
Page 1 of 28Texas Instruments Proprietary Information

C6452 TSIP Driver

USER’S GUIDE

Document Revision History

Rev
No

Author(s) Revision History Date Approval(s)

1.1 Chandan Nath Updated for adding compiler
switches in build options

May 21, 2008 Updating

1.0 Jayaprakash Nov 29, 2007

Information in this document is subject to change without notice. Texas Instruments may
have pending patent applications, trademarks, copyrights, or other intellectual property
rights covering matter in this document. The furnishing of this document is given for usage
with Texas Instruments products only and does not give you any license to the intellectual
property that might be contained within this document. Texas Instruments makes no
implied or expressed warranties in this document and is not responsible for the products
based from this document

Page 2 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

TABLE OF CONTENTS

1 Introduction... 4

1.1 Terms & Abbreviations..4

1.2 References ..5

1.3 S/W Support..6

1.4 Driver Components...6

1.5 Default Driver Configuration ..7

1.6 Driver Capabilities ..7

1.7 Driver Limitations/Constraints..8

1.8 System Requirements...9

2 Installation Guide... 9

2.1 Component Folder..9

2.2 Build...10

2.3 Build Options...10

3 DSP/BIOS TSIP DRIVER Structures.. 12

3.1.1 Initialization details ..12

3.1.2 TSIP device params (PSP_tsipDevParams)...13

3.1.3 TSIP channel params (PSP_tsipChanParams)...16

3.1.4 TSIP IO params (PSP_tsipIoParams)...17

TSIP API’s.. 17

3.2 Structures Passed to GIO APIs ...18

3.2.1 Structure passed to GIO_create ...18

3.2.2 Structure passed to GIO_submit ..18

3.2.3 Enumerations for IOCTL..18

3.3 API Definition ..20

3.3.1 GIO_ create...20

3.3.2 GIO_delete..22

3.3.3 GIO_control...22

3.3.4 GIO_Submit ..24

3.3.5 GIO_flush/GIO_abort..26

4 Example Applications ... 27

5.1 Writing Applications for TSIP..27

5.1.1. File Inclusion ...27

5.2 Sample Applications ...27

Page 3 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

TABLE OF FIGURES

Figure 1. C6452 TSIP driver architecture ..6
Figure 2. TSIP Driver Directory Structure..9

Page 4 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

1 Introduction

This document is the reference guide for the TSIP driver and it explains how to
configure and use the driver.

DSP/BIOS applications use the driver typically through TSIP APIs to perform
read/write operations on the TSIP peripheral. TSIP driver is implemented as a simple
wrapper on top of the GIO class driver and provides an application-specific interface.
For more information on the DSP/BIOS device driver model and the GIO class driver,
refer to the References section of this document.

1.1 Terms & Abbreviations
Term Description

 This bullet indicates important information.
Please read such text carefully.

 This bullet indicates additional information.

API Application Programming Interface

CSLR Chip Support Library for Registers

DDC Device Driver Core

DMATCU DMA Transfer Control Unit of TSIP

IOM Input/Output Mini driver (Device Driver Adapter)

ISR Interrupt Service Routine

OS Operating System

ROM Read Only Memory

SOC System On Chip

SIU Serial Interface Unit of TSIP

TDMU Timeslot Data Management Unit of TSIP

TSIP Telecom Serial Interface Port

Page 5 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

1.2 References
1. sprueu8_TSIP.pdf TSIP functional specification document

2. SPRU-404g.pdf DSP/BIOS Driver Guide

Page 6 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

1.3 S/W Support
TSIP device driver has been developed for the DSP/BIOS operating system using the TI
supplied Chip Support Library. For more details on the version numbers refer to the release
notes in the root of the installation.

1.4 Driver Components

The TSIP driver is constituted of following sub components:

TSIP IOM – Application interfacing, OS Specific Adaptation of TSIP Device Driver
TSIP DDC –OS Independent part of TSIP Driver Core
TSIP CSLR–The low-level TSIP h/w register overlay

System components:

PALOS – DSP/BIOS Abstraction

Below Figure shows C6452 TSIP driver architecture.

C la s s D r ive r

M in i D r iv e r

A p p lic a t io n

G IO C la s s D riv e r

T S IP D riv e r

T S IP - H W

P
A
L
O
S

Figure 1. C6452 TSIP driver architecture

Page 7 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

1.5 Default Driver Configuration

To configure the TSIP driver to default values, the application has to pass the following hardware setup
parameters.
Clock select Redundant
TX clock and FS source CLK_A and FS_A
TX data delay By 1 frame
TX output disabled state High Impedance
TX output enable delay 0
TX frame sync polarity Active low
TX frame clock polarity Rising edge
TX data clock polarity Rising edge
TX data rate 8.192 Mbps
TX clock mode 1X
TX frame count 3
TX frame size 127
RX clock and FS source CLK_A and FS_A
RX data delay By 1 frame
RX frame sync polarity Active low
RX frame clock polarity Rising edge
RX data clock polarity Rising edge
RX data rate 8.192 Mbps
RX clock mode 1X
RX frame count 3
RX frame size 127

Loopback None
testClk EXTERNAL
Channel buffer Endian Little
Transfer max priority 7
Transfer priority 7
TX frame interrupt selection type Transfer acknowledge only
TX super frame interrupt selection type Transfer acknowledge only
RX frame interrupt selection type Transfer acknowledge only
RX super frame interrupt selection type Transfer acknowledge only
TX frame interrupt delay 127
RX frame interrupt delay 127

1.6 Driver Capabilities
The significant driver features are:

 Isolates H/W and OS Accesses.
 Easy to maintain & re-target to new platforms.
 Supports multiple instances.
 Transmit and receive handled by different channels
 Cache is properly handled because TSIP is operating in DMA mode always using its internal

DMATCU

Page 8 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

1.7 Driver Limitations/Constraints
 TSIP driver shall only work with Interrupt mode of operation. Since TSIP embeds an inbuilt DMA

unit as part its IP, it will not use EDMA to perform data movement.
 TSIP driver dynamically configures the DMA channel parameters with the given A and B context

buffer configurations specified in the IOP request packet submitted by the application. In case no
IOPs are pending, the driver stops the corresponding TX/RX DMATCU channel. However the
channel will be enabled automatically upon the submission of a new IOP request.

 The number of super-frames in an IOP should be an even number. Because it is required to give
the super-frame buffer configurations for both A and B contexts in a given IOP. See TSIP IO
request submission structure (PSP_tsipIoParams) in the data structure section for more details.

Page 9 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

1.8 System Requirements
Details about the tools and the BIOS version that the driver is compatible with can
be found in the system Release Notes.

2 Installation Guide

2.1 Component Folder

Upon installing the TSIP driver, the following directory structure is found in the driver’s
directory.

Figure 2. TSIP Driver Directory Structure

This top level tsip folder contains tsip driver psp header file and XDC package files
(package.bld, package.xdc and package.xs)

 build: This folder contains tsip driver library project file. The generated driver
library shall be included in the application where TSIP driver have to be used.

 docs: This folder contains architecture document, datasheet, release notes, user
guide and doxugen compiled api reference document.

Architecture document contains the driver details which can be helpful for the
developers as well as consumers to understand the driver design.

Datasheet gives the idea about the memory consumption by the driver and
description of the top level APIs.

Release Note gives the details about system requirements, steps to
Install/Uninstall the package.This document list the known issues of the driver.

User Guide provides information about how to use the driver. It contains
description of sample applications which guide the end user to make their
applications using this driver.

API reference document gives the details about the API’s used in TSIP driver.

 Lib: This folder contains libraries generated in all the configuration modes(debug,
idebug, irelease and release)

 Package: This folder contains files generated by XDC tool.

 src: This folder contains tsip driver source files. It also contains header files that
are used by the driver.

Page 10 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

2.2 Build

This section describes for each supported target environment, the applicable build options,
supported configurations and how selected, the featured capabilities and how enabled, the
allowed user customizations for the software to be installed and how the same can be
realized.

The component might be delivered to user in different formats:

 Source-less i.e. binary executables and object libraries only.

 Source-inclusive i.e.The entire source code is used to implement the driver is
included in the delivered product.

 Source-selective ie. Only a part of the overall source is included. This delivery
mechanism might be required either because certain parts of the driver
require source level extensions and/or customization at the user’s end or
because, specific parts of the driver is exposed to user at the source level to
insure user’s software development.

When source is included as part of the product delivery, the CCS project file is
provided as part of the package. When object format is distributed, the driver
header files are part of the “src” folder and the driver library is provided in
“\pspdrivers\lib” folder.

2.3 Build Options

To compile driver for C6452, change build options as mentioned below:

The build folder contains a CCS project file that builds the driver into a library for debug and
release mode.

Following compiler switches are used to compile for different options.

 _DEBUG
This is used as a flag to compiler whether to include the debug statements
 inserted in the code into the final image. This flag helps to build DEBUG image of
the program. For RELEASE images this is not passed to the compiler.

 CHIP_XXXX
The CSL layer is written in a common file for all the variants of a SOC. This flag
differentiates the variant we are compiling for, for e.g. - CHIP_DM648, and the
CSL definitions for that variant appropriately gets defined for register base
addresses, num of ports of a peripheral etc.

 TSIP_INSTRUMENTATION_ENABLED
This option is passed to the compiler to include the instrumentation code parts into the final
image/lib of the program. This helps build the iRelease/iDebug versions of the image/lib with
a common code base.

 PSP_TSIP_USE_FRAME_ISR
If this macro is enabled, the Frame interrupt will be enabled and ISR gets control
at the end of each frame completion. Generally this is not recommended because
of this ISR overhead the driver may miss to program the DMA properly.

Page 11 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

 PSP_TSIP_DEBUG
They are the macros used to print debug messages. These expand a valid print
statement.

Page 12 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

3 DSP/BIOS TSIP DRIVER Structures

This section discusses about the initialization details and initialization structures used in the
TSIP driver. Please note that for some structure member information/details of the C6452
TSIP peripheral API reference document might need to be referred.

3.1.1 Initialization details
To use TSIP device driver, a device entry must be added and configured in the DSP/BIOS
configuration tool.

To have TSIP device driver included in the application, corresponding TCI file have to be
included in BIOS TCF i.e. “c6452_tsip0.tci” for TSIP0 and “c6452_tsip1.tci” for TSIP1 must
be included in BIOS TCF file of the application for using TSIP instance of the driver.

The following are the device configuration settings required to use the TSIP driver.
Note: This has to be done for all of the required driver instances. The corresponding IOM
function tsip_mdBindDev will be called from BIOS context to initialize the TSIP.

TCI Configuration Parameters Description
initFxn - Init Function Pointer to the application function used to

prepare the C6452 TSIP module and initialize
init time configuration data structures. This
function typically does enabling TSIP module
in LPSC, PIN muxing and setting TSIP driver
configurations.

fxnTable - Function Table Pointer TSIP_Fxns. This is a global variable, which
points to the TSIP driver IOM APIs.

fxnTableType - Function Table Type IOM_Fxns
deviceId - Device Id Specify which TSIP to use. For example to

use TSIP0 this should be given as 0 and to
use TSIP1 this should be given as 1.

params – Pointer to Port parameter A pointer to an object of type tsipDevParams
as defined in the header file psp_tsip.h. This
pointer will point to a device parameter
structure. In BIOS TCI files, this structure
object is passed as an argument. Application
should declare and initialize the structure
object properly.

Device Global Data Pointer N/A, not used by this driver

Final tci file should contain the following details which were explained above:
bios.UDEV.create("TSIP0");
bios.UDEV.instance("TSIP0").fxnTableType = "IOM_Fxns";
bios.UDEV.instance("TSIP0").initFxn = prog.extern("tsip0_dev_init");
bios.UDEV.instance("TSIP0").params = prog.extern("tsip0DevParams");
bios.UDEV.instance("TSIP0").fxnTable = prog.extern("tsipMiniDrvFxns");

Page 13 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

3.1.2 TSIP device params (PSP_tsipDevParams)
“psp_tsip.h” file contains PSP_tsipDevParams data structure that is passed while mdBindDev
call which is defined with UDEV TSIP parameters in *.tcf file of application. The members of
this structure are explained below:

Structure Members Description
PSP_tsipSiuConf siu
PSP_tsipTdmuConf tdmu

3.1.2.1 PSP_tsipSiuConf

Following table describes the parameters contained in PSP_tsipSiuConf data structure
available in “psp_tsip.h” file.

Structure Members Description
PSP_TsipClock clkSel
PSP_tsipTxSiuConf tx
PSP_tsipRxSiuConf rx
PSP_TsipLoopBack loopBack
PSP_TsipTestClock testClk

3.1.2.2 PSP_tsipTdmuConf

Following table describes the parameters contained in PSP_tsipTdmuConf and detail
of the same is available in “psp_tsip.h” file:

Structure Members Description
PSP_TsipEndian endian
Uint8 maxPrio
Uint8 prio
PSP_TsipIntSelect txFint
PSP_TsipIntSelect txSint
PSP_TsipIntSelect rxFint
PSP_TsipIntSelect rxSint
Uint8 txFintDly
Uint8 rxFintDly

3.1.2.3 PSP_ TsipClock

Following table describes the parameters contained in PSP_ TsipClock (stopbits)
enum, which is a parameter of SIU configuration structure and details of the same is
available in “psp_tsip.h” file:

Structure Members Description
PSP_TSIP_CLK_REDUNDANT Redundant clock
PSP_TSIP_CLK_DUAL Dual clock

3.1.2.4 PSP_tsipTxSiuConf

Following table describes the parameters contained in PSP_tsipTxSiuConf, which is a
parameter of SIU configuration and details of the same is available in “psp_tsip.h”
file:

Structure Members Description
PSP_TsipClkFsSrc clkSrc
Uint16 dDly
PSP_TsipTxDisState disState

Page 14 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

PSP_TsipTxEnaDly enaDly
PSP_TsipPolarity fSyncP
PSP_TsipPolarity fClkP
PSP_TsipPolarity dClkP
PSP_TsipDataRate dRate
PSP_TsipClkMode clkMode
Uint8 fCnt
Uint8 fSize

3.1.2.5 PSP_tsipRxSiuConf

Following table describes the parameters contained in PSP_tsipRxSiuConf, which is a
parameter of SIU configuration and details of the same is available in “psp_tsip.h”
file:

Structure Members Description
PSP_TsipClkFsSrc clkSrc
Uint16 dDly
PSP_TsipPolarity fSyncP
PSP_TsipPolarity fClkP
PSP_TsipPolarity dClkP
PSP_TsipDataRate dRate
PSP_TsipClkMode clkMode
Uint8 fCnt
Uint8 fSize

3.1.2.6 PSP_TsipLoopBack

Following table describes the parameters contained in PSP_TsipLoopBack enum,
which is a parameter SIU configuration and details of the same is available in
“psp_tsip.h” file:

Structure Members Description
PSP_TSIP_LOOP_BACK_NONE Normal mode
PSP_TSIP_LOOP_BACK_DLB Data loop back (Internal)
PSP_TSIP_LOOP_BACK_LLB Link loop back (External)

3.1.2.7 PSP_TsipTestClock

Following table describes the parameters contained in PSP_TsipLoopBack enum,
which is a parameter SIU configuration and details of the same is available in
“psp_tsip.h” file:

Structure Members Description
PSP_TSIP_TEST_CLK_EXTERNAL Clock and Frame Sync are given from

external source

3.1.2.8 PSP_TsipClkFsSrc

Following table describes the parameters contained in PSP_TsipClkFsSrc enum, which
is a parameter TX and RX SIU configurations and details of the same is available in
“psp_tsip.h” file:

Structure Members Description
PSP_TSIP_CLK_FS_SRC_A CLK_A and FS_A
PSP_TSIP_CLK_FS_SRC_b CLK_B and FS_B

Page 15 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

3.1.2.9 PSP_TsipTxDisState

Following table describes the parameters contained in PSP_TsipTxDisState enum,
which is a parameter of TX SIU configurations and details of the same is available in
“psp_tsip.h” file:

Structure Members Description
PSP_TSIP_TXDIS_STATE_HIGHZ TX lanes o/p disabled state is high impedance
PSP_TSIP_TXDIS_STATE_LOW Driven low
PSP_TSIP_TXDIS_STATE_HIGH Driver high

3.1.2.10 PSP_TsipTxEnaDly

Following table describes the parameters contained in PSP_TsipTxEnaDly enum,
which is a parameter TX SIU configurations and details of the same is available in
“psp_tsip.h” file:

Structure Members Description
PSP_TSIP_TXENA_DLY_ZERO No added delay
PSP_TSIP_TXENA_DLY_ONEHALF TX output enable delayed by one and half

serial clock periods.

3.1.2.11 PSP_TsipPolarity

Following table describes the parameters contained in PSP_TsipPolarity enum, which
is a parameter of TX/RX SIU configurations and details of the same is available in
“psp_tsip.h” file:

Structure Members Description
PSP_TSIP_POLARITY_ACTIVE_LOW
PSP_TSIP_POLARITY_RISING_EDGE

Active low / Rising edge

PSP_TSIP_POLARITY_ACTIVE_HIGH
PSP_TSIP_POLARITY_FALLING_EDGE

Active High / Falling edge

3.1.2.12 PSP_TsipClkMode

Following table describes the parameters contained in PSP_TsipClkMode enum, which
is a parameter TX/RX SIU configurations and details of the same is available in
“psp_tsip.h” file:

Structure Members Description
PSP_TSIP_CLK_MODE_2X 2X mode
PSP_TSIP_CLK_MODE_1X 1X mode

3.1.2.13 PSP_TsipEndian

Following table describes the parameters contained in PSP_TsipEndian enum, which
is a parameter TDMU configurations and details of the same is available in
“psp_tsip.h” file:

Structure Members Description
PSP_TSIP_LITTLE_ENDIAN Little endian
PSP_TSIP_BIG_ENDIAN Big endian

3.1.2.14 PSP_TsipIntSelect

Following table describes the parameters contained in PSP_TsipIntSelect enum,
which is a parameter DMATCU configurations and details of the same is available in
“psp_tsip.h” file:

Page 16 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

Structure Members Description
PSP_TSIP_INT_XFER_ACK_ONLY Interrupt asserted on transfer acknowledge

only
PSP_TSIP_INT_DELAY_CNT_ONLY Interrupt asserted on delay count only

PSP_TSIP_INT_EITHER Interrupt asserted on either transfer
acknowledge or delay count

PSP_TSIP_INT_BOTH Interrupt asserted on both transfer
acknowledge and delay count.

3.1.3 TSIP channel params (PSP_tsipChanParams)
The file psp_tsip.h has the PSP_tsipChanParams data structure that is passed to GIO_create.
The parameters are explained below:

Structure Members Description
PSP_tsipBitmap bmA
PSP_tsipBitmap bmB
Uint8 aCID
Uint8 bCID
PSP_tsipErrCallback errCb
PSP_tsipFrmCallback frmCb
PSP_tsipFrmCallback sfrmCb
Ptr fCbArg
Ptr sCbArg

3.1.3.1 PSP_tsipBitmap

Following table describes the parameters contained in PSP_tsipBitmap structure
which contains array of PSP_TsipPcmType[256] enum type, which is a parameter
used to configure bitmaps and details of the same is available in “psp_tsip.h” file:

Structure Members Description
PSP_TSIP_PCM_DISABLED Timeslot disabled
PSP_TSIP_PCM_8_BIT_LINEAR Timeslot is 8-bit linear

PSP_TSIP_PCM_U_LAW Timeslot is u-law encoded

PSP_TSIP_PCM_A_LAW Timeslot is a-law encoded

Page 17 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

3.1.4 TSIP IO params (PSP_tsipIoParams)
The file psp_tsip.h has the PSP_tsipIoParams data structure that is passed to GIO_submit. The
parameters are explained below:

Structure Members Description
PSP_tsipDmaConfig dmaA
PSP_tsipDmaConfig dmaB

3.1.4.1 PSP_tsipDmaConfig

Following table describes the parameters contained in PSP_tsipDmaConfig structure,
which is a parameter, used to configure DMA for A and B contexts and details for the
same is available in “psp_tsip.h” file:

Structure Members Description
Uint32 baseAddr
Uint32 frameAlloc

Uint32 frameSize

Uint32 frameCnt

TSIP API’s

This chapter describes the functions, data structures, enumerations and macros for the TSIP
driver module.

The following API functions are defined by the GIO module:

GIO_create
Allocate and initialize a TSIP channel object. It will

invoke the corresponding IOM function tsip_mdCreateChan.

GIO_delete
De-allocate a TSIP channel object. It will invoke the It will invoke

the corresponding IOM function tsip_mdDeleteChan.

GIO_control
Send a control command to the mini-driver. It will invoke the

corresponding IOM function tsip_mdControlChan.

GIO_submit
API used to transfer the data with slaves. It will invoke the

corresponding IOM function tsip_mdSubmitChan.

Page 18 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

3.2 Structures Passed to GIO APIs

3.2.1 Structure passed to GIO_create
The file psp_tsip.h has the PSP_tsipChanParams data structure that is passed to GIO_create.

3.2.2 Structure passed to GIO_submit
The file psp_tsip.h has the PSP_tsipIoParams data structure that is passed to GIO_submit.

3.2.3 Enumerations for IOCTL
Following are the enumerations passed as command argument while GIO_control call.

Page 19 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

IOCTL Command Description

PSP_TSIP_IOCTL_GET_PID Get s the peripheral ID version of the TSIP. Command Argument : PID
structure <PSP_tsipPID>

PSP_TSIP_IOCTL_START_CHANNEL Starts the TDMU-DMATCU channel operation

PSP_TSIP_IOCTL_STOP_CHANNEL Stops the TDMU-DMATCU channel operation immediately. However the
TSIP HW will disable the channel only after completion of the current
frame

PSP_TSIP_IOCTL_STOP_CHANNEL_EXT Stops the channel after completion of the current s-frame.

PSP_TSIP_IOCTL_MODIFY_BITMAP_A Modifies Bitmap configuration-A to select different set of timeslots for
different PCM formats: 8-bit linear, A and U law. Note: Modifying bitmap-A
when bitmap-A is active will return error (Invalid state). So the
application can first check which bitmap is active by using
GET_ACTIVE_BITMAP command before invoking this command.
Command Argument : Bitmap Configuration <PSP_tsipBitmap>

PSP_TSIP_IOCTL_MODIFY_BITMAP_B Modifies Bitmap configuration-B to select different set of timeslots for
different PCM formats: 8-bit linear, A and U law. Note: Modifying bitmap-B
when bitmap-B is active will return error (Invalid state). So the
application can first check which bitmap is active by using
GET_ACTIVE_BITMAP command before invoking this command.
Command Argument : Bitmap Configuration <PSP_tsipBitmap>

PSP_TSIP_IOCTL_GET_ERROR_STATS Gets the driver maintained error statistics counters value. Command
Argument : Error statistics structure <PSP_tsipErrStats>

PSP_TSIP_IOCTL_CLEAR_ERROR_STATS Clears error statistics counters.

PSP_TSIP_IOCTL_GET_ACTIVE_CONTEXT Returns the active context (A or B or None). Command Argument: Active
Context enum <PSP_TsipActiveContext>

PSP_TSIP_IOCTL_GET_ACTIVE_BITMAP Returns the active bitmap(A or B or None). Command Argument: Active
Bitmap enum <PSP_TsipActiveBitmap>

PSP_TSIP_IOCTL_SET_ACTIVE_BITMAP Sets the active bitmap to A or B. Command Argument : CID structure for A
or B <PSP_tsipCID>

PSP_TSIP_IOCTL_GET_HW_SETUP Gets the hardware setup of the TSIP port. Command Argument : TSIP HW
setup structure <PSP_tsipHwSetup>

PSP_TSIP_IOCTL_SETUP_SIU Sets up/ Configures SIU module. Command Argument : SIU HW setup
structure <PSP_tsipSiuConf>

PSP_TSIP_IOCTL_SETUP_TDMU Sets up/Configures DMATCU and TDMU modules. Command Argument :
SIU HW setup structure <PSP_tsipTdmuConf>

PSP_TSIP_IOCTL_RESET_TDMU Resets (Software Reset) the DMATCU and TDMU. After TDMU/DMATCU
reset, TDMU/DMATCU modules need to be reconfigured by the application
by using SETUP TDMU IOCTL command. Enabling SIU/TDMU is done
automatically by the driver upon next IOP request

PSP_TSIP_IOCTL_RESET_SIU Resets (Software reset) the SIU. After SIU reset, SIU module needs to be
reconfigured by the application by using SETUP SIU IOCTL command.
Enabling SIU/TDMU is done automatically by the driver upon next IOP
request.

PSP_TSIP_IOCTL_SET_SEM_TIMEOUT Change the timeout value used in semaphore pending for flush operation.

Page 20 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

3.3 API Definition

3.3.1 GIO_ create
Syntax
GIO_Handle GIO_create (

String name,
Int mode,
Int *status,
Ptr chanParams,
GIO_Attrs *attrs
);

Parameters
name

The name argument is the name specified for the device when it was created
in the configuration or at runtime. It is used to find a matching name in the
device table.
Note: strings are case sensitive.

For TSIP drivers the string contains one token ‘/’ followed by the name.

 TSIP driver or port instance
This identifies the TSIP driver or port instance and this will be typically
“/TSIP0”, “/TSIP1” and so on, where suffix to TSIP denotes instance
ID. This string depends on the device registration string given in BIOS
driver TCI file.

mode
The mode argument specifies the mode in which the device is to be opened.
This will be either IOM_INPUT or IOM_OUTPUT.

status
The status argument is an output parameter that this function fills with a
pointer to the status that was returned by the mini-driver.

chanParams
GIO_Create for TSIP requires PSP_tsipChanParams as its channel parameter
and details of the same is explained in section 3.2.1.

attrs
The attrs parameter is a pointer to a structure of type GIO_Attrs. The number

of maximum IO request can be passed using this structure.

Return Value
It returns the handle of type GIO_Handle on successful opening of a device. It
returns NULL if the device could not be opened.

Description
An application calls GIO_create to create and initialize a TSIP driver channel to the
driver.

Constraints
This function can only be called after the device has been loaded and initialized.

Page 21 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

Example
The example below shows creation of Channel for TSIP
GIO_Handle xmtHandle;
GIO_Attrs gioAttrs;

 /*
 * Initialize channel attributes.
 */
 gioAttrs.nPackets = PSP_TSIP_MAX_IOP_REQ;

 for (tsCnt=0; tsCnt < PSP_TSIP_NUM_TIMESLOTS; tsCnt++)
 {
 chanParams.bmA.type[tsCnt] = PSP_TSIP_PCM_DISABLED;
 chanParams.bmB.type[tsCnt] = PSP_TSIP_PCM_DISABLED;
 }
 chanParams.errCb = &tsipErrCallback;
 chanParams.aCID = CID_A;
 chanParams.bCID = CID_B;

 /* If user wants some function to be called from every frame/sframe period
 from frameISR, he/she has to register some valid function address*/
 chanParams.frmCb = NULL;
 chanParams.fCbArg = NULL;
 chanParams.sfrmCb = NULL;
 chanParams.sCbArg = NULL;

 /* Enable all A/B bitmaps to linear */
 for(tsCnt=0; tsCnt < FRAME_SIZE; tsCnt++)
 {
 chanParams.bmA.type[tsCnt] = PSP_TSIP_PCM_8_BIT_LINEAR;
 chanParams.bmB.type[tsCnt] = PSP_TSIP_PCM_8_BIT_LINEAR;
 }

 /* Create TX TSIP channel */
 xmtHandle = GIO_create(
 device,
 IOM_OUTPUT,
 &stat,
 &chanParams,
 &gioAttrs
);

 if (NULL == xmtHandle)
 {
 TSIP_DEBUG("TSIP-TX channel creation <Failed>");

 }
 else
 {
 TSIP_DEBUG("TSIP-TX channel creation <Success>");
 }

Page 22 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

3.3.2 GIO_delete
Syntax
int GIO_delete(GIO_Handle gioChan);

Parameters
Handle of the TSIP driver channel that was created with a call to GIO_create.

Return Value
On success driver returns IOM_COMPLETED, on failure/error condition IOM error
code

Description
This function call will close the logical channel associated with GIO_create. It will also
free the buffers allocated by driver.

Constraints
This function can only be called after the device has been loaded, initialized and
created.

Example
The example below shows deletion of Channel for TSIP

GIO_Handle chanHandle;

/* chanHandle should be obtained by calling GIO_create here. */

/* Deleting the chanHandle */
Status = GIO_delete(chanHandle);
If (status != IOM_COMPLETED)
{
 printf(" Failed deleting channel \r\n");
}

3.3.3 GIO_control
Syntax
status = GIO_control (gioChan, cmd, args);

Parameters
gioChan

Handle of the TSIP driver channel that was created with a call to GIO_create.
cmd

The cmd argument specifies the control command
args

The args argument is a pointer to the argument or structure of arguments
that are specific to the command being passed.

Return Value
On success driver returns IOM_COMPLETED, on failure/error condition IOM error
code

Page 23 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

Description
An application calls GIO_control to send device-specific control commands to the
mini-driver.

IOCTL commands available for TSIP driver are available in section 3.2.3

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to GIO_create.

Example

GIO_Handle chanHandle;

/* channel creation should be done here using GIO_create.*/

/* Invoking IOCTL using GIO_control */
status = GIO_control(chanHandle, PSP_TSIP_IOCTL_STOP_CHANNEL, NULL);

if (IOM_COMPLETED != status)
{
 printf(" Failed to perform stop channel IOCTL \r\n");
 return;
}

Page 24 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

3.3.4 GIO_Submit
Syntax
status = GIO_submit (GIO_Handle gioChan,

Uns cmd,
ptr bufP,
Uns* Psize,
GIO_AppCallBack* appCallback

)
Parameters
gioChan

Handle of the TSIP driver channel that was created with a call to GIO_create.
cmd

The cmd argument specifies the control command, which can be any of the
following

 IOM_READ /* for read operation */
 IOM_WRITE /* for write operation */
 IOM_FLUSH /* for flushing the packets */
 IOM_ABORT /* for aborting the packets */

bufP
The bufP argument is a pointer to the buffer which need to be written or data

to read, and this value should be used only when cmd is used as IOM_READ or
IOM_WRITE. For other two commands it is NULL.
Psize

The Psize argument is a pointer to the argument of data type size_t, and this
value represents the number of bytes of data to be written or to read.
appCallback

The Psize argument is a function pointer, which will be called once the submit
operation is completed. Since TSIP works in synchronous mode of operation this
parameter will be NULL.

Return Value
On success driver returns IOM_COMPLETED, on failure/error condition IOM error
code

Description
This function is called by the application to perform the read/write/flush/abort
operation.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to GIO_create.

Page 25 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

Example
 GIO_Handle xmtHandle;
 PSP_tsipIoParams txIop1[2];
 /* GIO application call back */
 GIO_AppCallback appCb;

 txIop1[0].dmaA.baseAddr = (Uint32)&aTxBuff1_s1[0];
 txIop1[0].dmaA.frameAlloc = FRAME_SIZE + FRAME_OVERHEAD;
 txIop1[0].dmaA.frameCnt = NUM_FRAMES;
 txIop1[0].dmaA.frameSize = FRAME_SIZE + FRAME_OVERHEAD;
 /* 2nd Sframe (B) */
 txIop1[0].dmaB.baseAddr = (Uint32)&bTxBuff1_s2[0];
 txIop1[0].dmaB.frameAlloc = FRAME_SIZE + FRAME_OVERHEAD;
 txIop1[0].dmaB.frameCnt = NUM_FRAMES;
 txIop1[0].dmaB.frameSize = FRAME_SIZE + FRAME_OVERHEAD;

 appCb.fxn = &tsip_AppCallback; /* App callback function */
 appCb.arg = &xmtHandle;
 sfrmSize = 2u;
 retCode = GIO_submit(xmtHandle,IOM_WRITE,&txIop1[0],&sfrmSize,&appCb);

Page 26 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

3.3.5 GIO_flush/GIO_abort
Syntax
Status = GIO_flush/GIO_abort (GIO_Handle gioChan)

Parameters
gioChan

Handle of the TSIP driver channel that was created with a call to GIO_create.

Return Value
On success driver returns IOM_COMPLETED, on failure/error condition IOM error
code.

Description
Similar to GIO_submit with cmd either IOM_FLUSH or IOM_ABORT with all other
arguments are being NULL.
GIO_abort aborts all the pending IO requests and returns call back for all IO
requests for both READ and WRITE channels with the call back status as
IOM_ABORTED.
GIO_flush on READ channel is same as GIO_abort and returned call back status
for all read IO requests is IOM_FLUSHED. But GIO_flush on WRITE channel
completes all pending write IO requests normally and returns call back for all
write requests with call back status as IOM_COMPLETED since it is a normal IO
completion.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to GIO_create.

Example
GIO_Handle gioChan;

/* channel creation and allocBuffer should be done here */

 status = GIO_flush (gioChan);

 status = GIO_abort(gioChan);

Page 27 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

4 Example Applications

This section describes the example applications that are included in the package. These
sample application can be run as is for quick demonstration, but the user will benefit most
by using these samples as sample source code in developing new applications.

5.1 Writing Applications for TSIP

This section provides guidance to user for writing their own application for TSIP
drivers.

5.1.1. File Inclusion
To write sample application user has to include following header files in the application:

1. std.h

This file contains standard data types, macros and structures.

2. gio.h

This file contains GIO layer macros and structures. These macros are wrapper
macros to form a wrapper above GIO.

3. tsk.h

This file contains all task module details.

4. psp_tsip.h

This file contains TSIP parameters which are passed to driver at the time of TSIP
driver registration with BIOS.

5.2 Sample Applications

5.2.1.Introduction

The sample application is a representative test program. Initialization of TSIP driver is done
by calling initialization function from BIOS.

The sample application performs read/write operation to Terminal connected to COM port.

5.2.2.Building the application

Please follow below steps to build sample application:

 Open CCS 3.3 setup. Import proper CCS configuration file. Set the proper CCS Gel
file (Refer C6452_BIOS_PSP_Release_Notes.doc for details). Click on “Save & Quit”
button and exit the setup.

 Open sample application as mentioned in
“<root>\pspdrivers\system\c6452\bios\evm6452\tsip\build\
c6452_evm_tsip_st_sample.pjt”.

Page 28 of 28

DM648 TSIP Driver User Guide

Texas Instruments Proprietary Information

 Compile this project using Project->Build
 Note: Following Components needs to be linked for successful build and functionality

of the application.
 TSIP
 PAL_OS
 SoC specific PAL_SYS
 EDMA3

5.2.3.Loading and running the application

The sample application is loaded and executed via Code composer studio. It is good idea to
reset the board before loading Code Composer. The application will print out the status
messages and type of functionality the driver performs on the message log.

5.2.4. Sample TSIP application
The sample application file “psp_bios_tsip_sample.c” is available in
“<root>\pspdrivers\system\c6452\bios\evm6452\tsip\src” folder for the TSIP driver
package. It demonstrates the sample transmit/receive of multiple IO submit in loopback
mode. Please see the file for details. Refer section “3.1.1 Initialization details” for
configuring TCI file.

5.2.5.Pragma directives used in the sample application
The RX and TX buffer are used by the application and need to be cache aligned at 128
bytes.

