

Document Version 0.4

Page 1 of 17

This Document describes the Application Interface o f Slog

DESIGN DOCUMENT

Document ID:

Slog

Slog API Guide

Information in this document is subject to change w ithout notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or oth er intellectual property rights covering matter in this
document. The furnishing of this document is given for usage with Texas Instruments products only and
does not give you any license to the intellectual p roperty that might be contained within this documen t.
Texas Instruments makes no implied or expressed war ranties in this document and is not responsible for
the products based from this document

Page 2 of 17 <Document Version 1.0>

SLog
API Guide

TABLE OF CONTENTS

1 Overview .. 3

2 Event Details .. 3

3 Configurations.. 4
3.1 How to configure a logger? ... 4
3.2 How to configure the timestamp display format? 5
3.3 How to configure the timestampproxy? .. 5
3.4 How to remove the runtime control over a module’s runtime mask? 5
3.5 How to enable the System_printf formats like %f, %$S & %$F?.................. 5
3.6 How to enable filtering of the events based on their level?.......................... 5
3.7 Can I disable the logger?.. 5
3.8 What is Text_isLoaded macro in Config.h file?... 6
3.9 How to use Log_write in the code? .. 6
3.10 How to use Slog on Windows?... 6

4 APIs ... 6
4.1 Log_print[X] ... 6
4.2 Log_errorX (String fmt, …); ... 8
4.3 Void Log_infoX(String fmt, …);.. 9
4.4 Void Log_warningX(String fmt, …);...10
4.5 Void Log_putX(Log_Event evt, …); ...11
4.6 Void Log_writeX(Log_Event evt, …); ...12
4.7 Log_EventId Log_getEventId(Log_Event evt); ...12
4.8 Diags_Mask Log_getMask(Log_Event evt); ..13
4.9 Void Diags_setMask(String control); ...13
4.10 Bits32 createEvent(String msg, Bits16 mask, Bits16 level)15
4.11 Registry_Result Registry_addModule(Registry_Desc *desc,

String modName);..16

5 Version History... 17

Page 3 of 17 <Document Version 1.0>

SLog
API Guide

1 Overview
This Slog module provides rich set of features for debugging/logging/tracing/error

reporting.

It provides below list of features

- Traces the events module wise
- Almost 10 different trace levels for each module.

- Compile time and runtime enable/disable traces for every module & every
level.

- Reduce foot print of target binary by removing debug prints directly from
binary.

- Configurable support for Logging to console, Logging to buffer, etc…
- Timestamp all the events
- Origin (File path & line no) of the event
- Filtering of events based on the category & level .

2 Event Details

Events can be viewed as a structure with 3 attributes: Mask (or event category),

level (or priority) and message. The events are represented by a 32 bit value, with

the first 16 Bits representing the index in the memory chunk with respect to the
charTab(concept explained in detail in Slog_designdocument). The lower 16 bits
represent the mask value ored with the level.

While the diags bits selected in the 'mask' signify the "category" of the event (e.g.

Entry/Exit, Analysis, Info), the 'level' field allows you to assign a "priority" or "detail
level" to the event relative to other events in that category. There are four event
levels defined by EventLevel.

Event Categories

Diags_ALL: Mask of all diagnostics categories, inc luding both logging and asserts

 Diags_ALL_LOGGING:Mask of all logging diagnostic categories (does not include asserts)

Diags_ANALYSIS:Analysis (e.g., benchmark) event

Diags_ASSERT: Assert checking

Diags_ENTRY: Function entry

Diags_EXIT: Function exit

Diags_INFO: Informational event

Diags_INTERNAL: Internal diagnostics

Diags_LIFECYCLE: Object life-cycle

Diags_STATUS: Warning or error event

Diags_USER1: User defined diagnostics

Diags_USER2: User defined diagnostics

Diags_USER3: User defined diagnostics

Page 4 of 17 <Document Version 1.0>

SLog
API Guide

Diags_USER4: User defined diagnostics

Diags_USER5: User defined diagnostics

Diags_USER6: User defined diagnostics

Diags_USER7: Alias for informational event

Diags_USER8: Alias for analysis event

Event Levels

Four event levels are defined

Diags_Level1

Diags_Level2

Diags_Level3

Diags_Level4

3 Configurations

3.1 How to configure a logger?
1) Update the logger macro in the file Config.h file to the logger being used.

2) Update the config.c file to include appropriate logger header file.(LoggerBuf.h,
LoggerSys.h)

3) Update all the application files to include appropriate logger header file and do
extern LoggerX_Object loggerObj. (X is Buf/Sys)

4) If LoggerSys, Uncomment the statements

 LoggerSys_Object LoggerSys_Object__table__V = {1};
 LoggerSys_Object* loggerObj = (LoggerSys_Obj ect*)&LoggerSys_Object__table__V;

 and comment the statements
 LoggerBuf_Object* loggerObj;
 LoggerBuf_Module_State LoggerBuf_state = {0x 20,0,0};
 This statement sets the level of filter requ ired. See Slog_Userguide for details
 LoggerBuf_Module_State* LoggerBuf_module = & LoggerBuf_state;
5) In case of loggerBuf, comment the statements

 LoggerSys_Object LoggerSys_Object__table__V = {1};
 LoggerSys_Object* loggerObj = (LoggerSys_Obj ect*)&LoggerSys_Object__table__V;

 and uncomment the statements
 LoggerBuf_Object* loggerObj;
 LoggerBuf_Module_State LoggerBuf_state = {0x 20,0,0};
 This statement sets the level of filter requ ired. See Slog_Userguide for details
 LoggerBuf_Module_State* LoggerBuf_module = & LoggerBuf_state;

6) If LoggerBuf is used, following additional steps should also be followed

a. Inside main, the first statement must be

LoggerBuf_Instance_init();

b. Moreover, it should end with

LoggerBuf_Instance_finalize(loggerObj,0); to avoid any memory leaks.

Page 5 of 17 <Document Version 1.0>

SLog
API Guide

3.2 How to configure the timestamp display format?

Update the TIMEDISPFORMAT to appropriate value from below.

 Mode for printing the timestamp;

 0 -> in Hexadecimal;

 1 -> in Decimal;

 2 -> in MilliSec

 3 -> Human readable Date/Time format

3.3 How to configure the timestampproxy?
Slog provides two timestampproxies that can be attached to the logger viz.

TimestampNull & TimestampStd.

If the macro TIMESTAMPPROXY is defined, TimestampStd is attached, TimestampNull

otherwise.

3.4 How to remove the runtime control over a module ’s runtime mask?
Update the value of Diags_setMaskEnabled to 0, if the control is to be prevented,

Change to 1 otherwise.

3.5 How to enable the System_printf formats like %f , %$S & %$F?
In slog, supports for formats like %f, %$S & %$F can be disabled to save the code

space. However, if required, they can be enabled by defining the macro
PRINTEXTEND in Config.h file.

3.6 How to enable filtering of the events based on their level?
Update the value of LoggerBuf_filterByValue in Config.h file appropriately.

If want to disable, Set it to 0, else 1.

3.7 Can I disable the logger?
Change the value of Module__LOGDEF macro to 0 for disabling.

Update it to 1, if Logger is required.

Page 6 of 17 <Document Version 1.0>

SLog
API Guide

3.8 What is Text_isLoaded macro in Config.h file?
In order to save memory footprint of the program, Slog allows the user to prevent

the loading of event messages & module names to be loaded into the memory. This
can be done by setting the value of Text_isLoaded macro to 0. If 1, normal working
is expected.

3.9 How to use Log_write in the code?
In order to use Log_write, Log_error, Log_info, Log_warning, certain events are

required to be defined before the call to any of the above API occurs. The
createEvent API is responsible for the creation of events. So, the following lines

should be included in the code before calling the above mentioned APIs.

 Text_Error = createEvent("Error", Diags_STATUS, Diags_ERROR);

 Log_L_error = createEvent("ERROR: %$F%$S", Diags_STATUS, Diags_ERROR);

 Log_L_construct = createEvent("<-- construct: %p('%s')", Diags_LIFECYCLE, 0);

 Log_L_create = createEvent("<-- create: %p('%s')", Diags_LIFECYCLE, 0);

 Log_L_destruct = createEvent("--> destruct: (%p)", Diags_LIFECYCLE, 0);

 Log_L_delete = createEvent("--> delete: (%p)", Diags_LIFECYCLE, 0);

 Log_L_warning = createEvent("WARNING: %$F%$S", Diags_STATUS,

Diags_WARNING);

 Log_L_info = createEvent("%$F%$S", Diags_INFO, 0).

Log_put requires an event as its first argument. SO, custom events can also be

created using the createEvent API and passed.

3.10 How to use Slog on Windows?
Build the Slog library using gmake command instead of make.

Change the rm keyword in bld.mak file in the <Slog installation directory>/src folder

to del.

4 APIs

4.1 Log_print[X]

Void Log_printX(Diags_Mask mask, String fmt, …);

COMMENTS

Generate a Log "print event" with X arguments

ARGUMENTS

mask — enable bits and optional detail level for th is event

Page 7 of 17 <Document Version 1.0>

SLog
API Guide

fmt — a printf style format string

a1 — value for first format conversion character

a2 — value for second format conversion character

a3 — value for third format conversion character

a4 — value for fourth format conversion character

a5 — value for fifth format conversion character

a6 — value for sixth format conversion character

DETAILS

As a convenience to C (as well as assembly language) programmers, the Log module

provides a variation of the ever-popular printf fun ction. The print[0-6] functions generate a

Log "print event" and route it to the current modul e's logger.

The number of values (a1, a2 etc.) passed to the Lo g_print depends on the value of X in

Log_printX. E.g Log_print2(mask, fmt, a1, a2);

The arguments passed to print[0-6] may be character s, integers, strings, or pointers.

However, because the declared type of the arguments is IArg, all pointer arguments must

be cast to an IArg type. IArg is an integral type l arge enough to hold any pointer or an int.

So, casting a pointer to an IArg does not cause any loss of information and C's normal

integer conversions make the cast unnecessary for i ntegral arguments.

The format string can use the following conversion characters. However, it is important to

recall that all arguments referenced by these conve rsion characters have been converted

to an IArg prior to conversion; so, the use of "len gth modifiers" should be avoided.

 Conversion Character Description

 --

 %c Character

 %d Signed integer

 %u Unsigned integer

 %x Unsigned hexadecimal inte ger

 %o Unsigned octal integer

 %s Character string

 %p Pointer

 %f Single precision floating point (float)

Format strings, while very convenient, are a well k nown source of portability problems:

each format specification must precisely match the types of the arguments passed.

Underlying "printf" functions use the format string to determine how far to advance

through their argument list. For targets where poin ter types and integers are the same

size there are no problems. However, suppose a targ et's pointer type is larger than its

integer type. In this case, because integer argumen ts are widened to be of type IArg, a

Page 8 of 17 <Document Version 1.0>

SLog
API Guide

format specification of "%d" causes an underlying p rintf() implementation to read the

extended part of the integer argument as part of th e next argument(!).

To get around this problem and still allow the use of "natural" format specifications (e.g.,

%d and %x with optional width specifications)

See Ssystem_printf for complete details.

The %f format specifier is used to print a single p recision float value. Note that %f

assumes that sizeof(Float) <= sizeof(IArg). Most cl ients that interpret float values except

that they are represented in IEEE 754 floating poin t format. Therefore, it is recommended

that the float values are converted into that forma t prior to supplying the values to Log

functions in cases where targets do not generate th e float values in IEEE 754 floating

point format by default.

The first argument to a Log_print call is the diags category to be associated with the

event.

It is also possible to associate an event level wit h the event to enable filtering of events

based on event level. Conceptually, it is best to r egard the event level as completely

separate from the event's diags category; however, the priority value actually occupies a

part of the diags mask. For this reason, it is poss ible to specify an event level by ORing

the level with the diags mask. For example, to prin t an INFO event of LEVEL2, you'd

simply write: (Diags.INFO | Diags.LEVEL2)

Specifying an event level is optional. Log_print ca lls which do not specify a level will

receive the highest priority by default.

4.2 Log_errorX (String fmt, …);

COMMENTS

 Generate a Log "error event" with X arguments

ARGUMENTS

fmt — a reference to a constant error string / fmt string

a1 — value for an additional parameter

a2 — value for an additional parameter

a3 — value for an additional parameter

a4 — value for an additional parameter

a5 — value for an additional parameter

DETAILS

Page 9 of 17 <Document Version 1.0>

SLog
API Guide

The number of values (a1, a2 etc.) passed to the Lo g_error depends on the value of X in

Log_errorX (X = 0-5). E.g Log_error2(mask, fmt, a1, a2);

The Log_error APIs are intended to allow users to e asily log error events in their code.

Similar to the Log_print APIs, Log_error does not r equire that you define an event. You

simply pass an informative error string which can o ptionally be formatted with additional

arguments. The error is logged with the predefined event L_error.

Log_error prepends a string to the message which id entifies it as an ERROR and

specifies the filename and line number of the Log_e rror call site.

Users may provide additional information in the err or event, such as a predefined error

code or details of the error. These additional valu es will be used to format the string

passed to Log_error.

Log_error does not use a variable length argument l ist-you must call the appropriate

Log_errorX API based on the number of arguments.

 SEE

 For information about format strings, See Log_pri ntX

EXAMPLES

The following example demonstrates a typical usage.

 Int myArg;

 Log_error1("Invalid argument: %d", myArg);

The above event is formatted as, for example:

 ERROR: "MyCode.c", line 35: Invalid argument: -1

4.3 Void Log_infoX(String fmt, …);

COMMENTS

Generate a Log "info event" with X arguments

ARGUMENTS

fmt — reference to a constant event string / fmt st ring

a1 — value for an additional parameter (e.g. an eve nt code)

a2 — value for an additional parameter

a3 — value for an additional parameter

a4 — value for an additional parameter

a5 — value for an additional parameter

Page 10 of 17 <Document Version 1.0>

SLog
API Guide

DETAILS

The number of values (a1, a2 etc.) passed to the Lo g_error depends on the value of X in

Log_infoX (X = 0-5). E.g Log_info2(mask, fmt, a1, a 2);

The Log_info APIs are provided for easily logging g eneric "informational" events with call

site information. They are similar to the Log_print APIs in that they do not require you to

define an event-- you simply pass an informative pr intf-style string which can optionally

be formatted with additional arguments. The info re cord is logged with the predefined

event 'L_info'.

The Log_info APIs log the L_info event which uses t he 'INFO' diags category. They do

not allow you to specify an event priority.

Log_info prepends the filename and line number of t he call site to the message.

SEE

 For information about format strings, See Log_prin tX

EXAMPLES

The following example demonstrates a typical usage.

 Int load;

 Log_info1("Current load: %d", load);

The above event is formatted as, for example:

 "MyCode.c", line 15: Current load: 25

4.4 Void Log_warningX(String fmt, …);

COMMENTS

 Generate a Log "warning event" with X arguments

ARGUMENTS

fmt — reference to a constant warning string / fmt string

a1 — value for an additional parameter (e.g. a warn ing code)

a2 — value for an additional parameter

a3 — value for an additional parameter

a4 — value for an additional parameter

a5 — value for an additional parameter

DETAILS

Page 11 of 17 <Document Version 1.0>

SLog
API Guide

The number of values (a1, a2 etc.) passed to the Lo g_warning depends on the value of X

in Log_warningX (X = 0-5). E.g Log_warning2(mask, f mt, a1, a2).

The Log_warning APIs provide the same features as t he Log_error APIs, but are used to

specifically log "warning" events.

The Log_warning APIs are equivalent to the Log_erro r APIs except that they use the

predefined L_warning event. Log_warning prepends a string to the message which

identifies it as a WARNING and specifies the filena me and line number of the

Log_warning call site.

SEE

For information about format strings, See Log_print X

EXAMPLES

The following example demonstrates a typical usage.

 Int myArg;

 Log_warning1("Value may be too high: %d", myArg);

The above event is formatted as:

 WARNING: "MyCode.c", line 50: Value may be too hi gh: 4096

4.5 Void Log_putX(Log_Event evt, …);

COMMENTS

Unconditionally put the specified Log event

ARGUMENTS

evt — the Log event to put into the log

mid — module ID of the module putting the event

a1 — value for first format conversion character

a2 — value for second format conversion character

a3 — value for third format conversion character

a4 — value for fourth format conversion character

a5 — value for fifth format conversion character

a6 — value for sixth format conversion character

a7 — value for seventh format conversion character

a8 — value for eighth format conversion character

DETAILS

Page 12 of 17 <Document Version 1.0>

SLog
API Guide

The number of values (a1, a2 etc.) passed to the Lo g_put depends on the value of X in

Log_putX (X = 0, 1, 2, 4, 8). E.g Log_put2(mask, fm t, a1, a2);

This method unconditionally puts the specified Log_ Event evt into the log. The

Types_ModuleId mid should be the module ID of the m odule which is putting the event.

SEE

For information about format strings, See Log_print X

4.6 Void Log_writeX(Log_Event evt, …);

COMMENTS

Generate a Log event with X arguments

ARGUMENTS

evt — the Log event to write

a1 — value for first format conversion character

a2 — value for second format conversion character

a3 — value for third format conversion character

a4 — value for fourth format conversion character

a5 — value for fifth format conversion character

a6 — value for sixth format conversion character

a7 — value for seventh format conversion character

a8 — value for eighth format conversion character

DETAILS

The number of values (a1, a2 etc.) passed to the Lo g_write depends on the value of X in

Log_writeX (X = 0-8). E.g Log_write2(mask, fmt, a1, a2);

If the mask in the specified Log event has any bit set which is also set in the current module's

diagnostics mask, then this call to write will "rai se" the given Log event.

4.7 Log_EventId Log_getEventId(Log_Event evt);

COMMENTS

 Get event ID of the specified (encoded) event

Page 13 of 17 <Document Version 1.0>

SLog
API Guide

ARGUMENTS

evt — the Log event encoding a mask and event ID

DETAILS

This method is used to compare "known" Log events w ith "raised" Types_Event.

RETURNS

event ID of the specified event

SEE

Types_getEventId

4.8 Diags_Mask Log_getMask(Log_Event evt);

COMMENTS

 Get the Diags mask for the specified (encoded) eve nt

ARGUMENTS

evt — the Log event encoding a mask and event ID

RETURNS

Diags mask for the specified event

4.9 Void Diags_setMask(String control);

COMMENTS

Set a module's diagnostics mask at runtime

ARGUMENTS

control — diagnostic mask control string

This control string defines one or more actions whe re each action consists of a module name, an

operator character, and a list of bit specifiers. U se the % character as a wildcard to turn the

module name into a prefix matching pattern for a se t of modules. Multiple actions are separated

with the ; character.

The control string has the following format:

Page 14 of 17 <Document Version 1.0>

SLog
API Guide

 <module[%]><op><bits>[;<module[%]><op><bits>]

Specify individual module names explicitly (e.g. Ma in), or match multiple modules using a prefix

matching pattern specified with the % character (e. g. Mai%).

The operator is specified with a single character f rom the following table.

 Operator Description

 --

 + Set only the specified bits (other bi ts preserved)

 - Clear only the specified bits (other bits preserved)

 = Assign the entire mask to the given v alue where the

 specified bits are set and all other bits are cleared

The bits are specified with a list of characters fr om the following table. Refer to the Mask

Summary for a list of each bit of the diagnostics m ask.

 Control Diagnostics

 Character Constant Description

 --

 E ENTRY Function entry

 X EXIT Function exit

 L LIFECYCLE Object life-cycle

 I INTERNAL Internal diagnostics

 A ASSERT Assert checking

 Z ANALYSIS Analysis event

 F INFO Informational event

 S STATUS Status (error, warnin g) event

 1 USER1 User defined diagnost ics

 2 USER2 User defined diagnost ics

 3 USER3 User defined diagnost ics

 4 USER4 User defined diagnost ics

 5 USER5 User defined diagnost ics

 6 USER6 User defined diagnost ics

 7 USER7 User defined diagnost ics

 8 USER8 User defined diagnost ics

DETAILS

Use the given control string to set or clear bits i n a module's diagnostics mask. The control string

defines one or more actions where each action modif ies the diagnostics mask in one or more

modules. Each action can either set, clear, or assi gn a module's diagnostics mask. To both set

and clear bits in the same diagnostics mask require s two actions, or you can assign the entire

Page 15 of 17 <Document Version 1.0>

SLog
API Guide

mask explicitly in one action. Each action can spec ify a given module or a set of modules using

name prefix matching.

WARNING

Each bit of a module's diagnostics mask that is to be modified at runtime, must be configured to

be runtime modifiable in the program's configuratio n script. Use either RUNTIME_OFF or

RUNTIME_ON as the configuration value for the desir ed bit in the diagnostics mask. Finally, the

following configuration parameter must have the val ues indicated (which are their default values):

• Text_isLoaded = true;

Note: any error that occurs during the parsing of t he control string causes Diags_setmask() to

return without processing the remainder of the cont rol string.

SEE

 Appendix for flag details

4.10 Bits32 createEvent(String msg, Bits16 mask, Bi ts16 level)

COMMENTS

Generate Events

ARGUMENTS

msg – The msg defines a printf style format string that defines how to render the arguments

passed along the event in a Log_write call. For a d escription of the allowable format strings.

mask - The mask defines which bits in the module's diagnostics mask enable this Log event.

level - The 'level' defines the event level of the event.

DETAILS

As explained above, Events has 3 attributes. Mask, Level and a msg. This API creates events

when called with the appropriate parameters. This f unction actually puts the string in the memory

chunk with starting address as chartab. The functio n returns in Bits32 format with the upper 16

bits representing the index with respect to the cha rtab where the msg string is stored and the

lower 16 display the mask ored with level.

In order to use APIs like Log_error, Log_warning, L og_info, some events need to be predefined.

These and certain more events are needed to be defi ned before the actual application code

starts. These events are the following:

Log_Event Log_L_construct: Lifecycle event posted w hen an instance is constructed
Log_Event Log_L_create: Lifecycle event posted when an instance is created
Log_Event Log_L_delete: Lifecycle event posted when an instance is deleted

Page 16 of 17 <Document Version 1.0>

SLog
API Guide

Log_Event Log_L_destruct: Lifecycle event posted wh en an instance is destructed
Log_Event Log_L_error: Error event posted by Log_er rorX API

This event is marked as a STATUS event and given th e priority level of ERROR.
This event prints the Log call site (%$F) and a for mat string (%$S) which is recursively
formatted with any addition arguments.

 Log_Event Log_L_info: Info event posted by Log_inf oX API
This event is marked as an INFO event. The event pr iority is not specified in the event
definition. Rather, it is specified as an argument to the Log_infoX APIs.
This event prints the Log call site (%$F) and a for mat string (%$S) which is recursively
formatted with any addition arguments.

Log_Event Log_L_warning: Warning event posted by Lo g_warningX API
This event is marked as a STATUS event and given th e priority level of WARNING.
This event prints the Log call site (%$F) and a for mat string (%$S) which is recursively
formatted with any addition arguments.

RETURNS

The function returns in Bits32 format with the uppe r 16 bits representing the index with respect to

the chartab where the msg string is stored and the lower 16 display the mask ored with level.

SEE

charTab

4.11 Registry_Result Registry_addModule(Registry_De sc *desc,
String modName);

 COMMENTS

Add a runtime module to the registry with the speci fied name

ARGUMENTS

desc — non-NULL pointer to a {Registry_Desc} structure.

modName — non-NULL string name of the module being registered.

DETAILS

The desc parameter and the modName string provided must both be permanent since the

Registry will maintain references to both of these.

RETURNS

Registry_addModule returns one of the following Result status values indicating success or the

cause of failure:

Page 17 of 17 <Document Version 1.0>

SLog
API Guide

• SUCCESS

• ALREADY_ADDED

• ALL_IDS_USED There are a total of 16,384 - 1 module ids availab le for use by Registry.

5 Version History

Revision Number Date Description

0.1 24-Feb-11 Initial draft

0.3 07-Mar-11

1.0 28-Jul-11 Few more review

comments addressed

««« § »»»

	Overview
	Event Details
	Configurations
	How to configure a logger?
	How to configure the timestamp display format?
	How to configure the timestampproxy?
	How to remove the runtime control over a module’s runtime mask?
	How to enable the System_printf formats like %f, %$S & %$F?
	How to enable filtering of the events based on their level?
	Can I disable the logger?
	What is Text_isLoaded macro in Config.h file?
	How to use Log_write in the code?
	How to use Slog on Windows?

	APIs
	Log_print[X]
	
	Void Log_printX(Diags_Mask mask, String fmt, …);

	Log_errorX (String fmt, …);
	Void Log_infoX(String fmt, …);
	Void Log_warningX(String fmt, …);
	Void Log_putX(Log_Event evt, …);
	Void Log_writeX(Log_Event evt, …);
	Log_EventId Log_getEventId(Log_Event evt);
	Diags_Mask Log_getMask(Log_Event evt);
	Void Diags_setMask(String control);
	Bits32 createEvent(String msg, Bits16 mask, Bits16 level)
	
	Log_Event Log_L_construct: Lifecycle event posted when an instance is constructed
	Log_Event Log_L_create: Lifecycle event posted when an instance is created
	Log_Event Log_L_warning: Warning event posted by Log_warningX API

	Registry_Result Registry_addModule(Registry_Desc *desc, String modName);

	Version History

