

April 2013

Document Version 02.11.07.XX

EDMA3 Resource Manager

U s e r ' s G u i d e

User Guide

ii

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at any
time and to discontinue any product or service without notice. Customers should obtain the latest
relevant information before placing orders and should verify that such information is current and
complete.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design and
operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information published
by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a
license from a third party under the patents or other intellectual property of the third party, or a
license from TI under the patents or other intellectual property of TI

Mailing Address:
Texas Instruments

Post Office Box 655303, Dallas, Texas 75265

Copyright © 2009, Texas Instruments Incorporated

LICENSE

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United
States License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

 iii

Preface

Read This First

About This Manual

This User’s Manual serves as a software programmer’s handbook

for working with the EDMA3 Resource Manager Version

02.11.07.XX. This manual provides necessary information

regarding how to effectively install, build and use EDMA3

Resource Manager in user systems and applications.

This manual provides details regarding how the EDMA3

Resource Manager is Architected, its composition, its

functionality, the requirements it places on the hardware and

software environment where it can be deployed, how to

customize/ configure it to specific requirements, how to leverage

the supported run-time interfaces in user’s own application etc.,

This manual also provides supplementary information regarding

steps to be followed for proper installation/ un-installation of the

EDMA3 Resource Manager. Also included are appendix sections

on related Glossary, Web sites and Pointers for gathering further

information on the EDMA3 Resource Manager.

iv

Terms and Abbreviations

Term/Abbreviation Description

EDMA Enhanced Direct Memory Access

EDMA3 Controller Consists of the EDMA3 channel controller (EDMA3CC) and

EDMA3 transfer memory access controller(s) (EDMA3TC). Is

referred to as EDMA3 in this document.

DMA Direct Memory Access

QDMA Quick DMA

TCC Transfer Completion Code (basically Interrupt Channel)

ISR Interrupt Service Routine

CC Channel Controller

TC Transfer Controller

RM Resource Manager

TR Transfer Request.

A command for data movement that is issued from the

EDMA3CC to the EDMA3TC. A TR includes source and

destination addresses, counts, indexes, options, etc.

Read This First

 v

Notations

Explain any special notations or typefaces used (such as for API

guides, special typefaces for functions, variables, etc.)

Information about Cautions and Warnings

This book may contain cautions and warnings.

CAUTION

WARNING

The information in a caution or a warning is provided for your

protection. Please read each caution and warning carefully.

Related Documentation

Internal

� EDMA3 Channel Controller (TPCC), version 3.0.2 (Available at

PDS)

� EDMA3 Transfer Controller (TPTC), version 3.0.1 (Available at

PDS)

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you.

vi

Trademarks

The TI logo design is a trademark of Texas Instruments

Incorporated. All other brand and product names may be

trademarks of their respective companies.

Read This First

 vii

Revision History

Date Author Revision History Version

October 16,

2008

Anuj

Aggarwal

First release supporting platform DA830

on BIOS 6.

02.00.00.XX

June 3, 2009 Anuj

Aggarwal

Patch release for DA830 platform on

BIOS 6.

02.00.01.XX

December 7,

2009

Anuj

Aggarwal

a) Migration to new BSD license

b) Added support for TCI6498 platform.

See release notes for more details.

02.10.00.XX

April 9,2010 Imtiaz SMA Added support for the C6748 and

OMAPL138 platforms. See release notes

for more details.

02.10.01.XX

May 12,

2010

Vinay K

Nooji

Added support for the OMAPL138 ARM

platform. See release notes for more

details.

02.10.02.XX

Sep 6, 2010 Sundaram

Raju

Support for the TI816X Simulator &

platform, C6472 & TCI6486 platform

and TI814X platform have been added.

02.10.03.XX

Oct 12, 2010 Sundaram

Raju

Support for C66x(ELF) in Generic

library of Resource Manager and bug

fixes

02.10.04.XX

Feb 02, 2011 Sundaram

Raju

Support for Make based build for all the

libraries and sample applications

02.11.00.XX

Feb 15, 2011 Raghu

Nambiath

Sundaram

Raju

Additional support for C66x platforms

TCI6608/TCI6616/C6670/C6678

02.11.01.XX

Apr 8, 2011 Prasad

Konnur

Addition of TI816x-m3vpss and TI816x-

m3video platform to EDMA3LLD 02.11.02.XX

Nov 15,

2011

Prasad

Konnur

Addition of M3 support for TI814X and

A8 support for TI816X and bug fixes 02.11.03.XX

Jan 27, 2012 Murtaza

Gaadiwala

Addition of Appleton (TCI6614) support 02.11.04.XX

Mar 9, 2012 Prasad Addition of TI811X platform support 02.11.05.01

viii

Aug 10,

2012

Prasad

Konnur

Bug Fixes 02.11.06.01

April 19,

2013

Prasad

Konnur

Addition of TDA2XX support 02.11.07.02

Contents

 ix

Contents

Read This First .. iii
About This Manual ... iii
Terms and Abbreviations ... iv
Notations v
Information about Cautions and Warnings .. v
Related Documentation ... v
Internal v
Trademarks vi
Revision History .. vii
Contents .. ix
Tables...xi
EDMA3 Resource Manager Introduction...0-1-1
1.1 Overview..0-1-2

1.1.1 System Partitioning ..0-1-2
1.1.2 Supported Services...0-1-3

Installation Guide ...1-2-1
2.1 Component Folder..1-2-2
2.2 Development Tools Environment(s) ...1-2-4

2.2.1 Development Tools ...1-2-4
2.3 Installation Guide...1-2-5

2.3.1 Installation and Usage Procedure ..1-2-5
2.3.2 Un-installation..1-2-5

2.4 Integration Guide ...1-2-6
2.4.1 Building EDMA3 Libraries...1-2-6
2.4.2 Build Options ..1-2-8

Run-Time Interfaces/Integration Guide ...2-1
3.1 Symbolic Constants and Enumerated Data types2-2
3.2 Data Structures ...2-12

3.2.1 RM Global Error Callback .. 2-12
3.2.2 EDMA3_RM_GblErrCallbackParams .. 2-12
3.2.3 EDMA3_RM_GblConfigParams ... 2-12
3.2.4 EDMA3_RM_InstanceInitConfig... 2-14
3.2.5 EDMA3_RM_Param .. 2-17
3.2.6 EDMA3_RM_MiscParam... 2-17
3.2.7 EDMA3_RM_GblXbarToChanConfigParams... 2-17
3.2.8 EDMA3_RM_ResDesc... 2-18

3.3 API Specification ...2-21
3.4 API Usage Example...2-22
EDMA3 Resource Manager Porting ..3-31
4.1 Getting Started..3-32
4.2 Step-by-Step procedure for porting ..3-34

x

4.2.1 edma3_<PLATFORM_NAME>_cfg.c:..3-34
4.2.2 Make file for the Resource Manager...3-35

Tables

 xi

Tables

Table 1: Development Tools/components ...1-2-4

Table 2: Build Options ...1-2-8

Table 3: Symbolic Constants and Enumerated Data types Table for
common header file edma3_common.h ...2-2

Table 4: Symbolic Constants and Enumerated Data types Table for
EDMA3 Resource Manager Header file edma3_rm.h2-4

 1-1

Chapter 1

EDMA3 Resource Manager

Introduction

This chapter introduces the EDMA3 Resource Manager to the

user by providing a brief overview of the purpose and

construction of the EDMA3 Resource Manager along with

hardware and software environment specifics in the context of

EDMA3 Resource Manager Deployment.

 1-2

1.1 Overview

This section describes the functional scope of the EDMA3

Resource Manager and its feature set.

A brief definition of the component is provided at this point – its

main characteristics and purpose.

1.1.1 System Partitioning

EDMA3 peripheral supports data transfers between two memory

mapped devices. It supports EDMA as well as QDMA channels for

data transfer. This peripheral IP is being re-used in different SoCs

with only a few configuration changes like number of DMA and

QDMA channels supported, number of PARAM sets available etc.

The EDMA3 peripheral is used by other peripherals for their DMA

needs thus the EDMA3 driver needs to cater to the requirements

of device drivers of these peripherals as well as other application

software that may need to use the 3rd party DMA services.

The EDMA3 Resource Manager comprises of the following two

parts:

� Physical Resource Manager: This component is responsible

for the management of several resources within the EDMA3

peripheral like TCC codes, PARAM entry, DMA and QDMA

channels, all global EDMA3 registers, queues etc.

� Interrupt Manager: This component handles EDMA3

interrupts, which are registered with the underlying OS

interrupt handling mechanism by the user. Since interrupts

are associated with TCC codes in EDMA3 module, this module

provides the functionality of accepting application registration

callbacks for TCC codes and calls the callback functions upon

receipt of the given interrupt (TCC). Note that the

application/driver using the EDMA3 Resource Manager has to

register/unregister the Interrupt Handlers with the underlying

operating system. The Resource Manager does not do this by

itself.

EDMA3 Resource Manager Introduction

 I-1-3

1.1.2 Supported Services

Following are the services provided by the Physical Resource

Manager:

1.1.2.1 Allocation/de-allocation of EDMA3 resources: It provides interfaces that

allow applications to allocate and free EDMA3 resources:

� EDMA channels

� QDMA channels

� PARAM Entries

� TCC

 1-4

These resources shall be provided to the instance of the resource manager at

run time.

1.1.2.2 Global EDMA3 settings configuration: It provides an interface that can be

used by applications to configure global EDMA3 settings. For e.g. number of

resources (DMA/QDMA channels, TCCs, PaRAM sets) available, number of

Transfer controllers, queue priorities etc.

1.1.2.3 Binding of specific EDMA3 resources: It provides an interface that can be

used by applications to bind specific EDMA3 resources like EDMA or QDMA

channel with PaRAM Set entries.

1.1.2.4 Multiple RM Instances Support: It supports multiple instances of the

Resource Manager, running on the same processor, but managing

same/different sets of resources and tied to same/different shadow regions.

1.1.2.5 Read/Write a specific CC register: It provides APIs to read as well as write

on a specific Channel Controller Register.

1.1.2.6 Non-RTSC Environment Support: Resource Manager module should gets

built in non-RTSC environment also. All the CCS PJT files should come for non-

RTSC environment too.

1.1.2.7 IOCTL interface support: EDMA3 Resource Manager shall provide an IOCTL

interface for toggling the option whether PaRAM Sets should be cleared during

allocation or not. This interface could also be extended in future for other misc

requirements.

1.1.2.8 Provides Poll mode support: It also provides APIs which could be used by

users, working in Poll Mode. These users don’t rely upon the trasnfer

completion interrupts generated by the Channel controller, and instead, Poll

the IPR/IPRH register for the transfer completion interrupt bit.

1.1.2.9 Big Endian platforms support: EDMA3 Resource Manager can also be used

for big endian platforms.

Following are the services provided by the Interrupt Manager:

EDMA3 Resource Manager Introduction

 I-1-5

1.1.2.10 Error Interrupts Handling: It also handles error interrupts and

depending upon the nature of error, either calls a global application callback

or TCC callback with the appropriate error status. It provides APIs to

register/unregister these error interrupt handlers.

1.1.2.11 Registration and Un-registration of TCC callbacks: It provides

an interface that can be called by applications to register/un-register for TCC

callbacks. It handles EDMA3 interrupts and calls the respective TCC callback

function with appropriate status.

1.1.2.12 Map Cross bar events to the DMA channels: It provides and

interface than can be used to map the cross bar mapped events to the specific

DMA channel.

 2-1

Chapter 2

Installation Guide

This chapter discusses the EDMA3 Resource Manager

installation, how and what software and hardware components to

be availed in order to complete a successful installation of

EDMA3 Resource Manager.

 2-2

2.1 Component Folder

Upon installing the EDMA3 Resource Manager, the following

directory structure is found in the main directory.

Figure 1: EDMA3 Resource Manager Directory Structure

The sections below describe the folder contents:

edma3_lld_<<version_number>>

Top level installation directory. Contains the source code,

examples and the documents.

docs

Contains release notes for EDMA3 Driver and Resource

Manager.

eclipse

Contains eclipse related files for CCSv4.

examples

Contains the stand-alone applications for EDMA3 Driver

(for all the supported platforms) and the DAT example.

Installation Guide

 I-2-3

makerules

Contains the common makerules required to build the

libraries and the sample applications.

packages

All components (Driver, Resource Manager, sample OS-abstraction

layers etc) fall under packages/ti/sdo/edma3 directory, under their

individual directories. For e.g., EDMA3 Resource Manager lies under

packages/ti/sdo/edma3/rm folder, sample initialization library for EDMA3

Resource Manager lies under packages/ti/sdo/edma3/rm/sample folder

etc.

a) rm -> Top level folder for the Resource Manager

b) rm\docs -> User guide, datasheet etc.

c) rm\lib -> Resource Manager libraries for all the supported

platforms.

d) rm\package -> XDC related meta files for the module RM

e) rm\sample -> Sample code for how to use the Resource

Manager, along-with the pre-built libraries for the same.

f) rm\src -> Source files for Resource Manager.

Just to clarify, the sample folder inside the edma3/rm folder DOESN’T

contain the sample applications. It provides the:

a) Sample initialization code to properly configure the EDMA3 hardware,

and,

b) Sample OS abstraction layer to provide the OS-specific hooks to the

EDMA3 package.

This sample code is provided for reference purpose only. To start with,

the user is advised to use the sample code/library as it is, and later

modify/create his/her own initialization code, as per the requirements.

The stand-alone applications are provided in the top level examples

folder as mentioned above. Please note that these examples use the

above mentioned sample initialization/OS abstraction libraries and the

EDMA3 Driver libraries.

 2-4

2.2 Development Tools Environment(s)

This section describes the development tools environment(s) for

software development with EDMA3 Resource Manager. It

describes the tools used and their setup, for each supported

environment.

2.2.1 Development Tools

Describe here the tools that need to be installed, the installation

order and specific configuration. Including: 3rd party

components/ libraries, Operating system and auxiliary Tools.

Table 1: Development Tools/components

Development tool/
component

Version Comments

Code Composer Studio

(CCS)

5.4.0 IDE

C6x Code Gen Tools 7.4.1 Code generation utilities

TMS470 Code Gen Tools 5.0.2 Code generation utilities

DSP BIOS 6.35.01.29 Operating System

XDC tool chain 3.25.00.48 XDC tools

TCI6608/TCI6616 Simulator 1.0.0 Simulator

Installation Guide

 I-2-5

2.3 Installation Guide

This section describes the EDMA3 LLD installation and un-installation.

2.3.1 Installation and Usage Procedure

1) Install the products mentioned in the development tools requirements section,

as per instructions provided along with the products.

2) Install the EDMA3 package by untarring the tar.gz file into preferred

drive/folder.

3) After untarring, create an environment variable

“EDMA3LLD_BIOS6_INSTALLDIR” with its value as the current EDMA3

installation directory. This environment variable can be used by other users of

EDMA3 package for e.g. BIOS PSP drivers package.

2.3.2 Un-installation

1) Uninstall the EDMA3 package by simply deleting the install directory.

2) Un-install the products mentioned in the development tools requirements

section as per the instructions provided with the product.

 2-6

2.4 Integration Guide

This section describes the EDMA3 LLD package usage. The package provides

pre-built libraries for all the different components: Resource Manager along

with their sample initialization libraries etc. Moreover, demo applications are

also provided to check the basic functionality for the supported components.

2.4.1 Building EDMA3 Libraries

The EDMA3 package contains pre-built libraries for all EDMA3 components. But

user can also build them by following the below mentioned steps in case of source

code modification or some other specific use cases described below.

1) Install the products mentioned in the development tools requirements section

(section 2.2), as per instructions provided along with the products.

2) Change the variables in the makerules\env.mk as follows

a. INTERNAL_SW_ROOT: to the path where EDMA3LLD is installed

b. EXTERNAL_SW_ROOT: to the path of the top level directory where all the tools
mentioned in section 2.2 are installed. It is required that all the tools are located
within a single top level directory as all tools are accessed using relative paths
from this variable. Else each variable used for the location of each tool has to be
updated with its absolute path in makerules\env.mk

c. UTILS_INSTALL_DIR: to the path where any utility that has the make binary is
installed. It can be Cygwin/any utility that has the make compiled for win32 or it
can be xdc tools itself as it has make binary as gmake inside it. All illustrations
provided here after are for the gmake binary in xdc tools. One can simply use any
other utility also by pointing this variable to the install directory of that utility.

d. Always be sure not to have any spaces in the values populated for these
variables. If the file/folder name has spaces in between, then use the non-8dot3
file names.

3) Set the variables PATH and ROOTDIR in command prompt to the location where

make binary is available and EDMA3LLD is installed respectively, like

 Z:\edma3_lld_<<version_number>>\packages> set PATH=C:/PROGRA~1/TEXASI~1/xdctools_3_22_03_41

Z:\edma3_lld_<<version_number>>\packages> set ROOTDIR=C:/PROGRA~1/TEXASI~1/edma3_lld_02_11_03_01

4) Build the required libraries using the gmake command at the command prompt:

Example:

Z:\edma3_lld_<<version_number>>\packages> gmake libs FORMAT=ELF

Z:\edma3_lld_<<version_number>>\packages> gmake libs FORMAT=COFF

This command builds both the DRV and Resource Manager Libraries for all the

platforms mentioned in the top level make file.

Installation Guide

 I-2-7

5) In case of C66x based devices including TCI6608/TCI6616/C6670/C6678

following make command could be used to build. This will limit building binaries

only for C66x target

gmake -f makefile_c66x libs FORMAT=ELF

6) All EDMA3 public APIs provide a mechanism to disable input parameter

checking. This is intended to reduce the number of CPU cycles spent in the

parameter checking and hence provide more efficient libraries. To do that, user

has to modify the “make” file, found in the component base folder itself, and

re-build the libraries. By default, the parameter checking is enabled for all the

public APIs.

For e.g., following code snippet in the edma3\rm\make file is used to create the

EDMA3 Resource Manager libraries:

CFLAGS_LOCAL_COMMON = -mi10

By default, parameter checking is enabled in both Debug and Release modes

for all the public APIs. If user wants to disable the same in Release mode (for

example), he has to modify the above code as:

CFLAGS_LOCAL_COMMON = -mi10 -DEDMA3_RM_PARAM_CHECK_DISABLE

The Release mode library generated now will have input parameter check

disabled for all the public APIs. User is advised to use this configuration option

with caution.

7) All EDMA3 private functions use the standard C assert mechanism to

enable/disable input parameter checking. This is intended to reduce the number

of CPU cycles spent in the parameter checking and hence provide more efficient

libraries. To do that, user has to modify the “make” file, found in the

component base folder itself, and re-build the libraries. By default, the

parameter checking is enabled for all the private functions.

For e.g., following code snippet in the edma3\drv\make file is used to create

the EDMA3 Driver libraries:

CFLAGS_LOCAL_COMMON = -mi10

By default, parameter checking is enabled in both Debug and Release modes

for all the private functions. If user wants to disable the same in Release mode

(for example), he has to modify the above code as:

CFLAGS_LOCAL_COMMON = -mi10 -DNDEBUG

The Release mode library generated now will have input parameter check

disabled for all the private functions. User is advised to use this configuration

option with caution.

 2-8

2.4.2 Build Options

This section enumerates and describes alongside each of the allowed build options.

It also tells the default configurations available.

Build option Reference Default Configuration Description

EDMA3_INSTRUMENTATIO

N_ENABLED

Instrumentation disabled
To enable/disable Real

Time Instrumentation

support.

EDMA3_RM_PARAM_CHEC

K_DISABLE

Parameter checking enabled

(public APIs)

Disable parameter

checking for public APIs, if

required. See note 1

below.

NDEBUG Parameter checking enabled

(private functions)

Disable parameter

checking for private

functions, if required. See

note 2 below.

_BIG_ENDIAN NA
Used while building

libraries for Big Endian

platforms.

Table 2: Build Options

Note 1: All EDMA3 public APIs provide a mechanism to disable input parameter

checking. This is intended to reduce the number of CPU cycles spent in the parameter

checking and hence provide more efficient libraries. To do that, user has to modify the

build environment (for e.g. the make file), and re-build the libraries. By default, the

parameter checking is enabled for all the public APIs.

Note 2: All EDMA3 private functions use the standard C assert mechanism to

enable/disable input parameter checking. This is intended to reduce the number of

CPU cycles spent in the parameter checking and hence provide more efficient libraries.

To do that, user has to modify the build environment (for e.g. the make file), and re-

build the libraries. By default, the parameter checking is enabled for all the private

functions.

 1

Chapter 3

Run-Time

Interfaces/Integration Guide

This chapter discusses the EDMA3 Resource Manager run-time

interfaces that comprise the API specification & usage scenarios,

in association with its data types and structure definitions.

 2

3.1 Symbolic Constants and Enumerated Data types

This section summarizes all the symbolic constants specified as

either #define macros and/or enumerated C data types.

Described alongside the macro or enumeration is the semantics

or interpretation of the same in terms of what value it stands for

and what it means.

Table 3: Symbolic Constants and Enumerated Data types Table for common

header file edma3_common.h

Group or
Enumeration Class

Symbolic Constant Name Description or Evaluation

RM Global Defines EDMA3_RM_DEBUG This define is used to

enable/disable EDMA3 Driver

debug messages

 EDMA3_RM_PRINTF If EDMA3_RM_DEBUG is defined,

EDMA3_RM_PRINTF will be used to

print the debug messages on the

user specified output.

 EDMA3_RM_SOK EDMA3 Driver Result OK

 EDMA3_OSSEM_NO_TIMEOUT This define is used to specify a

blocking call without timeout while

requesting a semaphore.

EDMA3_MAX_

EDMA3_INSTANCES

Maximum EDMA3 Controllers on

the SoC

EDMA3_MAX_DMA_CH Maximum DMA channels supported

by the EDMA3 Controller

EDMA3_MAX_QDMA_CH Maximum QDMA channels

supported by the EDMA3

Controller

EDMA3_MAX_PARAM_SETS Maximum PaRAM Sets supported

by the EDMA3 Controller

EDMA3_MAX_LOGICAL_CH Maximum Logical channels

supported by the EDMA3 Package

EDMA3_MAX_TCC Maximum TCCs (Interrupt

Channels) supported by the

EDMA3 Controller

Defines used to

support the maximum

resources supported

by the EDMA3

controller. These are

used to allocate the

maximum memory

for different data

structures of the

EDMA3 Driver and

Resource Manager.

EDMA3_MAX_EVT_QUE Maximum Event Queues supported

by the EDMA3 Controller

Run-Time Interfaces/Integration Guide

 I-3

EDMA3_MAX_TC Maximum Transfer Controllers

supported by the EDMA3

Controller

EDMA3_MAX_REGIONS Maximum Shadow Regions

supported by the EDMA3

Controller

EDMA3_MAX_DMA_CHAN_DWRDS Maximum Words (4-bytes region)

required for the book-keeping

information specific to the

maximum possible DMA channels.

EDMA3_MAX_QDMA_CHAN_DWRDS Maximum Words (4-bytes region)

required for the book-keeping

information specific to the

maximum possible QDMA

channels.

EDMA3_MAX_PARAM_DWRDS Maximum Words (4-bytes region)

required for the book-keeping

information specific to the

maximum possible PaRAM Sets.

EDMA3_MAX_TCC_DWRDS Maximum Words (4-bytes region)

required for the book-keeping

information specific to the

maximum possible TCCs.

EDMA3_OS_PROTECT_INTERRUPT Protection from All Interrupts

required

EDMA3_OS_PROTECT_SCHEDULER Protection from scheduling

required

EDMA3_OS_PROTECT_INTERRUPT_XFER_

COMPLETION

Protection from EDMA3 Transfer

Completion Interrupt required

EDMA3_OS_PROTECT_INTERRUPT_CC_E

RROR

Protection from EDMA3 CC Error

Interrupt required

Defines for the level

of OS protection

needed when calling

edma3OsProtectXXX()

EDMA3_OS_PROTECT_INTERRUPT_TC_E

RROR

Protection from EDMA3 TC Error

Interrupt required

 4

Table 4: Symbolic Constants and Enumerated Data types Table for EDMA3

Resource Manager Header file edma3_rm.h

Group or
Enumeration Class

Symbolic Constant Name Description or Evaluation

Enum

EDMA3_RM_TccStat
us

EDMA3_RM_XFER_COMPLETE DMA Transfer successfully

completed (true completion mode)

or submitted to the TC (early

completion mode).

 EDMA3_RM_E_CC_DMA_EVT_MISS EDMA3 Channel Controller has

reported an error for DMA missed

event. It gets latched in the DMA

event missed register

(EMR/EMRH).

 EDMA3_RM_E_CC_QDMA_EVT_MISS EDMA3 Channel Controller has

reported an error for QDMA

missed event. It gets latched in

the QDMA event missed register

(QEMR).

Enum
EDMA3_RM_Global
Error

EDMA3_RM_E_CC_QUE_THRES_EXCEED The EDMA3CC error register

(CCERR) indicates whether or not

at any instant of time the number

of

events queued up in a particular

event queue exceeds or equals the

threshold/watermark value that is

set in the queue watermark

threshold register (QWMTHRA) for

that particular queue.

 EDMA3_RM_E_CC_TCC The EDMA3CC error register

(CCERR) indicates when the

number of outstanding TRs

(Transfer Requests) that have

been programmed to return

transfer completion code (TRs

which have the TCINTEN or

TCCHEN bit in OPT set to 1) to the

EDMA3CC has exceeded the

maximum allowed value of 63.

 EDMA3_RM_E_TC_MEM_LOCATION_REA

D_ERROR

Transfer Controller has reported a

Read error signaled by the source

or destination address.

 EDMA3_RM_E_TC_MEM_LOCATION_WRIT

E_ERROR

Transfer Controller has reported a

Write error signaled by the source

or destination address.

 EDMA3_RM_E_TC_INVALID_ADDR Transfer Controller has reported

an attempt to read or write to an

invalid address in the configuration

Run-Time Interfaces/Integration Guide

 I-5

memory map.

 EDMA3_RM_E_TC_TR_ERROR Transfer Controller has reported

that a Transfer Request has been

detected that violates FIFO mode

transfer (SAM or DAM is set to 1)

alignment rules (the

source/destination addresses and

source/destination indexes must

be aligned to 32 bytes) OR has

ACNT or

BCNT == 0.

Resource Manager
Error Codes

EDMA3_RM_E_OBJ_NOT_DELETED Before a Resource Manager Object

could be created, it must be in the

‘Deleted’ state. Since it is not yet

‘Deleted’, it cannot be created.

 EDMA3_RM_E_OBJ_NOT_CLOSED Before a Resource Manager Object

could be deleted, it must be in the

‘Closed’ state. Since it is not yet

‘Closed’, it cannot be deleted.

 EDMA3_RM_E_OBJ_NOT_OPENED Before a Resource Manager Object

could be closed, it must be in the

‘Opened’ state. Since it is not yet

‘Opened’, it cannot be closed.

 EDMA3_RM_E_INVALID_PARAM Invalid Parameter passed to

Resource Manager API.

 EDMA3_RM_E_RES_ALREADY_FREE Specific resource requested for

freeing is already free.

 EDMA3_RM_E_RES_NOT_OWNED Resource requested for

allocation/freeing is not owned by

the Resource Manager Instance.

 EDMA3_RM_E_SPECIFIED_RES_NOT_AVA

ILABLE

Specific resource requested for

allocation is not available.

 EDMA3_RM_E_ALL_RES_NOT_AVAILABLE No resource of the specified type

is available.

 EDMA3_RM_E_INVALID_STATE Resource Manager Object is in an

invalid state. For e.g., if number of

RM instances opened is more than

0 and less than the maximum

allowed, then RM Object state

should be ‘Opened’. If not, this

error is returned.

 EDMA3_RM_E_MAX_RM_INST_OPENED There could be a maximum of

EDMA3_RM_NUM_MAX_INSTANCE

S instances per EDMA3 Controller.

If maximum number of RM

Instances are already Opened, this

error is returned.

 EDMA3_RM_E_RM_MASTER_ALREADY_EX

ISTS

A Master Resource Manager

Instance is ONLY allowed to

 6

program the global

EDMA3 registers like Event Queues

Priority, Watermark threshold etc.

More than ONE Master Resource

Manager Instance is NOT

supported.

 EDMA3_RM_E_CALLBACK_ALREADY_REG

ISTERED

Callback function already

registered with the specified TCC.

 EDMA3_RM_E_FEATURE_UNSUPPORTED Hardware feature NOT supported

 EDMA3_RM_E_RES_NOT_ALLOCATED EDMA3 Resource NOT allocated

 EDMA3_RM_E_SEMAPHORE Semaphore related error

 EDMA3_RM_E_FEATURE_UNSUPPORTED Hardware feature NOT supported

 EDMA3_RM_E_RES_NOT_ALLOCATED EDMA3 Resource NOT allocated

Resource Manager
Global Defines

EDMA3_RM_RES_ANY It is used to specify any available

resource Id

(EDMA3_RM_ResDesc.resId) for

the specific type

(EDMA3_RM_ResDesc.type), while

requesting a resource.

 EDMA3_RM_DMA_CHANNEL_ANY Used to specify any available DMA

Channel while requesting one.

Used in the API

EDMA3_RM_allocLogicalChannel

(). DMA channel from the pool of

(owned && non_reserved &&

available_right_now) DMA

channels will be chosen and

returned.

 EDMA3_RM_QDMA_CHANNEL_ANY Used to specify any available

QDMA Channel while requesting

one. Used in the API

EDMA3_RM_allocLogicalChannel().

QDMA channel from the pool of

(owned && non_reserved &&

available_right_now) QDMA

channels will be chosen and

returned.

 EDMA3_RM_TCC_ANY Used to specify any available TCC

while requesting one. Used in the

API

EDMA3_RM_allocLogicalChannel(),

for both DMA and QDMA channels.

TCC from the pool of (owned &&

non_reserved &&

available_right_now) TCCs will be

chosen and returned.

 EDMA3_RM_PARAM_ANY Used to specify any available

PaRAM Set while requesting one.

Run-Time Interfaces/Integration Guide

 I-7

Used in the API

EDMA3_RM_allocLogicalChannel(),

for both DMA/QDMA and Link

channels. PaRAM Set from the

pool of (owned && non_reserved

&& available_right_now) PaRAM

Sets will be chosen and returned.

 EDMA3_RM_CH_NO_PARAM_MAP This define is used to specify that

a DMA channel is NOT tied to any

PaRAM Set and hence any

available PaRAM Set could be used

for that DMA channel. It could be

used in dmaChannelPaRAMMap

[EDMA3_MAX_DMA_CH], in global

configuration structure

EDMA3_RM_GblConfigParams.

This value should mandatorily be

used to mark DMA channels with

no initial mapping to specific

PaRAM Sets.

 EDMA3_RM_CH_NO_TCC_MAP This define is used to specify that

the DMA/QDMA channel is not tied

to any TCC and hence any

available TCC could be used for

that DMA/QDMA channel. It could

be used in dmaChannelTccMap

[EDMA3_MAX_DMA_CH], in global

configuration structure

EDMA3_RM_GblConfigParams.

This value should mandatorily be

used to mark DMA channels with

no initial mapping to specific TCCs.

Enum
EDMA3_RM_HW_C
HANNEL_EVENT

EDMA3_RM_HW_CHANNEL_EVENT_0 =

0,

EDMA3_RM_HW_CHANNEL_EVENT_1,

EDMA3_RM_HW_CHANNEL_EVENT_2,

.

.

.

.

DMA Channels assigned to

different Hardware Events. They

should be used while requesting a

specific DMA channel.

One possible usage is to maintain

a SoC specific file, which will

contain the mapping of these

hardware events to the respective

peripherals for better

understanding and lesser

probability of errors. Also, if any

event associated with a particular

peripheral gets changed, only that

SoC specific file needs to be

changed.

Enum
EDMA3_RM_ResTyp
e

EDMA3_RM_RES_DMA_CHANNEL EDMA3 DMA Channel resource

type.

 EDMA3_RM_RES_QDMA_CHANNEL EDMA3 QDMA Channel resource

type.

 8

 EDMA3_RM_RES_TCC EDMA3 TCC resource type.

 EDMA3_RM_RES_PARAM_SET EDMA3 PaRAM Set resource type.

Enum
EDMA3_RM_QdmaT
rigWord

EDMA3_RM_QDMA_TRIG_OPT Used to set the OPT field (Offset

Address 0h Bytes) of the PaRAM

Set as the QDMA trigger word.

 EDMA3_RM_QDMA_TRIG_SRC Used to set the Source Address

field (Offset Address 4h Bytes) of

the PaRAM Set as the QDMA

trigger word.

 EDMA3_RM_QDMA_TRIG_ACNT_BCNT Used to set the (ACNT+BCNT) field

(Offset Address 8h Bytes) of the

PaRAM Set as the QDMA trigger

word.

 EDMA3_RM_QDMA_TRIG_DST Used to set the Destination

Address field (Offset Address Ch

Bytes) of the PaRAM Set as the

QDMA trigger word.

 EDMA3_RM_QDMA_TRIG_SRC_DST_BIDX Used to set the

(SRCBIDX+DSTBIDX) field (Offset

Address 10h Bytes) of the PaRAM

Set as the QDMA trigger word.

 EDMA3_RM_QDMA_TRIG_LINK_BCNTRLD Used to set the (LINK+BCNTRLD)

field (Offset Address 14h Bytes) of

the PaRAM Set as the QDMA

trigger word.

 EDMA3_RM_QDMA_TRIG_SRC_DST_CIDX Used to set the

(SRCCIDX+DSTCIDX) field (Offset

Address 18h Bytes) of the PaRAM

Set as the QDMA trigger word.

 EDMA3_RM_QDMA_TRIG_CCNT Used to set the CCNT field (Offset

Address 1Ch Bytes) of the PaRAM

Set as the QDMA trigger word.

 EDMA3_RM_QDMA_TRIG_DEFAULT Used to set the CCNT field (Offset

Address 1Ch Bytes) of the PaRAM

Set as the default QDMA trigger

word.

EDMA3_RM_CC_PHY_ADDR Channel Controller Physical

Address

EDMA3_RM_TC0_PHY_ADDR Transfer Controller 0 Physical

Address

EDMA3_RM_TC0_PHY_ADDR Transfer Controller 1 Physical

Address

EDMA3_RM_TC0_PHY_ADDR Transfer Controller 2 Physical

Address

Enum
EDMA3_RM_Cntrlr_

PhyAddr

Use this enum to get

the physical address

of the Channel

Controller or the

Transfer Controller.

The address returned

could be used by the

advanced users to EDMA3_RM_TC0_PHY_ADDR Transfer Controller 3 Physical

Run-Time Interfaces/Integration Guide

 I-9

Address

EDMA3_RM_TC0_PHY_ADDR Transfer Controller 4 Physical

Address

EDMA3_RM_TC0_PHY_ADDR Transfer Controller 5 Physical

Address

EDMA3_RM_TC0_PHY_ADDR Transfer Controller 6 Physical

Address

set/get some specific

registers directly.

EDMA3_RM_TC0_PHY_ADDR Transfer Controller 7 Physical

Address

Enum
EDMA3_RM_IoctlC

md

EDMA3_RM_IOCTL_MIN_IOCTL EDMA3 Resource Manager IOCTL

commands. Min IOCTL.

 EDMA3_RM_IOCTL_SET_PARAM_CLEAR_

OPTION

PaRAM Sets will be cleared OR will

not be cleared during allocation,

depending upon this option.

For e.g., To clear the PaRAM Sets

during allocation,

cmdArg = (void *)1;

To NOT clear the PaRAM Sets

during allocation,

cmdArg = (void *)0;

For all other values, it will return

error.

By default, PaRAM Sets will be

cleared during allocation.

Note: Since this enum can change

the behavior how the resources

are initialized during their

allocation, user is advised to not

use this command while allocating

the resources. User should first

change the behavior of resources'

initialization and then should use

start allocating resources.

 EDMA3_RM_IOCTL_GET_PARAM_CLEAR_

OPTION

To check whether PaRAM Sets will

be cleared or not during allocation.

If the value read is '1', it means

that PaRAM Sets are getting

cleared during allocation.

If the value read is '0', it means

that PaRAM Sets are NOT getting

cleared during allocation.

For e.g.,

unsigned short

isParamClearingDone;

cmdArg =

¶mClearingRequired;

 EDMA3_RM_IOCTL_SET_GBL_REG_MODI Global EDMA3 registers

 10

FY_OPTION (DCHMAP/QCHMAP) and PaRAM

Sets will be modified OR will not

be modified during

EDMA3_RM_allocLogicalChannel

(), depending upon this option.

For e.g.,

To modify the Registers or PaRAM

Sets during allocation,

cmdArg = (void *)1;

To NOT modify the Registers or

PaRAM Sets during allocation,

cmdArg = (void *)0;

For all other values, it will return

error.

By default, Registers or PaRAM

Sets will be programmed during

allocation.

Note: Since this enum can change

the behavior how the resources

are initialized during their

allocation, user is advised to not

use this command while allocating

the resources. User should first

change the behavior of resources'

initialization and then should use

start allocating resources.

 EDMA3_RM_IOCTL_GET_GBL_REG_MODI

FY_OPTION

To check whether Global EDMA3

registers (DCHMAP/QCHMAP) and

PaRAM Sets will be programmed

or not during allocation

(EDMA3_RM_allocLogicalChannel

()).

If the value read is '1', it means

that the registers/PaRAMs are

getting programmed during

allocation.

If the value read is '0', it means

that the registers/PaRAMs are NOT

getting programmed during

allocation.

For e.g.,

unsigned int

*isParamClearingDone =

(unsigned int *)cmdArg;

(*isParamClearingDone) =

paramClearingRequired;

Run-Time Interfaces/Integration Guide

 I-11

 EDMA3_RM_IOCTL_MAX_IOCTL Max IOCTL.

 12

3.2 Data Structures

This section summarizes the entire user visible data structure

elements pertaining to the EDMA3 Resource Manager run-time

interfaces.

3.2.1 RM Global Error Callback

It caters to module events like bus error, queue threshold

exceeded etc which are not channel specific. gblerrData is

application provided data when opening the Resource Manager

Instance. It runs in the ISR context.

3.2.2 EDMA3_RM_GblErrCallbackParams

It consists of the Global Error Callback function and the data to

be passed to it.

3.2.3 EDMA3_RM_GblConfigParams

This configuration structure is used to specify the EDMA3

Resource Manager global settings, specific to the SoC. For e.g.

number of DMA/QDMA channels, number of PaRAM sets, TCCs,

event queues, transfer controllers, base addresses of CC global

registers and TC registers, interrupt number for EDMA3 transfer

completion, CC error, event queues’ priority, watermark

threshold level etc.

This configuration information is SoC specific and could be

provided by the user at run-time while creating the EDMA3 Driver

Object. In case user doesn’t provide it, this information could be

taken from the SoC specific configuration file

edma3_<SOC_NAME>_cfg.c, in case it is available.

Member Description

numDmaChannels Number of DMA Channels supported by the underlying

EDMA3 Controller

numQdmaChannels Number of QDMA Channels supported by the underlying

EDMA3 Controller

numTccs Number of Interrupt Channels supported by the

underlying EDMA3 Controller

numPaRAMSets Number of PaRAM Sets supported by the underlying

EDMA3 Controller

Run-Time Interfaces/Integration Guide

 I-13

numEvtQueue Number of Event Queues in the underlying EDMA3

Controller

numTcs Number of Transfer Controllers (TCs) in the underlying

EDMA3 Controller

numRegions Number of Regions in the underlying EDMA3 controller

dmaChPaRAMMapExists Channel mapping existence:

A value of 0 (No channel mapping) implies that there is

fixed association between a DMA channel and a PaRAM

Set or, in other words, DMA channel n can ONLY use

PaRAM Set n (No availability of DCHMAP registers) for

transfers to happen.

A value of 1 implies the presence of DCHMAP registers

for the DMA channels and hence the flexibility of

associating any DMA channel to any PaRAM Set. In other

words, ANY PaRAM Set can be used for ANY DMA channel

(like QDMA Channels).

memProtectionExists Existence of memory protection feature

globalRegs Base address of EDMA3 CC memory mapped registers.

tcRegs[EDMA3_MAX_TC] Base address of EDMA3 TCs memory mapped registers.

xferCompleteInt EDMA3 transfer completion interrupt line (could be

different for ARM and DSP)

ccError EDMA3 CC error interrupt line (could be different for ARM

and DSP)

tcError[EDMA3_MAX_TC] EDMA3 TCs error interrupt line (could be different for

ARM and DSP)

evtQPri

[EDMA3_MAX_EVT_QUE]

User can program the priority of the Event Queues at a

system-wide level. This means that the user can set the

priority of an IO initiated by either of the TCs (Transfer

Controllers) relative to IO initiated by the other bus

masters on the device (ARM, DSP, USB, etc).

evtQueueWaterMarkLvl

[EDMA3_MAX_EVT_QUE]

To Configure the Threshold level of number of events

that can be queued up in the Event queues. EDMA3CC

error register (CCERR) will indicate whether or not at any

instant of time the number of events queued up in any of

the event queues exceeds or equals the

threshold/watermark value that is set in the queue

watermark threshold register (QWMTHRA).

tcDefaultBurstSize[EDMA3

_MAX_TC]

To Configure the Default Burst Size (DBS) of TCs. An

optimally-sized command is defined by the transfer

controller default burst size (DBS). Different TCs can

have different DBS values. It is defined in Bytes.

 14

dmaChannelPaRAMMap

[EDMA3_MAX_DMA_CH]

If channel mapping exists (DCHMAP registers are

present), this array stores the respective PaRAM Set for

each DMA channel. User can initialize each array member

with a specific PaRAM Set or with

EDMA3_RM_CH_NO_PARAM_MAP.

If channel mapping doesn’t exist, it is of no use as the

EDMA3 driver automatically uses the right PaRAM Set for

that DMA channel.

dmaChannelTccMap

[EDMA3_MAX_DMA_CH]

This array stores the respective TCC (interrupt channel)

for each DMA channel. User can initialize each array

member with a specific TCC or with

EDMA3_RM_CH_NO_TCC_MAP. This specific TCC code

will be returned when the transfer is completed on the

mapped DMA channel.

dmaChannelHwEvtMap

[EDMA3_MAX_DMA_CHAN

_DWRDS]

Each bit in this array corresponds to one DMA channel

and tells whether this DMA channel is tied to any

peripheral. That is whether any peripheral can send the

synch event on this DMA channel or not.

1 means the channel is tied to some peripheral; 0 means

it is not.

DMA channels which are tied to some peripheral are

RESERVED for that peripheral only. They are not

allocated when user asks for ‘ANY’ DMA channel.

All channels need not be mapped, some can be free also.

3.2.4 EDMA3_RM_InstanceInitConfig

This configuration structure is used to specify which EDMA3 resources

are owned and reserved by the EDMA3 driver instance. This

configuration structure is shadow region specific and will be provided by

the user at run-time while calling EDMA3_RM_open ().

Owned resources:

EDMA3 Driver Instances are tied to different shadow regions and hence

different masters. Regions could be:

a) ARM,

b) DSP,

c) IMCOP (Imaging Co-processor) etc.

Run-Time Interfaces/Integration Guide

 I-15

User can assign each EDMA3 resource to a shadow region using this

structure. In this way, user specifies which resources are owned by the

specific EDMA3 Driver Instance.

This assignment should also ensure that the same resource is not

assigned to more than one shadow regions (unless desired in that way).

Any assignment not following the above mentioned approach may have

catastrophic consequences.

Reserved resources:

During EDMA3 driver initialization, user can reserve some of the EDMA3

resources for future use, by specifying which resources to reserve in the

configuration data structure. These (critical) resources are reserved in

advance so that they should not be allocated to someone else and thus

could be used in future for some specific purpose.

User can request different EDMA3 resources using two methods:

a) by passing the resource type and the actual resource id,

b) by passing the resource type and ANY as resource id

For e.g. to request DMA channel 31, user will pass 31 as the resource id.

But to request ANY available DMA channel (mainly used for memory-to-

memory data transfer operations), user will pass

EDMA3_RM_DMA_CHANNEL_ANY as the resource id.

During initialization, user may have reserved some of the DMA channels

for some specific purpose (mainly for peripherals using EDMA). These

reserved DMA channels then will not be returned when user requests

ANY as the resource id.

Same logic applies for QDMA channels and TCCs.

For PaRAM Set, there is one difference. If the DMA channels are one-to-one tied

to their respective PaRAM Sets (i.e. user cannot ‘choose’ the PaRAM Set for a

particular DMA channel), EDMA3 Driver automatically reserves all those PaRAM

Sets which are tied to the DMA channels. Then those PaRAM Sets would not be

returned when user requests for ANY PaRAM Set (specifically for linking

purpose). This is done in order to avoid allocating the PaRAM Set, tied to a

particular DMA channel, for linking purpose. If this constraint is not there, that

DMA channel thus could not be used at all, because of the unavailability of the

desired PaRAM Set.

Member Description

ownPaRAMSets

[EDMA3_MAX_PARAM_DWRDS]

PaRAM Sets owned by the EDMA3 Driver

Instance.

ownDmaChannels

[EDMA3_MAX_DMA_CHAN_DWRDS]

DMA channels owned by the EDMA3 Driver

Instance.

ownQdmaChannels QDMA channels owned by the EDMA3 Driver

 16

[EDMA3_MAX_QDMA_CHAN_DWRDS] Instance.

ownTccs [EDMA3_MAX_TCC_DWRDS] TCCs owned by the EDMA3 Driver Instance.

resvdPaRAMSets

[EDMA3_MAX_PARAM_DWRDS]

PaRAM Sets reserved during initialization for

future use. These will not be given when user

requests for ANY available PaRAM Set using

'EDMA3_RM_LINK_CHANNEL' as

resource/channel id.

resvdDmaChannels

[EDMA3_MAX_DMA_CHAN_DWRDS]

DMA channels reserved during initialization for

future use. These will not be given when user

requests for ANY available DMA channel using

'EDMA3_RM_DMA_CHANNEL_ANY' as

resource/channel id.

resvdQdmaChannels

[EDMA3_MAX_QDMA_CHAN_DWRDS]

QDMA channels reserved during initialization

for future use. These will not be given when

user requests for ANY available QDMA channel

using 'EDMA3_RM_QDMA_CHANNEL_ANY' as

resource/channel id.

resvdTccs

[EDMA3_MAX_TCC_DWRDS]

TCCs reserved during initialization for future

use. These will not be given when user

requests for ANY available TCC using

'EDMA3_RM_TCC_ANY' as resource/TCC id.

Run-Time Interfaces/Integration Guide

 I-17

3.2.5 EDMA3_RM_Param

This configuration structure is used to initialize the Resource

Manager Instance (Master or Slave). It consists of the Instance

(shadow region) specific configuration, like resources owned and

reserved by this Instance, region id, global error callback

parameters, instance specific semaphore handle, whether this

instance is master or not etc. Only the master instance will

receive the interrupts from the EDMA3 controller, if interrupts are

enabled.

3.2.6 EDMA3_RM_MiscParam

This configuration structure is used to specify some miscellaneous

options while creating the Resource Manager object. New options may

also be added into this structure in future.

Member Description

isSlave In a multi-master system (for e.g. ARM + DSP), this option is used to

distinguish between Master and Slave. Only the Master is allowed to

program the global EDMA3 registers (like Queue priority, Queue water-

mark level, error registers etc).

param For future use

3.2.7 EDMA3_RM_GblXbarToChanConfigParams

This configuration structure is used to map the cross bar events

to DMA channels. This setting is done at initialization time. For

the cross bar event if the DMA channel is to be mapped then DMA

channel number is stored in the event array location, otherwise -

1 is written.

 18

3.2.8 EDMA3_RM_ResDesc

This structure is used to specify an EDMA3 resource object i.e.

the resource type (DMA / QDMA / PaRAM Set / TCC) and the

resource Id. The handle of this object is used while

allocating/freeing the resources.

+EDMA3_RM_create() : EDMA3_RM_Result

+numDmaChannels : unsigned int

+numDmaChannels : unsigned int

+numTccs : unsigned int

+numPaRAMSets : unsigned int

+numEvtQueue : unsigned int

+numTcs : unsigned int

+numRegions : unsigned int

+dmaChPaRAMMapExists : unsigned short

+memProtectionExists : unsigned short

+*globalRegs : void

+*tcRegs [] : void

+xferCompleteInt : unsigned int

+ccError : unsigned int

+tcError [] : unsigned int

+evtQPri [] : unsigned int

+evtQueueWaterMarkLvl [] : unsigned int

+tcDefaultBurstSize [] : unsigned int

+dmaChannelPaRAMMap [] : unsigned int

+dmaChannelTccMap [] : unsigned int

+dmaChannelHwEvtMap [] : unsigned int

«struct»

EDMA3_RM_GblConfigParams

Run-Time Interfaces/Integration Guide

 I-19

+ownPaRAMSets [] : unsigned int

+ownDmaChannels [] : unsigned int

+ownQdmaChannels [] : unsigned int

+ownTccs [] : unsigned int

+resvdPaRAMSets [] : unsigned int

+resvdDmaChannels [] : unsigned int

+resvdQdmaChannels [] : unsigned int

+resvdTccs [] : unsigned int

«struct»

EDMA3_RM_InstanceInitConfig
+gblerrCb : EDMA3_RM_GblErrCallbackParams

+*gblerrData : void

«struct»EDMA3_RM_GblErrCallbackParams

+EDMA3_RM_open() : EDMA3_RM_Handle

+regionId : EDMA3_RM_RegionId

+isMaster : unsigned short

+rmInstInitConfig : EDMA3_RM_InstanceInitConfig

+regionInitEnable : unsigned short

+gblerrCbParams : EDMA3_RM_GblErrCallbackParams

«struct»

EDMA3_RM_Param

 20

Run-Time Interfaces/Integration Guide

 I-21

3.3 API Specification

The application programming interface (API) for the EDMA3

Resource Manager can be found at:

EDMA3_Resource_Manager.chm

 22

3.4 API Usage Example

Below is a flow-chart describing the steps required to create the

Resource Manager Object and then initialize a region specific

Resource Manager Instance.

After the successful opening, the RM instance can be used to call

other RM APIs.

Run-Time Interfaces/Integration Guide

 I-23

/ * Af terwards, C lose the RM Instance * /

rmResul t = EDMA3_RM_close(hResMgr, NULL) ;

/ * Create a RM Instance t ied to a spec i f ic reg ion, pass ing a l l the requi red conf igurat ion in fo in
in i tParam * /

hResMgr = EDMA3_RM_open (edmaInstanceId, (EDMA3_RM_Param *)&in i tParam, & rmErrorCode) ;

i f (rmResul t == EDMA3_RM_SOK)

i f (NULL != hResMgr) re tu rn rmErrorCode;

return rmResul t ;

==

!=

!=

==

==

!=

/ * Create the Resource Manager Object for the spec i f ic EDMA3
Hardware instance phyCtr l ler Inst Id * /

resu l t = EDMA3_RM_create (phyCtr l le r Inst Id , g lobalCfgParams,
NULL) ;

I f (resu l t == EDMA3_RM_SOK)

/ *RM Instance Successfu l ly Opened * /
/ * Use the RM handle re turned hResMgr to
ca l l o ther RM APIs * /

/ * In the end, Delete the RM Object * /

resu l t = EDMA3_RM_delete (phyCtr l ler Inst Id , NULL) ;

re turn resul t ;

re tu rn resul t ;

!=

 24

Below is the sample configuration of the Resource Manager Object, tied to a

specific EDMA3 hardware. This configuration information is EDMA3 controller

specific and needs to be passed while calling the API EDMA3_RM_create ().

Also, sample configuration for Resource Manager Instance is also provided

which could be passed in EDMA3_RM_open ().

Run-Time Interfaces/Integration Guide

 I-25

/* Driver Object Initialization Configuration */

EDMA3_RM_GblConfigParams globalCfgParams =
 {
 /** Total number of DMA Channels supported by the EDMA3 Controller */
 32u,
 /** Total number of QDMA Channels supported by the EDMA3 Controller */
 8u,
 /** Total number of TCCs supported by the EDMA3 Controller */
 32u,
 /** Total number of PaRAM Sets supported by the EDMA3 Controller */
 128u,
 /** Total number of Event Queues in the EDMA3 Controller */
 2u,
 /** Total number of Transfer Controllers (TCs) in the EDMA3 Controller */
 2u,
 /** Number of Regions on this EDMA3 controller */
 4u,

 /**
 * \brief Channel mapping existence
 * A value of 0 (No channel mapping) implies that there is fixed association
 * for a channel number to a parameter entry number or, in other words,
 * PaRAM entry n corresponds to channel n.
 */
 0u,
 /** Existence of memory protection feature */
 0u,

 /** Global Register Region of CC Registers */
 (void *)0x01C00000u,
 /** Transfer Controller (TC) Registers */
 {

 (void *)0x01C10000u,
 (void *)0x01C10400u,
 (void *)NULL,
 (void *)NULL,
 (void *)NULL,
 (void *)NULL,
 (void *)NULL,
 (void *)NULL
 },

 /** Interrupt no. for Transfer Completion */
 8u,

 /** Interrupt no. for CC Error */
 56u,

 /** Interrupt no. for TCs Error */
 {
 57u,
 58u,
 0u,
 0u,
 0u,
 0u,
 0u,
 0u,
 },

 26

 /**
 * \brief EDMA3 TC priority setting
 *
 * User can program the priority of the Event Queues
 * at a system-wide level. This means that the user can set the
 * priority of an IO initiated by either of the TCs (Transfer Controllers)
 * relative to IO initiated by the other bus masters on the
 * device (ARM, DSP, USB, etc)
 */
 {
 0u,
 1u,

 0u,
 0u,
 0u,
 0u,
 0u,
 0u
 },
 /**
 * \brief To Configure the Threshold level of number of events that can be queued up in the Event queues.
EDMA3CC error register (CCERR) will indicate whether or not at any instant of time the number of events queued
up in any of the event queues exceeds or equals the threshold/watermark value that is set in the queue
watermark threshold register (QWMTHRA).
 */
 {
 16u,
 16u,
 0u,
 0u,
 0u,
 0u,
 0u,
 0u
 },
 /**
 * \brief To Configure the Default Burst Size (DBS) of TCs.
 * An optimally-sized command is defined by the transfer controller
 * default burst size (DBS). Different TCs can have different
 * DBS values. It is defined in Bytes.
 */
 {
 16u,
 16u,
 0u,
 0u,
 0u,
 0u,
 0u,
 0u
 },
 /**
 * \brief Mapping from each DMA channel to a Parameter RAM set,
 * if it exists, otherwise of no use.
 */
 {
 0u, 1u, 2u, 3u,

 4u, 5u, 6u, 7u,
 8u, 9u, 10u, 11u,
 12u, 13u, 14u, 15u,
 16u, 17u, 18u, 19u,
 20u, 21u, 22u, 23u,
 24u, 25u, 26u, 27u,
 28u, 29u, 30u, 31u,

Run-Time Interfaces/Integration Guide

 I-27

 /* DMA channels 32-63 DOES NOT exist in DA830. */
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS,
 EDMA3_MAX_PARAM_SETS, EDMA3_MAX_PARAM_SETS
 },

 /**
 * \brief Mapping from each DMA channel to a TCC. This specific
 * TCC code will be returned when the transfer is completed
 * on the mapped channel.
 */
 {
 0u, 1u, 2u, 3u,
 4u, 5u, 6u, 7u,
 8u, 9u, 10u, 11u,
 12u, 13u, 14u, 15u,
 16u, 17u, 18u, 19u,
 20u, 21u, EDMA3_RM_CH_NO_TCC_MAP, EDMA3_RM_CH_NO_TCC_MAP,
 24u, 25u, 26u, 27u,
 EDMA3_RM_CH_NO_TCC_MAP, EDMA3_RM_CH_NO_TCC_MAP, 30, 31,
 /* DMA channels 32-63 DOES NOT exist in DA830. */
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC,
 EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC, EDMA3_MAX_TCC
 },

 /**
 * \brief Mapping of DMA channels to Hardware Events from
 * various peripherals, which use EDMA for data transfer.
 * All channels need not be mapped, some can be free also.
 */
 {
 0xCF3FFFFFu,
 0x0u
 }
 };

 28

/* Driver Instance Initialization Configuration */
EDMA3_RM_InstanceInitConfig sampleInstInitConfig =
 {
 /* Resources owned by Region 1 */
 /* ownPaRAMSets */
 /* 31 0 63 32 95 64 127 96 */
 {0xFFFFFFFFu, 0xFFFFFFFFu, 0xFFFFFFFFu, 0xFFFFFFFFu,
 /* 159 128 191 160 223 192 255 224 */
 0x00000000u, 0x00000000u, 0x00000000u, 0x00000000u,
 /* 287 256 319 288 351 320 383 352 */
 0x00000000u, 0x00000000u, 0x00000000u, 0x00000000u,
 /* 415 384 447 416 479 448 511 480 */
 0x00000000u, 0x00000000u, 0x00000000u, 0x00000000u,},

 /* ownDmaChannels */
 /* 31 0 63 32 */
 {0xFFFFFFFFu, 0x00000000u},

 /* ownQdmaChannels */
 /* 31 0 */
 {0x000000FFu},

 /* ownTccs */
 /* 31 0 63 32 */
 {0xFFFFFFFFu, 0x00000000u},

 /* Resources reserved by Region 1 */

 /* resvdPaRAMSets */
 /* 31 0 63 32 95 64 127 96 */
 {0xFFFFFFFFu, 0x00000000u, 0x00000000u, 0x00000000u,
 /* 159 128 191 160 223 192 255 224 */
 0x00000000u, 0x00000000u, 0x00000000u, 0x00000000u,
 /* 287 256 319 288 351 320 383 352 */
 0x00000000u, 0x00000000u, 0x00000000u, 0x00000000u,
 /* 415 384 447 416 479 448 511 480 */
 0x00000000u, 0x00000000u, 0x00000000u, 0x00000000u,},

 /* resvdDmaChannels */
 /* 31 0 */
 {EDMA3_DMA_CHANNEL_TO_EVENT_MAPPING_0,
 /* 63 32 */
 EDMA3_DMA_CHANNEL_TO_EVENT_MAPPING_0},

 /* resvdQdmaChannels */
 /* 31 0 */
 {0x00000000u},

 /* resvdTccs */
 /* 31 0 */
 {EDMA3_DMA_CHANNEL_TO_EVENT_MAPPING_0,
 /* 63 32 */
 EDMA3_DMA_CHANNEL_TO_EVENT_MAPPING_0},
 };

Run-Time Interfaces/Integration Guide

 I-29

EDMA3_DRV_GblXbarToChanConfigParams sampleXbarChanInitConfig=
/* Event to channel map for region 0 */
 {
 -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, -1, -1, -1, -1, -1
 }

/* End of File */

 30

Below is the sample configuration of the Resource Manager instance,

operating on shadow region 1 as a slave. So this Resource Manager instance

will not receive any interrupts from the EDMA3 controller. To receive the

interrupts on a specific region (or Master), one has to open the Resource

Manager instance as Master (only ONCE), i.e. set isMaster as TRUE.

/* Create a RM Instance t ied to a speci f ic region, passing a l l the required configurat ion info.
For eg, * /

 in i tParam.regionId = (EDMA3_RM_RegionId) 1u;
 in i tParam. isMaster = FALSE;
 in i tParam.regionIn i tEnable = TRUE;

 / * Create a semaphore */
 rmResul t = edma3OsSemCreate (1, &semAtt rs, &in i tParam.rmSemHandle);
 i f (rmResul t != EDMA3_DVR_SOK)
 {
 return rmResul t ;
 }

 in i tParam.gblerrCbParams.gblerrCb = (EDMA3_RM_GblErrCal lback)NULL;
 in i tParam.gblerrCbParams.gblerrData = (void *)NULL;

 / * 4 DMA channels are owned by th is RM instance */
 in i tParam.rmInst In i tConfig.ownDmaChannels[0] = (uns igned int)0x0u;
 in i tParam.rmInst In i tConfig.ownDmaChannels[1] = 0x000Fu;
 in i tParam.rmInst In i tConfig.resvdDmaChannels [0] = 0x0u;
 in i tParam.rmInst In i tConfig.resvdDmaChannels [1] = 0x0u;

 / * 1 QDMA channel are owned by th is RM instance * /
 in i tParam.rmInst In i tConfig.ownQdmaChannels [0] = 0x0080u;
 in i tParam.rmInst In i tConfig.resvdQdmaChannels[0] = 0x0u;

 / * 4 PARAM Sets are owned by th is RM instance * /
 for (resMgrIdx = 0u; resMgrIdx < 16u; ++resMgrIdx)
 {
 in i tParam.rmInst In i tConf ig.ownPaRAMSets[resMgrIdx] = 0x0u;
 in i tParam.rmInst In i tConf ig. resvdPaRAMSets[resMgrIdx] = 0x0u;
 }
 in i tParam.rmInst In i tConfig.ownPaRAMSets[1] = 0x000Fu;

 / * 4 TCCs are owned by th is RM instance * /
 in i tParam.rmInst In i tConfig.ownTccs[0] = 0x0u;
 in i tParam.rmInst In i tConfig.ownTccs[1] = 0x000Fu;
 in i tParam.rmInst In i tConfig.resvdTccs[0] = 0x0u;
 in i tParam.rmInst In i tConfig.resvdTccs[1] = 0x0u;

 / * Now Open the RM Instance * /

 hResMgr = EDMA3_RM_open (edmaInstanceId, (EDMA3_RM_Param *)&in i tParam,
&rmErrorCode);

 i f (NULL == hResMgr)
 {
i fdef EDMA3_RM_DEBUG
 EDMA3_RM_PRINTF ("RM Instance Open Fai led\n") ;
#endi f
 return ;
 }

EDMA3 Resource Manager Porting

 I-31

Chapter 4

EDMA3 Resource Manager

Porting

This chapter discusses how to port EDMA3 Resource Manager

to other supported target platforms.

 32

4.1 Getting Started

The EDMA3 Resource Manager is based upon PSP Framework

architecture making portability and re-usability as prime requirements.

Based upon the architecture, the EDMA3 Resource Manager is made like

it can be ported to another platform very easily. EDMA3 Resource

Manager itself is completely platform independent. So for its proper

functioning, user has to provide the platform specific configuration,

which the Resource Manager will use for managing all the resources.

The platform specific configuration can be provided in two ways:

a) Provide the configuration during init time only while calling the APIs:

EDMA3_RM_create () (for providing the global hardware specific

configuration) and EDMA3_RM_open () (for providing the shadow

regions specific configuration), OR,

b) Create the platform specific configuration file

“edma3_<PLATFORM_NAME>_cfg.c” in

“edma3_lld_<VERSION_NUMBER>\packages\ti\sdo\edma3\rm\src\c

onfigs” folder, if it is not already there. Use this configuration file as

input and generate the required platform specific library.

Support is already provided for multiple platforms. To port to a new

platform, user is advised to look the existing files.

Also, the EDMA3 Resource Manager module is completely OS-agnostic,

for make it’s porting to a different OS completely hassle-free. It is

designed in such a way that the OS dependent part has to be provided

by the user for its proper functioning. This is done in order to make the

it OS independent.

The following OS dependent part of the EDMA3 Package has to be

provided by the user:

a) Critical section entry and exit functions: They should be

implemented by the application for proper linking with the EDMA3

RM. It uses these functions for proper sharing of resources (among

various users) and for other purposes and assumes the

implementation of these functions to be provided by the application.

Without the definitions being provided, the image won’t get linked

properly.

/** Entry to critical section */

 extern void edma3OsProtectEntry (unsigned int

edma3InstanceId, int level, unsigned int *intState);

/** Exit from critical section */

 extern void edma3OsProtectExit (unsigned int edma3InstanceId,

int level, unsigned int intState);

EDMA3 Resource Manager Porting

 I-33

These APIs should be mandatorily implemented once by the

global initialization routine or by the user itself, for proper

linking.

b) Semaphore related functions: They should be implemented by the

application for proper linking with Resource Manager. The EDMA3

Resource Manager uses these functions for proper sharing of

resources (among various users) and assumes the implementation of

these functions to be provided by the application. Without the

definitions being provided, the image won’t get linked properly.

/** EDMA3 OS Semaphore Take */

extern EDMA3_RM_Result edma3OsSemTake

(EDMA3_OS_Sem_Handle hSem, int mSecTimeout);

/** EDMA3 OS Semaphore Give */

extern EDMA3_RM_Result edma3OsSemGive

(EDMA3_OS_Sem_Handle hSem);

c) Interrupts registration and un-registration: It is not done by the

Resource Manager. The application which is using it should register

the various Interrupt Handlers (ISRs in Resource Manager) with the

underlying OS on which it is running. Similarly, the application

should un-register the previously registered Interrupt Handlers when

the Resource Manager instance is no more required.

Public header file

“edma3_lld_<VERSION_NUMBER>\packages\ti\sdo\edma3\rm\edma3_c

ommon.h” contains all the OS dependent part which needs to be

provided by the user application.

Sample initialization libraries are already provided for multiple

platforms which provide the DSP/BIOS 6 side OS adaptation

layer implementation and platform specific configuration for

proper functioning of the EDMA3 Resource Manager. User is

encouraged to look at them and use them in the porting activity.

 34

4.2 Step-by-Step procedure for porting

This section provides illustrative description on how to port the

EDMA3 Resource Manager to the selected platform and the OS.

4.2.1 edma3_<PLATFORM_NAME>_cfg.c:

EDMA3_RM_GblConfigParams is the initialization structure which

is used to specify the EDMA3 Hardware specific global settings,

specific to the SoC. For e.g. number of DMA/QDMA channels,

number of PaRAM sets, TCCs, event queues, transfer controllers,

base addresses of CC global registers and TC registers, interrupt

number for EDMA3 transfer completion, CC error, event queues’

priority, watermark threshold level etc. This configuration

information is SoC specific and could be provided by the user at

run-time also while creating the EDMA3 Resource Manager

object. In case user doesn’t provide it, this information will be

taken from the configuration file, in case it is available for the

specific SoC.

Similarly, EDMA3_RM_InstanceInitConfig is the initialization

structure which is used to specify the EDMA3 Resource Manager

Region specific settings. For e.g. resources (DMA/QDMA

channels, PaRAM sets, TCCs) owned and reserved by this EDMA3

driver instance. This configuration information is shadow region

(or master) specific and could be provided by the user at run-

time while creating the EDMA3 Resource Manager instance. In

case user doesn’t provide it, this information will be taken from

the configuration file, in case it is available for the specific SoC

for the specific shadow region.

To summarize, this file contains the global and region specific

configuration information for EDMA3 for the specific platform.

User can create this file by adding the desired information for the

new SoC, or he/she can provide this info at init-time.

User can find the sample configuration files for different platforms

at:

“edma3_lld_<VERSION_NUMBER>\packages\ti\sdo\edma3\rm\sr

c\configs”. On the same lines, user can create different

configuration file for another platform.

EDMA3 Resource Manager Porting

 I-35

4.2.2 Make file for the Resource Manager

Platform specific EDMA3 configuration file will be included as a

source file in the make file. The make file has many variables

which will be used to generate the platform specific Resource

Manager libraries.

User can find the make file at

“edma3_lld_<VERSION_NUMBER>\packages\ti\sdo\edma3\rm\”

and modify it appropriately to add support for the desired

platform.

User will also be required to modify the files in the makerules

directory in the EDMA3_LLD_INSTALLDIR to add complete

support to that particular platform.

