
November 2007 Platform Software Group

Version 1.55

VPBE Device Driver

U s e r ' s G u i d e

Architecture Document

VPBE Device Drivers Architecture Document

2 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published by
TI regarding third-party products or services does not constitute a license from TI to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property of the third party, or a license from TI under
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI
for that product or service voids all express and any implied warranties for the associated TI product or
service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

Texas Instruments Proprietary 3

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

About This Document

This document discusses the TI device driver architecture for VPBE Device
Driver for DM6437 SOCs. The target audience includes device driver
developers from TI as well as consumers of the driver.

Although this document makes explicit reference to a typical DSP/BIOS
serial class device driver as an example, the general aspects of a device
driver design presented here, are equally applicable to other class of
devices and OS.

Trademarks

The TI logo design is a trademark of Texas Instruments Incorporated. All
other brand and product names may be trademarks of their respective
companies.

This document contains proprietary information of Texas Instruments. The
information contained herein is not to be used by or disclosed to third
parties without the express written permission of an officer of Texas
Instruments Incorporated.

Related Documents

 VPSS Driver Documentation

 SPRU952.pdf

 DSP/BIOS Driver Guide

Notations

For normal document information, Helvetica Font is used.

Courier New Font is used in places where the function
and its prototype are mentioned.

VPBE Device Drivers Architecture Document

4 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Terms and Abbreviations

Term Description

API Application Programmer’s Interface

CSL TI Chip Support Library – primitive h/w abstraction

DDC TI terminology for portion of device driver that is
abstracted of any given OS

IOM TI terminology for portion of device driver that is specific to
target OS. This constitutes “adaptation” of the generic
DDC to identified target OS.

IP Intellectual Property

ISR Interrupt Service Routine

OS Operating System

Revision History

Date Author Comments Version

September 7, 2006 Maulik Desai Created the document 1.0

December 1, 2006 Maulik Desai Modified the document for the
release 0.3.0

1.1

January 16, 2007 Maulik Desai Bios version modified 1.2

February 3, 2007 Maulik Desai CCS version modified 1.3

June 22, 2007 Anuj Aggarwal Bios version modified 1.4

November 29, 2007 Sivaraj R PSP merge package changes
- directory structure changes,
FVID_allocBuffer and
FVID_freeBuffer functions are
implemented as GIO control
commands

1.5

Texas Instruments Proprietary 5

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Table of Contents

1 System Context ...7

1.1 Hardware.. 7

1.2 Software... 8
1.2.1 Operating Environment and dependencies... 8
1.2.2 System Architechture... 8

1.3 Design Philosophy .. 9

2 VPBE Driver Software Architecture ...9

2.1 Static View ... 9
2.1.1 Functional Decomposition.. 9
2.1.2 H/W Device Specific Layer (LLC) ... 9
2.1.3 Device Driver Core functionality (DDC) .. 9
2.1.4 OS Specific Device Driver Adaptation (IOM)... 9
2.1.5 Platform Abstraction Layer for OS services (PALOS) 10
2.1.6 Component Interfaces.. 10

2.2 Dynamic View .. 12
2.2.1 The Execution Threads.. 12
2.2.2 Driver Creation... 12
2.2.3 Driver Open Channel ... 15
2.2.4 IO Control .. 22
2.2.5 Driver Delete Chan .. 36
2.2.6 Driver Teardown .. 41

VPBE Device Drivers Architecture Document

6 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

List Of Figures

Figure 1 VPSS Block Diagram ..7
Figure 2 System Architecture..8
Figure 3 Driver Creation Overview ..13
Figure 4 Driver Creation Detailed Flow Diagram – 1..13
Figure 5 Channel Open Overview ...15
Figure 6 Driver Open Detailed Flow Diagram – 1...16
Figure 7 Driver Open Detailed Flow Diagram – 2...18
Figure 8 Driver Open Detailed Flow Diagram – 3...20
Figure 9 Driver IOCTL Overview ...22
Figure 10 Driver Control Detailed Flow Diagram – 1..23
Figure 11 Driver Submit Overview...25
Figure 12 Driver Submit Detailed Flow Diagram – 1 ..27
Figure 13 Driver Submit Detailed Flow Diagram – 2 ..29
Figure 14 Driver Close Chan Overview ...36
Figure 15 Driver Closed Detailed Flow Diagram – 1 ..37
Figure 16 Driver Closed Detailed Flow Diagram – 2 ..38
Figure 17 Driver Closed Detailed Flow Diagram – 3 ..40
Figure 18 Driver Close Overview...41
Figure 19 Driver UnBind Detailed Flow Diagram – 1..42

Texas Instruments Proprietary 7

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

1 System Context

The VPBE device driver architecture presented in this document is situated in the
context of DM6437 SOCs targeted for various Video Applications.

1.1 Hardware

The VPBE module a part of VPSS module used in DM6437 is in-built in SOC core.
Figure 1 below shows an overview of the VPBE module.

Figure 1 VPSS Block Diagram

VPBE Device Drivers Architecture Document

8 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

1.2 Software

The document provides an overall understanding of the TI VPBE device driver
architecture with GIO architecture as a reference framework in the context of
DSP/BIOS.

1.2.1 Operating Environment and dependencies

Details about the tools and the BIOS version that the driver is compatible with
can be found in the system Release Notes.

1.2.2 System Architechture

The block diagram below shows the overall system architecture.

Figure 2 System Architecture

The Application would invoke the driver routines through the GIO Calls APIs. This
layer is called as adaptation layers. Device drivers are accessed by the
applications for performing I/O through the BIOS through the above-mentioned
layers.

IOM is the component that exposes the driver Core to the OS. DDC is the driver
core, which actually performs the device specific operations. LLC is the layer that
has a direct access to the hardware. IOM, DDC and LLC are discussed in detail in
the later sections. The rest of the document elaborates on the architecture of the
Device driver by TI.

Texas Instruments Proprietary 9

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

1.3 Design Philosophy
Please refer section 1.3 of DM6437_BIOS_PSP_User_Guide.pdf for Design
Philosophy.

2 VPBE Driver Software Architecture

This chapter gives detail on the overall architecture of TI VPBE device driver. This
includes the static view explaining the functional decomposition and dynamic view
explaining the deployment scenario of the VPBE driver.

2.1 Static View

2.1.1 Functional Decomposition

The device driver is partitioned into distinct sub-components, consistent with the
roles and responsibilities already discussed in section 1.3. In the following sub-
sections, each of these functional sub-components of the device driver is further
elaborated.

Please refer section 1.2.1 of DM6437_BIOS_PSP_User_Guide.pdf for
Diagrammatic explanation.

The central portion (IOM-DDC-LLC) shown constitutes the mainline VPBE driver
component. The surrounding module PAL-OS constitute the supporting system
components that facilitates the interfaces between the OS and the above
mentioned driver components. These modules do not specifically deal with VPBE
but assist the driver by providing OS abstraction.

2.1.2 H/W Device Specific Layer (LLC)

Please refer section 1.2.2 of DM6437_BIOS_PSP_User_Guide.pdf for Hardware
Layer explanation.

2.1.3 Device Driver Core functionality (DDC)

Please refer section 1.2.3 of DM6437_BIOS_PSP_User_Guide.pdf for
DDC Layer explanation.

The IOM/DDC inter-operation is further discussed later in section on
dynamic view.

2.1.4 OS Specific Device Driver Adaptation (IOM)

Please refer section 1.2.4 of DM6437_BIOS_PSP_User_Guide.pdf for IOM
Layer explanation.

VPBE Device Drivers Architecture Document

10 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

2.1.5 Platform Abstraction Layer for OS services (PALOS)

Please refer section 1.2.5 of DM6437_BIOS_PSP_User_Guide.pdf for IOM
Layer explanation.

2.1.6 Component Interfaces

In the following subsections, the interfaces implemented by each of the sub-
component are specified. Refer to VPBE Device Driver API reference
documentation for complete details on APIs.

 IOM Interface

The IOM constitutes the Device Driver manifest to Application. This
adapts the Driver Core (DDC) to DSP/BIOS.

The user of device driver will only need bother about the IOM interface,
especially the upper-edge services exposed to the Application/OS. All
other interfaces discussed later in this document are more of interest to
people developing/maintaining the device driver.

The IOM can be modified to re-target driver and/or customize to specific
Apps framework by doctoring the upper-edge services.

The VPBE_mdBindDev () populates static settings in driver object
creates the necessary interrupt handler, attaches the Driver Core
interfaces.

 DDC Interface

DDC forms the heart of Device driver. It models driver state machine
and implements the data movement. The Device DDC is inherently
Asynchronous and contains the crux of the ISR functionality – VPBEIsr
(). However, the ISR would be registered and dispatched thru’ DDA.

The VPBE DDC maintains two frame buffers queues with a defined size
as MAX_FRAME_BUFFERS. One of these queues (ACTIVE) queue will
be used to queue the frame buffers which the application requests to
‘Queue’. The ACTIVE queue queues the frame buffers that will be used
by the driver for display of a frame. The other (FREE) queue will be
used to queue the frame buffers that are no longer needed by the driver,
are free and can be ‘De-Queued’ by the application.

Texas Instruments Proprietary 11

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

The VPBE DDC implements a method to create itself wherein it
exchanges the interfaces contract with the DDA above. Once the VPBE
driver instance is created, opens handle for each VPBE modules
through DDC_VPBEOpenHandle.Once the device has been opened
and application wants to capture the frame it will issue a “QUEUE”
command and that buffer gets queued in the ACITVE buffer queue
using DDC_VPBEAddQueue. In the ISR context thru DDC_VPBEIsr the
driver checks for any new frame buffer in the Active queue and if there
is any then driver puts the last displayed frame buffer in the FREE
queue. It deletes entry of frame buffer from the ACITVE queue using
DDC_VPBEDelQueue.

Upon completion of use, driver can be gracefully closed and removed
from system by following sequence of calls DDC_VPBEClose () and
DDC_VPBEDelete ().

 LLC Layer Interface

The view graph below depicts the services implemented by LLC layer is
leveraged in DDC implementation. It should be noted that LLC never
calls DDC functions. It’s always the other way round.

LLC does NOT allocate memory dynamically and do NOT use OS
services.

 PALOS Interface

PALOS abstracts DSP/BIOS services to the Driver. PALOS functions are
state-less on their own and run in context of calling thread. However, when
underlying OS function is called, OS may switch context as appropriate, to
realize the requested function.

VPBE driver uses Protect service abstraction. The DDC is always the caller
& PALOS the called one, the PALOS will never call a DDC function.

The VPBE driver release will include an implementation of necessary OS
abstraction services for DSP/BIOS environment, if driver is ported to a
different platform or integrated with a custom framework, these functions
would need to be ported so as to reuse the DDC as-is.

For further details on PALOS services, refer to API Reference
documentation.

 Frame Buffer Memory Management

Application allocates the Frame buffer and has the entire control over
these. Driver shall not be allocating the Frame buffers. Driver however
shall be validating the frame buffers passed by the application prior to
queuing. This is due to some hardware restrictions on the VPBE module.

VPBE Device Drivers Architecture Document

12 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

2.2 Dynamic View

2.2.1 The Execution Threads

The VPBE device driver works only in the Interrupt mode. The VPBE device driver
operation involves following execution threads:

2.2.2 Driver Creation

The following section elaborates on the detailed information for the call sequence.

The sequence diagram below depicts the creation phase of the BIOS VPBE device
driver. While at the DDC level, create phases of driver instance are clearly
demarcated, the same is not the case in IOM and above. Regardless, once this
phase is complete, the basic driver data structures and setups are complete and
ready for formally opening device to perform IO.

User is expected to invoke mdBindDev (), way up in the application startup phase,
perhaps in a central driver initialization function.

The mdBindDev () performs register overlaying of the device driver. It registers the
interrupt handler of the driver. It attaches the DDC functions for use later during
actual initialization of each device instance.

DSP/BIOS GIO IOM DDC H/W

BIOS_init

VPBE_mdBindDev PSP_VPBECreate

Register
Overlaying

Registers
Interrupt

Texas Instruments Proprietary 13

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Figure 3 Driver Creation Overview

 mdB inddev

 V alidate input
 Parameters

 Init ialize port
 to Zero

 C all
 P SP _V P FE C reate
 to Zero

 U pdate
 D river S tate

 R eturn
IO M _C OM PLE T ED
 or error code

O S

 A pplica tion

IO M

D DC

W rapper

Figure 4 Driver Creation Detailed Flow Diagram – 1

VPBE Device Drivers Architecture Document

14 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Function mdBindDev()

Function Prototype Int VPBE_mdBindDev (Ptr *devp, Int
devid, Ptr devParams)

Input Parameters devid – number of device instances
devParams – would be the H/W configuration
information pointer variable.
devp – void pointer to be updated once instance is
created

Output Parameters Int returning the IOM Status

Description This function would be implemented at the IOM
layer. This function would create a DDC instance of
the driver and initialize the driver as well.

Preconditions 1. The Driver supports only one instance so
devid should not be more than 1.

2. The driver should be opening for the first
time at the OS initialization time.

C1

Design Logic in steps.
1. Check the number of instance
2. set the initial global values to zero
3. call PSP_VPBECreate function
4. Update the State

Texas Instruments Proprietary 15

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

2.2.3 Driver Open Channel

When the application calls the mdCreateChan (), driver entry point is created. The
callback is registered. The device interrupts are enabled and driver is ready to
accept Read/Write jobs.

Figure 5 Channel Open Overview

App GIO IOM DDC H/W

GIO_Create VPBE_mdCreateChan

PSP_VPBEOpen

DDC_VPFEOpen
Handle

DDC_VPBEConfig
CcdcParams

VPBE Device Drivers Architecture Document

16 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

VPBE_mdCreateChan

mdCreateChan

 Validate input
 Parameters

Validate
Driver State

 Return
IOM_COMPLETED
 or error code

OS

 Application

IOM

DDC

Wrapper

Assign Channel

Call
PSP_VPFEOpen

Update the State as
VPSS_OPENED

GIO_create

Figure 6 Driver Open Detailed Flow Diagram – 1

Texas Instruments Proprietary 17

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Function mdCreateChan

Function Prototype Int VPBE_mdCreateChan (Ptr *chanp, Ptr
devp, String name, Int mode, Ptr
chanParams, IOM_TiomCallback cbFxn,
Ptr cbArg)

Input Parameters chanp – void pointer to be updated after the
channel has been initialized
devp – pointer to the port structure
name – name of the driver
mode – mode of the driver i.e. INPUT or OUTPUT
chanParams – additional parameters needed to
initialize the channel
cbFxn – callback function to the GIO
cbArg – callback arguments

Output Parameters Int according to the IOM errors

Description This function declares the driver is ready for any IO
transactions.

Preconditions The DDC channel need to be initialized and it
should be closed before opening

O1

Design Logic in steps

1. Check for the valid mode of operation of
the channel

2. Check that the channel is not in use.
3. Assign the channel.
4. Call PSP_VPBEOpen function.
5. Update the port state and put channel as in

use.

VPBE Device Drivers Architecture Document

18 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

PSP_VPBEOpen

C heck Inp u t P aram ete rs

V alid a te inp ut
P a ram eters

C heck
D river S ta te

 to Z ero

R etu r n IO M _ C O M P L E T E D
or er r or cod e

O S

 A p p lica tion

IO M

D D C

W r ap p er

C all
D D C _ V P F E O p enH andle

U pd ate D river S ta te
V P S S _ O P E N E D

P S P _ V P F E O p en

Figure 7 Driver Open Detailed Flow Diagram – 2

Texas Instruments Proprietary 19

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Function PSP_VPBEOpen

Function Prototype PSP_Handle PSP_VPBEOpen (Uint32
instanceId, PSP_VPBEChannelParams *
chanParams)

Input Parameters InstanceId – Instance id of the Device
ChanParams – ConfigParams of the Channel

Output Parameters Int according to the PSP errors

Description This function creates a channel to carry out the
transaction.

Preconditions Driver must be in Created state

O1

Design Logic in steps

1. Check the Input Parameters
2. Check the State of the Driver
6. Call DDC_VPBEOpenHandle function.
7. Update the state of the Channel as

VPSS_OPENED

VPBE Device Drivers Architecture Document

20 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

DDC_VPBEOpen Handle

Check Input Parameteres

Get the Device Handle

Get Channel Handle based
on Channel Id

Return Channel Handle if
success or NULL if fail

OS

 Application

IOM

DDC

Wrapper

Check State of Channel
Handle

Call the Channel Specific
Config Params

DDC_VPFEOpenHandle

Figure 8 Driver Open Detailed Flow Diagram – 3

Texas Instruments Proprietary 21

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Function DDC_VPBEOpenHandle

Function Prototype Ptr DDC_VPBEOpenHandle (PSP_VPBE_Id
id, Ptr params)

Input Parameters Id –Channel Id
Params- ConfigParams of the Channel

Output Parameters Returns Channel Handle or NULL

Description This Function initialize the VPBE modules and
returns Channel handle

Preconditions Driver must be in Created state

O1

Design Logic in steps

1. Check the Input Parameters
2. Get the Device Handle
3. Get the Channel handle based on Id.
4. Check the State of Driver.
5. Call VPBE module specific config function

based on Id.
6. Update the state as

DDC_VPBE_OPENED
7. Return Channel Handle if success

otherwise NULL.

VPBE Device Drivers Architecture Document

22 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

2.2.4 IO Control

The VPBE Driver provides mdControlChan () to set/get common configuration
parameters on the driver at run time through the corresponding DDC IOCTL
function, ddc_VPBEIoctl (). Moreover IOCTL commands that are device specific or
that require action on the part of the device driver call the driver's IOCTL.

Following is the flow diagram for the above functionality.

Figure 9 Driver IOCTL Overview

It should be observed that the user’s IOCTL request completes in the context of
calling thread i.e., application thread of control. Refer Appendix A1. for the
corresponding IOCTL codes.

App GIO IOM DDC H/W

GIO_Control
VPBE_mdControlChan

Based on Ioctl cmd
call the specific DDC
layer function

 PSP_VPFEIoctl

Texas Instruments Proprietary 23

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

VPBE_mdControlChan

mdControlChan

 Validate input
 Parameters

Call
PSP_VPFEIoctl

 Return
IOM_COMPLETED
 or error code

OS

 Application

IOM

DDC

Wrapper

GIO_control

Figure 10 Driver Control Detailed Flow Diagram – 1

VPBE Device Drivers Architecture Document

24 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Function mdControlChan

Function Prototype Int VPBE_mdControlChan(Ptr chanp, Uns
cmd, Ptr arg)

Input Parameters chanp – pointer to the channel object.
cmd – control command to be executed
arg – argument needed to execute the command

Output Parameters Int according to the IOM error codes

Description This function would perform various control actions
runtime commands on the device driver. For
example to validate the Frame buffer pass
PSP_VPBE_IOCTL_CCDC_VALIDATE_BUFFER
as cmd. For more information Refer to Appendix
A.4

Preconditions The device driver state should be opened.

I1

Design Logic in steps

1. Check for valid IOCTL command.
2. Call a function to Execute the IOCTL

command
For Example

a. To Validate the Frame Buffer pass
PSP_VPBE_IOCTL_CCDC_VALIDAT
E_BUFFER as cmd. Pass command
argument the configParams structure.

Texas Instruments Proprietary 25

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

2.2.4.1 IO Access

The Application will access VPBE driver IOM API VPBE_mdSubmitChan through
interface functions from DSP/BIOS. These functions are registered on the GIO
Layer during the driver initialization.

The DDC will maintain two frame buffers queues with a defined size of the buffers.
Once the buffer is prepared, application will issue a “QUEUE” call to the driver and
that buffer is queued in the Active Queue. At some point in time, when the H/W
interrupt is asserted, the ISR checks for any new frame buffer in the ACTIVE buffer
and if there is any driver puts the last captured buffer in the FREE queue and
updates the address of the new queued frame buffer on the DMA Address.

Application specific callback functions shall be invoked from the Interrupt context.
The callback function will be registered with the driver object.

Figure 11 Driver Submit Overview

App GIO IOM DDC H/W

GIO_Submit VPBE_mdSubmitChan

PSP_VPFESubmit
Request

 DDC_VPFEDeQueue
 Frame Buffer

 DDC_VPBEQueue
 Frame Buffer

VPBE Device Drivers Architecture Document

26 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Texas Instruments Proprietary 27

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

mdSubmitChan

 Validate input
 Parameters

Validate
Channel

 Return
IOM_COMPLETED
 or error code

OS

 Application

IOM

DDC

Wrapper

GIO_submit

Call
PSP_VPFESubmit

Request

Figure 12 Driver Submit Detailed Flow Diagram – 1

VPBE Device Drivers Architecture Document

28 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Function mdSubmitChan

Function Prototype static Int VPBE_mdSubmitChan(Ptr
chanp, IOM_Packet *packet);

Input Parameters chanp – pointer to chan object
packet – the IOM Packet passed by the user

Output Parameters Int according to the IOM error codes

Description This function would result in the call to the various
other APIs depending upon the command issued
the packet.

Preconditions The driver should be opened

R/W1

Design Logic in steps
1. Depending upon the command issued by

User the control goes accordingly

a. QUEUE Command

When queue command is issued the
driver will the Queue the Application
frame buffer in the ACTIVE Queue.

b. DE-QUEUE Command

 When the De-queue command is
issued application will give the Frame
Buffer address from the FREE
Queue.

Texas Instruments Proprietary 29

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 PSP_VPBESubmitRequest

Check Input Parameteres

Check Channel is Closed

Read Command

Return DDC_VPFE_SOK
or error code

OS

 Application

IOM

DDC

Wrapper

Call
DDC_VPFEQueueFrameBuffer

Call
DDC_VPFEDeQueueFrameBuffer

PSP_VPFESubmitRequest

QUEUE DE-QUEUE

Figure 13 Driver Submit Detailed Flow Diagram – 2

Texas Instruments Proprietary 1

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Function PSP_VPBESubmitRequest

Function Prototype PSP_Result PSP_VPBESubmitRequest
(PSP_Handle handle,
PSP_VPSSSubmitCommand cmd,
Ptr cmdArg)

Input Parameters Handle – Handle of the Channel
Cmd – Submit command to be passed

Output Parameters Int according to the PSP errors

Description It acts as wrapper, which provides the information
as per command.

Preconditions Driver must be in opened state and channel handle
should not be NULL.

O1

Design Logic in steps

1. Check the Input Parameters
2. Check Channel is Closed or not.
3. Read the submit command
4. For queue –call

DDC_VPBEQueueFrameBuffer
For Dequeue –call
DDC_VPBEDeQueueFrameBuffer function

VPBE Device Drivers Architecture Document

36 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Interrupts

The Front end interrupt is triggered when the configured number of lines is
captured by the FE into the Frame buffer specified in the FE capture DMA Address.

2.2.5 Driver Delete Chan

The application invokes the mdDeleteDev () function to close the channel of the
VPBE device.

Figure 14 Driver Close Chan Overview

Once the channel is closed it has no life. The user will have to bring the driver back
to life by creating the driver through mdCreateChan ().

App GIO IOM DDC H/W

GIO_Delete
VPBE_mdDeleteChan

PSP_VPBEClose

DDC_VPBEClose
Handle

Texas Instruments Proprietary 37

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

VPBE_mdDeleteChan

mdDeleteChan

 Validate input
 Parameters

Validate
Channel

 Return
IOM_COMPLETED
 or error code

OS

 Application

DDA

DDC

Wrapper

GIO_delete

Call
PSP_VPFEClose

Update state
VPSS_CLOSED

Figure 15 Driver Closed Detailed Flow Diagram – 1

VPBE Device Drivers Architecture Document

38 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Function mdDeleteChan

Function Prototype Int VPBE_mdDeleteChan (Ptr chanp)

Input Parameters Chanp – pointer to chan object

Output Parameters Int according to the IOM error codes

Description This function would close current session of IO by
calling the DDC Layer _DDC_VPBEClosehandle
() function.

Preconditions The driver should be opened

CL1

Design Logic in steps

1. Check the State of the Channel.
2. Close the specific channel and update state
 as closed.

PSP_VPBEClose

G et D evice H andle

C all
D D C _V P FE C lo seH and le

U pd ate D evice S tate as
V PS S_C L O S E D

R etur n PS P_S O K
or error code

O S

 A pplica tion

D D A

D D C

W rapper

P SP_ V PFE C lo se

Figure 16 Driver Closed Detailed Flow Diagram – 2

VPBE Device Drivers Architecture Document

40 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

DDC_VPBECloseHandle

G et D evice H and le

G et C hannel Id

U nreg ister the Interru pt

 R etu rn
D D C _V P F E _SO K
 or er ror code

O S

 A pplica tion

D D A

D D C

W rapper

D D C _V P FE C lo seH and le

R eset the Fram e B uffer

U p date C hannel sta te as
D D C _V P FE _C L O S E D

Figure 17 Driver Closed Detailed Flow Diagram – 3

Texas Instruments Proprietary 41

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

2.2.6 Driver Teardown

Following the call mdUnBindDev () one is required to restart from beginning over
an mdBindDev () call to bring driver back to life. The driver de-initialize and delete
function de-initialize the VPBE DDC and delete if any OS resources originally
allocated through mdBindDev ()

Figure 18 Driver Close Overview

DSP/BIOS GIO IOM DDC H/W

BIOS_deInit VPBE_mdUnBindDev

PSP_VPBEDelete

VPBE Device Drivers Architecture Document

42 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

VPBE_mdBindDev

 mdUnBinddev

 Validate input
 Parameters

 Call
 PSP_VPFEDelete
 to Zero

 Update
 Driver State

 Return
IOM_COMPLETED
 or error code

OS

 Application

DDA

DDC

Wrapper

Figure 19 Driver UnBind Detailed Flow Diagram – 1

Function mdUnbindDev

Function Prototype Int VPBE_mdUnBindDev(Ptr devp)

Input Parameters Devp – Handle to VPBE device

Output Parameters Int according to the IOM error code

Description This function would remove or unload the driver
instance.

Preconditions The DDC has to be created and initialized.

D1

Design Logic in steps.
1. Call the PSP_VPBEDelete function.
2. Check the state of driver.
3. Update the state as VPSS_DELETED.
4. Make the driver object as NULL.

