Processor SDK Android Getting Started Guide

From Texas Instruments Wiki

13 TEXAS

INSTRUMENTS

Android Software Developer's Guide — Android Getting Started Guide

Contents

= 1 Welcome to the Android Getting Started Guide
= 2 What would you like to do with the SDK?
= 2.1 Evaluating the SDK Embedded Android
System
= 2.2 Start your Android Development
= 3 What Would You Like to do Next?
= 4 Archived Versions

Welcome to the Android Getting Started Guide

Thanks for your interest in learning more about the Android Software Development Kit (SDK). The SDK as we affectionately call it is our attempt to provide a
great starting point to develop an embedded system on a Tl Processor running Android. Given this goal, we wanted to provide something that is more than just
a typical Board Support Package (BSP) containing a bootloader, Linux kernel, and Android filesystem. While these are certainly necessary elements, we feel
they are just a starting point, especially for those that aren’t experts in developing with Android. So, the SDK also contains tools for developing on Tl
Processors (a validated cross-compiling toolchain, for example), pre-built libraries that you can use without having to rebuild them yourself, and some
documentation to help explain how all of these pieces work together. We package all of this together with a working Android Embedded System that has been
built with all of the things mentioned above.

What it really serves as is a “known good” starting point. One of the big challenges with starting development on a new platform (not to mention, a new
Operating System (OS) for many), is getting an environment set up where you can build and debug code on hardware. The SDK attacks this problem with
providing everything you need to do development, and it is validated on standard TI hardware platforms (EVMs). It wraps all of this up into one simple installer
that helps get everything you need in the right place to do development. For example, you can start off with simply re-building the Android Embedded System
that we provide to validate that everything is working on your system. This simple step gives you confidence that you can move forward from a good baseline.

As you go along your development journey and have questions, there is documentation and support available to you. Make sure to save a pointer to the
Android SDK Software Developer’ i DQ@). If you don’t find what you need, take a look at the activeSitara Forum
(http://e2e.ti.com/support/arm/sitara_arm/f/791.aspx) on the E2E Community and see if the topic has been covered before. If not, post a new thread and we'll
do our best to provide some guidance.

What would you like to do with the SDK?

As described above, the SDK has a lot to it. Let’s break it down to two pieces to simplify things a bit:

= The example embedded Android system. Essentially, a working bootloader (U-Boot), Linux kernel, and Android filesystem that can be put on an SD card
and ran on a Tl AM57xx EVM.
= Everything needed to create the above embedded system from “scratch”:
= U-Boot sources and configuration files
Kernel sources and configuration files
An Android cross-compiling toolchain as well as other host binaries and components
The Android Open Source Project (AOSP) filesystem and sources for example applications (after syncing using the repo tool)
A variety of scripts and Makefiles to automate certain tasks
Other components needed to build an embedded Android system that don't fit neatly into one of the above buckets

With these two pieces more clearly defined, we can now get back to that all important question, “What would you like to do with the SDK?”. If the answer is
clearly “l want to build something and I'm ready to start developing now!”, then go ahead and skip down to the “| want to Develop!” (or, Developing with the
SDK) section below for instructions on installing the SDK on a Linux Host System. This is a somewhat involved process focusing on the second of the two

parts of the SDK listed above and may be more than some people want to start with. However, it provides access to the full spectrum of development from
rebuilding the SDK from sources to fully adapting it with new device drivers and applications.

So, if you're not quite there yet, let's discuss some other options. Maybe you'd like to evaluate the SDK a bit to see if it is how you'd like to get started.

If this is not good enough and you really want to get your hands on something, check out the next section which shares how to play with the embedded
Android system. All you'll need is access to a Windows/Linux computer, an SD card, an SD card reader, some free, open-source software, and a supported

Hardware platform.
Evaluating the SDK Embedded Android System

/index.php/File:Ti_stk_1c_rev_rgb_png.png
/index.php/Processor_SDK_Android_Software_Developer%E2%80%99s_Guide
/index.php/Processor_SDK_Supported_Platforms_and_Versions
/index.php/Processor_SDK_Android_Software_Developer%E2%80%99s_Guide
http://e2e.ti.com/support/arm/sitara_arm/f/791.aspx
/index.php/Processor_SDK_Android_Software_Stack
/index.php/Processor_SDK_Android_Getting_Started_Guide#Start_your_Android_Development
/index.php/Processor_SDK_Supported_Platforms_and_Versions

If you’re a hands on person, reading documentation and looking at presentations gets old fast. So, if you want to see an example of what you can build with
the SDK and actually hold it in your hands and play with it (or show it to someone else that needs help understanding what you want to do with it), with minimal
effort, you can simply run the SDK Embedded Android System on a supported Hardware platform. This will allow you to poke and prod and interact. It's a
powerful way to get the imagination active and engaged.

If you've recently purchased a TI AM572x GP EVM or an AM57xx IDK, move on to the next step to install the SDK and boot your board using the provided
prebuilt images.

Start your Android Development

OK, you’re all in. Either you've known this is what you wanted to do, or you’'ve gone through the above steps and you want to do more. It's time to develop!
Here’s a high level overview:

Get a Linux host up and running if you don’t already have one
Install the SDK and run some scripts to get everything set up

Put the SDK Embedded Android System on an SD card to play with
Build something to validate set up — the SDK for example

Add something to the SDK, like a simple Hello World app

After completing these steps, you'll have a known good baseline from which you can start development.

1. Configure a Linux Host - If you already have a Linux host machine, go to Step 2.

To do Android development with the SDK, you’ll need a host PC running Linux. The Linux host is generally much faster and has a lot more memory
(both RAM and hard disk space) than the typical embedded system. While it is certainly possible to do all development natively, we feel the advantages
of using a host provide a better way to go and what is supported out of the box with the SDK.

There are many, many ways to get access to a Linux host. We simply can’t validate all possibilities and iterations, therefore we focus on validating using
Ubuntu (http://www.ubuntu.com) as the host Linux distribution, running natively. We validate the Long-term Support (LTS) versions of Ubuntu at the time
of a SDK release (Ubuntu 14.04 is the currently supported LTS version).

Can you use other versions of Ubuntu or even other distributions? Theoretically, yes, as long as you can get it to work and there may be more
“assembly” required. If you can use the Ubuntu version validated against the SDK, it will be the smoothest path and we will be able to help you more if
you do run into trouble.

Likewise, we would strongly recommend getting anative 64-bit Ubuntu LTS machine set up for development. For the cost of a little bit of hard drive
space, Ubuntu can have direct access to the host’s hardware. Virtual Machines (VMs) have come a long way over the years, and many people use them
daily without problems. However, when you are working with a target embedded system (that may be a prototype board), whether it be a Tl board or
eventually your own, removing the complexity of a VM from the get go can avoid a lot of frustration (i.e. wasted time). When using a VM while connecting
and disconnecting hardware components, you have to be very diligent about making sure what is connected to what. You might prefer using an hour to
get more work done than debugging a perceived problem caused by the fact the virtual host grabbed a USB port when you weren’t watching.

When you’re ready to proceed, Ubuntu (http://www.ubuntu.com/download/desktop/install-desktop-long-term-support) provides a great overview for how
to install natively.

If you eventually want to rebuild the Android filesystem from source, you'll also need to follow the instructions from the official Android pagéere
(https://source.android.com/source/initializing.html#setting-up-a-linux-build-environment) for setting up the packages required for building Android.

1. Install the SDK - Within your Linux host machine,Install the Android SDK

Processor SDK Installer is 64-bit, and installs only on 64-bit host machine. Support for 32-bit host is dropped as of the Gingerbread Android release
At least 70 GB of free space is required on the host machine in order to pull and then rebuild the full AOSP filesystem

2. Create a SD Card using the SDK Create SD Card Script

You will need a >4GB SD Card and the capability to connect that card to your Linux Host machine (using a USB SD Card reader, for example).
If using a virtual machine as your Linux host, you may need to import the SD Card reader into your virtual machine (disconnect it from the host and
connect it to the VM so that the Linux VM can see it).

3. Configure your development environment

There are many ways to connect the host development platform and the target board. These connections will vary depending on how you like to develop
and what you are trying to do. Here is an example of a common set up with a serial connection for console, an Ethernet for networking, and a USB
connection for flashing and ADB:

/index.php/Processor_SDK_Supported_Platforms_and_Versions#EVM_Hardware_Overview
http://www.ubuntu.com
http://www.ubuntu.com/download/desktop/install-desktop-long-term-support
https://source.android.com/source/initializing.html#setting-up-a-linux-build-environment
/index.php?title=Processor_SDK_Android_Installer&action=edit&redlink=1
/index.php?title=Processor_SDK_Android_create_SD_card_script&action=edit&redlink=1

Linux Host PC

— Ethernet
— Serial
— Micro USB

4. Use the SD Card to boot the target boardproperly connected for your development environment.

+ Note: While the SD card boot method can be useful during development, the recommended setup is to use the micro USB connection to flash the

kernel and Android filesystem to the eMMC on the EVM and then use ADB (https://developer.android.com/studio/command-line/adb.html) or Android
Studio (https://developer.android.com/studio/index.html) for debugging. To flash the provided prebuilt kernel and filesystem to the eMMC use the top
level setup.sh script described in the next step.

+ Note: SD card boot is not supported on Android for production environments

5. Run the Setup Script- Once the SDK has been installed and the board has been booted from the SD card,run the setup.sh Script on your host to
guide you through the process of flashing the bootloader, kernel, and Android filesystem to the onboard eMMC.

6. Rebuild sources using the top-level makefile in the SDK root directory. For example:

= make all rebuilds all components in the SDK
= make linux configures and builds the kernel
= make u-boot-spl builds u-boot and u-boot-spl

The Android filesystem can be rebuilt, and then flashed to the onboard eMMC, by followingthese instructions.

What Would You Like to do Next?

Now that you have a solid baseline set up, you can choose what you'd like to do next based on what you need to do. Here are some of the many possibilities:

Link Summary
AM57X
http://www.ti.com/tool/PROCE R- ||[Download the SDK
SDK-AM57X)
Erv | rr DKiAn rol A The SDK's Homepage, a must have link for SDK users.
Pr r SDK Android How-T The SDK How-To pages. The Hands On with the SDK has some great information
Guides for developing your first Android application.

Archived Versions

2] & ;‘?gﬁ iahﬁ.,mun“y For technical support please post your questions athttp.//e2e.ti.com. Please post only comments about the

I
TI E2E™ Ask questions, shara knowledge, explore ldeas i : . .
Community and halp solve problems with fallow engineers article Processor SDK Android Getting Started Guide here.

Links
Amplifiers & Linear DLP & MEMS (http://www.ti.com/Isds/ti/analog/mems/mems.page) Proces
(http://www.ti.com/Isds/ti/analog/amplifier_and_linear.page) High-Reliability (http://www.ti.com/Isds/ti/analog/high_reliability.page) (http:/A
Audio (http://www.ti.com/Isds/ti/analog/audio/audio_overview.page) Interface (http://www.ti.com/Isds/ti/analog/interface/interface.page)

Broadband RF/IF & Digital Radio
(http://www.ti.com/Isds/ti/analog/rfif.page)

= A

/index.php/File:Android_Dev_Environment_Cropped.png
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/index.html
/index.php/Processor_SDK_Android_Setup_Script
/index.php?title=Processor_SDK_Android_Top-Level_Makefile&action=edit&redlink=1
/index.php/Rebuilding_and_Booting_Android
http://www.ti.com/tool/PROCESSOR-SDK-AM57X
/index.php/Processor_SDK_Android_Software_Developer%E2%80%99s_Guide
/index.php/Processor_SDK_Android_How_To_Guides
/index.php/File:E2e.jpg
http://e2e.ti.com
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page

Clocks & Timers Logic (http://www.ti.com/Isds/ti/logic/home_overview.page) = C
(http#/www.ti.com/Isds/ti/analog/clocksandtimers/clocks_and_timers.page) Power Management (r
Data Converters (http://www.ti.com/Isds/ti/analog/powermanagement/power_portal.page) s N
(http:/7Www.ti.com/lsds/ti/analog/dataconverters/data_converter.page) (t
n C

(t

p

Retrieved from "http://processors.wiki.ti.com/index.php?title=Processor_SDK_Android_Getting_Started_Guide&oldid=228602"

Pages with broken file
Category: links

= This page was last modified on 27 June 2017, at 14:55.
= This page has been accessed 63 times.
= Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

/index.php/File:Hyperlink_blue.png
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003§ionId=646&tabId=2735
http://processors.wiki.ti.com/index.php?title=Processor_SDK_Android_Getting_Started_Guide&oldid=228602
/index.php/Special:Categories
/index.php?title=Category:Pages_with_broken_file_links&action=edit&redlink=1
http://creativecommons.org/licenses/by-sa/3.0/

	Processor SDK Android Getting Started Guide
	Contents
	Welcome to the Android Getting Started Guide
	What would you like to do with the SDK?
	Evaluating the SDK Embedded Android System
	Start your Android Development

	What Would You Like to do Next?
	Archived Versions

