

June 2008 Platform Software Group

Document Version 1.14

DSP/BIOS VPFE Device Driver

U s e r ' s G u i d e

User’s Manual

2 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue any product
or service without notice. Customers should obtain the latest relevant information before placing orders and should verify
that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at
the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support
this warranty. Except where mandated by government requirements, testing of all parameters of each product is not
necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their
products and applications using TI components. To minimize the risks associated with customer products and
applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright,
mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI
products or services are used. Information published by TI regarding third-party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may
require a license from a third party under the patents or other intellectual property of the third party, or a license from TI
under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with
alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or
service voids all express and any implied warranties for the associated TI product or service and is an unfair and
deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

3 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 Preface

Read This First

About This Manual

The API reference guide serves as a software programmer’s handbook
for working with the VPFE device driver modules. This reference guide
provides necessary information regarding how to use these modules in
user systems and applications.

Abbreviations

Table of Abbreviations

Abbreviation Description

API Application Programming Interface

DDC Device Driver Core

IOM Device Driver Adapter

ISR Interrupt Service Routine

OS Operating System

ROM Read Only Memory

SOC System On Chip

4 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Revision History

Date Author Comments Version

September 5,2006 Maulik Desai Created the document 1.0

September 21, 2006 Maulik Desai Added Data Structure and
Enumerations

1.1

November 30, 2006 Maulik Desai Modified the document for
release 0.3.0

1.2

December 16, 2006 Maulik Desai Modified the document to
close review comments

1.3

January 2, 2007 Maulik Desai Modified the documents to
close review comments

1.4

January 16, 2007 Maulik Desai Bios version modified 1.5

February 3, 2007 Maulik Desai CCS version modified 1.6

April 25, 2007 Maulik Desai FVID layer modifications 1.7

May 5, 2007 Maulik Desai IOCTL Description Added 1.8

May 15, 2007 Maulik Desai FVID layer modifications 1.9

June 22, 2007 Anuj Aggarwal Bios version modified 1.10

June 29,2007 Amit Chatterjee Modified Revision Version 1.11

July 1, 2007 Maulik Desai MT9001 IOCTL added 1.12

November 30, 2007 Sivaraj R PSP merge package changes
- directory structure changes,
FVID_allocBuffer and
FVID_freeBuffer functions are
implemented as GIO control
commands

1.13

January 24, 2008 Sivaraj R Added TCI file driver
initialization illustration and
added dependent libraries for
building video application

1.14

May 21, 2008 Chandan Nath Updated for adding
compiler switches in build
options

1.15

5 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

TABLE OF CONTENTS
Preface...3
Abbreviations ..3
Revision History..4
TABLE OF CONTENTS..5
List Of Figures...7
CHAPTER 1..8
CHAPTER 1..8
INTRODUCTION ...8

1.1 H/W S/W Support ..8
1.2 Driver Components ..8
1.3 Default Driver Configuration ..9
1.4 Driver Capabilities ..10
1.5 System Requirements ..10

CHAPTER 2..11
INSTALLATION GUIDE..11

2.1 Component Folder..11
2.2 Build..12
2.3 Build Options..12

CHAPTER 3..14
DSP/BIOS VPFE...14

3.1 Functions ..14
3.1.1. GIO_create/FVID_create...14
3.1.2. GIO_delete/FVID_delete ...16
3.1.3. GIO_control/FVID_control ...16
3.1.4. GIO_submit...18

3.2 Control Commands ..23
3.2.1. PSP_VPFE_IOCTL_CCDC_VALIDATE_BUFFER..23
3.2.2. PSP_VPFE_IOCTL_CCDC_BLACK_ADJUST ...23
3.2.3. PSP_VPFE_IOCTL_CCDC_FPC ...24
3.2.4. PSP_VPFE_IOCTL_START_CCDC...25
3.2.5. PSP_VPFE_IOCTL_STOP_CCDC...26
3.2.6. PSP_VPFE_IOCTL_FIELD_INTERLACED...26
3.2.7. PSP_VPFE_IOCTL_FIELD_SEPARATE..27
3.2.7. PSP_VPFE_IOCTL_CONFIG_VDINT ..28

3.3. Data Structures Configuration defines...29
3.4 Enumerations ..32

CHAPTER 4..34
PORTING GUIDE..34

4.1 Porting Description ..34
CHAPTER 5..36
HARDWARE DEPENDENCY...36

5.1 TVP5146 Video Decoder...36
5.1.1. TVP5146 Interface details ...37

5.2 MT9001 Image Sensor ..39
5.2.1. MT9001 Sensor Interface details ...40

CHAPTER 6..44
EXAMPLE APPLICATIONS...44

6 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

6.1 Writing Applications for VPFE ...44
6.1.1. File Inclusion...44
6.1.2. Driver Initialization...45
6.1.3. Dependent Projects/Libraries ..45
6.1.4. Pragma directives used in the Applications..45
6.1.5. Memory Allocation...45
6.1.6. Buffer Management...47

6.2 The VPFE YUV Sample Application ...49
6.2.1. Introduction ...49
6.2.2. Building the Application ...49
6.2.3. Loading the Application ...49
6.2.4. Configuration Parameters..49

6.3 The VPFE RAW Sample Application..50
6.3.1. Introduction ...50
6.3.2. Building the Application ...51
6.3.3. Loading the Application ...51
6.3.4. Configuration Parameters..51

6.4 The VPFE PREVIEWER on-the-fly Sample Application...54
6.4.1. Introduction ...54
6.4.2. Building the Application ...54
6.4.3. Loading the Application ...54
6.4.4. Configuration Parameters..54

Appendix A ..56

7 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

List Of Figures

Figure 1 Device Driver Functional Decomposition ... 9
Figure 2 VPFE Driver Directory Structure ... 11
Figure 3 Driver Architecture .. 34
Figure 4 Driver Portability.. 35
Figure 5 TVP5146 Decoder Function compatible with VPFE driver ... 36
Figure 6 MT9001 Sensor Function compatible with VPFE driver... 39

8 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

CHAPTER 1

INTRODUCTION

This document is an API reference guide on DSP/BIOS VPFE Device Driver for DM6437 SOC.

1.1 H/W S/W Support
This VPFE Device driver has been developed for the DSP/BIOS operating system using the TI
supplied Chip Support Library. For more details on the version numbers refer to the release notes
in the root of the installation.

1.2 Driver Components

The driver is constituted of following sub components:

VPFE IOM – Application facing, OS Specific Adaptation of VPFE Device Driver

VPFE DDC –OS Independent part of VPFE Driver Core

VPFE CSLR –The low-level VPFE h/w abstraction module

System components:

PALOS – DSP/BIOS Abstraction

CSLR– Non-Functional h/w abstraction.

9 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Figure 1 Device Driver Functional Decomposition

1.3 Default Driver Configuration

VPFE driver does not have any default configuration support. Before using the driver application
should configure the driver with valid configurations. In case the driver recognizes invalid
configuration the handle for the corresponding channel shall not be created and will returned
NULL.

 CSLR

EVM Hardware Board

DDC

IOM

Static Cfg

PAL
OS

VPFE
Application

VPFE Driver
Components

DSP/BIOS

10 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

1.4 Driver Capabilities

The significant driver features are:

 Supports individual channels for CCDC and other Front End modules.
 Driver is SYNCHRONOUS and operates in INTERRUPT mode only.
 Supports flipping of multiple frame buffers for seamless capture from CCDC.
 Easy to maintain & re-target to new platforms.
 Supports Multiple Instances.

1.5 System Requirements
Details about the tools and the BIOS version that the driver is compatible with
can be found in the system Release Notes.

11 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

CHAPTER 2

INSTALLATION GUIDE

2.1 Component Folder

Upon installing the VPFE driver the following directory structure is found in the driver’s directory.

Figure 2 VPFE Driver Directory Structure

This top level vpfe folder contains vpfe driver psp header file and XDC package files
(package.bld, package.xdc and package.xs)

 build: This folder contains vpfe driver library project file. The generated
driver library shall be included in the application where VPFE driver have to
be used.

 docs: This folder contains architecture document, datasheet, release notes
and user guide.

Architecture document contains the driver details which can be helpful for
the developers as well as consumers to understand the driver design.

Datasheet gives the idea about the memory consumption by the driver and
description of the top level APIs.

Release Note gives the details about system requirements, steps to
Install/Uninstall the package.This document list the known issues of the
driver.

User Guide provides information about how to use the driver. It contains
description of sample applications which guide the end user to make their
applications using this driver.

 lib: This folder contains libraries generated in all the configuration
modes(debug, idebug, irelease and release)

12 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 package: This folder contains files generated by XDC tool.

 src: This folder contains vpfe driver source files. It also contains header files
that are used by the driver.

2.2 Build

This section describes for each supported target environment, the applicable build options,
supported configurations and how selected, the featured capabilities and how enabled, the
allowed user customizations for the software to be installed and how the same can be realized.

The component might be delivered to user in different formats:

 Source-less ie., binary executables and object libraries only.

 Source –inclusive.,The entire source code is used to implement the driver is
included in the delivered product.

 Source-selective ie., Only a part of the overall source is included. This delivery
mechanism might be required either because ;certain parts of the driver require
soruce level extensions and/or customization at the user’s end or
because,specific parts of the driver is exposed to user at the source level to
insure user’s software development.

When source is included as part of the product delivery, the CCS project file is
provided as part of the package. When object format is distributed, the driver header
files are part of the “/drivers/vpfe” folder and the driver library is provided in
/drivers/vpfe/lib folder.

2.3 Build Options

This driver does not have any specific build option at the time of writing of this manual.

The build folder contains a CCS project file that builds the driver into a library for debug,
idebug, release and irelease mode.

Following compiler switches are used to compile for different options.

 _DEBUG
This is used as a flag to compiler whether to include the debug statements inserted in
the code into the final image. This flag helps to build DEBUG image of the program.
For RELEASE images this is not passed to the compiler.

 CHIP_XXXX
The CSL layer is written in a common file for all the variants of a SOC. This flag
differentiates the variant we are compiling for, for e.g. - CHIP_DM648, and the CSL
definitions for that variant appropriately gets defined for register base addresses,
num of ports of a peripheral etc.

 VPFE_INSTRUMENTATION_ENABLED
This flag is passed to the compiler to include the instrumentation code parts into the
final image/lib of the program. This helps build the iRelease/iDebug versions of the
image/lib with a common code base

13 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 PSP_VIDEO_PATH_ENABLE

Enable Video Path for H3A, HISTOGRAM and PREVIEWER (on-the-fly) else directly
send the data to the resizer (VPEN is reset)

14 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

CHAPTER 3

DSP/BIOS VPFE

This chapter describes the functions, data structures, enumerations and macros for the List
module.

3.1 Functions
This section lists the functions available in the PSP module. FVID layer is implemented as a
simple wrapper on top of the GIO class driver and provides an application-specific interface.

3.1.1. GIO_create/FVID_create

FVID_Handle FVID_create (String Name

OR

Int
Int *
Ptr
GIO_Attrs*

mode
status
chanParams
attrs

GIO_Handle GIO_create)
This function is called by the application to create the various VPFE channel. VPFE driver
supports CCDC module

It populates static settings in driver object; formally creates/registers driver entry points with
DSP/BIOS. This call registers interrupt for CCDC.

Parameters:
name
mode
status
chanParams
attrs

[INOUT] Name of the device to open
[INOUT] Mode in which device is to be opened (IGNORED AND NOT USED)
[OUT] Address to which driver returns status (IGNORED AND NOT USED)
[IN] Valid Parameters required for creating channel handle .If the application passes
 invalid parameters then VPFE driver shall return NULL and the corresponding
 channel shall not be created
[IN] pointer to GIO_attrs structure

Returns:
FVID_Handle – if the operation is successful
NULL – if the operation is failed

Note: Channel handle should not be shared across multiple tasks. Sharing of handle
across multiple tasks might cause corruption in the GIO layer.

15 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Example:

Prior to FVID_create call, application should make sure that the VPFE
instance is created .The VPFE instance is created in the configuration
file (*.tcf) file in the User-defined devices.

The FVID call in a way make the GIO call.

The example below shows creation of CCDC Channel for VPFE

FVID_Handle vpfeCcdcHandle
GIO_Attrs gioAttrs = GIO_ATTRS;

PSP_VPFEChannelParams feinitParams;
static PSP_VPFECcdcConfigParams ccdcParams =
{
 FVID_VI_BT656_8BIT, /* dataFlow */
 FVID_FRAME_MODE, /* ffMode */
 480, /* height */
 720, /* width */
 (720 *2), /* pitch */
 0, /* horzStartPix */
 0, /* vertStartPix */
 NULL, /* appCallback */
 {
 TVP5146_Open, /* extVD Fxn */
 TVP5146_Close,
 TVP5146_Control,
 },
 0 /*segId */
};
feinitParams.id = PSP_VPFE_CCDC;
feinitParams.params = (PSP_VPFECcdcConfigParams*)&ccdcParams;
CcdcHandle = FVID_create("/VPFE0",IOM_INOUT,NULL,

 &feinitParams,&gioAttrs);
if(NULL == CcdcHandle)
{
 printf("VPSS :CCDC Create.......FAILED \r\n");
 return;
}

Name is passed as VPFE0 whose instance is declared in the configuration file

16 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

3.1.2. GIO_delete/FVID_delete

Int FVID_delete (FVID_Handle gioChan,

OR
Int GIO_delete)

This function deletes the driver channel.

Parameters:
gioChan [IN] FVID Handle for the channel

Returns:
IOM_EBADARGS – If the parameters passed are not correct or the channel has never been
created

Example:

FVID_Handle CcdcHandle;

FVID_delete (CcdcHandle);

3.1.3. GIO_control/FVID_control

Int FVID_control (FVID_Handle gioChan
Int cmd,

OR
Ptr cmdArg

Int GIO_control)

This function handles the IOCTLs for the VPFE driver.

Parameters:
gioChan [IN] Handle to FVID layer.
cmd [IN] IOCTL Command
cmdArg [INOUT] Argument for the IOCTL

Returns:
IOM_COMPLETED if successful or else suitable error code is given.
IOM_EBADARGS– gioChan is not valid or if the state is not appropriate or the argument passed
is not appropriate
IOM_EBADMODE– if the cmdArg is not appropriate or if the FIFO is not enabled or if the mode is
not supported

17 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Example:

FVID_Handle CcdcHandle;
PSP_VPFEConfigParams ccdcParams;
PSP_VPFECCDC_BlackAdj blackAdj;

static Ptr InitBlackCompParameters(void)
{

 blackAdj.clampEn = PSP_VPFE_BlkCompDisable;
 blackAdj.blackSampLen = PSP_VPFE_BlkComp1Pixel;
 blackAdj.blackSampLine = PSP_VPFE_BlkComp1Pixel;
 blackAdj.blackPixStart = 0;
 blackAdj.blackGain = 0;
 blackAdj.dcSub = 20;
 blackAdj.colPtn = 0;
 blackAdj.blkCmpR = 0;
 blackAdj.blkCmpGR = 0;
 blackAdj.blkCmpGB = 0;
 blackAdj.blkCmpB = 0;
 return ((Ptr)&blackAdj);
}
/** DC Clamping in Raw Capture */
if(IOM_COMPLETED!=FVID_control(CcdcHandle,PSP_VPFE_IOCTL_CCDC_BLACK_ADJUST,

 blackAdjl))
 {
 printf ("VPSS :Error in DCSUB !\r\n");
 }
else
{

 printf("VPSS :DC Clamp done Successfully !\r\n");
 }

18 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

3.1.4. GIO_submit

Int GIO_submit (GIO_Handle
Uns
Ptr
Uns*
GIO_AppCallBack*

gioChan
cmd
bufp
pSize
appCallback

)

This function is called by the application to perform the read/write operation.

Parameters:
gioChan [IN] Handle to GIO
bufp [IN] Pointer to the Surfaceparams for Queuing and Dequeuing
psize [IN] pointer to the Number of bytes (IGNORED NOT USED –make it 1)
cmd Whether Queue/Dequeue cmd
appCallback callback for the application

Returns:
IOM_COMPLETED if success else suitable error code
IOM_EBADARGS – if the arguments passed are not valid

Following are the FVID APIs which in ways calls GIO_submit API.

1. FVID_queue Queue the Frame Buffer in to Driver

Syntax status = FVID_queue (gioChan, bufp);

Parameters FVID_Handle giochan /* Handle to an instance of the driver */
Ptr bufp /* pointer to allocated buffer by application */

Description VPFE driver has its own queue maintain in the driver. An application will
call FVID_queue to queue frame buffer in the driver queue. Application
allocates memory for frame buffer.

The giochan argument is the handle of the VPFE driver channel that was
created with a call of FVID_create.

The bufp argument is a pointer which points to surface params structure.
Frame buffer is an element inside surface params structure whose
memory is allocated by FVID_allocBuffer.

FVID_queue returns IOM_COMPLETED when it returns successfully. If
an error occurs, a negative value will be returned.

Constraints This function can only be called after the device driver has been loaded
and initialized. The handle supplied as an argument to the function
should have been obtained with a previous call of FVID_create. The bufp

19 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

supplied as an argument to the function should have been points to
memory allocated by the application.

Example

Refer to example code to Queue the Frame Buffer using FVID_queue
function.

FVID_Handle CcdcHandle;
FVID_Frame *CcdcallocFB = NULL;

/* Allocate memory to Frame Buffer */
 FVID_allocBuffer (CcdcHandle, &CcdcallocFB);
/* Queue the Frame Buffer after allocation */

 FVID_queue (vpfeCcdcHandle, CcdcallocFB);

2. FVID_dequeue Dequeue the Frame Buffer from the Driver

Syntax status = FVID_dequeue (gioChan, bufp);

Parameters FVID_Handle giochan /* Handle to an instance of the driver */
Ptr bufp /* pointer to allocated buffer by application */

Description VPFE driver has two queue maintained in the driver. Application will call
FVID_queue which queues the Frame buffer in the driver’s first queue.
Driver will fill the data in this frame buffer and keeps it in the second
queue. Application can call FVID_dequeue to get the frame buffer filled
with information.

The giochan argument is the handle of the VPFE driver channel that was
created with a call of FVID_create.

The bufp argument is an out parameter that fills with a pointer to Frame
buffer present in second queue of the driver.

FVID_dequeue returns IOM_COMPLETED when it returns successfully.
If an error occurs, a negative value will be returned.

Constraints This function can only be called after the device driver has been loaded
and initialized. The handle supplied as an argument to the function
should have been obtained with a previous call of FVID_create. The bufp
pointer supplied as an argument to the function should be NULL which
will be filled by the driver.

20 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Example

Refer to example code to dequeue the FrameBuffer using FVID_queue
function.

FVID_Handle CcdcHandle;
FVID_Frame *allocBF = NULL;

status = FVID_dequeue (CcdcHandle, &allocBF);

3. FVID_exchange Exchange the Buffer between Application and Driver

Syntax status = FVID_exchange (gioChan, bufp);

Parameters FVID_Handle giochan /* Handle to an instance of the driver */
Ptr bufp /* pointer to allocated buffer by application */

Description An Application will call FVID_exchange whose functionality is equivalent
to serial calls of FVID_queue and FVID_dequeue, but the same thing
can be done in a single API call. The application has to call FVID_queue
once prior to FVID_exchange.

The giochan argument is the handle of the VPFE driver channel that was
created with a call of FVID_create.

The bufp argument is an in/out parameter that points to frame buffer that
is to be relinquished by the driver. After the call returns successfully, this
function fills bufp with the pointer to the frame buffer that was previously
queued in the device driver.

FVID_exchange returns IOM_COMPLETED when it returns successfully.
If an error occurs, a negative value will be returned.

Constraints This function can only be called after the device driver has been loaded
and initialized. The handle supplied as an argument to the function
should have been obtained with a previous call of FVID_create. The
FVID_queue must be called once prior to this function call.

21 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Example

Refer to example code to exchange the FrameBuffer using FVID_exchange
function.

FVID_Handle CcdcHandle;
FVID_Frame *CcdcallocFB = NULL;
FVID_Frame *FBAddr = NULL;

/* Allocate memory to Frame Buffer */
 FVID_allocBuffer (CcdcHandle, &CcdcallocFB);
/* Queue the Frame Buffer after allocation */

 FVID_queue (vpfeCcdcHandle, CcdcallocFB);
/* Allocate memory to Frame Buffer */

FVID_allocBuffer (CcdcHandle, & FBAddr);
/* Exchange the Frame Buffers */
status = FVID_exchange (CcdcHandle, &FBAddr);

4. FVID_allocBuffer Allocates Memory to FrameBuffer

Syntax status = FVID_allocBuffer (gioChan, bufp);

Parameters FVID_Handle giochan /* Handle to an instance of the driver */
Ptr bufp /* pointer to allocate buffer for application */

Description An Application will call FVID_allocBuffer to allocate the memory for
Frame buffer.

The giochan argument is the handle of the VPFE driver channel that was
created with a call of FVID_create.

The bufp argument is an out parameter that the function fills with a
pointer to the memory allocated by driver.

FVID_allocBuffer returns IOM_COMPLETED when it returns
successfully. If an error occurs, a negative value will be returned.

Constraints This function can only be called after the device driver has been loaded
and initialized. The handle supplied as an argument to the function
should have been obtained with a previous call of FVID_create. The bufp
pointer supplied as an argument to the function should be NULL which
will be filled by the driver.

22 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Example

Refer to example code to alloc the FrameBuffer using FVID_allocBuffer
function.

FVID_Handle CcdcHandle;
FVID_Frame *FBAddr = NULL;

status = FVID_allocBuffer (CcdcHandle, & FBAddr);

5. FVID_freeBuffer Frees the allocated Memory of Frame Buffer

Syntax status = FVID_freeBuffer (gioChan, bufp);

Parameters FVID_Handle giochan /* Handle to an instance of the driver */
Ptr bufp /* Frame buffer to free the allocated memory */

Description An Application will call FVID_freeBuffer to free the memory allocated by
the application.

The giochan argument is the handle of the VPBE driver channel that was
created with a call of FVID_create.

FVID_freeBuffer returns IOM_COMPLETED when it returns successfully.
If an error occurs, a negative value will be returned.

Constraints This function can only be called after the device driver has been loaded
and initialized. The handle supplied as an argument to the function
should have been obtained with a previous call of FVID_create.

 Example

Refer to example code to free the Frame Buffer using FVID_freeBuffer
function.

FVID_Handle CcdcHandle;
FVID_Frame *FBAddr = NULL;

status = FVID_allocBuffer (CcdcHandle, & FBAddr);

status = FVID_freeBuffer (CcdcHandle, FBAddr);

23 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

3.2 Control Commands

3.2.1. PSP_VPFE_IOCTL_CCDC_VALIDATE_BUFFER
PSP_VPFE_IOCTL_CCDC_VALIDATE_BUFFER – Validate the CCDC framebuffer pitch. It will
return an error if the framebuffer pitch is not proper as expected by the driver.

o SYNOPSIS
 Int FVID_control (FVID_Handle gioChan, Int cmd, Ptr cmdArg);

o ARGUMENTS
 gioChan – Handle of CCDC module

 cmd – PSP_VPFE_IOCTL_CCDC_VALIDATE_BUFFER

 cmdArg – Pointer to PSP_VPFEValidateParams structure

o RETURN VALUE
 IOM_COMPLETED – Success if the pitch is validated

 IOM_EBADARGS – if args passed is NULL or if the pitch is not validated

o DESCRIPTION
This Ioctl is used to validate the frame buffer pitch. It will return an error if the framebuffer
pitch is not proper as expected by the driver. In case of error, the driver will fill the expected
value of framebuffer pitch in second element of PSP_VPFEValidateParams structure. An
application can read the second element of PSP_VPFEValidateParams structure to know the
expected value of framebuffer pitch.

The structure is described as below:

typedef struct _PSP_VPFEValidateParams
{
 FVID_Frame InParams; /**< Pass the Surface params as input to validate */
 /**< Presently Pitch validation is only done */
 FVID_Frame OutParams; /**< If the Pitch given as Input doesn’t validate then
 appropriate pitch is given as this Params.

 Pass NULL params to this element */
} PSP_VPFEValidateParams;

o LIMITATIONS/CONSTRAINTS
None

3.2.2. PSP_VPFE_IOCTL_CCDC_BLACK_ADJUST
PSP_VPFE_IOCTL_CCDC_BLACK_ADJUST – Compensate and adjust the black level related
parameters. It is used when the input to CCDC is from Image sensor i.e., raw input.

o SYNOPSIS
 Int FVID_control (FVID_Handle gioChan, Int cmd, Ptr cmdArg);

24 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

o ARGUMENTS
 gioChan – Handle of CCDC module

 cmd – PSP_VPFE_IOCTL_CCDC_BLACK_ADJUST

 cmdArg – Pointer to PSP_VPFECCDC_BlackAdj Structure

o RETURN VALUE
 IOM_COMPLETED – Success if the args are passed properly.

 IOM_EBADARGS – if args passed is NULL

o DESCRIPTION
The black level adjustment and compensation is done dynamically using this Ioctl. This Ioctl
configures the related parameters for adjusting and compensating the black level. The Ioctl
should be used only when input to CCDC is raw input.

The structure is described as below:
typedef struct _PSP_VPFECCDC_BlackAdj
{
 PSP_VPFE_BlkComp clampEn;

 /**< Enable/disable black level clamping */
 PSP_VPFE_BlkComp_Pixlen blackSampLen;
 /**< Num Black Sample pixels per line to include in the calculation */
 PSP_VPFE_BlkComp_Pixlen blackSampLine;
 /**< Num Black Sample lines to include in the calculation */
 Uint16 blackPixStart;
 /**< Start black pixel position */
 Uint8 blackGain;
 /**< Gain to be applied to optical black average */
 Uint16 dcSub;
 /**< Constant DC value to subtract if clampEn is disabled */
 Uint32 colPtn;
 /**< CCDC color pattern */
 Uint8 blkCmpR;
 /**< Black level compensation for R color pixels */
 Uint8 blkCmpGR;
 /**< Black level compensation for GR color pixels */
 Uint8 blkCmpGB;
 /**< Black level compensation for GB color pixels */
 Uint8 blkCmpB;
 /**< Black level compensation for B color pixels */
} PSP_VPFECCDC_BlackAdj;

o LIMITATIONS/CONSTRAINTS
None

3.2.3. PSP_VPFE_IOCTL_CCDC_FPC
PSP_VPFE_IOCTL_CCDC_FPC – This Ioctl is used for setting Fault pixel correction related
parameters.

25 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

o SYNOPSIS
 Int FVID_control (FVID_Handle gioChan, Int cmd, Ptr cmdArg);

o ARGUMENTS
 gioChan – Handle of CCDC module

 cmd – PSP_VPFE_IOCTL_CCDC_FPC

 cmdArg – Pointer to PSP_VPFE_CCDC_Fpc structure

o RETURN VALUE
 IOM_COMPLETED – Success if the args are passed properly.

 IOM_EBADARGS – if args passed is NULL.

o DESCRIPTION

This IOCTL sets the Fault pixel correction related parameters. If the image sensor is faulty
and giving some faulty pixel then by calling these IOCTL the fault pixel correction module is
enabled which will correct the faulty pixel received from Image sensor. The IOCTL is used
only when the input is from Image sensor i.e.; raw input.

The structure is described as below:

typedef struct _PSP_VPFE_CCDC_Fpc
{
 PSP_VPFE_Fpc fpcEnable;
 /**< CCDC Fault Pixel Correction enable/disable */
 Uint8 fpcnum;
 /**< number of Fault Pixels to be corrected */
 Uint32 fpcAddr;
 /**< Address of the FPC Table */
 PSP_VPFE_Err fpcreset;
 /**< use this parameter to reset the FPC error */
} PSP_VPFE_CCDC_Fpc;

o LIMITATIONS/CONSTRAINTS
None

3.2.4. PSP_VPFE_IOCTL_START_CCDC
PSP_VPFE_IOCTL_CCDC_START_CCDC –This Ioctl is used to start the CCDC Engine.

o SYNOPSIS
 Int FVID_control (FVID_Handle gioChan, Int cmd, Ptr cmdArg);

o ARGUMENTS
 gioChan – Handle of CCDC module

 cmd – PSP_VPFE_IOCTL_CCDC_START_CCDC

 cmdArg – NULL

26 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

o RETURN VALUE
 IOM_COMPLETED – Success if the args are passed properly.

 IOM_EBADARGS – if args passed is NULL.

o DESCRIPTION

This IOCTL starts the CCDC engine. It is required to queue one buffer initially before calling
these IOCTL.

o LIMITATIONS/CONSTRAINTS
None

3.2.5. PSP_VPFE_IOCTL_STOP_CCDC
PSP_VPFE_IOCTL_CCDC_FPC – This Ioctl is used to stop the CCDC Engine.

o SYNOPSIS
 Int FVID_control (FVID_Handle gioChan, Int cmd, Ptr cmdArg);

o ARGUMENTS
 gioChan – Handle of CCDC module

 cmd – PSP_VPFE_IOCTL_STOP_CCDC

 cmdArg – NULL

o RETURN VALUE
 IOM_COMPLETED – Success if the args are passed properly.

 IOM_EBADARGS – if args passed is NULL.

o DESCRIPTION
This IOCTL stops the CCDC Engine.

o LIMITATIONS/CONSTRAINTS
There can be many buffers which are in the pending state when you stop the engine. These
pending buffers do not have any valid information. By dequeue call, application can get those
pending buffers buts its application’s responsibility to make sure that these buffers are not
used for any further processing as these buffers are not having valid video information.

3.2.6. PSP_VPFE_IOCTL_FIELD_INTERLACED
PSP_VPFE_IOCTL_FIELD_INTERLACED – This Ioctl is used to get the odd and even field
interleaved

o SYNOPSIS
 Int FVID_control (FVID_Handle gioChan, Int cmd, Ptr cmdArg);

27 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

o ARGUMENTS
 gioChan – Handle of CCDC module

 cmd – PSP_VPFE_IOCTL_FIELD_INTERLACED

 cmdArg – NULL

o RETURN VALUE
 IOM_COMPLETED – Success if the args are passed properly.

 IOM_EBADARGS – if args passed is NULL.

o DESCRIPTION
This IOCTL will give the odd and even field data interleaved one after other.

o LIMITATIONS/CONSTRAINTS
 NONE

3.2.7. PSP_VPFE_IOCTL_FIELD_SEPARATE
PSP_VPFE_IOCTL_FIELD_SEPARATE – This Ioctl is used to get the odd and even field
separate.

o SYNOPSIS
 Int FVID_control (FVID_Handle gioChan, Int cmd, Ptr cmdArg);

o ARGUMENTS
 gioChan – Handle of CCDC module

 cmd – PSP_VPFE_IOCTL_FIELD_SEPARATE

 cmdArg – NULL

o RETURN VALUE
 IOM_COMPLETED – Success if the args are passed properly.

 IOM_EBADARGS – if args passed is NULL.

o DESCRIPTION
This IOCTL will get the odd and even field data separate. The odd field data will be on the top
half of the frame and even field data will be on bottom half.

o LIMITATIONS/CONSTRAINTS
NONE

28 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

3.2.7. PSP_VPFE_IOCTL_CONFIG_VDINT
PSP_VPFE_IOCTL_CONFIG_VDINT – This Ioctl is used to configure the VSYNC interrupt

o SYNOPSIS
 Int FVID_control (FVID_Handle gioChan, Int cmd, Ptr cmdArg);

o ARGUMENTS
 gioChan – Handle of CCDC module

 cmd – PSP_VPFE_IOCTL_CONFIG_VDINT

 cmdArg – Number of lines

o RETURN VALUE
 IOM_COMPLETED – Success if the args are passed properly.

 IOM_EBADARGS – if args passed is NULL.

o DESCRIPTION
This IOCTL is used to configure the VSYNC interrupt. Configure the VSYNC interrupt at
specific number of lines.

o LIMITATIONS/CONSTRAINTS
NONE

29 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

3.3. Data Structures Configuration defines

The file psp_vpfe.h has the PSP_VPFEChannelParams data structure
that is passed at the time of opening the CCDC Channel from the
Application .The params are explained below:

1) Table Configuration Data Structure – PSP_VPFEChannelParams

Parameter Description

Id Channel Id
Note: Each VPFE modules are treated as individual channels

Params Pass the Structure of the Channel .i.e;PSP_VPFECcdcConfigParams

The file psp_vpfe.h has the PSP_VPFECcdcConfigParams data
structure that is parameter of VPFEChannelParams structure mentioned
above. The params are explained below:

2) Table Configuration Data Structure – PSP_VPFECcdcConfigParams

Parameter Description

inpmod Specify the input to CCDC –Sensor(RAW) or Video Decoder(YCbCr)

ffMode FILED/FRAME Mode
Note: Here field mode refers to Progressive and Frame mode refers to
Interlaced mode.

height Height of the Frame i.e; vertical lines of the Frame

width Width of the Frame i.e; Number of pixel in Horizontal direction

Pitch Pitch or offset of the Frame.

horzStartPix Horizontal start pixel

vertStartPix Start of Vertical line

appCallback Application callback Function

extVDFxn External Video Decoder Interface(TVP5146 or Image Sensors)

segId SegId is passed to allocate memory

rawParams Configure the Raw Config Params.
Note: Used when Input is from Sensor (RAW).

30 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

The file psp_vpfe.h has the PSP_VPFECCDCRawParams data
structure that is parameter of PSP_VPFECcdcConfigParams structure
mentioned above. The params are explained below:

Parameter Description

dataSize Specify the size of Raw Data.

pack8 Data stored in pack 8 or 16 bits per pixel

dataPol Data Polarity Normal or 1’s Complement

VDSyncPol VD Sync Polarity

HDSyncPol HD Sync Polarity

HDVDMaster Master or Slave mode for HD and VD signals

HDSyncWidth Width of HD Sync

VDSyncWidth Width of VD Sync

numPxlPerLine Number of Pixelclock periods in one line

numLinPerFld Number of lines per field

ALawEnable Enable/Disable A-Law

ALaw_Width A-Law gamma bit selection

The file psp_vpfe.h has the PSP_VPFECCDC_BlackAdj data structure
is used to configure the black adjustment for Raw Input runtime. The
params are explained below:

Parameter Description

clampEn Enabl/Disable Black level Clamping

blackSampLen Num Black Sample pixels per line

blackSampLine Num Black Sample lines

blackPixStart Start black pixel position

blackGain Gain to be applied to optical black average

dcSub Constant DC value to subtract if clampEn is disabled

colPtn CCDC color pattern

blkCmpR Black level compensation for R color pixels

blkCmpGR Black level compensation for GR color pixels

blkCmpGB Black level compensation for GB color pixels

blkCmpB Black level compensation for B color pixels

31 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

The file psp_vpfe.h has the PSP_VPFE_CCDC_Fpc data structure is
used to configure the black adjustment for Raw Input runtime. The
params are explained below:

Parameter Description

fpcEnable CCDC Fault Pixel Correction enable/disable

fpcnum Number of Fault Pixels to be corrected

fpcAddr Address of the FPC Table

fpcreset Parameter to reset the FPC error

32 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

3.4 Enumerations
This section lists the enumerations available in the PSP module.

enum PSP_VPFEIoctlCommand

Defines Description

PSP_VPFE_IOCTL_CCDC_VALIDATE_BUFFER To validate the FrameBuffer and also to get the
Correct Frame Buffer size

PSP_VPFE_IOCTL_CCDC_BLACK_ADJUST For black adjustment when the Input is Raw

PSP_VPFE_IOCTL_CCDC_FPC For Fault Pixel Correction when the Input is Raw

PSP_VPFE_IOCTL_START_CCDC To Start CCDC Engine

PSP_VPFE_IOCTL_STOP_CCDC To Stop CCDC Engine

enum PSP_VPFE_Id

Defines Description

PSP_VPFE_INVALID_ID Invalid Id

PSP_VPFE_CCDC CCDC Channel Id

PSP_VPFE_MAX_INTERFACES_SUPPORTED Maximum number of Id supported

enum FVID_videoInterface

Defines Description

FVID_VI_BT656_8BIT Input is from Video Decoder (YCbCr)

FVID_VI_RAW_10BIT_CS Input is from MT9T001 sensor

enum PSP_VPFEPack

Defines Description

PSP_VPFE_PACK8_16BITS_PIXEL Pack raw data in to 16bits

PSP_VPFE_PACK8_8BITS_PIXEL Pack raw data into 8 bits

enum PSP_VPFE_Datapol

Defines Description

PSP_VPFE_DataPol_Normal Data Polarity :Normal

PSP_VPFE_DataPol_OnesComplement Data Polarity : One’s Complement

33 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

enum PSP_VPFE_SyncPolarity

Defines Description

PSP_VPFE_SyncPol_Positive Sync Polarity : Positive

PSP_VPFE_SyncPol_Negative Sync Polarity : Negative

enum PSP_VPFE_SyncDirection

Defines Description

PSP_VPFE_SyncDir_Input Sync Direction :Input

PSP_VPFE_SyncDir_Output Sync Direction :Output

enum PSP_VPFE_BlkComp

Defines Description

PSP_VPFE_BlkCompEnable Black Compensation Enable

PSP_VPFE_BlkCompDisable Black Compensation disable

enum PSP_VPFE_ALaw

Defines Description

PSP_VPFE_ALaw_Disable A-Law Disable

PSP_VPFE_ALaw_Enable A-Law Enable

enum PSP_VPFE_Fpc

Defines Description

PSP_VPFE_Fpc_Disable FPC Disable

PSP_VPFE_Fpc_Enable FPC Enable

enum PSP_VPFE_Err

Defines Description

PSP_VPFE_Err_Noreset Do not reset the FPC error

PSP_VPFE_Err_reset Reset the FPC error

34 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

CHAPTER 4

PORTING GUIDE

This section describes porting of VPFE driver on different TI platforms.

4.1 Porting Description

The figure below shows VPFE device driver architecture and changes those are required at the
driver layers while porting VPFE device driver to any other Platform.

Figure 3 Driver Architecture

There will not be any change required in the GIO Layer, IOM Layer and DDA Layer while porting
VPFE device driver on any TI platform. This Layer will be used as-is.

35 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

DDC Layer

The DDC layer is the core driver. This layer will exclusively contain the functionality related to a
particular platform. At the DDC layer VPSS driver has divided CCDC/Video/OSD/Cursor and
VENC into sub-components known as planes. VPBE and VPFE driver considers all this planes as
separate hardware itself. Each of these planes has its own object which will contain the elements
as per its functionality. These are the part of main parent object which will have all the parameters
that are related to Video Frontend (VPFE) and Backend (VPBE) as whole.

VPSS
DM6437

OSD1

OSD0VIDEO0

VIDEO1

CURSORVENC

CCDC

VPSS
NEW PLATFORM

OSD0VIDEO0

VIDEO1

CURSORVENC

CCDC

Figure 4 Driver Portability

As shown in above figure, DM6437 has OSD1 plane which is not present in the VPSS hardware
on new Platform. While porting DM6437 VPBE driver on new platform you need to remove the
OSD-1 plane sub-component object from the current DM6437 driver. Similarly in future, if there is
any new sub-component then its corresponding object needs to be added in the driver object at
this layer.

Hence in future platforms if there is a change in a way to perform a task the driver shall plug-in
platform specific core for the new platform.

LLC Layer

This layer provides the abstraction to the Driver core on different platforms. This layer is specific
to a specific platform. Mainly this layer should be having register overlaying, macro definitions. If
not register overlaying is used then this layer will have low-level APIs to communicate with the
hardware
This layer should be having an as-is map of the peripheral device registers in the processor’s
memory map. Peripheral device registers map may differ from one platform to other. This change
needs to be incorporated while porting driver code from once platform to another platform at LLC
layer.

36 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

CHAPTER 5

HARDWARE DEPENDENCY

This section describes hardware components that are not built inside VPSS module and VPSS
has dependency on such peripherals. (For eg: The DM6437 VPSS module doesn’t have in buit
video decoder).For these scenarios the driver should have informations about certain parameters
that it external peripheral needs.

5.1 TVP5146 Video Decoder

The TVP5146 is a single chip external digital video decoder that digitizes and decodes all popular
baseband analog video formats into digital component video. The TVP5146 decoder supports the
analog-to-digital (A/D) conversion of component RGB and YPbPr signals, as well as the A/D
conversion and decoding of NTSC, PAL and SECAM composite and S-video into component
YCbCr. (For details on the device specifications see references above). Interfacing the VPSS
module front-end with TVP5146 device is required since TVP5146 provides necessary interfaces
to the VPSS front-end.

Application

TVP5146

TVP5146
_Open TVP5146

_Close

TVP5146
_Contro

l

VPFE Driver

FVID_
control

FVID_
delete

FVID_
create

Figure 5 TVP5146 Decoder Function compatible with VPFE driver

37 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

TVP5146 video decoder is an independent interface which is called from the VPFE driver.As
shown in above when the VPFE driver will call FVID_create it will call TVP5146_Open function
which will initialize the TVP5146 and intialize I2C driver for serial communication. To configure
the TVP5146, application has to pass the PSP_VPSS_EXT_VIDEO_DECODER_CONFIG Ioctl
command by calling FVID_control. This will indirectly call TVP5146_Control function. Once the
VPFE driver deletes the channel, it will delete the TVP5146 instance and close the I2C driver as
well.

5.1.1. TVP5146 Interface details

The TVP5146 interfaces with the VPFE driver using 3 pointers to the functions as below:

 PSP_VPFE_TVP5146_Open
 PSP_VPFE_TVP5146_Close
 PSP_VPFE_TVP5146_Control

Function Function Description

1 PSP_VPFE_TVP5146_Open  To initialize external tvp5146 video decoder
that is used by application

2 PSP_VPFE _TVP5146_Close  To do the final house-keeping before the
decoder is closed

4 PSP_VPFE _TVP5146_Control  IOCTL to change tvp5146 video decoder
parameters runtime.

TVP5146 video decoder peripheral registers are configured using I2C driver. TVP5146 video
decoder will act as Slave device.I2C will communicate with TVP5146 using the TVP5146 video
decoder slave address (0x5D).Refer to TVP5146 specs for more detail.

PSP_VPFE_TVP5146_Open function is used to initialize the I2C driver. It configures the I2C for
further register read and write of TVP5146 video decoder. During open call application plugs-in
the decoder functions in the function pointers provided in the front-end (external decoder) object.

During the close call the external decoder close function is called through the function pointer
PSP_VPFE_TVP5146_close.

During the IOCTL calls the external decoder control function is called through the function pointer
PSP_VPFE_TVP5146_Control.

Table below gives the details about the function pointers where-in the external decoder plugs-in.

Prototype

1 EVD_Handle (*Open)()

2 Int (*Close)(Ptr handle)

38 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Prototype

3 Int (*Control)(Ptr handle,Uint32 Cmd,Ptr CmdArg)

VPFE driver will communicate to external video decoder using the IOCTL commands as shown in
below figure. Hence external decoder should provide the support to these functions that are
required by the drivers as mandatory.

IOCTL Command VALUE PARAMS

PSP_VPSS_EXT_VIDEO_DECODER_CONFIG 0x01 TVP5146_ConfigParams
PSP_VPSS_EXT_VIDEO_DECODER_STATUS 0x02 TVP5146_StatusParams
PSP_VPSS_EXT_VIDEO_DECODER_CONTROL 0x03 TVP5146_ControlParams

To configure the TVP5146 video decoder application needs to create one object of
TVP5146_ConfigParams structure.

Application needs to call VPFE Ioctl with PSP_VPSS_EXT_VIDEO_DECODER_CONFIG Ioctl
cmd to configure the TVP5146 external video decoder and pass object of
TVP5146_ConfigParams structure as cmdArg in the IOCTL.

Below is TVP5146_ConfigParams structure description:-

typedef struct _PSP_VPFE_TVP5146_ConfigParams
{
 Bool enable656Sync;
 TVP5146_Format format;
 TVP5146_Mode mode;
} PSP_VPFE_TVP5146_ConfigParams;

Status parameters of TVP5146 video decoder like fieldRate, lostlock, hlock, vlock etc are
elements of PSP_VPFE_TVP5146_StatusParams structure.

To get the status of above mentioned status params runtime, call VPFE IOCTL with
PSP_VPSS_EXT_VIDEO_DECODER_STATUS cmd.Pass Object of
PSP_VPFE_TVP5146_StatusParams as cmdArg.

Below is PSP_VPFE_TVP5146_StatusParams structure description:-

typedef struct _PSP_VPFE_TVP5146_StatusParams
{
 Uint8 fieldRate;

Uint8 lostLock;
 Uint8 colSubCarrier_lock;
 Uint8 vLock;
 Uint8 hLock;
} PSP_VPFE_TVP5146_StatusParams;

39 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Control parameters of TVP5146 video decoder like autogain, contrast, brightness, hue, etc are
elements of TVP5146_ControlParams structure.

typedef struct _PSP_VPFE_TVP5146_ControlParams
{
 Bool autoGain;
 Uint8 brightness;
 Uint8 contrast;
 Uint8 saturation;
 Uint8 hue;
} PSP_VPFE_TVP5146_ControlParams;

Refer to pspdrivers\inc\ psp_tvp5146_extVidDecoder.h header file for more detail.

5.2 MT9001 Image Sensor

The MT9001 Image sensor is a QXGA-format ½-inchCMOS active-pixel digital image sensor with
an active imaging pixel array of 2048H x 1536V.It incorporates sophisticated camera functions
on-chip such as windowing; column and row skip mode and snapshot mode. It is a programmable
simple two serial wire interface.

The image sensor can be operated in its default mode or programmed by the user for frame size,
exposure, gain setting, and other parameters. The default mode outputs a QXGA image at 12
frames per second. An on-chip analog-to-digital converter (ADC) provides 10bits per pixel.

The MT9T001 produces extraordinarily clear, sharp digital pictures, and its ability to capture both
continuous video and single frames makes it the perfect choice for a wide range of consumer and
industrial applications, including digital still cameras, digital video cameras, and PC cameras.

MT9001 image sensor is an independent interface with the VPFE driver.MT9001 image sensor
will be configured, through IOCTL of VPFE driver.

Application

TVP5146

MT9001
_Open MT9001

_Close

MT9001
_Control

VPFE Driver

FVID_
control

FVID_
delete

FVID_
create

Figure 6 MT9001 Sensor Function compatible with VPFE driver

40 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

MT9901 image sensor is an independent interface which is called from the VPFE driver.As shown
in above when the VPFE driver will call FVID_create it will call MT9001_Open function which will
initialize the MT9001 chip and intialize I2C driverto serial communication. To configure the
MT9001, application has to pass the PSP_VPSS_EXT_VIDEO_DECODER_CONFIG Ioctl
command by calling FVID_control. This will indirectly call MT9001_Control function. Once the
VPFE driver deletes the channel, it will delete the MT9001 instance and close the I2C driver as
well.

5.2.1. MT9001 Sensor Interface details

The MT9001 image sensor interfaces with the VPFE driver using 3 pointers to the functions as
below:

 MT9001_Open
 MT9001_Close
 MT9001_Control

Function Function Description

1 MT9001_Open  To initialize external MT9001 image sensor
that is used by application

2 MT9001_Close  To do the final house-keeping before the
sensor is closed

4 MT9001_Control  IOCTL to change MT9001 image sensor
parameters runtime.

MT9001 image sensor peripheral registers are configured using I2C driver. MT9001 image
sensor will act as Slave device.I2C will communicate with MT9001 using the MT9001 video
decoder slave address (0x5D).Refer to MT9001 specs for more detail. Before communicating
with MT9001, VPFE driver also configures PCF8574A I/O expander with the slave address 0x70.

MT9001_Open function is used to initialize the I2C driver. It configures the I2C for further register
read and write of MT9001 image sensor. During open call application plugs-in the sensor
functions using the function pointers provided in the front-end (external decoder) object. It also
configures PCF8574A I/O expander for MT9001 image sensor.

During the close call the external decoder close function is called through the function pointer
MT9001_Close.

During the IOCTL calls the external decoder control function is called through the function pointer
MT9001_Control.

Table below gives the details about the function pointers where-in the external decoder plugs-in.

41 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Prototype

1 EVD_Handle (*Open)()

2 Int (*Close)(Ptr handle)

3 Int (*Control)(Ptr handle,Uint32 Cmd,Ptr CmdArg)

VPFE driver will communicate to image sensor using the IOCTL commands as shown in below
figure. Hence external decoder should provide the support to these functions that are required by
the drivers as mandatory.

IOCTL Command VALUE PARAMS

PSP_VPSS_EXT_VIDEO_DECODER_CONFIG 0x01 MT9001_FormatParams
PSP_VPSS_EXT_VIDEO_DECODER_CONTROL 0x03 MT9001_ControlGainParams
PSP_VPSS_EXT_VIDEO_DECODER_STD_FORMAT 0x04 MT9001_StandardFormat

Application needs to call VPFE Ioctl with PSP_VPSS_EXT_VIDEO_DECODER_CONFIG Ioctl
cmd to configure the MT9001 image sensor and pass object of MT9001_FormatParams structure
as cmdArg in the IOCTL.

typedef struct _MT9001_FormatParams
{
 Uint16 column_size;
 Uint16 row_size;
 Uint16 h_blank;
 Uint16 v_blank;
 Uint16 shutter_width;
 Uint16 row_addr_mode;
 Uint16 col_addr_mode;
 Uint16 black_level;
 Uint16 pixel_clock_ctrl;
 Uint16 row_start;
 Uint16 col_start;
}MT9001_FormatParams;

Control parameters of MT9001 image sensor like analog and digital gain of green, blue and red
can be change through PSP_VPSS_EXT_VIDEO_DECODER_CONTROL Ioctl. The control
params are present in MT9001_ControlGainParams structure.

typedef struct _MT9001_ControlGainParams
{
 Uint8 green1_analog_gain;
 Uint8 blue_analog_gain;
 Uint8 red_analog_gain;
 Uint8 green2_analog_gain;
 Uint8 green1_digital_gain;
 Uint8 blue_digital_gain;
 Uint8 red_digital_gain;

42 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 Uint8 green2_digital_gain;
}MT9001_ControlGainParams;

Application needs to call VPFE Ioctl with PSP_VPSS_EXT_VIDEO_DECODER_STD_FORMAT
Ioctl cmd to configure the MT9001 image sensor with specified standard format. Supported
standard formats are specified by the enum MT9001_StandardFormat.

typedef enum _MT9001_STANDARD_FORMAT
{
 MT9T001_MODE_VGA_30FPS,
 MT9T001_MODE_VGA_60FPS,
 MT9T001_MODE_SVGA_30FPS,
 MT9T001_MODE_SVGA_60FPS,
 MT9T001_MODE_XGA_30FPS,
 MT9T001_MODE_480p_30FPS,
 MT9T001_MODE_480p_60FPS,
 MT9T001_MODE_576p_25FPS,
 MT9T001_MODE_576p_50FPS,
 MT9T001_MODE_720p_24FPS,
 MT9T001_MODE_720p_30FPS,
 MT9T001_MODE_1080p_18FPS
} MT9001_StandardFormat;

NOTE: It is required to invert the pixel clock of MT9T001 sensor . The image output will be
of good quality only when pixel clock of MT9T001 is inverted.

Refer to pspdrivers\system\DM6437\bios\dm6437_evm\src\video\ MT9001_extImageSensor.h
header file for more detail.

43 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

I2C Driver for External Chip

The i2c driver will be used by VPSS driver for communicating with external chips like TVP5146
and MT9001 image sensor. The various functions of I2C are implemented as interfaces are
explained below.

Following are the functions list of I2C driver implemented as interface.

Function Function Description

1 i2c_init  To open i2c driver. This is called from
tvp5146VideoDecoderInit.

2 i2c_deInit
 To do the final house-keeping of I2C driver.

This function is called from
tvp5146VideoDecoderDeinit.

3 i2c_writeReg  To write on any TVP5146 register through i2c.

4 i2c_readReg  To read any TVP5146 register.

Refer to pspdrivers\system\DM6437\bios\dm6437_evm\src\video\src\psp_i2c_interface.c source
file for more detail

44 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

CHAPTER 6

EXAMPLE APPLICATIONS

This section describes the example applications that are included in the package. These sample
application can be run as is for quick demonstration, but the user will benefit most by using these
samples as sample source code in developing new applications.

6.1 Writing Applications for VPFE
This section provides guidance to user for writing their own application for VPFE driver

6.1.1. File Inclusion
To write sample application user has to include following header files in the application:

1. psp_vpfe.h

This file contains the interfaces, data types and symbolic definitions that are needed
by the application to utilizes the services of VPFE device driver.

2. fvid.h

This file contains FVID layer macros. These macros are wrapper macros form a
wrapper above GIO.

3. fvid_evmDM6437.h
This file is provided to support compatibility to support previous DM6437 Video
Releases

4. tvp5146_extVidDecoder.h

This file contains the interfaces, data types and symbolic definitions that are needed
by the application to configure the TVP5146 video decoder. This header files needs
to be added at the application only if the input to VPFE module is from video
decoder.

5. MT9001_extImageSensor.h

This file contains the interfaces, data types and symbolic definitions that are needed
by the application to configure the MT9001 Image sensor. This header files needs to
be added at the application only if the input to VPFE module is configured from
Image Sensor.

45 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

6.1.2. Driver Initialization
To use the VPFE device driver, a device entry must be added and configured in the DSP/BIOS
configuration tool.

To have VPFE device driver included in the application, corresponding TCI file have to be
included in BIOS TCF i.e. “dm6437_vpfe0.tci” must be included in BIOS TCF file of the
application. This file can be found in video sample directory.

The VPFE driver initialization in BIOS TCF looks like the following:
bios.UDEV.create("VPFE0");

bios.UDEV.instance("VPFE0").fxnTable = prog.extern("VPFEMD_FXNS");
bios.UDEV.instance("VPFE0").fxnTableType = "IOM_Fxns";

Apart from the VPFE driver initialization, I2C driver should also be initialized in the BIOS TCF file.
For details on how to initialize I2C driver, refer I2C driver user guide –
BIOS_I2C_Driver_UserGuide.pdf.

6.1.3. Dependent Projects/Libraries
Following are the dependent libraries/projects to successfully build video application

 VPFE

 Previewer (Optional)

 Video (for external encoders/decoders)

 I2C

 PAL_OS

 SoC specific PAL_SYS

6.1.4. Pragma directives used in the Applications
 DATA_ALIGN

o Any buffer used for storing/retrieving data should be cache aligned at 128
bytes, since they write/read, to/from SDRAM/DDRAM.

o The CCDC and OSD source and destination addresses should always be on
32-byte alignment.

o DATA_ALIGN(4) is used in some places (for ex: params structures) in order
to retain the 4-byte alignment even if padding switch is used in compiler
options

6.1.5. Memory Allocation

Memory allocation for video frame buffers has to be done by application. This frame buffers are
queued in the drivers to facilitate the driver to capture. Configuration of surface params of frame
like height, width and pitch has to be done by application. Buffer freeing should also be taken
care by application.

46 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

The surface parameters of frame which are required for configuration are elements of
FVID_Frame structure.

FVID_Frame Structure:

Parameter Description

Pitch Pitch or Offset of the Frame

Lines Number of lines of the Frame.

frame.frameBufferPtr FrameBuffer allocated by Application.
Note: Application allocates memory for the Frame buffer and
passes it to driver.

Bpp Bits Per Pixel

FVID_allocBuffer function can be called from application to fill the FVID_Frame elements. This
function fills the surface params along with allocating the memory to frame buffers. The
information of height, width and pitch can be obtained from the handle that is passed as an
argument to this function.

Refer to example code to alloc the FrameBuffer using FVID_allocBuffer
function.

I am a
snow-

lines

Frame buffer address

Address offset value for each line
(Pitch)

width

Height

Bold: Surface params
Normal: Hardware params

47 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

FVID_Handle CcdcHandle;
FVID_Frame *FBAddr = NULL;

status = FVID_allocBuffer (CcdcHandle, & FBAddr);

6.1.6. Buffer Management

Applications can capture the buffers by allocating the buffers and ‘queuing’ the buffers to facilitate
the driver to capture. The driver captures the image on to the queued buffer and the filled buffer
can be made use by the application by ‘de-queuing’ it.

The drivers maintain two circular queues called READY queue and a FREE queue for each
channel of display and capture. The READY queue contains the buffer pointers of each of the
buffers which are to be worked upon (passed to the driver using the QUEUE call), and the FREE
buffer contains all the buffer pointers which have been worked upon. The buffers, when queued
will be a part of the serial queue of READY buffers waiting to be worked on either by the display

Figure. Operation of QUEUE call.

FREE QueueREADY Queue Buffers

Figure: Operation of DE_QUEUE call.

48 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

or for capture by their respective ISRs. Once worked upon, the driver checks if there are any
more buffers in the queue to be worked on. If so, the worked buffer will move to a FREE queue,
to be fetched by the application through DE_QUEUE. Once the driver comes to the last remaining
buffer in the READY queue, the driver will loop over the same buffer to work upon till a new buffer
is available. Since the driver cannot do away with this last remaining buffer, the DE_QUEUE call
here will fail if issued

Application can call the FVID_exchange whose functionality is equivalent to serial calls of Queue
and Dequeue, in a single API call. The Exchange call will avoid the simultaneous call of Queue
and Dequeue Application passes an in/out parameter that points to frame buffer that is to be
relinquished by the driver. After the call returns successfully, this function fills with the pointer to
the frame buffer that was previously queued in the device driver.

ISR OPERATION

The ISR for VPFE is hooked to VDINT0 interrupt which occurs at every VSYNC. The ISR handles
queuing and dequeuing of the frame. ISR also calls an application callback at each vsync.
Queuing of frame buffer is done at every even field (second field) of every frame for interlaced
modes so that the buffer does not capture fields of different frames. To achieve this, the queuing
is done at ISR of even field so that register is updated at the start of the next vsync which is also
the beginning of the next frame.

Field ID

VD

New Frame
buffer queued

Beginning of
capture on the
new frame.

New Frame
buffer queued

49 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

6.2 The VPFE YUV Sample Application

6.2.1. Introduction
The sample application configures TVP5146 video decoder chip as input to ccdc module.
TVP5146 video decoder gives processed output in YUV format. Capture driver (VPFE) captures
data in YUV format and gives it to display driver (VPBE) simultaneously in loop back.

6.2.2. Building the Application
The sample application project file is located in the
<root>\packages\ti\sdo\pspdrivers\system\dm6437\bios\evmDM6437\video\sample\build\lopback
folder. The sample can be rebuilt directly from this project file using Code Composer studio.

6.2.3. Loading the Application
The sample application is loaded and executed via Code composed studio. It is good idea to
reset the board before loading Code Composer. The application will print out the status
messages and type of functionality the driver performs on the Console output (HyperTerminal).

Note:-It is required to connect DVD player or Camera output to Video In connector on the board
and display screen (TV) input to Video out connector (DAC B) on the board.

6.2.4. Configuration Parameters
This section describes about how the TVP5146 video decoder chip, VPFE driver and VPBE driver
parameters configured for loop back application.

TVP5146 Configuration Parameters

TVP5146 video decoder should be configured when CCDC input is from TVP5156 .The default
parameters for Configuring TVP5146 video decoder is described below:

static TVP5146_ConfigParams tvp5146Params =
{
 TRUE, /* enable656Sync */
 TVP5146_FORMAT_COMPOSITE, /* format */
 TVP5146_MODE_AUTO /* mode */
};
VPFE Driver Configuration Parameters

VPFE driver is configured to capture processed data (YUV) from TVP5146 video decoder. The
default parameters for VPFE driver are described below:

static PSP_VPFECcdcConfigParams ccdcParams =
{
 FVID_VI_BT656_8BIT, /* dataFlow */
 FVID_FRAME_MODE, /* ffMode */
 480, /* height */
 720, /* width */
 (720 *2), /* pitch */

50 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 0, /* horzStartPix */
 0, /* vertStartPix */
 NULL, /* appCallback */
 {
 PSP_VPFE_TVP5146_Open, /* extVD Fxn */
 PSP_VPFE_TVP5146_Close,
 PSP_VPFE_TVP5146_Control,
 },
 0 /* segId */
};

VPBE Driver Configuration Parameters

The VPBE driver is used to display a captured image on display screen. The default parameters
to configure the VPBE driver are described below:

static PSP_VPBEOsdConfigParams vid0Params =
{
 FVID_FRAME_MODE, /* ffmode */
 FVID_BPP_BITS16, /* bitsPerPixel */
 FVID_YCbCr422_INTERLEAVED, /* colorFormat */
 (720 * (16/8u)), /* pitch */
 {
 0, /* leftMargin */
 0, /* topMargin */
 720, /* width */
 480, /* height */
 },
 0, /* segId */
 PSP_VPBE_ZOOM_IDENTITY, /* hScaling */
 PSP_VPBE_ZOOM_IDENTITY, /* vScaling */
 PSP_VPBE_EXP_IDENTITY, /* hExpansion */
 PSP_VPBE_EXP_IDENTITY, /* vExpansion */
 NULL /* appCallback */
};
static PSP_VPBEVencConfigParams vencParams =
{
 PSP_VPBE_DISPLAY_PAL_INTERLACED_COMPOSITE /* Display Standard */
};

6.3 The VPFE RAW Sample Application

6.3.1. Introduction
The sample application takes input from Image sensor. Image sensor gives raw image as an
output. Capture driver (VPFE) captures raw data and gives it to Black & white conversion logic.
Black and White logic converts data in black & white. After converting data into black &White it is
given to Display driver (VPBE).This application runs in loop back.

51 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

6.3.2. Building the Application
The sample application project file is located in the
<root>\packages\ti\sdo\pspdrivers\system\dm6437\bios\evmDM6437\video\sample\build\rawcapt
ure folder. The sample can be rebuilt directly from this project file using Code Composer studio.

6.3.3. Loading the Application
The sample application is loaded and executed via Code composed studio. It is good idea to
reset the board before loading Code Composer. The application will print out the status
messages and type of functionality the driver performs on the Console output (HyperTerminal).

Note:-Connect Image Sensor card on ADON card provided along with the board. Then insert this
add-on card setup on the DM6437 hardware board. Connect cable from DAC B output connector
to TV screen to see the image captured.

6.3.4. Configuration Parameters
This section describes how the VPFE driver and VPBE driver parameters configured for raw loop
back application to work.

MT9001 Image Sensor

The MT9001 Image sensor is not configured from Software. Image sensor has default values at
power on which are taken as input to VPFE driver.

52 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

VPFE Driver Configuration Parameters

VPFE driver is configured to capture RAW data from MT9001 Image sensor. The VPFE driver is
configured in default values for Raw Capture is described below:

static PSP_VPFECcdcConfigParams ccdcParams =
{
 FVID_VI_RAW_10BIT_CS, /* dataFlow */
 FVID_FIELD_MODE, /* ffMode */
 480, /* height */
 720, /* width */
 (720 *2), /* pitch */
 0, /* horzStartPix */
 0, /* vertStartPix */
 NULL, /* appCallback */
 {

 NULL, /* extVD Fxn */
 NULL,
 NULL,

 },
 0, /*segId */
 {

PSP_VPFE_BITS16, /* dataSize */
PSP_VPFE_PACK8_16BITS_PIXEL, /* pack8 */
PSP_VPFE_DataPol_Normal, /* dataPol */
PSP_VPFE_SyncPol_Positive, /* VDSyncPol */
PSP_VPFE_SyncPol_Positive, /* HDSyncPol */
PSP_VPFE_SyncDir_Input, /* HDVDMaster */
50, /* HDSyncWidth */
4, /* VDSyncWidth */
800, /* numPxlPerLine */
1000, /* numLinPerFld */
PSP_VPFE_ALaw_Disable, /* ALawEnable */
PSP_VPFE_ALaw_bits15_6, /* ALaw_Width */

 }
};

53 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

VPBE Driver Configuration Parameters

The VPBE driver is used to display a captured image on display screen. Here OSD plane is also
configured along with Video plane. The default parameters to configure the VPBE driver are
described below:

static PSP_VPBEOsdConfigParams vid0Params =
{

FVID_FRAME_MODE, /* ffmode */
FVID_BPP_BITS16, /* bitsPerPixel */
FVID_YCbCr422_INTERLEAVED, /* colorFormat */
(720 * (16/8u)), /* pitch */
{

0, /* leftMargin */
0, /* topMargin */
720, /* width */
480, /* height */

},
0, /* segId */
PSP_VPBE_ZOOM_IDENTITY, /* hScaling */
PSP_VPBE_ZOOM_IDENTITY, /* vScaling */
PSP_VPBE_EXP_IDENTITY, /* hExpansion */
PSP_VPBE_EXP_IDENTITY, /* vExpansion */
NULL /* appCallback */

};

static PSP_VPBEOsdConfigParams osd0Params =
{

FVID_FRAME_MODE, /* ffmode */
FVID_BPP_BITS16, /* bitsPerPixel */
FVID_RGB565_INTERLEAVED, /* colorFormat */
(720 * (16/8u)), /* pitch */
{

0, /* leftMargin */
0, /* topMargin */
720, /* width */
480, /* height */

},
0, /* segId */
PSP_VPBE_ZOOM_IDENTITY, /* hScaling */
PSP_VPBE_ZOOM_IDENTITY, /* vScaling */
PSP_VPBE_EXP_IDENTITY, /* hExpansion */
PSP_VPBE_EXP_IDENTITY, /* vExpansion */
NULL, /* appCallback */
PSP_VPBE_BLEND7 /* blending */

};

static PSP_VPBEVencConfigParams vencParams =
{

PSP_VPBE_DISPLAY_NTSC_INTERLACED_COMPOSITE /* Display Standard */
};

54 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

6.4 The VPFE PREVIEWER on-the-fly Sample Application

6.4.1. Introduction
The sample application takes input from Image sensor. Image sensor gives raw image as an
output. Capture driver (VPFE) captures raw data and gives it to Previewer module. Previewer
converts the raw data (Bayer Pattern) in to processed data (YUV). Processed data is given to
Display driver (VPBE).This application runs in loop back.

Constraints: The previewer driver must be opened before the VPFE driver. Previewer should be
configured as CCDC input for on-the-fly mode. VPFE driver checks and decide the
path based on Previewer input mode. If the previewer input is CCDC then VPFE
driver is configured in on-the-fly mode.

6.4.2. Building the Application
The sample application project file is located in the
<root>\packages\ti\sdo\pspdrivers\system\dm6437\bios\evmDM6437\video\sample\build\preview
er_on_the_fly folder. The sample can be rebuilt directly from this project file using Code
Composer studio.

Note: To enable A-Law Feature in Ccdc and Inverse A-Law in Previewer ensure that FPGA
available on MT9T001 sensor card in programmed for 10-bit data. If FPGA is not programmed for
10-bit then faded image will be observed.

6.4.3. Loading the Application
The sample application is loaded and executed via Code composed studio. It is good idea to
reset the board before loading Code Composer. The application will print out the status
messages and type of functionality the driver performs on the Console output (HyperTerminal).

Note:-Connect Image Sensor card on ADON card provided along with the board. Then insert this
adon card setup on the DM6437 hardware board. Connect cable from DAC B output connector to
TV screen to see the image captured.

6.4.4. Configuration Parameters
This section describes how the VPFE, Previewer and VPBE driver parameters configured for raw
loop back application to work.

PREVIEWER Driver Configuration Parameters

To configure the Previewer in on-the-fly mode pass the CCDC input at time of FVID_create. Once
the Previewer configures the input as CCDC, Previewer will configure its default parameters
using set params Ioctl.
Refer to example code to open the Previwer driver for on-the-fly
functionality.
GIO_Handle PrevHandle;
PSP_previewerChannelCreateMode prevChannel;
/* Create Previewer Channel */
prevChannel.chanSource.source = PSP_PREVIEWER_CHANNEL_CCDC;
prevChannel.segId = 0;
PrevHandle = GIO_create("/previewer", IOM_INOUT, NULL,
 &prevChannel,&gioAttrs);

55 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

if (NULL == PrevHandle)
{
 printf("VPSS :Previewer Create........Failed !\r\n");
 return;
}

56 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Appendix A

The example code of loopback which capture the Image from DVD player and output the
captured image to display driver is described.The input to VPFE driver is Processed data (YUV)
from video decoder and output is displayed on display Screen (TV).There is one header file
yuv_imageCbCr.h provided in the package which stores array of values which represents the
shrek image.

#include <std.h>
#include <gio.h>
#include <log.h>

#include "fvid.h"
#include "psp_vpfe.h"
#include "psp_vpbe.h"
#include "psp_tvp5146_extVidDecoder.h"
#include "psputils.h"

#define VPSS_DBG PSP_DEBUG
#define NO_OF_BUFFERS (4u)
/*Global Variable Defined */
static FVID_Frame *CcdcallocFB[NO_OF_BUFFERS]={NULL};
static FVID_Frame *VidallocFB[NO_OF_BUFFERS] ={NULL};

static FVID_Handle CcdcHandle;
static FVID_Handle Vid0Handle;
static FVID_Handle VencHandle;

static PSP_VPFE_TVP5146_ConfigParams tvp5146Params =
{
 TRUE, /* enable656Sync */
 PSP_VPFE_TVP5146_FORMAT_COMPOSITE, /* format */
 PSP_VPFE_TVP5146_MODE_AUTO /* mode */
};

static PSP_VPFECcdcConfigParams ccdcParams =
{
 FVID_VI_BT656_8BIT, /* dataFlow */
 FVID_FRAME_MODE, /* ffMode */
 480, /* height */
 720, /* width */
 (720 *2), /* pitch */
 0, /* horzStartPix */
 0, /* vertStartPix */
 NULL, /* appCallback */
 {
 PSP_VPFE_TVP5146_Open, /* extVD Fxn */
 PSP_VPFE_TVP5146_Close,
 PSP_VPFE_TVP5146_Control,

57 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 },
 0 /*segId */
};
static PSP_VPBEOsdConfigParams vid0Params =
{
 FVID_FRAME_MODE, /* ffmode */
 FVID_BPP_BITS16, /* bitsPerPixel */
 FVID_YCbCr422_INTERLEAVED, /* colorFormat */
 (720 * (16/8u)), /* pitch */
 0, /* leftMargin */
 0, /* topMargin */
 720, /* width */
 480, /* height */
 0, /* segId */
 PSP_VPBE_ZOOM_IDENTITY, /* hScaling */
 PSP_VPBE_ZOOM_IDENTITY, /* vScaling */
 PSP_VPBE_EXP_IDENTITY, /* hExpansion */
 PSP_VPBE_EXP_IDENTITY, /* vExpansion */
 NULL /* appCallback */

};
static PSP_VPBEVencConfigParams vencParams =
{
 PSP_VPBE_DISPLAY_NTSC_INTERLACED_COMPOSITE /* Display Standard */
};

static void vpss_main()
{
 PSP_VPBEChannelParams beinitParams;
 PSP_VPFEChannelParams feinitParams;
 GIO_Attrs gioAttrs = GIO_ATTRS;
 FVID_Frame *FBAddr = NULL;
 Uint32 i = 0;
 Uint32 NumOfIterations = 2000;

 VPSS_DBG("VPSS: Loopback Application Started \r\n");

 /**
 * Create Ccdc Channel
 **/
 feinitParams.id = PSP_VPFE_CCDC;
 feinitParams.params = (PSP_VPFECcdcConfigParams*) &ccdcParams;
 CcdcHandle = FVID_create ("/VPFE0",IOM_INOUT,NULL,
 &feinitParams,&gioAttrs);
 if (NULL == CcdcHandle)
 {
 VPSS_DBG ("VPSS :CCDC Create.......FAILED \r\n");
 VPSS_DBG ("VPSS :End of VPSS Loopback Application\r\n");
 return;
 }

58 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 /**
 * Configure the TVP5146 Video Decoder
 **/
if (IOM_COMPLETED != FVID_control(CcdcHandle,
 VPFE_ExtVD_BASE+
 PSP_VPSS_EXT_VIDEO_DECODER_CONFIG,
 &tvp5146Params))
{
 VPSS_DBG ("VPSS :Error in Configuring Video Decoder \r\n");
 }
 else
 {
 if (IOM_COMPLETED == FVID_allocBuffer(CcdcHandle,&CcdcallocFB[0]))
 {
 if (IOM_COMPLETED != FVID_queue(CcdcHandle,CcdcallocFB[0]))
 {
 VPSS_DBG ("VPSS :CCdC Queuing.......FAILED \r\n");
 }
 }
 }
 /**
 * Create Video Channel
 **/
 beinitParams.id = PSP_VPBE_VIDEO_0;
 beinitParams.params = (PSP_VPBEOsdConfigParams *) &vid0Params;
 Vid0Handle = FVID_create ("/VPBE0",IOM_INOUT,NULL,
 &beinitParams,&gioAttrs);
 if (NULL == Vid0Handle)
 {
 VPSS_DBG ("VPSS :VIDE0 -0 Create.......FAILED \r\n");
 VPSS_DBG ("VPSS :End of VPSS Loopback Application\r\n");
 return;
 }
 else
 {
 if(IOM_COMPLETED == FVID_allocBuffer(Vid0Handle,&VidallocFB))
 {
 if(IOM_COMPLETED != FVID_queue(Vid0Handle,VidallocFB))
 {
 VPSS_DBG("VPSS :Video 0 Queuing.......FAILED \r\n");
 }
 }
 }
 /**
 * Create Venc Channel
 **/
 beinitParams.id = PSP_VPBE_VENC;
 beinitParams.params = (PSP_VPBEVencConfigParams *)&vencParams;
 VencHandle = FVID_create("/VPBE0",IOM_INOUT,NULL,
 &beinitParams,&gioAttrs);

59 Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 if (NULL == VencHandle)
 {
 VPSS_DBG("VPSS :Venc Create ... FAILED!\r\n");
 VPSS_DBG("VPSS :End of VPSS Loopback Application\r\n");
 return;
 }
 VPSS_DBG("VPSS :VPSS Loopback Started \r\n");
 FVID_allocBuffer(CcdcHandle, &CcdcallocFB[1]);
 FBAddr = CcdcallocFB[1];
 for(i = 0; i < NumOfIterations; i++)
 {
 if(IOM_COMPLETED != FVID_exchange(CcdcHandle,&FBAddr))
 {
 VPSS_DBG("VPSS :CCDC Exchange.......FAILED \r\n");
 }
 if(IOM_COMPLETED != FVID_exchange(Vid0Handle,&FBAddr))
 {
 VPSS_DBG("VPSS :Video -0 Exchange.......FAILED \r\n");
 }
 }
 /**
 * Free Memory Buffers
 **/
 for(i=0;i<NO_OF_BUFFERS;i++)
 {
 FVID_freeBuffer(CcdcHandle,CcdcallocFB[i]);
 }
 FVID_freeBuffer (Vid0Handle,VidallocFB);

 /**
 * Delete Channels
 **/
 FVID_delete(CcdcHandle);
 FVID_delete(Vid0Handle);

 VPSS_DBG("VPSS: Loopback Application Ended \r\n");
}

void start_vpss_test()
{
 vpss_main();
}

