
DSP/BIOS PSP DM648/C6452

U s e r ' s G u i d e

User's Manual

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.
Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or
other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all
associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

Preface

Read This First

About This Manual

This User’s Manual serves as a software programmer’s handbook
for working with the DSP/BIOS PSP DM648/C6452 Version
1.10.03. This manual provides necessary information regarding
how to effectively install, build and use DSP/BIOS PSP
DM648/C6452 in user systems and applications.

Abbreviations

Table 1-1. Table of Abbreviations

Abbreviation Description

PSP Platform Support Package

DSP/BIOS PSP
DM648/C6452

This is TI coined name for the product.

API Application Programming Interface

IOM Device Driver Adapter

DDC Device driver core

LLC Low Level Controller

OS Operating System

PAL OS Platform abstraction layer for operation
system

SOC System On Chip

Information About Cautions and Warnings

This book may contain cautions and warnings.

CAUTION

WARNING
The information in a caution or a warning is provided for your
protection. Please read each caution and warning carefully.

Related Documentation

Internal

This is a list of documents that are TI Proprietary and Strictly
Private. Exposure to audience outside TI will need due
considerations and approvals from TI Legal authorities.

 PSP Framework Architecture (PSPF) 1.0 internal web link:
(http://www.india.ti.com/~anant/PSPF1.0)

 DM648 TRM and peripheral documents from PDS

Revision History

Version Date Revision History

1.0 19th June, 2006 Pre-silicon release 1.0

1.1 16th August, 2006 Pre-silicon release 1.2

1.2 29th August, 2006 Incremental release Pre-silicon release 0.1.0

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

1.3 18th

September,2006
Incremental release Pre-silicon release 0.1.4

1.4 1st October,2006 Pre-silicon release 0.1.6

1.5 5th October,2006 Pre-silicon release 0.2.0

1.6 1st December, 2006 Post-silicon release 0.3.0

1.7 2nd February, 2007 Changed for DM648

1.8 7th June, 2007 Updated the document for 0.6 releases with changes for
i2c, spi, and uart and tsip application usage.

1.9 18th June, 2007 Updated the document for 1st build release.

1.10 13th July 2007 Added SoC analyzer information

1.11 16th July 2007 Updated Gel file information

1.12 28th July 2007 Updated information for Soc

1.13 30th August 2007 Updated as instrumentation build procedure and other
minor typo errors.

1.14 19th September 2007 Updated dvsdk environmental variables.

1.15 24th October 2007 Changed the build version to release version (xx.yy.zz)

1.16 May 29, 2008 Updated for release 1.10.01

1.17 22 Dec 2008 Updated for release 1.10.02

1.18 16 April 2009 Updated for release 1.10.03

Contents

READ THIS FIRST.. III

CONTENTS... VI

TABLE OF TABLES .. VII

TABLE OF FIGURES.. VIII

CHAPTER 1... I

INTRODUCTION .. I

1.1 Overview... II
1.2 Driver Software Architecture .. IV
1.3 Design Philosophy of drivers.. VIII
1.4 Design philosophy for PAL SYS drivers..XI

CHAPTER 2... XII

INSTALLATION GUIDE ..XII

2.1 Installation and Usage Procedure... XIII
2.2 Un-Installation...XVI
2.3 PSP Component Folder ... XVII
2.4 CCS Projects.. XVIII

CHAPTER 3..XIX

INTEGRATION GUIDE ...XIX

3.1 Application Usage of PSP..XIX
3.2 Instrumentation Tool - SoC Analyzer usageXX
3.3 Adding instance of the device driver ... XXVI
3.4 Interrupt configurations in TCF file..XXVIII

Table of tables

ABBREVIATION .. III

DESCRIPTION ... III

VERSION...IV

DATE ...IV

REVISION HISTORY ...IV

Table of figures

FIGURE 1 TI DEVICE DRIVER FUNCTIONAL DECOMPOSITION..IV
FIGURE 2 GENESIS OF PAL-OS..VIII
FIGURE 3 MONOLITHIC DEVICE DRIVER – AMORPHOUS STRUCTURE................................IX
FIGURE 4 LAYERED DEVICE DRIVER – WELL DEFINED STRUCTURE..................................IX
FIGURE 5 DEVICE DRIVER ARCHITURE ..X
FIGURE 6 PSP TOP LEVEL DIRECTORY STRUCTURE ... XVII
FIGURE 7 PAL OS DIRECTORY STRUCTURE .. XVII

Chapter 1

Introduction

This chapter introduces the DSP/BIOS PSP DM648/C6452 to
the user by providing a brief overview of the purpose and
construction of the DSP/BIOS PSP DM648/C6452 along with
hardware and software environment specifics in the context of
DSP/BIOS PSP DM648/C6452 deployment.

II

1.1 Overview

The DM648/C6452 PSP is aimed at providing fundamental
software abstractions to DM648/C6452 EVM resources and plugs
the same into BIOS operating systems so as to enable and ease
application development by providing suitably abstracted
interfaces.

1.1.1 Supported Services and features

This release of DSP/BIOS PSP DM648/C6452 provides the
following:
 DM648 PSP

o UART

o I2C

o McASP (with AIC33 support)

o SPI

o TSIP (tested in DLB mode)

o Video port (with Encoder and decoder support)
(tested for SD capture and display 8 In + 1 out)

o VLYNQ

o PCI

 C6452 PSP

o UART

o I2C

o SPI

o TSIP (tested in DLB mode)

o VLYNQ

o PCI

 Other separate components

o EDMA driver

o Ethernet switch driver

1.1.2 System Requirements

The following products are required to be installed for using the
DM648 DSP/BIOS PSP:

 CCS 3.3.38.2

 DM648/C6452 EVM (currently tested with DM648
EVM)

 DSP-BIOS 5.31.08 or higher

 CG Tools 6.0.8

 XDC tool 3.00.01

IV

1.2 Driver Software Architecture

This section gives detail on the overall architecture of TI device
driver.

1.2.1 Functional Decomposition

The device driver is partitioned into distinct sub-components,
consistent with the roles and responsibilities already discussed in
section 1.3. In the following sub-sections, each of these
functional sub-components of the device driver is further
elaborated.

Figure 1 TI Device Driver Functional decomposition

 LLC/CSLr

EVM Hardware Board

DDC

IOM

Static Cfg

PAL
OS

Driver
Application

Driver
Components

DSP/BIOS

The central portion (IOM-DDC-LLC) shown constitutes the
mainline device driver component. The surrounding module PAL-
OS constitute the supporting system components that facilitates
the interfaces between the OS and the above mentioned device
driver components. These modules do not specifically deal with
device driver but assist the driver by providing OS abstraction.

1.2.2 H/W Device Specific Layer

CSL Register Layer: This is comprised of a bunch of symbolic constants
(#defines) that expose the register bit-field details of the h/w along with
assorted other constants such as bit-field masks, shift values and default
settings.

LLC Layer: The LLC (low level controller) layer forms the lower
most, h/w specific under-pinning of the TI device driver.

This is comprised of a set of functions that exposes functions to
set various functionalities supported by hardware. Hardware
parameters for example in UART baud-rates, stop bits etc. can be
set. This parameter setting is done by writing proper values to
the respective hardware register.

A C-structure data type definition is provided as an as-is map of
the peripheral device registers in the processor’s memory map.
This structure is termed the Register Overlay structure. The
intended mode of usage is to initialize a pointer variable to base
address of the peripheral h/w device and typecast it using
structure overlay definition. This way, an otherwise un-adorned
pointer assumes a strong C-type thereby making it possible to
program the h/w registers by read/write to structure member
elements.

It is important to note here that LLC layer scope is limited to
directed access of the underlying h/w device. It does not depend
on any specific OS and does not exploit optimizations specific to a
given Compiler. In contrast to a device driver, it does not
perform operations that are viewed as management of data
movement over the peripheral device. It does not model state
machines or protocols. Besides, LLC layer is deployed as a per-
processor (single CPU) specific library of services. LLC layer
philosophy mandates that services exported for one module (read
peripheral h/w device) must not call the services of another
module. This orthogonal rule is enforced to allow for true
componentization of device drivers.

1.2.3 Device Driver Core functionality (DDC)

The DDC module for device driver, the OS abstracted portion of
the driver which provides basic behavior of the driver, modeling
the main functionalities and Protocols. The DDC does not directly
touch the underlying h/w, it does so via the LLC layer. Likewise,

VI

it does not make direct reference to any OS services, it glues to
the OS via a well specified adaptation module termed the IOM.

By mandating certain basic interfaces and extension principles
from all implemented device drivers, the DDC helps achieve,
uniformity of driver API syntax/semantics across all supported
devices and OS platforms.

The objective of a good driver partitionning is to sediment as
much of the driver behaviour into the DDC as is practical. This
calls for a IOM that is thin and efficient. Reuse and performance
improvement efforts can then focus on DDC where bulk of the
functionality is realized.

The DDC is modeled after object oriented style of modular
software development. It specifies a base set of interfaces that
standardizes the common aspects of all device drivers such as –
configuration, creation, initialization & startup, termination and
teardown. This base set of function can be extended by
introducing operations specific to a particular device – IO Access
and IO Control. DDC further encourages formation of device
classes while extending the basic functionality. This way, device
drivers for h/w components that are similar in data transaction
models and control semantics will look alike.

The DDC on its own has no existance, it is brought to life by the
IOM when the device driver is loaded by the system and removed
from the system upon unloading. The IOM has the obligation to
pass-on the relevant driver configuration parameters to the DDC
during creation phase.

The IOM implements a set of functions that adapt the driver to
OS. Likewise DDC implements a set of functions that constitute
the driver functional interface.

To improve componentization of device driver, DDC comprises of
C functions which makes use of the LLC Layer for implementation
of certain functions that support:

 Operations to formally begin/end access to device h/w

 Operations to perform onetime setup of the H/W device such
as during device driver initialization

 Operations to program the H/W device registers to change
one or more of its configuration parameters

 Operations to query and infer the current state of the H/W
device

1.2.4 OS Specific Device Driver Adaptation (IOM)

As discussed above, the DDC is not complete unless it is supplemented by
the IOM. The IOM “adapts” the driver core to the specific OS. IOM
implements aspects such as – threading model for transaction processing,

Interrupts registration and de-registration, handshaking with OS prescribed
upstream/downstream data queues and threads etc., The IOM has full
visibility to underlying OS services and is custom-built for a given OS.

While the IOM is primarily intended for presenting an OS manifest to the
underlying DDC, it is also possible that the IOM upper-edge interface (user
level) imbibes the semantics of any pre-specified Framework, if one exists.
This is necessary to prevent undue overheads in system integration.

1.2.5 Platform Abstraction Layer for OS services (PALOS)

It should be clear by now that a device driver is composed of three main
sub-components – the HW specific bottom-edge, the OS specific upper-
edge and the central device driver core that makes no reference to any
particular OS services. Memory footprint Scalability is a key consideration
in deploying such a driver. In this section, we give a quick overview of
suggested approach followed in TI device driver implementations.

As discussed earlier, both the IOM and DDC publish a table of function
pointers for each other to use. However, it must be noticed that, not all the
OS specific adaptation services are solicited by DDC in the same context.
In addition, it’s not practical to abstract all required OS services due to
performance reasons. Therefore, we’d usually end up with a residue part
of driver that must be custom built in the IOM by directly availing the OS
services. It is this part of the IOM that is exposed through the table of
functions to the DDC.

The rest of the OS services such as working with Semaphores, Mutexes,
Memory buffer pools etc., are generic in nature. If these services are
implemented as static functions, rolled into each IOM, memory foot print
bloat occurs when there are multiple instances of device drivers in the
system. To mitigate memory footprint bloat and difficulties in reuse, all
generic OS abstraction services are pulled out as separate compilation
units so that only one copy of these need be loaded to resolve all
references across different driver instances.

This common module is termed the PAL OS and is depicted in figure below
as green colored units, located inside the library to the right.

VIII

Figure 2 Genesis of PAL-OS

1.3 Design Philosophy of drivers

Central to the philosophy of TI device driver architecture is clarity
in separation of roles and responsibilities for the various parts of
the device driver. Rather than treat the entire device driver as a
monolithic block of code, effort is made to identify the portions of
the device driver that are involved in:

 Coupling or handshaking with the specific OS

 Performing primitive, directed read/write access to
the h/w device

 Modeling the crux of the driver behavior – protocol,
state machine etc this in itself is regardless of any
given OS.

With this view, the device driver functionality can be enacted by
three key roles defined here under:

 OS Specific Device Driver Adaptation (IOM)

 Device Driver Core, isolated from OS as well as H/W
(DDC)

 LLC abstraction providing services to perform primitive
access necessary to control/configure/examine status,
of the underlying h/w device.

Since there exists a clear separation of roles and responsibilities
of the three sub-components of the driver, the prescribed
architecture helps in creation of robust device drivers through
tested/reusable pieces. Besides, it ensures in maintaining uniform
semantics for similar services, supported across different drivers,
for different platforms.

The figure below further elucidates the driving philosophy in
partitioning the device driver into distinct functional sub-
components – IOM, DDC and LLC.

Figure 3 Monolithic Device Driver – Amorphous structure

Figure 4 Layered Device Driver – Well defined structure

X

Figure 5 Device driver Architure

1.3.1 Design Goals

The following are the key device driver design goals being
factored by proposed TI architecture:

 Uniformly styled drivers, promoting increased reuse and
code familiarity to developers

 Minimal overheads in integrating TI device driver into
any Software System

 Device driver must support Synchronous as well as
Asynchronous interfaces to the user where appropriate

 Device driver must operate both with and without
Interrupts capability as appropriate

 Device driver must leverage the H/W DMA capability
where available to improve performance of device
driver in case of block-oriented transfers.

1.3.2 Assumptions
 It is assumed that TI Device Drivers are required to be

fully functional in their native OS (DSP/BIOS in case of
DSP side devices). Integration of TI Device Drivers into
a given software system is beyond the immediate scope
of the proposed architecture. However, effort has been
made by TI to ease the integration via IOM interfaces
discussed later in this document.

Application

DIO AdapterPIO Adapter

PIP API’s SIO API’s

GIO API’s

DDA layer (IOM Functions and PSP Functions)

CSLR layer

DDC layer

LLC layer

1.3.3 Design Principles

The guiding principles for the TI Device Driver design, drawn in
the context of a fore mentioned philosophy, goals and constraints
can be enumerated as follows:

 Clear separation of H/W-dependent and H/W-
independent parts.

 Clear separation of OS dependent and independent
parts

 Consistent interfaces across same class of devices,
ensured by design

 Modular design to effectively address multiple device
instances – avoids needless code size penalty and also
to isolate device specific driver Implementation details
from usage policies.

1.4 Design philosophy for PAL SYS drivers

PALSYS driver component abstracts common hardware system
functionalities and provides an interface to the application as well as other
PSP driver components such as DDA and DDC.

PALSYS can abstract the following functionalities.

 EVM specific Hardware

 Common peripherals

o LPSC, GPIO, RTC and TIMER utility APIs.

 Bus configuration drivers which normally would not entertain I/O calls

o VLYNQ

o PCI

Application

DSP/BIOS

DDA

CSLR

Hardware

DDC
PAL SYS

Common
Hardware

XII

Chapter 2

Installation Guide

This chapter discusses the DSP/BIOS PSP DM648/C6452
installation, how and what software and hardware components to
be availed in order to complete a successful installation (and un-
installation) of DSP/BIOS PSP DM648/C6452.

2.1 Installation and Usage Procedure
1. Install the above products as per instructions provided along with the

products.

2. Install the PSP package by deflating the compressed package file in any
drive

3. Configure UART to 115200 BAUD Rate, with 8 bit Data, No Parity, No
Flow Control & Stop Bit equal to 1 on PC side.

4. As the EVM has an EVM Controller Processor (ECP), it is required that it
to be setup for proper mux selection and reference clock selection. As
some drivers (like video drivers) will not come out of reset, it is
necessary to configure this muxes properly before we start using PSP
drivers.

a) This can be done by the GEL file available with EVMs (the current
version provided by EVM manufacturers setup both audio and
video muxes). If any custom change in mux is needed, GEL file
can be appropriately modified to program muxes and reference
clocks. In non-ccs applications (where the image is loaded from
bootloader) the bootloader may use the mux configuration code
from GEL file to perform these mux and reference clock
configuration.

b) To help starting up using this package, ccs setup files are
available in pspdrivers\docs\Other\ folder and this is not a
featured deliverable of PSP package. Appropriate ccs setup files
should be availed from respective providers. To download the
EVM DM648 board support files/drivers, log on Lyrtech FTP site

 Open Windows Explorer. (not Internet Explorer)

 In the Address bar, type
‘’ftp://dm648evm:kC9YxeE9m7c5B1JzVwmu@ftp2.lyrtech.
com ‘’

5. For video port sample application/setup, please refer VIDEO port release
notes.

6. TCF files in PSP package use HWI 7, 8, 9 and 10 for ECM groups 0,1,2,3.
Please perform necessary changes in your customized package.

7. For information on Ethernet package, please refer readme html file in
the docs directory of the package. The Ethernet package (tar file) should
be copied in packages directory of NDK installation and from there it has
to be un-tarred. The tar itself has TI folder in it and untarring would
overwrite the TI directory with needed driver files from driver package.
Please note that copying the Ethernet driver tar file anywhere else and
tarring would create TI folder and copy the contents in that.

8. Please note that if BIOS version 5.31.07 by default uses 891 MHz as
clock has to be used with timer patch.

XIV

Note:

1. The XDCPATH environmental variable should be set properly to
recompile the drivers/sample applications. Ensure that the XDCPATH
variable should contain, BIOS packages path, XDC packages path, PSP
drivers packages path, EDMA packages path.

Example:

2. psp_xdcpaths_common.dat should contain the information about the
PSP package installation directory and the EDMA installation directory.

a. The “pspRootDir” string should point to the directory where the
PSP package is installed. For example if the PSP packge is
installed as “z:\pspdrivers\pspdrivers_1_10_01\packages” then
the pspRootDir should be equal to “z:/pspdrivers/”. Please note
the forward slashes in the path.

b. The “pspversion” string should contain the version number of the
current PSP installation. For example, if the version of PSP
package installed is 1.10.01, then pspversion should be equal to
“1_10_01”.

c. edma3InstallDir should be set to point to the installation directory
of the EDMA package. If EDMA driver package is installed at
“c:\ProgramFiles\TexasInstruments\”, then edma3InstallDir
should be set to “c:/ProgramFiles/TexasInstruments/”. Please
note that forward slashes should be used here for directory
paths.

d. The first section –Section 1- should be uncommented in case of
non DVSDK users and the second section –Section 2- should be
commented. If users are using PSP package from inside a DVSDK
installation, then the second section – Section 2- should be
uncommented and first section – Section 1- should be
commented.

Steps to run sample applications of EDMA, UART, I2C, SPI and
VLYNQ on DM648/C6452 EVM:

1. For hardware setup, connect the UART cable to DM648 EVM. Connect
XDS 510 USB emulator to the JTAG connector on board. Switch on the
power supply for board.

Note1: To run VLYNQ sample, hardware setup will consist of two
back-to-back connected daughter cards plugged into DM648 EVM. (If the
EVM we are connecting is other than DM648 EVM, then corresponding
VLYNQ connector along with VLYNQ cable to be used to make the setup)

Note2: To run McASP sample, connections to Audio input device
(typically PC headphones out) and audio output device (typically,
headphones or connection to amplified speakers) is a prerequisite.

2. Open CCS 3.3.38.4 setup. Select EVMDM648_XDS510USB processor.

3. Connect to DM648 processor.

4. Open \pspdrivers\drivers\<device>\sample\build\<device
dependent>.pjt Build the image and download it to the platform using
CCS.

5. Sample applications for the included driver shall automatically start
following this logo.

Steps for running sample application of PCI driver on DM648/C6452
board

1. Set the switch settings in the EVM, for PCI boot mode. Please refer the
EVM document for complete details of switch settings

(To download the DVEVM DM648 board support files/drivers, log on
Lyrtech FTP site

i. Open Windows Explorer. (not Internet Explorer)

ii. In the Address bar, type
‘’ftp://dm648evm:kC9YxeE9m7c5B1JzVwmu@ftp2.lyrtech.com ‘’)

2. Fit EVM DM648/C6452 card into the PCI slot of a Linux machine having
linuxkernel 2.6.9(RHEL 4 AS).

3. Connect USB emulator to JTAG port of DM648 EVM. Connect the USB
cable to other PC having CCS on that.

4. Power ON the Linux machine. BIOS of Linux machine will start booting
up.

5. Open CCS 3.3 on the PC and try to connect to DM648 EVM.

6. Press Ctrl+Alt+F1 to go to console in Linux machine.

7. Enter username and password for "root" user.

8. Copy Makefile and pcidrv.c from "pspdrivers\pal_sys\pci\docs\linuxapp"
folder to "/home" directory of Linux machine.

9. Go to "/home" directory by giving "cd /home" command.

10.Give "make" command. This will generate the object file of a PCI host
driver for Linux. Driver will be generated by module name "pcidriver.ko"
in same directory.

11.Give "insmod pcidriver.ko" command. This will insert the driver as a
module.

12.This will give some print messages on Linux machine. If print messages
of Linux driver for PCI are not visible on the console then give "dmesg"
command on Linux console to see the print messages.

13.There will be a print message saying "Address to write from DSP =
0x518000". Note this address (0x518000).

14.Build CCS project and run the out file.

15.When asked for input (by CCS scanf window) enter the address value
got from step 12.

XVI

16.Out file will generate a host interrupt on Linux machine. On generation
of host interrupt the will be print messages saying "Interrupt received
from DSP". This indicates that DSP to Host interrupt is generated.

17.Sample application loaded on EVM DM648/C6452 through CCS will also
perform read/write test and print the message of success or failure on
STDOUT

2.2 Un-Installation
1. Delete the <Installation Path>:\pspdrivers_<Version> directory to remove

DM648/C6452 PSP package.

2. Un-install the products (listed in system requirements) as per instructions
provided with the product.

3. pcidriver.ko can be un-installed from Linux machine by giving “rmmod
pcidriver.ko” command on console of Linux machine. (applicable of PCI
setup only)

2.3 PSP Component Folder

This section details the files and directory structure of the
installed DSP/BIOS PSP DM648/C6452 in the system. A
viewgraph of the actual directory tree (as seen in the final
deployed environment is inserted here for clarity.

2.3.1 Top level PSP Directory structure:

Figure 6 PSP Top level directory structure

The directories of interest (for this release) are:
\edma3\drv – EDMA3 driver
\edma3\rm –EDMA3 resource manager
\docs – Documents
\pspdrivers\drivers - Drivers
\pspdrivers\common – Include files used by all the drivers
\pspdrivers\pal_os - PAL OS component
\pspdrivers\pal_sys – PAL SYS component
\pspdrivers\system – EVM dependent drivers (e.g. audio) and sample
Application
\pspdrivers\soc – CSLRs for DM648 SOC

2.3.2 PAL OS for BIOS Directory structure:

Figure 7 PAL OS directory structure

..\pal_os\bios\build - PAL OS build directory

..\pal_os\bios\src - PAL OS BIOS source directory

..\pal_os\bios\docs – documents for PAL OS

..\pal_os\bios\ - Include files

XVIII

2.4 CCS Projects

The following CCS projects are provided as part of the PSP package:

DM648 Sample project for BIOS Sample Application (Executable build):

 \system\DM648\bios\evmdm648\build\evmDM648_dvr_pimux_combo1_
bios_sample_out.pjt

This project builds the sample code for UART, I2C, McASP and
VPORT.

 \system\DM648\bios\evmdm648\build\evmDM648_dvr_pimux_combo2_
bios_sample_out.pjt

This project builds the sample code for SPI and VLYNQ.

 \pspdrivers\pal_sys\pci\sample\psp_pci_bios_sample_dm648.pjt

This project builds the sample code for PCI

 \pspdrivers\drivers\tsip\sample\c6452_evm_tsip_st_sample.pjt

This project builds the sample code for TSIP

Chapter 3

Integration Guide

This chapter discusses the DSP/BIOS PSP DM648/C6452
package usage.

3.1 Application Usage of PSP

3.1.1 Demo Application

As part of the PSP package, a demo application is provided to do
the following:

1. Display the PSP logo on UART Console

2. Run the sample code for the drivers

NOTE: In case if cache is enabled and driver is configured
in EDMA mode or driver uses EDMA, application must
provide cache line size (current configuration of cache line
size is 64 – bytes) aligned address to the driver.

3.1.2 I2C Driver usage example

Sample code is provided to demonstrate the usage of I2C driver.
This sample demonstrates usage of I2C driver by blinking LEDs
on DM648 EVM through MSP430.

3.1.3 SPI Driver usage example

Sample code is provided to demonstrate the usage of SPI driver.
This sample demonstrates usage of SPI driver by performing a
read/write operation on EEPROM.

3.1.4 UART Driver usage example

UART driver sample code demonstrates read/write operations of
1000-bytes.

3.1.5 McASP Driver usage example

Sample code of McASP demonstrates basic audio record and
playback functionality.

XX

3.1.6 EDMA3 Driver usage example

Sample code is provided to demonstrate the usage of EDMA
driver. EDMA has been tested in simple memory to memory copy
on DM648 EVM board. The application demonstrates the copying
of data through DMA channel and QDMA channel.

3.1.7 PAL SYS VLYNQ Driver usage example

VLYNQ sample application demonstrates the read/write operation
on back to back connect DM648 EVMs through VLYNQ
connectors. The sample first detects the VLYNQ link and than
writes data on to the peer SOC and read data from the peer SOC.

3.1.8 PAL SYS PCI driver usage example

PCI driver sample application demonstrates read/write operation
across PCI bus. This application has to be run on a DM648 EVM fit
in PCI slot of LINUX machine. By running a same program on
LINUX machine a memory mapped area on the host side can be
obtained. This memory mapped address can be used by the
sample application of DM648 EVM for read/write operation.

3.2 Instrumentation Tool - SoC Analyzer usage

3.2.1 Pre-requist installations for instrumentation

1. Install “SOC analyzer” by running dvt.exe of SocAnalyzer_1.0.0.1.1.

2. Install DVSDK targeted for DM6437 to setup the log server using the installable
DM648_DVSDK_setupwin32_1_10_00_02.exe.

3. Set following as environment variables. (Assumption is dvsdk in installed in
BIOS_INSTALL_DIR - D:/CCStudio_v3.3/bios_5_31_07
BIOSUTILS_INSTALL_DIR:%BIOSDVSDK_INSTALL_DIR%\biosutils_1_00_02\
BIOSDVSDK_INSTALL_DIR: C:\dvsdk_1_10_00_02

3.2.2 INSTRUMENATION IN SAMPLE PROJECT

1. Include the following files in application project that uses driver library.

 %BIOSUTILS_INSTALL_DIR%\packages\ti\bios\log\ndk\examples\common\l
ogserverstacksetup.c

 %NDK_INSTALL_DIR%\packages\ti\ndk\example\network\cfgdemo\evmdm6
48\evmdm648_init.c

 %NDK_INSTALL_DIR%\packages\ti\ndk\example\network\cfgdemo\evmdm6
48\cpsw3g_switchApp.c

2. Include the following Libraries in sample project of driver.

 %NDK_INSTALL_DIR%\packages\ti\ndk\lib\c64plus\hal\hal_ser_stub.lib
 %NDK_INSTALL_DIR%\packages\ti\ndk\lib\c64plus\hal\hal_timer_bios.lib
 %NDK_INSTALL_DIR%\packages\ti\ndk\lib\c64plus\hal\hal_userled_stub.lib
 %NDK_INSTALL_DIR%\packages\ti\ndk\lib\c64plus\miniPrintf.lib
 %NDK_INSTALL_DIR%\packages\ti\ndk\lib\c64plus\netctrl.lib
 %NDK_INSTALL_DIR%\packages\ti\ndk\lib\c64plus\nettool.lib
 %NDK_INSTALL_DIR%\packages\ti\ndk\lib\c64plus\os.lib
 %NDK_INSTALL_DIR%\packages\ti\ndk\lib\c64plus\stack.lib
 %NDK_INSTALL_DIR%\packages\ti\ndk\lib\hal\evmdm648\hal_eth_dm648.l

ib

3. Change “Debug” build configuration as per the following.

Add the following compiler options, include file paths and include library paths
and DSP-BIOS builder settings.

Compiler options:

-pds238

Include paths:

Open Build options of sample project. Go to “Compiler” tab. Select the
“Preprocessor” category. Add the following paths in “include search path(-i)”
field.

-i"%NDK_INSTALL_DIR%\packages\ti\ndk\inc"
-i"%NDK_INSTALL_DIR%\packages\ti\ndk\example\tools"
-i"%BIOSUTILS_INSTALL_DIR%\packages\ti\bios\log\ndk"
-i"%BIOSUTILS_INSTALL_DIR%\packages\ti\bios\log\support"
-i”%NDK_INSTALL_DIR%\packages\ti\ndk\inc”
-i"%NDK_INSTALL_DIR%\packages\ti\ndk\src\hal\evmdm648\ethss_dm648"
-i”%BIOS_INSTALL_DIR%\packages”
-i”%BIOSUTILS_INSTALL_DIR%\packages”

"DspBiosBuilder" Settings

Open Build options of sample project. Go to “DspBiosBuilder” tab. Select the
“Basic” category. Add the following paths in “import path” field.

%NDK_INSTALL_DIR%/packages/ti/ndk/inc/tci;
%BIOSUTILS_INSTALL_DIR%\packages\ti\bios\utils;
%BIOSUTILS_INSTALL_DIR%\packages\ti\bios\log\support;
%BIOSUTILS_INSTALL_DIR%\packages\ti\bios\log\ndk\examples\common;

XXII

"XDC" Settings(This section is valid only when application project is
RTSC compliant)

Open Build options of sample project. Go to "XDC" tab. Select the "Basic"
category. Add the following paths in "XDC path" field.

%NDK_INSTALL_DIR%/packages/ti/ndk/inc/tci;
%BIOSUTILS_INSTALL_DIR%\packages\ti\bios\utils;
%BIOSUTILS_INSTALL_DIR%\packages\ti\bios\log\support;
%BIOSUTILS_INSTALL_DIR%\packages\ti\bios\log\ndk\examples\common;

"Linker" Settings:

Open Build options of sample project. Go to “Linker” tab. Select the “Library”
category. Add the following paths in “Search Path(-i)” field.

-i"%BIOS_INSTALL_DIR%\packages\ti\rtdx\lib\c6000"
–i"%BIOSUTILS_INSTALL_DIR%\packages\ti\bios\log\ndk\lib"
-i"%BIOSUTILS_INSTALL_DIR%\packages\ti\bios\log\support\lib"
-i"%BIOSUTILS_INSTALL_DIR%\packages\ti\bios\utils\lib"

Add the following paths in “Incl. Libraries(-l)” field.

-l"logsupport.a64P"
-l"logservercgi.a64P"
-l"utils.a64P"

4. Create “iDebug” build configuration. Keep the compiler options, include file
paths, include library paths and DSP-BIOS builder settings same as “Debug”
configuration.

Add the following lines in pjt of sample project to create “iDebug” configuration.

Config="iDebug"
["Compiler" Settings: "iDebug"]

5. Repeat step 3 and 4 for release mode to generate iRelease configuration.

6. Do the following changes in TCF file of application project.

 Remove “trace” object of LOG to avoid multiple definitions.
 Add following lines in application project’s TCF file:

bios.GBL.CALLUSERINITFXN = 1;
bios.GBL.USERINITFXN = prog.extern("evmdm648_init");

This will set “evmdm648_init” as a global initialization function. This function
will do the initialization required for network stack setup and read MAC
address of EVM DM648 board

 Add the following lines at the start of application project TCF file.

utils.importFile('ndk.tci');
utils.importFile('Load.tci');
utils.importFile('LogTrack.tci');
utils.importFile('logserverexample.tci');

 Increase the buffer size of “LOG_system” buffer = 262144, “DVTEvent_Log”
buffer = 65536 and change the segment of both these buffers to DDR2
instead of IRAM setting following values in the TCF file:

bios.LOG.instance("LOG_system").bufLen = 262144;
bios.LOG.instance("LOG_system").bufSeg = prog.get("DDR2");

Do the same for “DVTEvent_Log”.

bios.LOG.instance("DVTEvent_Log").bufSeg = prog.get("DDR2");
bios.LOG.instance("DVTEvent_Log").bufLen = 1048576;

7. Do the following changes in main sample application of project.

 Add the following code in the main function(starting point) of application
project. This is for initializing log server.

LogAux_init();
LogTrack_init();
TRC_disable(TRC_LOGCLK); /* This is required only with BIOS 5.31.03 or
less */

 Include the following files in main sample application of driver.

#include <LogServerCgi.h>
#include <LogAux.h>
#include <LogTrack.h>

 Add the following code in file containing main function of application project.

extern LOG_Obj logTrace;
extern LOG_Obj logTest;

/*
 * logTracePrd
 *
 * This fxn runs periodically and continuously updates the
 * logTrace log.
 *
 */
Void logTracePrdfxn()
{
 LOG_printf4(&logTrace, "logTrace data: %c %c %c %c\n", 'p', 'q', 'r', 's');
}

/*
 * logTestPrd
 *

XXIV

 * This fxn runs periodically and continuously updates the
 * logTest log.
 *
 */
Void logTestPrdfxn()
{
 LOG_printf4(&logTest, "logTest data: %c %c %c %c\n", 'h', 'i', 'j', 'k');
}

/* ======== task ========
 */
Void task(Arg id_arg, Arg time_arg)
{
 Int id = ArgToInt (id_arg);
 Int time = ArgToInt (time_arg);
 LgUns currTime;
 LgUns startTime;

 /* this outer while loop runs once per task run */
 while (1) {
 LOG_printf(&trace, "Task %d starting!\n", id);
 startTime = CLK_getltime(); /* time when task begins */

 do {
 currTime = CLK_getltime();
 } while (currTime - startTime < time);

 LOG_printf(&trace, "Task %d going to sleep ...\n", id);
 TSK_sleep(300);
 }
}

8. Build the application project in iDebug or iRelease mode and run the out file.
This will print the IP address of EVM DM648. Make a note of this IP address.
Make sure that network cable is plugged in the EVM and connected to proper
LAN port.

9. Make sure that there are enough logs(samples) generated so that SoC analyzer
is able to plot the value

3.2.3 ANALYZING INFORMATION

1. Open SOC Analyzer. At the first use, the SoC Analyzer will start-up with a blank
screen. In order to capture and visualize data, certain settings have to be done
for SOC Analyzer tool. The settings have to be done in Solution control of SOC
Analyzer. To open Solution control of SOC Analyzer, On the menu select
solution control as shown in the picture below.(Please note that absolute values
of throughput and latency are not proper, and this information is given to SoC
tool team to look into the issue)

This will open following menu box. Select “DM648x”. This will open the control panel
and solution for DM648.

2. In control panel tab, set “Action” to “Online Catpure” and set “Session” to
“loopback”. Set the IP address note while running the application out file in
“Target IP Address” field and set the path of OUT file that is running on EVM
DM648 in “Symbol File” field as show in the following figure. Set the “Number of
Seconds to Capture” filed to “60” which is set to “30” in the following figure.

XXVI

3. Click on the “Start Capturing Logs on Target” button. By pressing this
button SOC analyzer will start capturing data.

4. To see various graphs go to Window->Open Views select the appropriate
option.

3.3 Adding instance of the device driver

To have device driver included in the application, it is required to
add the instance of the device driver in the TCF file of the
application.

A TCI file can be used for adding the device driver instance in the
TCF file. It contains following field:

1. init function: This function will be called before the
initialization of drivers. Initializations that have to be done
before driver initialization are done in this function

2. function table ptr: This is a pointer to a structure that
contains all the function pointers to all the driver
functions. This pointer should be initialized by a structure
that contains function pointers to the functions the
peripheral driver

3. function table type: Function table type which can be
IOM_Fxns or DEV_Fxns

4. device Id: Device driver instance number

5. device params ptr: Pointer to a structure that will be
used while initialization of drivers

The following is the example of the UART driver depicts the way a
TCI file shall be made. A TCI file shall consists of the following
detail:

bios.UDEV.create("UART0");
bios.UDEV.instance("UART0").deviceId = 0;
bios.UDEV.instance("UART0").fxnTableType = "IOM_Fxns";
bios.UDEV.instance("UART0").initFxn = prog.extern("uartAppInit");
bios.UDEV.instance("UART0").fxnTable = prog.extern("UARTMD_FXNS");
bios.UDEV.instance("UART0").params = prog.extern("Uart_DevParams");

Here

Field name Description

UART0 The name of device driver instance. This name
shall be given as input parameter while calling
GIO_create for corresponding driver.

deviceId = 0 Refers to instance of device driver for UART0

IOM_Fxns Type of function table

uartAppInit Function that will be called to do the
initialization required for UART driver

UARTMD_FXNS Pointer to structure containing mini-driver
functions for UART driver

UART_DevParams the configuration parameter for device driver of
UART0

This TCI file, containing the driver instance, need to be imported
in the TCF file in the following way:

utils.importFile("dm648_uart0.tci");

This can be added in the TCF file by opening it text edit mode and
then writing the above line in the starting. Here
“dm648_uart0.tci” is the name of the respective TCI file of the
device driver that needs to be included.

For this file to be imported, its path needs to be listed in the
projects build option. The import path can be added by adding
the path of the TCI file in project’s build option-DspBiosBuilder-
Basic.

XXVIII

3.4 Interrupt configurations in TCF file

Following lines need to be there in tcf file for enabling hardware interrupt.

bios.ECM.ENABLE = 1;

ECM configuration – following settings needs to be made manually to reflect these settings
available in soc.h.

bios.HWI.instance("HWI_INT7").interruptSelectNumber = 0;
bios.HWI.instance("HWI_INT8").interruptSelectNumber = 1;
bios.HWI.instance("HWI_INT9").interruptSelectNumber = 2;
bios.HWI.instance("HWI_INT10").interruptSelectNumber = 3

