
Page 1 of 24Texas Instruments Proprietary Information

DSP/BIOS I2C Device Driver

USER’S GUIDE
Document Revision History

Rev
No

Author(s) Revision History Date Approval(s)

0.8 Chandan Nath Updated for adding compiler
switches in build options

May 20,
2008

Updating

0.7 Nagarjuna K Updated for DM6437/C6424
and DM648/C6453

November
14, 2007

Updating

0.6 Nagarjuna K Updated BIOS and XDC
versions

October
22, 2007

Updating

0.5 Nagarjuna K Updating directory structure July 10,
2007

Updating

0.4 Nagarjuna K Updating for 0.7 release with
changes of RTSC packaging

July 6,
2007

Corrections

0.3 Nagarjuna K Correcting version numbers June 15,
2007

Corrections

0.2 Nagarjuna K Added to new formatting May 23,
2007

Initial Draft

0.1 Vichu Formatted to new template May 9,
2007

Draft

Information in this document is subject to change without notice. Texas Instruments may
have pending patent applications, trademarks, copyrights, or other intellectual property
rights covering matter in this document. The furnishing of this document is given for usage
with Texas Instruments products only and does not give you any license to the intellectual
property that might be contained within this document. Texas Instruments makes no

Page 2 of 24Version 0.0

implied or expressed warranties in this document and is not responsible for the products
based from this document

Page 3 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

TABLE OF CONTENTS

1 Introduction... 5

1.1 Terms & Abbreviations..5

1.2 References ..5

1.3 S/W Support..6

1.4 Driver Components...6

1.5 Driver Capabilities ..7

1.6 System Requirements...7

2 Installation Guide... 8

2.1 Component Folder..8

2.2 Build...9

2.3 Build Options...9

3 DSP/BIOS I2C DRIVER Structures ... 11

3.1.1 Initialization details ..11

3.1.2 I2C_devParams..12

3.1.3 I2C Chan Params ...12

4 I2C API’s.. 12

4.1 Constants & Enumerations ..13

4.1.1 Structure for data parameter passed to GIO_submit.................................13

4.1.2 Structure for i2cTrans in above data param...13

4.1.3 Enum for IOCTL ...13

4.2 API Definition ..14

4.2.1 GIO_ create...14

4.2.2 GIO_delete..15

4.2.3 GIO_control...16

4.2.4 GIO_Submit ..17

4.2.5 GIO_read/GIO_write...18

4.2.6 GIO_flush/GIO_abort..19

5 Example Applications ... 20

5.1 Writing Applications for I2C ...20

5.1.1. File Inclusion ...20

5.2 Sample Applications ...20

Page 4 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

TABLE OF FIGURES

Figure 1. I2C driver architecture..6
Figure 2. I2C Driver Directory Structure ...8
Figure 3. I2C sample directory structure for DM648 and C645221
Figure 4. I2C sample directory structure for DM6437 and C642423

Page 5 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

1 Introduction

This document is the reference guide for the i2c driver and it explains how to
configure and use the driver.

DSP/BIOS applications use the driver typically through I2C APIs to perform
read/write operations connected to the slaves. I2C was implemented as a simple
wrapper on top of the GIO class driver and provides an application-specific interface.
For more information on the DSP/BIOS device driver model and the GIO class driver,
refer to the References section of this document.

1.1 Terms & Abbreviations
Term Description

 This bullet indicates important information.
Please read such text carefully.

 This bullet indicates additional information.

API Application Programming Interface

DDC Device Driver Core

IOM Device Driver Adapter

ISR Interrupt Service Routine

OS Operating System

ROM Read Only Memory

SOC System On Chip

1.2 References
1. SPRU4.4g.pdf DSP/BIOS Driver Developer’s Guide

3. spruek8_I2C.pdf I2C specification

Page 6 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

1.3 S/W Support
This I2C device driver has been developed for the DSP/BIOS operating system using the TI
supplied Chip Support Library. For more details on the version numbers refer to the release
notes in the root of the installation.

1.4 Driver Components

The I2C driver is constituted of following sub components:

I2C IOM – Application facing, OS Specific Adaptation of I2C Device Driver
I2C DDC –OS Independent part of I2C Driver Core
I2C CSLR–The low-level I2C h/w register overlay

System components:

PALOS – DSP/BIOS Abstraction

Below Figure shows I2C driver architecture.

C la s s D riv e r

M in i D r iv e r

A p p lic a t io n

G IO C la s s D riv e r

I2 C D r iv e r

I2 C - H W

P
A
L
O
S

Figure 1. I2C driver architecture

Page 7 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

1.5 Driver Capabilities
The DSP/BIOS I2C Device Driver is a multi-instantiable and re-entrant safe driver. In addition, it provides
synchronous IO. The driver operates in the following modes: Polled and Interrupts modes. The driver has
built-in software Ring Buffer for improved synchronous IO response times.

The significant driver features are:
 Isolates H/W and OS Accesses.
 Easy to maintain & re-target to new platforms.
 Can stack custom-functions along control and or data-path to realize “driver filters”.
 Supports Multiple Instances.

1.6 System Requirements

 Refer to release notes for the details on Target environment,
BIOS version, XDC version…

Page 8 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

2 Installation Guide

2.1 Component Folder

Upon installing the I2C driver the following directory structure is found in the driver’s
directory.

Figure 2. I2C Driver Directory Structure

This top level i2c folder contains i2c driver psp header file and XDC package files (package.bld,
package.xdc and package.xs)

 build: This folder contains i2c driver library project file. The generated driver
library shall be included in the application where I2C driver have to be used.

 docs: This folder contains architecture document, datasheet, release notes, user
guide and doxugen compiled api reference document.

Architecture document contains the driver details which can be helpful for the
developers as well as consumers to understand the driver design.

Datasheet gives the idea about the memory consumption by the driver and
description of the top level APIs.

Release Note gives the details about system requirements, steps to
Install/Uninstall the package.This document list the known issues of the driver.

User Guide provides information about how to use the driver. It contains
description of sample applications which guide the end user to make their
applications using this driver.

API reference document gives the details about the API’s used in I2C driver.

 Lib: This folder contains libraries generated in all the configuration modes(debug,
idebug, irelease and release)

 Package: This folder contains files generated by XDC tool.

 src: This folder contains i2c driver source files. It also contains header files that are
used by the driver.

Page 9 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

2.2 Build

This section describes for each supported target environment, the applicable build options,
supported configurations and how selected, the featured capabilities and how enabled, the
allowed user customizations for the software to be installed and how the same can be
realized.

The component might be delivered to user in different formats:

 Source-less i.e. binary executables and object libraries only.

 Source-inclusive i.e.The entire source code is used to implement the driver is
included in the delivered product.

 Source-selective ie. Only a part of the overall source is included. This delivery
mechanism might be required either because ;certain parts of the driver
require soruce level extensions and/or customization at the user’s end or
because,specific parts of the driver is exposed to user at the source level to
insure user’s software development.

When source is included as part of the product delivery, the CCS project file is
provided as part of the package. When object format is distributed, the driver
header files are part of the “src” folder and the driver library is provided in
“\pspdrivers\drivers\i2c\lib” folder.

2.3 Build Options

To compile driver, change build options as mentioned below:

Optimization level should be configured for –o2 for release and irelease configurations.

The build folder contains a CCS project file that builds the driver into a library for debug,
idebug, irelease, release mode.

Following compiler switches are used to compile for different options.

 _DEBUG
This is used as a flag to compiler whether to include the debug statement
inserted in the code into the final image. This flag helps to build DEBUG image of
the program. For RELEASE images this is not passed to the compiler.

 CHIP_XXXX
The CSL layer is written in a common file for all the variants of a SOC. This flag
differentiates the variant we are compiling for, for e.g. - CHIP_DM648, and the
CSL definitions for that variant appropriately gets defined for register base
addresses, num of ports of a peripheral etc.

 I2C_INSTRUMENTATION_ENABLED
This flag is passed to the compiler to include the instrumentation code parts into
the final image/lib of the program. This helps build the iRelease/iDebug versions
of the image/lib with a common code base.

Page 10 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

 I2C_DEBUG_PRINTF
They are the macros used to print debug messages. These expand a valid print
statement.

Page 11 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

3 DSP/BIOS I2C DRIVER Structures

This section discusses about the initialization details and initialization structures used in the
i2c driver. Please note that for some structure member information/details the i2c
peripheral API reference document might need to be referred.

3.1.1 Initialization details
To use I2C device driver, a device entry must be added and configured in the DSP/BIOS
configuration tool.

To have I2C device driver included in the application, corresponding TCI file have to be
included in BIOS TCF (i.e. “dm648_i2c.tci” for DM648) must be included in BIOS TCF file of
the application for using I2C instance of the driver.

The following are the device configuration settings required to use the i2c driver.
Note: This has to be done for all of the required driver instances.

TCI Configuration Parameters Description
initFxn - Init Function Pointer to application function to initialize i2c

like module clock enabling and enabling pin-
mux.

fxnTable - Function Table Pointer I2C_Fxns. This is a global variable which
points to the I2C driver APIs.

fxnTableType - Function Table Type IOM_Fxns
deviceId - Device Id Specify which I2C to use. For example to use

I2C 0 this should be given as 0.
params – Pointer to Port parameter A pointer to an object of type

I2C_devParams as defined in the header file
psp_i2c.h. This pointer will point to a device
parameter structure. In BIOS TCI files, this
structure object is passed as an argument.
Application should declare and initialize the
structure object properly.

Device Global Data Pointer N/A, not used by this driver

Final tci file should contain the following details which were explained above:
bios.UDEV.create("I2C0");

bios.UDEV.instance("I2C0").fxnTableType = "IOM_Fxns";

bios.UDEV.instance("I2C0").initFxn = prog.extern("I2C_INIT");

bios.UDEV.instance("I2C0").params = prog.extern("I2C_devParams");

bios.UDEV.instance("I2C0").fxnTable = prog.extern("I2CMD_FXNS");

Page 12 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

3.1.2 I2C_devParams
“psp_i2c.h” file contains PSP_I2cConfig_t data structure that is passed while mdBindDev call
which is defined with UDEV I2C parameters in *.tcf file of application. The members of this
structure are explained below:

Structure Members Description

opMode Operational mode of the driver – Polled / Interrupt / DMA based.
Note: The current implementation only supports Polled and Interrupt
modes

moduleInputClkFreq Input Frequency to I2C Module.

i2cBusFreq Output Data rate, in Kbps, of the I2C controller.
Note: I2C supports Standard and Fast modes (up to 400Kbps).

i2cOwnAddr Own address of the device

NumBits Number of bits to be sent or received

addressing To set addressing mode 7bit or 10 bit addressing

dlb To enable or disable digital loop back mode

3.1.3 I2C Chan Params
These are the parameters that are passed while GIO_create call. The members of this structure are
currently "NULL"

4 I2C API’s

This chapter describes the functions, data structures, enumerations and macros for the I2C
driver module.

The following API functions are defined by the GIO module:

GIO_create Allocate and initialize an I2C channel object

GIO_delete De-allocate an I2C channel object

GIO_control Send a control command to the mini-driver

GIO_submit API used to transfer the data with slaves

Page 13 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

4.1 Constants & Enumerations

4.1.1 Structure for data parameter passed to GIO_submit

The file dda_iom_i2c.h has the DataParam data structure that is passed to
i2c_mdSubmitChan function of the driver. The params are explained below:

Structure Members Description

i2cTrans I2c transaction structure used to pass to submit in the addr parameter of IOM_Packet
structure.

Timeout Timeout value for transfer

4.1.2 Structure for i2cTrans in above data param

The file psp_i2c.h has the PSP_I2cTransaction data structure that is parameter of
DataParam structure mentioned above. The params are explained below:

Structure Members Description

slaveAddr Address of the slave, master wants to communicate

*buffer Data buffer pointer to where data needs to be received or to transmit

bufLen Length of the data bytes to be receives or to transmit

Flags Flags to indicate the various modes [read/write, start, stop, restart…]

Param Extra parameter for future use

4.1.3 Enum for IOCTL

Following are the enumerations passed as command argument while GIO_control
call.

Structure Members Description

PSP_I2C_IOCTL_SET_BIT_RATE Set the I2C clock

PSP_I2C_IOCTL_GET_BIT_RATE Get the I2C clock

PSP_I2C_IOCTL_NACK To enable or disable NACK

PSP_I2C_IOCTL_BIT_COUNT To set bit count value

PSP_I2C_IOCTL_CANCEL_PENDING_IO To cancel pending IO requests if any in the
transmission

PSP_I2C_IOCTL_SET_OWN_ADDR TO change I2C own address.

PSP_I2C_IOCTL_SET_OWN_ADDR To get I2C own address

Page 14 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

4.2 API Definition

4.2.1 GIO_ create
Syntax
GIO_Handle GIO_create (

String name,
Int mode,
Int *status,
Ptr chanParams,
GIO_Attrs *attrs
);

Parameters
name

The name argument is the name specified for the device when it was created
in the configuration or at runtime. It is used to find a matching name in the
device table.
Note: strings are case sensitive.

For I2C drivers the string contains one token separated by ‘/’.

 I2C driver or port instance
This identifies the I2C driver or port instance and this will be typically
“I2C0”, “I2C1” and so on, where suffix to I2C denotes instance ID.
This string depends on the device registration string given in BIOS
driver TCI file.

mode
The mode argument specifies the mode in which the device is to be opened.
This will be IOM_INPUT, IOM_OUTPUT or IOM_INOUT. Generally I2C driver
should be created in IOM_INOUT mode as both read/write happens in one
channel

status
The status argument is an output parameter that this function fills with a
pointer to the status that was returned by the mini-driver.

chanParams
Currently I2C driver does not use this parameter so application passes NULL
for this parameter.

attrs
The attrs parameter is a pointer to a structure of type GIO_Attrs. This is not

supported and NULL should be passed.

Return Value
It returns the handle of type GIO_Handle on successful opening of a device. It
returns NULL if the device could not be opened.

Description
An application calls GIO_create to create and initialize an i2c driver channel to the
driver.

Page 15 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

Constraints
This function can only be called after the device has been loaded and initialized.

Example
The example below shows creation of Channel for I2C

GIO_Handle chanHandle;
GIO_Attrs gioAttrs = GIO_ATTRS;

chanHandle = GIO_create("/I2C0", IOM_INOUT,
 NULL, NULL, &gioAttrs);

if (NULL == chanHandle)
{
 printf(" Failed create I2C0 channel \r\n");
 return;
}

4.2.2 GIO_delete
Syntax
int GIO_delete(GIO_Handle gioChan);

Parameters
Handle of the i2c driver channel that was created with a call to GIO_create.

Return Value
On success driver returns IOM_COMPLETED, on failure/error condition IOM error
code

Description
This function call will close the logical channel associated with GIO_create. It will also
free the buffers allocated by driver.

Constraints
This function can only be called after the device has been loaded, initialized and
created.

Example
The example below shows creation and deletion of Channel for I2C
GIO_Handle chanHandle;
Int status;

/*Create Handle */

status = GIO_delete(chanHandle);
if (IOM_COMPLETED != status)
{
 printf(" Failed to delete channel \r\n");
 return;
}
GIO_delete(chanHandle);

Page 16 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

4.2.3 GIO_control
Syntax
status = GIO_control (gioChan, cmd, args);

Parameters
gioChan

Handle of the I2C driver channel that was created with a call to GIO_create.
cmd

The cmd argument specifies the control command
args

The args argument is a pointer to the argument or structure of arguments
that are specific to the command being passed.

Return Value
On success driver returns IOM_COMPLETED, on failure/error condition IOM error
code

Description
An application calls GIO_control to send device-specific control commands to the
mini-driver.

IOCTL commands available for I2C driver are available in section 4.1.3
 For PSP_I2C_IOCTL_NACK: Command argument (cmdArg) value should be

either TRUE (enable) or FALSE (disable). Any other value passed as command
argument will be treated as invalid parameter, which will result in error.

 For PSP_I2C_IOCTL_BIT_COUNT: Command argument (cmdArg) value should
vary from 2 to 8 only. Any other value passed as command argument will be
treated as invalid parameter and it will result in error.

 For any other IOCTL cmdArg is don’t care parameter.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to GIO_create.

Example
GIO_Handle chanHandle;
Uint32 bitCount=2;
/* channel creation should be done here */

/* set bit count to 2 */
status = GIO_control(chanHandle, PSP_I2C_IOCTL_BIT_COUNT, &bitCount);

if (IOM_COMPLETED != status)
{
 printf(" Failed to change bit count \r\n");
 return;
}

Page 17 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

4.2.4 GIO_Submit
Syntax
status = GIO_submit (GIO_Handle gioChan,

Uns cmd,
ptr bufP,
Uns* Psize,
GIO_AppCallBack* appCallback

)
Parameters
gioChan

Handle of the I2C driver channel that was created with a call to GIO_create.
cmd

The cmd argument specifies the control command which can be any of the
following

 IOM_READ /* for read operation */
 IOM_WRITE /* for write operation */
 IOM_FLUSH /* for flushing the packets */
 IOM_ABORT /* for aborting the packets */

bufP
The bufP argument is a pointer to the structure defined in section 4.1.1, and

this value should be used only when cmd is used as IOM_READ or IOM_WRITE. For
other two commands it is NULL.
Psize

The Psize argument is a pointer to the argument of data type size_t, currently
value passed should be 1.
appCallback

The Psize argument is a function pointer, which will be called once the submit
operation is completed. Since I2C works in synchronous mode of operation this
parameter will be NULL.

Return Value
On success driver returns IOM_COMPLETED, on failure/error condition IOM error
code

Description
This function is called by the application to perform the read/write/flush/abort
operation.
Usage of flags:

Valid flag combination options which can be passed to I2C driver are:
 PSP_I2C_DEFAULT_WRITE for performing write
 PSP_I2C_DEFAULT_READ for performing read

To perform read and write using restart condition:
 PSP_I2C_START | PSP_I2C_MASTER | PSP_I2C_WRITE (Do not use

PSP_I2C_STOP as we are not intended to generate stop bit)
 In the next submit calls use PSP_I2C_RESTART instead of PSP_I2C_START.
 When stop condition needs to be generated to complete the transfer, use

PSP_I2C_STOP along with the other necessary flag options.
To perform read/write operation in repeat mode:

 PSP_I2C_START | PSP_I2C_MASTER | PSP_I2C_WRITE | PSP_I2C_REPEAT
(Do not use PSP_I2C_STOP as stop bit will be generated no sooner H/W
detects repeat mode)

Page 18 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

 In next submit calls use PSP_I2C_IGNORE_BUS_BUSY | PSP_I2C_REPEAT
along with needed flag parameters (PSP_I2C_IGNORE_BUS_BUS is to be used
as the bus is already in use).

 To generate stop condition, use PSP_I2C_IGNORE_BUS_BUSY |
PSP_I2C_REPEAT | PSP_I2C_MASTER | PSP_I2C_STOP flag combinations.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to GIO_create.

Example
GIO_Handle gioChan;
size_t size = 1;
DataParam buf;
Uint8 wBuffer[3] = {‘0x03’,’0x02’,’0x01’}

/* channel creation and allocBuffer should be done here */

 buf.i2cTrans.buffer = wBbuffer;
 buf.i2cTrans.bufLen = 3u;
 buf.i2cTrans.flags = PSP_I2C_DEFAULT_WRITE;
 buf.i2cTrans.param = NULL;
 buf.i2cTrans.slaveAddr = 0X10;
 buf.timeout = SYS_FOREVER;

 status = GIO_submit (gioChan,IOM_WRITE,&buf, &size, NULL) ;

4.2.5 GIO_read/GIO_write
Syntax
status = GIO_read/GIO_write (GIO_Handle gioChan,

ptr bufP,
Uns* Psize,

)
Parameters
gioChan

Handle of the I2c driver channel that was created with a call to GIO_create.
bufP

The bufP argument is a pointer to the structure defined in section 4.1.1, and
this value should be used only when cmd is used as IOM_READ or IOM_WRITE. For
other two commands it is NULL.
Psize

The Psize argument is a pointer to the argument of data type size_t, currently
value passed should be 1.

Return Value
On success driver returns IOM_COMPLETED, on failure/error condition IOM error
code
Description

 Similar to GIO_submit with cmd wither IOM_READ or IOM_WRITE with
appCallBack value is NULL.

Page 19 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to GIO_create.

Example
GIO_Handle gioChan;
size_t size = 1;
DataParam buf;
Uint8 wBuffer[3] = {‘0x03’,’0x02’,’0x01’}

/* channel creation and allocBuffer should be done here */

 buf.i2cTrans.buffer = wBbuffer;
 buf.i2cTrans.bufLen = 3u;
 buf.i2cTrans.flags = PSP_I2C_DEFAULT_WRITE;
 buf.i2cTrans.param = NULL;
 buf.i2cTrans.slaveAddr = 0X10;
 buf.timeout = SYS_FOREVER;

 Status = GIO_read (gioChan, &buf, &size);

4.2.6 GIO_flush/GIO_abort
Syntax
Status = GIO_flush/GIO_abort (GIO_Handle gioChan)

Parameters
gioChan

Handle of the I2C driver channel that was created with a call to GIO_create.

Return Value
On success driver returns IOM_COMPLETED, on failure/error condition IOM error
code. In the current implementation of I2C driver this is not implemented so it
returns IOM_ENOTIMPLEMENTED error.

Description
Similar to GIO_submit with cmd wither IOM_FLUSH or IOM_ABORT with
appCallBack value is NULL.

Constraints
This function can only be called after the device has been loaded, initialized and
created. The handle supplied as an argument to this function should have been
obtained with a previous call to GIO_create.

Example
GIO_Handle gioChan;

/* channel creation and allocBuffer should be done here */

 status = GIO_flush (gioChan);

Page 20 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

5 Example Applications

This section describes the example applications that are included in the package. These
sample application can be run as is for quick demonstration, but the user will benefit most
by using these samples as sample source code in developing new applications.

5.1 Writing Applications for I2C

This section provides guidance to user for writing their own application for I2C drivers.

5.1.1. File Inclusion
To write sample application user has to include following header files in the application:

1. std.h

This file contains standard data types, macros and structures.

2. gio.h

This file contains GIO layer macros and structures. These macros are wrapper
macros to form a wrapper above GIO.

3. tsk.h

This file contains all task module details.

4. psp_i2c.h

This file contains i2c parameters which are passed to driver at the time of I2C
driver registration with BIOS.

5.2 Sample Applications

5.2.1.Introduction

The sample application is a representative test program. Initialization of I2C driver is done
by calling initialization function from BIOS.

5.2.2.Building the application

Please follow below steps to build sample application:

 Open CCS 3.3 setup. Import proper CCS configuration file. Set the proper CCS Gel
file (Refer PSP_Release_Notes.pdf for details). Click on “Save & Quit” button and exit
the setup.

 Open sample application as mentioned in
“<root>\pspdrivers\system\<soc>\bios\<evmNAME>\i2c\build\<i2c sample pjt>”.

 For example for C6424, its
“<root>\pspdrivers\system\c6424\bios\evm6424\i2c\build\c6424_evm_i2c_st_samp
le.pjt”.

Page 21 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

 Compiler Switch “PSP_I2C_ASYNC_MODE_SUPPORT” is used to enable ASYNC MODE of
operation of the sample application.

 Compile this project using Project->Build

 Note: Following Components needs to be linked for successful build and functionality
of the application.

 I2C
 PAL_OS
 SoC specific PAL_SYS

5.2.3.Loading and running the application
The sample application is loaded and executed via Code composer studio. It is good idea to
reset the board before loading Code Composer. The application will print out the status
messages and type of functionality the driver performs on the message log.

5.2.4.Sample test for DM648/C6452

 Sample directory structure

Figure 3. I2C sample directory structure for DM648 and C6452

Top level folder shown in the above figure contains header and tci files required
specifically for sample application along with XDC packaging files(package.bld and
package.xdc)

build: This subfolder in the sample folder contains project for sample appliaction.

src: This folder contains i2c sample application source files. It also contains header
files related to i2c driver that are used by the sample application if any.

Package: This folder contains files generated by XDC tool

The sample application performs write operation to MSP430 to light the LED’s connected to
it.

This section describes how MSP430 to be configured.

 I2C Configuration Parameters

I2C_devParam used during I2C driver registration with BIOS using TCI files. I2C_devParam
is configured as follows. Also refer section “3.1.1 Initialization details” for configuring
TCI file.

PSP_I2cConfig I2C_devParams = {
 /** Driver operation mode */
 PSP_OPMODE_POLLED,

Page 22 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

 /**< Own address (7 or 10 bit) */
 0x10,
 /**< Number of bits/byte to be sent/received */
 8,
 /**< I2C Bus Frequency */
 200000,
 /**< Module input clock freq */
 11700000,
 /**< 7bit/10bit Addressing mode */
 FALSE,
 /**< Digital Loop Back (DLB) mode enabled */
 FALSE
 };

 I2C Data Param Configuration Parameters

I2C data param structure (already explained at section 4.1.1). So following are the default
configurations to be done for lighting LED’s.

 PSP_i2cDataParam buf;
 size_t size;
 Uint32 count = 0;
 Int retCode = 0;
 Uint8 wBuffer[I2C_TVP_TRANSFER_SIZE];
 Uint8 rBuffer[I2C_TVP_TRANSFER_SIZE];

 wBuffer[0] = 0x07; /* offset for LED */
 for (count = 1;count <I2C_TVP_TRANSFER_SIZE;count++)
 {
 wBuffer[count] = 0x55;
 rBuffer[count] = 0x00;
 }

 buf.i2cTrans.buffer = wBuffer;
buf.i2cTrans.bufLen = 5;
buf.i2cTrans.flags = PSP_I2C_DEFAULT_WRITE;
buf.i2cTrans.param = NULL;
buf.i2cTrans.slaveAddr = 0x70;
buf.timeout = 1000;
size = 1u;

 Driver naming convention used for Channel creation

Application calls GIO_create to create and initialize a I2C driver channel.

Currently there are no channel specific parameters.

Page 23 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

5.2.5.Sample test for DM6437/C6424

6. Sample directory structure

Figure 4. I2C sample directory structure for DM6437 and C6424

Top level folder shown in the above figure contains header and tci files required
specifically for sample application along with XDC packaging files(package.bld and
package.xdc)

build: This subfolder in the sample folder contains project for sample appliaction.

src: This folder contains i2c sample application source files. It also contains header
files related to i2c driver that are used by the sample application if any.

Package: This folder contains files generated by XDC tool

The sample application performs write operation to LED slave to light the LED’s connected
to it.

This section describes how MSP430 to be configured.

 I2C Configuration Parameters

I2C_devParam used during I2C driver registration with BIOS using TCI files. I2C_devParam
is configured as follows. Also refer section “3.1.1 Initialization details” for configuring
TCI file.

PSP_I2cConfig I2C_devParams = {
 /** Driver operation mode */
 PSP_OPMODE_POLLED,
 /**< Own address (7 or 10 bit) */
 0x10,
 /**< Number of bits/byte to be sent/received */
 8,
 /**< I2C Bus Frequency */
 200000,
 /**< Module input clock freq */
 2400000,
 /**< 7bit/10bit Addressing mode */
 FALSE,
 /**< Digital Loop Back (DLB) mode enabled */
 FALSE
 };

Page 24 of 24

DSP/BIOS I2C Driver User Guide Document

Texas Instruments Proprietary Information

 I2C Data Param Configuration Parameters

I2C data param structure (already explained at section 4.1.1). So following are the default
configurations to be done for lighting LED’s.

 PSP_i2cDataParam buf;
 size_t size;
 Uint32 count = 0;
 Int retCode = 0;
 Int buffer;

 for(count =0; count <20; count++)
 {
 /*
 * Value to be written to LEDs
 */
 buffer = 0x05;
 buf.i2cTrans.buffer = (Uint8 *)&buffer;
 buf.i2cTrans.bufLen = 1u;
 buf.i2cTrans.flags = PSP_I2C_DEFAULT_WRITE | PSP_I2C_RESTART;
 buf.i2cTrans.param = NULL;
 buf.i2cTrans.slaveAddr = 0x39u;
 buf.timeout = -1;
 size = (size_t)buf.i2cTrans.bufLen;
 retCode = GIO_write(i2cHandle,&buf,&size);

 TSK_sleep(500u);

 /*
 * Value to be written to toggle the LEDs
 */
 buffer = 0x0A;
 buf.i2cTrans.buffer = (Uint8 *)&buffer;
 buf.i2cTrans.bufLen = 1u;
 buf.i2cTrans.flags = PSP_I2C_DEFAULT_WRITE | PSP_I2C_RESTART;
 buf.i2cTrans.param = NULL;
 buf.i2cTrans.slaveAddr = 0x39u;
 buf.timeout = -1;
 size = (size_t)buf.i2cTrans.bufLen;
 retCode = GIO_write(i2cHandle,&buf,&size); size = 1u;
 }

 Driver naming convention used for Channel creation

Application calls GIO_create to create and initialize a I2C driver channel.

Currently there are no channel specific parameters.

