I3 TEXAS

INSTRUMENTS

MSP430® FRAM Utilities version 01.00.00.24

USER’S GUIDE

FRAM-Utilities-UsersGuide-01.00.00.24 Copyright © Texas Instruments Incorporated.

Copyright

Copyright © Texas Instruments Incorporated. All rights reserved.

APIease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments I TEXAS

Post Office Box 655303

Dallas, TX 75265 INSTRUMENTS

http://www.ti.com/msp430

Revision Information

This is version 01.00.00.24 of this document, last updated on April 08, 2015.

2 April 08, 2015

Table of Contents

Table of Contents

CopyHght . . . e e e e e e e e e e e e e e e e e 2
Revision Information e e e e e e e e e e e e e e 2
1 Introduction e e e e e e e e e e e e e e 5
2 Compute Through Power Loss (CTPL) i i i i it e e e e e e e e e e n e s 7
2.1 Introduction L e e e 7
2.2 Usage o 8
221 Components e e 8
2.2.2 Code Composer Studio (CCS) 10
2.2.3 |IAR Embedded Workbench e 12
2.3 APIReference e 15
2.3.1 APIOVerview e e 15
2.3.2 Core APl Set e e 15
2.3.3 LowlLevel e 21
2.3.4 Peripherals e 23
2.3.5 Benchmark e 25
2.4 Examples e 27
241 Examples Overview e e 27
242 LPM45WithGPIOWakeup o o e e e e e e e e 28
243 LPM35WithRTCWakeup e e e e 29
2.4.4 COMP_E Powerloss Monitor e e e 30
245 ADC12 B Powerloss Monitor e 31
2.5 Benchmarking 32
2.5.1 OVEIVIEW . . . o e e 32
252 Configuration L 34
IMPORTANT NOTICE i e i e e e e e e e s e e e e e e e e e e e e 36

April 08, 2015 3

Table of Contents

4 April 08, 2015

Introduction

1

Introduction

The Texas Instruments® FRAM Utilities is a collection of embedded software utilities that leverage
the ultra-low power and virtually unlimited write endurance of FRAM. The utilities are available for
MSP430FRx FRAM microcontrollers and provide example code to help start application develop-
ment.

Included are the following FRAM Utilities:
m Compute Through Power Loss: A utility API set that enables ease of use with LPMx.5 low-

power modes and a powerful shutdown mode that allows an application to save and restore
critical system components when a power loss is detected.

April 08, 2015

Introduction

6 April 08, 2015

Compute Through Power Loss (CTPL)

2.1

Compute Through Power Loss (CTPL)

INEOAUCH ON .. e e 7
L =T = 7
AP R BIENCE ... it e 15
XMl ..o e 27
BeNCMarKiNg . ..o e 32
Introduction

Compute Through Power Loss (CTPL) is a utility API set that leverages FRAM to enable ease of use
with LPMx.5 low-power modes and provides a powerful shutdown mode that allows an application
to save and restore critical system components when a power loss is detected.

Traditional use of the LPM3.5 and LPM4.5 modes cause the application to reset when waking
up and both application and peripheral state are not retained. The application must check for
the LPMx.5 reset source at the start of the program and execute a separate branch of code if
the device is waking up from a LPMx.5 mode. This often includes reinitializing both core system
and application required peripherals in addition to initialization of global variables by the compiler
defined c-start up function that is executed before the main program. This increases the start up
time and increases the complexity of applications. As a result application programmers often avoid
these low-power modes unless absolutely necessary.

The CTPL utility provides an easier solution for the application programmer. The included linker
configuration files will place all application data sections into FRAM where they are retained through
LPMx.5 low-power modes. The utility will also allocate FRAM storage used to save the state of the
application and critical system peripherals. When entering into low-power modes with the CTPL
utility the FRAM storage will be used to save the necessary components and the utility will put the
device into the specific low power mode and wait for a device wakeup or reset. Upon device wakeup
or reset the utility will intercept the reset and restore the application and peripheral state from the
FRAM storage. After restoring the state the utility returns back to the application and the next line
of code is executed, removing the need for the application programmer to check for a reset at the
start of main.

Application execution using LPMx.5 modes and the CTPL utility can now be written using the same
methods as LPMO0-3 where the system state is retained. This enables existing applications to easily
integrate the CTPL utility and begin using LPMx.5 modes in place of existing LPM0-3 modes and
avoid rewriting complex application start up code.

Additionally the CTPL utility provides an API to safely save and restore context in the event of a
powerloss. The utility will save the state of the application and critical system peripherals just like
the LPMx.5 modes and then wait for the device to enter a BOR due to powerloss. A configurable
parameter allows for a timeout for situations where the voltage ramps back up to operational levels.
A device reset, power on or timeout will all restore the saved state and return to the application in
the same manner as the LPMx.5 functions. See the CTPL examples section for powerloss mon-
itor examples using an internal ADC12_B window comparator solution and an external COMP_E
solution using a simple voltage divider to detect when power is lost.

April 08, 2015 7

Compute Through Power Loss (CTPL)

2.2 Usage
(070 14170 1T | £ 8
Code Composer STUAIO (CCS) ...t et e e 10
IAR Embedded WorkbenCh e 12
2.2.1 Components
The CTPL utility consists of the following software components. Some of these are intended to be
directly called from the application while others are internal to the utility implementation.
2.2.1.1 Core API Set
The CTPL Core API Set represents utility API’s that the application can directly interface with. The
simple API set includes the following functions:

m ctpl_init(): Initialize the CTPL library at the start of the system pre-init.

m ctpl_enterLpm35(): Save context, enter LPM3.5, restore context and return to the main appli-
cation.

m ctpl_enterLpm45(): Save context, enter LPM4.5, restore context and return to the main appli-
cation.

m ctpl_enterShutdown(): Save context, disable all interrupt sources, configure watchdog timeout
and wait for BOR. Restore context and return to the main application on a device reset, power
on or timeout.

See the Core API reference for complete API documentation.

2.2.1.2 Low Level
Low-level C and assembly functions that directly interface with the MSP430 to save the state and
enter low power modes. These functions are called by the Core API Set and should not be invoked
from the main application.
See the Low Level reference section for complete APl documentation.

2.2.1.3 Peripheral
Peripheral specific functions to save and restore context. Each peripheral supported by the utility
has a save, restore and epilogue function that can be defined by the CTPL device file based on
peripheral availability and called by the Core API Set.
The CTPL utility currently supports the following peripherals:

m System Resets, Interrupts, and Operating Modes, System Control Module (SYS)

m Power Management Module (PMM)

m Clock System (CS)

8 April 08, 2015

Compute Through Power Loss (CTPL)

32-Bit Hardware Multiplier (MPY32)
FRAM Controller (FRCTL)

Memory Protection Unit (MPU)
RAM Controller (RAMCTL)

Digital /0O (PORT, PORT_INT)
Watchdog Timer (WDT_A)
Real-Time Clock B (RTC_B)

m Real-Time Clock C (RTC_C)

See the Peripheral reference section for complete APl documentation.

2.21.4 Device

Device specific C and linker configuration files. Every CTPL application needs to include the device
C file that corresponds to the device being used. This device C file defines the peripherals that
are saved and restored by the utility. Generally the LPMx.5 device wakeup time is significantly long
enough that the peripheral restore routine has minimal impact on the overall wakeup time of the
application, however certain peripherals can be excluded if they are not used in the application by
editing this device C file. Additionally any CTPL application is required to use the device and IDE
specific linker configuration file which places all read/write data into FRAM. Both of these files are
included by default in the empty and example projects provided with the utility.

See the Code Composer Studio (CCS) or IAR Embedded Workbench section for IDE specific in-
struction on using the CTPL utility.

April 08, 2015 9

Compute Through Power Loss (CTPL)

2.2.2 Code Composer Studio (CCS)
2.2.2.1 Creating an Empty CTPL Project
FRAM Utilities is a discoverable package in Code Composer Studio (CCS). Creating a new project
with the complete CTPL library configured is as easy as selecting the "File -> New -> CCS Project”
menu option and selecting the "Empty Project with FRAM Utilities" project template.
¥+ New CCS Project = [-E]
CCS Project —*
(1) Project name must be specified { :
Target: msp430fr5969 ~ |MSP430FR5969 v]
Connection: | TI M5P430 USBL [Default] || Identify.. |
£1 MSP430
Project name:
[T Use default location
Location:
Compiler version: | TIvd.4.1 VH More...]
b Advanced settings
* Project templates and examples
type filter text Initial starting point for using the Compute -
- - Through Power Loss (CTPL) utility.
= Empty Projects
> |i=| Basic BExamples Copies source code into your project and
a4 [=| FRAM Utilities configures the project settings. Everything
& Empty Project with CTPL yeu need to get started using CTPLin a new
= MSP430 DriverLib project.
':?:' < Bac Mext = Finish
Figure 2.1: CCS new project wizard
2.2.2.2 Add CTPL to an Existing Application
The same project template can be used to apply the FRAM Utilities and CTPL settings and source
code to an existing CCS project. Right click the project and select the "Source -> Apply Project
10 April 08, 2015

Compute Through Power Loss (CTPL)

Template..." menu option and select the "Add Copy of FRAM Utilities to Project” project template.

+'« Apply Project Template = @

Project Templates

Select one of the available project templates,

type filter text Add the CTPL utility to an existing project. Copies »
- — — source code into your project and configures the
4 [=| FRAM Utilities Additions project settings.
= Add CTPL to Project
4 ||=| M5P430 DriverLib Additions
= Add Local Copy of DriverLib
Point to Installed DriverLib

@

Im
m

Mext > [Finish l | Cancel

Figure 2.2: CCS apply project template

April 08, 2015 11

Compute Through Power Loss (CTPL)

2.2.3 |AR Embedded Workbench

2.2.3.1 Opening the Examples

The CTPL utility provides an IAR Embedded Workbench workspace with preconfigured projects for
each example. The workspace can be opened in IAR Embedded Workbench by double clicking
the .eww file if windows associates this file type with IAR Embedded Workbench. Alternatively the
workspace can be opened within IAR Embedded Workbench by navigating to and selecting the
desired workspace in the "File -> Open -> Workspace" menu option.

2.2.3.2 Add CTPL to an Existing Application

Using the CTPL utility with IAR Embedded Workbench requires several different step to configure
properly. The steps have been listed below and need to be followed closely to ensure proper
integration with the existing application.

1. Add the CTPL source code to the project.
2. Add the CTPL include path to the project compiler options.

Options for node "ctpl-monitor-mspd30fr59691p-sharp96” IEI

Categary: Factomy Settings

General Options Multi-file Cornpilation
[Discard Unused Publics
Assembler
Custom Build | Language 2 | Code | Optimizations | Output | List | Preprocessar || 4| *
Build Actions
Linker [Ignore standard include directories
TIULP Advisor Additional include directories: (one per line)
Debugger C:divmsp430+fram-utils_1_00_00_00%srcctpl - E]
FET Debugger
Simulator

Preinclude file:

Defined symbals: jone per ling)
CTPL_STACK_SIZE=160 - [C] Preprocessor output to file
Preserve comments

Generate Hine directives

[Ok] [Cancel

Figure 2.3: CTPL include path

3. Add the required predefined assembler symbols to the project assembler options.

12 April 08, 2015

Compute Through Power Loss (CTPL)

(a) CTPL_STACK_SIZE is required and must be predefined to the same size as the config-
ured stack size.

(o) _ LARGE_CODE_MODEL__is optional and should only be predefined if the project uses
the large code model.

-

Options for node "ctpl-monitor-mspd30fr59691p-sharp96” IEI

Categary: Factomy Settings

General Options
C/C++ Compiler
Assembler
Custom Build | Language | Output | List | Preprocessor | Diagnostics | Extra Opﬁonsl
Build Actions .
Linker [Jignore standard include directories!
TI ULP Advisor

Debugger
FET Debugger Additional include directories: (one per ling)

Simulator - E]

Defined symbals: jone perling)

CTPL_STACK_SIZE=160 -
_ LARGE_CODE_MODEL__

[Ok] [Cancel

Figure 2.4: CTPL assembler options

4. Configure the project to use the device linker file (.xcl extension) in the project linker options.

April 08, 2015 13

Compute Through Power Loss (CTPL)

Options for node "ctpl-monitor-rmspd30fr59691p-sharpga”

Categary:

(=)

General Options
C/C++ Compiler
Assembler
Custom Build
Build Actions
Linker
TI ULP Advisor
Debugger

FET Debugger
Simulator

Factary Settings

Corfig |0Lrtp|_rt I Extra Output | List | tidefine | Diagnostics | Check| *

L3

Linker corfiguration file
COvemde default
C:Mivmspd30fram-utils_1_00_00_00\srchwtplidevices 'msp430 E]

[7] owemide default program entry
(@) Entry symbol | program_start
Defined by application
Search paths: (one perling)

STOOLKIT_DIRSWLIBY - E]

Raw binary image
File: Symbol: Seagment: Align:

(-]

[Ok] [Cancel

Figure 2.5: CTPL IAR linker file

14

April 08, 2015

Compute Through Power Loss (CTPL)

2.3

2.3.1

2.3.2

2.3.2.1

API Reference

AP OV VI B ..t e 15
C0rE APl St .. 15
oW LBV L. e 21
P PNEralS ... 23
BeNCNMaArK ..o 25

APl Overview

The CTPL library is designed to provide a simplified Core API set for use by the application. Meth-
ods outside of this APl set have been documented below but are not intended to be modified or
directly interfaced with by the main application.

Core API Set

Defines

= CTPL_DISABLE_RESTORE_ON _RESET
= CTPL_ENABLE_RESTORE_ON_RESET
= CTPL_SHUTDOWN_TIMEOUT 1024 _MS
= CTPL_SHUTDOWN_TIMEOUT 128 _MS
m CTPL_SHUTDOWN_TIMEOUT_16_MS
= CTPL_SHUTDOWN_TIMEOUT 1_MS
= CTPL_SHUTDOWN_TIMEOUT_256_MS
= CTPL_SHUTDOWN_TIMEOUT 2 _MS
= CTPL_SHUTDOWN_TIMEOUT 32 _MS
= CTPL_SHUTDOWN_TIMEOUT 4 MS
= CTPL_SHUTDOWN_TIMEOUT 512 _MS
= CTPL_SHUTDOWN_TIMEOUT 64 MS
= CTPL_SHUTDOWN_TIMEOUT 8 MS

Functions

m void ctpl_enterLpm35 (bool restoreOnReset)
m void ctpl_enterLpm45 (bool restoreOnReset)
m void ctpl_enterShutdown (uint16_t timeout)
m void ctpl_init (void)

Detailed Description

The following is a reference of all CTPL API’s available for the application to use. The application
should only directly interface with the function defined in ctpl/ctpl.h and listed below.

April 08, 2015 15

Compute Through Power Loss (CTPL)

2.3.2.2 Define Documentation

2.3.2.2.1 CTPL_DISABLE_RESTORE_ON_RESET

Definition:
#define CTPL_DISABLE_RESTORE_ON_RESET

Description:
Do not allow the CTPL utility to restore a saved state if the device is reset or powered on from
a cold start.

2.3.2.2.2 CTPL_ENABLE_RESTORE_ON_RESET

Definition:
#define CTPL_ENABLE_RESTORE_ON_RESET

Description:
Allow the CTPL utility to restore a saved state if the device is reset or powered on from a cold
start.

2.3.2.2.3 CTPL_SHUTDOWN_TIMEOUT_1024_MS

Definition:
#define CTPL_SHUTDOWN_TIMEOUT_1024_MS

Description:
Timeout duration that can be passed to ctpl_enterShutdown(). If the device does not enter
BOR after 1024 milliseconds the watchdog timer will reset the device and cause a restore of
the saved state.

2.3.2.24 CTPL_SHUTDOWN_TIMEOUT_128_MS

Definition:
#define CTPL_SHUTDOWN_TIMEOUT_128_ MS

Description:
Timeout duration that can be passed to ctpl_enterShutdown(). If the device does not enter
BOR after 128 milliseconds the watchdog timer will reset the device and cause a restore of the
saved state.

2.3.2.2.5 CTPL_SHUTDOWN_TIMEOUT_16_MS

Definition:
#define CTPL_SHUTDOWN_ TIMEOUT_16_MS

Description:
Timeout duration that can be passed to ctpl_enterShutdown(). If the device does not enter
BOR after 16 milliseconds the watchdog timer will reset the device and cause a restore of the
saved state.

16 April 08, 2015

Compute Through Power Loss (CTPL)

2.3.2.2.6 CTPL_SHUTDOWN_TIMEOUT_1_MS

Definition:
#define CTPL_SHUTDOWN_TIMEOUT_ 1_MS

Description:
Timeout duration that can be passed to ctpl_enterShutdown(). If the device does not enter
BOR after 1 millisecond the watchdog timer will reset the device and cause a restore of the
saved state.

2.3.2.2.7 CTPL_SHUTDOWN_TIMEOUT_256_MS

Definition:
#define CTPL_SHUTDOWN_TIMEOUT_ 256_MS

Description:
Timeout duration that can be passed to ctpl_enterShutdown(). If the device does not enter
BOR after 256 milliseconds the watchdog timer will reset the device and cause a restore of the
saved state.

2.3.2.2.8 CTPL_SHUTDOWN_TIMEOUT_2_MS

Definition:
#define CTPL_SHUTDOWN_TIMEOUT_ 2_MS

Description:
Timeout duration that can be passed to ctpl_enterShutdown(). If the device does not enter
BOR after 2 milliseconds the watchdog timer will reset the device and cause a restore of the
saved state.

2.3.2.2.9 CTPL_SHUTDOWN_TIMEOUT_32_MS

Definition:
#define CTPL_SHUTDOWN_TIMEOUT_32_MS

Description:
Timeout duration that can be passed to ctpl_enterShutdown(). If the device does not enter
BOR after 32 milliseconds the watchdog timer will reset the device and cause a restore of the
saved state.

2.3.2.2.10 CTPL_SHUTDOWN_TIMEOUT_4_MS

Definition:
#define CTPL_SHUTDOWN_TIMEOUT_4_MS

Description:
Timeout duration that can be passed to ctpl_enterShutdown(). If the device does not enter
BOR after 4 milliseconds the watchdog timer will reset the device and cause a restore of the
saved state.

April 08, 2015 17

Compute Through Power Loss (CTPL)

2.3.2.2.11

2.3.2.2.12

2.3.2.2.13

2.3.2.3

2.3.2.3.1

CTPL_SHUTDOWN_TIMEOUT_512_MS

Definition:
#define CTPL_SHUTDOWN_TIMEOUT_ 512_MS

Description:
Timeout duration that can be passed to ctpl_enterShutdown(). If the device does not enter
BOR after 512 milliseconds the watchdog timer will reset the device and cause a restore of the
saved state.

CTPL_SHUTDOWN_TIMEOUT_64_MS

Definition:

#define CTPL_SHUTDOWN_TIMEOUT_64_MS

Description:
Timeout duration that can be passed to ctpl_enterShutdown(). If the device does not enter

BOR after 64 milliseconds the watchdog timer will reset the device and cause a restore of the

saved state.

CTPL_SHUTDOWN_TIMEOUT_8_MS

Definition:

#define CTPL_SHUTDOWN_TIMEOUT_8_MS

Description:
Timeout duration that can be passed to ctpl_enterShutdown(). If the device does not enter

BOR after 8 milliseconds the watchdog timer will reset the device and cause a restore of the
saved state.

Function Documentation

ctpl_enterLpm35 Save state and enter into low power mode LPM3.5.

Prototype:

void
ctpl_enterLpm35 (bool restoreOnReset)

Description:

LPM3.5 does not retain the settings of peripheral registers or RAM contents so these settings
and states must be saved to non-volatile FRAM. This function will save the state of all the
peripherals defined in the include device file, the context of the CPU and the active stack
to non-volatile FRAM storage. After saving the state it is marked as valid so that it may be
restored after wakeup and the function will enter into LPM3.5. When the device wakes up due
to an interrupt or reset/power on event the ctpl_init() function will check if the state is valid and if
it should be restored. The restoreOnReset argument determines if state context is restored on
a device reset or power on, passing true will always restore the saved state where as passing
false will only restore state on a LPM3.5 wakeup from interrupt (returning to the start of main
if the device was reset). The saved peripheral states, CPU states and stack are restored from
the FRAM storage and the function returns back to the application from where it was called.

18

April 08, 2015

Compute Through Power Loss (CTPL)

This function bypasses the need to check at device start up for a LPM3.5 wakeup and the
application only needs to reinitialize peripherals that are not saved by the utility.

This APl is functionally the same as ctpl_enterLpm45(). The actual low-power mode used
(LPM3.5 or LPMA4.5) is determined by the state of the RTC peripheral, LPM3.5 is used if the
RTC is enabled and LPM4.5 is used if the RTC is disabled. For more information on low power
modes refer to the device datasheet and user’s guide.

Parameters:

restoreOnReset Allow the CTPL utility to restore a saved state if the device is reset or pow-
ered on from a cold start. Valid values are:

m CTPL_DISALLOW_RESTORE_ON_RESET
s CTPL_ALLOW_RESTORE_ON_RESET

Returns:

none

2.3.2.3.2 ctpl_enterLpm45 Save state and enter into low power mode LPM4.5.

Prototype:

void
ctpl_enterlLpm4d5 (bool restoreOnReset)

Description:

LPM4.5 does not retain the settings of peripheral registers or RAM contents so these settings
and states must be saved to non-volatile FRAM. This function will save the state of all the
peripherals defined in the include device file, the context of the CPU and the active stack
to non-volatile FRAM storage. After saving the state it is marked as valid so that it may be
restored after wakeup and the function will enter into LPM4.5. When the device wakes up due
to an interrupt or reset/power on event the ctpl_init() function will check if the state is valid and if
it should be restored. The restoreOnReset argument determines if state context is restored on
a device reset or power on, passing true will always restore the saved state where as passing
false will only restore state on a LPM4.5 wakeup from interrupt (returning to the start of main
if the device was reset). The saved peripheral states, CPU states and stack are restored from
the FRAM storage and the function returns back to the application from where it was called.
This function bypasses the need to check at device start up for a LPM4.5 wakeup and the
application only needs to reinitialize peripherals that are not saved by the utility.

This API is functionally the same as ctpl_enterLpm35(). The actual low-power mode used
(LPM3.5 or LPM4.5) is determined by the state of the RTC peripheral, LPM3.5 is used if the
RTC is enabled and LPM4.5 is used if the RTC is disabled. For more information on low power
modes refer to the device datasheet and user’s guide.

Parameters:

restoreOnReset Allow the CTPL utility to restore a saved state if the device is reset or pow-
ered on from a cold start. Valid values are:

m CTPL_DISALLOW_RESTORE_ON_RESET
m CTPL_ALLOW_RESTORE_ON_RESET

Returns:

none

April 08, 2015

19

Compute Through Power Loss (CTPL)

2.3.2.3.3 ctpl_enterShutdown Save the state when power is lost.

Prototype:
void
ctpl_enterShutdown (uintl6_t timeout)

Description:

Device shutdown does not retain the settings of peripheral registers or RAM contents so these
settings and states must be saved to non-volatile FRAM. This function will save the state of all
the peripherals defined in the include device file, the context of the CPU and the active stack
to non-volatile FRAM storage. After saving the state it is marked as valid so that it may be
restored after a reset or powering the device back on. All interrupt and wakeup sources are
disabled and the device waits in active mode for the SVS to put the device into BOR. MCLK
is configured to 4MHz and the SMCLK and WDT_A dividers are set based on the timeout
parameter. In this state the only source of a wakeup is a device reset, power up or a shutdown
timeout. In all three wakeup scenarios the state is restored and the application resumes. The
saved peripheral states, CPU states and stack are restored from the FRAM storage and the
function returns back to the application from where it was called.

When configuring the shutdown timeout parameter the device supply voltage and ramp con-
ditions should be considered to avoid scenarios where voltage ramps down too slowly. If the
timeout duration is not long enough the timeout will trigger a restore before the device enters
the BOR state. In this scenario the restored image is no longer valid and the next power on
will cause a device reset to the beginning of the main application. To prevent this a timeout
duration should be selected so that sufficient time is provided for the supply voltage to ramp
down and the timeout only triggers in the scenario where voltage ramps back up to operational
levels.

This API provides a method for application programmers to efficiently save the application
state and shutdown the CPU when a power loss is detected and restore the applications state
when the device regains power. The utility includes two examples demonstrating methods for
monitoring the device voltage and detecting a power loss.

This API only saves and restores RTC_B and RTC_C registers that are not retained in LPMx.5
modes. In device shutdown the context of these other registers must be reinitialized if using
these peripherals. See the device users guide for the complete list of RTC registers and details
on which are retained.

Parameters:
timeout Configurable timeout for a reset if device does not enter BOR. Valid values are:

= CTPL_SHUTDOWN_TIMEOUT 1_MS

= CTPL_SHUTDOWN_TIMEOUT 2_MS

= CTPL_SHUTDOWN_TIMEOUT 4_MS

= CTPL_SHUTDOWN_TIMEOUT 8_MS

= CTPL_SHUTDOWN_TIMEOUT_16_MS
= CTPL_SHUTDOWN_TIMEOUT 32_MS
= CTPL_SHUTDOWN_TIMEOUT 64 _MS
= CTPL_SHUTDOWN_TIMEOUT 128 _MS
= CTPL_SHUTDOWN_TIMEOUT 256_MS
= CTPL_SHUTDOWN_TIMEOUT 512_MS
= CTPL_SHUTDOWN_TIMEOUT 1024 MS

Returns:
none

20 April 08, 2015

Compute Through Power Loss (CTPL)

2.3.2.3.4 ctpl_init Initialize the CTPL utility.

Prototype:
void
ctpl_init (void)

Description:
This function initializes the utility and must be called at the start of the _system_pre_init func-
tion for CCS or the __low_level_init function for IAR. By default these functions are defined in
ctpl_pre_init.c but some applications might have their own version of the function. In this case
the ctpl_pre_init.c file can be omitted and the function called at the start of the application’s low
level function.

Returns:
none

2.3.3 Low Level

Defines

= CTPL_MODE_LPM35

= CTPL_MODE_LPM45

= CTPL_MODE_LPMX5_WAKEUP
= CTPL_MODE_NONE

= CTPL_MODE_RESTORE_RESET
= CTPL_MODE_SHUTDOWN

Functions

m void ctpl_saveCpuStackEnterLpm (uint16_t timeout)

Variables

m volatile uint16_t ctpl_mode

2.3.3.1 Detailed Description

The following is a reference of the CTPL low level functions. These functions are invoked by the
Core API Set and should not be called from outside the utility.

2.3.3.2 Define Documentation

2.3.3.2.1 CTPL_MODE_LPM35

Definition:
#define CTPL_MODE_LPM35

April 08, 2015 21

Compute Through Power Loss (CTPL)

Description:
Bits that define the LPM3.5 CTPL mode.

2.3.3.2.2 CTPL_MODE_LPM45

Definition:
#define CTPL_MODE_LPM45

Description:
Bits that define the LPM4.5 mode.

2.3.3.2.3 CTPL_MODE_LPMX5_WAKEUP

Definition:
#define CTPL_MODE_LPMX5_WAKEUP

Description:
Bits that define the LPM3.5 and LPM4.5 wakeup flags.

2.3.3.24 CTPL_MODE_NONE

Definition:
#define CTPL_MODE_NONE

Description:
Bits that define no CTPL mode.

2.3.3.25 CTPL_MODE_RESTORE_RESET

Definition:
#define CTPL_MODE_RESTORE_RESET

Description:
Bits that define the optional restoreOnReset flag.

2.3.3.2.6 CTPL_MODE_SHUTDOWN

Definition:
#define CTPL_MODE_SHUTDOWN

Description:
Bits that define the shutdown CTPL mode.

22 April 08, 2015

Compute Through Power Loss (CTPL)

2.3.3.3 Function Documentation

2.3.3.3.1 ctpl_saveCpuStackEnterLpm Low level assembly function used to save the state and enter LPM.

Prototype:
void
ctpl_saveCpuStackEnterLpm(uintl6_t timeout)

Description:
This assembly function saves the CPU state and stack into non-volatile FRAM before setting
the state as valid and entering into the low-power mode defined by ctpl_mode. On device reset
with a valid state ctpl_init will jump back to this function which restores the CPU state and
stack from the FRAM copy. After restoring the state the function returns to the higher-level
CTPL function that was invoked by the main application.

This function is only intended to be called from within the library code, the user does not need
to invoke this function manually.

Parameters:
timeout Configurable timeout for a reset if device does not enter BOR. Valid values are:
= CTPL_POWERLOSS TIMEOUT_1_MS
= CTPL_POWERLOSS_TIMEOUT_2_MS
m CTPL_POWERLOSS TIMEOUT_4 MS
= CTPL_POWERLOSS TIMEOUT_8 MS
= CTPL_POWERLOSS_TIMEOUT_16_MS
s CTPL_POWERLOSS TIMEOUT_32_MS
= CTPL_POWERLOSS_TIMEOUT_64_MS
= CTPL_POWERLOSS_TIMEOUT_128_MS
= CTPL_POWERLOSS_TIMEOUT_256_MS
= CTPL_POWERLOSS _TIMEOUT_512_MS
= CTPL_POWERLOSS_TIMEOUT_1024_MS

Returns:
none.

2.3.3.4 Variable Documentation

2.3.3.4.1 ctpl_mode

Definition:
volatile uintl6_t ctpl_mode

Description:
CTPL mode variable set by the utility and used to determine the mode before low-power mode
or shutdown as well as the flags set for the wakeup source.

2.3.4 Peripherals

Data Structures

m ctpl_peripheral

April 08, 2015 23

Compute Through Power Loss (CTPL)

Variables

m const ctpl_peripheral x ctpl_peripherals[]
m const uint16_t ctpl_peripheralsLen

2.3.4.1 Detailed Description

The following is a reference of the CTPL peripheral functions. These functions are invoked by the
Core API Set and should not be called from outside the utility.

2.3.4.2 Data Structure Documentation

2.3.4.21 ctpl_peripheral

Definition:

typedef struct

{
uintl6_t baseAddress;
uintlé6_t =*storage;
ctpl_tFunction save;
ctpl_tFunction restore;
ctpl_tFunction epilogue;

}

ctpl_peripheral

Members:
baseAddress Peripheral base address.

storage Peripheral non-volatile storage.
save Function to save peripheral context.
restore Function to restore peripheral context.

epilogue Optional function to run after clearing the LOCKLPM5 bit. If this function pointer is
null the function will not be called.

Description:
Structure defining how to save and restore a peripherals context. These structures are provided
for each device in the included device-specific ctpl_*.c file required when using the utility.

2.3.4.3 Variable Documentation

2.3.4.3.1 ctpl_peripherals

Definition:
const ctpl_peripheral *ctpl_peripherals]]

Description:
The device specific array of peripherals to save and restore. This symbol is defined in the
device-specific ctpl_x.c file included with the library.

24 April 08, 2015

Compute Through Power Loss (CTPL)

2.3.4.3.2 ctpl_peripheralsLen

Definition:
const uintl6_t ctpl_peripheralsLen

Description:
Abstracted symbol for the length of the ctpl_peripherals array. This symbol is defined in the
device-specific ctpl_x.c file required when using the library.

2.3.5 Benchmark

Defines

m CTPL_BENCHMARK_DIR
m CTPL_BENCHMARK_OUT
m CTPL_BENCHMARK_PIN

2.3.5.1 Detailed Description

The following is a reference of the CTPL benchmark function. These defines are used by the Core
API Set and should not be referenced from outside the utility.

2.3.5.2 Define Documentation

2.3.5.2.1 CTPL_BENCHMARK_DIR

Definition:
#define CTPL_BENCHMARK_DIR

Description:
Benchmark port direction register used when CTPL_BENCHMARK is defined in the compiler
settings (-DCTPL_BENCHMARK).

2.3.5.2.2 CTPL_BENCHMARK_OUT

Definition:
#define CTPL_BENCHMARK_OUT

Description:
Benchmark port output register used when CTPL_BENCHMARK is defined in the compiler
settings (-DCTPL_BENCHMARK).

2.3.5.2.3 CTPL_BENCHMARK_PIN

Definition:
#define CTPL_BENCHMARK_PIN

April 08, 2015 25

Compute Through Power Loss (CTPL)

Description:
Benchmark pin used when CTPL_BENCHMARK is defined in the compiler settings (-
DCTPL_BENCHMARK).

26 April 08, 2015

Compute Through Power Loss (CTPL)

2.4

2.4.1

Examples

EXamMPIES OVEIVIBWttt e e e e 27
LPM4.5 With GPIO WaKeUDottt ittt e e e e e e ettt aaeae s 28
LPMB.5 With RTC WaKBUP .ot e ettt ettt ettt et et et e e e e e e e e e et e e e eeees 29
COMP_E POWErIOSS MONItOrttt ittt it e et e e e e e e e et e et e e ettt e 30
ADCT12 B PoWErlOSS MONIMOr ..\ttt e e e e et e e e e e e 31

Examples Overview

These examples demonstrate how to use the CTPL utility in several application use cases. The
examples are implemented for all FRAM LaunchPad Development Kits and Experimenter Boards.
See table below for supported hardware and examples.

Hardware Examples
LPM4.5 GPIO | LPM3.5 RTC | COMP_E Powerloss | ADC12_B Powerloss
msp-exp430fr5739 v X X X
msp-exp430fr5969 v v v v
msp-exp430fr6989 v v v v

Table 2.1: Hardware support for CTPL examples

Using CCS and Resource Explorer it's easy to import and run the examples. Navigate to the CCS
"View" menu and select "Resource Explorer (Examples)". Under the MSPWare package libraries
select the FRAM-Utilities node and then CTPL node to view examples, user guides and release
notes.

April 08, 2015 27

Compute Through Power Loss (CTPL)

2.4.2 LPM4.5 With GPIO Wakeup
This example is an adaptation of the C code example msp430fr59xx_Ipm4-5_01 and demonstrates
how to enter LPM4.5 and wakeup from a GPIO interrupt. The example will turn on P4.6 and enter
into LPM4.5. When P1.1 (S2 on MSP-EXP430FR5969) transitions from high to low the example
will turn off P4.6 to indicate the device is no longer in LPM4.5 and blink P1.0 forever.
By using the compute through power loss (CTPL) library the original example code is greatly sim-
plified. The peripherals are initialized once at the start of the application and the library will save
the peripheral and application state in FRAM before entering LPM. Upon wakeup from LPM the
peripheral and application state is restored and the code continues execution from the next line of
code.
// ACLK = VLOCLK, MCLK = SMCLK = DCO = ~1MHz
//
// MSP-EXP430FR5969
/I s
// /1IN \
// (. P1.0|---> LED2
// -—|RST P4.6|---> LED1
// \ |
// | P1.1|<--- S2 push-button
// | \

28

April 08, 2015

Compute Through Power Loss (CTPL)

2.4.3

LPM3.5 With RTC Wakeup

This example is an adaptation of the C code example msp430fr59xx_Ipm3-5_02 and demonstrates
how to use RTC_B as an interval wakeup in LPM3.5. The example will toggle P4.6 after initialization
to indicate a device start up and then enter LPM3.5 with interrupts enabled. The RTC interrupt will
wake the device up every two seconds and toggle P1.0.

By using the compute through power loss (CTPL) library the original example code is greatly sim-
plified. The peripherals are initialized once at the start of the application and the library will save
the peripheral and application state in FRAM before entering LPM. Upon wakeup from LPM the
peripheral and application state is restored and the code continues execution from the next line of
code.

// ACLK = 32.768kHz, MCLK = SMCLK = DCO = ~1MHz
//

// MSP-EXP430FR5969

// e

// VAR XIN| -

// ([| 32kHz
// ——|RST XOUT | —

// | |

// | P1.0|--> LED2
// | P4.6|--> LED1
// | I

April 08, 2015

29

Compute Through Power Loss (CTPL)

2.4.4 COMP_E Powerloss Monitor
This example demonstrates how to use the COMP_E peripheral and an external voltage divider
to actively monitor supply voltage and detect when power is lost. The comparator is configured
with a 1.5V reference and an external voltage divider provides Vcc/2 to the input pin (P1.5/C5).
When Vcc/2 drops below the 1.5V reference (meaning Vcce is below 3.0V) the comparator interrupt
service routine will disable the comparator monitor and invoke the ctpl_enterShutdown API. This
API will save the application and peripheral state and waits for the device to enter BOR with a
64ms timeout. The device will restore application and peripheral state when power is restored and
continue execution from the next line of code.
The main application will blink LED2 with incremental counts, resetting after four blinks. The power
supply can be removed (by disconnecting the USB cable or unplugging the jumpers connecting
the on-board emulator to the device) after a specific count of blink and then reapplied to verify that
context was saved.
// ACLK = VLOCLK, MCLK = SMCLK = DCO = ~1MHz
;; MSP-EXP430FR5969
/o mmmmmm o
// AR P1.7|-——> Vcc
// [(C5)P1.5|--=-> Vcc/2 (350k/350k voltage divider)
// -—|RST P1.4|---> GND
// \ |
// \ P1.0|---> LED2
// \ \

30 April 08, 2015

Compute Through Power Loss (CTPL)

2.4.5 ADC12_B Powerloss Monitor

This example demonstrates how to use the ADC12_B battery monitor and window comparator to
actively monitor supply voltage and detect when power is lost. The ADC12_B peripheral is config-
ured with a 2.0V reference voltage and the internal battery monitor channel provides Vcc/2. The
ADC12_B low side window comparator is configured to trigger the interrupt when Vcc reaches
ADC_MONITOR_THRESHOLD, 3.0V by default. The high side window comparator is set to
ADC_MONITOR_THRESHOLD + 0.1V to ensure the device has reached a stable voltage before
enabling the monitor. When the high side interrupt is triggered it is disabled and the low side in-
terrupt is enabled to begin actively monitoring Vcc. When power loss is detected the device will
invoke the ctpl_enterShutdown API which saves the application and peripheral state and waits for
the device to enter BOR with a 64ms timeout. The device will restore application and peripheral
state when power is restored and continue execution from the next line of code.

The main application will blink LED2 with incremental counts, resetting after four blinks. The power
supply can be removed (by disconnecting the USB cable or unplugging the jumpers connecting
the on-board emulator to the device) after a specific count of blink and then reapplied to verify that
context was saved.

// ACLK = VLOCLK, MCLK = SMCLK = DCO = ~1MHz

// MSP-EXP430FR5969

// ——|RST P1.0|---> LED2
// \ |
// | |

April 08, 2015 31

Compute Through Power Loss (CTPL)

2.5

2.5.1

Benchmarking

LY 1 32
(070 a1 7o 0 = 1 /o] o 34
Overview

The CTPL utility can be benchmarked by defining CTPL_BENCHMARK in the compiler and assem-
bler predefined symbols. When this symbol is defined the code will toggle a single pin to indicate
the CTPL function has started. Once the state has been saved the software will toggle the bench-
mark pin to indicate the end of the CTPL function. The ctpl_enterShutdown() function will continue
to toggle the benchmark pin inside the software loop while waiting for the device to enter a BOR.
The repeated pin toggle provides a measurement of how long the CPU can run before complete
power is lost and the device shuts down to help select the right timeout parameter.

Q, Saleae Logic 1115 - [Connected] - [24 MHz, 1 M Samples]

[][5]

1MSamples = e

Figure 2.6: Benchmark of the ctpl_enterShutdown() function when power is lost (8MHz CPU clock)

The above screen capture shows the ctpl_enterShutdown() APl when power is lost on a
MSP430FR5969 device running at 8MHz with all available peripherals saved (a total of eleven,
see peripheral usage section for the complete peripheral list). In this example the "Width" mea-
surement is the total time the API needs to save the state of the peripherals, stack and CPU. The
"IT1 - T2|" measurement indicates the life of the CPU before complete power is lost. The second
measurement will be dependant on both the hardware design and the software configuration of the
device (active peripherals when entering API). In scenarios where power is lost it's best practice to
shut down any active peripherals before calling the API to conserve the remaining energy.

32

April 08, 2015

Compute Through Power Loss (CTPL)

Q, Saleae Logic 1115 - [Connected] - [24 MHz, 1 M Samples] EI @
1M Samples = fal

4 s
~ Measurements

dth:

Figure 2.7: Close up view of benchmark pin toggle

April 08, 2015 33

Compute Through Power Loss (CTPL)

2.5.2 Configuration

The pin used for the benchmark is defined in ctpl_benchmark.h. By default P4.6 is used, LED1
on the MSP430-EXP430FR5969 LaunchPad. This pin can be change to any available GPIO by
editing this file and changing the pin and port registers used.

See the Benchmark API reference for more on configuration.

34 April 08, 2015

April 08, 2015

35

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl| deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask work
right, or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used.
Information published by Tl regarding third-party products or services does not constitute a license from Tl to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of Tl.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are specifi-
cally designated by Tl as military-grade or “enhanced plastic.” Only products designated by Tl as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, Tl will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video

RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © , Texas Instruments Incorporated

36 April 08, 2015

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

	Copyright
	Revision Information
	1 Introduction
	2 Compute Through Power Loss (CTPL)
	2.1 Introduction
	2.2 Usage
	2.2.1 Components
	2.2.2 Code Composer Studio (CCS)
	2.2.3 IAR Embedded Workbench

	2.3 API Reference
	2.3.1 API Overview
	2.3.2 Core API Set
	2.3.3 Low Level
	2.3.4 Peripherals
	2.3.5 Benchmark

	2.4 Examples
	2.4.1 Examples Overview
	2.4.2 LPM4.5 With GPIO Wakeup
	2.4.3 LPM3.5 With RTC Wakeup
	2.4.4 COMP_E Powerloss Monitor
	2.4.5 ADC12_B Powerloss Monitor

	2.5 Benchmarking
	2.5.1 Overview
	2.5.2 Configuration

	IMPORTANT NOTICE

