DSP/BIOS 5.30 Textual Configuration
(Tconf) User’s Guide

Literature Number: SPRUOO7H
May 2006

Q‘ TeEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services
at any time and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders and should verify that such information is
current and complete. All products are sold subject to TI's terms and conditions of sale supplied
at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI's standard warranty. Testing and other quality control techniques are
used to the extent Tl deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily per-
formed.

Tl assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using Tl components. To minimize the risks
associated with customer products and applications, customers should provide adequate de-
sign and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under
any Tl patent right, copyright, mask work right, or other Tl intellectual property right relating to
any combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third party products or services does not constitute a license from Tl
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations,
and notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated
by Tl for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. Tl is not responsible or
liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

About This Manual

Preface

Read This First

DSP/BIOS allows you to develop embedded real-time software
applications for Texas Instruments TMS320 DSP devices. DSP/BIOS
provides a small firmware real-time library and easy-to-use tools for real-
time tracing and analysis.

This book described the Tconf configuration scripts used with DSP/BIOS.
It is intended as an addendum to the TMS320 DSP/BIOS User’s Guide.
In addition, the TMS320 DSP/BIOS API Reference Guide for your
platform provides details about DSP/BIOS modules.

Important: This manual is for use with DSP/BIOS 5.30. See Appendix '

A for conversion information.
|

Notational Conventions

This document uses the following conventions:

[Program listings, program examples, and interactive displays are
shown in a special typeface. Examples use a bold version
of the special typeface for emphasis; interactive displays use a bold
version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts,
command output, error messages, etc.).

[Square brackets ([and]) identify an optional parameter. If you use
an optional parameter, you specify the information within the
brackets. Unless the square brackets are in a bold typeface, do not
enter the brackets themselves.

[BIOS_INSTALL DIR is the top-level folder of the DSP/BIOS
installation. It is best to define this environment variable to point to
your DSP/BIOS installation. However, only the example applications
actually require this environment variable.

Trademarks

Trademarks

Licences

The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments
include: TI, XDS, Code Composer, Code Composer Studio, Probe Point,
Code Explorer, DSP/BIOS, RTDX, Online DSP Lab, DaVinci, TMS320,
TMS320C54x, TMS320C55x, TMS320C62x, TMS320C64x,
TMS320C67x, TMS320C5000, and TMS320C6000.

MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation.

UNIX is a registered trademark of The Open Group in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds.

Solaris, SunOS, and Java are trademarks or registered trademarks of
Sun Microsystems, Inc.

All other brand, product names, and service names are trademarks or
registered trademarks of their respective companies or organizations.

The Tconf (xdctools) distribution includes the following third-party
software components: the Java Runtime Environment, Cygwin, and the
Rhino JavaScript interpreter.

The Java Runtime Environment (JRE) is available from Sun
Microsystems at http://java.sun.com/.

The Cygwin DLL and utilities offer a Linux-like environment on Windows
and are available at http://www.cygwin.com/.

The Rhino open-source implementation of JavaScript is available at
http://www.mozilla.org/rhino. The source code used by the tconf utility is
available in the js.jar Java archive included with the utility.

For licensing information about these components, see the readme files
included with the components and the web sites for the components. For
Rhino licensing information, see http://www.mozilla.org/MPL.

Contents

1 DSP/BIOS Tconf OVEIVIEW e e e 1-1
This chapter introduces Tconf, which is used to configure DSP/BIOS applications.
1.1 DSP/BIOS Configuration Roadmapo 1-2
1.2 DSP/BIOS Configuration Benefits 1-3
121 Benefits of Static Configuration 1-3
1.2.2 The DSP/BIOS Configuration Tool vs. a Text Editor 1-4
1.3 Creating a Tconf SCript.t e 1-5
2 RUNNING TCONf SCIIPLS ..ot e 1-1
This chapter describes how to run Tconf scripts.
2.1 Running a Tconf SCript. oo 1-2
211 Generated Files 1-2
2.2 The tconf Command-Line Utility e 1-4
2.2.1 Environment Array Variables 1-5
2.2.2 Argument Array Variables e 1-7
2.3 Teonf Operation MOAESt e e e 1-8
231 Command Line Mode.t 1-8
2.3.2 The GUI Script Debugger.o e e 1-8
2.3.3 Interactive Tconf. 1-10
3 Tconf Language and Object Model 1-1

This chapter describes the Tconf language, the object model it uses, and some extensions to
JavaScript available in Tconf.

3.1

3.2
3.3
3.4
3.5
3.6

3.7
3.8

JavaScript Language Highlights. 1-2
311 Language OVeIVIEWo e e 1-2
3.1.2 Common Misconceptions About JavaScript., 1-2
3.1.3 JavaScriptand Java References i 1-3
The Target Content Object Model (TCOM) e 1-4
Methods for Loading Other Scripts. i e 1-5
Enabling DSP/BIOS COMPONENTSttt e e 1-6
Configuration Coding Guidelines i e 1-7
Object and Property Naming and Referencing., 1-8
3.6.1 Module and Instance Property Names.o, 1-10
3.6.2 Namespace Management ittt 1-10
PropeItY TYPOS . o ottt 1-11
File Manipulation with Java i e e 1-13

Contents

3.9 The print() Method e e e e 1-13
3.10 ErrorHandling e 1-14
3.10.1 More ABOUL EITOrS . ..ottt e 1-14
3.10.2 More AbOUt EXCEPLIONS o i 1-15
Teonf Platform Files 1-1

This chapter describes how Tconf scripts should specify the platform to use and how Tconf scripts
interact with other files and with operating system issues.

4.1 Using TI-Supplied Platform Files e e 1-2
411 Referencing a Platform File with utils.loadPlatform() 1-3
4.2 Creating Custom Platform Files e e 1-4
421 Creating a Platform for External Distribution 1-6
4.3 Setting Platform Params. e 1-7
4.3.1 Example for 'C2812 e 1-10
4.3.2 Example for 'C5416 e 1-11
4.3.3 Example for 'C5510 o e 1-12
4.3.4 Example for OMAP 1510ottt e e e e e 1-12
4.3.5 Example for'CB416t e e 1-12
4.3.6 Example for 'CB713 e 1-13
4.3.7 Example for 'C64+ DeViCeS oot 1-13
4.3.8 Example for 'C67+ DeVICES oot 1-14
4.4 Using Custom Platform Files e 1-15
Tconf Object Model Reference e 1-1
This chapter provides reference information about the Target Content Object Model.
5.1 Target Content Object Model Quick Reference 1-2
5.2 CoNfig Classot 1-4
5.3 Board Classt 1-8
5.4 CPU ClaSS . o o ot e 1-11
55 Program Class 1-16
5.6 MEMOKY Class. 1-22
5.7 EXtern Class . . . oo 1-23
5.8 Module Classo e 1-24
5.9 INStANCE Class 1-28
The DSP/BIOS Configuration Tool (Geconf) e 1-1
This chapter describes use of the DSP/BIOS Graphical Configuration Tool.
6.1 Tconf Pane in the Graphical Editor. 1-2
6.2 Tconf Integration with the DSP/BIOS Configuration Tool. 1-3
6.2.1 Limitations of Tconf Integration 1-3
6.2.2 Prog.gen() Method Argument Rules. L. 1-4
6.2.3 Insertion Marker Rules 1-4
6.3 DSP/BIOS Configuration Tool Menu Operations, 1-5
6.4 The Geonfini File 1-11
6.5 Geonf.exe Command Line e 1-12
6.6 Error Handling 1-12

Contents vi

Contents

A Updating DSP/BIOS Configurations e e e 1-1

This appendix describes how to convert application configurations created with previous versions
of DSP/BIOS.

A.l L@ YT 11 1-2
A.2 The cdb2tcf Utilityo o e 1-2
A.3 Converting from CDB Configurations i e 1-5
A.4 Converting from Existing Tconf Configurations 1-9
B Configurations for Supported Platforms and Devices 1-1

This appendix provides lists of the platforms and devices supported by DSP/BIOS and their mem-
ory configurations.

B.1 Platform Memory Configurationst 1-2
B.2 Deprecated Platform Memory Configurations, 1-14
B.3 Device Memory Configurations 1-21

Contents vii

1-1
2-1
3-1
5-1
6-1

Figures

DSP/BIOS CONFIQUIALION......ciiiiiiiieiiiiiiie ettt e e e e e e e e e e e e e aaenaes 1-2
RhiNO GUI DebUGGEr WINUOW.......cceeiiii ittt ir e e e st e e e e e e e s e s st reeeaeeeeeeenn e 1-9
Target Content Object Model (TCOM)ccooiiiciiiiiieeiie e eer e e e 1-4
Target Content Object Model (TCOM)oooiiiiiiiiiiiee e 1-2
DSP/BIOS Configuration TOOIccoiiiiiiiiiiiiir e e e s st e e e e e e e s st r e e e e e e e e s eannns 1-2

viii

4-1

5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9

Tables

Target-Dependent Properties Of regsS.......ooooiuiiiiiiiiiiiaeieee e 1-8
Target Content Object Model SUMMAIY ... 1-2
Config Class SUMMAIYccuuuiiiiiiiiieeeeeeees s e e e e e e e e e s s s e e e aeaeeaeeesnnnnnes 1-4
Board Class SUMMAIYuuuiiiiiieee et et e e e e e e s s eaer e e e e e e e e sn s anneanraeeeees 1-8
CPU ClasSS SUMMATY ...coceiiiiieeiieee e e e es s st e e e e e e e e s e s s s statbaaeeeeraaeseesaassnnsanneees 1-11
Program ClasSS SUMMAIYceuiiiiiaaiiiiiiiiiie e eee e e e e e e eeeeeaaaae e e s e aaneneeeeeees 1-16
MeMOrY ClasSS SUMIMAIYccoiiiiaiiiiiiiiiee et e e e e e e e eeaeas 1-22
EXtern ClasS SUMMIAIYcoiiiiiiiiiiiiiiitiiee et e e e e e e e e e e s e eeeaaeeas 1-23
Module ClasS SUMMAIYcuiiiieeeieeiiciiiiie e e e s e e e s ss s st rrr e re e e e e e e sa s nnrenraeeeeees 1-24
INStANCE ClasS SUMMANYccceeeiiiiiiciiiiiiie e e e e e e e e e e s e e e e e e e e s s s aareereaaee s 1-28

Chapter 1

DSP/BIOS Tconf Overview

This chapter introduces Tconf, which is used to configure DSP/BIOS
applications.

Topic Page
1.1 DSP/BIOS Configuration Roadmap 1-2
1.2 DSP/BIOS Configuration Benefits 1-3
1.3 CreatingaTconf SCript....... ...t 1-5

1-1

DSP/BIOS Configuration Roadmap

1.1 DSP/BIOS Configuration Roadmap

DSP/BIOS configuration allows you to create and configure static objects
and properties for use by the DSP/BIOS API as part of your application
design. For information about DSP/BIOS objects and properties, see the
TMS320 DSP/BIOS API Reference Guide for your platform.

Typically, you use the graphical DSP/BIOS Configuration Tool (Gconf) to
create your initial configuration. This tool acts as a macro recorder for
Tconf scripts (TCF files). You see the script change in the right pane of
the tool as you change the configuration. Later, you can edit the Tconf
script generated by the DSP/BIOS Configuration Tool with a text editor.

Tconf scripts are now the source files for DSP/BIOS configurations. The
CDB files previously used as configuration source files can now only be
opened in read-only mode or converted to TCF files.

When you save a configuration with the DSP/BIOS Configuration Tool,
the files shown in gray in Figure 1-1 are generated. See Section 2.1.1,
Generated Files, page 2-2 for more details.

Figure 1-1 DSP/BIOS Configuration

Text Editor

DSP/BIOS TextConf Script
utils.loadPlatform("ti.platforms.target");

Platform File

(Platform.tci) run script with

add objects tconf utility
change properties
..more. .. tCOfﬁ
prog-aen iy ™ utility

: : Linker . .
Configuration Command Configuration

Database C Source

File .
(*cfg.cmd) (*cfg_c.c)

Configuration
Assembly

Configuration
Assembly

Configuration
C Header

(*cfg.h) Header

(*cfg.h##)

Source

(*.cdb) (*cfg.s##)

1-2

DSP/BIOS Configuration Benefits

The roadmap for future configuration is to provide the same capabilities
for all target content written for TI DSPs as those that are available for
DSP/BIOS modules. This is part of a broad component re-use strategy.
Tconf is just one utility in a set of component tools to be provided in the
eXpress DSP Component (XDC) Tools to enable component re-use. For
more information about the XDC Tools and future content see
https://www-a.ti.com/downloads/sds_support/targetcontent/rtsc/index.html

The XDC Tools (including the Tconf utility) are supported for Microsoft
Windows and UNIX (Solaris and x86 Linux).

1.2 DSP/BIOS Configuration Benefits

The following sections describe the benefits of the static (design-time)
configuration and reasons to use the DSP/BIOS Configuration Tool vs. a
text editor to modify a Tconf script.

1.2.1 Benefits of Static Configuration

The DSP/BIOS API also supports dynamic creation of objects at run-
time. Creating objects at run-time is easier, but extra code is required to
support the object creation and deletion.

Design-time configuration provides the following benefits over run-time
configuration:

[Improves run-time performance by reducing the time your program
spends performing system setup.

[Reduces program size by eliminating run-time code required to
dynamically create and configure objects. For a typical module, the
functions to create and delete objects make up 50% of the code in
the module.

([Optimizes internal data structures.

[Detects errors earlier by validating object properties before program
compilation.

[Automatically sets a variety of properties that are dependent on other
properties. This helps ensure that your configuration is valid.

[Provides object names the DSP/BIOS Analysis Tools can show at
run-time. Objects created at run-time are either not shown or have
generated names.

DSP/BIOS Tconf Overview 1-3

DSP/BIOS Configuration Benefits

1.2.2

The DSP/BIOS Configuration Tool vs. a Text Editor

Both the DSP/BIOS Configuration Tool and direct text editing of scripts
have advantages in certain situations. You can use either configuration
method alone, or you can switch between these methods to perform
tasks in the environment best suited to each task.

The DSP/BIOS Configuration Tool provides the following advantages
over editing Tconf scripts with a text editor:

4

4

The Windows Explorer-like interface makes it easy to see a list of the
available properties for each module and its objects.

You are prevented from making a number of errors through drop-
down lists of valid values and through disabled commands and fields.

Syntax errors cannot occur when generating configuration files.

You do not need to learn the Tconf script syntax.

Using a text editor to manually edit a Tconf script has the following
benefits:

4

4

Supported on UNIX, Lihux, and Windows. (The DSP/BIOS
Configuration Tool is not supported on UNIX and Linux.)

Allows you to import sub-scripts (TCI files) so that you can
modularize platform-specific, application-specific, or other categories
of settings. This makes it easier to port and maintain applications. For
example, if a set of applications all run on a target with minimal
memory, all applications can import a TCI file that minimizes the
DSP/BIOS memory footprint.

Enables use of standard code editing tools. For example, text-based
configuration makes it easier to merge changes from multiple
developers, compare configurations used by multiple applications,
cut and paste between program configurations, and perform
repetitive tasks such as creating several similar objects.

Supports branching, looping, and other programming constructs
within a configuration procedure.

Allows you to ensure that symbol definitions in the configuration and
program sources always match. You can do this by defining variables
for use in scripts and generating a C header file from the script to be
included by the program source code.

Creating a Tconf Script

1.3 Creating a Tconf Script

To configure an application in DSP/BIOS, you need a Tconf script.

Typically, you use the graphical DSP/BIOS Configuration Tool (Gconf) to
create your initial configuration. This tool acts as a macro recorder for
Tconf scripts (TCF files). You see the script change in the right pane of
the tool as you change the configuration. Later, you can edit the Tconf
script generated by the DSP/BIOS Configuration Tool with a text editor.

Tconf scripts contain statements in the JavaScript language (see Section
3.1, JavaScript Language Highlights). These statements are executed to
perform design-time (static) application configuration.

1 If you already have a CDB-based configuration, you need to convert
that configuration to a Tconf script. Please read Section A.3,
Converting from CDB Configurations for instructions.

[If you already have a Tconf script for a version of DSP/BIOS prior to
DSP/BIOS 5.0, read Section A.3, Converting from CDB
Configurations for changes you may need to make to your scripts.

This section shows how to use a text editor to create a Tconf script that
configures a simple application that prints "Hello World!" to a LOG object
named "trace". The source file hello.c of the application is as follows:

#include <std.h>
#include <log.h>
#include "hellocfg.h"

/* ======== maln ======== %/
Void main ()

{

LOG printf (&trace, "Hello World!");

/* fall into DSP/BIOS idle loop */
return;

}

The CDB file for the hello application is about 500 KB. Examining this
configuration with the DSP/BIOS Configuration Tool would involve
browsing through each module and object. In contrast, the equivalent
Tconf script contains only a few lines, because it defines only differences
between the default DSP/BIOS configuration and the objects used by the
application.

DSP/BIOS Tconf Overview 1-5

Creating a Tconf Script

To write a Tconf script for an application, follow these steps:

1)

2)

3)

4)

Create a text file with an extension of .tcf.

In this example the name of the script is hello.tcf. It is not required
that the application source files and the Tconf script have the same
base name, but this naming convention simplifies the scripts and
their maintenance.

Load a platform.

A typical Tconf script begins by loading a platform. In this example,
the loaded platform is dsk6416, one of the Tl-supplied platforms.
Later, in Chapter 4, Tconf Platform Files, we describe how you can
create and use your own customized platforms.

Loading a platform defines the target device, external and internal
memory objects, various DSP/BIOS default objects, and more.

utils.loadPlatform("ti.platforms.dské6416") ;

If you need to port an application to another platform, the platform
name in the utils.loadPlatform() method is the only part of the hello.tcf
script you need to change.

Add statements to create objects and set their properties.

For this application, we first enable components of the DSP/BIOS
kernel that are required for this application. See Section 3.4,
Enabling DSP/BIOS Components for information on enabling and
disabling components of the DSP/BIOS kernel.

bios.enableRealTimeAnalysis (prog) ;
bios.enableRtdx (prog) ;

Then, we create the "trace" LOG object, which is referred to in
hello.c. We also set its size and the type of the log. The last statement
in this section sets the size of LOG_system, the system LOG object.

var trace;

trace = bios.LOG.create ("trace") ;
trace.bufLen = 1024;
trace.logType = "circular";

bios.LOG_system.buflLen = 512;

Type the following lines at the end of the file.

// !GRAPHICAL CONFIG TOOL_SCRIPT INSERT POINT!

if (config.hasReportedError == false) {
prog.gen() ;

Creating a Tconf Script

The comment indicates the location for the DSP/BIOS Configuration
Tool to insert Tconf statements to match your configuration settings.

The prog.gen() method generates the appropriate CDB, source,
header, and linker command files for use in building your application.
Section 2.1, Running a Tconf Script describes all these generated
files. One of the generated files is the hellocfg.h header file, which is
included in hello.c. This header file defines the trace variable, which
is used in the LOG_ printf function call.

The error check prevents an attempt to generate files if any errors
occur when running the configuration script.

As a result of these steps, we have the following complete script for the
hello application:

/* Load the DSK6416 platform. */
utils.loadPlatform("ti.platforms.dské6416") ;

/* Enable needed DSP/BIOS features */
bios.enableRealTimeAnalysis (prog) ;
bios.enableRtdx (prog) ;

/* Create and initialize a LOG object */
var trace;

trace = bios.LOG.create("trace") ;
trace.bufLen = 1024;
trace.logType = "circular";

/* Set the buffer length of LOG_system buffer */
bios.LOG system.bufLen = 512;

// !GRAPHICAL CONFIG TOOL_SCRIPT INSERT POINT!

if (config.hasReportedError == false) {
prog.gen() ;

DSP/BIOS Tconf Overview 1-7

Chapter 2

Running Tconf Scripts

This chapter describes how to run Tconf scripts.

Topic Page
2.1 RunningaTconfScript.......t 2-2
2.2 Thetconf Command-Line Utility 2-4
2.3 TconfOperation Modes0iiiiiiiiineninnnann 2-8

2-1

Running a Tconf Script

2.1 Running a Tconf Script

Tconf scripts are run by the tconf command-line utility. This utility is
available on Solaris, Linux, and Microsoft Windows.

The tconf executable file is located in the xdctools subfolder of the
DSP/BIOS installation folder (BIOS_INSTALL_DIR\xdctools). You may
want to add this folder to your PATH variable so that you can run tconf
without specifying the full path to the utility each time. (See the
SetupGuide.html file in the DSP/BIOS installation folder for information
about setting the PATH.)

To run the configuration script hello.tcf we developed in Section 1.3,
Creating a Tconf Script, and to generate files that you compile with the
source files of your application, type the following command on your
command line:

tconf -Dconfig.importPath="C:/dspbios/bios 5 20/packages" hello.tcf

2.1.1 Generated Files

When a Tconf script executes successfully, or more specifically when the
prog.gen() method is called, Tconf generates a set of files to be compiled
with your source code.

The names of these generated files depend upon the argument supplied
to prog.gen(). In our example script, we invoked prog.gen() with no
argument. If no argument is supplied, the base name for the generated
files defaults to the base name of the executed Tconf script—in this
example, "hello".

If a string argument is supplied to prog.gen(), that string becomes the
base filename for generated files. Using a string argument with
prog.gen() is not supported if you are building projects with CCStudio. An
alternate way to specify output filenames is to set the
config.programName property to the filename string you want.

The following files are generated by the DSP/BIOS Configuration Tool,
the Tconf prog.gen() method. In these filenames, "##" is a 2-digit target
instruction set architecture (ISA—such as 55 or 64), and program is the
base name of the Tconf script (hello in our example):

1 <program>cfg_c.c. Source file to define DSP/BIOS structures and
properties.

1 <program>cfg.h. Includes DSP/BIOS module header files and
declares external variables for objects in the configuration file.

Running a Tconf Script

<program>cfg.s##. Assembly source file for DSP/BIOS settings.
Since in our example we loaded dsk6416 platform, based on 64
architecture, the name of this file is hellocfg.s64.

<program>cfg.h##. Assembly language header file included by
programcfg.s##. In our example, the name of this file is hellocfg.h64.

<program>cfg.cmd. Linker command file.

<program>.cdb. Configuration Data Base (CDB) file. Read-only file.
No longer used as a source file.

Running Tconf Scripts 2-3

The tconf Command-Line Utility

2.2 The tconf Com

Syntax

Options

mand-Line Utility

The previous section described the simplest and the most frequent usage
of the Tconf command-line utility. This section gives a more detailed
overview of the Tconf utility’s options and environment variables.

tconf [-h] [-g] [-p <dir>] [-Dname=value]
[-js <js options ...>] [script [args ...]]
-g Invoke the Rhino JavaScript debugging tool starting at

the beginning of the application’s TCF file. Within the
Rhino debugger, Break on Exception and Break on
Function Entry are enabled.

-g=i Invoke the Rhino JavaScript debugging tool starting at
the beginning of the tconfini.tcf initialization script. Within
the Rhino debugger, only Break on Exception is
enabled. As a result, if you click Run, the script runs to
conclusion without stopping unless an exception occurs.

-b Run in batch mode. If there is no TCF file specified on
the command line, simply exit rather than starting the
interactive shell.

-p <dir> The preferred method for specifying the search path is
the -Dconfig.importPath option. (If you choose to use -p
instead, the -p option adds the specified folder to the
search path used to find internal Tconf files. The search
path looks first in the current folder, then in the folder
containing the tconf executable file, and then in any
folder named using the -p option. See Section 2.2.1,
Environment Array Variables, page 2-5 for information
about how the search path is used.)

-Dname=value Define variables that can be examined in the script via
the global environment array. You can define multiple
variables by using the —D option multiple times. The
gconf.exe command-line also supports this -D option.
See Section 2.2.1, Environment Array Variables, page
2-5 for details about the environment array.

-js Separate run-time options from JavaScript shell options.
JavaScript shell options include:

-w Enable warning reporting.

-f file Run script in the specified file.

The tconf Command-Line Utility

script Specify a script to run.

args ... Specify arguments to pass to the script via the global
arguments array. See Section 2.2.2, Argument Array
Variables, page 2-7 for details about the arguments
array.

-h Display command-line syntax.

Tconf provides several built-in arrays of variables that are set
automatically or based on options in the tconf command line. These
arrays are the environment[] array and the arguments[] array.

2.2.1 Environment Array Variables

Tconf creates an array called "environment" and automatically defines a
number of variables within that array and sets the initial values for some
of them. These variables may also be set by using the -D option on the
tconf command line.

Automatically set variables can be used by scripts to obtain information
about file names, file locations, and the hardware platform. For example,
the following statement gets the name of the script file passed to the tconf
utility on the command line.

myScript = environment ["config.scriptName"];

The following variables are automatically part of the environment array.

[d environment ["config.importPath"]. This variable defines search
locations that Tconf uses to find various files, including platform files
and imported scripts. The platform files supplied with DSP/BIOS are
located in BIOS_INSTALL_DIR\packages. This folder is added to
config.importPath during the Tconf initialization, so in most cases you
do not need to set the value of this variable. However, if you create
your own platform files or Tconf scripts to be included by other Tconf
scripts, and those files are located elsewhere, you should set
config.importPath to point to the location of new files.

For example, if you created your customized platforms in the
d:/platforms folder, you would set config.importPath to d:/platforms
as follows:

tconf -Dconfig.importPath="d:/platforms" hello.tcf

The command above adds d:/platforms to the beginning of the list of
the searched directories, but it does not remove any of the directories
already in config.importPath. If you need to add more than one folder

Running Tconf Scripts 2-5

The tconf Command-Line Utility

to config.importPath, separate them with semicolons (;). For
example, this command adds two directories to config.importPath:

tconf -Dconfig.importPath="c:/include;d:/platforms" hello.tcf

Note that forward slashes (/) must be used on the tconf command
line; backslashes (\) are not permitted.

The -Dconfig.importPath option can also be specified in Code
Composer Studio on the DspBiosBuilder tab of the Build Options
dialog.

environment ["config.rootDir"]. Contains the folder location of
the executable file for the tconf utility. This location is typically
BIOS_INSTALL_DIR\xdctools. This variable is always available
within a script.

environment ["config.scriptName"]. Contains the name of the
script passed to the tconf utility on the command line. This variable is
always available within a script. If no script was passed, this variable
is set to an empty string ("").

environment ["config.path"]. Contains the set of directories used
to locate internal Tconf components (including the tconf executable
and necessary DLLs). This variable is always available within a
script. This path may be added to using the -p option on the tconf
command line.

environment ["config.compilerOpts"]. This variable may define
the compiler options used to build the program. The options that may
be specified are as follows:

B -me (big endian)

B -ml (large data model)
B --memory_model=huge
B -mf (far code model)

If this variable is defined, it sets a corresponding property of the
Program object. For example, the following specifies that the
program is compiled in big-endian mode:

tconf -Dconfig.compilerOpts="-me"

environment ["config. arch 1. A variable of this format may be
defined using the -D option on the tconf command line, where arch
may be 28, 54, 55, 62, 64, or 67. If such a variable is defined, it
specifies the CPU architecture. Since the CPU is specified by the
variable name, the variable need not be set to a value. For example:

tconf -Dconfig. 55

The tconf Command-Line Utility

Together, the config.compilerOpts and config. arch_ variables
support the creation of portable Tconf scripts. The parts of the script
that depend upon the compiler options and the architecture can read
these variables and configure DSP/BIOS accordingly. For example:

if (environment ["config. 55 "]) {
if environment ["config.compilerOpts"]=="-ml") {
bios.GBL.MEMORYMODEL = "LARGE";

}
}

A environment ["config.tiRoot"]. This variable was used in the
previous Tconf releases. However, it is deprecated and will not be
supported in subsequent releases.

You can also define additional environment variables and access them
from the script. This command line defines three global variables for use
within Tconf. The third variable is defined as an empty string.

tconf -Dvarl=valuel -Dvar2=value2 -Dvar3
To access these variables within tconf, use the following expressions:

environment ["varl"]
environment ["var2"]
environment ["var3"]

2.2.2 Argument Array Variables

Tconf creates an array called "arguments" and automatically stores in it
arguments passed to the script on the tconf command line. These
variables can be used to modify the behavior of a script depending on the
command line used to run it.

For example, suppose a command line like the following is used:

tconf myscript.tcf 4 2 1

The following statements could then be used in myscript.tcf to set
variables used when creating various DSP/BIOS objects:

numOfTasksToCreate = arguments[0];
numOfReaders = arguments[1];
numOfWriters = arguments[2];

Running Tconf Scripts 2-7

Tconf Operation Modes

2.3 Tconf Operation Modes

The Tconf utility provides the following three operation modes:
([DSP/BIOS Configuration Tool. See Chapter 6.

[d command-line mode. See Section 2.3.1.

[GUI debugger. See Section 2.3.2.
l:l

interactive mode. See Section 2.3.3.

2.3.1 Command Line Mode

If a script s listed on the command line, as we did in Section 2.1, Running
a Tconf Script for hello.tcf, Tconf processes the script without entering a
JavaScript shell or a GUI debugger.

If the script uses the prog.gen() method, configuration files are generated
as a result of running the script. This mode is used for automated
program build processes.

The full command-line syntax for this mode is:
tconf [-p <dir>] [-Dname=value] [-js <jsshell opts>] script [args ...]

Please notice, that the script filename must be supplied.

2.3.2 The GUI Script Debugger

If the -g option is used on the command line, tconf opens the Rhino GUI
debugger. Rhino is an open-source implementation of JavaScript written
entirely in Java (http://www.mozilla.org/rhino).

The full command-line syntax for the GUI debugger is:
tconf -g[=i] [-p <dir>] [-Dname=value] [-js <jsshell opts>] [script [args ...]]

You can use the Rhino debugger to step through the execution of a TCF
file. To start this debugger, do either of the following:

1 Set the Graphical debugger option (-g) in the Debug category of the
DspBiosBuilder tab of the Project->Build Options window. The
Rhino debugger will open when you build the project in CCStudio.

1 Right-click the script name in the Project Manager, then select the
DSP/BIOS Config->Run in Graphical Debugger pop-up menu
option. (The Text Edit option in the same menu allows you to open
the Tconf script in a text editor, instead of using the DSP/BIOS
Configuration Tool environment.)

2-8

Tconf Operation Modes

In the Rhino environment, you can use File->Run to run a script file.
Output from the print() statement is displayed in the JavaScript Console
window. You can Step Into and Step Over script functions. This debugger
also allows you to watch variables, evaluate arbitrary expressions, and
view the current context for the "this" variable and local variables.

Figure 2-1 Rhino GUI Debugger Window

B Rhino JavaScript Debugger EHEWE'

rint(params) ;
1l war params = pew Object():

JZ params = |
clockRace: 200,
catalogName: ""ti.catalog.c55007,
deviceNams: *"S5510%,
cega: rega dsk5510,
menm: mem dsk5510
I

lft
* Customize generic platform with parcasl
: L
Bﬁbutlls.lnaﬂ.PLacEn:ni"ti.p.‘letfu-rnsl.qene::::
4 4
 Context: "..skS510_commonici™, ine 43 ~ || Expression | Value |
{2 params object Objec
= Narme | Value [] ! A
i | ® Funciion function Functiond { . |
i | @ getClass function getClass(|
= | @ halp function helpd { [na
i | @ history
S [®= imoodClass function importClas,
| this [Locals | | watch | Evaluate |
hread: Thread|{main, 5. main|

Here are some important hints for using the Rhino debugger:

[The Debug menu contains three check boxes: Break on Exception,
Break on Function Enter, and Break on Function Return. If the -g
option is used on the tconf command line, Break on Exception and
Break on Function Enter are enabled within the debugger. Only
Break on Exception is enabled if you use the -g=i option.

[If you use -g on the command line, the debugger automatically runs
the initialization file and breaks at the start of the application’s TCF
file. If you use -g=i on the command line, the debugger opens initially

Running Tconf Scripts 2-9

Tconf Operation Modes

to the start of the tconfini.tcf initialization file. With the -g=i option, if
you click Run without creating a breakpoint, the script runs to
completion without breaks unless an exception occurs.

[When Break on Exception is enabled, non-fatal errors are displayed
in exception dialog boxes as they occur.

(1 Break on Function Enter and Break on Function Return cause the
debugger to stop at entry and exit of each JavaScript function. You
may want to deselect these options if you just want to run to a specific
breakpoint you have set.

1 You can set a breakpoint by clicking in the gray column next to the
line number of the script. You can only set breakpoints on lines that
contain executable statements.

1 Choose Windows->Console to open the Console window, which
receives standard out and standard error. The Tconf script errors
seen in the DSP/BIOS Configuration Tool or the CCStudio Build
window are shown in the Console window.

1 We recommend that you set a breakpoint at the following error check
in your TCF file to see any displayed messages in the Console
window before the debugger finishes running the script.

if (config.hasReportedError == false) {
prog.gen() ;

}

1 Use Windows->Tile or Windows->Cascade to open windows for
the main TCF script, all its included TClI files, and internal Tconf files.

1 The Rhino debugger allows you to browse and view Tconf objects,
however the list is not always clear or complete. You can add print()
statements to the TCF script. The results of print() statements are
displayed in the Console window.

2.3.3 Interactive Tconf

2-10

If no script is listed on the command line, Tconf enters the interactive
JavaScript shell and reads and executes statements you type at the js>
prompt. It echoes the results of print statements and expressions to your
terminal window.

The full command-line syntax for interactive Tconf is:

tconf [-p <dir>] [-Dname=value] [-js <jsshell optss>]

The tconf utility provides an interactive JavaScript debugging shell. You
enter the interactive shell if you use the tconf command without
specifying a script or using either the -g or -b option.

Tconf Operation Modes

Once you enter interactive mode, you can run a script from the interactive
shell using the built-in utils.importFile() method. For example:

% tconf
js> utils.importFile ("hello.tcf")

The result of this statement are generated files, just as if the script were
executed from the command line. However, after the execution ends, you
are still in the shell.

Alternatively, instead of loading a script, you can create a configuration
by simply typing commands. For each line or group of lines that
constitutes a complete expression, complete statement, or complete
statement block, the debugging shell displays the result on the next line.
For example, a portion of a debugging session might look like the
following:

% tconf

js> utils.loadPlatform("ti.platforms.dsk6416") ;
[object Program:prog 0]

js> bios.enableRealTimeAnalysis (prog) ;

js> bios.enableRtdx (prog) ;

js> var trace;

js> trace = bios.LOG.create("trace");

[object Instance:tracel]

js> prog.gen() ;

true

You can also print the value of an expression using the print() method:

js> textvar = "hello world";
js> print (textvar) ;

To load the contents of a script file into the JavaScript environment, use
a command like the following:

js> load("filename.tci");

Any statements in the loaded file that are not contained within a function
run when the file is loaded. Functions in the loaded file become available
for execution by other statements.

To exit from the interactive shell, type quit or press CTRL+C. The quit
command cannot be executed in a Tconf script; it is only available in the
interactive shell. The keywords quit and exit are reserved for future use
in Tconf.

Running Tconf Scripts 2-11

2-12

Chapter 3

Tconf Language and Object Model

This chapter describes the Tconf language, the object model it uses, and

some extensions to JavaScript available in Tconf.

Topic Page
3.1 JavaScript Language Highlights 3-2
3.2 The Target Content Object Model (TCOM) 3-4
3.3 Methods for Loading Other Scripts.t 3-5
3.4 Enabling DSP/BIOS Componentscouuiuee.n.. 3-6
3.5 Configuration Coding Guidelines 3-7
3.6 Object and Property Naming and Referencing................. 3-8
3.7 Property TYPeS .. e 3-11
3.8 File ManipulationwithJava 3-13
3.9 Theprint)Method......... 3-13
3.10 Error Handlingo 3-14

JavaScript Language Highlights

3.1

3.1.1

3.1.2

JavaScript Language Highlights

Tconf scripts contain statements in the JavaScript language. These
statements are executed to perform design-time application
configuration.

This document does not provide details on the syntax of the JavaScript
language. However, several concepts are important when using
JavaScript for Tconf. This section provides an overview of such concepts.
See Section 3.1.3, JavaScript and Java References, page 3-3 for
JavaScript reference sources.

Language Overview

JavaScript syntax, operators, and flow-control statements are similar to
those in the C language. C programmers can easily read JavaScript. It
includes if, else, switch, break, for, while, do, and return statements.

JavaScript is a loosely-typed language. Variables in JavaScript are more
flexible than variables in C or Java. Variables do not need to be explicitly
declared, and the same variable can alternately store any data type.
These types are number, string, Boolean value, array, object, function
(which is actually an object itself), and null. Operators automatically
convert values between data types as necessatry.

Variables can be local to a function or global to the entire JavaScript
environment. Variable and object names may not contain spaces or
punctuation other than "_" or "$". In addition, variable and object names
can include numbers but must not begin with a number.

JavaScript does not have pointers and does not deal with memory
addresses.

Common Misconceptions About JavaScript

If you've used JavaScript before, you have probably added scripts to a
web page. It's important to clear up misconceptions some programmers
may have about JavaScript when used outside the context of web pages:

[JavaScript is a general-purpose, cross-platform programming
language. While it was developed for use in web-browsers, it has a
number of features that make it useful for application configuration. It
is easy to learn and use, the syntax is similar to C, it is object-
oriented, and it is widely documented.

[JavaScript is standardized. The language is also called ECMAScript,
and the ECMA-262 standard defines the language (see

JavaScript Language Highlights

http://www.ecma.ch/ecmal/STAND/ECMA-262.HTM). The basic
syntax and semantics of the language are stable and standardized.

When you use JavaScript in a web page, the objects you use are
defined by the Document Object Model (DOM). These objects
include window, document, form, and image. The DOM is not part of
the JavaScript standard; nor is the DOM part of Tconf.

Other object models can be defined for use with JavaScript. Instead
of the DOM, DSP/BIOS provides the Target Content Object Model
(TCOM), with object classes that include Board, Cpu, and Module.

JavaScript is not a part of Java. These are two different languages
that have similar names for historical marketing reasons. However,
Tconf does allow scripts to call Java functions to provide file services.
JavaScript itself does not provide file services for security reasons on
web browsers.

DSP/BIOS runs JavaScript only on the host PC, UNIX, or Linux
machine. JavaScript code is never run on the target DSP.

3.1.3 JavaScript and Java References

This document does not provide details on the syntax of the JavaScript
language or on the Java packages that can be used. For reference
information, we recommend the following sources:

4

4

U

JavaScript, The Definitive Guide, 3rd Edition, David Flanagan;
O'Reilly 1998

ECMA-262 standard:
http://www.ecma.ch/ecmal/STAND/ECMA-262.HTM

Rhino JavaScript interpreter: http://www.mozilla.org/rhino
Java 2 SDK: http://java.sun.com/j2se/1.3/docs

java.io package:
http://java.sun.com/j2se/1.3/docs/api/javalio/package-summary.html

Tconf Language and Object Model 3-3

The Target Content Object Model (TCOM)

3.2

The Target Content Object Model (TCOM)

Modern scripting languages separate the language syntax from the
object model. This division is true of such languages as VBScript,
JavaScript, and TCL. The major benefit of this division is that the script
language can be standardized independently from its application domain.

Object models typically define a single top-level object designed to allow
navigation via an object hierarchy to all other objects. For example, in a
web browser, the object model is called the Document Object Model
(DOM) and the top-level object is the "window".

For Tconf, the object model is called the Target Content Object Model
(TCOM) and the top-level object is the Config object.

The DOM model cannot be used with Tconf, and the TCOM cannot be
used in a web page.

As with the DOM, the TCOM is a hierarchy of “container” objects. These
container objects may contain zero or more child objects. For example,
within each Program object, there is a Module container that contains an
array of Module objects. The TCOM object hierarchy is shown in the
following diagram.

Figure 3-1 Target Content Object Model (TCOM)

3-4

Config

Board

D = object
represents
hardware

Cp u D = object

represents
Memory [|| Program sorf)tware
Extern Module

Instance

The top-level Config object contains the entire configuration. Each object
class has methods and properties. The entire object tree can be
navigated by JavaScript statements.

Methods for Loading Other Scripts

Notice that a configuration can contain multiple Board objects, Boards
can contain multiple Cpu objects, and Cpu objects can contain multiple
Program objects. Several methods are provided for populating the
hardware and software portions of the object model.

The examples in this document and the examples supplied with
DSP/BIOS deal only with configurations with only one Board object, only
one Cpu object, and only one Program object. This simplifies
configuration scripts, so that the users rarely need to directly access the
hardware-specific portions of TCOM. However, for completeness, we
describe both portions of TCOM here.

See Section 5.1, Target Content Object Model Quick Reference, page 5-
2 for a list of the properties and methods of each of these object classes.

3.3 Methods for Loading Other Scripts

A Tconf script can load another script file. When a script file is loaded, any
statements that are outside any function are executed. The functions
defined in the loaded script are available to be called by the script that
loaded the file.

Directory paths specified in JavaScript statements can use either "\" or
"I" as a directory separator. (Directory paths on the tconf command line
must use "/".)

Tconf provides the following methods for loading script files:

1 load(). An extension to JavaScript that runs JavaScript statements in
any file. The file path and full filename must be specified. For
example:
load ("..\\..\\project\\includes\\file.tci") ;
or

load("../../project/includes/file.tci") ;

@ utils.importFile(). A utility method that attempts to find and load the
specified file using a search path. For example:
utils.importFile ("minFootprint") ;

If you do not specify a file extension, this function looks for the
specified file with an extension of .tci. The search sequence used by
Tconf is as follows:

a) Any directories specified for config.importPath (in the order
specified)

Tconf Language and Object Model 3-5

Enabling DSP/BIOS Components

b) Current folder
c) BIOS_INSTALL_DIR\xdctools\include
d) BIOS_INSTALL_DIR\xdctools\packages

The last two locations contain files for internal use that should not be
modified or added to.

utils.loadPlatform(). A utility method that loads a platform definition.
See Chapter 4, Tconf Platform Files for details about platform files.

In addition to setting platform-specific properties, the
utils.loadPlatform() method creates a namespace called "bios" that
can be used to shorten references to Module and Instance objects.
For example, the standard syntax to reference the bufLen property of
the LOG_system object is:

prog.module ("LOG") .instance ("LOG_system") .bufLen

Within the "bios" namespace, Modules and Instances can be
referenced directly. For example:

bios.LOG system.buflLen = 128;

3.4 Enabling DSP/BIOS Components

It is important to note that the utils.loadPlatform() method loads only the
minimal set of DSP/BIOS components. Heaps, tasks, real-time analysis,
and RTDX are disabled after a platform is loaded. If any of the disabled
components is needed, it must be explicitly enabled.

The preferred way to enable or disable DSP/BIOS components is by
calling methods from the "bios" namespace:

bios.enableRealTimeAnalysis (prog) ; // enables RTA
bios.enableMemoryHeaps (prog) ; // enables heaps
bios.enableRtdx (prog) ; // enables RTDX
bios.enableTskManager (prog) ; // enables tasks
bios.disableRealTimeAnalysis(prog); // disables RTA
bios.disableMemoryHeaps (prog) ; // disables heaps
bios.disableRtdx (prog) ; // disables RTDX
bios.disableTskManager (prog) ; // disables tasks

The "prog" variable refers to a Program object from the TCOM. This
variable is set by the Tconf environment during initialization.

3.5

Configuration Coding Guidelines

Alternatively, DSP/BIOS components can be enabled and disabled by
directly setting the properties of DSP/BIOS modules.

bios.GBL.ENABLEINST = true; // enables RTA
bios.MEM.NOMEMORYHEAPS = false; // enables heaps
bios.RTDX.ENABLERTDX = true; // enables RTDX
bios.TSK.ENABLETSK = true; // enables task
bios.GBL.ENABLEINST = false; // disables RTA
bios.MEM.NOMEMORYHEAPS = true; // disables heaps
bios.RTDX.ENABLERTDX = false; // disables RTDX
bios.TSK.ENABLETSK = false; // disables tasks

If you enable heaps in one or more memory segments, you need to
explicitly set the configuration parameters that reference memory
segments with heaps. For example, the property MEM.BIOSOBJSEG of
the MEM module defines the memory segments for DSP/BIOS objects
created at run-time. That parameter is initially set to MEM_NULL. After
heaps are enabled as shown in the previous example and the segment
MEM_DYN (for example) has a heap enabled, MEM.BIOSOBJSEG still
points to MEM_NULL. It has to be explicitly set as follows to use the
MEM_DYN heap:

bios.MEM.BIOSOBJSEG = prog.get ("MEM DYN") ;

Similarly, MEM.MALLOCSEG and TSK.STACKSEG need to be set
explicitly in order to use heaps and tasks.

Configuration Coding Guidelines

When using Tconf, we recommend using the following coding
conventions.

[There is one TCF script per application. That script has the same
name as the application. For example, if the main source file is hello.c
and the executable is hello.out, the name of the main configuration
script should be hello.tcf.

1 Use a file extension of .tci for scripts included by the main script. A
different file extension is recommended for included files to support
different handling of the main script and included scripts by program
build utilities, such as gmake.

1 Split the main configuration script into platform-dependent and
platform-independent pieces. This simplifies porting to new
platforms, since only a platform-dependent part needs to be
changed.

Tconf Language and Object Model 3-7

Object and Property Naming and Referencing

3.6

[Further determine and define as separate files the pieces of the main
script common for many applications. This minimizes code
duplication.

[Create .tci files from the identified parts of the main configuration
script. The main configuration script includes these .tci files.

The examples supplied with DSP/BIOS have TCF scripts organized
according to these guidelines.

See DSP/BIOS Tconf Language Coding Standards (SPRAAG67), which is
included in the DSP/BIOS installation, for lexical coding conventions
recommended for use with Tconf.

Object and Property Naming and Referencing

JavaScript is object-oriented. The object model is separate from the
JavaScript language, but object handling syntax is part of the language.

Objects have properties to define their characteristics. Such properties
are actually variables local to the object. You access properties using the
dot (.) notation. For example, use config.hasReportedError to refer
to the hasReportedError property of the Config object.

Objects also have methods that define actions the object can perform.
Methods are also accessed using the dot notation. For example,
config.destroy () deletes the Config object. Such methods are
actually functions that are local to the object.

The Target Content Object Model (TCOM) defines object classes that
contain an array of zero or more objects. For example, within each Board
object, there is a cpu container that contains an array of Cpu objects. You
can use the bracket ([]) notation or the name of an object to reference
an individual object. For example, these notations all reference the
clockRate property of a Cpu object:

config.boards () [0] .cpus () [0] .clockRate
config.boards () ["board 0"].cpus() ["cpu 0"].clockRate

If global variables have been declared for board_0 and cpu_0, then the
following additional expressions reference the same property:

board 0.cpus() [0] .clockRate
board 0.cpus() ["cpu 0"].clockRate
cpu_O.clockRate

Object and Property Naming and Referencing

While the clockRate property and other properties from the hardware
portions of the TCOM can still be accessed using all the notations
mentioned here, the preferred way for setting these properties is through
the parameters of the generic platform. The generic platform and its
parameters are described in Section 4.2, Creating Custom Platform
Files, page 4-4.

The utils.loadPlatform() method creates a namespace with variables to
reference all Module and Instance objects. This simplifies object
references as shown by the following references to the LOG_system
instance:

[Full reference path:

config.boards () [0] .cpus() [0] .programs () [0] .module ("LOG") .instance ("LOG_system")

1 Reference path using the prog variable automatically created to
reference the first Program object:

prog.module ("LOG") .instance ("LOG_system")

(1 Reference path using the "bios" namespace created by the
utils.loadPlatform() method.

bios.LOG_system

The examples in this document and in DSP/BIOS almost exclusively refer
to Module and Instance objects through the "bios" namespace.

Many methods expect an object as a parameter or return an object.
When an object is assigned to a variable, that variable internally contains
a reference to the object. Objects are not copied when they are assigned;
they are stored in one place and referenced by variables. Thus, if multiple
variables reference an object, changes to the object made via one
variable affect the same object when referenced by another variable.

Some methods return an array of objects. Standard array properties,
such as length, can be used with arrays of objects. For example, this
statement gets the number of objects in the TSK.instances() array:

numtasks = bios.TSK.instances () .length
These statements create a string listing the names of all Module objects:

list = "»;

modules = prog.modules() ;

for (i = 0; i < modules.length; i++) {
list += modules[i] .name + " ";

Tconf Language and Object Model 3-9

Object and Property Naming and Referencing

3.6.1

3.6.2

3-10

The order of objects created within a container array is undefined. You
may use JavaScript's array sorting methods, such as join(), sort(), and
reverse(), to sort lists of objects. For example, this statement sets a
variable to an array of Instance objects with their names in ASCII order:

alphatasks = bios.TSK.instances () .sort ()

Module and Instance Property Names

Normally, all objects in a class have the same set of properties. However,
each type of Module and Instance object has a different set of properties.
Therefore, Tconf handles the properties of Module and Instance objects
differently than those of other object classes.

The names of the properties are listed in the DSP/BIOS Application
Programming Interface Reference Guide for your platform.

You can set and get these property values as you would with properties
of other object classes. For example, the following statement sets the
size of the LOG_system buffer.

bios.LOG system.buflLen = 16;

In general, property names of Module objects are in all uppercase letters.
For example, "MEM.STACKSIZE". Property names of Instance objects
begin with a lowercase word. Subsequent words have their first letter
capitalized. For example, "TSK _idle.stackSize".

Namespace Management

A namespace is the context within which all variables must have unique
names. Program objects define a global namespace for all objects
contained within the Program object. As a result, all Module, Instance,
and Extern objects within a Program object must have unique names.

For example, if the first statement is performed, the second statement
fails because the name "audio” is already used.

bios.SWI.create ("audio") ; /* OK */
bios.PIP.create ("audio") ; /* fails */

Any object in a namespace can be retrieved by name. This simplifies
object lookup in scripts. For example, these statements look for an object
named "audio" and check to see whether it is an Instance object before
modifying a property.

3.7

Property Types

In the following example, “instanceof’ is a JavaScript operator that
returns true if the object is of the specified class. “Instance” is the name
of a class.

audio = prog.get ("audio") ;

if

Property Types

(audio instanceof Instance) ({
audio.priority = 1;

The DSP/BIOS Application Programming Interface Reference Guide for
your platform lists the type of value expected for each property and
identifies properties used only for certain DSP platforms. Most types are
automatically converted to and from the corresponding JavaScript type.

a
a

Arg. Arg properties hold arguments to pass to program functions.

Bool. DSP/BIOS configurations store Boolean (true/false) values as
1 for true and O for false. JavaScript handles both Boolean and
integer values. You may use JavaScript to assign either a true value
or an integer 1 value to a Boolean Module or Instance property in
order to set it to true. Do not set a Boolean value to the quoted string
"true" or "false".

For example, both of these statements disable use of the CLK
manager to drive the PRD tick:

bios.PRD.USECLK = 0;
bios.PRD.USECLK = false;

Enumint. Enumerated integer properties accept a set of valid integer
values.

EnumString. Enumerated string properties accept a set of valid
string values.

Extern. Properties that hold function names use the Extern type. In
order to provide a function label, use an Extern object (for "external
declaration") in JavaScript. All Extern objects within a Program object
must have unique names.

Extern objects may be defined as asm, C, or C++ language symbols.
The default language is C.

Tconf Language and Object Model 3-11

Property Types

3-12

For example, the following statements create Extern objects for
program functions or get the specified object if it already exists. They
assign the object to the specified property.

bios.task0.fxn = prog.extern("audioFxn", "C");
bios.SYS.ABORTFXN = prog.extern("error") ;

Int16. Integer properties hold 16-bit unsigned integer values. The
value range accepted for a property may have additional limits.

Int32. Long integer properties hold 32-bit unsigned integer