
April 2009 Platform Software Group

PAL SYS PCI Device Driver

User's Manual
U s e r ' s G u i d e

Architecture/Design
Document

BIOS PCI Device Driver Architecture Document

ii Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published by
TI regarding third-party products or services does not constitute a license from TI to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property of the third party, or a license from TI under
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI
for that product or service voids all express and any implied warranties for the associated TI product or
service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2009, Texas Instruments Incorporated

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary iii

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

About This Document

This document discusses the TI device driver architecture for PAL SYS
PCI Device Driver. The target audience includes device driver developers
from TI as well as consumers of the driver.

Trademarks

The TI logo design is a trademark of Texas Instruments Incorporated. All
other brand and product names may be trademarks of their respective
companies.

This document contains proprietary information of Texas Instruments. The
information contained herein is not to be used by or disclosed to third
parties without the express written permission of an officer of Texas
Instruments Incorporated.

Related Documents

 PCI controller specification

Notations

None

Terms and Abbreviations
Term Description

IP Intellectual Property

OS Operating System

API Application Programmer’s Interface

CSL Chip Support Library – TI primitive h/w abstraction

ISR Interrupt Service Routine

Revision History

Date Author Comments Version

20th January,
2007

Rinkal Shah First draft 1.0

23rd March, 2007 Rinkal Shah Document changed to reflect changes in
driver due to new technical reference manual
of PCI controller

1.1

4th June, 2007 Rinkal Shah Soc C6452 added 1.2

BIOS PCI Device Driver Architecture Document

iv Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

October 22, 2007 Nagarjuna K Updating for XDC and BIOS versions 1.3

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary v

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Table of Contents

1 System Context ...1

1.1 Hardware.. 1

1.2 Software... 1
1.2.1 Operating Environment and dependencies... 1

1.3 Design Philosophy .. 1
1.3.1 Design Goals ... 2
1.3.2 Assumptions .. 2
1.3.3 Design Principles ... 2

2 PCI Driver Software Architecture...4

2.1 Static View ... 4
2.1.1 Functional Decomposition.. 4
2.1.2 PAL SYS PCI layer functionality... 5
2.1.3 OS Specific Adaptation .. 8
2.1.4 Component Interfaces.. 8

2.2 Dynamic View .. 8
2.2.1 The Execution Threads.. 8
2.2.2 Driver Initilization ... 8

3 Design goals..9

3.1 Initialization ... 9

3.2 Target device ... 9

3.3 Interrupts ... 9

3.4 Address translation... 9

4 Application Programming Interface(s) ..12

4.1 Configuration API(s).. 12
4.1.1 PAL_sysPCICreate () - Create the instance of PCI driver. 12
4.1.2 PAL_sysPCIDelete () - Delete the instance of PCI driver. 13
4.1.3 PAL_sysPCIOpen () - Open the PCI driver instance. 14
4.1.4 PAL_sysPCIClose () - Close the PCI driver instance. 15
4.1.5 PAL_sysPCIEnableInterrupt () - Enables PCI interrupt/s................................. 16
4.1.6 PAL_sysPCIDisableInterrupt () - Disables PCI interrupt/s. 17
4.1.7 PAL_sysPCISetMemMapReg () - Set memory mapped configuration register. 18
4.1.8 PAL_sysPCIGetMemMapReg () - Get memory mapped configuration register.19

BIOS PCI Device Driver Architecture Document

vi Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.9 PAL_sysPCISetHookReg() - Set Hook register. ...20
4.1.10 PAL_sysPCIGetHookReg() - Get Hook register..21
4.1.11 PAL_sysPCIEnableBasePrefetch () - API to Enable BasePrefetch.22
4.1.12 PAL_sysPCIDisableBasePrefetch () - API to Disable Base Prefetch.................23
4.1.13 PAL_sysPCIProgramCacheLineSize () - API to set Cache line size..................24
4.1.14 PAL_sysPCIProgramLatencyTimer () - API to program Latency timer.25

5 Appendix A..26

5.1 Enumerators and typedefs (pal_syspci.h) ...26

5.2 PAL_sysPciInitConfig (pal_syspci.h) ..29

6 Appendix B..29

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary vii

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

List of Figures

Figure-1: Monolithic Device Driver – Amorphous structure.. 2
Figure-2: TI Device Driver Functional decomposition.. 4
Figure 3: DSP to PCI address translation block diagram... 10
Figure 4: DSP to PCI address translation example ... 11

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 1

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

1 System Context

The PCI controller driver architecture presented in this document is running
on DSP/BIOS operating system in master as well as slave mode.

1.1 Hardware

For detailed block diagram of module, please refer controller specification.

1.2 Software

The document provides an overall understanding of the TI PCI controller
driver architecture.

1.2.1 Operating Environment and dependencies

Refer system level release notes for tools and BIOS versions.

1.3 Design Philosophy

Central to the philosophy of TI device driver architecture is clarity in
separation of roles and responsibilities for the various parts of the device
driver. Rather than treat the entire device driver as a monolithic block of
code, effort is made to identify the portions of the device driver that are
involved in:

 Coupling or handshaking with the specific OS

 Performing primitive, directed read/write access to the h/w device

 Modeling the crux of the driver behavior – protocol, state machine etc
this in itself is regardless of any given OS.

 With this view, the device driver functionality can be defined here under:

 OS Specific layer

 PAL SYS PCI layer.

 PAL SYS PCI register access layer.

There exists a clear separation of roles and responsibilities of these
sub-components of the driver. The prescribed architecture helps in
creating robust device drivers through tested/reusable pieces. Besides,
it ensures in maintaining uniform semantics for similar services,
supported across different drivers, for different platforms.

The figure below further elucidates the driving philosophy in
partitioning the device driver into distinct functional sub-components –
PAL SYS PCI layer, PAL SYS PCI register access layer, PAL SYS PCI
OS dependent layer and CSL (Register layer only).

BIOS PCI Device Driver Architecture Document

2 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Figure-1: Monolithic Device Driver – Amorphous structure

1.3.1 Design Goals

The following are the key device driver design goals being factored by
proposed TI architecture:

1. Uniformly styled drivers, promoting increased reuse and code
familiarity to developers

2. Minimal overheads in integrating TI device driver into any
Software System

3. Device driver must support Synchronous as well as
Asynchronous interfaces to the user where appropriate

4. Device driver must operate both with and without Interrupts
capability as appropriate

5. Device driver must leverage the H/W DMA capability where
available to improve performance of device driver in case of
block-oriented transfers

1.3.2 Assumptions

 It is assumed that TI Device Drivers are required to be fully
functional in their native OS (BIOS in case of DSP side
devices). Integration of TI Device Drivers into a given software
system is beyond the immediate scope of the proposed
architecture.

1.3.3 Design Principles

The guiding principles for the TI Device Driver design, drawn in the context of
afore mentioned philosophy, goals and constraints can be enumerated as
follows:

 Clear separation of H/W-dependent and H/W-independent parts. The
H/W-dependent part - CSL must be lightweight. It should not make
use of dynamic memory allocation scheme from within.

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 3

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 Clear separation of OS dependent and independent parts

 Modular design to effectively address multiple device instances –
avoids needless code size penalty and also to isolate device specific
driver Implementation details from usage policies.

BIOS PCI Device Driver Architecture Document

4 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

2 PCI Driver Software Architecture

This chapter deals with the overall architecture of TI PCI device driver,
including the device driver partitioning as well as deployment
considerations. We’ll first examine the system decomposition into
functional units and the interfaces presented by these units. Following
this, we’ll discuss the deployed driver or the dynamic view of the driver
where the driver operational scenarios are presented.

2.1 Static View

2.1.1 Functional Decomposition

The device driver is partitioned into distinct sub-components, consistent with
the roles and responsibilities already discussed in section 1.3. In the following
sub-sections, each of these functional sub-components of the device driver is
further elaborated.

EVM Hardware Board

PAL
OS

PCI
Application

System Components
(OS & SOCAbstraction)

DSP/BIOS
Operating System

PAL system APIs
for PCI

Figure-2: TI Device Driver Functional decomposition

The central portion shown constitutes the mainline PCI driver component; the
surrounding modules constitute the supporting system components. The
modules in the later part, do not specifically deal with PCI, but assist the
driver by providing other abstracted (OS and H/W) and utility services as shall
be discussed in following sub-sections.

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 5

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

2.1.2 PAL SYS PCI layer functionality

The DDC module forms the OS abstracted portion of the driver which
provides basic behavior of the driver, modeling the main FSMs and Protocols.
PCI does not make direct reference to any OS services, it glues to the OS via
a well specified OS adaptation interface.

The PCI layer specifies a base set of interfaces that standardizes the
common aspects of all device drivers such as – Initializing the driver
(creation), terminating the driver (deletion) , opening the instance and closing
the instance initialization and the basic data transfer operation.

In PCI layer, during the driver creation phase, relevant driver configuration
parameters are obtained from the application.

Following table describes the APIs that are exposed to the application:

PAL SYS PCI layer APIs DESCRIPTION

PAL_Result PAL_sysPCICreate(Uint
instId, Ptr param)

Driver instance Creation

PAL_Result PAL_sysPCIDelete(Uint
instId)

Driver instance deletion

PSP_Handle PAL_sysPCIOpen(Uint
instId, PAL_sysPCIInitConfig
*param)

Open driver instance

PAL_Result
PAL_sysPCIClose(PSP_Handle hPci,
Ptr param)

Close driver instance

BIOS PCI Device Driver Architecture Document

6 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

PAL SYS PCI layer APIs DESCRIPTION

PAL_Result
PAL_sysPCIEnableInterrupt(PSP_Handl
e hPCI, Uint intEnableMask)

Enable interrupt depending upon the mask that
is passed to the function. If a bit is set,
corresponding interrupt is enabled

PAL_Result
PAL_sysPCIDisableInterrupt(PSP_Hand
le hPCI, Uint intDisableMask)

Disable interrupt depending upon the mask that
is passed to the function. If a bit is set,
corresponding interrupt is disabled

PAL_Result PAL_sysPCISetMemMapReg(

PAL_sysPciMemMapField memMapField,

PAL_sysPciConfigFieldSize
writeSize,

Uint newFieldVal)

Set the specified memory mapped register. The
offset of configuration register is specified
PAL_sysPciMemMapField and the size of write
operation is specified by
PAL_sysPciConfigFieldSize. This size can be
byte, word or dword.

PAL_Result PAL_sysPCIGetMemMapReg(

PAL_sysPciMemMapField memMapField
,

PAL_sysPciConfigFieldSize readSize,

Uint* newFieldVal)

Read the specified memory mapped space
register. The offset of configuration register is
specified PAL_sysPciMemMapField and the
size of write operation is specified by
PAL_sysPciConfigFieldSize. This size can be
byte, word or dword.

PAL_Result
PAL_sysPCISetHookConfigReg(
PSP_Handle hPci,

PAL_sysPciHookConfigField
hookConfigField,

PAL_sysPciConfigFieldSize
writeSize,

Uint newFieldVal)

Set the specified hook configuration register.
The offset of configuration register is specified
PAL_sysPCISetHookConfigReg and the size of
write operation is specified by
PAL_sysPciConfigFieldSize. This size can be
byte, word or dword.

PAL_Result
PAL_sysPCIGetHookConfigReg(
PSP_Handle hPci,

PAL_sysPciHookConfigField
hookConfigField,

PAL_sysPciConfigFieldSize
writeSize,

Uint *newFieldVal)

Read the specified hook configuration register.
The offset of configuration register is specified
PAL_sysPCISetHookConfigReg and the size of
write operation is specified by
PAL_sysPciConfigFieldSize. This size can be
byte, word or dword.

PAL_Result
PAL_sysPCIEnableBasePrefetch (

PSP_Handle hPci,

Uint32 baseId);

API to enable base address prefetching.

PAL_Result
PAL_sysPCIDisableBasePrefetch (

PSP_Handle hPci,

Uint32 baseId);

API to disable base address prefetching.

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 7

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

PAL SYS PCI layer APIs DESCRIPTION

PAL_Result
PAL_sysPCIProgramCacheLineSize (

PSP_Handle hPci,

PAL_sysPciCacheLineSize
valCacheLineSize);

API to configure the cache line size of PCI
controller.

PAL_Result
PAL_sysPCIProgramLatencyTimer (

PSP_Handle hPci,

Uint32 valLatencyTimer);

API to program Latency time value of PCI
controller

BIOS PCI Device Driver Architecture Document

8 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

2.1.3 OS Specific Adaptation

This layer “adapts” the driver core to the specific OS. It implements aspects
such as – Interrupts registration and de-registration or providing the
wrapper functions to PCI driver etc. This layer has full visibility to
underlying OS services and is custom-built for a given OS.

2.1.4 Component Interfaces

In the following subsections, the interfaces implemented by each of the
sub-component are specified.

2.1.4.1 OS specific Interface

The OS specific Interface constitutes the Device Driver Manifest to
Application. This adapts the PCI driver to DSP BIOS.

2.1.4.2 PAL SYS PCI layer Interface

PCI layer forms the heart of Device driver also implements the interfaces
exported to the application. The ISR would be registered thru’ the OS
specific interface.

2.2 Dynamic View

2.2.1 The Execution Threads

The device driver is a service layer which provides access to configuration
space registers, address translation registers, hook configuration registers,
and memory mapped register of PCI controller when a device is acting as
master. Device driver also provides access to configuration registers of
slaves attached to the PCI bus in master mode of operation. For slave
mode operation, this driver provides access to local configuration registers

2.2.2 Driver Initilization

Driver instance have to be created and opened before using the driver.
This can be done by calling PAL_sysPCICreate and PAL_sysPCIOpen
respectively.

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 9

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

3 Design goals

3.1 Initialization

Initialization of PCI device is from the host PC. From EVM side, software
initialization of driver involves creation of protection semaphore and
initialization of pointer to PCI configuration space.

3.2 Target device

When the system powers up, host configures all the target devices
attached to the PCI bus. Host configures the base address registers of the
target devices attached to PCI bus. Host can provide master access to any
device.

 This device can act as a master or a slave. Application can gain master
control doing required setting for PCI controller.

3.3 Interrupts

There is a dedicated line for DSP (target) to host interrupt in PCI protocol.
A target can interrupt the host through a dedicated interrupt line provide in
the PCI bus. Driver provides access to a bit which can be set to interrupt
the host device. Setting this bit asserts interrupt line and host is interrupted.

Host to DSP (target) interrupt line is not provided on PCI bus. But host can
trigger a software interrupt by setting a bit in DSP’s configuration space.

3.4 Address translation

There are 32 DSP to PCI address translation registers. These registers are
used by PCI controller to translate the DSP address to an address on PCI
bus. Each DSP to PCI address translation register corresponds to one
master window. Each master window can map 8MB of PCI memory to its
corresponding DSP’s PCI memory address space through address
translation register.

Below figure is the diagrammatic representation of address translation
using DSP to PCI address translation register.

BIOS PCI Device Driver Architecture Document

10 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

PCI memory
map

DSP’s PCI
memory

map

Master Window

DSP to PCI address
translation register

Fixed starting
addresses for 32

windows in DSP’s PCI
memory space

External PCI
memory map

DSP memory
map

Start Address
(0x3000 0000h)

End Address
(0x307F FFFFh)

Start Address
(0x4FE0 0000h)

End Address
(0x505F FFFFh)

8MB 8MB

Figure 3: DSP to PCI address translation block diagram

Bits 31 to 23 of address translation register contain MSB of the PCI
addresses within the corresponding window. The remaining reserved 23
bits are the size of the window and these bits have no function.

Address translation from the DSP to PCI domain is done using the address
substitution registers 0 to 31.

During address translation the upper 4-bits (31 to 28) are used to reach to
the DSP’s PCI memory space. The next 5-bits decide which PCI window
corresponds to the DSP address. Once the window is determined, the 23
LSBs of DSP address are allowed to pass through to the PCI address and
the upper 9 bits are taken from the address translation register’s 24 to 31
bits.

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 11

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Below diagram illustrates the address translation process with an example
address:

PCIADDSUB0
PCIADDSUB1
PCIADDSUB2
PCIADDSUB3
PCIADDSUB4

……………….
………………
PCIADDSUB32

0x3080 ABCD

Address of DSP ‘s
PCI memory space

0x0F80 0000

Extract of bits
23 to 27

0x0080 0000>>23 = 0x01

0x1280 0000

0x007F FFFF

Mask of bits 23
to 31

0x0000 ABCD

0x1280 ABCD

PCIADDSUB1

Address for PCI bus

Figure 4: DSP to PCI address translation example

BIOS PCI Device Driver Architecture Document

12 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4 Application Programming Interface(s)

For information on data structures please refer to Appendix A.

4.1 Configuration API(s)

4.1.1 PAL_sysPCICreate () - Create the instance of PCI driver.

PAL_Result PAL_sysPCICreate (Uint32 instId,
Ptr param)

instId Instance Id of PCI controller

param Pointer parameters required for creating PCI
driver handle

Returns PAL_SOK on success or PAL Error Code on
failure

Description:

PAL_sysPCICreate creates an instance of PCI driver. This function checks
for the maximum instance number. If instance number is proper, it changes
the state of driver. This function is implemented just to make PCI driver
consistent with other PAL SYS drivers.

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 13

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.2 PAL_sysPCIDelete () - Delete the instance of PCI driver.

PAL_Result PAL_sysPCIDelete (Uint32 instId)

instId Instance Id of PCI controller

Returns PAL_SOK on success or PAL Error Code on
failure

Description:

PAL_sysPCIDelete deletes an instance of PCI driver. This function checks
for the maximum instance number. If instance number is proper, it changes
the state of driver. This function is implemented just to make PCI driver
consistent with other PAL SYS drivers.

.

BIOS PCI Device Driver Architecture Document

14 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.3 PAL_sysPCIOpen () - Open the PCI driver instance.

PSP_Handle PAL_sysPCIOpen (Uint32 instId,
PAL_sysPciInitConfig *param)

instId Instance Id of PCI controller

param Pointer parameters required for opening PCI
driver handle. Application have to fill this param
structure with proper values for initialization of
driver

Returns PSP_Handle on success or NULL on failure

Description:

This function opens the driver instance. If the handle is proper, it initializes
the base address of PCI controller in the driver handle. This function also
registers the interrupt callback for PCI interrupt. This callback will receive
the interrupt status as one argument and application data pointer as other
argument on occurrence of interrupt. Interrupt status is provided to
application in application callback.

“param” should be a pointer to PAL_sysPCIinitConfig structure which
should contain non-NULL value of application callback if application wants
a callback on occurrence of interrupt. Application can also pass parameter
to ISR. “param” contains one field as “appData”. “appData” should be
pointing to the data that application wants to pass to callback function.

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 15

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.4 PAL_sysPCIClose () - Close the PCI driver instance.

PAL_Result PAL_sysPCIClose (Uint32 instId,
Ptr param)

instId Instance Id of PCI controller

param Pointer parameters required for closing PCI
driver handle if any.

Returns PAL_SOK on success or PAL Error Code on
failure

Description:

This function closes the PCI driver instance. It checks the instance number
and state of driver. If state and instance number are proper, it removes the
hooking of ISR with interrupt. The function also make pointer to base
addresses NULL. After doing all this operations, this function changes the
state of driver instance to CLOSED state.

BIOS PCI Device Driver Architecture Document

16 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.5 PAL_sysPCIEnableInterrupt () - Enables PCI interrupt/s.

PAL_Result PAL_sysPCIEnableInterrupt (PSP_Handle hPci,
Uint32 intEnableCode)

hPci Handle of PCI controller driver

intEnableCode Interrupt enable mask. 5 LSBs of
intEnableCode will correspond to 5
interrupts of PCI. If a particular bit is
set, corresponding interrupt would be
enabled.

Returns PAL_SOK on success or PAL Error
Code on failure

Description:

This function enables interrupt/s. Interrupts are enabled depending upon
the mask that is passed as argument to this function. Each bit of
“intEnableCode” signifies one interrupt. Particular bit have to be set by the
application to enable corresponding interrupt. Multiple interrupts can be set
by setting multiple bits in the “intEnableCode”.

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 17

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.6 PAL_sysPCIDisableInterrupt () - Disables PCI interrupt/s.

PAL_Result PAL_sysPCIEnableInterrupt (PSP_Handle hPci,
Uint32 intEnableCode)

hPci Handle of PCI controller driver

intDisableCode Interrupt disable mask. 5 LSBs of
intDisableCode will correspond to 5
interrupts of PCI. If a particular bit is
set, corresponding interrupt would be
disabled.

Returns PAL_SOK on success or PAL Error
Code on failure

Description:

This function disables interrupt/s. Interrupts are disabled depending upon
the mask that is passed as argument to this function. Each bit of
“intDisableCode” signifies one interrupt. Particular bit have to be set by the
application to disable corresponding interrupt. Multiple interrupts can be
disabled by setting multiple bits in the “intDisableCode”.

BIOS PCI Device Driver Architecture Document

18 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.7 PAL_sysPCISetMemMapReg () - Set memory mapped configuration
register.

PAL_Result PAL_sysPCISetMemMapReg (PSP_Handle hPci,
PAL_sysPciMemMapField memMapField,
PAL_sysPciConfigFieldSize writeSize,
Uint32 newFieldVal)

hPci Handle of PCI controller driver

memMapField Field of memory mapped register that has to be
set

writeSize Size of data to be set (byte/word/dword)

newFieldVal New value of field that is to be set

Returns PAL_SOK on success or PAL Error Code on
failure

Description:

This function sets values in memory mapped registers. Register whose
value has to be set should be passed as “memMapField” argument to
PAL_sysPCISetMemMapReg function. The values of “memMapField” are
restricted to the values available in “PAL_sysPciMemMapField” enum.
“writeSize” specifies the number of bytes to written on to the field. Number
of bytes can be 1, 2 or 4. The value that has to be written to the field shall
to be specified as “newFieldVal” argument.

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 19

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.8 PAL_sysPCIGetMemMapReg () - Get memory mapped configuration
register.

PAL_Result PAL_sysPCIGetMemMapReg (PSP_Handle hPci,
PAL_sysPciMemMapField memMapField

,
PAL_sysPciConfigFieldSize readSize,
Uint32 *newFieldVal)

hPci Handle of PCI controller driver

memMapField Field of memory mapped register that has to be
set

readSize Size of data to be read (byte/word/dword))

*newFieldVal Pointer to new value of field that is to be read
from hardware

Returns PAL_SOK on success or PAL Error Code on
failure

Description:

This function reads values in memory mapped registers. Register whose
value has to be read should be passed as “memMapField” argument to
PAL_sysPCISetMemMapReg function. The values of “memMapField” are
restricted to the values available in “PAL_sysPciMemMapField” enum.
“readSize” specifies the number of bytes to read from the specified field.
Number of bytes can be 1, 2 or 4. The value that has to be read from the
field will be store at 4 byte memory pointer by “newFieldVal” pointer.

BIOS PCI Device Driver Architecture Document

20 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.9 PAL_sysPCISetHookReg() - Set Hook register.

PAL_Result PAL_sysPCISetHookReg (PSP_Handle hPci,
PAL_sysPciHookRegister hookRegField,
PAL_sysPciConfigFieldSize writeSize,
Uint32 newFieldVal)

hPci Handle of PCI controller driver

hookRegField Field of hook register that has to be set

writeSize Size of data to be set (byte/word/dword)

newFieldVal New value of field that is to be set

Returns PAL_SOK on success or PAL Error Code on
failure

Description:

This function sets values in hook registers. Register whose value has to be
set should be passed as “hookRegField” argument to
PAL_sysPCISetHookReg function. The values of “hookRegField” are
restricted to the values available in “PAL_sysPciHookRegister” enum.
“writeSize” specifies the number of bytes to written on to the field. Number
of bytes can be 1, 2 or 4. The value that has to be written to the field shall
be specified as “newFieldVal” argument.

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 21

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.10 PAL_sysPCIGetHookReg() - Get Hook register.

PAL_Result PAL_sysPCIGetHookReg (PSP_Handle hPci,
PAL_sysPciHookRegister hookRegField,
PAL_sysPciConfigFieldSize readSize,
Uint32 *newFieldVal)

hPci Handle of PCI controller driver

hookRegField Field of hook register that has to be set

readSize Size of data to be read (byte/word/dword)

*newFieldVal Pointer to new value of field that is to be read
from hardware

Returns PAL_SOK on success or PAL Error Code on
failure

Description:

This function reads values from hook registers. Register whose value has
to be read should be passed as “hookRegField” argument to
PAL_sysPCISetHookReg function. The values of “hookRegField” are
restricted to the values available in “PAL_sysPciHookRegister” enum.
“readSize” specifies the number of bytes to read from the field. Number of
bytes can be 1, 2 or 4. The value that is read from the field will be stored at
the 4 byte memory location pointed by “newFieldVal” pointer.

BIOS PCI Device Driver Architecture Document

22 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.11 PAL_sysPCIEnableBasePrefetch () - API to Enable BasePrefetch.

PAL_Result PAL_sysPCIEnableBasePrefetch (PSP_Handle hPci,
Uint32 baseId)

hPci Handle of PCI controller driver

baseId ID of BASE for which prefetch have to be
enabled

Returns PAL_SOK on success or PAL Error Code on
failure

Description:

This function will enable pre-fetchable functionality of BAR memory space.
“baseId” will specify the ID of BAR whose pre-fetchable functionality have
to be enabled. The value of “baseId” can vary from 0 to 5.

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 23

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.12 PAL_sysPCIDisableBasePrefetch () - API to Disable Base Prefetch.

PAL_Result PAL_sysPCIDisableBasePrefetch (PSP_Handle hPci,
Uint32 baseId)

hPci Handle of PCI controller driver

baseId ID of BASE for which pre-fetch have to be
disabled

Returns PAL_SOK on success or PAL Error Code on
failure

Description:

This function will disable pre-fetchable functionality of BAR memory space.
“baseId” will specify the ID of BAR whose pre-fetchable functionality have
to be disabled. The value of “baseId” can vary from 0 to 5.

BIOS PCI Device Driver Architecture Document

24 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.13 PAL_sysPCIProgramCacheLineSize () - API to set Cache line size.

PAL_Result PAL_sysPCIDisableBasePrefetch (PSP_Handle hPci,
PAL_sysPciCacheLineSize valCacheLine

Size
)

hPci Handle of PCI controller driver

valCacheLineSize Size of cache line to be set

Returns PAL_SOK on success or PAL Error Code on
failure

Description:

This function will program the length of cache line. “valCacheLineSize” will
specify the new size of cache line. The values of “valCacheLineSize” can
vary from 16 bytes, 32 bytes, 64 bytes, 128 bytes or cache can be
disabled. The values of “valCacheLineSize” are restricted by
“PAL_sysPciCacheLineSize” enum.

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 25

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

4.1.14 PAL_sysPCIProgramLatencyTimer () - API to program Latency timer.

PAL_Result PAL_sysPCIProgramLatencyTimer (PSP_Handle hPci,
Uint32 valLatencyTim

er
)

hPci Handle of PCI controller driver

valLatencyTimer Value of latency timer

Returns PAL_SOK on success or PAL Error Code on
failure

Description:

This function will set the value of latency timer. The new value of latency
timer has to be specified as “valLatencyTimer” argument.

BIOS PCI Device Driver Architecture Document

26 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

5 Appendix A

5.1 Enumerators and typedefs (pal_syspci.h)

typedef enum
{

/** Read/write one byte */
PAL_SYS_PCI_READ_WRITE_SIZE_BYTE = 0u,
/** Read/write two byte */
PAL_SYS_PCI_READ_WRITE_SIZE_HALFWORD = 1u,
/** Read/write four bytes */
PAL_SYS_PCI_READ_WRITE_SIZE_WORD = 2u

}PAL_sysPciConfigFieldSize;

typedef enum
{
 /** status set register */
 PAL_SYSPCI_STATUS_SET = 0x010u,
 /** status clear register */
 PAL_SYSPCI_STATUS_CLEAR = 0x014u,
 /** Host interrupt enable set register */
 PAL_SYSPCI_HOST_INT_ENABLE_SET = 0x020u,
 /** Host interrupt enable clear register */
 PAL_SYSPCI_HOST_INT_ENABLE_CLEAR = 0x024u,
 /** DSP interrupt enable set register */
 PAL_SYSPCI_DSP_INT_ENABLE_SET = 0x030u,
 /** DSP interrupt enable clear register */
 PAL_SYSPCI_DSP_INT_ENABLE_CLEAR = 0x034u,

 /** Vendor ID mirror register */
 PAL_SYSPCI_MIRROR_VENDOR_ID = 0x100u,
 /** Device ID mirror register */
 PAL_SYSPCI_MIRROR_DEVICE_ID = 0x102u,
 /** Command mirror register */
 PAL_SYSPCI_MIRROR_CMD_STATUS_REG = 0x104u,
 /** Revision ID mirror register */
 PAL_SYSPCI_MIRROR_REVISION_ID = 0x108u,
 /** Class code mirror register */
 PAL_SYSPCI_MIRROR_CLASS_CODE = 0x109u,
 /** Cache size mirror register */
 PAL_SYSPCI_MIRROR_CACHE_SIZE = 0x10Cu,
 /** Latency timer mirror register */
 PAL_SYSPCI_MIRROR_LATENCY_TIMER = 0x10Du,
 /** Header type mirror register */
 PAL_SYSPCI_MIRROR_HEADER_TYPE = 0x10Eu,
 /** BIST mirror register */
 PAL_SYSPCI_MIRROR_BIST_REG = 0x10Fu,
 /** BAR 0 mask register */
 PAL_SYSPCI_MASK_BAR_0 = 0x110u,
 /** BAR 1 mask register */
 PAL_SYSPCI_MASK_BAR_1 = 0x114u,
 /** BAR 2 mask register */
 PAL_SYSPCI_MASK_BAR_2 = 0x118u,
 /** BAR 3 mask register */
 PAL_SYSPCI_MASK_BAR_3 = 0x11Cu,
 /** BAR 4 mask register */
 PAL_SYSPCI_MASK_BAR_4 = 0x120u,
 /** BAR 5 mask register */
 PAL_SYSPCI_MASK_BAR_5 = 0x124u,
 /** Subsytem vendor ID mirror register */

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 27

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 PAL_SYSPCI_MIRROR_SUBSYS_VENDOR_ID = 0x12Cu,
 /** Subsytem ID mirror register */
 PAL_SYSPCI_MIRROR_SUBSYS_ID = 0x12Eu,
 /** Capabilities pointer mirror register */
 PAL_SYSPCI_MIRROR_CAP_PTR_ID = 0x134u,
 /** Interrupt line mirror register */
 PAL_SYSPCI_MIRROR_INT_LINE = 0x13Cu,
 /** Interrupt Pin mirror register */
 PAL_SYSPCI_MIRROR_INT_PIN = 0x13Du,
 /** Minimum grant bits mirror register */
 PAL_SYSPCI_MIRROR_MIN_GRANT_BITS = 0x13Eu,
 /** Maximum latency bits mirror register */
 PAL_SYSPCI_MIRROR_MAX_LATENCY_BITS = 0x13Fu,

 /** Slave control register */
 PAL_SYSPCI_SLAVE_CNTL_REG = 0x180u,

 /** Slave base address 0 translation register */
 PAL_SYSPCI_SLAVE_BASE_ADDR_TRANS_REG_0 = 0x1C0u,
 /** Slave base address 1 translation register */
 PAL_SYSPCI_SLAVE_BASE_ADDR_TRANS_REG_1 = 0x1C4u,
 /** Slave base address 2 translation register */
 PAL_SYSPCI_SLAVE_BASE_ADDR_TRANS_REG_2 = 0x1C8u,
 /** Slave base address 3 translation register */
 PAL_SYSPCI_SLAVE_BASE_ADDR_TRANS_REG_3 = 0x1CCu,
 /** Slave base address 4 translation register */
 PAL_SYSPCI_SLAVE_BASE_ADDR_TRANS_REG_4 = 0x1D0u,
 /** Slave base address 5 translation register */
 PAL_SYSPCI_SLAVE_BASE_ADDR_TRANS_REG_5 = 0x1D4u,

 /** Base address 0 mirror register */
 PAL_SYSPCI_MIRROR_BAR_0 = 0x1E0u,
 /** Base address 1 mirror register */
 PAL_SYSPCI_MIRROR_BAR_1 = 0x1E4u,
 /** Base address 2 mirror register */
 PAL_SYSPCI_MIRROR_BAR_2 = 0x1E8u,
 /** Base address 3 mirror register */
 PAL_SYSPCI_MIRROR_BAR_3 = 0x1ECu,
 /** Base address 4 mirror register */
 PAL_SYSPCI_MIRROR_BAR_4 = 0x1F0u,
 /** Base address 5 mirror register */
 PAL_SYSPCI_MIRROR_BAR_5 = 0x1F4u,

 /** Master configuration/IO access data register */
 PAL_SYSPCI_MASTER_CONFIG_IO_DATA_REG = 0x300u,
 /** Master configuration/IO access address register */
 PAL_SYSPCI_MASTER_CONFIG_IO_ADDR_REG = 0x304u,
 /** Master configuration/IO access command register */
 PAL_SYSPCI_MASTER_CONFIG_IO_CMD_REG = 0x308u,

 /** Master configuration register */
 PAL_SYSPCI_MASTER_CONFIG_REG = 0x310u,

 /** PCI Address Substitution register 0 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG0 = 0x314u,
 /** PCI Address Substitution register 1 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG1 = 0x318u,
 /** PCI Address Substitution register 2 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG2 = 0x31Cu,
 /** PCI Address Substitution register 3 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG3 = 0x320u,
 /** PCI Address Substitution register 4 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG4 = 0x324u,
 /** PCI Address Substitution register 5 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG5 = 0x328u,
 /** PCI Address Substitution register 6 */

BIOS PCI Device Driver Architecture Document

28 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 PAL_SYSPCI_ADDR_SUBSTITUTION_REG6 = 0x32Cu,
 /** PCI Address Substitution register 7 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG7 = 0x330u,
 /** PCI Address Substitution register 8 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG8 = 0x334u,
 /** PCI Address Substitution register 9 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG9 = 0x338u,
 /** PCI Address Substitution register 10 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG10 = 0x33Cu,
 /** PCI Address Substitution register 11 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG11 = 0x340u,
 /** PCI Address Substitution register 12 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG12 = 0x344u,
 /** PCI Address Substitution register 13 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG13 = 0x348u,
 /** PCI Address Substitution register 14 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG14 = 0x34Cu,
 /** PCI Address Substitution register 15 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG15 = 0x350u,
 /** PCI Address Substitution register 16 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG16 = 0x354u,
 /** PCI Address Substitution register 17 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG17 = 0x358u,
 /** PCI Address Substitution register 18 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG18 = 0x35Cu,
 /** PCI Address Substitution register 19 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG19 = 0x360u,
 /** PCI Address Substitution register 20 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG20 = 0x364u,
 /** PCI Address Substitution register 21 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG21 = 0x368u,
 /** PCI Address Substitution register 22 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG22 = 0x36Cu,
 /** PCI Address Substitution register 23 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG23 = 0x370u,
 /** PCI Address Substitution register 24 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG24 = 0x374u,
 /** PCI Address Substitution register 25 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG25 = 0x378u,
 /** PCI Address Substitution register 26 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG26 = 0x37Cu,
 /** PCI Address Substitution register 27 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG27 = 0x380u,
 /** PCI Address Substitution register 28 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG28 = 0x384u,
 /** PCI Address Substitution register 29 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG29 = 0x388u,
 /** PCI Address Substitution register 30 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG30 = 0x38Cu,
 /** PCI Address Substitution register 31 */
 PAL_SYSPCI_ADDR_SUBSTITUTION_REG31 = 0x390u
}PAL_sysPciMemMapField;

typedef enum
{
 /** Vendor ID program register */
 PAL_SYSPCI_HOOK_REG_PROGRAM_VENDOR_ID = 0x394u,
 /** Device ID program register */
 PAL_SYSPCI_HOOK_REG_PROGRAM_DEVICE_ID = 0x396u,

 /** Class code and revision ID program register */
 PAL_SYSPCI_HOOK_REG_PROGRAM_CLASS_CODE_REVISION_ID = 0x39Cu,

 /** Regsiter to program vendor ID */

BIOS PCI Device Driver Architecture Document

Texas Instruments Proprietary 29

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 PAL_SYSPCI_HOOK_REG_PROGRAM_SUB_SYS_VENDOR_ID_SUB_SYS_ID = 0x3A0u,
 /** Max latency and min grant program register */
 PAL_SYSPCI_HOOK_REG_PROGRAM_MAX_LATENCY_MIN_GRANT = 0x3A4u,

 /** Configuration done registers */
 PAL_SYSPCI_HOOK_REG_CONFIG_DONE_REG = 0x3ACu
}PAL_sysPciHookRegister;

typedef enum
{

/** Cache line size - Disabled */
PAL_SYSPCI_CACHELINE_SIZE_DISABLED = 0x00u,
/** Cache line size - 16 bytes */
PAL_SYSPCI_CACHELINE_SIZE_16BYTES = 0x04u,
/** Cache line size - 32 bytes */
PAL_SYSPCI_CACHELINE_SIZE_32BYTES = 0x08u,
/** Cache line size - 64 bytes */
PAL_SYSPCI_CACHELINE_SIZE_64BYTES = 0x10u,
/** Cache line size - 128 bytes */
PAL_SYSPCI_CACHELINE_SIZE_128BYTES = 0x20u

}PAL_sysPciCacheLineSize;

5.2 PAL_sysPciInitConfig (pal_syspci.h)

typedef struct _PAL_sysPciInitConfig
{

/** Instance wide callback function to catch errors*/
PAL_sysPciAppCallback appCb;
/** Application data to be passed back to the app callback */
Ptr appData;

} PAL_sysPciInitConfig;

6 Appendix B
/** Maximum PCI driver instance supported */
#define PAL_SYSPCI_MAX_PCI_INSTANCE (1u)
/** Maximum number of slaves supported by PCI */
#define PAL_SYSPCI_MAX_NUM_SLAVES (4u)
/** Maximum base address registers supported by PCI controller */
#define PAL_SYSPCI_MAX_BASE_ADDR (6u)
/** Interrupt mask to enable/disable Target abort interrupt */
#define PAL_SYSPCI_TARGET_ABORT_INT_MASK (0x00000002u)
/** Interrupt mask to enable/disable Master abort interrupt */
#define PAL_SYSPCI_MASTER_ABORT_INT_MASK (0x00000004u)
/** Interrupt mask to enable/disable system error interrupt */
#define PAL_SYSPCI_SYS_ERR_INT_MASK (0x00000020u)
/** Interrupt mask to enable/disable parity error interrupt */
#define PAL_SYSPCI_PARITY_ERR_INT_MASK (0x00000040u)

/** PCI driver error base define */
#define PAL_SYS_PCI_ERR_BASE (-40)
/**
 * PCI Driver Object Not Deleted yet.
 * So the object cannot be created.
 */
#define PAL_SYS_PCI_OBJ_NOT_DELETED (PAL_SYS_PCI_ERR_BASE)
/**
 * PCI Driver Object Not Created yet.

BIOS PCI Device Driver Architecture Document

30 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 * So the object cannot be deleted.
 */
#define PAL_SYS_PCI_OBJ_NOT_CREATED (PAL_SYS_PCI_ERR_BASE-1)
/**
 * PCI Driver Object Not Closed yet.
 * So the object cannot be deleted.
 */
#define PAL_SYS_PCI_OBJ_NOT_CLOSED (PAL_SYS_PCI_ERR_BASE-2)
/**
 * PCI Driver Not Opened yet
 * So the object cannot be closed.
 */
#define PAL_SYS_PCI_OBJ_NOT_OPENED (PAL_SYS_PCI_ERR_BASE-3)
/** Invalid Parameter passed to API */
#define PAL_SYS_PCI_INVALID_PARAM (PAL_SYS_PCI_ERR_BASE-4)
/** Error encountered in PCI driver while semaphore operation */
#define PAL_SYS_PCI_SEM_ERR (PAL_SYS_PCI_ERR_BASE-5)

/**
 * Code to enable/disable Target abort interrupt of Host
 */
#define PAL_SYS_PCI_HOST_INT_TGT_ABORT (0x01u)
/**
 * Code to enable/disable Master abort interrupt of Host
 */
#define PAL_SYS_PCI_HOST_INT_MS_ABORT (0x02u)
/**
 * Code to enable/disable system error detect interrupt of Host
 */
#define PAL_SYS_PCI_HOST_INT_SYS_ERR_DETECT (0x04u)
/**
 * Code to enable/disable parity error detect interrupt of Host
 */
#define PAL_SYS_PCI_HOST_INT_PARITY_ERR_DETECT (0x08u)

/**
 * Code to enable/disable target abort error interrupt of DSP application
 */
#define PAL_SYS_PCI_DSP_INT_TGT_ABORT (0x10u)
/**
 * Code to enable/disable master abort error interrupt of DSP application
 */
#define PAL_SYS_PCI_DSP_INT_MS_ABORT (0x20u)
/**
 * Code to enable/disable system error detect interrupt of DSP application
 */
#define PAL_SYS_PCI_DSP_INT_SYS_ERR_DETECT (0x40u)
/**
 * Code to enable/disable parity error detect interrupt of DSP application
 */
#define PAL_SYS_PCI_DSP_INT_PARITY_ERR_DETECT (0x80u)

