
TMS320C6000 Network Developer's Kit
(NDK) Support Package Ethernet

Driver Design Guide

Literature Number: SPRUFP2
January 2009

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue any
product or service without notice. Customers should obtain the latest relevant information before placing orders
and should verify that such information is current and complete. All products are sold subject to TI's terms and
conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance
with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by government requirements, testing of all parameters of each
product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their
products and applications using TI components. To minimize the risks associated with customer products and
applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this infor-
mation with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered
documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and is an
unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2009, Texas Instruments Incorporated

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

This is a draft version printed from file: pref.fm on 1/5/09
Preface

About This Guide
This document describes the design of the Ethernet driver architecture
introduced in NDK 2.0. This design differs from that in previous versions
of NDK. All Ethernet drivers packaged as a part of the Network
Developer's Kit (NDK) Support Package in NDK 2.0 follow the generic
architecture described in this document.

Important Note:

❏ This document covers only the Ethernet driver architecture. The
serial driver is no longer supported as of NDK 2.0. For serial driver
information, see documentation from earlier releases of the NDK.

❏ The setup and installation steps for each NDK Support Package
(NSP) are provided in the Release Notes provided with that NSP.

Intended Audience
This document is intended for writers of Ethernet mini-drivers. This
document assumes you have knowledge of Ethernet concepts.

Related Documents
The following books describe the TMS320C6x devices and related
support tools. To obtain a copy of any of these TI documents, call the
Texas Instruments Literature Response Center at (800) 477-8924. When
ordering, please identify the book by its title and literature number. Many
of these documents can be found on the Internet at http://www.ti.com.

❏ SPRU189 - TMS320C6000 CPU and Instruction Set Reference
Guide. Describes the CPU architecture, pipeline, instruction set, and
interrupts for the TMS320C6000 DSPs.

❏ SPRU190 - TMS320C6000 DSP Peripherals Overview Reference
Guide. Provides an overview and briefly describes peripherals
available on the TMS320C6000 family of DSPs.

❏ SPRU197 - TMS320C6000 Technical Brief. Provides an introduction
to the TMS320C62x and TMS320C67x digital signal processors
(DSPs) of the TMS320C6000 DSP family. Describes the CPU
architecture, peripherals, development tools, and third-party support
for the C62x and C67x DSPs.
iii

 Notational Conventions
❏ SPRU198 - TMS320C6000 Programmer's Guide. Reference for
programming the TMS320C6000 digital signal processors (DSPs).
Before you use this manual, you should install your code generation
and debugging tools. Includes a brief description of the C6000 DSP
architecture and code development flow, includes C code examples
and discusses optimization methods for the C code, describes the
structure of assembly code and includes examples and discusses
optimizations for the assembly code, and describes programming
considerations for the C64x DSP.

❏ SPRU509 - Code Composer Studio Development Tools v3.3 Getting
Started Guide introduces some of the basic features and
functionalities in Code Composer Studio to enable you to create and
build simple projects.

❏ SPRU523 - TMS320C6000 Network Developer's Kit (NDK) Software
User's Guide. Describes how to use the NDK libraries, how to
develop networking applications on TMS320C6000 platforms, and
ways to tune the NDK to fit a particular software environment.

❏ SPRU524 - TMS320C6000 Network Developer's Kit (NDK) Software
Programmer's Reference Guide. Describes the various API functions
provided by the stack libraries, including the low level hardware APIs.

Notational Conventions
This document uses the following conventions:

❏ Program listings, program examples, and interactive displays are
shown in a mono-spaced font. Examples use bold for emphasis,
and interactive displays use bold to distinguish commands that you
enter from items that the system displays (such as prompts,
command output, error messages, etc.).

❏ Square brackets ([and]) identify an optional parameter. If you use
an optional parameter, you specify the information within the
brackets. Unless the square brackets are in a bold typeface, do not
enter the brackets themselves.

Trademarks
The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments
include: TI, Code Composer, Code Composer Studio, DSP/BIOS,
TMS320, TMS320C6000, TMS320C64x, TMS320DM644x, and
TMS320C64x+.

All other brand, product names, and service names are trademarks or
registered trademarks of their respective companies or organizations.

January 5, 2009
iv

This is a draft version printed from file: ndk_spTOC.fm on 1/5/09
Contents

1 Architecture Overview .1-1
This chapter provides an overview of the terminology and components involved in the Network De-
veloper's Kit Support Package (NSP) Ethernet driver. It also describes the architecture of such
drivers.
1.1 Acronyms .1-2
1.2 Ethernet Driver Architecture .1-3

1.2.1 NIMU-Specific Layer .1-4
1.2.2 Ethernet Mini-Driver .1-4
1.2.3 Generic EMAC/MDIO Chip Support Library .1-5

1.3 Flow Charts .1-6
1.4 Background .1-8

1.4.1 Network Control (NETCTRL) Module. .1-8
1.4.2 Stack Event (STKEVENT) Object .1-8
1.4.3 Packet Buffer (PBM) Object .1-8
1.4.4 NDK Interrupt Manager .1-9
1.4.5 Data Alignment. .1-9

1.5 API Overview .1-10

2 NIMU Layer .2-1
This chapter describes Network Interface Management Unit (NIMU) layer API.
2.1 Overview of the NIMU Layer .2-2
2.2 NIMU APIs .2-2

3 Ethernet Mini-Driver Layer .3-1
This chapter describes Ethernet mini-driver layer interface.
3.1 Overview. .3-2
3.2 Data Structures. .3-2
3.3 Ethernet Mini-Driver APIs .3-4

3.3.1 HwPktInit — Initialize Packet Driver Environment .3-5
3.3.2 HwPktOpen — Open Ethernet Device Instance. .3-5
3.3.3 HwPktClose — Close Ethernet Device and Disable Interrupts 3-5
3.3.4 HwPktSetRx — Configure the Ethernet Receive Filter Settings 3-6
3.3.5 HwPktIoctl — Execute Driver-Specific IOCTL Commands 3-6
3.3.6 HwPktTxNext — Transmit Next Buffer in the Transmit Queue 3-6
3.3.7 _HwPktPoll — Mini-Driver Polling Function .3-7

3.4 Configuration Variables .3-7
v

Contents
4 Generic EMAC/MDIO CSL Layer . 4-1
This chapter describes the EMAC/MDIO CSL layer interface.
4.1 Overview . 4-2
4.2 CSL Data Structures . 4-2
4.3 EMAC APIs . 4-2
4.4 Callback Functions . 4-3

4.4.1 pfcbGetPacket . 4-3
4.4.2 pfcbFreePacket. 4-4
4.4.3 pfcbRxPacket . 4-4
4.4.4 pfcbStatus . 4-4
4.4.5 pfcbStatistics. 4-4
vi

Chapter 1

Architecture Overview

This chapter provides an overview of the terminology and components
involved in the Network Developer's Kit Support Package (NSP) Ethernet
driver. It also describes the architecture of such drivers.

1.1 Acronyms . 1–2

1.2 Ethernet Driver Architecture . 1–3

1.3 Flow Charts . 1–6

1.4 Background . 1–8

1.5 API Overview . 1–10

Topic Page
1-1

Acronyms
1.1 Acronyms

The following acronyms are used in this document:

Table 1–1 Acronyms

Acronym Description

API Application Programming Interface

BD Buffer Descriptor

CSL Chip Support Library

DSP Digital Signal Processor

EMAC Ethernet Medium Access Protocol

LL Low Level Packet Driver

MDIO Management Data Input/Output Interface

NDK Network Developer's Kit

NIMU Network Interface Management Unit

NSP NDK Support Package

OS AL Operating Systems Abstraction Layer

Rx Receive Operation

SGMII Serial Gigabit Media Independent Interface

Tx Transmit Operation
1-2

Ethernet Driver Architecture
1.2 Ethernet Driver Architecture

The following diagram shows the architecture of the Ethernet driver
design in the NDK 2.0 Support Package (NSP).

This new NSP Ethernet driver architecture consists of the following
components:

❏ NIMU-specific layer, which acts as the interface between the NDK
stack and the Ethernet driver. See Section 1.2.1.

❏ Ethernet mini-driver, which manages the EMAC configuration
using the CSL. Also manages DSP interrupts and memory allocation
for packet buffers in buffer descriptors using the NDK Operating Systems
Abstraction Layer (OS AL). See Section 1.2.2.

❏ Generic EMAC/MDIO Chip Support Library (CSL), which contains
the generic APIs and data structures needed to control and configure
EMAC/MDIO peripherals. Also manages buffer descriptors and
interrupt service routines. See Section 1.2.3.

NDK

NSP Ethernet
Driver

Hardware

Software

NDK Core Stack

NIMU NDK Core Layer

NIMU-specific layer

Ethernet PHY(s)

Ethernet mini-driver

Generic EMAC/MDIO Chip Support
Library (CSL)
Architecture Overview 1-3

Ethernet Driver Architecture
The NIMU-specific layer in previous versions of the NDK was generic
enough to be ported to different platforms with ease. However, the mini-
driver was not easily portable and had to be rewritten from scratch every
time it had to be ported to a new platform. This led to different flavors of
the Ethernet device drivers for different platforms—thus increasing the
development, maintenance, and debugging effort.

To overcome the limitations of this architecture, the architecture of
Ethernet drivers in the NSPs have been reorganized to optimize for a
better development and debugging experience. The Generic
EMAC/MDIO Chip Support Library (CSL) component is new; it has been
split apart from the Ethernet mini-driver component to better isolate
portions that commonly require changes when porting.

1.2.1 NIMU-Specific Layer

The Network Interface Management Unit (NIMU) specific layer acts as
the interface between the Ethernet driver and the NDK core stack. It
provides an implementation for the APIs defined by the NIMU
specification for this EMAC device. These APIs let the NDK core stack
control and configure the EMAC device at runtime and transmit packets.
They also enable the driver to hand any received packets back to the
stack.

This layer is fairly generic and doesn't change between different
platforms.

This layer's functionality and role are the same as in versions of NDK
prior to v2.0.

1.2.2 Ethernet Mini-Driver

This layer is responsible for setting up parameters for EMAC and MDIO
configuration according to system needs. It uses APIs and data
structures exported by the underlying Chip Support Library (CSL) layer.
It is also responsible for setting up EMAC interrupts into the DSP using
data structures and APIs exposed by the "Interrupt Manager Wrapper" in
the NDK OS AL.

This layer acts as the sole memory manager in the Ethernet driver. That
is, it handles all memory allocations, initializations, and frees of packet
buffers for use in the buffer descriptors (BDs) in the Transmit (Tx) and
Receive (Tx) paths. For memory management, it again uses the data
structures and APIs defined by the NDK OS AL.
1-4

Ethernet Driver Architecture
For the most part, the mini-driver invokes CSL APIs for setup, Tx, and
interrupt service operations. The CSL layer, however, can also invoke the
mini-driver layer. The CSL layer can invoke the mini-driver registered
callback functions (set up during EMAC_open) for updating statistics and
reporting errors. On receiving a packet, it can hand over the packet to be
passed up the stack or for memory allocation/free of buffers in BDs.

This layer is OS agnostic, since it uses the NDK OS AL for all memory
and interrupt management operations. However, this layer is device-
dependent since the EMAC peripheral setup requires knowledge of the
capabilities of EMAC on this platform/device and will have to be
customized for each platform and for application needs. So, this layer
needs to be ported and customized from one platform to another.

1.2.3 Generic EMAC/MDIO Chip Support Library

This layer enables the generic driver architecture by doing the following:

❏ EMAC APIs. It defines the data structures and interfaces (APIs)
required to configure and use EMAC for transmit and receive
operations.

❏ MDIO and SGMII APIs. It exposes APIs for managing the PHY-
related (physical layer) configuration through the MDIO and SGMII (if
the PHY is capable of gigabit speed) modules.

❏ BD logic. It implements the basic logic for CPPI Buffer Descriptor
management (setup, enqueuing, and dequeuing operations).

❏ ISR logic. It contains the central logic for interrupt service routines.
However, it uses the mini-driver's registered callback functions to
report packet reception, statistics, errors, and obtaining or freeing a
buffer for filling up a BD.

This layer is largely generic and doesn't vary much from platform to
platform unless the EMAC capabilities change a whole lot. For example,
the CSL for an EMAC peripheral connecting to a PHY switch would be
very different from an EMAC that connects to a single PHY port. This
layer is easily portable to different devices with similar capabilities.
Architecture Overview 1-5

Flow Charts
1.3 Flow Charts

The transmission path for Ethernet packets is as follows:

User Application

send/sendto socket API

NIMUSendPacket

NDK Stack Processing
(L4 – TCP/UDP/RAW and IP)

Allocate Packet, Copy Data Buf f er; Add
headers and if needed f ragment packets

Dev ice Driv er’s registered “send” callback
f unction

EmacSend (nimu_eth.c)

Is link up and Transmitter ready ?
(TxFree is 1?)

HwPktTxNext

Yes

No

Just return f or
now. When link

ready packet will
be dequeued by
driv er and sent

out

Any pending packet in Tx
Queue (PBMQ_tx)?

Yes

No

No pending packets.
Set TxFree to 1 and

return.

Enqueue in Tx Queue, PBMQ_tx;

Return

Dequeue packet f rom dev ice
PBMQ_tx. Get an empty

EMAC_pkt f rom TxQueue and
f ill in packet details.

EMAC_sendPacket
(Validate Emac_Pkt structure f ields:- f lags,

buf f er of f set, length)

HwTxInt / HwInt
(Tx Interrupt Serv ice Routine)

Tx Completed. EMAC raises TxCP interrupt

Emac_TxServ iceCheck

Is Host Interrupt?

Is Stat Pending Interrupt?

Is v alid TxCP interrupt
on this channel?

emacDequeueTx

FreePacket (pf cbFreePacket)

(Driv er registered callback
f unction to f ree packet buf f er

that was successf ully sent out)

emacEnqueueTx
(Enqueue packet in EMAC BDs and start

EMAC transmitter if not running by setting
the TxnHDP to the app. BD)

Any more pending
packets f or Tx

in waitQ?

Yes

No

No
Return

Return

No

No

Yes

StatisticsUpdate
(pf cbStatistics)

(Driv er registered Stats
update f unction

notif ied)

StatusUpdate
(pf cbStatus)

(Driv er registered
Status update f unction
notif ied to indicate error

/ status change)

Yes

Yes

Return
Return

Return
1-6

Flow Charts
The receive path for Ethernet packets is as follows:

HwRxInt / HwInt (Rx Interrupt Serv ice Routine)

EMAC_RxServ iceCheck

RxPacket (pf cbRxPacket)

(Driv er registered Packet Receiv e Handler)

Enqueue in dev ice Rx Queue (PBMQ_rx)

Notif y Stack of pending Rx Ev ent

NIMUPacketServ ice

Dev ice Registered “pkt_serv ice” callback
f unction

Emac_PktServ ice

Any pending packet in Rx
Queue (PBMQ_rx)?

Dequeue Packet

NIMUReceiv ePacket

IPRxPacket / LLIRxPacket /pppoeInput /
IPv 6RxPacket

Ethernet Packet Receiv ed
by EMAC Hw. DSP

Interrupt Raised f or EMAC

Yes

Yes

Return;
Any more packets?

NDK Stack Processing Socket
APIs

User Application

No

Return

Is Host Interrupt?

Is Stat Pending Interrupt?

Is v alid Rx interrupt on
this channel?

No

No

StatisticsUpdate
(pf cbStatistics)

(Driv er registered Stats
update f unction

notif ied)

Yes

Yes

StatusUpdate
(pf cbStatus)

(Driv er registered
Status update f unction
notif ied to indicate error

/ status change)

Yes

Return

Return

Return

emacDequeueRx
(Validate Packet f lags and buf f er len; Handov er

packet to driv er;)
(If v alid BD obtained f rom RxPacket return,
enqueue it and if need be start Receiv er by

setting RxnHDP)

Return a new
Emac_Pkt ty pe
packet buf f er

to replenish BD

Any Pending Ethernet
Ev ents?

NetScheduler

(wait f or any HWI (Eth / Serial) / Timer ev ents
using SEM)

No

Stack Rx Ev ent Set
(Post SEM to indicate Eth HWI)
Architecture Overview 1-7

Background
1.4 Background

To port NDK Support Package device drivers, you should be familiar with
the following constructs and concepts.

1.4.1 Network Control (NETCTRL) Module

The Network Control Module (NETCTRL) is at the center of the NDK and
controls the interface of the HAL device drivers to the internal stack
functions.

The NETCTRL module and its related APIs are described in both the
TMS320C6000 Network Developer's Kit (NDK) Software Programmer's
Reference Guide (SPRU524) and the TMS320C6000 Network
Developer's Kit (NDK) Software User's Guide (SPRU523). To write
device drivers, you must be familiar with NETCTRL. The description
given in the TMS320C6000 Network Developer's Kit (NDK) Software
User's Guide (SPRU523) is more appropriate for device driver work.

1.4.2 Stack Event (STKEVENT) Object

The STKEVENT object is a central component in the low-level
architecture. It ties the HAL layer to the scheduler thread in the network
control module (NETCTRL). The network scheduler thread waits on
events from various device drivers in the system, including the Ethernet,
serial, and timer drivers.

Device drivers use the STKEVENT object to inform the scheduler that an
event has occurred. The STKEVENT object and its related API are
described in the TMS320C6000 Network Developer's Kit (NDK) Software
Programmer's Reference Guide (SPRU524). Device driver writers need
to be familiar with STKEVENT.

1.4.3 Packet Buffer (PBM) Object

The PBM object is a packet buffer that is sourced and managed by the
Packet Buffer Manager (PBM). The PBM is part of the OS adaptation
layer (OS AL). It provides packet buffers for all packet-based devices in
the system. Therefore, the serial port and Ethernet drivers both make use
of this module.

The PBM module in the NDK OS AL manages packet buffers up to 3 KB
in size. Any packet buffer allocation larger than 3 KB is managed by the
Jumbo Packet Buffer Manager (Jumbo PBM). A default Jumbo PBM
1-8

Background
implementation is provided in NDK OS AL; this implementation might
need customization according to the application needs and system's
memory constraints.

The PBM object, its related API, and the Jumbo PBM API are described
in the TMS320C6000 Network Developer's Kit (NDK) Software
Programmer's Reference Guide (SPRU524). The TMS320C6000
Network Developer's Kit (NDK) Software User's Guide (SPRU523) also
includes a section on adapting the PBM to a particular included software.

1.4.4 NDK Interrupt Manager

The NDK Interrupt Manager is a module in the NDK OS AL that abstracts
out the OS (BIOS) specific APIs and data structures required for interrupt
configuration and management. It exposes a simple interface to the
driver writer to configure EMAC interrupts into the DSP core. Interrupt
Setup (IntSetup) Object is a data structure defined by this module.

Depending on the system specification, there can be a single or multiple
system event/interrupt numbers defined for the EMAC module's Transmit
(Tx) and Receive (Rx) events. Also based on the system specification,
one could register a single Interrupt Service Routine (ISR) for both Tx and
Rx events or register separate ISRs for each event.

The following NDK Interrupt Manager APIs can be used by the Ethernet
driver in setting up the interrupts:

❏ Interrupt_add

❏ Interrupt_delete

❏ Interrupt_enable

❏ Interrupt_disable

Please see the sample Ethernet driver code packaged as the NDK
Support Package (NSP) for any C64x+ device for an illustration of
interrupt configuration using NDK Interrupt Manager APIs. The NDK
Interrupt Manager, along with its related API and data structures, are
described in the TMS320C6000 Network Developer's Kit (NDK) Software
Programmer's Reference Guide (SPRU524).

1.4.5 Data Alignment

The NDK libraries have been built with the assumption that the IP header
in a data packet is 16-bit aligned. In other words, the first byte of the IP
packet (the version/length field) must start on an even 16-bit boundary.
In any fixed-length header protocol, this requirement can be met by
Architecture Overview 1-9

API Overview
backing off any odd byte header size, and adding it to the header padding
specified to the stack. For Ethernet and peer-to-peer protocol (PPP), the
only requirement is that the Ethernet or PPP packet not start on an odd
byte boundary.

In addition, some drivers in the NDK are set up to have a 22-byte header.
This is the header size of a PPPoE packet when sent using a 14-byte
Ethernet header. When all arriving packets use the 22-byte header, it
guarantees that they can be routed to any egress device with a header
requirement up to that size. For Ethernet operation, this requires that a
packet has 8 bytes of pre-pad to make its total header size 22 bytes.

The value of this pre-pad is #defined as PKT_PREPAD in the Ethernet
driver include files.

1.5 API Overview

The various APIs exposed by the three main layers—the NIMU-specific
layer, mini-driver, and generic EMAC/MDIO CSL layer—can be classified
based on their functionality into the following categories:

❏ Initialization and Shutdown APIs. These APIs are called during
Ethernet device start up to initialize the EMAC environment or during
shutdown to bring down the Ethernet controller and its subsystems.

❏ Configuration APIs. These APIs are called to get/set the EMAC
configuration. The configuration APIs are generally useful in setting
the following parameters:

■ multicast configuration

■ receive filters on the Ethernet device

❏ Transmit APIs. These APIs provide a well-defined interface for the
NDK stack to pass down any available Ethernet packets onto the wire
using the Ethernet driver.

❏ Receive APIs. These APIs provide a well-defined interface for the
driver to pass up an Ethernet packet to the NDK stack and into an
application.

❏ Polling APIs. These APIs provide an interface for the NDK core
stack to monitor the status of the Ethernet link on a periodic basis and
to perform any necessary configuration of the EMAC depending on a
change of state, if any.
1-10

API Overview
The following table groups the APIs defined by each of the Ethernet
driver layers under one of these five categories.

The following chapters discuss each of the layers and APIs in detail.

Table 1-2. API Mapping between the Ethernet driver layers

API Category NIMU Layer Mini-Driver Layer CSL Layer

Initialization EmacInit HwPktInit --none--

EmacStart HwPktOpen EMAC_open /
MDIO_open

Shutdown EmacStop HwPktClose, HwPktShutdown EMAC_close /
MDIO_close

Configuration Emacioctl HwPktSetRx EMAC_setReceiveFilter,
EMAC_getReceiveFilter,
EMAC_setMulticast,
EMAC_getStatus,
EMAC_getStatistics,
EMAC_enumerate

Transmit EmacSend HwPktTxNext EMAC_sendPacket,
EMAC_TxServiceCheck
(Tx ISR)

Receive EmacPktService HwInt / HwRxInt
(depends on whether the EMAC has
separate system events mapped into
DSP for Rx/Tx or just one for both)

EMAC_RxServiceCheck
(Rx ISR)

Polling EmacPoll _HwPktPoll EMAC_TimerTick,
MDIO_timerTick,
MDIO_getStatus
Architecture Overview 1-11

1-12

Chapter 2

NIMU Layer

This chapter describes Network Interface Management Unit (NIMU) layer
API.

2.1 Overview of the NIMU Layer . 2–2

2.2 NIMU APIs . 2–2

Topic Page
2-1

Overview of the NIMU Layer
2.1 Overview of the NIMU Layer

The Network Interface Management Unit (NIMU) layer interfaces with the
NDK core stack. It enables the stack to control the device at runtime. This
layer is platform-independent and is easily portable across various
platforms.

2.2 NIMU APIs

Driver writers need to implement APIs as follows to make their driver
NIMU-compliant:

1) Register a driver Init callback function with the core NDK NIMU layer
by populating the function in the NIMUDeviceTable.

2) Allocate and initialize the NETIF_DEVICE structure for this device
with the appropriate parameters and callback functions defined for
the following NIMU-defined APIs:

■ start

■ stop

■ poll

■ send

■ pkt_service

■ ioctl

■ add_header

3) Invoke the NIMURegister API to register this device with the NDK
core's NIMU layer for further management.

4) Finally, implement all the callback functions as per the NIMU
architecture guidelines and the API descriptions described in
"Network Interface Management Unit" section of the TMS320C6000
Network Developer's Kit (NDK) Software Programmer's Reference
Guide (SPRU524).

Please see the nimu_eth.c file in the sample Ethernet driver code
packaged as NDK Support Package (NSP) for any C64x+ device for an
example NIMU API implementation.
2-2

Chapter 3

Ethernet Mini-Driver Layer

This chapter describes Ethernet mini-driver layer interface.

3.1 Overview. 3–2

3.2 Data Structures . 3–2

3.3 Ethernet Mini-Driver APIs . 3–4

3.4 Configuration Variables . 3–7

Topic Page
3-1

Overview
3.1 Overview

The Ethernet mini-driver layer in the new driver architecture is
responsible for setting up the EMAC subsystem configuration. It exposes
various APIs to the NIMU layer through which the NDK stack can
configure, control, transmit, and receive packets using the Ethernet
controller. It sets up configuration for the EMAC, MDIO, and SGMII (if the
physical layer is capable of gigabit speed) modules and acts like glue
between the NIMU-specific layer and the low level EMAC configuration
layer—that is, the Chip Support Library (CSL) layer—for those modules.

This layer is platform-dependent. Driver writers will need to know the
PHY and EMAC capabilities and interrupt definitions for the specific
system and will need to configure the Ethernet module accordingly.

3.2 Data Structures

Device configuration information is stored in a private device instance
structure called "PDINFO" that is used to communicate the device
configuration between the NIMU and the mini-driver layers.

typedef struct _pdinfo

{

 uint PhysIdx; /* physical index of device */

 HANDLE hEther; /* handle to logical driver */

 STKEVENT_Handle hEvent; /* semaphore handle */

 UINT8 bMacAddr[6]; /* MAC address */

 uint Filter; /* current RX filter */

 uint MCastCnt; /* current MCast addr count */

 UINT8 bMCast[6*PKT_MAX_MCAST]; /* multicast list */

 uint TxFree; /* transmitter "free" flag */

 PBMQ PBMQ_tx; /* Tx queue */

#ifdef _INCLUDE_NIMU_CODE

 PBMQ PBMQ_rx; /* Rx queue */

#endif

} PDINFO;

The following list describes the structure items in more detail:

❏ PhysIdx. Physical Index of this device (>=0). The PhysIdx may
range from 0 to n-1. Care should be to taken to ensure that the
physical index of a device is unique if multiple instances of devices
exist in the system. This attribute is an auxiliary field that can be used
by the NIMU and mini-driver to communicate any data at run-time.
3-2

Data Structures
For example, the physical index can be used to hold the EMAC
channel number on which packets using this device should be
transmitted, and the mini-driver can be changed to use this info when
transmitting the packet.

❏ hEther. This field is no longer being used after the switch to NIMU
style drivers in NDK 2.0.

❏ hEvent. The handle to the semaphore object shared by the NDK
stack and the driver to communicate pending network Rx events.
This handle is used with the STKEVENT_signal() function to signal
the NDK stack that a packet has been received and enqueued by the
driver for hand off to the NDK Ethernet stack.

❏ bMacAddr. The Mac (Hardware) address of this interface. This is set
to a default value by the NIMU layer. The default value can be
overridden by the mini-driver with a value received from the
EEPROM during device open.

❏ Filter. The current receive filter setting, which indicates which types
of packets are accepted. The receive filter determines how the
packet device should filter incoming packets. This field is set by the
NIMU layer/stack and used by the mini-driver to program the EMAC.
Legal values include:

■ ETH_PKTFLT_NOTHING. no packets

■ ETH_PKTFLT_DIRECT. only directed Ethernet

■ ETH_PKTFLT_BROADCAST. directed plus Ethernet broadcast

■ ETH_PKTFLT_MULTICAST. directed, broadcast, and selected
Ethernet multicast

■ ETH_PKTFLT_ALLMULTICAST. directed, broadcast, and all
multicast

■ ETH_PKTFLT_ALL. All packets

❏ MCastCnt. Number of multicast addresses installed.

❏ bMCast. Multicast address list. This field is a byte array of
consecutive 6-byte multicast MAC addresses. The number of valid
addresses is stored in the MCastCnt field. The multicast address list
determines what multicast addresses (if any) the MAC is allowed to
receive. The multicast list is configured by the application.

❏ TxFree. Transmitter free flag. The TxFree flag is used by NIMU layer
to determine if a new packet can be sent immediately by the mini-
driver, or if it should be placed on the transmit pending queue for
later. If the flag is not zero, the mini-driver function HwPktTxNext() is
Ethernet Mini-Driver Layer 3-3

Ethernet Mini-Driver APIs
called when a new packet is queued for transmission. This flag is
maintained by the mini-driver.

❏ PBMQ_tx. Transmit pending queue. The transmit pending queue
holds all the packets waiting to be sent on the Ethernet device. The
mini-driver pulls PBM packet buffers off this queue in its
HwPktTxNext() function and posts them to the Ethernet MAC for
transmit. Once the packet has been transmitted, the packet buffer is
freed by the mini-driver calling PBM_free(). There is one Tx queue for
each PKT device.

❏ PBMQ_rx. Receive queue. All packets received by the EMAC and
handed over to the mini-driver are enqueued to the Rx queue. The
mini-driver also signals the NDK stack of the pending receive packet
that needs to be serviced in this queue. When the NDK scheduler
thread next runs and finds this pending event to service, it invokes
the NIMU layer EmacPktService function, which dequeues any
pending packets on this queue and hands it over to the stack for
further processing. There is one Rx queue for each PKT device.

3.3 Ethernet Mini-Driver APIs

The following APIs are exported by the Ethernet mini-driver layer:

❏ HwPktInit

❏ HwPktOpen

❏ HwPktClose

❏ HwPktShutdown

❏ HwPktSetRx

❏ HwPktTxNext

❏ _HwPktPoll

As described in Section 1.5, the APIs exposed by this layer can be
conveniently grouped according to their functionality into the following
categories:

1) Initialization. HwPktInit, HwPktOpen

2) Shutdown. HwPktClose, HwPktShutdown

3) Configuration. HwPktSetRx

4) Transmit. HwPktTxNext

5) Receive. HwInt, HwRxInt

6) Polling. _HwPktPoll
3-4

Ethernet Mini-Driver APIs
3.3.1 HwPktInit — Initialize Packet Driver Environment

Syntax uint HwPktInit();

Parameters None

Return Value The number of Ethernet devices initialized. 0 indicates an error. All other
positive values are considered success.

Description This function is called to initialize the mini-driver environment and
enumerate the number of devices in the system. A device instance may
be opened for each device represented in the return count. If the function
returns zero, no devices are supported.

3.3.2 HwPktOpen — Open Ethernet Device Instance

Syntax uint HwPktOpen (PDINFO *pi);

Parameters pi - Pointer to Ethernet device instance structure.

Return Value Returns 0 on success and a positive value to indicate an error.

Description This function is called to open a packet device instance. When
HwPktOpen is called, the PDINFO structure is assumed to be valid. This
function sets up the EMAC configuration and invokes the CSL layer's
EMAC_open function to configure the EMAC peripheral. As part of the
configuration passed to EMAC_open, the driver sets up the required
callback functions that the CSL layer in turn invokes to allocate/free
packet buffers, update statistics or status, and to hand over received
packets.

This function is also responsible for setting up the interrupts and any
other PHY related configuration to ready it for Tx/Rx operations.

3.3.3 HwPktClose — Close Ethernet Device and Disable Interrupts

Syntax void HwPktClose (PDINFO *pi);

Parameters pi - Pointer to Ethernet device instance structure.

Return Value None.

Description This function is called to close a packet device instance. When called,
this function invokes the CSL layer EMAC_close function to disable
EMAC Tx/Rx operations and free up any enqueued packets. This
function also disables the EMAC interrupts.
Ethernet Mini-Driver Layer 3-5

Ethernet Mini-Driver APIs
3.3.4 HwPktSetRx — Configure the Ethernet Receive Filter Settings

Syntax void HwPktSetRx(PDINFO *pi);

Parameters pi - Pointer to Ethernet device instance structure.

Return Value None

Description This function is called when the values contained in the PDINFO instance
structure for the Rx filter or multicast list are altered. The mini-driver
calculates hash values based on the new settings if multicast lists are
maintained through hash tables on this platform, and updates the EMAC
settings by calling the CSL layer's EMAC_setReceiveFilter API.

3.3.5 HwPktIoctl — Execute Driver-Specific IOCTL Commands

Syntax uint HwPktIoctl(PDINFO *pi, uint cmd, void *arg);

Parameters pi - Pointer to Ethernet packet device instance structure.

cmd - Device-specific command.

arg - Pointer to command specific argument.

Return Value Returns 1 on success and 0 on error.

Description This function is called to execute a driver-specific IOCTL command. Not
all Ethernet drivers support this API.

3.3.6 HwPktTxNext — Transmit Next Buffer in the Transmit Queue

Syntax void HwPktTxNext(PDINFO *pi);

Parameters pi - Pointer to Ethernet packet device instance structure.

Return Value None

Description This function is called to indicate that a packet buffer has been queued in
the transmit pending queue contained in the device instance structure
and the NIMU layer believes the transmitter to be free. This function
dequeues any pending packets in the transmit queue of this device,
allocates a EMAC_Pkt structure (a data structure understood by the CSL
layer) and fills in the packet details and invokes the CSL layer function
EMAC_sendPacket to finally transmit the packet.
3-6

Configuration Variables
3.3.7 _HwPktPoll — Mini-Driver Polling Function

Syntax void _HwPktPoll(PDINFO *pi, uint fTimerTick);

Parameters pi - Pointer to Ethernet packet device instance structure.

fTimerTick - Flag indicating whether this function has been called
because the 100 ms timer expired or if it was called by some other
function randomly.

Return Value None

Description This function is called by the NIMU layer at least every 100 ms, but calls
can come faster when there is network activity. The mini-driver is not
required to perform any operation in this function, but it can be used to
check for device lockup conditions. When the call is made due to the 100
ms time tick, the fTimerTick calling parameter is set.

Note that this function is not called in kernel mode (hence, the underscore
in the name). This is the only mini-driver function called from outside
kernel mode (to support polling drivers).

3.4 Configuration Variables

The following configuration variables are defined by the Ethernet mini-
driver layer to control various features:

❏ EXTERNAL_MEMORY. Enable this flag to compile the code to
support the cache cleaning and synchronization required when the
packet buffer memory is allocated from external memory.

❏ EXTMEM. Define this bit mask to indicate the external memory
address location for this platform.

❏ PKT_MAX. Use this constant to control the number of "EMAC_Pkt"
type packet buffers that are allocated and initialized on Receive and
Transmit paths respectively at this layer to optimize the data paths.
During EMAC start up, in the HwPktOpen() function, buffers of type
"EMAC_Pkt" structure are allocated and enqueued to a free
queue/receive queue. Packets from this "RxQueue" are used to
replenish the CSL layer with buffers for its BDs. Similarly, for the Tx
path a queue of such EMAC_Pkt initialized structures are held. A
packet buffer from the "TxQueue" is dequeued and used in filling up
the NDK packet buffer details before being handed over to the CSL
layer. This constant controls the number of such replenishing buffers
at this layer.
Ethernet Mini-Driver Layer 3-7

Configuration Variables
This constant can be fine-tuned during performance tuning to suit the
application’s needs. For example, increasing this constant helps in
cases where the NDK stack or application is transmitting packets at
a faster rate than the EMAC hardware. In this case, the packets are
buffered up here at the mini-driver and get transmitted at the next
suitable opportunity. But, it's important to note that this constant
needs to be tuned according to the memory available in the system.
The smallest number this can be set to is 8.

❏ PKT_PREPAD. The number of bytes to reserve before the Ethernet
header for any additional headers like PPP. This is typically defined
to be 8 to include the PPP header.

❏ RAM_MCAST. Define this configuration variable as 1 if the EMAC on
this device supports RAM-based multicast lists. That is, if the EMAC
is capable of storing multicast addresses in RAM and has defined
appropriate registers to store them.

❏ HASH_MCAST. Enable this or define this as 1 if the EMAC on this
device is capable of maintaining the multicast address list using hash
tables.

❏ PKT_MAX_MCAST. This constant defines the maximum number of
multicast addresses that can be configured and supported by the
EMAC peripheral on this device. This is typically set to 31.
3-8

Chapter 4

Generic EMAC/MDIO CSL Layer

This chapter describes the EMAC/MDIO CSL layer interface.

4.1 Overview. 4–2

4.2 CSL Data Structures . 4–2

4.3 EMAC APIs . 4–2

4.4 Callback Functions . 4–3

Topic Page
4-1

Overview
4.1 Overview

The EMAC/MDIO CSL layer defines data structures and APIs that enable
the driver to configure the EMAC hardware and send and receive
packets.

This CSL layer is fairly generic and can be ported easily across different
platforms so long as the EMAC hardware specification don't vary a lot.
For example, the CSL for an EMAC with switch capabilities would be very
different from the CSL for an EMAC with support for a single PHY. This
layer abstracts out all the EMAC/MDIO register layer configuration details
from the higher layers and makes them easier to write and understand.

4.2 CSL Data Structures

The CSL layer exports various data structures to enable configuration of
EMAC, MDIO, and other Ethernet associated modules. Discussing all the
data structures is beyond the scope of this document. The definitions can
be viewed from the code or by obtaining a doxygen output of the code.

4.3 EMAC APIs

The following APIs are exported by the CSL EMAC layer:

❏ EMAC_enumerate

❏ EMAC_open

❏ EMAC_close

❏ EMAC_setReceiveFilter

❏ EMAC_getReceiveFilter

❏ EMAC_setMulticast

❏ EMAC_getStatus

❏ EMAC_getStatistics

❏ EMAC_sendPacket

❏ EMAC_RxServiceCheck

❏ EMAC_TxServiceCheck

❏ EMAC_TimerTick
4-2

Callback Functions
As described in Section 1.5, the APIs exposed by this layer can be
conveniently grouped according to their functionality into the following
categories:

1) Initialization. EMAC_open

2) Shutdown. EMAC_close

3) Configuration. EMAC_setReceiveFilter, EMAC_getReceiveFilter,
EMAC_setMulticast, EMAC_getStatus, EMAC_getStatistics,
EMAC_enumerate

4) Transmit. EMAC_sendPacket, EMAC_TxServiceCheck (Tx ISR)

5) Receive. EMAC_RxServiceCheck (Rx ISR)

6) Polling. EMAC_TimerTick

The Ethernet mini-driver layer can invoke CSL APIs to perform any
configuration or interrupt related processing only after opening and
setting up the EMAC peripheral successfully using the "EMAC_open"
API. All the error codes, macros, and constants used are defined in the
header files included with the source code and can be found in the "inc"
directory.

4.4 Callback Functions

The CSL layer doesn't perform any OS specific operations such as
memory allocation, free, initialization, copy etc. Instead, this layer defines
the required callback functions in the "EMAC_Config" data structure and
mandates that the driver implement these functions and register them
with the driver during the "EMAC_open" call. The callback functions that
need to be implemented by the driver and their description are describe
in the subsections that follow.

See the Ethernet driver code for sample implementations of these
functions.

4.4.1 pfcbGetPacket

This function is called by the CSL layer when it needs an empty packet
buffer to replenish a receive EMAC Buffer Descriptor (BD) in the EMAC
RAM. This function needs to implement logic to allocate an EMAC packet
(of type "EMAC_Pkt") and to initialize the buffers and offsets
appropriately for use by the CSL layer. This function is typically called
during EMAC initialization to initialize the Receive BDs or can be called
during a receive interrupt servicing to re-fill any empty BDs.
Generic EMAC/MDIO CSL Layer 4-3

Callback Functions
4.4.2 pfcbFreePacket

This function is called by the CSL layer to free the memory allocated for
an EMAC packet (of type "EMAC_Pkt") and any buffers held within it.
This function is typically called during EMAC close, when an error occurs,
or during a Transmit complete interrupt handling for cleaning up the
associated buffers.

4.4.3 pfcbRxPacket

This function is the driver-registered receive handler for all Ethernet
packets received and validated by the EMAC and handed over to the
CSL layer when a receive interrupt occurs.

This function is required to save the packet buffer received to hand it over
to the stack for further processing. At that point, it is the responsibility of
the driver/stack to free the packet buffer. This function is also required to
return a new EMAC packet buffer in return to replenish the BD just
serviced.

4.4.4 pfcbStatus

This function is called by the CSL to notify the driver of a status change
or the occurrence of an error during EMAC processing (HOSTPEND
interrupt).

4.4.5 pfcbStatistics

This function is called by the CSL to update the driver with the latest
snapshot of statistics (STATPEND interrupt).
4-4

This is a draft version printed from file: ndk_spIX.fm on 1/5/09
Index
A
acronyms 1-2
add_header function 2-2
alignment 1-9
APIs 1-2

CSL layer 1-11, 4-2
mini-driver 1-11, 3-4
NIMU layer 1-11, 2-2
overview 1-10

architecture 1-3

B
BD 1-2
bMacAddr field 3-3
bMCast field 3-3
Buffer Descriptor 1-2

C
callback functions 1-5, 4-3
Chip Support Library 1-2
configuration

APIs 1-10
device 3-2
EMAC 4-2
EMAC subsystem 3-2
MDIO 4-2
variables 3-7

CSL layer 1-2, 4-1
APIs 1-11
architecture overview 1-3

D
data alignment 1-9
data flow 1-6
data structures 4-2
doxygen output 4-2
DSP 1-2

E
EMAC 1-2
EMAC APIs 1-5
EMAC/MDIO CSL layer 4-1

architecture overview 1-3
description 1-5

EMAC_close function 4-2
EMAC_enumerate function 4-2
EMAC_getReceiveFilter function 4-2
EMAC_getStatistics function 4-2
EMAC_getStatus function 4-2
EMAC_open function 4-2
EMAC_RxServiceCheck function 4-2
EMAC_sendPacket function 4-2
EMAC_setMulticast function 4-2
EMAC_setReceiveFilter function 4-2
EMAC_TimerTick function 4-2
EMAC_TxServiceCheck function 4-2
error handling 4-4
Ethernet Medium Access Protocol 1-2
Ethernet mini-driver 3-1

architecture overview 1-3
description 1-4

EXTERNAL_MEMORY constant 3-7
EXTMEM constant 3-7

F
Filter field 3-3
flow chart 1-6

H
HAL layer 1-8
HASH_MCAST constant 3-8
header size 1-9
hEther field 3-3
hEvent field 3-3
HOSTPEND interrupt 4-4
HwPktClose function 3-4, 3-5
HwPktInit function 3-4, 3-5
HwPktIoctl function 3-6
Index--1

 Index
HwPktOpen function 3-4, 3-5
_HwPktPoll function 3-4, 3-7
HwPktSetRx function 3-4, 3-6
HwPktShutdown function 3-4
HwPktTxNext function 3-4, 3-6

I
Init callback function 2-2
initialization APIs 1-10
Interrupt Manager 1-9
Interrupt_add function 1-9
Interrupt_delete function 1-9
Interrupt_disable function 1-9
Interrupt_enable function 1-9
ioctl function 2-2
ISRs 1-9

J
Jumbo Packet Buffer Manager 1-8

L
layers 1-3
LL 1-2
logic

buffer descriptors 1-5
ISRs 1-5

Low Level Packet Driver 1-2

M
Mac address 3-3
Management Data Input/Output Interface 1-2
MCastCnt field 3-3
MDIO 1-2
MDIO APIs 1-5
MDIO layer 4-1
memory manager 1-4
mini-driver 3-1

APIs 1-11
description 1-4

multicast addresses 3-3, 3-8

N
NDK 1-2
NDK core stack 1-4
NDK Interrupt Manager 1-9
NDK Support Package 1-2

NETCTRL module 1-8
NETIF_DEVICE structure 2-2
Network Control Module 1-8
Network Developer's Kit 1-2
Network Interface Management Unit 1-2
NIMU 1-2
NIMU layer 2-1

APIs 1-11, 2-2
architecture overview 1-3
description 1-4

nimu_eth.c file 2-2
NIMUDeviceTable structure 2-2
NIMURegister function 2-2
NSP 1-2

O
Operating Systems Abstraction Layer 1-2
OS AL 1-2

P
Packet Buffer object 1-8
packet buffers 3-7

allocating 4-3
freeing 4-4
receiving 4-4

packet flow 1-6
PBM object 1-8
PBMQ_rx field 3-4
PBMQ_tx field 3-4
PDINFO structure 3-2
Peer-to-Peer Protocol 1-10
performance 3-8
pfcbFreePacket function 4-4
pfcbGetPacket function 4-3
pfcbRxPacket function 4-4
pfcbStatistics function 4-4
pfcbStatus function 4-4
PhysIdx field 3-2
PKT_MAX constant 3-7
PKT_MAX_MCAST constant 3-8
PKT_PREPAD constant 1-10, 3-8
pkt_service function 2-2
poll function 2-2
polling APIs 1-10
PPP 1-10

R
RAM_MCAST constant 3-8
receive APIs 1-10
receive path 1-7
 Index--2

 Index
Rx 1-2
packet flow 1-7

S
sample code 2-2
semaphore object 3-3
send function 2-2
Serial Gigabit Media Independent Interface 1-2
SGMII 1-2
SGMII APIs 1-5
shutdown APIs 1-10
Stack Event object 1-8
start function 2-2

STATPEND interrupt 4-4
STKEVENT object 1-8
STKEVENT_signal function 3-3
stop function 2-2

T
transmission path 1-6
transmit APIs 1-10
tuning 3-8
Tx 1-2

packet flow 1-6
TxFree field 3-3
Index--3

Index--4

	TMS320C6000 Network Developer's Kit (NDK) Support Package Ethernet Driver Design Guide
	Preface
	About This Guide
	Intended Audience
	Related Documents
	Notational Conventions
	Trademarks

	Contents
	Architecture Overview
	1.1 Acronyms
	1.2 Ethernet Driver Architecture
	1.2.1 NIMU-Specific Layer
	1.2.2 Ethernet Mini-Driver
	1.2.3 Generic EMAC/MDIO Chip Support Library

	1.3 Flow Charts
	1.4 Background
	1.4.1 Network Control (NETCTRL) Module
	1.4.2 Stack Event (STKEVENT) Object
	1.4.3 Packet Buffer (PBM) Object
	1.4.4 NDK Interrupt Manager
	1.4.5 Data Alignment

	1.5 API Overview

	NIMU Layer
	2.1 Overview of the NIMU Layer
	2.2 NIMU APIs

	Ethernet Mini-Driver Layer
	3.1 Overview
	3.2 Data Structures
	3.3 Ethernet Mini-Driver APIs
	3.3.1 HwPktInit — Initialize Packet Driver Environment
	3.3.2 HwPktOpen — Open Ethernet Device Instance
	3.3.3 HwPktClose — Close Ethernet Device and Disable Interrupts
	3.3.4 HwPktSetRx — Configure the Ethernet Receive Filter Settings
	3.3.5 HwPktIoctl — Execute Driver-Specific IOCTL Commands
	3.3.6 HwPktTxNext — Transmit Next Buffer in the Transmit Queue
	3.3.7 _HwPktPoll — Mini-Driver Polling Function

	3.4 Configuration Variables

	Generic EMAC/MDIO CSL Layer
	4.1 Overview
	4.2 CSL Data Structures
	4.3 EMAC APIs
	4.4 Callback Functions
	4.4.1 pfcbGetPacket
	4.4.2 pfcbFreePacket
	4.4.3 pfcbRxPacket
	4.4.4 pfcbStatus
	4.4.5 pfcbStatistics

	Index

