
December 2007 Platform Software Group

NAND Device Driver

User's Manual 
U s e r ' s  G u i d e

Architecture/Design 
Document



NAND Device Drivers Architecture Document

ii Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is 
provided under Nondisclosure and License and is not to be reproduced or distributed without prior 
written consent of Texas Instruments Inc.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, 
modifications, enhancements, improvements, and other changes to its products and services at any 
time and to discontinue any product or service without notice. Customers should obtain the latest 
relevant information before placing orders and should verify that such information is current and 
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order 
acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in 
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the 
extent TI deems necessary to support this warranty. Except where mandated by government 
requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are 
responsible for their products and applications using TI components. To minimize the risks associated 
with customer products and applications, customers should provide adequate design and operating 
safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI 
patent right, copyright, mask work right, or other TI intellectual property right relating to any 
combination, machine, or process in which TI products or services are used. Information published by 
TI regarding third-party products or services does not constitute a license from TI to use such products 
or services or a warranty or endorsement thereof. Use of such information may require a license from a 
third party under the patents or other intellectual property of the third party, or a license from TI under 
the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without 
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. 
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not 
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI 
for that product or service voids all express and any implied warranties for the associated TI product or 
service and is an unfair and deceptive business practice. TI is not responsible or liable for any such 
statements.

Following are URLs where you can obtain information on other Texas Instruments products and 
application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated



Texas Instruments Proprietary iii

This document contains information that is the confidential property of Texas Instruments Inc. It is 
provided under Nondisclosure and License and is not to be reproduced or distributed without prior 
written consent of Texas Instruments Inc.

About This Document

This document discusses the TI device driver architecture for NAND 
Device Driver for DM6437/C6424 SOC. The target audience includes 
device driver developers from TI as well as consumers of the driver.

Trademarks

The TI logo design is a trademark of Texas Instruments Incorporated. All 
other brand and product names may be trademarks of their respective 
companies.

This document contains proprietary information of Texas Instruments. The 
information contained here in is not to be used by or disclosed to third 
parties without the express written permission of an officer of Texas 
Instruments Incorporated.

Related Documents

 NAND Driver Documentation

 PSP Framework Architecture 1.0

Notations

None

Terms and Abbreviations

Term Description

IP Intellectual Property

OS Operating System

API Application Programmer’s Interface

CSL TI Chip Support Library – primitive h/w abstraction

DDC TI terminology for portion of device driver that is 
abstracted of any given OS

DDA TI terminology for portion of device driver that is specific to 
target OS. This constitutes “adaptation” of the generic 
DDC to identified target OS.

ISR Interrupt Service Routine

LLC Low Level Controller 

EMIF External Memory Interface

DMA Direct Memory Access



NAND Device Drivers Architecture Document

iv Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is 
provided under Nondisclosure and License and is not to be reproduced or distributed without prior 
written consent of Texas Instruments Inc.

Revision History 

Date Author Comments Version

8th August 2006 Kiran Sutariya Created the document 1.0

27th September 
2006

Kiran Sutariya Changed after removing streaming and 
storage layer.

1.1

5th October, 2006 Kiran Sutariya Changed after removing streaming and 
storage layer.

1.2

30th November, 
2006

Kiran Sutariya Changed for release version 0.3.0 1.3

16th January, 
2007

Rinkal Shah Bios version changed 1.4

27th January, 
2007

Rinkal Shah CCS version changed 1.5

June 22, 2007 Anuj Aggarwal Bios version changed 1.6

June 29,2007 Amit Chatterjee Modified Release Version 1.7

July 18, 2007 Rinkal Shah Modified Release Version 1.8



Texas Instruments Proprietary v

This document contains information that is the confidential property of Texas Instruments Inc. It is 
provided under Nondisclosure and License and is not to be reproduced or distributed without prior 
written consent of Texas Instruments Inc.

Table of Contents

1 System Context ...........................................................................................1

1.1 Hardware.......................................................................................................................... 1

1.2 Software........................................................................................................................... 1
1.2.1 Operating Environment and dependencies......................................................... 1

1.3 Design Philosophy .......................................................................................................... 1

2 NAND Driver Software Architecture ..........................................................2

2.1 Static View ....................................................................................................................... 2
2.1.1 Functional Decomposition.................................................................................. 2
2.1.2 H/W Device Specific Layer (LLC) ....................................................................... 3
2.1.3 Device Driver Core functionality (DDC) .............................................................. 3
2.1.4 OS Specific Device Driver Adaptation (DDA)...................................................... 5
2.1.5 Platform Abstraction Layer for OS services (PALOS) ......................................... 5
2.1.6 Component Interfaces........................................................................................ 6

2.2 Dynamic View .................................................................................................................. 7
2.2.1 The Execution Threads...................................................................................... 7
2.2.2 Driver Creation/Initialization ............................................................................... 7
2.2.3 Driver Open ....................................................................................................... 8
2.2.4 IO Control .......................................................................................................... 8
2.2.5 IO Access .......................................................................................................... 8
2.2.6 Driver Close....................................................................................................... 8





Texas Instruments Proprietary 1

This document contains information that is the confidential property of Texas Instruments Inc. It is 
provided under Nondisclosure and License and is not to be reproduced or distributed without prior 
written consent of Texas Instruments Inc.

1 System Context

The NAND device driver architecture presented in this document is situated in 
the context of DM6437/C6424 SOC.

1.1 Hardware

The NAND module used in DM6437/C6424 SOC is external and can be 
interfaced through EMIF.

1.2  Software

The document provides an overall understanding of the TI NAND device 
driver architecture.

1.2.1 Operating Environment and dependencies
Details about the tools and the BIOS version that the driver is compatible with 
can be found in the system Release Notes.

1.3 Design Philosophy
Please refer section 1.2 of DM6437_BIOS_PSP_User_Guide.doc for DM6437 and 
section 1.2 of C6424_BIOS_PSP_User_Guide.doc for C6424 for Design 
Philosophy.



NAND Device Drivers Architecture Document

2 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is 
provided under Nondisclosure and License and is not to be reproduced or distributed without prior 
written consent of Texas Instruments Inc.

2 NAND Driver Software Architecture

This chapter deals with the overall architecture of TI NAND device driver, 
including the device driver partitioning as well as deployment considerations. 
We’ll first examine the system decomposition into functional units and the 
interfaces presented by these units. Following this, we’ll discuss the deployed 
driver or the dynamic view of the driver where the driver operational scenarios 
are presented.

2.1 Static View

2.1.1 Functional Decomposition

The device driver is partitioned into distinct sub-components, consistent with 
the roles and responsibilities already discussed in section 1.3. In the following 
sub-sections, each of these functional sub-components of the device driver is 
further elaborated.

Please refer to section 1.2.1 of DM6437_BIOS_PSP_User_Guide.doc for 
DM6437 and section 1.2.1 of C6424_BIOS_PSP_User_Guide.doc for C6424 
for diagrammatic representation.

The central portion shown constitutes the mainline NAND driver component; 
the surrounding modules contained in the dotted area constitute the 
supporting system components. The modules in the later part, do not 
specifically deal with NAND, but assist the driver by providing other 
abstracted (OS and H/W) and utility services as shall be discussed in 
following sub-sections.



Texas Instruments Proprietary 3

This document contains information that is the confidential property of Texas Instruments Inc. It is 
provided under Nondisclosure and License and is not to be reproduced or distributed without prior 
written consent of Texas Instruments Inc.

2.1.2 H/W Device Specific Layer (LLC)

The LLC forms the lower most, h/w specific under-pinning of the TI device 
driver. It consists of two parts:

 CSL Register Layer: Please refer section 1.2.2 of 
DM6437_BIOS_PSP_User_Guide.doc for DM6437 and section 1.2.2 
of C6424_BIOS_PSP_User_Guide.doc for C6424 for CSLr description.

 LLC Layer: Please refer section 1.2.2 of 
DM6437_BIOS_PSP_User_Guide.doc for DM6437 and section 1.2.2 
of C6424_BIOS_PSP_User_Guide.doc for C6424 for Hardware Layer 
explanation.

To improve componentization of NAND device driver, the LLC module for 
NAND device is clubbed with the other driver modules (DDA and DDC). 

2.1.3 Device Driver Core functionality (DDC)

Please refer section 1.2.3 of DM6437_BIOS_PSP_User_Guide.doc for 
DM6437 and section 1.2.3 of C6424_BIOS_PSP_User_Guide.doc for C6424 
for DDC Layer description.

The DDA/DDC inter-operation is further discussed later in section on dynamic 
view.

The following table outlines the basic interfaces published by DDC. 
DDC Implemented I/F for DDA DESCRIPTION

PAL_Result nandCreateInstance(
  Int instId,
  DDA_Handle hDDA,
  DDC_Handle *hDDC,
  Ptr param);

Driver Instance Creation: Tasks performed here 
include - allocation of memory/OS Resources 
for the DDC instance, container object. Its 
possible that the desired memory is declared 
statically, but specific reservation for the 
identified device is done here. This function 
should not touch the h/w. 

PAL_Result nandDelInst(
  DDC_Handle hDDC,
  Ptr param);

Driver Instance Deletion: This service frees all 
memory originally claimed by the  
nandCreateInstance. It also relinquishes any OS 
resources acquired during create operation. 
After this call, the driver instance ceases to exist 
in the system altogether

PAL_Result nandInit(
  DDC_Handle hDDC,
  Ptr  param);

Driver Instance Initialization: This service 
initializes the device driver instance to a 
reasonable startup condition. It is possible that 
the connected h/w device is discovered during 
this call and appropriate initializations done. In 
case power management is effected, this call 
places the driver in a stand by, low power mode.



NAND Device Drivers Architecture Document

4 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is 
provided under Nondisclosure and License and is not to be reproduced or distributed without prior 
written consent of Texas Instruments Inc.

PAL_Result nandDeinit(
  DDC_Handle hDDC,
  Ptr  param);

Driver Instance DeInitialization: This service is 
counter to the previously described  nandInit 
service. It basically undoes the operations 
performed during Initialization to extent possible 
so as to return the driver instance to its original 
state, right after creation. In most cases, this 
function is likely to be a trivial one. In case 
power management is effected, this call returns 
the driver to its stand by or low power mode 
corresponding to state during initialization.

PAL_Result nandOpen(
  DDC_Handle hDDC,
  Ptr param);

Open device driver controller: This service 
marks the start of use of the device driver
instance. Operations performed include 
completing the h/w configuration to desired 
operating mode and finalization of internal driver 
book-keep. After this call, the device driver is 
declared to be in active state, interrupts are 
enabled and data transfers can proceed. Often 
times, plugging of ISRs are deffered to this 
stage to minimize pre-mature reservation of 
CPU vector slots. When there are far too many 
interrupts in the system, but only few are 
relevant for any given scenario, grabbing CPU 
vector slots at  nandInit time itself can possibly 
lead to scarcity of vectors.

DDC Implemented I/F for DDA DESCRIPTION

PAL_Result nandClose(
  DDC_Handle hDDC,
  Ptr param);

Close device driver controller: This 
service is counter to the previously 
described  nandOpen  It releases any 
resources claimed by driver during the 
open operation. After this call, the driver 
remains dormant and no data transfer is 
possible unless it is re-opened.

PAL_Result nandControl(
  DDC_Handle hDDC,
  Int cmd,
  Ptr cmdArg,
  Ptr param);

Driver IO Control:  This service provides 
classic IOCTL kind of capability to control 
the device h/w and/or the driver internal 
state/behaviour



Texas Instruments Proprietary 5

This document contains information that is the confidential property of Texas Instruments Inc. It is 
provided under Nondisclosure and License and is not to be reproduced or distributed without prior 
written consent of Texas Instruments Inc.

                                                                                                                       

The above generic DDC interface is extended and realized in a device specific 
fashion by the driver for the particular device. In our case, we’ll see how the NAND 
implements a concrete interface from base functionality prescribed above.

2.1.4 OS Specific Device Driver Adaptation (DDA)

As discussed above, the DDC is not complete unless it is supplemented by the 
DDA. The DDA “adapts” the driver core to the specific OS. DDA implements 
aspects such as – threading model for transaction processing, Interrupts 
registration and de-registration and handshaking with OS etc., The DDA has full 
visibility to underlying OS services and is custom-built for a given OS.

While the DDA is primarily intended for presenting an OS manifest to the 
underlying DDC, it is also possible that the DDA upper-edge interface (user level) 
imbibes the semantics of any pre-specified Framework, if one exists. This is 
necessary to prevent undue overheads in system integration.

For further details on DDA/DDC interactions, refer to section on device driver 
dynamic views later in this document.

2.1.5 Platform Abstraction Layer for OS services (PALOS)

Please refer section 1.2.5 of DM6437_BIOS_PSP_User_Guide.doc for PALOS 
Layer description for DM6437 and section 1.2.5 of 
C6424_BIOS_PSP_User_Guide.doc for PALOS Layer description for C6424.

DDC Implemented I/F for DDA DESCRIPTIONDDC Implemented I/F for DDA DESCRIPTION

PAL_Result nandReadSync(
DDC_NandObj *hDDC,

   Uint16 *buf,

   Const Int32 xferRequest,

Uint32 timeout,

   Ptr param,

   Int32  *xferActual);

Synchronous Read: Interface that reads data 
from a slave in a synchnonous manner, 
when the controller is operating in slave
mode.

PAL_Result nandWriteSync(
DDC_NandObj *hDDC,

   Uint16 *buf,

   const Int32 xferRequest,

   Uint32 timeout,

   Ptr param,

   Int32 *xferActual);

Synchronous Write: Interface that writes data 
to a slave in a synchnonous manner, when 
the controller is running in transmit mode.



NAND Device Drivers Architecture Document

6 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is 
provided under Nondisclosure and License and is not to be reproduced or distributed without prior 
written consent of Texas Instruments Inc.

2.1.6 Component Interfaces

In the following subsections, the interfaces implemented by each of the 
sub-component are specified.

1.1.1.1 DDA Interface

The DDA constitutes the Device Driver Manifest to Application. This adapts 
the Driver Core (DDC) to DSP/BIOS.

The user of device driver will only need bother about the DDA interface, 
especially the upper-edge services exposed to the Application/OS. All 
other interfaces discussed later in this document are more of interest to 
people developing/maintaining the device driver.

The DDA can be modified to re-target Driver and/or customize to specific 
Applications framework by doctoring the upper-edge services. 

The PSP_nandInit () populates static settings in driver object creates the 
necessary interrupt handler, attaches the Driver Core interfaces. All these 
operations in effect, constitute the “loading” of NAND Driver 
implementation.

1.1.1.2 DDC Interface

DDC forms the heart of Device driver. It models driver state machine and 
implements the data movement (read/write). The Device DDC is inherently 
Asynchronous .

The DDA takes buffer from application and passes them down to DDC. 
Device IOCTL can be performed on an Open’d Controller (hence the hDDC 
argument in APIs)

The NAND DDC implements a method to create itself wherein it exchanges 
the interface contract with the DDA above. Once the driver instance is 
created, using its handle one can initialize the driver thru’ nandInit () 
passing optional setup parameters. Following this, the device controller 
and IO Channel are opened via nandOpen(). Once the device has been 
opened, transactions can be performed using nandReadSync(), 
nandWriteSync () and nandControl() methods. 

Upon completion of use, driver can be gracefully closed and removed from 
system by following sequence of calls –nandClose (), nandDeInit (), 
nandDelete ().

The lower device DDC only implements a fully asynchronous data-mover. 
The job of implementing synch-IO wherein user’s read/write calls block, 
awaiting completion of transaction is relegated to the DDA.



Texas Instruments Proprietary 7

This document contains information that is the confidential property of Texas Instruments Inc. It is 
provided under Nondisclosure and License and is not to be reproduced or distributed without prior 
written consent of Texas Instruments Inc.

1.1.1.3 LLC Interface

LLC Services will have usual call sequence of: Init (), HwSetup () etc. LLC
maintains its own instance specific data and executes in caller’s context 
and interfaces non-blocking in nature. They do NOT allocate memory 
dynamically and do NOT use OS services.

It should be noted that LLC never calls DDC functions; it’s always the other 
way round.

1.1.1.4 PALOS Interface

PALOS Abstracts DSP/BIOS services to the Driver. PALOS Functions are 
state-less on their own and run in context of calling thread. However, when 
underlying OS function is called, OS may switch context as appropriate, to 
realize the requested function.

NAND driver uses following service abstractions – SEM, Bi-directional 
Linked List, PROTECT, Time. The DDC is always the caller & PALOS the 
callee, the PALOS will never call a DDC function.

The NAND driver release will include an implementation of necessary OS 
abstraction services for DSP/BIOS environment, if driver is ported to a 
different platform or integrated with a custom framework, these functions 
would need to be ported so as to reuse the DDC as-is.

2.2 Dynamic View

2.2.1 The Execution Threads

The device drivers implement Synchronous interface to the user. 

All Synchronous IO occur in the application thread of control, the calling 
thread may suspend for the requested transaction to complete. This ‘wait 
on completion’ occurs in the DDA layer.

2.2.2 Driver Creation/Initialization

The sequence below depicts the creation/initialization phase of the 
DSP/BIOS NAND driver. While at the DDC level, create and init phases of 
driver instance are clearly demarcated, the same is not the case in DDA 
and above. Regardless, once this phase is complete, the basic driver data 
structures and setups are complete and ready for formally opening device 
to perform IO.



NAND Device Drivers Architecture Document

8 Texas Instruments Proprietary

This document contains information that is the confidential property of Texas Instruments Inc. It is 
provided under Nondisclosure and License and is not to be reproduced or distributed without prior 
written consent of Texas Instruments Inc.

User is expected to invoke PSP_nandInit(), way up in the application 
startup phase, perhaps in a central driver initialization function.

The PSP_nandInit() performs book-keep functions on the driver and  
allocates memory for instance data structures. It attaches the DDC create 
functions for use later during actual initialization of each device instance. 
This function is not reentrant function.

The driver also has an interface to format the device: PSP_nandErase (). 
This function is not reentrant function.

2.2.3 Driver Open

When the application calls the PSP_nandOpen () driver entry point, the 
DDC open function is invoked enabling the hardware instance of NAND. 
This function is not reentrant function. 

2.2.4 IO Control

The NAND Driver provides an ioctl interface to set/get common 
configuration parameters on the driver at run time. This function is 
reentrant.

It should be observed that the user’s IOCTL request completes in the 
context of calling thread ie. application thread of control.

2.2.5 IO Access

The application invokes the PSP_nandReadSync() and 
PSP_nandWriteSync() IO interfaces for data transfer using the NAND. 
Both of these functions are reentrant.

2.2.6 Driver Close

The application invokes the PSP_nandClose () function to close the 
instance of the NAND device. Any DMA channels opened are also 
released via appropriate LLC calls. In addition, the NAND driver’s ISRs are 
unregistered and associated device interrupts disabled to ensure 
quiescence. This function is not reentrant.


