
T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

1SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

Application Report
SLAA600D–June 2013–Revised February 2018

MSPBoot – Main Memory Bootloader for MSP430™ Flash
Microcontrollers

Luis Reynoso, Caleb Overbay .......................................................................................... MSP430 Apps

ABSTRACT
This application report describes the implementation of a bootloader that resides in the main memory of
MSP430™ flash-based microcontrollers (MCUs) using either Inter-Integrated Circuit (I2C), universal
asynchronous receiver/transmitter (UART), or a serial peripheral interface (SPI) bus and CC110x RF
transceivers to accomplish over-the-air download (OAD). While highly flexible and modular, this bootloader
has a small footprint, which makes it a very cost-effective solution, and supports the large memory model
(devices with a memory footprint greater than 64KB).

A software package that includes examples and source code for both host and target devices can be
downloaded from the following URL:

http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSPBoot/latest/index_FDS.html

For a step-by-step procedure that explains how to run the examples, see Section 4.2.5.

Do not confuse this bootloader with the MSP430 Bootloader (BSL), which resides in protected memory
(ROM or flash) in some MSP430 MCUs. For more information on the MSP430 BSL, see the MSP430™
Flash Device Bootloader (BSL) User's Guide and Creating a Custom Flash-Based Bootloader (BSL).

NOTE: MSP430FRBoot is an extension to MSPBoot and implements a main memory resident
bootloader for MSP430 FRAM MCUs using various communication interfaces and over-the-
air download (OAD) capabilities. MSP430FRBoot supports the large memory model (devices
with a memory footprint greater than 64KB) as well as dual image and interrupt redirection
options, making it a good customizable alternative to the built-in BSL on MSP430 FRAM
MCUs.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSPBoot/latest/index_FDS.html
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAA450
http://www.ti.com/lit/pdf/SLAA721


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com

2 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

Contents
1 Introduction ................................................................................................................... 3

1.1 Glossary.............................................................................................................. 3
1.2 Conventions ......................................................................................................... 4

2 Implementation ............................................................................................................... 4
2.1 Main .................................................................................................................. 4
2.2 Application Manager................................................................................................ 5
2.3 Memory Interface (MI) ............................................................................................ 10
2.4 Communication Interface (CI) ................................................................................... 11

3 Customization of MSPBoot ............................................................................................... 16
3.1 Predefined Customizations ...................................................................................... 18

4 Building MSPBoot .......................................................................................................... 18
4.1 Starting a New Project............................................................................................ 18
4.2 Examples ........................................................................................................... 24

5 References .................................................................................................................. 30

List of Figures

1 MSPBoot Software Architecture ........................................................................................... 4
2 Flow Diagram of Main....................................................................................................... 5
3 Application Validation by AppManager ................................................................................... 6
4 Memory Assignment......................................................................................................... 8
5 Vector Redirection Implementation........................................................................................ 8
6 Dual Image Application Validation......................................................................................... 9
7 I2C 7-Bit Addressing Format .............................................................................................. 11
8 UART 8-N-1 Format ....................................................................................................... 12
9 SPI Format .................................................................................................................. 12
10 Example Command ........................................................................................................ 19
11 Importing Project Spec File in CCS...................................................................................... 20
12 image2C Example.......................................................................................................... 24
13 Target Boards: MSP-EXP430F5529 and MSP-EXP430G2 .......................................................... 24
14 CC101EMK868-915, BOOST-CCEMADAPTER, and 430BOOST-CC10L ......................................... 25
15 Import MSPBoot CCS Projects........................................................................................... 26
16 Select Target Configuration............................................................................................... 27
17 Select App1_MSPBoot Project ........................................................................................... 27
18 Target Selection for Host Project in CCS ............................................................................... 28

List of Tables

1 PHY-DL Callback Structure ............................................................................................... 11
2 CC110x Data Packet Structure........................................................................................... 13
3 Boot2App_Vector_Table Definition ...................................................................................... 13
4 BSL-Based Protocol Command Format................................................................................. 14
5 BSL-Based Protocol Commands......................................................................................... 14
6 BSL-Based Protocol Slave Response ................................................................................... 14
7 Optional Configurations ................................................................................................... 16
8 Customization Files ........................................................................................................ 17

Trademarks
MSP430, Code Composer Studio, LaunchPad, BoosterPack are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Introduction

3SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

1 Introduction
MSP430 MCUs are equipped with the useful Bootloader (BSL) that allows for a very simple way to do field
upgrades. For more information about the MSP430 BSL, see the MSP430™ Flash Device Bootloader
(BSL) User's Guide and Creating a Custom Flash-Based Bootloader (BSL). The BSL is customizable in
MSP430F5xx and MSP430F6xx devices, because it resides in flash.

Other families (for example, MSP430G2xx) have a ROM-resident BSL that supports only UART and
cannot be modified to support I2C or other interfaces. Given these limitations, it becomes necessary to
create a bootloader that resides in main memory and allows for an easy implementation of the application.

This application report describes the implementation of the bootloader named MSPBoot with the following
characteristics:
• Small footprint (less than 4KB in size required)
• 20-bit and 16-bit incorporation for large memory model and small memory model devices, respectively
• Supports USI, USCI, and eUSCI peripherals
• UART communication offers the most simple wired interface using a small memory space
• SPI bus offers over-the-air downloads (using the CC110x) at a slightly larger footprint
• Different options allow for customizable levels of robustness
• Optional dual-image support in case of communication interruption
• Allows for use of all interrupts in application
• Application can optionally reuse the low-level communication drivers from the bootloader or implement

its own drivers
• Configurable entry sequence
• Optional validation of application using CRC-CCITT
• Source code is available, allowing for additional customizations

Source code for the bootloader with different sample configurations, application examples, and host
examples is included to allow for an easy testing, customization, and implementation. Knowledge of I2C,
UART, and SPI specifications, as well as sub-1 GHz RF communication protocol, is assumed.

1.1 Glossary

BOR Brownout reset
BSL MSP430 bootloader
CI MSPBoot communication interface
CRC Cyclic redundancy check
eUSCI Enhanced universal serial communication interface
I2C Inter-Integrated Circuit
MCU Microcontroller
MI MSPBoot memory interface
MSPBoot The bootloader described by this application report
MSP430FRBoot The bootloader described by MSP430FRBoot - Main Memory Bootloader and Over-the-Air Updates for

MSP430™ FRAM Large Memory Model Devices
OAD Over-the-air download
OSI Open systems interconnection
PUC Power-up clear reset
ROM Read-only memory
SPI Serial peripheral interface
UART Universal asynchronous receiver/transmitter
USCI Universal serial communication interface
USI Universal serial interface

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAA450
http://www.ti.com/lit/pdf/slaa721
http://www.ti.com/lit/pdf/slaa721


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Introduction www.ti.com

4 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

1.2 Conventions
This document contains I2C transfer examples that use the following conventions:

S: Start
P: Stop
Sr: Repeated Start

Master to Slave A: Acknowledge (SDA low)
Slave to Master /A: Not Acknowledge (SDA high)

R: R/W bit =1
W: R/W bit = 0

UART transfer examples use the following form:

Host to Target St: Start
Target to Host SP: Stop

SPI transfer examples use the following form:

Master to Slave X: Don’t care
Slave to Master

2 Implementation
A modular approach was used to allow for an easy migration between MSP430 devices and allow for
customization of each layer. Figure 1 shows the software layers.

Figure 1. MSPBoot Software Architecture

Each module is described in more detail in the following sections.

2.1 Main
The main routine has the following purpose:
• Initialize basic functionality of the MSP430 MCU.
• Initialize the other MSPBoot layers.
• Implement the main loop that polls the communication interface and processes commands.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Main

HW Init

Clock Init

Application 

Validation

App/Boot? Jump to App

Comm Init

Packet 

Received?

Comm Poll

Jump to App 

command?

Process Command

App

Boot

YN Y

N

www.ti.com Implementation

5SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

Figure 2 shows the state diagram of the main routine:

Figure 2. Flow Diagram of Main

2.2 Application Manager
The application manager has the main purposes of:
• Detecting when the device should be in bootloader mode or application mode
• Validating the application
• Redirecting interrupt vectors
• Jumping from bootloader to application
• Recovering a valid image when in Dual-Image mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Implementation www.ti.com

6 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

2.2.1 Boot and Application Detection
The Application Manager detects if the bootloader or the application should be executed by applying the
following rules:
• Application is executed if:

– The application is valid (see Section 2.2.1.2)
AND

– The bootloader is not forced by an external event or by application (see Section 2.2.1.1).
• Bootloader is executed if:

– It is forced by an external event or by the application
OR

– The application is invalid

Figure 3 shows this decision process.

Figure 3. Application Validation by AppManager

2.2.1.1 Force Bootloader Mode
Even with a valid application, bootloader mode can be forced by these options:
• Option 1: An external event such as the state of a GPIO after reset.

By default, the software checks if the following GPIOs are low after reset to force bootloader mode:
– P1.3 in MSP430G2xxx (S2 button in MSP-EXP430G2)
– P1.1 in MSP430F5529 (S2 button in MSP-EXP430F5529)

This event can be modified as needed in TI_MSPBoot_AppMgr_BootisForced().

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Implementation

7SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

• Option 2: An application calls execution of bootloader mode.
The variables StatCtrl and PassWd are reserved and shared between application and bootloader. To
force bootloader mode, the application sets these variables to:
PassWd = 0xC0DE
StatCtrl.BIT0 = 1

2.2.1.2 Application Validation
The application validation mechanism allows the bootloader to validate the application before executing it.
Three methods are implemented to allow for different levels of code footprint and security:
• None: Application is not validated and assumed to be always valid. An external event can be used to

force bootloader mode. Not recommended.
• Reset vector: If the reset vector is different from 0xFFFF (erased state), the application is assumed to

be valid and is executed.
• CRC_CCITT: A CRC CCITT is calculated for the whole application image and compared to an

expected value. Note that the BSL-based protocol (see Section 2.4.2.1) uses CRC CCITT, so this
validation method is recommended when using the BSL-based protocol. Additionally, this method does
not take into account applications that modify the contents of flash such as data logging. When this
type of application executes, the CRC CCITT stored in flash becomes incorrect and the bootloader will
not allow the application to run even though it may be valid. When developing an application that
modifies flash, it is recommended to use the reset vector validation method.

Note that the validation methods can prevent execution of corrupted applications, but they do not ensure
the integrity and functionality of the application, which is the responsibility of the user. If the application
does not have the intended functionality, the MSP430 device can still be recovered using a hardware entry
sequence.

2.2.1.3 Jump to Application
MSPBoot forces a reset when the Communication Protocol detects that the download is complete and the
device should jump to the application.

Devices that support software BOR (for example, MSP430F5529) use this method to force a reset, which
is an efficient method to restore the MSP430 to a default state. This method is enabled when
HW_RESET_BOR is defined.

Devices without this mechanism (for example, MSP430G2xx) use a PUC reset, which also forces a reset
but does not clear all registers. The bootloader clears relevant registers when HW_RESET_PUC is
defined.

2.2.2 Vector Redirection
MSPBoot cannot erase or reprogram the bootloader area. This limitation provides a more secure
implementation, because the bootloader is always accessible, and the MCU can be recovered by forcing
bootloader mode.

The reset vector is an integral part of the bootloader, because it forces the MCU to always jump to the
bootloader entry sequence, and thus it should not be erased. Because the reset vector resides in the top
of 16-bit flash space (0xFFFE), the bootloader code is placed in the contiguous locations (see Figure 4).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Vector Table

Bootloader Code

Proxy Table

Application Code

B
oo

t A
re

a
A

pp
 A

re
a

1

2

3

4

Vector ISR

Interrupt(x) Vector = Proxy(x) addr

Proxy(x) addr = Vector ISR addr 

Implementation www.ti.com

8 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

Figure 4. Memory Assignment

The interrupt vector table also resides in protected Boot area. Because the value of the interrupt table is
expected to change based on the application, this means that special considerations must be followed to
allow for application interrupts. Additional 20-bit space is available for the application in large memory
model devices (0x10000 and above).

2.2.3 Interrupt Vectors in Flash Devices
The minimum size for a flash erase is a segment, which is 512 bytes in MSP430 MCUs. Given this
consideration, the whole interrupt table is protected from erases. To allow interrupts on an application
level, a software vector redirection method is implemented to fix the contents of the default vector table
and point to a proxy table that resides in application space.

Figure 5 shows the concept behind this implementation:

Figure 5. Vector Redirection Implementation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Application Validation

Image in 

AppArea valid

Image in 

DownloadArea 

valid

Copy Image from 

DownloadArea to AppArea

Image in 

AppArea valid

Erase DownloadArea

Application Valid

Application Invalid

YN

N

Y

N

Y

www.ti.com Implementation

9SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

1. The application receives an interrupt request, the current address is pushed into the stack, and the
CPU fetches the address from the vector table.

2. The vector table contains the address of the proxy location for each interrupt. The CPU fetches the
address of the corresponding entry in the proxy table and jumps to it.

3. The proxy table contains branch instructions (BRA) followed by the actual address of each ISR. The
CPU executes the BRA instruction and jumps to the corresponding application vector ISR.

4. Upon completion of the ISR, the RETI instruction is executed, and the previous address is popped
from the stack.

This process is almost transparent for the implementation of an application, but it is important to note that
there is added latency due to the additional jump from the proxy table to the application ISR.

Application examples that show how to implement interrupts are included in the sample code to
demonstrate this functionality.

Note that some MSP430 MCUs support redirecting vectors to RAM in hardware (SYSRIVECT), which
could be a good alternative for devices with sufficient RAM.

2.2.4 Dual Image Support
The Application Manager can also support dual image mode. In this mode, a valid application is always
expected to reside in main memory even if an image download is interrupted or if a newly downloaded
image is corrupt. This mode is critical for OAD where communication can be interrupted unexpectedly.

In dual image mode, the main memory is divided, creating a download area and application area as
explained in Section 2.3.1. The application validation process in this mode is different from the usual
procedure, as shown in Figure 6.

Figure 6. Dual Image Application Validation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Implementation www.ti.com

10 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

2.2.4.1 Jumping to Application in Dual Image Mode
When an application download process is completed, MSPBoot performs the following steps before
jumping to the new application:
1. Validate new image in download area

a. If invalid, exit (a reset forces bootloader again and executes the application only if the original
image is valid)

b. If valid, continue
2. Replace application area with download area
3. Validate image in application area

a. If valid, erase the download area (a reset should execute application because the image in the
application area is valid).

b. If invalid, exit (unexpected state, but a reset would revalidate both images again)

2.3 Memory Interface (MI)
To protect the bootloader area, the memory is logically partitioned in two sections:
• Application area: Writable section with user application and redirected vector table
• Bootloader area: Nonwritable section with bootloader and vector table

The size of each sector is defined in the project linker file. Examples showing different memory sizes are
available in the example projects for the Code Composer Studio™ IDE (CCS).The memory interface
provides an API that is used to program and erase the application memory area and protect the
bootloader area. This memory protection is implemented as follows for flash devices:
• A mass erase is not performed, and the application is erased using segment erases.
• The address being erased or programmed is validated to avoid accidental corruption of bootloader

area

NOTE: MSPBoot does not allow write or erase access to the bootloader area when executing
updates, but it cannot protect against accidental erase when executing an application.

2.3.1 Dual Image Support
When dual image support is enabled, the Memory Interface module partitions the MSP430 application
area in two subsections, resulting in the following logical memory map:
• Non-Boot Area

– Download area: Section used as temporary buffer to store a new application image. Physical
addresses in this area are inaccessible to the host, but this area is written when the host attempts
to download to logical addresses in the application area.

– Application area: Section used to execute the current application image. Logical addresses in this
area are available to the host, but the host cannot write to the physical addresses. The bootloader
updates this area when a new image in download area is validated. This procedure is explained in
Section 2.2.4.

• Boot area
– Read-only section with bootloader and vector table.

The size of each sector is defined in the project linker file. Examples that show different memory sizes are
available in the example projects for CCS.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

1 7 1 1 8 1 8 1 1

S Slave Address R/W ACK Data ACK Data ACK P

www.ti.com Implementation

11SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

2.4 Communication Interface (CI)
The purpose of the communication interface is to:
• Receive data from and send data to a host
• Implement a communication protocol
• Parse the data, validate a packet, and execute the appropriate command
• Based on the output of the function, generate a response

Following the open systems interconnection (OSI) model, the CI is divided in two modules:
• Physical-DataLink (PHY-DL)
• Network-Application (NWK-APP)

2.4.1 Physical-DataLink (PHY-DL)
The PHY-DL layer provides a hardware abstraction layer (HAL) to simplify the migration process to a
different MSP430 derivative or peripheral. The PHY-DL layer provides a stable channel for sending data to
and receiving raw data from the host. The current bootloader was originally implemented using I2C, UART,
or SPI. It currently supports the USI, USCI, and eUSCI modules, but other options could be included if
desired.

The PHY-DL layer is initialized by providing a pointer to a structure with the callback function in Table 1.

(1) Callback is optional. The protocol or CI may not require a callback.

Table 1. PHY-DL Callback Structure

t_CI_Callback Structure Type Definition
.RxCallback Called when a new byte is received
.TxCallback Called when a byte needs to be transmitted
.ErrorCallback (1) Called when an error is detected in PHY-DL (a time-out)
.StartCallback (1) Called when the start of a packet is detected
.StopCallback (1) Called when the end of packet is detected

A higher level layer (NWK-APP) uses the callback functions to implement the communication protocol.
Depending on the protocol, some callbacks are not required and they can be disabled in the PHY-DL layer
to reduce the footprint. NWK-APP layer is described in Section 2.4.2.

2.4.1.1 I2C
The I2C bus has been one of the most common communication protocols in embedded applications for
many years, thanks to its low cost of implementation, robustness, and flexibility. It is a useful interface for
low-cost applications that require a simple communication link. It is a perfect match for MSP430
microcontrollers, which combine high performance, high integration, and ultra-low power in a cost-effective
solution. The I2C interface is implemented using 7-bit addressing with a predefined address for MSP430
MCUs:

Figure 7. I2C 7-Bit Addressing Format

The predefined MSP430 MCU address is defined as:
CONFIG_CI_PHYDL_I2C_SLAVE_ADDR = 0x40

Files are included to support USI, G2xx3 USCI, F5xx/6xx USCI, and eUSCI.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

CLK

SS

MOSI

TX Data Shifted Out

RX Sample Points

MISO

ST

1

D0 - D7

8 1

SP

Implementation www.ti.com

12 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

2.4.1.1.1 Time-out Detection
During I2C communication, it is valid for a slave to hold the clock line low when it needs more time to
process a packet. This mechanism is known as clock stretching and, although it is very useful, it can also
cause devices to hold the bus indefinitely, thus stalling the bus.

The PHY-DL layer can optionally detect when the lines are being held for too long and in such case, the
PHY-DL layer can reset the interface.

This feature is enabled depending on CONFIG_CI_PHYDL_TIMEOUT. USCI and USI implementations
use TA1 to implement this feature, while eUSCI includes hardware support for it.

2.4.1.2 UART
The UART interface is implemented using 8-N-1 format (8 data bits, no parity bit, 1 stop bit) (see
Figure 8).

Figure 8. UART 8-N-1 Format

The default baud rate is defined as CONFIG_CI_PHYDL_UART_BAUDRATE = 9600.

2.4.1.3 SPI
The SPI interface used for CC110x communication is implemented using the following configuration (also
see Figure 9):
• 8-bit data
• MSB first
• Clock polarity = 0 (inactive state is high)
• Clock phase = 1 (data changed on first clock edge, captured on following edge)
• 3-pin configuration with SS implemented using GPIO

Figure 9. SPI Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Implementation

13SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

2.4.1.4 CC110x
The CC110x devices send data using the packet structure in Table 2.

(1) The maximum packet length is 24 bytes; therefore the most data bytes (N) allowed per packet is 16.
(2) If the length is equal to one (command only), these subsections are not included in the packet.

Table 2. CC110x Data Packet Structure

Header Length (1) Command Address (2) Data (2) Checksum
0x80 N 1 byte 3 bytes N-6 bytes 2 bytes

The configuration for the CC110x in MSPBoot is as follows:
• 250-kbps data speeds
• Carrier frequency of 902750 Hz

The data speed can be set to either 1.2 or 38.4 kbps through the variable sent by the radio_init function
inside of TI_MSPBoot_CI_PHYDL_CC1101.c. Radio frequency can be altered in TI_MSPBoot_Config.h.
Changes must be made to both the target and host firmware project. See the CC1101 Low-Power Sub-1
GHz RF Transceiver data sheet for more information regarding common CC1101x command and other
communication details.

The packet structure is identical to the BSL-based protocol, therefore it can be directly transferred from the
PHY-DL to the NWK-APP layer with the expected formatting. This is also described in Section 2.4.2.1.2.

2.4.1.5 Comm Sharing
The user application can use the communication interface as desired (I2C, UART, GPIO, or other
purpose), because the resources are released when the MCU jumps to the application. Optionally, the CI
PHY-DL can be shared with the application, which allows it to use the same communication interface and
reduce the application footprint. When this feature is enabled, the bootloader shares the function pointers
from Table 3.

(1) Callback is implemented for SPI and UART only, and is not required for I2C.

Table 3. Boot2App_Vector_Table Definition

Boot2App_Vector_Table Table With Addresses of Shared CI PHY-DL Functions
TI_MSPBoot_CI_PHYDL_Init Function used to initialize PHY-DL passing a pointer to an application t_CI_Callback.
TI_MSPBoot_CI_PHYDL_Poll This function checks all relevant flags and calls corresponding callbacks when required
TI_MSPBoot_CI_PHYDL_TxByte (1) Function used to write the TX buffer

The application must declare its own callbacks, which are passed during initialization of CI PHY-DL and
called when the corresponding event is detected. The PHY-DL layer is designed with small footprint being
a top priority. The application can always implement its own drivers if the PHY-DL implementation is
inadequate. The Application 2 examples in the accompanying software package show how to share CI
PHY-DL.

2.4.2 NWK-APP
The CI Network-Application layer implements the communication protocol, interpreting the raw data from
PHY-DL, and validates such data before executing the appropriate commands. For means of simplicity,
MSPBoot uses only the BSL-based protocol.

2.4.2.1 BSL-Based Protocol
The MSP430 BSL is the standard bootloader that is included in MSP430 MCUs. It is described in detail in
the MSP430™ Flash Device Bootloader (BSL) User's Guide .

The BSL-based protocol that is implemented in MSPBoot maintains robustness, but it does not implement
all of the commands and exactly the same format as the BSL protocol to reduce its footprint. The protocol
is packet based and has the format in Table 4.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D
http://www.ti.com/lit/pdf/SWRS061
http://www.ti.com/lit/pdf/SWRS061
http://www.ti.com/lit/pdf/SLAU319


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Implementation www.ti.com

14 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

(1) PAYLOAD_MAX_SIZE is set to 20 by default (1 CMD + 3 Addr + 16 Data)

Table 4. BSL-Based Protocol Command Format

Header Length Payload Checksum [L] Checksum [H]
0x80 1 to PAYLOAD_MAX_SIZE (1) 1 to PAYLOAD_MAX_SIZE Bytes 1 Byte 1 Byte

Header: Fixed to 0x80

Length: 1 byte with the length of the payload. Valid values are 1 to PAYLOAD_MAX_SIZE.

Payload: One to PAYLOAD_MAX_SIZE bytes containing a command, optional address, and data
(optional depending on command type).

Checksum: 16-bit CRC CCITT of the payload

The commands in Table 5 are implemented as a payload.

Table 5. BSL-Based Protocol Commands

Command CMD Byte1 Byte2 Byte3 Byte4 … Bytelength-1

ERASE_SEGMENT 0x12 ADDR[L] ADDR[M] ADDR[H] X X X
ERASE_APP 0x15 X X X X X X
RX_DATA_BLOCK 0x10 ADDR[L] ADDR[M] ADDR[H] DATA0 X DATAn
TX_VERSION 0x19 X X X X X X
JUMP2APP 0x1C X X X X X X

ERASE_SEGMENT
Erases the memory segment (512 bytes in flash) addressed by ADDR.

ERASE_APP
Erases the application area.

RX_DATA_BLOCK
Programs n bytes of data starting at address ADDR.

TX_VERSION
Requests the MSPBoot version from the target.

JUMP2APP
Instructs the target to jump to the application image (after validation).

Responses from the target are always a single byte (Table 6 lists the valid values).

Table 6. BSL-Based Protocol Slave Response

Response Value Description
OK 0x00 Previous command executed correctly
HEADER_ERROR 0x51 Frame had incorrect header
CHECKSUM_ERROR 0x52 Frame checksum incorrect
PACKETZERO_ERROR 0x53 Length of packet = 0
PACKETSIZE_ERROR 0x54 Length of packet > MAX_LEN
UNKNOWN_ERROR 0x55 Error in Protocol
INVALID_PARAMS 0xC5 Parameters received for command are incorrect
INCORRECT_COMMAND 0xC6 Received Command is not valid
MSPBOOT_VERSION 0 to 0xFF Sent as response for TX_VERSION command (default is 0xA0)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Implementation

15SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

2.4.2.1.1 Security
The contents of each packet are validated with a 16-bit CRC that provides additional robustness to the
bootloader. The host can check the result of each command and retry if the previous command was
unsuccessful.

The ERASE_SEGMENT and RX_DATA_BLOCK commands can erase and write any area within the 16-
bit memory map, thus potentially corrupting the bootloader. To avoid this possibility, TI recommends
including the CONFIG_MI_MEMORY_RANGE_CHECK MI definition to validate the address before a
program or erase operation. The application areas can be corrupted if the process is interrupted, so TI
recommends using one of the application validation methods described in Section 2.2.1.2 or use the dual-
image approach.

2.4.2.1.2 BSL-Based Protocol using CC110x
The CC110x implementation of this protocol follows the same guidelines used for UART, but includes
slight changes since the information is received in complete packets instead of bytes. Because the
incoming CC110x packet outlined in Table 2 is the same as the expected BSL-based protocol in Table 4,
data from the PHY-DL layer can be directly transferred to the NWK-APP without the need for conversion.

2.4.2.1.3 Examples Using I2C
The following considerations apply when using I2C with BSL-based protocol:
• The host always starts a transfer (R or W).
• The packet must contain the address of the slave device. All other addresses will be ignored.
• If the slave device is not ready to process the data or send a response, it will hold the clock low

(known in I2C as "stretching the clock")
• Note that different commands have different processing times
• Example: Host reads version from the MCU

S 0x40 W A 0x80 A 0x01 A 0x19 A 0xE8 A 0x62 A P

Addr Header Length TX_ VERSION Checksum _L Checksum _H

S 0x40 R A 0xA0 /A P

Addr Version

• Example: Host writes 16 bytes to address 0xC000.

S 0x40 W A 0x80 A 0x14 A 0x10 A 0x00 A 0xC0 A 0x00 A 0x03 A 0xEE A

Addr Header Length RX_DATA_
BLOCK AddrL AddrM AddrH Data0 Data1

0x47 A 0xFF A 0xB2 A 0x40 A 0x80 A 0x5A A 0x20 A 0x01 A 0xD2 A

Data2 Data3 Data4 Data5 Data6 Data7 Data8 Data9 Data10

0xD3 A 0x22 A 0x00 A 0xD2 A 0xD3 A 0x15 A 0xE4 A P

Data11 Data12 Data13 Data14 Data15 Checksum _L Checksum _H

S 0x40 R A 0x00 /A P

Addr OK

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Customization of MSPBoot www.ti.com

16 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

2.4.2.1.4 Examples Using UART or CC110x
The following considerations apply when using UART with BSL-based protocol:
• Address is not required since communication is expected to be point-to-point.
• All bytes in UART are in 8-N-1 format as described in Section 2.4.1.2.
• The target responds with the result of the command when ready and not when requested by the host
• The host should wait for the response from the target after sending a command, preferably with a time-

out.
• Different commands have different processing times.
• Example: Host erases the MCU application area

0x80 0x01 0x15 0x64 0xA3

Header Length ERASE_APP Checksum _L Checksum _H

The target device will process the command and respond with the result when ready.

0x00

OK

The same considerations apply when using a CC110x with BSL-based protocol. The exception to this is
Section 2.4.2.1.2 where it is stated that all bytes received in packets from the CC110x are in the same
format expected for BSL-based protocol; therefore, they can be directly transferred from the PHY-DL to
the NWK-APP. Although processing times are the same, over-the-air communication can be expected to
be slightly slower than UART, and host wait times should be lengthened to compensate.

3 Customization of MSPBoot
MSPBoot was designed with low cost and a small footprint as top priorities; however, some applications
require or can benefit from having a higher level of security and robustness. Based on the application
requirements, different levels of customizations are available in the MSPBoot code, and they can be
adjusted to particular needs. These options are either selected by adding the appropriate files or by
enabling and disabling certain pre-processor definitions. Table 7 lists the options that can be configured in
TI_MSPBoot_Config.h.

Table 7. Optional Configurations

Value Description Effect on Code Size
NDEBUG
Defined ASSERT_H functions are ignored. Watchdog is enabled. –

Undefined Used during debugging. ASSERT_H functions are checked. Watchdog is
disabled. Adds approximately 20 bytes

CONFIG_MI_MEMORY_RANGE_CHECK

Defined The address being erased or programmed is validated to be within the
Application area. Adds approximately 44 bytes

Undefined Address being erased or programmed is not validated. Host must send
correct address. –

CONFIG_APPMGR_APP_VALIDATE
1 Application is not validated -
2 Application is validated by checking its CRC-CCITT. Adds approximately 6 bytes
CONFIG_CI_PHYDL_COMM_SHARED
Defined Communication Interface PHY-DL layer is shared with application. Adds approximately 28 bytes
Undefined CI PHY-DL is not shared with application. –
CONFIG_CI_PHYDL_I2C_TIMEOUT
Defined Detect time-out in CI PHY-DL. Adds approximately 48 to 62 bytes
Undefined CI PHY-DL does not detect time-out. –

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Customization of MSPBoot

17SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

Table 7. Optional Configurations (continued)
Value Description Effect on Code Size

CONFIG_CI_PHYDL_START_CALLBACK

Defined A callback function is called when Start is detected (required only for
some protocols or Communication interfaces). Adds approximately 12 bytes

Undefined Callback function is not called when Start is detected. –
CONFIG_CI_PHYDL_STOP_CALLBACK

Defined A callback function is called when Stop is detected (required only for
some protocols or Communication interfaces). Adds approximately 38 to 54 bytes

Undefined Callback function is not called when Stop is detected. –
CONFIG_CI_PHYDL_ERROR_CALLBACK

Defined A callback function is called when a time-out error an error is detected
(only for some protocols or Communication interfaces). Adds approximately 16 to 20 bytes

Undefined Callback function is not called when a time-out error is detected. –
CONFIG_CI_PHYDL_CC1101_FREQUENCY
Defined Defines the frequency of CC110x communication -
Undefined - -
CONFIG_CI_PHYDL_UART_BAUDRATE
Defined Defines the baud rate of UART communication -
Undefined - -
CONFIG_CI_PHYDL_I2C_SLAVE_ADDR

Defined Defines the address the MSP430 will respond to when using I2C
communication -

Undefined - -

Other customizations are selected by adding and using the appropriate files in the project. Table 8 lists the
files that are interchangeable in the project.

Table 8. Customization Files

CI PHY-DL
TI_MSPBoot_CI_PHYDL_USI_I2C_Slave.c Use USI as I 2 C slave
TI_MSPBoot_CI_PHYDL_USCI_I2C_Slave_x2xx.c Use USCI as I 2 C slave on x2xx devices
TI_MSPBoot_CI_PHYDL_USCI_I2C_slave.c Use USCI as I2C slave
TI_MSPBoot_CI_PHYDL_USI_I2C_slave.c Use USI as I2C slave
TI_MSPBoot_CI_PHYDL_eUSCI_I2C_slave.c Use eUSCI as I2C slave
TI_MSPBoot_CI_PHYDL_USCI_UART_x2xx.c Use USCI as UART on x2xx devices
TI_MSPBoot_CI_PHYDL_USCI_UART.c Use USCI as UART
TI_MSPBoot_CI_PHYDL_eUSCI_UART.c Use eUSCI as UART
TI_MSPBoot_CI_PHYDL_CC1101.c Use CC110x
MI
TI_MSPBoot_MI_Flash_20Bit.c API used to program application flash in large memory model devices
TI_MSPBoot_MI_FlashDualImg_20Bit.c API that implements dual-image in flash in large memory model devices
TI_MSPBoot_MI_Flash_16Bit.c API used to program application flash in small memory model devices
TI_MSPBoot_MI_FlashDualImg_16Bit.c API that implements dual-image in flash in small memory model devices
App Manager
TI_MSPBoot_AppMgr.c Standard app manager
TI_MSPBoot_AppMgrDualImg_20Bit.c App manager that supports dual image in large memory model devices
TI_MSPBoot_AppMgrDualImg_16Bit.c App manager that supports dual image in small memory model devices

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Customization of MSPBoot www.ti.com

18 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

3.1 Predefined Customizations
The software package includes projects for CCS that supports two devices (MSP430F5529 and
MSP430G2553) with three communication interfaces (UART, I2C, or SPI with CC110x), and two
predefined configurations (single image, dual image) per device. In the provided CCS examples, devices
and communication interfaces are separated by project selection and the predefined configurations can be
chosen under Project → Build Configurations → Set Active.

4 Building MSPBoot
This section is a step-by-step guide that describes how to build the bootloader and demo applications for a
target device.

Section 4.2 describes how to build and use the example applications to run a demo.

4.1 Starting a New Project
The software package includes the following:
• Host_Examples: Examples showing the MSP-EXP430F5529 or the MSP-EXP430G2 being used as a

host that programs an MSP430 flash-based target through a UART, I2C, or SPI with CC110x
communication interface.

• MSP430F5529_Examples: Examples showing the MSP430F5529 being used as an MSPBoot target.
This includes the bootloader code and two example applications for each respective communication
interface (UART, I2C, or SPI with CC110x).

• MSP430G2553_Examples: Examples showing the MSP430G2553 being used as an MSPBoot target.
This includes the bootloader code and two example applications for each respective communication
interface (UART or I2C).

• Utilities:
– 430 TXT Converter: Perl script used to convert CCS output files to Host TargetApps. See

Section 4.1.2.1.
– Project_Creator: Script used to automatically generate a CCS project script file used to create a

new MSPBoot project, see Section 4.1.1.1.

This software package was built and tested using CCS 7.2.0. Other IDE versions and compilers may not
directly support the resources as provided and could require slight modifications.

4.1.1 Creating a New MSPBoot Project
While the examples provided in the accompanying software package are a great starting place when
introduced to MSPBoot, there may be a desire to use a different flash based MSP430 device variant. The
accompanying software package includes a project generation script that generate a CCS project script
file that can be used to create a new MSPBoot project. After creation, several files need to be modified
with user input to ensure the newly created source code will work with the MSP430 device variant being
used (See Section 4.1.1.3).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Building MSPBoot

19SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

4.1.1.1 MSPBootProjectCreator.pl
MSPBootProjectCreator: Generates all bootloader and application source files necessary to start
creating an MSPBoot project in CCS.

NOTE: A Perl interpreter is required to run this script. Visit http://www.perl.org/ to download an
interpreter if needed.

Location: Utilities/Project Creator/MSPBootProjectCreator.pl

Syntax:
[] denotes an optional field
All numbers should be in hexadecimal format
MSPBootProjectCreator.pl

[-help]
-hdr <header_file>
-lnk_file <lnk_msp430.cmd>
[-boot_size <size>]
[-shared_vectors <number>]
[-dual_image]
[-I2C]
[-UART]

Where (all numbers are hex values):
• -hdr <header_file> = Specifies the header file for the MSP430 device variant. Needs to be in the same

directory as MSPBootProjectCreator.pl. The default path to this file is
C:\ti\ccsvx\ccs_base\msp430\include, where ccsvx is the ccs version being used.

• -lnk_file <lnk_msp430.cmd> = Specifies the default linker file for the device being used. Needs to be in
the same directory as MSPBootProjectCreator.pl. The default path to this file is
C:\ti\ccsvx\ccs_base\msp430\include, where ccsvx is the ccs version being used.

• -boot_size <size> = Optional parameter. Specifies the size of the bootloader area. Only increments of
0x400 are allowed. If omitted, the default bootloader size will be used.

• -shared_vectors <number> = Optional parameter. Specifies the number of shared vectors (in hex). If
not specified, default value is 3 vectors.

• -dual_image = Optional parameter. Specifies that the files created should enable a dual image
bootloader. If not specified, single image is assumed.

• -I2C, -UART = Specifies the communication interface for the bootloader. One of these must be
specified.

NOTE: SPI with CC110x is not supported when using the generator script because it has many
device specific dependencies. If trying to develop an OAD application, see the examples
provided in the accompanying software package.

Figure 10. Example Command

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D
http://www.perl.org/


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Building MSPBoot www.ti.com

20 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

This script uses templates that are located in the Linker_Templates, Vector_Templates, and
ProjectSpec_Templates folders. The contents of these templates can be modified as needed but they are
required to run the script. This script also uses the code located in the Src folder. Again, the contents of
these files can be modified as needed, but their names and file paths must remain the same for proper
operation of the script.

4.1.1.2 Importing Project Spec File in CCS
Once MSPBootProjectCreator has been executed and your project spec file created, you'll need to use
that file in CCS to create a project.
1. Start by opening CCS and navigating to Project → Import CCS Projects...

a. Browse to the project spec file that was generated by MSPBootProjectCreator.pl
b. Determine which application template you will be using and select the appropriate projects

a. App_Shared_Comm: Shows how to share a communication interface with the bootloader
b. App_Simple: Does not share a communication interface with the bootloader

c. click Finish

Figure 11. Importing Project Spec File in CCS

2. Delete the default linker command file from each project. This file will be titled lnk_<device
variant>.cmd.

3. After modifying the appropriate source code as specified in Section 4.1.1.3, you can build the project
and program it on the MSP430 device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Building MSPBoot

21SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

4.1.1.3 Modifying Generated Source Code
When using MSPBootProjectCreator, several files require user modification after their creation. These files
include:
• In MSPBoot:

– main.c
– TI_MSPBoot_Config.h
– Comm/PHY_DataLink/TI_MSPBoot_CI_PHYDL_xxxx_xxx.c
– AppMgr/TI_MSPBoot_AppMgr.c

• In Application(s):
– main.c
– TI_MSPBoot_Mgr_Vectors_xxxx.c

The portions of these files that need to be modified are marked with the //TODO: tag that is easily
searchable and stands out in CCS. Each TODO also shows up in the CCS task list, which can be
accessed through View → Other... → General → Tasks. Each task includes instructions on what must be
modified and where to look for examples. This modification is required for proper operation of MSPBoot
and application code when using the project generation script.

4.1.1.3.1 Modifying MSPBoot Main.c
There are three TODO items in the MSPBoot main.c that require user modification:
• Define a Debug Interface

– For example, this could be an LED that turns on when in the bootloader, or a GPIO that enters a
specific state

• Initialize the Clock System
– By default, the examples includes with MSPBoot setup the system frequency to 8 MHz. MSPBoot

can operate at 8MHz, 4MHz, or 1 MHz. Refer to the examples provided in the accompanying
software package and the device specific user's guide for more details.

• Initialize Hardware
– When the device enters the bootloader code, peripheral registers that are not initialized to their

default values can affect operation. For example, a timer that was setup by the application to
interrupt every second would affect MSPBoot operation. For this reason, TI highly recommends
initializing all peripheral registers to their default values. If the bootloader was entered after a BOR,
all peripheral registers are already set to their default values.

4.1.1.3.2 Modifying TI_MSPBoot_Config.h
There are four TODO items in TI_MSPBoot_Config.h that require user modification:
• Define the MCLK Frequency

– After modifying main.c other portions of the code need to know the MCLK frequency to operate
properly.

• Setup Watchdog Interval
– In some applications, there may be a need to reset the device if the bootloader becomes

unresponsive. The interval length is most dependent on the size of flash for the device being
programmed. The more flash space, the longer the interval must be. For example, in the
MSP430F5529 that contains 128KB of flash an interval greater than 6 seconds. If using the
watchdog timer, the NDEBUG define also must be uncommented.

• Setup the Hardware Entry Condition
– Typically a bootloader offers a way to enter the code through a hardware condition. In MSPBoot,

the user can decide based on the status of a pin being high or low.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Building MSPBoot www.ti.com

22 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

• Uncomment Configuration Options
– There are many different configuration options that need to be selected based on the

communication interface being used. You can also find more information on this in Table 7.
– When using I2C:

• Uncomment CONFIG_CI_PHYDL_START_CALLBACK and
CONFIG_CI_PHYDL_I2C_SLAVE_ADDR

– When using UART:
• Uncomment CONFIG_CI_PHYDL_UART_BAUDRATE

– When using CC110x:
• Uncomment CONFIG_CI_PHYDL_CC1101_FREQUENCY

4.1.1.3.3 Modifying TI_MSPBoot_CI_PHYDL_xxxx_xxx.c
There are three TODO items in TI_MSPBoot_CI_PHYDL_xxxx_xxx.c that require user modification:
• Define the communication module

– Depending on the device and communication protocol, several peripherals in the MSP430 can
achieve the same result. For example in the MSP430F5529 the USCI_A0 and USCI_A1 modules
can both perform UART communication. The user needs to modify the defines associated with this
TODO so the proper peripheral registers are being used for communication based on the
application requirements.

• Define the timer module (USCI and USI I2C Only)
– In I2C communication an optional time-out can be configured that takes advantage of the timer

module within various MSP430 MCUs. The user needs to modify the defines associated with this
TODO so an appropriate timer is being used based on the application requirements.

• Set up GPIO pins
– Depending on the communication interface and the specific module being used, the user needs to

set up the GPIO to the proper peripheral functionality. For more information on how to set up a pin
for a communication interface, see the device-specific data sheet.

4.1.1.3.4 Modifying TI_MSPBoot_AppMgr.c
There is one TODO item in TI_MSPBoot_AppMgr.c that require user modification. In the
TI_MSPBoot_Restore_DefaultClockSettings function, it is recommended that the user set the clock
settings to default as if the part had just reset. This function is called just before jumping to the application
code and will ensure that the MSPBoot clock settings are not carried over to the application.

4.1.1.3.5 Modifying Application Main.c
There are a varying number of TODO items depending on whether the simple application template or the
shared communication application template is used. However, each includes TODO items for adding user
defined values, functions and their prototypes, and interrupt service routines. These TODO items simply
need to be replaced with the corresponding user code. Each template also provides access to the function
TI_MSPBoot_JumpToBoot which allows the application code to jump to the bootloader.

4.1.1.3.6 Modifying TI_MSPBoot_Mgr_Vectors_xxxx.c
There are two TODO items in TI_MSPBoot_VecRed_xxxx_App.c that require user modification:
• Add ISR Prototypes

– For vector redirection to work properly, add extern prototypes of every ISR used in the application.
These are used in the next TODO.

• Update Proxy Vector Table
– To update the proxy interrupt vector table with the ISRs used in your application, replace the

"Dummy_ISR" text with the corresponding ISR function name. The comments next to each line
indicate what peripheral the ISR is associated with.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Building MSPBoot

23SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

4.1.2 Loading Application Code With MSPBoot
When creating custom applications to load onto the MSP430 using MSPBoot, perform the following steps
for best results:
1. Develop the application without using MSPBoot.

a. This includes creating a project, using the default linker file, and developing code as if a main
memory bootloader will not be used.

2. Once you have developed the application, transfer the code to one of the application templates.
a. App_Simple: Does not share a communication interface with the bootloader
b. App_Shared_Comm: Shows how to share a communication interface with the bootloader

3. Modify the vector redirection file as described in Section 4.1.1.3.6.
4. Edit the project properties to output a TI-TXT hex format file.

a. Project Properties → MSP430 Hex Utility → Enable MSP430 Hex Utility
b. Project Properties → MSP430 Hex Utility → Output Format Options → Output TI-TXT hex format (-

-ti_txt)
5. Build the project.
6. Generate a C file that can be loaded from a host processor using the TI-TXT file found in the project

Debug folder (see Section 4.1.2.1).
7. Load MSPBoot onto the target device.
8. If the target device is not already executing bootloader code, the target device must be forced to enter

the bootloader. This can be done by setting up the application code to jump to the bootloader when a
certain command is received. See the examples provided for more information on how to accomplish
this.

9. Load the application C file onto the target device.
a. See the example host projects included in the accompanying software package for more

information.

4.1.2.1 Convert Application Output Images
The CCS projects can be setup to generate outputs in MSP430 .txt format or Intel .hex format by following
Project Properties → MSP430 Hex Utility for more information. Neither file includes a CRC, but one can
either be calculated by the host processor or needs to be added manually to the generated file.
Regardless of how the CRC is calculated, the application image must be converted to a format useable by
the host processor. To make this easier, the software package includes image2C, a Perl script used to
convert an MSP430 .txt file or Intel .hex file to a C array.

Location: MSPBoot\Utilities\430 Image Converter\image2C.pl

Syntax:
[] denotes an optional field
image2C.pl

[-help]
-src <src_file>
-dest <dest_file>
-struct <array_name>
[-20_bit]

• -src <src_file> = Specifies the source file in .txt or .hex format.
• -dst <dest_file> = Specifies the destination file in .c format.
• -struct <array_name> = Name of the array in C file. If using the host examples provided in the

accompanying software package, TI recommends naming the struct App1 or App2.
• -20_bit = Optional parameter. Specifies that the files created are compatible with large memory model

(20 bit) MSP430 devices. If using a large memory model device, this command is required for the file
to be generated correctly. If not specified, single image is assumed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Building MSPBoot www.ti.com

24 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

Figure 12. image2C Example

NOTE: A Perl interpreter is required to run this script. Visit http://www.perl.org/ to download an
interpreter if needed.

4.2 Examples
This software package includes examples for MSP430G2553 and MSP430F5529. Any MSP430 board can
be used, but the LaunchPad™ development kit MSP-EXP430G2 and MSP-EXP430F5529 are the
examples used in this application report.

4.2.1 LaunchPad Development Kit Hardware

A P2.0 is not connected to LED2 by default in MSP-EXP430G2. An external connection can be added for demo
purposes when using I2C communication

B Jumper J5 that connects P1.6 to LED2 must be removed in MSP-EXP430G2 when using I2C communication.

Figure 13. Target Boards: MSP-EXP430F5529 and MSP-EXP430G2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D
http://www.perl.org/


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Building MSPBoot

25SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

The bootloader and demo applications use the same LED (LED1 and LED2) notations across all variants
of the LaunchPad development kits. The pin assignments that correspond to these I/O peripherals are
different for each board derivative. For each use, the examples have been designed so that the host and
target LaunchPad development kits can be the same derivative, although there are examples and this can
be modified for different configurations if desired.

4.2.2 CC110x Hardware
Two hardware options are available for using the CC110x communication with the MSPBoot examples.
The first is a combination of the CC1101EMK868-915 and BOOST-CCEMADAPTER, but the simplest
solution is with a 430BOOST-CC110L. Figure 14 shows both options.

Figure 14. CC101EMK868-915, BOOST-CCEMADAPTER, and 430BOOST-CC10L

Two units of either option are required, one for the host device and the other for the target. Both
solutions are compatible across all LaunchPad development kits and are directly connected such that
no other hardware is required to run the provided examples. More information about the ecosystem for
the LaunchPad development kits and BoosterPack™ plug-in modules can be found at TI LaunchPad
Development Kits.

CAUTION
The 430BOOST-CC10L and the CC101EMK868-915 use different reference
crystals to generate the appropriate frequencies. When using the
CC101EMK868-915 with the BOOST-CCEMADAPTER the reference crystal
definition found in hal_spi_ref_exp5529.h must be modified from 27000 to
26000 to compensate for the change from a 27-MHz crystal on the 430BOOST-
CC10L to a 26-MHz crystal on the CC101EMK868-915.

4.2.3 Building the Target Project
1. Select a target processor: MSP430F5529 or MSP430G2553.
2. Select a communication interface: I2C, UART, or SPI with CC110x.
3. Open CCS and select or create a workspace.
4. Import the MSPBoot CCS projects into the workspace. The projects are located in

MSPBoot\<target>_Examples\<communication_interface>\
a. Select the Copy projects into workspace checkbox to ensure you're working on the project located

within your workspace instead of somewhere else on your PC.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D
http://www.ti.com/launchpad
http://www.ti.com/launchpad


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Building MSPBoot www.ti.com

26 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

Figure 15. Import MSPBoot CCS Projects

5. Build the bootloader
a. Select the MSPBoot project
b. Select the proper target configuration (single image or dual image)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Building MSPBoot

27SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

Figure 16. Select Target Configuration

6. Build and Download . Only the target LaunchPad development kit should be connected to the
PC

7. Build both applications.
a. Select the App1_MSPBoot project and select the same configuration as the bootloader.

Figure 17. Select App1_MSPBoot Project

8. Click the Build project. The output is generated after this step, but the output will be converted
and downloaded through the host processor. Section 4.1.2.1 explains how to convert the image and
Section 4.2.4 explains how to download it using a host demo.

9. Repeat Step 6 for App2_MSPBoot

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

Building MSPBoot www.ti.com

28 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

4.2.4 Building the Host Project
The host project can be built following the next steps:
1. Import the project into CCS. The project files are located in

MSPBoot\Host_Examples\Host_Examples_for_<target>_target\<communication interface>\.
2. Find the TODO in main.c located above the definition of several addressed including the CRC address

a. Update the values to match the addresses defined in the target device linker command file.
3. Add the target application C file generated from step 8 of Section 4.2.3 to the excluded TargetApps

Folder in the host project
4. Find the TODO in main.c located above the definition of the target application files

a. Update the name of these files to match the target application C file referenced in step 3.
5. Build the host project

a. Select the host project
b. Select the proper target configuration (single or dual image)

Figure 18. Target Selection for Host Project in CCS

6. Build and Download . Only the host LaunchPad development kit should be connected to the
PC.

The project uses the application images located in the following folder:

<Project_Dir>\Target_Apps

Where Project_Dir is the directory where the host project is located. This folder should also be excluded
from the host build by default. Prebuilt images are included, but target applications can be replaced or
updated by following the procedure described in Section 4.2.3 and Section 4.1.2.1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Building MSPBoot

29SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

4.2.5 Running the Examples
The host project sends two different images to the target device, using a push button for user interaction.
USB connection to a computer is not required on either LaunchPad development kit to run the demo;
however, each kit should be powered either by a USB connection through the eZ-FET or with steady 3.3-V
external power supply to VCC and GND pins (ensure that the eZ-FET is disconnected in this instance). The
demo is run using these steps regardless of communication type or image model used:
1. Build and download the MSPBoot as described in Section 4.2.3 and build App1 and App2.
2. Convert App1 and App2 according to Section 4.1.2.1.
3. Build and download the host application as described in Section 4.2.4.
4. Connect the boards according to the desired communication type (I2C, UART, or SPI with CC110x).

a. Each host project contains a commented diagram at the start of code describing the proper
connections.

5. Reset and execute code in both devices.
6. To enter the target bootloader mode (indicated by both LED1 and LED2 remaining on):

a. If the target does not have a valid application (default), the target stays in bootloader mode.
b. Bootloader mode can be forced in hardware by pressing and holding the S2 button on the target

device while pressing and releasing the reset button.
c. If running an application:

i. APP1 jumps to bootloader mode when the S2 button is pressed on the target device.
ii. APP2 jumps to bootloader mode when it receives the Force Boot command (supported only if

CI PHY-DL is shared).
7. Press the S2 button on the host board. The host device performs the following sequence of

commands:
a. Toggles LED1 twice.
b. Sends “Force Boot” command (0xAA).

i. If the target device is already in bootloader mode, it discards the packet, because the CRC is
incorrect.

ii. If the target is running APP2, the target device enters bootloader mode.
c. Requests the bootloader version (sends the TX_VERSION command).

i. If the target response is 0xA1 (expected from BSL protocol), the host continues.
ii. If the target response is any other value, the host aborts transaction.

d. Erases the target application area (sends the ERASE_APP command).
e. Sends APP1 (uses the RX_DATA_BLOCK commands).
f. Programs CRC of APP1 (uses the RX_DATA_BLOCK command).
g. Forces the target application to run (sends the JUMP2APP command).
h. Toggles LED1 twice to indicate successful transfer, and keeps LED1 on to show that the host is

now ready to send APP2.
8. Target starts running APP1 upon completion of transfer.

a. The target device blinks LED1.
b. LED1 blinks at a periodic interval using the timer.
c. Press the S2 button on the target board to enter bootloader mode.

9. With the target in bootloader mode, press the S2 button on the host board to send APP2. When
finished and done toggling, LED1 of the host board stays off to indicate that APP1 is now ready to be
sent.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

References www.ti.com

30 SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers

10. Target starts running APP2 upon completion of transfer.
a. The target device blinks LED2.
b. Press the S2 button on the target board to toggle LED2.
c. Because the CI is initialized, the host can send a Force Boot command to force bootloader mode

in the target device at the start of a new transfer sequence.
11. Press the S2 button on the host to start a new sequence sending APP1 again.

Dual-image mode contains a brief pause from the host after the transfer is complete while it validates
the download area, transfers the memory into the application space, and erases the download area
after the application area is validated by a CRC-CCITT check.

5 References
1. MSP430x2xx Family User’s Guide
2. MSP430x5xx and MSP430x6xx Family User’s Guide
3. I2C specification 2.1 (http://www.nxp.com/documents/other/39340011.pdf)
4. MSP430™ Flash Device Bootloader (BSL) User's Guide
5. Creating a Custom Flash-Based Bootloader (BSL)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D
http://www.ti.com/lit/pdf/SLAU144
http://www.ti.com/lit/pdf/SLAU208
http://www.nxp.com/documents/other/39340011.pdf
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAA450


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

www.ti.com Revision History

31SLAA600D–June 2013–Revised February 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from September 6, 2017 to February 28, 2018 ................................................................................................ Page

• Updated Section 4.1.2.1, Convert Application Output Images, to add information for Intel .hex format and change
430txt2C.pl to image2C.pl .............................................................................................................. 23

• Changed Figure 12, image2C Example, from 430txt2C.pl to image2C.pl ....................................................... 24

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA600D


T
I 
C

o
n
fi
d
e
n
ti
a
l
–

N
D

A
R

e
s
tr

ic
ti
o
n
s

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	MSPBoot – Main Memory Bootloader for MSP430™ Flash Microcontrollers
	1 Introduction
	1.1 Glossary
	1.2 Conventions

	2 Implementation
	2.1 Main
	2.2 Application Manager
	2.2.1 Boot and Application Detection
	2.2.1.1 Force Bootloader Mode
	2.2.1.2 Application Validation
	2.2.1.3 Jump to Application

	2.2.2 Vector Redirection
	2.2.3 Interrupt Vectors in Flash Devices
	2.2.4 Dual Image Support
	2.2.4.1 Jumping to Application in Dual Image Mode


	2.3 Memory Interface (MI)
	2.3.1 Dual Image Support

	2.4 Communication Interface (CI)
	2.4.1 Physical-DataLink (PHY-DL)
	2.4.1.1 I2C
	2.4.1.2 UART
	2.4.1.3 SPI
	2.4.1.4 CC110x
	2.4.1.5 Comm Sharing

	2.4.2 NWK-APP
	2.4.2.1 BSL-Based Protocol



	3 Customization of MSPBoot
	3.1 Predefined Customizations

	4 Building MSPBoot
	4.1 Starting a New Project
	4.1.1 Creating a New MSPBoot Project
	4.1.1.1 MSPBootProjectCreator.pl
	4.1.1.2 Importing Project Spec File in CCS
	4.1.1.3 Modifying Generated Source Code

	4.1.2 Loading Application Code With MSPBoot
	4.1.2.1 Convert Application Output Images


	4.2 Examples
	4.2.1 LaunchPad Development Kit Hardware
	4.2.2 CC110x Hardware
	4.2.3 Building the Target Project
	4.2.4 Building the Host Project
	4.2.5 Running the Examples


	5 References

	Revision History
	Important Notice

