I3 TEXAS

INSTRUMENTS

User’s Guide

DOCNUM-2.91.03.00 Copyright © 2017 Texas Instruments Incorporated.

Copyright

Copyright © 2017 Texas Instruments Incorporated. All rights reserved. MSP430 and MSP430Ware are trademarks of Texas Instruments Instruments.
ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of
others.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semi-
conductor products and disclaimers thereto appears at the end of this document.

Texas Instruments [

13532 N. Central Expressway MS3810 N\‘S‘:’_ﬁ_‘\, St
Dallas, TX 75243 l TEXAS i

www com INSTRUMENTS Wi

Revision Information

This is version 2.91.03.00 of this document, last updated on Thu Oct 19 2017 16:46:57.

www.ti.com/

Table of Contents 2

Table of Contents

Copyright e e e e e e e e e e e e e e e e 1
Revision Information i e e e e e e e e 1
1 Introduction e e e e e e e e e 5
2 Navigating to driverlib through CCS Resource Explorer 7
3 How to create a new CCS projectthatusesDriverlib 20
3.1 Introduction L e e e e 20
4 How to include driverlib into your existing CCSproject 22
4.1 Introduction L e 22
5 How to create a new IAR project thatuses Driverlib 24
5.1 Introduction 24
6 How to include driverlib into your existing IARproject. 27
6.1 Introduction L e 27
7 10-Bit Analog-to-Digital Converter (ADC) o o o i it e e e e e e e 30
7.1 Introduction L L e 30
7.2 APIFunctions 30
7.3 Programming Example 46
8 Cyclical Redundancy Check (CRC) i i i i ittt e e e e e e e a e e n s 47
8.1 Introduction L 47
8.2 APIFUNCLONS 47
8.3 Programming Example e 50
9 Clock System (CS) i i i e 52
9.1 Introduction 52
9.2 APIFUNCONS 53
9.3 Programming Example e e 68
10 Enhanced Comparator (eCOMP) it it i ettt et it e s 69
10.1 Introduction L L o e e 69
10.2 APIFuNctions e e 69
10.3 Programming Example 70
11 EUSCI Universal Asynchronous Receiver/Transmitter (EUSCI.LA.UART) 71
11.1 Introduction L e e 71
11.2 APLFUNCLiONS e e e e e e e 71
11.3 Programming Example 80
12 EUSCI Synchronous Peripheral Interface (EUSCILASPI) 82
12.1 Introduction L e e e e e e e e e 82
12.2 FUNCLONS e e e e 82
12.3 Programming Example 90
13 EUSCI Synchronous Peripheral Interface (EUSCIBSPI) 92
13.1 Introduction L e e e e e 92
13.2 FUNCLiONS o e e e 92
13.3 Programming Example 100
14 EUSCI Inter-Integrated Circuit (EUSCIBI2C) i it ittt et e e e 101
141 Introduction L e e e 101
14.2 Master Operations o i e e e e 101
14.3 Slave Operations e e e 102
14.4 APIFuNctions e e 103

Table of Contents 3

14.5

15

15.1
15.2
15.3

16

16.1
16.2
16.3

17

17.1
17.2
17.3

18

18.1
18.2
18.3

19

19.1
19.2
19.3

20

20.1
20.2
20.3

21

21.1
21.2
21.3

22

22.1
222
22.3

23

23.1
23.2
23.3

24

241
242
24.3

25

251
25.2
25.3

26
26.1
26.2

Programming Example e 125
FRAMCH - FRAM Controller. i e e e e e e e e e e e e e e e aa e n s 126
Introduction e 126
APLFUNCLiONS e 126
Programming Example e 131
GPIO . . . e e e e e e e e e e e e e e e e e 132
Introduction e 132
APLFUNCLIONS o e e e 133
Programming Example 158
LCD.EController o i it i e e e e e e e e e e e e e e 160
Introduction e 160
APIFUNCLIONS o e 160
Programming Example e 197
Power Management Module (PMM) i i i i i i e et e e e e e e 199
Introduction e e 199
APIFUNCLIONS e e 199
Programming Example 208
Real-Time Clock (RTC) i i i i i e e e e e e e e e e e e s e e e 209
Introduction e 209
APIFUNCLIONS o e 209
Programming Example e 213
Smart Analog Combo (SAC) o i i i it e e e e e e e e e e e e e e 214
Introduction L e e 214
APLFUNCLIONS 214
Programming Example e 214
SFRModule e e e e e e e e e e e e e e e e 215
Introduction L e 215
APLFUNCLiONS o e 215
Programming Example e 219
System Control Module @i e e e e e e e e e 220
Introduction e 220
APLFUNCLiONS 220
Programming Example e 230
16-Bit Timer A (TIMER_A) o e e e e e e e e e e e e e e e e a e e ns 231
Introduction e 231
APLFUNCLIONS o e e e 232
Programming Example e 247
16-Bit Timer B (TIMER.B) o e e e e et et e e e a s 248
Introduction e 248
APIFUNCLIONS e e 249
Programming Example e 267
TR o e 268
Introduction e e 268
APIFUNCLIONS o e e 268
Programming Example 268
WatchDog Timer (WDT _A) o v i it e e e e e e e e e et e e e e s e 269
Introduction e 269

APIFUNCtions e e e e 269

Table of Contents 4

26.3 Programming Example e e 272
27 Data Structure Documentationo e e e 273
27.1 Data Structures e 273
27.2 Timer_B_initContinuousModeParam Struct Reference 274
27.3 Timer_A_initUpModeParam Struct Reference oo 276
27.4 EUSCI_B_SPLinitSlaveParam Struct Reference 278
27.5 Timer_A_initCompareModeParam Struct Reference 279
27.6 EUSCI_B_SPI_changeMasterClockParam Struct Reference 281
27.7 Timer_B_initUpDownModeParam Struct Reference, 281
27.8 Timer_A_initContinuousModeParam Struct Reference 283
27.9 EUSCI B_I2C. initSlaveParam Struct Reference 285
27.10Timer_A_initCaptureModeParam Struct Reference 286
27.11EUSCI_A_UART initParam Struct Reference 288
27.12Timer_B_outputPWMParam Struct Reference 291
27.13EUSCI_B_I12C_initMasterParam Struct Reference 293
27.14EUSCI_A_SPI_changeMasterClockParam Struct Reference 294
27.15Timer_B_initUpModeParam Struct Reference 295
27.16Timer_B_initCompareModeParam Struct Reference 297
27.17EUSCI_A_SPLinitMasterParam Struct Reference 299
27.18Timer_B_initCaptureModeParam Struct Reference 301
27.19EUSCI_B_SPL.initMasterParam Struct Reference oo L. 303
27.20LCD_E.initParam Struct Reference e 305
27.21Timer_A_initUpDownModeParam Struct Reference 307
27.22CS.initFLLParam Struct Reference L 309
27.23EUSCI_A_SPLinitSlaveParam Struct Reference 310
27.24Timer_A_outputPWMParam Struct Reference L 311

IMPORTANT NOTICE ot i e e e e e i et it s et e e e 314

CHAPTER 1. INTRODUCTION 5

1

Introduction

The Texas Instruments® MSP430® Peripheral Driver Library is a set of drivers for accessing the
peripherals found on the MSP430 FR2xx/FR4xx family of microcontrollers. While they are not
drivers in the pure operating system sense (that is, they do not have a common interface and do
not connect into a global device driver infrastructure), they do provide a mechanism that makes it
easy to use the device’s peripherals.

The capabilities and organization of the drivers are governed by the following design goals:

m They are written entirely in C except where absolutely not possible.

m They demonstrate how to use the peripheral in its common mode of operation.
m They are easy to understand.

m They are reasonably efficient in terms of memory and processor usage.

m They are as self-contained as possible.

m Where possible, computations that can be performed at compile time are done there instead
of at run time.

m They can be built with more than one tool chain.
Some consequences of these design goals are:

m The drivers are not necessarily as efficient as they could be (from a code size and/or
execution speed point of view). While the most efficient piece of code for operating a
peripheral would be written in assembly and custom tailored to the specific requirements of
the application, further size optimizations of the drivers would make them more difficult to
understand.

m The drivers do not support the full capabilities of the hardware. Some of the peripherals
provide complex capabilities which cannot be utilized by the drivers in this library, though the
existing code can be used as a reference upon which to add support for the additional
capabilities.

m The APIs have a means of removing all error checking code. Because the error checking is
usually only useful during initial program development, it can be removed to improve code
size and speed.

For many applications, the drivers can be used as is. But in some cases, the drivers will have to be
enhanced or rewritten in order to meet the functionality, memory, or processing requirements of the
application. If so, the existing driver can be used as a reference on how to operate the peripheral.

Each MSP430ware driverlib API takes in the base address of the corresponding peripheral as the
first parameter. This base address is obtained from the msp430 device specific header files (or
from the device datasheet). The example code for the various peripherals show how base address
is used. When using CCS, the eclipse shortcut "Ctrl + Space” helps. Type __MSP430 and "Ctrl +
Space”, and the list of base addresses from the included device specific header files is listed.

The following tool chains are supported:

m |AR Embedded Workbench®
m Texas Instruments Code Composer Studio™

Using assert statements to debug

CHAPTER 1. INTRODUCTION 6

Assert statements are disabled by default. To enable the assert statement edit the hw_regaccess.h
file in the inc folder. Comment out the statement #define NDEBUG -> //#define NDEBUG Asserts
in CCS work only if the project is optimized for size.

CHAPTER 2. NAVIGATING TO DRIVERLIB THROUGH CCS RESOURCE EXPLORER 7

2 Navigating to driverlib through CCS
Resource Explorer

In CCS, click View->TI Resource Explorer
N o Comprne 1o T T - -

Fie D [V | Reagae Peea B hopls wieies ep

- T o o Yasenen (52

B corscien 5o dgiay of e b, LT
Tevepon Besare Fab Lo Tre

In Resource Explorer View, click on MSP430ware

CHAPTER 2. NAVIGATING TO DRIVERLIB THROUGH CCS RESOURCE EXPLORER 8

' CCS it - Tl Resource Explorer - Code Composer Studio I

File Edit View MNavigate Project Scripts Run Window Help

BRI i% iR riBit ey

[5Proj.. 52 = O @ TIResource Explorer &2

==}
Packages: Devices: Topics: |A 7

enter search keyword Address:

» # TI-RTOS for MSP430

Welcome to MS

Quicken your development time with MSP430Ware,
support MSP430 devices. Using this GUI or clicking t
examples, software libraries, datasheets and other re

To begin, navigate using the tabs above or the folder

MSP430 DriverLib BOOST-IR
updated to 1.97.00 Released

The MSP430 Driver Library has been updated The BOOST-IR BoosterP:
to 1.97.00 to include various bugfixes. plug-in module for adding
communications to your L

View details »

View details »

[1

. Full License :

Clicking MSP430ware takes you to the introductory page. The version of the latest MSP430ware
installed is available in this page. In this screenshot the version is 1.30.00.15 The various

CHAPTER 2. NAVIGATING TO DRIVERLIB THROUGH CCS RESOURCE EXPLORER

software, collateral, code examples, datasheets and user guides can be navigated by clicking the

different topics under MSP430ware. To proceed to driverlib, click on Libraries->Driverlib as shown
in the next two screenshots.

'+ CCS Edit - Tl Resource Explorer - Code Composer Studic IR
File Edit View MNavigate Project Scripts Run Window Help

. e
-

1

- T{éﬁ;v{)v_ <::Iv -

[25 Project Explorer 2 5% ¥ = O | TIResource Explorer 2

Packages: Devices: Topics: |A

enter search keyword

4 B MSP430ware

Address:

- ! Development Tools
- |H¥ Libraries = =
- B TI-RTOS for MSP430 lerarles

Driver Library

/i
v I-

Capacitive
Touch Softwar

Library @

Version 1.97.00.47

© Texas Instruments 2014

4

. Full License :

CHAPTER 2. NAVIGATING TO DRIVERLIB THROUGH CCS RESOURCE EXPLORER 10

- . — =
' CCS kit - Tl Resource Explorer - Code Composer Studio N

File Edit View MNavigate Project Scripts Run Window Help

{jv T{éﬁ;v{)vu <::Iv -

1

[25 Project Explorer 2 5% ¥ = O | TIResource Explorer 2

Packages: Devices: Topics: |A

enter search keyword Address:
4 B MSP430ware _
. & Devices
- ! Development Tools
a | | ibraries = =
I 4 % Driver Library lerarles
B Release Notes
& MSPA30FSwox_Bx Driver Library
» %% MSP430FR57xx
- &5 MSPA30FRS00_ Bk

| ——
» %% MSPA30FR2x0_4xx ~ —
- B0 MSPA30i2xx
: ¥ Graphics Library
» ® JSB Developers Package % —

: ® IQmath Library

» ®% Capacitive Touch Software Library
. & EC 60730 Library Capacitive
» ® NFCLink
- £ TI-RTOS for MSP430 Touch SOftwar

Library

-

Version 1.97.00.47

© Texas Instruments 2014

4

. Full License :

CHAPTER 2. NAVIGATING TO DRIVERLIB THROUGH CCS RESOURCE EXPLORER 11

Driverlib is designed per Family. If a common device family user’s guide exists for a group of
devices, these devices belong to the same family’. Currently driverlib is available for the following
family of devices. MSP430F5xx_6xx MSP430FR57xx MSP430FR2xx_4xx MSP430FR5xx_6xx

MSP430i2xx

CHAPTER 2. NAVIGATING TO DRIVERLIB THROUGH CCS RESOURCE EXPLORER

12

' CCS it - Tl Resource Explorer - Code Composer Studio I

File Edit View MNavigate Project Scripts Run Window Help

BRI i% iR riBit ey

Eg® Y= 0 w Tl Resource Explorer &2

Packages: Devices: Topics: |A

Address:

[t5 Project Explorer 22

enter search keyword

4 {1 MSP430ware
. &F Devices
. | Development Tools
4 [Libraries
4 % Driver Library
1) - —
1|8 MSPA30F S0 Bxx
M User's Guide
@ API Programmer's Guide
[& emptyProject

4

“" Example Projects
MSP430FR57xx
" MSP430FR5xx_6xx

M User's Guide

@ API Programmer's Guide
[& emptyProject

=

@

&

L
g2

“" Example Projects
MSPA30FR 2w _dxx

- B MSP430i2xx
- %% Graphics Library

=

@

&

4

> %% |USB Developers Package
- ®% IQmath Library
- % Capacitive Touch Software Library
* IEC 60730 Library
> % NFCLink
£ TI-RTOS for MSP430

2

+

. Full License :

SP430 Driver Li

API for selected MSP430 dev
figuring, enabling & using inte
h API function is fully docume
T's Guide, APl Guide & code ¢
ve bitwise programming and
ert within minutes with Driver |
Js.

to market faster with MSP43C
y-to-understand function calls
ning and more time innovating
ary is also relased standalone
1 BSD software library. You cz

=

Click on the MSP430F5xx_6xx to navigate to the driverlib based example code for that family.

CHAPTER 2. NAVIGATING TO DRIVERLIB THROUGH CCS RESOURCE EXPLORER 13

' CCS it - Tl Resource Explorer - Code Composer Studio I

File Edit View MNavigate Project Scripts Run Window Help
- T{éﬁ;v{)vu <::Iv -

45
-

1

[25 Project Explorer 2 5% ¥ = O | TIResource Explorer 2

Packages: Devices: Topics: |A

enter search keyword Address:

4 8 MSP430ware - _
. & Devices
- ! Development Tools
4 | Libraries

4 % Driver Library
@ Release Notes

PR & MSPAI0FSxx_Bxx Driver Library

M User's Guide
-
N —

@ API Programmer's Guide
= smntulrojsct
DAy A Capacitive
% DMA Touch Softwar

. 0 FLASHCTL BN Library
. & GPIO

. & | DOPWR
. & MPY32

. & PMAP

. & pMM

, 8 RAM

» & REF Version 1.97.00.47
. & RTC_A

. & RTC_B

. & RTC_C

. %0 SD24 B

. & TEC p
. & TIMER_A v

Libraries

m

4 % Example Projects
ST RADCIOA
- B0 ADC12.A
. B AES
%% COMP_B
. B8 CRC

4

-

© Texas Instruments 2014

. Full License :

The various peripherals are listed in alphabetical order. The names of peripherals are as in device
family user’s guide. Clicking on a peripheral name lists the driverlib example code for that

CHAPTER 2. NAVIGATING TO DRIVERLIB THROUGH CCS RESOURCE EXPLORER

14

peripheral. The screenshot below shows an example when the user clicks on GPIO peripheral.

"+ CCS Eait - T Resource Explorer - Code Composer Studio I

File Edit View Mavigate Project Scripts Run Window

Rvithvif it oD

[?5 Project Expl ==
Workspace

ke

Help

¥ = O | @ TIResource Explorer 2

Packages: Devices: Topics: |All

enter search keyword

a B8 MSPA30FR 500 B
X User's Guide

@ API Programmer’s Guide

[& emptyProject
4 %' Example Projects

[+

-

“ ADC12.B
i AES256

“ COMP_E

¢ CRC

0 CRC32
s

b DMA

4 EUSCLA_SPI
¥ EUSCIA_UART
4 EUSCIB_I2C
¥ EUSCI_B_SPI
e FpAMCT]

m

[& framctl_ex1_write

e
0 LDC_C
& MPU
“ MPY32
4 PMM
i RAM
0 REF A
% RTC_B
4 RTC_C
& TIMER_A
“& TIMER_B
b TLY
“0WDT_A

b % MSP430FR 200 ok

- Full License :

Address:

i;} fram

Long worc

These are the steps 1o
praject.

Click on th
imported pi
expand the
files. To mu
file within t
Step 2: 4 Build i
To change
select Proyj
project, sel
button, or &
Step 3: T Debug
Connection

Click on th
Additionally

properties.

CHAPTER 2. NAVIGATING TO DRIVERLIB THROUGH CCS RESOURCE EXPLORER 15

Now click on the specific example you are interested in. On the right side there are options to
Import/Build/Download and Debug. Import the project by clicking on the "Import the example

project into CCS”

ETILET sEallll REywWUITu

a4 B MSPAIOFRSx 6
M User's Guide

@ API Programmer's Guide

[& emptyProject
4 %% Example Projects

£

£

£

£

£

a4 B

£

£

£

£

£

@

L0

@

@

@

L0

@

@

@

@

@

@

@

@

ADC12 B
AESZ256
COMP_E
CRC

CRC32

s

DMA
EUSCI_A_SPI
EUSCL_A_UART
EUSCI_B_I2C
EUSCI_B_SPI
FRAMCTL
[& framctl_ex1_write
GPIO

LDC_C

MPU

MPY32

PMM

RAM

REF_A
RTC B
RTC_C
TIMER_A
TIMER_B
TLY

WDT_A

Al

AL E DS,

o o N

framctl_ex1_write

Long word writes to FRAM

These are the steps to import the project, build the project, and

project.

Step 1:

Step 2:

Step 3:

&1 Import the example project into CCS

Click on the link above to import the project. The
imported project is available in the Project Explorer
expand the project node to browse the imported sou
files. To modify source code, double clicks on the s
file within the project to open the source file editor.

% Build the imported project

To change build options, right click on the project an
select Properties from the context menu. To build t
project, select the link above, or select the Build toc
button, or select the Project | Build Project menu ife

% Debugger Configuration

Connection. TI MSP430 UsSB1
Click on the link above to change the device connec
Additionally, this option is also available in the proje:

properties.

The imported project can be viewed on the left in the Project Explorer. All required driverlib source
and header files are included inside the driverlib folder. All driverlib source and header files are
linked to the example projects. So if the user modifies any of these source or header files, the
original copy of the installed MSP430ware driverlib source and header files get modified.

CHAPTER 2. NAVIGATING TO DRIVERLIB THROUGH CCS RESOURCE EXPLORER 16

'+ CCS Edit - TI Resource Explo
File Edit View Mavigate Prgject Scripts Run Window Help

- iy it vl P vi[EIE C Y Do
[ty Project Explorer 52 =% Y= 8 @ TlResource Explorer 2
4 = framctl_ex1_write [Active - Debug] -
= Debug . . . Addrece
= amen enter search keywaor e
4 (= MSP430FRS5xx_6xx 4 % Example Projects b —
i = deprecated » 0 ADC12 B
I &= inc » %" AES256 e f
b [8 adc12 bc . ® COMP_E I —1 |
&b
i [n adcl2_bh B CRC l Lo
b g aes256.c L » ® CRC32
i [n aes256.h B °i¢" Cs
i [£ comp_ec FREDMA
i ¥ EUSCI_A_SPI il
» W comp_eh o EUSC[_A_U ART These are the
v [crec - - - debug the pro
A crch » %% EUSCI_B_I2C
o0
bo[g ere32.c i P EUSCI_B_SPI
4 ¥ FRAMCTL Step 1. @
i [h cre32.h . _
bo[g cse . [& framctl_ex1_write cii
i [H csh | I GPIO iy
i [dma.c ¢ B IDC C Ex
[@ dma.h i 8 MPU brc
b [H driverlib.h w P MPY32 = SOl
i [esic b B pPMM wit
i [H esih i & RAM Step 2: &
o
i 2 eusci_a_spi.c b REF_A
b (8 eusci_a_spi.h » % RTC_B To
R =10 L o | g B °14~" RTC_C an
i+ W eusci_a_uarth %% TIMER_A ?f;g
i+ £ eusci_b_iZc.c B °1¢" TIMER_B e
b [B eusci_b_iZch b & TLY
&b
i+ 2 eusci_b_spi.c b EWDT_ A Step 3: %
i [eusci_b_spih % MSP430FR2x0¢_4xx
i [€ framctl.c i B MSPA30i2xx Co
i B framctlh i ¥ Graphics Library Cli
i [z gpio.c i €% USB Developers Package b co|
v [® gpio.h d LS I |
:Full lirenes : :

Now click on Build the imported project on the right to build the example project.

CHAPTER 2. NAVIGATING TO DRIVERLIB THROUGH CCS RESOURCE EXPLORER 17

.

X User's Guide

@ API Programmer’'s Guide

[& emptyProject
4 %% Example Projects

[+

-

@ ADC12_B

i AES256

“ COMP_E

% CRC

& CRC32

s

0 DMA

4 EUSCLA SPI

& EUSCLA_UART

& EUSCL B I2C

% EUSCI_B_SPI

4 FRAMCTL
[& framctl_ex1_write

¢ GPIO

0 LDC_C

& MPU

& MPY32

4 ppMM

e RAM

0 REF A

' RTC_B

0 RTC_C

& TIMER_A

& TIMER_B

B TLY

BOWDT A

b % MSP430FR2xx_4xx

11

,ﬂ framctl_ex1_write

Long word writes to FRAM

These are the steps to import the project, build the project, and ¢

project.

Step 1:

Step 2:

Step 3:

L} RERE

&1 Import the example project into CCS

Click on the link above to import the project. The
imported project is available in the Project Explorer
expand the project node to browse the imported sour
files. To modify source code, double clicks on the 50
file within the project to open the source file editor.

4% Build the imported project

To change build options, right click on the project anc
select Properties from the context menu. To build th
project, select the link ahove, or select the Build tool
button, or select the Project | Build Project menu ite

T Debugger Configuration

Connection: TI MSP430 USB1
Click on the link above to change the device connect
Additionally, this option is also available in the projec

properties.

Now click on Build the imported project on the right to build the example project.

@ API Programmer's Guide

[& emptyProject
Example Projects

i eh

[+

w % MSP4

[-2]

&4
o
o
&4

¢ EUSCLA_SPI

L&)

&4
o

[-2]

&4
o
&4

% REF_A

L)
L&)

L&)

>

* ADC12 B
0 AES256

L

COMP_E
CRC
CRLC32
cs

DMA

¥ EUSCLA_UART
i

EUSCI_B_I2C
EUSCI_B_SFI
FRAMCTL

[& framctl_ex1_write

* GPIO
“1DC_C

L

MPU
MPY32
PMM
RAM

" RTC_B
" RTC_C
& TIMER_A

¥ TIMER_B
i

TLV
WDT_A
30FR230¢_dhx

i B MSPAI0I Do

111

Step 1:

Step 2:

Step 3:

Step 4:

CHAPTER 2. NAVIGATING TO DRIVERLIB THROUGH CCS RESOURCE EXPLORER 18

&1 Import the example project into CCS

Click on the link above to import the project. The
imported project is available in the Project Explorer
expand the project node to browse the imported sou
files. To modify source code, double clicks on the s
file within the project to open the source file editor.

% Build the imported project

To change build options, right click on the project an
select Properties from the context menu. To build tf
project, select the link above, or select the Build toc
button, or select the Project | Build Project menu ite

%, Debugger Configuration

Connection: TI MSP430 USB1
Click on the link above to change the device connec
Additionally, this option is also available in the proje

properties.

% Debug the imported project

Click on the link above to launch a debug session fo
framctl_ex1_write project and switch to the CCS De
Perspective. Additionally, these are other methods |
start a project debug session. Select the project in t
Praoject Explorer view and click on the bug foolbar b
To relaunch a previous debug session, click on the :
arrow beside the bug toolhar button and select one ¢
debug session from the history.

The COM port to download to can be changed using the Debugger Configuration option on the

right if required.

To get started on a new project we recommend getting started on an empty project we provide.
This project has all the driverlib source files, header files, project paths are set by default.

CHAPTER 2. NAVIGATING TO DRIVERLIB THROUGH CCS RESOURCE EXPLORER 19

E CCS Edit - TI Resource Explorer - Composer Studi

File Edit View MNavigate Project Scripts Run Window Help
r{jv Qvﬁvqﬁvu“@v o

[Project Explorer &2 HE% Y= 08

4 > emptyProject [Active - Debug]

& Tl Resource Explorer &

= Debug
» & driverlib enter search keyword Address:
i = targetConfigs « & MSP43F)wvare |
> [# Ink_msp430fr5969.cmd » & Devices
b B mainc » ¥ Development Tools e
4 [Libraries | err
4 B O P |
¥ Driver Library Empty
@ Release Notes
i E MSP430F D00_Bxx
bOBUMSPA3B0FRETHE. 0 eeeeeseeseeseeseeseesessessene
a B MSPA30FRSx_6xx h the st
,) ese are the stej
M User's Guide the project.
API Programmer's Guide
[& emptyProject
O Tl TS Step 1: @ Im)
o
b 04‘. MSP430_FR2)0(_4)0(Click a
%% Graphics Library view, €
» " USB Developers Package source
i ¥ IQmath Library f.f:'e sol
i ¥ Capacitive Touch Software Library file edi
o i .
e .‘ [EC 5??30 Library Step 2: ﬁ m
> ® NFCLink
I # TI-RTOS for MSP430 To cha
select
the pro
toolbar
menu |
Step 3: T De
Conne:
Click o
connec
CFull License: = emptyProject

The main.c included with the empty project can be modified to include user code.

CHAPTER 3. HOW TO CREATE A NEW CCS PROJECT THAT USES DRIVERLIB 20

3

3.1

How to create a hew CCS project that uses
Driverlib

Introduction

To get started on a new project we recommend using the new project wizard. For driver library to
work with the new project wizard CCS must have discovered the driver library RTSC product. For
more information refer to the installation steps of the release notes. The new project wizard adds
the needed driver library source files and adds the driver library include path.

To open the new project wizard go to File -> New -> CCS Project as seen in the screenshot below.

£ € - e B - Code Compores e T

[File] Edit View MNavigate Project Run Scripts Window Help

Mew AltsShift«N » TF CC5Project

Open File... % Progect...

Close Chrl='W ¢ Source File

Close All Cirl+Shift+ W h' Header File r
. (& Class

Cave A File frorm Termplate

. Folder
IWE A

% Target Configuration File
=2 DSP/BIOS v5.x Configuration File

M5 Other.., Cerl+M

Fefresh

Comvert Line Delimiters To L3

Switch Workspace]
Restart

Import...

L. E

Export...
Properties Alt+Enter

1 adel0_ah [adell_a_ex]_svecRef/.)
2 mes.c [Test/driverlib/BASPA30F Suo:_focx]
3 usci_a_varth [Test/driverliby...]

4 driveriib.h [Test/driverfiby/...]

Exit

Once the new project wizard has been opened name your project and choose the device you
would like to create a Driver Library project for. The device must be supported by driver library.

Then under "Project templates and examples” choose "Empty Project with DriverLib Source” as
seen below.

CHAPTER 3. HOW TO CREATE A NEW CCS PROJECT THAT USES DRIVERLIB 21

% Mew CCS Project

| €CS Project e
Create & rlnv'I:CSP'mjed. @

Project name Example
Output type: | Exscutable

L |
[#] Use default location
] ocation: | C\Users\a0 272326\ Documents\ Development\workspace_5_5\Example Browse...
Device

Familz | MSP43D

Variant: csalect or type filter tet> - [Mg,pﬂ;m

Connection: |l'.| MEP430 USEL [Default]

b Advanced settings

+ Project ternplates and exsmples

: typee filter text Initial starting point for using M5P430 DiverLib.,

+ [E IE'_“WD"‘-]“:“ Copies DriverLib sewrces inte your project and adds
|gz Emply Project the appropriate include path, Everything you need to
[Empty Project (with main.c) get started wsing Driverlib in 2 new project.
[g3 Emply Ascermbly-only Praject

4 [Basic Eamples
[Blink The LED
[Hello World

4 [MSP430 DriverLib
| &2 Empty Project with DriverLib Source

@ < Back Heas | [Finish][Cancel

Finally click "Finish” and begin developing with your Driver Library enabled project.

We recommend -O4 compiler settings for more efficient optimizations for projects using driverlib

CHAPTER 4. HOW TO INCLUDE DRIVERLIB INTO YOUR EXISTING CCS PROJECT 22

4

4.1

How to include driverlib into your existing
CCS project

Introduction

To add driver library to an existing project we recommend using CCS project templates. For driver
library to work with project templates CCS must have discovered the driver library RTSC product.
For more information refer to the installation steps of the release notes. CCS project templates
adds the needed driver library source files and adds the driver library include path.

To apply a project template right click on an existing project then go to Source -> Apply Project
Template as seen in the screenshot below.

F'r CCS Edit - Testimaine - Cade Composer S N

File Edit View Navigate Peoject Run Sonpts Windew Help
Y - KR-igp~ P~ S
L Praject Explarer &3 = & K| L4 TIResource Explarer L] maine B2

4 1 Test [Active - D : |- hz
Mew ¥

mll Includes

= 1argrttnrrf|gs Add Files..,
& Ink_prspd 305! Copy CtrleC
L man.c = “trl

SR | WOTHOLD; 5top watchdog timer
K Delete Delete
Refactor b
Source b Format

Apply Project Template..,

Remame_ E2

Irmypart...

Export...

Show Euild Sﬂtim;-s...
Build Project

C- &

Clean F:nj:ct

Rebuild Project

Refresh F5
Close Project

Build Configurations b
Make Targets b
Indiex ¢

Debug As b
Team k
Compare With r

Restore from Local History....

Properties AleEnter

In the "Apply Project Template” dialog box under "MSP430 DriverLib Additions” choose either "Add
Local Copy” or "Point to Installed DriverLib” as seen in the screenshot below. Most users will want
to add a local copy which copies the DriverLib source into the project and sets the compiler
settings needed.

CHAPTER 4. HOW TO INCLUDE DRIVERLIB INTO YOUR EXISTING CCS PROJECT 23

Pointing to an installed DriverLib is for advandced users who are including a static library in their
project and want to add the DriverLib header files to their include path.

e [y

Praject Templates
Select one of the available project templates.

type filber test Add a copy of the Drcerlib sources for the FoogFloe =

[5 MSP420 Driverlib Addstions
gy Add Copy of DireerLib to Project
[Paint to Installed DriverLib

1 within an mdasting project.

Click "Finish” and start developing with driver library in your project.

CHAPTER 5. HOW TO CREATE A NEW IAR PROJECT THAT USES DRIVERLIB

5 How to create a new IAR project that uses

Driverlib

5.1 Introduction

24

It is recommended to get started with an Empty Driverlib Project. Browse to the empty project in

your device’s family. This is available in the driverlib instal folder\00_emptyProject

File Edit View [Praject| Tools Window Help

D@ @ AddFies. AR A I-EX X NIV Y I
Add Group..,
Irnpart File List..,

Files Add Project Connection,.
Edit Canfiguratians..,

Rernowve

Create Mew Project..,

Add Existing Praject...

Options., Alt+F7
Wersion Control Systerm 3

Mlake F¥

Compile Ctrl+F7
Rebuild All

Clean

Batch build... Fa
Stop Build Ctrl+Break
Dowrload and Debug Ctrl+D

Debug without Diownloading
Make & Restart Debugger Ctrl+R
Restart Debugger Ctrl +3hift+R

Download 3

SFR Setup

CHAPTER 5. HOW TO CREATE A NEW IAR PROJECT THAT USES DRIVERLIB 25

ﬁ Add Existing Project to Current WWaorkspace

@Q:I |« MSPWare_2_00_00_41 » driverlib b exarnples b MSPA30FRSc Goc » D0 ernptyProject » LAR ~ | 3 || Search 4R

Organize = Mew folder 4=z

¢ Favorites Marme Date modified Type Size

B Desktop || emptyProject.ewp 2/10/2015 2:06 P EWWP File 59 KB
4 Downloads

= Recent Places

= Libraries
3 Documents
J Music
=/ Pictures

H Yideos

M Cornputer

t'=."I_i Metnark

File narne: ChiymsphbASPYWare_2_0000_41vdriverlibtexarmples\hSP430FRSe_God00_emptyProjectylaR » | Project Files (*.ewp

|

CHAPTER 5. HOW TO CREATE A NEW IAR PROJECT THAT USES DRIVERLIB 26

File Edit ‘“iew Project Ernulator Tools indow Help

DS HT S| BR[| VSR P P AR BURS LD
Workspace x|

[Debug —

Files S H

B g emptyProject - Debug*

0 I

| L@ [MSP430FRExx_Bxx .

main.c

L@ 7 Output

CHAPTER 6. HOW TO INCLUDE DRIVERLIB INTO YOUR EXISTING IAR PROJECT 27

6 How to include driverlib into your existing
IAR project

6.1 Introduction

To add driver library to an existing project, right click project click on Add Group - "driverlib”

File Edit View Project Erulator Tools Window Help

DeHdd & fBR| o o YR ER @R Eb|
Wotkspace x
[Del:uug v]

Files Foo O

mlNewlarPrj - O

Options..

hake
Carmpile
Rebuild All

Clean

Stop Build

&dd Files...
Sdd Group..,

- Add

Fermowe

Rename...
Wersioh Control Syestermn [

Dpen Containing Folder...
File Properties...

Set as Mctive

Now click Add files and browse through driverlib folder and add all source files of the family the
device belongs to.

CHAPTER 6. HOW TO INCLUDE DRIVERLIB INTO YOUR EXISTING IAR PROJECT 28

File Edit Wiew Project Ermulator Tools Window Help

DaHd@ S| 4 BR[| 4SS Ee e @i
I
[Debug v]
Files fn By

B (F NewlarPrj - Debug * v
L—3

Dptions..,

hdake
Cornpile
Rebuild Al

Clean

Stop Build

&dd Add Files..,
Add Group...

Rermove

Rename..,
Wersion Control System

Open Containing Faolder..,
File Properties...

Set as Active

Add another group via "Add Group” and add inc folder. Add all files in the same driverlib family inc
folder

CHAPTER 6. HOW TO INCLUDE DRIVERLIB INTO YOUR EXISTING IAR PROJECT

Categony:

Options for node "MewdarPr)" @

General Options

CJC++ Compiler

Assembler
Custom Build
Build Actions
Linker
TIULP Advisor
Debugger
FET Debugger
Sirnulakor

[Factary Settings]

[] A alti-File Compilation

Dizgoard Unuzed Publics

| Language 2| Code I Optimizations | Elutputl Lizt | Freprocessar | |4 | ¢

[] Ignore standard include directonies

Additional include directaries: [one per ling]
FPROJ_DIR$.. M8 A drivedibhWSP430FF DB a E]

Preinclude file:

(-]

Defined symbals: [one per ling]
N [Preprocessor autput to file
Freserve comments
Generate fline directives

]] [Cancel

Click "Finish” and start developing with driver library in your project.

29

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

7

7.1

7.2

10-Bit Analog-to-Digital Converter (ADC)

11 (o 11 T2 1o o P
AP FUNCHONS .. et e e
Programming EXample

Introduction

The 10-Bit Analog-to-Digital (ADC) API provides a set of functions for using the MSP430Ware
ADC modules. Functions are provided to initialize the ADC modules, setup signal sources and
reference voltages, and manage interrupts for the ADC modules.

The ADC module supports fast 10-bit analog-to-digital conversions. The module implements a
10-bit SAR core together, sample select control and a window comparator.

ADC features include:

m Greater than 200-ksps maximum conversion rate

m Monotonic 10-bit converter with no missing codes

m Sample-and-hold with programmable sampling periods controlled by software or timers

m Conversion initiation by software or different timers

m Software-selectable on chip reference using the REF module or external reference

m Twelve individually configurable external input channels

m Conversion channel for temperature sensor of the REF module

m Selectable conversion clock source

m Single-channel, repeat-single-channel, sequence, and repeat-sequence conversion modes
= Window comparator for low-power monitoring of input signals

m Interrupt vector register for fast decoding of six ADC interrupts (ADCIFG0, ADCTOVIFG,
ADCOVIFG, ADCLOIFG, ADCINIFG, ADCHIIFG)

This driver is contained in adc. c, with adc . h containing the API definitions for use by
applications.

API Functions

Functions

m void ADC._init (uint16_t baseAddress, uint16_t sampleHoldSignalSourceSelect, uint8_t
clockSourceSelect, uint16_t clockSourceDivider)
Initializes the ADC Module.
m void ADC _enable (uint16_t baseAddress)

Enables the ADC block.
m void ADC _disable (uint16_t baseAddress)

Disables the ADC block.

30

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 31

7.2.1

m void ADC _setupSamplingTimer (uint16_t baseAddress, uint16_t clockCycleHoldCount,
uint16_t multipleSamplesEnabled)

Sets up and enables the Sampling Timer Pulse Mode.
m void ADC _disableSamplingTimer (uint16_t baseAddress)

Disables Sampling Timer Pulse Mode.
m void ADC _configureMemory (uint16_t baseAddress, uint8_t inputSourceSelect, uint8_t
positiveRefVoltageSourceSelect, uint8_t negativeRefVoltageSourceSelect)

Configures the controls of the selected memory buffer.
m void ADC _enablelnterrupt (uint16_t baseAddress, uint8_t interruptMask)

Enables selected ADC interrupt sources.
m void ADC _disablelnterrupt (uint16_t baseAddress, uint8_t interruptMask)

Disables selected ADC interrupt sources.
m void ADC _clearlnterrupt (uint16_t baseAddress, uint8_t interruptFlagMask)

Clears ADC10B selected interrupt flags.
m yint8_t ADC_getInterruptStatus (uint16_t baseAddress, uint8_t interruptFlagMask)

Returns the status of the selected memory interrupt flags.
m void ADC _startConversion (uint16_t baseAddress, uint8_t conversionSequenceModeSelect)

Enables/Starts an Analog-to-Digital Conversion.
m void ADC _disableConversions (uint16_t baseAddress, bool preempt)

Disables the ADC from converting any more signals.
m int16_t ADC_getResults (uint16_t baseAddress)

Returns the raw contents of the specified memory buffer.
m void ADC _setResolution (uint16_t baseAddress, uint8_t resolutionSelect)

Use to change the resolution of the converted data.
m void ADC _setSampleHoldSignallnversion (uint16_t baseAddress, uint16_t invertedSignal)

Use to invert or un-invert the sample/hold signal.
m void ADC _setDataReadBackFormat (uint16_t baseAddress, uint16_t readBackFormat)

Use to set the read-back format of the converted data.
m void ADC _setReferenceBufferSamplingRate (uint16_t baseAddress, uint16_t
samplingRateSelect)

Use to set the reference buffer's sampling rate.
m void ADC _setWindowComp (uint16_t baseAddress, uint16_t highThreshold, uint16_t
lowThreshold)

Sets the high and low threshold for the window comparator feature.
m uint32_t ADC_getMemoryAddressForDMA (uint16_t baseAddress)

Returns the address of the memory buffer for the DMA module.
m uint8_t ADC_isBusy (uint16_t baseAddress)

Returns the busy status of the ADC core.

Detailed Description

The ADC APl is broken into three groups of functions: those that deal with initialization and
conversions, those that handle interrupts, and those that handle Auxiliary features of the ADC10.

The ADC initialization and conversion functions are

m ADC.init()

m ADC_configureMemory()

m ADC_setupSamplingTimer()
m ADC_disableSamplingTimer()
m ADC_setWindowComp()

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

m ADC _startConversion()

m ADC _disableConversions()
m ADC _getResults()

m ADC._isBusy()

The ADC interrupts are handled by

m ADC_enablelnterrupt()

m ADC _disablelnterrupt()

m ADC _clearInterrupt()

m ADC _getinterruptStatus()

Auxiliary features of the ADC are handled by

m ADC _setResolution()

m ADC_setSampleHoldSignallnversion()

m ADC_setDataReadBackFormat()

m ADC _enableReferenceBurst()

m ADC _disableReferenceBurst()

m ADC _setReferenceBufferSamplingRate()
m ADC_getMemoryAddressForDMA()

m ADC_enable()

m ADC _disable()

7.2.2 Function Documentation

void ADC _clearInterrupt (uint16_t baseAddress, uint8_t interruptFlagMask)

Clears ADC10B selected interrupt flags.

The selected ADC interrupt flags are cleared, so that it no longer asserts. The memory buffer
interrupt flags are only cleared when the memory buffer is accessed.

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 33

Parameters

baseAddress | is the base address of the ADC module.

interruptFlag- | is a bit mask of the interrupt flags to be cleared. Mask value is the logical OR of any of
Mask | the following:

= ADC_OVERFLOW_INTERRUPT_FLAG - Interrupt flag for when a new conversion is
about to overwrite the previous one

m ADC_TIMEOVERFLOW _INTERRUPT_FLAG - Interrupt flag for when a new conver-
sion is starting before the previous one has finished

m ADC_ABOVETHRESHOLD_INTERRUPT_FLAG - Interrup flag for when the input
signal has gone above the high threshold of the window comparator

s ADC_ BELOWTHRESHOLD_INTERRUPT_FLAG - Interrupt flag for when the input
signal has gone below the low threshold of the window comparator

= ADC_INSIDEWINDOW_INTERRUPT_FLAG - Interrupt flag for when the input signal
is in between the high and low thresholds of the window comparator

m ADC_COMPLETED_INTERRUPT_FLAG - Interrupt flag for new conversion data in
the memory buffer

Modified bits of ADCIFG register.

Returns

None

void ADC _configureMemory (uint16_t baseAddress, uint8_t inputSourceSelect, uint8_t
positiveRefVoltageSourceSelect, uint8_t negativeRefVoltageSourceSelect)

Configures the controls of the selected memory buffer.

Maps an input signal conversion into the memory buffer, as well as the positive and negative
reference voltages for each conversion being stored into the memory buffer. If the internal
reference is used for the positive reference voltage, the internal REF module has to control the
voltage level. Note that if a conversion has been started with the startConversion() function, then a
call to disableConversions() is required before this function may be called. If conversion is not
disabled, this function does nothing.

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 34

Parameters

baseAddress | is the base address of the ADC module.

inputSource- | is the input that will store the converted data into the specified memory buffer. Valid values
Select | are:

m ADC_INPUT_AOQ [Default]

m ADC_INPUT_A1

= ADC_INPUT_A2

m ADC_INPUT_A3

m ADC.INPUT_A4

= ADC_INPUT_A5

m ADC_INPUT_A6

= ADC_INPUT_A7

m ADC_INPUT_AS - [Valid for FR4xx devices]
m ADC_INPUT_A9 - [Valid for FR4xx devices]
m ADC_INPUT_TEMPSENSOR

m ADC_INPUT_REFVOLTAGE

= ADC_INPUT_DVSS

= ADC_INPUT_DVCC
Modified bits are ADCINCHx of ADCMCTLO register.

positiveRef- | is the reference voltage source to set as the upper limit for the conversion that is to be
VoltageSource- | stored in the specified memory buffer. Valid values are:

Select | w ADC_VREFPOS_AVCC [Default]
= ADC_VREFPOS_INT
= ADC_VREFPOS_EXT_BUF

m ADC_VREFPOS_EXT_NOBUF
Modified bits are ADCSREF of ADCMCTLDO register.

negativeRef- | is the reference voltage source to set as the lower limit for the conversion that is to be
VoltageSource- | stored in the specified memory buffer. Valid values are:

Select | a ADC_VREFNEG_AVSS [Defaul]

m ADC_VREFNEG_EXT
Modified bits are ADCSREF of ADCMCTLDO register.

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 35

Returns

None

void ADC _disable (uint16_t baseAddress)

Disables the ADC block.
This will disable operation of the ADC block.

Parameters

] baseAddress | is the base address of the ADC module.

Modified bits are ADCON of ADCCTLO register.

Returns

None

void ADC _disableConversions (uint16_t baseAddress, bool preempt)

Disables the ADC from converting any more signals.

Disables the ADC from converting any more signals. If there is a conversion in progress, this
function can stop it immediatly if the preempt parameter is set as ADC_PREEMPTCONVERSION,
by changing the conversion mode to single- channel, single-conversion and disabling conversions.
If the conversion mode is set as single-channel, single-conversion and this function is called
without preemption, then the ADC core conversion status is polled until the conversion is complete
before disabling conversions to prevent unpredictable data. If the ADC _startConversion() has been
called, then this function has to be called to re-initialize the ADC, reconfigure a memory buffer
control, enable/disable the sampling pulse mode, or change the internal reference voltage.

Parameters

baseAddress | is the base address of the ADC module.

preempt | specifies if the current conversion should be preemptly stopped before the end of the
conversion Valid values are:
m ADC_COMPLETECONVERSION - Allows the ADC to end the current conversion
before disabling conversions.

m ADC_PREEMPTCONVERSION - Stops the ADC10B immediately, with unpredicatble
results of the current conversion. Cannot be used with repeated conversion.

Modified bits of ADCCTLO register and bits of ADCCTLA1 register.

Returns

None

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 36

void ADC _disablelnterrupt (uint16_t baseAddress, uint8_t interruptMask)

Disables selected ADC interrupt sources.

Disables the indicated ADC interrupt sources. Only the sources that are enabled can be reflected
to the processor interrupt; disabled sources have no effect on the processor.

Parameters

baseAddress

is the base address of the ADC module.

interruptMask

is the bit mask of the memory buffer interrupt sources to be disabled. Mask value is the
logical OR of any of the following:

= ADC_OVERFLOW_INTERRUPT - Interrupts when a new conversion is about to over-
write the previous one

m ADC_TIMEOVERFLOW _INTERRUPT - Interrupts when a new conversion is starting
before the previous one has finished

m ADC_ABOVETHRESHOLD_INTERRUPT - Interrups when the input signal has gone
above the high threshold of the window comparator

= ADC_ BELOWTHRESHOLD_INTERRUPT - Interrupts when the input signal has
gone below the low threshold of the low window comparator

= ADC_INSIDEWINDOW_INTERRUPT - Interrupts when the input signal is in between
the high and low thresholds of the window comparator

m ADC_COMPLETED_INTERRUPT - Interrupt for new conversion data in the memory
buffer

Modified bits of ADCIE register.

Returns

None

void ADC disableSamplingTimer (uint16_t baseAddress)

Disables Sampling Timer Pulse Mode.

Disables the Sampling Timer Pulse Mode. Note that if a conversion has been started with the
startConversion() function, then a call to disableConversions() is required before this function may

be called.
Parameters

|

baseAddress \ is the base address of the ADC module.

Modified bits are ADCSHP of ADCCTL1 register.

Returns

None

void ADC _enable (uint16_t baseAddress)

Enables the ADC block.

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

This will enable operation of the ADC block.

37

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 38

Parameters

] baseAddress | is the base address of the ADC module.

Modified bits are ADCON of ADCCTLO register.

Returns

None

void ADC _enablelnterrupt (uint16_t baseAddress, uint8_t interruptMask)

Enables selected ADC interrupt sources.

Enables the indicated ADC interrupt sources. Only the sources that are enabled can be reflected
to the processor interrupt; disabled sources have no effect on the processor. Does not clear

interrupt flags.

Parameters
baseAddress | is the base address of the ADC module.
interruptMask | is the bit mask of the memory buffer interrupt sources to be enabled. Mask value is

the logical OR of any of the following:

= ADC_OVERFLOW_INTERRUPT - Interrupts when a new conversion is about to
overwrite the previous one

= ADC_TIMEOVERFLOW_INTERRUPT - Interrupts when a new conversion is
starting before the previous one has finished

m ADC_ABOVETHRESHOLD_INTERRUPT - Interrups when the input signal has
gone above the high threshold of the window comparator

m ADC_BELOWTHRESHOLD_INTERRUPT - Interrupts when the input signal has
gone below the low threshold of the low window comparator

= ADC_INSIDEWINDOW_INTERRUPT - Interrupts when the input signal is in be-
tween the high and low thresholds of the window comparator

m ADC_COMPLETED_INTERRUPT - Interrupt for new conversion data in the mem-
ory buffer

Modified bits of ADCIE register.

Returns

None

uint8_t ADC _getinterruptStatus (uint16_t baseAddress, uint8_t interruptFlagMask)

Returns the status of the selected memory interrupt flags.

Returns the status of the selected interrupt flags.

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 39

Parameters

baseAddress | is the base address of the ADC module.

interruptFlag- | is a bit mask of the interrupt flags status to be returned. Mask value is the logical OR of
Mask | any of the following:

= ADC_OVERFLOW_INTERRUPT_FLAG - Interrupt flag for when a new conversion is
about to overwrite the previous one

m ADC_TIMEOVERFLOW _INTERRUPT_FLAG - Interrupt flag for when a new conver-
sion is starting before the previous one has finished

m ADC_ABOVETHRESHOLD_INTERRUPT_FLAG - Interrup flag for when the input
signal has gone above the high threshold of the window comparator

s ADC_ BELOWTHRESHOLD_INTERRUPT_FLAG - Interrupt flag for when the input
signal has gone below the low threshold of the window comparator

= ADC_INSIDEWINDOW_INTERRUPT_FLAG - Interrupt flag for when the input signal
is in between the high and low thresholds of the window comparator

m ADC_COMPLETED_INTERRUPT_FLAG - Interrupt flag for new conversion data in
the memory buffer

Modified bits of ADC10IFG register.

Returns

The current interrupt flag status for the corresponding mask.

uint32_t ADC_getMemoryAddressForDMA (uint16_t baseAddress)

Returns the address of the memory buffer for the DMA module.

Parameters

] baseAddress | is the base address of the ADC module.

Returns

the address of the memory buffer. This can be used in conjunction with the DMA to store the
converted data directly to memory.

int16_t ADC _getResults (uint16_t baseAddress)

Returns the raw contents of the specified memory buffer.

Returns the raw contents of the specified memory buffer. The format of the content depends on
the read-back format of the data: if the data is in signed 2’s complement format then the contents
in the memory buffer will be left-justified with the least-siginificant bits as 0’s, whereas if the data is
in unsigned format then the contents in the memory buffer will be right- justified with the
most-significant bits as 0’s.

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 40

Parameters

] baseAddress | is the base address of the ADC module.

Returns

A Signed Integer of the contents of the specified memory buffer.

void ADC.init (uint16_t baseAddress, uint16_t sampleHoldSignalSourceSelect, uint8_t
clockSourceSelect, uint16_t clockSourceDivider)

Initializes the ADC Module.

This function initializes the ADC module to allow for analog-to-digital conversions. Specifically this
function sets up the sample-and-hold signal and clock sources for the ADC core to use for
conversions. Upon successful completion of the initialization all of the ADC control registers will be
reset, excluding the memory controls and reference module bits, the given parameters will be set,
and the ADC core will be turned on (Note, that the ADC core only draws power during conversions
and remains off when not converting).Note that sample/hold signal sources are device dependent.
Note that if re-initializing the ADC after starting a conversion with the startConversion() function,
the disableConversion() must be called BEFORE this function can be called.

Parameters
baseAddress | is the base address of the ADC module.
sampleHold- | is the signal that will trigger a sample-and-hold for an input signal to be converted. This
SignalSource- | parameter is device specific and sources should be found in the device’s datasheet. Valid
Select | values are:
= ADC_SAMPLEHOLDSOURCE_SC [Default]
s ADC_SAMPLEHOLDSOURCE 1
m ADC_SAMPLEHOLDSOURCE 2
m ADC_SAMPLEHOLDSOURCE 3
Modified bits are ADCSHSx of ADCCTLA1 register.
clockSource- | selects the clock that will be used by the ADC core and the sampling timer if a sampling

Select

pulse mode is enabled. Valid values are:

m ADC_CLOCKSOURCE_ADCOSC [Default] - MODOSC 5 MHz oscillator from the
clock system

m ADC_CLOCKSOURCE_ACLK - The Auxilary Clock

m ADC_CLOCKSOURCE_SMCLK - The Sub-Master Clock
Modified bits are ADCSSELx of ADCCTLA1 register.

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 41

clockSource-
Divider

selects the amount that the clock will be divided. Valid values are:
m ADC_CLOCKDIVIDER_1 [Default]
m ADC_CLOCKDIVIDER_2
= ADC_CLOCKDIVIDER_3
m ADC_CLOCKDIVIDER 4
m ADC_CLOCKDIVIDER_5
m ADC_CLOCKDIVIDER_6
m ADC_CLOCKDIVIDER_7
m ADC_CLOCKDIVIDER_8
m ADC_CLOCKDIVIDER_12
m ADC_CLOCKDIVIDER_16
m ADC_CLOCKDIVIDER_20
m ADC_CLOCKDIVIDER 24
m ADC_CLOCKDIVIDER_28
m ADC_CLOCKDIVIDER_32
= ADC_CLOCKDIVIDER_ 64
m ADC_CLOCKDIVIDER_128
m ADC_CLOCKDIVIDER_192
m ADC_CLOCKDIVIDER_256
m ADC_CLOCKDIVIDER_320
m ADC_CLOCKDIVIDER_384
m ADC_CLOCKDIVIDER_448

= ADC_CLOCKDIVIDER_512

Modified bits are ADCDIVx of ADCCTL1 register; bits ADCPDIVx of ADCCTL2 reg-
ister.

Returns

None

uint8_t ADC_isBusy (uint16_t baseAddress)

Returns the busy status of the ADC core.

Returns the status of the ADC core if there is a conversion currently taking place.

Parameters

] baseAddress | is the base address of the ADC module.

Returns

ADC_BUSY or ADC_NOTBUSY dependent if there is a conversion currently taking place.
Return one of the following:

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 42

= ADC_NOTBUSY
= ADC_BUSY

void ADC _setDataReadBackFormat (uint16_t baseAddress, uint16_t readBackFormat)

Use to set the read-back format of the converted data.

Sets the format of the converted data: how it will be stored into the memory buffer, and how it

should be read back. The format can be set as right-justified (default), which indicates that the
number will be unsigned, or left-justified, which indicates that the number will be signed in 2’s

complement format. This change affects all memory buffers for subsequent conversions.

Parameters

baseAddress | is the base address of the ADC module.

readBack- | is the specified format to store the conversions in the memory buffer. Valid values are:
Format = ADC_UNSIGNED _BINARY [Default]

m ADC_SIGNED_2SCOMPLEMENT
Modified bits are ADCDF of ADCCTL2 register.

Returns

None

void ADC _setReferenceBufferSamplingRate (uint16_t baseAddress, uint16t
samplingRateSelect)

Use to set the reference buffer’'s sampling rate.

Sets the reference buffer’s sampling rate to the selected sampling rate. The default sampling rate
is maximum of 200-ksps, and can be reduced to a maximum of 50-ksps to conserve power.

Parameters

baseAddress | is the base address of the ADC module.

samplingRate- | is the specified maximum sampling rate. Valid values are:
Select | w ADC_MAXSAMPLINGRATE 200KSPS [Default]

m ADC_MAXSAMPLINGRATE 50KSPS
Modified bits are ADCSR of ADCCTL2 register.

Modified bits of ADCCTLZ2 register.

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 43

Returns

None

void ADC _setResolution (uint16_t baseAddress, uint8_t resolutionSelect)

Use to change the resolution of the converted data.

This function can be used to change the resolution of the converted data from the default of
10-bits. Refer to the device user’s guide for available options.

Parameters
baseAddress | is the base address of the ADC module.
resolutionSelect | determines the resolution of the converted data. Valid values are:
= ADC_RESOLUTION_8BIT
m ADC_RESOLUTION_10BIT [Default]
= ADC_RESOLUTION_12BIT
Modified bits are ADCRES of ADCCTL2 register.
Returns
None

void ADC _setSampleHoldSignallnversion (uint16_t baseAddress, uint16.t invertedSignal)

Use to invert or un-invert the sample/hold signal.

This function can be used to invert or un-invert the sample/hold signal. Note that if a conversion
has been started with the startConversion() function, then a call to disableConversions() is
required before this function may be called.

Parameters
baseAddress | is the base address of the ADC module.
invertedSignal | set if the sample/hold signal should be inverted Valid values are:
m ADC_NONINVERTEDSIGNAL [Default] - a sample-and-hold of an input signal for
conversion will be started on a rising edge of the sample/hold signal.
m ADC_INVERTEDSIGNAL - a sample-and-hold of an input signal for conversion will
be started on a falling edge of the sample/hold signal.
Modified bits are ADCISSH of ADCCTLA1 register.
Returns

None

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 44

void ADC _setupSamplingTimer (uint16_t baseAddress, uint16_t clockCycleHoldCount,
uint16_t multipleSamplesEnabled)

Sets up and enables the Sampling Timer Pulse Mode.

This function sets up the sampling timer pulse mode which allows the sample/hold signal to trigger
a sampling timer to sample-and-hold an input signal for a specified number of clock cycles without
having to hold the sample/hold signal for the entire period of sampling. Note that if a conversion
has been started with the startConversion() function, then a call to disableConversions() is
required before this function may be called.

Parameters
baseAddress | is the base address of the ADC module.
clockCycleHold- | sets the amount of clock cycles to sample-and- hold for the memory buffer. Valid values

Count

are:

m ADC_CYCLEHOLD_4_CYCLES [Default]
m ADC_CYCLEHOLD 8 CYCLES

= ADC_CYCLEHOLD_16_CYCLES

= ADC_CYCLEHOLD_ 32 CYCLES

m ADC_CYCLEHOLD 64 CYCLES

= ADC_.CYCLEHOLD_ 96_CYCLES

m ADC_CYCLEHOLD_128 CYCLES
m ADC_CYCLEHOLD_192_CYCLES
m ADC_CYCLEHOLD_ 256 CYCLES
m ADC_CYCLEHOLD_384_ CYCLES
m ADC_CYCLEHOLD_512_CYCLES
m ADC_CYCLEHOLD_768 CYCLES
= ADC_CYCLEHOLD_1024_CYCLES

Modified bits are ADCSHTx of ADCCTLO register.

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 45

multiple- | allows multiple conversions to start without a trigger signal from the sample/hold signal

Samples- | Valid values are:

Enabled | w ADC_MULTIPLESAMPLESDISABLE - a timer trigger will be needed to start every
ADC conversion.

m ADC_MULTIPLESAMPLESENABLE - during a sequenced and/or repeated conver-
sion mode, after the first conversion, no sample/hold signal is necessary to start
subsequent samples.

Modified bits are ADCMSC of ADCCTLO register.

Returns

None

void ADC_setWindowComp (uint16_t baseAddress, uint16_t highThreshold, uint16_t
lowThreshold)

Sets the high and low threshold for the window comparator feature.

Sets the high and low threshold for the window comparator feature. Use the ADCHIIE, ADCINIE,
ADCLOIE interrupts to utilize this feature.

Parameters

baseAddress | is the base address of the ADC module.

highThreshold | is the upper bound that could trip an interrupt for the window comparator.

lowThreshold | is the lower bound that could trip on interrupt for the window comparator.

Modified bits of ADCLO register and bits of ADCHI register.

Returns

None

void ADC _startConversion (uint16_t baseAddress, uint8_t conversionSequenceModeSelect

)

Enables/Starts an Analog-to-Digital Conversion.

This function enables/starts the conversion process of the ADC. If the sample/hold signal source
chosen during initialization was ADCOSC, then the conversion is started immediately, otherwise
the chosen sample/hold signal source starts the conversion by a rising edge of the signal. Keep in
mind when selecting conversion modes, that for sequenced and/or repeated modes, to keep the
sample/hold-and-convert process continuing without a trigger from the sample/hold signal source,
the multiple samples must be enabled using the ADC_setupSamplingTimer() function. Also note
that when a sequence conversion mode is selected, the first input channel is the one mapped to
the memory buffer, the next input channel selected for conversion is one less than the input
channel just converted (i.e. A1 comes after A2), until A0 is reached, and if in repeating mode, then
the next input channel will again be the one mapped to the memory buffer. Note that after this
function is called, the ADC _stopConversions() has to be called to re-initialize the ADC, reconfigure

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

a memory buffer control, enable/disable the sampling timer, or to change the internal reference
voltage.

46

CHAPTER 7. 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) 47

7.3

Parameters
baseAddress | is the base address of the ADC module.
conversion- | determines the ADC operating mode. Valid values are:
Sequence- m ADC_SINGLECHANNEL [Default] - one-time conversion of a single channel into a
ModeSelect single memory buffer
m ADC_SEQOFCHANNELS - one time conversion of multiple channels into the speci-
fied starting memory buffer and each subsequent memory buffer up until the conver-
sion is stored in a memory buffer dedicated as the end-of-sequence by the memory’s
control register
m ADC_REPEATED SINGLECHANNEL - repeated conversions of one channel into a
single memory buffer
m ADC_REPEATED_SEQOFCHANNELS - repeated conversions of multiple channels
into the specified starting memory buffer and each subsequent memory buffer up
until the conversion is stored in a memory buffer dedicated as the end-of-sequence
by the memory’s control register
Modified bits are ADCCONSEQx of ADCCTLA1 register.
Returns
None
Programming Example

The following example shows how to initialize and use the ADC API to start a single channel,

single conversion.

// Initialize ADC with ADC’s built-in oscillator

ADC_init (ADC_BASE,

ADC_SAMPLEHOLDSOURCE_SC,
ADC_CLOCKSOURCE_ADCOSC,
ADC_CLOCKDIVIDER-1) ;

//Switch ON ADC
ADC_enable (ADC_BASE) ;

// Setup sampling timer to sample-and-hold for 16 clock cycles

ADC.setupSamplingTimer

(ADC_BASE,
ADC_CYCLEHOLD_16_CYCLES,
FALSE) ;

// Configure the Input to the Memory Buffer with the specified Reference Voltages
ADC.configureMemory (ADC_BASE,

(1)

// Start a single

ADC_INPUT.AO,
ADC_VREFPOS_AVCC, // Vref+
ADC_VREFNEG_AVSS // Vref-
)i

AVcc
AVss

conversion, no repeating or sequences.

ADC_startConversion (ADC_BASE,

ADC_SINGLECHANNEL) ;

// Wait for the Interrupt Flag to assert
(! (ADC_getInterruptStatus (ADC-BASE, ADC.COMPLETED.INTERRUPT_-FLAG)));

// Clear the Interrupt Flag and start another conversion

ADC_clearInterrupt

(ADC_BASE, ADC_.COMPLETED_INTERRUPT_FLAG) ;

CHAPTER 8. CYCLICAL REDUNDANCY CHECK (CRC) 48

8

8.1

8.2

8.2.1

Cyclical Redundancy Check (CRC)

I OAUCH ON ..o 47
AP FUNCH NS ... e e e e e e e e 47
Programming EXample 50
Introduction

The Cyclic Redundancy Check (CRC) API provides a set of functions for using the MSP430Ware
CRC module. Functions are provided to initialize the CRC and create a CRC signature to check
the validity of data. This is mostly useful in the communication of data, or as a startup procedure
to as a more complex and accurate check of data.

The CRC module offers no interrupts and is used only to generate CRC signatures to verify
against pre-made CRC signatures (Checksums).

API Functions

Functions

m void CRC_setSeed (uint16_t baseAddress, uint16_t seed)

Sets the seed for the CRC.
m void CRC_set16BitData (uint16_t baseAddress, uint16_t dataln)

Sets the 16 bit data to add into the CRC module to generate a new signature.
m void CRC_set8BitData (uint16_t baseAddress, uint8_t dataln)

Sets the 8 bit data to add into the CRC module to generate a new signature.
m void CRC_set16BitDataReversed (uint16_t baseAddress, uint16_t dataln)

Translates the 16 bit data by reversing the bits in each byte and then sets this data to add into the
CRC module to generate a new signature.
m void CRC_set8BitDataReversed (uint16_t baseAddress, uint8_t dataln)

Translates the 8 bit data by reversing the bits in each byte and then sets this data to add into the
CRC module to generate a new signature.
m uint16_t CRC_getData (uint16_t baseAddress)

Returns the value currently in the Data register.
m uint16_t CRC_getResult (uint16_t baseAddress)

Returns the value pf the Signature Result.
m uint16_t CRC_getResultBitsReversed (uint16_t baseAddress)

Returns the bit-wise reversed format of the Signature Result.

Detailed Description

The CRC APl is one group that controls the CRC module. The APIs that are used to set the seed
and data are

m CRC_setSeed()
m CRC_set16BitData()

CHAPTER 8. CYCLICAL REDUNDANCY CHECK (CRC) 49

m CRC_set8BitData()

m CRC_set16BitDataReversed()
m CRC_set8BitDataReversed()
m CRC_setSeed()

The APIs that are used to get the data and results are

m CRC_getData()
m CRC_getResult()
m CRC_getResultBitsReversed()

8.2.2 Function Documentation

uint16_t CRC_getData (uint16_t baseAddress)

Returns the value currently in the Data register.

This function returns the value currently in the data register. If set in byte bits reversed format,
then the translated data would be returned.

Parameters
| baseAddress | is the base address of the CRC module.

Returns
The value currently in the data register

uint16_t CRC_getResult (uint16_t baseAddress)

Returns the value pf the Signature Result.

This function returns the value of the signature result generated by the CRC.
Parameters

| baseAddress | is the base address of the CRC module.

Returns

The value currently in the data register

uint16_t CRC_getResultBitsReversed (uint16_t baseAddress)

Returns the bit-wise reversed format of the Signature Result.

This function returns the bit-wise reversed format of the Signature Result.

CHAPTER 8. CYCLICAL REDUNDANCY CHECK (CRC) 50

Parameters

] baseAddress | is the base address of the CRC module.

Returns

The bit-wise reversed format of the Signature Result

void CRC_set16BitData (uint16_t baseAddress, uint16_t dataln)

Sets the 16 bit data to add into the CRC module to generate a new signature.

This function sets the given data into the CRC module to generate the new signature from the
current signature and new data.

Parameters
baseAddress | is the base address of the CRC module.
dataln | is the data to be added, through the CRC module, to the signature.
Modified bits are CRCDI of CRCDI register.
Returns
None

void CRC_set16BitDataReversed (uint16_t baseAddress, uint16_t dataln)

Translates the 16 bit data by reversing the bits in each byte and then sets this data to add into the
CRC module to generate a new signature.

This function first reverses the bits in each byte of the data and then generates the new signature
from the current signature and new translated data.

Parameters
baseAddress | is the base address of the CRC module.
dataln | is the data to be added, through the CRC module, to the signature.
Modified bits are CRCDIRB of CRCDIRB register.
Returns
None

void CRC_set8BitData (uint16_t baseAddress, uint8_t dataln)

Sets the 8 bit data to add into the CRC module to generate a new signature.

This function sets the given data into the CRC module to generate the new signature from the
current signature and new data.

CHAPTER 8. CYCLICAL REDUNDANCY CHECK (CRC) 51

Parameters

baseAddress | is the base address of the CRC module.

dataln | is the data to be added, through the CRC module, to the signature.
Modified bits are CRCDI of CRCDI register.

Returns

None

void CRC_set8BitDataReversed (uint16_t baseAddress, uint8_t dataln)

Translates the 8 bit data by reversing the bits in each byte and then sets this data to add into the
CRC module to generate a new signature.

This function first reverses the bits in each byte of the data and then generates the new signature
from the current signature and new translated data.

Parameters

baseAddress | is the base address of the CRC module.

dataln | is the data to be added, through the CRC module, to the signature.
Modified bits are CRCDIRB of CRCDIRB register.

Returns

None

void CRC_setSeed (uint16_t baseAddress, uint16_t seed)

Sets the seed for the CRC.

This function sets the seed for the CRC to begin generating a signature with the given seed and all
passed data. Using this function resets the CRC signature.

Parameters

baseAddress | is the base address of the CRC module.

seed | is the seed for the CRC to start generating a signature from.
Modified bits are CRCINIRES of CRCINIRES register.

Returns

None

8.3 Programming Example

The following example shows how to initialize and use the CRC API to generate a CRC signature
on an array of data.

CHAPTER 8. CYCLICAL REDUNDANCY CHECK (CRC)

unsigned int crcSeed = OxBEEF;

unsigned int datal] = {0x0123,
0x4567,
0x8910,
0x1112,
0x1314};

unsigned int crcResult;

int 1i;

// Stop WDT
WDT-hold (WDT-A-BASE) ;

// Set P1.0 as an output
GPIO_setAsOutputPin (GPIO.PORT_P1,
GPIO_PINO);

// Set the CRC seed
CRC_setSeed (CRC_BASE,
crcSeed) ;

for (1 = 0; 1 < 5; i++)
//Add all of the values into the CRC signature

CRC.setl6BitData (CRC_BASE,
datalil);
}

// Save the current CRC signature checksum to be compared for
crcResult = CRC.getResult (CRC_BASE) ;

later

52

CHAPTER 9. CLOCK SYSTEM (CS) 53

9

9.1

Clock System (CS)

I OAUCH ON ..o 52
AP FUNCH NS ... e e e e e e e e 53
Programming EXample 68
Introduction

The CS is based on five available clock sources (XT1, VLO, REFO, DCO and MOD) providing
signals to three system clocks (MCLK, SMCLK, ACLK). Different low power modes are achieved
by turning off the MCLK, SMCLK, ACLK, and integrated LDO.

m VLO - Internal very-low-power low-frequency oscillator. 10 kHz (?0.5%/?C, ?4%/V)
m REFO - Reference oscillator. 32 kHz (?1%, ?3% over full temp range)

m XT1 (LFXT1, HFXT1) - Ultra-low-power oscillator, compatible with low-frequency 32768-Hz
watch crystals and with standard XT1 (LFXT1, HFXT1) crystals, resonators, or external clock
sources in the 4-MHz to 32-MHz range, including digital inputs. Most commonly used as
32-kHz watch crystal oscillator.

m DCO - Internal digitally-controlled oscillator (DCO) that can be stabilized by a frequency lock
loop (FLL) that sets the DCO to a specified multiple of a reference frequency.

m MOD - Internal high-frequency oscillator with 5-MHz typical frequency.

System Clocks and Functionality on the MSP430 MCLK Master Clock Services the CPU.
Commonly sourced by DCO. Is available in Active mode only SMCLK Subsystem Master Clock
Services 'fast’ system peripherals. Commonly sourced by DCO. Is available in Active mode, LPMO
and LPM1 ACLK Auxiliary Clock Services ‘slow’ system peripherals. Commonly used for 32-kHz
signal.ls available in Active mode, LPMO to LPM3

System clocks of the MSP430FR2xx_4xx generation are automatically enabled, regardless of the
LPM mode of operation, if they are required for the proper operation of the peripheral module that
they source. This additional flexibility of the CS, along with improved fail-safe logic, provides a
robust clocking scheme for all applications.

Fail-Safe logic The CS fail-safe logic plays an important part in providing a robust clocking scheme
for MSP430FR2xx and MSP430FR4xx applications. This feature hinges on the ability to detect an
oscillator fault for the XT1 in low-frequency mode and the DCO (DCOFFG). These flags are set
and latched when the respective oscillator is enabled but not operating properly; therefore, they
must be explicitly cleared in software.

The oscillator fault flags on previous MSP430 generations are not latched and are asserted only
as long as the failing condition exists. Therefore, an important difference between the families is
that the fail-safe behavior in a FR2xx_4xx-based MSP430 remains active until both the OFIFG and
the respective fault flag are cleared in software.

This fail-safe behavior is implemented at the oscillator level, at the system clock level and,
consequently, at the module level. Some notable highlights of this behavior are described below.
For the full description of fail-safe behavior and conditions, see the MSP430FR2xx_4xx Family
User?s Guide (SLAU445).

m Low-frequency crystal oscillator 1 (XT1) The low-frequency (32768 Hz) crystal oscillator is
the default reference clock to the FLL. An asserted XT1LFOFFG switches the FLL reference

CHAPTER 9. CLOCK SYSTEM (CS) 54

9.2

from the failing XT1 to the internal 32-kHz REFO. This can influence the DCO accuracy,
because the FLL crystal ppm specification is typically tighter than the REFO accuracy over
temperature and voltage of ?3%.

System Clocks (ACLK, SMCLK, MCLK) A fault on the oscillator that is sourcing a system
clock switches the source from the failing oscillator to the DCO oscillator (DCOCLKDIV). This
is true for all clock sources except the XT1. As previously described, a fault on the XT1
switches the source to the REFO. Since ACLK is the active clock in LPMS3 there is a notable
difference in the LPM3 current consumption when the REFO is the clock source (~3 ?A
active) versus the XT1 (~300 nA active).

Modules (WDT_A) In watchdog mode, when SMCLK or ACLK fails, the clock source defaults
to the VLOCLK.

Please note that MCLK and SMCLK share the same clock source. Changes on selecting clock
source on either system clock impact on clock source for both system clocks.

API Functions

Macros

#define CS_-VLOCLK_FREQUENCY 10000
#define CS_.REFOCLK_FREQUENCY 32768
#define CS_DCO_RANGE_1MHZ 1000000
#define CS_DCO_RANGE_2MHZ 2000000
#define CS_DCO_RANGE_4MHZ 4000000
#define CS_DCO_RANGE_8MHZ 8000000
#define CS_DCO_RANGE_12MHZ 12000000
#define CS_DCO_RANGE_16MHZ 16000000
#define CS_DCO_RANGE_20MHZ 20000000
#define CS_DCO_RANGE _24MHZ 24000000

Functions

void CS_setExternalClockSource (uint32_t XT1CLK_frequency)

Sets the external clock source.
void CS_initClockSignal (uint8_t selectedClockSignal, uint16_t clockSource, uint16_t
clockSourceDivider)

Initializes a clock signal.
void CS_turnOnXT1LF (uint16_t xt1Drive)

Intializes the XT1 crystal oscillator in low frequency mode.
void CS_bypassXT1 (void)

Bypass the XT1 crystal oscillator.
bool CS_turnOnXT1LFWithTimeout (uint16_t xt1Drive, uint16_t timeout)

Initializes the XT1 crystal oscillator in low frequency mode with timeout.
bool CS_bypassXT1WithTimeout (uint16_t timeout)

Bypasses the XTT1 crystal oscillator with time out.
void CS_turnOffXT1 (void)

Stops the XT1 oscillator using the XT1AUTOOFF bit.
void CS_turnOnXT1HF (uint16_t xt1Drive, uint16_t xt1HFFreq)

Intializes the XT1 crystal oscillator in high frequency mode.

CHAPTER 9.

CLOCK SYSTEM (CS) 55

bool CS_turnOnXT1HFWithTimeout (uint16_t xt1Drive, uint16_t xt1HFFreq, uint16_t timeout)
Initializes the XT1 crystal oscillator in high frequency mode with timeout.
void CS_turnOnSMCLK (void)
Turn On SMCLK.
void CS_turnOffSMCLK (void)
Turn Off SMCLK.
void CS_enableVLOAutoOff (void)
VLO is turned off when not used.
void CS_disableVLOAutoOff (void)
VLO is always on.
bool CS_initFLLSettle (uint16_t fsystem, uint16_t ratio)
Initializes the DCO to operate a frequency that is a multiple of the reference frequency into the FLL.
bool CS_initFLL (uint16_t fsystem, uint16_t ratio)
Initializes the DCO to operate a frequency that is a multiple of the reference frequency into the FLL.
This function performs DCO Factory Trim.
bool CS_initFLLCalculateTrim (uint16_t fsystem, uint16_t ratio, CS_initFLLParam xparam)
Performs same function as initFLLSettle in addition to setting the proper DCOFTRIM according to
clock frequency. This function performs DCO Software Trim and saves the trim value into
initFLLParam.
bool CS_initFLLLoadTrim (uint16_t fsystem, uint16_t ratio, CS_initFLLParam xparam)
Performs same function as initFLLCalculate Trim without the overhead of calculating the trim, but
rather using the one specified in param. This function corresponds with the DCO Software Trim.
void CS_enableClockRequest (uint8_t selectClock)
Enables conditional module requests.
void CS_disableClockRequest (uint8_t selectClock)
Disables conditional module requests.
uint8_t CS_getFaultFlagStatus (uint8_t mask)

Gets the current CS fault flag status.
void CS_clearFaultFlag (uint8_t mask)
Clears the current CS fault flag status for the masked bit.
uint32_t CS_getACLK (void)
Get the current ACLK frequency.
uint32_t CS_getSMCLK (void)
Get the current SMCLK frequency.
uint32_t CS_getMCLK (void)
Get the current MCLK frequency.
uint16_t CS_clearAllOscFlagsWithTimeout (uint16_t timeout)
Clears all the Oscillator Flags.
void CS_enableXT1AutomaticGainControl (void)
Enables XT1 automatic gain control.
void CS_disableXT1AutomaticGainControl (void)
Disables XT1 automatic gain control.
void CS_enableFLLUnlock (void)
Enables FLL unlock interrupt.
void CS_disableFLLUnlock (void)
Disables FLL unlock interrupt.
void CS_enableREFOLP (void)
Enable low-power REFO.
void CS_disableREFOLP (void)
Disable low-power REFO.
bool CS_getREFOLP (void)
Get status of low-power REFO.
void CS_enableXT1FaultOff (void)

CHAPTER 9. CLOCK SYSTEM (CS) 56

9.21

Turns off switching from XT1 to REFO when XTT1 fails.
m void CS_disableXT1FaultOff (void)

Turns on switching from XT1 to REFO when XTT1 fails.
m bool CS_getXT1FaultOff (void)

Get status of XT1 fault switching.
m bool CS_getREFOReady (void)

Get status indication of low-power REFO switching.

Detailed Description

The CS APl is broken into three groups of functions: those that deal with clock configuration and
control

General CS configuration and initialization is handled by

m CS_initClockSignal(),

m CS_initFLLSettle(),

m CS_initFLLCalculateTrim(),
m CS_initFLLLoadTrim(),

m CS_enableClockRequest(),
m CS_disableClockRequest(),

External crystal specific configuration and initialization is handled by

m CS_setExternalClockSource(),

m CS_turnOnXT1LF(),

m CS_turnOnXT1HF(),

m CS_bypassXT1(),

m CS_turnOnXT1LFWithTimeout(),
m CS_turnOnXT1HFWithTimeout(),
m CS_bypassXT1WithTimeout(),

m CS_turnOffXT1(),

m CS_clearAllOscFlagsWithTimeout(),
m CS_turnOffSMCLK(),

m CS_turnOnSMCLK(),

m CS_enableVLOAutoOff(),

m CS_disableVLOAutoOff()

CS_setExternalClockSource must be called if an external crystal XT1 is used and the user intends
to call CS_getMCLK, CS_getSMCLK or CS_getACLK APIs. If not, it is not necessary to invoke this
API.

Failure to invoke CS_initClockSignal() sets the clock signals to the default modes ACLK default
mode - CS_XT1CLK_SELECT SMCLK default mode - CS_DCOCLKDIV_SELECT MCLK default
mode - CS_.DCOCLKDIV_SELECT

Also fail-safe mode behavior takes effect when a selected mode fails.

The status and configuration query are done by

CHAPTER 9. CLOCK SYSTEM (CS) 57

m CS_getFaultFlagStatus(),
m CS_clearFaultFlag(),

m CS_getACLK(),

m CS_getSMCLK(),

m CS_getMCLK()

9.2.2 Function Documentation

void CS_bypassXT1 (void)

Bypass the XT1 crystal oscillator.

Bypasses the XT1 crystal oscillator. Loops until all oscillator fault flags are cleared, with no
timeout.

Modified bits of SFRIFG1 register, bits of CSCTLY register and bits of CSCTL6 register.

Returns

None

bool CS_bypassXT1WithTimeout (uint16_t timeout)

Bypasses the XT1 crystal oscillator with time out.

Bypasses the XT1 crystal oscillator with time out. Loops until all oscillator fault flags are cleared or
until a timeout counter is decremented and equals to zero.

Parameters

timeout | is the count value that gets decremented every time the loop that clears oscillator fault
flags gets executed.

Modified bits of SFRIFG1 register, bits of CSCTL7 register and bits of CSCTL6 register.

Returns
STATUS_SUCCESS or STATUS_FAIL

uint16_t CS_clearAllOscFlagsWithTimeout (uint16_t timeout)

Clears all the Oscillator Flags.

Parameters

timeout | is the count value that gets decremented every time the loop that clears oscillator fault
flags gets executed.

CHAPTER 9. CLOCK SYSTEM (CS) 58

Returns

The mask of the oscillator flag status Return Logical OR of any of the following:
m CS_XT10FFG XT1 oscillator fault flag
m CS_DCOFFG DCO fault flag
m CS_FLLULIFG FLL unlock interrupt flag
indicating the status of the osciallator fault flags

void CS_clearFaultFlag (uint8_t mask)

Clears the current CS fault flag status for the masked bit.

Parameters

mask

is the masked interrupt flag status to be returned. mask parameter can be any one of the
following Valid values are:

m CS_XT10FFG - XT1 oscillator fault flag
m CS_DCOFFG - DCO fault flag
m CS_FLLULIFG - FLL unlock interrupt flag

Modified bits of CSCTL7 register.

Returns

None

void CS _disableClockRequest (uint8_t selectClock)

Disables conditional module requests.

Parameters

selectClock

selects specific request disable Valid values are:
m CS_ACLK
m CS_MCLK
m CS_SMCLK
= CS_MODOSC

Modified bits of CSCTLS8 register.

Returns

None

void CS_disableFLLUnlock (void)

Disables FLL unlock interrupt.
Modified bits are FLLULIE of CSCTLY7 register.

CHAPTER 9. CLOCK SYSTEM (CS)

Returns

None

void CS_disableREFOLP (void)

Disable low-power REFO.
Modified bits are REFOLP of CSCTL3 register.

Returns

None

void CS_disableVLOAutoOff (void)

VLO is always on.

Returns

None

void CS_disableXT1AutomaticGainControl (void)

Disables XT1 automatic gain control.
Modified bits of CSCTL6 register.

Returns

None

void CS _disableXT1FaultOff (void)

Turns on switching from XT1 to REFO when XT1 fails.
Modified bits are XT1IFAULTOFF of CSCTLS6 register.

Returns

None

void CS _enableClockRequest (uint8_t selectClock)

Enables conditional module requests.

59

CHAPTER 9. CLOCK SYSTEM (CS)

Parameters

60

selectClock

selects specific request enables Valid values are:
m CS_ACLK
m CS_MCLK
m CS_SMCLK
= CS_MODOSC

Modified bits of CSCTLS8 register.

Returns

None

void CS_enableFLLUnlock (void)

Enables FLL unlock interrupt.
Modified bits are FLLULIE of CSCTLY7 register.

Returns

None

void CS_enableREFOLP (void)

Enable low-power REFO.
Modified bits are REFOLP of CSCTL3 register.

Returns

None

void CS_enableVLOAutoOff (void)

VLO is turned off when not used.

Returns

None

void CS_enableXT1AutomaticGainControl (void)

Enables XT1 automatic gain control.
Modified bits of CSCTL6 register.

CHAPTER 9. CLOCK SYSTEM (CS) 61

Returns

None

void CS_enableXT1FaultOff (void)

Turns off switching from XT1 to REFO when XT1 fails.
Modified bits are XTIFAULTOFF of CSCTL6 register.

Returns

None

uint32_t CS_getACLK (void)

Get the current ACLK frequency.

Get the current ACLK frequency. The user of this API must ensure that
CS_setExternalClockSource API was invoked before in case XT1 is being used.

Returns

Current ACLK frequency in Hz

uint8_t CS_getFaultFlagStatus (uint8_t mask)

Gets the current CS fault flag status.

Parameters

mask | is the masked interrupt flag status to be returned. Mask parameter can be either any of
the following selection. Valid values are:

m CS_XT10FFG - XT1 oscillator fault flag
m CS_DCOFFG - DCO fault flag
m CS_FLLULIFG - FLL unlock interrupt flag

Modified bits of CSCTLY register.

Returns

The current flag status for the corresponding masked bit

uint32_t CS_getMCLK (void)

Get the current MCLK frequency.

Get the current MCLK frequency. The user of this APl must ensure that
CS_setExternalClockSource APl was invoked before in case XT1 is being used.

CHAPTER 9. CLOCK SYSTEM (CS) 62

Returns

Current MCLK frequency in Hz

bool CS_getREFOLP (void)

Get status of low-power REFO.

Returns

Get status of low-power REFO.

bool CS_getREFOReady (void)

Get status indication of low-power REFO switching.

Returns

Get status indication of low-power REFO switching.

uint32_t CS_getSMCLK (void)

Get the current SMCLK frequency.

Get the current SMCLK frequency. The user of this APl must ensure that
CS_setExternalClockSource APl was invoked before in case XT1 is being used.

Returns

Current SMCLK frequency in Hz

bool CS_getXT1FaultOff (void)

Get status of XT1 fault switching.

Returns

Get status of XT1 fault switching.

void CS_initClockSignal (uint8_t selectedClockSignal, uint16_t clockSource, uint16t
clockSourceDivider)

Initializes a clock signal.

This function initializes each of the clock signals. The user must ensure that this function is called
for each clock signal. If not, the default state is assumed for the particular clock signal. Refer
MSP430Ware documentation for CS module or Device Family User’s Guide for details of default
clock signal states. Note that the dividers for CS_FLLREF are different from the available clock
dividers. Some devices do not support dividers setting for CS_FLLREF, please refer to device
specific datasheet for details.

CHAPTER 9. CLOCK SYSTEM (CS) 63

Parameters

selectedClock- | selected clock signal Valid values are:
Signal | a cs_ACLK

m CS_MCLK

m CS_SMCLK

m CS_FLLREF

clockSource | is clock source for the selectedClockSignal Valid values are:
m CS_ XT1CLK_SELECT

m CS_VLOCLK SELECT

m CS_REFOCLK_SELECT

m CS_DCOCLKDIV_SELECT

clockSource- | selected the clock divider to calculate clocksignal from clock source. Valid values are:

Divider | ¢S CLOCK DIVIDER 1 [Default] - [Valid for CS_FLLREF, CS_MCLK, CS_ACLK, CS-
_SMCLK]

m CS_CLOCK_DIVIDER.2 - [Valid for CS_MCLK, CS_SMCLK]

m CS_CLOCK_DIVIDER 4 - [Valid for CS_MCLK, CS_SMCLK]

m CS_CLOCK_DIVIDER._8 - [Valid for CS_MCLK, CS_SMCLK]

m CS_CLOCK_DIVIDER_16 - [Valid for CS_.MCLK, CS_ACLK]

m CS_CLOCK_DIVIDER_32 - [Valid for CS_FLLREF, CS_MCLK, CS_ACLK]
m CS_CLOCK_DIVIDER_64 - [Valid for CS_FLLREF, CS_MCLK, CS_ACLK]
m CS_CLOCK_DIVIDER_128 - [Valid for CS_FLLREF, CS_.MCLK, CS_ACLK]
m CS_CLOCK_DIVIDER_256 - [Valid for CS_FLLREF, CS_ACLK]

m CS_CLOCK_DIVIDER_384 - [Valid for CS_FLLREF, CS_ACLK]

m CS_CLOCK_DIVIDER 512 - [Valid for CS_FLLREF, CS_ACLK]

m CS_CLOCK_DIVIDER_768 - [Valid for CS_FLLREF, CS_ACLK]

m CS_CLOCK_DIVIDER_1024 - [Valid for CS_FLLREF, CS_ACLK]

m CS_CLOCK_DIVIDER-108 - [Valid for CS_ACLK]

m CS_CLOCK_DIVIDER_338 - [Valid for CS_ACLK]

m CS_CLOCK_DIVIDER_414 - [Valid for CS_ACLK]

m CS_CLOCK_DIVIDER_640 - [Valid for CS_FLLREF, CS_ACLK]

Modified bits of CSCTL3 register, bits of CSCTL5 register and bits of CSCTL4 register.

CHAPTER 9. CLOCK SYSTEM (CS) 64

Returns

None

bool CS_initFLL (uint16_t fsystem, uint16_t ratio)

Initializes the DCO to operate a frequency that is a multiple of the reference frequency into the
FLL. This function performs DCO Factory Trim.

Initializes the DCO to operate a frequency that is a multiple of the reference frequency into the
FLL. Loops until all oscillator fault flags are cleared, with a timeout. If the frequency is greater than
clock system allows, the function sets the MCLK and SMCLK source to the undivided DCO
frequency and returns false. Otherwise, the function sets the MCLK and SMCLK source to the
DCOCLKDIV frequency.

Parameters

fsystem | is the target frequency for MCLK in kHz

ratio | is the ratio x/y, where x = fsystem and y = FLL reference frequency.

Modified bits of CSCTL1 register, bits of CSCTLO register, bits of CSCTL2 register, bits of
CSCTLA4 register, bits of CSCTL7 register and bits of SFRIFG1 register.

Returns

True if successful, false if unsuccessful and resorted to undivided DCO frequency for MCLK
and SMCLK source

Referenced by CS_initFLLSettle().

bool CS_initFLLCalculateTrim (uint16_t fsystem, uint16_t ratio, CS_initFLLParam x param
)

Performs same function as initFLLSettle in addition to setting the proper DCOFTRIM according to
clock frequency. This function performs DCO Software Trim and saves the trim value into
initFLLParam.

Initializes the DCO to operate a frequency that is a multiple of the reference frequency into the
FLL. Loops until all oscillator fault flags are cleared, with a timeout. If the frequency is greater than
clock system allows, the function sets the MCLK and SMCLK source to the undivided DCO
frequency and returns false. Otherwise, the function sets the MCLK and SMCLK source to the
DCOCLKDIV frequency. This function executes a software delay that is proportional in length to
the ratio of the target FLL frequency and the FLL reference. It also calibrates the DCOFTRIM value
according to clock frequency. Lastly, it saves the DCOTAP and DCOFTRIM values for future use.

Parameters

fsystem | is the target frequency for MCLK in kHz

ratio | is the ratio x/y, where x = fsystem and y = FLL reference frequency.

Modified bits of CSCTL1 register, bits of CSCTLO register, bits of CSCTL2 register, bits of
CSCTLA4 register, bits of CSCTL7 register and bits of SFRIFG1 register.

CHAPTER 9. CLOCK SYSTEM (CS) 65

Returns

True if successful, false if unsuccessful and resorted to undivided DCO frequency for MCLK
and SMCLK source

References CS_initFLLParam::fsystem.

bool CS_initFLLLoadTrim (uint16_t fsystem, uint16_t ratio, CS_initFLLParam « param)

Performs same function as initFLLCalculateTrim without the overhead of calculating the trim, but
rather using the one specified in param. This function corresponds with the DCO Software Trim.

Initializes the DCO to operate a frequency that is a multiple of the reference frequency into the
FLL. Loops until all oscillator fault flags are cleared, with a timeout. If the frequency is greater than
clock system allows, the function sets the MCLK and SMCLK source to the undivided DCO
frequency and returns false. Otherwise, the function sets the MCLK and SMCLK source to the
DCOCLKDIV frequency. This function executes a software delay that is proportional in length to
the ratio of the target FLL frequency and the FLL reference. Lastly, it uses the saved DCOTAP and
DCOFTRIM values from the param to avoid overhead in recalculation.

Parameters

fsystem | is the target frequency for MCLK in kHz

ratio | is the ratio x/y, where x = fsystem and y = FLL reference frequency.

Modified bits of CSCTL1 register, bits of CSCTLO register, bits of CSCTL2 register, bits of
CSCTLA4 register, bits of CSCTL7 register and bits of SFRIFG1 register.

Returns

True if initialization successful, false if saved DCOFTRIM value is not for the correct clock
frequency combination or resorted to undivided DCO frequency for MCLK and SMCLK
source

References CS_initFLLParam::csCtl0, CS_initFLLParam::csCtl1, and CS_initFLLParam::fsystem.

bool CS_initFLLSettle (uint16_t fsystem, uint16_t ratio)

Initializes the DCO to operate a frequency that is a multiple of the reference frequency into the
FLL.

Initializes the DCO to operate a frequency that is a multiple of the reference frequency into the
FLL. Loops until all oscillator fault flags are cleared, with a timeout. If the frequency is greater than
clock system allows, the function sets the MCLK and SMCLK source to the undivided DCO
frequency and returns false. Otherwise, the function sets the MCLK and SMCLK source to the
DCOCLKDIV frequency. This function executes a software delay that is proportional in length to
the ratio of the target FLL frequency and the FLL reference.

Parameters

] fsystem | is the target frequency for MCLK in kHz

CHAPTER 9. CLOCK SYSTEM (CS) 66

] ratio | is the ratio x/y, where x = fsystem and y = FLL reference frequency.

Modified bits of CSCTL1 register, bits of CSCTLO register, bits of CSCTL2 register, bits of
CSCTLA4 register, bits of CSCTL7 register and bits of SFRIFG1 register.

Returns

True if successful, false if unsuccessful and resorted to undivided DCO frequency for MCLK
and SMCLK source

References CS_initFLLY().

void CS_setExternalClockSource (uint32_t XT1CLK _frequency)

Sets the external clock source.

This function sets the external clock sources XT1 crystal oscillator frequency values. This function
must be called if an external crystal XT1 is used and the user intends to call CS_getMCLK,
CS_getSMCLK or CS_getACLK APIs. If not, it is not necessary to invoke this API.

Parameters

XT1CLK -
frequency

is the XT1 crystal frequencies in Hz

Returns

None

void CS_turnOffSMCLK (void)

Turn Off SMCLK.

Returns

None

void CS_turnOffXT1 (void)

Stops the XT1 oscillator using the XT1AUTOOFF bit.
Modified bits are XT1AUTOOFF of CSCTL6 register.

Returns

None

void CS_turnOnSMCLK (void)

Turn On SMCLK.

CHAPTER 9. CLOCK SYSTEM (CS) 67

Returns

None

void CS_turnOnXT1HF (uint16_t xt1Drive, uint16_t xt1HFFreq)

Intializes the XT1 crystal oscillator in high frequency mode.

Initializes the XT1 crystal oscillator in high frequency mode. Loops until all oscillator fault flags are
cleared, with no timeout. See the device- specific data sheet for appropriate drive settings.

Parameters

xt1Drive

is the target drive strength for the XT1 crystal oscillator. Valid values are:
m CS_XT1_.DRIVE O
m CS_XT1_DRIVE 1
m CS_XT1.DRIVE_2

m CS_XT1_DRIVE_3 [Defauli]
Modified bits are XT1DRIVE of UCSCTLS6 register.

xt1HFFreq

is the high frequency range selection. Valid values are:
m CS_XT1_HFFREQ_1MHZ_4MHZ [Default]
m CS_XT1_HFFREQ_4MHZ _6MHZ
m CS_XT1_HFFREQ_6MHZ_16MHZ
m CS_XT1_HFFREQ_16MHZ_24MHZ

Returns

None

bool CS_turnOnXT1HFWithTimeout (uint16_t xt71Drive, uint16_t xt1HFFreq, uint16_t

timeout)

Initializes the XT1 crystal oscillator in high frequency mode with timeout.

Initializes the XT1 crystal oscillator in high frequency mode with timeout. Loops until all oscillator
fault flags are cleared or until a timeout counter is decremented and equals to zero. See the
device-specific datasheet for appropriate drive settings.

CHAPTER 9. CLOCK SYSTEM (CS) 68

Parameters

xt1Drive | is the target drive strength for the XT1 crystal oscillator. Valid values are:
m CS_XT1_DRIVE.O

m CS_XT1_DRIVE 1

m CS_XT1_.DRIVE 2

m CS_XT1_DRIVE_3 [Default]

xt1HFFreq | is the high frequency range selection. Valid values are:
m CS_XT1_HFFREQ_1MHZ_4MHZ [Default]

m CS_XT1_HFFREQ_4MHZ 6MHZ

m CS_XT1_HFFREQ_6MHZ_16MHZ

= CS_XT1_HFFREQ_16MHZ_24MHZ

timeout | is the count value that gets decremented every time the loop that clears oscillator fault
flags gets executed.

Modified bits of SFRIFG1 register, bits of CSCTLY register and bits of CSCTL6 register.

Returns
STATUS_SUCCESS or STATUS_FAIL

void CS_turnOnXT1LF (uint16_t xt1Drive)

Intializes the XT1 crystal oscillator in low frequency mode.

Initializes the XT1 crystal oscillator in low frequency mode. Loops until all oscillator fault flags are
cleared, with no timeout. See the device- specific data sheet for appropriate drive settings.

Parameters

xt1Drive | is the target drive strength for the XT1 crystal oscillator. Valid values are:
m CS_XT1.DRIVE.0
m CS_XT1_DRIVE 1
m CS_XT1_.DRIVE_ 2

m CS_XT1_DRIVE_3 [Defauli]
Modified bits are XT1DRIVE of UCSCTLS6 register.

Returns

None

bool CS_turnOnXT1LFWithTimeout (uint16_t xt71Drive, uint16_t timeout)

Initializes the XT1 crystal oscillator in low frequency mode with timeout.

CHAPTER 9. CLOCK SYSTEM (CS) 69

9.3

Initializes the XT1 crystal oscillator in low frequency mode with timeout. Loops until all oscillator
fault flags are cleared or until a timeout counter is decremented and equals to zero. See the
device-specific datasheet for appropriate drive settings.

Parameters

xt1Drive

is the target drive strength for the XT1 crystal oscillator. Valid values are:
m CS_XT1_DRIVEO
m CS_XT1_DRIVE 1
m CS_XT1.DRIVE_2
m CS_XT1_DRIVE_3 [Default]

timeout

is the count value that gets decremented every time the loop that clears oscillator fault
flags gets executed.

Modified bits of SFRIFG1 register, bits of CSCTL7 register and bits of CSCTL6 register.

Returns

STATUS_SUCCESS or STATUS_FAIL

Programming Example

The following example shows some CS operations using the APIs

//Target frequency for MCLK in kHz
#define CS_MCLK_DESIRED_FREQUENCY_IN_KHZ 12000

//MCLK/FLLRef Ratio

#define CS.MCLK-FLLREF_RATIO 366
//Variable to store current Clock values

uint32_t clockValue =

0;

// Set DCO FLL reference = REFO
CS_initClockSignal (CS-BASE,

// Set ACLK = REFO

CS_FLLREF,

CS_REFOCLK_SELECT,

CS_CLOCK.DIVIDER.1
)i

CS-initClockSignal (CS_-BASE,

CS_ACLK,

CS_REFOCLK_SELECT,

CS_CLOCK.DIVIDER.1
)i

// Set Ratio and Desired MCLK Frequency and initialize DCO
CS_initFLLSettle (CS_BASE,

CS_MCLK_-DESIRED_FREQUENCY_IN_KHZ,
CS-MCLK-FLLREF_-RATIO
)i

//Verify if the Clock settings are as expected
clockValue = CS_.getSMCLK (CS_BASE);

(1);

CHAPTER 10. ENHANCED COMPARATOR (ECOMP) 70

10 Enhanced Comparator (eCOMP)

11 (o 11 T2 1o o P 69
AP FUNCHONS .. et e e 69
Programming EXample 70

10.1 Introduction

Enhanced Comparator (eCOMP) is an analog voltage comparator with internal reference DAC.
The eCOMP supports up to 7 channels including 4 external inputs, 2 external inputs, and one
reference from DAC output. It also implements programmable hysteresis and power modes.

The API provides a set of functions for using the eCOMP module. Functions are provided to
initialize the eCOMP module, setup reference voltages for input, and manage interrupts for the
eCOMP module.

10.2 API Functions

The APl is broken into three groups of functions: those that deal with initialization and output,
those that handle interrupts, and those that handle Auxiliary features of the e COMP.

The eCOMP initialization and output functions are

EComp_init()
EComp_enable()
EComp_disable()
m EComp_enableDAC(
EComp_disableDAC()
EComp_configurDAC()
EComp_outputValue()

j-—

|
-~

The eCOMP interrupts are handled by

EComp_enablelnterrupt()

EComp_disablelnterrupt()

EComp_clearinterrupt()
EComp_getinterruptStatus()
EComp_setinterruptEdgeDirection()

EComp_togglelnterruptEdgeDirection()
Auxiliary features of the eCOMP are handled by

m EComp_selectHysteresisMode()
m EComp_selectPowerMode()

CHAPTER 10. ENHANCED COMPARATOR (ECOMP) 71

10.3

Programming Example

The following example shows how to initialize eCOMP and DAC

EComp-initParam param = {0};

param.positiveTerminalInput = ECOMP_INPUT.-0;
param.negativeTerminalInput = ECOMP_INPUT_DAC;
param.outputFilterEnableAndDelaylLevel = ECOMP_FILTER.DELAY.OFF;
param.invertedOutputPolarity = ECOMP_NORMAL_OUTPUT_POLARITY;
EComp-init (ECOMP_BASE, ¶m) ;

//Set the reference voltage that is outputed by built-in DAC
//Vref’ = Vrefx (63/64)

EComp-configureDACParam dacParam = {0};
dacParam.referenceVoltage = ECOMP_DAC_REFERENCE_VOLTAGE_VREF;
dacParam.bufferSource = ECOMP_DAC_BUFFER.SOURCE_DUAL_BUFFER.1;
dacParam.firstBufferData = 63;

EComp_configureDAC (ECOMP_BASE, &dacParam);

EComp-enableDAC (ECOMP_BASE) ;

//Select low power low speed mode
EComp_selectPowerMode (ECOMP_BASE, ECOMP_POWER_-MODE_LOW_POWER_LOW_SPEED) ;

EComp-clearInterrupt (ECOMP_BASE,
ECOMP_OUTPUT_-INTERRUPT.FLAG
)i

EComp-enableInterrupt (ECOMP_BASE,
ECOMP_OUTPUT_INTERRUPT
)i

//Allow power to Comparator module
EComp-enable (ECOMP_BASE) ;

_bis_SR.register (LPM4 bits); // Enter LPM4
_no_operation(); // For debug

CHAPTER 11. EUSCI UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (EUSCI_A_UART) 72

11

11.1

11.2

EUSCI Universal Asynchronous
Receiver/Transmitter (EUSCI_A_UART)

NI OAUCH ON ..o 71
AP FUNCHONS ettt e e e e e e 71
Programming EXample s 80
Introduction

The MSP430Ware library for UART mode features include:

m Odd, even, or non-parity
Independent transmit and receive shift registers

Separate transmit and receive buffer registers

LSB-first or MSB-first data transmit and receive

Built-in idle-line and address-bit communication protocols for multiprocessor systems
Receiver start-edge detection for auto wake up from LPMx modes

Status flags for error detection and suppression
m Status flags for address detection
m |Independent interrupt capability for receive and transmit

In UART mode, the USCI transmits and receives characters at a bit rate asynchronous to another
device. Timing for each character is based on the selected baud rate of the USCI. The transmit
and receive functions use the same baud-rate frequency.

API Functions

Functions

m bool EUSCI_A_UART .init (uint16_t baseAddress, EUSCI_A_UART _initParam «param)

Advanced initialization routine for the UART block. The values to be written into the clockPrescalar,
firstModReg, secondModReg and overSampling parameters should be pre-computed and passed
into the initialization function.

void EUSCI_A_UART _transmitData (uint16_t baseAddress, uint8_t transmitData)
Transmits a byte from the UART Module.Please note that if TX interrupt is disabled, this function
manually polls the TX IFG flag waiting for an indication that it is safe to write to the transmit buffer
and does not time-out.

uint8_t EUSCI_A_UART _receiveData (uint16_t baseAddress)
Receives a byte that has been sent to the UART Module.

void EUSCI_A_UART _enablelnterrupt (uint16_t baseAddress, uint8_t mask)
Enables individual UART interrupt sources.

void EUSCI_A_UART _disablelnterrupt (uint16_t baseAddress, uint8_t mask)
Disables individual UART interrupt sources.

uint8_t EUSCI_A_UART _getinterruptStatus (uint16_t baseAddress, uint8_t mask)

CHAPTER 11. EUSCI UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (EUSCI_A_UART) 73

11.2.1

Gets the current UART interrupt status.
m void EUSCI_A_UART _clearInterrupt (uint16_t baseAddress, uint8_t mask)

Clears UART interrupt sources.
m void EUSCI_A_UART _enable (uint16_t baseAddress)

Enables the UART block.
m void EUSCI_A_UART _disable (uint16_t baseAddress)

Disables the UART block.
m uint8_t EUSCI_A_UART _queryStatusFlags (uint16_t baseAddress, uint8_t mask)

Gets the current UART status flags.
m void EUSCI_A_UART _setDormant (uint16_t baseAddress)

Sets the UART module in dormant mode.
m void EUSCI_A_UART _resetDormant (uint16_t baseAddress)

Re-enables UART module from dormant mode.
m void EUSCI_A_UART _transmitAddress (uint16_t baseAddress, uint8_t transmitAddress)

Transmits the next byte to be transmitted marked as address depending on selected multiprocessor
mode.
m void EUSCI_A_UART _transmitBreak (uint16_t baseAddress)

Transmit break.
m uint32_t EUSCI_A_UART _getReceiveBufferAddress (uint16_t baseAddress)

Returns the address of the RX Buffer of the UART for the DMA module.
m uint32_t EUSCI_A_UART _getTransmitBufferAddress (uint16_t baseAddress)

Returns the address of the TX Buffer of the UART for the DMA module.
m void EUSCI_A_UART _selectDeglitchTime (uint16_t baseAddress, uint16_t deglitchTime)

Sets the deglitch time.
m void EUSCI_A_UART _remapPins (uint16_t baseAddress, uint8_t pinsSelect)

Remaps eUSCI_A GPIO pins.

Detailed Description

The EUSI_A_UART API provides the set of functions required to implement an interrupt driven
EUSI_A_UART driver. The EUSI_A_UART initialization with the various modes and features is done
by the EUSCI_A_UART.init(). At the end of this function EUSI_A_UART is initialized and stays
disabled. EUSCI_A_UART _enable() enables the EUSI_A_UART and the module is now ready for
transmit and receive. It is recommended to initialize the EUSI_A_UART via EUSCI_A_UART _init(),
enable the required interrupts and then enable EUSI_A_UART via EUSCI_A_UART _enable().

The EUSI_A_UART API is broken into three groups of functions: those that deal with configuration
and control of the EUSI_A_UART modules, those used to send and receive data, and those that
deal with interrupt handling and those dealing with DMA.

Configuration and control of the EUSI_UART are handled by the

m EUSCI_A_UART _init()

EUSCI_A_UART initAdvance()
EUSCI_A_UART _enable()
EUSCI_A_UART _disable()
EUSCI_A_UART _setDormant()
EUSCI_A_UART _resetDormant()
EUSCI_A_UART _selectDeglitchTime()

Sending and receiving data via the EUSI_UART is handled by the

CHAPTER 11. EUSCI UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (EUSCI_A_UART) 74

EUSCI_A_UART _transmitData()
EUSCI_A_UART _receiveData()
EUSCI_A_UART _transmitAddress()
EUSCI_A_UART _transmitBreak()
EUSCI_A_UART _getTransmitBufferAddress()
EUSCI_A_UART _getTransmitBufferAddress()

Managing the EUSI_UART interrupts and status are handled by the

EUSCI_A_UART _enablelnterrupt()
EUSCI_A_UART _disablelnterrupt()
EUSCI_A_UART _getinterruptStatus()
EUSCI_A_UART _clearInterrupt()
EUSCI_A_UART _queryStatusFlags()

11.2.2 Function Documentation

void EUSCI_A_UART _clearInterrupt (uint16_t baseAddress, uint8_t mask)

Clears UART interrupt sources.

The UART interrupt source is cleared, so that it no longer asserts. The highest interrupt flag is
automatically cleared when an interrupt vector generator is used.

Parameters

baseAddress

is the base address of the EUSCI_A_UART module.

mask

is a bit mask of the interrupt sources to be cleared. Mask value is the logical OR of any of
the following:

m EUSCI_A_UART_RECEIVE_INTERRUPT_FLAG
EUSCI_A_UART_TRANSMIT_INTERRUPT_FLAG
EUSCI_A_UART_STARTBIT_INTERRUPT_FLAG
EUSCI_A_.UART_TRANSMIT_COMPLETE_INTERRUPT_FLAG

Modified bits of UCAXIFG register.

Returns

None

void EUSCI_A_UART _disable (uint16_t baseAddress)

Disables the UART block.
This will disable operation of the UART block.

CHAPTER 11. EUSCI UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (EUSCI_A_UART) 75

Parameters

] baseAddress | is the base address of the EUSCI_.A_UART module.

Modified bits are UCSWRST of UCAXCTLA1 register.

Returns

None

void EUSCI_A_UART _disablelnterrupt (uint16_t baseAddress, uint8_t mask)

Disables individual UART interrupt sources.

Disables the indicated UART interrupt sources. Only the sources that are enabled can be reflected
to the processor interrupt; disabled sources have no effect on the processor.

Parameters

baseAddress

is the base address of the EUSCI_A_UART module.

mask

is the bit mask of the interrupt sources to be disabled. Mask value is the logical OR of any
of the following:

EUSCI_A_UART_RECEIVE_INTERRUPT - Receive interrupt
EUSCI_A_UART_TRANSMIT_INTERRUPT - Transmit interrupt

EUSCI_A_UART_RECEIVE_ERRONEOUSCHAR_INTERRUPT - Receive
erroneous-character interrupt enable

EUSCI_A_UART_BREAKCHAR_INTERRUPT - Receive break character interrupt
enable

EUSCI_A_UART_STARTBIT_INTERRUPT - Start bit received interrupt enable

EUSCI_A_UART_-TRANSMIT_COMPLETE_INTERRUPT - Transmit complete inter-
rupt enable

Modified bits of UCAXCTL1 register and bits of UCAXIE register.

Returns

None

void EUSCI_A_UART _enable (uint16_t baseAddress)

Enables the UART block.

This will enable operation of the UART block.

Parameters

| baseAddress | is the base address of the EUSCI_A_UART module.

Modified bits are UCSWRST of UCAXCTLA1 register.

Returns

None

CHAPTER 11. EUSCI UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (EUSCI_A_UART) 76

void EUSCI_A_UART _enablelnterrupt (uint16_t baseAddress, uint8_t mask)

Enables individual UART interrupt sources.

Enables the indicated UART interrupt sources. The interrupt flag is first and then the
corresponding interrupt is enabled. Only the sources that are enabled can be reflected to the
processor interrupt; disabled sources have no effect on the processor. Does not clear interrupt

flags.

Parameters

baseAddress

is the base address of the EUSCI_A_UART module.

mask

is the bit mask of the interrupt sources to be enabled. Mask value is the logical OR of any
of the following:

m EUSCI_A_UART_RECEIVE_INTERRUPT - Receive interrupt
m EUSCI_A_UART_TRANSMIT_INTERRUPT - Transmit interrupt

m EUSCI_A_UART_RECEIVE_ERRONEOUSCHAR_INTERRUPT - Receive
erroneous-character interrupt enable

m EUSCI_A_UART_BREAKCHAR_INTERRUPT - Receive break character interrupt
enable

m EUSCI_A_UART_STARTBIT_INTERRUPT - Start bit received interrupt enable

m EUSCI_A_UART_TRANSMIT_COMPLETE_INTERRUPT - Transmit complete inter-
rupt enable

Modified bits of UCAXCTL1 register and bits of UCAXIE register.

Returns

None

uint8_t EUSCI_A_UART _getinterruptStatus (uint16_t baseAddress, uint8_t mask)

Gets the current UART interrupt status.

This returns the interrupt status for the UART module based on which flag is passed.

Parameters

baseAddress

is the base address of the EUSCI_A_UART module.

mask

is the masked interrupt flag status to be returned. Mask value is the logical OR of any of
the following:

m EUSCI_A_UART_RECEIVE_INTERRUPT_FLAG

m EUSCI_A_UART_TRANSMIT_INTERRUPT_FLAG

m EUSCI_A_UART_STARTBIT_INTERRUPT_FLAG

m EUSCI_A_UART_TRANSMIT_COMPLETE_INTERRUPT_FLAG

Modified bits of UCAXIFG register.

CHAPTER 11. EUSCI UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (EUSCI_A_UART) 77

Returns

Logical OR of any of the following:
m EUSCI_A_UART_RECEIVE_INTERRUPT_FLAG
m EUSCI_A_UART_TRANSMIT_INTERRUPT_FLAG
m EUSCI_A_UART_STARTBIT_INTERRUPT_FLAG

m EUSCI_A_UART_TRANSMIT_COMPLETE_INTERRUPT_FLAG
indicating the status of the masked flags

uint32_t EUSCI_A_UART _getReceiveBufferAddress (uint16_t baseAddress)

Returns the address of the RX Buffer of the UART for the DMA module.

Returns the address of the UART RX Buffer. This can be used in conjunction with the DMA to
store the received data directly to memory.

Parameters

| baseAddress | is the base address of the EUSCI_A_UART module.

Returns
Address of RX Buffer

uint32_t EUSCI_A_UART _getTransmitBufferAddress (uint16_t baseAddress)

Returns the address of the TX Buffer of the UART for the DMA module.

Returns the address of the UART TX Buffer. This can be used in conjunction with the DMA to
obtain transmitted data directly from memory.

Parameters

] baseAddress | is the base address of the EUSCI_A_UART module.

Returns
Address of TX Buffer

bool EUSCI_A_UART.init (uint16_t baseAddress, EUSCI_A_UART .initParam « param)

Advanced initialization routine for the UART block. The values to be written into the
clockPrescalar, firstModReg, secondModReg and overSampling parameters should be
pre-computed and passed into the initialization function.

Upon successful initialization of the UART block, this function will have initialized the module, but
the UART block still remains disabled and must be enabled with EUSCI_A_UART _enable(). To
calculate values for clockPrescalar, firstModReg, secondModReg and overSampling please use
the link below.

http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430Baud-
RateConverter/index.html

http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430BaudRateConverter/index.html
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430BaudRateConverter/index.html

CHAPTER 11. EUSCI UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (EUSCI_A_UART) 78

Parameters

baseAddress | is the base address of the EUSCI_A_UART module.

param | is the pointer to struct for initialization.

Modified bits are UCPEN, UCPAR, UCMSB, UC7BIT, UCSPB, UCMODEXx and UCSYNC of
UCAXCTLO register; bits UCSSELx and UCSWRST of UCAXCTL1 register.

Returns

STATUS_SUCCESS or STATUS_FAIL of the initialization process
References EUSCI_A_UART _initParam::clockPrescalar, EUSCI_A_UART _initParam::firstModReg,
EUSCI_A_UART .initParam::msborLsbFirst, EUSCI_A_UART _initParam::numberofStopBits,
EUSCI_A_UART _initParam::overSampling, EUSCI_A_UART _initParam::parity,

EUSCI_A_UART .initParam::secondModReg, EUSCI_A_UART _initParam::selectClockSource, and
EUSCI_A_UART initParam::uartMode.

uint8_t EUSCI_A_UART _queryStatusFlags (uint16_t baseAddress, uint8_t mask)

Gets the current UART status flags.
This returns the status for the UART module based on which flag is passed.

Parameters

baseAddress | is the base address of the EUSCI_A_UART module.

mask | is the masked interrupt flag status to be returned. Mask value is the logical OR of any of
the following:

m EUSCI_A_UART_LISTEN_ENABLE

= EUSCI_A_UART_FRAMING_ERROR

m EUSCI_A_UART_OVERRUN_ERROR

m EUSCI_A_UART_PARITY_ERROR

m EUSCI_A_UART_BREAK_DETECT

m EUSCI_A_UART_RECEIVE_ERROR

m EUSCI_A_UART_ADDRESS_RECEIVED
m EUSCI_A_UART_IDLELINE

m EUSCI_A_UART_BUSY

Modified bits of UCAXSTAT register.

Returns

Logical OR of any of the following:
EUSCI_A_UART_LISTEN_ENABLE
EUSCI_A_UART_FRAMING_ERROR
EUSCI_A_UART_OVERRUN_ERROR
EUSCI_A_UART_PARITY_ERROR
EUSCI_A_UART_BREAK_DETECT
EUSCI_A_UART_RECEIVE_ERROR
EUSCI_A_UART_ADDRESS _RECEIVED

CHAPTER 11. EUSCI UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (EUSCI_A_UART) 79

m EUSCI_A_UART_IDLELINE

m EUSCI_A_UART_BUSY
indicating the status of the masked interrupt flags

uint8_t EUSCI_A_UART _receiveData (uint16_t baseAddress)

Receives a byte that has been sent to the UART Module.
This function reads a byte of data from the UART receive data Register.

Parameters
] baseAddress | is the base address of the EUSCI_A_UART module.

Modified bits of UCAXRXBUF register.

Returns
Returns the byte received from by the UART module, cast as an uint8_t.

void EUSCI_A_UART _remapPins (uint16_t baseAddress, uint8_t pinsSelect)

Remaps eUSCI_A GPIO pins.

Remaps eUSCI_A GPIO pins. After calling this function,
GPIO_setAsPeripheralModuleFunctionInputPin() or
GPIO_setAsPeripheralModuleFunctionlnputPin() still needs to be invoked to set peripheral

functions. Caution: this will also remap eusci_a_spi GPIO pins.

Parameters

baseAddress | is the base address of the EUSCI_A_UART module.
pinsSelect | remapping pins to select. Please refer to device specific datasheet for remapping pins

details. Valid values are:
m EUSCI_A_UART_REMAP_PINS_FALSE [Default]
m EUSCI_A_UART_REMAP_PINS_TRUE

Returns

None

void EUSCI_A_UART _resetDormant (uint16_t baseAddress)

Re-enables UART module from dormant mode.
Not dormant. All received characters set UCRXIFG.

CHAPTER 11. EUSCI UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (EUSCI_A_UART) 80

Parameters

] baseAddress | is the base address of the EUSCI_.A_UART module.

Modified bits are UCDORM of UCAXCTLA1 register.

Returns

None

void EUSCI_A_UART _selectDeglitchTime (uint16_t baseAddress, uint16_t deglitchTime)

Sets the deglitch time.

Parameters

baseAddress | is the base address of the EUSCI_A_UART module.

deglitchTime | is the selected deglitch time Valid values are:

m EUSCI_A_UART_DEGLITCH_TIME_ 2ns
EUSCI_A_UART_DEGLITCH_TIME 50ns
EUSCI_A_UART_DEGLITCH_TIME_100ns
EUSCI_A_UART_DEGLITCH_TIME_200ns

Returns

None

void EUSCI_A_UART _setDormant (uint16_t baseAddress)

Sets the UART module in dormant mode.

Puts USCI in sleep mode Only characters that are preceded by an idle-line or with address bit set
UCRXIFG. In UART mode with automatic baud-rate detection, only the combination of a break
and sync field sets UCRXIFG.

Parameters

] baseAddress | is the base address of the EUSCI_A_UART module.

Modified bits of UCAXCTL1 register.

Returns

None

void EUSCI_A_UART _transmitAddress (uint16_t baseAddress, uint8_t transmitAddress)

Transmits the next byte to be transmitted marked as address depending on selected
multiprocessor mode.

CHAPTER 11. EUSCI UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (EUSCI_A_UART) 81

Parameters
baseAddress | is the base address of the EUSCI_A_UART module.
transmitAddress | is the next byte to be transmitted

Modified bits of UCAXTXBUF register and bits of UCAXCTL1 register.

Returns

None

void EUSCI_A_UART _transmitBreak (uint16_t baseAddress)

Transmit break.

Transmits a break with the next write to the transmit buffer. In UART mode with automatic
baud-rate detection, EUSCI_A_UART_AUTOMATICBAUDRATE_SYNC(0x55) must be written into
UCAXTXBUF to generate the required break/sync fields. Otherwise, DEFAULT_SYNC(0x00) must
be written into the transmit buffer. Also ensures module is ready for transmitting the next data.

Parameters

] baseAddress | is the base address of the EUSCI_.A_UART module.

Modified bits of UCAXTXBUF register and bits of UCAXCTL1 register.

Returns

None

void EUSCI_A_UART _transmitData (uint16_t baseAddress, uint8_t fransmitData)

11.3

Transmits a byte from the UART Module.Please note that if TX interrupt is disabled, this function

manually polls the TX IFG flag waiting for an indication that it is safe to write to the transmit buffer
and does not time-out.

This function will place the supplied data into UART transmit data register to start transmission

Parameters
baseAddress | is the base address of the EUSCI_A_UART module.
transmitData | data to be transmitted from the UART module

Modified bits of UCAXTXBUF register.

Returns

None

Programming Example

The following example shows how to use the EUSI_UART API to initialize the EUSI_UART,
transmit characters, and receive characters.

CHAPTER 11. EUSCI UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (EUSCI_A_UART)

// Configure UART
EUSCI_A_UART_initParam param = {0};

param.
param.
param.
param.
.parity = EUSCI.A_.UART_-NO_PARITY;

param

param.
param.
param.
param.

selectClockSource = EUSCI_A_UART_.CLOCKSOURCE_ACLK;
clockPrescalar = 15;

firstModReg = 0;

secondModReg = 68;

msborLsbFirst = EUSCI_A_UART_LSB_.FIRST;

numberofStopBits = EUSCI_A_UART_-ONE_STOP_BIT;

uartMode = EUSCI_A_UART_MODE;

overSampling = EUSCI_A_UART.LOW_FREQUENCY_BAUDRATE_GENERATION;

if (STATUS_FAIL == EUSCI.A_.UART.init (EUSCI_AQO_BASE, ¶m)) {

}

urny

EUSCI_A_UART_enable (EUSCI_A0_BASE) ;

// Enable USCI_A0 RX interrupt
EUSCI_A_.UART-enableInterrupt (EUSCI_AO_BASE,

EUSCI-A_.UART.RECEIVE_INTERRUPT) ;

82

CHAPTER 12. EUSCI SYNCHRONOUS PERIPHERAL INTERFACE (EUSCI_A_SPI) 83

12

12.1

12.2

EUSCI Synchronous Peripheral Interface
(EUSCI_A_SPI)

NI OAUCH ON ..o e 82
AP FUNCHONS .ttt e e e e e 82
Programming EXample 90
Introduction

The Serial Peripheral Interface Bus or SPI bus is a synchronous serial data link standard named
by Motorola that operates in full duplex mode. Devices communicate in master/slave mode where
the master device initiates the data frame.

This library provides the API for handling a SPI communication using EUSCI.
The SPI module can be configured as either a master or a slave device.

The SPI module also includes a programmabile bit rate clock divider and prescaler to generate the
output serial clock derived from the module’s input clock.

Functions

Functions

m void EUSCI_A_SPlL initMaster (uint16_t baseAddress, EUSCI_A_SPI_initMasterParam x«param)
Initializes the SPI Master block.
m void EUSCI_A_SPI_select4PinFunctionality (uint16_t baseAddress, uint8_t
select4PinFunctionality)
Selects 4Pin Functionality.
m void EUSCI_A_SPI_changeMasterClock (uint16_t baseAddress,
EUSCI_A_SPI_changeMasterClockParam xparam)
Initializes the SPI Master clock. At the end of this function call, SPI module is left enabled.
m void EUSCI_A_SPLinitSlave (uint16_t baseAddress, EUSCI_A_SPL initSlaveParam xparam)
Initializes the SPI Slave block.
m void EUSCI_A_SPI_changeClockPhasePolarity (uint16_t baseAddress, uint16_t clockPhase,
uint16_t clockPolarity)
Changes the SPI clock phase and polarity. At the end of this function call, SPl module is left
enabled.
m void EUSCI_A_SPI_transmitData (uint16_t baseAddress, uint8_t transmitData)
Transmits a byte from the SPI Module.
m uint8_t EUSCI_A_SPI_receiveData (uint16_t baseAddress)
Receives a byte that has been sent to the SPI Module.
m void EUSCI_A_SPI_enablelnterrupt (uint16_t baseAddress, uint8_t mask)
Enables individual SPI interrupt sources.
m void EUSCI_A_SPI_disablelnterrupt (uint16_t baseAddress, uint8_t mask)

Disables individual SPI interrupt sources.
m uint8_t EUSCI_A_SPI_getinterruptStatus (uint16_t baseAddress, uint8_t mask)

CHAPTER 12. EUSCI SYNCHRONOUS PERIPHERAL INTERFACE (EUSCI_A_SPI)

12.2.1

Gets the current SPI interrupt status.
void EUSCI_A_SPI_clearInterrupt (uint16_t baseAddress, uint8_t mask)

Clears the selected SPI interrupt status flag.
void EUSCI_A_SPI_enable (uint16_t baseAddress)

Enables the SPI block.
void EUSCI_A_SPI_disable (uint16_t baseAddress)

Disables the SPI block.
uint32_t EUSCI_A_SPI_getReceiveBufferAddress (uint16_t baseAddress)

Returns the address of the RX Buffer of the SPI for the DMA module.
uint32_t EUSCI_A_SPI_getTransmitBufferAddress (uint16_t baseAddress)

Returns the address of the TX Buffer of the SPI for the DMA module.
uint16_t EUSCI_A_SPI_isBusy (uint16_t baseAddress)

Indicates whether or not the SPI bus is busy.
void EUSCI_A_SPI_remapPins (uint16_t baseAddress, uint8_t pinsSelect)

Remaps eUSCI_A GPIO pins.

Detailed Description

84

To use the module as a master, the user must call EUSCI_A_SPL_initMaster() to configure the SPI
Master. This is followed by enabling the SPI module using EUSCI_A_SPI_enable(). The interrupts

are then enabled (if needed). It is recommended to enable the SPI module before enabling the

interrupts. A data transmit is then initiated using EUSCI_A_SPI_transmitData() and then when the
receive flag is set, the received data is read using EUSCI_A_SPI_receiveData() and this indicates
that an RX/TX operation is complete.

To use the module as a slave, initialization is done using EUSCI_A_SPL.initSlave() and this is

followed by enabling the module using EUSCI_A_SPI_enable(). Following this, the interrupts may

be enabled as needed. When the receive flag is set, data is first transmitted using

EUSCI_A_SPI_transmitData() and this is followed by a data reception by
EUSCI_A_SPI_receiveData()

The SPI API is broken into 3 groups of functions: those that deal with status and initialization,

those that handle data, and those that manage interrupts.

The status and initialization of the SPI module are managed by

EUSCI_A_SPL.initMaster()
EUSCI_A_SPL.initSlave()

EUSCI_A_SPI _disable()
EUSCI_A_SPI_enable()
EUSCI_A_SPI_masterChangeClock()
EUSCI_A_SPI_isBusy()
EUSCI_A_SPI_select4PinFunctionality()
EUSCI_A_SPI_changeClockPhasePolarity()

Data handling is done by

EUSCI_A_SPI_transmitData()
EUSCI_A_SPI_receiveData()

Interrupts from the SPI module are managed using

CHAPTER 12. EUSCI SYNCHRONOUS PERIPHERAL INTERFACE (EUSCI_A_SPI) 85

EUSCI_A_SPI _disablelnterrupt()

m EUSCI_A_SPI_enablelnterrupt()

m EUSCI_A_SPI_getinterruptStatus()
m EUSCI_A_SPI clearInterrupt()

DMA related

m EUSCI_A_SPI_getReceiveBufferAddressForDMA()
m EUSCI_A_SPI_getTransmitBufferAddressForDMA()

12.2.2 Function Documentation

void EUSCI_A_SPI_changeClockPhasePolarity (uint16_t baseAddress, uint16_t clockPhase,
uint16_t clockPolarity)

Changes the SPI clock phase and polarity. At the end of this function call, SPI module is left
enabled.

Parameters

baseAddress | is the base address of the EUSCI_A_SPI module.

clockPhase | is clock phase select. Valid values are:

m EUSCI_A_SPI_ PHASE DATA_ CHANGED_ONFIRST_CAPTURED_ON_NEXT
[Default]

m EUSCI_A_SPI_.PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT

clockPolarity | is clock polarity select Valid values are:
m EUSCI_A_SPI_.CLOCKPOLARITY_NACTIVITY_HIGH
m EUSCI_A_SPI_.CLOCKPOLARITY_NACTIVITY_LOW [Defauli]

Modified bits are UCCKPL, UCCKPH and UCSWRST of UCAXCTLWO register.

Returns

None

void EUSCI_A_SPI_changeMasterClock (uint16_t baseAddress, EUSCI_A_SPIl_change-
MasterClockParam x param)

Initializes the SPI Master clock. At the end of this function call, SPI module is left enabled.
Parameters

| baseAddress | is the base address of the EUSCI_A_SPI module.

CHAPTER 12. EUSCI SYNCHRONOUS PERIPHERAL INTERFACE (EUSCI_A_SPI) 86

] param \ is the pointer to struct for master clock setting.
Modified bits are UCSWRST of UCAXCTLWO register.

Re