVID_queue() flow diagram

 VPORT Device Driver

Page 59 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

Return with set return
value

Set return value
IOM_COMPLETED

Dequeue from queue out and
return it to application

Queue out
empty?

Configure EDMA

Number of queued
buffer equals minimum
required buffers?

Video port status
ready?

Async mode
enabled?

FVID_exchange()

Set return value
IOM_PENDING

Set return value
IOM_EINUSE

YES

YES

NO

YES

YES

Modify edma reload entries

Video port status
started and not ate the

end of buffer?

YES

NO

Put the given buffer in
queue

NO

Figure 48 FVID_exchange() flow diagram

 VPORT Device Driver

Page 60 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

2.2.3.2.6 displayEdmaISR

displayEdmaISR is called when Display EDMA interrupts are generated. These EDMA
interrupts are generated after EDMA transfer completion for single frame display.
displayEdmaISR updates EDMA parameters of EDMA channels and manages frame
buffers.

NO

YES

NO

YES

displayEdmaISR()

Check for port and channel number and
verify TCC number

Re-sync tcc with activeEDMARlds

Is async mode
disabled?

Is there any
outstanding pending

request?

Enqueue current viop

Dequeue buffer
for next EDMA

transfer

Update the current and next viop pointers

Update the EDMA reload entry

call the channel's
callback function

END

YES

NOCheck SW and HW
buffers are in sync?

Re sync SW and HW
buffers

Figure 49 displayEdmaISR () flow diagram

 VPORT Device Driver

Page 61 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

2.2.3.2.7 displayISR

displayISR is called when VPORT generates any interrupt. If application has enabled
any video port interrupt then on interrupt generation displayISR is called.

YES

NO

NO

YES

NO

YES

displayISR()

Is Async mode
enabled?

Call
_frmAlmostCo

mpleteIsr()
function

Is callback function
pointer INV?

Call channel’s
callback
function

END

Clear interrupts that has been handled

Display underrun error
occurred?

Call
_dundRecover

() function

Figure 50 displayISR () flow diagram

 VPORT Device Driver

Page 62 of 62

Texas Instruments Proprietary InformationTexas Instruments Proprietary Information

3 APPENDIX A – IOCTL commands

The application can perform the following IOCTL on the channel.

S.No IOCTL Command Description

1 VPORT_CMD_CONFIG_CHAN Configure video channel

2 VPORT_CMD_START Start video port operation

3 VPORT_CMD_STOP Stop video port operation

4 VPORT_CMD_SET_VINTCB Set video channel error call-back
function

5 VPORT_CMD_DUND_RECOVER Force the recovery of display under-
run

6 VPORT_CMD_COVR_RECOVER Force the recovery of capture over-run

7
VPORT_CMD_GET_NUM_IORQST_PENDING Getting the number of pending

request at driver level

8
VPORTDIS_CMD_ASYNC_MODE_ENABLE/
VPORTDIS_CMD_ASYNC_MODE_DISABLE/
VPORTDIS_CMD_ASYNC_MODE_RESET_FRAMECT

Configurations to get an interrupt after
display of specified lines. Supported
by Display driver only.

9 VPORT_CMD_GET_PARAMS Get the current channel configuration
of driver

10
VPORTCAP_CMD_SET_LINE_INT

Command to enable call-back after
specified number of lines. Supported
by Capture driver only.

11
VPORTCAP_CMD_GET_NUMLINES_CAPTURED

Command to get number of lines
captured by EDMA. Supported by
Capture driver only.

12 Default IOCTL (further has specific commands) To Configure the external encoders
and decoders. Interface will depend
on the encoder/decoder

