
Page 1 of 51Texas Instruments Proprietary Information

DSP/BIOS McASP Driver User Guide

USER’S GUIDE

Document Revision History

Rev
No

Author(s) Revision History Date Approval(s)

0.1 Pratik Joshi Migrated from older version of
user guide

May 24,
2007

Initial Draft

0.2 Pratik Joshi Change Release version May 5,
2007

0.3 Pratik Joshi Change data structure,
enumeration and sample
application section

June 8,
2007

0.4 Pratik Joshi Updated BIOS version to
5.31.08

August 29,
2007

0.5 Nagarjuna K Updated for
DM648/DM6437/C6452/C642
4 packjage

November
15, 2007

0.6 Chandan Nath Updated for adding compiler
switches in build options

May 21,
2008

Information in this document is subject to change without notice. Texas Instruments may
have pending patent applications, trademarks, copyrights, or other intellectual property
rights covering matter in this document. The furnishing of this document is given for usage
with Texas Instruments products only and does not give you any license to the intellectual
property that might be contained within this document. Texas Instruments makes no

Page 2 of 51Version 0.0

implied or expressed warranties in this document and is not responsible for the products
based from this document

Page 3 of 51

DM648 McASP Driver User Guide

Texas Instruments Proprietary Information

TABLE OF CONTENTS

1 Introduction... 6

1.1 Terms & Abbreviations..6

1.2 References ..6

1.3 S/W Support..7

1.4 Driver Components...7

1.5 Default Driver Configuration ..7

1.6 Driver Capabilities ..7

1.7 System Requirements...7

2 Installation Guide... 8

2.1 Component Folder..8

2.2 Build...9

2.3 Build Options...9

3 Run-Timer Interfaces/Integration Guide ... 10

3.1 Symbolic Constants and Enumerated Data types......................................10

3.2 Data Structures ...10

4 Driver API Classification .. 13

4.1 DSP/BIOS McASP Driver Initialization ...13

4.2 Driver Binding..13

4.3 IOM Channel Creation...13

4.4 Channel Control ...13

4.4.1 PSP_CHAN_TIMEDOUT..13

4.4.2 PSP_CHAN_RESET..14

4.4.3 PSP_MCASP_CNTRL_SET_FORMAT_CHAN ...14

4.4.4 PSP_MCASP_CNTRL_GET_FORMAT_CHAN ...15

4.4.5 PSP_MCASP_CNTRL_SET_GBL_REGS..16

4.4.6 PSP_MCASP_SET_DIT_MODE...16

4.4.7 PSP_MCASP_SET_DLB_MODE ..17

4.4.8 PSP_MCASP_STOP_PORT ..17

4.4.9 PSP_MCASP_START_PORT: ...18

4.4.10 PSP_CTRL_McASP_MODIFY_LOOPJOB:..19

4.4.11 PSP_CTRL_McASP_MUTE_ON: ...19

4.4.12 PSP_CTRL_McASP_MUTE_OFF: ..20

4.4.13 PSP_MCASP_DEVICE_RESET: ..20

4.4.14 PSP_MCASP_CNTRL_AMUTE: ...21

4.4.15 PSP_MCASP_GPIO_CONFIG:..22

4.4.16 PSP_MCASP_QUERY_AMUTE:...22

Page 4 of 51

DM648 McASP Driver User Guide

Texas Instruments Proprietary Information

4.4.17 PSP_McASP_PAUSE:...23

4.4.18 PSP_McASP_RESUME:...23

4.4.19 PSP_CTRL_RCV_GPIO_INPUT: ...24

4.5 Transfer Requests Submission ...24

4.6 ISR processing for transfer completion interrupt25

4.7 IOM Channel Deletion ...25

4.8 McASP IO Mini driver unbinding ...25

4.9 McASP IOM driver’s API Usage Scenarios/Integration Example..................25

5 Driver Data Structures and Enumerations .. 27

5.1 Initialization Details..27

5.2 Data Structures ...27

5.2.1 PSP_Mcasp_DevParams ..27

5.2.2 PSP_Mcasp_ChanParams...28

5.2.3 PSP_Mcasp_PktAddrPayload ..29

5.2.4 McASP Obj ..29

5.2.5 PortObj ...30

5.2.6 PSP_McaspHwSetupGbl...30

5.2.7 PSP_McaspHwSetupDataClk structure...31

5.2.8 PSP_McaspHwSetupData structure ...31

5.2.9 PSP_McaspHwSetup structure..32

5.3 Enumerations ..32

5.3.1 PSP_McaspChanMode ...32

5.3.2 PSP_McaspChannelStatus..32

5.3.3 PSP_McaspSerializerStatus..32

5.3.4 PSP_McaspSerializerNum ..33

5.3.5 Macros..33

6 Porting Guide ... 37

6.1 Porting Description ...37

7 McASP as a Standalone Driver.. 39

7.1 Initialization of McASP driver ...39

7.1.1 Device Pinmuxing...39

7.2 Channel Creation..39

7.2.1 Channel Parameter Configuration in TDM mode..40

7.2.2 Channel Parameter Configuration in DIT Mode ...41

8 Example Application... 45

8.1 The McASP Sample Application for DM648/C6452.....................................45

8.1.1 Introduction ..45

8.1.2 Directory structure for sample application ...45

8.1.3 Building the Application...45

8.1.4 Loading the Application...46

Page 5 of 51

DM648 McASP Driver User Guide

Texas Instruments Proprietary Information

8.2 The McASP Sample Application for DM6437/C6424...................................49

8.2.1 Introduction ..49

8.2.2 Directory structure for sample application ...49

8.2.3 Building the Application...49

8.2.4 Loading the Applicaiton...49

8.2.5 Pragma directives used in the Application..51

TABLE OF FIGURES

Figure 1. McASP Driver Directory Structure...8
Figure 2. McASP sample directory structure for DM648 and C6452...........................45
Figure 3. McASP sample directory structure for DM6437 and C6424.........................49

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

6

1 Introduction

The API reference guide serves as a software programmer’s handbook on working with the
McASP mini-driver module. This reference guide provides necessary information regarding how
this module is designed.

1.1 Terms & Abbreviations
Term Description

 This bullet indicates important information.

Please read such text carefully.

 This bullet indicates additional information.

1.2 References
1. spruel1_mcasp.pdf TMS320DM6437/DM648/C6452/C6424

Multichannel Audio Serial Port (McASP)

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

7

1.3 S/W Support
The document provides an overall understanding of the TI McASP mini-driver architecture
and its usage. This mini-driver conforms to the IOM mini-driver pattern and interfaces with
the application code using the GIO class driver.

This driver uses CSL register overlays for the corresponding hardware platform. More details
about this and the tools to build this driver can be found in the system release notes. This
driver requires DSP/BIOS and above to operate. The system release notes also contain
details on the BIOS version that the driver is compatible with.

1.4 Driver Components

The device driver described here is an IOM mini-driver. It is implemented as the lower layer
of a 2-layer device driver model. The upper layer is called the class driver and is the generic
DSP/BIOS GIO module. The class driver provides an independent and generic set of APIs
and services for a wide variety of mini-drivers and allows the application to use a common
interface for I/O requests.

For more information about the IOM device driver model, see the DSP/BIOS Device Driver
Developer's Guide (SPRU616).

This document pertains to the McASP mini-driver.

1.5 Default Driver Configuration

Please refer to section 8.1.4 for the driver default configuration

1.6 Driver Capabilities
The significant driver features are:

 Transmit and receive handled by different channels
 Handles interfacing of an EDMA channel to service the McASP transmit/receive

section
 Supports interrupt based servicing of the McASP serializers
 Each channel can be used by a task
 Both channels, if active, operate independent of each other for a instance
 Also supports assigning all serializers to one channel
 Handles interrupts generated by the McASP and notifies the application of the same
 Cache is properly handled when McASP is in EDMA mode
 Allows user to configure McASP as per user requirements

1.7 System Requirements

Refer to release notes for the details on Target environment, BIOS version, XDC version…

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

8

2 Installation Guide

2.1 Component Folder

Upon installing the McASP driver the following directory structure is found in the driver’s
directory.

Figure 1. McASP Driver Directory Structure

This top level mcasp folder contains mcasp driver psp header file and XDC package files
(package.bld, package.xdc and package.xs)

 build: This folder contains mcasp driver library project file. The generated driver
library shall be included in the application where MCASP driver have to be used.

 docs: This folder contains architecture document, datasheet, release notes and
user guide.

Architecture document contains the driver details which can be helpful for the
developers as well as consumers to understand the driver design.

Datasheet gives the idea about the memory consumption by the driver and
description of the top level APIs.

Release Note gives the details about system requirements, steps to
Install/Uninstall the package.This document list the known issues of the driver.

User Guide provides information about how to use the driver. It contains
description of sample applications which guide the end user to make their
applications using this driver.

 Lib: This folder contains libraries generated in all the configuration modes(debug,
idebug, irelease and release)

 Package: This folder contains files generated by XDC tool.

 src: This folder contains i2c driver source files. It also contains header files that are
used by the driver.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

9

2.2 Build

This section describes for each supported target environment:

 Applicable build options

 Supported configurations

 How to enable supported configuration and featured capabilities to allow user for
customization

The component might be delivered to user in different formats:

 Source-less i.e. binary executables and object libraries only.

 Source-inclusive i.e.The entire source code is used to implement the driver is
included in the delivered product.

 Source-selective ie. Only a part of the overall source is included. This delivery
mechanism might be required either because ;certain parts of the driver
require soruce level extensions and/or customization at the user’s end or
because,specific parts of the driver is exposed to user at the source level to
insure user’s software development.

When source is included as part of the product delivery, the CCS project file is
provided as part of the package. When object format is distributed, the driver
header files are part of the “src” folder and the driver library is provided in
“\pspdrivers\drivers\mcasp\lib” folder.

2.3 Build Options

To compile driver, change build options as mentioned below:

Optimization level should be configured for –o2 for release and irelease configurations.

The build folder contains a CCS project file that builds the driver into a library for debug and
release mode.
Following compiler switches are used to compile for different options.

 _DEBUG
This is used as a flag to compiler whether to include the debug statements
 inserted in the code into the final image. This flag helps to build DEBUG image of
the program. For RELEASE images this is not passed to the compiler.

 CHIP_XXXX
The CSL layer is written in a common file for all the variants of a SOC. This flag
differentiates the variant we are compiling for, for e.g. - CHIP_DM648, and the
CSL definitions for that variant appropriately gets defined for register base
addresses, num of ports of a peripheral etc.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

10

 MCASP_INSTRUMENTATION_ENABLED
This flag is passed to the compiler to include the instrumentation code parts into the final
image/lib of the program. This helps build the iRelease/iDebug versions of the image/lib with
a common code base.

3 Run-Timer Interfaces/Integration Guide

This section discusses the DSP/BIOS McASP driver run-time interfaces that comprise the API
classification & usage scenarios and the API specification itself in association with its data
types and structure definitions.

3.1 Symbolic Constants and Enumerated Data types

This section summarizes all the symbolic constants specified as either #define
macros and/or enumerated C data types. Described alongside the macro or
enumeration is the semantics or interpretation of the same in terms of what value
it stands for and what it means.

It is typical to classify the data types into logical groups and list them in
alphabetical order for ease of use.

Table -1 DSP/BIOS McASP Driver Configuration defines

Defines Description

PSP_MCASP_NUM_PORTS Number of McASP ports
on the SoC

PSP_MCASP_NUM_CHANS Number of channels
supported by the McASP
driver

3.2 Data Structures

This section summarizes the entire user visible data structure elements pertaining
to the DSP/BIOS McASP device driver configuration interfaces.

The file “psp_mcasp.h” has two data structures to configure the McASP device
driver instance and the I/O channel used in the communication.

The “PSP_mcaspDevParams” contains the parameters used to configure the
McASP IO mini device driver instance. The device parameters are explained in the
Table - 2

Table -2 DSP/BIOS McASP IO Mini Driver’s Device Configuration
parameters

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

11

Parameters Description

enablecache Set to “TRUE” if the Submitted
buffers are in cacheable
memory

isDataBufferPayloadStructure Set to “TRUE” if the Submitted
buffers have payload
information present or absent

mcaspHwSetup Pointer to the
PSP_McaspHwSetup and it
contains McASP configurations.

The “PSP_mcaspChanParams” contains the parameters used to configure the
McASP IOM device driver channel object instance. The channel parameters are
explained in the Table -3:

Table -3 Channel setup parameters for DSP/BIOS McASP IO mini driver

Parameters Description

noOfSerRequested Serializer requested by
channel. Channel can ask for
both.

indexOfSersRequested Multi Serializer numbers
requested by channel

mcaspSetup Setup information for xmt/rcv
sections of the McASP

isDmaDriven This parameters determines
whether channel operates in
DMA mode

channelMode The parameter informs
Channel mode

wordWidth The parameter informs the
driver what is the width word
(not slot)

userLoopJobBuffer Buffer to be transferred when
the loop job is running

userLoopJobLength Number of bytes of the user
loop job buffer for each
serialiser

edmaHandle Handle to the EDMA Driver

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

12

gblCbk callback required when global
error occurs must be callable
directly from the ISR context

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

13

4 Driver API Classification

4.1 DSP/BIOS McASP Driver Initialization

DSP/BIOS call initialization routine which internally invokes “MCASP_IOM_init ()”
API of the McASP IO mini driver, which in turn initializes the global data used by
the McASP driver.

The initialization function sets the “inUse” field of both the McASP port object
instance and the channel object instance to “FALSE” to make sure that the driver is
not being used by any applications.

4.2 Driver Binding

The binding function for the McASP IOM driver “mcasp_mdBindDev ()” API is called
by the DSP/BIOS initialization routine after MCASP_IOM_init () function is called.

The binding function should typically perform the following actions.

 Acquire the resources needed by the driver such as McASP and memory
for port and channel object instances.

 Configure the McASP device to match the DSP data format mode of Audio
Codec.

4.3 IOM Channel Creation

After the successful completion of McASP driver initialization and binding, the user
can create an abstraction of the communication path between the application and
McASP IOM driver. The channel instances are created through a call to
mdCreateChan () function, which runs as a result of a call from GIO_create () API.
The McASP driver allows user to create two channels (in input and output mode)
for a given McASP device instance on the SoC. McASP IOM driver returns error
status if the application attempts to create a channel in unsupported channel mode
by the driver.

4.4 Channel Control

McASP IO Mini driver implements device specific control functionality, which may
useful for application designers. Application may invoke the control functionality
through calls to GIO_control ().The control functions supported by the McASP
driver shall be useful when the any Audio Codec specific IOM driver uses the McASP
IOM. McASP IOM driver supports the following control functionality.

4.4.1 PSP_CHAN_TIMEDOUT

o SYNOPSIS

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

14

 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_CHAN_TIMEDOUT

 args - NULL

o RETURN VALUE

 IOM_COMPLETED

o DESCRIPTION

Resets the channel. Application can call this IOCTL in case when it encounters
timeout.

o LIMITATIONS/CONSTRAINTS

None

4.4.2 PSP_CHAN_RESET

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_CHAN_RESET

 args - NULL

o RETURN VALUE

 IOM_COMPLETED

o DESCRIPTION

Resets the channel and state machine.

o LIMITATIONS/CONSTRAINTS

None

4.4.3 PSP_MCASP_CNTRL_SET_FORMAT_CHAN

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

15

 gioChan – Channel handle

 cmd - PSP_MCASP_CNTRL_SET_FORMAT_CHAN

 args - address of PSP_McaspHwSetupData type structure

o RETURN VALUE

 IOM_COMPLETED - if no error

 IOM_EBADARGS– if error

o DESCRIPTION

This command is used when user wants to modify/format the channel
configuration. User needs to provide the configuration along with the channel
handle. State machine is put in to reset and receive/transmit section is configured
using user provided configuration.

o LIMITATIONS/CONSTRAINTS

None

4.4.4 PSP_MCASP_CNTRL_GET_FORMAT_CHAN

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_MCASP_CNTRL_GET_FORMAT_CHAN

 args – address of PSP_McaspHwSetupData type structure

o RETURN VALUE

 IOM_COMPLETED - if no error

 IOM_EBADARGS– if error

o DESCRIPTION

This command is used when user wants to modify/format the channel
configuration. User needs to provide the configuration along with the channel
handle. State machine is put in to reset and receive/transmit section is configured
using user provided configuration.

o LIMITATIONS/CONSTRAINTS

None

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

16

4.4.5 PSP_MCASP_CNTRL_SET_GBL_REGS

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_MCASP_CNTRL_SET_GBL_REGS

 args – address of PSP_McaspHwSetup type structure

o RETURN VALUE

 IOM_COMPLETED - if no error

 PSP_E_INVAL_STATE– if arg is NULL or devicehandle is NULL

 PSP_MCASP_ABORTED – if driver is not able to configure McASP
peripheral

o DESCRIPTION

This command will reset both receive and transmit and configure it with user
provided configuration

o LIMITATIONS/CONSTRAINTS

None

4.4.6 PSP_MCASP_SET_DIT_MODE

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_MCASP_SET_DIT_MODE

 args – address of a value to configure in DITCTL register

o RETURN VALUE

 IOM_COMPLETED - if no error

 PSP_E_INVAL_STATE– if arg is NULL or devicehandle is NULL

o DESCRIPTION

This command configures DITCTL register of McASP with the user provided

o LIMITATIONS/CONSTRAINTS

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

17

None

4.4.7 PSP_MCASP_SET_DLB_MODE

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_MCASP_SET_DLB_MODE

 args – address of a variable ot boolean type to set/reset digital
loopback mode.

o RETURN VALUE

 IOM_COMPLETED - if no error

 PSP_E_INVAL_STATE– if arg is NULL , devicehandle is NULL, there is a
packet in receive/transmit queue, no. of serializer requested in receive
and transmit channel are not same,

 PSP_MCASP_ABORTED – if driver is unable to configure McASP in
digital loop back mode

o DESCRIPTION

This command sets/resets McASP in digital loop back mode. If passed argument it
TRUE, McASP is configured in loop back mode otherwise McASP is taken out of loop
back mode.

o LIMITATIONS/CONSTRAINTS

 TDM Slots should be set to 32 only (Refer to PSP_McaspHwSetupData
Data structure for setting TDM Slots).

 Both receive and transmit channels should be created with the same
number of serializers.

 Serializers used at the create time should be in pair of digital loop
back. For example, Serializer – 0 is always connected to serializer – 1
in loop back mode. So channels should be created with these two
serializers. Similarly if other serializes are used, they should be in
similar pair.

4.4.8 PSP_MCASP_STOP_PORT

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

18

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_MCASP_STOP_PORT

 args - NULL

o RETURN VALUE

 IOM_COMPLETED - if no error

 IOM_EBADARGS– if stop command is already called successfully and
again stop command is called to stop the record/playback

o DESCRIPTION

This command stops both state machine and frame sync generator.
Record/Playback continues until the floating queue is not empty and after that
state machine and frame sync generator is put to stop. To resume the
record/playback process, user needs to issue PSP_MCASP_ START_PORT IOCTL.

o LIMITATIONS/CONSTRAINTS

None

4.4.9 PSP_MCASP_START_PORT:

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_MCASP_START_PORT

 args - NULL

o REUTRN VALUE

 IOM_COMPLETED - if no error

 IOM_EBADARGS - if error is reported by driver

o DESCRIPTION

Driver will start accepting requests from application for record/playback. If the
requests are already queued in request queue, driver will start record/playback
from there.

o LIMITATIONS/CONSTRAINTS

None

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

19

4.4.10 PSP_CTRL_McASP_MODIFY_LOOPJOB:

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_CTRL_McASP_MODIFY_LOOPJOB

 args - instance of PSP_mcaspChanParams structure. Please refer to
section Error! Reference source not found. for the details of
structure

o RETURN VALUE

 IOM_COMPLETED - if no error

 IOM_EBADARGS - if error is reported by driver

 IOM_ENOTIMPL – if driver is in Interrupt mode

o DESCRIPTION

User defined loopjob buffer or internal loopjob will be transferred when the loop job
is running. Loopjob will come in picture only when driver is starved for request
from application. There are two types of loopjob, one is user provided loopjob
where user provides the loopjob buffer and the other is internal loopjob. In internal
loopjob, driver uses an internal buffer filled with 0.

o LIMITATIONS/CONSTRAINTS

None

4.4.11 PSP_CTRL_McASP_MUTE_ON:

o SYNOPSIS

 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_CTRL_McASP_MUTE_ON

 args - NULL

o RETURN VALUE

 IOM_COMPLETED – if no error

 IOM_EBADARGS – if MUTE is already ON

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

20

 IOM_ENOTIMPL - if INPUT channel handle as an first argument

o DESCRIPTION

The request buffer is replaced with a mute buffer filled with 0 at the time of
playback. When driver is in MUTE state, it will accept the requests from the
application. Driver will playback the audio normally with only difference being the
request buffer address is replaced with mute buffer. User will not hear any
playback in the MUTE state.

o LIMITATIONS/CONSTRAINTS

None

4.4.12 PSP_CTRL_McASP_MUTE_OFF:

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_CTRL_McASP_MUTE_OFF

 args - NULL

o RETURN VALUE

 IOM_COMPLETED – if no error

 IOM_EBADARGS – if MUTE is already ON

 IOM_ENOTIMPL - if INPUT channel handle as an first argument

o DESCRIPTION

The mute buffer is replaced with request buffer at the time of playback. This
command will take driver back into a normal playback state.

o LIMITATIONS/CONSTRAINTS

None

4.4.13 PSP_MCASP_DEVICE_RESET:

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_MCASP_DEVICE_RESET

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

21

 args - NULL

o RETURN VALUE

 IOM_COMPLETED – if no error

 IOM_EBADARGS – if Parameters are invalid

 IOM_EBADMODE - if Registers are not reset properly

o DESCRIPTION

Driver will stop edma transfer and will stop the state machine. Once this command
is issue successfully record and playback will not happen. All the requests in both
receive and transmit queues are aborted and peripheral is configured with the
default values.

o LIMITATIONS/CONSTRAINTS

Once this command is issue successfully record and playback will not happen. The
steps to reconfigure device is provided in document
BIOS_AUDIO_Driver_UserGuide.doc, section 3.3.4.1

4.4.14 PSP_MCASP_CNTRL_AMUTE:

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_MCASP_CNTRL_AMUTE

 args - NULL

o RETURN VALUE

 IOM_COMPLETED – if no error

 IOM_EBADMODE - if AMUTE register is not set properly

 IOM_EBADARGS - if Parameters are invalid

o DESCRIPTION

The audio mute control register controls the McASP audio mute (AMUTE) output
pin.

o LIMITATIONS/CONSTRAINTS

None

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

22

4.4.15 PSP_MCASP_GPIO_CONFIG:

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_MCASP_GPIO_CONFIG

 args – Uint32 variable, which has PDIR register value and this value
will be stored in PDIR register.

o RETURN VALUE

 IOM_COMPLETED – if no error

 IOM_EBADMODE - if argument is NULL

 IOM_EBADARGS - if Parameters are invalid

o DESCRIPTION

Argument value set in PDIR register, which Enables/Disables the GPIO mode,
depends on argument value.

o LIMITATIONS/CONSTRAINTS

None

4.4.16 PSP_MCASP_QUERY_AMUTE:

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_MCASP_QUERY_AMUTE

 args – Uint32 variable, this variable will get AMUTE register value.

o RETURN VALUE

 IOM_COMPLETED – if no error

 IOM_EBADMODE - if AMUTE register is not read properly

o DESCRIPTION

It returns AMUTE register value.

o LIMITATIONS/CONSTRAINTS

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

23

None

4.4.17 PSP_McASP_PAUSE:

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_McASP_PAUSE

 args - NULL

o RETURN VALUE

 IOM_COMPLETED – if no error

 IOM_ EBADARGS - if Parameters are invalid

o DESCRIPTION

Pause will take maximum of two packets time to take an effect. When driver is in
PAUSE state requests will be queued in driver’s request queue. Instead of
transferring actual recorded/played back data, driver will transfer a buffer filled
with 0s to ensure no frame sync loss takes place.

o LIMITATIONS/CONSTRAINTS

None

4.4.18 PSP_McASP_RESUME:

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_McASP_RESUME

 args - NULL

o RETURN VALUE

 IOM_ COMPLETED – if no error

 IOM_EBADARGS - if PAUSED is not ON

o DESCRIPTION

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

24

Resumes record/playback operation from where it was PAUSED. If the requests are
already queued, driver will take the first request in the queue and start the
operation. If the there are not pending requests buffer filled with 0 is given for
EDMA transfer until application submits a requests.

o LIMITATIONS/CONSTRAINTS

None

4.4.19 PSP_CTRL_RCV_GPIO_INPUT:

o SYNOPSIS
 Int GIO_control(GIO_Handle gioChan, Uns cmd, Ptr args);

o ARGUMENTS

 gioChan – Channel handle

 cmd - PSP_CTRL_RCV_GPIO_INPUT

 args - NULL

o RETURN VALUE

 IOM_ COMPLETED - if no errors

o DESCRIPTION

This configures AFSR and ACLKR pins in GPIO input mode.

o LIMITATIONS/CONSTRAINTS

None

4.5 Transfer Requests Submission
Application can submit a transfer request using McASP class driver API GIO_submit
() which in turn creates an IOM packet containing the all the transfer parameters
needed by the IOM driver to program the underlying hardware for data transfer.
The mdSubmitChan function of the McASP IOM driver must handle command code
passed to it as part of the IOM_Packet structure. Depending on the command code,
it either handles the code or returns the IOM_ENOTIMPL (not implemented) error
code.
The currently supported McASP IOM mini-driver command codes are: IOM_READ,
IOM_WRITE, IOM_ABORT, and IOM_FLUSH.

Note: Maximum size of single request by an application is 16K samples.

 IOM_READ. Drivers that support input channels must implement
IOM_READ.

 IOM_WRITE. Drivers that support output channels must
implement IOM_WRITE.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

25

 IOM_ABORT and IOM_FLUSH. To abort or flush I/O requests already
submitted, all I/O requests pending in the mini-driver must be completed
and returned to the class driver. The mdSubmitChan function should
dequeue each of the I/O requests from the mini driver's channel queue. It
should then set the size and status fields in the IOM_Packet. Finally, it
should call the cbFxn for the channel.

 While aborting, all input and output requests are discarded.
 While flushing, all pending output requests and processed normally

and all pending input requests are discarded. This requires the
processing of each IOM_Packet in the original order they were queued
up to the channel. Until all the requests are flushed, the calling task
i.e. the task from where IOM_FLUSH is called will wait till all the
requests are flushed. Driver will not accept any packet requests until
flush is complete.

4.6 ISR processing for transfer completion interrupt

The McASP IOM driver handles the EDMA transfer completion interrupt, which is
raised by the EDMA after a transfer completion by the EDMA Transfer Controller.
McASP IOM driver uses two McASP synchronized EDMA channels, one in input
mode(McASP data reception) and one in output mode(McASP data transmission)
for data transfer. When transfer EDMA completion interrupt occurs, the driver
fetches the completed packet from the head of the IO packet queue for the channel
and submits back the packet to the upper layer which intern calls the
corresponding application callback.

4.7 IOM Channel Deletion
Application can free the resources held by the channel, if the channel is currently
not in use, by calling GIO_delete () API. The corresponding “mdDeleteChan ()”
function of the McASP IOM driver shall run from the application context and should
de-allocate the specified channel object.

4.8 McASP IO Mini driver unbinding

The “mdUnBindDev ()” shall free resources allocated by the “mdBindDev ()”
function.

4.9 McASP IOM driver’s API Usage Scenarios/Integration Example

The McASP IOM driver is a generic one that may work across many codec drivers.
The audio codec specific driver has to supply the device and channel specific
configuration parameters to use the services of the McASP IOM driver.

Before data communication between an application and a device can begin, a
channel instance handle must be returned to the application by a call to
GIO_create () API. The channel handle represents a unique communication path
between the application and McASP device driver. All subsequent operations that
talk to the driver shall use this channel handle. A channel object typically maintains

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

26

data fields related to a channel's mode, I/O request queues, and possibly driver
state information. Application should relinquish channel resources by deleting all
channel instances when they are no longer needed through a call to GIO_delete ().
Application shall call GIO_submit () APIs to submit an I/O request to driver. The
device independent layer shall construct an I/O packet and submits the packet to
the IOM layer to do the I/O operation. When a mini-driver completes its
processing, usually in an ISR context, it calls its associated callback function to
pass the IO packet back to the upper layer and the class driver in turn calls the
application specified callback for that particular I/O request. The submit/callback
function pair handles the passing of IO packets between the application and the
McASP IOM layer of the driver. Before an IO packet is passed back to the device
independent layer, the mini-driver must set the completion status field and the
data size field in the IO Packet. This status value and size are returned to the
application call that initially made the I/O request.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

27

5 Driver Data Structures and Enumerations

This section describes the Initialization details, data structures, enumerations and macros
for the List module.

5.1 Initialization Details
To use the Record and Play McASP device driver, a device entry must be added and
configured in the DSP/BIOS configuration tool.

To have McASP device driver included in the application, corresponding TCI file have to be
included in BIOS (TCF i.e. “dm648audio_mcasp.tci” for DM648) must be included in BIOS
TCF file of the application Project.

The following are the device configuration settings required to use the McASP driver.

TCI Configuration Parameters Description
initFxn - Init Function AUDIO_AIC33_init1. This function initializes

McASP driver's structures and enabling pin
muxing.

fxnTable - Function Table Pointer AUDIO_AIC33_FXNS. This is codec driver
function table, which points to the Audio
driver APIs.

fxnTableType - Function Table Type IOM_Fxns
deviceId - Device Id Specify McASP Device’s ID. e.g. 0
params – Pointer to Port parameter NULL
Device Global Data Pointer NULL, not used by this driver

5.2 Data Structures
This section lists the data structures available in the McASP module.

5.2.1 PSP_Mcasp_DevParams

Detailed Description
Device Parameters to initialize Device Object.
This structure passes a handle to setup the McASP device registers. The application provides
the McASPHwSetup structure to initialize the device.

Field Documentation

Structure Members Description

enablecache Datatype = Boolean , Submitted buffers are in cacheable
memory

isDataBufferPayloadStructure Datatype = Boolean , Submitted buffers have payload
information present or absent

mcaspHwSetup Datatype = PSP_McaspHwSetup*, Initial setup for the McASP

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

28

5.2.2 PSP_Mcasp_ChanParams

Detailed Description
Channel setup parameters.
Application specifies channel requirements and passes information to initialize the EDMA
channel and interrupt handling for the channel. This is passed as a parameter to
mdCreateChan.

Field Documentation
Structure Members Description

noOfSerRequested Datatype = Uint16, Serializer requested by
channel. Channel can ask for all.

indexOfSersRequested[PSP_MCASP_MAX_SERS] Datatype = Uint32, Feed index of required
requested Serializers to be used in the
data transfer.

mcaspSetup Datatype = PSP_McaspHwSetupData *,
Setup information for xmt/rcv sections of
the McASP.

isDmaDriven Datatype = Bool, This parameters
determines whether channel operates in
EDMA mode all EDMA parameters would be
read only if this is TRUE.

channelMode Datatype = PSP_McaspOpMode, Specifies
mode of operation (TDM or DIT) for
transmit channel.

wordWidth Datatype = Uint32, The parameter informs
the driver what is the width word (not
slot).

userLoopJobBuffer Datatype = Ptr, Buffer to be transferred
when the loop job is running.

userLoopJobLength Datatype = Uint16, Number of bytes of the
userloopjob buffer for each serializer.

edmaHandle Datatype = PSP_Handle, Handle to the
EDMA Driver.

gblCbk Datatype = PSP_mcaspGblCallback,
callback required when global error occurs
must be callable directly from the ISR
context.

noOfChannels Datatype = Uint32, No. of channels to be
transmitted. This input is valid only for
TDM in DSP mode of communication.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

29

5.2.3 PSP_Mcasp_PktAddrPayload

Detailed Description
Structure passed through IOM_Packet addr field.
In order to pass data for the DIT Channel Status and User Data RAM registers, the addr field
of the IOM_Packet is cast to PSP_Mcasp_PktAddrPayload. The addr field holds pointers to
PSP_McaspChStatusRam and PSP_McaspUserDataRam in addition to the EDMA to be
configured.

NOTE: The PSP_McaspUserDataRam and PSP_McaspChStatusRam fields will be read only for
a transmit channel operating in DIT mode.

Field Documentation

Structure Members Description

chStat Datatype = PSP_McaspChStatusRam *, Channel Status RAM
info.

userData Datatype = PSP_McaspUserDataRam *, User Data RAM info.

writeDitParams Datatype = Bool, Determines whether Channel Status and
User Data get written in case of interrupt mode.

addr Datatype = Uint32 *, Actual address to program EDMA with
Address of data word if transactions are interrupt driven.

5.2.4 McASP Obj

Detailed Description
Channel Object.
This structure maintains the current channel state. It also holds information on DMA
channel being used and holds the application callback function to be called in case of an
interrupt. This structure is initialized by mdCreateChan and a pointer to this is passed down
to all other channel related functions. Lifetime of the data structure is from its creation by
mdCreateChan till it is invalidated by mdDeleteChan.

Field Documentation

Structure Members Description

status Datatype = PSP_McaspChannelStatus, Keeps tab of whether
channel is already in use takes value of UNALLOCATED or
ALLOCATED.

mode Datatype = Uint16, mode for channel.

inUse Datatype = Uint16, Channel is in use or idle.

channelOpMode Datatype = PSP_mcaspMode, Mode of operation: Transmit or
Receive.

portHandle Datatype = struct McASPPortObj_t *, Pointer to McASP
device Back pointer to device configuration structure.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

30

ioHandle Datatype = PSP_Handle, ddc channel Handle.

dataPacket Datatype = IOM_Packet *, current active I/O packet.

cbFxn Datatype = IOM_TiomCallback, Callback Function.

cbArg Datatype = Ptr, Arguments for callback function.

5.2.5 PortObj

Detailed Description
Port Object.
This data structure holds the current device state. It also holds the handle to the McASP.
The data structure is initialized during mcasp_mdBindDev, which is called during DSP- BIOS
initialization, and is persistent until it is invalidated by mcasp_mdUnBindDev.

Field Documentation

Structure Members Description

inUse Datatype = Bool, Marks if port is currently in use

instNum Datatype = Uint16 , Preserve instance number in port

isDataBufferPayloadStructure Datatype = Bool, McASP handle for initial port configuration.

XmtObj Datatype = McASPChannelObj , Holds transmit channel to the
McASP.

RcvObj Datatype = McASPChannelObj , Holds receive channel to the
McASP.

5.2.6 PSP_McaspHwSetupGbl

Hardware setup global structure

Structure Members Description

pfunc Datatype = Uint32, Configure McASP to GPIO pins or
McASP Pins uses PFUNC register.

pdir Datatype = Uint32, Configure McASP pins to input mode
or output mode uses PDIR register.

ctl Datatype = Uint32, Configure McASP global control
register uses GBLCTL register.

ditCtl Datatype = Uint32, Configure McASP to DIT mode uses
DITCTL register.

dlbMode Datatype = Uint32, Configure McASP to loopback mode
uses DLBEN register.

amute Datatype = Uint32, Configure McASP to mute mode uses
AMUTE register.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

31

serSetup[PSP_MCASP_MAX_SERS] Datatype = Uint32, Configure McASP all serializers to
receive/transmit mode uses SRCTL register.

5.2.7 PSP_McaspHwSetupDataClk structure

Hardware setup data clock structure

Structure Members Description

clkSetupClk Datatype = Uint32, User can set ACLKCTL register to
configure clock for internal/external, can set clock divider
value.

clkSetupHiClk Datatype = Uint32, User can set AHCLKCTL register to
configure clock for internal/external, can set clock divider
value.

clkChk Datatype = Uint32, User can set clock check register uses
CLKCHK register.

5.2.8 PSP_McaspHwSetupData structure

Hardware setup data structure

Structure Members Description

mask Datatype = Uint32, Configure mask values as per equirement
uses R/X MASK register.

fmt Datatype = Uint32 Configure McASP data transfer formats
uses R/X FMT register Using this register user can configure
following bits Slot size, bit delay, order bit, padding, rotation.

frSyncCtl Datatype = Uint32, Configure McASP frame sync clocks uses
R/X FMTCTL register Using this register user can configure
following bits: Number of slots, receive frame sync duration,
frame sync external/internal, frame sync polarity.

tdm Datatype = Uint32, Configure McASP for particular TDM slots
are active or not uses R/XTDM register.

intCtl Datatype = Uint32, Configure McASP interrupt controller
register uses R/X INTCTL register.

stat Datatype = Uint32, Configure McASP error status register
uses R/X STAT register.

evtCtl Datatype = Uint32, Configure McASP event control register
uses R/X EVTCTL register.

clk Datatype = PSP_McaspHwSetupDataClk, Configure McASP
clocks for eceive/transmit serializers.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

32

5.2.9 PSP_McaspHwSetup structure

Hardware setup structure

Structure Members Description

glb Datatype = PSP_McaspHwSetupGbl, Value to be loaded in
global control register uses GLBCTL register.

rx Datatype = PSP_McaspHwSetupData, Receiver settings

tx Datatype = PSP_McaspHwSetupData, Transmitter settings.

emu Datatype = Uint32, Power down emulation mode params -
PWRDEMU.

5.3 Enumerations
This section lists the enumerations available in the McASP module.

5.3.1 PSP_McaspChanMode

/** Enumeration for channel mode */
typedef enum {
 PSP_MCASP_CHAN_FREE = 0, /**< Channel not allocated */
 PSP_MCASP_CHAN_XMT_DIT = 1u, /**< Transmit channel: DIT mode */
 PSP_MCASP_CHAN_XMT_TDM = 2u, /**< Transmit channel: TDM mode */
 PSP_MCASP_CHAN_RCV = 3u /**< Receive channel */
} PSP_McaspChanMode;

5.3.2 PSP_McaspChannelStatus

/** brief Enumeration for channel allocation status */
typedef enum {
 PSP_MCASP_UNALLOCATED = 0, /**< Channel not allocated */
 PSP_MCASP_ALLOCATED = 1 /**< Channel already in use */
} PSP_McaspChannelStatus;

5.3.3 PSP_McaspSerializerStatus

/** Enumeration for serializer status */
typedef enum PSP_McaspSerializerStatus_t
{
 PSP_MCASP_SER_FREE = (0u), /**< Serializer not allocated */
 PSP_MCASP_SER_XMT = (1u), /**< Serializer configured to transmit */

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

33

 PSP_MCASP_SER_RCV = (2u) /**< Serializer configured to receive */
} PSP_McaspSerializerStatus;

5.3.4 PSP_McaspSerializerNum

/** Enumeration for the serializer numbers */
typedef enum {
 SERIALIZER_0 = 0, /** SRCTL0 */
 SERIALIZER_1 = 1, /** SRCTL1 */
 SERIALIZER_2 = 2, /** SRCTL2 */
 SERIALIZER_3 = 3, /** SRCTL3 */
 SERIALIZER_4 = 4, /** SRCTL4 */
 SERIALIZER_5 = 5, /** SRCTL5 */
 SERIALIZER_6 = 6, /** SRCTL6 */
 SERIALIZER_7 = 7, /** SRCTL7 */
 SERIALIZER_8 = 8, /** SRCTL8 */
 SERIALIZER_9 = 9, /** SRCTL9 */
 SERIALIZER_10 = 10, /** SRCTL10 */
 SERIALIZER_11 = 11, /** SRCTL11 */
 SERIALIZER_12 = 12, /** SRCTL12 */
 SERIALIZER_13 = 13, /** SRCTL13 */
 SERIALIZER_14 = 14, /** SRCTL14 */
 SERIALIZER_15 = 15 /** SRCTL15 */
} PSP_McaspSerializerNum;

5.3.5 Macros

#define CHANOBJINIT

Value:
{
 /* .status = */ PSP_MCASP_UNALLOCATED
 /* .mode = */ NULL
 /* .inUse = */ FALSE
 /* .channelMode = */ PSP_MCASP_RX
 /* ._PortObj = */ NULL
 /* .DDC_mcaspChanHandle = */ NULL
 /* .datapacket = */ NULL
 /* .cbFxn = */ NULL
 /* .cbArg = */ NULL
}

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

34

#define PSP_MCASP_FLUSHED 2u
Data packet is flushed

#define PSP_MCASP_ABORTED 3u
Data packet is aborted

#define PSP_MCASP_INVALID 0xFFFF
Generic in/validate status

#define PSP_MCASP_DMA_ERROR (-15)
Interrupt due to: EDMA transfer error

#define PSP_MCASP_SYNC_ERROR (-16)
Interrupt due to: Transmit/Receive Sync Error

#define PSP_MCASP_XMT_UNDERRUN_ERROR (-17)
Interrupt due to: Transmit Buffer Underrun

#define PSP_MCASP_RCV_OVERRUN_ERROR (-18)
Interrupt due to: Receive Buffer Overrun

#define PSP_MCASP_RCV_BAD_CLK_ERROR (-19)
Interrupt due to Clock failure

#define PSP_MCASP_XMT_BAD_CLK_ERROR (-20)
Interrupt due to Clock failure

#define PSP_MCASP_LAST_SLOT 0x10
Interrupt due to: Last Slot

#define PSP_MCASP_DATA_RDY 0x20
Interrupt due to: Data Ready

#define PSP_MCASP_STAFRM 0x40
Interrupt due to: Start of Frame

#define PSP_MCASP_DMAERR 0x80
Interrupt due to: DMA channel error

#define PSP_MCASP_NUM_CHANS 2
Port can have two channels, one each for IOM_INPUT and IOM_OUTPUT

#define PSP_MCASP_NUM_PORTS 2
Trinity supports only one McASP instance

#define PSP_MCASP0_NUM_SERS 5
The Mcasp0 has Ten serializers

#define PSP_MCASP1_NUM_SERS 5

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

35

The Mcasp1 has Eight serializers

#define PSP_MCASP_SM_RESET 0
Reset value of xmt/rcv state m/c and frame sync

#define PSP_MCASP_TDM_MODE 0
Mode for channel operation

#define PSP_MCASP_TWO_PKTS_QUEUED 2
When xmt is taken out of reset, it needs two words to service it. This is used to keep tally of
this requirement.

#define PSP_MCASP_CNTRL_SET_FORMAT_CHAN 130
Control command: Format channel

#define PSP_MCASP_CNTRL_GET_FORMAT_CHAN 131
Control command: Format channel

#define PSP_MCASP_CNTRL_SET_GBL_REGS 132
Control command: Set registers affecting McASP device.

#define PSP_MCASP_SET_DLB_MODE 133
Control command: Set digital loopback mode.

#define PSP_MCASP_SET_DIT_MODE 134
Control command: Set DIT mode

#define PSP_MCASP_CNTRL_AMUTE 137
Control command: Set it size

#define PSP_MCASP_START_PORT 141
Control command: Start McASP serial port in Dynamic mode

#define PSP_MCASP_STOP_PORT 142
Control command: Start McASP serial port in Dynamic mode

#define PSP_MCASP_WORDLEN_8 8
Word length is 8

#define PSP_MCASP_WORDLEN_12 12
Word length is 12

#define PSP_MCASP_WORDLEN_16 16
Word length is 16

#define PSP_MCASP_WORDLEN_20 20
Word length is 20

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

36

#define PSP_MCASP_WORDLEN_24 24
Word length is 24

#define PSP_MCASP_WORDLEN_32 32
Word length is 32

#define PSP_MCASP_XERR 0x100
Error code

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

37

6 Porting Guide

This section describes porting of McASP driver on different TI platforms.

6.1 Porting Description

The figure below shows MCASP device driver architecture and changes those are required at the driver
layers while porting MCASP device driver to any other Platform.

Driver Architecture

There will not be any change required in the SIO/DIO Layer, IOM Layer, DDA Layer and DDC layer while
porting MCASP device driver on any TI platform. This Layer will be used as-is.

Audio Layer

Audio layer is designed in such a way that it can be used with both McASP driver as well as McASP
driver. The job of the audio layer is:

1. To perform the pinmux settings specific to the platform
2. To configure external audio codec to work with McASP driver. Here AIC33 audio codec is used.

Application

SIO/DIO Class driver

IOM Mini driver

DDC

DM64LC LLC Layer

DM64LC H/W

Audio Layer

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

38

While porting of McASP driver for other platform, above mentioned two things one needs to take care.
One needs to perform the pinmux setting as per the new platform and configuration of audio codec based
on the audio codec that is being used with McASP audio driver.

LLC Layer

This layer provides the abstraction to the Driver core on different platforms. This layer is specific to a
specific platform. Mainly this layer should be having register overlaying, macro definitions. If not register
overlaying is used then this layer will have low-level APIs to communicate with the hardware
This layer should be having an as-is map of the peripheral device registers in the processor’s memory
map. Peripheral device registers map may differ from one platform to other. This change needs to be
incorporated while porting driver code from once platform to another platform at LLC layer.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

39

7 McASP as a Standalone Driver

McASP driver can work as a standalone driver. In that case user needs to take care device creation,
device initialization, device pinmuxing, channel creation, receive and transmit requests at the desired
time, handling of application layer callback (if desired) and channel deletion.

7.1 Initialization of McASP driver

To use the McASP device driver, a device entry must be added and configured in the DSP/BIOS
configuration tool.

The following are the device configuration settings required to use the McASP driver. Note:
This has to be done for all of the required driver instances. Following table illustrates device creation in tcf
file for GIO mode class driver. For SIO mode class driver please refer to user guide of mini driver.

TCF Configuration
Parameters

Description

initFxn - Init Function “MCASP_IOM_init()” - this function is doing initialization of
McASP ports. In TCF file pass pointer of this function as an
argument.

fxnTable - Function Table
Pointer

McASP_IOM_FXNS. This is a global variable which points to
the McASP driver APIs.

fxnTableType - Function Table
Type

IOM_Fxns

deviceId - Device Id Specify McASP port number. For example ‘0’.

params – Pointer to Port
parameter

An optional pointer to an object of type
PSP_mcaspDevParams as defined in the header file
psp_mcasp.h. This pointer will point to a device parameter
structure. In BIOS TCF files, this structure object is passed as
an argument. Application should declare and initialize the
structure object properly. Note: More information of
PSP_mcaspDevParams structure’s fields are describing in
section 3.2.

Device Global Data Pointer N/A, not used by this driver

7.1.1 Device Pinmuxing

Device pinmuxing is a part of McASP peripheral initialization. User needs to carry out pinmuxing to enable
McASP device. Make sure pinmuxing is done before channel creation.

7.2 Channel Creation

McASP channels can be created either in TDM (Time Division Multiplex) mode or DIT (Digital Audio
Interface Transmit) mode. Please configure channel parameters as follows:

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

40

7.2.1 Channel Parameter Configuration in TDM mode

Channel Parameters Description Field value

noOfSerRequested Datatype = Uint16, Serializer
requested by channel. Channel
can ask for all.

If user wants to use one serializer
or more serializers for
record/playback operation then
make this field value equal to 1 or
number of serializers that user
uses in operation respectively.

indexOfSersRequested Datatype = Uint32, Feed index of
required requested Serializers to
be used in the data transfer.

If user uses serializer 1 for
record/playback operation then
this field value is SERIALIZER_1.
In case of multiple serializers used
by user then put serializer number
in this array’s element.

mcaspSetup Datatype =
PSP_McaspHwSetupData *, Setup
information for xmt/rcv sections of
the McASP.

pointer of
PSP_McaspHwSetupData
structure’s object.
This object contain initial register
configuration of rcv/xmt channel.
Note: Refer McASP’s device user
guide for receive and transmit
channel’s register configuration in
TDM mode

isDmaDriven Datatype = Bool, This parameters
determines whether channel
operates in EDMA mode all EDMA
parameters would be read only if
this is TRUE.

If user wants to use DMA mode for
operation then this field value is
TRUE. Note: McASP driver support
only DMA mode, Interrupt mode is
not supported.

channelMode Datatype = PSP_McaspOpMode,
Specifies mode of operation (TDM
or DIT) for transmit channel.

PSP_MCASP_TDM_MODE

wordWidth Datatype = Uint32, The parameter
informs the driver what is the
width word (not slot).

If user wants 32 bits word width
for operation then this field value
is PSP_MCASP_WORDLEN_32

userLoopJobBuffer Datatype = Ptr, Buffer to be
transferred when the loop job is
running.

pointer of loop job buffer

userLoopJobLength Datatype = Uint16, Number of
samples of the userloopjob buffer
for each serializer.

length of loop job buffer

edmaHandle Datatype = PSP_Handle, Handle to
the EDMA Driver.

Handle of the EDMA Driver

gblCbk Datatype =
PSP_mcaspGblCallback, callback
required when global error occurs

Pointer of global callback function.
This function called when one of
the below error occurred:

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

41

must be callable directly from the
ISR context.

1 Frame sync error
2 Transmit underrun error
3 Receive overrun error
4 DMA error

noOfChannels Datatype = Uint32, No. of
channels to be transmitted. This
input is valid only for TDM in DSP
mode of communication.

If user wants to use 1 channel for
operation then this field value is
1u.

In TDM mode payload information is not present. This information passed in PSP_mcaspDevParams at
initialization time.

The following is the PSP_mcaspDevParams structure information:

Structure Members Description Field value

enablecache Datatype = Bool, This parameter
determines whether submitted
buffers are in cacheable memory
or not

If user wants to enable cache for
submitted buffers then this field
value is TRUE, if user not wants
to enable cache for submitted
buffers then this field value is
FALSE.

isDataBufferPayloadStructure Datatype = Bool, This parameter
determines whether payload
information present or absent

FALSE

mcaspHwSetup Datatype =
PSP_McaspHwSetup *, setup
information for McASP
configurations.

Pointer of PSP_McaspHwSetup
structur’s object. This object
contain initial register
configuration of McASP.

7.2.2 Channel Parameter Configuration in DIT Mode

Channel Parameters Description Field value

noOfSerRequested Datatype = Uint16, Serializer
requested by channel. Channel
can ask for all.

If user wants to use one serializer
or more serializers for
record/playback operation then
make this field value equal to 1 or
number of serializers that user
uses in operation respectively.

indexOfSersRequested Datatype = Uint32, Feed index of
required requested Serializers to
be used in the data transfer.

If user uses serializer 1 for
record/playback operation then
this field value is SERIALIZER_1.
In case of multiple serializers used
by user then put serializer number
in this array’s element.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

42

mcaspSetup Datatype =
PSP_McaspHwSetupData *, Setup
information for xmt/rcv sections of
the McASP.

Pointer of
PSP_McaspHwSetupData
structure’s object.
This object contain initial register
configuration of respective
rcv/xmt channel. Note: Refer
McASP’s device user guide for
receive and transmit channel’s
register configuration in DIT mode

isDmaDriven Datatype = Bool, This parameters
determines whether channel
operates in EDMA mode all EDMA
parameters would be read only if
this is TRUE.

If user wants to use DMA mode for
operation then this field value is
TRUE. Note: McASP driver support
only DMA mode, Interrupt mode is
not supported.

channelMode Datatype = PSP_McaspOpMode,
Specifies mode of operation (TDM
or DIT) for transmit channel.

PSP_MCASP_DIT_MODE

wordWidth Datatype = Uint32, The parameter
informs the driver what is the
width word (not slot).

If user wants 16 bits word width
for operation then this field value
is PSP_MCASP_WORDLEN_16

userLoopJobBuffer Datatype = Ptr, Buffer to be
transferred when the loop job is
running.

pointer of loop job buffer

userLoopJobLength Datatype = Uint16, Number of
samples of the userloopjob buffer
for each serializer.

length of loop job buffer

edmaHandle Datatype = PSP_Handle, Handle to
the EDMA Driver.

Handle to the EDMA Driver

gblCbk Datatype =
PSP_mcaspGblCallback, callback
required when global error occurs
must be callable directly from the
ISR context.

Pointer of global callback function.
This function called when one of
the below error occurred:
1 Frame sync error
2 Transmit underrun error
3 Receive overrun error
4 DMA error

noOfChannels Datatype = Uint32, No. of
channels to be transmitted. This
input is valid only for TDM in DSP
mode of communication.

If user wants to use 2 channels for
operation then this field value is
2u.

In DIT mode payload information is present. This information can be passed during IO calls using
PSP_Mcasp_PktAddrPayload structure. This structure would be sent instead of the data buffer pointer in
submit API. In applications (normal TDM) where we need only a flat data buffer need to be sent to driver,
it can be sent so using data buffer pointer in the submit API. The selection between these two modes of
data handling mechanism (data buffer pointer of submit API interpreted as flat buffer or
PSP_Mcasp_PktAddrPayload structure) can be decided by a member in PSP_mcaspDevParams at
initialization time.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

43

The following is the PSP_mcaspDevParams structure information:

Structure Members Description Field value

enablecache Datatype = Bool, This
parameter determines whether
submitted buffers are in
cacheable memory or not

If user wants to enable cache
for submitted buffers then this
field value is TRUE, if user not
wants to enable cache for
submitted buffers then this
field value is FALSE.

isDataBufferPayloadStructure Datatype = Bool, This
parameter determines whether
data buffer pointer of submit API
isinterpreted as flat buffer or
PSP_Mcasp_PktAddrPayload
structure

TRUE

mcaspHwSetup Datatype =
PSP_McaspHwSetup *, setup
information for McASP
configurations.

Pointer of PSP_McaspHwSetup
structur’s object. This object
contain initial register
configuration of McASP.

The following is the PSP_McaspChStatusRam structure information:

Structure Members Description Field value

chStatusLeft Datatype = Uint32, Left channel
status register is an array of 6
elements.

24 bytes of left channel status
registers value

chStatusRight Datatype = Uint32, Right channel
status register is an array of 6
elements

24 bytes of right channel status
registers value

The following is the PSP_McaspUserDataRam structure information:

Structure Members Description Field value

userDataLeft Datatype = Uint32, Left channel
user data register is an array of 6
elements

24 bytes of left channel user data
registers value

userDataRight Datatype = Uint32, Right channel
user data register is an array of 6
elements

24 bytes of right channel user
data registers value

The following is the PSP_Mcasp_PktAddrPayload structure information:

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

44

Structure Members Description Field value

chStat Datatype =
PSP_McaspChStatusRam *,
Channel Status RAM info.

Pointer of PSP_McaspChStatusRam
structure’s object.

userData Datatype =
PSP_McaspUserDataRam *, User
Data RAM info.

Pointer of PSP_McaspUserDataRam
structure’s object.

writeDitParams Datatype = Bool, Determines
whether Channel Status and User
Data information is present or
absent.

If user wants to pass channel
status information and user data
information then TRUE in this field
otherwise FALSE in this field.

addr Datatype = Uint32 *, Actual
address to program EDMA with
Address of data word if
transactions are interrupt driven.

Buffer address.

Please note:

Note1

In case of transfers with SPDIF meta data - user data, channel status for SPDIF
frame, it is suggested to have each IOP to cater one spdif block and send each IOP
(submit) one by one. Sending submits one by one is mandatory as otherwise there is
a possibility of user data and channel status getting messed up between IO requests.
However for the transfer that does not involve the user data, channel status we
could have any transfer size per IO request and IO request can be queued to the
driver.

Note2

In DIT mode the wordlength should be 32. As the MCASP takes 24bits of data from
the buffer to fill up spdif data field and as slot size is(must be) set to 32bits
this(SPDIF) is mode, it is mandatory that for each sub frame of spdif (left channel or
right channel) application has to provide 32bits of data.

That means

1) Buffer to the driver in this mode should be of Uint32 type and each double word
would cater to one subframe. Hence users should send different channels (left/right)
of data in different double words.

2) Set the wordwidth parameter of chanparams to PSP_MCASP_WORDLEN_32.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

45

8 Example Application
This section describes the example application that is included in the package. This sample application
can be run as is for quick demonstration, but the user will benefit most by using these samples as sample
source code in developing new applications.

8.1 The McASP Sample Application for DM648/C6452

8.1.1 Introduction

The sample application is a representative test program. Initialization of McASP driver is done by calling
initialization function from BIOS. The sample application will perform audio record and playback in a
continuous loop. It will record the audio from the line-in port and playback the audio through line-
out/headphone-out port.

8.1.2 Directory structure for sample application

Figure 2. McASP sample directory structure for DM648 and
C6452

Top level folder shown in the above figure contains header and tci files required
specifically for sample application along with XDC packaging files(package.bld and
package.xdc)

build: This subfolder in the sample folder contains project for sample appliaction.

src: This folder contains mcasp sample application source files. It also contains
header files related to mcasp driver that are used by the sample application if any.

Package: This folder contains files generated by XDC tool

8.1.3 Building the Application

The sample application for DM648/C6452 is located in the
pspdrivers_\packages\ti\sdo\pspdrivers\system\dm648\bios\evmDM648\audio\sample for DM648 and
pspdrivers_\packages\ti\sdo\pspdrivers\system\c6452\bios\evmC6452\audio\sample for C6452 folder.
The sample can be rebuilt directly from its project file using Code Composer studio.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

46

Please follow below steps to build sample application:

 Open CCS 3.3 setup. Import proper CCS configuration file. Set the proper CCS Gel file (Refer
DM648/C6452_BIOS_PSP_Release_Notes.doc for details). Click on “Save & Quit” button and
exit the setup.

 Open
pspdrivers_\packages\ti\sdo\pspdrivers\system\dm648\bios\evmDM648\audio\sample\build\
dm648_evm_audio_st_sample.pjt for DM648 or
pspdrivers_\packages\ti\sdo\pspdrivers\system\c6452\bios\evmC6452\audio\sample\build\c6452_
evm_audio_st_sample.pjt for C6452.

 Compile this project using Project->Build
 By default sample application is in FOUR_TO_ONE mode. This implies, application records using

4 serializers and playbacks using one serializer.

8.1.4 Loading the Application

The sample application is loaded and executed via Code composer studio. It is a good idea to reset the
board before loading Code Composer.

At the audio layer McASP driver is configured with following values at the bind time.

static LLC_McaspHwSetup appMcaspHwSetup = { \
 {
 /* .pfunc = */ 0x00000000, /*mcasp or GPIO pin-will be set by driver from chanparams*/
 /* .pdir = */ 0x00000001, /*Direction of pin -will be set by driver */
 /* .gblctl = */ 0x00000000, /*control clk, hclk, statemachine - reset and release - driver ctrl*/
 /* .ditctl = */ 0x00000000, /*DIT mode seting*/
 /* .dlbctl = */ 0x00000000, /*loop back mode setting*/
 /* .amute = */ 0x00000000 /*Amute setting*/
 /* .srctl0 = */ 0x00000000, /* init serialiser*/
 /* .srctl1 = */ 0x00000000 /* init serialiser*/
 },
 {
 /* .rmask = */ 0xFFFFFFFF,
 /* .rfmt = */ 0x00000000,
 /* .afsrctl = */ 0x00000000,
 /* .rtdm = */ 0x00000001,
 /* .rintctl = */ 0x00000000,
 /* .rstat = */ 0x000001FF, /*reset any existing status bits*/
 /* .revtctl = */ 0x00000000,
 {
 /* .aclkrctl = */ 0x00000003, /* \div = 1, clk = internal*/
 /* .ahclkrctl = */ 0x00008046, /* div = 63, no inversion before divider ,Internal*/
 /* .rclkchk = */ 0x00000000
 },
 },
 {

 /* .xmask = */ 0xFFFFFFFF,
 /* .xfmt = */ 0x00000000,
 /* .afsxctl = */ 0x00000002,
 /* .xtdm = */ 0x00000001,

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

47

 /* .xintctl = */ 0x00000000,
 /* .xstat = */ 0x000001FF, /*reset any existing status bits*/
 /* .xevtctl = */ 0x00000000,
 {
 /* .aclkxctl = */ 0x00000023, /* \div = 1, clk = internal*/
 /* .ahclkxctl = */ 0x00008046, /* div = 46, no inversion before divider ,Internal*/
 /* .xclkchk = */ 0x00000000
 },
 },
 0x00000001 /*emu free*/
} ;

At the channel create time, McASP driver is configured for receive/record and transmit/playback operation
as per following configuration

LLC_McaspHwSetupData mcaspXmtSetup = { \
 /* .xmask = */ 0xFFFFFFFF, /*all the data bits are used*/
 /* .xfmt = */ 0x000080F0, /*no right rotation,
 DMA access,
 slot size = 32bits,
 pad with 0th bit from data,(currently this option disabled by next field)
 pad extra bits with 0,
 LSB first,
 0 bit delay from between fsync and data*/
 /* .afsxctl = */ 0x00000000, /*burst mode,
 frame sync pulse width - 1 clk bit
 clk is internal
 Rising edge is validated*/

 /* .xtdm = */ 0x00000003, /*n-th (2 here)TDM slot will be accounted - for burst mode no use*/
 /* .xintctl = */ 0x00000000, /*reset any existing status bits*/
 /* .xstat = */ 0x000001FF, /*reset any existing status bits*/
 /* .xevtctl = */ 0x00000000, /*DMA or INT mode*/
 {
 /* .aclkxctl = */ 0x00000000, /* \div = 1, clk = External*/
 /* .ahclkxctl = */ 0x0000003F, /* div = 63, no inversion before divider ,External*/
 /* .xclkchk = */ 0x00000000
 },
};

LLC_McaspHwSetupData mcaspRcvSetup = { \
 /* .rmask = */ 0xFFFFFFFF, /*all the data bits are used*/
 /* .rfmt = */ 0x000080F0, /*no right rotation,
 DMA access,,
 slot size = 16bits,
 pad with 0th bit from data,(currently this option disabled by next field)
 pad extra bits with 0,
 LSB first,
 0 bit delay from between fsync and data*/
 /* .afsrctl = */ 0x00000000, /*2slot tdm,
 frame sync pulse width - 1 clk bit
 clk is internal

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

48

 Rising edge is validated*/
 /* .rtdm = */ 0x00000003, /*n-th (2 here)TDM slot will be accounted*/
 /* .rintctl = */ 0x00000000, /*This will be filled up by driver internally*/
 /* .rstat = */ 0x000001FF, /*reset any existing status bits*/
 /* .revtctl = */ 0x00000000, /*DMA or INT mode*/
 {
 /* .aclkrctl = */ 0x00000000, /* \div = 1, clk = External*/
 /* .ahclkrctl = */ 0x0000003F, /* div = 63, no inversion before divider ,External*/
 /* .rclkchk = */ 0x00000000
 }
} ;

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

49

8.2 The McASP Sample Application for DM6437/C6424

8.2.1 Introduction

The sample application will perform audio record and playback in a continuous loop. It will record the
audio from the line-in port and playback the audio through line-out/headphone-out port.

8.2.2 Directory structure for sample application

Figure 3. McASP sample directory structure for DM6437 and
C6424

Top level folder shown in the above figure contains header and tci files required
specifically for sample application along with XDC packaging files(package.bld and
package.xdc)

build: This subfolder in the sample folder contains project for sample appliaction.

src: This folder contains mcasp sample application source files. It also contains
header files related to mcasp driver that are used by the sample application if any.

Package: This folder contains files generated by XDC tool

8.2.3 Building the Application

The sample application for DM6437 is located in the \pspdrivers\system\DM6437\bios\ evmDM6437\
audio\sample folder and the sample application for C6424 is located in the
\pspdrivers\system\C6424\bios\ evm6424\audio\sample. The sample can be rebuilt directly from its
project file using Code Composer studio.

8.2.4 Loading the Applicaiton

The sample application is loaded and executed via Code composer studio. It is a good idea to reset the
board before loading Code Composer.

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

50

At the audio layer McASP driver is configured with following values at the bind time.

static PSP_McaspHwSetup appMcaspHwSetup = { \
{

 /* .pfunc = */ 0x00000000, /*mcasp or GPIO pin-will be set by driver from
chanparams*/
 /* .pdir = */ 0x00000001, /*Direction of pin -will be set by driver from
chanparams*/
 /* .gblctl = */ 0x00000000, /*control clk, hclk, statemachine - reset and release
- driver ctrl*/
 /* .ditctl = */ 0x00000000, /*DIT mode seting*/
 /* .dlbctl = */ 0x00000000, /*loop back mode setting*/
 /* .amute = */ 0x00000000, /*Amute setting*/

 /* .srctl0 = */ 0x00000000, /* init serialiser*/
 /* .srctl1 = */ 0x00000000 /* init serialiser*/

 },
 {
 /* .rmask = */ 0xFFFFFFFF,
 /* .rfmt = */ 0x00000000,
 /* .afsrctl = */ 0x00000000,
 /* .rtdm = */ 0x00000001,
 /* .rintctl = */ 0x00000000,
 /* .rstat = */ 0x000001FF, /*reset any existing status bits*/
 /* .revtctl = */ 0x00000000,
 {
 /* .aclkrctl = */ 0x00000023, /* \div = 1, clk = internal*/
 /* .ahclkrctl = */ 0x00008046, /* div = 63, no inversion before divider
,Internal*/
 /* .rclkchk = */ 0x00000000
 },
 },
 {
 /* .xmask = */ 0xFFFFFFFF,
 /* .xfmt = */ 0x00000000,
 /* .afsxctl = */ 0x00000002,
 /* .xtdm = */ 0x00000001,
 /* .xintctl = */ 0x00000000,
 /* .xstat = */ 0x000001FF, /*reset any existing status bits*/
 /* .xevtctl = */ 0x00000000,
 {
 /* .aclkxctl = */ 0x00000023, /* \div = 1, clk = internal*/
 /* .ahclkxctl = */ 0x00008046, /* div = 46, no inversion before divider
,Internal*/
 /* .xclkchk = */ 0x00000000
 },
 },
 0x00000001 /*emu free*/
} ;

At the channel create time, McASP driver is configured for receive/record and transmit/playback operation
as per following configuration

Texas Instruments Proprietary
This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior written
consent of Texas Instruments Inc.

51

PSP_McaspHwSetupData mcaspXmtSetup = { \
/* .xmask = */ 0xFFFFFFFF,
/* .xfmt = */ 0x000080F0,
/* .afsxctl = */ 0x00000000,
/* .xtdm = */ 0x00000003,
/* .xintctl = */ 0x00000000,
/* .xstat = */ 0x000001FF,
/* .xevtctl = */ 0x00000000,
{

 /* .aclkxctl = */ 0x00000000,
 /* .ahclkxctl = */ 0x0000003F,
 /* .xclkchk = */ 0x00000000

},

};

PSP_McaspHwSetupData mcaspRcvSetup = { \
/* .rmask = */ 0xFFFFFFFF,
/* .rfmt = */ 0x000080F0,

/* .afsrctl = */ 0x00000000,

/* .rtdm = */ 0x00000003,
/* .rintctl = */ 0x00000000,
/* .rstat = */ 0x000001FF,
/* .revtctl = */ 0x00000000,
{

 /* .aclkrctl = */ 0x00000000,
 /* .ahclkrctl = */ 0x0000003F,
 /* .rclkchk = */ 0x00000000

}
} ;

8.2.5 Pragma directives used in the Application

The prdInputBuf and prdOutputBuf are used by the application and need to be cache aligned at 128
bytes.

