
TMS320C6000
Network Developer’s Kit (NDK) Support

Package for EVMDM642

User's Guide

Literature Number: SPRUES5

January 2007

2 SPRUES5–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

Contents

Preface ... 5
1 Getting Started ... 7

1.1 Introduction ... 7

1.2 Installing the Support Package... 7

1.3 Rebuilding HAL Libraries.. 7

1.4 Required Terms and Concepts... 8

2 User LED Driver .. 8
3 Timer Driver ... 8
4 Serial Driver ... 9

4.1 Introduction ... 9

4.2 Serial Port Driver ... 10

4.3 Serial Port Mini-Driver.. 10

5 Ethernet Driver.. 16
5.1 Introduction .. 16

5.2 Ethernet Driver .. 16

5.3 Ethernet Packet Mini-Driver ... 17

SPRUES5–January 2007 Table of Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

List of Tables

1 Serial Module Device Driver Source Files.. 9
2 Structure Entries.. 11
3 Ethernet Packet Driver Source Files... 16
4 Structure Entries.. 18

4 List of Tables SPRUES5–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

Preface
SPRUES5–January 2007

Read This First

About This Manual

This document contains information about the Network Developer’s Kit (NDK) Support Package for
EVMDM642. The package includes source code for HAL drivers, and examples to reuse or modify them
for customer designed platforms. Pre-built HAL libraries are also delivered with the package.

How to Use This Manual

This document is divided into the following sections:

• Section 1 – Getting Started: Introduces the NDK Support Package, which is designed to run the NDK
on EVMDM642 platform.

• Section 2 – User LED Driver: Describes the user LED driver for EVMDM642.
• Section 3 – Timer Driver: Describes the timer driver for EVMDM642.
• Section 4 – Serial Driver: Describes the serial driver for TL 16C752.
• Section 5 – Ethernet Driver: Describes the EMAC driver for DM642.

Notational Conventions

This document uses the following conventions:

• Program listings, program examples, and interactive displays are shown in a special typeface.
• In syntax descriptions, the function or macro appears in a bold typeface and the parameters appear in

plainface within parentheses. Portions of a syntax that are in bold should be entered as shown;
portions of syntax that are within parentheses describe the type of information that should be entered.

• Macro names are written in uppercase text; function names are written in lowercase.

Related Documentation from Texas Instruments

The following books describe the TMS320C6x™ devices and related support tools. To obtain a copy of
any of these TI documents, call the Texas Instruments Literature Response Center at (800) 477–8924.
When ordering, please identify the book by its title and literature number. Many of these documents can
be found on the Internet at http://www.ti.com.

SPRU189 — TMS320C6000 DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C6000™ digital signal
processors (DSPs).

SPRU190 —TMS320C6000DSP Peripherals Overview Reference Guide. Provides an overview and
briefly describes the peripherals available on the TMS320C6000™ family of digital signal
processors (DSPs).

SPRU197 —TMS320C6000 Technical Brief. Provides an introduction to the TMS320C62x™ and
TMS320C67x™ digital signal processors (DSPs) of the TMS320C6000™ DSP family. Describes
the CPU architecture, peripherals, development tools and third-party support for the C62x™ and
C67x™ DSPs.

SPRU198 —TMS320C6000 Programmer's Guide. Reference for programming the TMS320C6000™
digital signal processors (DSPs). Before you use this manual, you should install your code
generation and debugging tools. Includes a brief description of the C6000 DSP architecture and
code development flow, includes C code examples and discusses optimization methods for the C
code, describes the structure of assembly code and includes examples and discusses optimizations
for the assembly code, and describes programming considerations for the C64x™ DSP.

SPRUES5–January 2007 Preface 5
Submit Documentation Feedback

http://www.ti.com
http://www-s.ti.com/sc/techlit/SPRU189
http://www-s.ti.com/sc/techlit/SPRU190
http://www-s.ti.com/sc/techlit/SPRU197
http://www-s.ti.com/sc/techlit/SPRU198
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

Related Documentation from Texas Instruments

SPRU509 — TMS320C6000 Code Composer Studio Development Tools v3.3 Getting Started Guide
introduces some of the basic features and functionalities in Code Composer Studio™ to enable you
to create and build simple projects.

SPRU523 — TMS320C6000 Network Developer’s Kit (NDK) Software User’s Guide. Describes how
to use the NDK libraries, how to develop networking applications on TMS320C6000™ platforms,
and ways to tune the NDK to fit a particular software environment.

SPRU524 — TMS320C6000 Network Developer’s Kit (NDK) Software Programmer’s Reference
Guide. Describes the various API functions provided by the stack libraries, including the low level
hardware APIs.

Trademarks

TMS320C6x, TMS320C6000, TMS320C62x, TMS320C67x, C62x, C67x, C64x, Code Composer Studio
are trademarks of Texas Instruments.

6 Read This First SPRUES5–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU509
http://www-s.ti.com/sc/techlit/SPRU523
http://www-s.ti.com/sc/techlit/SPRU524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

1 Getting Started

1.1 Introduction

1.2 Installing the Support Package

1.3 Rebuilding HAL Libraries

User's Guide
SPRUES5–January 2007

TMS320C6000 Network Developer’s Kit (NDK) Support
Package for EVMDM642

This section introduces the NDK Support Package for EVMDM642.

The TMS320C6000 NDK Support Package for EVMDM642 includes:
• Source codes and pre-built libraries for the NDK Hardware Adaptation Layer (HAL) drivers
• NDK examples

There are four basic HAL drivers required to operate the NDK: timer, user LED, serial port, and Ethernet.
The Support Package provides Ethernet, serial, and user LED drivers specific to EVMDM642 platform.
The timer driver is implemented by using DSP/BIOS PRD module from the NDK.

The support package installs over the NDK installation. Once installed, the following directories are
created under the <NDK_INSTALL_DIR>/packages/ti/ndk directory:

• <docs/evmdm642> Documentation files for Support Package
• <example/network/cfgdemo/evmdm642> CCStudio project files for cfgdemo example
• <example/network/client/evmdm642> CCStudio project files for client example
• <example/network/helloWorld/evmdm642> CCStudio project files for helloWorld example
• <example/serial/client/evmdm642> CCStudio project files for serial client example
• <example/serial/router/evmdm642> CCStudio project files for serial router example
• <example/tools/evmdm642> Common tools used by Support Package
• <lib/hal/evmdm642> Pre-built HAL libraries for EVMDM642
• <src/hal/evmdm642/eth_dm642> Source code for DM642 EMAC driver
• <src/hal/evmdm642/ser_ti752> Source code of TI 16C752 Dual Serial UART driver
• <src/hal/evmdm642/userled_dm642> Source code for EVMDM642 LED driver

Included with the Support Package is a new batch file (MAKEHAL_EVMDM642.BAT) that resides in the
<NDK_INSTALL_DIR>/packages/ti/ndk directory.

Before using MAKEHAL_EVMDM642 from a command prompt, the NDK batch file DOSRUN_BIOS.BAT
must be run from the <NDK_INSTALL_DIR>/packages/ti/ndk directory to set up the correct
environment for running the TI code generation tools from a command prompt. Make sure that the TI_DIR
environment variable is set to point to your Code Composer Studio Development Tools installation. The
form of the MAKEHAL_EVMDM642 command is: makehal_evmdm642 [library] (noclean)

The library name is required in this command. The value of library determines what device library (or
libraries) to build. The value of library can be any of the following:
• ETHERNET: Texas Instruments DM642 Ethernet MAC Driver
• SERIAL: Texas Instruments TL16C752 Dual Serial UART Driver

SPRUES5–January 2007 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM642 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

1.4 Required Terms and Concepts

1.4.1 HAL Driver Source Files

1.4.2 Network Control Module (NETCTRL)

1.4.3 Stack Event (STKEVENT) Object

1.4.4 Packet Buffer (PBM) Object

2 User LED Driver

3 Timer Driver

User LED Driver

• USERLED: EVMDM642 User LED Driver

The final parameter noclean can be added to the command line to suppress cleaning old object files from
the target directory. This is only useful when rebuilding the same driver for the same platform baseboard.

The batch file does not perform stringent argument checking, so incorrect calling arguments may result in
a incorrect build.

To port the NDK Support Package device drivers, you should be familiar with the following concepts.

Section 1.3 described how to build different HAL drivers for EVMDM642.

The network control module (NETCTRL) is at the center of the NDK and controls the interface of the HAL
device drivers to the internal stack functions.

The NETCTRL module and its related APIs are described in both the TMS320C6000 Network Developer's
Kit (NDK) Software Programmer's Reference Guide (SPRU524) and the TMS320C6000 Network
Developer's Kit (NDK) Software User's Guide (SPRU523). To write device drivers, you must be familiar
with NETCTRL. The description given in the TMS320C6000 Network Developer's Kit (NDK) Software
User's Guide (SPRU523) is more appropriate for device driver work.

The STKEVENT event object is a central component to the low-level architecture. It ties the HAL layer to
the scheduler thread in the network control module (NETCTRL). The network scheduler thread waits on
events from various device drivers in the system, including the Ethernet, serial, and timer drivers.

The STKEVENT object is used by the device drivers to inform the scheduler that an event has occurred.
The STKEVENT object and its related API are described in the TMS320C6000 Network Developer's Kit
(NDK) Software Programmer's Reference Guide (SPRU524). To write device drivers, you must be familiar
with STKEVENT.

The PBM object is a packet buffer that is sourced and managed by the Packet Buffer Manager (PBM).
The PBM is part of the OS adaptation layer. It provides packet buffers for all packet based devices in the
system. Therefore, the serial port and Ethernet drivers both make use of this module.

The PBM object and its related API are described in the TMS320C6000 Network Developer's Kit (NDK)
Software Programmer's Reference Guide (SPRU524). The TMS320C6000 Network Developer's Kit (NDK)
Software User's Guide (SPRU523) also includes a section on adapting the PBM to a particular included
software.

This section describes the User LED software. The User LED driver is a collection of functions that turn on
and off LED lights on the EVMDM642 platform. There is only one C file for the User LED: LLLED.C LED
driver, located in the subdirectory SRC\HAL\EVMDM642\USERLED_DM642.

This section discusses the software that drives event timing. The timer driver determines the timing for all
time driven events in the NDK. The EVMDM642 platform uses the NDK provided timer_bios driver, which
is implemented using a DSP/BIOS PRD object.

TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM6428 SPRUES5–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU523
http://www-s.ti.com/sc/techlit/SPRU523
http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

4 Serial Driver

4.1 Introduction

4.1.1 Source Code

4.1.2 Theory of Operation

Serial Driver

This section describes the operational theory of the HDLC framing layer and low-level serial driver,
including instructions on the use and porting of the device driver source code.

The serial driver can be used in one of two ways in the NDK. First, by connecting the serial port to a pipe,
the serial interface can drive a TTY command line tool for device configuration purposes. The TTY
interface can look like any other socket to a socket based console program. Thus, the same console
program can support both Telnet and direct serial link. More commonly, the serial driver implements a
PPP device interface to a modem or a peer on the other side of the serial link.

The serial driver provided in the NDK is broken down into two parts: a device independent upper layer,
and a device dependent layer. The device dependent layer is called a mini-driver because it only
implements a subset of the full driver functions. The mini-driver API is documented in Section 4.3.4. The
full NDK serial port driver API is documented in the Appendix D of the TMS320C6000 Network
Developer's Kit (NDK) Software Programmer's Reference Guide (SPRU524), and the interface to the
HDLC framer is documented in Appendix C. The example applications provide the source code to the
HDLC framer interface.

The EXAMPLE\SERIAL directory includes example applications using the serial device.

There are two types of serial modules included in the NDK: a stub driver used in a system where a serial
port is not required, and a driver for the Texas Instruments TL16C750 and TL16C752 UART. The
directories for the two types of device drivers are as follows:

Table 1. Serial Module Device Driver Source Files

Directory File Description

<SRC\HAL\EVMDM642\SER_TI752> Source code for the Texas Instruments TL16C752
Dual Serial UART Driver

LLSERIAL.C Hardware independent portion of the Low-Level
Serial Port Driver

LLSERIAL.H Private include file for the LLSERIAL drivers

TI752.C Serial mini-driver for TL16C752

TI752.H Private include file for the serial mini-driver

The serial port driver was designed to operate both an AT command set modem (or any serial TTY type
application), and also support PPP HDLC-like framing, without the intervention of the TTY (or character
mode) code. The driver accomplishes this dual role through the ability to open in two different modes.

On initialization, the serial driver is first opened in character mode using the llSerialOpen() function. This
provides a channel for receiving normal TTY data. With a modem, this channel sends AT commands and
gets replies.

When the modem has connected, or the TTY state machine provided by the programmer has detected the
presence of HDLC, the HDLC-like framing module is opened using the llSerialOpenHDLC() call on the
serial port.

Once open in HDLC mode, the hardware specific portion of the low-level serial driver tracks the HDLC
frame delimiters and receives HDLC frames, including converted escape sequences, and validating the
HDLC checksum. When data is sent in HDLC mode, the low-level serial driver must add the HDLC frame
delimiter characters, use escape sequences when necessary, and calculate the outgoing HDLC
checksum. While in HDLC mode, the serial device can still indicate character mode data if it is possible to
detect the difference, but due to the relaxed standard in HDLC frame delimiting, this may not be practical.

SPRUES5–January 2007 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM642 9
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

4.2 Serial Port Driver

4.2.1 Important Note on Data Alignment

4.2.2 Hardware Independent Low-Level Serial Driver: LLSERIAL.c

4.2.3 Hardware Specific Low-Level Serial Driver

4.3 Serial Port Mini-Driver

4.3.1 Overview

Serial Driver

This section discusses the serial support source files, and the amount of required porting for each.

The NDK libraries have been built with the assumption that the IP header in a data packet is 16-bit
aligned. In other words, the first byte of the IP packet (the version/length field) must start on an even 16-bit
boundary. In any fixed length header protocol, this requirement can be met by backing off any odd byte
header size, and adding it to the header padding specified to the stack. For Ethernet and peer to peer
protocol (PPP), the only requirement is that the Ethernet or PPP packet not start on an odd byte
boundary.

In addition, all drivers in the NDK are set up to have a 22 byte header. This is the header size of a PPPoE
packet when sent using a 14 byte Ethernet header. When all arriving packets use the 22 byte header, it
guarantees that they can be routed to any egress device with a header requirement up to that size. For
serial operation, this requires that an HDLC packet has 18 bytes of pre-pad to make its total header size
22 bytes.

The value of this pre-pad is #defined as PKT_PREPAD in the file LLSERIAL.H.

The low-level serial port driver API is discussed in Appendix D of the TMS320C6000 Network Developer's
Kit (NDK) Software Programmer's Reference Guide (SPRU524). It is very similar to the low-level Ethernet
driver and, like the Ethernet driver, it consists of two parts: a hardware independent module and a
hardware specific module. This makes the hardware specific portion of the driver easier to port.

The standard API to access a serial port as defined in Appendix D of the TMS320C6000 Network
Developer's Kit (NDK) Software Programmer's Reference Guide (SPRU524) is implemented by the
LLSERIAL.C module. This module can also handle multiple device instances.

To implement the low-level serial API in a device independent manner, the LLSERIAL module calls down
to a hardware specific module. The interface functions to this module are defined in the LLSERIAL.H
include file. The API description of this hardware's specific mini-driver is documented in Section 4.3.4.

The TI752.C modules include a device driver specific to the TL16C752. These modules communicate with
the serial hardware.

In HDLC mode, they also must check the HDLC frame delimiters, add or remove escape sequences,
compute or validate the HDLC CRC, and indicate data to the upper layers as frames.

The calling interface to this mini-driver is described in the following section.

As mentioned in the previous section, the low-level serial port driver is broken down into two distinct parts:
a hardware independent module (LLSERIAL.C) that implements the llSerial API, and a hardware specific
module that interfaces to the hardware independent module. The llSerial API is described in the
TMS320C6000 Network Developer's Kit (NDK) Software Programmer's Reference Guide (SPRU524),
Appendix D. This section describes this small hardware specific module, or mini-driver.

Note that this module is purely optional. A valid serial port driver can be developed by directly
implementing the llSerial API described in the TMS320C6000 Network Developer's Kit (NDK) Software
Programmer's Reference Guide (SPRU524). Even if the mini-driver is used, you may change any of the
internal data structures as long as the llSerial interface remains unchanged.

TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM64210 SPRUES5–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

4.3.2 Global Instance Structure

Serial Driver

Nearly all the functions in the mini-driver API take a pointer to a serial driver instance structure called
SDINFO. This structure is defined in LLSERIAL.H. The following are the base members. The structure can
be extended by the mini-driver.
//
// Serial device information
//
typedef struct _sdinfo {

uint PhysIdx; // Physical index of device (0 to n-1)
uint Open; // Open counter used by llSerial
HANDLE hHDLC; // Handle to HDLC driver (NULL=closed)
STKEVENT_Handle hEvent; // Handle to scheduler event object
UINT32 PeerMap; // 32 bit char escape map (for HDLC)
uint Ticks; // Track timer ticks
uint Baud; // Baud rate
uint Mode; // Data bits, stop bits, parity
uint FlowCtrl; // Flow Control Mode
uint TxFree; // Transmitter "free" flag
PBMQ PBMQ_tx; // Tx queue (one for each SER device)
PBMQ PBMQ_rx; // Rx queue (one for each SER device)

PBM_Handle hRxPend; // Packet being rx'd
UINT8 *pRxBuf; // Pointer to write next char
uint RxCount; // Number of bytes received
UINT16 RxCRC; // Receive CRC
UINT8 RxFlag; // Flag to "un-escape" character

PBM_Handle hTxPend; // Packet being tx'd
UINT8 *pTxBuf; // Pointer to next char to send
uint TxCount; // Number of bytes left to send
UINT16 TxCRC; // Transmit CRC
UINT8 TxFlag; // Flag to insert character
UINT8 TxChar; // Insert character

void (*cbRx)(char); // Charmode callback (when open)
void (*cbTimer)(HANDLE h); // HDLC Timer callback (when open)
void (*cbInput)(PBM_Handle hPkt); // HDLC Input callback (when open)
uint CharReadIdx; // Charmode read index
uint CharWriteIdx; // Charmode write index
uint CharCount; // Number of charmode bytes waiting
UINT8 CharBuf[CHAR_MAX];// Character mode recv data buffer

} SDINFO;

Only some of these fields are used in a mini-driver. The structure entries as defined as follows:

Table 2. Structure Entries

Field Description

PhysIdx Physical Index of this Device (0 to –1). The physical index of the device determines
how the device instance is represented to the outside world. The mini-driver is not
concerned about the physical index.

Open Open Flag. This flag is used by LLSERIAL.C to track whether the mini-driver has been
opened. It should not be modified by the mini-driver code.

hHDLC Handle to HDLC Driver. The handle to the HDLC device is how the system tracks
where HDLC data should be sent. When this field is NULL, the driver is not open for
HDLC mode, and all data should be treated as character mode. When the field is not
NULL, any incoming serial data should be treated as potential HDLC data, and any
output packet is treated as an egress HDLC frame. HDLC packets received in HDLC
mode are tagged with this handle so that the upper layers can identify the packet’s
source.

hEvent Handle to Scheduler Event Object. The handle hEvent is used with the STKEVENT
function STKEVENT_signal() to signal the system whenever new data is received. In
character mode, this event is fired for each character. In HDLC mode, the event is fired
when a good HDLC packet is received.

SPRUES5–January 2007 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM642 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

Serial Driver

Table 2. Structure Entries (continued)

Field Description

PeerMap 32-Bit Char Escape Map (for HDLC). The peer map is a 32-bit bitmap coded as
(1<<char) where char is an ASCII character 0 through 31. When the bit is set, an
outgoing HDLC frame must have the corresponding character escaped in a HDLC
frame transmission.

Ticks Track Timer Ticks. This field converts 100 ms timer ticks to 1 second timer ticks. It is
not used by mini-drivers.

Baud Serial Device Baud Rate. This field holds the current physical baud rate of the serial
port in bps (for example, 9600, 19200, 153600, etc.).

Mode Device Mode. The mode field holds the mode of the serial port in terms of data bits,
stop bits, and parity. These values appear in HAL.H. Currently defined values are as
follows:

• #define HAL_SERIAL_MODE_8N1 0
• #define HAL_SERIAL_MODE_7E1 1

FlowCtrl Flow Control Mode. The FlowCtrl field determines the flow control mode. These values
appear in HAL.H. Currently defined values are as follows:

• #define HAL_SERIAL_FLOWCTRL_NONE 0
• #define HAL_SERIAL_FLOWCTRL_HARDWARE 1

TxFree Transmitter Free Flag. The TxFree flag is used by LLSERIAL.C to determine if new
data should be sent immediately by the mini-driver, or placed on the transmit pending
queue for later. If the flag is not zero, the mini-driver function HwSerTxNext() is called
when any new data is queued for transmission. This flag is maintained by the
mini-driver.

PBMQ_tx Tx Queue. The PBMQ_tx queue is a queue of packets waiting to be transmitted. When
the transmitter is free and the HwSerTxNext() function is called, the mini-driver
removes the next packet off this queue and starts transmission. The PBMQ object is a
queue of PBM packet buffers and it is operated on by the PBMQ functions defined in
theTMS320C6000 Network Developer's Kit (NDK) Software Programmer's Reference
Guide (SPRU524).

PBMQ_rx Rx Queue. The PBMQ_rx queue is a queue of packets that have been received on the
interface. When a new packet is received, the mini-driver adds it to this queue, and
fires a serial event to the STKEVENT handle. PBMQ object is a queue of PBM packet
buffers and it is operated on by the PBMQ functions defined in the TMS320C6000
Network Developer's Kit (NDK) Software Programmer's Reference Guide (SPRU524).

hRxPend PBM_Handle to Packet Being Received. When in HDLC mode, this value holds a
handle to the packet that is currently being received by the mini-driver. When the
packet is complete, the mini-driver places this packet in the PBMQ_rx queue, and
allocates another free packet by calling PBM_alloc().

pRxBuf Pointer to Next Character in Packet to Receive. When in HDLC mode, this points to
where to write the next character of received data. The pointer points somewhere in the
current packet buffer whose handle is stored in hRxPend.

RxCount Number of Bytes Written to RX Packet Buffer so far. When in HDLC mode, this value is
the number of characters that have been written to the current packet being received.

RxCRC RX CRC Running Total. When in HDLC mode, this value is a running total of the
current CRC value of the packet being received. It is used as a temporary CRC holding
value while packet data is still being received. It is then compared to the CRC
contained in the packet to validate the incoming CRC.

RxFlag Flag Indicating That Next Byte is the Second Half of an Escape Sequence. When in
HDLC mode, this flag is set when an escape character is seen. It prompts the RX state
machine in the mini-driver to un-escape the next character received.

hTxPend PBM_Handle to Packet Being Transmitted. This value holds a handle to the packet that
is currently being transmitted by mini-driver. When the packet is completely transmitted,
the mini-driver frees this packet by calling PBM_free().

pTxBuf Pointer to Next Character in Packet to Transmit. This is a pointer where to read the
next character of transmit data. The pointer points somewhere in the current packet
buffer whose handle is stored in hTxPend.

TxCount Number of Bytes Yet to Send From to TX Packet. This value is the number of
characters that have yet to be read and transmitted from the current packet being sent.

12 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM642 SPRUES5–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

4.3.3 Mini-Driver Operation

4.3.3.1 Receive Operation

Serial Driver

Table 2. Structure Entries (continued)

Field Description

TxCRC TX CRC Running Total. When in HDLC mode, this value is a running total of the
current CRC value of the packet being transmitted. It is used as a temporary CRC
holding value while packet data is still being sent. It patches in the correct CRC value
as the last two bytes of the packet data.

TxFlag Flag Indicating That Next Byte is the Second Half of an Escape Sequence. When in
HDLC mode, this flag is set when an escape character has to be generated. It prompts
the TX state machine in the mini-driver to write the second half of the escape sequence
next. This value is stored in TxChar.

cbRx Pointer to Character Mode Callback Function. This character mode callback function is
called by LLSERIAL.C whenever there is character mode data queued up by the serial
driver. This is not used by the mini-driver.

cbTimer Pointer to HDLC Timer Callback Function. The serial driver (LLSERIAL.C) calls this
function once every second. The callback function is not used by the mini-driver.

cbInput Pointer to HDLC Input Callback Function. The serial driver (LLSERIAL.C) calls this
function with new HDLC packets. The callback function is not used by the mini-driver.

TxChar Second Half of Escape Sequence. When in HDLC mode and TxFlag is set, this
variable holds the next value to send out the serial port.

CharReadIdx Character Buffer Read Index. This index is used by LLSERIAL.C to read character data
out of the circular character buffer. It is not used by a mini-driver.

CharWriteIdx Character Buffer Write Index. This index is used by a mini-driver in character mode to
write newly received character data to circular character buffer array contained in this
structure. As data is written, this index is increased and the CharBufUsed value is
increased. Once it reaches the value CHAR_MAX, it is reset to zero.

CharCount Characters Stored in Character Buffer. Data received in character mode are not placed
in a serial frame buffer, but are stored in a circular buffer contained in this instance
structure. The maximum number of characters that can be stored is determined by
CHAR_MAX. The number of characters currently stored is determined by this value.
The value is increased as characters are written to the buffer. The LLSERIAL.C module
will decrement this value as characters are read out, so it should only be altered in a
critical section.

CharBuf Character Mode Input Data Buffer. This array acts as the input buffer for character
mode data. Unlike HDLC data, individual characters are not built into serial packet
buffers. Instead, they are queued for immediate consumption by the character mode
user - most likely an AT command set modem state machine, but it could also be a
serial console program. The size of this buffer is set by CHAR_MAX.

The serial mini-driver is charged with maintaining the serial device hardware, and servicing any required
communications interrupts. It is built around a simple open/close concept. When open, the driver is active,
and when closed is it not. In general, it must implement the mini-driver API described in the following
section. Here are some additional notes on its internal operation.

The mini-driver receives serial data and must classify it as HDLC data or character mode data. It is
sufficient to use the current mode of the driver to determine how to classify data. For example:
// If HDLC handle valid, driver is open on HDLC mode
// Else use charmode
if(MyInstancePtr->hHDLC)

Treat_Data_as_HDLC();
else

Treat_Data_as_CharacterMode();

SPRUES5–January 2007 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM642 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

4.3.3.2 Transmit Operation

4.3.4 Serial Mini-Driver API

HwSerInit — Initialize Serial Port Environment

More advanced classification heuristics can be attempted (auto recognition of HDLC frames). Once the
data is classified, it is placed either in a PBM packet buffer (if HDLC), or the circular character buffer (if
character mode data). Empty packet buffers are acquired by calling the PBM_alloc() function. The
character mode buffer array for non-HDLC data is located in the mini-driver device instance, using the
structure fields: CharBuf, CharCount, and CharWriteIdx. When CharCount equals CHAR_MAX, and
nomore data can be written to the buffer, any new data is discarded.

When the driver is in HDLC mode, the driver receives serial data as HDLC packets, and creates a PBM
packet buffer object to hold each HDLC frame. Note that the HDLC flag character (0x7E) is always
removed from the HDLC packets. The completed HDLC packet written to the PBM packet buffer has the
following format:

Addr (FF) Control (03) Protocol Payload CRC

1 1 2 1500 2

When a HDLC packet is ready, the mini-driver adds it to the PBMQ_rx queue and signals an event to the
STKEVENT object.

On receive, the mini-driver must remove all HDLC escape sequences, and validate the HDLC CRC.
Packets with an invalid CRC are discarded. CRC calculation for both receive and transmit is done in-line
as the packet is being received. Also, the CRC code in the example driver is based on a 4 bit algorithm.
This allows for the use of a 16 entry lookup table instead of a 256 entry table.

Unlike receive, transmit uses PBM packet buffers to send regardless of whether it is in character mode or
HDLC mode. The only difference is that in HDLC mode, the data must be formatted. The mini-driver
retrieves the next packet to send off the PBMQ_tx queue when the HwSerTxNext() function is called.
When all the characters from the packet have been read and transmitted, the PBM packet buffer is freed
by calling PBM_free().

On transmit, the mini-driver must use escape sequences when necessary, and compute the HDLC CRC.
Note that on a transmitted packet, the 2 byte HDCL CRC is present, just not valid. The mini-driver must
validate the CRC when it sends the packet. CRC calculation for both receive and transmit is done in-line
as the packet is being received. Also, the CRC code in the example driver is based on a 4 bit algorithm.
This allows for the use of a 16 entry lookup table instead of a 256 entry table.

The following API functions must be provided by a mini-driver.

HwSerInit Initialize Serial Port Environment

Syntax uint HwSerInit();

Parameters None

Return Value The number of serial devices in the system.

Description Called to initialize the serial port mini-driver environment, and enumerate the number of
devices in the system. A device instance may be opened for each device represented in
the return count. If the function returns zero, no serial devices are supported.

HwSerShutdown Shutdown Serial Port Environment

Syntax void HwSerShutdown();

Parameters None

Return Value None

Description Called to indicate that the serial port environment should be completely shut down.

14 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM642 SPRUES5–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

Serial Driver

HwSerOpen Open Serial Port Device Instance

Syntax uint HwSerOpen(SDINFO *pi);

Parameters pi- Pointer to serial device instance structure

Return Value Returns 1 if the driver was opened, or 0 on error.

Description Called to open a serial device instance. When called, SDINFO structure is valid.

HwSerClose Close Serial Port Device Instance

Syntax void HwSerClose(SDINFO *pi);

Parameters pi- Pointer to serial device instance structure

Return Value None

Description Called to close a serial device instance. When called, any PBM packet buffers held by
the driver instance, including hRxPend, hTxPend, and PBMQ_tx, are freed by calling
PBM_free(). In addition, the character mode buffer is reset (read pointer, write pointer,
and character count all set to NULL). Packets that have been placed on the PBMQ_rx
queue are flushed by LLSERIAL.C.

HwSerTxNext Transmit Next Buffer in Transmit Queue

Syntax void HwSerTxNext(SDINFO *pi);

Parameters pi- Pointer to serial device instance structure

Return Value None

Description Called to indicate that a PBM packet buffer has been queued in the transmit pending
queue (PBMQ_tx) contained in the device instance structure, and LLSERIAL.C believes
the transmitter to be free (TxFree set to 1). The mini-driver uses this function to start the
transmission sequence.

HwSerSetConfig Set Serial Port Configuration

Syntax void HwSerSetConfig(SDINFO *pi);

Parameters pi- Pointer to serial device instance structure

Return Value None

Description Called when the values contained in the SDINFO instance structure are altered. The
structure fields used for configuration are Baud, Mode, and FlowCtrl. The mini-driver
should update the serial port configuration with the current SDINFO settings.

SPRUES5–January 2007 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM642 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

5 Ethernet Driver

5.1 Introduction

5.1.1 Ethernet Driver Source Files

5.2 Ethernet Driver

5.2.1 Important Note on Data Alignment

Serial Driver

HwSerPoll Serial Polling Function

Syntax void _HwSerPoll(SDINFO *pi, uint fTimerTick);

Parameters pi- Pointer to serial device instance structure

fTimerTick- Flag indicating the 100 ms have elapsed

Return Value None

Description Called by LLSERIAL.C at least every 100 ms, but calls can come faster when there is
serial activity. The mini-driver is not required to perform any operation in this function,
but it can be used to check for device lockup conditions. When the call is made due to
the 100 ms time tick, the fTimerTick calling parameter is set.

Note that this function is not called in kernel mode (hence, the underscore in the name).
This is the only mini-driver function called from outside kernel mode (done to support
polling drivers).

This section describes the operational theory of the low-level Ethernet driver, including instructions on the
use and porting of the device driver source code.

The Ethernet packet driver provided in the NDK is broken down into two parts, a device independent
upper layer, and a device dependent layer. The device dependent layer is called a mini-driver because it
only implements a subset of the full driver functions. The mini-driver API is documented at the end of this
section. The full NDK Ethernet packet driver API is documented in the Appendix D of TMS320C6000
Network Developer's Kit (NDK) Software Programmer's Reference Guide (SPRU524).

The Ethernet packet driver source files are located in various subdirectories according to their function.

Table 3. Ethernet Packet Driver Source Files

Directory File Function

<SRC\HAL\EVMDM642\ETH_DM642> Source code of the Texas Instruments DM642
Ethernet Driver

LLPACKET.C Hardware independent portion of the Low-Level
Ethernet Packet Driver

LLPACKET.H Private include file for LLPACKET drivers

DM642.C Packet mini-driver for DM642

The NDK packet driver API is discussed in Appendix D of the TMS320C6000 Network Developer's Kit
(NDK) Software Programmer's Reference Guide (SPRU524), which includes how to implement the
individual API functions. The sections below discuss the implementation of an Ethernet packet mini-driver.

The NDK libraries have been built with the assumption that the IP header in a data packet is 16-bit
aligned. In other words, the first byte of the IP packet (the version/length field) must start on an even 16-bit
boundary. In any fixed length header protocol, this requirement can be met by backing off any odd byte
header size, and adding it to the header padding specified to the stack. For Ethernet and PPP, the only
requirement is that the Ethernet or PPP packet not start on an odd byte boundary.

16 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM642 SPRUES5–January 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

5.2.2 Hardware Independent Low-Level Ethernet Driver: LLPACKET.C

5.2.3 Hardware Specific Low-Level Ethernet (Mini) Driver

5.3 Ethernet Packet Mini-Driver

5.3.1 Overview

Ethernet Driver

In addition, all drivers in the NDK are set up to have a 22 byte header. This is the header size of a PPPoE
packet when sent using a 14 byte Ethernet header. When all arriving packets use the 22 byte header, it
guarantees that they can be routed to any egress device with a header requirement up to that size. For
Ethernet operation, this requires that a packet has 8 bytes of pre-pad to make its total header size 22
bytes.

The value of this pre-pad is #defined as PKT_PREPAD in the file LLPACKET.H.

The low-level Ethernet packet driver is very similar to the low-level serial port driver. It consists of two
parts: a hardware independent module and a hardware specific module, which makes the hardware
specific portion of the driver easier to port. When deciding how to port the packet driver, you must choose
whether to use the device independent LLPACKET.C module.

The standard API to access the packet device as defined in Appendix D of the TMS320C6000 Network
Developer's Kit (NDK) Software Programmer's Reference Guide (SPRU524) is implemented by the
LLPACKET.C module. This module also handles multiple device instances, and handles the queuing for
all received packet data.

To implement the low-level packet API in a device independent manner, the LLPACKET.C module calls
down to a hardware specific module. The interface functions to this module are defined in the
LLPACKET.H include file. They are documented to some degree in the example source code to the
hardware specific modules. The LLPACKET.H file also contains the specifications for the buffering of
packets.

The mini-driver module is a device driver specific to its target hardware. Its basic function is to talk to the
Ethernet MAC hardware. It also must interface to any other hardware specific to the target platform. For
example, it can setup interrupts, cache control, and the EDMA controller.

The interface specification is capable of handling multiple devices, but the example implementations
mostly only support a single device instance. Notes are made in the source code as to where alterations
can be made to support multiple devices.

As mentioned in the previous section, the low-level Ethernet packet driver is broken down into two distinct
parts, a hardware independent module (LLPACKET.C) that implements the llPacket API described in the
TMS320C6000 Network Developer's Kit (NDK) Software Programmer's Reference Guide (SPRU524),
Appendix D, and a hardware specific module that interfaces to the hardware independent module. This
section describes this small hardware specific module, or mini-driver.

Note that this module is purely optional. A valid packet driver can be developed by directly implementing
the llPacket API described in the TMS320C6000 Network Developer's Kit (NDK) Software Programmer's
Reference Guide (SPRU524). Even if the mini-driver is used, you may change any of the internal data
structures as long as the llPacket interface remains unchanged.

SPRUES5–January 2007 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM642 17
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU524
http://www-s.ti.com/sc/techlit/SPRU524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

5.3.2 Global Instance Structure

Ethernet Driver

Nearly all the functions in the mini-driver API take a pointer to a packet driver instance structure called
PDINFO. This structure is defined in LLPACKET.H:
//
// Packet device information
// typedef struct _pdinfo {

uint PhysIdx; // Physical index of this device (0 to n-1)
HANDLE hEther; // Handle to logical driver
STKEVENT_Handle hEvent;
UINT8 bMacAddr[6]; // MAC Address
uint Filter; // Current RX filter
uint MCastCnt; // Current MCast Address Countr
UINT8 bMCast[6*PKT_MAX_MCAST];
uint TxFree; // Transmitter "free" flag
PBMQ PBMQ_tx; // Tx queue (one for each PKT device)

} PDINFO;

Only some of these fields are used in a mini-driver. The structure entries as defined as follows:

Table 4. Structure Entries

Field Description

PhysIdx Physical Index of This Device (0 to –1). The physical index of the device determines
how the device instance is represented to the outside world. The mini-driver is not
concerned about the physical index.

hEther Handle to Ethernet Driver. This is a handle NDK Ethernet instance that is bound to the
physical Ethernet driver. When a packet is received, it is tagged with this Ethernet
handle before being placed on the global PBMQ_rx queue. This allows the Ethernet
module to identify the ingress device.

hEvent Handle to Scheduler Event Object. The handle hEvent is used with the STKEVENT
function STKEVENT_signal() to signal the system whenever a new packet is received.

bMacAddr Ethernet MAC Address. This is a byte array that holds the Ethernet MAC address. It is
set to a default value by LLPACKET.C, but can be used or altered by the mini-driver
when the device opens. If the MAC contains its own unique MAC address, this value is
written to bMacAddr. If the MAC does not have a MAC address, the value bMacAddr
programs the MAC device.

Filter Current Rx Filter. The receive filter determines how the packet device should filter
incoming packets. This field is set by LLPACKET.C and used by the mini-driver to
program the MAC. Legal values include:

• ETH_PKTFLT_NOTHING: No Packets
• ETH_PKTFLT_DIRECT: Only directed Ethernet
• ETH_PKTFLT_BROADCAST: Directed plus Ethernet Broadcast
• ETH_PKTFLT_MULTICAST: Directed, Broadcast, and selected Ethernet Multicast
• ETH_PKTFLT_ALLMULTICAST: Directed, Broadcast, and all Multicast
• ETH_PKTFLT_ALL: All packets

MCastCnt Number of Multicast Addresses Installed. The field holds the current number of
multicast addresses stored in the multicast address list (also in this structure). The
multicast address list determines what multicast addresses (if any) the MAC is allowed
to receive.

bMCast Multicast Address List. This field is a byte array of consecutive 6 byte multicast MAC
addresses. The number of valid addresses is stored in the MCastCnt field. The
multicast address list determines what multicast addresses (if any) the MAC is allowed
to receive.

TxFree Transmitter Free Flag. The TxFree flag is used by LLPACKET.C to determine if a new
packet can be sent immediately by the mini-driver, or if it should be placed on the
transmit pending queue for later. If the flag is not zero, the mini-driver function
HwPktTxNext() is called when a new packet is queued for transmission. This flag is
maintained by the mini-driver.

PBMQ_tx Transmit Pending Queue. The transmit pending queue holds all the packets waiting to
be sent on the Ethernet device. The mini-driver pulls PBM packet buffers off this queue
in its HwPktTxNext() function and posts them to the Ethernet MAC for transmit. Once
the packet has been transmitted, the packet buffer is freed by calling PBM_free().

TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM64218 SPRUES5–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

5.3.3 Mini-Driver Operation

5.3.3.1 Receive Operation

5.3.3.2 Transmit Operation

5.3.4 Ethernet Packet Mini-Driver API

HwPktInit — Initialize Packet Driver Environment

The Ethernet packet mini-driver maintains the device hardware, and services any required
communications interrupts. It is built around a simple open/close concept. When open, the driver is active,
and when closed, it is not. In general, it must implement the mini-driver API described in the following
section. The following sections provide additional information on its internal operation.

The mini-driver receives packets when the device is open. When an Ethernet packet is received, it is
placed in a PBM packet buffer. Empty packet buffers are allocated by calling PBM_alloc().

Once the packet buffer is filled, it should be placed onto the receive pending queue (PBMQ_rx) defined in
the LLPACKET.C module. There is one RX queue for all Ethernet devices. The mini-driver must set the
RX IF device to the value of hEther in the instance structure before placing it on the RX queue.

After the data frame buffer has been pushed onto the Rx queue, the mini-driver signals an Ethernet event
to the STKEVENT handle supplied in the driver instance structure.

When the transmitter is idle, the mini-driver must set the TxFree field of its instance structure to 1. When a
new packet is ready for transmission, LLPACKET.C will place the PBM packet buffer on the PBMQ_tx
queue of the mini-driver's instance structure.

Once a new packet has been written to the transmit pending queue, if TxFree is set, LLPACKET.C will call
the mini-driver HwPktSendNext() function. At this time, the mini-driver should clear the TxFree field, and
start transmission of the packet. Once the packet has been sent, the packet buffer is freed by calling
PBM_free(). This call can be made at interrupt time.

The following API functions must be provided by a mini-driver.

HwPktInit Initialize Packet Driver Environment

Syntax uint HwPktInit();

Parameters None

Return Value The number of Ethernet packet devices in the system

Description Called to initialize the packet mini-driver environment, and enumerate the number of
devices in the system. A device instance may be opened for each device represented in
the return count. If the function returns zero, no devices are supported.

HwPktShutdown Shutdown Packet Driver Environment

Syntax void HwPktShutdown();

Parameters None

Return Value None

Description Called to indicate that the packet driver environment should be completely shut down.

SPRUES5–January 2007 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM642 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

www.ti.com

Ethernet Driver

HwPktOpen Open Ethernet Packet Device Instance

Syntax uint HwPktOpen(PDINFO *pi);

Parameters pi- Pointer to Ethernet packet device instance structure

Return Value Returns 1 if the driver was opened, or 0 on error.

Description Called to open a packet device instance. When called, PDINFO structure is valid. The
device should be opened and made ready to receive and transmit Ethernet packets.

HwPktClose Close Ethernet Packet Device Instance

Syntax void HwPktClose(PDINFO *pi);

Parameters pi- Pointer to Ethernet packet device instance structure

Return Value None

Description Called to close a packet device instance. When called, any outstanding packet buffers
held by the instance should be freed using PBM_free().

HwPktTxNext Transmit Next Buffer in Transmit Queue

Syntax void HwPktTxNext(PDINFO *pi);

Parameters pi- Pointer to Ethernet packet device instance structure

Return Value None

Description Called to indicate that a packet buffer has been queued in the transmit pending queue
contained in the device instance structure, and LLPACKET.C believes the transmitter to
be free (TxFree set to 1). The mini-driver uses this function to start the transmission
sequence.

HwPktSetRx Set Ethernet Rx Filter

Syntax void HwPktSetRx(PDINFO *pi);

Parameters pi- Pointer to Ethernet packet device instance structure

Return Value None

Description Called when the values contained in the PDINFO instance structure for the Rx filter or
multicast list are altered. The mini-driver should update its filter settings at this time.

_HwPktPoll Mini-Driver Polling Function

Syntax void _HwPktPoll(SDINFO *pi, uint fTimerTick);

Parameters pi- Pointer to serial device instance structure

fTimerTick- Flag indicating the 100 ms have elapsed

Return Value None

Description Called by LLPACKET.C at least every 100 ms, but calls can come faster when there is
network activity. The mini-driver is not required to perform any operation in this function,
but it can be used to check for device lockup conditions. When the call is made due to
the 100 ms time tick, the fTimerTick calling parameter is set.

Note that this function is not called in kernel mode (hence the underscore in the name).
This is the only mini-driver function called from outside kernel mode (done to support
polling drivers).

20 TMS320C6000 Network Developer’s Kit (NDK) Support Package for EVMDM642 SPRUES5–January 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES5

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
 Video & Imaging www.ti.com/video
 Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/lpw
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Getting Started
	1.1  Introduction
	1.2 Installing the Support Package
	1.3 Rebuilding HAL Libraries
	1.4 Required Terms and Concepts
	1.4.1 HAL Driver Source Files
	1.4.2 Network Control Module (NETCTRL)
	1.4.3 Stack Event (STKEVENT) Object
	1.4.4 Packet Buffer (PBM) Object

	2 User LED Driver
	3 Timer Driver
	4 Serial Driver
	4.1 Introduction
	4.1.1 Source Code
	4.1.2 Theory of Operation

	4.2 Serial Port Driver
	4.2.1 Important Note on Data Alignment
	4.2.2 Hardware Independent Low-Level Serial Driver: LLSERIAL.c
	4.2.3 Hardware Specific Low-Level Serial Driver

	4.3 Serial Port Mini-Driver
	4.3.1 Overview
	4.3.2 Global Instance Structure
	4.3.3 Mini-Driver Operation
	4.3.3.1 Receive Operation
	4.3.3.2 Transmit Operation

	4.3.4 Serial Mini-Driver API

	5 Ethernet Driver
	5.1  Introduction
	5.1.1 Ethernet Driver Source Files

	5.2 Ethernet Driver
	5.2.1 Important Note on Data Alignment
	5.2.2 Hardware Independent Low-Level Ethernet Driver: LLPACKET.C
	5.2.3 Hardware Specific Low-Level Ethernet (Mini) Driver

	5.3 Ethernet Packet Mini-Driver
	5.3.1 Overview
	5.3.2 Global Instance Structure
	5.3.3 Mini-Driver Operation
	5.3.3.1 Receive Operation
	5.3.3.2 Transmit Operation

	5.3.4 Ethernet Packet Mini-Driver API

