
December 2007 Platform Software Group

VLYNQ Device Driver

User's Manual
U s e r ' s G u i d e

VLYNQ
Architecture/Design

VLYNQ Architecture Specifications

ii Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published by
TI regarding third-party products or services does not constitute a license from TI to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property of the third party, or a license from TI under
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI
for that product or service voids all express and any implied warranties for the associated TI product or
service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

Texas Instruments Proprietary iii

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

About This Document

This document is VLYNQ PAL API(s) specification. This is also intended
to serve as a programming and users guide for PSP development team
and BU(s) alike.

This document assume, knowledge of Base PSP and its internals and is
intended to present technical thought process that has gone into the
design.

This specification replaces all the previous Base PSP implementation for
VLYNQ.

Trademarks

The TI logo design is a trademark of Texas Instruments Incorporated. All
other brand and product names may be trademarks of their respective
companies.

This document contains proprietary information of Texas Instruments. The
information contained herein is not to be used by or disclosed to third
parties without the express written permission of an officer of Texas
Instruments Incorporated.

Related Documents

 Platform Framework:
http://www.software.ti.com/cdronline/focuszones/psp/methodology.
htm

 VLYNQ Refer to www.nbu.sc.ti.com for latest version.

Notations

Explain any special notations or typefaces used (such as for API guides,
special typefaces for functions, variables, etc.)

Terms and Abbreviations
Term Description

API Application Programmer’s Interface

DDC Device driver core.

OS Operating System

SOC System On Chip

PSP Platform Support Package

VLYNQ Architecture Specifications

iv Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Revision History

Date Author Comments Version

May 26, 2006 Saloni Shah Document created 1.0

August 7, 2006 Saloni Shah Changes for the Release 0.1.1 1.1

October 8,
2006

Rinkal Shah Review comments closed 1.2

December 1.
2006

Ankur Verma Modified for the release 0.3.0 1.3

March 24, 2007 Anuj Aggarwal Modifying according to the VLYNQ latest
code base

1.4

June 5, 2007 Anuj Aggarwal Modifying according to the VLYNQ latest
code base taken from DM64LC release
1.0.0.1

1.5

November 15,
2007

Nagarjuna K Updated for DM6437/C6424/DM648/C6452
package

1.6

Texas Instruments Proprietary v

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Table of Contents

1 System Context ...1

1.1 Hardware.. 1

1.2 Software... 1
1.2.1 Operating Environment and dependencies... 1

2 Design Considerations ...1

2.1 Design Constraints.. 2

3 Design Goals ...2

3.1 Nomenclature .. 3

4 Design Goals ...4

4.1 Initialization ... 4

4.2 Remote Devices... 4

4.3 Interrupts ... 4

5 Application Programming Interface(s) ..7

5.1 Configuration API(s).. 7
5.1.1 PAL_sysVlynqInit() - Initialize the VLYNQ control module.................................. 7
5.1.2 PAL_sysVlynqInitSoc() - Initialize the VLYNQ control module............................ 8
5.1.3 PAL_sysVlynqCleanUp() – Un-Initialize the VLYNQ control module. 9
5.1.4 PAL_sysVlynqDevCreate() – Creates a device reference. 10
5.1.5 PAL_sysVlynqDevDestroy() – Destroys the device reference. 11
5.1.6 PAL_sysVlynqMapRegion() – Map the memory regions of the device.............. 12
5.1.7 PAL_sysVlynqMappedRegion () – Return the Mapped Region configuration for

Local/Peer. ... 13
5.1.8 PAL_sysVlynqUnMapRegion() – UnMap the memory regions of the device..... 14
5.1.9 PAL_sysVlynqMapIrq() – Maps the IRQ hardware line onto the VLYNQ. 15
5.1.10 PAL_sysVlynqUnMapIrq() – UnMaps the IRQ hardware line. 16
5.1.11 PAL_sysVlynqChainAppend() –Append to the VLYNQ chain.......................... 17
5.1.12 PAL_sysVlynqAddDevice() –Add the device reference into VLYNQ................. 18
5.1.13 PAL_sysVlynqRemoveDevice() – Removes the device reference from VLYNQ.

... 19
5.1.14 PAL_sysVlynqChainUnAppend() – Remove (the tail) from the VLYNQ chain... 20
5.1.15 PAL_sysVlynqRootIsr() – The Root ISR; register it with the system. 21

VLYNQ Architecture Specifications

vi Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.2 For Drivers et al..22
5.2.1 PAL_sysVlynqDevFind() – Get the handle for the device..................................22
5.2.2 PAL_sysVlynqDevGetVlynq() – Get the VLYNQ for this device.23
5.2.3 PAL_sysVlynqGetDevBase() – Get the physical base address of the device. ..24
5.2.4 PAL_sysVlynqDevFindIrq() – Get the mapped interrupts of the device..25
5.2.5 PAL_sysVlynqDevGetResetBit() – Get the reset bit of the device.....................26
5.2.6 PAL_sysVlynqAddIsr() – Install the ISR for the device......................................27
5.2.7 PAL_sysVlynqRemoveIsr() – Uinstall the previously installed ISR.28
5.2.8 PAL_sysVlynqDevCbRegister() – Register for the callbacks.............................29
5.2.9 PAL_sysVlynqDevCbUnregister() – Unregister the callbacks.30

5.3 Control API(s)...31
5.3.1 PAL_sysVlynqIoctl() – Read/Write register of the VLYNQ module.31
5.3.2 PAL_sysVlynqClockConfig() – Configures the Clock for the VLYNQ bridge.32

5.4 Interrupts Galore ..33
5.4.1 PAL_sysVlynqGetForIrq() – Get the VLYNQ for the IRQ.33
5.4.2 PAL_sysVlynqSetIrqPol() – Set the polarity of the hardware IRQ line.34
5.4.3 PAL_sysVlynqSetIrqType()- Set the type of the hardware IRQ line..................35
5.4.4 PAL_sysVlynqGetIrqPol () – Get the polarity of the hardware IRQ line.36
5.4.5 PAL_sysVlynqGetIrqType() – Get the type of the hardware IRQ type.37
5.4.6 PAL_sysVlynqGetIrqCount() – Get the number of times this IRQ occurred.38
5.4.7 PAL_sysVlynqDisableIrq() – Disable the IRQ...39
5.4.8 PAL_sysVlynqEnableIrq() – Enable the IRQ..40

5.5 Status and Utility..41
5.5.1 PAL_sysVlynqGetLinkStatus() – Get the status of the of the VLYNQ module. ..41
5.5.2 PAL_sysVlynqGetNumRoot() – Get the number of the root VLYNQ(s).42
5.5.3 PAL_sysVlynqGetRoot() – Get the handle to the specified root VLYNQ.43
5.5.4 PAL_sysVlynqGetRootVLYNQ() – Get root for the given VLYNQ.44
5.5.5 PAL_sysVlynqGetRootAtBase() – Get the root VLYNQ at the base address...45
5.5.6 PAL_sysVlynqGetBaseAddr() – Returns the base address of the VLYNQ.46
5.5.7 PAL_sysVlynqGetNext() – Get the next VLYNQ module in the chain................47
5.5.8 PAL_sysVlynqIsLast() – Is this VLYNQ module the last one in the chain.48
5.5.9 PAL_sysVlynqGetChainLength() – Get the length of the VLYNQ chain.49
5.5.10 PAL_sysVlynqDump() – Dumps vital VLYNQ information into the buffer...........50

6 Appendix A..51

6.1 Enumerators and typedefs ..51

6.2 PAL_VLYNQ_CONFIG_T (pal_sysvlynq.h)...52

6.3 User defines ...54

7 Appendix B..55

Texas Instruments Proprietary vii

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

List of Figures

Figure 1 VLYNQ Block ... 1

VLYNQ Architecture Specifications

viii Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

List of Tables

Error! No table of figures entries found.

Texas Instruments Proprietary 1

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

1 System Context

1.1 Hardware

The VLYNQ module core used has the following blocks:

Figure 1 VLYNQ Block

1.2 Software

The document provides an overall understanding of the TI VLYNQ device
driver architecture.

1.2.1 Operating Environment and dependencies
Refer system level release notes for tools and BIOS versions.

2 Design Considerations

VLYNQ is serial (i.e. low pin count) communications interface that enables
the extension of an internal CBA bus segment to one or more external
physical devices. VLYNQ accomplishes this function by serializing bus
transactions in one device, transferring the serialized transaction between
devices via a VLYNQ port, and de-serializing the transaction in the external
device. VLYNQ hardware module has been used in DaVinci, Jacinto,
Avalanche, Puma, Sangam, Titan, APEX and other TI communication
processors.

VLYNQ Architecture Specifications

2 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Since the same hardware module is used in various SOC(s), there is a need
for common VLYNQ software that can be used in the PSP software for these
SOC(s). The design goal for this software implementation is to produce
configurable VLYNQ software that can be ported / used in the PSP software
for any SOC (Jacinto, Avalanche, Puma, Sangam, APEX and Titan as of
now).

Configuration mechanisms, storage and mitigation are outside the scope of
this design endeavor.

2.1 Design Constraints

The design constraints for the implementation are documented here upfront
to set the expectations of the design:

Dynamic run time discovery / enumeration of VLYNQ devices - VLYNQ does
not perform an enumeration operation on the VLYNQ bus. It just configures
the host configuration (and its associated peer VLYNQ) based upon
configured parameters. The application can enumerate the bus, discover
devices and call the VLYNQ init function with the required parameters.

Since the VLYNQ module offers flexibility in terms of interrupt configuration
and other aspects, the implementation interface API has to be as flexible as
possible. This is to allow the application to dictate the working of the module.
Thus wrapper code that uses this implementation is very critical. This
implementation cannot be “on its own”. It needs to be used as per the design
of the SOC and its applications.

VLYNQ hardware does not allow generating local interrupts (intLocal=1) and
also sending them to the remote via interrupt packets. Thus, either the host or
remote handles VLYNQ interrupts. For this version of implementation, the
host handles the interrupts.

The configuration storage and persistence aspects are outside the scope of
this discussion.

Note: Even though there are few VLYNQ registers in hardware, VLYNQ module
configuration is a bit complex considering all the flexibility offered by the hardware.
The implementation does not provide a readymade solution for all the scenarios in
which this hardware can be used. Instead, it assists the developer to program the
hardware with the implementation API.

It shall be possible to chain multiple downstream entities.

3 Design Goals

 Keep it simple; do not add new concepts/aspects in VLYNQ software.

 Implementation to re-usable code for DSP/BIOS as an immediate requirement.

 Make the implementation independent of SOC.

 Flexible configuration for the VLYNQ interrupts mechanism.

Texas Instruments Proprietary 3

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 Supports up to 2.6 VLYNQ starting from 1.1 VLYNQ on a same code base.

3.1 Nomenclature

Root: The VLYNQ control module on the avalanche family SoC is called Root. Typically, there are
two roots. For this version of BasePSP 7.0, there is one root for VLYNQ. By convention, the first
VLYNQ control module to be initialized on the avalanche SoC is assigned root 0.

Bridge: It is the Link between two VLYNQ control modules over the VLYNQ serial bus. The usual
convention of identifying a bridge is <root#><hop#>. The hop# as well as root# are 0 based. The
first hop on root 0 shall be then identified as bridge00; the second hop shall be bridge01 and so on.
A notation such as bridge<root#> in general and specifically bridge0 shall mean everything
pertaining to multiple hops over the cascaded serial VLYNQ(s) associated with root 0.

Chain: A serial cascade of VLYNQ bridges. It has one root and one or more bridges.

Device (Dev): An instance of peripheral on the system.

Unit 1 Unit 1Root VLYNQ(s)

VL1 VL0 VL0P

PpP
VL01VL11 VL1P

PeerPeer

Next Next

DEV

VLYNQ Architecture Specifications

4 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4 Design Goals

4.1 Initialization

A SOC shall have typically one or two VLYNQ interfaces or control modules.
They are called root VLYNQ modules or simply root(s). Each (root) VLYNQ
module shall have a peer VLYNQ module. Typically, each VLYNQ module
shall be initialized along with its peer.

The software initialization procedure involves specifying the virtual base
address of the VLYNQ module and encompasses setting up of clock,
interrupt and Endianess information as applicable for the VLYNQ module.
The initialization kick starts the activities in the hardware and returning a
software handle on successful completion.

The initialization sequence for a chained VLYNQ setup goes in out; meaning
first root VLYNQ module or interface is initialized; it is ascertained for the
hardware state and then next VLYNQ module is taken up for initialization. Of
course, it is responsibility of the user to ensure that next VLYNQ module is
mapped into the memory map of the root VLYNQ module prior to initializing
the next VLYNQ module.

4.2 Remote Devices

Once the VLYNQ hardware with its peer has been initialized, it shall be
possible to add information about the device(s) connected to peer VLYNQ,
such devices can be TI DSP (DM64vx), Serial ATA, Customer FPGA, vdsp et
al, which are being accessed through serial bus into the VLYNQ modules.
Even the next VLYNQ module should be specified this way.

It is left to the discretion of the user and need of the system to specify a single
block (RX Size and RX Offset) for a set of multiple devices associated with
the peer VLYNQ or individual block for each device. User shall be required to
specify the VLYNQ interrupt numbers (to map the hardware interrupt lines)
that should to be used for a given device. Users shall ensure that the
mapping of interrupt vectors to the interrupt numbers are unique with a
VLYNQ module and with in a chain, if applicable.

For a chained VLYNQ setup, user should ensure that the next VLYNQ
module has been mapped in the context of the current VLYNQ module. User
shall specify the mapped virtual address of the next VLYNQ at creation time.

4.3 Interrupts

Interrupts under VLYNQ assume significance given the fact that there are
many possibilities to configure the interrupts over VLYNQ.

Texas Instruments Proprietary 5

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Since the VLYNQ hardware module permits either local interrupt generation
or interrupt packets to peer (remote) (intLocal bit in the configuration register),
it is not possible in hardware to map the interrupt two ways i.e. generate a
local interrupt to the host and also propagate the same to the remote device.
This is a hardware limitation.

Thus, special care needs to be taken by the user when programming intLocal
and int2Cfg bits of the VLYNQ device; user discretion is advised.

IntLocal bit in the control register determines if pending interrupts (from the Int
Pending/Set register) are propagated to the peer over the link. Thus to
propagate local interrupts to the peer, intLocal should be set to 0. Effectively
local VLYNQ module status interrupts are not reported (as interrupts) to the
local host. This is a hardware limitation (feature) and not software limitation.
Typically the host handles interrupts from the remote device. In this
scenario, the host configures local intLocal=1 and remote intLocal=0. In
this case, the host local VLYNQ interrupt vectors should not be enabled.

For example: Jacinto SOC has HECC, MLB/IIS, MiBSPI, McASP, GPIO
interrupts as interrupt vectors on the VLYNQ module. If the local intLocal=1,
then these vectors should not be enabled, otherwise these will result in
unwanted interrupts in the system. Only when local intLocal=0, these interrupt
vectors should be enabled so that these interrupts are propagated to the
peer.

Interrupt packets from the peer can be handled in two ways. If Int2CFG = 1,
then Int Ptr register should point to Int Pending/Set register and then peer
interrupts bits are written to the local Int Pending/Set register thereby causing
local interrupt to the host (only if IntLocal = 1). Else Int Ptr register can point
to the host device Interrupt Set register in which case, the remote interrupts
will directly be handled by the host device interrupt controller. For the sake of
simplicity at this time, the current implementation mandates the user to
configure the int2CFG for the root (local) VLYNQ as 1. The root VLYNQ
shall handle all the interrupts at this time.

Depending upon the type of remote VLYNQ interface, a mechanism is usually
provided to interrupt the remote side (e.g. in V2PCI module, there is a register
to generate interrupts to the PCI based upon setting of some bits). This
mechanism is generally used to generate an interrupt on the remote VLYNQ
by the host software. If such a mechanism is not present and peer interrupts
are required, and this has to be achieved by via the VLYNQ, then set the
local intLocal=0 and remote intLocal=1 on the host VLYNQ interface. For the
sake of simplicity, the implementation assumes that there is no
impending and immediate requirement to post interrupts from the host
to its peer; this limits the user to configure local intLocal=1 and peer
intLocal = 0.

VLYNQ Architecture Specifications

6 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

If two way interrupts are desired, then this can be achieved by setting
intLocal=0 of both SOC local VLYNQ and remote VLYNQ device. In this
mechanism the int2Cfg should be set to 0 and Int Ptr register pointing to the
device interrupt set register. The only problem with this mechanism is that
local VLYNQ error/status interrupt has to be handled by the peer and vice
versa. This is an advanced configuration concept and requires careful
configuration efforts and hence for the sake of simplicity this
configuration aspect is not allowed in the implementation.

A local interrupt handler is installed to handle local VLYNQ status interrupts.
A similar interrupt handler is required to handle remote VLYNQ status
interrupts if remote is passing its interrupts to local VLYNQ device. Since
VLYNQ interrupt has 32 bits, bit vector is passed in the initialization function.
The handlers are automatically installed based upon local and remote
VLYNQ interrupt configuration.

Further to this discussion, it is the onus on the user to ensure that, unique
interrupt vector to number mapping happens. It is found that typically PCI
devices could use sharing, so interrupt sharing is supported by this
implementation; this means that while it is possible to install multiple interrupt
service routines for a given interrupt number but still vector to interrupt
number mapping for interrupt should be unique.

Texas Instruments Proprietary 7

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5 Application Programming Interface(s)

For information on data structures please refer to Appendix A.

5.1 Configuration API(s)

5.1.1 PAL_sysVlynqInit() - Initialize the VLYNQ control module.

PAL_Result PAL_sysVlynqInit (void)

VLYNQ Architecture Specifications

8 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.2 PAL_sysVlynqInitSoc() - Initialize the VLYNQ control module.

PAL_VLYNQ_HND* PAL_sysVlynqInitSoc (PAL_VLYNQ_CONFIG_T* pal_vlynq_config)

config The collection of configuration parameters; to
initialize the VLYNQ interface.

Refer to Appendix A for details.

Note: If the VLYNQ control module being
initialized happens to be a non-root entity,
then, it is necessary and MUST that this
VLYNQ (identified by PAL_VLYNQ_HND) has
to be appended to the chain before this
handle can be used for any purpose.

Returns On failure, it returns a NULL, otherwise, it returns
a valid handle to the instance so initialized.

Refer to Appendix A for details.

Texas Instruments Proprietary 9

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.3 PAL_sysVlynqCleanUp() – Un-Initialize the VLYNQ control module.

PAL_Result PAL_sysVlynqCleanUp (PAL_VLYNQ_HND* vlynq)

vlynq Handle to the VLYNQ module instance; would have
been returned by PAL_sysVlynqInit(). Consequence
of using this handle after a call to this function is
undefined.

Returns 0 – on success.
-1 – on failure.

Refer to Appendix A for details.

VLYNQ Architecture Specifications

10 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.4 PAL_sysVlynqDevCreate() – Creates a device reference.

PAL_VLYNQ_DEV_HND* PAL_sysVlynqDevCreate (PAL_VLYNQ_HND* vlynq,
char* name,
Uint32 instance,
Int32 reset_bit
Bool peer)

vlynq The VLYNQ module instance to which
a device has to be added; this value
would have been returned by
PAL_sysVlynqInitSoc().

name Name of the device; shall not exceed
30 characters and shall be NULL
terminated.

instance The instance of the device; it is 0
based.

reset_bit The reset bit for the VLYNQ device in
the perspective of the system. Valid
only for the on-board device. If not
applicable, a value of –1 shall be set.

peer Identifies whether the device is
connected to the local or peer VLYNQ
module.

Returns On failure, returns NULL otherwise,
returns a valid handle to the device
instance.

Refer to Appendix A for details.

Texas Instruments Proprietary 11

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.5 PAL_sysVlynqDevDestroy() – Destroys the device reference.

PAL_Result PAL_sysVlynqDevDestroy (PAL_VLYNQ_DEV_HND* vlynq_dev_destroy)

vlynq_dev The VLYNQ device instance which would have
been returned by PAL_sysVlynqDevCreate(
).

Use of this handle after calling this function is
undefined.

Returns 0 - On success
-1 – On failure.

VLYNQ Architecture Specifications

12 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.6 PAL_sysVlynqMapRegion() – Map the memory regions of the device.

PAL_Result PAL_sysVlynqMapRegion (PAL_VLYNQ_HND* vlynq,
Bool remote,
Uint32 region_id,
Uint32 rx_offset,
Uint32 rx_size,
PAL_VLYNQ_DEV_HND* vlynq_dev)

vlynq The VLYNQ instance, which on which regions have to be mapped. This
value would have been returned by PAL_sysVlynqInitSoc().

remote Identifies whether the region to be mapped is on remote/peer or local
VLYNQ.

A device connected to peer VLYNQ exports its memory by programming
the RX Region registers of the peer VLYNQ and imports the memory
regions by programming the RX Registers of the local VLYNQ. So, for a
“peer” device, it should set the remote flag as true (1) to export its
regions.

Similarly, a device connected to local VLYNQ exports its memory by
programming the RX Region registers of the local VLYNQ and imports
region by programming the peer VLYNQ. So, setting remote as true (1)
shall mean that the device wants to imports memory regions.

The parameter has to be viewed in the context of the device for which
memory mapping is being envisaged.
0 (false) => local
1 (true) => remote

region_id Identifier of the RX region; valid values are from 0 to 3.

rx_offset The offset of the region in the physical memory map of the local or
remote SOC.

rx_size The size of the region to be mapped.

vlynq_dev The device instance for which certain regions have to be mapped. This
value would have been returned by PAL_sysVlynqDevCreate().

Returns 0 – on success.
-1 – on failure

Texas Instruments Proprietary 13

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.7 PAL_sysVlynqMappedRegion () – Return the Mapped Region configuration
for Local/Peer.

void PAL_sysVlynqMappedRegion (PAL_VLYNQ_T * p_vlynq_
mapped,

Uint32 address,
Uint32 peer)

p_vlynq_mapped Handle to the opened Resource Manager.

address Return values of TxMap,RxMap.size[4] & RxMap.offset[4]

peer The flag whether the device is associated with the local VLYNQ or the
peer.

Returns None

VLYNQ Architecture Specifications

14 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.8 PAL_sysVlynqUnMapRegion() – UnMap the memory regions of the device.

PAL_Result PAL_sysVlynqUnMapRegi
on

(PAL_VLYNQ_HND* vlynq,

Bool remote,
Uint32 region_id,
PAL_VLYNQ_DEV_HND* vlynq_dev)

vlynq The VLYNQ instance, on which previously mapped regions have to be un-
mapped.

remote Identifies whether the region to be mapped is on remote/peer or local VLYNQ.

The parameter has to be viewed in the context of the device for which memory
mapping is being envisaged.
0 (false) => local
1 (true) => remote

region_id Identifier of the RX region; valid values are from 0 to 3.

vlynq_dev The device instance for which certain regions have been previously mapped; and
now are being un-mapped.

Returns 0 – on success.
-1 – on failure

Texas Instruments Proprietary 15

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.9 PAL_sysVlynqMapIrq() – Maps the IRQ hardware line onto the VLYNQ.

PAL_Result PAL_sysVlynqMapIrq (PAL_VLYNQ_HND* vlynq,
Uint32 irq_hw_line,
Uint32 irq,
PAL_VLYNQ_DEV_HND* vlynq_dev)

vlynq The vlynq instance on which the IRQ mapping
is to be carried out. . This value would have
been returned by PAL_sysVlynqInitSoc(
).

irq_hw_line Identifies the hardware vector line (in the
perspective of the VLYNQ module), which runs
from the device to the VLYNQ module. The
valid values are 0 to 7 (both inclusive).

irq Identifies the IRQ number to which the
interrupt hardware line shall be mapped. The
valid values are 0 to 31 (both inclusive). It is
the responsibility of the user to ensure that
there is a unique irq_hw_line to irq mapping
within a VLYNQ chain.

vlynq_dev The device instance for which certain hardware
interrupts have to be mapped on the VLYNQ;
this value would have been returned by
PAL_sysVlynqDevCreate().

Returns 0 – on success.
-1 – on failure.

VLYNQ Architecture Specifications

16 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.10 PAL_sysVlynqUnMapIrq() – UnMaps the IRQ hardware line.

PAL_Result PAL_sysVlynqUnMapIrq (PAL_VLYNQ_HND* vlynq,
Uint32 irq,
PAL_VLYNQ_DEV_HND* vlynq_dev)

vlynq The VLYNQ instance on which the un-mapping
has to be carried out.

irq Identifies the IRQ number for which the
interrupt hardware line shall be un-mapped.
The valid values are 0 to 31 (both inclusive).

vlynq_dev The device instance for which certain
hardware interrupts are required to be un-
mapped on VLYNQ; this value would have
been returned by
PAL_sysVlynqDevCreate().

Returns 0 – on success.
-1 – on failure.

Texas Instruments Proprietary 17

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.11 PAL_sysVlynqChainAppend() –Append to the VLYNQ chain.

PAL_Result PAL_sysVlynqChainAppend (PAL_VLYNQ_HND* this,
PAL_VLYNQ_HND* to)

this The VLYNQ module instance, which
has to be added to the chain (away
from the root). This value would have
been returned by
PAL_sysVlynqInitSoc().

to The VLYNQ module instance, to which
“this” has to be chained (away from the
root). . This value would have been
returned by PAL_sysVlynqInitSoc(
).

Returns 0 – on success.
-1 – on failure.

VLYNQ Architecture Specifications

18 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.12 PAL_sysVlynqAddDevice() –Add the device reference into VLYNQ.

PAL_Result PAL_sysVlynqAddDevice (PAL_VLYNQ_HND* vlynq,
PAL_VLYNQ_DEV_HND* vlynq_dev,
Bool peer)

vlynq The VLYNQ module instance, to which the
device instance has to be added. This
value would have been returned by
PAL_sysVlynqInitSoc().

vlynq_dev The device instance, which has to be
added into the VLYNQ. This value would
have been returned by
PAL_sysVlynqDevCreate().

peer The flag whether the device is associated
with the local VLYNQ or the peer.

Returns 0 – on success.
-1 – on failure.

Texas Instruments Proprietary 19

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.13 PAL_sysVlynqRemoveDevice() – Removes the device reference from
VLYNQ.

PAL_Result PAL_sysVlynqRemoveDevice (PAL_VLYNQ_HND* vlynq,
PAL_VLYNQ_DEV_HND* vlynq_dev)

vlynq The VLYNQ module instance, from which
the device instance has to be removed.

vlynq_dev The device instance, which is to be
removed from the VLYNQ.

Returns 0 – on success.
-1 – on failure.

VLYNQ Architecture Specifications

20 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.14 PAL_sysVlynqChainUnAppend() – Remove (the tail) from the VLYNQ chain.

PAL_Result PAL_sysVlynqChainUnAppend (PAL_VLYNQ_HND* this,
PAL_VLYNQ_HND* from)

this The VLYNQ module instance, which
has to be removed from the chain
(away from the root).

from The VLYNQ module instance, from
which “this” has to be removed (away
from the root).

Returns 0 – on success.
-1 – on failure.

Texas Instruments Proprietary 21

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.1.15 PAL_sysVlynqRootIsr() – The Root ISR; register it with the system.

PAL_Result PAL_sysVlynqRootIsr (Int *p_vlynq)

p_vlynq Pass this parameter along while attaching the HWI to the
PAL_sysVlynqRootIsr(). It is the address of the VLYNQ
handle of the root VLYNQ module running.

Returns 0 – on success.
-1 – error.

VLYNQ Architecture Specifications

22 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.2 For Drivers et al.

5.2.1 PAL_sysVlynqDevFind() – Get the handle for the device.

PAL_VLYNQ_DEV_HND* PAL_sysVlynqDevFind (const char *name,
Uint8 instance)

name The name of the device whose
information is being sought. This
should same as that used in the
PAL_sysVlynqDevCreate().

instance The instance of the remote
device. This should same as that
used in the
PAL_sysVlynqDevCreate().

Returns NULL, if no device could be found
or a valid handle.

Texas Instruments Proprietary 23

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.2.2 PAL_sysVlynqDevGetVlynq() – Get the VLYNQ for this device.

PAL_VLYNQ_HND* PAL_sysVlynqDevGetVlynq (PAL_VLYNQ_DEV_HND* vlynq_dev_get)

vlynq_dev The device whose associated VLYNQ control
module is being sought. This would have
been returned by PAL_sysVlynqDevFind(
).

Returns NULL on error or a valid VLYNQ handle.

VLYNQ Architecture Specifications

24 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.2.3 PAL_sysVlynqGetDevBase() – Get the physical base address of the
device.

PAL_Result PAL_sysVlynqGetDevBase (PAL_VLYNQ_ HND* vlynq,
Uint32 offset,
Uint32 *base_addr
PAL_VLYNQ_DEV_HND* dev)

vlynq The instance on which the physical base
address is being sought.

offset The offset (in bytes) into the remote device
memory map.

base_addr The placeholder for the evaluated physical
base address of the remote device in the
context of the root SOC. The caller
manages the memory for this.

dev The handle to remote device instance;
would have been returned by
PAL_sysVlynqDevFind(). The offset
is being sought for this device.

Returns 0 – on success.
-1 – on failure.

Texas Instruments Proprietary 25

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.2.4 PAL_sysVlynqDevFindIrq() – Get the mapped interrupts of the device..

PAL_Result PAL_sysVlynqDevFindIrq (PAL_VLYNQ_DEV_HND* vlynq_dev_irq,
Uint8 *irq,
Uint32 num_irq)

dev The handle to remote device instance; would
have been returned by
PAL_sysVlynqDevFind().

irqs The placeholder for the identifiers of the
IRQ(s) vectors in the perspective of the chain.
The caller is responsible for managing the
memory.

Typically, the caller shall allocate memory for
atleast “num_irqs”.

num_irqs The number of interrupts to be read; this
should be same as the number of interrupts
for which placeholder has been provided.

Returns 0 – on success.
-1 – if the placeholder is inadequate.
-2 – other errors.

VLYNQ Architecture Specifications

26 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.2.5 PAL_sysVlynqDevGetResetBit() – Get the reset bit of the device.

PAL_Result PAL_sysVlynqDevGetResetBit (PAL_VLYNQ_DEV_HND* vlynq_dev_bit,
Uint32 *reset_bit)

dev The handle to remote device instance; would
have been returned by
PAL_sysVlynqDevFind().

*reset_bit The placeholder for the identifiers of reset bit.
Only for on board remote devices for which
hardware reset provisions have been made.

Returns 0 – on success.
-1 – error.

Texas Instruments Proprietary 27

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.2.6 PAL_sysVlynqAddIsr() – Install the ISR for the device.

PAL_Result PAL_sysVlynqAddIsr (PAL_VLYNQ_HND* vlynq,
Uint32 irq,
PAL_VLYNQ_DEV_ISR_FN* dev_isr,
PAL_VLYNQ_DEV_ISR_PARAM_GRP
_T*

isr_param)

vlynq The VLYNQ module instance for whose associated remote device, an
isr is being installed.

irq One of the identifier of the IRQ as returned by
PAL_sysVlynqGetDevIrq()or VLYNQ module specific interrupt..

dev_isr The OS specific function pointer (ISR handler); the type of the function
PAL_VLYNQ_DEV_ISR_FN shall be defined for each of the OS by the
user. Driver for the remote device shall load appropriate function
instance.

Refer to Appendix A for details.

The number of parameters in the signature of this function should be
exactly same as specified by PAL_VLYNQ_DEV_ISR_PARM_NUM.

isr_param It is a collection of parameters for each instance of the remote device
driver. The user shall define the type
PAL_VLYNQ_DEV_ISR_PARAM_GRP_T for the collection of the
parameters for each OS. The only caveat here is that the name of the
members of the PAL_VLYNQ_DEV_ISR_PARAM_GRP_T should start
(i.e. first member) with arg0 (inclusive) and should continue in sequence
of arg1, arg2… up to arg9 (inclusive); it is assumed that no OS
implementation shall require more than 10 callback ISR parameters.

User shall define and specify the number of ISR parameter,
PAL_VLYNQ_DEV_ISR_PARM_NUM as required for a specific OS
implementation; this should not exceed 10. For a value, less than 10,
the member names shall start as arg0, arg1… up to arg<
PAL_VLYNQ_DEV_ISR_PARM_NUM– 1>.

The keywords for member names here are arg0, arg1, arg2, arg3, arg4,
arg5, arg6, arg7, arg8 and arg9.

Refer to Appendix A for details.

Returns 0 – on success.
-1 – error.

VLYNQ Architecture Specifications

28 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.2.7 PAL_sysVlynqRemoveIsr() – Uinstall the previously installed ISR.

PAL_Result PAL_sysVlynqRemov
eIsr

(PAL_VLYNQ_HND* vlynq,

Uint32 irq,
PAL_VLYNQ_DEV_ISR_PARAM_GRP
_T *

isr_param)

vlynq The VLYNQ module instance for whose associated remote
device, an isr is being removed.

irq The identifier of the IRQ as provided in the
PAL_sysVlynqAddIsr().

isr_param Same as that provided in the PAL_sysVlynqAddIsr().

Returns 0 – on success.
-1 – error.

Texas Instruments Proprietary 29

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.2.8 PAL_sysVlynqDevCbRegister() – Register for the callbacks.

PAL_Result PAL_sysVlynqDevCbRegis
ter

(PAL_VLYNQ_DEV_HND*
vlynq_dev_

cb,
PAL_VLYNQ_DEV_DRV_CB_
FN

cb_fn,

void* this_driver)

dev The handle to remote device instance; as returned by
PAL_sysVlynqDevFind().

func typedef int (*PAL_VLYNQ_DEV_CB_FN)(void*
this_driver, Uint32 condition, Uint32 condition value);

The callback function that is be called by implementation
for local error, or remote error update conditions.

Refer to Appendix A for details.

this_driver The driver instance, which is registering for the callbacks
from the VLYNQ implementation.

Returns 0 – on success.
-1 – error.

VLYNQ Architecture Specifications

30 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.2.9 PAL_sysVlynqDevCbUnregister() – Unregister the callbacks.

PAL_Result PAL_sysVlynqDevCbUnregist
er

(PAL_VLYNQ_DEV_HND* vlynq_dev_
uncb,

void* this_driver)

dev The handle to remote device instance; as returned by
PAL_sysVlynqDevFind().

this_driver The driver instance, which is registered for the callbacks
from the VLYNQ implementation.

Returns 0 – on success.
-1 – error.

Texas Instruments Proprietary 31

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.3 Control API(s)

5.3.1 PAL_sysVlynqIoctl() – Read/Write register of the VLYNQ module.

PAL_Result PAL_sysVlynqIoctl (PAL_VLYNQ_HND* vlynq,
Uint32 cmd,
Uint32* command_val)

vlynq The VLYNQ module instance, whose
register has to be controlled; this value
would have been returned by
PAL_sysVlynqInitSoc().

cmd Various read and write commands to be
carried out. Refer below for the 32 bit break
up of the command.

Command_val For write command(s) this provides the
value to be written and for read operations it
provides the placeholder for the value to be
read.

Returns 0 – on success.
-1 – on failure.

32 bit Command :

31:Bit Op 30: R/W* 29: Peer 28-24
Reserved

23-16
Major id

15-8
Reserved

7-0
Minor id

If Bit Op is not set, the major id identifies the commands for raw 32-bit accesses or any specific
operation. For now, if major command is 32 bit accesses, then register id refer to minor id otherwise
minor id are don’t care.

If Bit Op is set, the major id identifies a specific register for a select bit operation. Minor id then shall
identify the registers.

Note: Refer to Appendix B for details.

VLYNQ Architecture Specifications

32 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.3.2 PAL_sysVlynqClockConfig() – Configures the Clock for the VLYNQ bridge.

PAL_Result PAL_sysVlynqConfigClock (PAL_VLYNQ_HND* vlynq,
PAL_VLYNQ_CLOCK_DIR_ENUM_T local_clock_dir,
PAL_VLYNQ_CLOCK_DIR_ENUM_T peer_clock_dir,
Uint8 local_clock_div,
Uint8 peer_clock_div,)

vlynq The VLYNQ module instance, whose register has to be
controlled; this value would have been returned by
PAL_sysVlynqInitSoc().

local_clock_dir The clock direction for the local VLYNQ. Refer to Appendix
A for details.

peer_clock_dir The clock direction for the peer VLYNQ. Refer to Appendix
A for details.

local_clock_div The divisor for the local clock. Valid values are 1 to 255.

peer_clock_div The divisor for the peer clock. Valid values are 1 to 255.

Returns 0 – on success.
-1 – on failure.

Texas Instruments Proprietary 33

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.4 Interrupts Galore

5.4.1 PAL_sysVlynqGetForIrq() – Get the VLYNQ for the IRQ.

PAL_VLYNQ_HND* PAL_sysVlynqGetForIrq (PAL_VLYNQ_HND* root,
Uint32 irq)

root The VLYNQ chain identifier (the root VLYNQ); the
interrupt numbers are unique with in a chain.

irq The interrupt number whose association with a VLYNQ
module is being sought. The valid values are 0 to 31 (both
inclusive).

Returns 0 – on success.
-1 – error.

VLYNQ Architecture Specifications

34 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.4.2 PAL_sysVlynqSetIrqPol() – Set the polarity of the hardware IRQ line.

PAL_Result PAL_sysVlynqSetIrqPol (PAL_VLYNQ_HND* vlynq,
Uint32 irq,
PAL_VLYNQ_IRQ_POL_ENUM
_T

*polarity)

vlynq The VLYNQ instance whose hardware interrupt line is to
be set for polarity.

irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

 polarity The polarity of the line. Refer to the data structure in
Appendix A.

Returns 0 – on success.
-1 – error.

Texas Instruments Proprietary 35

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.4.3 PAL_sysVlynqSetIrqType()- Set the type of the hardware IRQ line.

PAL_Result PAL_sysVlynqSetIrqType (PAL_VLYNQ_HND* vlynq,
Uint32 irq,
PAL_VLYNQ_IRQ_TYPE_ENUM_T type)

vlynq The VLYNQ instance whose hardware interrupt line is to
be set for trigger type.

irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

type The type of the interrupt line. Refer to the data structure in
the Appendix A.

Returns 0 – on success.
-1 – error.

VLYNQ Architecture Specifications

36 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.4.4 PAL_sysVlynqGetIrqPol () – Get the polarity of the hardware IRQ line.

PAL_Result PAL_sysVlynqGetIrqPol (PAL_VLYNQ_HND* vlynq,
Uint32 irq,
PAL_VLYNQ_IRQ_POL_ENUM_
T*

polarity)

vlynq The VLYNQ instance whose hardware interrupt line is to
being looked up for polarity setting.

Irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

 polarity The polarity of the line. The caller manages memory.

Refer to the data structure in the Appendix A.

Returns 0 – on success.
-1 – error.

Texas Instruments Proprietary 37

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.4.5 PAL_sysVlynqGetIrqType() – Get the type of the hardware IRQ type.

PAL_Result PAL_sysVlynqGetIrqType (PAL_VLYNQ_HND* vlynq,
Uint32 irq,
PAL_VLYNQ_IRQ_POL_ENUM_T
*

type)

vlynq The VLYNQ instance whose hardware interrupt line is
being looked up for trigger type.

Irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

type The type of the interrupt line. The caller manages
memory. Refer to the data structure in the Appendix A.

Returns 0 – on success.
-1 – error.

VLYNQ Architecture Specifications

38 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.4.6 PAL_sysVlynqGetIrqCount() – Get the number of times this IRQ occurred.

Uint32 PAL_sysVlynqGetIrqCou
nt

(PAL_VLYNQ_HND* vlynq,

Uint32 irq
Uint32 *count)

vlynq The VLYNQ module instance for whose associated “irq”
has to be queried for number of dispatches so far.

irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

count Placeholder to store the number of times the interrupt “irq”
has been raised. The value in the placeholder is valid only
if the function returns success.

Returns 0 – on success.
-1 – error.

Texas Instruments Proprietary 39

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.4.7 PAL_sysVlynqDisableIrq() – Disable the IRQ.

Uint32 PAL_sysVlynqDisableIrq (PAL_VLYNQ_HND* vlynq,
Uint32 irq)

vlynq The VLYNQ module instance for whose associated “irq”
hardware line is to be disabled for generating interrupts.

irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

Returns 0 – on success.
-1 – error.

VLYNQ Architecture Specifications

40 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.4.8 PAL_sysVlynqEnableIrq() – Enable the IRQ.

Uint32 PAL_sysVlynqEnableIrq (PAL_VLYNQ_HND* vlynq,
Uint32 irq)

vlynq The VLYNQ module instance for whose associated “irq”
hardware line is to be enabled for generating interrupts.

irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

Returns 0 – on success.
-1 – error.

Texas Instruments Proprietary 41

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.5 Status and Utility

5.5.1 PAL_sysVlynqGetLinkStatus() – Get the status of the of the VLYNQ
module.

Bool PAL_sysVlynqGetLinkStatus (PAL_VLYNQ_HND* vlynq)

vlynq The VLYNQ module instance, whose link
status with the peer is being requested.

Returns 1 – on link.
 0 – on link failure.

VLYNQ Architecture Specifications

42 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.5.2 PAL_sysVlynqGetNumRoot() – Get the number of the root VLYNQ(s).

Int32 PAL_sysVlynqGetNumRoot (void)

Returns The number of root VLYNQ modules on the
SOC.

A value of 0 means no VLYNQ.
1 means an root index of 0,
2 mean indices0 and 1.

Texas Instruments Proprietary 43

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.5.3 PAL_sysVlynqGetRoot() – Get the handle to the specified root VLYNQ.

PAL_VLYNQ_HND* PAL_sysVlynqGetRoot (Int32 index)

index 0 based. Starts at 0 and extends to
(inclusive of) one less number of roots
returned by PAL_sysVlynqGetNumRoot
()

Returns NULL, on failure otherwise a valid handle
to access the root VLYNQ module.

VLYNQ Architecture Specifications

44 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.5.4 PAL_sysVlynqGetRootVLYNQ() – Get root for the given VLYNQ.

PAL_VLYNQ_HND* PAL_sysVlynqGetRoot (PAL_VLYNQ_HND* vlynq)

vlynq Handle to the VLYNQ whose root is being
sought.

Returns NULL, on failure otherwise a valid handle,
to access the root VLYNQ module.

Texas Instruments Proprietary 45

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.5.5 PAL_sysVlynqGetRootAtBase() – Get the root VLYNQ at the base
address.

PAL_VLYNQ_HND* PAL_sysVlynqGetRootAtBase (Uint32 base_addr)

base_addr The virtual base address of the
VLYNQ module on the SOC.

Returns NULL, on failure otherwise a valid
handle to access the root VLYNQ
module.

VLYNQ Architecture Specifications

46 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.5.6 PAL_sysVlynqGetBaseAddr() – Returns the base address of the VLYNQ.

PAL_Result PAL_sysVlynqGetBaseAddr (PAL_VLYNQ_HND* vlynq,
Uint32 *base_addr)

vlynq The Vlynq module whose base address is
being sought.

base_addr The placeholder for the virtual base
address of the VLYNQ module on the
SOC.

Returns 0 on success
-1 on failure.

Texas Instruments Proprietary 47

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.5.7 PAL_sysVlynqGetNext() – Get the next VLYNQ module in the chain.

PAL_VLYNQ_HND* PAL_sysVlynqGetNext (PAL_VLYNQ_HND* this)

this The VLYNQ module instance whose next
chained entity (away from the root) is
being sought.

Returns NULL, on failure otherwise a valid handle
to access the neighbor module.

VLYNQ Architecture Specifications

48 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.5.8 PAL_sysVlynqIsLast() – Is this VLYNQ module the last one in the chain.

Int32 PAL_sysVlynqIsLast (PAL_VLYNQ_HND* this)

this The VLYNQ module instance to be
ascertained whether last in the chain
(away from the root).

Returns 0 – on false.
1 – on true.

Texas Instruments Proprietary 49

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.5.9 PAL_sysVlynqGetChainLength() – Get the length of the VLYNQ chain.

Int32 PAL_sysVlynqGetChainLength (PAL_VLYNQ_HND* this)

this The starting VLYNQ module instance
inclusive of which, the number of VLYNQ
modules existing in the chain (away from
root) is being sought.

If this happens to be the root VLYNQ
module, then the length of the entire
chain is ascertained.

Returns The number of VLYNQ modules in the
chain (away from the root).

VLYNQ Architecture Specifications

50 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5.5.10 PAL_sysVlynqDump() – Dumps vital VLYNQ information into the buffer.

Int32 PAL_sysVlynqDump (PAL_VLYNQ_HND* vlynq,
Uint32 dump_type,
char* buf,
Int32 limit,
Int32* eof)

vlynq The vlynq instance for which the dump has
to be provided.

dump_type Identifies the information being sought.
Some of the commands can be raw byte
dump of the hardware, complete chain
dump, raw register values or specific
register value with enumeration such as
status register or control register.
Refer Appendix B for details.

buf The placeholder for the buffer. After the
function, the buffer can be printed out for
reading and information.

limit The size of the buffer. It is strongly
recommended to provide a buffer of at
least 4096 bytes.

eof Whether the buffer was insufficient.

Returns The number of bytes that have been
formatted and placed in the buffer.

-1 on error.

Texas Instruments Proprietary 51

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

6 Appendix A

6.1 Enumerators and typedefs

typedef enum pal_vlynq_clock_dir_enum
{
 pal_vlynq_clk_in = 0,
 /**< Sink the clock. */
 pal_vlynq_clk_out
 /**< Source the clock */
} PAL_VLYNQ_CLOCK_DIR_ENUM_T;

typedef enum pal_vlynq_endian_enum
{
 pal_vlynq_ignore_en = 0,
 /**< Ignore the endianess */
 pal_vlynq_little_en = (Int32)LITTLE_ENDIAN,
 /**< For little endianess */
 pal_vlynq_big_en = (Int32)BIG_ENDIAN
 /**< For big endianess */
} PAL_VLYNQ_ENDIAN_ENUM_T;

typedef enum
{
 pal_vlynq_high_irq_pol = 0,
 /**< IRQ polarity high. */
 pal_vlynq_low_irq_pol
 /**< IRQ polarity low. */
}PAL_VLYNQ_IRQ_POL_ENUM_T;

typedef enum
{
 pal_vlynq_level_irq_type = 0,
 /**< IRQ level triggered. */
 pal_vlynq_edge_irq_type
 /**< IRQ edge triggered. */
}PAL_VLYNQ_IRQ_TYPE_ENUM_T;

typedef Int32 (*PAL_VLYNQ_DEV_CB_FN)(void* this_driver , Uint32 condition, Uint32 value);

typedef void PAL_VLYNQ_HND;
typedef void PAL_VLYNQ_DEV_HND;

VLYNQ Architecture Specifications

52 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

6.2 PAL_VLYNQ_CONFIG_T (pal_sysvlynq.h)

typedef struct
{
 Uint8 on_soc;
 /**< 1 => the VLYNQ module is on the SOC running the code, 0 => otherwise. */

 PAL_VLYNQ_INIT_ERR_ENUM_T error_status;
 /**< status of error */

 char error_msg[50];
 /**< holds error message string */

 Uint32 base_addr;
 /**< Virtual Base Address of the module */

 Uint32 init_timeout_in_ms;
 /**< The number of millsecs that the software should allow for initialization
 * to complete */
 /**< functionality not implemented */

 Uint8 local_clock_div;
 /**< The clock divisor for the local VLYNQ module */

 PAL_VLYNQ_CLOCK_DIR_ENUM_T local_clock_dir;
 /**< The clock direction; sink or source for the local VLYNQ module */

 Uint8 local_intr_local;
 /**< 1 => interrupts are being handled locally or 0 => sent interrupt packate over the
interface */

 Uint8 local_intr_vector;
 /**< The IRQ vector# to be used on the local VLYNQ module. Valid values are
 * 0 to 31. Should be unique */

 Uint8 local_intr_enable;
 /**< 1 => enable the local irq vector or => disable */

 Uint8 local_int2cfg;
 /**< Valid only if intr_local is set.
 * 1 => write to the local VLYNQ interrupt pending register;
 * 0 => write to the location refered by local address pointer */

 Uint32 local_intr_pointer;

#ifdef INCLUDE_ENDIAN_REGISTER
 /**< Address to which the irq should be written to; valid only if int2cfg is not
set */
 PAL_VLYNQ_ENDIAN_ENUM_T local_endianness;
#endif

 /**< Endianess of the local VLYNQ module */
 Uint32 local_tx_addr;
 /**< The physical portal address of the local VLYNQ */

 PAL_VLYNQ_RTM_CFG_ENUM_T local_rtm_cfg_type;
 /**< The RTM configuration for the local VLYNQ */

 Uint8 local_rtm_sample_value;
 /**< The RTM sample value for the local VLYNQ, valid only if forced rtm cfg
 * type is selected */

 Bool local_tx_fast_path;

Texas Instruments Proprietary 53

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 /**< TX Fast path 0 => slow path, 1 => fast path. */

 Uint8 peer_clock_div;
 /**< The clock divisor for the peer VLYNQ module */

 PAL_VLYNQ_CLOCK_DIR_ENUM_T peer_clock_dir;
 /**< The clock direction; sink or source for the peer VLYNQ module */

 Uint8 peer_intr_local;
 /**< 1 => interrupts are being handled by peer VLYNQ or 0 => sent over the bus */

 Uint8 peer_intr_enable;
 /**< 1 => enable the peer irq vector or => disable */

 Uint8 peer_intr_vector;
 /**< The IRQ vector# to be used on the peer VLYNQ module. Valid values are 0 to 31.
 * Should be unique */

 Uint8 peer_int2cfg;
 /**< Valid only if intr_local is set.
 * 1 => write to the local VLYNQ interrupt pending register;
 * 0 => write to the location refered by local address pointer */

 Uint32 peer_intr_pointer;

#ifdef INCLUDE_ENDIAN_REGISTER
 /**< Address to which the irq should be written to; valid only if int2cfg is not set
*/
 PAL_VLYNQ_ENDIAN_ENUM_T peer_endianness;
#endif
 /**< Endianess of the local VLYNQ module */

 Uint32 peer_tx_addr;
 /**< The physical portal address of the peer VLYNQ */

 PAL_VLYNQ_RTM_CFG_ENUM_T peer_rtm_cfg_type;
 /**< The RTM configuration for the peer VLYNQ */

 Uint8 peer_rtm_sample_value;
 /**< The RTM sample value for the local VLYNQ, valid only if forced rtm cfg type is
selected */

 Bool peer_tx_fast_path;
 /**< TX Fast path 0 => slow path, 1 => fast path */

 Bool init_swap_flag;
 /**< Is the Vlynq module in Endian swapped state to begin with */

} PAL_VLYNQ_CONFIG_T;

VLYNQ Architecture Specifications

54 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

6.3 User defines

/* This sample code should be realized in the pal_sysvlynqOs.h for each
OS */

/** Number of params with ISR. */
#define PAL_VLYNQ_DEV_ISR_PARM_NUM 3

/* To keep the ISR dispatch simple we align the signature of the ISR
 * to that stipulated by the OS.
 */
typedef void (*PAL_VLYNQ_DEV_ISR_FN)(int, void*, void*);

typedef struct
{
 /* types same as defined in the signature and in same strict order. The caveat here is

keywords for the name of the members of this structure; they start with arg0 ...
arg9. The name should always start with arg0 and shall continue up to the arg
<number of variables - 1>.

 At this time it is assumed that there shall be no requirement to define more than
10 arguments for the ISR routine. Sample:

*/

 Uint32 arg0,
 Uint8* arg1,
 void* arg2

} PAL_VLYNQ_DEV_ISR_PARAM_GRP_T;

/* Now include the pal_sysvlynq.h */

Texas Instruments Proprietary 55

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

7 Appendix B

#ifndef __PAL_VLYNQ_IOCTL_H__
#define __PAL_VLYNQ_IOCTL_H__

#define PAL_VLYNQ_IOCTL_BIT_CMD (1 << 31)
#define PAL_VLYNQ_IOCTL_READ_CMD (1 << 30)
#define PAL_VLYNQ_IOCTL_REMOTE_CMD (1 << 29)

#define PAL_VLYNQ_IOCTL_MAJOR_VAL(val) ((val & 0xff) << 16)
#define PAL_VLYNQ_IOCTL_MAJOR_DE_VAL(cmd) ((cmd >> 16) & 0xff)

#define PAL_VLYNQ_IOCTL_MINOR_VAL(val) (val & 0xff)
#define PAL_VLYNQ_IOCTL_MINOR_DE_VAL(cmd) (cmd & 0xff)

/* Major commands; if bit option is not selected. */
#define PAL_VLYNQ_IOCTL_REG_CMD (0x00) /* Shall use vlynq regs as minor cmd*/
#define PAL_VLYNQ_IOCTL_PREP_LINK_DOWN (0x01) /* Prepare to teardown the link. */
#define PAL_VLYNQ_IOCTL_PREP_LINK_UP (0x02) /* Setup now the link is up. */
#define PAL_VLYNQ_IOCTL_CLEAR_INTERN_ERR (0x03) /* Clear internal interrupt errors. */

/* Control Register parameters, valid for bit operations. */
/**< Control register RESET command */
#define PAL_VLYNQ_IOCTL_CNT_RESET_CMD (0x00u)
/**< Control register ILOOP command */
#define PAL_VLYNQ_IOCTL_CNT_ILOOP_CMD (0x01u)
/**< Control register AOPT command : Write */
#define PAL_VLYNQ_IOCTL_CNT_AOPT_CMD (0x02u)
/**< Control register INT2CFG command */
#define PAL_VLYNQ_IOCTL_CNT_INT2CFG_CMD (0x07u)
/**< Control register INTVEC command */
#define PAL_VLYNQ_IOCTL_CNT_INTVEC_CMD (0x08u)
/**< Control register INT_EN command */
#define PAL_VLYNQ_IOCTL_CNT_INT_EN_CMD (0x0du)
/**< Control register INT_LOC command */
#define PAL_VLYNQ_IOCTL_CNT_INT_LOC_CMD (0x0eu)
/**< Control register CLK_DIR command */
#define PAL_VLYNQ_IOCTL_CNT_CLK_DIR_CMD (0x0fu)
/**< Control register CLK_DIV command : Write */
#define PAL_VLYNQ_IOCTL_CNT_CLK_DIV_CMD (0x10u)
/**< Control register CLK_MOD command */
#define PAL_VLYNQ_IOCTL_CNT_CLK_MOD_CMD (0x15u)
/**< Control register TX_FAST command */
#define PAL_VLYNQ_IOCTL_CNT_TX_FAST_CMD (0x15u)
/**< Control register RTM_SELECT command */
#define PAL_VLYNQ_IOCTL_CNT_RTM_SELECT_CMD (0x16u)
/**< Control register RTM_SAMPLE command */

VLYNQ Architecture Specifications

56 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

#define PAL_VLYNQ_IOCTL_CNT_RTM_VALIDWR_CMD (0x17u)
/**< Control register RTM_SAMPLE command */
#define PAL_VLYNQ_IOCTL_CNT_RTM_SAMPLE_CMD (0x18u)
/**< Control register SLKPU command : Write */
#define PAL_VLYNQ_IOCTL_CNT_CLK_SLKPU_CMD (0x1eu)
/**< Control register PMEM command : Write */
#define PAL_VLYNQ_IOCTL_CNT_PMEM_CMD (0x1fu)

/* Status Register parameters, valid for bit operations. */

/**< Status register LINK bit in status register */
#define PAL_VLYNQ_IOCTL_STS_LINK (0x00u)
/**< Status register MPEND bit in status register */
#define PAL_VLYNQ_IOCTL_STS_MPEND (0x01u)
/**< Status register SPEND bit in status register */
#define PAL_VLYNQ_IOCTL_STS_SPEND (0x02u)
/**< Status register NFEMP0 bit in status register */
#define PAL_VLYNQ_IOCTL_STS_NFEMP0 (0x03u)
/**< Status register NFEMP1 bit in status register */
#define PAL_VLYNQ_IOCTL_STS_NFEMP1 (0x04u)
/**< Status register NFEMP2 bit in status register */
#define PAL_VLYNQ_IOCTL_STS_NFEMP2 (0x05u)
/**< Status register NFEMP3 bit in status register */
#define PAL_VLYNQ_IOCTL_STS_NFEMP3 (0x06u)
/**< Status register LERR bit in status register */
#define PAL_VLYNQ_IOCTL_STS_LERR (0x07u)
/**< Status register RERR bit in status register */
#define PAL_VLYNQ_IOCTL_STS_RERR (0x08u)
/**< Status register OFLOW bit in status register */
#define PAL_VLYNQ_IOCTL_STS_OFLOW (0x09u)
/**< Status register IFLOW bit in status register */
#define PAL_VLYNQ_IOCTL_STS_IFLOW (0x0Au)
/**< Status register RTM bit in status register */
#define PAL_VLYNQ_IOCTL_STS_RTM (0x0Bu)
/**< Status register RTM_VAL bit in status register */
#define PAL_VLYNQ_IOCTL_STS_RTM_VAL (0x0Cu)
/**< Status register SWIDOUT bit in status register */
#define PAL_VLYNQ_IOCTL_STS_SWIDOUT (0x14u)
/**< Status register MODESUP bit in status register */
#define PAL_VLYNQ_IOCTL_STS_MODESUP (0x15u)
/**< Status register SWIDIN bit in status register */
#define PAL_VLYNQ_IOCTL_STS_SWIDIN (0x18u)
/**< Status register SWIDTH bit in status register */
#define PAL_VLYNQ_IOCTL_STS_SWIDTH (0x18u)
/**< Status register DEBUG bit in status register */
#define PAL_VLYNQ_IOCTL_STS_DEBUG (0x1du)

/* VLYNQ Registers */

#define PAL_VLYNQ_IOCTL_REVSION_REG (0x00)
#define PAL_VLYNQ_IOCTL_CONTROL_REG (0x04)
#define PAL_VLYNQ_IOCTL_STATUS_REG (0x08)

Texas Instruments Proprietary 57

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

#define PAL_VLYNQ_IOCTL_INT_PRIR_REG (0x0c)
#define PAL_VLYNQ_IOCTL_INT_STS_REG (0x10)
#define PAL_VLYNQ_IOCTL_INT_PEND_REG (0x14)
#define PAL_VLYNQ_IOCTL_INT_PTR_REG (0x18)
#define PAL_VLYNQ_IOCTL_TX_MAP_REG (0x1c)
#define PAL_VLYNQ_IOCTL_RX1_SZ_REG (0x20)
#define PAL_VLYNQ_IOCTL_RX1_OFF_REG (0x24)
#define PAL_VLYNQ_IOCTL_RX2_SZ_REG (0x28)
#define PAL_VLYNQ_IOCTL_RX2_OFF_REG (0x2c)
#define PAL_VLYNQ_IOCTL_RX3_SZ_REG (0x30)
#define PAL_VLYNQ_IOCTL_RX3_OFF_REG (0x34)
#define PAL_VLYNQ_IOCTL_RX4_SZ_REG (0x38)
#define PAL_VLYNQ_IOCTL_RX4_OFF_REG (0x3c)
#define PAL_VLYNQ_IOCTL_CVR_REG (0x40)
#define PAL_VLYNQ_IOCTL_AUTO_NEG_REG (0x44)
#define PAL_VLYNQ_IOCTL_MAN_NEG_REG (0x48)
#define PAL_VLYNQ_IOCTL_NEG_STS_REG (0x4c)
#define PAL_VLYNQ_IOCTL_ENDIAN_REG (0x4c)
#define PAL_VLYNQ_IOCTL_IVR30_REG (0x60)
#define PAL_VLYNQ_IOCTL_IVR74_REG (0x64)

/* Dumping options, not part of ioctl options. */

#define PAL_VLYNQ_DUMP_ALL_ROOT (0x10000)
#define PAL_VLYNQ_DUMP_RAW_DATA (0x20000)
#define PAL_VLYNQ_DUMP_ALL_REGS (0x30000)
#define PAL_VLYNQ_DUMP_STS_REG (0x00008)
#define PAL_VLYNQ_DUMP_CNTL_REG (0x00004)

#endif

