

1

DSP/BIOS PAL SYS VLYNQ Device
Driver

U s e r ' s G u i d e

User’s Manual

2

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue any product
or service without notice. Customers should obtain the latest relevant information before placing orders and should verify
that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at
the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support
this warranty. Except where mandated by government requirements, testing of all parameters of each product is not
necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their
products and applications using TI components. To minimize the risks associated with customer products and
applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright,
mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI
products or services are used. Information published by TI regarding third-party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may
require a license from a third party under the patents or other intellectual property of the third party, or a license from TI
under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with
alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or
service voids all express and any implied warranties for the associated TI product or service and is an unfair and
deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

3

Preface

Read This First

About This Manual

The API reference guide serves as a software programmer’s handbook
for working with the VLYNQ device driver modules. This reference guide
provides necessary information regarding how to use these modules in
user systems and applications.

Abbreviations

Table of Abbreviations

Abbreviation Description

API Application Programming Interface

ISR Interrupt Service Routine

OS Operating System

SOC System On Chip

4

Revision History

Date Author Comments Version

June 17, 2006 Saloni Shah Created the document 1.0

August 7, 2006 Saloni Shah Changes as per Release 0.1.1 1.1

September 21, 2006 Saloni Shah BIOS version change 1.2

October 8, 2006 Rinkal Shah Review comments closed 1.3

December 1, 2006 Rinkal Shah Modified for the release 0.3.0 1.4

March 24, 2007 Anuj Aggarwal Modifying according to the
VLYNQ latest code base

1.5

June 5, 2007 Anuj Aggarwal Modified for the release 0.6.0 1.6

July 11, 2007 Anuj Aggarwal BIOS version change 1.7

May 21, 2008 Chandan Nath Updated for adding
compiler switches in build
options

1.8

5

TABLE OF CONTENTS
DSP/BIOS PAL SYS VLYNQ Device Driver ..1
Preface...3
Abbreviations ..3
Revision History..4
TABLE OF CONTENTS..5
CHAPTER 1...7
INTRODUCTION ...7

1.1. Introduction ..8
1.2. H/W S/W Support..9
1.3. Driver Components ..10
1.4. Driver Capabilities..11
1.5. System Requirements..11

CHAPTER 2...12
INSTALLATION GUIDE..12

2.1. Component Folder..13
2.2. Build..14
2.3. Build Options..14

CHAPTER 3 ...15
VLYNQ..15

3.1. Functions...16
3.1.1 PAL_sysVlynqInit () - Initialize the VLYNQ control module.16
3.1.2 PAL_sysVlynqInitSoc() - Initialize the VLYNQ control module.............................16
3.1.3 PAL_sysVlynqCleanUp() – Un-Initialize the VLYNQ control module....................16
3.1.4 PAL_sysVlynqDevCreate() – Creates a device reference.17
3.1.5 PAL_sysVlynqDevDestroy() – Destroys the device reference..............................17
3.1.6 PAL_sysVlynqMapRegion() – Map the memory regions of the device.18
3.1.7 PAL_sysVlynqMappedRegion () – Return the Mapped Region configuration for
Local/Peer...19
3.1.8 PAL_sysVlynqUnMapRegion() – UnMap the memory regions of the device.20
3.1.9 PAL_sysVlynqMapIrq() – Maps the IRQ hardware line onto the VLYNQ.20
3.1.10 PAL_sysVlynqUnMapIrq() – UnMaps the IRQ hardware line.21
3.1.11 PAL_sysVlynqChainAppend() –Append to the VLYNQ chain............................21
3.1.12 PAL_sysVlynqAddDevice() –Add the device reference into VLYNQ..................22
3.1.13 PAL_sysVlynqRemoveDevice() – Removes the device reference from VLYNQ.22
3.1.14 PAL_sysVlynqChainUnAppend() – Remove (the tail) from the VLYNQ chain....23
3.1.15 PAL_sysVlynqRootIsr() – The Root ISR; register it with the system..................23
3.1.16 PAL_sysVlynqDevFind() – Get the handle for the device.24
3.1.17 PAL_sysVlynqDevGetVlynq() – Get the VLYNQ for this device..........................24
3.1.18 PAL_sysVlynqGetDevBase() – Get the physical base address of the device...25
3.1.19 PAL_sysVlynqDevFindIrq() – Get the mapped interrupts of the device.............25
3.1.20 PAL_sysVlynqDevGetResetBit() – Get the reset bit of the device......................27
3.1.21 PAL_sysVlynqAddIsr() – Install the ISR for the device.27
3.1.22 PAL_sysVlynqRemoveIsr() – Uinstall the previously installed ISR....................29
3.1.23 PAL_sysVlynqDevCbRegister() – Register for the callbacks.29
3.1.24 PAL_sysVlynqDevCbUnregister() – Unregister the callbacks.30
3.1.25 PAL_sysVlynqIoctl() – Read/Write register of the VLYNQ module....................30
3.1.26 PAL_sysVlynqClockConfig() – Configures the Clock for the VLYNQ bridge.....31
3.1.27 PAL_sysVlynqGetForIrq() – Get the VLYNQ for the IRQ.....................................32
3.1.28 PAL_sysVlynqSetIrqPol() – Set the polarity of the hardware IRQ line.32
3.1.29 PAL_sysVlynqSetIrqType()- Set the type of the hardware IRQ line...................33

6

3.1.30 PAL_sysVlynqGetIrqPol () – Get the polarity of the hardware IRQ line..............33
3.1.31 PAL_sysVlynqGetIrqType() – Get the type of the hardware IRQ type.34
3.1.32 PAL_sysVlynqGetIrqCount() – Get the number of times this IRQ occurred.34
3.1.33 PAL_sysVlynqDisableIrq() – Disable the IRQ. ...35
3.1.34 PAL_sysVlynqEnableIrq() – Enable the IRQ. ..35
3.1.35 PAL_sysVlynqGetLinkStatus() – Get the status of the of the VLYNQ module...36
3.1.36 PAL_sysVlynqGetNumRoot() – Get the number of the root VLYNQ(s).36
3.1.37 PAL_sysVlynqGetRoot() – Get the handle to the specified root VLYNQ............36
3.1.38 PAL_sysVlynqGetRootVLYNQ() – Get root for the given VLYNQ.......................37
3.1.39 PAL_sysVlynqGetRootAtBase() – Get the root VLYNQ at the base address. ..37
3.1.40 PAL_sysVlynqGetBaseAddr() – Returns the base address of the VLYNQ.........37
3.1.41 PAL_sysVlynqGetNext() – Get the next VLYNQ module in the chain.................38
3.1.42 PAL_sysVlynqIsLast() – Is this VLYNQ module the last one in the chain..........38
3.1.43 PAL_sysVlynqGetChainLength() – Get the length of the VLYNQ chain.............38
3.1.44 PAL_sysVlynqDump() – Dumps vital VLYNQ information into the buffer..........38
3.2. Data Structures..40
3.3. Enumerations ..44
3.4. Macros ...46

3.5 Dependency of Sample application: ..48

7

CHAPTER 1

INTRODUCTION

Topic

1.1. Introduction

1.2. H/W S/W Support

1.3. Driver Components

1.4. Default driver Configuration

1.5. Driver Capabilities

1.6. System Requirements

8

1.1. Introduction

This document is an API reference guide on VLYNQ Device Driver.

9

1.2. H/W S/W Support
This VLYNQ Device driver has been developed for the following DSP/BIOS operating system and
using the TI supplied Chip Support Library. For more details on the version numbers refer to the
release notes in the root of the installation.

10

1.3. Driver Components

The driver is constituted of following sub components:

VLYNQ PAL API’s – OS Independent part of VLYNQ Driver Core

VLYNQ CSL – The low-level VLYNQ h/w abstraction module

System components:

PALOS - BIOS Abstraction

11

1.4. Driver Capabilities

Driver has to be configured by the application. There is no default driver configuration.

1.5. System Requirements

Refer system level release notes for tools and BIOS versions.

12

CHAPTER 2

INSTALLATION GUIDE

Topic

2.1. Component Folder

2.2. Build

2.3. Build Options

13

2.1. Component Folder

Upon installing the VLYNQ driver the following directory structure is
found in the driver’s directory.

Figure 1. VLYNQ Driver Directory Structure

This top level vlynq folder contains vlynq driver psp header file and XDC package files
(package.bld, package.xdc and package.xs)

 build: This folder contains vlynq driver library project file. The generated
driver library shall be included in the application where VLYNQ driver have
to be used.

 docs: This folder contains architecture document, datasheet, release notes
and user guide.

Architecture document contains the driver details which can be helpful for
the developers as well as consumers to understand the driver design.

Datasheet gives the idea about the memory consumption by the driver and
description of the top level APIs.

Release Note gives the details about system requirements, steps to
Install/Uninstall the package.This document list the known issues of the
driver.

User Guide provides information about how to use the driver. It contains
description of sample applications which guide the end user to make their
applications using this driver.

 Lib: This folder contains libraries generated in all the configuration
modes(debug, idebug, irelease and release)

 Package: This folder contains files generated by XDC tool.

 src: This folder contains vlynq driver source files. It also contains header files that are
used by the driver.

14

2.2. Build

This section describes for each supported target environment, the
applicable build options, supported configurations and how selected, the
featured capabilities and how enabled, the allowed user customizations
for the software to be installed and how the same can be realized.

The component might be delivered to user in different formats:

 Source-less ie., binary executables and object libraries only

 Source-inclusive ie., The entire source code used to implement
the driver is included in the delivered product

 Source-selective ie., Only a part of the overall source is included.
This delivery mechanism might be required either because;
certain parts of the driver require source-level extensions and/or
customization at the user’s end or because, specific parts of the
driver is exposed to user at the source-level to insure user’s
software development.

When source is included as part of the product delivery, the CCS project
file is provided as part of the package. When object format is distributed,
the driver header files are part of the “inc” folder and the driver library is
provided in /drivers/lib folder.

2.3. Build Options

This driver does not have any specific build option at the time of writing
of this manual.

The build folder contains a CCS project file that builds the driver into a
library for debug and release mode.

Following compiler switches are used to compile for different options.

 _DEBUG
This is used as a flag to compiler whether to include the debug
statements inserted in the code into the final image. This flag helps to
build DEBUG image of the program. For RELEASE images this is not
passed to the compiler.

 CHIP_XXXX
The CSL layer is written in a common file for all the variants of a SOC.
This flag differentiates the variant we are compiling for, for eg -
CHIP_DM648, and the CSL definitions for that variant appropriately gets
defined for regs base addresses, num of ports of a peripheral etc.

 VLYNQ_INSTRUMENTATION_ENABLED
This flag is passed to the compiler to include the instrumentation code
parts into the final image/lib of the program. This helps build the
iRelease/iDebug versions of the image/lib with a common code base

 VLYNQ_LOOPBACK_MODE

15

This flag is passed to the compiler when vlynq loopback mode is used.

CHAPTER 3

VLYNQ

This chapter describes the functions, data structures, enumerations and macros for the List
module.

Topic

3.1. Functions

 3.2. Data Structures

3.3. Enumeration

 3.4. Macros

16

3.1. Functions
This section lists the functions available in the PSP module.

3.1.1 PAL_sysVlynqInit () - Initialize the VLYNQ control module.

PAL_Result PAL_sysVlynqInit (Void
)

Parameters:
None

Returns:
Returns PAL_VLYNQ_OK.

3.1.2 PAL_sysVlynqInitSoc() - Initialize the VLYNQ control module.

PAL_VLYNQ_HND* PAL_sysVlynqInitSoc(PAL_VLYNQ_CONFIG_T* config
)

Parameters:
config The collection of configuration parameters; to initialize the VLYNQ interface.

Note: If the VLYNQ control module being initialized happens to be a non-root
entity, then, it is necessary and MUST that this VLYNQ (identified by
PAL_VLYNQ_HND) has to be appended to the chain before this handle can be
used for any purpose.

Returns:
On failure, it returns a NULL, otherwise, it returns a valid handle to the instance so initialized.

3.1.3 PAL_sysVlynqCleanUp() – Un-Initialize the VLYNQ control module.

PAL_Result PAL_sysVlynqCleanUp (PAL_VLYNQ_HND* vlynq
)

Parameters:
vlynq Handle to the VLYNQ module instance; would have been returned by

PAL_sysVlynqInitSoc (). Consequence of using this handle after a call to this
function is undefined.

Returns:
0 – On success.
-1 – On failure.

17

3.1.4 PAL_sysVlynqDevCreate() – Creates a device reference.

PAL_VLYNQ_DEV_HND* PAL_sysVlynqDevCreate (PAL_VLYNQ_HND* vlynq,
char* name,
Uint32 instance,
Int32 reset_bit
Bool peer

)

Parameters:

vlynq The VLYNQ module instance to which a
device has to be added; this value would
have been returned by
PAL_sysVlynqInitSoc().

name Name of the device; shall not exceed 30
characters and shall be NULL terminated.

instance The instance of the device; it is 0 based.

reset_bit The reset bit for the VLYNQ device in the
perspective of the system. Valid only for
the on-board device. If not applicable, a
value of –1 shall be set.

peer Identifies whether the device is connected
to the local or peer VLYNQ module.

Returns:
On Failure, returns NULL else a Valid Handle to the device instance.

3.1.5 PAL_sysVlynqDevDestroy() – Destroys the device reference.

PAL_Result PAL_sysVlynqDevDestroy (PAL_VLYNQ_DEV_HND* vlynq_dev
)

Parameters:
vlynq_dev The VLYNQ device instance which would

have been returned by
PAL_sysVlynqDevCreate().

Use of this handle after calling this function
is undefined.

18

Returns:
0 - On success
-1 – On failure.

3.1.6 PAL_sysVlynqMapRegion() – Map the memory regions of the device.

PAL_Result PAL_sysVlynqMapRegion (PAL_VLYNQ_HND* vlynq,
Bool remote,
Uint32 region_id,
Uint32 rx_offset,
Uint32 rx_size,
PAL_VLYNQ_DEV_HND* vlynq_dev

)

Parameters:
vlynq The VLYNQ instance, which on which regions have to be mapped. This

value would have been returned by PAL_sysVlynqInitSoc().

remote Identifies whether the region to be mapped is on remote/peer or local
VLYNQ.

A device connected to peer VLYNQ exports its memory by programming
the RX Region registers of the peer VLYNQ and imports the memory
regions by programming the RX Registers of the local VLYNQ. So, for a
“peer” device, it should set the remote flag as true (1) to export its
regions.

Similarly, a device connected to local VLYNQ exports its memory by
programming the RX Region registers of the local VLYNQ and imports
region by programming the peer VLYNQ. So, setting remote as true (1)
shall mean that the device wants to imports memory regions.

The parameter has to be viewed in the context of the device for which
memory mapping is being envisaged.
0 (false) => local
1 (true) => remote

region_id Identifier of the RX region; valid values are from 0 to 3.

rx_offset The offset of the region in the physical memory map of the local or
remote SOC.

rx_size The size of the region to be mapped.

vlynq_dev The device instance for which certain regions have to be mapped. This
value would have been returned by PAL_sysVlynqDevCreate().

Returns:
0 – on success.

-1 – On failure

19

3.1.7 PAL_sysVlynqMappedRegion () – Return the Mapped Region configuration
for Local/Peer.

PAL_Result PAL_sysVlynqMapRegion (PAL_VLYNQ_HND* vlynq,
Bool remote,
Uint32 region_id

,
Uint32 rx_offset,
Uint32 rx_size,
PAL_VLYNQ_DEV_HND* vlynq_de

v
)

Parameters:
vlynq The VLYNQ instance, which on which regions have to be mapped. This

value would have been returned by PAL_sysVlynqInitSoc().

remote Identifies whether the region to be mapped is on remote/peer or local
VLYNQ.

A device connected to peer VLYNQ exports its memory by programming
the RX Region registers of the peer VLYNQ and imports the memory
regions by programming the RX Registers of the local VLYNQ. So, for a
“peer” device, it should set the remote flag as true (1) to export its
regions.

Similarly, a device connected to local VLYNQ exports its memory by
programming the RX Region registers of the local VLYNQ and imports
region by programming the peer VLYNQ. So, setting remote as true (1)
shall mean that the device wants to imports memory regions.

The parameter has to be viewed in the context of the device for which
memory mapping is being envisaged.
0 (false) => local
1 (true) => remote

region_id Identifier of the RX region; valid values are from 0 to 3.

rx_offset The offset of the region in the physical memory map of the local or
remote SOC.

rx_size The size of the region to be mapped.

vlynq_dev The device instance for which certain regions have to be mapped. This
value would have been returned by PAL_sysVlynqDevCreate().

Returns:
0 – on success.

-1 – On failure

20

3.1.8 PAL_sysVlynqUnMapRegion() – UnMap the memory regions of the device.

PAL_Result PAL_sysVlynqUnMapRegion (PAL_VLYNQ_HND* vlynq,
Bool remote,
Uint32 region_id,
PAL_VLYNQ_DEV_HND* vlynq_dev

)

Parameters:
vlynq The VLYNQ instance, on which previously mapped regions have to be un-

mapped.

remote Identifies whether the region to be mapped is on remote/peer or local VLYNQ.

The parameter has to be viewed in the context of the device for which memory
mapping is being envisaged.
0 (false) => local
1 (true) => remote

region_id Identifier of the RX region; valid values are from 0 to 3.

vlynq_dev The device instance for which certain regions have been previously mapped; and
now are being un-mapped.

Returns:
0 – on success.

-1 – On failure

3.1.9 PAL_sysVlynqMapIrq() – Maps the IRQ hardware line onto the VLYNQ.

PAL_Result PAL_sysVlynqMapIrq (PAL_VLYNQ_HND* vlynq,
Uint32 irq_hw_line,
Uint32 irq,
PAL_VLYNQ_DEV_HND* vlynq_dev

)

Parameters:
vlynq The vlynq instance on which the IRQ mapping

is to be carried out. . This value would have
been returned by PAL_sysVlynqInitSoc(
).

irq_hw_line Identifies the hardware vector line (in the
perspective of the VLYNQ module), which runs
from the device to the VLYNQ module. The
valid values are 0 to 7 (both inclusive).

irq Identifies the IRQ number to which the
interrupt hardware line shall be mapped. The

21

valid values are 0 to 31 (both inclusive). It is
the responsibility of the user to ensure that
there is a unique irq_hw_line to irq mapping
within a VLYNQ chain.

vlynq_dev The device instance for which certain hardware
interrupts have to be mapped on the VLYNQ;
this value would have been returned by
PAL_sysVlynqDevCreate().

Returns:
0 – on success.
-1 – On failure.

3.1.10 PAL_sysVlynqUnMapIrq() – UnMaps the IRQ hardware line.

PAL_Result PAL_sysVlynqUnMapIrq (PAL_VLYNQ_HND* vlynq,
Uint32 irq,
PAL_VLYNQ_DEV_HND* vlynq_dev

)

Parameters:
vlynq The VLYNQ instance on which the un-mapping

has to be carried out.

irq Identifies the IRQ number for which the
interrupt hardware line shall be un-mapped.
The valid values are 0 to 31 (both inclusive).

vlynq_dev The device instance for which certain hardware
interrupts are required to be un-mapped on
VLYNQ; this value would have been returned
by PAL_sysVlynqDevCreate().

Returns:
0 – on success.
-1 – On failure.

3.1.11 PAL_sysVlynqChainAppend() –Append to the VLYNQ chain.

PAL_Result PAL_sysVlynqChainAppend (PAL_VLYNQ_HND* this,
PAL_VLYNQ_HND* to

)

Parameters:

22

this The VLYNQ module instance, which has
to be added to the chain (away from the
root). This value would have been
returned by PAL_sysVlynqInitSoc(
).

to The VLYNQ module instance, to which
“this” has to be chained (away from the
root). . This value would have been
returned by PAL_sysVlynqInitSoc(
).

Returns:
0 – on success.
-1 – On failure.

3.1.12 PAL_sysVlynqAddDevice() –Add the device reference into VLYNQ.

PAL_Result PAL_sysVlynqAddDevice (PAL_VLYNQ_HND* vlynq,
PAL_VLYNQ_DEV_HND* vlynq_dev,
Bool peer

)

Parameters:
vlynq The VLYNQ module instance, to which

the device instance has to be added. This
value would have been returned by
PAL_sysVlynqInitSoc().

vlynq_dev The device instance, which has to be
added into the VLYNQ. This value would
have been returned by
PAL_sysVlynqDevCreate().

peer The flag whether the device is associated
with the local VLYNQ or the peer.

Returns:
0 – on success.
-1 – On failure.

3.1.13 PAL_sysVlynqRemoveDevice() – Removes the device reference from
VLYNQ.

PAL_Result PAL_sysVlynqRemoveDevice (PAL_VLYNQ_HND* vlynq,

23

PAL_VLYNQ_DEV_HND* vlynq_dev
)

Parameters:
vlynq The VLYNQ module instance, from which

the device instance has to be removed.

vlynq_dev The device instance, which is to be
removed from the VLYNQ.

Returns:

0 – On Success

-1- On Failure

3.1.14 PAL_sysVlynqChainUnAppend() – Remove (the tail) from the VLYNQ chain.

PAL_Result PAL_sysVlynqChainUnAppend (PAL_VLYNQ_HND* this,
PAL_VLYNQ_HND* from

)

Parameters:
this The VLYNQ module instance, which has

to be removed from the chain (away from
the root).

from The VLYNQ module instance, from which
“this” has to be removed (away from the
root).

Returns:

0 – On Success

-1 – On Failure

3.1.15 PAL_sysVlynqRootIsr() – The Root ISR; register it with the system.

PAL_Result PAL_sysVlynqRootIsr (Int32 *p_vlynq
)

Parameters:

24

p_vlynq Pass this parameter along while attaching the HWI to the
PAL_sysVlynqRootIsr(). It is the address of the VLYNQ
handle of the root VLYNQ module running.

Returns:

0 – On Success

-1 – On Failure

3.1.16 PAL_sysVlynqDevFind() – Get the handle for the device.

PAL_VLYNQ_DEV_HND* PAL_sysVlynqDevFind (char *name,
Uint8 instance

)

Parameters:
name The name of the device whose

information is being sought. This
should same as that used in the
PAL_sysVlynqDevCreate().

instance The instance of the remote device.
This should same as that used in
the PAL_sysVlynqDevCreate(
).

Returns:
NULL, if no device could be found or a valid handle.

3.1.17 PAL_sysVlynqDevGetVlynq() – Get the VLYNQ for this device.

PAL_VLYNQ_HND* PAL_sysVlynqDevGetVlynq (PAL_VLYNQ_DEV_HND* dev
)

Parameters:
dev The device whose associated VLYNQ

control module is being sought. This would
have been returned by
PAL_sysVlynqDevFind().

Returns:

NULL on error or a valid VLYNQ handle.

25

3.1.18 PAL_sysVlynqGetDevBase() – Get the physical base address of the
device.

PAL_Result PAL_sysVlynqGetDevBase (PAL_VLYNQ_ HND* vlynq,
Uint32 offset,
Uint32 *base_addr
PAL_VLYNQ_DEV_HND* dev

)

Parameters:
vlynq The instance on which the physical base

address is being sought.

offset The offset (in bytes) into the remote
device memory map.

base_addr The placeholder for the evaluated
physical base address of the remote
device in the context of the root SOC. The
caller manages the memory for this.

dev The handle to remote device instance;
would have been returned by
PAL_sysVlynqDevFind(). The
offset is being sought for this device.

Returns:

0 – On Success

-1 – On Failure

3.1.19 PAL_sysVlynqDevFindIrq() – Get the mapped interrupts of the device..

PAL_Result PAL_sysVlynqDevFindIrq (PAL_VLYNQ_DEV_HND* dev,
Uint8 irqs[],
Uint32 num_irqs

)

Parameters:
dev The handle to remote device instance; would have been

returned by PAL_sysVlynqDevFind().

irqs The placeholder for the identifiers of the IRQ(s) vectors
in the perspective of the chain. The caller is responsible
for managing the memory.

Typically, the caller shall allocate memory for atleast

26

“num_irqs”.

num_irqs The number of interrupts to be read; this should be
same as the number of interrupts for which placeholder
has been provided.

Returns:
0 – on success.
-1 – If the placeholder is inadequate.

-2 – Other errors.

27

3.1.20 PAL_sysVlynqDevGetResetBit() – Get the reset bit of the device.

PAL_Result PAL_sysVlynqDevGetResetBit (PAL_VLYNQ_DEV_HND* dev,
Uint32 *reset_bit

)

Parameters:
dev The handle to remote device instance; would

have been returned by
PAL_sysVlynqDevFind().

*reset_bit The placeholder for the identifiers of reset bit.
Only for on board remote devices for which
hardware reset provisions have been made.

Returns:
0 – on success.

-1 – Error.

3.1.21 PAL_sysVlynqAddIsr() – Install the ISR for the device.

PAL_Result PAL_sysVlynqAddIsr (PAL_VLYNQ_HND* vlynq,
Uint32 irq,
PAL_VLYNQ_DEV_ISR_FN* dev_isr,
PAL_VLYNQ_DEV_ISR_PARAM_GRP_T* isr_param

)

28

Parameters:
vlynq The VLYNQ module instance for whose associated remote device, an

isr is being installed.

irq One of the identifier of the IRQ as returned by
PAL_sysVlynqGetDevIrq()or VLYNQ module specific interrupt..

dev_isr The OS specific function pointer (ISR handler); the type of the function
PAL_VLYNQ_DEV_ISR_FN shall be defined for each of the OS by the
user. Driver for the remote device shall load appropriate function
instance.

The number of parameters in the signature of this function should be
exactly same as specified by PAL_VLYNQ_DEV_ISR_PARM_NUM.

isr_param It is a collection of parameters for each instance of the remote device
driver. The user shall define the type
PAL_VLYNQ_DEV_ISR_PARAM_GRP_T for the collection of the
parameters for each OS. The only caveat here is that the name of the
members of the PAL_VLYNQ_DEV_ISR_PARAM_GRP_T should start
(i.e. first member) with arg0 (inclusive) and should continue in sequence
of arg1, arg2… up to arg9 (inclusive); it is assumed that no OS
implementation shall require more than 10 callback ISR parameters.

User shall define and specify the number of ISR parameter,
PAL_VLYNQ_DEV_ISR_PARM_NUM as required for a specific OS
implementation; this should not exceed 10. For a value, less than 10,
the member names shall start as arg0, arg1… up to arg<
PAL_VLYNQ_DEV_ISR_PARM_NUM– 1>.

The keywords for member names here are arg0, arg1, arg2, arg3, arg4,
arg5, arg6, arg7, arg8 and arg9.

Returns:

0 – On Success

-1 – Error

29

3.1.22 PAL_sysVlynqRemoveIsr() – Uinstall the previously installed ISR.

PAL_Result PAL_sysVlynqRem
oveIsr

(PAL_VLYNQ_HND* vlynq,

Uint32 irq,
PAL_VLYNQ_DEV_ISR_PARAM_GR
P_T *

isr_param

)

Parameters:
vlynq The VLYNQ module instance for whose associated remote

device, an isr is being removed.

irq The identifier of the IRQ as provided in the
PAL_sysVlynqAddIsr().

isr_param Same as that provided in the PAL_sysVlynqAddIsr().

Returns:
0 – on success.

-1 – Error.

3.1.23 PAL_sysVlynqDevCbRegister() – Register for the callbacks.

PAL_Result PAL_sysVlynqDevCbReg
ister

(PAL_VLYNQ_DEV_HND* dev,

PAL_VLYNQ_DEV_DRV_CB_
FN

func,

void* this_driver
)

Parameters:
dev The handle to remote device instance; as returned by

PAL_sysVlynqDevFind().

func typedef int (*PAL_VLYNQ_DEV_CB_FN)(void*
this_driver, Uint32 condition, Uint32 condition value);

The callback function that is be called by implementation
for local error, or remote error update conditions.

this_driver The driver instance, which is registering for the callbacks
from the VLYNQ implementation.

Returns:
0 – on success.

-1 – Error.

30

3.1.24 PAL_sysVlynqDevCbUnregister() – Unregister the callbacks.

PAL_Result PAL_sysVlynqDevCbUnregi
ster

(PAL_VLYNQ_DEV_HND* dev,

void* this_driver
)

Parameters:
dev The handle to remote device instance; as returned by

PAL_sysVlynqDevFind().

this_driver The driver instance, which is registered for the callbacks
from the VLYNQ implementation.

Returns:
0 – on success.

-1 – Error.

3.1.25 PAL_sysVlynqIoctl() – Read/Write register of the VLYNQ module.

PAL_Result PAL_sysVlynqIoctl (PAL_VLYNQ_HND* vlynq,
Uint32 cmd,
Uint32 command_val

)

Parameters:
vlynq The VLYNQ module instance, whose

register has to be controlled; this value
would have been returned by
PAL_sysVlynqInitSoc().

cmd Various read and write commands to be
carried out. Refer below for the 32 bit
break up of the command.

Command_val For write command(s) this provides the
value to be written and for read operations
it provides the placeholder for the value to
be read.

Returns:
0 – on success.
-1 – On failure.

31

32 bit Command :

31:Bit Op 30: R/W* 29: Peer 28-24
Reserved

23-16
Major id

15-8
Reserved

7-0
Minor id

If Bit Op is not set, the major id identifies the commands for raw 32-bit accesses or any specific
operation. For now, if major command is 32 bit accesses, then register id refer to minor id
otherwise minor id are don’t care.

If Bit Op is set, the major id identifies a specific register for a select bit operation. Minor id then
shall identify the registers.

3.1.26 PAL_sysVlynqClockConfig() – Configures the Clock for the VLYNQ bridge.

PAL_Result PAL_sysVlynqConfigClock (PAL_VLYNQ_HND* vlynq,
PAL_VLYNQ_CLOCK_DIR_ENUM_T local_clock_dir,
PAL_VLYNQ_CLOCK_DIR_ENUM_T peer_clock_dir,
Uint8 local_clock_div,
Uint8 peer_clock_div,

)

Parameters:
vlynq The VLYNQ module instance, whose register has to be

controlled; this value would have been returned by
PAL_sysVlynqInitSoc().

local_clock_dir The clock direction for the local VLYNQ. Refer to

peer_clock_dir The clock direction for the peer VLYNQ. Refer to

local_clock_div The divisor for the local clock. Valid values are 1 to 255.

peer_clock_div The divisor for the peer clock. Valid values are 1 to 255.

Returns:
0 – on success.
-1 – On failure.

32

3.1.27 PAL_sysVlynqGetForIrq() – Get the VLYNQ for the IRQ.

PAL_VLYNQ_HND* PAL_sysVlynqGetForIrq (PAL_VLYNQ_HND* root,
Uint32 irq

)

Parameters:
root The VLYNQ chain identifier (the root VLYNQ); the

interrupt numbers are unique with in a chain.

irq The interrupt number whose association with a VLYNQ
module is being sought. The valid values are 0 to 31 (both
inclusive).

Returns:
0 – on success.

-1 – Error.

3.1.28 PAL_sysVlynqSetIrqPol() – Set the polarity of the hardware IRQ line.

PAL_Result PAL_sysVlynqSetIrqPol (PAL_VLYNQ_HND* vlynq,
Uint32 irq,
PAL_VLYNQ_IRQ_POL_ENUM
_T

*polarity

)

Parameters:
vlynq The VLYNQ instance whose hardware interrupt line is to

be set for polarity; .

irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

 polarity The polarity of the line.

Returns:
0 – on success.

-1 – Error.

33

3.1.29 PAL_sysVlynqSetIrqType()- Set the type of the hardware IRQ line.

PAL_Result PAL_sysVlynqSetIrqType (PAL_VLYNQ_HND* vlynq,
Uint32 irq,
PAL_VLYNQ_IRQ_TYPE_ENUM_T type

)

Parameters:
vlynq The VLYNQ instance whose hardware interrupt line is to

be set for trigger type.

irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

type The type of the interrupt line.

Returns:
0 – on success.

-1 – Error.

3.1.30 PAL_sysVlynqGetIrqPol () – Get the polarity of the hardware IRQ line.

PAL_Result PAL_sysVlynqGetIrqPol (PAL_VLYNQ_HND* vlynq,
Uint32 irq,
PAL_VLYNQ_IRQ_POL_ENUM_
T*

polarity

)

Parameters:
vlynq The VLYNQ instance whose hardware interrupt line is to

being looked up for polarity setting.

Irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

 polarity The polarity of the line. The caller manages memory.

Returns:
0 – on success.

-1 – Error.

34

3.1.31 PAL_sysVlynqGetIrqType() – Get the type of the hardware IRQ type.

PAL_Result PAL_sysVlynqGetIrqType (PAL_VLYNQ_HND* vlynq,
Uint32 irq,
PAL_VLYNQ_IRQ_POL_ENUM
_T*

type

)

Parameters:
vlynq The VLYNQ instance whose hardware interrupt line is

being looked up for trigger type.

Irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

type The type of the interrupt line. The caller manages
memory.

Returns:
0 – on success.

-1 – Error.

3.1.32 PAL_sysVlynqGetIrqCount() – Get the number of times this IRQ occurred.

Uint32 PAL_sysVlynqGetIrqCount (PAL_VLYNQ_HND* vlynq,
Uint32 irq
Uint32 *count

)

Parameters:
vlynq The VLYNQ module instance for whose associated “irq”

has to be queried for number of dispatches so far.

irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

count Placeholder to store the number of times the interrupt “irq”
has been raised. The value in the placeholder is valid only
if the function returns success.

Returns:
0 – on success.

-1 – Error.

35

3.1.33 PAL_sysVlynqDisableIrq() – Disable the IRQ.

Uint32 PAL_sysVlynqDisableIrq (PAL_VLYNQ_HND* vlynq,
Uint32 irq

)

Parameters:
vlynq The VLYNQ module instance for whose associated “irq”

hardware line is to be disabled for generating interrupts.

irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

Returns:
0 – on success.

-1 – Error.

3.1.34 PAL_sysVlynqEnableIrq() – Enable the IRQ.

Uint32 PAL_sysVlynqEnableIrq (PAL_VLYNQ_HND* vlynq,
Uint32 irq

)

Parameters:
vlynq The VLYNQ module instance for whose associated “irq”

hardware line is to be enabled for generating interrupts.

irq The interrupt number representing the mapped interrupt
hardware line on the VLYNQ module. This should be
unique for a given VLYNQ chain.

Returns:
0 – on success.

-1 – Error.

36

3.1.35 PAL_sysVlynqGetLinkStatus() – Get the status of the of the VLYNQ
module.

Bool PAL_sysVlynqGetLinkStatus (PAL_VLYNQ_HND* vlynq
)

Parameters:
vlynq The VLYNQ module instance, whose link

status with the peer is being requested.

Returns:
1 – on link.
 0 – on link failure.

3.1.36 PAL_sysVlynqGetNumRoot() – Get the number of the root VLYNQ(s).

Int32 PAL_sysVlynqGetNumRoot (void
)

Returns:
The number of root VLYNQ modules on the SOC.

A value of 0 means no VLYNQ.
1 means a root index of 0,
2 mean indices0 and 1.

3.1.37 PAL_sysVlynqGetRoot() – Get the handle to the specified root VLYNQ.

PAL_VLYNQ_HND* PAL_sysVlynqGetRoot (Int32 index
)

Parameters:
index 0 based. Starts at 0 and extends to

(inclusive of) one less number of roots
returned by PAL_sysVlynqGetNumRoot
()

Returns:
NULL, on failure otherwise a valid handle to access the root VLYNQ module.

37

3.1.38 PAL_sysVlynqGetRootVLYNQ() – Get root for the given VLYNQ.

PAL_VLYNQ_HND* PAL_sysVlynqGetRoot (PAL_VLYNQ_HND* vlynq
)

Parameters:

vlynq Handle to the VLYNQ whose root is being
sought.

Returns:
NULL, on failure otherwise a valid handle, to access the root VLYNQ module.

3.1.39 PAL_sysVlynqGetRootAtBase() – Get the root VLYNQ at the base
address.

PAL_VLYNQ_HND* PAL_sysVlynqGetRootAtBase (Uint32 base_addr
)

Parameters:
base_addr The virtual base address of the VLYNQ

module on the SOC.

Returns:
NULL, on failure otherwise a valid handle to access the root VLYNQ module.

3.1.40 PAL_sysVlynqGetBaseAddr() – Returns the base address of the VLYNQ.

PAL_Result PAL_sysVlynqGetBaseAddr (PAL_VLYNQ_HND* vlynq,
Uint32 *base_addr

)

Parameters:
vlynq The Vlynq module whose base address is

being sought.

base_addr The placeholder for the virtual base
address of the VLYNQ module on the
SOC.

Returns:
0 on success

-1 on failure.

38

3.1.41 PAL_sysVlynqGetNext() – Get the next VLYNQ module in the chain.

PAL_VLYNQ_HND* PAL_sysVlynqGetNext (PAL_VLYNQ_HND* this
)

Parameters:
this The VLYNQ module instance whose next

chained entity (away from the root) is
being sought.

Returns:
NULL, on failure otherwise a valid handle to access the neighbor module.

3.1.42 PAL_sysVlynqIsLast() – Is this VLYNQ module the last one in the chain.

Int32 PAL_sysVlynqIsLast (PAL_VLYNQ_HND* this
)

Parameters:
this The VLYNQ module instance to be

ascertained whether last in the chain
(away from the root).

Returns:
0 – on false.

1 – on true.

3.1.43 PAL_sysVlynqGetChainLength() – Get the length of the VLYNQ chain.

Int32 PAL_sysVlynqGetChainLength (PAL_VLYNQ_HND* this
)

Parameters:
this The starting VLYNQ module instance

inclusive of which, the number of VLYNQ
modules existing in the chain (away from
root) is being sought.

If this happens to be the root VLYNQ
module, then the length of the entire
chain is ascertained.

Returns:
The number of VLYNQ modules in the chain (away from the root).

3.1.44 PAL_sysVlynqDump() – Dumps vital VLYNQ information into the buffer.

39

Int32 PAL_sysVlynqDump (PAL_VLYNQ_HND* vlynq,
Uint32 dump_type,
char* buf,
Int32 limit,
Int32* eof

)
Parameters:

vlynq The vlynq instance for which the dump
has to be provided.

dump_type Identifies the information being sought.
Some of the commands can be raw byte
dump of the hardware, complete chain
dump, raw register values or specific
register value with enumeration such as
status register or control register.

buf The placeholder for the buffer. After the
function, the buffer can be printed out for
reading and information.

limit The size of the buffer. It is strongly
recommended to provide a buffer of at
least 4096 bytes.

eof Whether the buffer was insufficient.

Returns:
The number of bytes that have been formatted and placed in the buffer.

-1 on error.

40

3.2. Data Structures
This section lists the data structures available in the VLYNQ module.

typedef struct pal_vlynq_t
{
 Uint32 base;
 Bool soc;
 Uint32 vlynq_version;
 Uint32 timeout_ms;
 struct pal_vlynq_t *next;
 struct pal_vlynq_t *prev;
 PAL_VLYNQ_DEV_HND *local_dev[MAX_DEV_PER_VLYNQ];
 PAL_VLYNQ_DEV_HND *peer_dev[MAX_DEV_PER_VLYNQ];
 PAL_VLYNQ_REGION_INFO_T local_region_info[MAX_VLYNQ_REGION];
 PAL_VLYNQ_REGION_INFO_T remote_region_info[MAX_VLYNQ_REGION];
 PAL_VLYNQ_IRQ_MAP_T *root_irq_map;
 PAL_VLYNQ_IRQ_INFO_T *root_irq_info;
 PAL_VLYNQ_ISR_INFO_T *local_isr_info;
 PAL_VLYNQ_ISR_INFO_T *peer_isr_info;
 Uint32 backup_local_cntl_word;
 Uint32 backup_local_intr_ptr;
 Uint32 backup_local_tx_map;
 Uint32 backup_local_endian;
 Uint32 backup_peer_cntl_word;
 Uint32 backup_peer_intr_ptr;
 Uint32 backup_peer_tx_map;
 Uint32 backup_peer_endian;
 Int8 local_irq;
 Int8 peer_irq;
 Bool local_swap;
 Bool peer_swap;

} PAL_VLYNQ_T;

typedef struct pal_vlynq_region_info_t
{
 Int8 owner_dev_index;
 Bool owner_dev_locale;

} PAL_VLYNQ_REGION_INFO_T;

typedef struct pal_vlynq_dev_cb_t
{
 PAL_VLYNQ_DEV_CB_FN cb_fn;
 void *cb_param;
 struct pal_vlynq_dev_cb_t *next;

} PAL_VLYNQ_DEV_CB_T;

41

typedef struct pal_vlynq_dev_t
{
 Char name [32];
 PAL_VLYNQ_HND *vlynq;
 struct pal_vlynq_dev_t *next;
 Uint8 reset_bit;
 Uint8 irq_count;
 Uint8 instance;
 Bool peer;
 Int8 irq [8];
 PAL_VLYNQ_DEV_CB_T *dev_cb;

} PAL_VLYNQ_DEV_T;

typedef struct pal_vlynq_ioctl_info
{
 Int16 id;
 Uint16 offset; /* Register offset or bit offset. */
 const char *name;
 Uint32 mask;
 Uint32 start_revision;
 Uint32 end_revision;
 Uint8 access_flags; /* 0x01 - write, otherwise read,
 can be enhanced later. */

} PAL_VLYNQ_IOCTL_INFO_T;

Data Fields
PAL_VLYNQ_INIT_ERR_ENUM_T error_status
Uint8 on_soc
char error_msg[50]
Uint32 base_addr
Uint32 init_timeout_in_ms
Uint8 local_clock_div
PAL_VLYNQ_CLOCK_DIR_ENUM_Tlocal_clock_dir
Uint8 local_intr_local

Uint8 local_intr_vector
Uint8 local_intr_enable
Uint8 local_int2cfg
Uint32 local_intr_pointer
PAL_VLYNQ_ENDIAN_ENUM_T local_endianness
Uint32 local_tx_addr
PAL_VLYNQ_RTM_CFG_ENUM_T local_rtm_cfg_type
Uint8 local_rtm_sample_value

42

Bool local_tx_fast_path
Uint8 peer_clock_div
PAL_VLYNQ_CLOCK_DIR_ENUM_Tpeer_clock_dir
Uint8 peer_intr_local
Uint8 peer_intr_enable
Uint8 peer_intr_vector
Uint8 peer_int2cfg
Uint32 peer_intr_pointer
PAL_VLYNQ_ENDIAN_ENUM_T peer_endianness
Uint32 peer_tx_addr
PAL_VLYNQ_RTM_CFG_ENUM_T peer_rtm_cfg_type
Uint8 peer_rtm_sample_value
Bool peer_tx_fast_path
Bool init_swap_flag

Detailed Description:
VLYNQ driver configuration.

Field Documentation

Uint8 on_soc
the VLYNQ module is on the SOC.

Uint32 base_addr.

Virtual Base Address of the module. Uint32
 init_timeout_in_ms

The number of millsecs that the software should allow for initialization to complete.

Uint8 local_clock_div
The clock divisor for the local VLYNQ module.

PAL_VLYNQ_CLOCK_DIR_ENUM_T local_clock_dir
The clock direction; sink or source for the local VLYNQ module.

Uint8 local_intr_local
Interrupts are being handled locally or sent over BUS.

Uint8 local_intr_vector
The IRQ vector to be used on the local VLYNQ module. Valid values are 0 to 31.

Uint8 local_intr_enable

43

Uint8 local_int2cfg
Local VLYNQ interrupt pending register.

Uint32 local_intr_pointer
Address to which the irq should be written to,valid only if int2cfg is not set.

PAL_VLYNQ_ENDIAN_ENUM_T local_endianness
Endianess of the local VLYNQ module.

Uint32 local_tx_addr
The physical portal address of the local VLYNQ.

PAL_VLYNQ_RTM_CFG_ENUM_T local_rtm_cfg_type
The RTM configuration for the local VLYNQ.

Uint8 local_rtm_sample_value
The RTM sample value for the local VLYNQ.

Bool local_tx_fast_path
TX Fast path.

Uint8 peer_clock_div
The clock divisor for the peer VLYNQ module.

PAL_VLYNQ_CLOCK_DIR_ENUM_T peer_clock_dir
The clock direction - sink or source for the peer VLYNQ module.

Uint8 peer_intr_local
Interrupts are being handled by peer VLYNQ.

Uint8 peer_intr_enable
Enable the peer irq vector.

Uint8 peer_intr_vector
The IRQ vector to be used on the peer VLYNQ module.

Uint8 peer_int2cfg
The local VLYNQ interrupt pending register.

Uint32 peer_intr_pointer
Address to which the irq should be written.

PAL_VLYNQ_ENDIAN_ENUM_T peer_endianness
Endianess of the local VLYNQ module.

Uint32 peer_tx_addr
The physical portal address of the peer VLYNQ.

PAL_VLYNQ_RTM_CFG_ENUM_T peer_rtm_cfg_type
The RTM configuration for the peer VLYNQ.

44

Uint8 peer_rtm_sample_value
The RTM sample value for the local VLYNQ.

Bool peer_tx_fast_path
TX Fast path.

Bool init_swap_flag
Is the Vlynq module in Endian swapped state to begin with

3.3. Enumerations
This section lists the enumerations available in the PSP module.

enum PAL_VLYNQ_CLOCK_DIR_ENUM_T
Enumeration values:
pal_vlynq_clk_in Sink Direction
pal_vlynq_clk_out Source Direction

enum PAL_VLYNQ_ENDIAN_ENUM_T
Enumeration values:
pal_vlynq_ignore_en Ignore the endian.
pal_vlynq_little_en Little Endian
pal_vlynq_big_en Big Endian

enum PAL_VLYNQ_RTM_CFG_ENUM_T
Enumeration values:
no_rtm_cfg No Configuration
rtm_auto_select_sample_val Auto Configuration
rtm_force_sample_val Force Configuration

enum PAL_VLYNQ_INIT_ERR_ENUM_T
Enumeration values:
pal_vlynq_init_success Initialization Success.
pal_vlynq_init_no_link_on_reset Initialization link on Reset.
pal_vlynq_init_no_mem Initialization No meaning.
pal_vlynq_init_clk_cfg Initialization clock configuration
pal_vlynq_init_no_link_on_clk_cfg Initialization no link on config. clock
pal_vlynq_init_internal_problem Initialization internal Error
pal_vlynq_init_invalid_param Initialization invalid param
pal_vlynq_init_local_high_rev Initialization Local high rev.
pal_vlynq_init_peer_high_rev Initialization Peer high rev.
pal_vlynq_init_rtm_cfg Initialization of RTM configuration
pal_vlynq_init_no_link_on_rtm_cfg Initialization no link on RTM config.

45

enum PAL_VLYNQ_IRQ_POL_ENUM_T
Enumeration values:
pal_vlynq_high_irq_pol High IRQ Pol.
pal_vlynq_low_irq_pol Low IRQ Pol.

enum PAL_VLYNQ_IRQ_TYPE_ENUM_T
Enumeration values:
pal_vlynq_level_irq_type VLYNQ IRQ Level
pal_vlynq_edge_irq_type VLYNQ Edge Type.

46

3.4. Macros
This section lists the macros available in the PSP module.

#define MAX_VLYNQ_REGION 4
Maximum vlynq memory region

#define MAX_DEV_PER_VLYNQ MAX_VLYNQ_REGION
Maximum device per vlynq interface.

#define MAX_DEV_COUNT (2u)
Maximum device count per vlynq interface in DM648 SOC.

#define MAX_IRQ_PER_CHAIN 32
Device IRQ per chain.

#define MAX_IRQ_PER_VLYNQ 8
Number IRQ per VLYNQ .

#define TYPICAL_NUM_ISR_PER_IRQ 1
Number of ISR per IRQ.

#define PAL_VLYNQ_IOCTL_BIT_CMD (1 << 31)
#define PAL_VLYNQ_IOCTL_READ_CMD (1 << 30)
#define PAL_VLYNQ_IOCTL_REMOTE_CMD (1 << 29)

#define PAL_VLYNQ_IOCTL_MAJOR_VAL(val) ((val & 0xff) << 16)
#define PAL_VLYNQ_IOCTL_MAJOR_DE_VAL(cmd) ((cmd >> 16) & 0xff)

#define PAL_VLYNQ_IOCTL_MINOR_VAL(val) (val & 0xff)
#define PAL_VLYNQ_IOCTL_MINOR_DE_VAL(cmd) (cmd & 0xff)

/* Major commads; if bit option is not selected. */
#define PAL_VLYNQ_IOCTL_REG_CMD (0x00) /* Shall use vlynq regs

as minor cmd*/
#define PAL_VLYNQ_IOCTL_PREP_LINK_DOWN (0x01) /* Prepare to teardown

the link. */
#define PAL_VLYNQ_IOCTL_PREP_LINK_UP (0x02) /* Setup now the link is up. */
#define PAL_VLYNQ_IOCTL_CLEAR_INTERN_ERR (0x03) /*Clear internal interrupt errors.*/

/* Control Register parameters, valid for bit operations. */

#define PAL_VLYNQ_IOCTL_CNT_RESET_CMD (0x00)
#define PAL_VLYNQ_IOCTL_CNT_ILOOP_CMD (0x01)
#define PAL_VLYNQ_IOCTL_CNT_AOPT_CMD (0x02) /* Write */
#define PAL_VLYNQ_IOCTL_CNT_INT2CFG_CMD (0x07)
#define PAL_VLYNQ_IOCTL_CNT_INTVEC_CMD (0x08)
#define PAL_VLYNQ_IOCTL_CNT_INT_EN_CMD (0x0d)
#define PAL_VLYNQ_IOCTL_CNT_INT_LOC_CMD (0x0e)
#define PAL_VLYNQ_IOCTL_CNT_CLK_DIR_CMD (0x0f)

47

#define PAL_VLYNQ_IOCTL_CNT_CLK_DIV_CMD (0x10) /* Write */
#define PAL_VLYNQ_IOCTL_CNT_CLK_MOD_CMD (0x15)
#define PAL_VLYNQ_IOCTL_CNT_TX_FAST_CMD (0x15u)
#define PAL_VLYNQ_IOCTL_CNT_RTM_SELECT_CMD (0x16u)
#define PAL_VLYNQ_IOCTL_CNT_RTM_VALIDWR_CMD (0x17u)
#define PAL_VLYNQ_IOCTL_CNT_RTM_SAMPLE_CMD (0x18u)
#define PAL_VLYNQ_IOCTL_CNT_CLK_SLKPU_CMD (0x1e) /* Write */
#define PAL_VLYNQ_IOCTL_CNT_PMEM_CMD (0x1f) /* Write */

/* Status Register parameters, valid for bit operations. */

#define PAL_VLYNQ_IOCTL_STS_LINK (0x00)
#define PAL_VLYNQ_IOCTL_STS_MPEND (0x01)
#define PAL_VLYNQ_IOCTL_STS_SPEND (0x02)
#define PAL_VLYNQ_IOCTL_STS_NFEMP0 (0x03)
#define PAL_VLYNQ_IOCTL_STS_NFEMP1 (0x04)
#define PAL_VLYNQ_IOCTL_STS_NFEMP2 (0x05)
#define PAL_VLYNQ_IOCTL_STS_NFEMP3 (0x06)
#define PAL_VLYNQ_IOCTL_STS_LERR (0x07)
#define PAL_VLYNQ_IOCTL_STS_RERR (0x08)
#define PAL_VLYNQ_IOCTL_STS_OFLOW (0x09)
#define PAL_VLYNQ_IOCTL_STS_IFLOW (0x0A)
#define PAL_VLYNQ_IOCTL_STS_RTM (0x0Bu)
#define PAL_VLYNQ_IOCTL_STS_RTM_VAL (0x0Cu)
#define PAL_VLYNQ_IOCTL_STS_SWIDOUT (0x14)
#define PAL_VLYNQ_IOCTL_STS_MODESUP (0x15)
#define PAL_VLYNQ_IOCTL_STS_SWIDIN (0x18)
#define PAL_VLYNQ_IOCTL_STS_SWIDTH (0x18)
#define PAL_VLYNQ_IOCTL_STS_DEBUG (0x1d)

/* VLYNQ Registers */

#define PAL_VLYNQ_IOCTL_REVSION_REG (0x00)
#define PAL_VLYNQ_IOCTL_CONTROL_REG (0x04)
#define PAL_VLYNQ_IOCTL_STATUS_REG (0x08)
#define PAL_VLYNQ_IOCTL_INT_PRIR_REG (0x0c)
#define PAL_VLYNQ_IOCTL_INT_STS_REG (0x10)
#define PAL_VLYNQ_IOCTL_INT_PEND_REG (0x14)
#define PAL_VLYNQ_IOCTL_INT_PTR_REG (0x18)
#define PAL_VLYNQ_IOCTL_TX_MAP_REG (0x1c)
#define PAL_VLYNQ_IOCTL_RX1_SZ_REG (0x20)
#define PAL_VLYNQ_IOCTL_RX1_OFF_REG (0x24)
#define PAL_VLYNQ_IOCTL_RX2_SZ_REG (0x28)
#define PAL_VLYNQ_IOCTL_RX2_OFF_REG (0x2c)
#define PAL_VLYNQ_IOCTL_RX3_SZ_REG (0x30)
#define PAL_VLYNQ_IOCTL_RX3_OFF_REG (0x34)
#define PAL_VLYNQ_IOCTL_RX4_SZ_REG (0x38)
#define PAL_VLYNQ_IOCTL_RX4_OFF_REG (0x3c)
#define PAL_VLYNQ_IOCTL_CVR_REG (0x40)
#define PAL_VLYNQ_IOCTL_AUTO_NEG_REG (0x44)
#define PAL_VLYNQ_IOCTL_MAN_NEG_REG (0x48)
#define PAL_VLYNQ_IOCTL_NEG_STS_REG (0x4c)
#define PAL_VLYNQ_IOCTL_ENDIAN_REG (0x4c)
#define PAL_VLYNQ_IOCTL_IVR30_REG (0x60)

48

#define PAL_VLYNQ_IOCTL_IVR74_REG (0x64)

/* Dumping options, not part of ioctl options. */

#define PAL_VLYNQ_DUMP_ALL_ROOT (0x10000)
#define PAL_VLYNQ_DUMP_RAW_DATA (0x20000)
#define PAL_VLYNQ_DUMP_ALL_REGS (0x30000)
#define PAL_VLYNQ_DUMP_STS_REG (0x00008)
#define PAL_VLYNQ_DUMP_CNTL_REG (0x00004)

3.5 Dependency of Sample application:
Following Components needs to be linked for successful build and functionality of
the application.

 VLYNQ
 PAL_OS
 SoC specific PAL_SYS
 EDMA3

