
December 2007 Platform Software Group

Document Version 1.11

DSP/BIOS McBSP Device Driver

Architecture
Specifications

DSP/BIOS McBSP driver Architecture Specifications

ii Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published by
TI regarding third-party products or services does not constitute a license from TI to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property of the third party, or a license from TI under
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI
for that product or service voids all express and any implied warranties for the associated TI product or
service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic Logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

DSP/BIOS McBSP Driver Architecture Specifications.

Texas Instruments Proprietary iii

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

About This Document

The purpose of this document is to aid the implementation of the McBSP
driver for DSP/BIOS Operating System, which will run on DM6437 SoC.

This document mainly illustrates the design of the API’s for the IOM layer
of the McBSP driver, which has been ported from the DSP/BIOS operating
system.

The target audience includes device driver developers from TI as well as
consumers of the driver.

Trademarks

The TI logo design is a trademark of Texas Instruments Incorporated. All
other brand and product names may be trademarks of their respective
companies.

This document contains proprietary information of Texas Instruments. The
information contained herein is not to be used by or disclosed to third
parties without the express written permission of an officer of Texas
Instruments Incorporated.

Related Documents

 McBSP hardware specifications

 EDMA 3.0 hardware specifications

 spru943a.pdf

Notations

None

Terms and Abbreviations
Term Description

3PDMAC Third Party Direct Memory Access Controller.

API Application Programming Interface.

CSL Chip Support Layer.

DDK Device Driver Development Kit.

EDMA Enhanced Direct Memory Access Controller.

IOM IO Mini Driver Model.

INTC Interrupt Controller

IP Intellectual Property

ISR Interrupt Service Routine

DSP/BIOS McBSP driver Architecture Specifications

iv Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

McBSP Multi-channel Buffered Serial Port

Revision History

Date Author Comments Version

7th August, 2006 Pratik Joshi Created 1.0

16th August 2006 Pratik Joshi Modified to include details of Loopjob API
support

1.1

28th August 2006 Pratik Joshi Driver architecture is changed to comply PSP
architecture

1.2

28th September 2006 Ankur Verma Change the name of the IOCTLS. 1.3

30th November 2006 Pratik Joshi Modified for the release 0.3.0 1.4

16th January 2007 Pratik Joshi Modified for the release 0.4.1 1.5

27th January, 2007 Pratik Joshi Modified for the release 0.5.0 1.6

20th February, 2007 Pratik Joshi Modified for the release 0.6.0 1.7

23rd April, 2007 Pratik Joshi Modified for the release 0.7.0 1.8

June 22, 2007 Anuj Aggarwal Modified for the GA patch release 1.00.01 1.9

June 29, 2007 Amit Chatterjee Modified Release Version 1.10

July 18, 2007 Maulik Desai Modified Release Version 1.11

DSP/BIOS McBSP Driver Architecture Specifications.

Texas Instruments Proprietary v

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Table of Contents

1 System Context ...1

1.1 Hardware.. 1

1.2 Software... 2
1.2.1 Operating Environment and dependencies... 2

1.3 Design Philosophy .. 2

2 McBSP Driver Software Architecture ..3

2.1 Static View ... 3
2.1.1 Functional Partition .. 3

2.2 Dynamic view of the DSP/BIOS McBSP driver ... 9
2.2.1 Driver Open (Driver initialization and Binding) ... 10
2.2.2 Channel Creation... 11
2.2.3 IO Access .. 12
2.2.4 IO Control .. 13
2.2.5 Channel Deletion ... 15
2.2.6 Driver Close... 15
2.2.7 Asynchronous IO Mechanism... 15

DSP/BIOS McBSP driver Architecture Specifications

vi Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

List of Figures

Figure 1: McBSP Internal block diagram ...1
Figure 2: Components involved in the data transfer...2
Figure 3: Dynamic view of the McBSP driver...9

DSP/BIOS McBSP Driver Architecture Specifications.

Texas Instruments Proprietary vii

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

List of Tables

Table 1 : Interfaces exposed by the McBSP IOM layer to the Device Independent layer 5
Table 2: APIs exposed by the Device Independent Layer ... 6
Table 3: Device setup parameters table ... 11
Table 4: Channel setup parameters table. ... 11

DSP/BIOS McBSP Driver Architecture Specifications.

Texas Instruments Proprietary 1

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

1 System Context

The DSP/BIOS McBSP device driver presented in this document is
situated in the context of DSP/BIOSv5.31.01 Operating System running on
the DM6437.

1.1 Hardware

Figure 1: McBSP Internal block diagram

Multi-channel buffered serial ports are configurable, high-speed, full-duplex
serial ports that allow direct interface to external communications devices
like Audio Codec etc. McBSP has double buffered transmitter section and
triple buffered receiver section in addition to the independent framing and
clocking for transmitter and receiver sections.

DSP/BIOS McBSP driver Architecture Specifications

2 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Figure 2: Components involved in the data transfer.

Figure 2. depicts the various components involved in the transfer of audio
data when the MCBSP driver runs on the DSP core of DM6437 processor.
Audio data is stored in the SDRAM first by the DSP after decoding the
Audio data. The main function of the McBSP driver is to program the
EDMA channels to move the audio data from SDRAM to the MCBSP
interface on every transfer event from the McBSP.

1.2 Software

The document provides an overall understanding of the TI McBSP device
driver architecture.

1.2.1 Operating Environment and dependencies
Details about the tools and the BIOS version that the driver is compatible with
can be found in the system Release Notes.

1.3 Design Philosophy
Please refer section 1.3 of DM6437_BIOS_PSP_User_Guide.doc for and
DM6437 and section 1.3 of C6424_BIOS_PSP_User_Guide.doc for C6424
for Design Philosophy.

EDMA
Channel

DDR2

DSP

McBSP drv

Audio codec

drv.

EDMA
Channel

M
c
B
S
P

A
U
D
I
O

D
A
C

I
I
C

DSP/BIOS McBSP Driver Architecture Specifications.

Texas Instruments Proprietary 3

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

2 McBSP Driver Software Architecture

This chapter deals with the overall architecture of DSP/BIOS McBSP device
driver, including the device driver partitioning as well as deployment
considerations. We’ll first examine the system decomposition into functional
units and the interfaces presented by these units. Following this, we’ll discuss
the deployed driver or the dynamic view of the driver where the driver
operational scenarios are presented.

2.1 Static View

2.1.1 Functional Partition

The device driver is partitioned into distinct sub-components, consistent
with the roles and responsibilities already discussed in section 0. In the
following sub-sections, each of these functional sub-components of the
device driver is further elaborated.

As per the design philosophy, the McBSP driver shall be split into three
layers in order to increase the reusability of the driver. The upper layer
called the Device Independent layer responsible for buffer management
and application synchronization. The middle layer is called the IOM layer
and is specific to the McBSP and EDMA devices, which exposes standard
interfaces to the device independent layer. The lower level layer is called
Lower level controller constitutes a set of well-defined API that abstracts
low-level details of the underlying SoC device so that user can configure,
control (start/stop etc.) and have read/write access to peripherals without
having to worry about register bit field details.

Please refer section 1.2.1 of DM6437_BIOS_PSP_User_Guide.doc for
DM6437 and section 1.2.1 of C6424_BIOS_PSP_User_Guide.doc for
C6424 for Diagrammatic explanation.

2.1.1.1 LLC Layer

The LLC forms the lower most, h/w specific under-pinning of the TI device
driver. The LLC Layer used in the McBSP driver conforms to TI PSP
architecture. It consists of two parts:

 CSL Register Layer: Please refer section 1.2.2 of
DM6437_BIOS_PSP_User_Guide.doc for DM6437 and section 1.2.2 of
C6424_BIOS_PSP_User_Guide.doc for C6424 for CSLr Layer
description.

 LLC Layer: Please refer section 1.2.2 of
DM6437_BIOS_PSP_User_Guide.doc for DM6437 and section 1.2.2 of
C6424_BIOS_PSP_User_Guide.doc for C6424 for LLC Layer
description.

DSP/BIOS McBSP driver Architecture Specifications

4 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

2.1.1.2 Device Driver Core functionality (DDC)

Please refer section 1.2.3 of DM6437_BIOS_PSP_User_Guide.doc for
DM6437 and section 1.2.3 of C6424_BIOS_PSP_User_Guide.doc for C6424
for DDC Layer explanation.

2.1.1.3 McBSP driver’s IO Mini Layer

The McBSP IO Mini layer exposes a particular set of functions in IOM
function table to the upper layer. The MCBSP_IOM_init () function of the
McBSP IO mini driver is responsible for returning the pointer to the IOM
function table to the upper layer. The functions exported by the McBSP IO
Mini layer through the IOM_Fxns table “McBSP_IOM_FXNS” are listed below.

 mdBindDev: Called by the application to bind the device to the IO
mini layer.

 mdCreateChan: Used to create I/O channels.
 mdDeleteChan: Used to delete I/O channels.
 mdSubmitChan: Used by the upper layer for submitting I/O

packets containing the information needed by the mini driver to
program the EDMA channels for data transfer.

 mdContrlChan:Used to perform device specific control operations.
 mdUnBindDev: Used to unbind the IO mini driver from the device.

Please refer section 1.2.4 of DM6437_BIOS_PSP_User_Guide.doc for
DM6437 and section 1.2.4 of C6424_BIOS_PSP_User_Guide.doc for C6424
for more explanation on IOM Layer.

The following table outlines the basic interfaces published by IOM layer.

DSP/BIOS McBSP Driver Architecture Specifications.

Texas Instruments Proprietary 5

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Table 1 : Interfaces exposed by the McBSP IOM layer to the Device
Independent layer

Mini driver Implemented I/F for Device
independent layer

DESCRIPTION

typedef Int (*IOM_TmdBindDev)(Ptr *devp,
Int devid, Ptr devParams)

The mdBindDev function is called by the
DSP/BIOS after the bios initialization
The mdBindDev should typically
perform the following actions.

 Acquire the Handles for the
specified instance of the McBSP
on the SoC.

 Configure the McBSP device
with the specified parameters or
default parameters, if there is no
external configuration. The
default parameters shall match
the DSP data format mode of
the audio codec.

typedef Int (*IOM_TmdUnBindDev)(Ptr devp) The mdUnBindDev () is called by the
GIO_delete(). The responsibility of the
mdUnBindDev () is to free the resources
(eg. McBSP, EDMA shadow region)
allocated by the mdBindDev () function.

typedef Int (*IOM_TmdControlChan)(Ptr
chanp, Uns cmd, Ptr args);

The GIO_control() call of the Class
driver Layer invokes the mdControlChan
() of the IOM layer.

The mdControlChan () calls underlying
DDC layer function that implements
some of the device control commands
(eg Start/Stop, Pause/Resume, Mute-
ON/OFF, Reset) useful for the
application designers.

typedef Int (*IOM_TmdCreateChan)(Ptr
*chanp, Ptr devp, String name, Int mode, Ptr
chanParams, IOM_TiomCallback cbFxn, Ptr
cbArg);

The mdCreateChan () function is
executed in response to the
GIO_create() API call by the application.

Application has to specify the mode in
which the channel has to be created
through the “mode” parameter. The
McBSP driver supports only two modes
of channel creation (input and output)
mode for every device instance.

DSP/BIOS McBSP driver Architecture Specifications

6 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

The mdCreateChan () call underlying
DDC layer function that acquires the
necessary EDMA channels required for
the transfer and it configures the EDMA
channels with the default or user
specified parameters.

typedef Int (*IOM_TmdDeleteChan)(Ptr
chanp);

The mdDeleteChan () is invoked in
response to the GIO_delete () API call
by the application.

It frees all the resources allocated by
the mdCreateChan () function.

typedef Int (*IOM_TmdSubmitChan)(Ptr
chanp, IOM_Packet *packet);

The mdSubmitChan () is invoked in
response to the GIO_read(),
GIO_write(), GIO_Flush () or GIO_Abort
() API calls with the appropriate channel
handle and IOM packet containing the
operation to be performed and required
parameters needed for programming
the EDMA channels.

2.1.1.4 McBSP driver’s Device Independent layer

The McBSP driver’s Device Independent Layer shall be responsible for
Application synchronization and converting I/O request to I/O packets,
containing information in an IOM packet structure and buffer management.

The API’s exposed by the McBSP driver to the application and their
description are listed in the tab.

Table 2: APIs exposed by the Device Independent Layer

Device Independent Layer implemented I/F
for application

DESCRIPTION

GIO_Handle GIO_create(String name, Int
mode, Int *status, Ptr optArgs, GIO_Attrs
*attrs);

Create McBSP driver channel for input and
output : This service opens the given
instance of the McBSP driver for operation.
It internally initializes i/o channels of
McBSP.Application has to pass the
required device parameters through
PSP_mcbspChanParams structure, which
is explained in the section.

This function is non reentrant.

Int GIO_submit(GIO_Handle gioChan, Uns Read / Write buffer data from input/output

DSP/BIOS McBSP Driver Architecture Specifications.

Texas Instruments Proprietary 7

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

cmd, Ptr bufp, size_t *psize, GIO_AppCallback
*appCallback)

channel:

API is invoked for both read and write
request. It takes channel handle, buffer
pointer, buffer size, command
(input/output)_and address of callback
function.

Int GIO_read(gioChan, bufp, psize) Read a buffer of data from input channel:

Application has to call GIO_read () API
with the handle to the input channel,
pointer to the buffer to where the data shall
be stored, size of data to read. The size of
the frame is configurable from 1 byte to
64K bytes. Internally this function calls
GIO_submit with command parameter as
IOM_Read

Int GIO_write(gioChan, bufp, psize) Write a buffer of data to output channel:

Application has to call GIO_write() API with
the handle to the output channel, pointer to
the buffer to where the data is stored, size
of data to write. The size of the frame is
configurable from 1 byte to 64K bytes.
Internally this function calls GIO_submit
with command parameter as IOM_Write

.

Int GIO_control(GIO_Handle gioChan, Uns
cmd, Ptr args);

Device specific control operation:
Application can directly use the some of
the device specific controls exposed by the
appropriate control command as argument.
This API shall internally invoke the
mdControlChan () function of the IOM
layer.

Int GIO_Abort(GIO_Handle gioChan) Abort the data operation of the specified
channel: The GIO_Submit() API is called to
abort the operation of the I/O channel.
When an Abort packet is submitted to the
I/O channel, the driver discards all the
pending I/O packets regardless of the
mode of the channel (for both input and
output). Application is not allowed to
submit the transfer requests to the driver
when the aborting operation is active.
Once the abortion of the channel is

DSP/BIOS McBSP driver Architecture Specifications

8 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

complete, the application can freshly start
submitting the I/O requests.

Int GIO_Flush (GIO_Handle gioChan) Flush the data in the specified channel:
The McBSP driver treats the data flush of
the input channel is same as the abort
operation and it discards all the pending
read requests. In case of output channel,
when flush is issued, driver performs all
the pending write requests and the
application is not allowed to submit the
write requests to the driver when the flush
is under progress.

Int GIO_delete(GIO_Handle gioChan); Close the channel from operation: When
there is no further operation to perform
with the I/O channel, the application can
close the channel and there by
relinquishing all the resources held by the
channel. This function shall internally call
mdDeleteChan () function of the IOM layer.

DSP/BIOS McBSP Driver Architecture Specifications.

Texas Instruments Proprietary 9

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

2.2 Dynamic view of the DSP/BIOS McBSP driver

Figure 3: Dynamic view of the McBSP driver

When the bios calls mdBindDev() of mini driver of McBSP driver, the
MCBSP_IOM_init () function of the IOM layer is invoked first and is
responsible for initializing the device object and channel object structure of
the McBSP IOM driver.
Figure 3. shows the flow of data from the application to the driver to the
underlying physical device. The IO packet shown in the Figure 3 is
standard structure used to submit the I/O requests to the IOM layer of the
McBSP driver. It contains pointer to the data buffer, size of the buffer and
the status of the request. The mode of the IO channel with which the

 Device independent layer

ISR
Processing

DM6437/C6424 SoC

EDMA
Interrupts

Callback
fxn

Submit
Packet

Channel
Instance

IO Packet queue

Device and
Channel
Specific
controls

Channel
Create

Device
Open

Device
Global
data

IOM layer

IIOOMM PPaacckkeett

IIOOMM
PPaacckkeett

Apps
callback

Application

GIO_Create() GIO_read() GIO_write()GIO_abort()GIO_flush()GIO_control()
GIO Class driver API’s

DSP/BIOS McBSP driver Architecture Specifications

10 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

packet was issued decides whether it is a read or a write command, not the
IO packet command field.

Before data communication between an application and a device can
begin, a channel instance handle must be returned to the application by a
call to GIO_create() API. The channel handle represents a unique
communication path between the application and McBSP device driver. All
subsequent operations that talk to the driver shall use this channel handle.
A channel object typically maintains data fields related to a channel's
mode, I/O request queues, and possibly driver state information.
Application should relinquish channel resources by deleting all channel
instances when they are no longer needed through a call to GIO_close ().

Application shall call GIO_submit () API to submit read/write I/O request to
driver. The Device Independent layer shall construct an I/O packet and
submits the packet to the IOM layer to do the I/O operation. When a mini-
driver completes its processing, usually in an ISR context, it calls its
associated callback function to pass the IO packet back to the device
independent layer of the McBSP driver and the device independent layer of
the driver in turn calls the application specified callback for that particular
I/O request. The submit/callback function pair handles the passing of IO
packets between the application and the McBSP IOM layer of the driver.
Before an IO packet is passed back to the upper layer driver, the mini-
driver must set the completion status field and the data size field in the IO
Packet. This status value and size are returned to the application call that
initially made the I/O request.

2.2.1 Driver Open (Driver initialization and Binding)

The McBSP IOM driver initializes the global data used by the McBSP
driver. The initialization function for the McBSP driver is not included in the
IOM_Fxns table, which is exported by the McBSP driver; instead a
separate extern is created for use by the DSP/BIOS. The initialization
function is responsible for returning the “IOM” function table structure,
which is needed by the device independent layer of the driver.

The initialization function sets the “inUse” field of both the McBSP port
object instance and the channel object instance to “FALSE” to make sure
that the driver is not being used by any applications.

The binding function (mdBindDev) of the McBSP IOM mini-driver is called
by application before using the driver. This function shall typically perform
the following actions:

1. Set device defaults and perform setup based on the configured
device parameters and optional global device data.

2. Acquire driver resources such as McBSP.
3. Configure the McBSP by default for the following operations.

o Data output for audio playback
o Data input for audio recording

DSP/BIOS McBSP Driver Architecture Specifications.

Texas Instruments Proprietary 11

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

o Configure the McBSP in DSP data format mode of the
audio codec.

o Configure the McBSP to receive the Frame Sync and bit
clock either externally or internally for both receiver and
transmitter depending on the device parameter input.

The mdBindDev () of the McBSP IOM driver expects device setup
parameters in the “PSP_mcbspDevParams” structure defined in the
“psp_mcbsp.h” header file.

The parameters are explained in the following table

Table 3: Device setup parameters table

Device Parameters Description
enablecache Set to “TRUE” if the submitted buffer

resides in external memory.
enableSrgr Set to “TRUE” to the enable the McBSP

sample rate generator to generate the
Bit Clock signals.

enableFsg Set to “TRUE” to enable the McBSP
Frame Synchronization generator to
generate frame synchronization signals.

mcbspRawCfgPtr Pointer to the LLC configuration
structure to be used for the McBSP
device.

2.2.2 Channel Creation
The application can create communication channels by calling
GIO_create() API which in turn calls McBSP IO mini driver’s
mdCreateChan function. The application shall call mdCreateChan twice
with change in mode parameter to create two logical channels one for input
(for audio recording) and one for output (for audio playback). The
mdCreateChan function should allocate a channel object and set the fields
in the channel object to their initial values as needed. For each channel
there will be a channel object and the mode field in the channel object
specifies whether this is an input or output channel. McBSP driver acquires
the necessary EDMA channels used to transfer of data. Application has to
pass the channel parameters in the “PSP_mcbspChanParams” structure
exposed by the driver.

Table 4: Channel setup parameters table.

Channel Parameters Description
“noOfTdmChans” This parameter should be set to the

number of TDM channels the McBSP is
using for this IOM channel (e.g., 1 for
mono, 2 for stereo etc.). This value will
be used by the driver to maintain the
frame sync.

“intrNum” McBSP interrupt number

DSP/BIOS McBSP driver Architecture Specifications

12 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

“wordWidth” The parameter informs the driver
what is the width word (not slot)
and this help driver indirectly to
decided no. of bytes to be
transferred into each serialer for
each slot- This is very important
parameter - in case of invalid value
default value driver will assume is
32

“userLoopJobBuffer” Buffer to be transferred when the
loop job is running it should be
noted that this buffer size should be
n*userLoopjobLength where n is the
no of serialisers configured in the
direction of the channel we are
creating

“userLoopJobLength” Number of bytes of the userloopjob
buffer for each serialiser. Please
note that this is no. of bytes and this
should be pre-calcuated properly for
word width of slot - Please refer the
wordWidth of this structure

“edmaHandle” Handle to the EDMA Driver

“gblCbk” callback required when global error
occurs - must be callable directly
from the ISR context

2.2.3 IO Access

Application invokes GIO_read () and GIO_write () APIs for data transfer
using McBSP. These APIs in turn creates and submits an IOM packet
containing the all the transfer parameters needed by the IOM driver to
program the underlying hardware for data transfer. The mdSubmitChan
function of the McBSP IOM driver must handle command code passed to it
as part of the IOM_Packet structure. Depending on the command code, it
either handles the code or returns the IOM_ENOTIMPL (not implemented)
error code.
The command codes currently supported by the McBSP IOM mini-driver
are: IOM_READ, IOM_WRITE, IOM_ABORT, and IOM_FLUSH.

 IOM_READ. Drivers that support input channels must implement
IOM_READ.

 IOM_WRITE. Drivers that support output channels must
implement IOM_WRITE.

 IOM_ABORT and IOM_FLUSH. To abort or flush I/O requests
already submitted, all I/O requests pending in the mini-driver must
be completed and returned to the device independent layer. The
mdSubmitChan function should dequeue each of the I/O requests

DSP/BIOS McBSP Driver Architecture Specifications.

Texas Instruments Proprietary 13

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

from the mini driver's channel queue. It should then set the size
and status fields in the IOM_Packet. Finally, it should call the
cbFxn for the channel.
 While aborting, all input and output requests are discarded.
 While flushing, all output requests are processed normally and

all input requests are discarded. This requires the processing
of each IOM_Packet in the original order they were queued up
to the channel.

2.2.4 IO Control

McASP IO Mini driver implements device specific control functionality
which may useful for any audio codec driver, which internally uses the
MABSP IOM driver. Application may invoke the control functionality
through a call to GIO_control (). McASP IOM driver supports the following
control functionality.

 PSP_CTRL_McBSP_STOP: Stop the data transfer operation.

 PSP_CTRL_McBSP_START: Re-start the data transfer operation.

 PSP_CTRL_McBSP_LOOPBACK: Enable or disable the loopback
mode for the McBSP.

 PSP_CTRL_McBSP_SRGR_START: Start the McBSP sample
rate generator to generate the bit clock.

 PSP_CTRL_McBSP_SRGR_STOP: Stop the McBSP sample rate
generator.

 PSP_CTRL_McBSP_FSGR_START: Start the McBSP frame sync
generator to generate the word clock.

 PSP_CTRL_McBSP_FSGR_STOP: Stop the McBSP frame sync
generator.

 PSP_CTRL_McBSP_PAUSE: Pause the playback operation.

 PSP_CTRL_McBSP_RESUME: Resumes the playback operation
from the paused state.

 PSP_CTRL_McBSP_MUTE_ON: Mute the playback operation.

 PSP_CTRL_McBSP_MUTE_OFF: Take out the playback
operation from the muted state.

 PSP_CTRL_McBSP_CHAN_RESET: Resets the I/O channel and
re-configure the channel with the default configuration.

 PSP_CTRL_McBSP_DEVICE_RESET: Reset the entire the device
and re-configure the device.

 PSP_CTRL_McBSP_CNG_ADDR: Change the data or output
address of the EDMA channel.

DSP/BIOS McBSP driver Architecture Specifications

14 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 PSP_CTRL_McBSP_CONFIG_DATA: Configure the data for the
McBSP transmitter and receiver sections.

 PSP_CTRL_McBSP_SET_CLKMODE: Sets the bit-clock mode
(internal or external) for the McBSP transmitter or receiver sections
depending the mode of the channel.

 PSP_CTRL_McBSP_SET_FRMSYNCMODE: Sets the frame
synch mode (external or internal) for the McBSP transmitter or
receiver sections.

 PSP_CTRL_McBSP_CONFIG_SRGR: Configure the sample rate
generator to generate the bit clock and frame synchronization
signals at the specified rate. The configuration structure used to
configure the McBSP Sample Rate Generator is defines as follows.

Typedef struct PSP_srgConfig {

Uint16 srgInputClkMode; /* Source for the

Sample rate generator */

Uint16 bclkRate; /* Set Bit clock rate - Divide

down value of SRGR input clock */

Uint16 srgFrmPulseWidth; /* Set the Frame Sync

Pulse width in terms of clock ticks */

Uint16 srgFrmPeriod; /* Set the frame sync

signal period in terms of clock ticks */

Uint16 srgClkPolarity; /* Set Frame sync and Bit

clock polarity */

} PSP_srgConfig;

 PSP_CTRL_McBSP_SET_BCLK_POL: Sets the polarity of the bit
clock (Rising or falling edge) when the bit is generated by the
McBSP sample rate generator

 PSP_CTRL_McBSP_SET_FRMSYNC_POL: Sets the frame
synchronization polarity (Active high or active low) when the frame
synch signal is generated by the McBSP sample rate generator.

 PSP_CTRL_McBSP_RECEIVE_SYNCERR_INT_ENABLE:
Enable the interrupt for receive

DSP/BIOS McBSP Driver Architecture Specifications.

Texas Instruments Proprietary 15

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 PSP_CTRL_McBSP_XMIT_SYNCERR_INT_ENABLE: Enable the
interrupt for transmit PSP_CTRL_McBSP_MODIFY_LOOPJOB:
Issues a loopjob operation. When issued with non NULL
prdCallback driver will enter in to loop job operation and when
issued with prdCallback equal to NULL driver stops loop job and
links loop parameter to zero data buffer.

2.2.5 Channel Deletion

Application can free the resources held by the channel, if the channel is
currently not in use, by calling GIO_delete() API. The corresponding
“mdDeleteChan ()” function of the McBSP IOM driver shall run from the
application context and should de-allocate the specified channel object.

2.2.6 Driver Close
The “mdUnBindDev ()” shall free resources allocated by the “mdBindDev
()” function. If successful, “mdUnBindDev ()” function should return
IOM_COMPLETED. If unsuccessful, this function should return a negative
error code.

2.2.7 Asynchronous IO Mechanism
The McBSP IOM driver supports asynchronous IO mechanism. In
Asynchronous IO mechanism multiple IO requests can be submitted in one
shot without causing the thread to block while waiting for resources.
Application can submit multiple I/O requests using the GIO_read() or
GIO_write () APIs and then callback function that was specified during the
transfer request submission shall be called as a result of transfer
completion by the driver for every transfer. The driver queues the IOM
packets submitted internally to support the asynchronous I/O.

