

 UART Device Driver

Page 1 of 32

Texas Instruments Proprietary Information

DSP/BIOS UART Device Driver

User's Manual
U s e r ' s G u i d e

Architecture/Design
Document

 UART Device Driver

Page 2 of 32

Texas Instruments Proprietary Information

Revision History

Document
Version

Author(s) Date Comments

0.1 Kapil Bohra June 19, 2006 Created the document

0.2 Rinkal Shah December 22, 2006 Review comments closed and BIOS
version changed to 5.31

0.3 Nagarajuna K
Kapil Bohra

December 15, 2006 Modified for the DM648

0.4 Jayaprakash N December 22, 2006 Modified for new UART architecture for
DM648

0.5 Kapil Bohra January 08, 2007 Modification as per the changed
architecture

0.6 Nagarjuna K January 29, 2007 Renamed DM64g to DM648

0.7 Nagarjuna K June 15, 2007 Corrected version number for tools used

0.8 Nagarjuna K November 14, 2007 Updated for DM6437/C6424 and
DM648/C6452

 UART Device Driver

Page 3 of 32

Texas Instruments Proprietary Information

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make
corrections, modifications, enhancements, improvements, and other changes to its
products and services at any time and to discontinue any product or service without
notice. Customers should obtain the latest relevant information before placing orders
and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design.
Customers are responsible for their products and applications using TI components. To
minimize the risks associated with customer products and applications, customers
should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted
under any TI patent right, copyright, mask work right, or other TI intellectual property
right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third–party products or services does
not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party
under the patents or other intellectual property of the third party, or a license from TI
under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if
reproduction is without alteration and is accompanied by all associated warranties,
conditions, limitations, and notices. Reproduction of this information with alteration is
an unfair and deceptive business practice. TI is not responsible or liable for such
altered documentation.

Resale of TI products or services with statements different from or beyond the
parameters stated by TI for that product or service voids all express and any implied
warranties for the associated TI product or service and is an unfair and deceptive
business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

 UART Device Driver

Page 4 of 32

Texas Instruments Proprietary Information

Copyright ©2006, Texas Instruments Incorporated

Table of Contents

1 System Context...6

1.1 Terms and Abbreviations...6

1.2 Related Documents..6

1.3 Hardware ..7

1.4 Software..8
1.4.1 Operating Environment and dependencies..8
1.4.2 System Architechture..8

1.5 Component Interfaces..9
1.5.1 IOM Interface..9
1.5.2 DDC Interface...10
1.5.3 CSLR Interface...10

1.6 Design Philosophy...11
1.6.1 The Port and Channel Concept...11
1.6.2 Design Constrains ..12

2 UART Driver Software Architecture ..12

2.1 Static View..12
2.1.1 Functional Decomposition...12
2.1.2 Data Structures...14

2.2 Dynamic View...19
2.2.1 The Execution Threads...19
2.2.2 Input / Output using UART driver ..20
2.2.3 Functional Decomposition...20
2.2.4 Synch-IO Mechanism ...31

3 APPENDIX A – IOCTL commands ..32

 UART Device Driver

Page 5 of 32

Texas Instruments Proprietary Information

List Of Figures

Figure 1 UART Block Diagram ... 7
Figure 2 System Architecture ... 8
Figure 3 Port and Channel Object .. 11
Figure 4 UART driver static view .. 13
Figure 5 uart_mdBindDev () flow diagram... 20
Figure 6 uart_mdUnBindDev () flow diagram .. 21
Figure 7 uart_mdCreateChan () flow diagram... 22
Figure 8 uart_mdDeleteChan () flow diagram ... 23
Figure 9 uart_mdControlChan () flow diagram .. 23
Figure 10 uart_mdSubmitChan () flow diagram... 24
Figure 11 psp_uartCreate .. 25
Figure 12 psp_uartDelete... 26
Figure 13 psp_uartOpen .. 27
Figure 14 psp_uartClose .. 28
Figure 15 psp_uartIoctl... 28
Figure 16 psp_uartRead / psp_uartWrite .. 29
Figure 17 psp_uartAbort... 30

 UART Device Driver

Page 6 of 32

Texas Instruments Proprietary Information

1 System Context

The purpose of this document is to explain the device driver design for UART
peripheral using DSP/BIOS operating system running on DSP 64+ joule.

Note: The usage of structure names and field names used throughout this design
document is only for indicative purpose. These names shall not necessarily be
matched with the names used in source code.

1.1 Terms and Abbreviations

Term Description

API Application Programmer’s Interface

CSL TI Chip Support Library – primitive h/w abstraction

DDC TI terminology for portion of device driver that is
abstracted of any given OS

IOM TI terminology for portion of device driver that is specific to
target OS. This constitutes “adaptation” of the generic
DDC to identified target OS.

IP Intellectual Property

ISR Interrupt Service Routine

OS Operating System

1.2 Related Documents
1. SPRU616 DSP/BIOS Driver Developer’s Guide

3. Uart format specifications
version 1.3

UART Specs

 UART Device Driver

Page 7 of 32

Texas Instruments Proprietary Information

1.3 Hardware

The UART device driver design is in the context of DSP/BIOS running on DSP
64x+ joule core.

The UART module core used here has the following blocks:

Figure 1 UART Block Diagram

 UART Device Driver

Page 8 of 32

Texas Instruments Proprietary Information

1.4 Software

The UART mini-driver discussed here is running DSP/BIOS on the 64x+ DSP.
However the UART driver can also be ported to any other OS, with minimal
modifications in the OS specific section of the driver. More details can be found in
the later part of this section.

1.4.1 Operating Environment and dependencies

Details about the tools and the BIOS version that the driver is compatible
with can be found in the system Release Notes.

1.4.2 System Architechture

The block diagram below shows the overall system architecture.

Figure 2 System Architecture

The Application would invoke the driver routines through the GIO Calls
APIs, whiich is OS based adaptation layer and device drivers are accessed
by the applications for performing I/O using BIOS through the above
mentioned GIO calls.

IOM is the component that exposes the driver Core to the OS and performs
all the OS related operations required for the driver core (DDC).

DDC is the driver core which actually performs the device specific
operations.

Figure 2 shows the overall DSP/BIOS device driver architecture. For more
information about the IOM device driver model, see the DSP/BIOS Device
Driver Developer’s Guide (SPRU616). The rest of the document elaborates
on the architecture of the Device driver by TI.

Application

DSP/BIOS

UART IOM

UART CSLR

Hardware

UART DDC

PAL OS
PAL SYS UART Device

Driver

 UART Device Driver

Page 9 of 32

Texas Instruments Proprietary Information

1.5 Component Interfaces

In the following subsections, the interfaces implemented by each of the sub-
component are specified. Refer to UART device driver API reference
documentation for complete details on APIs.

1.5.1 IOM Interface

The IOM constitutes the Device Driver Manifest to Application. The user may not
look into IOM interface, especially the upper-edge services exposed to the
Application/OS. All other interfaces discussed later in this document are more of
interest to people developing/maintaining the device driver.

The IOM can be modified to re-target Driver and/or customize to specific Apps
framework by doctoring the upper-edge services.

The uart_mdBindDev () populates static settings in driver object creates the
necessary interrupt handler, attaches the Driver Core interfaces. All these
operations in effect, constitute the “loading” of UART Driver implementation. The
uart_mdUnbindDev () constitutes the “Un-loading” of the UART driver. The IOM
mini-driver implements the following API interfaces to the class driver.

S.No IOM Interfaces Description

1 uart_mdBindDev () Allocates and configures the UART port
specified by devid.

2 uart_mdUnbindDev () Removes the UART device from use

3 uart_mdCreateChan () Creates a communication channel in specified
mode to communicate data between the
application and the UART device instance.

4 uart_mdDeleteChan () Frees a channel and all its associated
resources.

5 uart_mdControlChan () Implements the IOCTLS for UART IOM mini
divers.

6 uart_mdSubmitChan () Submit an I/O packet to a channel for
processing.

 UART Device Driver

Page 10 of 32

Texas Instruments Proprietary Information

1.5.2 DDC Interface

DDC implements the core device driver layer and it provides standard abstract
interfaces to the upper layers as per the PSP framework standards architecture.

The following basic interfaces are implemented and exposed to the IOM layer by
the DDC layer of UART driver.

S.No DDC Interfaces Description

1 PSP_uartCreate() Initialize/Setup the UART hardware
with the given configuration
parameters.

2 PSP_uartDelete() Does the reverse of PSP_uartCreate.

3 PSP_uartOpen() Configure UART’s TX/RX parameters
to establish channel.

4 PSP_uartIoctl () Perform input/output control on UART
Hardware.

5 PSP_uartClose () Does the reverse of PSP_uartOpen.

6 PSP_uartTransfer() Submits IOP requests to perform
input/output

1.5.3 CSLR Interface

The CSL register interface (CSLR) provides register level implementations. CSLR
is used by the DDC to configure UART registers. CSLR is implemented as a
header file that has CSLR macros and register overlay structure.

 UART Device Driver

Page 11 of 32

Texas Instruments Proprietary Information

1.6 Design Philosophy

This device driver is written in conformance to the DSP/BIOS IOM device driver
model and handles communication to and from the UART hardware.

1.6.1 The Port and Channel Concept

The IOM model provides the concept of the Port and Channel for the realization of
the device and its communication path as a part of the driver implementation. The
UART driver provides one read/write channel in order to perform IO operations.

The Port Object maintains the state of the UART device or an instance. The port
can also be called as instance or device and the names can be used
interchangeably. The port object contains placeholders for all channel objects for
TX and RX. The following figure shows the generic port-channel-hardware mapping
for UART driver.

Figure 3 Port and Channel Object

TX
FIFO

RX
FIFO

TX
Chan
Obj

RX
Chan
Obj

UART instance-1

Port Object -1

 UART Device Driver

Page 12 of 32

Texas Instruments Proprietary Information

1.6.2 Design Constrains

UART mini-driver imposes the following constraint(s).

 UART driver supports only synchronous mode of operation to the
application.

 UART driver shall only work with polled and Interrupt mode of operation.
No DMA support is available in this implementation

 UART driver shall not support dynamically changing modes between
Interrupt and Polled modes of operation.

2 UART Driver Software Architecture

This section details the data structures used in the UART mini-driver and the
interface it presents to the GIO layer. A diagrammatic representation of the mini
driver functions is presented and then the usage scenario is discussed in some
more details.

Following this, we’ll discuss the deployed driver or the dynamic view of the driver
where the driver operational scenarios are presented.

2.1 Static View

2.1.1 Functional Decomposition

The driver is designed keeping a device, also called port and channel concept in
mind.

This driver uses two internal data structures, a port object and a channel object, to
maintain its state during execution. The UART peripheral needs the port instance to
maintain its state. The channel object holds the IOM channel state during
execution. These are explained in greater detail in the following Data Structures
sub-section. The following figure shows the static view of UART driver.

 UART Device Driver

Page 13 of 32

Texas Instruments Proprietary Information

Figure 4 UART driver static view

TX
Chan
Obj

RX
Chan
Obj

TX
FIFO

RX
FIFO

UART instance

IOM Port Object -1
IOM

GIO calls from Application

TX
Chan
Obj

RX
Chan
Obj

DDC Port Object -1
DDC

 UART Device Driver

Page 14 of 32

Texas Instruments Proprietary Information

2.1.2 Data Structures

The mini-driver employs the PortObj and ChannelObj structures to maintain state of
the port and channel respectively.

In addition, the driver has two other structures defined – the device params and
channel params. The device params structure is used to pass on data to initialize
the driver during DSP-BIOS initialization. The channel params structure is used to
specify required characteristics while creating a channel. For current
implementation channel parameters are NULL.

The following sections provide major data structures maintained by IOM, DDC and
PSP interface. For more details about IOM and DDC data structures and their
usage can be found in the API reference guide.

2.1.2.1 The Port Object(IOM)

S.No Structure Elements
(uart_portObj)

Description

1 instNum Preserve port or instance
number of UART

2 inUse Flag to the object source is
used or free

3 Chan[] Holds all channel objects for
this port

 UART Device Driver

Page 15 of 32

Texas Instruments Proprietary Information

2.1.2.2 The Channel Object(IOM)

S.No Structure Elements
(uart_chanObj)

Description

1 inUse To check whether channel is
in use or not.

2 mode Channel mode of operation:
Input or Output.

3 port Pointer to device port
uart_portObj structure.

4 cbFxn and cbArg IOM callback function and its
argument

5 ioHandle To store the channel handle
passed from DDC layer

2.1.2.3 The Device Params

The application passes a data structure UART_devParams that is used to
initialization function of the driver. The params are explained below:

S.No Structure Elements Description

1 opMode Operational mode of the
driver

2 inputFreq Input Frequency to UART
Module.

3 hEdma EDMA channel handle

4 fifoEnable FIFO Mode is enabled or
disabled

5 loopbackEnabled Loop Back is enabled or
disabled

6 xferConfigParams Hardware configuration
parameters

 UART Device Driver

Page 16 of 32

Texas Instruments Proprietary Information

2.1.2.4 The DDC Device Params

The application passes a data structure UART_devParams that is used to
initialization function of the driver. The params are explained below:

S.No Structure Elements Description

1
appHandle Handle for the IOM Device

structure

2 devState State of the DDC

3 ddcIntrNum Interrupt Number for the
instance of the UART

4 hwInfo Handle for the hardware
registers for the Uart

5 txIO Transmitter Channel Handle

6 rxIO Receiver Channel Handle

7 instanceId Instance of the Uart being
worked upon

8 opMode Mode of operation for the
Uart

9 configParams Configuration Parameters for
the Uart

 UART Device Driver

Page 17 of 32

Texas Instruments Proprietary Information

2.1.2.5 The DDC Channel Params

The params are explained below:

S.No Structure Elements Description

1
stats

Stats for the channel

2 queuePendingList Pending IOPs for the channel

3 queueFreeList List of the free IOPs

4 activeIOP Packet Under progress in the
Channel

5 activeBuf Buffer address of the active
packet

6 bytesRemaining Request of bytes remaining
for the active packet

7 fifoEnabled If FIFO is enabled

8 chunkSize Data Transfer needed for the
one set of buffer

9 hDev Handle for the Uart DDC
Device

10 cbFxn Callback for the application

11 cbArg Arguments to be passed to
the Application

12 mode Mode of operation

13 iopPool Static pool of IO Packets

14 inUse If the channel is initialized

15 flush used to find out the Flush
Command

16 flushSyncSem Semaphore taken for the
flushing

 UART Device Driver

Page 18 of 32

Texas Instruments Proprietary Information

17 hEdma Edma Handle

18 Tcc Transfer complete code
number

19 ChId DMA Channel

2.1.2.6 The DDC IO Packet Structure

The params are explained below:

S.No Structure Elements Description

1
iopLink Link for the next IO Packet in

the Queue

2 cmd IO commnad read/write

3 buf Application supplied IO buffer
address

4 xferRequest Number of bytes being
requested in this transaction

5 timeout Amount of time given to this
iop to complete

6 appContext Application supplied
application context

7 status Status of IO transactions

8 xferActual Number of bytes actually
transferred

9 appCbk Call back function for this
request

10 appData Call back function argument
if any

 UART Device Driver

Page 19 of 32

Texas Instruments Proprietary Information

2.1.2.7 The PSP IO Packet Structure

The params are explained below:

S.No Structure Elements Description

1
cmd IO request command.

Read/Write

2 addr Pointer to the application
Buffer

3 size Size of the application Buffer

4 actualSize Acutal bytes transmitted by
the driver

5 cbFxn UART Application call back
per request

6 appPtr Pointer to application
specified data

7 status Status of the transfer. This
data is filled by the driver

8 timeout timeout in millisecs

2.2 Dynamic View

2.2.1 The Execution Threads

The device drivers typically implement Synchronous interface to the user. The
UART device driver operation involves following execution threads:

BIOS thread: Function to load and un-load UART driver will be under BIOS OS
initialization.

Application thread: Creation of channel, Control of channel, deletion of channel
and processing of UART data will be under application thread. All Synchronous IO
occur in the application thread of control, the calling thread may suspend for the
requested transaction to complete.

 UART Device Driver

Page 20 of 32

Texas Instruments Proprietary Information

Interrupt context: Processing TX/RX data transfer and Error interrupts if the driver
mode is interrupt.

2.2.2 Input / Output using UART driver

In UART, the application can perform IO operation using GIO_submit () calls
(corresponding IOM function is uart_mdSubmitChan ()) to receive transmission
parameters like buffers. The configuration for memory buffer address and size of
number of bytes to transfer should be passed as an argument to the GIO_submit
call.

The UART channel transfer is enabled upon submission of the IO request. Once
the IOP is submitted, the driver configures the appropriate registers from the IOP.
Once the requested numbers of buffers have been received or transmitted, the
driver will notify the IOP completion to the application by returning
IOM_COMPLETED value or any appropriate error code.

2.2.3 Functional Decomposition

2.2.3.1 uart_mdBindDev

Figure 5 uart_mdBindDev () flow diagram

uart_mdBindDev ()

Validate input parameters

PSP_uartCreate ()

Return IOM Status

 UART Device Driver

Page 21 of 32

Texas Instruments Proprietary Information

What is required from the application?

 Valid structure to setup the UART

 Valid device parameters structure

During uart_mdBindDev, the mini-driver has access only to pointers of device
parameters. Memory for these structures is to be allocated outside the driver by the
application.

2.2.3.2 uart_mdUnBindDev

Figure 6 uart_mdUnBindDev () flow diagram

The uart_mdBindDev and uart_mdUnbindDev functions are called by the DSP-
BIOS if driver is created using TCF configuration. Otherwise these functions are
called by device driver BIOS APIs like DEV_createDevice () etc. Refer BIOS
GIO/IOM model device driver guide for more details. These functions will not be
used by the application directly to interface with the UART driver.

uart_mdUnBindDev ()

Validate input parameters

PSP_uartDelete ()

Return IOM Status

 UART Device Driver

Page 22 of 32

Texas Instruments Proprietary Information

2.2.3.3 uart_mdCreateChan

Figure 7 uart_mdCreateChan () flow diagram

uart_mdCreateChan ()

Validate input parameters

Return IOM Status

PSP_uartOpen ()

 UART Device Driver

Page 23 of 32

Texas Instruments Proprietary Information

2.2.3.4 uart_mdDeleteChan

Figure 8 uart_mdDeleteChan () flow diagram

2.2.3.5 uart_mdControlChan

Figure 9 uart_mdControlChan () flow diagram

uart_mdControlChan ()

Validate input parameters

PSP_uartIoctl ()

Return IOM Status

uart_mdDeleteChan ()

Validate input parameters

PSP_uartClose ()

Return IOM Status

 UART Device Driver

Page 24 of 32

Texas Instruments Proprietary Information

2.2.3.6 uart_mdSubmitChan

Figure 10 uart_mdSubmitChan () flow diagram

uart_mdSubmitChan ()

Validate input parameters

PSP_uartTransfer ()

Return IOM Status

Which
CMD?

IOM READ / IOM WRITE IOM ABORT/ IOM FLUSH

PSP_uartFlushAbortRequests ()

 UART Device Driver

Page 25 of 32

Texas Instruments Proprietary Information

2.2.3.7 psp_uartCreate

Figure 11 psp_uartCreate

psp_uartCreate()

Validate input parameters

Get base address, interrupt
number for UART instance

Return PSP result

Initialize UART HW instance

Register Interrupt handlers

 UART Device Driver

Page 26 of 32

Texas Instruments Proprietary Information

2.2.3.8 psp_uartDelete

Figure 12 psp_uartDelete

psp_uartDelete ()

Validate input parameters

Un-register interrupts

Return PSP Status

Clear all error conditions.
Free the device object

 UART Device Driver

Page 27 of 32

Texas Instruments Proprietary Information

2.2.3.9 psp_uartOpen

Figure 13 psp_uartOpen

psp_uartOpen ()

Validate input parameters

Update channel object

Return Channel Handle

Create semaphore for flush
request. Create IOP queues

 UART Device Driver

Page 28 of 32

Texas Instruments Proprietary Information

2.2.3.10 psp_uartClose

Figure 14 psp_uartClose

2.2.3.11 psp_uartIoctl

Figure 15 psp_uartIoctl

psp_uartClose ()

Validate input parameters

Free this channel resource

Return PSP Status

Delete semaphores, queues
and update channel handle

psp_uartIoctl ()

Validate input parameters

Perform the requested
operation

Return PSP Status

 UART Device Driver

Page 29 of 32

Texas Instruments Proprietary Information

2.2.3.12 psp_uartRead or psp_uartWrite

Figure 16 psp_uartRead / psp_uartWrite

PSP_uartRead() /
PSP_uartWrite()

Validate input parameters.
Extract an IOP node from free Q.
Populate the node with request.

Enable interrupt if requested num of
bytes is not read or written

PSP_SINPROGRESS

Is first
request?

YES

Queue up the Request in Req Q

NO

Is Polled
mode?

YES
Read/write from FIFO until
the requested number of
bytes transferred and
timeout is not expired.

PSP_SOK

NO

Read/Write from UART
FIFO.

 UART Device Driver

Page 30 of 32

Texas Instruments Proprietary Information

2.2.3.13 PSP_uartAbort

Figure 17 psp_uartAbort

PSP_uartAbort ()

Validate input parameters

Empty pending IOP Q and
invoke call back for each IOP

Return PSP Status

 UART Device Driver

Page 31 of 32

Texas Instruments Proprietary Information

2.2.4 Synch-IO Mechanism

UART provides synchronous mode of operation in between application and driver.
Once application submits an IO driver returns to application only after it completes
the requested operation. Sync IO mechanism for different modes are explained
below.

POLLED Mode:

Check is done to see if job is complete, if not a suitable interval of
time is spent in “delay” looping – once the data transfer is
completed successfully, driver is returned to application with
appropriate status information.

Interrupt Mode:

This is very similar to above case; except for waits occurring in
form of pending for Semaphore being available and I2C DDC
being energized through Interrupt thread of control. Since we pend
on Semaphore here, it is possible for other application threads to
run when we wait here for IO transaction to complete.

 UART Device Driver

Page 32 of 32

Texas Instruments Proprietary Information

3 APPENDIX A – IOCTL commands

The application can perform the following IOCTL on the channel. All commands shall be sent
through TX or RX channel except for specifics to TX /RX.

S.No IOCTL Command Description

1 PSP_UART_IOCTL_SET_BAUD Set the Baud rate.

2 PSP_UART_IOCTL_SET_STOPBITS Set number of stop bits.

3 PSP_UART_IOCTL_SET_DATABITS Set number of data bits.

4 PSP_UART_IOCTL_SET_PARITY Set parity Odd/Even

5 PSP_UART_IOCTL_SET_FLOWCONTROL Set flow control HW or SW

6 PSP_UART_IOCTL_SET_TRIGGER_LEVEL Set trigger level for FIFO

7 PSP_UART_IOCTL_RESET_RX_FIFO Clear RXFIFO

8 PSP_UART_IOCTL_RESET_TX_FIFO Clear TXFIFO

9 PSP_UART_IOCTL_CANCEL_IO Cancel the current IO

10 PSP_UART_IOCTL_GET_STATS Get statistics information

11 PSP_UART_IOCTL_CLEAR_STATS Clear statistics information

12 PSP_UART_IOCTL_MAX_IOCTL Book keep – Max ioctl

