
May 08 Platform Software Group

Document Version 1.11

DSP/BIOS NAND Device Driver

U s e r ' s G u i d e

User’s Manual

ii Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published by
TI regarding third-party products or services does not constitute a license from TI to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property of the third party, or a license from TI under
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI
for that product or service voids all express and any implied warranties for the associated TI product or
service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

Texas Instruments Proprietary iii

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Preface

Read This First

About This Manual

This User’s Manual serves as a software programmer’s handbook for
working with the DSP/BIOS NAND Device Driver. This manual provides
necessary information regarding how to effectively install, build and use
DSP/BIOS NAND Device Driver in user systems and applications.

This manual provides details regarding how the DSP/BIOS NAND Device
Driver is architected, its composition, its functionality, the requirements it
places on the hardware and software environment where it can be
deployed, how to customize/ configure it to specific requirements, how to
leverage the supported run-time interfaces in user’s own application etc.,

This manual also provides supplementary information regarding steps to
be followed for proper installation/ un-installation of the DSP/BIOS NAND
Device Driver. Also included are appendix sections on related Glossary,
Web sites and Pointers for gathering further information on the DSP/BIOS
NAND Device Driver.

Terms and Abbreviations

Term Description

IP Intellectual Property

OS Operating System

API Application Programmer’s Interface

CSL TI Chip Support Library – primitive h/w abstraction

DDC Device Driver Core - TI terminology for portion of device
driver that is abstracted of any given OS

DDA Device Driver Adaptation - TI terminology for portion of
device driver that is specific to target OS. This constitutes
“adaptation” of the generic DDC to identified target OS.

ISR Interrupt Service Routine

LLC Low Level Controller

iv Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Related Documentation

Internal

This is a list of documents that are TI Proprietary and Strictly Private.
Exposure to audience outside TI will need due considerations and
approvals from TI Legal authorities.

 Nand Hardware Module Specifications

 SOC Technical Reference Manual

 PSP Framework Architecture 1.0

External

 None

Trademarks

The TI logo design is a trademark of Texas Instruments Incorporated. All
other brand and product names may be trademarks of their respective
companies.

This document contains proprietary information of Texas Instruments. The
information contained herein is not to be used by or disclosed to third
parties without the express written permission of an officer of Texas
Instruments Incorporated.

Revision History

Date Author Revision History Version

8th August 2006 Kiran Sutariya Created the Document 1.0

8th

September,2006
Kiran Sutariya Added protected region details. 1.1

5th October,2006 Kiran Sutariya Updated for Presilicon 0.2.0 release 1.2

1st December,
2006

Kiran Sutariya Modified for the release 0.3.0 1.3

2nd January, 2007 Rinkal Shah Review comments closed 1.4

16th January,
2007

Rinkal Shah Bios version changed 1.5

Texas Instruments Proprietary v

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

27th January, 2007 Rinkal Shah CCS version changed 1.6

20th April, 2007 Rinkal Shah Updated the for release 0.7.0 1.7

7th May, 2007 Rinkal Shah Functions and IOCTL details added 1.8

22 June 2007 Anuj Aggarwal Updated the for GA patch release 1.00.01 1.9

29 June 2007 Amit Chatterjee Modified Release Version 1.10

18 July 2007 Rinkal Shah Modified Release Version 1.11

20 May 2008 Chandan Nath Updated for adding compiler switches
in build options

1.12

vi Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Contents

Read This First .. iii
About This Manual .. iii
Terms and Abbreviations... iii
Related Documentation... iv
Internal iv
External iv
Trademarks iv
Revision History .. iv
Contents ..vi
Tables..vii
Introduction ..1
1.1 Overview..1

1.1.1 Supported Services and features ...1
1.1.2 System Requirements ...1

Installation Guide ...2
2.1 Component Folder ...2
2.2 Build ..3

2.2.1 Build Options...3
DSP/BIOS NAND...5
3.1 Functions...5

3.1.1 PSP_nandInit ..5
3.1.2 PSP_nandTerminate ...6
3.1.3 PSP_nandOpen...6
3.1.4 PSP_nandClose ..6
3.1.5 PSP_nandReadSync ...7
3.1.6 PSP_nandWriteSync ...8
3.1.7 PSP_nandErase ..9
3.1.8 PSP_nandAddDevice ..9
3.1.9 PSP_nandIoctl...10

3.2 Nand module IOCTLs ..10
3.2.1 PSP_NAND_IOCTL_GET_OPMODE ..10
3.2.2 PSP_NAND_IOCTL_GET_NAND_SIZE ..11
3.2.3 PSP_NAND_IOCTL_GET_SECTOR_SIZE..12
3.2.4 PSP_NAND_IOCTL_CHECK_NAND...13

3.3 Symbolic Constants and Enumerated Data types13
3.4 Run-time Configuration Data Structure ..14
Porting ..17
4.1 Getting Started...17
4.2 Sources needing re-targeting...17
4.3 Dependency of Sample application:...18

Texas Instruments Proprietary vii

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Tables

Table 1. Configuration Defines..14
Table 2. OpMode Enumerations..14
Table 3. Configuration Data Structure ..15
Table 4. NAND Flash Data Structure for run-time configuration.................................15
Table 5. OpMode Enumerations..15

Texas Instruments Proprietary 1

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Chapter 1

Introduction

This chapter introduces the DSP/BIOS NAND Device Driver to the user by
providing a brief overview of the purpose and construction of the
DSP/BIOS NAND Device Driver along with hardware and software
environment specifics in the context of DSP/BIOS NAND Device Driver
deployment.

1.1 Overview

This section describes the functional scope of the DSP/BIOS NAND
Device Driver and its feature set. The section also details the various
deployment environments, hardware and software, that the DSP/BIOS
NAND Device Driver is presently supported on. The chapter introduces
the system architecture of the DSP/BIOS NAND Device Driver to the user
along with the functional decomposition and run-time specifics regarding
deployment of DSP/BIOS NAND Device Driver in user’s application.

1.1.1 Supported Services and features

The DSP/BIOS NAND Device Driver provides the following functional
services and features:

 Provides Sync IO mechanism

 Operates in Polled mode and DMA mode

 Modeled after TI Device Driver Archiectrure for Storage Class
Devices that allow for easy porting and customization.

1.1.2 System Requirements
Details about the tools and the BIOS version that the driver is compatible with
can be found in the system Release Notes.

Texas Instruments Proprietary 2

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Chapter 2

Installation Guide

The NAND Driver shall be available as a package by itself or part of
another PSP package. Follow the installation instructions provided along
with the package.

2.1 Component Folder

Upon installing the NAND driver the following directory structure is found in
the driver’s directory.

Figure 1. NAND Driver Directory Structure

This top level nand folder contains nand driver psp header file and XDC package files
(package.bld, package.xdc and package.xs)

 build: This folder contains nand driver library project file. The generated
driver library shall be included in the application where NAND driver have to
be used.

 docs: This folder contains architecture document, datasheet, release notes
and user guide.

Architecture document contains the driver details which can be helpful for the
developers as well as consumers to understand the driver design.

Datasheet gives the idea about the memory consumption by the driver and
description of the top level APIs.

Release Note gives the details about system requirements, steps to
Install/Uninstall the package.This document list the known issues of the
driver.

User Guide provides information about how to use the driver. It contains
description of sample applications which guide the end user to make their
applications using this driver.

Texas Instruments Proprietary I-3

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 Lib: This folder contains libraries generated in all the configuration
modes(debug, idebug, irelease and release)

 Package: This folder contains files generated by XDC tool.

 Src: This folder contains nand driver source files. It also contains header files that are
used by the driver.

2.2 Build

This section describes for each supported target environment, the
applicable build options, supported configurations and how selected, the
featured capabilities and how enabled, the allowed user customizations for
the software to be installed and how the same can be realized.

The component might be delivered to user in different formats:

 Source-less ie., binary executables and object libraries only

 Source-inclusive ie., The entire source code used to implement the
driver is included in the delivered product

 Source-selective ie., Only a part of the overall source is included.
This delivery mechanism might be required either because; certain
parts of the driver require source-level extensions and/or
customization at the user’s end or because, specific parts of the
driver is exposed to user at the source-level to insure user’s
software development.

When source is included as part of the product delivery, the CCS project
file is provided as part of the package. When object format is distributed,
the driver header files are part of the “inc” folder and the driver library is
provided in /drivers/lib folder.

2.2.1 Build Options

Following compiler switches are used to compile for different options.

 _DEBUG

This is used as a flag to compiler whether to include the debug statements
inserted in the code into the final image. This flag helps to build DEBUG
image of the program. For RELEASE images this is not passed to the
compiler.

 CHIP_DM6437

This macro is used for select DM6437 specific header files.

 NAND_INSTRUMENTATION_ENABLED

This macro is used to enable instrumentation related code.

Texas Instruments Proprietary 4

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 PSP_NAND_DEBUG

This macro is used for debugging purposes. This macro enables
display of general debug messages in the NAND driver code.

 NAND_DBG_LEVEL_1

This macro is used for debugging purposes. This macro enables
display of debug messages for logical page read and writes
operations.

 DDC_NAND_POWER_SAFE

This macro enables the software features that safeguard the NAND
driver from power failures.

 DDC_NAND_BBM

This macro is used to enable the support for bad block management.
If this macro is not enabled, bad block management code is not
included in the compilation.

 NAND_DBG_LEVEL_3

This macro is used for debugging purposes only. It is used to display
the physical page number mapped to the logical page number in FTL
page read and write functions.

 DDC_NAND_8_BIT

This macro statically (compilation time) selects 8-bit data bus support.
If this macro is defined, only 8-bit NAND devices are supported. If this
macro is not defined, only 16-bit NAND devices are supported.

 NAND_DBG_LEVEL_2

This macro is used for debugging purposes only. It is used to display
a message on the terminal when a read fails.

 DDC_NAND_ENABLE_ECC

This macro is used when software based ECC is required. In
DM6437, this macro is disabled since the ECC is always calculated by
hardware.

Texas Instruments Proprietary 5

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Chapter 3

DSP/BIOS NAND

This chapter discusses the DSP/BIOS NAND Device Driver functions, data
structures, enumerations and macros for the List module.

3.1 Functions

This section lists the functions available in the PSP NAND module.

3.1.1 PSP_nandInit

PSP_Result PSP_nandInit (PSP_NandInstanceId instanceId
const PSP_NandConfigInt * config

)

This function is called by the application to initialize the nand device and
the driver. It prepares the background for the driver to launch.

Parameters:
instanceId
config

[IN] NAND instance number
[IN] driver configuration information

Returns:

PSP_SOK – if the operation is successful

PSP_E_INVAL_PARAM – if any parameter is invalid

PSP_E_INVAL_STATE – if the driver is in an invalid state (any state other
than deleted for this function)

Example:
PSP_Result result;
PSP_NandConfig config;

config.opMode = PSP_OPMODE_DMAINTERRUPT;
config.inputClkFreq = nandClkFreq;
config.eraseAtInit = FALSE;

/* Initialize the driver */
result = PSP_nandInit(0, &config);

Texas Instruments Proprietary 6

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

3.1.2 PSP_nandTerminate

PSP_Result PSP_nandTerminate (PSP_NandInstanceId instanceId
)

This function de-initializes and deletes the driver for a particular instance.

Parameters:
instanceId [IN] NAND instance number

Returns:

PSP_SOK – if the operation is successful

PSP_E_INVAL_PARAM – if any parameter is invalid

Example:
PSP_Result result;
result = PSP_nandTerminate(0);

3.1.3 PSP_nandOpen

PSP_Handle PSP_nandOpen (PSP_NandInstanceId instanceId
)

This function opens the device for transaction. The API reads the device id
of the nand device available and initializes the configuration structures
depending on the device type found.

Parameters:
instanceId [IN] Nand instance number

Returns:

PSP_Handle – if the operation is successful

NULL – if the operation is failed

Example:
PSP_Handle hNand;
hNand = PSP_nandOpen(0);

3.1.4 PSP_nandClose

PSP_Result PSP_nandClose (PSP_Handle hNand
)

This API closes the driver that was opened by the open call. Any specific
objects that were created/used by the open call are freed here.

Parameters:
hNand [IN] Nand Driver Instance Handle

Texas Instruments Proprietary I-7

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Returns:

PSP_SOK – if the operation is successful

PSP_E_INVAL_PARAM – if any parameter is invalid

Example:
PSP_Handle hNand;
PSP_Result result;

hNand = PSP_nandOpen(0);
…………
Result = PSP_nandClose(hNand)

3.1.5 PSP_nandReadSync

PSP_Result PSP_nandReadSync (PSP_Handle hNand
Uint32 logSector
Uint16 * pReadBuff
Int size
Int * xferActual

)

This function reads number of sectors specified by ‘size’ starting from the
NAND device logical sector specified by ‘logSector’, to 'buf', depending on
the mode configured by the application. 'xferActual' holds the actual
number of bytes read.

Parameters:
hNand [IN] NAND Driver Instance Handle
logSector [IN] Sector to be read
pReadBuff [OUT] Character Buffer pointer - where read data is to be stored
size [IN] Number of sector to be read

xferActual [OUT] Number of bytes actually transacted

Returns:

PSP_SOK – if the operation is successful

PSP_E_INVAL_PARAM – if any parameter is invalid

PSP_E_INVAL_STATE – if the driver is in an invalid state

Example:
PSP_Handle hNand;
Uint32 logSector = 100;
Uint16 pReadBuff[512];
Int size = 1;
Int xferActual;
PSP_Result Result;

Texas Instruments Proprietary 8

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Result = PSP_nandReadSync(hNand, logSector, pReadBuff, size, &xferActual
);

3.1.6 PSP_nandWriteSync

PSP_Result PSP_nandWriteSync (PSP_Handle hNand
Uint32 logSector
Uint16 * pWriteBuff
Int size
Int * xferActual

)

This function writes number of sectors specified by ‘size’ starting from the
NAND device logical sector specified by ‘logSector’ from 'buf', depending
on the mode configured by the application. 'xferActual' holds the actual
number of bytes written.

Parameters:
hNand [IN] NAND Driver Instance Handle
logSector [IN] Sector to be written
pWeadBuff [OUT] Character Buffer pointer - where data to be written is stored
size [IN] Number of sector to be written

xferActual [OUT] Number of bytes actually transacted

Returns:

PSP_SOK – if the operation is successful

PSP_E_INVAL_PARAM – if any parameter is invalid

PSP_E_INVAL_STATE – if the driver is in an invalid state

Example:
PSP_Handle hNand;
Uint32 logSector = 100;
Uint16 wData[512];
Int size = 1;
Int xferActual;
PSP_Result Result;
Int bufIndex;

for (bufIndex = 0; bufIndex < (512/(2u)); bufIndex++)
{
 WData[bufIndex] = ((0xAAu) << (8u)) | bufIndex;
}

Result = PSP_nandWriteSync (hNand, logSector, wData, size, &xferActual
);

Texas Instruments Proprietary I-9

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

3.1.7 PSP_nandErase

PSP_Result PSP_nandErase (PSP_Handle hNand
)

This API erases all the blocks in the NAND and the action cannot be un-
done. From a File system perspective, this function formats the NAND
device.

Parameters:
hNand [IN] NAND Driver Instance Handle

Returns:

PSP_SOK – if the operation is successful

PSP_E_INVAL_PARAM – if any parameter is invalid

Example:
PSP_Handle hNand;
PSP_Result Result;
result = PSP_nandErase(hNand);

3.1.8 PSP_nandAddDevice

PSP_Result PSP_nandAddDevice (const PSP_NandFlashDev * cfgParams
)

This API sets the following configuration parameters: Bytes per page,
Pages per block, Size of NAND, Bus Width: 8/16 bit. These parameters
shall be used when the device ID read from the device doesn't match the
one in the known 'list'.

Parameters:
cfgParams [IN] Configuration parameter structure

Returns:

PSP_SOK – if the operation is successful

PSP_E_INVAL_PARAM – if any parameter is invalid

Example:
PSP_NandFlashDev cfgParams;
PSP_Result Result;
cfgParams.name = "NAND 128MB 8BIT"; /* user given name*/
cfgParams.id = (0xFEu); /* device ID*/
cfgParams.bytesPerPage = (1024u); /* bytes per page in bytes*/
cfgParams.chipSize = (256u); /* chip size in MB*/
cfgParams.nand8Bit = 0; /* 0- 8bit; 1- 16 bit*/
cfgParams.eraseSize = (16384u); /* Block/erase size in bytes*/

Result = PSP_nandAddDevice (&cfgParams);

Texas Instruments Proprietary 10

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

3.1.9 PSP_nandIoctl

PSP_Result PSP_nandIoctl (PSP_Handle hNand
PSP_NandIoctlCmd cmd
Void * cmdArg
Void * param

)

This function supports various IOCTLs for the NAND controller. All the
supported IOCTLs are listed in section 3.2

Parameters:
hNand [IN] NAND Driver Instance Handle
cmd [IN] IOCTL command
cmdArg [IN/OUT] Arguments, if any, for the command
param [IN] IOCTL specific parameter

Returns:

PSP_SOK – if the operation is successful

PSP_E_INVAL_PARAM – if any parameter is invalid
Example:
PSP_Handle hNand;
PSP_Result result;
Uint32 sectorSize;

/* Get the sector size */
result = PSP_nandIoctl(hNand,
 PSP_NAND_IOCTL_GET_SECTOR_SIZE,
 (void*)§orSize,
 0);

3.2 Nand module IOCTLs

This section illustrates various IOCTL commands for the NAND controller.

3.2.1 PSP_NAND_IOCTL_GET_OPMODE

This IOCTL returns the operation mode for the session.

Synopsis:
PSP_Result PSP_nandIoctl(
 PSP_Handle hNand,
 PSP_NandIoctlCmd cmd,
 void* cmdArg,
 void* param);

Arguments:

PSP_Handle – Nand driver instance handle

Texas Instruments Proprietary I-11

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

cmd - IOCTL command (PSP_NAND_IOCTL_GET_OPMODE)

cmdArg - OPMODE returned by the driver. This field holds any value of
the enum PSP_OpMode:

typedef enum
{
 PSP_OPMODE_POLLED = (0U),
 PSP_OPMODE_INTERRUPT = (1U),
 PSP_OPMODE_DMA = (2U),
 PSP_OPMODE_DMAINTERRUPT = (3U)
}PSP_OpMode;

param – NULL.

Returns:

PSP_SOK – if the operation is successful

PSP_E_INVAL_PARAM – if any parameter is invalid

Example:
PSP_Handle hNand;
PSP_Result result;
PSP_OpMode opMode;

/* Get the OPMODE */
result = PSP_nandIoctl(hNand,
 PSP_NAND_IOCTL_GET_OPMODE,
 (void*)&opMode,
 0);

3.2.2 PSP_NAND_IOCTL_GET_NAND_SIZE

This IOCTL returns nand size in sectors.

Synopsis:
PSP_Result PSP_nandIoctl(
 PSP_Handle hNand,
 PSP_NandIoctlCmd cmd,
 void* cmdArg,
 void* param);

Arguments:

PSP_Handle – Nand driver instance handle

cmd - IOCTL command (PSP_NAND_IOCTL_GET_NAND_SIZE)

cmdArg – nand size returned by the driver. This should point to a Uint32
variable allocated by the application.

param – NULL.

Returns:

Texas Instruments Proprietary 12

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

PSP_SOK – if the operation is successful

PSP_E_INVAL_PARAM – if any parameter is invalid

Example:
PSP_Handle hNand;
PSP_Result result;
Uint32 nandSize;

/* Get the nand size */
result = PSP_nandIoctl(hNand,
 PSP_NAND_IOCTL_GET_NAND_SIZE,
 (void*)& nandSize,
 0);

3.2.3 PSP_NAND_IOCTL_GET_SECTOR_SIZE

This IOCTL returns nand sector size in bytes.

Synopsis:
PSP_Result PSP_nandIoctl(
 PSP_Handle hNand,
 PSP_NandIoctlCmd cmd,
 void* cmdArg,
 void* param);

Arguments:

PSP_Handle – Nand driver instance handle

cmd - IOCTL command (PSP_NAND_IOCTL_GET_SECTOR_SIZE)

cmdArg – nand sector size returned by the driver. This should point to a
Uint32 variable allocated by the application.

param – NULL.

Returns:

PSP_SOK – if the operation is successful

PSP_E_INVAL_PARAM – if any parameter is invalid

Example:
PSP_Handle hNand;
PSP_Result result;
Uint32 sectorSize;

/* Get the sector size */
result = PSP_nandIoctl(hNand,
 PSP_NAND_IOCTL_GET_SECTOR_SIZE,
 (void*)§orSize,
 0);

Texas Instruments Proprietary I-13

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

3.2.4 PSP_NAND_IOCTL_CHECK_NAND

This IOCTL returns detected nand device type.

Synopsis:
PSP_Result PSP_nandIoctl(
 PSP_Handle hNand,
 PSP_NandIoctlCmd cmd,
 void* cmdArg,
 void* param);

Arguments:

PSP_Handle – Nand driver instance handle

cmd - IOCTL command (PSP_NAND_IOCTL_CHECK_NAND)

cmdArg – nand type defined by the following enum:
typedef enum
{
 LLC_NAND_NONE = 0u,
 /**< No NAND detected */
 LLC_NAND_BIG_BLOCK,
 /**< Big Block NAND detected */
 LLC_NAND_SMALL_BLOCK,
 /**< Small Block NAND detected */
 LLC_NAND_INVALID
 /**< Unknown/Invalid NAND */
} LLC_NandType;

param – NULL.

Returns:

PSP_SOK – if the operation is successful

PSP_E_INVAL_PARAM – if any parameter is invalid

Example:
PSP_Handle hNand;
PSP_Result result;
Uint32 nandType;

/* Get the sector size */
result = PSP_nandIoctl(hNand,
 PSP_NAND_IOCTL_CHECK_NAND,
 (void*)&nandType,
 0);

3.3 Symbolic Constants and Enumerated Data types

The following configuration defines are provided:

Texas Instruments Proprietary 14

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Table 1. Configuration Defines

Defines Description

PSP_NAND_NUM_INSTANCES Number of Instances of NAND hardware modules
supported by the driver – the number of instances of
the NAND will depend upon the SOC for which this
driver is provided. Currently for DM6437/C6424 it is
1.

PSP_NAND_NUM_CHANNELS DO NOT CHANGE THIS VALUE in the code –
Number of channels supported.

PSP_NAND_NUM_DEVICES_PER_CONTROLLER Max no. of slaves that can be connected on each
NAND device instance. Currently for
DM6437/C6424 it is 1.

PSP_NAND_DEVICE_POLL_INTERVAL Internal Poll time in milliseconds – used when driver
operates in polled mode – the driver uses this time
period as a parameter to the delay function during
polling.

Table 2. OpMode Enumerations

Defines Description

IOM_OPMODE_POLLED (0) POLLED Mode

IOM_OPMODE_INTERRUPT(1) Interrupt Mode (Not supported)

IOM_OPMODE_DMAINTERRUPT(2) DMA Mode

IOM_OPMODE_DMA(3) DMA Mode (Not supported)

 The file dda_nandCfg.c contains the initial configuration
parameters used by the driver. Configuration Parameters for each
instance are set in this data structure. The configuration data
variable “gDDA_NandHwConfig” is populated with the initial
configuration data.

 Driver supports protected region functionality, there is a #define
DDC_NAND_PROTECTED_AREA in file ddc_nand.h which
describes size of protected region in terms of page size. Currently
it is configured to 0. The protected region should be in the multiple
of 32 sectors. The protected region reserves area only at the start
of the NAND device.

3.4 Run-time Configuration Data Structure

This section summarizes all users visible data structure elements
pertaining to the DSP/BIOS NAND Device Driver configuration interfaces.

The file psp_nand.h has the PSP_NandConfig data structure that is passed
to the initialization function of the driver. The params are explained below:

Texas Instruments Proprietary I-15

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Table 3. Configuration Data Structure

Parameter Description

opMode Operational mode of the driver – Polled / DMA based.

inputClkFreq Clock Frequency of NAND.

eraseAtInit Erase all NAND devices on board during initialization if value is 1.

The file psp_nand.h also includes the PSP_NandFlashDev data structure
that is used to initialize and configure new device at run-time. This is
passed to the PSP_nandAddDevice function to set the new device
configuration. This needs to be done every time the target is run.
Alternatively, the same information can be added in the dda_nandCfg.c file
(and re-compiled), which is searched at the NAND initialization phase for
known device IDs.

The params are explained below:

Table 4. NAND Flash Data Structure for run-time configuration

Parameter Description

Name Name of the device

Id Device ID of the chip (typically the second byte)

bytesPerPage Number of bytes per page for this new chip, excluding the spare area.

chipSize Total size of the chip in MBs; excluding the spare area.
Note: 2GB is 2048 MB

eraseSize Typically erase is block-wide. Hence this parameter is the block size in
bytes, excluding the spare area.

nand8Bit Organization of NAND; 8 or 16bit wide.

Table 5. OpMode Enumerations

Defines Description

IOM_OPMODE_POLLED (0) POLLED Mode

IOM_OPMODE_INTERRUPT(1) Interrupt Mode (Not supported)

IOM_OPMODE_DMAINTERRUPT(2) DMA Mode

IOM_OPMODE_DMA(3) DMA Mode (Not supported)

 The file dda_nandCfg.c contains the initial configuration
parameters used by the driver. Configuration Parameters for each
instance are set in this data structure. The configuration data
variable “gDDA_NandHwConfig” is populated with the initial
configuration data.

Texas Instruments Proprietary 16

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 Driver supports protected region functionality, there is a #define
DDC_NAND_PROTECTED_AREA in file ddc_nand.h which
describes size of protected region in terms of page size. Currently
it is configured to 0. The protected region should be in the multiple
of 32 sectors. The protected region reserves area only at the start
of the NAND device.

Texas Instruments Proprietary 17

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Chapter 4

Porting

This chapter discusses how to port DSP/BIOS NAND Device Driver to
other supported target platforms.

4.1 Getting Started

The DSP/BIOS NAND Device Driver is based upon PSP Framework
architecture making portability and re-usability as prime requirements.
Based upon the architecture, the driver sources are divided into Low-level
controller/ CSL, Device Driver Core (DDC) and Driver Adaptation (DDA) to
a given OS.

The low level controller provides the abstraction needed for the driver to be
re-usable even if the underlying Nand hardware is changed. For porting to
any Nand controller, the low-level controller module should be ported.

The driver adaptation layer needs to be ported when moving the driver
from one OS to another (with the same Hardware Nand module).

4.2 Sources needing re-targeting

The following source files are required for driver porting:

Device Driver Adaptation (DDA):

dda_nand.h, dda_nand.c – Contains the “common” functions required for
any adaptation – normally these files should remain common so that any
os specifics are taken care of in another file.

dda_nandBios.h, dda_nandBios.c – Contains DSP/BIOS specific functions
that are required to complete the OS port – for porting the driver to another
OS, in most cases, implementing the functions provided in this file for the
given OS is sufficient to get the driver running.

dda_nandCfg.c – Contains the configuration information required for the
driver – this file does not need to change during OS ports

Low Level Controller (LLC/CSL):

llc_nandIf.h, llc_nandTypes.h – Contains the definitions that are used to
abstract the low level controller so that the DDC can be agnostic of the
underlying controller. This file needs to be modified only when porting the
driver for another Nand controller.

Texas Instruments Proprietary 18

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

llc_nand.c – Contains the initialization and hardware setup functions
for the controller – these functions need to be ported and
implemented when porting the driver for another Nand controller.

4.3 Dependency of Sample application:
Following Components needs to be linked for successful build and functionality of
the application.

 NAND
 PAL_OS
 SoC specific PAL_SYS
 EDMA3

Pragma directives used in the sample application:

The RData and WData are used by the application and need to be cache aligned
at 128 bytes.

