1    /*
     2     * Copyright (c) 2014, Texas Instruments Incorporated
     3     * All rights reserved.
     4     *
     5     * Redistribution and use in source and binary forms, with or without
     6     * modification, are permitted provided that the following conditions
     7     * are met:
     8     *
     9     * *  Redistributions of source code must retain the above copyright
    10     *    notice, this list of conditions and the following disclaimer.
    11     *
    12     * *  Redistributions in binary form must reproduce the above copyright
    13     *    notice, this list of conditions and the following disclaimer in the
    14     *    documentation and/or other materials provided with the distribution.
    15     *
    16     * *  Neither the name of Texas Instruments Incorporated nor the names of
    17     *    its contributors may be used to endorse or promote products derived
    18     *    from this software without specific prior written permission.
    19     *
    20     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    21     * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
    22     * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    23     * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
    24     * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
    25     * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
    26     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
    27     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
    28     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
    29     * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
    30     * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    31     */
    32    /*
    33     *  ======== Task.xdc ========
    34     *
    35     */
    36    
    37    package ti.sysbios.knl;
    38    
    39    import xdc.rov.ViewInfo;
    40    
    41    import xdc.runtime.Error;
    42    import xdc.runtime.Assert;
    43    import xdc.runtime.Diags;
    44    import xdc.runtime.Log;
    45    import xdc.runtime.IHeap;
    46    
    47    import ti.sysbios.knl.Queue;
    48    
    49    /*!
    50     *  ======== Task ========
    51     *  Task Manager.
    52     *
    53     *  The Task module makes available a set of functions that manipulate task
    54     *  objects accessed through pointers of type {@link #Handle}. Tasks represent
    55     *  independent threads of control that conceptually execute functions in
    56     *  parallel within a single C program; in reality, concurrency is achieved
    57     *  by switching the processor from one task to another.
    58     *
    59     *  When you create a task, it is provided with its own run-time stack,
    60     *  used for storing local variables as well as for further nesting of
    61     *  function calls. Each stack must be large enough to handle normal
    62     *  subroutine calls and one task preemption context.
    63     *  A task preemption context is the context that gets saved when one task
    64     *  preempts another as a result of an interrupt thread readying
    65     *  a higher-priority task.
    66     *
    67     *  All tasks executing within a single program share a common set of
    68     *  global variables, accessed according to the standard rules of scope
    69     *  defined for C functions.
    70     *
    71     *  Each task is in one of five modes of execution at any point in time:
    72     *  running, ready, blocked, terminated, or inactive. By design, there is
    73     *  always one
    74     *  (and only one) task currently running, even if it is only the idle task
    75     *  managed internally by Task. The current task can be suspended from
    76     *  execution by calling certain Task functions, as well as functions
    77     *  provided by other modules like the Semaphore or Event Modules.
    78     *  The current task
    79     *  can also terminate its own execution. In either case, the processor
    80     *  is switched to the highest priority task that is ready to run.
    81     *
    82     *  You can assign numeric priorities to tasks. Tasks are
    83     *  readied for execution in strict priority order; tasks of the same
    84     *  priority are scheduled on a first-come, first-served basis.
    85     *  The priority of the currently running task is never lower
    86     *  than the priority of any ready task. Conversely, the running task
    87     *  is preempted and re-scheduled for execution whenever there exists
    88     *  some ready task of higher priority.
    89     *
    90     *  @a(Task Deletion)
    91     *
    92     *  Any dynamically created task that is not in the Task_Mode_RUNNING
    93     *  state (ie not the currently running task) can be deleted using the
    94     *  {@link #delete} API.
    95     *
    96     *  Task_delete() removes the task from all internal queues and calls
    97     *  Memory_free() is used to free the task object and its stack.
    98     *  Memory_free() must acquire a lock to the memory before proceeding.
    99     *  If another task already holds a lock to the memory, then the thread
   100     *  performing the delete will be blocked until the memory is unlocked.
   101     *
   102     *  Note:
   103     *  Task_delete() should be called with extreme care.
   104     *  As mentioned above, the scope of Task_delete() is limited to
   105     *  freeing the Task object itself, freeing the task's stack memory
   106     *  if it was allocated at create time, and removing the task from
   107     *  any SYS/BIOS-internal state structures.
   108     *
   109     *  SYS/BIOS does not keep track of any resources the task may have
   110     *  acquired or used during its lifetime.
   111     *
   112     *  It is the application's responsibility to guarantee the integrity
   113     *  of a task's partnerships prior to deleting that task.
   114     *
   115     *  For example, if a task has obtained exclusive access to a resource,
   116     *  deleting that task will make the resource forever unavailable.
   117     *
   118     *  Task_delete() sets the referenced task handle to NULL. Any subsequent
   119     *  call to a Task instance API using that null task handle will behave
   120     *  unpredictably and will usually result in an application crash.
   121     *
   122     *  Assuming a task completely cleans up after itself prior to calling
   123     *  Task_exit() (or falling through the the bottom of the task
   124     *  function), it is then safest to use Task_delete() only when a task
   125     *  is in the 'Task_Mode_TERMINATED' state.
   126     *
   127     *  Delete hooks:
   128     *  You can specify application-wide Delete hook functions that
   129     *  run whenever a task is deleted. See the discussion of Hook Functions
   130     *  below for details.
   131     *
   132     *  Task_delete() constraints:
   133     *  @p(blist)
   134     *  -The task cannot be the currently executing task (Task_self()).
   135     *  -Task_delete cannot be called from a Swi or Hwi.
   136     *  -No check is performed to prevent Task_delete from being used on a
   137     *  statically-created object. If a program attempts to delete a task object
   138     *  that was created statically, the Memory_free() call will result in an
   139     *  assertion failure in its corresponding Heap manager, causing the
   140     *  application to exit.
   141     *  @p
   142     *
   143     *  @a(Stack Alignment)
   144     *
   145     *  Stack size parameters for both static and dynamic tasks are rounded
   146     *  up to the nearest integer multiple of a target-specific alignment
   147     *  requirement.
   148     *
   149     *  In the case of Task's which are created with a user-provided stack,
   150     *  both the base address and the stackSize are aligned. The base address
   151     *  is increased to the nearest aligned address. The stack size is decreased
   152     *  accordingly and then rounded down to the nearest integer multiple of the
   153     *  target-specific required alignment.
   154     *
   155     *  @p(html)
   156     *  <a name="hookfunc"></a>
   157     *  @p
   158     *
   159     *  @a(Hook Functions)
   160     *
   161     *  Sets of hook functions can be specified for the Task module.  Each
   162     *  set can contains these hook functions:
   163     *  @p(blist)
   164     *  -Register: A function called before any statically created tasks
   165     *      are initialized at runtime.  The register hook is called at boot time
   166     *      before main() and before interrupts are enabled.
   167     *  -Create: A function that is called when a task is created.
   168     *      This includes tasks that are created statically and those
   169     *      created dynamically using {@link #create} or {@link #construct}.
   170     *      The create hook is called outside of a Task_disable/enable block and
   171     *   before the task has been added to the ready list.
   172     *  -Ready: A function that is called when a task becomes ready to run.
   173     *   The ready hook is called from within a Task_disable/enable block with
   174     *   interrupts enabled.
   175     *  -Switch: A function that is called just before a task switch
   176     *      occurs. The 'prev' and 'next' task handles are passed to the Switch
   177     *      hook. 'prev' is set to NULL for the initial task switch that occurs
   178     *      during SYS/BIOS startup.  The Switch hook is called from within a
   179     *      Task_disable/enable block with interrupts enabled.
   180     *  -Exit:      A function that is called when a task exits using
   181     *      {@link #exit}.  The exit hook is passed the handle of the exiting
   182     *      task.  The exit hook is called outside of a Task_disable/enable block
   183     *      and before the task has been removed from the kernel lists.
   184     *  -Delete: A function that is called when any task is deleted at
   185     *      run-time with {@link #delete}.  The delete hook is called outside
   186     *      of a Task_disable/enable block.
   187     *  @p
   188     *  Hook functions can only be configured statically.
   189     *
   190     *  If you define more than one set of hook functions, all the functions
   191     *  of a particular type will be run when a Swi triggers that type of
   192     *  hook.
   193     *
   194     *  @p(html)
   195     *  <B>Register Function</B>
   196     *  @p
   197     *
   198     *  The Register function is provided to allow a hook set to store its
   199     *  hookset ID.  This id can be passed to {@link #setHookContext} and
   200     *  {@link #getHookContext} to set or get hookset-specific context.  The
   201     *  Register function must be specified if the hook implementation
   202     *  needs to use {@link #setHookContext} or {@link #getHookContext}.
   203     *  The registerFxn hook function is called during system initialization
   204     *  before interrupts have been enabled.
   205     *
   206     *  @p(code)
   207     *  Void myRegisterFxn(Int id);
   208     *  @p
   209     *
   210     *  @p(html)
   211     *  <B>Create and Delete Functions</B>
   212     *  @p
   213     *
   214     *  The create and delete functions are called whenever a Task is created
   215     *  or deleted.  They are called with interrupts enabled (unless called
   216     *  at boot time or from main()).
   217     *
   218     *  @p(code)
   219     *  Void myCreateFxn(Task_Handle task, Error_Block *eb);
   220     *  @p
   221     *
   222     *  @p(code)
   223     *  Void myDeleteFxn(Task_Handle task);
   224     *  @p
   225     *
   226     *  @p(html)
   227     *  <B>Switch Function</B>
   228     *  @p
   229     *
   230     *  If a switch function is specified, it is invoked just before the new task
   231     *  is switched to.  The switch function is called with interrupts enabled.
   232     *
   233     *  This function can be used to save/restore additional task context (for
   234     *  example, external hardware registers), to check for task stack overflow,
   235     *  to monitor the time used by each task, etc.
   236     *
   237     *  @p(code)
   238     *  Void mySwitchFxn(Task_Handle prev, Task_Handle next);
   239     *  @p
   240     *
   241     *  To properly handle the switch to the first task your switchFxn should
   242     *  check for "prev == NULL" before using prev:
   243     *
   244     *  @p(code)
   245     *  Void mySwitchFxn(Task_Handle prev, Task_Handle next)
   246     *  {
   247     *      if (prev != NULL) {
   248     *          ...
   249     *      }
   250     *      ...
   251     *  }
   252     *  @p
   253     *
   254     *  @p(html)
   255     *  <B>Ready Function</B>
   256     *  @p
   257     *
   258     *  If a ready function is specified, it is invoked whenever a task is made
   259     *  ready to run.   The ready function is called  with interrupts enabled
   260     *  (unless called at boot time or from main()).
   261     *
   262     *  @p(code)
   263     *  Void myReadyFxn(Task_Handle task);
   264     *  @p
   265     *
   266     *  @p(html)
   267     *  <B>Exit Function</B>
   268     *  @p
   269     *
   270     *  If an exit function is specified, it is invoked when a task exits (via
   271     *  call to Task_exit() or when a task returns from its' main function).
   272     *  The Exit Function is called with interrupts enabled.
   273     *
   274     *  @p(code)
   275     *  Void myExitFxn(Task_Handle task);
   276     *  @p
   277     *
   278     *  @p(html)
   279     *  <h3> Calling Context </h3>
   280     *  <table border="1" cellpadding="3">
   281     *    <colgroup span="1"></colgroup> <colgroup span="5" align="center">
   282     *  </colgroup>
   283     *
   284     *    <tr><th> Function                 </th><th>  Hwi   </th><th>  Swi   </th>
   285     *  <th>  Task  </th><th>  Main  </th><th>  Startup  </th></tr>
   286     *    <!--                                                       -->
   287     *    <tr><td> {@link #create}          </td><td>   N    </td><td>   N    </td>
   288     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   289     *    <tr><td> {@link #disable}         </td><td>   Y    </td><td>   Y    </td>
   290     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   291     *    <tr><td> {@link #exit}            </td><td>   N    </td><td>   N    </td>
   292     *  <td>   Y    </td><td>   N    </td><td>   N    </td></tr>
   293     *    <tr><td> {@link #getIdleTask}     </td><td>   Y    </td><td>   Y    </td>
   294     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   295     *    <tr><td> {@link #Params_init}     </td><td>   Y    </td><td>   Y    </td>
   296     *  <td>   Y    </td><td>   Y    </td><td>   Y    </td></tr>
   297     *    <tr><td> {@link #restore}         </td><td>   Y    </td><td>   Y    </td>
   298     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   299     *    <tr><td> {@link #self}            </td><td>   Y    </td><td>   Y    </td>
   300     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   301     *    <tr><td> {@link #sleep}           </td><td>   N    </td><td>   N    </td>
   302     *  <td>   Y    </td><td>   N    </td><td>   N    </td></tr>
   303     *    <tr><td> {@link #yield}           </td><td>   Y    </td><td>   Y    </td>
   304     *  <td>   Y    </td><td>   N    </td><td>   N    </td></tr>
   305     *    <tr><td> {@link #construct}       </td><td>   N    </td><td>   N    </td>
   306     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   307     *    <tr><td> {@link #delete}          </td><td>   N    </td><td>   N    </td>
   308     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   309     *    <tr><td> {@link #destruct}        </td><td>   N    </td><td>   N    </td>
   310     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   311     *    <tr><td> {@link #getEnv}          </td><td>   Y    </td><td>   Y    </td>
   312     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   313     *    <tr><td> {@link #getHookContext}  </td><td>   Y    </td><td>   Y    </td>
   314     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   315     *    <tr><td> {@link #getMode}         </td><td>   Y    </td><td>   Y    </td>
   316     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   317     *    <tr><td> {@link #getPri}          </td><td>   Y    </td><td>   Y    </td>
   318     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   319     *    <tr><td> {@link #getFunc}         </td><td>   Y    </td><td>   Y    </td>
   320     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   321     *    <tr><td> {@link #setEnv}          </td><td>   Y    </td><td>   Y    </td>
   322     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   323     *    <tr><td> {@link #setHookContext}  </td><td>   Y    </td><td>   Y    </td>
   324     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   325     *    <tr><td> {@link #setPri}          </td><td>   Y    </td><td>   Y    </td>
   326     *  <td>   Y    </td><td>   N    </td><td>   N    </td></tr>
   327     *    <tr><td> {@link #stat}            </td><td>   Y    </td><td>   Y    </td>
   328     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   329     *    <tr><td colspan="6"> Definitions: <br />
   330     *       <ul>
   331     *         <li> <b>Hwi</b>: API is callable from a Hwi thread. </li>
   332     *         <li> <b>Swi</b>: API is callable from a Swi thread. </li>
   333     *         <li> <b>Task</b>: API is callable from a Task thread. </li>
   334     *         <li> <b>Main</b>: API is callable during any of these phases: </li>
   335     *           <ul>
   336     *             <li> In your module startup after this module is started
   337     *  (e.g. Task_Module_startupDone() returns TRUE). </li>
   338     *             <li> During xdc.runtime.Startup.lastFxns. </li>
   339     *             <li> During main().</li>
   340     *             <li> During BIOS.startupFxns.</li>
   341     *           </ul>
   342     *         <li> <b>Startup</b>: API is callable during any of these phases:</li>
   343     *           <ul>
   344     *             <li> During xdc.runtime.Startup.firstFxns.</li>
   345     *             <li> In your module startup before this module is started
   346     *  (e.g. Task_Module_startupDone() returns FALSE).</li>
   347     *           </ul>
   348     *       </ul>
   349     *    </td></tr>
   350     *
   351     *  </table>
   352     *  @p
   353     */
   354    
   355    @DirectCall
   356    @ModuleStartup      /* generate a call to Task_Module_startup at startup */
   357    @InstanceInitStatic /* Construct/Destruct CAN becalled at runtime */
   358    @InstanceFinalize   /* generate call to Task_Instance_finalize on delete */
   359    @InstanceInitError  /* instance init can fail */
   360    
   361    module Task
   362    {
   363    
   364        // -------- Module Constants --------
   365    
   366        // -------- Module Types --------
   367    
   368        /*! Task function type definition. */
   369        typedef Void (*FuncPtr)(UArg, UArg);
   370    
   371        /*! "All Task Blocked" function type definition. */
   372        typedef Void (*AllBlockedFuncPtr)(Void);
   373    
   374        /*!
   375         *  Task execution modes.
   376         *
   377         *  These enumerations are the range of modes or states that
   378         *  a task can be in. A task's current mode can be gotten using
   379         *  {@link #stat}.
   380         */
   381        enum Mode {
   382            Mode_RUNNING,           /*! Task is currently executing. */
   383            Mode_READY,             /*! Task is scheduled for execution. */
   384            Mode_BLOCKED,           /*! Task is suspended from execution. */
   385            Mode_TERMINATED,        /*! Task is terminated from execution. */
   386            Mode_INACTIVE           /*! Task is on inactive task list */
   387        };
   388    
   389        /*!
   390         *  Task Status Buffer.
   391         *
   392         *  Passed to and filled in by {@link #stat};
   393         */
   394        struct Stat {
   395            Int     priority;       /*! Task priority. */
   396            Ptr     stack;          /*! Task stack. */
   397            SizeT   stackSize;      /*! Task stack size. */
   398            IHeap.Handle stackHeap; /*! Heap used to alloc stack. */
   399            Ptr     env;            /*! Global environment struct. */
   400            Mode    mode;           /*! Task's current mode. */
   401            Ptr     sp;             /*! Task's current stack pointer. */
   402            SizeT   used;           /*! max # of words used on stack. */
   403        };
   404    
   405        /*!
   406         *  Task hook set type definition.
   407         *
   408         *  Sets of hook functions can be specified for the Task module.
   409         *  See {@link #hookfunc Hook Functions} for details.
   410         */
   411        struct HookSet {
   412            Void (*registerFxn)(Int);
   413            Void (*createFxn)(Handle, Error.Block *);
   414            Void (*readyFxn)(Handle);
   415            Void (*switchFxn)(Handle, Handle);
   416            Void (*exitFxn)(Handle);
   417            Void (*deleteFxn)(Handle);
   418        };
   419    
   420        /*! "Don't care" task affinity */
   421        const UInt AFFINITY_NONE = ~(0);
   422    
   423        /*!  @_nodoc */
   424        metaonly struct BasicView {
   425            String      label;
   426            Int         priority;
   427            String      mode;
   428            String      fxn[];
   429            UArg        arg0;
   430            UArg        arg1;
   431            SizeT       stackSize;
   432            Ptr         stackBase;
   433            String      curCoreId;
   434            String      affinity;
   435        }
   436    
   437        /*!  @_nodoc */
   438        metaonly struct DetailedView {
   439            String      label;
   440            Int         priority;
   441            String      mode;
   442            String      fxn[];
   443            UArg        arg0;
   444            UArg        arg1;
   445            String      stackPeak;
   446            SizeT       stackSize;
   447            Ptr         stackBase;
   448            String      curCoreId;
   449            String      affinity;
   450            String      blockedOn;
   451        }
   452    
   453        /*!  @_nodoc */
   454        metaonly struct ModuleView {
   455            String      schedulerState;
   456            String      readyQMask[];
   457            Bool        workPending;
   458            UInt        numVitalTasks;
   459            Ptr         currentTask[];
   460            String      hwiStackPeak;
   461            SizeT       hwiStackSize;
   462            Ptr         hwiStackBase;
   463        }
   464    
   465        /*!  @_nodoc (not used by view) */
   466        metaonly struct CallStackView {
   467            Int         depth;
   468            String      decode;
   469        }
   470    
   471        /*!  @_nodoc */
   472        metaonly struct ReadyQView {
   473            Ptr         task;
   474            Ptr         next;
   475            Ptr         prev;
   476            Ptr         readyQ;
   477            String      label;
   478            Int         priority;
   479            String      mode;
   480            String      fxn[];
   481            String      curCoreId;
   482            String      affinity;
   483        }
   484    
   485        /*! @_nodoc */
   486        @Facet
   487        metaonly config ViewInfo.Instance rovViewInfo =
   488            ViewInfo.create({
   489                viewMap: [
   490                    ['Basic',    {type: ViewInfo.INSTANCE,     viewInitFxn: 'viewInitBasic',    structName: 'BasicView'}],
   491                    ['Detailed', {type: ViewInfo.INSTANCE,     viewInitFxn: 'viewInitDetailed', structName: 'DetailedView'}],
   492                    ['CallStacks',  {type: ViewInfo.TREE,         viewInitFxn: 'viewInitCallStack', structName: 'CallStackView'}],
   493                    ['ReadyQs',     {type: ViewInfo.TREE_TABLE,   viewInitFxn: 'viewInitReadyQs',   structName: 'ReadyQView'}],
   494                    ['Module',      {type: ViewInfo.MODULE,       viewInitFxn: 'viewInitModule',    structName: 'ModuleView'}],
   495                ]
   496            });
   497    
   498        // -------- Module Parameters --------
   499    
   500        // Logs
   501    
   502        /*! Logged on every task switch */
   503        config Log.Event LM_switch = {
   504            mask: Diags.USER1 | Diags.USER2,
   505            msg: "LM_switch: oldtsk: 0x%x, oldfunc: 0x%x, newtsk: 0x%x, newfunc: 0x%x"
   506        };
   507    
   508        /*! Logged on calls to Task_sleep */
   509        config Log.Event LM_sleep = {
   510            mask: Diags.USER1 | Diags.USER2,
   511            msg: "LM_sleep: tsk: 0x%x, func: 0x%x, timeout: %d"
   512        };
   513    
   514        /*! Logged when a task is made ready to run (ie Semaphore_post()) */
   515        config Log.Event LD_ready = {
   516            mask: Diags.USER2,
   517            msg: "LD_ready: tsk: 0x%x, func: 0x%x, pri: %d"
   518        };
   519    
   520        /*! Logged when a task is blocked (ie Semaphore_pend()) */
   521        config Log.Event LD_block = {
   522            mask: Diags.USER2,
   523            msg: "LD_block: tsk: 0x%x, func: 0x%x"
   524        };
   525    
   526        /*! Logged on calls to Task_yield */
   527        config Log.Event LM_yield = {
   528            mask: Diags.USER1 | Diags.USER2,
   529            msg: "LM_yield: tsk: 0x%x, func: 0x%x, currThread: %d"
   530        };
   531    
   532        /*! Logged on calls to Task_setPri */
   533        config Log.Event LM_setPri = {
   534            mask: Diags.USER1 | Diags.USER2,
   535            msg: "LM_setPri: tsk: 0x%x, func: 0x%x, oldPri: %d, newPri %d"
   536        };
   537    
   538        /*!
   539         *  Logged when Task functions fall thru the bottom
   540         *  or when Task_exit() is explicitly called.
   541         */
   542        config Log.Event LD_exit = {
   543            mask: Diags.USER2,
   544            msg: "LD_exit: tsk: 0x%x, func: 0x%x"
   545        };
   546    
   547        /*! Logged on calls to Task_setAffinity */
   548        config Log.Event LM_setAffinity = {
   549            mask: Diags.USER1 | Diags.USER2,
   550            msg: "LM_setAffinity: tsk: 0x%x, func: 0x%x, oldCore: %d, oldAffinity %d, newAffinity %d"
   551        };
   552    
   553        /*! Logged on every task schedule entry */
   554        config Log.Event LM_schedule = {
   555            mask: Diags.USER3,
   556            msg: "LD_schedule: coreId: %d, workFlag: %d, curSetLocal: %d, curSetX: %d, curMaskLocal: %d"
   557        };
   558    
   559        /*! Logged when no scheduling work was found */
   560        config Log.Event LM_noWork = {
   561            mask: Diags.USER3,
   562            msg: "LD_noWork: coreId: %d, curSetLocal: %d, curSetX: %d, curMaskLocal: %d"
   563        };
   564    
   565        // Errors
   566    
   567        /*!
   568         *  Error raised when a stack overflow (or corruption) is detected.
   569         *
   570         *  This error is raised by kernel's stack checking function.  This
   571         *  function checks the stacks before every task switch to make sure
   572         *  that reserved word at top of stack has not been modified.
   573         *
   574         *  The stack checking logic is enabled by the {@link #initStackFlag} and
   575         *  {@link #checkStackFlag} configuration parameters.  If both of these
   576         *  flags are set to true, the kernel will validate the stacks.
   577         */
   578        config Error.Id E_stackOverflow  = {
   579            msg: "E_stackOverflow: Task 0x%x stack overflow."
   580        };
   581    
   582        /*!
   583         *  Error raised when a task's stack pointer (SP) does not point
   584         *  somewhere within the task's stack.
   585         *
   586         *  This error is raised by kernel's stack checking function.  This
   587         *  function checks the SPs before every task switch to make sure
   588         *  they point within the task's stack.
   589         *
   590         *  The stack checking logic is enabled by the {@link #initStackFlag} and
   591         *  {@link #checkStackFlag} configuration parameters.  If both of these
   592         *  flags are set to true, the kernel will validate the stack pointers.
   593         */
   594        config Error.Id E_spOutOfBounds  = {
   595            msg: "E_spOutOfBounds: Task 0x%x stack error, SP = 0x%x."
   596        };
   597    
   598        config Error.Id E_deleteNotAllowed = {
   599            msg: "E_deleteNotAllowed: Task 0x%x."
   600        };
   601    
   602        // Asserts
   603    
   604        /*! Asserted in Task_create and Task_delete */
   605        config Assert.Id A_badThreadType = {
   606            msg: "A_badThreadType: Cannot create/delete a task from Hwi or Swi thread."
   607        };
   608    
   609        /*! Asserted in Task_delete */
   610        config Assert.Id A_badTaskState = {
   611            msg: "A_badTaskState: Can't delete a task in RUNNING state."
   612        };
   613    
   614        /*! Asserted in Task_delete */
   615        config Assert.Id A_noPendElem = {
   616            msg: "A_noPendElem: Not enough info to delete BLOCKED task."
   617        };
   618    
   619        /*! Asserted in Task_create */
   620        config Assert.Id A_taskDisabled = {
   621            msg: "A_taskDisabled: Cannot create a task when tasking is disabled."
   622        };
   623    
   624        /*! Asserted in Task_create */
   625        config Assert.Id A_badPriority = {
   626            msg: "A_badPriority: An invalid task priority was used."
   627        };
   628    
   629        /*! Asserted in Task_sleep */
   630        config Assert.Id A_badTimeout = {
   631            msg: "A_badTimeout: Can't sleep FOREVER."
   632        };
   633    
   634        /*! Asserted in Task_setAffinity */
   635        config Assert.Id A_badAffinity = {
   636            msg: "A_badAffinity: Invalid affinity."
   637        };
   638    
   639        /*! Asserted in Task_sleep */
   640        config Assert.Id A_sleepTaskDisabled = {
   641            msg: "A_sleepTaskDisabled: Cannot call Task_sleep() while the Task scheduler is disabled."
   642        };
   643    
   644        /*! Asserted in Task_getIdleTaskHandle */
   645        config Assert.Id A_invalidCoreId = {
   646            msg: "A_invalidCoreId: Cannot pass a non-zero CoreId in a non-SMP application."
   647        };
   648    
   649        /*!
   650         *  Number of Task priorities supported. Default is 16.
   651         *
   652         *  The maximum number of priorities supported is
   653         *  target specific and depends on the number of
   654         *  bits in a UInt data type. For 6x and ARM devices
   655         *  the maximum number of priorities is therefore 32.
   656         *  For 28x, 55x, and MSP430 devices, the maximum number of
   657         *  priorities is 16.
   658         */
   659        config UInt numPriorities = 16;
   660    
   661        /*!
   662         *  Default stack size (in MAUs) used for all tasks.
   663         *
   664         *  Default is obtained from the family-specific TaskSupport module
   665          *  (e.g. {@link ti.sysbios.family.arm.m3.TaskSupport},
   666          *  {@link ti.sysbios.family.c62.TaskSupport}).
   667         */
   668        config SizeT defaultStackSize;
   669    
   670        /*!
   671         *  Default memory section used for all statically created task stacks.
   672         *
   673         *  The default stack section name is target/device specific.
   674         *  For C6x targets it is ".far:taskStackSection".
   675         *  For C28x targets it is ".taskStackSection".
   676         *  For GNU targets it is ".bss".
   677         *  For all other targets it is ".bss:taskStackSection".
   678         *
   679         *  By default, all statically created task stacks are grouped together
   680         *  into the defaultStackSection and placed where ever
   681         *  the target specific defaultStackSection base section name
   682         *  (ie .bss, .far, .ebss) is placed.
   683         *
   684         *  To place all task stacks into a different memory segment,
   685         *  add the following to your config script:
   686         *
   687         *  @p(code)
   688         *  Program.sectMap[Task.defaultStackSection] = new Program.SectionSpec();
   689         *  Program.sectMap[Task.defaultStackSection].loadSegment =
   690         *                   "yourMemorySegment";
   691         *  @p
   692         *
   693         *  To group all task stacks into a different section AND place that
   694         *  section into a specific memory segment, add the following to your
   695         *  config script:
   696         *
   697         *  @p(code)
   698         *  Task.defaultStackSection = ".yourSectionName";
   699         *  Program.sectMap[Task.defaultStackSection] = new Program.SectionSpec();
   700         *  Program.sectMap[Task.defaultStackSection].loadSegment =
   701         *                   "yourMemorySegment";
   702         *  @p
   703         *
   704         *  Where "yourSectionName" can be just about anything, and
   705         *                   "yourMemorySegment"
   706         *  must be a memory segment defined for your board.
   707         */
   708        metaonly config String defaultStackSection;
   709    
   710        /*!
   711         *  Default Mem heap used for all dynamically created task stacks.
   712         *
   713         *  Default is null.
   714         */
   715        config IHeap.Handle defaultStackHeap;
   716    
   717        /*!
   718         *  Default core affinity for newly created tasks.
   719         *
   720         *  Default is Task_AFFINITY_NONE, meaning don't care.
   721         */
   722        metaonly config UInt defaultAffinity = AFFINITY_NONE;
   723    
   724        /*!
   725         *  Create a task (of priority 0) to run the Idle functions in.
   726         *
   727         *  When set to true, a task is created that continuously calls the
   728         *  {@link Idle#run Idle_run()} function, which, in turn calls each of
   729         *  the configured Idle functions.
   730         *
   731         *  When set to false, no Idle Task is created and it is up to the
   732         *  user to call the Idle_run() function if the configured Idle
   733         *  functions need to be run. Or, by adding the following lines to
   734         *  the config script, the Idle functions will run whenever all
   735         *  tasks are blocked ({@link #allBlockedFunc Task.allBlockedFunc}):
   736         *
   737         *  @p(code)
   738         *  Task.enableIdleTask = false;
   739         *  Task.allBlockedFunc = Idle.run;
   740         *  @p
   741         *
   742         *  Default is true.
   743         *
   744         *  @see #idleTaskStackSize
   745         *  @see #idleTaskStackSection
   746         *  @see #idleTaskVitalTaskFlag
   747         *  @see #allBlockedFunc
   748         */
   749        metaonly config Bool enableIdleTask = true;
   750    
   751        /*!
   752         *  Idle task stack size in MAUs.
   753         *
   754         *  Default is inherited from module config defaultStackSize.
   755         */
   756        metaonly config SizeT idleTaskStackSize;
   757    
   758        /*!
   759         *  Idle task stack section
   760         *
   761         *  Default is inherited from module config defaultStackSection;
   762         */
   763        metaonly config String idleTaskStackSection;
   764    
   765        /*!
   766         *  Idle task's vitalTaskFlag.
   767         *  (see {@link #vitalTaskFlag}).
   768         *
   769         *  Default is true.
   770         */
   771        metaonly config Bool idleTaskVitalTaskFlag = true;
   772    
   773        /*!
   774         *  Function to call while all tasks are blocked.
   775         *
   776         *  This function will be called repeatedly while no tasks are
   777         *  ready to run.
   778         *
   779         *  Ordinarily (in applications that have tasks ready to run at startup),
   780         *  the function will run in the context of the last task to block.
   781         *
   782         *  In an application where there are no tasks ready to run
   783         *  when BIOS_start() is called, the allBlockedFunc function is
   784         *  called within the BIOS_start() thread which runs on the system/ISR
   785         *  stack.
   786         *
   787         *  By default, allBlockedFunc is initialized to point to an internal
   788         *  function that simply returns.
   789         *
   790         *  By adding the following lines to the config script, the Idle
   791         *  functions will run whenever all tasks are blocked:
   792         *
   793         *  @p(code)
   794         *  Task.enableIdleTask = false;
   795         *  Task.allBlockedFunc = Idle.run;
   796         *  @p
   797         *
   798         *  @see #enableIdleTask
   799         *
   800         *  @a(constraints)
   801         *  The configured allBlockedFunc is designed to be called repeatedly.
   802         *  It must return in order for the task scheduler to check if all
   803         *  tasks are STILL blocked and if not, run the highest priority task
   804         *  currently ready to run.
   805         *
   806         *  The configured allBlockedFunc function is called with interrupts
   807         *  disabled. If your function must run with interrupts enabled,
   808         *  surround the body of your code with  Hwi_enable()/Hwi_restore()
   809         *  function calls per the following example:
   810         *
   811         *  @p(code)
   812         *  Void yourFunc() {
   813         *      UInt hwiKey;
   814         *
   815         *      hwiKey = Hwi_enable();
   816         *
   817         *      ...         // your code here
   818         *
   819         *      Hwi_restore(hwiKey);
   820         *  }
   821         *  @p
   822         */
   823        config AllBlockedFuncPtr allBlockedFunc = null;
   824    
   825        /*!
   826         *  Initialize stack with known value for stack checking at runtime
   827         *  (see {@link #checkStackFlag}).
   828         *
   829         *  This is also useful for inspection of stack in debugger or core
   830         *  dump utilities.
   831         *  Default is true.
   832         */
   833        config Bool initStackFlag = true;
   834    
   835        /*!
   836         *  Check 'from' and 'to' task stacks before task context switch.
   837         *
   838         *  The check consists of testing the top of stack value against
   839         *  its initial value (see {@link #initStackFlag}). If it is no
   840         *  longer at this value, the assumption is that the task has
   841         *  overrun its stack. If the test fails, then the
   842         *  {@link #E_stackOverflow} error is raised.
   843         *
   844         *  Runtime stack checking is only performed if {@link #initStackFlag} is
   845         *  also true.
   846         *
   847         *  Default is true.
   848         *
   849         *  To enable or disable full stack checking, you should set both this
   850         *  flag and the {@link ti.sysbios.hal.Hwi#checkStackFlag}.
   851         *
   852         *  @a(Note)
   853         *  Enabling stack checking will add some interrupt latency because the
   854         *  checks are made within the Task scheduler while interrupts are
   855         *  disabled.
   856         */
   857        config Bool checkStackFlag = true;
   858    
   859        /*!
   860         *  Automatically delete terminated tasks.
   861         *
   862         *  If this feature is enabled, an Idle function is installed that
   863         *  deletes dynamically created Tasks that have terminated either
   864         *  by falling through their task function or by explicitly calling
   865         *  Task_exit().
   866         *
   867         *  A list of terminated Tasks that were created dynmically is
   868         *  maintained internally. Each invocation of the installed Idle function
   869         *  deletes the first Task on this list. This one-at-a-time process
   870         *  continues until the list is empty.
   871         *
   872         *  @a(Note)
   873         *  This feature is disabled by default.
   874         *
   875         *  @a(WARNING)
   876         *  When this feature is enabled, an error will be raised if the user's
   877         *  application attempts to delete a terminated task. If a terminated task
   878         *  has already been automatically deleted and THEN the user's application
   879         *  attempts to delete it (ie: using a stale Task handle), the results are
   880         *  undefined and probably catastrophic!
   881         *
   882         */
   883        config Bool deleteTerminatedTasks = false;
   884    
   885        /*!
   886         *  Const array that holds the HookSet objects.
   887         *
   888         *  See {@link #hookfunc Hook Functions} for details about HookSets.
   889         */
   890        config HookSet hooks[length] = [];
   891    
   892        // -------- Module Functions --------
   893    
   894        /*!
   895         *  ======== addHookSet ========
   896         *  addHookSet is used in a config file to add a hook set.
   897         *
   898         *  Configures a set of hook functions for the
   899         *  Task module. Each set contains these hook functions:
   900         *
   901         *  @p(blist)
   902         *  -Register: A function called before any statically created tasks
   903         *  are initialized at runtime.  The register hook is called at boot time
   904         *  before main() and before interrupts are enabled.
   905         *  -Create: A function that is called when a task is created.
   906         *  This includes tasks that are created statically and those
   907         *  created dynamically using {@link #create} or {@link #construct}.
   908         *  The create hook is called outside of a Task_disable/enable block and
   909         *   before the task has been added to the ready list.
   910         *  -Ready: A function that is called when a task becomes ready to run.
   911         *   The ready hook is called from within a Task_disable/enable block with
   912         *   interrupts enabled.
   913         *  -Switch: A function that is called just before a task switch
   914         *  occurs. The 'prev' and 'next' task handles are passed to the Switch
   915         *  hook. 'prev' is set to NULL for the initial task switch that occurs
   916         *  during SYS/BIOS startup.  The Switch hook is called from within a
   917         *  Task_disable/enable block with interrupts enabled.
   918         *  -Exit:  A function that is called when a task exits using
   919         *  {@link #exit}.  The exit hook is passed the handle of the exiting
   920         *  task.  The exit hook is called outside of a Task_disable/enable block
   921         *  and before the task has been removed from the kernel lists.
   922         *  -Delete: A function that is called when any task is deleted at
   923         *  run-time with {@link #delete}.  The delete hook is called outside
   924         *  of a Task_disable/enable block.
   925         *  @p
   926         *  Hook functions can only be configured statically.
   927         *
   928         *  See {@link #hookfunc Hook Functions} for more details.
   929         *
   930         *  HookSet structure elements may be omitted, in which case those
   931         *  elements will not exist.
   932         *
   933         *  For example, the following configuration code defines a HookSet:
   934         *
   935         *  @p(code)
   936         *  // Hook Set 1
   937         *  Task.addHookSet({
   938         *     registerFxn: '&myRegister1',
   939         *     createFxn:   '&myCreate1',
   940         *     readyFxn:    '&myReady1',
   941         *     switchFxn:   '&mySwitch1',
   942         *     exitFxn:     '&myExit1',
   943         *     deleteFxn:   '&myDelete1'
   944         *  });
   945         *  @p
   946         *
   947         *  @param(hook)    structure of type HookSet
   948         */
   949        metaonly Void addHookSet(HookSet hook);
   950    
   951        /*!
   952         *  @_nodoc
   953         *  ======== Task_startup ========
   954         *  Start the task scheduler.
   955         *
   956         *  Task_startup signals the end of boot operations, enables
   957         *  the Task scheduler and schedules the highest priority ready
   958         *  task for execution.
   959         *
   960         *  Task_startup is called by BIOS_start() after Hwi_enable()
   961         *  and Swi_enable(). There is no return from this function as the
   962         *  execution thread is handed to the highest priority ready task.
   963         */
   964        Void startup();
   965    
   966        /*!
   967         *  ======== Task_enabled ========
   968         *  Returns TRUE if the Task scheduler is enabled
   969         *
   970         *  @_nodoc
   971         */
   972        Bool enabled();
   973    
   974        /*!
   975         *  @_nodoc
   976         *  ======== unlockSched ========
   977         *  Force a Task scheduler unlock. Used by Core_atExit() & Core_hwiFunc()
   978         *  to unlock Task scheduler before exiting.
   979         *
   980         *  This function should only be called after a Hwi_disable() has entered
   981         *  the Inter-core gate and disabled interrupts locally.
   982         */
   983        Void unlockSched();
   984    
   985        /*!
   986         *  ======== Task_disable ========
   987         *  Disable the task scheduler.
   988         *
   989         *  {@link #disable} and {@link #restore} control Task scheduling.
   990         *  {@link #disable} disables all other Tasks from running until
   991         *  {@link #restore} is called. Hardware and Software interrupts
   992         *  can still run.
   993         *
   994         *  {@link #disable} and {@link #restore} allow you to ensure that
   995         *  statements
   996         *  that must be performed together during critical processing are not
   997         *  preempted by other Tasks.
   998         *
   999         *  The value of the key returned is opaque to applications and is meant
  1000         *  to be passed to Task_restore().
  1001         *
  1002         *  In the following example, the critical section is
  1003         *  not preempted by any Tasks.
  1004         *
  1005         *  @p(code)
  1006         *  key = Task_disable();
  1007         *      `critical section`
  1008         *  Task_restore(key);
  1009         *  @p
  1010         *
  1011         *  You can also use {@link #disable} and {@link #restore} to
  1012         *  create several Tasks and allow them to be invoked in
  1013         *  priority order.
  1014         *
  1015         *  {@link #disable} calls can be nested.
  1016         *
  1017         *  @b(returns)     key for use with {@link #restore}
  1018         *
  1019         *  @a(constraints)
  1020         *  Do not call any function that can cause the current task to block
  1021         *  within a {@link #disable}/{@link #restore} block. For example,
  1022         *  {@link ti.sysbios.knl.Semaphore#pend Semaphore_pend}
  1023         *  (if timeout is non-zero),
  1024         *  {@link #sleep}, {@link #yield}, and Memory_alloc can all
  1025         *  cause blocking.
  1026         */
  1027        UInt disable();
  1028    
  1029        /*!
  1030         *  @_nodoc
  1031         *  ======== enable ========
  1032         *  Enable the task scheduler.
  1033         *
  1034         *  {@link #enable} unconditionally enables the Task scheduler and
  1035         *  schedules the highest priority ready task for execution.
  1036         *
  1037         *  This function is called by {@link #startup} (which is called by
  1038         *  {@link ti.sysbios.BIOS#start BIOS_start}) to begin multi-tasking
  1039         *  operations.
  1040         */
  1041        Void enable();
  1042    
  1043        /*!
  1044         *  ======== restore ========
  1045         *  Restore Task scheduling state.
  1046         *
  1047         *  {@link #disable} and {@link #restore} control Task scheduling
  1048         *  {@link #disable} disables all other Tasks from running until
  1049         *  {@link #restore} is called. Hardware and Software interrupts
  1050         *  can still run.
  1051         *
  1052         *  {@link #disable} and {@link #restore} allow you to ensure that
  1053         *  statements
  1054         *  that must be performed together during critical processing are not
  1055         *  preempted.
  1056    
  1057         *  In the following example, the critical section is not preempted
  1058         *  by any Tasks.
  1059         *
  1060         *  @p(code)
  1061         *  key = Task_disable();
  1062         *      `critical section`
  1063         *  Task_restore(key);
  1064         *  @p
  1065         *
  1066         *  You can also use {@link #disable} and {@link #restore} to create
  1067         *  several Tasks and allow them to be performed in priority order.
  1068         *
  1069         *  {@link #disable} calls can be nested.
  1070         *
  1071         *  {@link #restore} returns with interrupts enabled if the key unlocks
  1072         *  the scheduler
  1073         *
  1074         *  @param(key)     key to restore previous Task scheduler state
  1075         *
  1076         *  @a(constraints)
  1077         *  Do not call any function that can cause the current task to block
  1078         *  within a {@link #disable}/{@link #restore} block. For example,
  1079         *  {@link ti.sysbios.knl.Semaphore#pend Semaphore_pend()}
  1080         *  (if timeout is non-zero),
  1081         *  {@link #sleep}, {@link #yield}, and Memory_alloc can all
  1082         *  cause blocking.
  1083         *
  1084         *  {@link #restore} internally calls Hwi_enable() if the key passed
  1085         *  to it results in the unlocking of the Task scheduler (ie if this
  1086         *  is root Task_disable/Task_restore pair).
  1087         */
  1088        Void restore(UInt key);
  1089    
  1090        /*!
  1091         *  @_nodoc
  1092         *  ======== restoreHwi ========
  1093         *  Restore Task scheduling state.
  1094         *  Used by dispatcher. Does not re-enable Ints.
  1095         */
  1096        Void restoreHwi(UInt key);
  1097    
  1098        /*!
  1099         *  ======== self ========
  1100         *  Returns a handle to the currently executing Task object.
  1101         *
  1102         *  Task_self returns the object handle for the currently executing task.
  1103         *  This function is useful when inspecting the object or when the current
  1104         *  task changes its own priority through {@link #setPri}.
  1105         *
  1106         *  No task switch occurs when calling Task_self.
  1107         *
  1108         *  Task_self will return NULL until Tasking is initiated at the end of
  1109         *  BIOS_start().
  1110         *
  1111         *  @b(returns)     address of currently executing task object
  1112         */
  1113        Handle self();
  1114    
  1115        /*!
  1116         *  ======== selfMacro ========
  1117         *  Returns a handle to the currently executing Task object.
  1118         *
  1119         *  Task_selfMacro is identical to {@link #self} but is implemented as
  1120         *  and inline macro.
  1121         *
  1122         *  @b(returns)     address of currently executing task object
  1123         */
  1124        @Macro
  1125        Handle selfMacro();
  1126    
  1127        /*!
  1128         *  @_nodoc
  1129         *  ======== checkStacks ========
  1130         *  Check for stack overflow.
  1131         *
  1132         *  This function is usually called by the {@link #HookSet} switchFxn to
  1133         *  make sure task stacks are valid before performing the context
  1134         *  switch.
  1135         *
  1136         *  If a stack overflow is detected on either the oldTask or the
  1137         *  newTask, a {@link #E_stackOverflow} Error is raised and the system
  1138         *  exited.
  1139         *
  1140         *  In order to work properly, {@link #checkStacks} requires that the
  1141         *  {@link #initStackFlag} set to true, which it is by default.
  1142         *
  1143         *  You can call {@link #checkStacks} directly from your application.
  1144         *  For example, you can check the current task's stack integrity
  1145         *  at any time with a call like the following:
  1146         *
  1147         *  @p(code)
  1148         *  Task_checkStacks(Task_self(), Task_self());
  1149         *  @p
  1150         *
  1151         *  @param(oldTask)  leaving Task Object Ptr
  1152         *  @param(newTask)  entering Task Object Ptr
  1153         */
  1154        Void checkStacks(Handle oldTask, Handle newTask);
  1155    
  1156        /*!
  1157         *  ======== exit ========
  1158         *  Terminate execution of the current task.
  1159         *
  1160         *  Task_exit terminates execution of the current task, changing its mode
  1161         *  from {@link #Mode_RUNNING} to {@link #Mode_TERMINATED}. If all tasks
  1162         *  have been terminated, or if all remaining tasks have their
  1163         *  vitalTaskFlag attribute set to FALSE, then SYS/BIOS terminates the
  1164         *  program as a whole by calling the function System_exit with a status
  1165         *  code of 0.
  1166         *
  1167         *  Task_exit is automatically called whenever a task returns from its
  1168         *  top-level function.
  1169         *
  1170         *  Exit Hooks (see exitFxn in {@link #HookSet}) can be used to provide
  1171         *  functions that run whenever a task is terminated. The exitFxn Hooks
  1172         *  are called before the task has been blocked and marked
  1173         *  {@link #Mode_TERMINATED}.
  1174         *  See {@link #hookfunc Hook Functions} for more information.
  1175         *
  1176         *  Any SYS/BIOS function can be called from an Exit Hook function.
  1177         *
  1178         *  Calling {@link #self} within an Exit function returns the task
  1179         *  being exited. Your Exit function declaration should be similar to
  1180         *  the following:
  1181         *  @p(code)
  1182         *  Void myExitFxn(Void);
  1183         *  @p
  1184         *
  1185         *  A task switch occurs when calling Task_exit unless the program as a
  1186         *  whole is terminated
  1187         *
  1188         *  @a(constraints)
  1189         *  Task_exit cannot be called from a Swi or Hwi.
  1190         *
  1191         *  Task_exit cannot be called from the program's main() function.
  1192         */
  1193        Void exit();
  1194    
  1195        /*!
  1196         *  ======== sleep ========
  1197         *  Delay execution of the current task.
  1198         *
  1199         *  Task_sleep changes the current task's mode from {@link #Mode_RUNNING}
  1200         *  to {@link #Mode_BLOCKED}, and delays its execution for nticks
  1201         *  increments of the {@link Clock system clock}. The actual time
  1202         *  delayed can be up to 1 system clock tick less than nticks due to
  1203         *  granularity in system timekeeping and the time elapsed per
  1204         *  tick is determined by {@link Clock#tickPeriod Clock_tickPeriod}.
  1205         *
  1206         *  After the specified period of time has elapsed, the task reverts to
  1207         *  the {@link #Mode_READY} mode and is scheduled for execution.
  1208         *
  1209         *  A task switch always occurs when calling Task_sleep if nticks > 0.
  1210         *
  1211         *  @param(nticks)  number of system clock ticks to sleep
  1212         *
  1213         *  @a(constraints)
  1214         *  Task_sleep cannot be called from a Swi or Hwi, or within a
  1215         *  {@link #disable} / {@link #restore} block.
  1216         *
  1217         *  Task_sleep cannot be called from the program's main() function.
  1218         *
  1219         *  Task_sleep should not be called from within an Idle function. Doing
  1220         *  so prevents analysis tools from gathering run-time information.
  1221         *
  1222         *  nticks cannot be {@link ti.sysbios.BIOS#WAIT_FOREVER BIOS_WAIT_FOREVER}.
  1223         */
  1224        Void sleep(UInt32 nticks);
  1225    
  1226        /*!
  1227         *  ======== yield ========
  1228         *  Yield processor to equal priority task.
  1229         *
  1230         *  Task_yield yields the processor to another task of equal priority.
  1231         *
  1232         *  A task switch occurs when you call Task_yield if there is an equal
  1233         *  priority task ready to run.
  1234         *
  1235         *  Tasks of higher priority preempt the currently running task without
  1236         *  the need for a call to Task_yield. If only lower-priority tasks are
  1237         *  ready to run when you call Task_yield, the current task continues to
  1238         *  run. Control does not pass to a lower-priority task.
  1239         *
  1240         *  @a(constraints)
  1241         *  When called within an Hwi, the code sequence calling Task_yield
  1242         *  must be invoked by the Hwi dispatcher.
  1243         *
  1244         *  Task_yield cannot be called from the program's main() function.
  1245         */
  1246        Void yield();
  1247    
  1248        /*!
  1249         *  ======== getIdleTask ========
  1250         *  returns a handle to the idle task object (for core 0)
  1251         */
  1252        Handle getIdleTask();
  1253    
  1254        /*!
  1255         *  ======== getIdleTaskHandle ========
  1256         *  returns a handle to the idle task object for the specified coreId
  1257         *  (should be used only in applications built with
  1258         *  {@link ti.sysbios.BIOS#smpEnabled} set to true)
  1259         *
  1260         *  @a(Note)
  1261         *  If this function is called in a non-SMP application, coreId should
  1262         *  always be 0.
  1263         */
  1264        Handle getIdleTaskHandle(UInt coreId);
  1265    
  1266        /*
  1267         *  @_nodoc
  1268         *  ======== startCore ========
  1269         *  begin tasking on a core
  1270         */
  1271        Void startCore(UInt coreId);
  1272    
  1273        /*!
  1274         *  ======== getNickName ========
  1275         *
  1276         */
  1277        metaonly String getNickName(Any tskView);
  1278    
  1279    instance:
  1280    
  1281        /*!
  1282         *  ======== create ========
  1283         *  Create a Task.
  1284         *
  1285         *  Task_create creates a new task object. If successful, Task_create
  1286         *  returns the handle of the new task object. If unsuccessful,
  1287         *  Task_create returns NULL unless it aborts.
  1288         *
  1289         *  The fxn parameter uses the {@link #FuncPtr} type to pass a pointer to
  1290         *  the function the Task object should run. For example, if myFxn is a
  1291         *  function in your program, your C code can create a Task object
  1292         *  to call that
  1293         *  function as follows:
  1294         *
  1295         *  @p(code)
  1296         *  Task_Params taskParams;
  1297         *
  1298         *  // Create task with priority 15
  1299         *  Task_Params_init(&taskParams);
  1300         *  taskParams.stackSize = 512;
  1301         *  taskParams.priority = 15;
  1302         *  Task_create((Task_FuncPtr)myFxn, &taskParams, &eb);
  1303         *  @p
  1304         *
  1305         *  The following statements statically create a task in the
  1306         *  configuration file:
  1307         *
  1308         *  @p(code)
  1309         *  var params = new Task.Params;
  1310         *  params.instance.name = "tsk0";
  1311         *  params.arg0 = 1;
  1312         *  params.arg1 = 2;
  1313         *  params.priority = 1;
  1314         *  Task.create('&tsk0_func', params);
  1315         *  @p
  1316         *
  1317         *  If NULL is passed instead of a pointer to an actual Task_Params
  1318         *  struct, a
  1319         *  default set of parameters is used. The "eb" is an error block that
  1320         *  you can use
  1321         *  to handle errors that may occur during Task object creation.
  1322         *
  1323         *  The newly created task is placed in {@link #Mode_READY} mode, and is
  1324         *  scheduled to begin concurrent execution of the following function
  1325         *  call:
  1326         *
  1327         *  @p(code)
  1328         *  (*fxn)(arg1, arg2);
  1329         *  @p
  1330         *
  1331         *  As a result of being made ready to run, the task runs any
  1332         *  application-wide Ready functions that have been specified.
  1333         *
  1334         *  Task_exit is automatically called if and when the task returns
  1335         *  from fxn.
  1336         *
  1337         *  @p(html)
  1338         *  <B>Create Hook Functions</B>
  1339         *  @p
  1340         *
  1341         *  You can specify application-wide Create hook functions in your config
  1342         *  file that run whenever a task is created. This includes tasks that
  1343         *  are created statically and those created dynamically using
  1344         *  Task_create.
  1345         *
  1346         *  For Task objects created statically, Create functions are called
  1347         *  during the Task module initialization phase of the program startup
  1348         *  process prior to main().
  1349         *
  1350         *  For Task objects created dynamically, Create functions
  1351         *  are called after the task handle has been initialized but before the
  1352         *  task has been placed on its ready queue.
  1353         *
  1354         *  Any SYS/BIOS function can be called from Create functions.
  1355         *  SYS/BIOS passes the task handle of the task being created to each of
  1356         *  the Create functions.
  1357         *
  1358         *  All Create function declarations should be similar to this:
  1359         *  @p(code)
  1360         *  Void myCreateFxn(Task_Handle task);
  1361         *  @p
  1362         *
  1363         *  @param(fxn)     Task Function
  1364         *
  1365         *  @a(constraints)
  1366         *  @p(blist)
  1367         *  - The fxn parameter and the name attribute cannot be NULL.
  1368         *  - The priority attribute must be less than or equal to
  1369         *  ({@link #numPriorities} - 1) and greater than or equal to one (1)
  1370         *  (priority 0 is owned by the Idle task).
  1371         *  - The priority can be set to -1 for tasks that will not execute
  1372         *  until another task changes the priority to a positive value.
  1373         *  - The stackHeap attribute must identify a valid memory Heap.
  1374         *  @p
  1375         */
  1376        create(FuncPtr fxn);
  1377    
  1378        // -------- Handle Parameters --------
  1379    
  1380        /*! Task function argument. Default is 0 */
  1381        config UArg arg0 = 0;
  1382    
  1383        /*! Task function argument. Default is 0 */
  1384        config UArg arg1 = 0;
  1385    
  1386        /*!
  1387         *  Task priority (0 to Task.numPriorities-1, or -1).
  1388         *  Default is 1.
  1389         */
  1390        config Int priority = 1;
  1391    
  1392        /*!
  1393         *  Task stack pointer. Default = null.
  1394         *
  1395         *  Null indicates that the stack is to be allocated by create().
  1396         *
  1397         *  Example: To statically initialize "tsk0"'s stack to a literal
  1398         *  address, use the following syntax:
  1399         *
  1400         *  @p(code)
  1401         *      Program.global.tsk0.stack = $addr(literal);
  1402         *  @p
  1403         *
  1404         */
  1405        config Ptr stack = null;
  1406    
  1407        /*!
  1408         *  Task stack size in MAUs.
  1409         *
  1410         *  The default value of 0 means that the module config
  1411         *  {@link #defaultStackSize} is used.
  1412         */
  1413        config SizeT stackSize = 0;
  1414    
  1415        /*!
  1416         *  Mem section used for statically created task stacks.
  1417         *
  1418         *  Default is inherited from module config defaultStackSection.
  1419         */
  1420        metaonly config String stackSection;
  1421    
  1422        /*!
  1423         *  Mem heap used for dynamically created task stack.
  1424         *
  1425         *  The default value of NULL means that the module config
  1426         *  {@link #defaultStackHeap} is used.
  1427         */
  1428        config IHeap.Handle stackHeap = null;
  1429    
  1430        /*! Environment data struct. */
  1431        config Ptr env = null;
  1432    
  1433        /*!
  1434         *  Exit system immediately when the last task with this
  1435         *  flag set to TRUE has terminated.
  1436         *
  1437         *  Default is true.
  1438         */
  1439        config Bool vitalTaskFlag = true;
  1440    
  1441        /*!
  1442         *  The core which this task is to run on. Default is Task_AFFINITY_NONE
  1443         *
  1444         *  If there is a compelling reason for a task to be pinned to a
  1445         *  particular core, then setting 'affinity' to the corresponding core
  1446         *  id will force the task to only be run on that core.
  1447         *
  1448         *  The default affinity is inherited from {@link #defaultAffinity
  1449         *  Task.defaultAffinity}
  1450         *  which in turn defaults to {@link #AFFINITY_NONE Task_AFFINITY_NONE},
  1451         *  which means the task can be run on either core.
  1452         *
  1453         *  Furthermore,  Task_AFFINITY_NONE implies that the task can be moved
  1454         *  from core to core as deemed necessary by the Task scheduler in order
  1455         *  to keep the two highest priority ready tasks running simultaneously.
  1456         */
  1457        config UInt affinity;
  1458    
  1459        // -------- Handle Functions --------
  1460    
  1461        /*!
  1462         *  @_nodoc
  1463         *  ======== getArg0 ========
  1464         *  Returns arg0 passed via params to create.
  1465         *
  1466         *  @b(returns)     task's arg0
  1467         */
  1468        UArg getArg0();
  1469    
  1470        /*!
  1471         *  @_nodoc
  1472         *  ======== getArg1 ========
  1473         *  Returns arg1 passed via params to create.
  1474         *
  1475         *  @b(returns)     task's arg1
  1476         */
  1477        UArg getArg1();
  1478    
  1479        /*!
  1480         *  ======== getEnv ========
  1481         *  Get task environment pointer.
  1482         *
  1483         *  Task_getEnv returns the environment pointer of the specified task. The
  1484         *  environment pointer references an arbitrary application-defined data
  1485         *  structure.
  1486         *
  1487         *  If your program uses multiple hook sets, {@link #getHookContext}
  1488         *  allows you to get environment pointers you have set for a particular
  1489         *  hook set and Task object combination.
  1490         *
  1491         *  @b(returns)     task environment pointer
  1492         */
  1493        Ptr getEnv();
  1494    
  1495        /*!
  1496         *  ======== getFunc ========
  1497         *  Get Task function and arguments
  1498         *
  1499         *  If either arg0 or arg1 is NULL, then the corresponding argument is not
  1500         *  returned.
  1501         *
  1502         *  @param(arg0)    pointer for returning Task's first function argument
  1503         *  @param(arg1)    pointer for returning Task's second function argument
  1504         *
  1505         *  @b(returns)     Task function
  1506         */
  1507        FuncPtr getFunc(UArg *arg0, UArg *arg1);
  1508    
  1509        /*!
  1510         *  ======== getHookContext ========
  1511         *  Get hook set's context for a task.
  1512         *
  1513         *  For example, this C code gets the HookContext, prints it,
  1514         *  and sets a new value for the HookContext.
  1515         *
  1516         *  @p(code)
  1517         *  Ptr pEnv;
  1518         *  Task_Handle myTask;
  1519         *  Int myHookSetId1;
  1520         *
  1521         *  pEnv = Task_getHookContext(task, myHookSetId1);
  1522         *
  1523         *  System_printf("myEnd1: pEnv = 0x%lx, time = %ld\n",
  1524         *                (ULong)pEnv, (ULong)Timestamp_get32());
  1525         *
  1526         *  Task_setHookContext(task, myHookSetId1, (Ptr)0xc0de1);
  1527         *  @p
  1528         *
  1529         *  See {@link #hookfunc Hook Functions} for more details.
  1530         *
  1531         *  @param(id)      hook set ID
  1532         *  @b(returns)     hook set context for task
  1533         */
  1534        Ptr getHookContext(Int id);
  1535    
  1536        /*!
  1537         *  ======== getPri ========
  1538         *  Get task priority.
  1539         *
  1540         *  Task_getPri returns the priority of the referenced task.
  1541         *
  1542         *  @b(returns)     task priority
  1543         */
  1544        Int getPri();
  1545    
  1546        /*!
  1547         *  @_nodoc
  1548         *  ======== setArg0 ========
  1549         *  Set arg0 (used primarily for legacy support)
  1550         */
  1551        Void setArg0(UArg arg);
  1552    
  1553        /*!
  1554         *  @_nodoc
  1555         *  ======== setArg1 ========
  1556         *  Set arg1 (used primarily for legacy support)
  1557         */
  1558        Void setArg1(UArg arg);
  1559    
  1560        /*!
  1561         *  ======== setEnv ========
  1562         *  Set task environment.
  1563         *
  1564         *  Task_setEnv sets the task environment pointer to env. The
  1565         *  environment pointer references an arbitrary application-defined
  1566         *  data structure.
  1567         *
  1568         *  If your program uses multiple hook sets, {@link #setHookContext}
  1569         *  allows you to set environment pointers for any
  1570         *  hook set and Task object combination.
  1571         *
  1572         *  @param(env)     task environment pointer
  1573         */
  1574        Void setEnv(Ptr env);
  1575    
  1576        /*!
  1577         *  ======== setHookContext ========
  1578         *  Set hook instance's context for a task.
  1579         *
  1580         *  For example, this C code gets the HookContext, prints it,
  1581         *  and sets a new value for the HookContext.
  1582         *
  1583         *  @p(code)
  1584         *  Ptr pEnv;
  1585         *  Task_Handle myTask;
  1586         *  Int myHookSetId1;
  1587         *
  1588         *  pEnv = Task_getHookContext(task, myHookSetId1);
  1589         *
  1590         *  System_printf("myEnd1: pEnv = 0x%lx, time = %ld\n",
  1591         *                (ULong)pEnv, (ULong)Timestamp_get32());
  1592         *
  1593         *  Task_setHookContext(task, myHookSetId1, (Ptr)0xc0de1);
  1594         *  @p
  1595         *
  1596         *  See {@link #hookfunc Hook Functions} for more details.
  1597         *
  1598         *  @param(id)              hook set ID
  1599         *  @param(hookContext)     value to write to context
  1600         */
  1601        Void setHookContext(Int id, Ptr hookContext);
  1602    
  1603        /*!
  1604         *  ======== setPri ========
  1605         *  Set a task's priority
  1606         *
  1607         *  Task_setpri sets the execution priority of task to newpri, and returns
  1608         *  that task's old priority value. Raising or lowering a task's priority
  1609         *  does not necessarily force preemption and re-scheduling of the caller:
  1610         *  tasks in the {@link #Mode_BLOCKED} mode remain suspended despite a
  1611         *  change in priority; and tasks in the {@link #Mode_READY} mode gain
  1612         *  control only if their new priority is greater than that of the
  1613         *  currently executing task.
  1614         *
  1615         *  newpri should be set to a value greater than or equal to 1 and
  1616         *  less than or equal to ({@link #numPriorities} - 1).  newpri can also
  1617         *  be set to -1 which puts the the task into the INACTIVE state and the
  1618         *  task will not run until its priority is raised at a later time by
  1619         *  another task.  Priority 0 is reserved for the idle task.
  1620         *  If newpri equals ({@link #numPriorities} - 1), execution of the task
  1621         *  effectively locks out all other program activity, except for the
  1622         *  handling of interrupts.
  1623         *
  1624         *  The current task can change its own priority (and possibly preempt its
  1625         *  execution) by passing the output of {@link #self} as the value of the
  1626         *  task parameter.
  1627         *
  1628         *  A context switch occurs when calling Task_setpri if a currently
  1629         *  running task priority is set lower than the priority of another
  1630         *  currently ready task, or if another ready task is made to have a
  1631         *  higher priority than the currently running task.
  1632         *
  1633         *  Task_setpri can be used for mutual exclusion.
  1634         *
  1635         *  If a task's new priority is different than its previous priority,
  1636         *  then its relative placement in its new ready task priority
  1637         *  queue can be different than the one it was removed from. This can
  1638         *  effect the relative order in which it becomes the running task.
  1639         *
  1640         *  The effected task is placed at the head of its new priority queue
  1641         *  if it is the currently running task. Otherwise it is placed at
  1642         *  at the end of its new task priority queue.
  1643         *
  1644         *  @param(newpri) task's new priority
  1645         *  @b(returns)     task's old priority
  1646         *
  1647         *  @a(constraints)
  1648         *  newpri must be a value between 1 and ({@link #numPriorities} - 1) or -1.
  1649         *
  1650         *  The task cannot be in the {@link #Mode_TERMINATED} mode.
  1651         *
  1652         *  The new priority should not be zero (0). This priority level is
  1653         *  reserved for the Idle task.
  1654         */
  1655        UInt setPri(Int newpri);
  1656    
  1657        /*!
  1658         *  ======== stat ========
  1659         *  Retrieve the status of a task.
  1660         *
  1661         *  Task_stat retrieves attribute values and status information about a
  1662         *  task.
  1663         *
  1664         *  Status information is returned through statbuf, which references a
  1665         *  structure of type {@link #Stat}.
  1666         *
  1667         *  When a task is preempted by a software or hardware interrupt, the task
  1668         *  execution mode returned for that task by Task_stat is still
  1669         *  {@link #Mode_RUNNING}  because the task runs when the preemption ends.
  1670         *
  1671         *  The current task can inquire about itself by passing the output of
  1672         *  {@link #self} as the first argument to Task_stat. However, the task
  1673         *  stack pointer (sp) in the {@link #Stat} structure is the value from
  1674         *  the previous context switch.
  1675         *
  1676         *  Task_stat has a non-deterministic execution time. As such, it is not
  1677         *  recommended to call this API from Swis or Hwis.
  1678         *
  1679         *  @param(statbuf) pointer to task status structure
  1680         *
  1681         *  @a(constraints)
  1682         *  statbuf cannot be NULL;
  1683         */
  1684        Void stat(Stat *statbuf);
  1685    
  1686        /*!
  1687         *  ======== getMode ========
  1688         *  Retrieve the {@link #Mode} of a task.
  1689         */
  1690        Mode getMode();
  1691    
  1692        /*!
  1693         *  ======== setAffinity ========
  1694         *  Set task's core affinity.
  1695         *
  1696         *  If the new core ID is different than the current core affinity
  1697         *  a reschedule will be performed immediately.
  1698         *
  1699         *  @a(constraints)
  1700         *  Must NOT be called with interrupts disabled
  1701         *  (ie within a Hwi_disable()/Hwi_restore() block).
  1702         *
  1703         *  Must NOT be called with tasking disabled
  1704         *  (ie within a Task_disable()/Task_restore() block).
  1705         *
  1706         *  @b(returns)     task's previous core affinity
  1707         */
  1708        UInt setAffinity(UInt coreId);
  1709    
  1710        /*!
  1711         *  ======== getAffinity ========
  1712         *  Return task's core affinity.
  1713         *
  1714         *  @b(returns)     task's current core affinity
  1715         */
  1716        UInt getAffinity();
  1717    
  1718        /*!
  1719         *  @_nodoc
  1720         *  ======== block ========
  1721         *  Block a task.
  1722         *
  1723         *  Remove a task from its ready list.
  1724         *  The effect of this API is manifest the next time the internal
  1725         *  Task scheduler is invoked.
  1726         *  This can be done directly by embedding the call within a
  1727         *  {@link #disable}/{@link #restore} block.
  1728         *  Otherwise, the effect will be manifest as a result of processing
  1729         *  the next dispatched interrupt, or by posting a Swi, or by falling
  1730         *  through the task function.
  1731         *
  1732         *  @a(constraints)
  1733         *  If called from within a Hwi or a Swi, or main(), there is no need
  1734         *  to embed the call within a {@link #disable}/{@link #restore} block.
  1735         */
  1736        Void block();
  1737    
  1738        /*!
  1739         *  @_nodoc
  1740         *  ======== unblock ========
  1741         *  Unblock a task.
  1742         *
  1743         *  Place task in its ready list.
  1744         *  The effect of this API is manifest the next time the internal
  1745         *  Task scheduler is invoked.
  1746         *  This can be done directly by embedding the call within a
  1747         *  {@link #disable}/{@link #restore} block.
  1748         *  Otherwise, the effect will be manifest as a result of processing
  1749         *  the next dispatched interrupt, or by posting a Swi, or by falling
  1750         *  through the task function.
  1751         *
  1752         *  @a(constraints)
  1753         *  If called from within a Hwi or a Swi, or main(), there is no need
  1754         *  to embed the call within a {@link #disable}/{@link #restore} block.
  1755         */
  1756        Void unblock();
  1757    
  1758        /*!
  1759         *  @_nodoc
  1760         *  ======== blockI ========
  1761         *  Block a task.
  1762         *
  1763         *  Remove a task from its ready list.
  1764         *  Must be called within Task_disable/Task_restore block
  1765         *  with interrupts disabled.
  1766         *  This API is meant to be used internally.
  1767         */
  1768        Void blockI();
  1769    
  1770        /*!
  1771         *  @_nodoc
  1772         *  ======== unblockI ========
  1773         *  Unblock a task.
  1774         *
  1775         *  Place task in its ready list.
  1776         *  Must be called within Task_disable/Task_restore block
  1777         *  with interrupts disabled.
  1778         *  This API is meant to be used internally.
  1779         *
  1780         *  @param(hwiKey) key returned from Hwi_disable()
  1781         */
  1782        Void unblockI(UInt hwiKey);
  1783    
  1784    internal:   /* not for client use */
  1785    
  1786        /*! Target-specific support functions. */
  1787        proxy SupportProxy inherits ti.sysbios.interfaces.ITaskSupport;
  1788    
  1789        /*
  1790         *  ======== schedule ========
  1791         *  Find highest priority ready task and invoke it.
  1792         *
  1793         *  Must be called with interrupts disabled.
  1794         */
  1795        Void schedule();
  1796    
  1797        /*
  1798         *  ======== enter ========
  1799         *  Task's initial entry point before entering task function.
  1800         */
  1801        Void enter();
  1802    
  1803        /*
  1804         *  ======== sleepTimeout ========
  1805         *  This function is the clock event handler for sleep.
  1806         */
  1807        Void sleepTimeout(UArg arg);
  1808    
  1809        /*
  1810         *  ======== postInit ========
  1811         *  finish initializing static and dynamic Tasks
  1812         */
  1813        Int postInit(Object *task, Error.Block *eb);
  1814    
  1815        /*
  1816         *  Number of statically constructed Task objects.
  1817         *  Shouldn't be set directly by the user's
  1818         *  config (it gets set by instance$static$init).
  1819         */
  1820        config UInt numConstructedTasks = 0;
  1821    
  1822        /*
  1823         *  ======== allBlockedFunction ========
  1824         *  default function to be called
  1825         */
  1826        Void allBlockedFunction();
  1827    
  1828        /*
  1829         *  ======== deleteTerminatedTasksFunc ========
  1830         *  Idle func that deletes the first terminated task it finds
  1831         *  in the queue of dynamically created tasks
  1832         */
  1833        Void deleteTerminatedTasksFunc();
  1834    
  1835        /*
  1836         *  ======== Task_processVitalTasks ========
  1837         *  Call BIOS_exit() when last vitalTask exits or is
  1838         *  deleted.
  1839         */
  1840        Void processVitalTaskFlag(Object *task);
  1841    
  1842        /*
  1843         *  ======== startupHookFunc ========
  1844         *  Called by core 0 just before switch to first task
  1845         */
  1846        config Void (*startupHookFunc)(Void) = null;
  1847    
  1848        /*
  1849         *  Common object used by all blocked tasks to enable Task_delete()
  1850         *  to remove a task from any pend Q it is placed on while blocked.
  1851         */
  1852        struct PendElem {
  1853            Queue.Elem      qElem;
  1854            Task.Handle     task;
  1855            Clock.Handle    clock;
  1856        };
  1857    
  1858        struct Instance_State {
  1859            Queue.Elem      qElem;          // Task's readyQ element
  1860            volatile Int    priority;       // Task priority
  1861            UInt            mask;           // curSet mask = 1 << priority
  1862            Ptr             context;        // ptr to Task's saved context
  1863                                            // while not in RUNNING mode.
  1864            Mode            mode;           // READY, BLOCKED, RUNNING, etc
  1865            PendElem        *pendElem;      // ptr to Task, Semaphore, Event,
  1866                                            // or GateMutexPri PendElem
  1867            SizeT           stackSize;      // Task's stack buffer size
  1868            Char            stack[];        // buffer used for Task's stack
  1869            IHeap.Handle    stackHeap;      // Heap to allocate stack from
  1870            FuncPtr         fxn;            // Task function
  1871            UArg            arg0;           // Task function 1st arg
  1872            UArg            arg1;           // Task function 2nd arg
  1873            Ptr             env;            // Task environment pointer
  1874            Ptr             hookEnv[];      // ptr to Task's hook env array
  1875            Bool            vitalTaskFlag;  // TRUE = shutdown system if
  1876                                            // last task like this exits
  1877            Queue.Handle    readyQ;         // This Task's readyQ
  1878            UInt            curCoreId;      // Core this task is currently running on.
  1879            UInt            affinity;       // Core this task must run on
  1880                                            // Task_AFFINITY_NONE = don't care
  1881        };
  1882    
  1883        struct Module_State {
  1884            Bool            locked;         // Task scheduler locked flag
  1885            volatile UInt   curSet;         // Bitmask reflects readyQ states
  1886            Bool            workFlag;       // Scheduler work is pending.
  1887                                            // Optimization. Must be set
  1888                                            // whenever readyQs are modified.
  1889            UInt            vitalTasks;     // number of tasks with
  1890                                            // vitalTaskFlag = true
  1891            Handle          curTask;        // current Task instance
  1892            Queue.Handle    curQ;           // current Task's readyQ
  1893            Queue.Object    readyQ[];       // Task ready queues
  1894    
  1895            volatile UInt   smpCurSet[];    // Bitmask reflects readyQ states
  1896                                            // curSet[n] = core n
  1897                                            // curSet[Core.numCores] = don't care
  1898            volatile UInt   smpCurMask[];   // mask of currently running tasks
  1899            Handle          smpCurTask[];   // current Task instance ([0] = core 0, etc)
  1900            Queue.Handle    smpReadyQ[];    // core ready queues
  1901                                            // [0] = core0 readyQs
  1902                                            // [1] = core1 readyQs
  1903                                            // [numCores] = don't care readyQs
  1904            Queue.Object    inactiveQ;      // Task's with -1 priority
  1905            Queue.Object    terminatedQ;    // terminated dynamically created Tasks
  1906    
  1907            Handle          idleTask[];             // Idle Task handles
  1908            Handle          constructedTasks[];     // array of statically
  1909                                                    // constructed Tasks
  1910        };
  1911    }
  1912