

1

DSP/BIOS PAL SYS PCI Device Driver

U s e r ' s G u i d e

User’s Manual

2

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue any product
or service without notice. Customers should obtain the latest relevant information before placing orders and should verify
that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at
the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support
this warranty. Except where mandated by government requirements, testing of all parameters of each product is not
necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their
products and applications using TI components. To minimize the risks associated with customer products and
applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright,
mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI
products or services are used. Information published by TI regarding third-party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may
require a license from a third party under the patents or other intellectual property of the third party, or a license from TI
under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with
alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or
service voids all express and any implied warranties for the associated TI product or service and is an unfair and
deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

3

Preface

Read This First

About This Manual

The API reference guide serves as a software programmer’s handbook
for working with the PCI device driver modules. This reference guide
provides necessary information regarding how to use these modules in
user systems and applications.

Abbreviations

Table of Abbreviations

Abbreviation Description

API Application Programming Interface

ISR Interrupt Service Routine

OS Operating System

SOC System On Chip

PCI Peripheral component Interconnect

4

Revision History

Date Author Comments Version

January 20, 2007 Rinkal Shah Initial draft 1.0

March 23, 2007 Rinkal Shah Document modified according
to the code changes due to
new TRM of PCI controller

1.1

June 4, 2007 Rinkal shah SOC C6452 added 1.2

May 21, 2008 Chandan Nath Updated for adding
compiler switches in build
options

1.3

5

TABLE OF CONTENTS
DSP/BIOS PAL SYS PCI Device Driver ..1
Preface...3
Abbreviations ..3
Revision History..4
TABLE OF CONTENTS..5
CHAPTER 1...6
INTRODUCTION ...6

1.1. Introduction ..7
1.2. H/W S/W Support..8
1.3. Driver Components ..9
1.4. Driver Capabilities..10
1.5. System Requirements..10

CHAPTER 2...11
INSTALLATION GUIDE..11

2.1. Component Folder..12
2.2. Build..13
2.3. Build Options..13
2.4. Linux application..14

CHAPTER 3 ...15
PAL/SYS PCI..15

3.1. Functions...16
3.1.1 PAL_sysPCICreate () - Create the instance of PCI driver......................................16
3.1.2 PAL_sysPCIDelete () - Delete the instance of PCI driver.16
3.1.3 PAL_sysPCIOpen () - Open the PCI driver instance..16
3.1.4 PAL_sysPCIClose () - Close the PCI driver instance. ...17
3.1.5 PAL_sysPCIEnableInterrupt () - Enables PCI interrupt/s.17
3.1.6 PAL_sysPCIDisableInterrupt () - Disables PCI interrupt/s.18
3.1.6 PAL_sysPCISetMemMapReg () - Set memory mapped register.18
3.1.7 PAL_sysPCIGetMemMapReg () - Get memory mapped register.19
3.1.8 PAL_sysPCISetHookReg() - Set Hook register. ..19
3.1.9 PAL_sysPCIGetHookReg() - Get Hook register...20
3.1.12 PAL_sysPCIEnableBasePrefetch () - API to Enable BasePrefetch.20
3.1.13 PAL_sysPCIDisableBasePrefetch () - API to Disable Base Prefetch.21
3.1.14 PAL_sysPCIProgramCacheLineSize () - API to set Cache line size.21
3.1.15 PAL_sysPCIProgramLatencyTimer () - API to program Latency timer...............21
3.2. Data Structures..22
3.3. Enumerations ..22
3.4. Macros ...27
3.5 Dependency of Sample application:..28

6

CHAPTER 1

INTRODUCTION

Topic

1.1. Introduction

1.2. H/W S/W Support

1.3. Driver Components

1.4. Default driver Configuration

1.5. Driver Capabilities

1.6. System Requirements

7

1.1. Introduction

This document is an API reference guide on PCI Device Driver.

8

1.2. H/W S/W Support
This PCI device driver has been developed for the following DSP/BIOS operating system. For
more details on the version numbers refer to the release notes in the root of the installation.

9

1.3. Driver Components

The driver is constituted of following sub components:

PCI PAL API’s – OS Independent part of PCI driver Core

System components:

PALOS - BIOS Abstraction

10

1.4. Driver Capabilities

Driver has to be configured by the application. There is no default driver configuration.

1.5. System Requirements

Refer system level release notes for tools and BIOS versions.

11

CHAPTER 2

INSTALLATION GUIDE

Topic

2.1. Component Folder

2.2. Build

2.3. Build Options

12

2.1. Component Folder

Upon installing the PCI driver the following directory structure is found in
the driver’s directory.

Figure 1. PCI Driver Directory Structure

This top level pci folder contains pci driver psp header file and XDC package files
(package.bld, package.xdc and package.xs)

 build: This folder contains pci driver library project file. The generated
driver library shall be included in the application where PCI driver have to
be used.

 docs: This folder contains architecture document, datasheet, release notes
and user guide.

Architecture document contains the driver details which can be helpful for
the developers as well as consumers to understand the driver design.

Datasheet gives the idea about the memory consumption by the driver and
description of the top level APIs.

Release Note gives the details about system requirements, steps to
Install/Uninstall the package.This document list the known issues of the
driver.

User Guide provides information about how to use the driver. It contains
description of sample applications which guide the end user to make their
applications using this driver.

 Lib: This folder contains libraries generated in all the configuration
modes(debug, idebug, irelease and release)

 Package: This folder contains files generated by XDC tool.

 src: This folder contains pci driver source files. It also contains header files
that are used by the driver.

13

2.2. Build

This section describes for each supported target environment, the
applicable build options, supported configurations and how selected, the
featured capabilities and how enabled, the allowed user customizations
for the software to be installed and how the same can be realized.

The component might be delivered to user in different formats:

 Source-less ie., binary executables and object libraries only

 Source-inclusive ie., The entire source code used to implement
the driver is included in the delivered product

 Source-selective ie., Only a part of the overall source is included.
This delivery mechanism might be required either because;
certain parts of the driver require source-level extensions and/or
customization at the user’s end or because, specific parts of the
driver is exposed to user at the source-level to insure user’s
software development.

When source is included as part of the product delivery, the CCS project
file is provided as part of the package. When object format is distributed,
the driver header files are part of the “inc” folder and the driver library is
provided in /drivers/lib folder.

2.3. Build Options

This driver does not have any specific build option at the time of writing
of this manual.

The build folder contains a CCS project file that builds the driver into a
library for debug and release mode.

Following compiler switches are used to compile for different options.

 _DEBUG
This is used as a flag to compiler whether to include the debug
statements inserted in the code into the final image. This flag helps to
build DEBUG image of the program. For RELEASE images this is not
passed to the compiler.

 CHIP_XXXX
The CSL layer is written in a common file for all the variants of a SOC.
This flag differentiates the variant we are compiling for, for e.g. -
CHIP_DM648, and the CSL definitions for that variant appropriately gets
defined for register base addresses, num of ports of a peripheral etc.

 PCI_ECM_HOOK_ENABLE
This option is used when Ecm Hook is enabled.

 PCI_INSTRUMENTATION_ENABLED
This option is passed to the compiler to include the instrumentation code
parts into the final image/lib of the program. This helps build the
iRelease/iDebug versions of the image/lib with a common code base

14

2.4. Linux application

The Linux application located in linuxapp folder contains Linux driver for
PCI device. When the driver is inserted, driver searches for the devices
attached to the PCI bus, read the BAR address, enables the PCI device
and allocates memory in linux kernel for providing read/write space for.
Linux driver also makes EVM the master of the bus. Driver enables PCI
interrupts a does the interrupt hooking with the operating system.

Linux driver searches for EVM on the PCI bus by reading the vendor ID
and device ID of all the devices attached to the bus.

Once the device (EVM) is found on the bus, linux driver reads the BAR
addresses of EVM and maps the memory spaces to linux memory space
by calling Linux specific functions for mapping the memory.

After configuration of BAR address and memory mapping, linux driver
configures as the bus master. Now DM648/C6452 can perform
read/write operation on the bus. Before initiating read and write transfers,
memory is allocated by the driver and virtual to physical memory
mapping is done to make the allocated memory available to EVM
through PCI bus. Now, linux driver access the EDMA configuration space
of EVM to perform a read and write operation on mapped memory of
host PC. These read and write operations are done using EDMA on.
EDMA is configured by the linux driver.

The memory that is mapped in the above step is used by respective
EVM DSP/BIOS driver to perform read/write operation.

15

CHAPTER 3

PAL/SYS PCI

This chapter describes the functions, data structures, enumerations and macros for the List
module.

Topic

3.1. Functions

 3.2. Data Structures

3.3. Enumeration

 3.4. Macros

16

3.1. Functions
This section lists the functions available in the PSP module.

3.1.1 PAL_sysPCICreate () - Create the instance of PCI driver.

PAL_Result PAL_sysPCICreate (
Uint32 instId
Ptr param

)

Parameters:
instId Instance Id of PCI controller
param Pointer parameters required for creating PCI driver handle

Returns:
Returns PAL_SOK on success or PAL Error Code on failure

Description:
PAL_sysPCICreate creates an instance of PCI driver. This function checks for the maximum
instance number. If instance number is proper, it changes the state of driver. This function is
implemented just to make PCI driver consistent with other PAL SYS drivers.

3.1.2 PAL_sysPCIDelete () - Delete the instance of PCI driver.
PAL_Result PAL_sysPCIDelete (

Uint32 instId
)

Parameters:
instId Instance Id of PCI controller

Returns:
Returns PAL_SOK on success or PAL Error Code on failure

Description:
PAL_sysPCIDelete deletes an instance of PCI driver. This function checks for the maximum
instance number. If instance number is proper, it changes the state of driver. This function is
implemented just to make PCI driver consistent with other PAL SYS drivers.

3.1.3 PAL_sysPCIOpen () - Open the PCI driver instance.

PSP_Handle PAL_sysPCIOpen (
Uint32 instId
PAL_sysPciInitConfig *param

)
Parameters:

instId Instance Id of PCI controller
param Pointer parameters required for opening PCI driver handle. Application have to fill

17

this param structure with proper values for initialization of driver

Returns:
Returns PSP_Handle on success or NULL on failure

Description:
This function opens the driver instance. If the handle is proper, it initializes the base address of
PCI controller in the driver handle. This function also registers the interrupt callback for PCI
interrupt. This callback will receive the interrupt status as one argument and application data
pointer as other argument on occurrence of interrupt. Interrupt status is provided to application in
application callback.
“param” should be a pointer to PAL_sysPCIinitConfig structure which should contain non-NULL
value of application callback if application wants a callback on occurrence of interrupt. Application
can also pass parameter to ISR. “param” contains one field as “appData”. “appData” should be
pointing to the data that application wants to pass to callback function.

3.1.4 PAL_sysPCIClose () - Close the PCI driver instance.

PAL_Result PAL_sysPCIClose (
PSP_Handle hPci
Ptr param

)
Parameters:

hPci Handle of PCI controller driver
param Pointer parameters required for closing PCI driver handle if any.

Returns:
Returns PAL_SOK on success or PAL Error Code on failure

Description:
This function closes the PCI driver instance. It checks the instance number and state of driver. If
state and instance number are proper, it removes the hooking of ISR with interrupt. The function
also make pointer to base addresses NULL. After doing all this operations, this function changes
the state of driver instance to CLOSED state.

3.1.5 PAL_sysPCIEnableInterrupt () - Enables PCI interrupt/s.

PAL_Result PAL_sysPCIEnableInterrupt (
PSP_Handle hPci
Uint32 intEnableCode

)
Parameters:

hPci Handle of PCI controller driver
intEnableCode Interrupt enable mask. 5 LSBs of intEnableCode will correspond to 5 interrupts of

PCI. If a particular bit is set, corresponding interrupt would be enabled.

Returns:
Returns PAL_SOK on success or PAL Error Code on failure

Description:

18

This function enables interrupt/s. Interrupts are enabled depending upon the mask that is passed
as argument to this function. Each bit of “intEnableCode” signifies one interrupt. Particular bit
have to be set by the application to enable corresponding interrupt. Multiple interrupts can be set
by setting multiple bits in the “intEnableCode”.

3.1.6 PAL_sysPCIDisableInterrupt () - Disables PCI interrupt/s.

PAL_Result PAL_sysPCIDisableInterrupt (
PSP_Handle hPci
Uint32 intDisableCode

)
Parameters:

hPci Handle of PCI controller driver
intDisableCode Interrupt disable mask. 5 LSBs of intDisableCode will correspond to 5 interrupts of

PCI. If a particular bit is set, corresponding interrupt would be disabled.

Returns:
Returns PAL_SOK on success or PAL Error Code on failure

Description:
This function disables interrupt/s. Interrupts are disabled depending upon the mask that is passed
as argument to this function. Each bit of “intDisableCode” signifies one interrupt. Particular bit
have to be set by the application to disable corresponding interrupt. Multiple interrupts can be
disabled by setting multiple bits in the “intDisableCode”.

3.1.6 PAL_sysPCISetMemMapReg () - Set memory mapped register.

PAL_Resul
t

PAL_sysPCISetMemMapRe
g

(

PSP_Handle hPci
PAL_sysPciMemMapField memMapFiel

d
PAL_sysPciConfigFieldSiz
e

writeSize

Uint32 newFieldVal
)

Parameters:
hPci Handle of PCI controller driver

memMapFieldField of memory mapped register that has to be set
writeSize Size of data to be set (byte/word/dword)

newFieldVal New value of field that is to be set

Returns:
Returns PAL_SOK on success or PAL Error Code on failure

Description:
This function sets values in memory mapped registers. Register whose value has to be set
should be passed as “memMapField” argument to PAL_sysPCISetMemMapReg function. The
values of “memMapField” are restricted to the values available in “PAL_sysPciMemMapField”
enum. “writeSize” specifies the number of bytes to written on to the field. Number of bytes can be

19

1, 2 or 4. The value that has to be written to the field shall to be specified as “newFieldVal”
argument.

3.1.7 PAL_sysPCIGetMemMapReg () - Get memory mapped register.

PAL_Resul
t

PAL_sysPCIGetMemMapRe
g

(

PSP_Handle hPci
PAL_sysPciMemMapField memMapFiel

d
PAL_sysPciConfigFieldSiz
e

readSize

Uint32 *newFieldVal
)

Parameters:
hPci Handle of PCI controller driver

memMapFieldField of memory mapped register that has to be read
readSize Size of data to be read (byte/word/dword))

*newFieldVal Pointer to new value of field that is to be read from hardware

Returns:
Returns PAL_SOK on success or PAL Error Code on failure

Description:
This function reads values in memory mapped registers. Register whose value has to be read
should be passed as “memMapField” argument to PAL_sysPCISetMemMapReg function. The
values of “memMapField” are restricted to the values available in “PAL_sysPciMemMapField”
enum. “readSize” specifies the number of bytes to read from the specified field. Number of bytes
can be 1, 2 or 4. The value that has to be read from the field will be store at 4 byte memory
pointer by “newFieldVal” pointer.

3.1.8 PAL_sysPCISetHookReg() - Set Hook register.

PAL_Resul
t

PAL_sysPCISetHookReg (

PSP_Handle hPci
PAL_sysPciHookRegister hookRegField
PAL_sysPciConfigFieldSiz
e

writeSize

Uint32 newFieldVal
)

Parameters:
hPci Handle of PCI controller driver

hookRegField Field of hook register that has to be set
writeSize Size of data to be set (byte/word/dword)

newFieldVal New value of field that is to be set

Returns:
Returns PAL_SOK on success or PAL Error Code on failure

Description:

20

This function sets values in hook registers. Register whose value has to be set should be passed
as “hookRegField” argument to PAL_sysPCISetHookReg function. The values of “hookRegField”
are restricted to the values available in “PAL_sysPciHookRegister” enum. “writeSize” specifies
the number of bytes to written on to the field. Number of bytes can be 1, 2 or 4. The value that
has to be written to the field shall be specified as “newFieldVal” argument.

3.1.9 PAL_sysPCIGetHookReg() - Get Hook register.

PAL_Resul
t

PAL_sysPCIGetHookReg (

PSP_Handle hPci
PAL_sysPciHookRegister hookRegField
PAL_sysPciConfigFieldSiz
e

readSize

Uint32 *newFieldVal
)

Parameters:
hPci Handle of PCI controller driver

hookRegField Field of hook register that has to be set
readSize Size of data to be read (byte/word/dword)

*newFieldVal Pointer to new value of field that is to be read from hardware

Returns:
Returns PAL_SOK on success or PAL Error Code on failure

Description:
This function reads values from hook registers. Register whose value has to be read should be
passed as “hookRegField” argument to PAL_sysPCISetHookReg function. The values of
“hookRegField” are restricted to the values available in “PAL_sysPciHookRegister” enum.
“readSize” specifies the number of bytes to read from the field. Number of bytes can be 1, 2 or 4.
The value that is read from the field will be stored at the 4 byte memory location pointed by
“newFieldVal” pointer.

3.1.12 PAL_sysPCIEnableBasePrefetch () - API to Enable BasePrefetch.

PAL_Resul
t

PAL_sysPCIEnableBasePre
fetch

(

PSP_Handle hPci
Uint32 baseId

)
Parameters:

hPci Handle of PCI controller driver
baseId ID of BASE for which prefetch have to be enabled

Returns:
Returns PAL_SOK on success or PAL Error Code on failure

Description:

21

This function will enable pre-fetchable functionality of BAR memory space. “baseId” will specify
the ID of BAR whose pre-fetchable functionality have to be enabled. The value of “baseId” can
vary from 0 to 5.

3.1.13 PAL_sysPCIDisableBasePrefetch () - API to Disable Base Prefetch.

PAL_Resul
t

PAL_sysPCIDisableBasePre
fetch

(

PSP_Handle hPci
Uint32 baseId

)
Parameters:

hPci Handle of PCI controller driver
baseId ID of BASE for which pre-fetch have to be disabled

Returns:
Returns PAL_SOK on success or PAL Error Code on failure

Description:
This function will disable pre-fetchable functionality of BAR memory space. “baseId” will specify
the ID of BAR whose pre-fetchable functionality have to be disabled. The value of “baseId” can
vary from 0 to 5.

3.1.14 PAL_sysPCIProgramCacheLineSize () - API to set Cache line size.

PAL_Resul
t

PAL_sysPCIProgramCache
LineSize

(

PSP_Handle hPci
PAL_sysPciCacheLineSize valCacheLine

Size
)

Parameters:
hPci Handle of PCI controller driver

valCacheLineSize Size of cache line to be set

Returns:
Returns PAL_SOK on success or PAL Error Code on failure

Description:
This function will program the length of cache line. “valCacheLineSize” will specify the new size of
cache line. The values of “valCacheLineSize” can vary from 16 bytes, 32 bytes, 64 bytes, 128
bytes or cache can be disabled. The values of “valCacheLineSize” are restricted by
“PAL_sysPciCacheLineSize” enum.

3.1.15 PAL_sysPCIProgramLatencyTimer () - API to program Latency timer.

PAL_Resul
t

PAL_sysPCIProgramLatenc
yTimer

(

22

PSP_Handle hPci
Uint32 valLatencyTi

mer
)

Parameters:
hPci Handle of PCI controller driver

valLatencyTimer Value of latency timer

Returns:
Returns PAL_SOK on success or PAL Error Code on failure

Description:
This function will set the value of latency timer. The new value of latency timer has to be specified
as “valLatencyTimer” argument.

3.2. Data Structures
This section lists the data structures available in the PCI module.

 typedef struct _PAL_sysPciInitConfig
{

PAL_sysPciAppCallback appCb;
Ptr appData;

} PAL_sysPciInitConfig;

Data Fields
PAL_sysPciAppCallback appCb
Ptr appData

Detailed Description:
PCI driver configuration.

Field Documentation

PAL_sysPciAppCallback appCb
Instance wide callback function to catch errors.

Ptr appData
Application data to be passed back to the app callback

3.3. Enumerations
This section lists the enumerations available in the PSP module.

enum PAL_sysPciConfigFieldSize _
Enumeration values:
PAL_SYS_PCI_READ_WRITE_SIZE_BYTE Read/write one byte(8-bit)
PAL_SYS_PCI_READ_WRITE_SIZE_HALFWORDRead/write half word(16-bit)
PAL_SYS_PCI_READ_WRITE_SIZE_WORD Read/write word(32-bit)

enum PAL_sysPciMemMapField

23

Enumeration values:

PAL_SYSPCI_PCIIF_MINOR_REV PCIIF minor revision
PAL_SYSPCI_PCIIF_MAJOR_REV PCIIF major revision
PAL_SYSPCI_PCIIF_MODULE_ID PCIIF module ID
PAL_SYSPCI_STATUS_SET status set register
PAL_SYSPCI_STATUS_CLEAR status clear register
PAL_SYSPCI_HOST_INT_ENABLE_SET Host interrupt enable set register
PAL_SYSPCI_HOST_INT_ENABLE_CLEAR Host interrupt enable clear register
PAL_SYSPCI_DSP_INT_ENABLE_SET DSP interrupt enable set register
PAL_SYSPCI_DSP_INT_ENABLE_CLEAR DSP interrupt enable clear register
PAL_SYSPCI_MIRROR_VENDOR_ID Vendor ID mirror register
PAL_SYSPCI_MIRROR_DEVICE_ID Device ID mirror register
PAL_SYSPCI_MIRROR_CMD_STATUS_REG Command mirror register
PAL_SYSPCI_MIRROR_REVISION_ID Revision ID mirror register
PAL_SYSPCI_MIRROR_CLASS_CODE Class code mirror register
PAL_SYSPCI_MIRROR_CACHE_SIZE Cache size mirror register
PAL_SYSPCI_MIRROR_LATENCY_TIMER Latency timer mirror register
PAL_SYSPCI_MIRROR_HEADER_TYPE Header type mirror register
PAL_SYSPCI_MIRROR_BIST_REG BIST mirror register
PAL_SYSPCI_MASK_BAR_0 BAR 0 mask register
PAL_SYSPCI_MASK_BAR_1 BAR 1 mask register
PAL_SYSPCI_MASK_BAR_2 BAR 2 mask register
PAL_SYSPCI_MASK_BAR_3 BAR 3 mask register
PAL_SYSPCI_MASK_BAR_4 BAR 4 mask register
PAL_SYSPCI_MASK_BAR_5 BAR 5 mask register
PAL_SYSPCI_MIRROR_SUBSYS_VENDOR_ID Subsystem vendor ID mirror register
PAL_SYSPCI_MIRROR_SUBSYS_ID Subsystem ID mirror register
PAL_SYSPCI_MIRROR_CAP_PTR_ID Capabilities pointer mirror register
PAL_SYSPCI_MIRROR_INT_LINE Interrupt line mirror register
PAL_SYSPCI_MIRROR_INT_PIN Interrupt Pin mirror register
PAL_SYSPCI_MIRROR_MIN_GRANT_BITS Minimum grant bits mirror register
PAL_SYSPCI_MIRROR_MAX_LATENCY_BITS Maximum latency bits mirror register
PAL_SYSPCI_SLAVE_CNTL_REG Slave control register
PAL_SYSPCI_SLAVE_BASE_ADDR_TRANS_REG_0 Slave base address 0 translation register
PAL_SYSPCI_SLAVE_BASE_ADDR_TRANS_REG_1 Slave base address 1 translation register
PAL_SYSPCI_SLAVE_BASE_ADDR_TRANS_REG_2 Slave base address 2 translation register
PAL_SYSPCI_SLAVE_BASE_ADDR_TRANS_REG_3 Slave base address 3 translation register
PAL_SYSPCI_SLAVE_BASE_ADDR_TRANS_REG_4 Slave base address 4 translation register
PAL_SYSPCI_SLAVE_BASE_ADDR_TRANS_REG_5 Slave base address 5 translation register
PAL_SYSPCI_MIRROR_BAR_0 Base address 0 mirror register
PAL_SYSPCI_MIRROR_BAR_1 Base address 1 mirror register
PAL_SYSPCI_MIRROR_BAR_2 Base address 2 mirror register
PAL_SYSPCI_MIRROR_BAR_3 Base address 3 mirror register
PAL_SYSPCI_MIRROR_BAR_4 Base address 4 mirror register
PAL_SYSPCI_MIRROR_BAR_5 Base address 5 mirror register

PAL_SYSPCI_MASTER_CONFIG_IO_DATA_REG
Master configuration/IO access data
register

24

PAL_SYSPCI_MASTER_CONFIG_IO_ADDR_REG
Master configuration/IO access address
register

PAL_SYSPCI_MASTER_CONFIG_IO_CMD_REG
Master configuration/IO access command
register

PAL_SYSPCI_MASTER_CONFIG_REG Master configuration register
PAL_SYSPCI_ADDR_SUBSTITUTION_REG0 PCI address substitution register 0
PAL_SYSPCI_ADDR_SUBSTITUTION_REG1 PCI address substitution register 1
PAL_SYSPCI_ADDR_SUBSTITUTION_REG2 PCI address substitution register 2
PAL_SYSPCI_ADDR_SUBSTITUTION_REG3 PCI address substitution register 3
PAL_SYSPCI_ADDR_SUBSTITUTION_REG4 PCI address substitution register 4
PAL_SYSPCI_ADDR_SUBSTITUTION_REG5 PCI address substitution register 5
PAL_SYSPCI_ADDR_SUBSTITUTION_REG6 PCI address substitution register 6
PAL_SYSPCI_ADDR_SUBSTITUTION_REG7 PCI address substitution register 7
PAL_SYSPCI_ADDR_SUBSTITUTION_REG8 PCI address substitution register 8
PAL_SYSPCI_ADDR_SUBSTITUTION_REG9 PCI address substitution register 9
PAL_SYSPCI_ADDR_SUBSTITUTION_REG10 PCI address substitution register 10
PAL_SYSPCI_ADDR_SUBSTITUTION_REG11 PCI address substitution register 11
PAL_SYSPCI_ADDR_SUBSTITUTION_REG12 PCI address substitution register 12
PAL_SYSPCI_ADDR_SUBSTITUTION_REG13 PCI address substitution register 13
PAL_SYSPCI_ADDR_SUBSTITUTION_REG14 PCI address substitution register 14
PAL_SYSPCI_ADDR_SUBSTITUTION_REG15 PCI address substitution register 15
PAL_SYSPCI_ADDR_SUBSTITUTION_REG16 PCI address substitution register 16
PAL_SYSPCI_ADDR_SUBSTITUTION_REG17 PCI address substitution register 17
PAL_SYSPCI_ADDR_SUBSTITUTION_REG18 PCI address substitution register 18
PAL_SYSPCI_ADDR_SUBSTITUTION_REG19 PCI address substitution register 19
PAL_SYSPCI_ADDR_SUBSTITUTION_REG20 PCI address substitution register 20
PAL_SYSPCI_ADDR_SUBSTITUTION_REG21 PCI address substitution register 21
PAL_SYSPCI_ADDR_SUBSTITUTION_REG22 PCI address substitution register 22
PAL_SYSPCI_ADDR_SUBSTITUTION_REG23 PCI address substitution register 23
PAL_SYSPCI_ADDR_SUBSTITUTION_REG24 PCI address substitution register 24
PAL_SYSPCI_ADDR_SUBSTITUTION_REG25 PCI address substitution register 25
PAL_SYSPCI_ADDR_SUBSTITUTION_REG26 PCI address substitution register 26
PAL_SYSPCI_ADDR_SUBSTITUTION_REG27 PCI address substitution register 27
PAL_SYSPCI_ADDR_SUBSTITUTION_REG28 PCI address substitution register 28
PAL_SYSPCI_ADDR_SUBSTITUTION_REG29 PCI address substitution register 29
PAL_SYSPCI_ADDR_SUBSTITUTION_REG30 PCI address substitution register 30
PAL_SYSPCI_ADDR_SUBSTITUTION_REG31 PCI address substitution register 31

enum PAL_sysPciHookRegister
Enumeration values:

PAL_SYSPCI_HOOK_REG_PROGRAM_VENDOR_ID
Vendor ID program
register

PAL_SYSPCI_HOOK_REG_PROGRAM_DEVICE_ID
Device ID program
register

PAL_SYSPCI_HOOK_REG_PROGRAM_CLASS_CODE_
REVISION_ID

Class code and revision
ID program register

PAL_SYSPCI_HOOK_REG_PROGRAM_SUB_SYS_
VENDOR_ID_SUB_SYS_ID

Register to program
vendor ID

25

PAL_SYSPCI_HOOK_REG_PROGRAM_MAX_LATENCY_
MIN_GRANT

Max latency and min
grant program register

PAL_SYSPCI_HOOK_REG_CONFIG_DONE_REG
Configuration done
registers

26

enum PAL_sysPciCacheLineSize
Enumeration values:
PAL_SYSPCI_CACHELINE_SIZE_DISABLED Cache line size - Disabled
PAL_SYSPCI_CACHELINE_SIZE_16BYTES Cache line size - 16 bytes
PAL_SYSPCI_CACHELINE_SIZE_32BYTES Cache line size - 32 bytes
PAL_SYSPCI_CACHELINE_SIZE_64BYTES Cache line size – 64 bytes
PAL_SYSPCI_CACHELINE_SIZE_128BYTES Cache line size - 128 bytes

27

3.4. Macros
This section lists the macros available in the PSP module.

/** Maximum PCI driver instance supported */
#define PAL_SYSPCI_MAX_PCI_INSTANCE (1u)
/** Maximum number of slaves supported by PCI */
#define PAL_SYSPCI_MAX_NUM_SLAVES (4u)
/** Maximum base address registers supported by PCI controller */
#define PAL_SYSPCI_MAX_BASE_ADDR (6u)
/** Interrupt mask to enable/disable Target abort interrupt */
#define PAL_SYSPCI_TARGET_ABORT_INT_MASK (0x00000002u)
/** Interrupt mask to enable/disable Master abort interrupt */
#define PAL_SYSPCI_MASTER_ABORT_INT_MASK (0x00000004u)
/** Interrupt mask to enable/disable system error interrupt */
#define PAL_SYSPCI_SYS_ERR_INT_MASK (0x00000020u)
/** Interrupt mask to enable/disable parity error interrupt */
#define PAL_SYSPCI_PARITY_ERR_INT_MASK (0x00000040u)

Error Codes returned by the PAL SYS PCI driver
/** PCI driver error base define */
#define PAL_SYS_PCI_ERR_BASE (-40)
/**
 * PCI Driver Object Not Deleted yet.
 * So the object cannot be created.
 */
#define PAL_SYS_PCI_OBJ_NOT_DELETED (PAL_SYS_PCI_ERR_BASE)
/**
 * PCI Driver Object Not Created yet.
 * So the object cannot be deleted.
 */
#define PAL_SYS_PCI_OBJ_NOT_CREATED (PAL_SYS_PCI_ERR_BASE-1)
/**
 * PCI Driver Object Not Closed yet.
 * So the object cannot be deleted.
 */
#define PAL_SYS_PCI_OBJ_NOT_CLOSED (PAL_SYS_PCI_ERR_BASE-2)
/**
 * PCI Driver Not Opened yet
 * So the object cannot be closed.
 */
#define PAL_SYS_PCI_OBJ_NOT_OPENED (PAL_SYS_PCI_ERR_BASE-3)
/**
 * Invalid Parameter passed to API
 */
#define PAL_SYS_PCI_INVALID_PARAM (PAL_SYS_PCI_ERR_BASE-4)
/**
 * Error encountered in PCI driver while semaphore operation
*/

#define PAL_SYS_PCI_SEM_ERR (PAL_SYS_PCI_ERR_BASE-5)

Codes to enable/disable PCI interrupts

28

/**
 * Code to enable/disable Target abort interrupt of Host
 */
#define PAL_SYS_PCI_HOST_INT_TGT_ABORT (0x01u)
/**
 * Code to enable/disable Master abort interrupt of Host
 */
#define PAL_SYS_PCI_HOST_INT_MS_ABORT (0x02u)
/**
 * Code to enable/disable system error detect interrupt of Host
 */
#define PAL_SYS_PCI_HOST_INT_SYS_ERR_DETECT (0x04u)
/**
 * Code to enable/disable parity error detect interrupt of Host
 */
#define PAL_SYS_PCI_HOST_INT_PARITY_ERR_DETECT (0x08u)

/**
 * Code to enable/disable target abort error interrupt of DSP
 */
#define PAL_SYS_PCI_DSP_INT_TGT_ABORT (0x10u)
/**
 * Code to enable/disable master abort error interrupt of DSP
 */
#define PAL_SYS_PCI_DSP_INT_MS_ABORT (0x20u)
/**
 * Code to enable/disable system error detect interrupt of DSP
 */
#define PAL_SYS_PCI_DSP_INT_SYS_ERR_DETECT (0x40u)
/**
 * Code to enable/disable parity error detect interrupt of DSP
 */
#define PAL_SYS_PCI_DSP_INT_PARITY_ERR_DETECT (0x80u)

3.5 Dependency of Sample application:
Following Components needs to be linked for successful build and functionality of the
application.

 PCI
 PAL_OS
 SoC specific PAL_SYS
 EDMA3

