
Page 1 of 36Texas Instruments Proprietary Information

DM648/C6452 Audio Driver

USER’S GUIDE

Document Revision History

Rev
No

Author(s) Revision History Date Approval(s)

1.0 Pratik Joshi Initial Draft February 2nd,
2007

Initial Draft

1.4 Narendra Updated for release 0.4 March 23,
2007

1.8 Pratik Joshi Updated for release 0.6 May 5th, 2007
1.9 Pratik Joshi Change Audio API description

as per Video user guide
May 8th, 2007

2.0 Pratik Joshi Updated for release
1.10.00.XX

June 15, 2007

2.1 Pratik Joshi Added DM648 EVM limitation
section

July 06,2007

2.2 Pratik Joshi Added MACRO and its
description for ONE_TO_ONE

and FOUR_TO_ONE test

Aug 08, 2007

2.3 Nagarjuna K Updated for both DM648 and
C6452

January 18,
2008

Information in this document is subject to change without notice. Texas Instruments may
have pending patent applications, trademarks, copyrights, or other intellectual property
rights covering matter in this document. The furnishing of this document is given for usage
with Texas Instruments products only and does not give you any license to the intellectual
property that might be contained within this document. Texas Instruments makes no
implied or expressed warranties in this document and is not responsible for the products
based from this document

Page 2 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

TABLE OF CONTENTS

1 Introduction... 5

1.1 Terms & Abbreviations..5

1.2 References ..5

1.3 S/W Support..5

1.4 Supported Services and Features ...6

1.5 System Requirements...6

2 Installation Guide... 7

2.1 Component Folder..7

2.2 Build...9

2.3 Build Options...9

3 DSP/BIOS AUDIO DRIVER Structures .. 10

3.1 Initialization details ..10

3.2 Enumeration..11

3.2.1 PSP_audio_inputMode...11

3.2.2 PSP_audio_outputMode...11

3.2.3 PSP_audioAicMode ...12

3.3 Data structure ...12

3.3.1 PSP_audio_cfg...12

3.3.2 PSP_McaspHwSetupDataClk...13

3.3.3 PSP_McaspHwSetupData...13

4 DSP/BIOS Audio Driver API classification.. 16

4.1 DSP/BIOS Audio Driver Initialization...16

4.2 Driver Binding..16

4.3 IOM Channel Creation...16

4.4 Control Commands...16

4.4.1 AUDIO_STOP...16

4.4.2 AUDIO_START ...17

4.4.3 AUDIO_PAUSE ...17

4.4.4 AUDIO_RESUME...18

4.4.5 AUDIO_MUTEON ..19

4.4.6 AUDIO_MUTEOFF ...19

4.4.7 AUDIO_INPUT_SAMPLERATE..20

4.4.8 AUDIO_OUTPUT_SAMPLERATE...20

4.4.9 AUDIO_IN_SELECT...21

4.4.10 AUDIO_OUT_SELECT ..22

4.4.11 AUDIO_IN_GAIN_CONTROL...22

Page 3 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

4.4.12 AUDIO_OUT_GAIN_CONTROL ..22

4.4.13 AUDIO_DEVICE_RESET...23

4.4.14 AUDIO_MODIFY_LOOPJOB...24

4.4.15 AUDIO_SET_AIC33_SLAVE_ADDRESS...24

4.5 IOM Channel Deletion ...25

4.6 Audio IO Mini driver unbinding..25

5 Audio Codec API’s .. 26

5.1 API Definition ..26

5.1.1 aic33Codec_config..26

5.1.2 aic33_closeCodec...26

5.1.3 aic33_inGainControl ...27

5.1.4 aic33_outGainControl ...27

5.1.5 aic33_sampleRateControl ..27

6 Architecture ... 29

7 DM648/C6452 EVM Limitations.. 31

8 Example Applications ... 32

8.1 Writing Applications for AUDIO...32

8.1.1 File Inclusion ...32

8.1.2 Buffer Allocation and Management ...32

8.2 Sample Application...33

9 Appendix A - DSP/BIOS Audio Driver References....................................... 36

Page 4 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

TABLE OF FIGURES

Figure 1. Audio Driver Directory Structure ..7
Figure 2. DSP/BIOS Device Driver Model ..29
Figure 3. Codec Device Driver Partitioning ..30

Page 5 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

1 Introduction

This document is the reference guide for the audio driver and it explains how to
configure and use the driver.

DSP/BIOS applications use the driver typically through either GIO or SIO/DIO class
drivers. For more information on the DSP/BIOS device driver model and the GIO
class driver, refer to the References section of this document.

1.1 Terms & Abbreviations
Term/Abbreviation Description

API Application Programmers Interface

IP Intellectual Property

EDMA Enhanced Direct Memory Access Controller

IOM I/O Mini Driver Model

1.2 References

1.3 S/W Support
This audio device driver has been developed for the DSP/BIOS operating system using the
TI supplied Chip Support Library. For more details on the version numbers refer to the
release notes in the root of the installation.

Page 6 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

1.4 Supported Services and Features

The DSP/BIOS Audio driver provides the following functional services and features:

 Multi-instantiable and re-entrant safe driver.

 Designed for (but not limited to) use with codec drivers.

 Features supported by the Audio driver, which can be directly used by the Audio
codec driver are:

o Supports run-time Start/Stop of the Audio Play and Record operation

o Supports Pause-Resume feature for Audio Playback operation when integrated
with the audio codec specific driver

o Supports Mute ON/OFF feature for Audio Playback operation when integrated with
the audio codec specific driver.

1.5 System Requirements

The DM648/C6452 Audio Driver User Guide is supported on platforms characterized by
the following requirements

Hardware:

 Target Board: DM648/C6452 EVM Board

 Emulation Setup: XDS 510 USB or XDS 560 PCI Emulator

Software:

 Code generation tools: CCS 3.3.38.2

 Operating System: DSP/BIOS 5.31.08

 Code generation tools 6.0.8

 XDC 2.94.01.03

Page 7 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

2 Installation Guide

2.1 Component Folder

Upon installing the audio driver the following directory structure is found in the driver’s
directory.

Figure 1. Audio Driver Directory Structure

 build : This folder contains the driver library project and driver library. The driver
library shall be included in the application where Audio driver have to be used.

 docs : This folder contains Release notes document and User Guide Document.

o Release Note gives the details about system requirements, steps to
Install /Uninstall the Package.This document list the known issues of
the driver.

o User Guide provides information about how to use the driver. It
contains description of sample applications which guide the end user to
make their applications using this driver.

 package : This folder contains RTSC packaging related files.

 lib: This folder contains the audio driver libraries for debug and release mode
inside lib folder in path DM648/C6452\Debug and DM648/C6452\Release
respectively

 sample : This folder contains the sample applications that demonstrates the use of
the driver. This sample applications demonstrates basic features of the driver.
User can use this sample application as reference to make their applications. In
addition to that this folder also contains the .tci files for McASP instance.

o build : This subfolder in sample folder contains sample application
library as well as stand alone sample application project. User can run
specific sample application by adding sample applications library in
executable project.

o src: This folder contains the sample applications, one for stand alone
audio project and one for combo

Page 8 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

 src: This folder contains the source files of Audio driver.

Page 9 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

2.2 Build

This section describes for each supported target environment, the applicable build options,
supported configurations and how to select the featured capabilities and how to enable the
allowed user customizations for the software to be installed and how the same can be
realized.

The component might be delivered to user in different formats:

 Source-less i.e. binary executables and object libraries only.

 Source-inclusive i.e.The entire source code used to implement the driver is
included in the delivered product.

 Source-selective ie. Only a part of the overall source is included. This delivery
mechanism might be required either because certain parts of the driver
require soruce level extensions and/or customization at the user’s end or
because specific parts of the driver is exposed to user at the source level to
insure user’s software development.

When source is included as part of the product delivery, the CCS project file is provided as
part of the package. When object format is distributed, the driver header files are part of
driver root folder i.e. ti\sdo\pspdrivers\drivers\mcasp folder and the driver library is
provided in lib\DM648/C6452 folder inside individual driver folder.

2.3 Build Options

Please refer to section 8.2 for driver specific build option.

The build folder contains a CCS project file that builds the driver into a library for debug and
release mode.

Build options – “iDebug” and “iRelease” are provide to enable audio Instrumentation in the
driver.

Page 10 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

3 DSP/BIOS AUDIO DRIVER Structures

This section discusses about the initialization details and initialization structures used in the
audio driver.

Most members of these structures directly reflect the McASP peripheral register settings.
The driver does not check the validity of these parameters. It is the application’s
responsibility to pass proper value according to the McASP register description. Kindly refer
McASP Peripheral Reference Guide for more details.

NOTE: Audio driver independently does not have any significance. It acts as an
interface between application and McASP device driver. McASP device driver is
responsible for the actual data transfer between the memory and external world.
Audio driver is responsible for the audio codec related configurations only.

3.1 Initialization details

To use Audio device driver, a device entry must be added and configured in the DSP/BIOS
configuration tool.

To have Audio device driver included in the application, corresponding TCI file i.e.
“dm648_audio_mcasp.tci” for DM648 and “c6452_audio_mcasp.tci” for C6452 must be
included in BIOS TCF file of the application for using McASP instance - 0 of the driver. This
.tci file can be found in audio sample directory.

The following are the device configuration settings required to use the audio driver.

Note: Here TCI file’s configuration is based on SIO-DIO class driver model. Please refer to
mini driver document for how to create SIO/DIO instance.

1) UDEV object’s configuration

TCI Configuration Parameters Description
initFxn - Init Function Pointer to application function to initialize

DM648/C6452 audio ports like enabling pin
muxing.

fxnTable - Function Table Pointer AUDIO_AIC33_FXNS. This is a global
variable which points to the AUDIO driver
APIs.

fxnTableType - Function Table Type IOM_Fxns
deviceId - Device Id Specify which McASP port to use. For

example to use McASP 0 this should be given
as 0.

params – Pointer to Port parameter N/A, not used by this driver
Device Global Data Pointer N/A, not used by this driver

Final tci file should contain the following details which were explained above:
var udevCodec1 = bios.UDEV.create("udevCodec1");
udevCodec1.fxnTable = prog.extern("AUDIO_AIC33_FXNS");
udevCodec1.initFxn = prog.extern("AUDIO_AIC33_init1");

Page 11 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

udevCodec1.fxnTableType = "IOM_Fxns";
udevCodec1.params = null;
udevCodec1.deviceId = 0;
udevCodec1.deviceGlobalDataPtr = null;
2) DIO object’s configuration

TCI Configuration Parameters Description
comment – comment Comment for DIO adapter
useCallBackFxn - fxns Table Use callback version of DIO function table,

“false” in audio driver case
deviceName – device name Name of the UDEV object’s instance
chanParams – channel parameters An optional pointer to an object of type

PSP_audio_cfg as defined in the header file
psp_audio.h. This pointer will point to an
audio driver’s configuration structure. In
BIOS TCI file, this structure object passed as
an argument.

Final tci file should contain the following details which were explained above:
var dioCodec = bios.DIO.create("dioCodec");
dioCodec.comment = "DIO Adapter for IOM McASP Codec driver" ;
dioCodec.deviceName = prog.get("udevCodec1");
dioCodec.useCallBackFxn = false;
dioCodec.chanParams = prog.extern("audio_cfg");

3.2 Enumeration

3.2.1 PSP_audio_inputMode
“psp_audio.h” file contains PSP_audio_inputMode enum that is used for the input/record
source configuration. Input can be taken either from MIC or LINE_IN.

Enum Members Description

PSP_AUDIO_MIC_IN AIC33 will recognize audio input from MIC jack
Here MIC Bias output is powered down

PSP_AUDIO_LINE_IN AIC33 will recognize audio input from LINE IN jack

PSP_AUDIO_MIC_IN_2_0_V AIC33 will recognize audio input from MIC jack
Here MIC Bias output is powered to 2.0 V

PSP_AUDIO_MIC_IN_2_5_V AIC33 will recognize audio input from MIC jack
Here MIC Bias output is powered to 2.5 V

PSP_AUDIO_MIC_IN_AVDD AIC33 will recognize audio input from MIC jack
Here MIC Bias output is connected to AVDD

3.2.2 PSP_audio_outputMode
“psp_audio.h” file contains PSP_audio_outputMode enum that is used for the
output/playback source configuration. Output can be given to either speaker or LINE_OUT.

Enum Members Description

PSP_AUDIO_SPK_OUT AIC33 will give audio output from speaker jack

PSP_AUDIO_LINE_OUT AIC33 will give audio output from LINE OUT jack

Page 12 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

3.2.3 PSP_audioAicMode
“psp_audio.h” file contains PSP_audioAicMode enum that is used for select audio codec
mode of operation. AIC33 can be configured in either master mode or slave mode.

Enum Members Description

PSP_AUDIO_AIC_SLAVE AIC33 will configure in slave mode and McASP will configure
in master mode.

PSP_AUDIO_AIC_MASTER AIC33 will configure in master mode and McASP will configure
in slave mode.

3.3 Data structure

3.3.1 PSP_audio_cfg
“psp_audio.h” file contains PSP_audio_cfg data structure that is passed while mdCreateChan
call which is defined with DIO AUDIO parameters in TCF file of application. The members of
this structure are explained below:

Structure Members Description

mode Datatype = PSP_audioAicMode, Audio codec mode of
operation. Master or slave
PSP_AUDIO_AIC_MASTER – AIC33 is in master mode
PSP_AUDIO_AIC_SLAVE – AIC33 is in slave mode
NOTE: This parameter must be configured with
PSP_AUDIO_AIC_MASTER as McASP can not be
configured in master mode due to DM648/C6452 EVM
limitation

inputFreq Datatype = Uint32,
Input frequency to McASP module. This parameter is
of importance only in case when McASP is in master
mode

sampleFreq Datatype = Uint32,
Output sampling rate. This parameter will set
sampling rate for AIC33 or McASP, whichever is
master.

inputGain Datatype = Uint32,
Input gain control. The value should be in range of 1
and 99

outputGain Datatype = Uint32,
Output gain controls. The value should be in range of
1 and 99

inputMode Datatype = PSP_audioInputMode,
Pointer to the Input mode structure to select input
source, MIC_IN or LINE_IN. In case of MIC_IN use can
configure mic bias voltage.

outputMode Datatype = PSP_audioOutputMode,
Audio output from system through Speaker out or
LINE OUT. This parameter has no effect. Changing this

Page 13 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

parameter will not take effect as DM648/C6452 EVM
supports only LINE OUT

3.3.2 PSP_McaspHwSetupDataClk
“psp_mcasp.h” file contains PSP_McaspHwSetupDataClk data structure. While
mdCreateChan call of McASP driver, audio driver pass default value of this structure’s
object.

Structure Members Description

clkSetupClk Datatype = Uint32,
Clock details ACLK(R/X)CTL
Note: Refer McASP peripheral user guide for more
information of ACLK(R/X)CTL

clkSetupHiClk Datatype = Uint32,
High clock details AHCLK(R/X)CTL
Note: Refer McASP peripheral user guide for more
information of AHCLK(R/X)CTL

clkChk Datatype = Uint32,
Configures receive/transmit clock failure detection
R/XCLKCHK
Note: Refer McASP peripheral user guide for more
information of R/XCLKCHK

3.3.3 PSP_McaspHwSetupData
“psp_mcasp.h” file contains PSP_McaspHwSetupData data structure. While mdCreateChan
call of McASP driver, audio driver pass default value of this structure’s object.

Structure Members Description

mask Datatype = Uint32,
To mask or not to mask - R/XMASK
Note: Refer McASP peripheral user guide for more
information of R/XMASK

fmt Datatype = Uint32,
Format details as per - R/XFMT
Note: Refer McASP peripheral user guide for more
information of R/XFMT

frSyncCtl Datatype = Uint32,
Configure the rcv/xmt frame sync - AFSR/XCTL
Note: Refer McASP peripheral user guide for more
information of AFSR/XCTL

tdm Datatype = Uint32,
Specifies which TDM slots are active - R/XTDM
Note: Refer McASP peripheral user guide for more
information of R/XTDM

intCtl Datatype = Uint32,
Controls generation of McASP interrupts -

Page 14 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

R/XINTCTL
Note: Refer McASP peripheral user guide for more
information of R/XINTCTL

stat Datatype = PSP_audioInputMode,
Status register (controls writable fields of STAT
register) -R/XSTAT
Note: Refer McASP peripheral user guide for more
information of R/XSTAT

evtCtl Datatype = PSP_audioOutputMode,
Event control register - R/XEVTCTL
Note: Refer McASP peripheral user guide for more
information of R/XEVTCTL

clk Datatype = PSP_McaspHwSetupDataClk
Clock settings for rcv/xmt

Default value of PSP_McaspHwSetupData’s object

/* Transmit channel default register configuration */
PSP_McaspHwSetupData mcaspXmtSetup =

/* .xmask = */ 0xFFFFFFFF, /*all the data bits are used*/
/* .xfmt = */ 0x000080F0, /*no right rotation,

 DMA access,
 slot size = 32bits,

 pad with 0th bit from data,(currently this option disabled by next
 field)
 pad extra bits with 0,
 MSB first,
 0 bit delay from between fsync and data*/

/* .afsxctl = */ 0x00000000, /*burst mode,
 frame sync pulse width - 1 clk bit
 clk is external
 Rising edge is validated*/

/* .xtdm = */ 0x00000003, /*n-th (2 here)TDM slot will be accounted - for burst mode no
use*/

/* .xintctl = */ 0x00000000, /*reset any existing status bits*/
/* .xstat = */ 0x000001FF, /*reset any existing status bits*/
/* .xevtctl = */ 0x00000000, /*DMA or INT mode*/
{

/* .aclkxctl = */ 0x00000000, /* \div = 1, clk = External*/
/* .ahclkxctl = */ 0x0000003F, /* div = 63, no inversion before divider ,External*/

 /* .xclkchk = */ 0x00000000
},

/* Receive channel default register configuration */
PSP_McaspHwSetupData mcaspRcvSetup =

/* .rmask= */ 0xFFFFFFFF, /*all the data bits are used*/
/* .rfmt = */ 0x000080F0, /*no right rotation,

 DMA access,
 slot size = 32bits,

 pad with 0th bit from data,(currently this option disabled by next
 field)
 pad extra bits with 0,
 MSB first,

Page 15 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

 0 bit delay from between fsync and data*/
/* .afsrctl = */ 0x00000000, /*burst mode,

 frame sync pulse width - 1 clk bit
 clk is external
 Rising edge is validated*/

/* .rtdm = */ 0x00000003, /*n-th (2 here)TDM slot will be accounted - for burst mode no
use*/

/* .rintctl = */ 0x00000000, /*reset any existing status bits*/
/* .rstat = */ 0x000001FF, /*reset any existing status bits*/
/* .revtctl = */ 0x00000000, /*DMA or INT mode*/
{

/* .aclkrctl = */ 0x00000000, /* \div = 1, clk = External*/
/* .ahclkrctl = */ 0x0000003F, /* div = 63, no inversion before divider ,External*/

 /* .rclkchk = */ 0x00000000
},

Page 16 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

4 DSP/BIOS Audio Driver API classification

4.1 DSP/BIOS Audio Driver Initialization

DSP/BIOS calls initialization routine which internally invokes “AUDIO_AIC33_init()” API of
the Audio driver, which in turn initializes the global data used by the McASP.

The initialization function sets the “inUse” field of both the McASP port object instance and
the channel object instance to “FALSE” to make sure that the driver is not being used by
any applications.

4.2 Driver Binding

The binding function for the Audio driver “audio_mdBindDev ()”is called by the DSP/BIOS
initialization routine.

The binding function should typically perform the following actions.

 Acquire the resources needed by the driver such as memory for port and channel
object instances.

 Configure the device to match the DSP data format mode of Audio Codec.

4.3 IOM Channel Creation

After the successful completion of driver initialization and binding, the user can create an
abstraction of the communication path between the application and Audio driver. The
channel instances are created through a call to audio_mdCreateChan () function, which runs
as a result of a call from application call to channel creation API. The Audio driver allows
user to create two channels (in input and output mode) for a given McASP device instance
on the SoC. The device IOM driver returns error status if the application attempts to create
a channel in mode other than either input or output. For a given McASP instance only one
input and one output channel can be created.

4.4 Control Commands

The device IO Mini driver implements device specific control functionality which may be
useful for application designers. The device IOM driver supports the following control
functionality.

4.4.1 AUDIO_STOP
Syntax
Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream
stream handle

cmd

Page 17 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

AUDIO_STOP

args
NULL

Return Value
if successful - SYS_OK
if unsuccessful - non-zero device-dependent error value

Description
Stops record/playback operation depending of the i/o stream passed.

Constraints
NONE

Example

stat = SIO_ctrl(outStream,AUDIO_STOP, NULL);

4.4.2 AUDIO_START
Syntax
Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream
stream handle

cmd
AUDIO_START

args
NULL

Return Value
if successful - SYS_OK
if unsuccessful - non-zero device-dependent error value

Description
Starts record/playback operation depending of the i/o stream passed.

Constraints
AUDIO_STOP command has to be issued before AUDIO_START is issued otherwise
driver will return error.

Example

stat = SIO_ctrl(outStream,AUDIO_START, NULL);

4.4.3 AUDIO_PAUSE
Syntax

Page 18 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream
stream handle

cmd
AUDIO_PAUSE

args
NULL

Return Value
if successful - SYS_OK
if unsuccessful - non-zero device-dependent error value

Description
“Pause” record/playback operation of passed IO stream. No audio record/playback
will take place when driver is in pause state.

Constraints
NONE

Example

stat = SIO_ctrl(outStream,AUDIO_PAUSE, NULL);

4.4.4 AUDIO_RESUME
Syntax
Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream
stream handle

cmd
AUDIO_RESUME

args
NULL

Return Value
if successful - SYS_OK
if unsuccessful - non-zero device-dependent error value

Description
“Resume” record/playback operation of passed i/o stream. Call this command to
continue with record/playback operation after “AUDIO_PAUSE” command is issued.

Constraints
This command should be called after “AUDIO_PAUSE”, if “AUDIO_ RESUME”
command called before “AUDIO_PAUSE” then driver returns an error message.

Page 19 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

Example

stat = SIO_ctrl(outStream,AUDIO_RESUME, NULL);

4.4.5 AUDIO_MUTEON
Syntax
Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream
stream handle

cmd
AUDIO_MUTEON

args
NULL

Return Value
if successful - SYS_OK
if unsuccessful - non-zero device-dependent error value

Description
Mute the output stream. User will not hear any audio from LINE_OUT when driver is
in “MUTEON” state

Constraints
‘AUDIO_MUTEON’ Command is not applicable for input channel.

Example

stat = SIO_ctrl(outStream,AUDIO_MUTEON, NULL);

4.4.6 AUDIO_MUTEOFF
Syntax
Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream
stream handle

cmd
AUDIO_MUTEOFF

args
NULL

Return Value

Page 20 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

if successful - SYS_OK
if unsuccessful - non-zero device-dependent error value

Description
Take driver out of Mute state for the output stream.

Constraints
This command should be called after “AUDIO_MUTEON”. ‘AUDIO_MUTEOFF’
command is not applicable for input channel.

Example

stat = SIO_ctrl(outStream,AUDIO_MUTEOFF, NULL);

4.4.7 AUDIO_INPUT_SAMPLERATE
Syntax
Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream
stream handle

cmd
AUDIO_INPUT_SAMPLERATE

args
address of a new samplerate value

Return Value
if successful - SYS_OK
if unsuccessful - non-zero device-dependent error value

Description
Modifies input stream’s sample rate

Constraints
Sample rate of input stream should not be changed while recording is going on. This
may result in unexpected behavior.

Example

newSampleRate = 48000;

stat = SIO_ctrl(inStream,AUDIO_INPUT_SAMPLERATE,&newSampleRate);

4.4.8 AUDIO_OUTPUT_SAMPLERATE
Syntax
Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream

Page 21 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

stream handle

cmd
AUDIO_OUTPUT_SAMPLERATE

args
address of a new samplerate value

Return Value
if successful - SYS_OK
if unsuccessful - non-zero device-dependent error value

Description
Modifies output stream’s sample rate

Constraints
Sample rate of output stream should not be changed while playback is going on. This
may result in unexpected behavior.

Example

newSampleRate = 48000;

stat = SIO_ctrl(outStream,AUDIO_OUTPUT_SAMPLERATE,&newSampleRate);

4.4.9 AUDIO_IN_SELECT
Syntax
Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream
stream handle

cmd
AUDIO_IN_SELECT

args
NULL

Return Value
if successful - SYS_OK
if unsuccessful - non-zero device-dependent error value

Description
Changes the input/record source based on the structure configuration. “audio_cfg”
structure is passed to reconfigure AIC33 completely. It implies that if user modifies
any other parameter of the structure, AIC33 will be configured with that
configuration. It will not retain any old configuration of AIC33.

Constraints
DM648/C6452 EVM does not support MIC as an input source. Configuring MIC IN as
an input source will throw an error from driver.

Page 22 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

Example

audio_cfg.inSelect = PSP_AUDIO_MIC_IN;
stat = SIO_ctrl(inStream,AUDIO_IN_SELECT, (Arg) &audio_cfg);

4.4.10AUDIO_OUT_SELECT
This command is not supported due to hardware limitation

4.4.11AUDIO_IN_GAIN_CONTROL
Syntax
Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream
stream handle

cmd
AUDIO_IN_GAIN_CONTROL

args
address of a new gain value

Return Value
if successful - SYS_OK
if unsuccessful - non-zero device-dependent error value

Description
Changes gain of input channel according to new gain value passed.

Constraints
Value of gain should be in the range of 1 and 99

Example

newGain = 75;
stat = SIO_ctrl(outStream,AUDIO AUDIO_IN_GAIN_CONTROL,(Arg)&newGain);

4.4.12AUDIO_OUT_GAIN_CONTROL
Syntax
Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream
stream handle

cmd
AUDIO_OUT_GAIN_CONTROL

args
address of a new gain value

Page 23 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

Return Value
if successful - SYS_OK
if unsuccessful - non-zero device-dependent error value

Description
Changes gain of output channel according to new gain value passed.

Constraints
Value of gain should be in the range of 1 and 99

Example

newGain = 75;
stat = SIO_ctrl(outStream,AUDIO AUDIO_OUT_GAIN_CONTROL,(Arg)&newGain);

4.4.13 AUDIO_DEVICE_RESET
Syntax
Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream
stream handle

cmd
AUDIO_DEVICE_RESET

args
NULL

Return Value
if successful - SYS_OK
if unsuccessful - non-zero device-dependent error value

Description
Resets the audio driver peripheral i.e. McASP. After this command is issued
successfully, audio record and playback will not continue. Please follow below
mentioned steps for restarting record and playback again.
Step 1 – Issue AUDIO_DEVICE_RESET command
Step 2 – Free the allocated memory, if any
Step 3 – Delete both the channels
Step 4 – Create both the channels again
Step 5 – (Optional) Only in case of McASP in master mode (i.e. AIC33 in slave mode)
call IOCTL “PSP_CTRL_RCV_GPIO_INPUT”.
Step 6 – Prime the driver

Constraints
None

Example

stat = SIO_ctrl(outStream, AUDIO_DEVICE_RESET,NULL);

Page 24 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

4.4.14AUDIO_MODIFY_LOOPJOB
Syntax
Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream
stream handle

cmd
AUDIO_MODIFY_LOOPJOB

args
address McASP channel param structure

Return Value
if successful - SYS_OK
if unsuccessful - non-zero device-dependent error value

Description
Enables application provided loopjob or internal loopjob depending on the input
parameter passed. If no buffer is provided then driver will enable internal loopjob.
Loopjob only takes effect when driver is starved of the requests.

Constraints
NONE

Example

PSP_mcaspChanParams chanPrams;
unsigned short loopBuf[512];

chanParams.userLoopJobBuffer = & loopBuf[0];
chanParams.userLoopJobLength = 512;

stat = SIO_ctrl(outStream,AUDIO_MODIFY_LOOPJOB,(Arg)&chanParams);

4.4.15 AUDIO_SET_AIC33_SLAVE_ADDRESS
Syntax
Int SIO_ctrl(stream, cmd, arg)

Parameters

Stream
stream handle

cmd
AUDIO_SET_AIC33_SLAVE_ADDRESS

args
address of new AIC33’s slave address

Return Value
successful - SYS_OK

Page 25 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

Description
This IOCTL is used for changing the slave address with the slave address of AIC that
application wants to configure. In DM648/C6452 EVM there are in total of 4 AICs. For
example, If a user wish to modify the output gain of any of the AIC, user needs to
call this IOCTL to set the slave address of AIC that he wishes to configure and then
call AUDIO_OUT_GAIN_CONTROL to modify the gain. Please refer to the example
above for reference.

Constraints
None

Example

Uint16 aic33SlaveAddress;
Uint32 newGain = 75;
Uint16 Aic33SlaveAddtess = 0x1B;

stat = SIO_ctrl (outStream,
AUDIO_SET_AIC33_SLAVE_ADDRESS,
(Arg)&aic33SlaveAddress);

stat = SIO_ctrl(outStream,AUDIO_OUT_GAIN_CONTROL,(Arg)&newGain);

4.5 IOM Channel Deletion

Application can free the resources held by the channel, if the channel is currently not in use,
by calling SIO_delete () API. The corresponding “audio_mdDeleteChan ()” function of the
device IOM driver shall run from the application context and should de-allocate the specified
channel object.

4.6 Audio IO Mini driver unbinding

The resources allocated by the “audio_mdBindDev ()” function are freed by calling device
“audio_mdUnBindDev ()”.

Page 26 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

5 Audio Codec API’s

This chapter describes the functions, control commands, data structures, enumerations and
macros for the AUDIO driver module.

5.1 API Definition

5.1.1 aic33Codec_config

Syntax
Int PAL_ aic33Codec_config (Uint32 Id, PSP_audio_cfg* audioCfg);

Parameters
Id

Audio codec ID
audioCfg

Audio Codec configuration structure

Return Value
It returns the handle on successful opening of a device. It returns error if the device
could not be opened.

Description
This function configures AIC33 codec.

Constraints
None

5.1.2 aic33_closeCodec

Syntax
Void aic33_closeCodec (aic33_CodecHandle aic33handle);

Parameters
aic33handle

Handle of the opened instance

Return Value
None

Description
This function call will close the AIC33 codec instance.

Constraints
None

Page 27 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

5.1.3 aic33_inGainControl

Syntax
int aic33_inGainControl (Uint8 newGain, PSP_audio_cfg* audioCfg);

Parameters
newGain

New gain setting for the input channel. New gain value should be in the range
of 1 to 99 otherwise function will return an error

audioCfg
Audio codec configuration structure

Return Value
On failure returns -1, on success returns 0.

Description
This function configures the gain of Input channel.

Constraints
None

5.1.4 aic33_outGainControl

Syntax
int aic33_outGainControl (Uint8 newGain, PSP_audio_cfg* audioCfg);

Parameters
newGain

New gain setting for the input channel. New gain value should be in the range
of 1 to 99 otherwise function will return an error

audioCfg
Audio codec configuration structure

Return Value
On failure returns -1, on success returns 0.

Description
This function configures the gain of Input channel.

Constraints
None

5.1.5 aic33_sampleRateControl

Syntax
int aic33_sampleRateControl (PSP_audio_cfg* audioCfg);

Page 28 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

Parameters
audioCfg

Audio codec configuration structure

Return Value
On failure returns -1, on success returns 0.

Description
This function configures AIC33 for passed sample rate.

Constraints
None

Page 29 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

6 Architecture

The device driver described here is part of an IOM mini-driver. That is, it is implemented as
the lower layer of a 2-layer device driver model. The upper layer is called the class driver
and can be either the DSP/BIOS GIO, SIO/DIO, or PIP/PIO modules. The class driver
provides an independent and generic set of APIs and services for a wide variety of mini-
drivers and allows the application to use a common interface for I/O requests. Error!
Reference source not found. shows over all DSP/BIOS device driver architecture.

Figure 2. DSP/BIOS Device Driver Model

Mini-driver implementation is split into a codec-specific portion and a generic portion that
will work across many different codecs. Error! Reference source not found. shows the
data flow between the components in a system in which the mini-driver is split into a
generic part i.e. McASP driver and audio codec-specific part.

Page 30 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

Figure 3. Codec Device Driver Partitioning

NOTE: Chip support library (CSL) here is register layer CSL only.

The codec specific portion of the mini-driver uses two codec specific functions, mdBindDev()
and mdCreateChan(), to configuration audio codec. These functions then call mdBindDev()
and mdCreateChan() in the generic driver to complete generic portions of the driver
initialization. The only thing the codec-specific part does is to set up the codec and leaves
the transfers of samples to the generic device driver. The fact that this device driver uses
the generic device driver is hidden from the user in all aspects except that the generic
device driver library has to be linked into the application. The function mdCreateDev() is
responsible for configuring the codec It does minimal setup required and then calls a
function called aic33Codec_config () function in psp_aic33Codec.c to perform most of the
configuration work required to prepare audio codec for record and playback operation. The
function mdCreateChan() generates the EDMA configuration used for the data transfers.

Application

Codec specific Audio
Driver for DM648 EVM

Generic McASP
driver

I2C driver

SIO/DIO or GIO Based
Class Driver

McASP peripheral

AIC 33 Audio
Codec

H/W
Component

Application

Driver

1. dda_mcasp_bios.c
2. ddc_mcasp.c
3. llc_mcasp.c

1. psp_audio.c
2. psp_aic33Codec.c

Page 31 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

7 DM648/C6452 EVM Limitations

This section lists limitations imposed due to the DM648/C6452 EVM design.

1. As AIC33 supports 16, 20, 24 and 32 bits, channels should be created using any of
these word widths only. Due to this McASP is not tested for word width other than
the ones supported by 16, 20, 24 and 32 bits.

2. Although McASP master mode is supported in McASP driver, due to the design of the
EVM, McASP can not be configured in master mode. If user tries to configure McASP
in master mode, error will be returned from the audio driver.

3. MIC IN is not supported as a recording source. If user tried to configure AIC33 in
MIC IN mode, error will be returned from the audio driver.

Page 32 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

8 Example Applications

This section describes the example applications that are included in the package. These
sample applications can be run as is for quick demonstration, but the user will benefit most
by using these applications as sample source code in developing new applications.

8.1 Writing Applications for AUDIO
This section provides guidance for user for writing their own application for AUDIO drivers.

8.1.1 File Inclusion
To write sample application user has to include following header files in the application:
psp_audio.h
This file contains configuration structures and defines for AUDIO driver configuration. It also
contains ConfigCommand enum that is passed while calling IOCTL for audio driver from
application.

8.1.2 Buffer Allocation and Management
Buffer allocation is dependent on number of requested serializer. Requested buffer size
should be equal to no_of_serializer * buff_size. Where no_of_serializer represents
number of serializers and buff_size represents number of samples per serializer per
receive/transmit request

Below cases shows, how a receive buffer allocation is done using single serializer and
multiple serializers. Same way buffer allocation is done for transmit channel as well.

8.1.2.1 Buffer allocation for single serializer (receive/transmit)

User has to request receive/transmit buffer with the size of no_of_serializer * buff_size
and pass it to driver. Here in this case no_of_serializer is equal to 1 and buff_size is
equal to number of samples per serializer per receive/transmit request. Requested serializer
fills the buffer and that buffer gives back to application.

8.1.2.2 Buffer allocation for multiple serializer

In case of user is using multiple serializers, user has to request receive/transmit buffer with
the size of no_of_serializer * buff_size and pass it to driver. Here in this case
no_of_serializer is equal to number requested serializer by a receive/transmit channel and
buff_zise is equal to number of samples per serializer per receive/transmit request. All
requested serializers fill the buffer and that buffer give back to application. Below figure
shows the buffer allocation for multiple serializer.

Page 33 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

8.2 Sample Application

The sample application is a representative test program. Initialization of AUDIO driver is
done by calling initialization function from BIOS.

Audio driver features a compile time Macro option to provide ONE_TO_ONE (One serializer
as input and one serializer as output) and FOUR_TO_ONE (4 serializer i.e. 8 mono channels
and 1 serializer as output) options.

Applications are supposed to provide buffers of appropriate size. Buffer size should be equal
to buffer of each serializer * no. of serializers (configured during compile time) to the
driver. To facilitate the applications which use only one serializer (as in GIO example of
DVSDK) ONE_TO_ONE option is provided.

In this release the audio drivers have been pre-built using both macros and application can
use (link) them using RTSC query through CFG file that is part of the application project.
Please note the statement “Settings.channel = ONE_TO_ONE “in the CFG file of

dm648_evm_audio_st_sample_1_to_1.pjt for DM648 and
c6424_evm_audio_st_sample_1_to_1.pjt for C6452, which would get the one to one library
to application for linking. If a CFG file does not have this statement, then by default four to
one library is linked to sample application.

Required Buffer size = no_of_serializer*buff_size

Filled Buffer

1 2 3 …. n

Where,
no_of_serializer– Number of Serializer
buff_size – Number of Samples per serializer

Empty Buffer

1 2 3 …. n

For example, no_of_serializer is equal to 4 and buff_size is equal to
1024 bytes, then required buffer size is equal to 4*1024 = 4096
bytes and 4 serializer fills buffer respectively.

Here, numbers represents serializer number.

Page 34 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

In this package among the standalone audio sample applications,
dm648_evm_audio_st_sample_1_to_1.pjt for DM648 and
c6424_evm_audio_st_sample_1_to_1.pjt for C6452 shows the usage of one to one
library and dm648_evm_audio_st_sample.pjt for DM648 and
c6424_evm_audio_st_sample.pjt for C6452 shows the usage of four to one library.

Please note that the four to one mode is the default mode for the audio driver of this EVM
and one to one mode is supported as add-on feature to support other existing applications.

A. All the applications which used the ONE_TO_ONE macro in the audio driver pjt
file and uses one serializer for input and one serializer for output (GIO audio
example in DVSDK) should

1. In RTSC way, add Settings.channel = Settings.ONE_TO_ONE statement
in the CFG file. Please refer the dm648_evm_audio_st_sample_1_to_1.pjt for
DM648 and c6424_evm_audio_st_sample_1_to_1.pjt for C6452 and its CFG
file for the actual usage (example given below)

“/* USE Audio Driver for DM648 */
var audio =
xdc.loadPackage('ti.sdo.pspdrivers.system.DM648.bios.evmDM648.audio');
var Settings =
xdc.module('ti.sdo.pspdrivers.system.DM648.bios.evmDM648.audio.Settings');
Settings.channel = Settings.ONE_TO_ONE;

“/* USE Audio Driver for C6452*/
var audio = xdc.loadPackage('ti.sdo.pspdrivers.system.C6452.bios.evm6452.audio');
var Settings =
xdc.module('ti.sdo.pspdrivers.system.C6452.bios.evm6452.audio.Settings');
Settings.channel = Settings.ONE_TO_ONE;

2. Non RTSC (conventional applications) can add the library or library pjt of ONE
to ONE audio library in the application project file as demonstrated in combo1
pjt (combined sample application) file.

B. All application which would use the 4 serializer for input and one for output
(demo example showing multi-channel video and audio)

1. In RTSC based application, just add lib from the audio driver package (by
default audio driver with 4 to 1 capability would be delivered by xdc for
linking)

2. In legacy way, add the library or library pjt file into application project file

 Note: Following Components needs to be linked for successful build and functionality
of the application.

 McASP
 I2C
 PAL_OS
 SoC specific PAL_SYS

Page 35 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

 Note:
The AIC33 codec driver uses I2C driver which is an asynchronous driver. However,
the codec relies on the result of the operation which means, it needs a
synchronous operation. Hence, it implements a semaphore to pend on completion of
this operation. The semaphore is posted by from inside a callback registered to the
I2C driver, by the codec driver, during open. However, the call back is called only in
interrupt context. Thus the I2C driver must be configured to work in interrupt mode,
by the sample application. If this not done the codec operations shall fail.

Page 36 of 36

DM648 Audio Driver User Guide

Texas Instruments Proprietary Information

9 Appendix A - DSP/BIOS Audio Driver References

References

[1] AIC33 audio codec datasheet (07 Jul 2006). To download the datasheet please visit
http://focus.ti.com/docs/prod/folders/print/tlv320aic33.html

