{'? TEXAS
INSTRUMENTS

EDMAZ3 Driver

User Guide

June 2014
Document Version 02.11.XX.XX

Read This First

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design and
operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI
patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published
by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a
license from a third party under the patents or other intellectual property of the third party, or a
license from TI under the patents or other intellectual property of TI

Mailing Address:
Texas Instruments
Post Office Box 655303, Dallas, Texas 75265

Copyright © 2009, Texas Instruments Incorporated

LICENSE

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United
States License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Preface

Read This First

About This Manual

This User’s Manual serves as a software programmer’s handbook for
working with the EDMA3 Driver Version 02.11.XX.XX. This manual
provides necessary information regarding how to effectively install, build
and use EDMA3 Driver in user systems and applications.

This manual provides details regarding how the EDMA3 Driver is
Architected, its composition, its functionality, the requirements it places on
the hardware and software environment where it can be deployed, how to
customize/configure it to specific requirements, how to leverage the
supported run-time interfaces in user’s own application etc.,

This manual also provides supplementary information regarding steps to
be followed for proper installation/ un-installation of the EDMA3 Driver.
Also included are appendix sections on related Glossary, Web sites and
Pointers for gathering further information on the EDMA3 Driver.

Read This First

Terms and Abbreviations

Add any longer explanations for terms before the table.

Add any abbreviations and short explanations to the table.

Term/Abbreviation

Description

EDMA

EDMA3 Controller

DMA
QDMA
TCC
ISR
CC

TC

RM

TR

Enhanced Direct Memory Access

Consists of the EDMA3 channel controller (EDMA3CC) and
EDMA3 transfer memory access controller(s) (EDMA3TC). Is
referred to as EDMA3 in this document.

Direct Memory Access

Quick DMA

Transfer Completion Code (basically Interrupt Channel)
Interrupt Service Routine

Channel Controller

Transfer Controller

Resource Manager

Transfer Request.

A command for data movement that is issued from the

EDMA3CC to the EDMA3TC. A TR includes source and
destination addresses, counts, indexes, options, etc.

Read This First

Notations

Explain any special notations or typefaces used (such as for API
guides, special typefaces for functions, variables, etc.)

Information about Cautions and Warnings

This book may contain cautions and warnings.

CAUTION

VVARNIN

The information in a caution or a warning is provided for your
protection. Please read each caution and warning carefully.

Read This First

Related Documentation

Internal

Trademarks

O EDMA3 Channel Controller (TPCC), version 3.0.2 (Available at
PDS)

Q EDMAS3 Transfer Controller (TPTC), version 3.0.1 (Available at
PDS)

The TI logo design is a trademark of Texas Instruments
Incorporated. All other brand and product names may be
trademarks of their respective companies.

Vi

Read This First

Revision History

Date Author Revision History Version
October 16, Anuj First release supporting platform 02.00.00.XX
2008 Aggarwal DA830 on BIOS 6.

June 3, 2009 Anuj Patch release for DA830 platform on 02.00.01.XX
Aggarwal BIOS 6.
December 7, Anuj a) Migration to new BSD license 02.10.00.XX
2009 Aggarwal b) Added support for TCI6498
platform.
See release notes for more details.
April 9,2009 Imtiaz SMA Added the support for the c6748 and 02.10.01.XX
OMAPL138 platforms.
See release notes for more details.
May 12, 2010 Vinay K Added the support for the OMAPL138 02.10.02.XX
Nooji ARM platform.
See release notes for more details.
Sep 6, 2010 Sundaram Support for the TI816X Simulator & 02.10.03.XX
Raju platform, C6472 & TCI6486 platform
and TI814X platform have been added.
Oct 12, 2010 Sundaram Support for C66x(ELF) in Generic 02.10.04.XX
Raju library of Resource Manager and bug
fixes
Feb 02, 2011 Sundaram Support for Make based build for all the 02.11.00.XX
Raju libraries and sample applications
Feb 15,2011 Raghu Support for C66x based target 02.11.01.XX
Nambiath
Sundaram
Raju
Apr 8, 2011 Prasad Addition of TI816x-m3vpss and 02.11.02.XX
Konnur TI816x-m3video platform to EDMA3LLD
Nov 15, 2011 Prasad Addition of M3 support for TI814X and 02.11.03.XX
Konnur A8 support for TI816X and bug fixes
Jan 27, 2012 Murtaza Addition of Appleton (TCI6614) support 02.11.04.XX
Gaadiwala
Mar 9, 2012 Prasad Addition of TI811X platform support 02.11.05.XX
Aug 10,2012 Prasad Bug fixes 02.11.06.XX

vii

Read This First

May 13, 2013 Prasad Add the TDA2XX Platform Support 02.11.07.XX
May 17, 2013 Murtaza Add TCI6638K2K Platform Support 02.11.07.XX
Gaadiwala
July 12, 2013 Prasad TDA2XX return region number at runtime based (02.11.08.XX
Konnur on core and bug fix
July 18, 2013 Murtaza Addition of TCI6636K2H support 02.11.09.XX
Gaadiwala
Sept 23, 2013 Sivaraj R Addition of GCC Compiler build for A8 02.11.10.XX
for Centaurus and bug fix
Dec 20, 2013 Arvind S Ported EDMA lld to EVE core to access 02.11.11.XX
EVE internal EDMA instance.
Dec 24, 2013 Arvind S Bug fixes 02.11.11.XX
Jan 7, 2014 Arvind S Removed warnings and bug fix 02.11.11.XX
Feb 19, 2014 Ivan P Merged in user space support for 02.11.11.XX
Keystone 2 devices
May 30, 2014 Prasad Addition of TDA3xx and DRA72x 02.11.12.XX
Konnur platform support
June 30, 2014 Prasad Bug Fixes 02.11.14.XX

Konnur

viii

Contents

Contents

Read This First........ st e s s e e e iiii
ADOUL ThiS MaNUAL......cociiieie ettt e re e e er e st e e e e e e entaeeannaeeens ii
Notations v
Information about Cautions and Warningsoceieoieeeeeeceeeeee e v
Related DoCUMENTALIONcoiiciee et Vi
Internal Vi
Trademarks vi
REVISION HISTOMY .. .eeeieeieeeeeee e e e e e e s ae e e e e e e s ae e e e as vii
L@ T 3 7= 0 1 = ix
LI 1 5 1 =SS Xi
EDMA3 Driver INtroducCtion............ it ssss e ssee s se e s smn e 1-1
1.1 OVEIVIEW ...ttt ettt ee st e e e ste e et e e s e e e sreeeansaaesnnneeesreeans 1-2
1.1.1 System Partitioningcooo i 1-2
1.1.2 SUPPOItEA SEIVICES. . .oi ettt ee e e e e e e see e s 1-6
1.1.3 Out of SCOPE Of AMIVEL ..ot 1-8
Installation GUIde.......... e —————— 1-2-1
2.1 ComMPONENE FOIARN ..o 1-2-2
2.2 Development Tools Environment(s).....cccccoeeeieeiiciiee e 1-2-4
2.2.1 Development TOOIS ...t 1-2-4
2.3 Installation GUIdE ... 1-2-5
2.3.1 Installation and Usage Procedure..........ccccoouieiiieiiiieiciee e 1-2-5
2.3.2 Un-installation........oooooiii s 1-2-5
2.4 Integration GUIdE.........coiiiiiii e 1-2-6
2.4.1 Building EDMA3 Librari@sccccoiieieiieeeeeie et 1-2-6
2.4.2 Building the EDMA3 Driver Stand-alone Applications..........ccccccve.... 1-2-8
2.4.3 Building the DAT EXample.. ..o 1-2-9
2.4.4 BUild OPLIONS. . .oiii et 1-2-10
Run-Time Interfaces/Integration Guide...........ciriniiccence e 21
3.1 Symbolic Constants and Enumerated Data types.........ccccceeveee. 2-2
3.2 Data StrUCTUIES ... e 2-13
3.2.1 EDMA3_DRV_GbICoNnfigParams.......cccccooiiiiiiiiiiiecie e 2-13
3.2.2 EDMA3_DRV_InstancelnitConfigccccooiiiiiiiiiiiiiiicicie e 2-16
3.2.3 EDMA3_DRV_INIECONFIG...coiiiiiiiiceiece e 2-18
3.2.4 EDMA3_DRV_MISCPAramMcccciiiiiiiie ittt 2-19
3.2.5 EDMA3_DRV_ChainOpLtionscccooiiiiieiiiciee e 2-20
3.2.6 EDMA3_DRV_PARAMREQGSc.coueiieiiiiiie ettt e 2-21
3.2.7 EDMA3_DRV_EVEQUEPKIONLY ...oviiiiiiiiieciiee e 2-23
3.2.8 EDMA3_DRV_GbIXbarToChanConfigParamsccccccceveieeicieeciieennnn, 2-23
3.3 API SpPecCifiCationcoocieiieeeee e 2-24
3.4 EDMAS3 Driver Initializationcccoeece i 2-25
3.5 APT FIOW Diagramooooeeeeeeeeeee et 2-26
3.5.1 EDMA3 Driver Crealion ...t 2-27
3.5.2 EDMAS OPEN ettt enaes 2-27
3.5.3 EDMAS3 Request Channel (DMA / QDMA Channel)......ccccooveeivieneeinnen. 2-28
3.5.4 EDMAS3 Request Channel (LINK Channel)......ccccccooiiiiiieiccccieec e 2-29
3.5.5 EDMASB ClOSE ittt st 2-30

Contents

3.5.6 EDMASB DEIBLE ...t e 2-31
3.6 API Usage EXampPle ... 2-32
EDMA3 DFivVer POFEING..... ettt ssee s s s ss s sms s s s sns s ess s sns s essssnn s s ensssns 3-37
3.7 Getting Started........oo e 3-38
3.8 Step-by-Step procedure for porting.......cccocevveeeeveeeeeeeeeeee e 3-40
3.8.1 edma3_<PLATFORM_NAME>_cfg.Ci..cccoiiiiiiieiiie e 3-40
3.8.2 Make file for the DIiVero 3-41
3.8.3 0S-dependent (sample) Implementationccocceeiiiiiiiiieeceeee, 3-42
3.9 EDMAZ3 for Keystone2 User Space........cccceevvviieeeiiiiiee e seeiie e 3-59
3.9.1 Devices Targetted. ..o 3-60
RS0 o o] o 3 =11 o PSR 3-60
3.9.3 Differences and Considerationsccccoeeiiiiiiiiiire i 3-60
3.9.4 EXamPple Provided. ... 3-60

Tables

Tables

Table 1: Development Tools/components..........rccriinnccnnnnnncsseeeenenn 1-2-4
Table 2: Build OPLIioNS........... e 1-2-10
Table 3: Symbolic Constants and Enumerated Data types Table for
common header file edma3_common.h.........iccciiiincccineencseeennns 2-2
Table 4: Symbolic Constants and Enumerated Data types Table for
EDMAS3 Driver header file edma3_drv.h.........iiiciirrcee s 2-4

Xi

Chapter 1

EDMAZ3 Driver Introduction

This chapter introduces the EDMA3 Driver to the user by providing a brief
overview of the purpose and construction of the EDMA3 Driver along with

hardware and software environment specifics in the context of EDMA3
Driver Deployment.

1-1

EDMAS3 Driver Introduction

1.1 Overview

This section describes the functional scope of the EDMA3 Driver and its
feature set.

A brief definition of the component is provided at this point - its main
characteristics and purpose.

1.1.1 System Partitioning
EDMA3 peripheral supports data transfers between two memory mapped
devices. It supports EDMA as well as QDMA channels for data transfer.
This peripheral IP is being re-used in different SoCs with only a few
configuration changes like number of DMA and QDMA channels supported,
number of PARAM sets available, number of event queues and transfer
controllers etc.

The EDMA3 peripheral is used by other peripherals for their DMA needs
thus the EDMA3 Driver needs to cater to the requirements of device
drivers of these peripherals as well as other application software that may
need to use the 3™ party DMA services.

The EDMA3 Driver provides functionality that allows device drivers and
applications for submitting and synchronizing with EDMA3 based DMA
transfers. In order to simplify the usage, this component internally uses
the services of the EDMA3 Resource Manager and provides one
consistent interface for applications or device drivers.

The EDMA3 Resource Manager comprises of the following two parts:

O Physical Driver: This component is responsible for the management
of several resources within the EDMA3 peripheral like DMA and QDMA
channels, TCC codes, PARAM entry, all global EDMA3 registers, queues
etc.

O Interrupt Manager: This module provides the different interrupt
handlers (ISRs) for various EDMA3 interrupts like transfer completion
interrupt, CC error interrupt and TC error interrupt. Since interrupts
could be associated with TCC codes in EDMA3, this module also
provides the functionality of accepting application registration callbacks
for TCC codes and calls the callback functions upon receipt of the given
interrupt (TCQC).

Moreover, these ISRs are NOT registered with the underlying OS, since
Resource Manager is an OS-agnostic module. The user application has
to do the registration / un-registration of ISRs by itself.

1-2

EDMAZ Driver Introduction

Applications

Framework Components

Internally calls
_____________ >

Figure 1: EDMA3 Related Software Product and Packages Structure

EDMAS3 Driver Introduction

Typically, each master (ARM, DSP etc.) within the SoC shall open an instance of
EDMA3 Driver, which internally will open a Resource Manager Instance. Resources
could be allocated statically or dynamically to the EDMA3 Driver Instance. This

Processor 1 (e.g. ARM)

App 1 App N | Driver 1... N
| 3 4

~

Processor 2 (e.g. DSP)

| App 1 | | Appvlu | Driver 1.. N
% A

\ S 1

\\ \\\ " N S !
\ 4 N R A v . R A

1
1
1
1
1
1
1
1
1
1
1
1
1
\ ~ ! 1
1
1
1
1
1
1
1
1
1
1
1
1
1

B e e e

EDMA3 Res Mgr EDMA3 Res Mgr
9 EDMA3 9 EDMA3
Phy Res Int Driver Phy Res Int Driver
Mgr Mgr bl e Mgr Mgr
i Ve
EDMA3 Product 5 EDMA3 Product Yo
SoC
----p Callback Notification —— Service Call <=y Link between EDMA3 instances

Figure 2: EDMA3 Related Software Product and Packages Structure

EDMA3 Driver Instance should be used by the users (device drivers or
applications) to call all other EDMA3 Driver APIs. This instance will use the
appropriate shadow region registers (specific to its master) to program EDMA3
hardware. Please note that the shadow region registers are master specific and
there is only and only one set of shadow region registers for each master. If a
master tries to program EDMA3 using other sets of shadow region registers (tied
to other masters in the system), it could result in unexpected behavior with the
possible loss of EDMA3 interrupts and EDMA3 resources’ conflict. So it should be
avoided in normal circumstances.

EDMA3 Driver doesn’t allow multiple instances for a single master on the
respective shadow region. It permits only one instance for each master which will
be tied to its specific shadow region. This is done to prevent any potential
problem which could arise due to EDMA3 resources’ conflict among these different
instances.

However, it is possible to have multiple EDMA3 Driver Instances, running on the
same processor. These different EDMA3 Driver instances would be tied to
different masters (and hence different shadow regions) to cater their specific
requests. The EDMA3 resources should be carefully allocated among all those
instances to avoid any possible conflict.

All software entities intending to use the services of the EDMA3 peripheral on the
given processor shall use the services of the EDMA3 Product (Resource manager
OR EDMAZ3 Driver) as desired.

EDMAS3 Driver Introduction

EDMAS3 Driver Introduction

1.1.2 Supported Services

Following are the services provided by the EDMA3 Driver:

1.1.2.1 Request and Free DMA channel: 1t provides an interface that applications or
device drivers can use to request and free DMA channels. Channels in EDMA3
module are categorized as:

= DMA Channel (mapped to a hardware sync event),
= DMA Channel (NOT mapped to a hardware sync event),
= QDMA Channel, and
= Link Channel (a PARAM Set in EDMA3).
1.1.2.2 Programs DMA channel: 1t provides an interface that applications or device

drivers can use to program a DMA transaction. This typically involves setting the
DMA source and destination parameters.

Following types of transactions are supported:
- Event triggered (peripheral driven transfers),

+ Chain triggered (issuing a chain of transfers initiated by single
event),

+ Manual triggered (CPU generated sync-event), and
 QDMA transfer (triggered on a write to the QDMA Trigger word).
An API is also provided to get the current status of the DMA/QDMA channel.

1-6

EDMAS3 Driver Introduction

.1.2.3

.1.2.4

.1.2,5

.1.2.6

.1.2.7

.1.2.8

.1.2.9

Start and Synchronize with DMA transfers: It provides an interface that
applications or device drivers can use to start and synchronize with a DMA
transaction.

Provides DMA transaction completion callback to applications: It
provides an interface that applications or device drivers can use to register a
transaction completion (final or intermediate) callback or error interrupt
callback. EDMA3 driver calls this application or device driver specifc callback
routine, with the appropriate status message.

Supports Linking and chaining feature: EDMA3 peripheral provides linking
and chaining capabilities. EDMA driver provides an interface that applications or
device drivers can use to use this functionality.

Supports multiple instances of EDMA driver on a single processor: It
supports multiple instances of itself, running on the same processor, but tied to
different masters (and hence different shadow regions). These different
instances will run on the same processor but manage same/different set of
EDMA3 resources and are tied to different shadow regions. Please note that
EDMA3 Driver doesn’t allow multiple instances for a single master on the
respective shadow region.

Read/Write a specific CC register: It also provides an interface which
enables users to read/write any EDMA3 Channel Controller register. These APIs
are for advanced users and could be used for debugging purposes.

Support for Polled Mode DMA Transfers: It provides an interface which
enables the application or device driver to use it in an interrupt-less (and further
in an OS-less) environment. In this scenario, the application does not register
the callback function with the resource manager and itself polls the EDMA3
hardware for the completion interrupt, using the specific APIs.

Non-RTSC Environment Support: EDMA3 Driver module should gets built in
non-RTSC environment also. All the CCS PIT files should come for non-RTSC
environment too.

.1.2.10 IOCTL interface support: EDMA3 Driver shall provide an IOCTL

interface for toggling the option whether PaRAM Sets should be cleared during
allocation or not. This interface could also be extended in future for other misc
requirements.

.1.2.11 Registration and Un-registration of TCC callbacks: 1t provides an

interface that can be called by applications to register/un-register for TCC
callbacks. It handles EDMA3 interrupts and calls the respective TCC callback
function with appropriate status.

.1.2.12 Big Endian platforms support: EDMA3 driver can also be used for

big endian platforms.

EDMAS3 Driver Introduction

1.1.2.13 Enable/diable transfer controller error interrupts: 1t provides an
interface that can be used to enable or disable specific transfer controller error
interrupts.

1.1.2.14 Map Cross bar events to the DMA channels: 1t provides and
interface than can be used to map the cross bar mapped events to the specific
DMA channel.

1.1.3 Out of scope of driver
Address translation is not done in EDMA3 LLD

If the memory map of the EDMA is different than the host processor
programming it, EDMA3LLD being a low level driver the address translation is not
done by this. It is expected that the application will provide the addresses,
corresponding to EDMA memory map to configure in PARAM.
Ex: In case of TI81XX internal memory address of DSP is different in DSP
memory map and the EDMA memory map. So to program EDMA PaRAM values to
transfer data to or from the internal memory of DSP accessible from EDMA the
application should do the corresponding address translation and pass the global
addresses corresponding to EDMA memory map.

1-8

Chapter 2

Installation Guide

This chapter discusses the EDMA3 Driver installation, how and what
software and hardware components to be availed in order to complete a
successful installation of EDMA3 Driver.

21

Installation Guide

2.1 Component Folder

Upon installing the EDMA3 LLD package, the following directory
structure is found in the main directory. A viewgraph of the actual
directory tree (as seen in the final deployed environment) is
inserted here for clarity.

SR] =dmas_|ld_YERSION_MUMBER
+) docs
1) eclipse
+) examples
+) makerules
= |} packages
= [ki
=l) sdo
= |[) edmas
=l () drv
4 () docs
H 12 lib
1) package
=) sample
+) lib
+ () package
+ () src
I sre
X () rm

Figure 3: EDMA23 Driver Directory Structure

The sections below describe the folder contents:
edma3_lld_<<version_number>>

Top level installation directory. Contains the source code,
examples and the documents.

docs
Contains release notes for EDMA3 Driver and Resource
Manager.
examples
Contains the stand-alone applications for EDMA3 Driver (for
all the supported platforms) and the DAT example.
makerules

Contains the common makerules required to build the
libraries and the sample applications.

2-2

Installation Guide

packages

All components (Driver, Resource Manager, sample OS-abstraction layers
etc) fall under packages/ti/sdo/edma3 directory, under their individual
directories. For e.g., EDMA3 driver lies under packages/ti/sdo/edma3/drv
folder, sample initialization library for EDMA3 Driver lies under
packages/ti/sdo/edma3/drv/sample folder etc.

a) drv -> Top level folder for the EDMA3 Driver.

b) drv\docs -> User guide, datasheet etc.

c) drv\lib -> EDMA3 Driver libraries for all the supported platforms.
d) drv\package -> XDC related meta files for the module DRV

e) drv\sample -> Sample code for how to use the EDMA3 Driver,
along-with the pre-built libraries for the same.

f) drv\src -> Source files for EDMA3 Driver.

Just to clarify, the sample folder inside the edma3/drv folder DOESN'T
contain the sample applications. It provides the:

a) Sample initialization code to properly configure the EDMA3 hardware,
and,

b) Sample OS abstraction layer to provide the 0OS-specific hooks to the
EDMA3 package.

This sample code is provided for reference purpose only. To start with, the
user is advised to use the sample code/library as it is, and later
modify/create his/her own initialization code, as per the requirements.

The stand-alone applications are provided in the top level examples
folder as mentioned above. Please note that these examples use the above
mentioned sample initialization/OS abstraction libraries and the EDMA3
Driver libraries.

1-2-3

Installation Guide

2.2 Development Tools Environment(s)
This section describes the development tools environment(s) for

software development with EDMA3 Driver. It describes the tools
used and their setup, for each supported environment.

2.2.1 Development Tools

Describe here the tools that need to be installed, the installation
order and specific configuration. Including: 3rd party components/
libraries, Operating System and auxiliary Tools.

Table 1: Development Tools/components

Devg:)onﬁgoenn: ntto ol/ Version Comments
Code Composer Studio 5.5.0 IDE
(CCS)
C6x Code Gen Tools 7.4.4 Code generation utilities
TMS470 Code Gen Tools 5.1.1 Code generation utilities
ARP32 Code Gen Tools 1.0.2 Code generation utilities
DSP BIOS 6.37.01.24 Operating System
XDC tool chain 3.25.05.94 XDC tools
TCI6608/TCI6616 1.0.0 Simulator
Simulator

2-4

Installation Guide

2.3

2.3.1
1)

2)
3)

4)
5)
6)

2.3.2

1)
2)

Installation Guide

This section describes the EDMA3 LLD installation and un-installation.

Installation and Usage Procedure

Install the products mentioned in the development tools requirements section, as
per instructions provided along with the products.

Install the EDMA3 package by untarring the tar.gz file into preferred drive/folder.

After untarring, create an environment variable "EDMA3LLD_BIOS6_INSTALLDIR"”
with its value as the current EDMA3 installation directory. This variable needs to
be set in the Path Variables section of the Linked Resources within CCSv5.This
environment variable can be used by other users of EDMA3 package for e.g. BIOS
PSP drivers package.

For building the downloadable images, refer to section 2.4 - Integration Guide.
Download the image (.out) onto the platform using CCS.

Run the program.

Un-installation

Uninstall the EDMA3 package by simply deleting the install directory.

Un-install the products mentioned in the development tools requirements section
as per the instructions provided with the product.

I-2-5

Installation Guide

2.4

2.4.1

Integration Guide

This section describes the EDMA3 LLD package usage. The package provides pre-
built libraries for all the different components: EDMA3 Driver, Resource Manager
along with their sample initialization libraries. Moreover, demo applications are
also provided to check the basic functionality for the supported components.

Building EDMA3 Libraries

The EDMA3 package contains pre-built libraries for all EDMA3 components. But user
can also build them by following the below mentioned steps in case of source code
modification or some other specific use cases described below.

1)

2)

3)

4)

5)

6)

Install the products mentioned in the development tools requirements section
(section 2.2), as per instructions provided along with the products.

Change the variables in the makerules\env.mk as follows
a. INTERNAL_SW_ROOT: to the path where EDMA3LLD is installed

b. EXTERNAL_SW_ROOT: to the path of the top level directory where all the tools
mentioned in section 2.2 are installed. It is required that all the tools are located
within a single top level directory as all tools are accessed using relative paths from
this variable. Else each variable used for the location of each tool has to be
updated with its absolute path in makerules\env.mk

c. UTILS_INSTALL_DIR: to the path where any utility that has the make binary is
installed. It can be Cygwin/any utility that has the make compiled for win32 or it
can be xdc tools itself as it has make binary as gmake inside it. All illustrations
provided here after are for the gmake binary in xdc tools. One can simply use any
other utility also by pointing this variable to the install directory of that utility.

d. Always be sure not to have any spaces in the values populated for these variables.
If the file/folder name has spaces in between, then use the non-8dot3 file names.

Set the variables PATH and ROOTDIR in command prompt to the location where
make binary is available and EDMA3LLD is installed respectively, like

Z:\edma3_lld_<<version_number>>\packages> set PATH=C:/PROGRA~1/TEXASI~1/xdctools_X_XX_XX_XX

Build the required libraries using the gmake command at the command prompt:
Example:
Z:\edma3 1ld <<version number>>\packages> gmake libs FORMAT=ELF
Z:\edma3 1ld <<version number>>\packages> gmake libs FORMAT=COFF

This command builds both the DRV and Resource Manager Libraries for all the
platforms mentioned in the top level make file.

In case of C66x based devices including
TCI6608/TCI6616/C6670/C6678/TCI6614/C6657/TCI6638K2K following make
command could be used to build. This will limit building binaries only for C66x
target

gmake -f makefile_c66x libs FORMAT=ELF

2-6

Installation Guide

7)

8)

9)

makefile_c66x can be used while library or standard applications as mentioned in
section 2.4.2

All EDMA3 public APIs provide a mechanism to disable input parameter checking.
This is intended to reduce the number of CPU cycles spent in the parameter
checking and hence provide more efficient libraries. To do that, user has to
modify the “make” file, found in the component base folder itself, and re-build the
libraries. By default, the parameter checking is enabled for all the public APIs.

For e.g., following code snippet in the edma3\drv\make file is used to create the
EDMA3 Driver libraries:

CFLAGS LOCAL COMMON = -mil0

By default, parameter checking is enabled in both Debug and Release modes for
all the public APIs. If user wants to disable the same in Release mode (for
example), he has to modify the above code as:

CFLAGS LOCAL COMMON = -mil0 - DEDMA3 DRV _PARAM CHECK DISABLE

The Release mode library generated now will have input parameter check
disabled for all the public APIs. User is advised to use this configuration option
with caution.

All EDMA3 private functions use the standard C assert mechanism to
enable/disable input parameter checking. This is intended to reduce the number
of CPU cycles spent in the parameter checking and hence provide more efficient
libraries. To do that, user has to modify the “"make” file, found in the component
base folder itself, and re-build the libraries. By default, the parameter checking is
enabled for all the private functions.

For e.g., following code snippet in the edma3\drv\make file is used to create the
EDMAZ3 Driver libraries:

CFLAGS LOCAL COMMON = -mil0

By default, parameter checking is enabled in both Debug and Release modes for
all the private functions. If user wants to disable the same in Release mode (for
example), he has to modify the above code as:

CFLAGS LOCAL COMMON = -mil0 -DNDEBUG

The Release mode library generated now will have input parameter check
disabled for all the private functions. User is advised to use this configuration
option with caution.

The event queue number registers for DMA/QDMA channels are programmed
during run-time, depending on the application requirements. User has to specify
the desired queue number for the specific channel while calling the
EDMA3_DRV_requestChannel () API.

This behavior can be changed by re-compiling the EDMA3 Driver libraries and
passing “"EDMA3_PROGRAM_QUEUE_NUM_REGISTER_INIT_TIME” to the
compiler. Now the EDMA3 driver will pre-allocate the event queues for the
DMA/QDMA channels present in the system and program the appropriate
registers during the EDMA3 initialization; it will not program the same registers at
run-time anymore.

1-2-7

Installation Guide

2.4.2

The mapping between DMA/QDMA channels and different queue numbers should
be provided by the system integrator using the structure
edma3DmaQdmaQueueNumConfig in file
“packages\ti\sdo\edma3\drv\src\edma3_drv_init.c”.

For e.g., following code snippet in the edma3\drv\package.bld file is used to
create the EDMA3 Driver libraries:

CFLAGS LOCAL COMMON = -mil0

By default, event queue registers will be programmed at run-time. If user wants
to disable the same and instead program the registers at init-time itself, he has
to modify the above code as:

CFLAGS_LOCAL_COMMON = -mil0 -DEDMA3_ PROGRAM QUEUE_NUM REGISTER INIT_ TIME

Building the EDMA3 Driver Stand-alone Applications

The EDMA3 package contains separate sample applications for EDMA3 Driver for each
of the supported platforms. Following steps are required to build the same:

1)

2)

3)

4)

Install the products mentioned in the development tools requirements section
(section 2.2), as per instructions provided along with the products.

Follow steps 2) and 3) in section 2.4.1. Build the required libraries using the
gmake command at the command prompt:

a. Example: To build Libraries for tda2xx-evm platform

Z:\edma3 1ld <<version number>>\packages>gmake libs
PLATFORM=tda2x-evm FORMAT=ELF

Z:\edma3 11ld <<version number>>\packages>gmake libs
PLATFORM=tda2x-evm FORMAT=COFF

This step is required only if the source code is modified and new libraries need to
be generated.

Build the example applications using the gmake command at the command
prompt:

b. Example: To build standalone examples for tda2xx-evm platform

Z:\edma3 11d <<version number>>\packages> gmake examples
PLATFORM=tda2xx-evm FORMAT=ELF

Z:\edma3 11d <<version number>>\packages> gmake examples
PLATFORM=tda2xx-evm FORMAT=COFF

Program executable after compilation using gmake will be available at directory:
examples\edma3_driver\<application>\bin\<platform>\

In case CCS project is used to build the examples for c66x platforms then
executable will be available at directory:

examples\edma3_driver\<application>\sample_app\Debug

Instead of Debug the directory would be Release if active project is selected to
release mode.

2-8

Installation Guide

5) Setup the CCS4 to set the underlying platform and use the appropriate DSP gel
file, if required.

6) Target -> Launch TI Debugger for your platform.

7) Use “Target -> Advanced -> Connect target” to connect to DSP target. The GEL
would configure and setup the DSP to be used by the DSP window.

8) Use “Target -> Load Program” to download the executable.

9) Make sure the EDMA clocks (TPCC and all TPTC) clocks are enabled either by gel
file or the boot loader code before running the examples. Below is a sample code
snippet given for reference for tda2xx (vayu) device which can be added in your
application.

volatile unsigned int *tpcc_clock = (volatile unsigned int *)(0x4a008770),
volatile unsigned int *tptc1_clock = (volatile unsigned int *)(0x4a008778),;
volatile unsigned int *tptc2_clock = (volatile unsigned int *)(0x4a008780),
*tpcc_clock = 0x1;

*tptcl_clock = 0x1;

*tptc2_clock = 0x1;

Also there is a gel file added for doing the same at below location for doing the
same, “examples\edma3_driver\Vayu_EDMA_CLK_EN.gel” which can be run
before starting execution. Note that this gel file and above addresses are for vayu
device and for reference only and addresses will change for different platforms.

10) Running standalone example on EVE core, it is required to configure EVE mmu
setting. For this gels6 is mandatory
CCS_CSP_ADAS_S28_ES1.0_NDA_TRM_vA_gels6 which configures default EVE
mmu setting or Customer has to configure following address mapping.

EVE MMUO TLB entry 1: 0x00000000 --> 0x40500000 : 4K Page size
EVE MMUO TLB entry 2: 0x4A000000 --> 0x4A000000 : 1M Page size
EVE MMUO TLB entry 3: 0x81000000 --> 0x81000000 : 16M Page size

EVE MMUO TLB entry 4: 0x40000000 --> 0x40000000 : 16M Page size

2.4.3 Building the DAT Example

The EDMA3 package contains CSL 2.0 DAT Adapter Reference Implementation
using EDMA3 Low Level Driver. The same can be built using the steps shown in
the previous section. The application can be located at
“edma3_lld_<<version_number>>\examples\CSL2_DAT_DEMO\demo\” in the
platform specific folder.

1-2-9

Installation Guide

2.4.4 Build Options

This section enumerates and describes alongside each of the allowed build options. It
also tells the default configurations available.

Build option Reference

Default Configuration

Description

EDMA3_INSTRUMENTATIO
N_ENABLED

Instrumentation disabled

To enable/disable Real
Time Instrumentation
support.

Disable parameter

EDMA3_DRV_PARAM_CHE | Parameter checking enabled checking for public APIs, if
CK_DISABLE (public APIs) required. See note 1
below.
Disable parameter
NDEBUG Parameter checking enabled checking for private
(private functions) functions, if required. See
note 2 below.
Used while building
_BIG_ENDIAN NA

libraries for Big Endian
platforms.

Table 2: Build Options

Note 1: All EDMA3 public APIs provide a mechanism to disable input parameter
checking. This is intended to reduce the number of CPU cycles spent in the parameter
checking and hence provide more efficient libraries. To do that, user has to modify the
build environment (for e.g. the make file), and re-build the libraries. By default, the
parameter checking is enabled for all the public APIs.

Note 2: All

EDMA3 private functions use the standard C assert mechanism to

enable/disable input parameter checking. This is intended to reduce the number of CPU
cycles spent in the parameter checking and hence provide more efficient libraries. To do
that, user has to modify the build environment (for e.g. the make file), and re-build the
libraries. By default, the parameter checking is enabled for all the private functions.

2-10

Chapter 3

Run-Time Interfaces/Integration
Guide

This chapter discusses the EDMA3 Driver run-time interfaces that
comprise the API specification & usage scenarios, in association
with its data types and structure definitions.

Run-Time Interfaces/Integration Guide

3.1 Symbolic Constants and Enumerated Data types

This section summarizes all the symbolic constants specified as
either #define macros and/or enumerated C data types. Described
alongside the macro or enumeration is the semantics or
interpretation of the same in terms of what value it stands for and

what it means.

Table 3: Symbolic Constants and Enumerated Data types Table for common

header file edma3_

common.h

Group or
Enumeration Class

Symbolic Constant Name

Description or Evaluation

Driver Global
Defines

EDMA3_DRV_DEBUG

This define is used to
enable/disable EDMA3 Driver
debug messages

EDMA3_DRV_PRINTF

If EDMA3_DRV_DEBUG is defined,
EDMA3_DRV_PRINTF will be used
to print the debug messages on
the user specified output.

EDMA3_DRV_SOK

EDMAS3 Driver Result OK

EDMA3_OSSEM_NO_TIMEOUT

This define is used to specify a
blocking call without timeout while
requesting a semaphore.

Defines used to
support the maximum
resources supported
by the EDMA3
controller. These are
used to allocate the
maximum memory
for different data
structures of the
EDMA3 Driver and
Resource Manager.

EDMA3_MAX_
EDMA3_INSTANCES

Maximum EDMA3 Controllers on
the SoC

EDMA3_MAX_DMA_CH

Maximum DMA channels supported
by the EDMA3 Controller

EDMA3_MAX_QDMA_CH

channels
EDMA3

Maximum QDMA
supported by the
Controller

EDMA3_MAX_PARAM_SETS

Maximum PaRAM Sets supported
by the EDMA3 Controller

EDMA3_MAX_LOGICAL_CH

Maximum Logical channels
supported by the EDMA3 Package

EDMA3_MAX_TCC

Maximum TCCs (Interrupt
Channels) supported by the
EDMA3 Controller

EDMA3_MAX_EVT_QUE

Maximum Event Queues supported
by the EDMA3 Controller

EDMA3_MAX_TC Maximum Transfer Controllers
supported by the EDMA3
Controller

EDMA3_MAX_REGIONS Maximum Shadow Regions
supported by the EDMA3
Controller

EDMA3_MAX_DMA_CHAN_DWRDS

Maximum Words (4-bytes region)

Run-Time Interfaces/Integration Guide

required for the book-keeping
information specific to the
maximum possible DMA channels.

EDMA3_MAX_QDMA_CHAN_DWRDS

Maximum Words (4-bytes region)
required for the book-keeping
information specific to the
maximum possible QDMA
channels.

EDMA3_MAX_PARAM_DWRDS

Maximum Words (4-bytes region)
required for the book-keeping
information specific to the
maximum possible PaRAM Sets.

EDMA3_MAX_TCC_DWRDS

Maximum Words (4-bytes region)
required for the book-keeping
information specific to the
maximum possible TCCs.

Defines for the level
of OS protection
needed when calling
edma30sProtectXXX()

EDMA3_OS_PROTECT_INTERRUPT

Protection from All Interrupts
required

EDMA3_OS_PROTECT_SCHEDULER

Protection from scheduling
required

EDMA3_OS_PROTECT_INTERRUPT_XFER_
COMPLETION

Protection from EDMA3 Transfer
Completion Interrupt required

EDMA3_OS_PROTECT_INTERRUPT_CC_E
RROR

Protection from EDMA3 CC Error
Interrupt required

EDMA3_OS_PROTECT_INTERRUPT_TC_E
RROR

Protection from EDMA3 TC Error
Interrupt required

Run-Time Interfaces/Integration Guide

Table 4: Symbolic Constants and Enumerated Data types Table for EDMA3 Driver
header file edma3_drv.h

Group or
Enumeration Class

Symbolic Constant Name

Description or Evaluation

Driver Error Codes

EDMA3_DRV_E_OBJ_NOT_DELETED

Before a Driver Object could be
created, it must be in the '‘Deleted’
state. Since it is not yet ‘Deleted’,
it cannot be created.

EDMA3_DRV_E_OBJ_NOT_CLOSED

Before a Driver Object could be
deleted, it must be in the ‘Closed’
state. Since it is not yet ‘Closed’, it
cannot be deleted.

EDMA3_DRV_E_OBJ_NOT_OPENED

Before a Driver Object could be
closed, it must be in the ‘Opened’
state. Since it is not yet ‘Opened’,
it cannot be closed.

EDMA3_DRV_E_RM_CLOSE_FAIL

While closing EDMA3 Driver
Object, Resource Manager Object
has to be closed. If the ‘Close’
fails, this error is returned.

EDMA3_DRV_E_DMA_CHANNEL_UNAVAIL | DMA channel requested for
allocation is not available.
EDMA3_DRV_E_QDMA_CHANNEL_UNAVA | QDMA channel requested for

IL

allocation is not available.

EDMA3_DRV_E_PARAM_SET_UNAVAIL

PARAM Set requested for
allocation is not available.

EDMA3_DRV_E_TCC_UNAVAIL

TCC requested for allocation is not
available.

EDMA3_DRV_E_TCC_REGISTER_FAIL

Registration of the callback
function against a specific TCC
failed.

EDMA3_DRV_E_CH_PARAM_BIND_FAIL

The binding of Channel and PaRAM
Set failed.

EDMA3_DRV_E_ADDRESS_NOT_ALIGNED

While in FIFO mode, the address
of the memory location passed as
argument is not properly aligned.
It should be 32 bytes aligned.

EDMA3_DRV_E_INVALID_PARAM

Invalid Parameter passed to API.

EDMA3_DRV_E_INVALID_STATE

Invalid State of EDMA3 Driver
Object.

EDMA3_DRV_E_INST_ALREADY_EXISTS

EDMA3 Driver instance already
exists for the specified region.
Multiple EDMA3 Driver instances
on the same shadow region are
NOT allowed.

EDMA3_DRV_E_FIFO_WIDTH_NOT_SUPP
ORTED

FIFO width not supported by the
requested Transfer Controller.

EDMA3_DRV_E_SEMAPHORE

Semaphore handling related error.

4

Run-Time Interfaces/Integration Guide

EDMA3_DRV_E_INST_NOT_OPENED

EDMA3 Driver Instance does not
exist, it is not opened yet.

Driver Global
Defines

EDMA3_DRV_CH_NO_PARAM_MAP

This define is used to say that the
DMA channel is not tied to any
PaRAM Set and hence any
available PaRAM Set could be used
for that DMA channel. It could be
used in dmaChannelPaRAMMap
[EDMA3_MAX_DMA_CH], in global
configuration structure
EDMA3_DRV_GblIConfigParams.
This value should mandatorily
be used to mark DMA channels
with no initial mapping to a
specific PaRAM Set.

EDMA3_DRV_CH_NO_TCC_MAP

This define is used to say that the
DMA/QDMA channel is not tied to
any TCC and hence any available
TCC could be wused for that
DMA/QDMA channel. It could be
used in dmaChannelTccMap
[EDMA3_RM_NUM_DMA_CH], in
global configuration structure
EDMA3_DRV_GblIConfigParams.
This value should mandatorily
be used to mark DMA channels
with no initial mapping to a
specific TCC.

EDMA3_DRV_DMA_CHANNEL_ANY

Used to specify any available DMA
Channel while requesting one. It is
used in the API
EDMA3_DRV_requestChannel ().

DMA channel from the pool of
(owned && non_reserved &&
available_right_now) DMA
channels will be chosen and
returned.

EDMA3_DRV_QDMA_CHANNEL_ANY

Used to specify any available
QDMA Channel while requesting
one. It is wused in the API
EDMA3_DRV_requestChannel ().

QDMA channel from the pool of
(owned && non_reserved &&
available_right_now) QDMA
channels will be chosen and
returned.

EDMA3_DRV_TCC_ANY

Used to specify any available TCC
while requesting one. Used in the
API EDMA3_DRV_requestChannel
(), for both DMA and QDMA
channels.

Interrupt channel (TCC) from the
pool of (owned && non_reserved
&& available_right_now) TCCs will
be chosen and returned.

Run-Time Interfaces/Integration Guide

EDMA3_DRV_LINK_CHANNEL

Used to specify any PaRAM Set. It
is used as the channelld when
requesting ANY available PaRAM
set for linking. It is used in the API
EDMA3_DRV_requestChannel ().

PaRAM Set from the pool of
(owned && non_reserved &&
available_right_now) PaRAM Sets
will be chosen and returned.

EDMA3_DRV_LINK_CHANNEL_WITH_TCC

Used to specify any available
PaRAM Set while requesting one.
Used in the API
EDMA3_DRV_requestChannel(),
for Link channels. TCC code should
also be specified and it will be
used to populate the LINK field of
the PaRAM Set. Without TCC code,
the call will fail. PaRAM Set from
the pool of (owned &&
non_reserved &&
available_right_now) PaRAM Sets
will be chosen and returned.

EDMA3_DRV_QDMA_CHANNEL_O

QDMA Channel 0 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_1

QDMA Channel 1 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_2

QDMA Channel 2 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_3

QDMA Channel 3 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_4

QDMA Channel 4 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_5

QDMA Channel 5 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_6

QDMA Channel 6 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_QDMA_CHANNEL_7

QDMA Channel 7 define. It used
while requesting the specific QDMA
channel.

EDMA3_DRV_CHANNEL_CLEAN

Channel status define: Channel is
clean; no pending event,
completion interrupt and event
miss interrupt.

EDMA3_DRV_CHANNEL_EVENT_PENDING

Channel status define: Pending
event is detected on the DMA
channel.

Run-Time Interfaces/Integration Guide

EDMA3_DRV_CHANNEL_XFER_COMPLETE

Channel status define: Transfer
completion interrupt is detected on
the DMA/QDMA channel.

EDMA3_DRV_CHANNEL_ERR

Channel status define: Event miss
error interrupt is detected on the
DMA/QDMA channel.

Enum
EDMA3_DRV_HW_C
HANNEL_EVENT

EDMA3_DRV_HW_CHANNEL_EVENT_O =
0,
EDMA3_DRV_HW_CHANNEL_EVENT_1,
EDMA3_DRV_HW_CHANNEL_EVENT_2,

DMA Channels assigned to
different Hardware Events. They
should be used while requesting a
specific DMA channel.

One possible usage is to maintain
a SoC specific file, which will
contain the mapping of these
hardware events to the respective
peripherals for better
understanding and lesser
probability of errors. Also, if any
event associated with a particular
peripheral gets changed, only that
SoC specific file needs to be
changed.

Enum
EDMA3_DRV_OptFi
eld

EDMA3_DRV_OPT_FIELD_SAM

Source addressing mode (INCR /
FIFO)

EDMA3_DRV_OPT_FIELD_DAM

Destination addressing mode
(INCR / FIFO)

EDMA3_DRV_OPT_FIELD_SYNCDIM

Transfer synchronization
dimension (A-synchronized / AB-
synchronized)

EDMA3_DRV_OPT_FIELD_STATIC

Static/non-static PaRAM set

EDMA3_DRV_OPT_FIELD_FWID

FIFO Width. Applies if either SAM
or DAM is set to FIFO mode.

EDMA3_DRV_OPT_FIELD_TCCMODE

Transfer complete code mode.
Indicates the point at which a
transfer is considered completed
for chaining and interrupt
generation.

EDMA3_DRV_OPT_FIELD_TCC

Transfer complete code. This 6-bit
code is used to set the relevant bit
in chaining enable register
(CER[TCC]/CERH[TCC]) for
chaining or in interrupt pending
register (IPR[TCC]/IPRH[TCC]) for
interrupts.

EDMA3_DRV_OPT_FIELD_TCINTEN

Transfer complete interrupt
enable/disable.

EDMA3_DRV_OPT_FIELD_ITCINTEN

Intermediate transfer complete
interrupt enable/disable.

EDMA3_DRV_OPT_FIELD_TCCHEN

Transfer complete chaining
enable/disable.

EDMA3_DRV_OPT_FIELD_ITCCHEN

Intermediate transfer completion
chaining enable/disable.

Enum

EDMA3_DRV_ADDR_MODE_INCR

Increment (INCR) mode. Source

Run-Time Interfaces/Integration Guide

EDMA3_DRV_AddrMo addressing within an array
de increments. Source is not a FIFO.
EDMA3_DRV_ADDR_MODE_FIFO FIFO mode. Source addressing

within an array wraps around upon
reaching FIFO width.

Enum EDMA3_DRV_SYNC_A A-synchronized. Each array is
EDMA3_DRV_SyncTyp submitted as one TR.
e (BCNT*CCNT) number of sync

events are needed to completely
service a PaRAM set (where BCNT
= Num of Arrays in a Frame;
CCNT = Num of Frames in a
Block). (S/D)CIDX = (Address of
First array in next frame) -
(Address of Last array in present
frame) (where CIDX is the Inter-
Frame index).

EDMA3_DRV_SYNC_AB AB-synchronized. Each frame is
submitted as one TR. Only CCNT
number of sync events are needed
to completely service a PaRAM set
(where CCNT = Num of Frames in
a Block). (S/D)CIDX = (Address of
First array in next frame) -
(Address of first array of present
frame) (where CIDX is the Inter-
Frame index).

Enum EDMA3_DRV_STATIC_DIS PaRAM set is not Static. PaRAM set
EDMA3_DRV_StaticM is updated or linked after TR is
ode submitted. A value of 0 should be

used for DMA channels and for
non-final transfers in a linked list
of QDMA transfers.

EDMA3_DRV_STATIC_EN PaRAM set is Static. PaRAM set is
not updated or linked after TR is
submitted. A value of 1 should be
used for isolated QDMA transfers
or for the final transfer in a linked
list of QDMA transfers.

Enum EDMA3_DRV_WSBIT The user can set the width of the
EDMA3_DRV_Fifowidt FIFO as 8 bits using it. This is
h done via the OPT register. This is

valid only if the

EDMA3_DRV_ADDR_MODE_FIFO
value is used for the enum
EDMA3_DRV_AddrMode.

EDMA3_DRV_16WBIT FIFO width is 16-bit.
EDMA3_DRV_32WBIT FIFO width is 32-bit.
EDMA3_DRV_64WBIT FIFO width is 64-bit.
EDMA3_DRV_128WBIT FIFO width is 128-bit.
EDMA3_DRV_256WBIT FIFO width is 256-bit.
Enum EDMA3_DRV_TCCMODE_NORMAL Normal completion: A transfer is
EDMA3_DRV_TccMod considered completed after the
e data has been transferred.

Run-Time Interfaces/Integration Guide

EDMA3_DRV_TCCMODE_EARLY Early completion: A transfer is
considered completed after the
EDMA3CC submits a TR to the
EDMA3TC. TC may still be
transferring data when
interrupt/chain is triggered.

Enum EDMA3_DR