
Platform Software Group

DSP/BIOS I2C Device Driver

User's Manual
U s e r ' s G u i d e

Architecture/Design
Document

I2C Device Drivers Architecture Document

 Page ii of 35Texas Instruments Proprietary Information

Revision History

Document
Version

Author(s) Date Comments

0.1 Nagarjuna Kristam November 6, 2006 Initial version – created for DRA44X

0.2 Nagarjuna Kristam December 11, 2006 - Added dynamic IO mechanism
support in the design.

- Details added/enhanced as per
MT-TI review on Nov08.

- Updated Error codes, IOCTLs
(nov19)
- Divided HW setup structure into three
types (nov21)

0.3 Nagarjuna Kristam December 16, 2006 Updated the document as per the
review comments

0.4 Nagarjuna Kristam January 29, 2007 Renamed DM64g to DM648

0.5 Nagarjuna Kristam June 15, 2007 Corrected version numbers for
tools used

0.6 Nagarjuna Kristam July 6, 2007 Adding XDC toll information

0.7 Nagarjuna Kristam July 6, 2007 Removed hw even call back
support

0.8 Nagarjuna Kristam October 22, 2007 Updated XDC and BIOS versions

0.9 Nagarjuna Kristam November 14, 2007 Updated for DM6437/C6424 and
DM648/C6452

 Page iii of 35Texas Instruments Proprietary Information

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make
corrections, modifications, enhancements, improvements, and other changes to its
products and services at any time and to discontinue any product or service without
notice. Customers should obtain the latest relevant information before placing orders
and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design.
Customers are responsible for their products and applications using TI components. To
minimize the risks associated with customer products and applications, customers
should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted
under any TI patent right, copyright, mask work right, or other TI intellectual property
right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third–party products or services does
not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party
under the patents or other intellectual property of the third party, or a license from TI
under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if
reproduction is without alteration and is accompanied by all associated warranties,
conditions, limitations, and notices. Reproduction of this information with alteration is
an unfair and deceptive business practice. TI is not responsible or liable for such
altered documentation.

Resale of TI products or services with statements different from or beyond the
parameters stated by TI for that product or service voids all express and any implied
warranties for the associated TI product or service and is an unfair and deceptive
business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©2006, Texas Instruments Incorporated

I2C Device Drivers Architecture Document

 Page iv of 35Texas Instruments Proprietary Information

Table of Contents

1 System Context...1

1.1 Terms and Abbreviations...1

1.2 Related Documents..1

1.3 Hardware ..2

1.4 Software..2
1.4.1 Operating Environment and dependencies..2
1.4.2 System Architechture..3

1.5 Component Interfaces..4
1.5.1 IOM Interface..4
1.5.2 DDC Interface...5
1.5.3 CSL Interface ...5

1.6 Design Philosophy...7
1.6.1 The Port and Channel Concept...7
1.6.2 Design Constrains ..7

2 I2C Driver Software Architecture...8

2.1 Static View..8
2.1.1 Functional Decomposition...8
2.1.2 Data Structures...9

2.2 Dynamic View...12
2.2.1 The Execution Threads...12
2.2.2 Input / Output using I2C driver ..12
2.2.3 Synch-IO Mechanism ...12
2.2.4 IOM (DDA Adaptation)..13
2.2.5 DDC (Driver Core) ..19

3 APPENDIX A – IOCTL commands ..28

4 APPENDIX B – Error Codes ...28

5 APPENDIX C – Flags...28

 Page v of 35Texas Instruments Proprietary Information

List Of Figures

Figure 1: I2C device.. 2
Figure 2: System Architecture ... 3
Figure 3: Port and Channel Object .. 7
Figure 4: I2C driver static view .. 8
Figure 5: Driver Create detailed Flow Diagram -1 .. 13
Figure 6 Driver Open Detailed Flow Diagram - 1.. 14
Figure 7: Driver IOCTL Detailed Flow Diagram -1.. 15
Figure 8: Driver transfer Detailed Flow Diagram - 1 ... 16
Figure 9: Driver Close Detailed Flow Diagram - 1 .. 17
Figure 10: Driver Delete Detailed Flow Diagram – 1 .. 18
Figure 11 Driver Create Detailed Flow Diagram – 2.. 19
Figure 12: Driver Open Detailed Flow Diagram – 2.. 21
Figure 13 Driver IOCTL Detailed Flow Diagram - 2... 22
Figure 14: Driver transfer Detailed Flow Diagram - 2 ... 23
Figure 15 Driver transfer Detailed Flow Diagram - 3 ... 24
Figure 16: Driver transfer in ISR Detailed Flow Diagram... 25
Figure 17 : Driver Close Detailed Flow Diagram – 2.. 26
Figure 18: Driver Delete Detailed Flow Diagram – 2 .. 27

 Page 1 of 35Texas Instruments Proprietary Information

1 System Context

The purpose of this document is to explain the device driver design for I2C
peripheral, using DSP/BIOS operating system running on DSP 64+ joule.

Note: The usage of structure names and field names used throughout this design
document is only for indicative purpose. These names shall not necessarily be
matched with the names used in source code.

1.1 Terms and Abbreviations

Term Description

API Application Programmer’s Interface

CSL TI Chip Support Library – primitive h/w abstraction

IOM Input/Output Mini-driver

DDC Device Driver Core - TI terminology for portion of device
driver that is abstracted of any given OS

I2C Inter Integrated Circuit

FSM Finite State Machine

GIO Generic Input/Output

ICDRR I2C Data receive register

ICDXR I2C Data transmit register

ICMDR I2C mode register

ICRSR I2C receiver shift register

ICXSR I2C transmit shift register

IP Intellectual Property

ISR Interrupt Service Routine

LLC Low Level Controller

OS Operating System

PSP Platform Support Package

SCL Serial Clock line

SDA Serial Data Line

SOC System On Chip

1.2 Related Documents
1. SPRU4.4g.pdf DSP/BIOS Driver Developer’s Guide

2. spruek8_I2C.pdf I2C specification

I2C Device Drivers Architecture Document

 Page 2 of 35Texas Instruments Proprietary Information

1.3 Hardware

The I2C device driver design is in the context of DSP/BIOS running on DSP 64x+
joule core.

The I2C module core used here has the following blocks:

Figure 1: I2C device

1.4 Software

The I2C mini-driver discussed here is running DSP/BIOS on the 64x+ DSP.
However the I2C driver can also be ported to any other OS, with minimal
modifications in the OS specific section of the driver. More details can be found in
the later part of this section.

1.4.1 Operating Environment and dependencies

Details about the tools and the BIOS version that the driver is compatible
with can be found in the system Release Notes.

 Page 3 of 35Texas Instruments Proprietary Information

1.4.2 System Architechture

The Application would invoke the driver routines through the GIO Calls APIs, whiich
is OS based adaptation layer and device drivers are accessed by the applications
for performing I/O using BIOS through the above mentioned GIO calls.

IOM is the component that exposes the driver Core to the OS. But the
implementation of IOM is in such a way that it forms a wrapper or gel layer in
between GIO and actual DDC layer. Thus we can say that IOM acts as a DDA
adaptation layer.

DDC is the driver core which actually performs the device specific operations. This
works as an independent driver also, by exposing all its PSP API’s to application.
CSLR is the layer that is embedded inside DDC and has a direct access to the
hardware.

Figure 2 shows the overall DSP/BIOS device driver architecture. For more
information about the IOM device driver model, see the DSP/BIOS Device Driver
Developer’s Guide (SPRU616). The rest of the document elaborates on the
architecture of the Device driver by TI.

The block diagram below shows the overall system architecture.

Figure 2: System Architecture

This device driver can be used as a general-purpose stand-alone mini-driver to
interface with the I2C peripheral.

Please refer PSP framework manual to get to know more details about the various
device driver layers.

PAL OS/
PAL SYS

Application

DSP/BIOS - GIO

I2C IOM (DDA
adaptation)

I2C CSLR

Hardware

I2C DDC

I2C Device
Driver

I2C Device Drivers Architecture Document

 Page 4 of 35Texas Instruments Proprietary Information

1.5 Component Interfaces

In the following subsections, the interfaces implemented by each of the sub-
component are specified. Refer to I2C device driver API reference documentation
for complete details on APIs.

1.5.1 IOM Interface

The IOM constitutes the Device Driver Manifest to Application. The user may not
look into IOM interface, especially the upper-edge services exposed to the
Application/OS. All other interfaces discussed later in this document are more of
interest to people developing/maintaining the device driver.

The IOM can be modified to re-target Driver and/or customize to specific Apps
framework by doctoring the upper-edge services.

The i2c_mdBindDev () populates static settings in driver object creates the
necessary interrupt handler, attaches the Driver Core interfaces. All these
operations in effect, constitute the “loading” of I2C Driver implementation. The
i2c_mdUnbindDev () constitutes the “Un-loading” of the I2C driver. The IOM mini-
driver implements the following API interfaces to the class driver.

S.No IOM Interfaces Description

1 i2c_mdBindDev () Allocates and configures the
I2C port specified by devid.

2 i2c_mdUnbindDev () Removes the I2C device
from use.

3 i2c_mdCreateChan () Creates a communication
channel in specified mode to
communicate data between
the application and the I2C
device instance.

4 i2c_mdDeleteChan () Frees a channel and all its
associated resources.

5 i2c_mdControlChan () Implements the IOCTLS for
I2C IOM mini driver.

6 i2c_mdSubmitChan () Submit an I/O packet to a
channel for processing.

 Page 5 of 35Texas Instruments Proprietary Information

1.5.2 DDC Interface

DDC implements the core device driver layer and it provides standard abstract
interfaces to the upper layers as per the PSP framework standards architecture.

The DDC layer APIs of I2C driver can be called directly from the application or from
the OS adaptation layer. So this can be ported to any OS without any modification.

The following basic interfaces are implemented and exposed to the IOM layer by
the DDC layer of I2C driver.

S.No DDC Interfaces Description

1 PSP_i2cCreate () Initialize/Setup the I2C with
the given configuration
parameters.

2 PSP_i2cDelete () Does the reverse of
PSP_i2cCreate.

3 PSP_i2cOpen () Configure I2C’s H/W
configuration as mentioned in
create and registers interrupt
handler if opened in interrupt
mode channels.

4 PSP_i2cClose () Does the reverse of
PSP_i2cOpen.

5 PSP_i2cIoctl () Perform input/output control
on I2C Hardware.

6 PSP_i2cTransfer () Read/Write a buffer of data
to the specified slave
address.

1.5.3 CSL Interface

The CSL register interface (CSLr) provides register level implementations. CSLr is
used by the DDC to configure I2C registers. CSLR is implemented as a header file
that has CSLR macros and register overlay structure.

I2C Device Drivers Architecture Document

 Page 6 of 35Texas Instruments Proprietary Information

 Page 7 of 35Texas Instruments Proprietary Information

1.6 Design Philosophy

This device driver is written in conformance to the DSP/BIOS IOM device driver
model and handles communication to and from the I2C hardware.

1.6.1 The Port and Channel Concept

The IOM model provides the concept of the Port and Channel for the realization of
the device and its communication path as a part of the driver implementation. The
I2C driver provides one bi-directional (IOM read/write) channel in order to perform
IO operations. The Port Object maintains the state of the I2C device or an instance.
The port can also be called as instance or device and the names can be used
interchangeably. The port object contains placeholders for all channel objects for
TX and RX, in this implementation it is 5(and this can be changed using a variable).
The following figure shows the generic port-channel-hardware mapping for I2C
driver.

Figure 3: Port and Channel Object

1.6.2 Design Constrains

I2C mini-driver imposes the following constraint(s).

 I2C driver supports only synchronous mode of operation to the application.

 I2C driver shall only work with polled and Interrupt mode of operation. No
DMA support is available in this implementation

 I2C driver shall not support dynamically changing modes between Interrupt
and Polled modes of operation.

TX
Buffer

Rx
Buffer

IOM RW
channel

Port Object -1

I2C HW instance-1

I2C Device Drivers Architecture Document

 Page 8 of 35Texas Instruments Proprietary Information

2 I2C Driver Software Architecture

This section details the data structures used in the I2C mini-driver and the interface
it presents to the GIO layer. A diagrammatic representation of the mini driver
functions is presented and then the usage scenario is discussed in some more
details.

Following this, we’ll discuss the deployed driver or the dynamic view of the driver
where the driver operational scenarios are presented.

2.1 Static View

2.1.1 Functional Decomposition

The driver is designed keeping a device, also called port and channel concept in
mind. The instance of I2C is treated as a device, which each can have a single
read/write channel.

This driver uses two internal data structures, a port object and a channel object, to
maintain its state during execution. The I2C peripheral needs the port instance to
maintain its state. The channel object holds the IOM channel state during
execution. These are explained in greater detail in the following Data Structures
sub-section. The following figure shows the static view of I2C driver.

Figure 4: I2C driver static view

TX
Buff

RX
Buff

Channel Object (Read/Write)

I2C instance-1

Port Object -1

DDC DDC Object -1

IOM

GIO calls from Application

Channel Object (Read/Write)

 Page 9 of 35Texas Instruments Proprietary Information

2.1.2 Data Structures

The mini-driver employs the PortObj and ChannelObj structures to maintain state of
the port and channel respectively.

In addition, the driver has two other structures defined – the device params and
channel params. The device params structure is used to pass on data to initialize
the driver during DSP-BIOS initialization. The channel params structure is used to
specify required characteristics while creating a channel. For current
implementation channel parameters are NULL.

The following sections provide major data structures maintained by IOM, DDC and
PSP interface. For more details about IOM and DDC data structures and their
usage can be found in the API reference guide

2.1.2.1 The Port Object (IOM)

S.No Structure Elements
(i2c_portObj)

Description

1 portNumber Preserve port or instance
number of I2C

2 State Current state of the port
object

3 Chan[] Holds all channel objects for
this port

4 Port object Pointer to store ddc object

2.1.2.2 The Channel Object (IOM)

S.No Structure Elements
(i2c_chanObj)

Description

1 dataPacket Pointer to store current IO
packet

2 inUse To check whether channel is
in use or not.

3 mode Channel mode of operation:
Input or Output.

4 port Pointer to device port
i2c_portObj structure.

5 cbFxn and cbArg IOM callback function and its
argument

7 Ddc handle To store the channel handle
passed from DDC layer

I2C Device Drivers Architecture Document

 Page 10 of 35Texas Instruments Proprietary Information

2.1.2.3 The Driver Object (DDC)

S.No Structure Elements
(DDC_I2cObject)

Description

1 i2cRegs CSL registers

2 intNum Interrupt number

3 mode Mode of operation.

4 i2cOwnAddr Own address of I2C

5 moduleInputClkFreq Input clock frequency

7 i2cBusFreq I2C bus frequency

8 numBits Bit count

9 addressing 7/10 bit addressing

10 instanceId Instance id

11 state State of driver

12 numOpens Number of opened channels

13 pendingState IO is in progress or not

14 Cancel_Pending_IO To cancel current IO

15 devBusySem Semaphore to block other tasks
in accessing I2C

16 completionSem Semaphore to block driver during
interrupt mode

17 currError Current transmission error

18 currFlags Current flags

19 currBuffer Current transaction buffer

20 currBufferLen Current transaction buffer length

21 hwEventCallback Call back when accessed as
slave

22 appSlvHandle Argument to above callback

 Page 11 of 35Texas Instruments Proprietary Information

2.1.2.4 The Channel Object (DDC)

S.No Structure Elements
(DDC_I2cDriverObject)

Description

1 callBack Callback function

2 appHandle Callback function argument

3 pi2cInstHandle I2C driver object handle

2.1.2.5 The Device Params

The file psp_i2c.h has the PSP_I2cConfig data structure that is passed as
I2CdevParams to initialization function of the driver. The params are
explained below:

S.No Structure Elements
(i2c_chanObj)

Description

1 opMode Operational mode of the
driver

2 moduleInputClkFreq Input Frequency to I2C
Module.

3 i2cBusFreq Output Data rate, in Kbps, of
the I2C

4 i2cOwnAddr Own address of the device

5 NumBits BitCount

6 addressing Addressing mode[7bit or 10
bit addressing]

I2C Device Drivers Architecture Document

 Page 12 of 35Texas Instruments Proprietary Information

2.2 Dynamic View

2.2.1 The Execution Threads

The device drivers typically implement Synchronous interface to the user. The I2C
device driver operation involves following execution threads:

BIOS thread: Function to load and un-load I2C driver will be under BIOS OS
initialization.

Application thread: Creation of channel, Control of channel, deletion of channel
and processing of I2C data will be under application thread. All Synchronous IO
occur in the application thread of control, the calling thread may suspend for the
requested transaction to complete.

Interrupt context: Processing TX/RX data transfer and Error interrupts if the driver
mode is interrupt.

2.2.2 Input / Output using I2C driver

In I2C, the application can perform IO operation using GIO_submit () calls
(corresponding IOM function is i2c_mdSubmitChan ()) to receive transmission
parameters like buffers and flags. The configuration for memory buffer address and
size of number of bytes to transfer should be passed as an argument to the
GIO_submit call.

The I2C channel transfer is enabled upon submission of the IO request. Once the
IOP is submitted, the driver configures the appropriate registers (Mainly mode
register) from the IOP. Once the requested numbers of buffers have been received
or transmitted, the driver will notify the IOP completion to the application by
returning IOM_COMPLETED value or any appropriate error code.

2.2.3 Synch-IO Mechanism

I2C provides synchronous mode of operation in between application and driver.
Once application submits an IO driver returns to application only after it completes
the requested operation. Sync IO mechanism for different modes are explained
below.

POLLED Mode:

Check is done to see if job is complete, if not a suitable interval of
time is spent in “delay” looping – once the data transfer is
completed successfully, driver is returned to application with
appropriate status information.

Interrupt Mode:

This is very similar to above case; except for waits occurring in
form of pending for Semaphore being available and I2C DDC
being energized through Interrupt thread of control. Since we pend
on Semaphore here, it is possible for other application threads to
run when we wait here for IO transaction to complete.

 Page 13 of 35Texas Instruments Proprietary Information

2.2.4 IOM (DDA Adaptation)

2.2.4.1 Driver Creation

The Flow diagram below depicts the creation phase of the BIOS I2C driver.
The OS calls DEV_init which calls i2c_mdBindDev to create a driver
instance.

User is expected to invoke i2c_mdBindDev way up in the application
startup phase, perhaps in a central driver initialization function.

The i2c_mdBindDev performs book-keep functions on the driver. It
attaches the DDC create functions for use later during actual initialization
of each device instance.

Figure 5: Driver Create detailed Flow Diagram -1

I2C Device Drivers Architecture Document

 Page 14 of 35Texas Instruments Proprietary Information

2.2.4.2 Driver Open

When the application calls the GIO_Create () which inturn calls
i2c_mdCreateChan (), driver entry point. The callback is registered with
DSP/BIOS, which is currently not used as I2C is a Sync driver. This
creates the handle which will be returned to the application and application
uses this for performing IO operations or IOCTL operations.

Figure 6 Driver Open Detailed Flow Diagram - 1

 Page 15 of 35Texas Instruments Proprietary Information

2.2.4.3 IO Control

The I2C Driver provides i2c_mdControlChan () to set/get common
configuration parameters on the driver at run time.

Figure 7: Driver IOCTL Detailed Flow Diagram -1

I2C Device Drivers Architecture Document

 Page 16 of 35Texas Instruments Proprietary Information

2.2.4.4 IO Access

The application will access I2C driver IOM API I2C_mdSubmitChan
through interface functions from DSP/BIOS. These functions are registered
on the DSP/BIOS during the driver initialization

Figure 8: Driver transfer Detailed Flow Diagram - 1

 Page 17 of 35Texas Instruments Proprietary Information

2.2.4.5 Driver Close

The application invokes the GIO_delete () function to close the channel of
the I2C device.

DDC

IOM

application

GIO_Delete

I2c_mdDeleteChan

Call
PSP_i2cClose

Return IOM_COMPLETED if
success else suitale error

code

OS

Validate Channel

Figure 9: Driver Close Detailed Flow Diagram - 1

I2C Device Drivers Architecture Document

 Page 18 of 35Texas Instruments Proprietary Information

2.2.4.6 Driver Teardown

Following the call I2C_mdUnBindDev () one is required to restart from
beginning over an mdBindDev () call to bring driver back to life. The
driver de-initialize and delete functions de-initialize the I2C DDC and delete
if any OS resources originally allocated through mdBindDev ().

Figure 10: Driver Delete Detailed Flow Diagram – 1

 Page 19 of 35Texas Instruments Proprietary Information

2.2.5 DDC (Driver Core)

2.2.5.1 Driver Creation

At the DDC level, create and init phases of driver instance are clearly
demarcated. Regardless, once this phase is complete, the basic driver
data structures and setups are complete and ready for formally opening
device to perform IO.

Figure 11 Driver Create Detailed Flow Diagram – 2

I2C Device Drivers Architecture Document

 Page 20 of 35Texas Instruments Proprietary Information

2.2.5.2 Driver Open

PSP_i2cOpen function is invoked to provide a handle for the further
operations on the i2c. The callback is registered for the application call
back, which is currently not used as I2C is a Sync driver. This creates the
handle which will be returned to the application in case of no DDA
adaptation layers or to the DDA adaptation layer. The driver is ready to
accept Read/Write jobs or IOCTL operations

Design Constraints :

a. While porting to any board, clock calculations for the i2c
bus have to be taken care properly.

b. Also while registering and un registering interrupts, care
has to be taken care to perform the operation of that driver
and of that instance only

 Page 21 of 35Texas Instruments Proprietary Information

Figure 12: Driver Open Detailed Flow Diagram – 2

I2C Device Drivers Architecture Document

 Page 22 of 35Texas Instruments Proprietary Information

2.2.5.3 IO Control

DDC IOCTL function PSP_i2cIoctl has IOCTL commands that are device
specific or that require action on the part of the device driver call the
driver's IOCTL and this function is used to set/get common configuration
parameters on the driver at run time.

Figure 13 Driver IOCTL Detailed Flow Diagram - 2

 Page 23 of 35Texas Instruments Proprietary Information

2.2.5.4 IO Access

Application or the Adaptation layer calls PSP_i2cTransfer function to
perform the read/write operation on a particular slave in the mode with
which the driver is created.

Design Constraints :

c. If there comes any error while transmission, for ex: - NACK
error, driver has to cancel the current IO as hardware does
not perform the same.

d. While updating mode register with the flag parameters
which are passed from application ensure the validity of
flags and transfer parameters.

 For Ex:- when repeat mode is set along with stop
bit then buffer length should be zero other wise driver
hangs up.

Figure 14: Driver transfer Detailed Flow Diagram - 2

I2C Device Drivers Architecture Document

 Page 24 of 35Texas Instruments Proprietary Information

Figure 15 Driver transfer Detailed Flow Diagram - 3

 Page 25 of 35Texas Instruments Proprietary Information

Figure 16: Driver transfer in ISR Detailed Flow Diagram

I2C Device Drivers Architecture Document

 Page 26 of 35Texas Instruments Proprietary Information

2.2.5.5 Driver Close
Application or Adaptation layer invokes the PSP_i2cClose () function to
close the opened instance of the I2C device.

Figure 17 : Driver Close Detailed Flow Diagram – 2

 Page 27 of 35Texas Instruments Proprietary Information

2.2.5.6 Driver Teardown

Following the call of PSP_i2cDelete () function, it de-initialize the I2C DDC
and delete if any OS resources originally allocated through PSP_i2cCreate
().

Figure 18: Driver Delete Detailed Flow Diagram – 2

I2C Device Drivers Architecture Document

 Page 28 of 35Texas Instruments Proprietary Information

3 APPENDIX A – IOCTL commands

Applications that use I2C device driver is expected to use the data types and
IOCTL commands specified in psp_i2c.h file to perform runtime configurations.

S.No ERROR Code Description

1 PSP_I2C_IOCTL_SET_BIT_RATE Set the I2C clock
2 PSP_I2C_IOCTL_GET_BIT_RATE Get the I2C clock
3 PSP_I2C_IOCTL_CANCEL_PENDING_IO To cancel pending IO
4 PSP_I2C_IOCTL_BIT_COUNT To set bit Count value
5 PSP_I2C_IOCTL_NACK To enable or disable NACK

dynamically
6 PSP_I2C_IOCTL_SET_OWN_ADDR To change I2C own address

dynamically
7 PSP_I2C_IOCTL_GET_OWN_ADDR To Get I2C own address.

4 APPENDIX B – Error Codes

Driver returns following errors if it encounters any error conditions.

S.No ERROR Code Description

1 PSP_I2C_BUS_BUSY_ERR When driver finds bus
to be busy

2 PSP_I2C_ARBITRATION_LOSS_ERR When driver lost its
arbitration

3 PSP_I2C_NACK_ERR Error when slave
doesn’t acknowledges

4 PSP_I2C_TRANSMIT_UNDERFLOW_ERR Transmit under-run
indication

5 PSP_I2C_RECEIVE_OVERFLOW_ERR Receive overrun
indication

6 PSP_I2C_CANCEL_IO_ERROR When cancel IO
command is issued

5 APPENDIX C – Flags

Application while calling GIO_READ/GIO_WRITE/GIO_SUBMIT has to send
appropriate flags as a part of its parameters to configure the hardware.

S.No Flag Description

1 PSP_I2C_READ To issue read command
2 PSP_I2C_WRITE To issue write command
3 PSP_I2C_MASTER To enable i2c driver as master
4 PSP_I2C_START To Generate start bit before

transmission
5 PSP_I2C_STOP To generate STOP bit after

transmission
6 PSP_I2C_RESTART To user restart condition
7 PSP_I2C_REPEAT To enable repeat mode
8 PSP_I2C_IGNORE_BUS_BUSY To ignore when bus is busy

 Page 29 of 35Texas Instruments Proprietary Information

