
xDAIS-DM (Digital Media)
User Guide

Literature Number: SPRUEC8B
January 2007

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make
corrections, modifications, enhancements, improvements, and other changes to its products
and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should
verify that such information is current and complete. All products are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time
of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is
not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers
are responsible for their products and applications using TI components. To minimize the
risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under
any TI patent right, copyright, mask work right, or other TI intellectual property right relating
to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a
license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other
intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if
reproduction is without alteration and is accompanied by all associated warranties,
conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered
documentation.

Resale of TI products or services with statements different from or beyond the parameters
stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

iii

Preface

About This Manual

This document describes the xDAIS-DM (Digital Media) standard that is
built over TI’s well proven eXpress DSP Algorithm Interoperability
Standard (also known as xDAIS) specification.

This document refers to xDAIS-DM as xDM. The terms xDAIS-DM and
xDM are used interchangeably in this document.

xDM defines a uniform set of APIs across various multimedia algorithms to
ease integration and ensure interoperability.

Intended Audience

This document assumes that you are fluent in the C language, have a
good working knowledge of digital signal processing and the requirements
of DSP applications, and have had some exposure to the principles and
practices of object-oriented programming. This document describes the
interfaces between algorithms and the applications that utilize these
algorithms. System integrators will see how to incorporate multiple
algorithms from separate developers into a complete system. Algorithm
writers learn how to ensure that an algorithm can coexist with other
algorithms in a single system and how to package an algorithm for
deployment into a wide variety of systems.

How to Use This Manual

This document contains the following chapters:

 Chapter 1 – Overview, provides an overview of the xDM standard
and the generic interfaces defined by it.

 Chapter 2 – Algorithm Interfaces, contains the algorithm interfaces
that are defined by xDM.

Preface

iv

Additional Documents and Resources

The following online system provides reference information about the API
used to create xDM-compatible algorithms:

 xDM API Reference. XDAIS_INSTALL_DIR/docs/html/index.html

You can use the following books to supplement this user’s guide:

 TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)

 TMS320 DSP Algorithm Standard API Reference (SPRU360)

 TMS320 DSP Algorithm Standard Developer’s Guide (SPRU424)

 TMS320 DSP Algorithm Standard Demonstration Application
(SPRU361)

Text Conventions

The following conventions are used in this specification:

 Text inside back-quotes (‘‘) represents pseudo-code.

 Program source code, function and macro names, parameters, and
command line commands are shown in a mono-spaced font.

v

Contents

Preface... iii
About This Manual ... iii
Intended Audience... iii
How to Use This Manual.. iii
Additional Documents and Resources...iv
Text Conventions ...iv

Overview.. 1-1
1.1 Scope of the Standard .. 1-2
1.2 Goals of the Standard ... 1-2
1.3 xDM Interface History and Roadmap.. 1-3
1.4 Relationship Between xDM and xDAIS... 1-3

1.4.1 xDAIS Interfaces.. 1-4
Algorithm Interfaces... 2-1

2.1 IALG Interface... 2-2
2.2 xDM Interface.. 2-2
2.3 Extending the xDM Interfaces... 2-3

2.3.1 Extending an Algorithm.. 2-4
2.3.2 Extension Considerations for Remotablity... 2-5
2.3.3 Alignment and Structure Packing Considerations ... 2-6

Glossary .. 3-7

vi

Figures

Figure 1-1. Relationship between xDM and xDAIS .. 1-3
Figure 1-2. Current xDAIS Interface to Codec Library .. 1-4
Figure 1-3. xDM Interface Added to Codec Library ... 1-5
Figure 2-1. xDM Interface Function Call Order. ... 2-2
Figure 2-2. xDM and IMOD Interfaces ... 2-3

1-1

Chapter 1

Overview

This chapter provides an overview of the xDM standard.

Topic Page
1.1 Scope of the Standard 1-2

1.2 Goals of the Standard 1-2

1.3 xDM Interface History and Roadmap 1-3

1.4 Relationship Between xDM and xDAIS 1-3

The xDM standard defines a uniform set of APIs across various
multimedia codecs to ease integration and ensure interoperability. xDM is
built over TI’s well proven eXpress DSP Algorithm Interoperability
Standard (also known as xDAIS) specification.

Scope of the Standard

1-2 xDAIS-DM (Digital Media) User Guide

1.1 Scope of the Standard

xDM addresses the following:

 Uniform lightweight APIs across various classes of multimedia
algorithms, such as audio, video, speech, and image

 Flexibility of extension for various requirements such as metadata
parsing, file format, custom processing, and so forth

 Interoperability across various algorithms and vendors

xDM does not address the following:

 Metadata parsing from multimedia streams

 File format or multiplex support

 Digital Rights Managements (DRM) interaction with codecs

 Call back from algorithms and applications to enable data movement
and processing

 APIs other than codecs, for example, pre- and post-processing APIs
like resizing, echo cancellations, and so forth

These features may be addressed in later versions of xDM (version 1.x,
2.x). The features are not standardized in xDM v1.0, the basic definition
can be extended to support above mentioned features.

1.2 Goals of the Standard

The goals of this standard include:

 Enable plug and play architecture for multimedia codecs across
various classes of algorithms and vendors.

 Enable faster time to market for multimedia products such as, digital
cameras, cell phones, set-top boxes, and portable multimedia players.

 Provide a standard interface based on given class of multimedia
codecs (for example, audio, video, image, and speech).

 Define common status and parameters based on given class of
multimedia codecs.

 Flexibility of extension of custom functionality.

 Low overhead of interface.

 Reduce integration time for system developers.

xDM Interface History and Roadmap

Overview 1-3

1.3 xDM Interface History and Roadmap

The xDM 0.9 version was released with xDAIS 5.00. xDM 0.9 will continue
to be provided and supported for the near term, but is now deprecated.
Support for the 0.9 interfaces will be removed in the future.

The xDM 1.0 beta version was released with xDAIS 5.10. The xDM 1.0
final version is released with xDAIS 5.20. With this 1.0 final release, the
1.0 beta interfaces are no longer supported.

For details about differences between xDM versions 0.9 and 1.0 final, see
XDAIS_INSTALL_DIR/packages/ti/xdais/dm/docs/xdm1_differences.pdf.
The xdm1_differences.pdf file contains a list of changes that are likely to
be needed in order to migrate your xDM 0.9-compliant algorithms to xDM
1.0-compliant algorithms.

1.4 Relationship Between xDM and xDAIS

xDM is an extension to the IALG interface standard. It defines and
standardizes interfaces for multimedia codecs. The relationship between
xDM and xDAIS is depicted in Figure 1-1.

xDM
(IVIDDEC, IVIDENC,
IAUDDEC, IAUDENC,
ISPHDEC, ISPHEND,
IIMGDEC, IIMGENC)

xDAIS
(IALG, IDMA, ...)

Figure 1-1. Relationship between xDM and xDAIS

As shown in the figure, xDM extends the xDAIS standard. xDM defines
eight generic interfaces for the following categories. The "x" suffix
represents a version of the interface. In xDM 0.9, the suffix was omitted; in
xDM 1.0, it is "1".

 IVIDENCx - Generic interface for video encoders

 IVIDDECx - Generic interface for video decoders

 IAUDENCx - Generic interface for audio encoders

 IAUDDECx - Generic interface for audio decoders

 ISPHENCx - Generic interface for speech encoders

 ISPHDECx - Generic interface for speech decoders

 IIMGENCx - Generic interface for image encoders

Relationship Between xDM and xDAIS

1-4 xDAIS-DM (Digital Media) User Guide

 IIMGDECx - Generic interface for image decoders

1.4.1 xDAIS Interfaces

The current xDAIS interface from algorithm to application is depicted in
Figure 1-2.

Application

Algorithm

Algorithm Specific Interface
(IMOD)

xDAIS Interface
(IALG)

Figure 1-2. Current xDAIS Interface to Codec Library

As per xDAIS, the given algorithm extends the standard IALG interface to
the IMOD interface (algorithm specific). The IMOD interface provides basic
functionality of the algorithm, while the IALG interface takes care of the
memory management. xDAIS does not define the IMOD interface. The
algorithm implementer must define the IMOD interface based on his
requirements. For example, in case of MP3, the algorithm will implement
the IMP3 interface. This interface is kept totally open.

The application talks to the codec library via the IMOD interface.
Optionally, an application can directly talk to the codec library via the MOD
interface, which provides high level functionality.

Relationship Between xDM and xDAIS

Overview 1-5

The xDM standard adds a new interface as depicted in Figure 1-3.

Application

Algorithm

Algorithm Specific
Interface
(IMOD)

Digital Media
Interface

(xDM)

xDAIS Interface
(IALG)

Figure 1-3. xDM Interface Added to Codec Library

The algorithm uses one of eight predefined standard interface called xDM.
This interface is a superset of the IALG interface. You can tailor a given
algorithm or implementation by extending the xDM interface to the IMOD
interface. In simple cases, IMOD will be identical to xDM. Optionally, the
algorithm can add more functionality to the xDM interface to define the
IMOD interface. In this case, the application talks to the codec library via
the IMOD interface as done previously.

Relationship Between xDM and xDAIS

1-6 xDAIS-DM (Digital Media) User Guide

2-1

Chapter 2

Algorithm Interfaces

This chapter describes all the algorithm interfaces that are defined by the
xDM standard. Reference information about the interfaces is provided at
XDAIS_INSTALL_DIR/docs/html/index.html.

Topic Page
2.1 IALG Interface 2-2

2.2 xDM Interface 2-2

2.3 Extending the xDM Interfaces 2-3

IALG Interface

2-2 xDAIS-DM (Digital Media) User Guide

2.1 IALG Interface

IALG interface defines a framework independent interface for the creation
of algorithm instance objects. For more information on the IALG interface,
see TMS320 DSP Algorithm Standard API Reference.

2.2 xDM Interface

The xDM interface consists of eight interfaces to tailor to various
multimedia algorithms (for example, audio, video, encoders, decoders, and
so forth). Reference information about these interfaces is provided at in an
online reference system at XDAIS_INSTALL_DIR/docs/html/index.html.

These new interfaces define two new functions:

 process()
 control()

The following figure summarizes the valid sequences of execution of the
functions for a particular algorithm instance.

Figure 2-1. xDM Interface Function Call Order.

The xDM interface function call order is similar to the IALG interface
function call order, except that xDM removes usage of the algControl()
method. Hence when xDAIS is used along with xDM, instead of using the
algControl() method (which is part of the IALG interface), the algorithm
developer must use the control() method (which is part of the xDM
interface).

Extending the xDM Interfaces

Algorithm Interfaces 2-3

2.3 Extending the xDM Interfaces

You can optionally tailor a given algorithm or implementation by extending
the xDM interface to create a codec-specific IMOD interface. The
algorithm can add more functionality to the xDM interface to define the
IMOD interface as shown in Figure 2-2.

IMOD
(IMOD_Fxns,

IMOD_Params,
IMOD arguments)

xDM

xDAIS

Figure 2-2. xDM and IMOD Interfaces

The relationship between the xDM and IMOD interfaces are as follows:

 IMOD_Fxns. xDM functions and extension functions

 IMOD_Params. xDM Params (consist of creation and run time) +
extension parameters (creation and runtime)

 IMOD arguments. Includes IMOD_InArgs, IMOD_OutArgs,
IMOD_DynamicParams, and IMOD_Status

Note that the fields in most of these structures changed from xDM version
0.9 to 1.0. See Section 1.3, “xDM Interface History and Roadmap”, for
more information.

Extending the xDM Interfaces

2-4 xDAIS-DM (Digital Media) User Guide

2.3.1 Extending an Algorithm

The ti.xdais.dm.examples.videnc1_copy example demonstrates how to
extend VIDENC1_InArgs. The extended structure, which is from
videnc1_copy_ti.h, is as follows:

typedef struct IVIDENC1CPY_InArgs {
 IVIDENC1_InArgs videnc1InArgs;
 XDAS_Int32 maxBytes; /* Max # of bytes to copy */
} IVIDENC1CPY_InArgs;

The implementation of the process() function, which uses this optional
field, is as follows in videnc1_copy.c:

/*
 * ======== VIDENC1COPY_TI_process ========
 */
XDAS_Int32 VIDENC1COPY_TI_process(IVIDENC1_Handle h,
 XDM_BufDesc *inBufs, XDM_BufDesc *outBufs,
 IVIDENC1_InArgs *inArgs, IVIDENC1_OutArgs *outArgs)
{
 XDAS_Int32 numSamples;

 /* */

 /* there's an available in and out buffer, how many samples? */
 numSamples = inBufs->bufSizes[0] < outBufs->bufSizes[0] ?
 inBufs->bufSizes[0] : outBufs->bufSizes[0];

 /* honor the extended maxBytes if it was provided */
 if (inArgs->size == sizeof(IVIDENC1CPY_InArgs)) {
 if (numSamples > ((IVIDENC1CPY_InArgs *)inArgs)->maxBytes) {
 numSamples = ((IVIDENC1CPY_InArgs *)inArgs)->maxBytes;
 }
 }

 /* process the data: read input, produce output */
 memcpy(outBufs->bufs[0], inBufs->bufs[0], numSamples);

 /* ... */
}

Extending the xDM Interfaces

Algorithm Interfaces 2-5

2.3.2 Extension Considerations for Remotablity

To enable extensions, most xDM structures contain size as their first field.
This field is used:

 By the framework to determine how big the structure is.

 By the codec to determine how to interpret the fields.

Some frameworks may impose further constraints. For example, the
Codec Engine, because it is RPC-based, has the following constraints
when using remote codecs:

 No pointers may be used in the extended fields. Because of
address translation (the GPP-side address doesn't match the DSP-
side address) and cache maintenance (the DSP is cached, which
requires maintenance for coherence), pointers to data are non-trivial to
manage. The default VISA RPC stubs and skeletons manage pointers
defined in the base class, but it's impossible for them to know about
pointers in proprietary extensions.

 Maximum size of 256 bytes. In the default configuration, the
messages used by the VISA stubs and skeletons to do IPC are 4 KB
in size. The messages in the case of a single-processor DSP/BIOS
application are 1 KB. These messages must contain internal headers
(< 128 bytes), input structs (for example, InArgs or DynamicParams),
and output structs (for example, OutArgs or Status).

Note that these particular constraints are specific to the Codec Engine
framework. Other frameworks may impose different constraints; consult
your framework's documentation for details.

Extending the xDM Interfaces

2-6 xDAIS-DM (Digital Media) User Guide

2.3.3 Alignment and Structure Packing Considerations

xDM-compliant algorithms are intended to be executed in a variety of
environments. One topic to consider is that of field alignment and packing
within the interface structures. In a simple, single-processor environment,
in which the application passes arguments directly to the algorithm and
both are built with the same set of tools, alignment may seem an
unnecessary concern.

However, if the application runs on a different processor than the
algorithm, one processor may be byte-addressable while the other is not.
In this case, tightly packed and/or byte-aligned structures could be
problematic and could require more a complex framework to correctly pack
and unpack these structures during runtime, potentially impacting
performance. As a result, almost all xDM base structure fields are aligned
on 32-bit boundaries.

Note: The xDM 1.0 speech interfaces are an exception. Some fields are
aligned on 16-bit boundaries. This was a conscious decision, made to
enable high-density systems at the potential expense of requiring more
complex frameworks. Note, however, that all xDM structures end on a 32-
bit boundary. This was done to prevent potential packing issues when
these structures are extended.

Similar issues apply in the case of extending structures (see Section
2.3.1). We recommend that when you create custom interfaces, you use
the same 32-bit alignment for extended structures. This makes alignment
requirements easier on the application and/or the framework used
between the application and algorithm. Extra padding may be used to
ensure correct alignment as shown in the following example:

typedef struct MYIVIDDEC_DynamicParams {
 IVIDDEC_DynamicParams base;
 XDAS_Int32 newField1;
 XDAS_Int16 newField2;
 XDAS_Int16 padding; // Needed for 32-bit alignment
} MYIVIDDEC_DynamicParams;

Extending the xDM Interfaces

Glossary 3-7

Chapter 3

Glossary

Algorithm: Technically, an algorithm is a sequence of operations, each
chosen from a finite set of well-defined operations (for example, computer
instructions), that halts in a finite time, and computes a mathematical
function.

API: Acronym for application programming interface. A specific set of
constants, types, variables, and functions used to programmatically
interact with a piece of software.

Framework: Part of an application that is designed to remain invariant
while selected software components are added, removed, or modified.
Very general frameworks are sometimes described as application-specific
operating systems.

Interface: A set of related functions, types, constants, and variables. An
interface is often specified with a C header file.

Method: A synonym for a function that is part of an interface.

Module: A module is an implementation of one (or more) interfaces. In
addition, all modules follow certain design elements that are common to all
xDM-compatible software components. Roughly speaking, a module is a C
language implementation of a C++ class.

	xDAIS-DM (Digital Media) User Guide
	Overview
	1.1 Scope of the Standard
	1.2 Goals of the Standard
	1.3 xDM Interface History and Roadmap
	1.4 Relationship Between xDM and xDAIS
	1.4.1 xDAIS Interfaces

	Algorithm Interfaces
	2.1 IALG Interface
	2.2 xDM Interface
	2.3 Extending the xDM Interfaces
	2.3.1 Extending an Algorithm
	2.3.2 Extension Considerations for Remotablity
	2.3.3 Alignment and Structure Packing Considerations

	Glossary

