
Page i of 42
Texas Instruments Proprietary Information

SPI BIOS Device Driver

User's Manual
U s e r ' s G u i d e

SPI
Architecture/Design

Document

 SPI Device Driver

Page ii of 42
Texas Instruments Proprietary Information

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the
extent TI deems necessary to support this warranty. Except where mandated by government
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks associated
with customer products and applications, customers should provide adequate design and operating
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published by
TI regarding third-party products or services does not constitute a license from TI to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property of the third party, or a license from TI under
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI
for that product or service voids all express and any implied warranties for the associated TI product or
service and is an unfair and deceptive business practice. TI is not responsible or liable for any such
statements.

Following are URLs where you can obtain information on other Texas Instruments products and
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

Page iii of 42
Texas Instruments Proprietary Information

Document
Version

Author(s) Date Comments

0.1 Shailesh Kumar
Sharma

Dec 13,2006 Modified for DM648 from SPI.

0.2 JP Dec 16, 2006 Cleanup

0.3 Shailesh Kumar
Sharma.

Dec 26, 2006 Added flow of API.

0.4 Nagarjuna
Kristam

Jan 29, 2007 Renamed DM64g to DM648

0.5 Shailesh Kumar
Sharma

Feb 3, 2007 Updated for DM6446

0.6 Nagarjuna
Kristam

June 1, 2007 Updated data structures with new design

0.7 Nagarjuna
Kristam

June 15, 2007 Correcting version numbers for tools used
and minor typo errors

0.8 Nagarjuna
Kristam

July 6, 2007 Adding XDC tool information

0.9 Nagarjuna
Kristam

January 17,
2008

Updated ddc_i2cObj structure members

 SPI Device Driver

Page iv of 42
Texas Instruments Proprietary Information

Table of Contents

1 System Context...1

1.1 Terms and Abbreviations...1

1.2 References..2

1.3 Hardware ..3

1.4 Software..5
1.4.1 Operating Environment and dependencies..5
1.4.2 System Architecture..5

1.5 Component Interfaces..6
1.5.1 IOM Interface..6
1.5.2 DDC Interface...7
1.5.3 CSLR Interface...8

1.6 Design Philosophy...8
1.6.1 The Port and Channel Concept...8

1.7 Design Constraints ..9

2 SPI Driver Software Architecture...10

2.1 Static View..10
2.1.1 Functional Decomposition...10
2.1.2 Data Structures...11

2.2 Dynamic View...15
2.2.1 The Execution Threads...15
2.2.2 Sync IO mechanism..15
2.2.3 Functionali Decomposition..16
2.2.4 IO Control...22
2.2.5 IO Access...25
2.2.6 Driver Close..30
2.2.7 Driver Teardown ...33

3 APPENDIX A – IOCTL commands ..36

4 APPENDIX B – Error Codes ...36

Page v of 42
Texas Instruments Proprietary Information

List Of Figures

Figure 1 DM648/C6452 Block Diagram .. 3
Figure 2 SPI HW diagram .. 4
Figure 3 Device driver layer.. 6
Figure 4 Port and Channel Object .. 9
Figure 5 SPI driver static view.. 11
Figure 6 Driver Create Flow Diagram ... 17
Figure 7 Driver Create detailed Flow Diagram -1. ... 17
Figure 8 Driver Create Detailed Flow Diagram - 2... 18
Figure 9 Driver Open Flow Diagram ... 19
Figure 10 Driver Open Detailed Flow Diagram - 1... 20
Figure 11 Driver Open Detailed Flow Diagram – 2.. 21
Figure 12 Driver IOCTL Detailed Flow Diagram.. 22
Figure 13 Driver IOCTL Detailed Flow Diagram - 1... 23
Figure 14 IOCTL Detailed Flow Diagram - 2 ... 24
Figure 15 Driver transfer overview.. 25
Figure 16 Driver transfer Detailed Flow Diagram – 1... 26
Figure 17 Driver transfer Detailed Flow Diagram – 2... 27
Figure 18 Driver transfer Detailed Flow Diagram – 3... 28
Figure 19 Driver transfer in ISR Detailed Flow Diagram.. 29
Figure 20 Driver Close Detailed Flow Diagram. .. 30
Figure 21 Driver Close Detailed Flow Diagram – 1. .. 31
Figure 22 Driver Close Detailed Flow Diagram – 2. .. 32
Figure 23 Driver Delete Flow Diagram.. 33
Figure 24 Delete Detailed Flow Diagram – 1... 34
Figure 25 Driver Delete Detailed Flow Diagram – 2. ... 35

Page 1 of 42
Texas Instruments Proprietary Information

1 System Context

The purpose of this document is to explain the device driver design for SPI
peripheral used in DM648/C6452 SoC using DSP/BIOS operating system running
on DSP 64+ joule. This driver is aimed at providing support for multiple SPI
instances i.e. it can be used with other SPI supported SoC platforms.

Note: The usage of structure names and field names used throughout this design
document is only for indicative purpose. These names shall not necessarily be
matched with the names used in source code.

1.1 Terms and Abbreviations

API Application Programmer’s Interface

CSL TI Chip Support Library – primitive h/w abstraction

IOM Input/Output mini driver - TI terminology for portion of
device driver that is specific to target OS. This constitutes
“adaptation” of the generic DDC to identified target OS.

DDC Device Driver Core - TI terminology for portion of device
driver that is abstracted of any given OS

IP Intellectual Property

ISR Interrupt Service Routine

OS Operating System

PAL OS Platform Abstraction Layer.

SOC System on chip

SPI Serial Peripheral Interface

 SPI Device Driver

Page 2 of 42
Texas Instruments Proprietary Information

1.2 References

1. sprue32_SPI.pdf SPI Driver Documentation

2. SPRU-404g.pdf DSP/BIOS Driver Guide

3. Dm648_spi_rdd.pdf SPI RDD

Page 3 of 42
Texas Instruments Proprietary Information

1.3 Hardware

The SPI device driver architecture presented in this document is situated in the
context of DM648/C6452 SoC targeted at Video Surveillance/ Packet Voice/
Catalog applications. The driver design is in the context of DSP/BIOS running on
DSP 64x+ joule core. The following figure (Figure 1) shows DM648/C6452
Architecture shall be used for Video application.

Figure 1 DM648/C6452 Block Diagram

 SPI Device Driver

Page 4 of 42
Texas Instruments Proprietary Information

The SPI module used in DM648/C6452 SOC core has the following blocks:

Figure 2 SPI HW diagram

Page 5 of 42
Texas Instruments Proprietary Information

1.4 Software

The SPI mini-driver discussed here is targeted at the DM648/C6452 device,
running DSP/BIOS on the 64x+ DSP. However the SPI driver can also be
ported to any other OS, with minimal modifications in the OS specific section
of the driver. More details can be found in the later part of this section.

1.4.1 Operating Environment and dependencies
Details about the tools and the BIOS version that the driver is compatible with
can be found in the system Release Notes.

1.4.2 System Architecture

The device driver described here is part of an IOM mini-driver. That is, it is
implemented as the lower layer of a two layer device driver model and is a super
set of all other driver layers. The upper layer is called the class driver and is the
generic DSP/BIOS GIO module. The class driver provides an independent and
generic set of APIs and services for a wide variety of mini-drivers and allows the
application to use a common interface for I/O requests. Figure 3 shows the overall
DSP/BIOS device driver architecture. For more information about the IOM device
driver model, see the DSP/BIOS Device Driver Developer’s Guide (SPRU616).

 SPI Device Driver

Page 6 of 42
Texas Instruments Proprietary Information

Figure 3 Device driver layer

This device driver can be used as a general-purpose stand-alone mini-driver to
interface with the SPI peripheral on DM648/C6452.

Please refer PSP framework manual to get to know more details about the various
device driver layers.

1.5 Component Interfaces

In the following subsections, the interfaces implemented by each of the sub-
component are specified. Refer to SPI device driver API reference documentation
for the complete details of the APIs.

1.5.1 IOM Interface

The IOM constitutes the Device Driver Manifest to Application. The user may not
look into IOM interface, especially the upper-edge services exposed to the
Application/OS. All other interfaces discussed later in this document are more of
interest to people developing/maintaining the device driver.

Application

DSP/BIOS

SPI IOM

SPI CSLr

Hardware

SPI DDC

PAL OS
PAL SYS SPI Device

Driver

Page 7 of 42
Texas Instruments Proprietary Information

The IOM can be modified to re-target Driver and/or customize to specific Apps
framework by doctoring the upper-edge services.

The spi_mdBindDev () populates static settings in driver object creates the
necessary interrupt handler, attaches the Driver Core interfaces. All these
operations in effect, constitute the “loading” of SPI Driver implementation. The
spi_mdUnbindDev () constitutes the “Un-loading” of the SPI driver. The IOM mini-
driver implements the following API interfaces to the class driver.

S.No IOM Interfaces Description

1 spi_mdBindDev () Allocates and configures the SPI port
specified by devId

2 spi_mdUnbindDev () Closes the SPI device from use.

3 spi_mdCreateChan () Creates a communication channel in
specified mode to communicate data
between the application and the SPI device
instance.

4 spi_mdDeleteChan () Frees a channel and all its associated
resources.

5 spi_mdControlChan () Implements the IOCTLS for SPI IOM mini
driver.

6
spi_mdSubmitChan () Submit an I/O packet to a channel for

processing.

1.5.2 DDC Interface

DDC implements the core device driver layer and it provides standard abstract
interfaces to the upper layers as per the PSP framework standards architecture.

The DDC layer APIs of SPI driver can be called directly from the application or from
the OS adaptation layer. So this can be ported to any OS without any modification.

The following basic interfaces are implemented and exposed to the IOM layer by
the DDC layer of SPI driver.

S.No DDC Interfaces Description

1 PSP_spiCreate () Initialize/Setup the SPI

 SPI Device Driver

Page 8 of 42
Texas Instruments Proprietary Information

hardware with the given
configuration parameters.

2 PSP_spiDelete () Does the reverse of
PSP_spiCreate.

3 PSP_spiOpen () Configure SPI’s TX/RX
DMATCU channels.

4 PSP_spiClose () Does the reverse of
PSP_spiOpen.

5 PSP_spiIoctl () Perform input/output control
on SPI Hardware.

6 PSP_spiTransceive() Submits IOP requests to
perform transceive transfer.

1.5.3 CSLR Interface

The CSL register interface (CSLr) provides register level implementations. CSLr is
used by the DDC to configure SPI registers. CSLR is implemented as a header file
that has CSLR macros and register overlay structure.

1.6 Design Philosophy

This device driver is written in conformance to the DSP/BIOS IOM device driver
model and handles communication to and from the SPI hardware.

1.6.1 The Port and Channel Concept

The IOM model provides the concept of the Port and Channel for the realization of
the device and its communication path as a part of the driver implementation. The
Port Object maintains the state of the SPI device or an instance. The port can also
be called as instance or device and the names can be used interchangeably.
DM648/C6452 contains one instance of SPI, and the driver for this needs to
maintain only one port object. The port object contains placeholders for all channel
objects for TX and RX, in this implementation it is only one. The following figure
shows the generic port-channel-hardware mapping for SPI driver.

Page 9 of 42
Texas Instruments Proprietary Information

Figure 4 Port and Channel Object

1.7 Design Constraints

SPI mini-driver imposes the following constraint(s).

 Synchronous Read/Write interface for data transfer.

 Driver shall not support dynamically changing modes between Interrupt
and Polled modes of operation.

 Driver shall not support the Slave mode of operation.

 Driver shall not support the DMA mode of operation.

IOM RW
channel

TX
Buffer

Rx
Buffer

SPI HW instance-1

 SPI Device Driver

Page 10 of 42
Texas Instruments Proprietary Information

2 SPI Driver Software Architecture

This section details the data structures used in the SPI mini-driver and the interface
it presents to the GIO layer. A diagrammatic representation of the mini driver
functions is presented and then the usage scenario is discussed in some more
details.

2.1 Static View

2.1.1 Functional Decomposition

The driver is designed keeping a concept of port and channel in mind. The instance
of SPI is treated as a device, which each can have a single read/write channel for
DM648/C6452 SoC.

This driver uses two internal data structures, a port object and a channel object, to
maintain its state during execution. The SPI peripheral needs the port instance to
maintain its state. The channel object holds the IOM channel state during
execution. These are explained in greater detail in the following Data Structures
sub-section. The following figure shows the static view of DM648/C6452 SPI driver.

Channel Object (Read/Write)

Port Object
IOM

GIO calls from Application

Page 11 of 42
Texas Instruments Proprietary Information

Figure 5 SPI driver static view

2.1.2 Data Structures

The mini-driver employs the PortObj and ChannelObj structures to maintain state of
the port and channel respectively.

In addition, the driver has two other structures defined – the device params and
channel params. The device params structure is used to pass on data to initialize
the driver during DSP-BIOS initialization. The channel params structure is used to
specify required characteristics while creating a channel. The IO params structure
is used to specify memory buffers to do IO transfers.

The following sections provide major data structures maintained by IOM, DDC and
PSP interface. For more details about IOM and DDC data structures and their
usage can be found in the API reference guide.

2.1.2.1 The Port Object (IOM)

S.No Structure Elements
((spi_portObj))

Description

1 portNumber Preserve port or instance number of

 SPI Device Driver

Page 12 of 42
Texas Instruments Proprietary Information

SPI

2 State Current state of the port object.

3 Chan[] Holds all channel objects for this port.

4 Port object Pointer to store ddc object.

2.1.2.2 The Channel Params – PSP interface

The channel parameter structure is passed when creating a channel. This
channel parameter contains the following mention params.

S.No Structure Elements
(PSP_spiChanPara
ms)

Description

1 mode Channel mode of operation: Input
or Output.

2 Port Pointer to device port spi_portObj
structure

3 cbFxn and cbArg IOM callback function and its
argument.

4 ddc handle To store the channel handle
passed from DDC layer.

2.1.2.3 The Driver Object (DDC)

S.No Structure Elements Description

Page 13 of 42
Texas Instruments Proprietary Information

(DDC_spiObject)

1 mode Mode of operation.

2 intNum Interrupt number

3 spiRegs CSL registers handle

4 spiHWconfig Hardware configuration params
variable of SPI.

5 moduleInputClkFreq Input clock frequency

7 spiBusFreq SPI bus frequency

8 spidat0 Flag to select the pin mode
configuration.

9 numOpens Numbers of time channels can
be opened.

10 instanceId Instance id

11 state State of driver

12 transBuffer Data buffer handler for transceive
operation.

13 transcieveFlags Flags to select the transceive
operation.

14 devBusySem Semaphore to block other tasks
in accessing SPI

15 completionSem Semaphore to block driver during
interrupt mode

16 currError Current transmission error

17 currFlags Current flags

18 currBuffer Current transaction buffer

19 currBufferLen Current transaction buffer length

20 edmaSpiHandle Edma handle .

21 charLength16Bits To check character length

22 dmaChaAllocated Flag to indicate DMA channel
allocation status

23 csHighPolarity Chip Select Polarity. Either active
high/Low. By default it is set to
Active Low. TRUE = Active High

 SPI Device Driver

Page 14 of 42
Texas Instruments Proprietary Information

2.1.2.4 The Channel Object (DDC)

S.No Structure Elements
(DDC_spiDriverObject)

Description

1 callBack Callback function

2 appHandle Callback function argument

3 spiObj SPI object handle.

2.1.2.5 The Device Params

The file psp_spi.h has the PSP_spiConfig data structure that is passed
as SPIdevParams to initialization function of the driver. The params are
explained below:

S.No Structure Elements
(spi_chanObj)

Description

1 opMode Operational mode of the
driver

2 moduleInputClkFreq Input Frequency to SPI
Module.

3 spiBusFreq Clock used to calculate the
output data rate of SPI.

4 spiHWCfgData Hardware config data.

2.1.2.6 The Device Hardware Configuration Params

S.No Structure Elements
(spi_chanObj)

Description

1 intrLevel Arm interrupt level either 0
or 1.

2 pinOpModes SPI pin opMode params.

3 delay Delay between two transfers.

4 masterOrSlave Master /slave selection..

5 clkInternal Clock direction, either
External or Internal.

6 enableHighZ Enable pin status either
tristated or grounded

Page 15 of 42
Texas Instruments Proprietary Information

7 csDefault Default chip-select

8 ConfigDatafmt[] Data config format.

9 charLength Character length.

10 lsbFirst Data transfer direction.

11 parityEnable Parity enable.

12 Polarity To enable or disable polarity

2.2 Dynamic View

2.2.1 The Execution Threads

The SPI device driver operation involves following execution threads:

BIOS thread: Function to load and un-load SPI driver will be under BIOS OS
initialization.

Application thread: Creation of channel, Control of channel, deletion of channel
and processing of SPI frame data will be under application thread.

Interrupt context: Processing TX/RX interrupts, and Error interrupts and notifies to
application through Call back function.

2.2.2 Sync IO mechanism

POLLED Mode:

 SPI Device Driver

Page 16 of 42
Texas Instruments Proprietary Information

Check is done to see if job is complete, if not a suitable interval of time is spent in
“delay” looping – once the data transfer is completed successfully, driver is
returned to application with appropriate status information.

INTERRUPT Mode:

This is very similar to above case; except for waits occurring in form of pending for
Semaphore being available and SPI DDC being energized through’ Interrupt thread
of control. Since we pend on Semaphore here, it is possible for other application
threads to run when we wait here for IO transaction to complete.

2.2.3 Functionali Decomposition

2.2.3.1 Driver Creation

The sequence diagram below depicts the creation phase of the BIOS SPI
driver. The DEV_createDevice which calls spi_mdBindDev to create a
driver instance. That means device creation is done dynamically.

While at the DDC level, create and init phases of driver instance are clearly
demarcated. Regardless, once this phase is complete, the basic driver
data structures and setups are complete and ready for formally opening
device to perform IO.

The DEV_createDevice is expected to invoke spi_mdBindDev (), way up in
the application startup phase, in a central driver initialization function.

The spi_mdBindDev () performs book-keep functions on the driver and
allocates memory for instance data structures.

DSP/BIOS GIO IOM DDC H/W

DEV_create
Device_ SPI_mdBindDev

PSP_SPICreate
Registers

Page 17 of 42
Texas Instruments Proprietary Information

Figure 6 Driver Create Flow Diagram

Figure 7 Driver Create detailed Flow Diagram -1.

 SPI Device Driver

Page 18 of 42
Texas Instruments Proprietary Information

Figure 8 Driver Create Detailed Flow Diagram - 2

Page 19 of 42
Texas Instruments Proprietary Information

DEV_createDevice invoke spi_mdBindDev (), way up in the application
startup phase in a central driver initialization function.

The spi_mdBindDev () performs bookkeeping functions on the driver and
allocates memory for instance data structures. It attaches the DDC create
functions for use later during actual initialization of each device instance.

2.2.3.2 Driver Open

When the application calls the GIO_Create () which calls
spi_mdCreateChan (), driver entry point, the PSP_spiOpen function is
invoked to provide a handle for the further operations on the SPI. The
callback is registered with DSP/BIOS as well as the application call back.
The driver is ready to accept Read/Write jobs.

Following is the flow diagram for the GIO_Create functionality.

Figure 9 Driver Open Flow Diagram

App GIO IOM DDC H/W

GIO_Create
spi_mdCreateCh

PSP_spiOpen

 SPI Device Driver

Page 20 of 42
Texas Instruments Proprietary Information

Figure 10 Driver Open Detailed Flow Diagram - 1

Page 21 of 42
Texas Instruments Proprietary Information

Figure 11 Driver Open Detailed Flow Diagram – 2

 SPI Device Driver

Page 22 of 42
Texas Instruments Proprietary Information

2.2.4 IO Control

The SPI Driver provides spi_mdControlChan () to set/get common
configuration parameters on the driver at run time through the
corresponding DDC IOCTL function, PSP_spiIoctl. Moreover IOCTL
commands that are device specific or that require action on the part of the
device driver call the driver's IOCTL.

Following is the flow diagram for the above functionality.

Figure 12 Driver IOCTL Detailed Flow Diagram.

Ap
p

GIO IOM DDC H/W

GIO_Control
SPI_mdControlChan

psp_spiIoctl

Page 23 of 42
Texas Instruments Proprietary Information

Figure 13 Driver IOCTL Detailed Flow Diagram - 1

 SPI Device Driver

Page 24 of 42
Texas Instruments Proprietary Information

Figure 14 IOCTL Detailed Flow Diagram - 2

It should be observed that the user’s IOCTL request completes in the
context of calling thread i.e., application thread of control.

Page 25 of 42
Texas Instruments Proprietary Information

2.2.5 IO Access

The application will access SPI driver IOM API spi_mdSubmitChan through
interface functions from DSP/BIOS. These functions are registered on the
DSP/BIOS during the driver initialization.

Following completion of IO, the packet is recycled back to the free IOP’s
pool in the IOM.

Figure 15 Driver transfer overview.

Ap GIO IOM DDC H/W

GIO_Read/
GIO_Write SPI_mdSubmitChan

PSP_spiTransceiv

DDC_spiTransf

 SPI Device Driver

Page 26 of 42
Texas Instruments Proprietary Information

Figure 16 Driver transfer Detailed Flow Diagram – 1.

Page 27 of 42
Texas Instruments Proprietary Information

Figure 17 Driver transfer Detailed Flow Diagram – 2.

 SPI Device Driver

Page 28 of 42
Texas Instruments Proprietary Information

Figure 18 Driver transfer Detailed Flow Diagram – 3.

Page 29 of 42
Texas Instruments Proprietary Information

Figure 19 Driver transfer in ISR Detailed Flow Diagram

 SPI Device Driver

Page 30 of 42
Texas Instruments Proprietary Information

2.2.6 Driver Close

The application invokes the spi_mdUnBindDev () function to close the
channel of the SPI device.

Figure 20 Driver Close Detailed Flow Diagram.

App GIO IOM DDC H/W

GIO_Delete
spi_mdDeleteChan

PSP_spiClose

Page 31 of 42
Texas Instruments Proprietary Information

Figure 21 Driver Close Detailed Flow Diagram – 1.

 SPI Device Driver

Page 32 of 42
Texas Instruments Proprietary Information

Figure 22 Driver Close Detailed Flow Diagram – 2.

Page 33 of 42
Texas Instruments Proprietary Information

2.2.7 Driver Teardown

Following the call spi_mdUnBindDev () one is required to restart from
beginning over spi_mdBindDev () call to bring driver back to life. The
driver de-initialize and delete functions de-initialize the SPI DDC and delete
if any OS resources originally allocated through spi_mdBindDev () by
calling PSP_spiDelete function.

Figure 23 Driver Delete Flow Diagram.

DSP/BIOS GIO IOM DDC H/W

DEV_delete
Device() spi_mdUnBindDev

PSP_spiDelete
Unregisters

 SPI Device Driver

Page 34 of 42
Texas Instruments Proprietary Information

Figure 24 Delete Detailed Flow Diagram – 1.

Page 35 of 42
Texas Instruments Proprietary Information

Figure 25 Driver Delete Detailed Flow Diagram – 2.

 SPI Device Driver

Page 36 of 42
Texas Instruments Proprietary Information

3 APPENDIX A – IOCTL commands

S.No Error Code Description
1 PSP_SPI_IOCTL_CANCEL_PENDING_IO To cancel pending IO requests if any in the transmission

4 APPENDIX B – Error Codes

S.No Error Code Description

1. PSP_SPI_TIMEOUT_ERR
Enable pin response to master cause
timeout error.

2. PSP_SPI_PARITY_ERR
Data transferred and received mismatch
cause parity error.

3 PSP_SPI_DESYNC_ERR

Desynchronization of slave from master due
to timing or clock glitch leads to Desync
error.

4. PSP_SPI_BIT_ERR
Data transfer at sampling point mismatch
leads to bit error.

5. PSP_SPI_RECEIVE_OVERRUN_ERR
Receive overflow error due to data
received before first bytes get read.

