
November 15, 2007 Platform Software Group

DSP/BIOS McASP Device Driver

User's Manual
U s e r ' s G u i d e

Architecture/Design
Document

McASP Device Drivers Architecture Document

ii Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published by
TI regarding third-party products or services does not constitute a license from TI to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property of the third party, or a license from TI under
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI
for that product or service voids all express and any implied warranties for the associated TI product or
service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

Texas Instruments Proprietary iii

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

About This Document

This document discusses the TI device driver architecture for McASP
Device. The target audience includes device driver developers from TI as
well as consumers of the driver.

Trademarks

The TI logo design is a trademark of Texas Instruments Incorporated. All
other brand and product names may be trademarks of their respective
companies.

This document contains proprietary information of Texas Instruments. The
information contained herein is not to be used by or disclosed to third
parties without the express written permission of an officer of Texas
Instruments Incorporated.

Related Documents

 DSP/BIOS Driver Developer’s Guide

 spru980.pdf

Notations

None

Terms and Abbreviations

McASP Multi-channel Audio Serial Port

SPDIF Sony/Philips Digital Interface

DIT Digital Audio Interface Transmission

I2S Inter-Integrated Sound protocol

TDM Time Division Multiplexed

IOM Input/Output Module

McASP Device Drivers Architecture Document

iv Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Revision History

Date Author Comments Version

June 19, 2006 Pratik Joshi Created the Document 1.0

September 6,
2006

Saloni Shah Changes added for DMA mode 1.1

September 18,
2006

Saloni Shah Changes for Release 0.1.4 1.2

September 21,
2006

Saloni Shah BIOS version changed to 5.31 1.3

October 5, 2006 Saloni Shah BIOS version changed to 5.31 1.4

November 30,
2006

Pratik Joshi Changes for the release for 0.3.0 1.5

January 16, 2007 Pratik Joshi Bios version changed to 5.31.02 1.6

January 29, 2007 Pratik Joshi CCS version changed 1.7

April 23, 2007 Pratik Joshi Updated for release 0.7.0 1.8

June 22, 2007 Anuj Aggarwal Updated for GA Patch Release 1.00.01 1.9

July 2, 2007 Pratik Joshi Updated for GA release 1.00.03.00 1.10

June 29, 2007 Amit Chatterjee Modified Release Version 2.0

July 18, 2007 Maulik Desai Modified Release Version 2.1

November 15,
2007

Nagarjuna K Modified for DM648/C6452 and
DM6437/C6424

2.2

Texas Instruments Proprietary v

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Table of Contents

1 System Context ...1

1.1 Hardware.. 1

1.2 Software... 1
1.2.1 Operating Environment and dependencies... 1

1.3 Design Philosophy .. 1
1.3.1 The Channel Concept .. 1

1.4 EDMA interaction with McASP mini-driver channel... 2

1.5 Design Constraints.. 5

2 McASP Driver Software Architecture ..5

2.1 Static View ... 5
2.1.1 Functional Partition .. 5
2.1.2 Data Structures.. 6

2.2 Dynamic view of the DSP/BIOS McBSP driver ... 10
2.2.1 Driver Open (Driver initialization and Binding) ... 11
2.2.2 Channel Creation... 12
2.2.3 IO Access .. 13
2.2.4 IO Control .. 14
2.2.5 Channel Deletion ... 15
2.2.6 Driver Close... 15
2.2.7 Asynchronous IO Mechanism... 15

2.3 Usage scenario.. 15

McASP Device Drivers Architecture Document

vi Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

List Of Figures

Figure 1 Device driver Layer ...4
Figure 2: Dynamic view of the McASP driver...10

Texas Instruments Proprietary 1

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

1 System Context

1.1 Hardware

The McASP device driver architecture design is in the context of DSP/BIOS
operating system running on DSP 64+ joule

1.2 Software

The McASP mini-driver discussed here is running DSP/BIOS on the 64x+ DSP.
However the McASP driver can also be ported to any other OS, with minimal
modifications in the OS specific section of the driver. More details can be found in
the later part of this section.

1.2.1 Operating Environment and dependencies

Details about the tools and the BIOS version that the driver is compatible with can
be found in the system Release Notes.

1.3 Design Philosophy

This device driver is written in conformance to the DSP/BIOS IOM device driver
model and handles communication to and from the multi-channel audio serial port
(McASP), and uses the EDMA or interrupts to transfer the data.

The transmit and receive sections of the McASP can be configured to operate
independent of each other. All serializers of the McASP can be assigned to perform
either operation; both acting synchronously as transmit or receive interface or any
number of serializers can be set as transmit or receive mode.

1.3.1 The Channel Concept

The transmit and receive sections of the McASP are represented by channels in
the mini-driver. The McASP device state is maintained in a ‘Port Object’. This
contains placeholders for two channels and all requested serializers.

The lifetime of the channel is between its creation using mcasp_mdCreateChan
and its deletion using mcasp_mdDeleteChan.

The application can interface with the McASP peripheral in two ways:

1) Assign all serializers to the transmit/receive unit

McASP Device Drivers Architecture Document

2 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

In this case, the application requests for a single channel with all serializers to
be created. The mini-driver checks if all serializers are free to be allocated, and
then allocates all to one channel. A single EDMA channel is allocated to
service all serializers if DMA mode of data transfer is requested. The EDMA
operation is dealt with in more detail in the next section. The other channel is
invalid, and cannot be allocated, as there is no serializer is free to be assigned
to this channel. Upon deletion of the active channel, all serializers are freed
and can then be allocated to one/two channels as per the requirement.

2) Assign requested serializers per channel

In this case, the application presents the mini-driver with the request for a
channel with index of serializers to perform transmit/receive operation. If the
resources are available, this channel is allocated, and EDMA channel is
allocated for movement of data to requested serializers if DMA mode of data
transfer is requested. The second channel can then be allocated on a request
for another channel with rest of the free serializers.

Note: The driver does not support two concurrent channels performing the
same operation (transmit/receive). The mini-driver allocates two channels only
if they perform different I/O operations.

The application can delete a channel after it has finished with that operation.
This channel can then be re-allocated to support a multiple serializers transfer.
In case all serializers are free, or both channels are deleted, the application can
then request for a channel with all serializers allocated to it.

1.4 EDMA interaction with McASP mini-driver channel

Each operation – transmit/receive – of the McASP will have EDMA channel
allocated to it to service its data requirements. The two operations of the
McASP are provided with EDMA event each to trigger transfers. The mini-driver
also registers the dmaIsr function to service interrupts raised by this channel.

The contents of the data packet processed every time the dmaIsr is invoked
are discussed in the next section under the IOM_Packet topic.

Note: The dmaIsr function services interrupts raised by DMA channels for both
transmit and receive operations.

As a reference case, let us take up EDMA channel servicing the transmit
section of the McASP. The receive operation would be similar in its treatment.

Depending on the channel configuration, two cases exist in channel
configuration:

1) The transmit channel has one serializer assigned to it

While creating the transmit channel, the mini-driver requests for a single
EDMA channel to service this. The McASP transmit event is registered with
this channel as a trigger for data transfer.

Texas Instruments Proprietary 3

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

The EDMA interacts with the transmit section of the McASP using its data
address on the DSP shared bus of VBUSP. During McASP channel create,
the EDMA channel to service this is programmed with the destination
address, element, frame and block sizes and to generate an interrupt after
a frame/block is transferred. At this time two EDMA PaRAM tables are also
requested and filled up with default values. For a transmit channel the
source of transmit is either taken as the loop job buffer sent by the
application or the default loop job buffer. Only if the application provides
with a callback function for loop job that the interrupts are enabled for
EDMA. The two EDMA PaRAM tables are used for linking. The moment
when McASP does not have any buffers to send, it starts the loop job. The
EDMA channel is then turned on and waits for the McASP to trigger it for
data transfer. Each data transfer will happen at every event.

Note: The McASP supports only 32 bit transfers to the serializer buffers.
Due to this limitation, the EDMA channel element size must necessarily be
32 bits.

When the McASP transmit section is taken out of reset, it triggers EDMA
event. The EDMA channel transfers one element for every event triggered,
which is done every time the McASP consumes the previous element
transferred.

As per the programming of the EDMA, when the last element of the
frame/block is transferred, a FRAMEIE/BLOCKIE interrupt is raised by this
channel, which is serviced by the dmaIsr function.

This function checks the channels pending queue for further data packets.
If the queue is empty, it links the loop job buffer (either passed from the
main application or default loop buffer) to perform the loop job. It waits for
the application to send another buffer to be processed.

If the channel’s pending queue holds data packets to be processed, the
dmaIsr picks the next packet from the queue and programs the EDMA
channel with its source address. This ensures a constant data flow to the
McASP transmitter.

2) The transmit channel has multiple serializers assigned to it.

While creating the transmit channel, the mini-driver requests for a single
EDMA channel to service all the serializers. The McASP transmit event is
registered with this channel as a trigger for data transfer.

Since the EDMA would have to send multiple elements for every event
triggered – one for each serializer – the channel should be programmed to
be frame synchronized. Each frame would contain multiple elements of
data for multiple serializers. The EDMA channel should be programmed to
trigger an interrupt for every block completion (BLOCKIE).

Note: The McASP supports only 32 bit transfers to the serializer buffers.
Due to this limitation, the EDMA channel element size must necessarily be
32 bits.

McASP Device Drivers Architecture Document

4 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

Each data packet would contain data to service one block. The dmaIsr
would be called on to service the BLOCKIE interrupt generated by the
channel. This would then program the source address with the next data
packet contents, as outlined in the earlier case.

Note: Since the EDMA channel supplies data for multiple serializers per
event, the application should provide data that is interleaved to service
each serializer alternately.

The figure below shows the data transferred for each event in case of a
transmit channel.

Figure 1 Device driver Layer

In case of receive data, the data read from the VBUSP port would be from
alternate serializers for each event, and the application would have to sift
through this to retrieve multiple data streams. It is required to program the
McASP to change VBUSP from VBUS when it is operating in EDMA mode.

Also for receive data similar to the transmit data we request for two PaRAM
tables used for linking. Loop job also operates in the similar way for
receive. On ISR, if there are no other packets to be linked, it starts the loop
job.

Note: EDMA channel fills the data to serializers which are configured as
transmit mode for every transmit EDMA event. In the same manner it
reads the data from all serializers when receive event is occurred.

Serializer 9
Buffer Packet 9

Written one after
another to DAT

Written one after
another to DAT

Serializer 0
Buffer packet 1

Serializer 1
Buffer Packet 1

Serializer 9
Buffer packet 9

Serializer 0
Buffer packet 0

Serializer 1
Buffer packet 1

EVT

EVT

port

port

Texas Instruments Proprietary 5

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

1.5 Design Constraints

Due to hardware limitations, the McASP mini-driver imposes certain constraints on
how the data is routed to the device.

 All interactions with the McASP buffer registers take place only through the
VBUS port with proper XBUF offset address when operating in interrupt
mode.

In case of transmit channel, the destination address should be derived from
base address of McASP with offset of XBUF for which the data transfer is
required for the lifetime of the channel.

In case of receive channel, the source address should be programmed to a
value derived from offset of XBUF for which the data transfer is required for
the lifetime of the channel.

 All writes to the serializer buffer have to be of 32 bits length. The EDMA
element size for all transfers should de declared as 32 bits.

 The EDMA cannot be used to fill in data to the DIT Channel Status RAM
and User Data RAM.

This has to be handled by the CPU or VBUS. In the mini-driver, the
IOM_Packet contains pointers to the data to be filled in the Channel Status
RAM and User Data RAM, and these are filled in before the EDMA is
programmed with the corresponding packet during the dmaIsr interrupt
service function.

2 McASP Driver Software Architecture

This chapter deals with the overall architecture of DSP/BIOS McASP device
driver, including the device driver partitioning as well as deployment
considerations. We’ll first examine the system decomposition into functional
units and the interfaces presented by these units. Following this, we’ll discuss
the deployed driver or the dynamic view of the driver where the driver
operational scenarios are presented.

2.1 Static View

2.1.1 Functional Partition

The device driver is partitioned into distinct sub-components, consistent with
the roles and responsibilities already discussed in section 1.3. In the
following sub-sections, each of these functional sub-components of the
device driver is further elaborated.

As per the design philosophy, the McASP driver shall be split into three
layers in order to increase the reusability of the driver. The upper layer called
the Device Independent layer responsible for buffer management and
application synchronization. The middle layer is called the IOM layer and is
specific to the McASP and EDMA devices, which exposes standard

McASP Device Drivers Architecture Document

6 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

interfaces to the device independent layer. The lower level layer is called
Lower level controller constitutes a set of well-defined API that abstracts
low-level details of the underlying SoC device so that user can configure,
control (start/stop etc.) and have read/write access to peripherals without
having to worry about register bit field details.

2.1.1.1 LLC Layer

Please refer section 1.2.2 of BIOS_PSP_User_Guide.doc for Hardware layer
explanation.

2.1.1.2 Device Driver Core functionality (DDC)

Please refer section 1.2.3 of BIOS_PSP_User_Guide.doc for DDC layer
explanation.

2.1.1.3 McASP driver’s IO Mini Layer

Please refer section 1.2.4 of BIOS_PSP_User_Guide.doc for IOM Layer
explanation.

The functions exported by the McASP IO Mini layer through the IOM_Fxns
table “McASP_IOM_FXNS” are listed below.

 mdBindDev: Called by the application to bind the device to the IO mini
layer.

 mdCreateChan: Used to create I/O channels.
 mdDeleteChan: Used to delete I/O channels.
 mdSubmitChan: Used by the upper layer for submitting I/O packets

containing the information needed by the mini driver to program the
EDMA channels for data transfer.

 mdContrlChan:Used to perform device specific control operations.
 mdUnBindDev: Used to unbind the IO mini driver from the device.

2.1.2 Data Structures

The mini-driver employs the PortObj and ChannelObj structures to maintain state of
the port and channel respectively.

In addition, the driver has two other structures defined – the devParams and
chanParams. The devParams structure is used to pass on data to initialize the
driver during DSP-BIOS initialization. The chanParams structure is used to specify
required characteristics while creating a channel.

The data structures and their usage are explained in more detail in the API
reference guide.

2.1.2.1 The McASP Port Object

 #define PSP_MCASP_NUM_CHANS 2 //maximum 2 channels

 #define PSP_MCASP_MAX_SERS 5 // FIVE serializers to the port

Texas Instruments Proprietary 7

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

typedef struct _McASPPortObj_t{

Bool inUse;

/**< Marks if port is currently in use */

Uint16 InstNum;

/**< Preserve instance number in port */

Bool isDataBufferPayloadStructure;

/**< Input request is a flat data buffer or a payload structure */

McASPObj XmtObj;

/**< Holds transmit channel to the McASP. */

McASPObj RcvObj;

/**< Holds receive channel to the McASP. */

} McASPPortObj , *McASPPortHandle;

2.1.2.2 The McASP Object

typedef struct {

 PSP_McaspChannelStatus status;

/**< Keeps tab of whether channel is already in use takes value of
UNALLOCATED or ALLOCATED */

 Uint16 mode;

 /**< mode for channel */

 Uint16 inUse;

 /**< mode for cache */

 PSP_mcaspMode channelOpMode;

 /**< Mode of operation: Transmit or Receive */

 struct McASPPortObj_t *portHandle;

 /**< Pointer to McASP device - Back pointer to device configuration structure */

 PSP_Handle ioHandle;

 /**< ddc channel Handle */

McASP Device Drivers Architecture Document

8 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 IOM_Packet *dataPacket;

 /**< current active I/O packet */

 IOM_TiomCallback cbFxn;

 /**< Notify client when I/O complete */

 Ptr cbArg;

 /**< Callback Function */

} McASPChannelObj, *McASPChannelHandle;

2.1.2.3 The devParams structure

typedef PSP_Mcasp_DevParams {

 /* Initial setup for the McASP */

 CSL_McaspHwSetup *mcaspHwSetup;

} PSP_Mcasp_DevParams;

2.1.2.4 The chanParams structure

typedef struct PSP_Mcasp_ChanParams {

 Uint16 noOfSerRequested;

 /**< Serializer requested by channel. Channel can ask for both. */

 Uint32 indexOfSersRequested[PSP_MCASP_MAX_SERS];

 /**< Multi Serializer numbers requested by channel
*/

 PSP_McaspHwSetupData *mcaspSetup;

 /**< Setup information for xmt/rcv sections of the McASP */

 Bool isDmaDriven;

 /**< This parameters determines whether channel operates in DMA mode

 All DMA parameters would be read only if this is TRUE */

 Uint16 channelMode;

 /**< Specifies mode of operation (TDM or DIT) for transmit channel or else

just receive mode*/

 PSP_Handle hEdma;

 /**< Edma handler */

Texas Instruments Proprietary 9

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 appCallback prdCallback;

 /**< * callback required when the loop job is running -

 * must be callable directly from the IOM layer */

 Ptr prdBuf;

 /**< Buffer to be transferred when the loop job is running */

 Uint16 prdCnt;

 /**< Number of frames to be transferred before calling the callback */

} PSP_Mcasp_ChanParams;

2.1.2.5 The IO_Packet structure

The IOM_Packet has an address field that is a void* pointer. This will be used to
pass on information about both the EDMA start address to be programmed for the
packet, as well as the Channel Status RAM and User Data RAM information for this
packet. The Channel Status RAM and User Data RAM contain valid data only if the
channel is transmitting in DIT mode. In other cases, these fields are not read by the
channel.

typedef struct _PSP_Mcasp_PktAddrPayload {

 PSP_McaspChStatusRam *chStat;

 /**< Channel Status RAM info */

 PSP_McaspUserDataRam *userData;

 /**< User Data RAM info */

 Bool writeDitParams;

 /**< Determines whether Channel Status and User Data get

 * written in case of interrupt mode */

 Uint32 *addr;

 /**< Actual address to program DMA with

 Address of data word if transactions are interrupt driven */

} PSP_Mcasp_PktAddrPayload;

McASP Device Drivers Architecture Document

10 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

2.2 Dynamic view of the DSP/BIOS McBSP driver

Figure 2: Dynamic view of the McASP driver

When the bios calls mdBindDev() of mini driver of McASP driver, the PSP_mcaspCreate ()
function of the IOM layer is invoked first and is responsible for creating device instance and
initializing the device object and channel object structure of the McASP IOM driver.

Figure 2. shows the flow of data from the application to the driver to the underlying physical
device. The IO packet shown in the Figure 2 is standard structure used to submit the I/O
requests to the IOM layer of the McASP driver. It contains pointer to the data buffer, size of
the buffer and the status of the request. The mode of the IO channel with which the packet

 Device independent layer

ISR
Processing

SoC

EDMA
Interrupts

Callback
fxn

Submit
Packet

Channel
Instance

IO Packet queue

Device and
Channel
Specific
controls

Channel
Create

Device
Open

Device
Global
data

IOM layer

IIOOMM PPaacckkeett

IIOOMM
PPaacckkeett

Apps
callback

Application

GIO_Create() GIO_read() GIO_write()GIO_abort()GIO_flush()GIO_control()
GIO Class driver API’s

Texas Instruments Proprietary 11

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

was issued decides whether it is a read or a write command, not the IO packet command
field.

Before data communication between an application and a device can begin, a channel
instance handle must be returned to the application by a call to GIO_create() API. The
channel handle represents a unique communication path between the application and
McASP device driver. All subsequent operations that talk to the driver shall use this channel
handle. A channel object typically maintains data fields related to a channel's mode, I/O
request queues, and possibly driver state information. Application should relinquish channel
resources by deleting all channel instances when they are no longer needed through a call
to GIO_close ().

Application shall call GIO_submit () API to submit read/write I/O request to driver. The
Device Independent layer shall construct an I/O packet and submits the packet to the IOM
layer to do the I/O operation. When a mini-driver completes its processing, usually in an
ISR context, it calls its associated callback function to pass the IO packet back to the
device independent layer of the McASP driver and the device independent layer of the
driver in turn calls the application specified callback for that particular I/O request. The
submit/callback function pair handles the passing of IO packets between the application
and the McASP IOM layer of the driver. Before an IO packet is passed back to the upper
layer driver, the mini-driver must set the completion status field and the data size field in the
IO Packet. This status value and size are returned to the application call that initially made
the I/O request.

2.2.1 Driver Open (Driver initialization and Binding)

The McASP IOM driver initializes the global data used by the McASP driver. The
initialization function for the McASP driver is not included in the IOM_Fxns table, which is
exported by the McASP driver; instead a separate extern is created for use by the
DSP/BIOS. The initialization function is responsible for returning the “IOM” function table
structure, which is needed by the device independent layer of the driver.

The initialization function sets the “inUse” field of both the McASP port object instance and
the channel object instance to “FALSE” to make sure that the driver is not being used by
any applications.

The binding function (mdBindDev) of the McBSP IOM mini-driver is called by application
before using the driver. This function shall typically perform the following actions:

1. Set device defaults and perform setup based on the configured device
parameters and optional global device data.

2. Acquire driver resources such as McASP.
3. Configure the McASP by default for the following operations.

o Data output for audio playback
o Data input for audio recording
o Configure the McASP in DSP data format mode of the

audio codec.
o Configure the McASP to receive the Frame Sync and bit

clock either externally or internally for both receiver and
transmitter depending on the device parameter input.

McASP Device Drivers Architecture Document

12 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

The mdBindDev () of the McASP IOM driver expects device setup
parameters in the “PSP_mcaspDevParams” structure defined in the
“psp_mcasp.h” header file.

The parameters are explained in the following table

Table 1: Device setup parameters table

Device Parameters Description
mcaspHwSetup Initial setup for the McASP.

2.2.2 Channel Creation
The application can create communication channels by calling
GIO_create() API which in turn calls McASP IO mini driver’s
mdCreateChan function. The application shall call mdCreateChan twice
with change in mode parameter to create two logical channels one for input
(for audio recording) and one for output (for audio playback). The
mdCreateChan function should allocate a channel object and set the fields
in the channel object to their initial values as needed. For each channel
there will be a channel object and the mode field in the channel object
specifies whether this is an input or output channel. McASP driver acquires
the necessary EDMA channels used to transfer of data. Application has to
pass the channel parameters in the “PSP_mcaspChanParams” structure
exposed by the driver.

Table 2: Channel setup parameters table.

Channel Parameters Description
“noOfSerRequested” Serializer requested by channel.

Channel can ask for both.

“indexOfSersRequested” Multi Serializer numbers requested
by channel

“mcaspSetup” Setup information for xmt/rcv
sections of the McASP

“isDmaDriven” This parameters determines
whether channel operates in DMA
mode. All DMA parameters would
be read only if this is TRUE

“channelMode” Channel mode: TDM or DIT

“wordWidth” The parameter informs the driver
what is the width word (not slot) and
this help driver indirectly to decided
no. of bytes to be transferred into
each serialer for each slot- This is
very important parameter - in case
of invalid value default value driver
will assume is 32

“userLoopJobBuffer” Buffer to be transferred when the
loop job is running it should be

Texas Instruments Proprietary 13

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

noted that this buffer size should be
n*userLoopjobLength where n is the
no of serialisers configured in the
direction of the channel we are
creating

“userLoopJobLength” Number of bytes of the userloopjob
buffer for each serialiser Please
note that this is no. of bytes and this
should be pre-calcuated properly for
word width of slot - Please refer the
wordWidth of this structure

“edmaHandle” Handle to the EDMA Driver

“gblCbk” callback required when global error
occurs must be callable directly
from the ISR context

“noOfChannels” No of channels of data to be
transmitted after the frame sync.
This input is valid only for TDM in
DSP mode mode of communication
E.g.--For Stereo data the value is 2
and for 6 channel dac taking all
channel data through one serialiser
the value of this member will be 6
Note: But for same 6ch dac taking
stereo data though 3 seperate
serialiser value should be 2

2.2.3 IO Access

Application invokes GIO_read () and GIO_write () APIs for data transfer
using McASP. These APIs in turn creates and submits an IOM packet
containing the all the transfer parameters needed by the IOM driver to
program the underlying hardware for data transfer. The mdSubmitChan
function of the McASP IOM driver must handle command code passed to it
as part of the IOM_Packet structure. Depending on the command code, it
either handles the code or returns the IOM_ENOTIMPL (not implemented)
error code.
The command codes currently supported by the McASP IOM mini-driver
are: IOM_READ, IOM_WRITE, IOM_ABORT, and IOM_FLUSH.

 IOM_READ. Drivers that support input channels must implement
IOM_READ.

 IOM_WRITE. Drivers that support output channels must
implement IOM_WRITE.

 IOM_ABORT and IOM_FLUSH. To abort or flush I/O requests
already submitted, all I/O requests pending in the mini-driver must
be completed and returned to the device independent layer. The
mdSubmitChan function should dequeue each of the I/O requests
from the mini driver's channel queue. It should then set the size

McASP Device Drivers Architecture Document

14 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

and status fields in the IOM_Packet. Finally, it should call the
cbFxn for the channel.
 While aborting, all input and output requests are discarded.
 While flushing, all output requests are processed normally and

all input requests are discarded. This requires the processing
of each IOM_Packet in the original order they were queued up
to the channel.

2.2.4 IO Control

McBSP IO Mini driver implements device specific control functionality
which may useful for any audio codec driver, which internally uses the
McBSP IOM driver. Application may invoke the control functionality through
a call to GIO_control (). McBSP IOM driver supports the following control
functionality.

 PSP_CHAN_TIMEDOUT: Send channel timeout command.

 PSP_CHAN_RESET: Send channel reset command.

 PSP_MCASP_CNTRL_SET_FORMAT_CHAN: Set channel
format.

 PSP_MCASP_CNTRL_GET_FORMAT_CHAN: Get channel
format.

 PSP_MCASP_CNTRL_SET_GBL_REGS: Set registers affecting
McASP device.

 PSP_MCASP_SET_DLB_MODE: Set digital loopback mode.

 PSP_MCASP_SET_DIT_MODE: Set DIT mode.

 PSP_MCASP_STOP_PORT: Stops the data transfer operation
after all the linked requests are complete.

 PSP_MCASP_ START_PORT: Re-starts the data transfer
operation from the queued requests if they are queued or
whenever a next requests are made from application

 PSP_CTRL_McASP_MODIFY_LOOPJOB: Issues a loopjob
operation. When issued with non NULL loopjob buffer driver will
enter in to loop job operation and when issued with loopjob buffer
equal to NULL driver stops loop job and links loop parameter to
zero data buffer.

 PSP_CTRL_McASP_MUTE_ON: Enable Mute command. This will
mute the audio data by issuing requests with data buffer filled with
zeros.

 PSP_CTRL_McASP_MUTE_OFF: disable Mute command. This
will enable the current data to playback by replacing zero data
buffer with the request buffer

 PSP_MCASP_DEVICE_RESET: Resets the entire the device and
re-configure the device.

Texas Instruments Proprietary 15

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

 PSP_MCASP_CNTRL_AMUTE: Enable\Disable Amute command.

 PSP_MCASP_GPIO_CONFIG: Enable\Disable GPIO.

 PSP_MCASP_QUERY_AMUTE: Query McASP Amute register.

 PSP_McASP_PAUSE: Stops the data transfer operation after all
the linked requests are complete.

 PSP_McASP_RESUME: Re-starts the data transfer operation from
the queued requests if they are queued or whenever a next
requests are made from application

 PSP_CTRL_RCV_GPIO_INPUT: This IOCTL is specific for EVM.
When McASP is in master mode (i.e. AIC33 is in slave mode) we
need to configure receive pins as GPIO in input mode. This IOCTL
configures AFSR and ACLKR pins in GPIO input mode

2.2.5 Channel Deletion

Application can free the resources held by the channel, if the channel is
currently not in use, by calling GIO_delete() API. The corresponding
“mdDeleteChan ()” function of the McASP IOM driver shall run from the
application context and should de-allocate the specified channel object.

2.2.6 Driver Close
The “mdUnBindDev ()” shall free resources allocated by the “mdBindDev
()” function. If successful, “mdUnBindDev ()” function should return
IOM_COMPLETED. If unsuccessful, this function should return a negative
error code.

2.2.7 Asynchronous IO Mechanism
The McASP IOM driver supports asynchronous IO mechanism. In
Asynchronous IO mechanism multiple IO requests can be submitted in one
shot without causing the thread to block while waiting for resources.
Application can submit multiple I/O requests using the GIO_read() or
GIO_write () APIs and then callback function that was specified during the
transfer request submission shall be called as a result of transfer
completion by the driver for every transfer. The driver queues the IOM
packets submitted internally to support the asynchronous I/O.

2.3 Usage scenario

The McASP mini-driver is so designed that each of the channels can be used
independently. The following diagrams depict the flow of control during the course
of operation.

McASP Device Drivers Architecture Document

16 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is
provided under Nondisclosure and License and is not to be reproduced or distributed without prior
written consent of Texas Instruments Inc.

In the DSP-BIOS model, the flush and abort are blocking calls, i.e. the GIO layer
waits for the flush/abort packet to be returned marked as IOM_COMPLETED, and
no new packets can be submitted to the channel till this is done. After a flush/abort
is done, the application can submit packets using GIO_submit.

A similar scenario is presented if the application operates the channel in SYNC
mode. In this case, the application submits a packet to the mini-driver and then
waits for the packet to be returned, either marked as IOM_COMPLETED when the
packet has been processed or IOM_ABORTED in case of a time-out condition.

