Tl Network Developer's Kit (NDK) v2.21 API

Reference Guide

I3 TExAas

INSTRUMENTS

Literature Number: SPRU524H
May 2001—Revised February 2012

I3 TEXAS
INSTRUMENTS

Contents

=] =T 9
1 0T LU 1 o T 11
11 What ThiS DOCUMENT COVEIS +.uuueiuteistinatssseiaterasessassssssatstass s st s s sasstanesantssanssannsinnns 12

1.1.1 Supplemental API INfOrMALION ...uuuiiueeiiteiiriri s raa s aain e raas 12

2 Operating System ADSIraction APl ... et eaeas 13
2.1 Operating System CoONfigUIAtIONeuiiieresieiseessaanneesraasnnessassnneesaaannressesanneessssnneesssssnnessennns 14

P22 N R @0 1o U 7= LA 0 (U (1] 14

2.2 = 515G T o] o0 o 16

P22 R ¥ {3 Tox 1o T O 1Y = g 1= 16

P - 1 N T U o T o 16

2.3 ST =T g F= T L0 (=T o] o T 21

P22 T R ¥ (g Tox 116 0 T O 1Y = g 1= 21

2.3.2 Semaphore APl FUNCHONS ..iiuuiiiteiieiie s s s s s s e a e s s r s e aanes 21

2.4 /1T o] YA Y | FoTo%= o IR U o] oL o 24

P22 3 R ¥ {3 Tox 1o T O 1Y = g 1= 24

2.4.2 Memory AllOCation APl FUNCHONS . .ueiuueeisssissssssssssssssiassssassssissssass s sasssanrsransssinns 24

25 T L= T o I 1= o TH o ST U o oo) A 25

P22 RS = g T F= o Y o U ot 1o 3L 25

2.5.2 Debug AP FUNCHONS uuiuuutiistiseiiee s ss s s st s s s s s s s s s e ran e sa s s s n s e aanes 26

2.6 File 1/0 Support for Embedded SYStEMSueeiiiiiiiiiiiite i riite s rraase s ssaae s ssains s ssaanneesaanneesnn 26

P22 25 R ¥ (g Tox 1o T O Y= g 1= 27

2.6.2 EFS CuStoOM AP FUNCHONS 1.uuuiiteiistirstssas st s siats s ssssssss st s sansssansssnssasssanness 27

2.6.3 EFS Standard API FUNCLONS . ..uiiiiiiieiiiiiieeiraiee s ssaaats st saaasa st sransse s ssaansesssaannessannnnnes 31

2.7 INterrupt ManagemENt SUPPOITsssssesssnsssssssssssssssssssssssssssssssnnmeeemmmmmmmmmmmrmssssssssnssnnnnnns 33

2.7.1 CoNfigUuration STFUCIUIE w.uuussiussisseiseessssesaaeerase s s s saesaa e raas s s s s s et s n s sa s e sann e sannasnns 34

2.7.2 FUNCLON OVEIVIEW .uttiinsttettiaseeesssaessssaas e s ssaaas s et saaaase s saaaan s st sansnsssaannnssssannnesssannnns 35

2.7.3 Interrupt Manager APl OVEIVIEW ...uiiiueeesseiineeessaanneessaanseesssaseesssssnnesssssnnnesssssnneessnnnnes 36

3 SOCKEtS and Stream 1O AP ... e 38
3.1 1 LR D= od o) (o =1 1Yo T 1T | 39

0 0 R O o = 1 .2 11 o 39

3.1.2 Initializing the File System ENVIFONMENTuuiieeiiieiierieriesres st ssnssanss e 39

3.1.2.1 When to Initialize the File Descriptor ENVIrONMENTovieiiiiiiiii i s rnnineeenas 39

3.2 File Descriptor Programming INtErfacevieeeiiiiiiiiiiiiii i i s r e s s ranneenas 40

3.2.1 FUNCHON OVEIVIEW .ttuuteinatetussesassssssessasssaasesassssas s sassaa s sass s saa s s saa e ssn s s snssannesannesanns 40

3.2.2 File Descriptor API FUNCHONS . .uuiuseiissiiistsiseisseisss st ssassssasssss e et sansssansaannss 41

3.2.3 File Descriptor Set (fd_Set) MACIOS ...uuueeeiiiiueeeiiiiinreisiintresiaassessraissesssaisrssasannnsassannnes 47

3.3 Sockets Programming INTEIrfaCEuiveiiiiiiiiriri s e 49

3.3.1 Enhanced NO-Copy SOCKEt OPEratiOnvuuseisssersssissrirseiainerasterisreraseisnraieraareasaainns 49

3.3.2 FUNCLION OVEIVIEW 4tttiisstetisssesssssessssase s ssaanse s saaasse s ssaaaa e st sasaessssannnssssannnsssssnnnns 50

3.3.3 SOCKELS AP FUNCHONS 1 tuuuetiuseiatessessstsssssasssassesassssassssetaassaanssannssansssanrsannstanness 51

3.4 Raw Ethernet Sockets Programming INterfaceivveeiiiiiiiirisiiiiiii i enas 69

o R U o4 0 YT = 69

3.4.2 Raw Ethernet Sockets APl FUNCHONS ..uiiuuiiiutiriitinitirseiaeerassssian s sas s sasssanneransasinnss 69

3.5 Full Duplex Pipes Programming INtEracCeeeuiiiiiiiiie i it r e s s r e e ranneae s 76

0 R = A I U o4 1] o e

2 Contents SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS
www.ti.com
3.6 Internet Group Management ProtoCol (IGMP)ueieiiiiiii i e aesaaneras 77
4 Initialization and CoNfIQUIAtION ... e e e e e eaenens 78
4.1 (0] 1o T8 = 1T0] TN 1Y 1= 1 o To L 79
4.2 Network Control Initialization Procedure (NETCTRL) +vvviiiiieiiiieesiiiineessasnneesaasnnresssannressssnnneessn 79
0 A 1 g 11 = 1= {0 T T o Yo =T 11 = 79
4.2.2 FUNCHON OVEIVIEW . .uttiiisttesiasase s saass s ssaase s sa st e et st ae st aaaa s e s saasansssaaannsssaanntessannnns 80
4.2.3 Network Control AP FUNCHONS .uuuseiutisinseisirssrise s s sassasssesasssesansns 81
5 Network Tools Library - SUPPOrt FUNCLIONS ..e.iuiiiii e e e e e e e e e as 84
5.1 [©1=] 0= oS0 o] oo 5 = 1 85
B5.1.1 FUNCLON OVEIVIEW 4ttttinsstesisussessssssessssasesssaasssssaasssesssasssssssassnnsssssssnesssssnnnesssnnnns 85
5.1.2 Network Tools SUpPPOrt APl FUNCHONS ..utiuuteiseerneissrssssiaessassssinssrinsisinsssnsssanrsrasssanns 85
5.2 [ST U o 00 7 1 89
5.2.1 FUNCLON OVEIVIEW 4tttisstetissssessssssessssasesssaassessaaassesssasssssssasnnsssssnnnesssssnnsesssnnnns 89
5.2.2 Standard Types and DefinitioNScviueiiieiirieeiiiiii i 89
5.2.2.1 HOSEENIY StrUCIUME .uuuiiiiiiii i i i s s s s s s ennas 89
5.2.2.2 FUNCLON REIUIMN COOBS .uuuiiinieiiiiinnsiaaiateessiaatse s saaasse s saasssestsasnessaaannrssssannnssssns 90
5.2.3 DNS SUPPOIt APl FUNCHONS t1uutinustiiustisssissersssssssssssasssassssanns s saasssansssannssasssanns 90
53 I I S T 0 Lo T 92
5.3.1 TFTP Support AP] FUNCHONS .uuueeiiiitesiniteesssisnssssassssssaanssssssasssesssasssesssssnsnsssssnnnes 92
54 TCP/UDP Server DAGmMON SUPPOIT . .uuuseiueesssssusssssessss s st sass et assaatstaissinnsiins 93
5.4.1 Server Daemon Support API FUNCLONS ...uuiiieiiiseiiiriiisnisensiss st ssnasssassanss e 94
5.4.2 Server Daemon EXample .o 95
6 NEtWOIK TOOIS Library - SEIVICES uuiiiiiiiiiii it a e r e e aaaaeas 96
6.1 Service Calling CONVENTIONS +.uuuuuuttsuseissesseessss st sa s e san s e s s st s s s tanesasesanns 97
6.1.1 Specifying Network Services Using the Configurationc.cvviiiieiiiiiiiiiiii i rraees 97
6.1.1.1 Service RepPOrt FUNCHON ..uuiiieesiieieesseineesseaaneeessannneessaanneesssannnesssssnneesssnnnnesenns 97
6.1.2 Invoking Network Services by NETTOOLS AP ...uuuiiiiiiiiiiiiie i sanesnnes 97
6.2 BLIC= LTS ST V=T g =T T =N 99
6.2.1 Telnet Parameter SIIUCIUME ...uuiusirsirueisersrrsiasere st ssa e raes 99
6.2.2 Invoking the Service via NETTOOLS APl ..uiiuiiiiiiiiii i ssss s s e naanesnes 100
6.3 [L@ ST V=T ST o 100
[0 206 R @ o =1 - i {0 1 PP 100
6.3.2 DHCP Server Parameter SIIUCIUIE ...uuueeiiiiiuereiiiinrrriser i rssiresssisresaanrreasannes 101
6.3.3 Invoking the Service via NETTOOLS APl . .uuuuiiiiiiiii i i rrie s s ar s s rs s e ssanns 101
6.4 [(@ = O 11T | AW o] o o] o 102
LGt o T - 1) o 102
6.4.2 DHCP Client Parameter SIIUCIUIEuueeeiiiieieiriiitserriatss s raasssssaaiass s ssaansssaannneessannnes 103
6.4.3 Invoking the Service via NETTOOLS APluiiiiiiiii i seieee s ssanee s saannessannnneesaannnes 103
6.5 L I S T=T V=T T o] oL o 104
(700 R O o =T - oo 104
6.5.2 HTTP Server Parameter SITUCTUIE .uuiuieiiiiiiisriiisiiisiiie it aassaneiainesann 104
6.5.3 Using the HTTP Server and Adding Web Contentovviiiieiiiiiiini i 105
6.5.4 Invoking the Service via NETTOOLS APl . ..uuuiiiiiiiii i s e s e s ann e ssanns 105
6.6 DINS SEIVEI SEIVICE ttuutiuserurrustnseiaeenserastse ettt st s s e aartas e aarsse s saneraesananns 105
LS T00 R @ o T - 1] o 106
6.6.2 DNS Server Parameter SITUCIUMNEuussessssneeessssisssiiiaasisssissssssssrnsessssssssmmmmnsns 106
6.6.3 Invoking the Service via NETTOOLS APl ..uuiiiiiiii i e sssasee s sasnnessannnneesaannnes 106
6.7 Network Address Translation (NAT) SEIVICE ..uviuureiiterintiri s sis st 106
L 0 R © o T -V oo 107
6.7.2 NAT Server Parameter StrUCIUIE ..uuviueivisiiiisiiiiieiiiiiisiisiii i assainns 107
6.7.3 Invoking the Service via NETTOOLS APl ..uiiuiiiiiiiiii s rae s e naanesnns 107
A Internal Stack FUNCLIONSiiuiiiiiii 109
SPRU524H-May 2001 —-Revised February 2012 Contents 3

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS
www.ti.com
Al L= T 110
N 00t R [(= 0 o1 CS 3= T To I = (=TT o 4T o) o o 110
A.1.2 Proper Use of the lIEnter() and IIEXit() FUNCLIONS ...vviiiueieiiiiiesiiiie i ssiianesssainsseeas 110
00t I T 1= o 110
A.2 StaCK EXECULIVE (EXEC) 1uuuuutiiseiineiisiriteiss sttt st s ss s st s s s s e saa s sa e s n e raneanans 111
N Y e U 3T 10 111
A3 Packet Buffer Manager (PBM) ODJECEuuiiieiiiieiiie i s e e esnns 112
NG 700 R O o= A 1Y/ = 112
A.3.2 API FUNCHON OVEIVIEW . uuuiiustiiuseiisseiissisissssseiassiassssisssiasetsinsssssesisnsiaseisieiaiaineins 112
A.3.3 API FUNCHON DESCHPLION 4uuuuttiuseieeiassesans e sses s saasssasessaa s sss s s sesanessansssanssannssas 113
A4 Packet Buffer Manager Queue (PBMQ) ODJECLuuiiiiiiiiii i e s s e e s e nannnee s 116
Nt R o] 1= o A 5/ = 116
A 4.2 AP FUNCHON OVEIVIEW 1 uutiustiuseisesssssssssssesasssassssssssaasssassaasssannssassssansssnsssanneins 116
A.4.3 API FUNCHON DESCHPON . .utueteiiiittetsiatse s s e s ssa s e s ssaane s s ssaan e e s saann e s s sannaessaannnesss 117
A5 Jumbo Packet Buffer Manager (Jumbo PBM) ODJECE ...uuveiiiiiiiiiiiii i e s e 118
A.5. 1 AP FUNCHON OVEIVIEW 1 .utiiustinseiaesssssssssssssasssassssass s ssaassssssannssassssansssnsssanneins 118
A.5.2 API FUNCHON DESCHPLON . uuueteiiiiatteesiatee s sraase s saaaase s saaane st ssan e e s saannesssannnaessaannnesss 118
A.6 Stack Event (STKEVENT) ODJECE vuuuiuuuutiiiiiieiiniisissiee s saiste s sssass s s ssnss s sasisns s ssannssssannnes 120
20 R 1= od 1Y/ 1= 120
A.6.2 AP FUNCHON OVEIVIEW . uutiiustisseiassesasssssssssesasssasssssnssasesasssasssastssassesassisisssanneins 120
A.6.3 API FUNCHON DESCHPUON 1uuuuueteiisateetsaatsssssassesssassssssassssssaanrsssaaannssssannnnessasnnnesss 120
A7 Link Layer Information (LLI) OBJECE +.uuuuuuiiietiieiiite i rie s s s s s s s s san e s anesanes 121
A.7.1 ARP ReVvalidation LOGICuuueiiiiiiteiiiiateeasaats e ssaasss s saaan e s ssanne s ssannnesaaannnessaannnnnssn 122
N 0 © | o] 1= o A 5/ = 122
N T) 0 €0 = 140 TS 1T (1] 123
A. 7.4 API FUNCHON OVEIVIEW 1 uutiisstisseiassesassssssssasesssssassssasssasssasssassssantsrassssasstsisssanneins 123
N S T Y e U T 10 124
A.8 1 (=T 0 = Yot I L T 1= o 126
R J00 R O o= A 1Y/ = 126
A.8.2 API FUNCHON OVEIVIEW uuuiiustiiuseiisseiassissnsiseiaseiassssisnsraseisinsssisesasnsiaseiieiiaineis 127
A.8.3 API FUNCHON DESCHPLION 4 uuuuuttiuseieeiassesans e rssssassssasessaassssssanstanessansssanssannesns 127
A.9 {1 S o] = X 129
R TNt R o] =T o A 5/ = 129
A.9.2 API FUNCHON OVEIVIEW 1 .utiiustisseiasessassssssssass s sassssass s ssassaasssannssassssansssnsssannsins 129
R TR Y 1T 10 130
N0 O T =11 T 1o O o] =T o 132
00t 000 R O o= o S I/ 0T 132
A.10.2 BIND API FUNCHONS tuuutiiustiaseiastesassssssssse s sassssasssasesasssassssaansraseasanesasssannerns 132
0 o R {00 (= o= o 134
0t O o= o S 1Y/ 0T 134
A.11.2 Route Entry FIags Definitiono...eeeeiiiiiiei i reie s rs e e s s s raanr e s s sannae s raannneas 134
A.11.3 Route Entry FIags GUIAEINES ...uuuueieiiiiiieeiiiiees i isiise s sssiae s ssainrs s ssannnsssannsnesss 136
Nt N o Ty o 3T 137
N 2 = Lo 101 (<IN @0 g1 (o] I o] =T N 141
A.12.1 ROULE CONIOI MESSAGES tuuutetinnunnnssssnnnesssansnessansseestaasnestsasanesssainnnsssssnnnesssannnnnsss 141
A.12.2 Route Control API FUNCHONS ...uuiiieeiistiiits i iries s st ss s s s s s s s s aa e s s sanaenas 144
A.13 Configuring the STACK ...t et r e s s r e s s s s e s s ranne e s aaanneaaanas 144
A.13.1 Configuration STIUCIUMEuueesiietsessiistee s irianestsasee s ssaiae st saaan s s saanns st sannnnessaannnesss 145
A.14 Network ADAreSs TranSIationeevseireeireerieri s sr e a s s r e raae s ar e ranssanneras 153
N0 7 30t N @ o T - Vo o 153
A.15 Network Interface Management Unit (NIMU)uuuiiiiiiiieiiiiii i s s s s ian e annane s aaas 154
N0t T R T o1 154
A.15.2 Data Structure DEfiNItION v.uuuueisseiieerisiri s s reaas 155
Contents SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS
www.ti.com
A.15.3 NIMU CONfiQUIAtiON w.uuueiiusiiiteiie it s s s s s sa s sa e s n s raae s an s saanssanneras 159
A.15.4 API FUNCLON OVEIVIEW . .iuueeeiieeesasantesssaaatse s saanssssssannessaannesssaannrssaaannnesssannsnnsss 159
A.15.5 API FUNCLION DESCIIPIION uuusstiiaeeeissneesssastssssaasseesssasnnssssaianesssaannrsssaannnesssannsnnsss 160
A.16 Virtual LAN (VLAN) SUDPOIT o utuuttistesatisstsssssassrssssssssasssaass s ssasssssssantssanessannsssnssannsins 163
0t G0 T o1 163
A.16.2 User Priority Mapping Configurationeeeeiiiisssssiiiisesisiississisr s sssannnssssaansnesss 164
A.16.2.1 User Priority CONfIQUIAtIoON ...ueuesiseeiiseiiee st s rassssisnssassanssaessannsrnss 164
A.16.2.2 Marking Packet PriOFtYcoiiieeeiiiii i s ra e e s s e e s ssanne s sannn e e sannnnns 166
A.16.3 API FUNCLON OVEIVIEW .iuuustetisastesssstesssassssssaasssssssassnesssassnesssasnnnsssssnnnsssssnnsnesss 167
N0 2 S I g T o) 167
N A = - V1V =1 1= 1= 1/ oo [N 169
R 00 s V0 T 0L 169
A.17.2 Raw Ethernet Data Prioritization - Socket Priority USE CaS€cuvvvieriiniiriniiiiieiiiiniiinesanneas 170
A.17.2.1 Socket Priority CONfIQUIAtiONeeiiiieeiie i e rr s s s e e s saane s s snanne s aannnes 170
A.17.3 API FUNCLON OVEIVIEW .iuusssesisaetssssassesssasssessaasssssssaasnssssassssssasnnnsssssnnnsssssnnsnesss 171
N S I g T o) 172
A.18 ODbtaiNiNg StACK STALISHICS .uuueeiintteiiiatee e iaaee st e s saaaan e s saaaar e e s saann e e s saannaessaannnessaannnessnnnn 173
B Network Address TranSIatioN ... s s s s e arans 174
B.1 [N 7NN @ o 7T - o o 175
B.1.1 Typical CONfIgUrAtiONuusiiseiteiieeste s s r s s s s s n s s e annes 175
2 700 = 7 1] o 1 175
B.1.3 NAT POt MaPPiNg tiuueeesiienneesaasneeseaaneesssanneesssannesssasnneesesssnnesssssnneessssnnnessesnnnnsss 177
B.1.4 NAT ProXY FilterS wuuueeitiiiiiiirire s s e r s e r e s r e e snes 180
2 700 00 3 = {0 o] =T 4 I} T] L 180
B.1.4.2 Problem Example - FTP Clients onthe LANuiiiiiiiii i s iseee s ssinee s sennnneennnnnes 180
B.1.4.3 NDK Support for ProxXy FiltErS ...uiueiiieeiiiiiii i er s s saaeenas 182
B.1.4.4 FTP Proxy Filter EXample COdeciiiiiiiiiiiiiiiii i s i s ssaas s s srnnsa s snannes 183
B.2 [N TN I o 1 o o g 185
[2 R ¥ g Tox 1o T @ V=T Y 185
B.2.2 NAT Entry INfOrmation STFUCLUIEueeeiiiii i it r e s s e e s s s s s s s e s s rannnenss 185
B.2.3 NAT API FUNCHONS t.utiitiseitinsirtise st rtiss e e s s s s e aaranas 186
B.3 N I 10T 11 (=T £ 187
|23 20 R ¥ Vo 10 o T Y= V= 187
B.3.2 NAT Proxy Filter Callback FUNCHONS ..vviiiiieiisiiiii i sesiee s sessne e e sssann e s saannee s snnnnnenas 188
B.3.3 NAT Proxy APl FUNCHONS . uuuuutiuseiusssstsissessssssssssesanssassssisss e ssisssasssanneranssnnns 189
C POINt-10-POINT PrOotOCO] ..ueiie i ettt e e e et e e a e e e e e e anenens 191
Cl1 [T I =Y T o] o T 192
L0t 00 R o 0 T= = o o 192
C.1.2 FUNCLON OVEIVIEW . .utuuetteiiatteessaase s saasse s saaaane s saaaan e e s ssan e s s ssann s e st santnsssaannnsssannnnsss 193
{30 0 TS 0o o To T (=0 [= £0] (o 0] 193
C.1.4 Sl Module Callback FUNCHON ...ttt s s s s srane e e 193
[0 0 St R = U et o) I DT =T = 4T) o 194
C.1.42 SI_MSG_CALLSTATUS MESSAGE +.uutrurerserurrnnrrunminerssrnsiassrnsanssnniasssssnnaiins 194
C.1.43 SI_MSG_ SENDPACKET MESSAJE .uuuterrrunnerirmnsneeirsinsnesmsinssressaasnresimasnnerimmrnens 195
C.1.4.4 SI_MSG_ PEERCMAP MESSA0E .ttuutrutruerutinsineiissanssnsiasssiesassssiassanssanimsmnninnans 195
C.1.45 Example Callback Function Implementationcceeviiiiieeiiiiiiiiiiiriir e aineeeas 195
C.1.5 Tips for Implementing a PPP Serial Interface (SI) Module INStanceccvvviiiieriiiineniinnnnenns 196
C.1.51 MUIIPIE INSLANCES ..ennieeiiiiie e eraat e e e r e e s s aaae et s aan e s ssann e s ssann e s ssannneessannnnesss 196
C.1.5.2 UsiNg the Timer ODJECT . .uuiiiieteiiiitees i ss i ss e s s aaasre s raanaressaannnenss 196
C.1.5.3 Registering Packet Padding REQUIFEMENTSuiiueeiiutirieiiiiieiiiee i i raeesanns 197
(O 0 ST = o N I U 4 1o 197
C.2 Serial HDLC Client and Server SUPPOI ..uuuuueeeissetesssniasrsssaasssesssassesssassssssassssrssssinnrsessannnns 200
C.2.1 FUNCLON OVEIVIEBW .iuneetetseteesssannnesssasnnessaasnneesssanneessaannneessaannnessasnnnnssssnnnessssnnnes 200
SPRU524H-May 2001 —-Revised February 2012 Contents 5

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS
www.ti.com
C.2.2 HDLC APl FUNCHONS utittiiseitesasessstssssssase e e saas s s s saas st e e s a et sa s saa e tann s sannasnns 200
C3 PPPOE Client and SErVEr SUPPOIT «uuuseuuseisssssteisesssssssss ettt e sansesansrasiainns 204
C.3.1 FUNCLON OVEIVIEW t.uuuustteisatsessssssesssassestsassesssaannssssaannesssaassesssansnnssssssnnsssssnnnss 204
C.3.2 PPPOE APl FUNCHONS 1tiiuttiittiiteiiaisiassas e s s st s s st s saae s s e ss s s sa s s nann e saaeannes 204
C4 Creating PPP Server USEr ACCOUNES ..uuuiiustiisseiisterssisisssssesaatesassssissssiss st sasssasnssasssanneinnes 207
C.4.1 Adding and ReVviewing USEr ACCOUNES ..uiiuuuueesisiuunesisiinnessssinnrsssaansrssssasssesssaisnssssasnnnes 207
C.4.1.1 Adding @ PPP USEr ACCOUNE .uuiuuteiustissnesssiaessassssissssisssanssasssansssanssannsrannssanns 208
C.4.1.2 Searching for @ PPP USEr ACCOUNT .. .ueiiiiiiesiiiitesisannesssainnessaaannssssaanresaaannresssn 208
C.4.1.3 RemoviNg @ PPP USEr ACCOUNT wuuuuuuuttesiistesisisnesississsssssissssssinsnssssannsssssasnnnesss 209
Hardware Adaptation Layer (HAL) .oueieieiiii i e r e e s e e a e aeas 210
[200 R 1= o T 211
D.1.1 HAL FUNCHON TYPES utttiiiutteiaiaeesisaiatessaaaasesssansa st saaasasssaanssessaannnssssannnesssannnnsssnn 211
D.1.2 External Calls from HAL FUNCHONS ...uuiusiiuiiisiieitinseriiase i sasessnsssaesnnans 211
D.2 Low-Level LED Driver (IUSEILEA) wuvuueeiseirstirseiseeissssssss s ssissssasssaatssansssassssaassannesannssanns 211
D.2.1 FUNCHON OVEIVIEW . uuetsiiatestaasaesssasaesssaaasessaassssssassasssaassssssaansnsssssnnnssssannnnsssnn 211
D.2.2 Low-Level LED API FUNCHONS t.uiiuuiseitiisirtisense st resnsssas s naessssssssssaesnnsnnssaes 212
D.3 Low-Level Timer Driver (IITIMEI) .uuuueuie et r i s s s r s a s e ann e raneens 213
D.3.1 FUNCHON OVEIVIEW . .uuetsiiatestssaesssasaessssaasesssanasssssassssssaansssssaannnssssannnssssannnnsssnn 213
D.3.2 Low-Level Timer APl FUNCHONS .uiuuiiueisinsiisiisei s sesnsesae s snsans e sansnaenaes 213
D.4 Low-Level Packet Driver (IIPACKEL) w.uuuuiseiieiiiteiie s s e e rnes 214
D.4.1 FUNCHON OVEIVIEW . .uuettiiatesiaaaesssasaesssaassesssaassssssassasssaassssssasnnnsssssnnnsssssnnnnsssnn 214
D.4.2 Low-Level Packet API FUNCHONS ..uuiisiisiisirisirse i e ae s e nnaeraes 215
D.5 Low-Level Serial Port Driver (IISerial) ..uuueiveeiieiiiisi s e 218
D.5.1 FUNCHON OVEIVIEW . uuettiiaateetsaaaeessasesssaaasessaassesssaatasssaassesssaannnssssannnssssannnnsssnn 218
D.5.2 Low-Level Serial API FUNCHONS .uiuuiiseiisiisirinseiensssrnsssse s ssas s snsesannaes 218
Web Programming wWith the HTTP SEIVer ..ot e e 223
Yo (o T To TRV = o @ (=] o] 224
[O R O 0T 10 o 224
E.1.2 Converting Standard HTML FIlES ...iuuuiiiiiiiiiiii i e r e e 224
E.1.3 Declaring HTML FIleS 10 EFS .o et e e r s e r e s e ann e e s rnnnneeas 224
E.1.4 Cleaning Up HTIML FileS ittt s e s rr s s s s s an e s s aans e e s ssannnenas 225
E.2 LAY 1Yo T I 0 od 1o 225
E.2.1 Adding FUNCHONS 10 the EFS ..ttt r e s s s e s s s e e s s s r e s sannnneeens 225
| O € B 0 g Tox 110 T D 1= o] F= T o 225
S B - 1= 1T IO €I o g3 T 5 - - 226
E.2.4 Parsing CGl Multi-Part FOIM Data@ceeiiieieeiiiiieeiiiaieessaainessaaannssssaannaessaansaessaannnesss 226
E.2.5 Sending HTTP/HTML REPIES .uuiiieiiiiiiiisiiiissisiisss s ssise s s ssans s ssanssessaannnesss 227
E.2.6 HTML ErfOr RESPONSE wuiiiuusteiiiiattetraastesrrastesssassessssasse et asaa s asaan s ssaanrressaannness 228
E.3 [I S AN E 01T 1o 1T 229
E.3.1 AUthOrization REAIMS ...uiiiiiiiiiiiiii i s s s st s s s s s ar s s rannneess 229
E.3.2 USEI ACCOUNES uutttiiussteinsasneesssesessaassee s sassee s traaase s sa s e s s s s e et s s s r e s saansnesssannnens 230
E.3.3 Designating ProteCted FlESiieiiiiiiiiiiiiie i i s s inr e s ananr s e saannasssannnesn 230
E.4 (1€ I U od T o T == 2 1o = 231
E.4.1 Create the HTML PaAge ..uuuiieiiiiiiiiiie i s r e e s s s s s e s s s a e s e e asnns 231
E.4.2 Create the Base WEBPAGE S0oUIrCe Filecoiiiiiiiiii i r e e rrnnne e eas 231
E.5 HTTP Server EXPorted FUNCHONS .. .uuueeiiiiietesisiatesssistssssassessssissessssinessssananssssannsnsssannnnesss 233
E.5.1 CommONIY USEA SEHNGS uvuiuutirntinntintsineeiassssisss et sass st sasssassssisssannstainesanns 233
E.5.2 FUNCHON OVEIVIEW . ..ueeteiiiaieeisaeeesaaante s ssaase s ssanse st saannn st aaannesssaannnsssaannnnsssannnnnssn 234
E.5.3 HTTP Server EXported APl FUNCLIONSuuueiiiiiiiieiiiiitesisnites s s sssiassssainnssssannnnesss 234
IP Version 6 (IPVB) StaCK APl ... e et et a e 237
F.1 377110 L] 238
F.2 API FUNCEIONS aNd Data SIrUCLUIES .. .ueeiieteeisiatse s iassessaassesssaannsssssannressaannssssannnasssannnnesss 239
F.2.1 SOCKEt SUPPOIt fOr IPVB ..insieiiiiieeseeiee s ssaeeesssanresssasnnessaasnneesaasnnnessssnnnesssannnnnssn 239
Contents SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS
www.ti.com
L N (o] 11 =T o (1] 240
e TS T Tox (= o] (0] L 240
T 10 = =T 3 T T 240
F.2.5 NettoolS APPlICALIONS .uuuuutiieeiteireerte e e s e s s s e aaa s e s s s r s rannaanns 241
2 T00 R 1= 13T 241
T =T o TR Y= T 242
T T [N e 3 242
B0 I 1S T =T o | 242
F.2.6 Configuring the IPV6 STACKciiiiiieiiiiiii i i s ssaaannenas 246
G Legacy Configuration Manager APl ... 247
G.1 Configuration MEtNOOSuueiseirtiii i st s s s e ra e e e s s s n s raneaaans 248
(€07 ©7o] ¢ To U= 11 [o] N1V = g = Vo = 248
G.2.1 FUNCHON OVEIVIEW 4 euutiustiseiusersesasssesassasssasnssssesssssssassass e sassaarrassasesansasessetnnssnnrns 249
G.2.2 Configuration APl FUNCHONS . uutueesstsissesssisssssss s sasss s ssase s saass s ranessannssnes 250
G.2.3 Configuration Entry AP FUNCHONS . .uuisiiiiieiiiiieeiraiesssians s ssasss s s saansesssaannessaaannnsss 260
G.3 Configuration SPeCIfiCAtIONueeeiiiiies i sairee s sasane e saaanseessaanneessaannnessaannnessaasnneesannnnnes 263
LR 0t R © T (o - 1 T2 1o o 263
G.3.2 Network Service Specification (CFGTAG_SERVICE) ...iuuuiiiiiiiieiiiiiiesiiiiesisainessanannnees 263
G.3.2. 1 SEIVICE TYPES tuuuuttirineteseaanntesssaneesssaanneessaanseesssssnnesssssnneessssnnnesssnnneessssnnnens 264
G.3.2.2 Common ArgumENt SIUCTUIE ..ueeiiiusererrianresirasnesisssseesssiasresssiasrerrsaanrsesrannrnenss 264
G.3.2.3 Individual Configuration Entry INStance StrUCtUIESvivieeeiiiiiensiiiiier s sraanneeeas 266
G.3.2.4 SPeCifyiNng NEIWOIK SEIVICES ..uuutiiiiiintertiaineeessaaneessassnnessesanneessssnseessennneessennnnens 267
G.3.3 IP Network Specification (CFGTAG_IPNET) ..uuuiietiiiiiiiieiirins i nnsssannssans 270
G.3.4 IP Gateway Route Specification (CFGTAG_ROUTE)uueiiiiiiiiiiiiiiiesiiiisesssainanssanannnss 271
G.3.5 Client Record Specification (CFGTAG_CLIENT) tuuuettiiiiinteersianeeessannneessasnneessasnnnessmsnnnes 271
G.3.6 Client User ACCOUNt (CFGTAG_ACCT) tuuiuuterutirnrirseiaineiassesinrssansssinsssisssannsiasesannsiins 272
G.3.7 System Information Specification (CFGTAG_SYSINFO) ...uuiiiiiiiiiiiiiiin i anaaees 273
G.3.8 Extended System INfOrmMation TagS ..ueeeeieerererreeineesreainneessainneeseaannresssannressssnnneessesnnness 273
G.3.9 OS/IP Stack Configuration Item Specification (CFGTAG_OS, CFGTAG_IP) ..cevviiiviiiiininninnnsn 274
L S 1011 F= Y[(o T o o ToT=To [= 276
H AV A EY Lo g I = 1] o] Y/ PP 277
SPRU524H—-May 2001 -Revised February 2012 Contents 7

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures
3-1. Raw Ethernet BUffer FOMMALoiiii it r e e s a s e s s anr e e s s n e e s ranneeess 73
3-2. Raw Ethernet BUuffer FOMMALueiiiieiiiiiiii i e e s s s s s s e s s ann s s rannee e 74
A-L. NIMU ArCHIEECIUIE . .ueeeiieeesie et e eseaeee e s aanee s saanne st aanneesaaannnessaannnessaannnnnssannnnessannnnessnnns 154
A-2. VLAN Module Placement in NIMU Enabled NDK Stackccoueiiiiiiiiiiiiiiiiii i niee e 163
G TV =T 03] 0] 164
A-4. Raw Ethernet Channel Manager Module in NDK......eieeiiiiiiniri i s naneeeas 169
B-1. Basic Home Network CONfIQUIAtIoNeeeeiiiiei i i e st aae e s s ine s ss s e e s s nnn e e saannnaeesn 175
B-2. Public Servers on the HOmMe NEtWOIKuessiiiiteeiiiiiee s s s s s s s s s s s sannaenss 179
C-1. Standard PPP Frame OVer Serial LiNeeuiueiieiiiiiinereisiasissssassansssisssssssannssanssansssnns 192
C-2. PPP Frame Processed DY PPP AP ...t r ettt e s e s s s n e s n e e s aannaeess 192
C-3. Serial Interface (SI) ADSITACON . v vttt i r s s s e st s s asaane s aaannees 192
F-1. NDK IPv6 Architectural BIOCK DIagramuuveseuseineeiiussnanesseisisssass e sanessissssisssannssanssanns 238
F-2. Internal Architecture Block Diagram for SOCKEt LAYlveiiiieieiiiiiiei i s aniinre e sannneeens 240
F-3. IPv6 Stack Instantiation PlaCement.ueeeeiiieeiiiiie i s s s s s s s raaanens 246
List of Tables
et 14 T=] T G 158
R [T I R O o 4T o =g T 162
e R S] =T o = LI 2= 1] o] 1 T 162
A-4. User Priorities for Traffic AQreemMENteii it r e s e e s aaanneeaanas 165
H-1. Document REVISION HISTOY .. uuuesiseseinetssssatssssaassne s ssaaae s ssasae s ssaananssssannnesssannnnsssannnnesss 277
8 List of Figures SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

TeEXAS

Preface
SPRU524H—May 2001 —-Revised February 2012

INSTRUMENTS
Read This First

About This Manual

This programmer's reference guide describes the various API functions provided by the NDK libraries, and
is intended to aid the development of network applications. It is the central reference document used when
programming the stack. See the Tl Network Developer's Kit (NDK) User's Guide (SPRU523) to familiarize
yourself with the stack libraries, NDK configuration, and using the stack with the SYS/BIOS and Code
Composer Studio™ Development Tools.

The latest version number as of the publication of this guide is NDK v2.21.

The document covers NDK programming as it applies to the TMS320C6000, Cortex-A8, and ARM9
programming environment,.

How to Use This Manual

This document contains the following chapters:

Chapter 1: Introduction summarizes the various API sets described in the NDK documentation.

Chapter 2: Operating System Abstraction API describes the API used by the adaptation layer to
access the operating system.

Chapter 3: Sockets and Stream |0 API describes the file and sockets API functions.

Chapter 4: Initialization and Configuration describes the XGCONF configuration method, the NDK
initialization sequence, and the Network Control module.

Chapter 5: Network Tools Library - Support Functions describes the network support functions
contained in the NETTOOLS library.

Chapter 6: Network Tools Library - Services describes the network servers and services contained
in the NETTOOLS library.

Appendix A: Internal Stack Functions contains a partial list of internal stack functions provided to aid
in the comprehension of kernel oriented calls.

Appendix B: Network Address Translation describes the optional Network Address Translation
component, how to set up virtual networks, and protocol proxies.

Appendix C: Point-to-Point Protocol describes the operation of the PPP and PPPoE support API
included in the NDK, and how to interface to a serial device.

Appendix D: Hardware Adaptation Layer (HAL) describes the operation of the HAL, and the HAL
API functions.

Appendix E: Web Programming with the HTTP Server describes how to get information from an
embedded network device through the webserver.

Appendix F: IP Version 6 (IPv6) Stack API describes the APIs and data structures exposed by the
IPv6 stack.

Appendix G: Legacy Configuration Manager API describes the legacy Configuration Manager API.
Appendix H: Revision History describes the changes to this document since the previous release.

SPRU524H-May 2001 —-Revised February 2012 Read This First 9
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Notational Conventions www.ti.com

Notational Conventions

This document uses the following conventions:

» Program listings, program examples, and interactive displays are shown in a special typeface.

* In syntax descriptions, the function or macro appears in a bold typeface and the parameters appear in
plain face within parentheses. Portions of a syntax that are in bold should be entered as shown;

portions of a syntax that are within parentheses describe the type of information that should be
entered.

» Macro names are written in uppercase text; function names are written in lowercase.

Related Documentation From Texas Instruments

Additional information about the NDK can be found in SPRU523 (TI Network Developer's Kit (NDK) User's
Guide.) and the NDK category of the TI Embedded Processors Wiki. If you have questions, you can ask
them on the BIOS forum in Tl's E2E community.

Information about SYS/BIOS, which is used in NDK applications, can be found in the SPRUEX3 (Tl
SYS/BIOS Real-time Operating System User's Guide) and the SYS/BIOS main page of the TI Embedded
Processors Wiki.

The following documents describe Cortex™-A8 and ARM9 devices and related support tools. Many of
these documents can be found on the Internet at http://www.ti.com.

SPNU151— ARM Optimizing C/C++ Compiler User's Guide

SPNU118— ARM Assembly Language Tools User's Guide
SPRUH73— AM335x ARM® Cortex™-A8 Microprocessors (MPUs) Technical Reference Manual
Cortex-A8 wiki page—on the TI Embedded Processors Wiki

ARM9 wiki page—on Ti's Embedded Processors Wiki

Sitara ARM Microprocessors forum—in Tl's E2E Community

The following documents describe the TMS320C6x™ devices and related support tools. To obtain a copy
of any of these Tl documents, call the Texas Instruments Literature Response Center at (800) 477—8924.
When ordering, please identify the book by its title and literature number. Many of these documents can
be found on the Internet at http://www.ti.com.

SPRU189 — TMS320C6000 DSP CPU and Instruction Set Reference Guide.

SPRU190 — TMS320C6000 DSP Peripherals Overview Reference Guide.
SPRU197 — TMS320C6000 Technical Brief.
SPRU198 — TMS320C6000 Programmer's Guide

SPRU509 — TMS320C6000 Code Composer Studio ™Development Tools v3.3 Getting Started
Guide

SPRUFP2 — TMS320C6000 Network Developer's Kit (NDK) Support Package Ethernet Driver Design
Guide.

Code Composer Studio, Cortex, TMS320C6x are trademarks of Texas Instruments.
ARM is a registered trademark of Texas Instruments.

10 Read This First SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://processors.wiki.ti.com/index.php/Category:NDK
http://e2e.ti.com/support/embedded/bios/f/355.aspx
http://www.ti.com/lit/pdf/spruex3
http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://www.ti.com
http://www.ti.com/lit/pdf/spnu151
http://www.ti.com/lit/pdf/spnu118
http://www.ti.com/lit/pdf/spruh73
http://processors.wiki.ti.com/index.php/Cortex-A8
http://processors.wiki.ti.com/index.php/ARM9
http://e2e.ti.com/support/dsp/sitara_arm174_microprocessors/default.aspx
http://www.ti.com
http://www.ti.com/lit/pdf/spru189
http://www.ti.com/lit/pdf/spru190
http://www.ti.com/lit/pdf/spru197
http://www.ti.com/lit/pdf/spru198
http://www.ti.com/lit/pdf/spru509
http://www.ti.com/lit/pdf/SPRUFP2
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Chapter 1
I ’.{‘IE)S(’;A"EUMENTS SPRU524H—May 2001 —-Revised February 2012

Introduction

This chapter serves as an introduction to the programming API reference for the NDK software.

Topic Page
1.1 What ThisS DOCUMENT COVEIS .uutitiiineuenanrneneeatetaeaeessnanaaenanaeasasssnanenanananaeaenens 12
SPRU524H—-May 2001 -Revised February 2012 Introduction 11

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
What This Document Covers www.ti.com
1.1 What This Document Covers
This Reference Guide for the NDK is mainly a programming API reference guide. It is intended to aid in
the development of network applications and describes the various API functions provided by the stack
libraries.
Although this Programmer's Reference Guide will be the central reference document used when
programming the stack, you should first see the TI Network Developer's Kit (NDK) User's Guide
(SPRU523) to familiarize yourself with the stack libraries and with using the stack with the SYS/BIOS and
Code Composer Studio™ (CCStudio) development tools.
1.1.1 Supplemental API Information
The following information appears as appendices to this document. These sections contain optional
information that may be useful in understanding the low-level application interface, but is not required
when developing traditional network applications.
* Appendix A Internal Stack Functions
The stack library internal function specification describes a subset of the low-level programming
interface to the stack. These functions allow the application writer to make use of kernel level function
APIs. As a general rule, it is not necessary to use this API for application development, although some
of the sample applications included in the NDK make use of these function calls.
* Appendix B Network Address Translation (NAT)
The stack library includes Network Address Translation module. This appendix describes the
operational theory of NAT, and how to use the NAT functions included in the library.
e Appendix C Point-to-Point Protocol (PPP)
The stack library has internal device sections for both traditional Ethernet, and PPP. The PPP module
can act as PPP client, server, or both (assuming multiple interfaces). This appendix describes the
operation of the PPP module, the PPP over Ethernet (PPPoE) module, and how to interface an HDLC
based serial device.
* Appendix D Hardware Adaptation Layer (HAL)
This appendix describes the hardware and operating system interfaces used by the stack. The
information allows application programmers to call device drivers directly when needed. This appendix
does not supply information about porting the HAL to a new platform.
* Appendix E Web Programming with the HTTP Server
This appendix describes how to make use of the HTTP server included in the NDK. The main topics
covered are adding Web content and writing CGI functions. There is also a description of the HTTP
API used by CGl functions, and some CGI example applications.
e Appendix F IPv6 Stack API
This appendix contains the data structure and API definitions exported by the IPv6 stack in the NDK.
All IPv6 socket level APIs are also documented so that the application can use them for
communication over IPv6 networks.
» Appendix G Legacy Configuration Manager API
This appendix contains information about the legacy configuration API. This APl was used by
applications before the XGCONF configuration method was added.
12 Introduction SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS

Chapter 2

SPRU524H—May 2001 —-Revised February 2012

Operating System Abstraction API

To keep the stack system portable, it was coded to a very compact operating system abstraction. The

stack can execute in any operating environment by porting the functions described here. Most of these

functions will map directly to their native OS counterpart.

If you program to this API, your applications will execute on any system to which this abstraction is ported,
but more importantly, because all the NDK functions are written to this layer, the behavior of the NDK can

be altered by altering the implementation of this layer. This allows the stack to be tuned in how it

interfaces to the native operating system.

Topic Page

2.1 Operating System CoNfigUIatiONiuiuiiiiiiiiiiiiiii e asaeneaeaaananens 14

N - 1= QS T o o Lo A PP 16

P22 B S 1= 10 =T o [0} €=U o] o Lo S 21

2.4 Memory AlIOCAtiON SUPPOIT ...veiieieeieie ittt e e e e e e e e e eaeneneereaeaea e e eaenanns 24

25 Print and DEDUQG SUPPOIT ..uuieieieiiieiiaen e e ettt ea s e ra e e e e e e easnsarasane e enenes 25

2.6 File I/O Support for Embedded SyStEmMS ..ot 26

2.7 Interrupt Management SUPPOIT ueiitiieiiiieiitiaeeaetateaseastaneaneeantanssneaansannaansanesnnens 33
SPRU524H—-May 2001 -Revised February 2012 Operating System Abstraction API 13

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Operating System Configuration www.ti.com

2.1 Operating System Configuration

If you are using XGCONF to configure your application, you can configure several aspects of the OS
behavior in the Scheduling tab of the Global NDK module property page. When you build the *.cfg
configuration file, the data structure described in the following section is generated internally and linked
into your application. See the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the
context-sensitive help for details.

If you are not using XGCONF to configure your application, the configuration options that regulate OS
behavior are stored in a data structure. The types of properties defined in the structure are those that
would typically be macros, but using a data structure allows the values to be changed without rebuilding
the libraries. The structure is described here for completeness, but applications should use the
configuration system to make alterations to these values.

Configuration methods are described in Chapter 4.

2.1.1 Configuration Structure

This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here.

The stack internal configuration structure is _oscfg. Any element in this structure may be modified before
the system is booted. System initialization is covered later in this document.

The _oscfg structure is of type OSENVCFG, which is defined as follows:

/1 Configuration Structure
typedef struct _osenvcfg {
uint DbgPrintLevel; // Debug nmessage print threshold
ui nt DbgAbortlLevel; // Debug nessage sys abort threshold

int TaskPri Low, /'l Lowest priority for stack task

int TaskPri Norm /1 Normal priority for stack task

int TaskPri H gh; /1 Hgh priority for stack task

int TaskPri Kern; /'l Kernel-level priority (highest)

int TaskStkLow, /1 M nimum stack size

int TaskSt kNorm /1 Normal stack size

int TaskStkH gh; /'l Stack size for high volune tasks
} OSENVCFG

The structure entries as defined as follows:
_oscfg.DbgPrintLevel Debug message print threshold

Default Value DBG_INFO
Description This is the lowest severity level of a system debug message (call to DbgPrintf() function)

that will be recorded into the debug log. The threshold may be raised. The legal values
for this variable are: DBG_INFO, DBG_WARN, DBG_ERROR, and DBG_None.

_oscfg.DbgAbortLevel Debug message abort threshold

Default Value DBG_ERROR

Description This is the lowest severity level of a system debug message (call to DbgPrintf() function)
that will result in a system shutdown (call to NC_NetStop()). The threshold may be
raised. The legal values for this variable are: DBG_INFO, DBG_WARN, DBG_ERROR,
and DBG_None.

14 Operating System Abstraction API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

_oscfg.TaskPriLow — Priority Level for Low Priority Stack Task

_oscfg.TaskPriLow

Default Value

Description

Priority Level for Low Priority Stack Task

3

This is the priority at which low priority stack task threads are set. Setting a thread to a
lower priority than this will not disrupt the system, but no system or service supplied in
this package will attempt it.

_oscfg.TaskPriNorm Priority Level for Normal Priority for Stack Task

Default Value

Description

_oscfg.TaskPriHigh

Default Value

Description

_oscfg.TaskPriKern

Default Value

Description

_oscfg.TaskStkLow

Default Value

Description

5

This is the priority at which most stack task threads are set. Task threads that are
created by the system or services will usually run at this level.

Priority Level for High Priority for Stack Task

7

This is the priority at which high priority stack task threads are set. Setting a thread at a
higher priority than this may disrupt the system and cause unpredictable behavior if the
thread calls any stack related functions. High priority tasks (like interrupts) can execute
at higher priority levels, but should signal lower priority tasks to perform any required
stack functions.

Priority Level of High Priority Kernel Tasks

9

This is the priority that task threads execute at when they are inside the kernel. Setting
tasks to this priority level ensures that they will not be disrupted by another task calling
stack functions. Note that this priority should be 2 higher than _oscfg.TaskPriHigh, to
allow the scheduler thread to occupy a priority in between. The proper method of
entering the kernel is to call lIEnter() and IIExit(). These functions are discussed in the
appendices, as they are not required for applications programming.

Minimum Task Stack Size

3072

This is the stack size used for network task that do very little network processing, or do
not use TCP.

_oscfg.TaskStkNorm Normal Task Stack Size

Default Value

4096

Description This is the stack size used for a network task with an average network bandwidth using
TCP. It is used for the majority of network tasks in the network tools library that use
TCP.

SPRU524H—-May 2001 -Revised February 2012 Operating System Abstraction API 15

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
_oscfg.TaskStkHigh — High Volume Task Stack Size www.ti.com
_oscfg.TaskStkHigh High Volume Task Stack Size
Default Value 5120
Description This is the stack size used to network tasks that require a high network bandwidth using

TCP. ltis also used for tasks calling HTTP CGI functions.

2.2 Task Support

The task object provides a method of manipulating task threads using a generic task handle. Task threads
are executed on a priority based method, with a least-recently-run algorithm used on those with equal
priority. Each task thread has its own private stack.

SYS/BIOS Users Note: Task handles created and used by this abstraction are compatible and
interchangeable with SYS/BIOS Task handles.

2.2.1 Function Overview

The Task Object access functions (in functional order) are as follows:

TaskCreate()
TaskDestroy()
TaskSelf()
TaskExit()
TaskYield()
TaskSleep()
TaskBlock()
TaskSetPri()
TaskGetPri()
TaskSetEnv()
TaskGetEnv()

2.2.2 Task API Functions

Create new task thread

Destroy a task thread

Get handle to current task thread

Exit (terminate) current task thread

Yield to another task thread at the same priority
Block a task thread for a period of time

Block a task thread

Set task thread priority level

Get task thread priority level

Assign one of three private environment handles to task thread
Retrieve one of three private environment handles

TaskBlock Block Task From Execution
Syntax void TaskBlock(HANDLE hTask);
Parameters
hTask Handle to target task
Return Value None.
Description Permanently blocks the specified task from execution.

Calling this function may cause a task switch.

16 Operating System Abstraction API

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
www.ti.com TaskCreate — Create a Task Thread
TaskCreate Create a Task Thread
Syntax HANDLE TaskCreate(void(*pFun)(), char *Name, int Priority, uint StackSize, UINT32
Argl, UINT32 Arg2, UINT32 Arg3);

Parameters

pFun Pointer to task entry-point function

Name NULL terminated task name (truncated after 11 characters)

Priority Task priority level (0-15)

StackSize Task stack size

Argl Optional task function argument 1

Arg2 Optional task function argument 2

Arg3 Optional task function argument 3

Return Value

Description

Returns a Task Handle on success or NULL on memory failure.

Creates a new task object. If successful, TaskCreate() returns a handle to the newly
created task.

The task name supplied in Name is used for informational purposes only, and does not
need to be unique.

The task priority specified in Priority determines the task thread's priority relative to other
tasks in the system. The priority should not be higher than the configured value for the
NDK's Global.highTaskPriLevel property (the priority for high priority NDK tasks), which
is 7 by default. 0 is the lowest priority and should be reserved for an idle task. If the
specified priority is negative, the task is blocked.

The task stack size specified by StackSize is not examined or adjusted by the create
function. The size should be made compatible with the native environment (a multiple of
4 bytes should be sufficient).

Argl through Arg3 are optional arguments that can be passed to the calling function
(they are always pushed onto the stack, but the task function need not reference them).

There is no limit to the number of tasks that can be installed in the system. The only
possible failure on TaskCreate() is a memory allocation error.

If the priority level of the new task is higher than the priority level of the current task, the
entry-point function pFun is executed immediately (before TaskCreate() returns to the
caller).

Calling this function may cause a task switch.

SPRU524H—-May 2001 -Revised February 2012 Operating System Abstraction API 17
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

TaskDestroy — Destroy a Task Thread

13 TEXAS
INSTRUMENTS

www.ti.com

TaskDestroy
Syntax

Parameters

hTask

Return Value

Description

TaskExit

Syntax
Parameters
Return Value

Description

TaskGetEnv

Syntax

Parameters

hTask
Slot

Return Value

Description

Destroy a Task Thread

void TaskDestroy(HANDLE hTask);

Handle to target task

None.

Terminates execution of the task object specified by the supplied handle hTask, and
frees task object from system memory. Note that memory allocated by the task thread is
not associated with the task thread and must be freed manually.

Exit a Task Thread

void TaskEXxit();
None.
Does not return.

This function exits a task thread. It should always be called immediately before the task
entry-point function is about to return, but it may be called from anywhere.

Get Task Environment Handle

HANDLE TaskGetEnv(HANDLE hTask, int Slot);

Handle to target task
Environment slot to use (1-3)

Private environment handle or NULL.

Returns a private environment handle for the supplied task handle hTask that was
previously stored with the TaskSetEnv() function. The slot specified in Slot specifies the
address (1-3) of the environment handle. There are actually four slots, but slot 0 is
reserved.

NOTE: This function returns without setting or getting an environment variable if
the "slot" parameter is non-zero. All internal stack functions use slot zero.

SYS/BIOS Users Note: The OS adaptation layer (OS.LIB) implements this function for
slot 0 only. The reserved slot 0 is the only slot required by the NDK. Slots 1 to 3 are not
implemented. You should use the standard SYS/BIOS functions Task_setEnv() and
Task_getEnv() for private environment pointer storage and retrieval.

18 Operating System Abstraction API

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

TaskGetPri — Get Task Priority

TaskGetPri

Syntax

Parameters

hTask

Return Value

Description

TaskSelf

Syntax
Parameters
Return Value

Description

TaskSetEnv

Syntax

Parameters

hTask
Slot
hEnv

Return Value

Description

Get Task Priority

int TaskGetPri(HANDLE hTask);

Handle to target task

Task priority level.

Returns the priority of the target task. See TaskSetPri() for more information on priority.

Get the Handle to the Currently Executing Task Thread

HANDLE TaskSelf();
None.
Handle to currently executing thread, or NULL on error.

Returns the task handle of the currently executing task thread. This function is used
mainly in other task object calls where the caller wishes to operate on the current thread,
but does not know the current thread's handle.

If called on an illegal (system) thread, this function returns NULL. Only certain
implementations of the OS even have a system thread, and no user code should ever be
executed on it. A NULL may also result if Task functions are called before the operating
system is initialized.

Set Task Environment Handle

void TaskSetEnv(HANDLE hTask, int Slot, HANDLE hEnv);

Handle to target task
Environment slot to use (1-3)
Private environment handle

None.

Sets and stores a private environment handle for the supplied task handle hTask. This
handle can be later retrieved by TaskGetEnv(). The slot specified in Slot assigns an
address (1-3) to the environment handle. There are actually four slots, but slot 0 is
reserved.

NOTE: This function returns without setting or getting an environment variable if
the "slot" parameter is non-zero. All internal stack functions use slot zero.

SYS/BIOS Users Note: The OS adaptation layer (OS.LIB) implements this function for
slot 0 only. The reserved slot 0 is the only slot required by the NDK. Slots 1 to 3 are not
implemented. Application programmers should use the standard SYS/BIOS functions

Task_setEnv() and Task_getEnv() for private environment pointer storage and retrieval.

SPRU524H—-May 2001 -Revised February 2012

Operating System Abstraction API 19

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

TaskSetPri — Set Task Priority

13 TEXAS
INSTRUMENTS

www.ti.com

TaskSetPri

Syntax

Parameters

hTask
Priority

Return Value

Description

TaskSleep

Syntax

Parameters

Delay

Return Value

Description

TaskYield

Syntax
Parameters
Return Value

Description

Set Task Priority

int TaskSetPri(HANDLE hTask, int Priority);

Handle to target task
Task priority level

Previous task priority level.

Sets the priority of the target task to the specified value. The priority should not be higher
than the configured value for the NDK's Global.highTaskPriLevel property (the priority for
high priority NDK tasks), which is 7 by default. 0 is the lowest priority and should be
reserved for an idle task. If the specified priority is negative, the task is blocked.

Calling this function may cause a task switch.

Sleep Task for Period of Time

void TaskSleep(UINT32 Delay);

Time (in milliseconds) of sleep

None.

Sleeps the calling task for a period of time as supplied in Delay. The sleep time cannot
be zero.

Calling this function may cause a task switch.

Yield Execution to Another Task Thread

void TaskYield();
None.
None.

This function yields execution to another thread by causing a round-robin task switch
among ready task threads executing at the same priority level.

This function always causes a task switch; however, the original calling task may be the
next to execute.

20 Operating System Abstraction API

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com Semaphore Support

2.3 Semaphore Support

The semaphore object provides a method of manipulating counting semaphores using a generic handle.
Semaphores can be used for both task synchronization and mutual exclusion.

SYS/BIOS Users Note: Semaphore handles created and used by this abstraction are compatible and
interchangeable with SYS/BIOS Semaphore handles.

2.3.1 Function Overview

The Semaphore Object access functions (in functional order) are as follows:

SemCreate() Create new semaphore

SembDelete() Delete semaphore

SemPend() Wait on semaphore, optionally for a period of time
SemCount() Get the current semaphore count

SemPost() Release semaphore - increment count
SemReset() Reset semaphore and set new count

2.3.2 Semaphore API Functions

SemCreate Create New Semaphore
Syntax HANDLE SemcCreate(int Count);
Parameters
Count Initial semaphore count
Return Value Handle to semaphore or NULL on error.
Description Creates a new semaphore object with an initial count.
SemCount Get Current Semaphore Count
Syntax int SemCount(HANDLE hSem);
Parameters
hSem Handle to Semaphore
Return Value Current semaphore count
Description Returns the current count of the semaphore object.
SPRU524H—-May 2001 -Revised February 2012 Operating System Abstraction API 21

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
SemDelete — Delete Semaphore www.ti.com
SemDelete Delete Semaphore
Syntax void SemDelete(HANDLE hSem);
Parameters
hSem Handle to Semaphore

Return Value

Description

SemPend

Syntax

Parameters

hSem
Timeout

Return Value

Description

None.

Deletes the semaphore object and frees related memory.

Any task currently waiting on this semaphore is blocked forever - even if it originally
specified a timeout to SemPend(). With a little care in programming, this will not occur.

Wait for a Semaphore

int SemPend(HANDLE hSem, UINT32 Timeout);

Handle to Semaphore
Maximum time to wait (in milliseconds)

The function returns 1 if the semaphore was obtained, and O if not.

This function waits on a semaphore.

If the semaphore count is greater than 0, the semaphore count is decrement and this
function immediately returns.

If the semaphore count is zero, the task is placed on a waiting list for the semaphore and
blocked. If the semaphore becomes available in the time period specified in Timeout, the
function returns. However, the function returns regardless once the timeout has expired.
A timeout value of 0 always returns without blocking or yielding. A timeout value of
BIOS_WAIT_FOREVER causes the caller to wait on the semaphore without time out.

The waiting list is first in, first out, without regard to priority. Thus, semaphores can be
used to round-robin task threads at different priority levels.

Calling this function may cause a task switch (unless called with Timeout set to 0).

22 Operating System Abstraction API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

SemPost — Signal a Semaphore

SemPost

Syntax

Parameters

hSem

Return Value

Description

SemReset
Syntax

Parameters

hSem
Count

Return Value

Description

Signal a Semaphore

void SemPost(HANDLE hSem);

Handle to Semaphore

None.

If the semaphore count is greater than 0 (or is equal to 0, but without any pending task
threads), the semaphore count is incremented and this function immediately returns.

If the semaphore count is zero and there are tasks threads pending on it, the count
remains at zero, and the first thread in the pending list is unblocked.

Calling this function may cause a task switch.

Reset Semaphore

void SemReset(HANDLE hSem, int Count);

Handle to Semaphore
Initial semaphore count

None.

This function resets the semaphore, first setting an initial semaphore count, and then
unblocking all tasks that are pending on the semaphore.

This function should be used with care. Tasks that are pending on the semaphore may
exhibit unexpected behavior because all tasks pending on the semaphore will return
from their respective SemPend() calls regardless of requested timeout. The return value
for the respective SemPend() calls will always be correct because one or more tasks
may get the semaphore (depending on the value of Count), but tasks that called
SemPend() without a timeout may assume they have obtained the semaphore without
checking the SemPend() return value.

Calling this function may cause a task switch.

SPRU524H—-May 2001 -Revised February 2012

Operating System Abstraction API 23

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Memory Allocation Support

13 TEXAS
INSTRUMENTS

www.ti.com

2.4 Memory Allocation Support

As part of normal stack operation, memory will be allocated and freed on a regular basis. It is therefore
recommended that a memory support system have the ability to allocate and free small memory blocks in
a variety of sizes, without memory fragmentation. The functions described here work on a memory bucket
system of predefined fixed sizes. Although it allocates more memory than requested, when the memory is
released, it can be reused without fragmentation.

2.4.1 Function Overview

The Memory Allocation access functions (in functional order) are as follows:

mmaAlloc() Allocate Small Memory Block
mmFree() Free mmAlloc() Memory Block
mmBulkAlloc() Allocate Unrestricted Memory Block
mmBulkFree() Free mmBulkAlloc() Memory Block
mmCopy() Copy a Memory Block

mmZerolnit()

Initialize a Memory Block to Zero

2.4.2 Memory Allocation API Functions

mmaAlloc

Syntax
Return Value

Description

mmFree

Syntax
Return Value

Description

mmBulkAlloc

Syntax
Return Value

Description

Allocate Memory Block

void *mmAlloc(uint size);
Pointer to allocated memory or NULL on error.

Allocates a memory block of at least size bytes in length. The function should return a
pointer to the new memory block, or NULL if memory is not available. The size of the
allocation cannot be more than 3068 bytes.

Free Memory Block
int mmFree(void *pv);
If a memory tracking error occurs, this function returns 0; otherwise, it returns 1.

Frees a previously allocated memory block by supplying the pointer that mmAlloc()
originally returned.

Allocate Bulk Memory Block

void *mmBulkAlloc(INT32 Size);
Pointer to allocated memory or NULL on error.

Allocates a memory block of at least size bytes in length. The function returns a pointer
to the new memory block, or NULL if memory is not available. The size of the allocation
is not restricted.

24 Operating System Abstraction API

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

mmBulkFree — Free Bulk Memory Blo

ck

mmBulkFree

Syntax
Return Value

Description

mmCopy

Syntax
Return Value

Description

mmZerolnit

Syntax
Return Value

Description

2.5

Free Bulk Memory Block

void mmBulkFree(void *pv);
None.

Frees a previously allocated memory block by supplying the pointer that mmBulkAlloc()
originally returned.

Copy Memory

void mmCopy(void *pDst, void *pSrc, uint size);
None.

Called to copy size bytes of data memory from the data buffer pSrc to the data buffer
pDst.

Zero Memory
void mmZerolnit(void *pDst, uint size);
None.

Called to initialize size bytes of data memory in the data buffer pDst to NULL.

Print and Debug Support

The OS abstraction includes a family of compact printf() functions that print using a fixed buffer. The size
of the buffer (max printf() length) is defined in the OS abstraction layer. The code to print to the standard
output device is also provided, and this function can be modified to print or log as required.

The stack also provides another form of the printf function called DbgPrintf(). This function prints debug
messages to a global debug log. The severity threshold at which the debug message is recorded can be
adjusted, as well as at what point the error causes a system shutdown.

SYS/BIOS Users Note: Under SYS/BIOS, there is a minor incompatibility between the compact printf()
function provided here and the one supplied in the RTS library. Other than not supporting floating point,
this version of printf() treats long values (e.g., %ld) as 32 bit quantities, not 40 bits. Thus, when using
SYS/BIOS, it is best to avoid the use of %ld.

251

Standard API Functions

The standard set of printf functions is supported:

int
int
int
int

printf(const char *format, ...);
sprintf(char *s,
vprintf(const char *fornat,
vsprintf(char *s,

const char *format, ...);
va_list arg);
const char *format, va_list arg);

SPRU524H—-May 2001 -Revised February 2012

Operating System Abstraction API

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

25

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
DbgPrintf — Print a Debug Message to the Debug Log www.ti.com
2.5.2 Debug API Functions
DbgPrintf Print a Debug Message to the Debug Log
Syntax void DbgPrintf(int ErrLevel, char *Format, ?);
Parameters
ErrLevel Severity level of the error
Format Standard printf format string
Return Value None.
Description This function prints a debug message to the global debug log buffer. The log buffer is
defined as follows:
#define LL_DEBUG LOG MAX 1024
extern char DebuglLog[LL_DEBUG LOG MAX]; // DebugLog Buffer
extern int DebuglLogSi ze; /1 Bytes of data currently in DebuglLog
The buffer behaves like one large NULL terminated string. The contents are cleared by
setting DebuglLogSize to 0.
The value of ErrLevel determines if the message is printed and additionally, if the
message results in a system shutdown. Both of these thresholds (printing and shutdown)
are set through the OS configuration. The definition of the severity levels are as follows:
#define DBG INFO 1
#define DBG_ WARN 2
#defi ne DBG ERROR 3
#define DBG None 4
2.6 File I/O Support for Embedded Systems
The next section of this document discusses the support for stream |10 that is built into the stack library.
The support documented in that section is intended to augment the basic functions provided by the native
operating system (in the case where the stack is ported to a new environment).
This section details functionality required by the Network Tools services interfacing with File 10. The
functionality described here is more likely to have a local counterpart. The API described in this section
must be ported to allow the network services that use it to operate.
The API described here was taken from the Unix standard. The names of the functions have been
prefixed with the designation efs_ ,which stands for embedded file system. This was done so that the
functions would not conflict with any existing file system. The EFS API is a very simple RAM based file
system. A couple of new functions are included that allow the creation of RAM files by supplying pointers
to static data buffers. For systems with existing file structures, most of the functions in this APl become
secondary to their standard 10 counterparts.
NOTE: This API is unrelated to the stream API provided for Sockets. If the services that need this
API are not required, then this module can be discarded from the OS abstraction. Currently,
only the HTTP Server service uses this API.
26 Operating System Abstraction API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com efs_createfile — Create (declare) a RAM Based File

2.6.1 Function Overview

The following functions are custom to this implementation, but can be ported:

efs_createfile() Create (declare) RAM based file
efs_createfilecb() Create (declare) RAM based file (with callback function)
efs_destroyfile() Destroy RAM based file

efs_getfilesize() Get the length of file data
efs_filecheck() Check the file type and authorization
efs_filesend() Send file contents directly to a socket

efs_loadfunction() Load executable file and return entry-point function

As previously mentioned, most of the API closely matches its standard C counterpart:

efs_fclose() Close file

efs_feof() Check for end of file
efs_fopen() Open file

efs_fread() Read from file

efs_fseek() Set file position

efs_ftell() Get file position

efs_fwrite() Write to file

efs_rewind() Reset file position to start of file

2.6.2 EFS Custom API Functions

efs_createfile Create (declare) a RAM Based File
Syntax void efs_createfile(char *name, INT32 length, UINT8 *pData);
Parameters
name Filename (maximum length of EFS_FILENAME_MAX)
length Length of file data
pData Pointer to file data
Return Value None.
Description This function creates an internal record of the RAM based file with the indicated

filename, file length, and data pointer. The file data is not copied, so the buffer must be
statically allocated. The filename is copied, so it does not need to be static.

A static buffer based system is more efficient for embedded systems because the data
must already be present in RAM or ROM. However, the efs_createfile() function could
easily be altered to use allocated buffers that are later freed when efs_destroyfile() is
called. These create and destroy functions are only called by the sample application
code, and thus the system programmer is free to alter the operation of these functions -
so long as they create files that are compatible with the rest of this API.

SPRU524H—-May 2001 -Revised February 2012 Operating System Abstraction API 27

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

efs_createfilecb — Create (declare) a RAM Based File with Callback

13 TEXAS
INSTRUMENTS

www.ti.com

efs_createfilech

Syntax

Parameters

name
length
pData
pcbFreeFun
FreeArg

Return Value

Description

efs_destroyfile

Syntax

Parameters

name

Return Value

Description

Create (declare) a RAM Based File with Callback

void efs_createfilecb(char *name, INT32 length, UINT8 *pData, EFSFUN pcbFreeFun,
UINT32 FreeArg);

Filename (maximum length of EFS_FILENAME_MAX)
Length of file data
Pointer to file data
Pointer to file data
Pointer to file data

None.

This is identical to efs_createfile(), except that is takes two additional arguments, a
pointer to a file free function, and a 32 bit argument. It is designed to be used in system
where the memory used for the file is allocated, and not static.

The EFS file system tracks the numbers of references to a particular file. When the
efs_destroyfile() function is called to destroy a file, the file is marked so that it can no
longer be opened, but open handles to the file remain valid until closed by their
respective application. The free function callback calls back to the file creator when the
last file handle to the file has been closed, allowing the creator to safely reclaim any
memory associated with the file. The argument FreeArg is used as a calling parameter
to the callback.

Destroy (remove declaration from) a RAM Based File

void efs_destroyfile(char *name);

Filename (maximum length of EFS_FILENAME_MAX)

None.

This function deletes the internal file record associating the filename with the static data
pointer as originally passed to efs_createfile().

A static buffer based system is more efficient for embedded systems because the data
must already be present in RAM or ROM. However, the efs_createfile() function could
easily be altered to use allocated buffers that are later freed when efs_destroyfile() is
called. These create and destroy functions are only called by the sample application
code, and thus the system programmer is free to alter the operation of these functions -
so long as they create files that are compatible with the rest of this API.

28 Operating System Abstraction API

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com efs_getfilesize — Get the Length of a File

efs_getfilesize Get the Length of a File

Syntax INT32 efs_getfilesize(EFS_FILE *stream);

Parameters

stream Pointer to open stream (file)

Return Value File size in bytes.

Description This function returns the length in bytes of the indicated file. The file must already have
been opened via a call to efs_fopen().

efs_filecheck Check the file type and authorization

Syntax int efs_filecheck(char *name, char *user, char *password, int *prealm);

Parameters

name Filename (NULL terminated string)
user Username (NULL terminated string)
password Password (NULL terminated string)
prealm Pointer to receive realm Index (if authentication fails)
Return Value An integer consisting of one or more of the following flags:
EFS_FC_NOTFOUND File not found
EFS FC_NOTALLOWED File cannot be accessed
EFS_FC_EXECUTE Filename represents a function call (CGl)
EFS_FC_AUTHFAILED File authentication failed (failing realm Index supplied)

Description This function is called by a file server (e.g., HTTP) on a particular flename (provided in
name), to retrieve the file type, and authenticate user access. The user credentials are
supplied in the user and password calling parameters.

The user and password arguments must always be valid pointers, but can be NULL
strings.

When user authentication fails, the Index of the failing authentication realm (1 to 4) is
written to the address supplied in prealm.

SPRU524H—-May 2001 -Revised February 2012 Operating System Abstraction API 29

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
efs_filesend — Send file contents directly to a socket www.ti.com
efs_filesend Send file contents directly to a socket
Syntax size t efs_filesend(EFS_FILE *stream, size_t size, SOCKET 5s);

Parameters
stream Pointer to open stream (file)
size Number of bytes to transfer from the file
s Socket onto which to send the file data

Return Value

Description

efs_loadfunction

Syntax

Parameters

name

Return Value

Description

Returns the number of bytes transferred, NULL on an error.

This function is called by a file server (e.g., HTTP) on a particular file stream (provided in
stream), to read data from the file and send it to socket s. Because EFS file systems are
typically RAM based, this custom function can send the file to socket s more efficiently
than an application that has to call efs_read() and then send().

The number of bytes to transfer is given by size. Transfer begins and the current file
pointer location, and the file pointer is advanced by this call.

Load Executable File and Return Entry-point

EFSFUN efs_loadfunction(char *name);

Filename (maximum length of EFS_FILENAME_MAX)

Pointer to executable function.

This function loads an executable file and returns a pointer to the entry-point function.
The type EFSFUN is declared as:

typedef void (*EFSFUN) ();

The application is really free to treat this function in whatever manner is required. This
executable file is created with a call to efs_createfile() where the pData parameter points
to a function that is already loaded in memory. This allows the HTTP server to call
services contained in CGl files.

A static buffer based system is more efficient for embedded systems because the data
must already be present in RAM or ROM. However, the HTTP can be made to work with
physical CGil files by porting this function to load CGI.

30 Operating System Abstraction API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

efs_fclose — Close File

2.6.3 EFS Standard API Functions

efs_fclose

Syntax

Parameters

stream

Return Value

Description

efs_feof

Syntax

Parameters

stream

Return Value

Description

efs_fopen

Syntax

Parameters

name
mode

Return Value

Description

Close File

int efs_fclose(EFS_FILE *stream);

Pointer to open stream (file)

Returns EOF if any errors occurred, and zero otherwise.

This function performs a logical close on an open file. It is functionally equivalent to
fclose().

Test for End of File

int efs_feof(EFS_FILE *stream);

Pointer to open stream (file)

Returns non-zero if EOF has been reached, and zero otherwise.

This function tests to see is the file position has reached the end of the file. It is
functionally equivalent to feof().

Open File

EFS_FILE *efs_fopen(char *name, char *mode);

Name of file to open
Desired mode of open file

Returns a stream pointer or NULL on error.

This function performs a logical open on the named file and returns a stream or NULL if

the attempt fails. It is functionally equivalent to fopen().

The mode parameter determines the mode for which the file is opened. In the embedded

file system version of this function, the list of supported modes is quite simple:
rb - open binary file for reading
The flags are still passed through to ensure compatibility with a full file system.

SPRU524H—-May 2001 -Revised February 2012

Operating System Abstraction API

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

31

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
efs_fread — Read from a File www.ti.com
efs_fread Read from a File
Syntax size t efs_fread(void *ptr, size_t size, size_t nobj, EFS_FILE *stream);

Parameters
ptr Pointer to data buffer to receive data
size Size in bytes of a read object
nobj Number of objects to read
stream Pointer to open stream (file)

Return Value

Description

efs_fseek

Syntax

Parameters

stream
offset
origin

Return Value

Description

efs_ftell

Syntax

Parameters

stream

Return Value

Returns the number of objects read.

This function reads from the indicated stream in the array ptr at most nobj objects of a
length specified by size. It returns the number of objects read; this may be less than the
number of objects requested. It is functionally equivalent to f read().

efs_feof() can be used to detect end of file.

Set File Position

INT32 efs_fseek(EFS_FILE *stream, INT32 offset, int origin);

Pointer to open stream (file)
Offset of desired new position
Base reference point for offset

Returns non-zero on error.

This function sets the file position of the indicated stream to that specified by offset from
a base reference point specified by origin. It is functionally equivalent to fseek().

The origin parameter can be set to one of the following:

» EFS_SEEK_SET - Position by offset from the beginning of the file
» EFS_SEEK_CUR - Position by offset from the current position

e EFS_SEEK_END - Position by offset from the end of the file

Get File Position

INT32 efs_ftell(EFS_FILE *stream);

Pointer to open stream (file)

Returns file position or -1 on error.

Description This function returns the current file position of the indicated stream. It is functionally
equivalent to ftell().
32 Operating System Abstraction API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

efs_fwrite — Write to a File

efs_fwrite
Syntax

Parameters

ptr
size
nobj
stream

Return Value

Description

efs_rewind

Syntax

Parameters

stream

Return Value

Description

Write to a File

size_t efs_fwrite(void *ptr, size_t size, size_t nobj, EFS_FILE *stream);

Pointer to data buffer to receive data
Size in bytes of a read object
Number of objects to read

Pointer to open stream (file)

Returns the number of objects written (0).

This function writes to the indicated stream from the array ptr, up to nobj objects of a
length specified by size. It returns the number of objects written; this may be less than
the number of objects requested on an error. It is functionally equivalent to fwrite().

Nothing in the stack package requires write capability, thus this function always returns
zero.

Reset File Position to Start of File

void efs_rewind(EFS_FILE *stream);

Pointer to open stream (file)

None.

This sets the position of the indicated stream to zero, and clears any current error.
(Errors are not tracked in this implementation.)

2.7 Interrupt Management Support

The Interrupt Manager defines the APIs and data structures required to configure and manage interrupts
in a generic way. This wrapper hides the OS specific implementation details of interrupt management by
providing a unified API to do the same.

The NDK interrupt manager implementation provided in NDK uses SYS/BIOS as its underlying OS. It uses
SYS/BIOS Hwi and EventCombiner module APIs in turn to configure the interrupts.

Depending on the system, there could be multiple or just a single system event defined for the peripheral
events. Based on the same, one could register a single interrupt and interrupt service routine (ISR) for
their module’s events or register separate ones for each of the events. If two or more system events are
mapped to the same interrupt number, then they are termed as combined interrupts and are handled
separately by the interrupt manager.

SPRU524H—-May 2001 -Revised February 2012

Operating System Abstraction API 33

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Interrupt Management Support www.ti.com

2.7.1 Configuration Structure

The NDK driver or application that wishes to configure interrupts would need to use the following
"IntSetup” structure to pass the interrupt configuration information to the Interrupt manager module. All the
APIs exported by this module reference this structure to retrieve interrupt configuration info.

| **

* @rief

* The structure describes the interrupt setup object defined by
* the interrupt managenent w apper in OS Abstraction Layer.

* @etails * This structure can be used by a driver/such in setting up
* interrupts using the underlying OS (BIOS) constructs wi thout

* having to know the details of the OS specific calls. Al calls

* to the interrupt managenent wrapper require a handle to

* the structure described bel ow

*/

typedef struct _IntSetup

{

| **

* @ri

*

*/
uint8

/**

* @ri

Uint8

voi d

| **

* @ri

*/
voi d*

*/
Uint8

} I ntSetup;

ef

ef

ef

i ef

ef

i ef

HW bj ect nunber to use for setting up this
system event. The valid values for this range
between 4 - 15 (both inclusive).

i nt Vect | d;

System Event nunber (s) for which the
interrupts need to be setup. The valid val ues
for this range between 4 - 127 (both inclusive).

sysEvt | d[MAX_NUM SYSEVENTS] ;

Nunber of system events that need to be napped
to a given interrupt nunber and be serviced by
a specified Interrupt Service Routine (ISR).
Valid values for this range between 1 - 128.

sysEvt Count ;

The cal | back function to be triggered when the
interrupt occurs, i.e. the ISR This should not be
set to NULL for a successful interrupt setup.

(*pCal | backFxn) (voi d* pCal | backArg);

The argunents that need to be passed to the ISR
Can be NULL.

pCal | backAr g;

Flag to indicate whether to enabl e/ disable the
interrupt by default. This flag is valid only
when setting up conbined interrupts, i.e.,

mul ti ple systemevents mapped to a single
interrupt nunber.

bEnabl e;

34

Operating System Abstraction API

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

intVectld — The interrupt number to use for this interrupt.

The structure entries are defined as follows:

intVectld

Description

sysEvtld

Description

sysEvtCount

Description

pCallbackFxn

Description

pCallbackArg

Description

bEnable

Description

The interrupt number to use for this interrupt.

The interrupt number to use for this system event. The range of valid values is
hardware-dependent. For example, for C6000 targets, the intVectld can range from 4-14.

Array of system event numbers that map to the given interrupt vector.

One or more of the 128 system events can be mapped to a single interrupt line in the
system. This array holds all the system events that are mapped to the specified interrupt
vector number. The valid values for the system event numbers that can be specified in
this array are 4 — 127 (both inclusive). The system events 0 -3 are used by the
EventCombiner module in setting up combined interrupts and hence cannot be used by
an application for individual masked interrupts.

Number of system events configured in the sysEvtld array.

Number of system events that are configured in the sysEvtld array and are to be
mapped to the interrupt vector number specified in this structure.

Handle to the ISR that needs to be invoked when this interrupt occurs.

This holds a pointer to the user specified callback function or ISR that needs to be
invoked when the specified interrupts occurs in the system. This should be set to a non
NULL value for a successful interrupt setup.

Arguments that need to be passed back to the ISR.

Any arguments that need to be passed back to the ISR as a part of its context can be
specified here. This can be omitted or set to NULL if no context information needs to be
passed back to ISR when the interrupt occurs.

Flag to enable or disable the interrupt by default.

This flag is valid only while setting up combined interrupts, i.e., one or more system
events mapped to a single SYS/BIOS interrupt number. This indicates whether the
configured interrupt is to be enabled or disabled by default when added to the system.

2.7.2 Function Overview

The interrupt configuration functions exported by the manager are as follows:

Interrupt_add Configure a new interrupt in the system using the underlying OS constructs

(SYS/BIOS).

Remove a previously configured interrupt
Enable the interrupt and make it active
Disable the interrupt in the system

Interrupt_delete
Interrupt_enable
Interrupt_disable

SPRU524H—-May 2001 -Revised February 2012
Submit Documentation Feedback

Operating System Abstraction API 35

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Interrupt_add — Configure a new interrupt in the system.

13 TEXAS
INSTRUMENTS

www.ti.com

2.7.3
Interrupt_add

Syntax

Parameters
myIntSetup

Return Value

Description

Interrupt_delete

Syntax

Parameters
mylIntSetup

Return Value

Description

Interrupt_enable

Syntax

Parameters

myIntSetup

Return Value

Description

Interrupt Manager API Overview

Configure a new interrupt in the system.

Uint32 Interrupt_add(IntSetup* mylntSetup);

Handle to the interrupt setup structure configured by the driver or application.

Returns 0 on success and 1 on error.

This function validates the interrupt configuration parameters passed by the
application/driver and sets up the interrupt using the underlying OS interrupt
management constructs (SYS/BIOS’s Hwi and EventCombiner module constructs here).
It enables/disables the interrupt too based on the input for combined interrupts.

Removes a previously configured interrupt.

Uint32 Interrupt_delete(IntSetup* mylntSetup);

Handle to the interrupt setup structure configured by the driver or application.

Always returns 0.

This function can be used to implement the logic required to remove any previously
configured interrupts in the system. SYS/BIOS does not define any constructs to remove
interrupts. Hence, this function is currently a placeholder and does nothing. It always
returns success.

Enables the interrupt (applicable to only combined interrupts).

int32 Interrupt_enable(IntSetup* mylntSetup);

Handle to the interrupt setup structure configured by the driver or application.

Returns 1 on error and O on success.

This function validates the input parameters and enables the interrupts using SYS/BIOS
APIs. This function is only applicable for combined interrupts, i.e., interrupts where
multiple system events are mapped to a single interrupt.

36 Operating System Abstraction API

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

Interrupt_disable — Disables the interrupt (applicable to only combined interrupts).

Interrupt_disable

Syntax

Parameters

mylIntSetup

Return Value

Description

Disables the interrupt (applicable to only combined interrupts).

Uint32 Interrupt_disable(IntSetup* myIntSetup);

Handle to the interrupt setup structure configured by the driver or application.

Returns 1 on error and 0 on success.

This function validates the input parameters and disables the interrupts using SYS/BIOS
APIs. it is only applicable for combined interrupts, i.e., interrupts where multiple system
events are mapped to a single interrupt.

For an illustration of the interrupt configuration using Interrupt Manager APIs for any C64x+ devices, see
the sample Ethernet driver code packaged in the NDK Support Package (NSP) for your target. The
Embedded Software Download Page provides links to download the NSP. The Embedded Software
Download Page provides a link to download the NSP for the OMAP-L138. Other NSPs are provided as
part of the SDK for that development platform.

SPRU524H—-May 2001 -Revised February 2012 Operating System Abstraction API 37
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/index.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS

Chapter 3

Sockets and Stream 10 API

This chapter describes the socket and file API functions.

Topic

3.1
3.2
3.3
3.4
3.5
3.6

Page

File Descriptor ENVIFONMENT ...ttt ettt e e et et s s e et e e s e e e e ananenes 39
File Descriptor Programming INterfacecoeiiieiiiiiiiiiiiie e et eee 40
Sockets Programming INtErfacecociiiiiiiiniiiii e e e 49
Raw Ethernet Sockets Programming INterfacecocoviviiiiiiiiiiiiiiieeeeeeeann 69
Full Duplex Pipes Programming INterfacec.cocoeoiiiiiniiiiiiiiieieiiieeeeeeeeen 76
Internet Group Management ProtoCol (IGMP) ..o eeeaea e 77

38 Sockets and Stream 10 API

Copyright © 2001-2012, Texas Instruments Incorporated

SPRU524H—May 2001 —-Revised February 2012

SPRU524H—-May 2001-Revised February 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

TEXAS

INSTRUMENTS

www.ti.com File Descriptor Environment

3.1

3.11

3.1.2

File Descriptor Environment

In most embedded operating system environments, support for file descriptors varies greatly. In most
cases, only the bare minimum functionality is provided, and trimmed down support functions are provided
using the common reserved names (read(), write(), close(), etc.).

As this stack supports the standard sockets interface functions, and these functions require file descriptor
support, the stack provides its own small file system. This section describes the basic mechanics of the
file system.

Organization

The basic building block of the stack code internally is an object handle. Internally to the stack, both
sockets and pipes are addressed by object handles. However, at the application level, sockets and pipes
are treated as file descriptors. The file descriptor contains additional state information allowing tasks to be
blocked and unblocked based on socket activity.

The stack API supports the use of file descriptors by adding a file descriptor layer of abstraction to the
native operating environment. This layer implements the standard sockets and file IO functions. The stack
works by associating a file descriptor session with each caller's thread (or in this terminology, task). In this
system, each task has its own file descriptor session. The file descriptor session is used when the task
needs to block pending network activity.

Note that although file descriptors can be used in classic functions like select(), in this implementation,
they are still handles, not integers. For compatibility, network applications must use the NDK header files,
and use INVALID_SOCKET for an error condition (not -1), and refrain from comparing sockets as <0 when
checking for validity.

Initializing the File System Environment

To use the file system and socket functions provided by the stack, a task must first allocate a file
descriptor table (called a file descriptor session). This is accomplished at the application layer by calling
the file descriptor function fdOpenSession().

When the task is finished using the file descriptor API, or when it is about to terminate, the function
fdCloseSession() is called.

3.1.2.1 When to Initialize the File Descriptor Environment

For correct stack operation, a task thread must open a file descriptor session before calling any file
descriptor related functions, and then close it when it is done.

The simplest way to handle the session is for the task to open a file session when it starts, and close the
session when it completes. For example:

Socket Task:

voi d socket _task(int |IPAddr, int TcpPort)

{
SOCKET s;

/1l Qpen the file session
f dOpenSessi on(TaskSel f());

< socket application code >

/1 Cose the file session
f dd oseSessi on(TaskSel f());

}

A second option is for the task that creates the socket task thread to open the file descriptor session for
the child thread. Note that the parent task must guarantee that the child task's file session is open before
the child task executes. This is done via task priority or semaphore, but can complicate task creation.
Therefore, it is not the ideal approach.

SPRU524H-May 2001 —-Revised February 2012 Sockets and Stream 10 API 39
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

File Descriptor Programming Interface www.ti.com

A third, more common, option is to allow a child task to open its own file session, but allow the parent task
to monitor its children and eventually destroy them. Here, the parent task must close the file session of the
child task threads it destroys. The child task then blocks when finished instead of terminating its own
thread. The following example illustrates this concept:

Child Socket Task:

voi d chil d_socket_task(int |IPAddr, int TcpPort)

{
SOCKET s;

/1l Qpen the file session
f dOpenSessi on(TaskSel f());

< socket application code >

/1l W are done, but our parent thread will close
/1 our file session and destroy this task, so here
/1 we just block.

TaskBl ock(TaskSel f());

}
The parent task functions would look as follows:

Parent Task Functions:
voi d create_chil d_task()

{

/] Create System Tasks

/1 Create a child task

hChi | dTask = TaskCreat e(&chil d_socket _task, ?);
}

voi d destroy_child_task()

{
/1 First close the child's file session
/1 (This will close all open files)
f dSessi onCl ose(hChi | dTask) ;

/1 Then destroy the task
TaskDest roy(hChi |l dTask) ;

3.2 File Descriptor Programming Interface
The purpose of supporting a file system is to support the sockets API. Unfortunately, the sockets APl is
not a complete 10 API, as it was originally designed to integrate into the Unix file system. Thus, several
file descriptor functions that are important for application programming are not really socket calls at all.
The stack library supports a handful of what are normally considered file functions, so that sockets
applications can be programmed in a more traditional sense. So that these functions will not conflict with
any other file functions in the system, their names have been altered slightly from the standard definitions.
3.2.1 Function Overview
The stream 10 object can take two forms. In the vast majority of cases, it will be in the form of a local file
descriptor. The following functions can operate on file descriptors:
fdOpenSession() Open file descriptor support session
fdCloseSession() Close file descriptor support session
fdClose() Flush stream and close file descriptor (same as standard close())
fdError() Return last error value (same as standard error)
fdPoll() Wait on a list of file descriptor events (same as standard poll())
fdSelect() Wait on one or more file events (same as standard select())
40 Sockets and Stream 10 API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

fdOpenSession — Open File Descriptor Session

fdSelectAbort()

fdStatus()
fdShare()

Aborts calls to fdSelect() and fdPoll() with forced timeout condition
Get the current status of a file descriptor (similar to ioctl/FIONREAD)
Add a reference count to a file descriptor

The fdSelect() function uses file descriptor sets to specify which file descriptors are being checked for
activity and which have activity detected. There is a small set of MACRO functions for manipulating file
descriptor sets. These include the following:

FD_SET()
FD_CLR()

FD_ISSET()

FD_COPY()
FD_ZERO()
3.2.2
fdOpenSession

Syntax

Parameters

hTask

Return Value

Description

fdCloseSession

Syntax

Parameters

hTask

Return Value

Description

Add a file descriptor to a file descriptor set

Remove a file descriptor from a file descriptor set

Test to see if a file descriptor is included in a file descriptor set
Copy a file descriptor set

Clear (initialize) a file descriptor set

File Descriptor API Functions

Open File Descriptor Session

int fdOpenSession(HANDLE hTask);

Task Thread Handle

1 on success or 0 on error. An error return indicates that a session is already open for
the specified task, or that a memory allocation error has occurred.

This function opens a file descriptor session on a task thread so that the task can begin
using file descriptor and other stream 10 functions.

A task thread normally calls fdOpenSession() when it is first created, and
fdCloseSession() before it exits. Use of these functions was described in more detail in
the previous section.

Close File Descriptor Session

void fdCloseSession(HANDLE hTask);

Task Thread Handle

None.

This function closes a file descriptor session that was previously opened with
fdOpenSession(). When called, any remaining open file descriptors are closed.

A task thread normally calls fdOpenSession() when it is first created, and
fdCloseSession() before it exits. Use of these functions was described in more detail in
the previous section.

SPRU524H—-May 2001 -Revised February 2012

Sockets and Stream 10 API 41

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
fdClose — Close File Descriptor www.ti.com
fdClose Close File Descriptor
Syntax int fdClose(HANDLE fd);

Parameters
fd File Descriptor to close (compatible with type SOCKET)

Return Value

0 on success or -1 on error. When an error occurs, the error type can be obtained by
calling fdError() (error is also equal to this function).

Description This function closes the indicated file descriptor.

fdError Get the Last File Error

Syntax int fdError();

Description This function returns the last file error that occurred on the current task. In the
SERRNO.H header file, error is equal to this function.

NOTE: The error code returned via fdError() is stored in the file descriptor
session associated with a task. If a task calls a file or socket function
before it opens a file descriptor session, an error condition results.
However, no error code can be stored for retrieval by fdError() because
the file descriptor session does not exist to hold it.

42 Sockets and Stream 10 API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

fdPoll — Wait on a List of File Descriptor Events

fdPoll

Syntax

Parameters

items
itement
timeout

Return Value

Wait on a List of File Descriptor Events

int fdPoll(FDPOLLITEM items, uint itemcnt, INT32 timeout);

Pointer to a list of descriptor events of type FDPOLLITEM
Number of entries in items list
Function timeout in milliseconds

Returns the number of file descriptors in the items list for which the eventsDetected field
iS non-zero.

Returns SOCKET_ERROR if the caller has not opened a file descriptor session (with
fdOpenSession()).

Returns zero (0) under any of the following conditions:

* No detected flags and time out has occurred

* No detected flags and a fdSelectAbort() was issued

* No detected flags and an internal resource allocation failed

Description The fdPoll() function is a more efficient alternative to the fdSelect() function. It polls the
supplied list of sockets, with a timeout specified in milliseconds (or POLLINFTIM for
infinite timeout). It has the advantage over fdSelect() because the original list of file
descriptors (or sockets) to be examined is not overwritten by the results, and thus can be
used multiple times without reconstruction.

The list of file descriptors to check is provided in the items array. The array is of type
FDPOLLITEM, which is defined as follows:
typedef struct _fdpollitem {

HANDLE fd;

U NT16 event sRequest ed;

Ul NT16 event sDet ect ed;
} FDPOLLI TEM
The FDPOLLITEM entry contains a file descriptor (or socket) to check, a set of flags for
requested events that is initialized by the application, and a set of resulting flags for a
detected event that is initialized by the fdPoll() function.
The entry fd is the file descriptor to check. If fd is set to INVALID_SOCKET, or the
eventsRequested field is NULL, the item entry is ignored. However, the eventsDetected
field is still reset to zero.
The same file descriptor should not appear twice in the list, instead the event flags
should be combined on a single entry. (Duplicate descriptors will not cause an error, but
will increase system load.)
Valid flags for eventsRequested are one or more of the following:
* POLLIN - Socket readable (or read error pending)
* POLLOUT - Socket writable (or send error pending)
* POLLPRI - Socket OOB readable (or error pending)
» POLLNVAL - Socket or request type invalid
Valid flags for eventsDetected are the same as above, where all detected conditions are
indicated. (Note that POLLNVAL can be set whether or not it was requested in
eventsRequested.)

SPRU524H—-May 2001 -Revised February 2012 Sockets and Stream 10 API 43

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
fdSelect — Wait on one or multiple File Events www.ti.com
fdSelect Wait on one or multiple File Events
Syntax int fdSelect(int maxfd, fd_set *readset, fd_set *writeset, fd_set *exceptset, struct timeval

*timeout);
Parameters
maxfd Ignored
readset Set of file descriptors to check for reading
writeset Set of file descriptors to check for writing
exceptset Set of file descriptors to check for exceptional conditions (OOB data)
timeout Pointer to timeval structure of time to wait (or NULL)

Return Value

Description

Returns a positive count of ready descriptors (combined from all three possible sets), 0
on timeout, or -1 on error. When an error occurs, the error type can be obtained by
calling fdError().

This function allows the task to instruct the stack to wait for any one of multiple events to
occur and to wake up the process only when one of more of these events occurs or
when a specified amount of time has passed.

The definition of the timeval structure is:

struct tineval {
I NT32 tv_sec;
I NT32 tv_usec;

H
Passing in a NULL pointer for timeout specifies an infinite wait period. Passing a valid

pointer to a timeval structure with both tv_sec and tv_usec set to zero specifies that the
function should not block.

NOTE: This function is less efficient than fpPoll(). In fact, the fdSelect() function
calls fdPoll() after rearranging the descriptor sets into a fdPoll() descriptor
list.

44 Sockets and Stream 10 API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

fdSelectAbort — Terminate a Previous Call to fdSelect() or fdPoll()

fdSelectAbort

Syntax

Parameters

hTask

Return Value

Description

Terminate a Previous Call to fdSelect() or fdPoll()

void fdSelectAbort(HANDLE hTask);

Handle to the task thread that is blocked in fdSelect() or fdPoll()

None.

This function aborts a call to fdSelect() or fdPoll() on the specified target thread by
simulating a timeout condition (even when no timeout was originally specified). It can be
used to wake a thread using a different method than socket or pipe activity. It is useful in
callback functions where the handle to the target task thread is known, but where socket
calls cannot be easily used.

The return value from the fdSelect() or fdPoll() function called on the target thread is still
valid. In other words, if there is pending file descriptor activity, it will still be returned to
the caller. However, if the target task thread is blocked in fdSelect() or fdPoll() at the time
of the call, the most likely return value is zero for no activity.

If the target thread is not currently pending on a call to fdSelect() or fdPoll(), any
subsequent call will be affected. Thus, the target thread is guaranteed to see the abort
(although it may be accompanied by actual socket activity). So there is no race condition
on calling fdSelectAbort() immediately prior to the target task thread calling fdSelect() or
fdPoll().

SPRU524H—-May 2001 -Revised February 2012 Sockets and Stream 10 API 45
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
fdStatus — Get the Current Status of a File Descriptor www.ti.com
fdStatus Get the Current Status of a File Descriptor
Syntax int fdStatus(HANDLE fd, int request, int *results);

Parameters
fd File descriptor (socket or pipe) to check
request Status request type.
hTask Pointer to where status results are written

Return Value

Description

0 on success or -1 on error. When an error occurs, the error type can be obtained by
calling fdError() (errno is also equal to this function).

This function reads current status information about the file descriptor. The descriptor
can be either a socket or a pipe object. The following describes the value written to
results for the various request types and descriptor types:

e request = FDSTATUS_TYPE;

The results pointer is written with the file descriptor type. It will be one of the following
values:

— FDSTATUS_TYPE_SOCKET - The file descriptor is a socket.
— FDSTATUS_TYPE_PIPE - The file descriptor is a pipe.
* request = FDSTATUS_RECV;
On listening sockets, the results pointer is written with:
— -1 - There is an error pending on the socket.
— 0 - There are no connections ready to be accepted.
— 1-There is at least one connection ready to be accepted.
On data sockets, the results pointer is written with:
— -1 - There is an error pending, or a call to recv() will result in an error.

NOTE: On a TCP socket, this return value can also indicate that the peer
connection has been closed and all available data has been read. In
this case, a subsequent call to recv() will return NULL, not error.

— <0to n> - The number of bytes that can be read using recv() without blocking.
e request = FDSTATUS_SEND;
On listening sockets, the results pointer is written with:
— -1 - Alistening socket can never be written.
On TCP (non-ATOMIC) data sockets, the results pointer is written with:
— -1- There is an error pending, or a call to send() will result in an error.
— <0to n> - The number of bytes that can be written using send() without blocking.
On UDP/RAW (ATOMIC) data sockets, the results pointer is written with:
— -1 - There is an error pending, or a call to send() will result in an error.

— <0 to n> - The maximum number of bytes that can be written using a single
send() call.

46 Sockets and Stream 10 API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

fdShare — Add a Reference Count to a File Descriptor

fdShare

Syntax

Parameters

fd

Return Value

Description

Add a Reference Count to a File Descriptor

int fdShare(HANDLE fd);

File descriptor to share (compatible with type SOCKET)

Returns zero on success or -1 on error.

This is an optional function for applications that use descriptor sharing. It increments a
reference count on the target descriptor, which is then decremented when the
application calls fdClose(). It allows the descriptor to be shared among multiple tasks,
each calling fdClose() when they are done, and the file descriptor is only closed by the
final call. (Note that file descriptors are created with a reference call of 1, meaning that
the first call to fdClose() will close the descriptor.)

For example, fdShare() is useful in a case where Task A opens a session and calls
recv() in a loop on a socket. Task B has a loop that calls send() on the same socket. The
call to send() from Task B will fail and then fdError() will return -1 if you do not call
fdOpenSession() and then fdShare() from the second Task after the first Task has
opened the socket.

For an example that calls fdShare(), see the contest.c file in the
<NDK_INSTALL_DIR>\packages\ti\ndk\tools\console directory.

3.2.3 File Descriptor Set (fd_set) Macros

FD_SET

Syntax

Parameters

fd
pFdSet

Return Value

Add a File Descriptor to a File Descriptor Set

void FD_SET(HANDLE fd, fd_set *pFdSet);
File descriptor to add (compatible with type SOCKET)
Pointer to fd_set data type

Should be treated as a void function. The true return value is dependent on the
implementation of the macro.

Description This function adds a file descriptor to a file descriptor set, typically before using the set in
a call to fdSelect(). Note that after declaring a fd_set data type, it should be initialized
using FD_ZERO() before attempting to set individual file descriptors.

SPRU524H—-May 2001 -Revised February 2012 Sockets and Stream 10 API 47

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

FD_CLR — Remove a File Descriptor From a File Descriptor Set

13 TEXAS
INSTRUMENTS

www.ti.com

FD_CLR

Syntax

Parameters

fd
pFdSet

Return Value

Description

FD_ISSET

Syntax

Parameters

fd
pFdSet

Return Value

Description

FD_COPY

Syntax

Parameters

pFdSetSRC
pFdSetDST

Return Value

Description

Remove a File Descriptor From a File Descriptor Set

void FD_CLR(HANDLE fd, fd_set *pFdSet);

File descriptor to remove
Pointer to fd_set data type

Should be treated as a void function. The true return value is dependent on the
implementation of the macro.

This function removes a file descriptor from a file descriptor set, typically after the file
descriptor has been processed in a loop that continuously checks a file descriptor set.

Test to See if a File Descriptor is Included in a File Descriptor Set

void FD_ISSET(HANDLE fd, fd_set *pFdSet);

File descriptor to check (compatible with type SOCKET)
Pointer to fd_set data type

Returns an int value that should be treated as a TRUE/FALSE condition.
This function returns TRUE if the supplied file descriptor is contained in the indicated file

descriptor set. This function is typically called after a call to fdSelect() to determine on
what file descriptors select has detected activity.

Copy a File Descriptor Set

void FD_COPY(fd_set *pFdSetSRC, fd_set *pFdSetDST);

Pointer to fd_set to copy
Pointer to fd_set to write copied data

None.

This function is called to make a copy of a file descriptor set. This is typically done if a
set needs to be modified, but this original information needs to be maintained.

48 Sockets and Stream 10 API

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS

www.ti.com FD_ZERO — Clear (Initialize) a File Descriptor Set
FD_ZERO Clear (Initialize) a File Descriptor Set
Syntax void FD_ZERO(fd_set *pFdSet);
Parameters

pFdSet Pointer to fd_set to initialize
Return Value None.
Description This function is called to clear all bits in a file descriptor set. This should be the first call

3.3

3.3.1

made on a newly declared fd_set variable.

Sockets Programming Interface

The socket function API supported by the stack library is consistent with the standard Berkeley sockets
API. No parameter adjustments are required. This section only covers the IPv4 (AF_INET) family Sockets.
For details on IPv6 sockets, see Appendix F of this document. Similarly, for details on Raw Ethernet
Sockets, see Section A.17 of this document.

Two new types are defined for the socket function declarations:

typedef struct sockaddr SA;
typedef struct sockaddr *PSA;

Enhanced No-Copy Socket Operation

Any performance of any data stream operation suffers when data copies are performed. Although the
stack software is designed to use a minimum number of data copies, memory efficiency and API
compatibility sometimes require the use of data copy operations.

By default, neither UDP nor RAW sockets use send or receive buffers. However, the sockets API
functions recv() and recvfrom() require a data buffer copy because of how the calling parameters to the
functions are defined. In the stack library, two alternative functions (recvnc()and recvncfrom()) are
provided to allow an application to get received data buffers directly without a copy operation. When the
application is finished with these buffers, it returns them to the system via a call to recvncfree().

By default, TCP uses both a send and receive buffer. The send buffer is used because the TCP protocol
can require reshaping or retransmission of data due to window sizes, lost packets, etc. On receive, the
standard TCP socket also has a receive buffer. This coalesces TCP data received from packet buffers.
Coalescing data is important for protocols that transmit data in very small bursts (like a telnet session).

For TCP applications that get data in large bursts (and tend not to use flags like MSG_WAITALL on
receive), the receive buffer can be eliminated by specifying an alternate TCP stream type of
SOCK_STREAMNC (see socket()). Without the receive buffer, there is at least one less data copy
because TCP will queue up the actual network packets containing receive data instead of copying it into a
receive buffer.

Care needs to be taken when eliminating the TCP receive buffer. Here large amounts of packet buffers
can be tied up for a small amount of data. Also, because packet buffers come from the HAL, there may be
a limited supply available. If the MSG_WAITALL flag is used on a recv() or recvfrom() call, it is possible for
all packet buffers to be consumed before the specified amount of payload data is received. This would
cause a deadlock situation if no socket timeout is specified.

Although TCP sockets that use the SOCK_STREAMNC stream type are 100% compatible with the
standard TCP socket type, they can also be used with the recvnc() and recvncfrom() functions that UDP
and RAW sockets use to eliminate the final data copy from the stack to the sockets application. Using the
no copy functions with SOCK_STREAMNC eliminates two data copies from the standard TCP socket.
Note that when recvnc() and recvncfrom() are used with TCP, out of band data is not supported. If the
SO_OOBINLINE socket option is set, the out of band data is retained, but the out of band data mark is
discarded. If not using the inline socket option, the out of band data is discarded.

SPRU524H—-May 2001 -Revised February 2012 Sockets and Stream 10 API 49
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Sockets Programming Interface

TEXAS

INSTRUMENTS

www.ti.com

3.3.2 Function Overview

accept()

bind()
connect()
getpeername()
getsockname()
getsockopt()
listen()

recv()
recvfrom()
send()
sendto()
setsockopt()
shutdown()
socket()
socketpair()

recvnc()
recvncfree()
recvncfrom()

The standard socket access functions are as follows:

Accept a connection on a socket

Bind a name to a socket

Initiate a connection on a socket

Return name (address) of connected peer
Return the local name (address) of the socket
Get the value of a socket option

Listen for connection requests on a socket
Receive data from a socket

Receive data from a socket with the senders name (address)

Send data to a connected socket

Send data to a specified destination on an unconnected socket

Set the value of a socket option
Close one half of a socket connection
Create a socket

Create socket pair (redundant; see Section 3.5, Full Duplex Pipes

Programming Interface

The enhanced socket functions are as follows:

Receive no-copy data from a socket

Free buffer obtained from recvnc() or recvncfrom()

Receive no-copy data from a socket with the senders name (address)

50

Sockets and Stream 10 API

SPRU524H—-May 2001-Revised February 2012

Copyright © 2001-2012, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com accept — Accept a Connection on a Socket
3.3.3 Sockets API Functions

accept Accept a Connection on a Socket
Syntax SOCKET accept(SOCKET s, PSA pName, int *plen);
Parameters
S Socket
pName Name (address) of connected peer
plen Pointer to size of pName
Return Value If it succeeds, the function returns a non-negative integer that is a descriptor for the

accepted socket. Otherwise, a value of INVALID_SOCKET is returned and the function
fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ECONNABORTED Listening socket has been shut down for read operations.
EMFILE The file descriptor table is full.
ENOMEM Memory allocation error.
ENOTSOCK The descriptor does not reference a socket.
EINVAL listen() has not been called on the socket or name arguments are invalid.
EWOULDBLOCK Socket is marked non-blocking and no connections are ready
Description The argument s is a socket that has been created with the socket() function, bound to an

address with bind(), and is listening for connections after a listen(). The accept() function
extracts the first connection request on the queue of pending connections, creates a new
socket with the same properties of socket s and allocates a new file descriptor for the
socket. If no pending connections are present on the queue, and the socket is not
marked as non-blocking, accept blocks the caller until a connection is present. If the
socket is marked non-blocking and no pending connections are present on the queue,
accept returns an error as described above.

The accepted socket may not be used to accept more connections. The original socket s
remains open.

The argument pName is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

This call is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select (fdSelect()) a socket for the purposes of doing an accept by
selecting it for read.

SPRU524H—-May 2001 -Revised February 2012 Sockets and Stream 10 API 51

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

bind — Bind a Name (Address) to a Socket

13 TEXAS
INSTRUMENTS

www.ti.com

bind
Syntax

Parameters

S
pName
len

Return Value

EBADF
ENOTSOCK
EINVAL

EADDRNOTAVAIL

EADDRINUSE

Description

connect

Syntax

Parameters

S
pName
len

Return Value

Bind a Name (Address) to a Socket

int bind(SOCKET s, PSA pName, int len);

Socket
Name (address) of desired local address
Size of pName

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

The file descriptor (socket) is invalid.

The descriptor does not reference a socket.

Name arguments are invalid.

The specified address is not available from the local machine.
The specified address is already in use.

The bind() function assigns a name to an unnamed socket. When a socket is created
with socket() it exists in a name space (address family) but has no name assigned. The
bind() function requests that name be assigned to the socket.

The argument s is a socket that has been created with the socket() function. The
argument pName is a structure of type sockaddr that contains the desired local address.
The len parameter contains the size of pName, which is sizeof(struct sockaddr).

Initiate a Connection on a Socket

int connect(SOCKET s, PSA pName, int len);

Socket
Name (address) of desired peer
Size of pName

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the local machine.
EALREADY A connection request is already pending on this socket.

EBADF The file descriptor (socket) is invalid.

ECONNREFUSED The attempt to connect was forcefully rejected.
EHOSTUNREACH The host is not reachable.

EINPROGRESS The request was accepted and is pending (non-blocking sockets).
EINVAL Name arguments are invalid.

EISCONN The socket is already connected.

ENOTSOCK The file descriptor does not reference a socket.

ENOTSUPP Socket is in the listening state and cannot be connected.
ETIMEDOUT Connection establishment timed out without establishing a connection.

52 Sockets and Stream 10 API

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

getpeername — Get Name (Address) of Connected Peer

Description

getpeername

Syntax
Parameters
S

pName
plen

Return Value

EBADF
ENOTSOCK
EINVAL
ENOTCONN

Description

The connect() function establishes a logical (and potentially physical) connection from
the socket specified by s to the foreign name (address) specified by pName.

If sock is of type SOCK_DGRAM, this call specifies the peer address with which the
socket is to be associated; this address is that to which datagrams are to be sent, and
the only address from which datagrams are to be received. If the socket is of type
SOCK_STREAM, the function attempts to make a connection to another socket.

The argument s is a socket that has been created with the socket() function. The
argument pName is a structure of type sockaddr that contains the desired foreign
address. The len parameter contains the size of pName, which is sizeof(struct
sockaddr).

Stream sockets may connect only once; while datagram sockets may re-connect multiple
times to change their association. The connection may be dissolved by attempting to
connect to an illegal address (for example, NULL IP address and Port). Datagram
sockets that require multiple connections may consider using the recvfrom() and sendto()
functions instead of connect().

It is possible to select (fdSelect()) a socket for the purposes of doing a connect by
selecting it for writing.

Get Name (Address) of Connected Peer

int getpeername(SOCKET s, PSA pName, int *plen);

Socket
Name (address) of connected peer
Pointer to size of pName

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

The file descriptor (socket) is invalid.

The file descriptor does not reference a socket.
Name arguments are invalid.

The socket is not connected.

The getpeername() function returns the name (address) of the connected peer.

The argument pName is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

SPRU524H—-May 2001 -Revised February 2012

Sockets and Stream 10 API 53

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
getsockname — Get the Local Name (Address) of the Socket www.ti.com
getsockname Get the Local Name (Address) of the Socket
Syntax int getsockname(SOCKET s, PSA pName, int *plen);

Parameters
S Socket
pName Name (address) of connected peer
plen Pointer to size of pName

Return Value

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.
EINVAL Name arguments are invalid.
Description The getsockname() function returns the local name (address) of the socket.
The argument pName is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.
54 Sockets and Stream 10 API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

getsockopt — Get the Value of a Socket Option Parameter

getsockopt

Syntax

Parameters

S
level

op

pbuf
pbufsize

Return Value

EBADF
ENOTSOCK
EINVAL

Description

Get the Value of a Socket Option Parameter

int getsockopt(SOCKET s, int level, int op, void *pbuf, int *pbufsize);

Socket

Option level (SOL_SOCKET, IPPROTO_IP, IPPROTO_TCP)
Socket option to get

Pointer to memory buffer

Pointer to size of memory buffer

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

The file descriptor (socket) is invalid.
The file descriptor does not reference a socket.
Buffer arguments are invalid.

The getsockopt() function returns the options associated with a socket. Options may
exist at multiple protocol levels; they are always present at the uppermost socket level.

When manipulating socket options, the level at which the option resides and the name of
the option must be specified. To manipulate options at the socket level, level is specified
as SOL_SOCKET. To manipulate options at any other level, the protocol number of the
appropriate protocol controlling the option is supplied. In this implementation, only
SOL_SOCKET, IPPROTO_IP, and IPPROTO_TCP are supported.

The parameters pbuf and pbufsize identify a buffer in which the value for the requested

option(s) are to be returned. pbufsize is a value-result parameter, initially containing the

size of the buffer pointed to by pbuf, and modified on return to indicate the actual size of
the value returned.

Most socket-level options utilize an int parameter for pbuf. SO_LINGER uses a struct
linger parameter, defined in INC\SOCKET.H, which specifies the desired state of the
option and the linger interval (see below). SO_SNDTIMEO and SO_RCVTIMEO use a
struct timeval parameter.

The following options are recognized at the socket level:

SO_REUSEADDR Specifies that the rules used in validating addresses supplied in a bind

call should allow reuse of local addresses.

SO_REUSEPORT Allows completely duplicate bindings by multiple processes if they all set

SO_KEEPALIVE

SO_REUSEPORT before hinding the port. This option permits multiple
instances of a program to each receive UDP/IP multicast or broadcast
datagrams destined for the bound port.

Enables the periodic transmission of messages on a connected socket.
Should the connected party fail to respond to these messages, the
connection is considered broken and processes using the socket are
notified when attempting to send data.

SO_DONTROUTE Indicates that outgoing messages should bypass the standard routing

facilities. Instead, messages are directed to the appropriate network
interface according to the network portion of the destination address.

SPRU524H-May 2001 —-Revised February 2012 Sockets and Stream 10 API 55
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

getsockopt — Get the Value of a Socket Option Parameter www.ti.com

SO_LINGER

SO_BROADCAST

SO_OOBINLINE

SO_SNDBUF
SO_RCVBUF
SO_SNDLOWAT

SO_RCVLOWAT

SO_SNDTIMEO

SO_RCVTIMEO

SO_TYPE
SO_ERROR

Controls the action taken when unsent messages are queued on socket
and a close is performed. If the socket promises reliable delivery of data
and SO_LINGER is set, the system will block the process on the close
attempt until it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger interval, is
specified in seconds in the setsockopt call when SO_LINGER is
requested). If SO_LINGER is disabled and a close is issued, the system
will process the close in a manner that allows the process to continue as
quickly as possible.

Requests permission to send broadcast datagrams on the socket.
Broadcast was a privileged operation in earlier versions of the system.

With protocols that support out-of-band data, this option requests that
out-of-band data be placed in the normal data input queue as received; it
will then be accessible with recv or read calls without the MSG_0OB
flag. Some protocols always behave as if this option is set.

Buffer size for output.
Buffer size for input.

Is an option to set the minimum count for output operations. Most output
operations process all of the data supplied by the call, delivering data to
the protocol for transmission and blocking as necessary for flow control.
Non-blocking output operations will process as much data as permitted
subject to flow control without blocking, but will process no data if flow
control does not allow the smaller of the low water mark value or the
entire request to be processed. A select operation testing the ability to
write to a socket will return true only if the low water mark amount could
be processed. The default value for SO_SNDLOWAT is set to a
convenient size for network efficiency, often 1024.

Is an option to set the minimum count for input operations. In general,
receive calls will block until any (non-zero) amount of data is received,
then return with the smaller of the amount specified by SO_RCVLOWAT
or the amount requested. The default value for SO_RCVLOWAT is 1.
Receive calls may still return less than the amount specified by
SO_RCVLOWAT or the amount requested if an error occurs, or the type
of data next in the receive queue is different from that which was
returned.

Is an option to set a timeout value for output operations. It accepts a
struct timeval parameter with the number of seconds and microseconds
used to limit waits for output operations to complete. If a send operation
has blocked for this much time, it returns with a partial count or with the
error EWOULDBLOCK if no data were sent. In the current
implementation, this timer is restarted each time additional data are
delivered to the protocol, implying that the limit applies to output portions
ranging in size from the low water mark to the high water mark for
output.

Is an option to set a timeout value for input operations. It accepts a struct
timeval parameter with the number of seconds and microseconds used
to limit waits for input operations to complete. This timer is restarted
each time additional data are received by the protocol, and thus, the limit
is in effect an inactivity timer. If a receive operation has been blocked for
this much time without receiving additional data, it returns with a short
count or with the error EWOULDBLOCK if no data were received.

SO_TYPE returns the type of the socket, such as SOCK_STREAM.

Returns any pending error on the socket and clears the error status. It
may be used to check for asynchronous errors on connected datagram
sockets or for other asynchronous errors.

56 Sockets and Stream 10 API

SPRU524H—-May 2001-Revised February 2012
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

getsockopt — Get the Value of a Socket Option Parameter

SO_PRIORITY

Is an option to set the VLAN user priority bit mapping for a given socket.
It accepts only unsigned integer values. The valid values that can be
configured for this option are 0-7. When a value of OxFFFF is set to this
option, it resets the priority back to its default value.

Options that are not Berkeley standard:

SO_IFDEVICE

SO_BLOCKING

SO_TXTIMESTAMP

Specifies a uint index (1 to n) of the designated interface for sending and
receiving IP broadcast packets. When set, this interface is selected on a
IP broadcast send operation if the socket's local (bound) IP address is
NULL (INADDR_ANY). Also, when set, the socket will only accept
incoming broadcast packets if they have been received on this interface.

Specifies a int flag (1 or 0) indicating if the socket is in blocking or non-
blocking mode. Sockets default to blocking mode when created, but can
be set to non-blocking by using setsockopt(). This option provides the
same functionality as calling the Unix function Fcntl() with the
O_NONBLOCK flag.

Specifies a call-out function to allow timestamping of transmitted UDP
datagrams per socket basis. The NDK calls this function before adding
the datagram into the driver's transmit queue. The function prototype of
the call-out is "typedef void (*TimestampFxn)(UINT8 *plpHdr)", and is
defined in "socket.h". This call-out function is responsible for updating
the UDP checksum accordingly.

The following options are recognized at the IPPROTO_IP level:

IP_OPTIONS

IP_HDRINCL

IP_TOS
IP_TTL
IP_ADD_MEMBERSHIP

IP_DROP_MEMBERSHIP

Specifies the IP options to be included in any outgoing IP packet sent via
this socket (maximum length is 20 bytes).

Indicates to IP that the socket application is supplying the IP header as
well as the rest of the packet payload. This is for use with RAW sockets
only.

Specifies the TOS value to place in the IP header.
Specifies the TTLvalue to place in the IP header.

Specifies the multicast group to join. It accepts a struct ip_mreq
parameter (as defined in RFC 3678) which specifies multicast group
address that the application wants to join and the interface IP address to
use for joining the multicast group.

Is an option used to leave a multicast group for a specified interface. It
accepts a struct ip_mreq parameter (as defined in RFC 3678) which
specifies the IP address of the multicast group to leave and the interface
IP address on our device to use to leave the group.

The following options are recognized at the IPPROTO_TCP level:

TCP_MAXSEG
TCP_NODELAY
TCP_NOPUSH
TCP_NOOPT
TCP_SACKPERMITTED

Set the maximum TCP segment size.

Disables TCP send delay/coalesce algorithm.

Do not send data just to finish a data block (attempt to coalesce).
Do not use TCP options.

Permit RFC-2018 Selective Acknowledgment(SACK) conformant
connection. The SACK permitted option is exchanged at socket
connection time. Hence; on server side, the setting must be done before
calling "accept()", and on clint side before calling "connect()".

SPRU524H—-May 2001 -Revised February 2012

Submit Documentation Feedback

Sockets and Stream 10 API 57

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
listen — Listen for Connection Requests on Socket www.ti.com
TCP_MAXRTT The maximum TCP Round Trip Time value allowed in the determination
of the estimated TCP RTT. TCP packets containing RTT values greater
than the value specified will not be used in the TCP RTT calculation
(however, the packets are still processed by the stack). Units are in
milliseconds. Values are rounded up to the next internal clock tick (100
millisecond). The minimum value is 100 milliseconds. The default value
is 1 hour.
listen Listen for Connection Requests on Socket
Syntax int listen(SOCKET s, int maxcon);
Parameters
S Socket
maxcon Maximum number of connects to queue

Return Value

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.
EOPNOTSUPP The socket is not of a type that supports the operation listen.
EISCONN The socket is already connected
Description The listen() function listens for connection requests on a socket.
To accept connections, a socket is first created with socket(). The listen() function is
called to specify a willingness to accept incoming connections and a queue limit for
incoming connections. New connections are accepted by calling the accept() function.
The listen() function applies only to sockets of type SOCK_STREAM.
The maxcon parameter defines the maximum length to which the queue of pending
connections may grow. If a connection request arrives with the queue full, the client
receives an error with an indication of ECONNREFUSED.
58 Sockets and Stream 10 API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
www.ti.com recv — Receive Data from a Socket
recv Receive Data from a Socket
Syntax int recv(SOCKET s, void *pbuf, int size, int flags);
Parameters
S Socket
pbuf Data buffer to place received data
size Size of desired data
flags Option flags
Return Value If it succeeds, the function returns the number of bytes received. Returns 0 on
connection oriented sockets where the connection has been closed by the peer (or
socket shutdown for read). Otherwise, a value of -1 is returned and the function fdError()
can be called to determine the error:
EBADF The file descriptor (socket) is invalid.
EINVAL Attempt to read (or calling arguments) invalid for this socket.
ENOTCONN The socket is connection oriented and not connected
ENOTSOCK The file descriptor does not reference a socket.
ETIMEDOUT The socket connection was dropped due to protocol layer timeout.

EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

Description The recv() function attempts to receive data from a socket. It is normally used on a
connected socket (see connect()). The data is placed into the buffer specified by pbuf,
up to a maximum length specified by size. The options in flags can be used to change
the default behavior of the operation.

The functions returns the length of the message on successful completion.

For a datagram type socket, the receive operation always copies one packet's worth of
data. If the buffer is too short to hold the entire packet, the data is truncated and lost.

If no messages are available at the socket, it waits for a message to arrive, unless the
socket is non-blocking. The function normally returns any data available, up to the
requested amount, rather than waiting for receipt of the full amount requested; this
behavior is affected by the options specified in flags as well as the socket-level options
SO_RCVLOWAT and SO_RCVTIMEO described in getsockopt() .

The select call (fdSelect()) may be used to determine when more data arrives.

The flags argument to a recv() call is formed by combining one or more of the following
flags:

MSG_DONTWAIT Requests that the operation not block when no data is available.

MSG_0OB Requests receipt of out-of-band data that would not be received in the normal
data stream. Some protocols place expedited data at the head of the normal
data queue, and thus, this flag cannot be used with such protocols.

MSG_PEEK Causes the receive operation to return data from the beginning of the receive
gueue without removing that data from the queue. Thus, a subsequent receive
call will return the same data.

MSG_WAITALL Requests that the operation block until the full request is satisfied. However,

the call may still return less data than requested if an error or disconnect
occurs, or the next data to be received is of a different type than that returned.

SPRU524H-May 2001 —-Revised February 2012 Sockets and Stream 10 API 59

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
recvfrom — Receive Data from a Socket with the Sender's Name (Address) www.ti.com
recvfrom Receive Data from a Socket with the Sender's Name (Address)

Syntax int recvfrom(SOCKET s, void *pbuf, int size, int flags, PSA pName, int *plen);
Parameters

S Socket

pbuf Data buffer to place received data

size Size of desired data

flags Option flags

pName Pointer to place name (address) of sender

plen Pointer to size of pName

Return Value

EBADF
EINVAL
ENOTCONN
ENOTSOCK
ETIMEDOUT

If it succeeds, the function returns the number of bytes received. Returns 0 on
connection oriented sockets where the connection has been closed by the peer (or
socket shutdown for read). Otherwise, a value of -1 is returned and the function fdError()
can be called to determine the error:

The file descriptor (socket) is invalid.

Attempt to read (or calling arguments) invalid for this socket.

The socket is connection oriented and not connected.

The file descriptor does not reference a socket.

The socket connection was dropped due to protocol layer timeout.

EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

Description

The recvfrom() function attempts to receive data from a socket. It is normally called with
unconnected, non-connection oriented sockets. The data is placed into the buffer
specified by pbuf, up to a maximum length specified by size. The options in flags can be
used to change the default behavior of the operation. The name (address) of the sender
is written to pName.

The argument pName is a result parameter that is filled in with the address of the
sending entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

The functions returns the length of the message on successful completion.

For a datagram type socket, the receive operation always copies one packet's worth of
data. If the buffer is too short to hold the entire packet, the data is truncated and lost.

If no messages are available at the socket, it waits for a message to arrive, unless the
socket is non-blocking. The function normally returns any data available, up to the
requested amount, rather than waiting for receipt of the full amount requested; this
behavior is affected by the options specified in flags as well as the socket-level options
SO_RCVLOWAT and SO_RCVTIMEO described in getsockopt() .

The select call (fdSelect()) may be used to determine when more data arrives.

The flags argument to a recv() call is formed by combining one or more of the following
flags:

60 Sockets and Stream 10 API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
www.ti.com recvnc — Receive Data from a Socket without Buffer Copy
MSG_DONTWAIT Requests that the operation not block when no data is available.
MSG_OOB Requests receipt of out-of-band data that would not be received in the normal

data stream. Some protocols place expedited data at the head of the normal
data queue, and thus, this flag cannot be used with such protocols.

MSG_PEEK Causes the receive operation to return data from the beginning of the receive
gueue without removing that data from the queue. Thus, a subsequent receive
call will return the same data.

MSG_WAITALL Requests that the operation block until the full request is satisfied. However,
the call may still return less data than requested if an error or disconnect
occurs, or the next data to be received is of a different type than that returned.

recvnc Receive Data from a Socket without Buffer Copy
Syntax int recvnc(SOCKET s, void **ppbuf, int flags, HANDLE *phBuffer);
Parameters
S Socket
ppbuf Pointer to receive data buffer pointer
flags Option flags
phBuffer Pointer to receive buffer handle
Return Value If it succeeds, the function returns the number of bytes received. Returns 0 on

connection oriented sockets where the connection has been closed by the peer (or
socket shutdown for read). Otherwise, a value of -1 is returned and the function fdError()
can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

EINVAL Attempt to read (or calling arguments) invalid for this socket.
ENOTSOCK The file descriptor does not reference a socket.

ENOTCONN The socket is connection oriented and not connected.
ETIMEDOUT The socket connection was dropped due to protocol layer timeout.

EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

Description The recvnc() function attempts to receive a data buffer from a socket. It is normally used
on a connected socket (see connect()). A pointer to the data buffer is returned in ppbuf.
A system handle used to free the buffer is returned in phBuffer. Both of these pointers
must be valid. The options in flags can be used to change the default behavior of the
operation.

The functions returns the length of the message on successful completion.

The receive operation always returns one packet buffer. The caller has no control over
the size of the data returned in this buffer.

If no messages are available at the socket, this call waits for a message to arrive, unless
the socket is non-blocking. The function returns the data buffer available.

When the caller no longer needs the data buffer, it is returned to the system by calling
recvncfree(). Repeated failure to free buffers will eventually cause the stack to stop
receiving data.

This function cannot be used with sockets of type SOCK_STREAM. When used with
sockets of type SOCK_STREAMNC, out of band data marks are cleared.

The select call (fdSelect()) may be used to determine when more data arrives.

SPRU524H—-May 2001 -Revised February 2012 Sockets and Stream 10 API 61

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
recvncfree — Return a Data Buffer Obtained from a No-Copy Receive Operation www.ti.com
The flags argument to a recv() call can be one of the following flags:
MSG_DONTWAIT Requests that the operation not block when no data is available.
MSG_WAITALL Requests that the operation block until data is available. Because blocking is
the default behavior of a standard socket, this flag only alters the behavior of a
non blocking socket for this call.
recvncfree Return a Data Buffer Obtained from a No-Copy Receive Operation
Syntax void recvncfree(HANDLE hBuffer);
Parameters
hBuffer Handle to receive buffer to free

Return Value

Description

recvncfrom

Syntax

Parameters

S
ppbuf
flags
pName
plen
phBuffer

Return Value

None.

The recvncfree() function frees a data buffer obtained from calling either recvnc() or
recvncfrom(). The calling parameter hBuffer is the handle of the buffer to free (not the
pointer to the buffer).

Receive Data and the Sender's Name From a Socket Without Buffer Copy

int recvncfrom(SOCKET s, void **ppbuf, int flags, PSA pName, int *plen, HANDLE
*phBuffer);

Socket

Pointer to receive data buffer pointer
Option flags

Pointer to place name (address) of sender
Pointer to size of pName

Pointer to receive buffer handle

If it succeeds, the function returns the number of bytes received. Returns 0 on
connection oriented sockets where the connection has been closed by the peer (or
socket shutdown for read). Otherwise, a value of -1 is returned and the function fdError()
can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

EINVAL Attempt to read (or calling arguments) invalid for this socket.
ENOTSOCK The file descriptor does not reference a socket.

ENOTCONN The socket is connection oriented and not connected.
ETIMEDOUT The socket connection was dropped due to protocol layer timeout.
EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

Description The recvncfrom() function attempts to receive a data buffer from a socket. It is normally
called with unconnected, non-connection oriented sockets. A pointer to the data buffer is
returned in ppbuf. A system handle used to free the buffer is returned in phBuffer. Both
of these pointers must be valid. The options in flags can be used to change the default
behavior of the operation. The name (address) of the sender is written to pName.

The argument pName is a result parameter that is filled in with the address of the
62 Sockets and Stream 10 API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

send — Transmit Data to a Socket

sending entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

The functions returns the length of the message on successful completion.

The receive operation always returns one packet buffer. The caller has no control over
the size of the data returned in this buffer.

If no messages are available at the socket, this call waits for a message to arrive, unless
the socket is non-blocking. The function returns the data buffer available.

When the caller no longer needs the data buffer, it is returned to the system by calling
recvncfree(). Repeated failure to free buffers will eventually cause the stack to stop
receiving data.

This function cannot be used with sockets of type SOCK_STREAM. When used with
sockets of type SOCK_STREAMNC, out of band data marks are cleared.

The select call (fdSelect()) may be used to determine when more data arrives.
The flags argument to a recv() call can be one of the following flags:

MSG_DONTWAIT Requests that the operation not block when no data is available.

MSG_WAITALL

send

Syntax

Parameters
S
pbuf
size
flags

Return Value

Requests that the operation block until data is available. Because blocking is
the default behavior of a standard socket, this flag only alters the behavior of a
non blocking socket for this call.

Transmit Data to a Socket

int send(SOCKET s, void *pbuf, int size, int flags);

Socket

Data buffer holding data to transmit
Size of data

Option flags

If it succeeds, the function returns the number of bytes sent. Otherwise, a value of -1 is
returned and the function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.

EHOSTUNREACH The remote host was unreachable.

EMSGSIZE The specified size exceeds the limit of the underlying protocol.

ENOBUFS Memory allocation failure while attempting to send data.

ENOTSOCK The file descriptor does not reference a socket.

ENOTCONN The socket is connection oriented and not connected.

ESHUTDOWN The socket has been shut down for writes.

ETIMEDOUT The socket connection was dropped due to protocol layer timeout.

EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.
SPRU524H-May 2001 —-Revised February 2012 Sockets and Stream 10 API 63

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

sendto — Transmit Data on a Socket to Designated Destination www.ti.com

Description

MSG_OOB

MSG_EOR
MSG_EOF

The send() function attempts to send data on a socket. It is used on connected sockets
only (see connect()). The data to send is contained in the buffer specified by pbuf, with
a length specified by size. The options in flags can be used to change the default
behavior of the operation.

The function returns the length of the data transmitted on successful completion.

If a thread does not contain calls to fdOpenSession() and fdCloseSession(), the send()
function returns a value of -1.

For a datagram type socket, the send operation always copies one packet's worth of
data. If the buffer size is too large to be transmitted in a single packet, an error code of
EMSGSIZE is returned.

If there is not transmit buffer space available on a stream type socket, the function waits
for space to become available, unless the socket is non-blocking. The function normally
transmits all the specified data.

The select call (fdSelect()) may be used to determine when the socket is able to write.

The flags argument to a send() call is formed by combining one or more of the following
flags:

sends out-of-band data on sockets that support this notion (e.g.
SOCK_STREAM); the underlying protocol must also support out-of-band data.

indicates a record mark for protocols that support the concept.

Requests that the sender side of a socket be shut down, and that an
appropriate indication be sent at the end of the specified data; this flag is only
implemented for SOCK_STREAM sockets in the AF_INET protocol family, and
implements Transaction TCP.

MSG_DONTROUTE Specifies that the packet should not be routed, but sent only using the ARP

sendto

Syntax

Parameters

s
pbuf
size
flags
pName
len

Return Value

table entries.

Transmit Data on a Socket to Designated Destination

int sendto(SOCKET s, void *pbuf, int size, int flags, PSA pName, int len);

Socket

Data buffer holding data to transmit
Size of data

Option flags

Pointer to name (address) of destination
Size of data pointed to by pName

If it succeeds, the function returns the number of bytes sent. Otherwise, a value of -1 is
returned and the function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
EHOSTUNREACH The remote host was unreachable.
EMSGSIZE The specified size exceeds the limit of the underlying protocol.
ENOBUFS Memory allocation failure while attempting to send data.
ENOTSOCK The file descriptor does not reference a socket.
ENOTCONN The socket is connection oriented and not connected.
ESHUTDOWN The socket has been shut down for writes.
64 Sockets and Stream 10 API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

setsockopt — Set the Value of a Socket Option Parameter

ETIMEDOUT

The socket connection was dropped due to protocol layer timeout.

EWOULDBLOCK The socket is specified as non-blocking, or the timeout has expired.

Description

MSG_OOB

MSG_EOR
MSG_EOF

The sendto() function attempts to send data on a socket to a specified destination. It is
used on unconnected, non-connection oriented sockets only (see connect()). The data
to send is contained in the buffer specified by pbuf, with a length specified by size. The
options in flags can be used to change the default behavior of the operation.

The argument pName is a pointer to the address of the destination entity as known to
the communications layer. The domain in which the communication is occurring
determines the exact format of the pName parameter. The len parameter should contain
the size of name, which is sizeof(struct sockaddr).

The functions returns the length of the data transmitted on successful completion.

For a datagram type socket, the send operation always copies one packet's worth of
data. If the buffer size is too large to be transmitted in a single packet, an error code of
EMSGSIZE is returned.

The select call (fdSelect()) may be used to determine when the socket is able to write.

The flags argument to a send() call is formed by combining one or more of the following
flags:

sends out-of-band data on sockets that support this notion (e.qg.,
SOCK_STREAM); the underlying protocol must also support out-of-band data.

indicates a record mark for protocols that support the concept.

Requests that the sender side of a socket be shut down, and that an
appropriate indication be sent at the end of the specified data; this flag is only
implemented for SOCK_STREAM sockets in the AF_INET protocol family, and
implements Transaction TCP.

MSG_DONTROUTE Specifies that the packet should not be routed, but sent only using the ARP

table entries.

NOTE: The native operation of the socket sendto operation is to connect ®
sendto ® disconnect. Sockets that are not bound to a local IP or local
port would have an ephemeral port selected every time in order to
override this behavior and to ensure that the ephemeral port is not
selected every time it is recommended that customers do a bind to port 0.
This selects the first free port not in use and all subsequent
communication uses the same port.

setsockopt Set the Value of a Socket Option Parameter
Syntax int setsockopt(SOCKET s, int level, int op, void *pbuf, int bufsize);
Parameters
s Socket
level Option level (SOL_SOCKET, IPPROTO_IP, IPPROTO_TCP)
op Socket option to set
pbuf Pointer to memory buffer
bufsize Size of memory buffer pointed to by pbuf
SPRU524H-May 2001 —-Revised February 2012 Sockets and Stream 10 API 65

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

setsockopt — Set the Value of a Socket Option Parameter www.ti.com

Return Value

EBADF
ENOTSOCK
EINVAL

Description

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

The file descriptor (socket) is invalid.
The file descriptor does not reference a socket.
Buffer arguments are invalid.

The setsockopt() function sets option values associated with a socket. Options may exist
at multiple protocol levels; they are always present at the uppermost socket level.

When manipulating socket options, the level at which the option resides and the name of
the option must be specified. To manipulate options at the socket level, level is specified
as SOL_SOCKET. To manipulate options at any other level, the protocol number of the
appropriate protocol controlling the option is supplied. In this implementation, only
SOL_SOCKET, IPPROTO_IP, and IPPROTO_TCP are supported.

The parameters pbuf and bufsize identify a buffer that holds the value for the specified
option.

Most socket-level options utilize an int parameter for pbuf. SO_LINGER uses a struct
linger parameter, defined in INC\SOCKET.H, which specifies the desired state of the
option and the linger interval. SO_SNDTIMEO and SO_RCVTIMEO use a struct timeval
parameter. The IP-level options IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP
accept a struct ip_mreq parameter.

The socket options supported for setsockopt() are the same as defined for getsockopt(),
with the exception of SO_TYPE and SO_ERROR, which cannot be set.

Please see the description of getsockopt() for a list of socket options.

NOTE: The SO_SNDBUFand SO_RCVBUFoptions can only be set if there is no
transmit or receive data pending at the socket. In general, the buffer
sizes should only be configured before the socket is bound or connected.
Buffer sizes set on listen sockets will propagate to spawned accept
sockets.

66 Sockets and Stream 10 API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

shutdown — Close One Half of a Connected Socket

shutdown

Syntax

Parameters

s
how

Return Value

EBADF
ENOTSOCK
ENOTCONN

Description

socket

Syntax

Parameters

domain

type
protocol

Return Value

Close One Half of a Connected Socket

int shutdown(SOCKET s, int how);

Socket
Manner of shut down

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

The file descriptor (socket) is invalid.
The file descriptor does not reference a socket.
The specified socket is not connected.

The shutdown() function causes all or part of a full-duplex connection on the socket
associated with a socket to be shut down. If how is SHUT_RD (0), further receives will
be disallowed. If how is SHUT_WR (1), further sends will be disallowed. If how is
SHUT_RDWR (2), further sends and receives will be disallowed.

Create a Socket

SOCKET socket(int domain, int type, int protocol);

Socket domain (AF_INET)
Socket type (SOCK_DGRAM, SOCK_STREAM, SOCK_RAW)

Socket protocol (Normally IPPROTO_TCP or IPPROTO_UDP, but can be anything
when type is set to SOCK_RAW)

If it succeeds, the function returns a file descriptor representing the socket. Otherwise, a
value of INVALID_SOCKET is returned and the function fdError() can be called to
determine the error:

EPFNOSUPPORT The specified domain was not AF_INET.
EPROTOTYPE The type parameter does not support the protocol parameter.
ESOCKTNOSUPPORT The specified socket type is not supported.
ENOMEM Memory allocation error allocating socket buffers.
EMFILE The descriptor table is full.
Description The socket() function creates a socket, an endpoint for communication and returns the

socket in the form of a file descriptor.

The domain parameter specifies a communications domain within which communication
will take place; this selects the protocol/address family that should be used. These
families are defined in the include file INC\SOCKET.H. This will always be AF_INET
(AF_INET) in this implementation.

The socket type parameter specifies the semantics of communication. Currently defined
types are:

SPRU524H—-May 2001 -Revised February 2012

Sockets and Stream 10 API 67

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

socket — Create a Socket

13 TEXAS
INSTRUMENTS

www.ti.com

SOCK_STREAM

SOCK_STREAMNC

SOCK_DGRAM

SOCK_RAW

Provides sequenced, reliable, two-way connection based byte streams. An
out-of-band data transmission mechanism is supported.

Identical to SOCK_STREAM except that received data is not coalesced into a
receive holding buffer. This eliminates one or two receive data copies
(depending on which recv() socket function is used), but has the potential of
tying up multiple data packets. It should only be used when the socket is to
receive data in large bursts. Out-of-band data is supported, but only when the
traditional recv() socket calls are used.

Supports datagrams - connectionless, unreliable messages of a fixed (typically
small) maximum length.

Similar to SOCK_DGRAM, only allows the use of any protocol that must be
manually constructed in each datagram by the programmer.

The protocol parameter specifies a particular protocol to be used with the socket. In this
implementation of the stack, SOCK_STREAM must use IPPROTO_TCP,
SOCK_DGRAM must use IPPROTO_UDP, and SOCK_RAW is unrestricted. To remain
compatible with the industry, this parameter can be set to NULL on SOCK_STREAM or
SOCK_DGRAM.

68

Sockets and Stream 10 API

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com Raw Ethernet Sockets Programming Interface

3.4 Raw Ethernet Sockets Programming Interface

Raw Ethernet sockets are a special type of sockets that allow an application to send and receive entire
Ethernet packets without any intermediate processing by the stack, like stripping off headers, checksum
calculations, etc., that are typically done for IPv4, IPv6 sockets. These sockets are expected to be used by
applications that have very definite performance requirements and need ultimate control over packet
processing. The Raw Ethernet sockets have both no-copy send and receive APls. This facilitates the
application's performance requirements even further by reducing any overhead on the send or receive
data paths due to memory allocation and copying. A corresponding Raw Ethernet Module has also been
added to the core NDK stack that interfaces with the NIMU layer to send/receive data. For more details on
the Raw Ethernet module, see Section A.17 of this document.

3.4.1 Function Overview

The following is a complete list of socket APIs implemented for the Raw Ethernet socket family
(AF_RAWETH).

socket Creates a raw Ethernet socket

shutdown Close one half of the socket

getsockopt Gets the value of a socket option

setscokopt Sets the value of a socket option

send Sends raw Ethernet data using a previously opened raw Ethernet socket

getsendncbuff Allocate space for a raw Ethernet packet and retrieve handle for the data buffer.
This is used in conjunction with sendnc API for no-copy send.

sendnc Send out raw Ethernet data without making a copy of it during the Tx path

sendncfree Free buffer obtained from getsendncbuff() API

recvnc Free buffer obtained from recvnc() API

3.4.2 Raw Ethernet Sockets API Functions

This section describes the socket APIs listed before in detail and in particular when used with
AF_RAWETH family sockets.

socket Create a raw Ethernet socket.
Syntax SOCKET socket(int domain, int type, int protocol);
Parameters
domain Socket domain (AF_RAWETH)
type Socket type (SOCK_RAWETH)
protocol Socket protocol (can be set to any custom value other than the well known types:-

IP (0x800), IPv6 (0x806), VLAN (0x8100), PPPoE Control (0x8863), PPPoE Data
(0Ox8864) is acceptable)

Return Value If it succeeds, the function returns a file descriptor representing the socket. Otherwise, a
value of INVALID_SOCKET is returned and the function fdError() can be called to
determine the error:

EPFNOSUPPORT The specified domain was none of the supported families, i.e.,
AF_INET, AF_INET6, AF_RAWETH.
EINVAL The protocol parameter supplied is not valid. IP (0x800), IPv6 (0x806),

VLAN (0x8100), PPPoE Control (0x8863), PPPoE Data (0x8864) are
not valid values for the protocol argument.

ESOCKTNOSUPPORT The specified socket type is not supported for this protocol.

SPRU524H-May 2001 —-Revised February 2012 Sockets and Stream 10 API 69

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

shutdown — Close one half of a connected socket.

13 TEXAS
INSTRUMENTS

www.ti.com

ENOMEM
EMFILE

Description

shutdown

Syntax

Parameters

S
how

Return Value

EBADF
ENOTSOCK

Description

getsockopt

Syntax

Parameters

S
level

op

pbuf
pbufsize

Return Value

EBADF
ENOTSOCK
EINVAL

Memory allocation error allocating socket buffers.
The descriptor table is full.

The socket () function creates a socket, an endpoint for communication and returns the
socket in the form of a file descriptor. The domain parameter specifies a communications
domain within which communication will take place; this selects the protocol/address
family that should be used. These families are defined in the include file INC\SOCKET.H.
To create a raw Ethernet socket, the domain must be specified as AF_RAWETH. The
socket type parameter specifies the semantics of communication. For raw Ethernet
sockets, this parameter must be set to SOCK_RAWETH. The protocol parameter
specifies the protocol to be used for the socket. This can be set to any custom protocol
type for a raw Ethernet socket. Standard protocol types like IP (0x800), IPv6 (0x806),
VLAN (0x8100), PPPoE Control (0x8863), PPPoE Data (0x8864) must not be used here
for protocol parameter.

Close one half of a connected socket.

int shutdown(SOCKET s, int how);

Socket
Manner of shut down

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

The file descriptor (socket) is invalid.
The file descriptor does not reference a socket.

The shutdown() function causes all or part of a full-duplex connection on the socket
associated with a socket to be shut down. If how is SHUT_RD (0), further receives will
be disallowed. If how is SHUT_WR (1), further sends will be disallowed. If how is
SHUT_RDWR (2), further sends and receives will be disallowed.

Get the value of a socket option.

int getsockopt(SOCKET s, int level, int op, void *pbuf, int *pbufsize);

Socket

Option level (SOL_SOCKET only for AF_RAWETH sockets)
Socket option to get

Pointer to memory buffer

Pointer to size of memory buffer

If it succeeds, the function returns 0. Otherwise, a value of —1 is returned and the
function fdError() can be called to determine the error:

The file descriptor (socket) is invalid.
The file descriptor does not reference a socket.
Buffer arguments are invalid.

70 Sockets and Stream 10 API

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

getsockopt — Get the value of a socket option.

Description The getsockopt() function returns the options associated with a socket. Options are
always present at the uppermost socket level (SOL_SOCKET) for raw Ethernet sockets.
When manipulating socket options, the level at which the option resides and the name of
the option must be specified. The parameters pbuf and pbufsize identify a buffer in which
the value for the requested option(s) are to be returned. pbufsize is a value-result
parameter, initially containing the size of the buffer pointed to by pbuf, and modified on
return to indicate the actual size of the value returned.

The following socket (SOL_SOCKET) level options are recognized for raw Ethernet

sockets:

SO_IFDEVICE

SO_PRIORITY

SO_RCVTIMEO

SO_SNDBUF
SO_RCVBUF
SO_RCVLOWAT

SO_ERROR

SO_TYPE

Specifies a uint index (1 to n) of the designated interface for sending
and receiving raw Ethernet packets.

NOTE: The SO_IFDEVICE option must be configured to successfully use a raw
Ethernet socket for communication.

Specifies a unit value (0 to 7) configured as the priority to be marked on
all flowing packets using this socket. This priority can be used by the
Ethernet driver in turn to differentiate between packets and apply any
desired QoS scheme. It can be also used by a driver/application to map
the priority to certain transmission properties like the EMAC channel
number on which the packets are to be transmitted. Only unsigned
integer values between 0 to 7 are acceptable values for this field. When
a value of OXFFF is set to this option, it resets the priority back to its
default value.

Is an option to set a timeout value for input operations. It accepts a
struct timeval parameter with the number of seconds and microseconds
used to limit waits for input operations to complete.

This timer is restarted each time additional data are received by the
protocol, and therefore, the limit is in effect an inactivity timer. If a
receive operation has been blocked for this much time without receiving
additional data, it returns with a short count or with the error
EWOULDBLOCK if no data were received.

Buffer size for output
Buffer size for input

Is an option to set the minimum size of data in bytes for input
operations. The default value for SO_RCVLOWAT is 1. Receive calls
may still return less than the amount specified by SO_RCVLOWAT or
the amount requested if an error occurs.

Returns any pending error on the socket and clears the error status. It
may be used to check for any asynchronous errors.

Returns the type of the socket. Always returns SOCK_RAWETH for raw
Ethernet sockets.

NOTE: Options like SO_SNDWAT, SO_SNDTIMEO, etc., are not supported for

raw Ethernet sockets, since there is no buffering on the send path and
the operation is synchronous; i.e., once send()/sendnc() APIs are invoked
for raw Ethernet sockets, these calls actually return only after enqueuing
the data in the driver queue. Hence, no buffering or timeouts are
required.

SPRU524H—-May 2001 -Revised February 2012 Sockets and Stream 10 API

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

71

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

setsockopt — Set the value of a socket option.

13 TEXAS
INSTRUMENTS

www.ti.com

setsockopt

Syntax

Parameters

s
level
op
pbuf
bufsize

Return Value

EBADF
ENOTSOCK
EINVAL

Description

send

Syntax

Parameters

s
pbuf
size

flags

Return Value

ENOTSOCK
EINVAL
ENOBUFS

ESHUTDOWN

EMSGSIZE

ENXIO

Set the value of a socket option.

int setsockopt(SOCKET s, int level, int op, void *pbuf, int bufsize);

Socket

Option level (SOL_SOCKET only for AF_ RAWETH sockets)
Socket option to set

Pointer to memory buffer

Size of memory buffer pointed to by pbuf

If it succeeds, the function returns 0. Otherwise, a value of —1 is returned and the
function fdError() can be called to determine the error:

The file descriptor (socket) is invalid.
The file descriptor does not reference a socket.
Buffer arguments are invalid.

The setsockopt() function sets option values associated with a socket. Options are
always present at the uppermost socket level (SOL_SOCKET) for raw Ethernet sockets.
When manipulating socket options, the level at which the option resides and the name of
the option must be specified. The parameters pbuf and bufsize identify a buffer that
holds the value for the specified option. Most socket-level options utilize an int parameter
for pbuf.

The socket options supported for setsockopt() are the same as the ones specified in the
getsockopt() API.

Transmit raw Ethernet data using a socket.

int send(SOCKET s, void *pbuf, int size, int flags);

Socket

Data buffer holding data to transmit
Size of data

Option flags

If it succeeds, the function returns the number of bytes sent. Otherwise, a value of -1 is
returned and the function fdError() can be called to determine the error:

The file descriptor does not reference a socket.

The input is invalid.

Memory allocation failure while attempting to send data.
The socket has been shut down for writes.

The size of the data being sent exceeds the MTU of the interface or the
Maximum Transmit buffer size configured using SO_SNDBUF option,
whichever is the smaller value of the two.

No egress interface specified for this socket to send out data. Use
SO_IFDEVICE socket option and specify an interface before retrying to
send out data using this socket.

72 Sockets and Stream 10 API

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com getsendncbuff — Retrieve handle to a buffer into which the application can fill any raw Ethernet data to send.

Description

getsendncbuff

Syntax

Parameters

S
bufSize
phbuf
phPkt

Return Value

ENOBUFS

EMSGSIZE

Description

The send() function attempts to send data on a socket. The data to send is contained in
the buffer specified by pbuf, with a length specified by size. The options in flags can be
used to change the default behavior of the operation. Currently no flag options are
defined for raw Ethernet sockets. The functions returns the length of the data transmitted
on successful completion.

The data buffer specified here is allocated and freed up by the application itself. The
packet buffer is copied over to the packet allocated on the transmit path by the Raw
Ethernet module and hence the application buffer (pbuf) freeing is the responsibility of
the application when this API returns. Based on the socket handle specified to this call,
the raw Ethernet module retrieves the socket priority and device on which this packet
needs to be transmitted and does the needful to transmit the data. All packets
transmitted using the specified socket would inherit their priority from the socket.

The format of the data buffer sent as input to this function is shown as follows:

Destination Source Ethernet Payload
MAC MAC Type (len — 14) Bytes
Address Address (2 Bytes)
(6 Bytes) (6 Bytes)
len Bytes

Figure 3-1. Raw Ethernet Buffer Format

Retrieve handle to a buffer into which the application can fill any raw Ethernet data
to send.

int getsendncbuff(SOCKET s, UINT32 bufSize, void** phBuf, HANDLE* phPkt);

Socket

Size of data buffer to allocate
Pointer to send data buffer pointer
Pointer to packet buffer handle

If it succeeds, the function returns 0. Also, the phbuf and phPkt pointers are filled in with
valid pointers to the data and packet buffers just allocated. Otherwise, a value of -1 is
returned and the function fdError() can be called to determine the error:

Out of memory. Couldn't allocate memory required for the packet and
data buffer.

The size of the data buffer requested exceeds the MTU of the interface
or the Maximum Transmit buffer size configured using SO_SNDBUF
option, whichever is the smaller value of the two on the specified
socket.

This API needs to be called by the raw Ethernet application to obtain a buffer handle to
use to transmit data without copy using the sendnc() API. This function ensures that
bufSize byte memory is allocated for the raw Ethernet data buffer. It also allocates
memory for the packet to hold this data buffer. The application can fill the required data
in the buffer just obtained and needs to send both the data buffer and the packet
pointers to sendnc() API to finally send out the packet. This packet and the data buffer

SPRU524H—-May 2001 -Revised February 2012 Sockets and Stream 10 API 73
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

sendnc — Send data out on the socket without any copy on transmit path. www.ti.com

are freed by the Ethernet driver once the transmit completes successfully. However, if
the application would like to free up the buffer obtained because of some error it
encountered during send process, it would have to use the sendncfree API and specify
the packet buffer handle as a parameter and both the data buffer and packet buffer will

be freed up.

sendnc Send data out on the socket without any copy on transmit path.

Syntax int sendnc(SOCKET s, void *pbuf, int size, HANDLE hPkt, int flags);

Parameters

s Socket

pbuf Pointer to send data buffer

hPkt Packet buffer handle obtained from the getsendncbuff() API
Flags Option flags

Return Value If it succeeds, the function returns number of bytes transmitted. Otherwise, a value of -1

is returned, and the function fdError() can be called to determine the error:
EINVAL The input is invalid
ESHUTDOWN The socket has been shut down for writes
ENOTSOCK The file descriptor does not reference a socket
ENXIO No egress interface specified for this socket to send out data. Use
SO_IFDEVICE socket option and specify an interface before retrying to
send out data using this socket.

Description The sendnc() API function attempts to send the data buffer and packet specified using
the raw Ethernet socket handle provided. It doesn’'t make any copies of the data on the
transmit path and, therefore, provides a significant performance gain to the application
using it. The buffer pointer and the packet handle must be obtained using the
getsendncbuff() API before this function is called. The size of data buffer specified as
input to this function must not exceed the size of buffer allocated using the
getsendncbuff() API. No option flags are defined at this time for this API. This packet and
the data buffer are freed by the Ethernet driver once the transmit completes successfully.
However, If an error is returned from this API, the application is responsible for freeing
up the packet and data buffers obtained earlier from the getsendncbuff() API by calling
the sendncfree() API with the packet handle as input.

The format of the data buffer sent as input to this function is expected to be the
following:
Destination Source Ethernet Payload
MAC MAC Type (len — 14) Bytes
Address Address (2 Bytes)
(6 Bytes) (6 Bytes)
len Bytes
Figure 3-2. Raw Ethernet Buffer Format
74 Sockets and Stream 10 API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

sendncfree — Free the packet and data buffers obtained using the getsendncbuff() API.

sendncfree

Syntax

Parameters

hFrag

Return Value

Description

recvnc

Syntax
Parameters
S

ppbuf
flags

phBuffer

Return Value

Free the packet and data buffers obtained using the getsendncbuff() API.

void sendncfree(HANDLE hFrag);

Handle to send buffer to free

None

The sendncfree() function frees the packet and data buffer obtained from calling the
getsendncbuff() API. The calling parameter, hFrag, is the handle of the packet buffer to
free (not the pointer to the buffer handle).

Receive data from a socket without buffer copy

int recvnc(SOCKET s, void **ppbuf, int flags, HANDLE *phBuffer);

Socket

Pointer to receive data buffer pointer
Option flags

Pointer to receive buffer handle

If it succeeds, the function returns the number of bytes received. Otherwise, a value of -1
is returned and the function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid

EINVAL Attempt to read (or calling arguments) invalid for this socket

ENOTSOCK The file descriptor does not reference a socket

EWOULDBLOCK The receive timeout configured on the socket has expired and no data
received so far.

ENXIO No egress interface specified for this socket to receive from. Use
SO_IFDEVICE socket option and specify an interface before retrying to
receive data using this socket.

Description The recvnc() function attempts to receive a data buffer from a socket. A pointer to the

data buffer is returned in ppbuf. A system handle used to free the buffer is returned in
phBuffer. Both of these pointers must be valid. The options in flags can be used to
change the default behavior of the operation. No flags are defined currently for raw
Ethernet sockets. The functions returns the length of the message on successful
completion. The receive operation always returns one packet buffer. The caller has no
control over the size of the data returned in this buffer. If no messages are available at
the socket, this call waits for a message to arrive for the receive timeout specified on this
socket. If no timeout is specified this call blocks forever waiting for data to arrive on the
socket. The function returns the data buffer available. When the caller no longer needs
the data buffer, it is returned to the system by calling recvncfree(). Repeated failure to
free buffers eventually causes the stack to stop receiving data.

NOTE: Take care when using the recvnc() API, because packet buffers come
from the driver; there may be a limited supply available. The packet
buffers must be promptly freed up by the application once processing is
complete.

SPRU524H—-May 2001 -Revised February 2012

Sockets and Stream 10 API 75

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
recvncfree — Return a data buffer obtained from a no-copy receive operation www.ti.com
recvncfree Return a data buffer obtained from a no-copy receive operation
Syntax void recvncfree(HANDLE hBuffer);

Parameters
hBuffer Handle to receive buffer to free
Return Value None
Description The recvncfree() function frees a data buffer obtained from calling recvnc(). The calling
parameter hBuffer is the handle of the buffer to free (not the pointer to the buffer).
3.5 Full Duplex Pipes Programming Interface

Although sockets can be used for inter-task communications, it is not the most efficient method. The stack
provides a second data communications model called pipes, which allow for local connection oriented
communications.

A pipe is a full duplex connection oriented file descriptor. When a pipe is created, both ends of the pipe
are returned to the caller as file descriptors.

Communication is performed using the standard file and sockets API functions. All the file descriptor
functions are supported with pipes: fdSelect(), fdClose(), fdError().

Also, socket functions send() and recv() write and read data through the pipe. Both functions also support
the following standard sockets message flags when using pipes:

MSG_PEEK Examine data but do not consume it.
MSG_DONTWAIT Do not block on send/recv operation (by default, pipe operations always block).

Pipes are connection oriented, thus, when one end closes, the other end is altered by an error return from
send() or recv(). It is therefore possible to make a blocking call on recv() without concern that the function
will be deadlocked if the other end terminates the connection.

76

Sockets and Stream 10 API SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com pipe — Create a Full Duplex Pipe

3.5.1 Pipe API Functions

Because pipes share file descriptor and IO functions with sockets, the only pipe oriented function is the
creation of the connected pair.

pipe Create a Full Duplex Pipe
Syntax int pipe(HANDLE *pfd1, HANDLE *pfd2);
Parameters
pfdl Pointer to file descriptor to first end of pipe.
pfd2 Pointer to file descriptor to second end of pipe.
Return Value Returns zero on success or -1 on error. A more detailed error code can be found by

calling fdError().

Description Creates a pre-connected full duplex pipe. The returned file descriptors can be used with
all the fd file descriptor functions, as well as the send() and recv() socket functions.

Pipes are connection oriented, so like TCP, a read or write call can return ENOTCONN
when the connection is broken by one side or the other.

NOTE: Both file descriptors must be closed to correctly close down (and free) a
pipe.

3.6 Internet Group Management Protocol (IGMP)

Internet Group Management Protocol (IGMP) is designed to help routers in routing IP multicast traffic.
Each router can have multiple ports, and it is inefficient for the router to replicate every IP multicast packet
out of each active port. Using the IGMP protocol, the multicast router is able to keep track of which IP
multicast addresses need to be routed to each individual port. This allows the router to limit IP multicast
transmission to only those ports that require the multicast traffic.

The IGMP protocol assumes a client/server relationship between endpoints. The IGMP server is run by
the multicast router to get IP multicast information about all the client on each of its individual ports. The
IGMP client is only concerned with communicating its own multicast requirements to the local IGMP
server, so that it will get the IP multicast packets that it requires.

The NDK does not currently support IP multicast routing, so there is no need to use IGMP in server mode.
However, the software does support IGMP client operation.

The IGMP client module indicates to the IGMP server which multicast IP addresses that the client needs
to receive. The IGMP API will also maintain the Ethernet multicast MAC address list at the Ethernet driver
level.

An application can join or leave a multicast group using the well-known setsockopt() API. It is
recommended that you no longer use the IGMPJoinHostGroup and IGMPLeaveHostGroup APIs. Instead,
we recommend that you use the setsockopt() and getsockopt() APIs with the IP_ADD_MEMBERSHIP and
IP_DROP_MEMBERSHIP options. For more details on options for joining or leaving a multicast group,
see getsockopt() and setsockopt().

SPRU524H—-May 2001 -Revised February 2012 Sockets and Stream 10 API 77

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Chapter 4

SPRU524H—May 2001 —-Revised February 2012

TeEXAS
INSTRUMENTS

Initialization and Configuration

This chapter discusses the initialization sequence for the NDK. In previous versions, this chapter also
discussed the configuration manager APl in detail. Since configuration via XGCONF is now
recommended, documentation of the configuration APl has been moved to an appendix for use in legacy
applications.

Topic Page
4.1 Configuration Methodscooiiii e e 79
4.2 Network Control Initialization Procedure (NETCTRL) ...cccovvuiiiiiieiiiiiiieeiieieieenes 79
78 Initialization and Configuration SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

TEXAS
INSTRUMENTS

www.ti.com Configuration Methods

4.1

4.2

42.1

Configuration Methods

To simplify the configuration process, the NDK now allows you to use the XGCONF configuration tool
within CCS to configure an application's use of NDK modules. Graphical displays let you enable and set
properties as needed, and context-sensitive help provides information about individual fields. XGCONF is
the same configuration tool used to configure SYS/BIOS. The same configuration in one project can
configure both NDK and SYS/BIOS modules and objects.

To open XGCONF, simply double-click the *.cfg file in your application's project. See the steps in the Tl
Network Developer's Kit (NDK) User's Guide. (SPRU523) for using XGCONF with the NDK. For more
about using XGCONF, see Chapter 2 of the TI SYS/BIOS Real-time Operating System User's Guide

(SPRUEX3).

Internally, the XGCONF configuration tool generates C code that calls into and updates the configuration
database used in previous versions of the NDK. In fact, you can still use the configuration database if you
have legacy applications. However, you must choose one method or the other to configure your
application. XGCONF is the recommended configuration method.

NOTE: You should not mix configuration methods. If you have legacy NDK applications that use the
old C-based configuration method, you should either continue to use that method or convert
the configuration entirely to an *.cfg file configuration. If a project uses both methods, there
will be conflicts between the two configurations.

Appendix G describes the programming API that legacy NDK applications use to create a system
configuration.

Network Control Initialization Procedure (NETCTRL)

The stack library includes code to perform system initialization based on the configuration. Initialization of
the scheduling routines is performed by a network control layer called NETCTRL.

If you use the XGCONF configuration tool to configure the NDK, the following custom C functions are
generated for you to manage NDK startup and thread scheduling. See the Tl Network Developer's Kit
(NDK) User's Guide (SPRU523) for details. You should take care not to write application functions with
these names.

« ti_ndk config_Global_stackThread(): The NDK stack thread function.

» NetworkOpen(): function that is called automatically by NC_NetStart().
* NetworkClose(): function that is called automatically by NC_NetStart().
* NetworkIPAddr(): function that is called automatically by NC_NetStart().
» ti_ndk_config_Global_serviceReport(): Service report callback function.

Initialization Procedure

If you use the XGCONF configuration tool to configure the NDK, the ti_ndk_config_Global_stackThread()
function is automatically generated to handle the initialization process and to act as the NDK scheduler
thread. You can use XGCONF to configure Hook functions to be called at various point during the
initialization and thread scheduling. See the section on "Global Hook Configuration" in the Tl Network
Developer's Kit (NDK) User's Guide (SPRU523).

If you are not using the XGCONF configuration tool, see Section G.4 for the stack initialization process.

If you use the XGCONF configuration tool to configure the NDK, the basic process of stack initialization is
as follows:

1. Run the Stack Thread Begin (Global.stackBeginHook) hook function if one is configured. Note that no
NDK-related code can run in this hook function because the NC_SystemOpen() function has not yet
run.

2. Initialize the operating system environment with the initialization function NC_SystemOpen(Priority,
OpMode). This function must always be called first - before any other NDK related function. The
calling parameters determine the priority and operating mode of the network event scheduler.

SPRU524H—-May 2001 -Revised February 2012 Initialization and Configuration 79
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.ti.com/lit/pdf/spruex3
http://www.ti.com/lit/pdf/spru523
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Network Control Initialization Procedure (NETCTRL) www.ti.com

4.2.2

3. Create a new configuration via CfgNew() (which is called from generated code).
4. Run the Stack Thread Initialization (Global.stacklnitHook) hook function if one is configured.

5. The generated ti_ndk_config_Global_stackThread() function builds the new configuration via code
generated from the XGCONF configuration.

6. Boot the stack with the configuration by calling NC_NetStart(hCfg, pfnStart, pfnStop, pfnNetIP) with a
handle to the configuration, plus pointers to the three generated functions for start, stop, and IP
address change operations. The NC_NetStart() function does not return until the stack session has
terminated.

7. After some preliminary initialization, the NC_NetStart() function creates a new thread that calls the
generated NetworkOpen() function.

8. Run the Network Open (Global.networkOpenHook) hook function if one is configured.
9. The NetworkOpen() function creates task threads for its networking requirements.

10. Under normal operation, the network does not shut down until the NC_NetStop() function is called.
NC_NetStop() is called by the generated NetworkClose() function.

11. Run the Network Close (Global.networkCloseHook) hook function if one is configured. In this hook
function, the application should shut down any operation it initiated in the Network Open hook function
and free any allocated resources.

12. After the NetworkClose() function returns, NDK functionality is no longer available.

13. The original call to NC_NetStart() returns with the return value as set by the return parameter passed
in the call to NC_NetStop().

14. The application can immediately reboot the NDK by calling NC_NetStart() again, with or without
reloading a new configuration. This is useful for a reboot command.

When the system is ready for a final shutdown, the following actions are performed:

1. When NC_NetStart() returns and the session is over, run the Stack Thread Delete
(Global.stackDeleteHook) hook function if one is configured.

2. Call the CfgFree() function to free the configuration handle created with CfgNew().

3. After all resources have been freed, call the NC_SystemClose() function to complete the system
shutdown.

Function Overview

The system initialization access functions (in functional order) are as follows:

NC_SystemOpen() Initiate a system session
NC_SystemClose() Full system shutdown

NC_NetStart() Start the network with a supplied configuration
NC_NetStop() Halt the network, and pass a return code the caller of the NC_NetStart()
function
80 Initialization and Configuration SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com NC_SystemOpen — Initiate a System Session

4.2.3 Network Control APl Functions

NC_SystemOpen Initiate a System Session

Syntax int NC_SystemOpen(int Priority, int OpMode);
Parameters
Priority Network event scheduler task priority
OpMode Network event scheduler operating mode
Return Value Returns the status of the open call, zero on success, or one of the following on error.
NC_OPEN_ILLEGAL_PRIORITY Priority is not set to NC_PRIORITY_LOW or
NC_PRIORITY_HIGH.
NC_OPEN_ILLEGAL_OPMODE OpMode is not set to NC_OPMODE_POLLING or

NC_OPMODE_INTERRUPT. Or, attempt to combine
NC_OPMODE_POLLING with NC_PRIORITY_HIGH.

NC_OPEN_MEMINIT_FAILED Memory initialization failed.
NC_OPEN_EVENTINIT_FAILED Event initialization failed.
Description This is the first function that should be called when using the stack. It initializes the

stack's memory manager, and the OS (or OS adaptation layer). It also configures the
network event scheduler's task priority and operating mode.

Priority is set to either NC_PRIORITY_LOW or NC_PRIORITY_HIGH, and determines
the scheduler task's priority relative to other networking tasks in the system.

OpMode is set to either NC_OPMODE_POLLING or NC_OPMODE_INTERRUPT, and
determines when the scheduler attempts to execute. The interrupt mode is used in the
vast majority of applications.

Note that polling operating mode attempts to run continuously, so when polling is used,
Priority must be set to NC_PRIORITY_LOW.

NC_SystemClose Shutdown the System

Syntax void NC_SystemClose();

Parameters None.

Return Value None.

Description This is the last function that should be called when using the stack. It shuts down the

memory manager and performs a final memory analysis.

SPRU524H—-May 2001 -Revised February 2012 Initialization and Configuration 81

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

NC_NetStart — Start Network www.ti.com

NC_NetStart

Syntax

Parameters

hCfg
NetStartCb
NetStopCh
NetIPCb

Return Value

Description

IPAddr
Ifindex
fAdd

Start Network

int NC_NetStart(HANDLE hCfg, void (*NetStartCb)(), void (*NetStopCb)(), void
(*NetIPCDb)(IPN,uint,uint));

Handle to network configuration
Pointer to callback function called when network is started
Pointer to callback function called when network is stopped

Pointer to callback function called when an IP address is added or removed from
the system

Returns the integer value passed to NC_NetStop().

This function is called to boot up the network using the network configuration supplied in
hCfg. Along with the network configuration, three callback function pointers are provided.
These callback functions are called at distinct times. NetStartCh() is called when the
system is first ready for the creation of application supplied network tasks, NetStopCh()
is called when the network is about to shut down, and NetIPCb() is called when an IP
address is added or removed from the system. If any of these callback functions are not
required, the function pointers can be set to NULL.

The NC_NetStart() function will not return until the entire network session has
completed. Thus, all user supplied network code (creation of user tasks) should be
included in the NetStartCb() function.

When NetStartCh() is called, the configuration handle supplied in hCfg is the default
configuration handle for the system. The execution thread on which NetStartChb() is
called is not critical to event scheduling, but it should return eventually; i.e., the
application should not take control of the thread. If system shutdown is initiated before
this callback function returns, some resources may not be freed.

Excluding critical errors, NC_NetStart() will return only if an application calls the
NC_NetStop() function. The parameter passed to NC_NetStop() becomes the return
value returned by NC_NetStart().

Sometime after NC_NetStop() is called, but before NC_NetStart() returns, the
NC_NetStart() thread will make a call to the application's NetStopCb() callback function.
In this callback function, the application should shut down any task initiated in its
NetStartCb() callback.

When an IP addressing change is made to the system, the NetIPCh() function is called.
The callback function is declared as:

void Netl PCb(I PN I PAddr, uint Iflndex, uint fAdd);

IP Address being added or removed
Index of physical interface gaining or losing the IP address
Set to 1 when adding an address, or 0 when removing an address

The NetIPCb() callback is purely informational, and no processing is necessary on the
information provided.

There is an option for immediately calling NC_NetStart() again upon return, which
provides a good stack reboot function. Optionally, the configuration can also be
reloaded, which allows the stack to be restarted after a major configuration change.

82 Initialization and Configuration SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com NC_NetStop — Stop Network

NC_NetStop Stop Network

Syntax void NC_NetStop(int StopCode);

Parameters

StopCode Return code to be returned by NC_NetStart().

Return Value None.

Description This function is called to shut down a network initiated with NC_NetStart(). The return
value supplied in the StopCode parameter becomes the return value for NC_NetStart().
See the description of NC_NetStart() for more detail.

SPRU524H-May 2001 —-Revised February 2012 Initialization and Configuration 83

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Chapter 5
TEXAS SPRU524H—May 2001 —-Revised February 2012

INSTRUMENTS
Network Tools Library - Support Functions

Included with the stack package is a library of network tools. It provides auxiliary functionality to the stack
library and contains source written to the socket layer that would normally be considered application level
code. The library file is called NETTOOLS.LIB, and can be accessed by an application that includes the
file NETTOOLS. H.

The support supplied by NETTOOLS can be categorized into two classes: support functions and services.
The support functions consist of a programming API that can aid the development of network applications,
while services are servers that execute on the stack platform.

This section describes the NETTOOLS support functions. Please note that these services are all IPv4
based. Based on the IPv6 documentation, these applications can be easily re-written to use IPv6 sockets
instead for communication.

Topic Page
5.1 Generic SUPPOIT CallS ..unieieieieiiiiie ettt et e et et e et e e e e e a e e e e e e e e e e enenanns 85
5.2 DNS SUPPOIT CallS .uiuininieititieiiiiee e ettt e e e e e s et e e e e eaeaeare s e e e enenananns 89
LSRG T I el I U o 0o] o 92
5.4 TCP/UDP Server DaemOnN SUPPOIT .ouuiuiuiiitieieieeetiaieaeeeeasueeneessnseaeesansaeneaeansnsnens 93
84 Network Tools Library - Support Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

Generic Support Calls

5.1 Generic Support Calls

This section contains a selection of functions that can be very useful when programming network
applications. Some are standard Berkeley Software Distribution (BSD) Socket APIs while others are
custom to the stack - designed to save you the time and trouble of programming directly to the stack API.

5.1.1 Function Overview

The following is a summary of the support functions described in this section:

inet_addr() Convert a string to a 32 bit IP address in network format
inet_aton() Convert a string to an in_addr structure record
NtAddNetwork() Add a host network to a logical interface handle
NtRemoveNetwork() Remove a network added with NtAddNetwork()
NtAddStaticGateway() Add a static gateway route to the route table
NtRemoveStaticGateway() Remove a static gateway route

Ntlfldx2lp() Get the IP host address assigned to a physical interface Index
NtGetPublicHost() Get the system public IP address and domain name
NtIPN2Str() Convert 32 bit IP address in network format to string

5.1.2 Network Tools Support APl Functions

inet_addr

Syntax

Parameters

strptr

Return Value

Return 32-bit Binary Network Ordered IPv4 Address

IPN inet_addr(char *strptr);

Pointer to character string

IP address or NULL.

Description This function converts an IP address printed in a character string to a 32-bit network
ordered IP address value. Note that leading Os in the address string are interpreted as
octal. The function returns NULL on failure.

This function actually calls inet_aton(), which is the better form of the function.

SPRU524H-May 2001 —-Revised February 2012 Network Tools Library - Support Functions 85

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

inet_aton — Convert IP Address from String and Return in in_addr Structure

13 TEXAS
INSTRUMENTS

www.ti.com

inet_aton

Syntax

Parameters

strptr
pa

Return Value

Description

NtAddNetwork

Syntax

Parameters

hiF
IPHost
IPMask

Return Value

Description

NtRemoveNetwork

Syntax

Parameters

hBind

Return Value

Description

Convert IP Address from String and Return in in_addr Structure

int inet_aton(char *strptr, struct in_addr *pa);

Pointer to character string
Pointer to address structure

1 on success or 0 on failure.

This function converts an IP address printed in a character string to a 32-bit network
ordered IP address value. Note that leading Os in the address string are interpreted as
octal. The function return writes the IP address into the in_addr structure pointed to by
the pa parameter. The function returns 1 on success and 0 on failure.

Add Host Network to Interface by IF Handle

HANDLE NtAddNetwork(HANDLE hIF, IPN IPHost, IPN IPMask);

Handle to target interface
IP Host Address (in network format)
IP Host Subnet Mask (in network format)

Handle to network binding on success or NULL on failure.

This function attempts to add the specified IP host address (and mask) to the specified
logical interface handle. The function returns a handle to the binding that binds the IP
address to the interface. On an error, the function returns NULL. The most common
error would be that adding the host address caused a duplicate IP indication from
another host.

NOTE: In place of this function, consider using the configuration system with the

CFGTAG_IPNET configuration entry (see Section G.3.3).

Remove Host Network from Interface

void NtRemoveNetwork(HANDLE hBind);

Handle to network binding returned by NtAddNetwork().

None.

This function removes a network that was previously added with NtAddNetwork().

86 Network Tools Library - Support Functions

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com NtAddStaticGateway — Add Static Gateway Route to the Route Table

NtAddStaticGateway Add Static Gateway Route to the Route Table

Syntax HANDLE NtAddStaticGateway(IPN IPDestAddr, IPN IPDestMask, IPN IPGateAddr);
Parameters
IPDestAddr IP address of destination (in network format)
IPDestMask IP subnet mask of destination (in network format)
IPGateAddr IP address of next hop gateway (in network format)
Return Value Handle to newly created route or NULL on error.
Description This function adds a static gateway route to the system route table.

IPDestAddr is the IP base address of the IP network of the network that is made
accessible via the IP gateway. This value should be pre-masked with the IPDestMask so
that:

(IPDestAddr & IPDestMask) = IPDestMask
This is used as a sanity check by the system. For a default route, the value is zero.

IPDestMask is the mask of the IP network accessible by the IP gateway. For a host
route, the value is OXFFFFFFFF, while for a default route, the value is zero.

IPGateAddr is the IP address of the gateway through which the specified IP network is
accessible. It must be an IP address that is available on a locally connected network,
i.e., one gateway cannot point to another.

The function returns a handle to the route created by this configuration entry. All routes
are represented as route handles internally to the stack. This is discussed further in the
appendices at the end of this document. Note that the handle returned here is not
referenced (see the appendix for more details). All it means for the purposes of this
function is that the handle can be discarded by the caller. It will remain valid until the
route is removed via NtRemoveStaticGateway().

NOTE: In place of this function, consider using the configuration system with the
CFGTAG_ROUTE configuration entry (see Section G.3.4).

NtRemoveStaticGateway Remove Static Gateway Route from the Route Table

Syntax int NtRemoveStaticGateway(IPN IPTarget);
Parameters
IPTarget IP address of destination to remove (in network format)
Return Value Returns 1 if the route was removed, or 0O if it was not found.
Description This function removes a static gateway route from the system route table. It searches for

the route by destination IP address and will remove the first matching static route it finds.
Note that only routes with both the GATEWAY and STATIC flags set are considered for
removal.

SPRU524H—-May 2001 -Revised February 2012 Network Tools Library - Support Functions 87

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

NtIfldx2lp — Get the 32-bit Representation of the IP Address of an Interface Index

13 TEXAS
INSTRUMENTS

www.ti.com

NtIfldx2Ip

Syntax

Parameters

Ifldx
pIPAddr

Return Value

Description

NtGetPublicHost

Syntax

Parameters

pIPAddr
MaxSize
pDomain

Return Value

Description

NtIPN2Str

Syntax

Parameters

IPAddr
pStrBuffer

Return Value

Get the 32-bit Representation of the IP Address of an Interface Index

int Ntifldx2lp(uint Ifldx, IPN *pIPAddr);

Index of physical interface
Pointer to receive IP address

Returns 1 if an address was found, or O if it was not found.

This function obtains the first IP host address found that is assigned to the supplied
interface Index. The host address (in network format) is written to the pointer pIPAddr.

Get the System Public IP Address and Domain Name

int NtGetPublicHost(IPN *pIPAddr, uint MaxSize, UINT8 *pDomain);

Pointer to receive IP address
Size of string buffer pointed to by pDomain
Pointer to string buffer to receive domain name

Returns 1 if information was found, or 0 if it was not found.

This function gets the best IP address and domain name to use for access to the
external network. For determining the best address and domain name, public addresses
and domain names are preferred over IP addresses and domain names of virtual

networks. The IP address (in network format) is written to pIPAddr, and the domain
name is copied to pDomain.

Convert 32-bit IP Address in Network Format to String

void NtIPN2Str(IPN IPAddr, char *pStrBuffer);

IP address in network format
Pointer to receive IP address string

None.

Description This function performs a sprintf() of the IP address supplied in IPAddr to the buffer
supplied in pStrBuffer. Note that no buffer size is provided. This is because the size is
deterministic, and will not exceed 16 characters (including the NULL terminator).

88 Network Tools Library - Support Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com DNS Support Calls

5.2 DNS Support Calls

The concepts and code behind the Unix gethostbyname() and gethostbyaddr() functions is extensive, and
there are public domain versions available, which can be easily run on the IP stack library.

Although the code to support the whole name, address and server database is quite large, the basic name
resolution functions are quite useful. For this reason, the stack provides a basic form of these function
calls, without incurring the overhead associated with a full implementation. The DNS resolver used by
these client functions is the same as accessed by the DNS server. When the configuration contains client
machine records (i.e., controls local domain names), these entries are checked when the matching
domain is encountered. Otherwise (and for all other queries), the query is resolved via external DNS
servers.

In addition to providing a more compact implementation, the calls provided here are reentrant, which is not
true of the standard Unix counterparts.

5.2.1 Function Overview
The following is a summary of the support functions described in this section:

DNSGetHostname() Return the hostname of the current host
DNSGetHostByAddr() Resolve a hostname from an IP address
DNSGetHostByName() Resolve a hostname and IP address from a hostname

5.2.2 Standard Types and Definitions

5.2.2.1 Host Entry Structure

The DNS client functions all take a pointer to a buffer. They treat this buffer as a pointer to a host entry
structure. If the function takes a pointer to a scrap buffer, a host entry structure is allocated from the start
of this scrap buffer. Thus, on successful return from one of these calls, the pointer to the scrap buffer may
be treated as a pointer to a host entry structure.

The structure differs slightly from the conventional definition. It is defined as follows:

/1

/1 Host Entry Structure
/1

struct _hostent {

char *h_nane; /1 Oficial nanme of host

int h_addrtype; // Address Type (AF_I NET)

int h_l engt h; /'l Address Length (4)

int h_addrcnt; // Nunmber of |P addresses found

I PN h_addr[8]; // List of up to 8 IP addresses (network fornat)
H

typedef struct _hostent HOSTENT;

SPRU524H-May 2001 —-Revised February 2012 Network Tools Library - Support Functions 89

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

DNSGetHostname — Return the Hostname of the Current Host www.ti.com

5.2.2.2 Function Return Codes

DNS functions that return an error code use the following definitions. Those that are obtained directly from
a DNS response packet are so noted:

NOERROR 0 (DNS Reply Code) No error

FORMERR 1 (DNS Reply Code) Format error

SERVFAIL 2 (DNS Reply Code) Server failure

NXDOMAIN 3 (DNS Reply Code) Non existent domain

NOTIMP 4 (DNS Reply Code) Not implemented

REFUSED 5 (DNS Reply Code) Query refused

OVERFLOW 16 Scrap Buffer Overflow

MEMERROR 17 Memory Allocation Error (used for packets and temp storage)
SOCKETERROR 18 Socket Error (call fdError() for socket error number)
NODNSREPLY 19 No DNS server response

5.2.3 DNS Support API Functions

DNSGetHosthame Return the Hostname of the Current Host

Syntax int DNSGetHostname(char *pNameBuUuf, int size);
Parameters
pNameBuf Pointer to a buffer to accept the hostname
size Size of the supplied buffer in bytes
Return Value Error code as defined above.
Description This function is quite similar to BSD's gethostname(). It requests the hosthame of the

system's public IP address (as obtained from NtGetPublicHost()). The hostname is
copied into the buffer pointed to by pNameBuf with a maximum size of size. The name is
NULL terminated when space allows.

90 Network Tools Library - Support Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com DNSGetHostByAddr — Resolve a Hostname from an IP Address

DNSGetHostByAddr Resolve a Hostname from an IP Address

Syntax int DNSGetHostByAddr(IPN IPAddr, void *pScrapBuf, int size);

Parameters
IPAddr IP address to resolve, in network format
pScrapBuf Pointer to a scrap buffer from which a HOSTENT structure will be allocated
size Size of the supplied scrap buffer in bytes

Return Value Error code as defined above.

Description This function is quite similar to BSD's gethostbyaddr(). It uses DNS to resolve a

hostname from the supplied IP address. On a successful return, pScrapBuf can be
treated as a HOSTENT structure. The size of the scrap buffer (size) must be greater
than the size of the structure as the structure will contain pointers into the scrap buffer,
and the scrap buffer is also used for temporary name storage. 512 bytes should be
sufficient for most requests.

DNSGetHostByName Resolve a Hostname/Address from a Hostname

Syntax int DNSGetHostByName(char *Name, void *pScrapBuf, int size);
Parameters
Name Null terminated Hostname to resolve (with or without trailing '.")
pScrapBuf Pointer to a scrap buffer from which a HOSTENT structure will be allocated
size Size of the supplied scrap buffer in bytes
Return Value Error code as defined above.
Description This function is quite similar to BSD's gethostbyname(). It uses DNS to resolve an official

hostname and address from the supplied hostname. On a successful return, pScrapBuf
can be treated as a HOSTENT structure. The size of the scrap buffer (size) must be
greater than the size of the structure as the structure will contain pointers into the scrap
buffer, and the scrap buffer is also used for temporary name storage. 512 bytes should
be sufficient for most requests.

If the hosthame Name is terminated with a dot (.), the dot is removed prior to lookup. If a
dot appears anywhere in Name, an initial lookup on the unaltered name is attempted. If
Name does not contain a dot, or if the initial lookup fails, the default domain name (from
NtGetPublicHost()) is appended to the end of the supplied name. For example, if the
domain name obtained from NtGetPublicHost() was ti.com, then a request for host.sc
would attempt to resolve host.sc first, and then host.sc.ti.com, while a request for host
would attempt to resolve host.sc.ti.com on the initial attempt.

SPRU524H—-May 2001 -Revised February 2012 Network Tools Library - Support Functions 91

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

TFTP Support www.ti.com
5.3 TFTP Support

TFTP is supported via the received function. More information on TFTP can be found in RFC783, released
by the Internet Engineering Task Force (IETF) organization.

5.3.1 TFTP Support API Functions
TFTP is accessed through this API. The network tools include the file NETTOOLS. H, which is required.

NtTftpRecv Retrieve Data from a TFTP Server
Syntax int NtTftpRecv(UINT32 Tftplp, char *szFileName, char *pFileBuffer, UINT32 *pFileSize,
UINT16 *pErrorCode);
Parameters
Titplp IP Address in network format
szFileName Pointer to null terminated filename string
pFileBuffer Pointer to buffer to receive file data
pFileSize Pointer to size of buffer on input, returns as size needed or used
pErrorCode Pointer to where to write TFTP server error code (if any)
Return Value This function returns an error code indicating the results of the operation. Negative
codes are error conditions.
In the following cases, pFileSize is set to the actual file size:
0 Successful transfer and copy
1 Successful transfer, with partial copy (file size too large)

In the following cases, pFileSize is set to the actual number of bytes copied:
TFTPERROR_ERRORREPLY Error returned by TFTP server (see below)
TFTPERROR_BADPARAM Invalid calling parameters
TFTPERROR_RESOURCES Memory allocation error during transfer
TFTPERROR_SOCKET Internal socket error during transfer
TFTPERROR_FAILED TFTP failed (e.g., server did not reply)

In the case of TFTPERROR_ERRORREPLY, the server error code written to

*pErrorCode should be one of the following standard TFTP codes, and the error

message is copied to *pFileBuffer:

0 Not defined, see error message (if any).
1 File not found.
2 Access violation.
3 Disk full or allocation exceeded.
4 lllegal TFTP operation.
5 Unknown transfer ID.
6 File already exists.
7 No such user.
92 Network Tools Library - Support Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
www.ti.com TCP/UDP Server Daemon Support
Description TFTP (Trivial File Transfer Protocol), allows files to be transferred from a remote

machine.

This function attempts to receive the file with the filename designated by szFileName
from the TFTP server with the IP address in Tftplp, and copy the data into the memory
buffer pointed to by pFileBuffer. Note that when specifying the name of the file in
szFileName, certain operating systems have case sensitive naming conventions.

On entry, the parameter pFileSize must point to the size of the buffer pointed to by
pFileBuffer. If the value at *pFileSize is null, the pFileBuffer parameter can be NULL.

This function attempts to receive the entire file, even if the buffer space is insufficient.
The return value indicates if the file was received.

A return value of 1 indicates that the file was received and copied into the buffer. A
return value of 0 indicates that the file was received, but was too large for the specified
buffer. In both these cases, the actual size of the file in bytes is written back to
*pFileSize.

A negative return value indicates that an error has occurred during transfer. In this case,
the number of bytes actually consumed in the buffer is written back to *pFileSize. An
error return of TFTPERROR_ERRORREPLY is a special return value that indicates that
an error code was returned from the TFTP server. In this case, the server's TFTP error
code is written to *pErrorCode, and the server's TFTP error message string is copied to
the data buffer pointer to by pFileBuffer.

5.4 TCP/UDP Server Daemon Support

A server daemon is a single network task that monitors the socket status of multiple network servers.
When activity is detected, the daemon creates a task thread specifically to handle the new activity. This is
more efficient than having multiple servers, each with their own listening thread.

SPRU524H-May 2001 —-Revised February 2012 Network Tools Library - Support Functions 93

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

DaemonNew — Create a New TCP/UDP Server Entry www.ti.com

5.4.1 Server Daemon Support APl Functions

Entries in the server daemon are created and destroyed through the following APIs. The network tools
include the file NETTOOLS. H, which is required.

DaemonNew

Syntax

Parameters

Type
LocalAddress
LocalPort
pCh

Priority
StackSize
Argument
MaxSpawn

Return Value

Description

DaemonFree

Syntax

Parameters

hEntry

Return Value

Create a New TCP/UDP Server Entry

HANDLE DaemonNew(uint Type, IPN LocalAddress, uint LocalPort, int
(*pChb)(SOCKET,UINT32), uint Priority, uint StackSize, UINT32 Argument, uint
MaxSpawn);

Socket type (SOCK_STREAM, SOCK_STREAMNC, or SOCK_DGRAM)
Local IP address (set to NULL for wildcard)

Local Port to serve (cannot be NULL)

Pointer to callback to handle server event (connection or activity)
Priority of new task to create for callback function

Stack size of new task to create for callback function

Argument (besides socket) to pass to callback function

Maximum number of callback function instances (must be 1 for UDP)

This function returns a handle to a daemon , or NULL on error.

Once a new entry is created, the daemon will create the desired TCP or UDP socket,
and start listening for activity.

In the case of TCP, when a new connection is established, a new task thread is created,
and a socket session is opened. Then the user's callback function is called on the new
task thread, being supplied with both the socket to the new connection and the caller
specified argument (as supplied to DaemonNew()). The callback function can keep the
socket and task thread for as long as necessary. It returns from the callback once it is
done with the connection. The function can choose to close the socket if desired. The
return code informs the daemon whether the socket has been closed (0) or is still open

(D).

In the case of UDP, when any data is available on the UDP socket, a new task thread is
created, and a socket session is opened. Then the user's callback function is called on
the new task thread, being supplied with both the UDP socket and the caller specified
argument (as supplied to DaemonNew()). The callback function can keep the socket and
task thread for as long as necessary. It returns from the callback only when it is done
with the data. (While the callback function holds the UDP socket, the daemon will ignore
further activity on it.) The callback should return 1, as it should not close the UDP socket.

Destroy a TCP/UDP Server Entry

void DaemonFree(HANDLE hEntry);

Handle to server entry returned from DaemonNew()

None.

Description Destroys a daemon entry, and closes the socket session of all child tasks spawned from
the entry. Closing the socket sessions will result in all socket functions returning
SOCKET_ERROR in all spawned child tasks. Thus, all spawned tasks should error out
and return to the daemon, allowing them to be freed.

94 Network Tools Library - Support Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com DaemonFree — Destroy a TCP/UDP Server Entry

5.4.2 Server Daemon Example

The following is an example TCP echo server using the server daemon. The TCP server will use
SOCK_STREAMNC for non-copy TCP. Its only job is to read from the socket, and write back what it
reads.
To install the server on port 7, use the following code:
hEcho = DaenpnNew(SOCK_STREAMNC, 0, 7, dtask_tcp_echo,

OS_TASKPRI NORM OS_TASKSTKNORM 0, 3);

This code allows up to three echo sessions to be running simultaneously on different threads. Note the IP
specified is NULL, allowing echo connection on any local IP address assigned to the system.

To destroy the server and all its instances, the hEcho handle returned from DaemonNew() is used:
DaenonFree(hEcho);

The code for the callback function dtask_tcp_echo() is as follows:
int dtask_tcp_echo(SOCKET s, U NT32 unused)

{
struct tineval to;
int |;
char *pBuf;
HANDLE hBuffer;
(voi d) unused;
/1 Configure our socket tineout to be 5 seconds
to.tv_sec = 5;
to.tv_usec = 0;
set sockopt (s, SOL_SOCKET, SO SNDTI MEO, &to, sizeof(to));
set sockopt (s, SOL_SOCKET, SO RCVTI MEQ, &to, sizeof(to));
I =1;
set sockopt (s, | PPROTO TCP, TCP_NOPUSH, &, 4);
for(;;)
{
I = (int)recvnc(s, (void **)&Buf, 0, &hBuffer);
/1 If we read data, echo it back
if(l >0)
{
if(send(s, pBuf, I, 0) <0)
br eak;
recvncfree(hBuffer);
}
/'l 1f the connection got an error or disconnect, close
el se
br eak;
}
fdC ose(s);
/1 Return "0" since we closed the socket
return(0);
}
SPRU524H-May 2001 —-Revised February 2012 Network Tools Library - Support Functions 95

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Chapter 6

SPRU524H—May 2001 —-Revised February 2012

TeEXAS
INSTRUMENTS

Network Tools Library - Services

Included with the stack package is a library of network tools. It provides auxiliary functionality to the stack
library and contains source written to the socket layer that would normally be considered application level
code. The library file is called NETTOOLS.LIB, and can be accessed by an application that includes the
file NETTOOLS. H.

The support supplied by NETTOOLS can be categorized into two classes: support functions and services.
The support functions consist of a programming API that can help develop network applications, while
services are servers that execute on the stack platform.

This section describes the NETTOOLS services. Note that these services are all IPv4 based. Based on
the IPv6 documentation, these applications can be easily re-written to use IPv6 sockets instead for
communication.

Topic Page
6.1 Service Calling CONVENTIONS . .ucuiuiuiuininieieit it eeenea et et e e eeenenea e e ae e eaeenenanns 97
LA 1= g L= A= =T Y= T o = 99
6.3 DHCP SEIVEI SEIVICE eiuiuiititieii et ettt e ettt a e a s et aaaa e et e eaeneeneanns 100
(0 B o [= O 1= o} YU o o 1] PP 102
Lo T o I =T Y= S U 0] o0 S 104
5.6 DINS SEIVEI SOIVICE tuuiutintiuiittt ettt ettt et e ettt a e s et taeaaeaeeneaasneeneanrneeneaasneenenes 105
6.7 Network Address Translation (NAT) SErVICEieiiiiiiiiiininiieieaeaaeeenrneeeneenenes 106
96 Network Tools Library - Services SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com Service Calling Conventions

6.1 Service Calling Conventions

6.1.1 Specifying Network Services Using the Configuration

If you are using XGCONF to configure your application, you can configure network services to be enabled

in the application by checking the box in the property sheet to add the module to your configuration. See

the SPRU523 (T Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

For use in legacy applications, this manual contains descriptions of the direct and configuration APIs used

to add services to an application. If you are using XGCONF for configuration, you can ignore these APIs.
Although each service has it own specific API, it is usually more convenient to add services by specifying

the service in the system configuration as opposed to calling their individual Open and Close API

functions. Included in the description of each network service is a description of its direct API, as well as

an example of specifying the service in the system configuration.

6.1.1.1 Service Report Function

All the configuration examples in this section use a common service report callback function. The following

is a very simple implementation of a service report function that calls printf() to print service status.

Note that this function relies on the physical value of items in the configuration specification found in the

file: inc\nettools\netcfg.h.

static char *TaskName[] = { "Tel net", "HTTP", " NAT", "DHCPS", " DHCPC', "DNS" };
static char *ReportStr[] = """ Runni ng", "Updat ed", " Conpl ete", "Faul t" };
static char *StatusStr[] = "Di sabl ed","Wai ting","|PTernt, "Fail ed", "Enabl ed" };

o~

static void ServiceReport(uint Item uint Status, uint Report, HANDLE h)
{
printf("Service Status: %9s: %9s: % 9s: %©3d\n",
TaskNane[Item 1], StatusStr[Status],
Report Str[Report/256], Report&XxFF);

6.1.2 Invoking Network Services by NETTOOLS API

If you are using XGCONF to configure your application, you can configure network services to be enabled

in the application by checking the box in the property sheet to add the module to your configuration. See

the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

For use in legacy applications, this manual contains descriptions of the APIs used to add services to an
application. Calls to these APIs are generated automatically by the XGCONF configuration. If you are

using XGCONF for configuration, you can ignore the APIs described here.

Each service API uses a common calling format. This allows the services to be invoked by the
configuration system using callback functions provided in the Network Control software (which also

performs system initialization). It is preferable to launch services via the configuration system, instead of

manually calling each Open and Close function described in the following sections. However, because the

source to the Network Control software uses these calls, they are documented here.

The common calling interface consists of a simple Open and Close concept. The Open function initiates

the service and returns a service handle, while the Close function shuts down the service using the
service handle returned from the Open call.

Each service Open call takes at least one parameter. This parameter is a pointer to a common argument

structure called NTARGS. The specification of this structure is as follows:
typedef struct _ntargs {

int Cal | Mbde; /] Determnes desired calling node

#defi ne NT_MODE_| FI DX1 /1 Call by specifying Ifldx

#defi ne NT_MODE_| PADDR2 /1 Call by specifying | PAddr
int 1 f1dx; /'l Physical interface |Index (0-n)
I PN | PAddr ; /1 | P Address
HANDLE hCal | back; /1 Handle to pass to callback function
voi d(*pCh) (HANDLE, uint); // Callback for status change

} NTARGS;

SPRU524H—-May 2001 -Revised February 2012 Network Tools Library - Services 97

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Service Calling Conventions www.ti.com

Note that this entry structure is a simplified version of that provided by the configuration system. This
structure also contains a callback function. The callback function is a subset of that in the configuration
system, and codes returned by this callback are passed through the configuration callback to the
application.

The individual fields are defined as follows:

int Call Mbde;

This parameter determines how the service is launched, either by IP address or by interface index (1 to
n). Some services can be launched either on a specific interface (1 to n) or on a specific IP address,
which can also be the wildcard INADDR_ANY. Generally, any service that accepts an IP address can
also accept an interface. The service will look up the IP address for the specified interface.

Other services can only be executed by interface and are independent of IP address. These are said to
be compatible with NT_MODE_IFIDX only.

The value of CallMode can be one of the following:

NT_MODE_IFIDX Call by specifying the interface Index (1 to n)
NT_MODE_IPADDR Call by specifying IP address in network format
int Ifldx;

This is the physical interface index (1 to n) on which the service is to be executed. For example, when
launching a DHCP server service, the physical interface is that connected to the home network. For
more generic services (like Telnet), the service can be launched by a pre-defined IP address (or
INADDR_ANY as a wildcard). When launching by IP address only, this field is left NULL. When this
field is used, CallMode should be set to NT_MODE_IFIDX.

| PN | PAddr ;

This is the IP address (in network format) on which to initiate the service. This IP address can specify
the wildcard INADDR_ANY, in which case the service will accept connections to any valid IP address
on any device. Note that some services (like DHCP server) do not support being launched by IP
address. When this field is used, CallMode should be set to NT_MODE_IPADDR.

HANDLE hCal | back;

This is the caller supplied handle that is passed back to the caller when the status callback function is
invoked (see below).

void (*pCb) (HANDLE, uint);

This is a pointer to a caller supplied callback function by which the service reports status.
The specification of this callback is:

voi d cbFun(HANDLE hCal I back, ui nt

Nt St at us) ;
hCallback Handle supplied to the service by the caller
NtStatus NetTools Service Status code

The NtStatus parameter consists of an upper byte that is predefined, and a lower byte that is specific
to the service. When masked with ~OxFF (NOT OxFF), the value will be one of the following:

NETTOOLS STAT_NONE. Nothing reported

NETTOOLS_STAT_RUNNING Service is initialized (running)

NETTOOLS STAT _PARAMUPDATE The service parameter structure has changed (the
configuration containing this structure should be
saved)

NETTOOLS_STAT_COMPLETED The service has run to completion

NETTOOLS STAT FAULT The service has halted due to a fault

98 Network Tools Library - Services SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

TEXAS

INSTRUMENTS

www.ti.com Telnet Server Service

6.2

6.2.1

Note that this callback function does not go directly to the application when using the configuration
system. These codes are supplied to the configuration service callback in the Code parameter.

An optional second parameter to each service Open function is a pointer to a private service parameter
structure. In the configuration section of this document, the individual service parameter structures
were included in the specification of the configuration entry instance structure for each service.

Telnet Server Service

If you are using XGCONF to configure your application, you can configure Telnet to be enabled in the
application by checking the box in the property sheet to add the module to your configuration. See the
SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

The Telnet Server service provides a mechanism for exposing a stream IO connection to any remote
telnet client console.

A telnet connection is basically just a TCP connection to the well-known port designated for telnet.
However, there is some data translation that occurs on the stream. Telnet has a set of commands that can
change the behavior of the terminal, and can perform some character translation. The telnet server
supplied here is designed to convert a normal TTY stream to a telnet stream and back. This allows any
application to treat a telnet session as any other TTY session (like a serial port).

Connection to an application is achieved by use of an application supplied callback function that telnet
calls when a new connection is established. This callback function returns the file descriptor of one end of
a full duplex communications pipe. By allowing multiple calls to the callback function, console applications
can be written to work with multiple 10 streams.

Telnet Parameter Structure

This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here.

The following structure defines the unique parameters of the Telnet service. It is located in the file:
inc\nettools\inc\telnetif.h.
/1
/1 Tel net Parameter Structure
11
typedef struct _ntparamtel net {
int MaxCon; /1 Max nunber of telnet connections
int Port; /1l Port (set to NULL for telnet default)
int (*Cal | back) (PSA); // Connect function returns |ocal pipe
} NTPARAM TELNET;

MaxCon Maximum number of simultaneous telnet sessions (1 to 24)
Port TCP port to use for Telnet (set to zero for Telnet default)

Callback Pointer to a callback function that takes a pointer to a sockaddr
structure, and returns a local file descriptor to one end of a full
duplex communications pipe

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.

SPRU524H-May 2001 —-Revised February 2012 Network Tools Library - Services 99
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

TelnetOpen — Create an Instance of the Telnet Server www.ti.com

6.2.2 Invoking the Service via NETTOOLS API

In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

TelnetOpen Create an Instance of the Telnet Server

Syntax HANDLE TelnetOpen(NTARGS *pNTA, NTPARM_TELNET *pNTP);

Parameters

PNTA Pointer to common argument structure used by all services
pNTP Pointer to Telnet parameter structure

Return Value Returns a handle to the new telnet server instance, or NULL if the service could not be
created. This handle is used with TelnetClose() to shut down the server when it is no
longer needed.

Description When a telnet session is established, a telnet child task is spawned that will call the
supplied callback function. This callback function should return a local file descriptor of
one end of a full duplex pipe. If the callback function returns -1, the connection is
aborted. When either the terminal or telnet connection end of the pipe is broken, the
other connection is closed and the session is ended.

TelnetClose Destroy an Instance of the Telnet Server

Syntax void TelnetClose(HANDLE hTelnet);

Parameters

hTelnet Handle to telnet server instance obtained from TelnetOpen()

Return Value None.

Description Destroys the instance of the telnet server indicated by the supplied handle. Once called,
the server is shut down and no further telnet sessions can be established. Also, all
spawned connections are immediately terminated.

6.3 DHCP Server Service

When acting as a router, the NDK may also need to maintain the network configuration on one of its
network devices. A DHCP server allows the stack to maintain the IP address of multiple Ethernet client
devices. When combined with Network Address Translation (NAT), the DHCP server can be used to
establish client membership in a private virtual network.

If you are using XGCONF to configure your application, you can configure the DHCP server to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

6.3.1 Operation

The DHCP server can be optionally configured to allocate IP addresses out of a pool that is specified by
an IP base address and the number of addresses in the pool. If no pool is specified, the server will use
static client entries in the configuration system to resolve client address requests.

The server will respond to DHCP requests from a single Ethernet device. This allows for isolation of clients
for a given interface, and allows multiple instances of the DHCP server to manage different IP address
pools for different interfaces.

100 Network Tools Library - Services SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

WWW.1i

TEXAS
INSTRUMENTS

i.com DHCPSOpen — Open a DHCP Server

6.3.2

6.3.3

DHCP Server Parameter Structure

This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here.

The following structure defines the unique parameters of the DHCP server service. It is located in the file:
inc\nettools\inc\dhcpsif.h.
/1
/| DHCPS Paraneter Structure
/1
typedef struct _ntparamdhcps {
uint Flags; /1 DHCPS Execution Control Flags
I PN Pool Base; /1 First | P address in optional pool
uint Pool Count; // Nunber of addresses in optional pool
} NTPARAM_DHCPS;

» Flags - Execution control flags. Can be any combination of the following:

DHCPS_FLG_LOCALDNS Causes DHCPS to report its own IP address as the local
DNS server to clients. If this flag is not set, DHCPS
reports the DNS servers as contained in the SYSINFO
portion of the configuration.

DHCPS_FLG_LOCALDOMAIN Causes DHCPS to report the local domain name
assigned to the virtual network to clients. If this flag is not
set, DHCPS reports the public domain name to clients.

e PoolBase - The first IP address (in network format) of the address pool.
* PoolCount - The number of addresses in the address pool.

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.

Invoking the Service via NETTOOLS API

In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

DHCPSOpen Open a DHCP Server

Syntax HANDLE DHCPSOpen(NTARGS *pNTA, NTPARAM_DHCPS *pNTP);

Parameters

PNTA Pointer to common argument structure used by all services.
pPNTP Pointer to DHCP parameter structure

Return Value Returns a HANDLE to a DHCPS instance structure that is used in calls to other DHCPS
functions like DHCPSClose().

Description This function is called to initiate DHCPS control of an IP address pool on a given
interface. The base address of the address pool does not have to be the first IP address
in the subnet.

The DHCP Server executes on a specific interface. Thus, it is compatible with
NT_MODE_IFIDX only.
SPRU524H—-May 2001 -Revised February 2012 Network Tools Library - Services 101

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
DHCPSClose — Close an Instance of the DHCP Server www.ti.com
DHCPSClose Close an Instance of the DHCP Server
Syntax void DHCPSClose(HANDLE hDHCPS);
Parameters
hDHCPS Handle to a DHCP server instance obtained from DHCPSOpen()
Return Value None.
Description This function is called to terminate DHCPS control of the previously supplied interface.
This call also destroys the supplied DHCP server instance handle hDHCPS.
6.4 DHCP Client Support

6.4.1

At system start up, the DHCP client will try and acquire an IP address from the DHCP servers available on
the network.

Note that the client will accept the first IP address offered and that the INIT-REBOOT State (which
requests a previously assigned IP address) is not currently implemented.

More information on DHCP can be found in RFC2131 and RFC2132, released by the Internet Engineering
Task Force (IETF) organization.

If you are using XGCONF to configure your application, you can configure the DHCP client to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (Tl Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

Operation

The DHCP client is a special service that always executes immediately in a system. It is usually after the
DHCP client obtains a public IP address that most of the other services in the system can initialize.

The DHCP client code makes more use of the service status report callback function than most of the
other services. Recall from the beginning of this section that the least significant byte of the report code is
reserved for service specific information.

The following report codes are returned in the LSB of the report code sent by the DHCP service:

DHCPCODE_IPADD An IP client address had been added to the system
DHCPCODE_IPREMOVE An IP client address has been removed from the system
DHCPCODE_IPRENEW An IP client address has been renewed

Note that in each of the above cases, the DHCP portion of the system information configuration (the first
256 entries of CFGTAG_SYSINFO) has been erased and potentially reprogrammed. If an application
needs to share the DHCP portion of the system information configuration, these DHCP report codes can
be used to signal when to add additional application specific tags. For more information on DHCP and the
CFGTAG_SYSINFO tag, see Section G.3.7.

102

Network Tools Library - Services SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

WWW.1i

TEXAS
INSTRUMENTS

i.com DHCPOpen — Open a DHCP Server

6.4.2

6.4.3

DHC

DHCP Client Parameter Structure

This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here.

The following structure defines the unique parameters of the DHCP client service. It is located in the file:
inc\nettools\inc\dhcpif.h.
/1
/| DCHP Paraneter Structure
/1
#defi ne DHCP_MAX_OPTIONS 64 // Max nunber of allowed options
typedef struct _ntparam dhcp {
U NT8 *pOptions; /1 Options to request
int | en; /'l Length of options |ist
} NTPARAM DHCP;

pOptions Pointer to additional DHCP option tags to request. The list is used
when additional information must be obtained from the DHCP
server. Up to DHCP_MAX_OPTIONS tags can be specified. This
pointer can be NULL when len is set to 0.

len Specifies the length in bytes of the list pointed to by pOptions.

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.
Invoking the Service via NETTOOLS API

In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

POpen Open a DHCP Server

Syntax HANDLE DHCPOpen(NTARGS *pNTA , NTPARAM_DHCP *pNTP);

Parameters

PNTA Pointer to common argument structure used by all services
pPNTP Pointer to DHCP parameter structure

Return Value Returns a HANDLE to a DHCP instance structure, which is used in calls to other DHCP

functions like DHCPClose().

Description This function is called to initiate DHCP control of a given device.

DHCPOpen() starts the DHCP process. This process will discover if there are any DHCP
servers on the network and request an IP address. The result of the search for an IP
address will be passed to the application via the standard network tools status callback.

The Client will remain running so it can renew the IP address when necessary.

For any additional option tags entered into the DHCP client parameter structure, the
resulting information from the DHCP server is written to the system configuration under
the CFGTAG_SYSINFO entry. See Section G.3.7 for more information.

The DHCP Client executes on a specific interface. Thus, it is compatible with
NT_MODE_IFIDX only.

SPRU524H—-May 2001 -Revised February 2012 Network Tools Library - Services 103
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

DHCPClose — Close an Instance of the DHCP Client www.ti.com

DHCPClose Close an Instance of the DHCP Client

Syntax void DHCPClose(HANDLE hDHCP);

Parameters

hDHCP Handle to a DHCP server instance obtained from DHCPSOpen()

Return Value None.

Description This function is called to terminate DHCP control of the previously supplied interface and
frees the supplied DHCP server instance handle hDHCP.
Note this function will also remove any IP address it has added to the system. In the
case of a service shutdown, there will be no status callback indicating the address
removal.

6.5 HTTP Server Support

An HTTP (Hypertext Transfer Protocol) Server allows a remote browser to view content on the server file
system. Files can be stored for viewing and forms can also be stored to allow remote interaction with the
system. Form POST functions become calls to application defined C functions that allow the embedded
system to be remotely controlled via a HTTP browser.

If you are using XGCONF to configure your application, you can configure the HTTP server to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

6.5.1 Operation
The HTTP Server service provides a mechanism for serving HTTP content to remote HTTP client
applications. It uses the Embedded File System contained in the OS adaptation layer. These functions in
the EFS programming API include a prefix of efs_. Modifying the EFS functions in the OS adaptation layer
allows the system programmer to support a variety of file storage options, including memory, flash cards
and hard drives.
6.5.2 HTTP Server Parameter Structure
This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here.
The following structure defines the unique parameters of the HTTP server service. It is located in the file:
inc\nettools\inc\httpif.h.
/1
/1 HTTP Paraneter Structure
/11
typedef struct _ntparamhttp {
int MaxCon; /1 Max nunber of HTTP connections
int Port; /1 Port (set to NULL for HTTP default)
} NTPARAM HTTP;
MaxCon Maximum number of simultaneous telnet sessions (1 to 24)
Port TCP port to use for HTTP (set to zero for HTTP default)
This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.
104 Network Tools Library - Services SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com httpOpen — Start the HTTP Server
6.5.3 Using the HTTP Server and Adding Web Content

This section discusses how to invoke and monitor the status of the HTTP server. Web application
developers will be more interested in how to add Web content, including HTML pages and CGI functions.
These topics are discussed in Appendix E.

6.5.4 Invoking the Service via NETTOOLS API

In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

httpOpen Start the HTTP Server
Syntax HANDLE httpOpen(NTARGS *pNTA, NTPARAM_HTTP *pNTP);
Parameters
PNTA Pointer to common argument structure used by all services.
pNTP Pointer to HTTP client parameter structure.
Return Value Returns a handle to the HTTP Server instance, or NULL if the HTTP Server task could

not be created. This handle is used with httpClose() to shut down the client when it is no
longer needed.

Description httpOpen() starts the HTTP server process. This process will create a connection to the
HTTP Port and listen. When a connection is made, another task will be created to
service the request.

httpClose Destroy an instance of the HTTP Server
Syntax void httpClose(HANDLE hHTTP);
Parameters
hHTTP Handle to a HTTP server instance obtained from httpOpen()
Return Value None.
Description Destroys the instance of the HTTP Server indicated by the supplied handle. Once called,

the Server is shut down.

6.6 DNS Server Service

The DNS server service allows clients on a home network to resolve host names and addresses for clients
on both the home and public networks.

If you are using XGCONF to configure your application, you can configure the DNS server to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

SPRU524H—-May 2001 -Revised February 2012 Network Tools Library - Services 105

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

DNSServerOpen — Create an Instance of the DNS Server

13 TEXAS
INSTRUMENTS

www.ti.com

6.6.1 Operation

The NDK contains a small DNS resolver that can resolve hostnames and addresses that are local to the
system via the configuration, or those outside the system by using an external DNS server.

The DNS server service described here allows the same internal DNS resolver to be accessed by clients

on a virtual (home) network. This allows clients on a home network to look up peers on the home network
using the same DNS server that is used for external lookups. Thus, DNS service for the home network is

transparent to these clients.

Because the DNS server service uses the same internal DNS resolver as the client services discussed
earlier, the server adds very little overhead to the system.

6.6.2

DNS Server Parameter Structure

The DNS server service does not require a parameter structure.

6.6.3

Invoking the Service via NETTOOLS API

In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

DNSServerOpen

Syntax

Parameters

pNTA

Return Value

Description

DNSServerClose

Syntax

Parameters

hDNSS

Return Value

Description

Create an Instance of the DNS Server

HANDLE DNSServerOpen(NTARGS *pNTA);

Pointer to common argument structure used by all services.

Returns a handle to the new server instance, or NULL if the service could not be
created. This handle is used with DNSServerClose() to shut down the server when it is
no longer needed.

Creates a DNS server task that can service external DNS requests using UDP.

Destroy an Instance of the DNS Server

void DNSServerClose(HANDLE hDNSS);

Handle to DNS server instance obtained from DNSServerOpen()

None.

Destroys the instance of the DNS server indicated by the supplied handle. Once called,
the server is shut down. It waits for all spawned sessions to complete.

6.7 Network Address Translation (NAT) Service

The NAT service allows for the establishment of a home virtual network that is isolated and protected from
the external public network. It provides a port based address translation function that allows all the clients
on the home network to share a single public IP address. Thus, multiple clients can share the same ISP

account.

If you are using XGCONF to configure your application, you can configure the NAT service to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

106 Network Tools Library - Services

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Network Address Translation (NAT) Service

6.7.1

6.7.2

6.7.3

Operation

The NDK contains both a network address translation module and an IP filtering model. When the
translation service is enabled, any packet received from a client on a virtual network that is destined for
the external public network is adjusted to use the stack’s public IP client address.

The translation is performed by allocating a translation record and holding it for a period of time. The
translation records are timed out based on their protocol. In TCP, records are timed out based on the state
of their TCP connection. UDP and ICMP translations time out based on when they were last used.

In addition to translation, the stack contains an IP filter option (always enabled by this service) that filters
packets from the public network from being seen by the private network. For example, if someone on a
public network knew the IP address and the subnet mask of the router's (stack in route mode) private
network, it could set a gateway route to the router's public IP host address and the router would route
packets from the public to the private network and back (internally it does not distinguish between public
and private while routing). The IP filter prevents this. It also prevents an entity on a public network from
accessing protocol servers (like HTTP or Telnet) that are running on the private network. This allows the
router to present different HTTP or Telnet interfaces to the public than it does to clients in the home.

The NAT service is executed on the public interface - i.e., the interface that is assigned a valid public IP
host address (used to carry traffic for the virtual client addresses). There can only be one instance and
thus only one public IP address, but the service can serve multiple virtual (home) networks in the system
so long as they can be combined and still exclude the public IP. If the combination of these networks
results in an overlap with the public network, the service fails.

For example, assume interface If-1 is connected to the physical network 128.32.12.x/255.255.255.0, and
there are two home networks (192.168.0.x/255.255.255.0) on If-2 and (192.168.1 .x/255.255.255.0) on If-
3. To run NAT on both home networks, the NAT interface would be If-1 (the public interface), and the NAT
group (virtual) network would be 192.168.0.0/255.255.254.0, which covers both home networks.

For more information on NAT operation, including how to program proxy filters, see Appendix B, Network
Address Translation.

NAT Server Parameter Structure

This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here.

The following structure defines the unique parameters of the NAT server service. It is located in the file:
inc\nettools\inc\natif.h.
11l
/1 NAT Paraneter Structure
I/
typedef struct _ntparamnat {
I PN IPVirt; /1 Virtual |P address
I PN | PMask; /1 Mask of virtual subnet
ui nt MTU; /'l NAT packet MIU (normally 1500 or 1492)
} NTPARAM NAT;

IPVirt NAT Group virtual network address
IPMask Subnet mask of NAT Group virtual network
MTU IP MTU Limit (1500 for Ethernet, 1492 for PPPoE, etc.)

This structure is used both when specifying the service to the configuration system or when bypassing the
configuration and invoking the service API directly.

Invoking the Service via NETTOOLS API

In addition to the configuration option, this service can also be created and destroyed directly through this
NETTOOLS API. If an application wishes to bypass the configuration system and launch the service
directly, these calls can be used.

SPRU524H—-May 2001 -Revised February 2012 Network Tools Library - Services 107

Submit

Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
NATOpen — Enable the NAT Service www.ti.com
NATOpen Enable the NAT Service
Syntax HANDLE NATOpen(NTARGS *pNTA, NTPARAM_NAT *pNTP);
Parameters
PNTA Pointer to common argument structure used by all services.
pNTP Pointer to NAT parameter structure.

Return Value

Description

NATClose

Syntax

Parameters

hNAT

Return Value

Description

Returns a handle to the NAT instance (1), or NULL if the service could not be created.
This handle is used with NATClose() to disable the service when it is no longer needed.

Enables the Network Address Translation Service. Although the function returns a
handle for compatibility with the standard NETTOOLS API, only one instance of the NAT
service is allowed.

This service utilizes the virtual and external network information using the configuration
system. If the configuration system was not used to create the network records, this
function will fail.

The NAT service executes on a specific public interface. Thus, it is compatible with
NT_MODE_IFIDX only.

Disable the NAT Service

void NATClose(HANDLE hNAT);

Handle to NAT service obtained from NATOpen()

None.

Disables the NAT service.

108 Network Tools Library - Services

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS

Appendix A

SPRU524H—May 2001 —-Revised February 2012

Internal Stack Functions

In the source code to the network control functions, there are several calls to internal stack functions. This
is similar to calling the kernel in other operating environments. This section contains a partial list of internal
stack functions provided to aid in the comprehension of kernel oriented calls.

Note the following points for this section:

1. This section is required only for system programming that needs low level access to the stack for
configuration and monitoring. This APl does not apply to general sockets application
programming.

2. In addition to the internal functions described here, there are scheduling and configurations tools
available that make any direct coding to these functions unnecessary.

Topic Page
N R @ 1T PP 110
A.2 SEACK EXECULIVE (EXEC) tuiuieieitieieeeee ettt eeeea e a e et na e e e eae s n e e e e e e enenenes 111
A.3 Packet Buffer Manager (PBM) ODjJECEcuiuieiiiiiiiiiiiiiiieit e e e e e 112
A.4 Packet Buffer Manager Queue (PBMQ) ODJECTvuieiniiiiiiieiiie et eee e 116
A.5 Jumbo Packet Buffer Manager (Jumbo PBM) ObjecCtcccviiiiiiiiiiiiiiiiiiiieieieeaans 118
A.6 Stack Event (STKEVENT) ODjJECT .iuuiuiiiiiitiiiiiieiieie ettt eaea s et e sas e ennanaaes 120
A.7 Link Layer Information (LLI) ODJECT ..ueueninieieieiiieieeee et e e e e eeeae s 121
A.8 INterface (IF) ODJECT ...ttt e e e e e n e e e e e e ns 126
S i =] G o = o 129
A 10 BiNdiNg ODJECT ..uuiiiii ittt e et e e e aan e 132
Nt I o T U (T =T o] S PPN 134
A.12 ROULE CONrOl OB ECT o.viuiniiiitiiiiii ittt et e et a et e e e aaa s e eanananan 141
A.13 Configuring the STACKc.oeiiiiiiii et e e e e 144
A.14 Network Address TranSIationccoeieieie i s e e e e e e eanananes 153
A.15 Network Interface Management Unit (NIMU)cooiiiiiiiiiiiiiiieee e 154
A.16 Virtual LAN (VLAN) SUPPOIT «ueuiinitieieeeat s et et eaeeaea e easeea e e saeaeaeaeananeneenannn 163
A.17 Raw Ethernet MOAUIEc.oeiiieiiiiii e e e e e 169
A.18 Obtaining Stack StatiSTiCS ..uiuiuiiiiiitiiiii it e e e e eaeananane 173

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 109

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Overview www.ti.com

A.1 Overview

The control API is the collection of functions supplied in the stack library. The entire API is exposed,
although the vast majority of functions and objects will only be used internally to the stack.

A.1.1 Interrupts and Preemption

It should be noted that no part of the stack is interrupt driven. Neither can any stack function be called at
interrupt time. All interrupt processing is performed in the HAL or OS libraries, and is thus externally-
defined code, which allows the development of a HAL/OS architecture that is best suited for a given
operating environment, without affecting the operation of the stack.

The stack may or may not be preempted, depending on the operating environment in use. A non-
preemptive architecture is possible because the stack code does not use polling loops nor make any
internal blocking type calls, but preemption is also supported.

A.1.2 Proper Use of the lIEnter() and lIExit() Functions

The internal stack functions are not designed to be reentrant. This allows the stack to operate freely
without the concept of a critical section, which is implementation dependent and potentially detrimental to
real-time operation. Thus, access to stack functions must be strictly controlled. The form of this control is
dependant on the system environment, and is embodied as two low level OS library functions, lIEnter()
and lIExit(). These functions are called before and after a section of code where any stack functions are
called. For example:

Il Enter();

St ackFunctionl();

St ackFuncti on2();

[TExit();

These functions can be thought of as entering and exiting kernel mode.

To make normal user functions appear to be re-entrant, some user functions (like the sockets API) make
internal calls to lIEnter() and lIExit() when calling into the stack. If an application needs to call both user
functions and internal stack functions, care must be taken so that standard user functions are not called
between an llEnter() / lIExit() pair (this would cause an error if they in turn called lIEnter()).

The following are good general guidelines:
* Always call lIEnter() before calling a stack function, and lIExit() when done calling stack functions.

* Try and keep all code that requires lIEnter() and lIExit() in a single module. They are only required for
system maintenance.

« Do not call a normal user function (like a socket function) between an l[Enter()/lIExit() pair.
* Never call lIEnter() or lIExit() from an ISR.

A.1.3 Objects

Many of the control API functions deal with object handles. These handles are created by a variety of
class functions contained in the stack. When using an object handle, it is important to realize how the
object handle will be treated by the function being called.

Associated with every object is the concept of who owns it, who is using it, and who will eventually free it.
In general, when an application creates an object, the application owns it, the application is the only one
using it, and the application must eventually free it. Unfortunately, the matter becomes somewhat
confused when object handles are shared between applications — especially when the scope of the
handle creator may be shorter than the handle itself.

110 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

Stack Executive (Exec)

In this system, there are two basic object types:

» Static Objects - The static object is one that is created by a designated task, and destroyed by that
task or a task where the object has been passed. In most cases, the task that created the object also

destroys it.

» Referenced Objects - A referenced object is one that may be used by other tasks after the original
creator is through with it. This type of handle is useful when an object is needed for a task of
indeterminate length, where the creator of the handle does not need or may not be able to track it.

Under the referenced handle scheme, all tasks that access the object handle make a specific RefXxx()
call so that references may be tracked. Whenever a task is finished with the handle, it calls the object's
de-reference function. The object is not freed until the reference count reaches zero.

A.2

Stack Executive (Exec)

At the heart of the stack is the Executive API (Exec). The Executive acts as a message dispatcher for the
internal stack components. This action is mostly hidden from the application, but there are some public

functions.

A.2.1 API Functions

ExecOpen

Syntax

Description

ExecClose

Syntax

Description

ExecLowResource

Syntax

Description

ExecTimer

Syntax

Description

Prepare the System for Execution

void ExecOpen();

Prepares the stack for execution by initializing the individual components. Until
ExecOpen() is called, the system cannot do any work, but after calling this function,
objects like routes and bindings can be created.

Shutdown Stack and Cleanup

void ExecClose();

Completes stack execution. This function is called to perform final clean up on the
system after all user objects (like devices and bindings) have been destroyed.

Signal Low Resource Condition

void ExecLowResource();

Informs the stack that memory resources are getting dangerously low. As a result of this
call, the stack will abandon certain operations that hold excessive resources. (Pending
ARP packets are thrown away, IP packet fragments pending reassembly are abandoned,
etc.)

Signal 1/10th Second Timer Tick

void ExecTimer();

This function is called ten times a second to inform the stack that one tenth of a second
has elapsed. This function is called from a normal task thread, never an ISR. In theory,
the function can be called from anywhere, but in practice, it is always called from a
scheduler thread that also handles network packets. For more information, see the
description of the NETCTRL functions in the Tl Network Developer's Kit (NDK) User's

Guide (SPRU523).

SPRU524H—-May 2001 -Revised February 2012

Internal Stack Functions 111

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Packet Buffer Manager (PBM) Object

13 TEXAS
INSTRUMENTS

www.ti.com

A.3 Packet Buffer Manager (PBM) Object

The NDK uses a common packet buffer object that is managed by a module called the Packet Buffer
Manager (PBM). The implementation of this manager determines the buffer strategy for the entire system.

Internally, the packet buffer objects are pointers to a structure of type PBM_Pkt; however, the buffers are
abstracted into a handle of type PBM_Handle for use by code outside of the NDK. This helps protect the
reserved members of the packet buffer structure from being misused.

If you are using XGCONF to configure your application, you can configure the size and location of the
buffers managed by the PBM in the Buffers page of the NDK Global module configuration. See the
SPRUS523 (TI Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

A.3.1 Object Type

Static - PBM objects are owned by a single entity and destroyed by their owner. Ownership of a packet
buffer changes as it is passed via function calls.

A.3.2 API Function Overview

The PBM API functions are as follows:

Initialization/Shutdown Functions:

PBM_open()
PBM_close()

Create/Destroy Functions:
PBM_alloc()
PBM_free()
PBM_copy()

Property Functions:
PBM_getBufferLen()
PBM_getDataBuffer()
PBM_getValidLen()
PBM_getDataOffset()
PBM_getIFRx()
PBM_setValidLen()
PBM_setDataOffset()
PBM_setIFRXx()

Open the Packet Buffer Manager
Close the Packet Buffer Manager

Create New Packet Buffer
Destroy (Free) Packet Buffer
Create an exact copy of the Packet Buffer

Get the length of the physical data buffer

Get a pointer to the physical data buffer

Get the length of the valid data in the buffer

Get the buffer offset to the start of the valid data

Get the device handle of the ingress Ethernet device
Set the length of the valid data in the buffer

Set the buffer offset to the start of the valid data

Set the device handle of the ingress Ethernet device

112 Internal Stack Functions

SPRU524H—-May 2001-Revised February 2012
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

PBM_open — Open the Packet Buffer Manager

A.3.3 API Function Description

PBM_open
Syntax
Parameters
Return Value

Description

PBM_close

Syntax
Parameters
Return Value

Description

PBM_alloc

Syntax

Parameters
MaxSize

Return Value

Description

PBM_free

Syntax

Parameters

hPkt

Return Value

Description

Open the Packet Buffer Manager

uint PBM_open();
None.
Function returns 1 on success, and 0 on failure.

This function is called once to open the PBM module and allow it to initialize its internal
queues.

Close the Packet Buffer Manager

void PBM_ close();
None.
None.

This function is called at system shutdown to allow the PBM module to shut down and
free any memory it has allocated.

Create New Packet Buffer

PBM_Handle PBM_alloc(uint MaxSize);

Maximum size of the physical data buffer required

Handle to the packet buffer or NULL on memory allocation error.

This function is called to create a new packet buffer handle. When first created, the
packet is entirely uninitialized, except for the physical characteristics of the data buffer
(the buffer pointer and its physical length). The length of the buffer will be the same or
greater than that specified by the caller in MaxSize.

Destroy (Free) Packet Buffer

void PBM_free(PBM_Handle hPkt);

Handle to packet buffer to free

None.

This function is called to destroy a packet buffer. When called, all objects associated
with the packet buffer are dereferenced or destroyed.

SPRU524H—-May 2001 -Revised February 2012

Internal Stack Functions 113

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

PBM_copy — Create an exact copy of the Packet Buffer

13 TEXAS
INSTRUMENTS

www.ti.com

PBM_copy

Syntax

Parameters
hPkt

Return Value

Description

PBM_getBufferLen

Syntax

Parameters

hPkt

Return Value

Description

PBM_getDataBuffer

Syntax

Parameters
hPkt

Return Value

Description

PBM_getValidLen

Syntax

Parameters

hPkt

Return Value

Description

Create an exact copy of the Packet Buffer

PBM_Handle PBM_copy(PBM_Handle hPkt);

Handle to packet buffer to copy

Handle to the new copy of the packet buffer or NULL on memory allocation error.

This function makes a duplicate copy of a packet buffer. It is usually called to copy a
packet to be distributed to multiple destinations, or to be sent to multiple egress devices.

Get the Length of the Physical Data Buffer

uint PBM_getBufferLen(PBM_Handle hPkt);

Handle to packet buffer

Length of the physical data buffer in bytes.

This function is called to get the length of the physical data buffer associated with the
packet buffer handle. Note that the buffer length is fixed for the life of the buffer and
cannot be changed.

Get a Pointer to the Physical Data Buffer

UINT8 * PBM_getDataBuffer(PBM_Handle hPkt);

Handle to packet buffer

Pointer to the physical data buffer.

This function is called to get a pointer to the physical data buffer associated with the
packet buffer handle. Note that the physical buffer is fixed and cannot be changed.

Get the Length of the Valid Data in the Buffer

uint PBM_getValidLen(PBM_Handle hPkt);

Handle to packet buffer

Byte length of the valid data stored in the packet buffer.

This function is called to get the length of the valid data currently held in the packet
buffer. When a packet buffer is created, it has no valid data, so this value is initially zero.

114

Internal Stack Functions

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

PBM_getDataOffset — Get the Buffer Offset to the start of the Valid Data

PBM_getDataOffset

Syntax

Parameters

hPkt

Return Value

Description

PBM_getIFRx

Syntax

Parameters

hPkt

Return Value

Description

PBM_setValidLen

Syntax

Parameters

hPkt
length

Return Value

Description

Get the Buffer Offset to the start of the Valid Data

uint PBM_getDataOffset(PBM_Handle hPkt);

Handle to packet buffer

Byte offset from the start of the physical data buffer to the first byte of valid data.

This function is called to get the offset in bytes from the start of the physical data buffer
to the first byte of valid data. When a packet buffer is created, it has no valid data, so
this value is initially zero.

Get the Device Handle of the Ingress Ethernet Device

HANDLE PBM_getIFRx(PBM_Handle hPkt);

Handle to packet buffer
NULL for locally created packets, or a handle to the device on which the packet was
received.

This function is called to get the handle to the ingress device where the packet contained
in the packet buffer originated. Packet drivers in the HAL (both serial and Ethernet
based) record the logical handle associated with all incoming packets. This identifies the
packet type as well as the interface on which the packet was received.

Set the Length of the Valid Data in the Buffer

void PBM_setValidLen(PBM_Handle hPkt, uint length);

Handle to packet buffer
Length of the valid data held in the packet buffer

None.

This function is called to set the length of the valid data in the packet buffer. It informs
the system of the number of bytes of valid data that are stored in the physical data
buffer. When a packet buffer is created, it has no valid data, so this value is initially zero.

SPRU524H—-May 2001 -Revised February 2012

Internal Stack Functions 115

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

PBM_setDataOffset — Set the Buffer Offset to the Start of the Valid Data

13 TEXAS
INSTRUMENTS

www.ti.com

PBM_setDataOffset Set the Buffer Offset to the Start of the Valid Data

Syntax

Parameters

hPkt
offset

Return Value

Description

PBM_setIFRX

Syntax

Parameters

hPkt
hDevice

Return Value

Description

void PBM_setDataOffset(PBM_Handle hPkt, uint offset);

Handle to packet buffer
Offset from start of data buffer to valid data

None.

This function is called to set the offset in bytes from the start of the physical data buffer
to the first byte of valid data. It informs the system of where valid data is stored in the
physical data buffer. When a packet buffer is created, it has no valid data, so this value
is initially zero.

Set the Device Handle of the Ingress Ethernet Device

void PBM_getIFRx(PBM_Handle hPkt, HANDLE hDevice);

Handle to packet buffer
Handle to packet ingress device

None.

This function is called to set the handle to the ingress device where the packet contained
in the packet buffer originated. Packet drivers in the HAL (both serial and Ethernet
based) record the logical handle associated with all incoming packets. This identifies the
packet type, as well as the interface on which the packet was received.

A.4 Packet Buffer Manager Queue (PBMQ) Object

The PBM module also includes a queue object that can be used to queue packet buffers for later use. The
gueue is a first in first out system, so it can be used to queue in-order packets as well as free buffers.

The PBMQ obiject is just a structure of type PBMQ. Once this structure is declared and initialized, it is

ready for use.

A.4.1 Object Type

Static - PBMQ objects are owned by a single entity and destroyed by their creator.

A.4.2 API Function Overview
The PBM API functions are as follows:

PBMQ_init() Initialize a PBMQ object for use
PBMQ_count() Return the number of PBM packet buffers on the queue
PBMQ_enq() Enqueue a PBM packet buffer onto the queue
PBMQ_deq() Dequeue a PBM packet buffer off the queue
116 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

PBMQ_init — Initialize a PBMQ Object for Use

A.4.3 API Function Description

PBMQ init
Syntax

Parameters
PQ

Return Value

Description

PBMQ_count

Syntax

Parameters
pPQ

Return Value

Description

PBMQ_enq

Syntax

Parameters

PQ
hPkt

Return Value

Description

PBMQ_deq

Syntax

Parameters
pPQ

Return Value

Description

Initialize a PBMQ Object for Use

void PBM_init(PBMQ *pQ);

Pointer to a structure of type PBMQ

None.
This function is called once to initialize a PBMQ structure for use.
Return the Number of PBM Packet Buffers on the Queue

uint PBM_count(PBMQ *pQ);

Pointer to a structure of type PBMQ

Number of queued buffers.

This function is called once to return the number of PBM packet buffers currently on the
indicated queue.

Enqueue a PBM Packet Buffer onto the Queue

void PBM_enq(PBMQ *pQ, PBM_Handle hPkt);

Pointer to a structure of type PBMQ
Handle to PBM packet buffer to add to queue

None.
This function is called to add the supplied PBM packet buffer to the indicated queue.
Dequeue a PBM Packet Buffer Off the Queue

PBM_Handle PBM_deq(PBMQ *pQ);

Pointer to a structure of type PBMQ

Handle to PBM packet buffer, or NULL on empty queue.

This function is called to remove a PBM packet buffer from the indicated queue. The
function returns a handle to the PBM packet buffer removed from the queue, or NULL if
the queue was empty.

SPRU524H—-May 2001 -Revised February 2012

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

Internal Stack Functions 117

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Jumbo Packet Buffer Manager (Jumbo PBM) Object www.ti.com

A5

Jumbo Packet Buffer Manager (Jumbo PBM) Object

The PBM object is capable of handling memory allocations only up to buffer sizes of maximum
MMALLOC_MAXSIZE (3068 bytes). For handling memory allocation for jumbo frames, i.e., packets
typically larger than 1500 bytes in size, and that could be as large as 10K bytes, the PBM object invokes
the Jumbo PBM APIs internally. The Jumbo PBM is responsible for handling memory allocation and de-
allocation for Jumbo frames.

The following are some of the main features of Jumbo PBM:

The Jumbo PBM implementation is similar to the PBM implementation, except that it can handle larger
block sizes than the ones in PBM and ranges between 3K and 10K bytes by default.

Jumbo PBM does not use any SYS/BIOS APIs or dynamic memory allocation method for its memory
allocation and, therefore, can be used safely in interrupt context. It uses a static memory allocation
method, i.e., it reserves a chunk of memory in the far section of the device memory and uses it to
allocate for the packet buffers required.

The Jumbo PBM allocates memory off a separate section in the memory than the PBM. The PBM uses
the memory sections NDK_PACKETMEM, NDK_MMBUFFER for its memory allocation. On the other
hand, Jumbo PBM defines and uses a section called NDK_JMMBUFFER for its memory allocation.
The size of this section and its placement are all customizable by an application user.

A sample implementation of the Jumbo PBM is provided in the NDK OS abstraction layer (OS AL). The
customer is expected to customize this implementation according to their application needs and
system's memory constraints.The memory section sizes, block sizes, and the allocation method is all
up for customization.

Jumbo PBM APIs are not expected to be invoked directly. The application and driver must call the
PBM_alloc()/PBM_free() APIs only. These APIs in turn invoke the Jumbo PBM APIs to allocate/clean-
up memory if the memory requested is larger than what PBM can handle, i.e., 3K bytes.

For a sample implementation of the Jumbo PBM, refer to the source file JUMBO_PBM.C under \SRC\OS
\JUMBO_PBM.C.

A.5.1 API Function Overview
The Jumbo PBM API are as follows:

_jumbo_mminit() API to initialize the Jumbo PBM object
jumbo_mmAlloc() Allocates memory requested for the new packet buffer
jumbo_mmFree() Frees up the memory held in the packet buffer
_jumbo_mmCheck() Dump the current memory usage in Jumbo PBM object

A.5.2 API Function Description

_jumbo_mmlnit Initialize the Jumbo PBM object for use.

Syntax int _jumbo_mminit();

Parameters None

Return Value Always returns 1 to indicate success.

Description This function is called during the system initialization to initialize the Jumbo PBM

memory and any relevant data structures.

118

Internal Stack Functions SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

jumbo_mmAlloc — Allocate a new Jumbo packet buffer.

jumbo_mmAlloc

Syntax
Parameters
Return Value

Description

jumbo_mmFree

Syntax

Parameters

Return Value

Description

_jumbo_mmCheck

Syntax

Parameters

CallMode

Allocate a new Jumbo packet buffer.

void *jumbo_mmAlloc(uint Size);
Size Size of the packet buffer to allocate.
Pointer to the newly allocated packet buffer.

This function is called by the PBM object when an application/driver requests for a
packet buffer larger than what it can handle, i.e., MMALLOC_MAXSIZE (3068 bytes).
This API allocates memory out of jumbo memory pool and returns a pointer to the packet
buffer just allocated.

Frees up memory held by the packet buffer.

void jumbo_mmFree(void *p);

Handle to the packet buffer that was obtained earlier using jumbo_mmAlloc APl and that
needs to be freed up.

None
This API returns the packet buffer to the jumbo memory pool for use again by the

application. The packet buffer handle passed as an argument to this function must be a
valid handle obtained using jumbo_mmAlloc() API earlier.

Dumps the memory usage stats for jumbo PBM object.

void _jumbo_mmCheck(uint CallMode, int (*pPrn)(const char *,...));

Specifies the type of stats that need to be printed out

The 3 supported call modes are:

MMCHECK_MAP Map out allocated memory, but don't dump IDs
MMCHECK_DUMP Dump allocated block IDs
MMCHECK_SHUTDOWN Dump all allocated blocks and free

pPrn Callback function pointer to be notified
Description This function iterates through the Jumbo PBM object's memory allocation table and
dumps the current memory usage stats according to the arguments specified.
SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 119

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Stack Event (STKEVENT) Object www.ti.com

A.6 Stack Event (STKEVENT) Object

Although technically not part of the NDK, the STKEVENT event object is a central component to the low
level architecture. It ties the HAL layer to the network scheduler thread. The network scheduler thread
waits on events from various device drivers in the system including the Ethernet, serial, and timer drivers.
The device drivers use the STKEVENT object to inform the scheduler that an event has occurred.

A.6.1 Object Type
Static - The STKEVENT object is created and owned by the network scheduler.

A.6.2 API Function Overview

The STKEVENT object is implemented entirely via #define MACROs and therefore, does not have a true
API. This allows the network scheduler to present an abstracted API to the HAL layer for network events.
The STKEVENT object is a simple structure and manipulated directly by the network control module

(NETCTRL). This is discussed further in the TI Network Developer's Kit (NDK) User's Guide (SPRU523).

The two MACRO functions are as follows:

Property Functions:
STKEVENT _init() Initialize a new STKEVENT object to NULL
STKEVENT _signal() Signal a new STKEVENT event code

A.6.3 API Function Description

STKEVENT _init Initialize a new STKEVENT object to NULL
Syntax void STKEVENT _init(STKEVENT_Handle hEvent, Semaphore_Handle hSem)
Parameters
hEvent Handle to STKEVENT object
hSem Handle to Semaphore object to use in STKEVENT (if any)
Return Value None.
Description This function is called once to initialize the STKEVENT object so it is ready for use.

NOTE: This function is implemented as a multi-line macro, so care should be
taken when using it in the body of an if/else statement.

120 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

TEXAS
INSTRUMENTS

www.ti.com STKEVENT _signal — Signal a New STKEVENT Event Code

STKEVENT_signal Signal a New STKEVENT Event Code

Syntax void STKEVENT_signal(STKEVENT_Handle hEvent, uint EventCode, uint fHwAsynch)
Parameters
hEvent Handle to STKEVENT object
EventCode Type of event being signaled
fHwAsynch Flag indicating event triggered by an asynchronous hardware event (e.g., ISR,
PRD).

Return Value None.

Description This function is called from a device driver to signal an event to the network scheduler
for further processing. The STKEVENT handle hEvent is an event handle supplied to the
device driver when the driver is first initialized. The EventCode parameter specifies the
type of event. The currently defined events include the following:

STKEVENT_TIMER 100 ms Timer Tick Event

STKEVENT_ETHERNET One or more Ethernet packets received

STKEVENT_SERIAL One or more serial packets received
The fHwAsynch flag specifies whether the event was triggered by an external
asynchronous hardware source. Examples of asynchronous events include hardware
interrupts or timer PRDs. An example of a hon-asynchronous event would be detecting
an event from within a driver service check function. Service check functions are called
periodically (or polled) by the scheduler.

NOTE: This function is implemented as a multi-line macro, so care should be
taken when using it in the body of an if/else statement.
A.7 Link Layer Information (LLI) Object

To make full use of the stack objects described in this section, it is necessary to understand some of the
stack's basic building block components. One such component is the Link Layer Information Object, or LLI
for short.

An LLI object is an ARP table entry. This implementation of the IP stack combines the traditional route
table and ARP table into a single table with a single API. Routes that need to use the ARP function
include an ARP status object, called LLI. Normally, you only use an LLI object to inspect the ARP status of
the route table.

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 121
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Link Layer Information (LLI) Object www.ti.com

The ARP entries can be of two types:

* Dynamic
These ARP entries are managed using the Address Resolution Protocol (ARP), i.e., through exchange
of ARP Request and ARP Reply messages between the NDK stack and the networking device
engaged in communication with it. These entries are dynamic and have a keep-alive timeout
associated with them. An ARP/LLI entry’s lifetime is extended using ARP revalidation logic if it has
been active, i.e., if it has been used by an application in the system in the last ARP inactivity timeout
seconds. These keep-alive and ARP inactivity timeouts are configurable in NDK and can be tuned as
per the application and system needs. However, if the ARP entry was inactive or idle, or if the ARP
revalidation process failed, the ARP entry is deleted and the communication between the NDK stack
and the networking device in question is broken unless it is re-established using ARP protocol again.
To configure a dynamic ARP entry, the NDK stack internally uses the LLIValidateRoute() API. This API
is documented in the following section.

+ Static
On the other hand, static entries are ARP entries that are manually configured by an application in the

stack and they have no timeout associated with them. They remain valid until the application or user
deletes them. No ARP request-reply transactions are performed here.

Both the dynamic and static ARP entries are supported in NDK stack, however there were no clear APIs
defined earlier for configuration of the Static ARP entries. Such support has now been added to the NDK
stack. The next section discusses the APIs exported by NDK stack to configure dynamic and static ARP
entries.

A.7.1 ARP Revalidation Logic

Each dynamic LLI/ARP entry in NDK is associated with a non-zero Keep-alive timeout (controlled using
CFGITEM_IP_RTKEEPALIVETIME). This timeout determines the length of time in seconds that an LLI
entry and its associated route entry is valid. The routing module in the stack internally runs a timer and
periodically checks to see if any routes or associated LLI entries are about to expire. If it finds a route/LLI
entry that is about to expire, it checks to see if that LLI entry is active, i.e., if it has been used in the last
Route Inactivity timeout seconds (configured using CFGITEM_IP_RTARPINACTIVITY). If so, the LLI
module initiates an ARP Request/Reply exchange to revalidate the LLI entry even before it expires and
disrupts any ongoing communication. If an ARP reply is received successfully for the request sent out
earlier, the LLI entry is marked valid again for another Keep-alive timeout seconds and any packets using
the route/LLI entry are sent out of the device. However, if no ARP reply is received, the ARP request is
retransmitted and this process is repeated 3 times before the revalidation process is aborted and the
associated LLI/Route entries are deleted. Also, if the LLI/Route entry was inactive or never used in the last
Route Inactivity Timeout seconds ARP revalidation process is not done for such an entry and is deleted
immediately from the system. Once the LLI/Route entries are deleted they have to be re-established using
a successful ARP Request-Reply exchange triggered by an application's attempt to transmit packets to
the intended destination.

A.7.2 Object Type

Static - LLI objects are owned and destroyed by their creator.

122

Internal Stack Functions SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com Link Layer Information (LLI) Object

A.7.3 Information Structure

The following data structure is used to hold information regarding an ARP/LLI entry in the NDK stack. This
structure is especially useful in presenting the LLI entry info in a simple, compact way to an application
requesting information about the LLI entries configured in the stack.
/ * %

* @rief

* This structure describes the LLI/ARP Information Qbject.

*
* @letails

* This data structure is used by the LLI npdule to popul ate
* LLI/ARP Entry information contained in the NDK Kernel

* in a sinple, user-friendly way to the application.

*

*

/

typedef struct _Ili_info

{
/**
* @rief Links to other LLI_INFO Oojects
*/

LI ST_NODE Li nks;

/**

* @rief Boolean Flag to indicate whether this LLI
* entry is a static / dynamc entry.

*/

Ul NT8 IsStatic;

/**

* @rief The 4 byte | Pv4 address associated with this
* LLI/ARP Entry.

*/

I PN | PAddr ;

/**
* @rief The 6 byte Ethernet MAC address associated with this
* LLI/ARP Entry.
*/
Ul NT8 MacAddr [6] ;
} LLI_I NFO

A.7.4 API Function Overview
The LLI API functions are as follows:

LLIGetMacAddr() Get the Mac Address Associated with this LLI

LLIValidateRoute() Free an LLI

LLIAddStaticEntry Add a new static ARP entry/update an existing static ARP
entry/modify a dynamic entry to a static ARP entry in the stack.

LLIRemoveStaticEntry Remove a previously configured static ARP entry from the stack

LLIGetStaticARPTable Retrieve a copy of the static ARP table from the stack

LLIFreeStaticARPTable Cleans the memory allocated by a previous call to

LLIGetStaticARPTable API

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 123

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

LLIGetMacAddr — Get the Mac Address Associated with this LLI

13 TEXAS
INSTRUMENTS

www.ti.com

A.7.5 API Functions

LLIGetMacAddr

Syntax

Parameters

hLLI
pMacAddr
MaxLen

Return Value

Description

LLIValidateRoute

Syntax

Parameters

hIF
IPAddr
MacAddr

Return Value

Description

Get the Mac Address Associated with this LLI

uint LLIGetMacAddr(HANDLE hLLI, UINT8 *pMacAddr, uint MaxLen);

Handle to LLI object
Pointer to buffer to write Mac address data
Maximum byte length of buffer (must be at least 6)

Returns 1 if the Mac address for the LLI is valid and it was successfully written to the
supplied buffer.

Returns 0 if the LLI does not contain a valid Mac address, or one of the calling
parameters is invalid.

This function is called to return the six byte Mac address associated with the LLI. It is
used in system programming to obtain the hardware address from an LLI contained in a
route entry.

Validate an IP Address/MAC Address Pairing in the Route Table

HANDLE LLIValidateRoute(HANDLE hIF, IPN IPAddr, UINT8 *MacAddr);

Handle to the interface on which the target IP address/MAC address appears
IP address to validate
Six byte MAC address corresponding to the supplied IP address

Referenced handle to route or NULL if there was no room to create the entry.

This function is called to create or update an entry in the stack route table for the
supplied IP address. The entry for the given IP address is marked as valid, and assigned
the supplied MAC address. Packets sent to the IP address will be assigned the given
MAC address, and no ARP request will be sent.

This function also updates the route in the LLI (ARP) expiration list. It allows an
application to change the state of the ARP entry even if the stack has already created
the route. It should be used when it is unclear if the route (really ARP table entry)
already exists or not.

Note that this function returns a referenced route handle. This handle must be
dereferenced using the RtDeRef() function when it is no longer required. Because the
route is treated as a standard ARP entry (with a standard expiration time as supplied in
the configuration structure), the route can be dereferenced immediately.

124 Internal Stack Functions

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com LLIAddStaticEntry — Add/update a static ARP entry or change a dynamic entry to a static ARP entry

LLIAddStaticEntry Add/update a static ARP entry or change a dynamic entry to a static ARP entry

Syntax int LLIAddStaticEntry(IPN IPAddr, UINT8 *pMacAddr);
Parameters
IP Address IPv4 address of the device
pMacAddr 6 byte EMAC address of the device corresponding to the supplied IPv4 address.
Return Value Returns 0 on success or -1 on invalid input/error in LLI entry creation.
Description This API validates the input and returns an error (-1) if any of the following conditions are
met:

 No MAC Address specified
» IPv4 address specified is either a broadcast/multicast address

» |IPv4 address specified is a local IP address, i.e., the IP address specified is in use by
a local interface attached to the NDK stack.

» IPv4 address is not reachable using the routes currently configured, i.e., there is no
Network / Cloning route (no local interface is on the same subnet as specified IPv4
address) that can be used to reach the IPv4 address specified.

e Memory allocation issue.

If no error encountered, this API does the following:

» Tries to find a duplicate static entry matching the IP Address Specified. If a duplicate
static entry found, updates the entry with the new MAC address specified. Returns
Success (0).

e Checks for any dynamic LLI/route entries matching the IPv4 address. If found,
deletes this entry and creates a new static LLI entry and host route with the 1Pv4
address and new MAC address specified. Returns Success (0). This ensures that
Static LLI entries always override the dynamic ones automatically configured by the
stack.

» If no duplicate static/dynamic entry already exists, adds a new static LLI entry and an
associated Host route to the stack using the IPv4 address and MAC address
specified. Returns Success (0).

The static LLI entries have to be removed by an application manually if not in use or
will be deleted when the NDK stack is shutdown.

This APl is an application level API and can be called from outside the kernel mode.

LLIRemoveStaticEntry Remove a previously configured static ARP entry from the stack.

Syntax int LLIRemoveStaticEntry(IPN IPAddr);
Parameters
IPAddr IPv4 address of the device
Return Value Returns 0 on success or -1 on invalid input/error in LLI entry removal.
Description This API searches for a static route and associated LLI entry in the NDK stack using the

IPv4 address specified and if no entry found returns an error, i.e., -1. If a valid entry is
found, it removes the route and corresponding LLI entries and cleans up any memory
associated with them. On successful clean up, returns 0. If this API is not explicitly called
to remove a previously configured static ARP entry, it is cleaned up only during the NDK
stack shutdown.

This API is an application level APl and can be called from outside the kernel mode.

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 125

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
LLIGetStaticARPTable — Retrieve a copy of the static ARP table from the stack. www.ti.com
LLIGetStaticARPTable Retrieve a copy of the static ARP table from the stack.
Syntax void LLIGetStaticARPTable(UINT32* pNumEntries, LLI_INFO** pStaticArpTable);
Parameters
pNumEntries Pointer to hold the number of static ARP entries in the stack.
pStaticArpTable Pointer to hold the replicated static ARP table returned by this API
Return Value Updates pNumEntries with the number of static ARP Entries and pStaticArpTable with a
list of LLI_INFO structures containing the information of all static ARP entries configured
in the stack.
Description This API can be used to retrieve the number of static ARP entries and a replicated list of

such entries configured in the system. This API traverses through the route and LLI
(ARP) table configured in NDK, finds any static routes/LLI entries configured, and
creates a copy of them and returns them as a linked list of LLI_INFO structures for the
requesting application to use. In case of a memory allocation error or if no static ARP
entries found, this API returns the number of entries (pbNumEntries) as zero to indicate
the same.

This API is an application level APl and can be called from outside the kernel mode.

LLIFreeStaticARPTable Cleans the memory allocated by a previous call to LLIGetStaticARPTable API.

Syntax void LLIFreeStaticARPTable (LLI_INFO* pStaticArpTable);

Parameters

pStaticArpTable This is the head of the duplicated static ARP table list which has to be cleaned up

Return Value None

Description This function is called to clean the memory allocated by a previous call to
LLIGetStaticARPTable API. This function cleans the replicated copy f the static ARP
table.

This API is an application level APl and can be called from outside the kernel mode.

A.8 Interface (IF) Object

The Interface (or IF) object is an abstraction of any physical interface in the system capable of transmitting
and receiving packet (PKT) objects. In the current software, an interface object can represent either a PPP
based device or an Ethernet (Ether) based device. However, there is no interface object, but rather PPP
device objects and Ether device objects can both be treated as IF type objects for a small collection of
functions. This section documents these API functions.

The IF object API covers three general areas. First, it provides a couple of generic functions to obtain
information about a device, such as its type, MTU, etc.. In addition, the API also tracks physical device
indices for device handles, and mapping from one to the other. This is useful for the application
programming environment and configuration system, which deals in device indices instead of device
handles. The last function of the IF APl is to provide a generic way of creating packets for the system,
keeping track of all device's header and padding requirements.

A.8.1 Object Type
Static - IF objects represent PPP or Ether objects, which are created and destroyed by the same entity.

126 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

IFInit — Initialize Handle to Index Mapping Tables

A.8.2 API Function Overview

The following is a complete list of the IF object API. Some of these functions are only called from physical
device objects like Ether or PPP.

IFInit()

IFIndexNew()
IFIndexFree()
IFMaxIndex()

Initialize handle to index mapping tables

Allocate a new physical index for a device handle
Free a previously allocated physical index

Get the highest device index currently in use

IFIndexGetHandle() Get the device handle corresponding to a physical index

IFGetindex()

Get a physical index corresponding to a device handle

IFGetType() Get the interface handle type

IFGetMTU() Get the MTU of a device

IFSetPad() Set device header and padding requirements
IFCreatePacket() Create a packet object for transmission

A.8.3 API Function Description

IFInit

Syntax
Return Value

Description

IFIndexNew

Syntax
Return Value

Description

IFIndexFree

Syntax
Return Value

Description

Initialize Handle to Index Mapping Tables

void IFInit();
None.

This function is called from ExecOpen(), before any physical devices are initialized. It will
prepare the IF system to correctly process IFIndexNew() commands that are called
when Ether and PPP devices are created.

Allocate a New Physical Index for a Device Handle

uint IFIndexNew(HANDLE hlF, uint Index);
Allocated device index, or NULL on error.

This function is called from PPP and Ether when new physical device handles are
created. IF allocates and returns a physical Index for the supplied device handle. If a
specific index is required, it is passed in the Index parameter, otherwise Index is set to
NULL.

Free a Previously Allocated Physical Index

void IFIndexFree(uint Index);
None.

This function is called from PPP and Ether when physical device handles are destroyed.
IF frees the supplied physical Index, and can reallocate it in future calls to IFIndexNew().
The Index should not be used once freed.

SPRU524H—-May 2001 -Revised February 2012

Internal Stack Functions 127

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

IFMaxIndex — Get the Highest Device Index Currently in Use

13 TEXAS
INSTRUMENTS

www.ti.com

IFMaxIndex

Syntax
Return Value

Description

IFIndexGetHandle

Syntax
Return Value

Description

IFGetIndex

Syntax
Return Value

Description

IFGetType

Syntax
Return Value

Description

HTYPE_ETH
HTYPE_PPP

IFGetMTU

Syntax
Return Value

Description

IFSetPad

Syntax

Return Value

Get the Highest Device Index Currently in Use

uint IFMaxIndex();

Maximum logic device index currently in use.

This function returns the highest device index that is currently in use in the system.

When there are no holes in the index map, this value is also the number of devices
currently active.

Get the Device Handle Corresponding to a Physical Index

HANDLE IFIndexGetHandle(uint Index);
Handle to device corresponding to supplied index, or NULL on error.

This function is called to convert a physical device index to a device handle.

Get the Physical Index Corresponding to a Device Handle
uint IFGetindex(HANDLE hlIF);

Physical device index corresponding to supplied device handle, or NULL on error.

This function is called to convert a device handle to a physical device index.

Get the Interface Handle Type

uint IFGetType(HANDLE hIF);
Handle type of supplied handle.

This function is called to get the handle type of the supplied device handle. When called
correctly, the return value should be one of the following:

Ether Device
PPP Device

Get the MTU of a Device

uint IFGetMTU(HANDLE hIF);
MTU of the device indicated by the supplied handle.

This function is called to get the MTU (maximum transmit unit) size of the indicated
device. The MTU value does not include the device's layer 2 header. Thus, for Ethernet
and serial PPP, the MTU will normally be 1500; however, for protocols like PPPoE, the
MTU will be smaller.

Set Device Header and Padding Requirements

void IFSetPad(uint Header, uint Padding);

None.

Description This function is called by a physical device object to set the layer 2 header and padding
requirements for a packet. For example, with Ethernet, the header is normally 14. Plus, if
the Ethernet checksum appears in the packet body, the value of padding is 4.

128 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
www.ti.com IFCreatePacket — Create a Packet Object for Transmission
IFCreatePacket Create a Packet Object for Transmission
Syntax HANDLE IFCreatePacket(uint size);
Return Value Handle to new packet buffer (PBM), or NULL on allocation error.
Description This function is probably the most useful of the IF functions. It is called to create a

packet object to send packets out of the stack. It uses information collected from the

physical devices to create a packet that can be transmitted on any of the physical

devices in the system. It does this by applying worst case header and padding sizes.
The handle returned by this function references a packet buffer created by the packet

buffer manager (PBM). The packet buffer object is described in Section A.3. This

function is preferred over calling PBM_alloc() because it sets up the packet for use by

the stack. The data offset property is set to where the IP header should be placed. This
offset guarantees that the packet can be transmitted on any packet device in the system.

A.9 Ether Object

The Ether object is really just the generic portion of the packet driver. It knows how to process an Ethernet
MAC header, and handles incoming and outgoing packets. It interfaces directly to the HAL packet driver.
For each Ethernet based packet device in the system, an Ether object is created to represent this device

to the stack.

A.9.1 Object Type
Static - Ether objects are generally created and destroyed by the same entity.

A.9.2 API Function Overview
The following is a complete list of the Ether object API.

Create/Destroy Functions:

EtherNew() Create New Ether Object
EtherFree() Destroy Ether Object
EtherConfig() Configure Ether Object Header Parameters

Addressing Functions:
EtherGetMacAddr() Get the Device's Unicast MAC Address
EtherAddMCast() Add Multicast Ethernet Address
EtherDelMCast() Delete Multicast Ethernet Address
EtherClearMCast() Clear All Multicast Ethernet Addresses
Filtering Functions:
EtherSetPktFilter() Set Receive Packet Filter Value
EtherGetPktFilter() Get Current Receive Packet Filter Value
Hardware Event Functions:
EtherRxPacket() Indicate a New Rx Packet to the Ether Object

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

129

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

EtherNew — Create New Ether Object www.ti.com

A.9.3 API Functions

Although the Ether object API is larger than that discussed here, this section covers the portion of the API
that is useful to a system application.

EtherNew

Syntax
Return Value

Description

EtherFree

Syntax

Description

EtherConfig

Syntax

Description

Create New Ether Object

HANDLE EtherNew(uint Physindex);
Returns a handle to the Ether object, or NULL on a memory allocation error.

Installs a new Ether object in the system. This call should be made for every ethernet
device installed. Once called, the stack will make calls to the HAL packet driver interface
to get more information about the device. The argument is the physical device id used by
the HAL to identify the device.

Destroy Ether Object

void EtherFree(HANDLE hEther);

Destroys the indicated Ether object, and frees its associated memory. This function
should be called to remove devices after the stack has shut down. Calling this function
will not result in any calls to the HAL.

Configure Ether Object

void EtherConfig(HANDLE hEther, uint PhysMTU, uint EthHdrSize, uint OffDstMac, uint
OffSrcMac, uint OffEthType, uint PacketPad, TimestampFxn timestampFxn);

Describes to the Ether object how the Ethernet header is constructed on this device.
Although the MAC address is assumed to be 6 bytes long, various devices have a small
variety of packet variances. The Ether device object must know this information to both
process and construct packets in buffers that are native to the physical device.

The arguments are defined as follows:

PhysMTU
EthHdrSize
OffDstMac
OffSrcMax
OffEthType
PacketPad
timestampFxn

Physical MTU of the packet (usually 1514)

Minimum (non-802.2 SNAP) header size (usually 14)
Byte offset from header start to DST Mac Addr (usually 0)
Byte offset from header start to Src Mac Addr (usually 6)
Byte offset from header start to ether type (usually 12)
Required byte pad at end of frame (usually O or 4)

Specifies a call-out function to allow timestamping of received UDP datagrams per
interface basis. This function is called by the NDK scheduler. The function
prototype of the call-out is "typedef void (*TimestampFxn)(UINT8 *plpHdr)", and is
defined in "socket.h". This call-out function is responsible for updating the UDP
checksum accordingly.

130 Internal Stack Functions

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

EtherGetMacAddr — Get the Device's Unicast MAC Address

EtherGetMacAddr

Syntax

Description

EtherAddMCast

Syntax

Description

EtherDelMCast

Syntax

Description

EtherClearMCast

Syntax

Description

EtherSetPktFilter

Syntax

Description

ETH_PKTFLT_NOTHING
ETH_PKTFLT_DIRECT
ETH_PKTFLT_BROADCAST
ETH_PKTFLT_MULTICAST
ETH_PKTFLT_ALLMULTICAST
ETH_PKTFLT_ALL

Get the Device's Unicast MAC Address

uint EtherGetMacAddr(HANDLE hEther, UINT8 *pMacAddr, uint MaxLen);

Retrieves the unicast MAC address of the physical Ethernet device. The MAC address is
written to the pointer pMacAddr. The maximum length of the buffer must be at least 6
bytes and is specified in MaxLen. The function returns 1 on success and 0 on failure.

Add Multicast Ethernet Address

uint EtherAddMCast(HANDLE hEther, UINT8 *pMCastAddr);

Adds an Ethernet multicast address to the list of addresses received by the Ethernet
hardware when the Rx filter is set to ETH_PKTFLT_MULTICAST. The multicast address
is specified by the pointer pMCastAddr, pointing to a 6-byte MAC address. The multicast
address list can be manipulated in its raw form at the lIPacket layer (see Section D.4).

Delete Multicast Ethernet Address

uint EtherDelMCast(HANDLE hEther, UINT8 *pMCastAddr);

Removes an Ethernet multicast address from the list of multicast addresses previously
added via EtherAddMCast(). The multicast address to remove is specified by the pointer
pMCastAddr, pointing to a 6-byte MAC address. The multicast address list can be
manipulated in its raw form at the lIPacket layer (see Section D.4).

Clear All Multicast Ethernet Addresses

void EtherClearMCast(HANDLE hEther);

Called to remove all Ethernet multicast addresses from the list of multicast addresses
previously added via a call to EtherAddMCast(). After calling this function, the Ethernet
adapter will not receive any multicast addresses when the Rx filter is set to
ETH_PKTFLT_MULTICAST or below. The multicast address list can also be
manipulated in its raw form at the lIPacket layer (see Section D.4).

Set Receive Packet Filter Value

void EtherSetPktFilter(HANDLE hEther, uint PktFilter);

Called to indicate the level of filtering for Ethernet packets. By default, the driver is
opened with filter value: ETH_PKTFLT_MULTICAST. Valid filter values are as follows:

No Packets

Only directed Ethernet

Directed plus Ethernet Broadcast

Directed, Broadcast, and selected Ethernet Multicast
Directed, Broadcast, and all Multicast

All packets

For selecting multicast addresses as the ETH_PKTFLT_MULTICAST level, see
EtherAddMCast().

SPRU524H—-May 2001 -Revised February 2012

Internal Stack Functions 131

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
EtherGetPktFilter — Get Current Receive Packet Filter Value www.ti.com
EtherGetPktFilter Get Current Receive Packet Filter Value
Syntax uint EtherGetPktFilter(HANDLE hEther);
Description Called to retrieve the current level of filtering for Ethernet packets. See the description of
EtherSetPktFilter() for more information.
EtherRxPacket Indicate a New Rx Packet to the Ether Object
Syntax void EtherRxPacket(PBM_Handle hPkt);
Description Called to indicate the reception of a new packet to the corresponding Ether object. The

Ether object takes ownership of the indicated packet buffer, until it is returned via a call
to the packet buffer manager (PBM).

The argument hPkt is the handle of a standard packet buffer object. The valid data,
offset, and receiving interface fields must be valid. The packet buffer object is described
in Section A.3.

A.10 Binding Object
For a device object to live on the network, it must have an IP address and knowledge of its IP subnet. The
process of assigning an IP address and subnet to a device binds the device with the desired IP
addressing.

A.10.1 Object Type

Static - Binding objects are generally created and destroyed by the same entity.

A.10.2 BIND API Functions

Although the Bind object API is larger than that discussed here, this section covers the portion of the API
that is encountered by a system application.

BindNew Create New IP Binding

Syntax HANDLE BindNew(HANDLE hIF, IPN IPAddr, IPN IPMask);

Return Value Returns a handle to the Bind object, or NULL on error.

Description Binds the indicated IP address and mask to the supplied Ether device. The handle to the

Ether device object is specified as hIF - or an handle to an interface, because the
interface may or may not be an Ethernet device (but always is in this version).

The IP address and mask arguments are given the type IPN, which is an unsigned 32 bit
value. IPN stands for IP Network format, meaning that the IP data must be supplied in
network format. If unsure of the network format for your hardware, use the htonl() macro
function on the native format (where 1.2.3.4 = = 0x01020304).

BindFree Destroy IP Binding Object
Syntax void BindFree(HANDLE hBind);
Description Destroys the indicated Bind object, and frees its associated memory. This function

removes the IP address and subnet association in the system route table. It has no
effect on the Ether object involved in the binding.

132 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

BindGetFirst — Start Enumeration of Binding Objects

BindGetFirst

Syntax

Description

BindGetNext

Syntax

Description

BindGetlF

Syntax

Description

BindGetIP

Syntax

Description

pIPHost
pIPNet
pIPMask

Start Enumeration of Binding Objects

HANDLE BindGetFirst();

Returns a handle to the first binding installed in the system (or NULL if no bindings
exist).

Continue Enumeration of Binding Objects

HANDLE BindGetNext(HANDLE hBind);
Returns a handle to the binding in the installed binding list that follows the indicated

binding (or NULL if no more bindings exist). Note that bindings are not internally kept in
chronological order in which they were installed.

Get the Ether Object that is Bound by this Binding Object

HANDLE BindGetIF(HANDLE hBind);

Returns a handle to the Ether object that is bound by this binding object. Note that a
binding is nothing more than an assignment of an Ether object to an IP address/network.

Get the IP Address/Network that is Bound by this Binding Object

void BindGetIP(HANDLE hBind, IPN *plPHost, IPN *pIPNet, IPN *plPMask);

Returns the IP address and mask as requested by the calling arguments. Any of the
pointer arguments can be NULL if the information is not required.

The arguments are defined as follows:

Pointer to the local IP address assigned by this binding
Pointer to the network assigned by this binding (IP address AND IP Mask)
Pointer to the subnet mask of the network assigned by this binding

SPRU524H—-May 2001 -Revised February 2012

Internal Stack Functions 133

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Route Object www.ti.com

A.11 Route Object

The route manager maintains IP routing information. It is called by various routines to get and set route
information. A route object is a destination on the network. Locally, it consists of an egress interface and a
next hop IP address.

This section describes a subset of the route object. Flags, features, and API calls have been omitted for
simplicity. Also, documenting the entire API would require the documentation of other stack objects that
are not covered in this document.

A.11.1 Object Type

Referenced - Route objects are referenced and dereferenced as needed. The object is removed when the
reference count reaches ZERO.

A.11.2 Route Entry Flags Definition

Associated with each route is a collection of entry/status flags. These flags indicate the type of route and
its status. Most system programming is not concerned with the route entry flags. They are listed here for
completeness. The definition of the various flags is as follows:

FLG_RTE_UP - Entry is up

When set, indicates that the route is valid. The only time this flag is cleared is when the route is being
initialized, or when an error condition is signaled via RtSetFailure(). The flag is reset to TRUE by
calling RtSetFailure() with NULL failure code, or if the route is modified.

FLG_RTE_EXPIRED - Entry is expired

When set, indicates that the route is expired. The flag cannot be cleared. A new route must be created.
Expired routes are never found, but a route cached by another entity may expire while it is being held.
FLG_RTE_STATIC - Entry is static

This flag is set when a route should remain in the routing table even if it has no references. Various
routes can be static. Static routes are manually referenced by the system during create, and manually
de-referenced by the system during system shutdown.

FLG_RTE_BLACKHOLE - Entry is a blackhole

When set, indicates that the route is a black hole. All packets destined for this address are silently
discarded.

FLG_RTE_REJECT - Entry is rejected

When set, indicates that the route is to an invalid address. All packets destined for this address are
discarded with an error indication.

134 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

Route Object

FLG_RTE_MODIFIED - Route has been auto modified

When set, indicates that the route has been modified as a result of an ICMP redirect message. This
can occur only to GATEWAY routes, and only if ICMP modifications are enabled in the stack
configuration.

FLG_RTE_DYNAMIC - Route has been auto created

When set, indicates that the route has been created as a result of an ICMP redirect message. ICMP
can only create GATEWAY routes, and may do so only if ICMP modifications are enabled in the stack
configuration.

FLG_RTE_PROXYPUB - Reply to ARP with client's MAC address

This flag indicates that the router is a proxy publisher of another entity's MAC address. When set, the
ARP protocol will respond to ARP requests for the route's IP address with the supplied static MAC
address when the host is on the same IF device as the incoming ARP request. This allows support of
hosts that do not implement ARP but are on the same physical Ethernet network. PROXYPUB entries
are always created with a MAC address and contain a static LLI (link-layer info, i.e., ARP entry).

FLG_RTE_PROXY - Reply to ARP with router's MAC address

This flag indicates that the router is acting as a proxy for this host or network route. When set, the ARP
protocol will respond to ARP requests with its own MAC address for the associated IP host or network
when the network appears on a different IF device from the incoming ARP request. The MAC address
supplied in the reply is the local MAC of the ingress IF device. This technique tricks clients into sending
packets to the router when subnets are split across physical devices on a router.

One potential use applies when the stack is acting as a PPP server and Ethernet router. If a PPP client
is made part of the same IP subnet as an Ethernet based interface, the stack acts as the PPP client's
proxy so that Ethernet peers can communicate via ARP.

FLG_RTE_CLONING - Cloning route to a local IP subnet

When set, indicates that the network route is a cloning route. Cloning routes clone (spawn to) host
routes when a route search is performed on a host address that is a member of the cloning route's
network (via the address and subnet mask). Cloned host routes take on most of the properties of their
parent network route, with the following alterations:

— Any MODIFIED or DYNAMIC flags are cleared.

— The STATIC flag is never set.

— The HOST flag is set and the netmask is set to 1s.
— The CLONING flag is cleared.

NOTE: Cloning routes are routes to a network (IP and subnet). These routes are added
automatically when an IP network is added to a device via a Bind object. Take care when
adding this type of route manually.

FLG_RTE_HOST - Host route (no subnet mask)

When set, indicates that the route entry is a host route. A host route has no subnet mask (or rather a
subnet mask of all 1's). When searching for a route, host routes always match before network routes
(but this behavior can be overridden).

FLG_RTE_GATEWAY - Destination is available via a Gateway

When set, indicates that the host or network route is indirectly accessible via an IP gateway. For a
route with this flag set, the GatelP address is always valid. Most GATEWAY routes will also be network
routes; however, a host redirect from ICMP can create a host route with a different gateway than its
parent route. When searching for a route, gateway routes always match before host routes (but this
behavior can be overridden).

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 135
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Route Object www.ti.com

* FLG_RTE_IFLOCAL - IP address is Local to the stack

When set, indicates that the host route does not have a valid LLI (ARP) entry because the host is local
to the stack. The MAC address of this local IP host address can be obtained from the interface handle
associated with the route.

NOTE: Local routes are in the routing table to route packets that originate in the stack's upper
layers. When handling ARP requests and routing of incoming packets from outside the stack,
the IP address list published via the Bind object is used. The ARP will not respond to, nor will
the IP accept, packets addressed to an IP address that is not in the Bind list, even if an
IFLOCAL address entry exists in the route table. As with a cloning route, the Bind object is
the best way to create a local route.

A.11.3 Route Entry Flags Guidelines

See the following for some general guidelines to use when creating new routes. Use the definitions listed

above with the following legal flag combinations:

» Setting FLG_RTE_BLACKHOLE
FLG_RTE_REJECT - must be OFF

+ Setting FLG_RTE_REJECT
FLG_RTE_BLACKHOLE - must be OFF

» Setting FLG_RTE_CLONING
FLG_RTE_HOST - must be OFF
FLG_RTE_GATEWAY - must be OFF
FLG_RTE_IFLOCAL - must be OFF

« Setting FLG_RTE_HOST
FLG_RTE_CLONING - must be OFF

» Setting FLG_RTE_GATEWAY
FLG_RTE_CLONING - must be OFF
FLG_RTE_IFLOCAL - must be OFF

» Setting FLG_RTE_IFLOCAL
FLG_RTE_HOST - must be ON
FLG_RTE_CLONING - must be OFF
FLG_RTE_GATEWAY - must be OFF

» Setting FLG_RTE_PROXYPUB
FLG_RTE_HOST - must be ON
FLG_RTE_CLONING - must be OFF
FLG_RTE_GATEWAY - must be OFF

+ Setting FLG_RTE_PROXY
FLG_RTE_CLONING - must be OFF
FLG_RTE_GATEWAY - must be OFF

136 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com RtRef — Reference a Route

A.11.4 API Functions

The Route API is the most extensive API that a system task uses outside of the stack routines
themselves. As with the other stack APIs, this guide does not document the entire API.

Calls that accept a CallFlags argument can be supplied with the FLG_RTF_REPORT flag to indicate that
the call should result in a route report to the route control object. The route control object is described later
in this section.

RtRef Reference a Route

Syntax void RtRef(HANDLE hRt);

Description Called to add one to the reference count of a route. An application that keeps a route it
did not create itself should reference the route before it uses it, and dereference it when
it is through.

RtDeRef Dereference a Route

Syntax void RtDeRef(HANDLE hRt);

Description Called to remove one from the reference count of a route. An application dereferences a

route when it is through with it. This is the same (to the application) as destroying the
route. The route is actually destroyed when its reference count reaches zero.

RtCreate Create New Route
Syntax HANDLE RtCreate(uint CallFlags, uint RtFlags, IPN IPAddr, IPN IPMask, HANDLE hiF,
IPN IPGateway, UINT8 *pMacAddr);
Parameters
CallFlags Call Type Flags
RtFlags Route Type Flags
IPAddr Destination IP address of route
IPMask Destination IP Mask of route (or NULL)
hiF Interface (or NULL)
IPGateway Gate IP address (or NULL)
pMacAddr Pointer to six byte MAC address (or NULL)
Call Flags
FLG_RTF_REPORT Reports new route (NEW)
Return Value Referenced handle to newly created route.
Description Called to create a new host or network route and add it to the route table. Existing routes
cannot be modified via this call.
Some flag combinations are incorrect, and the following rules are strictly enforced.
» FLG_RTE_UP flag is always SET.
* FLG_RTE_EXPIRED and FLG_RTE_MODIFIED flags are always CLEARED.
» If FLG_RTE_HOST is set, then the route is a host route and IPMask is ignored, and
FLG_RTE_CLONING cannot be set.
e If FLG_RTE_GATEWAY is set, then IPGateway must specify a valid (reachable) IP
address.
SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 137

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

RtFind — Find a Route

13 TEXAS
INSTRUMENTS

www.ti.com

* If FLG_RTE_GATEWAY is not set, then hIF must be valid.

* If FLG_RTE_IFLOCAL is set, then the specified host address is local to this machine,
and FLG_RTE_HOST must also be set, FLG_RTE_GATEWAY cannot be set, and
hIF must be valid.

e If FLG_RTE_CLONING is specified in Flags, the route is a cloning network route.
The IPMask argument must be valid, and neither FLG_RTE_HOST nor
FLG_RTE_GATEWAY may be set.

* If FLG_RTE_STATIC is specified in Flags, the route is referenced once by the route
code, and later dereferenced during shut down.

RtFind Find a Route
Syntax void RtFind(uint CallFlags, IPN IPAddr);
Call Flags
FLG_RTF_REPORT Reports any new (cloned) or unfound route (NEW or MISS)

Return Value

Referenced handle to best match route (or NULL)

Description This call searches the route table for a route that matches the supplied IP address. The
search always returns the best match for a route. The best match is a match with the
most bits in the subnet mask. Thus, a host match takes priority over a network match.
When there is more than one route with the same subnet mask, the following matching
guidelines are used (listed from best to worst):

* Route has a local destination (occurs with host addresses only).
* Route has a gateway destination.
* Route has a subnet destination on a connected interface.
Sometimes a search is desired where particular matches are desired. The following flags
can be combined with the value of CallFlags to change the behavior of the search:
FLG_RTF_CLONE Clone a network route to a host route if host not found
FLG_RTF_HOST Find only non-gateway host routes

RtSetTimeout

Syntax

Description

Set the Timeout for a Non-static Route

void RtSetTimeout(HANLE hRt, UINT32 dwTimeOut);

This call allows an application to specify that the stack should time out a referenced
route. When the route is added to the timeout list, the system will add a reference. Thus,
once the application sets the timeout value, it should call RtDeRef() to dereference the
route. The route will stay valid until the timeout value is exceeded, after which it is
dereferenced by the system. Note that if this function is called and the route is not
dereferenced by the caller, it will still be removed from the system route table when the
expiration time elapses, but the object will not be freed.

138 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com RtSetFailure — Set the Timeout for a Non-Static Route

RtSetFailure Set the Timeout for a Non-Static Route

Syntax void RtSetFailure(HANLE hRt, uint CallFlags, uint FailCode);

Call Flags

FLG_RTF_REPORT Reports the status change of the route (UP or DOWN)

Description This call allows an application to specify a particular error with a route, or clear a
previously indicated error. Setting an error clears the FLG_RTE_UP bit in the flags.
When use of the route is attempted, the specified error is returned. Defined error codes
for the FailCode argument are:

NULL Route is operating normally (sets FLG_RTE_UP flag)
RTC_HOSTDOWN Host is down

RTC_HOSTUNREACH Host unreachable

RTC_NETUNREACH Network unreachable

RtRemove Remove Route from System Route Table

Syntax void RtRemove(HANLE hRt, uint CallFlags, uint FailCode);

Call Flags

FLG_RTF_REPORT Reports the removal of the route (REMOVED)

Description This call allows an application to remove a route from the system route table
independently of any held references to the route. It is similar to the RtSetFailure() call,
but differs in two ways:

1. It removes the route from the system route table so that it can no longer be returned
by RtFind().

2. It calls the IP and Sockets layers to flush the route from any local cache.
Calling this function clears the FLG_RTE_UP bit in the flags. When use of the route is
attempted, the error specified in FailCode is returned. Defined error codes for the
FailCode argument are:

RTC_HOSTDOWN Host is down

RTC_HOSTUNREACH Host unreachable

RTC_NETUNREACH Network unreachable

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 139

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

RtGetFailure — Set the Timeout for a Non-Static Route

13 TEXAS
INSTRUMENTS

www.ti.com

RtGetFailure

Syntax
Return Value

Description

RTC_HOSTDOWN
RTC_HOSTUNREACH
RTC_NETUNREACH

RtGetFlags

Syntax

Description

RtGetIPAddr

Syntax
Return Value

Description

RtGetIPMask

Syntax
Return Value

Description

RtGetGatelP

Syntax
Return Value

Description

RtGetlF

Syntax

Return Value

Set the Timeout for a Non-Static Route
uint RtGetFailure(HANLE hRt);
Failure code or NULL for normal operation.

This call allows an application to retrieve the error code of a route where the
FLG_RTE_UP bit is not set in the route flags. Defined error codes are:

Host is down
Host unreachable
Network unreachable

Get the Route Flags

uint RtGetFlags(HANLE hRt);

This function returns the state of the route flags for the indicated route. The flag values
and definitions were discussed earlier in this section.

Get the Route IP Address

IPN RtGetIPAddr(HANLE hRt);
IP host/network address.

This function returns the specified route's IP address in network format.

Get the Route IP Subnet Mask

IPN RtGetIPMask(HANLE hRt);
IP subnet mask.

This function returns the specified route's IP subnet mask in network format.

Get the Route Gateway IP Address

IPN RtGetGatelP(HANLE hRt);
IP address of the Gateway or NULL.

This function returns the Gateway IP address for the specified route (assuming the
FLG_RTF_GATEWAY bit is set in the route flags).

Get the Route's Destination Hardware Interface

HANDLE RtGetIF(HANLE hRt);

HANDLE to Ether Object representing target interface.

Description This function returns an Ether device handle to the egress (target) device of the route.
Even local IP addresses have target devices (the device they are bound to).
140 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

RtGetMTU — Get the MTU of a Packet Sent via this Route

RtGetMTU

Syntax
Return Value

Description

RtWalkBegin

Syntax
Return Value

Description

RtWalkNext

Syntax
Return Value

Description

RtWalkEnd

Syntax

Description

Get the MTU of a Packet Sent via this Route

uint RtGetMTU(HANLE hRt):
Packet payload MTU in bytes.

This function returns the MTU (not including layer 2 header) of a packet sent via the
supplied route.

Start Walking the Route Table

HANDLE RtWalkBegin();
HANDLE to first route in system route table or NULL if no routes.

This function initiates a walk of the route table. It returns the first route in the table. The
walk must be terminated with RtWalkEnd() for the system to behave properly.

Get Next Route While Walking the Route Table

HANDLE RtWalkNext(HANDLE hRt);
HANDLE to next route in system route table or NULL if no routes.

This function gets the next route (based off the previous route supplied) in a walk of the
route table. The walk must be terminated with RtWalkEnd() for the system to behave

properly.
Stop Walking the Route Table

void RtWalkEnd(HANDLE hRt);

This function completes the walk of the route table. The last route (if any) obtained from
RtWalkBegin() or RtWalkNext() is specified in the calling argument. Otherwise, NULL is
used.

A.12 Route Control Object

The route control object is more of a function than an object. It serves as a collection point for route
related information in the system. A routing daemon may use this information, or it could simply be logged
as debugging information.

When so configured, route control messages are transformed into debug messages by the stack and
logged via DbgPrintf(). By default, the route control debug messages are disabled. Also, the message
function can be hooked by an application.

Note, control messages can also be suppressed individually by not supplying the FLG_RTF_REPORT flag
to the Route object API function when the call is made (as mentioned in the previous section).

A.12.1 Route Control Messages

The basic form of the route control message is an unsigned int message value, with two unsigned 32 bit
values for additional data. In most cases these are immediate data. In one instance, the value is actually a
32 bit memory pointer.

Messages are passed internally to the stack via the function:
voi d RTCReport (uint Mg, U NT32 Paraml, U NT32 Paran®);

Applications should not call this function directly.

The possible values for Msg are as follows:

SPRU524H—-May 2001 -Revised February 2012

Internal Stack Functions 141

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

MSG_RTC_UP — Route is Valid/Pending

13 TEXAS
INSTRUMENTS

www.ti.com

MSG_RTC_UP
Parameters

Paraml
Param?2

Description

MSG_RTC_DOWN

Parameters

Paraml
Param?2

Description

MSG_RTC_MISS
Parameters

Paraml
Param?2

Description

MSG_RTC_NEW

Route is Valid/Pending

Route IP
Route IP Mask (all ones for host route)

Called after a down message indicating that a route that had previously been in the
down state is now up again. This does not mean that the route has been validated, but
only that it will attempt to validate itself if used.

Route is Down

Route IP
Route IP Mask (all ones for host route)

Called when a route goes down due to an error. Packets sent via a route in this state will
generate an error. The most common reason for a route to go down is for a non-
response to 5 successive ARP requests. In this case, the route will come back up after
the down time has expired.

Route Find "Missed" on Route

Route IP
Route IP Mask (all ones for host route)

Called when the route table was searched for a route and no matching route was found.
This message will never be sent when there is a default route in the table because all
searches will have a match (unless a special restricted search is performed).

New Route has been Entered into the Route Table

Parameters
Paraml Route IP
Param2 Route IP Mask (all ones for host route)

Description Called when a new route is created and entered into the route table. Routes can be
created by applications, when new bindings are created, by ICMP redirects, or when
local host routes are cloned from local subnet routes.

142 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com MSG_RTC_EXPIRED — Route has Expired

MSG_RTC_EXPIRED Route has Expired

Parameters
Paraml Route IP
Param2 Route IP Mask (all ones for host route)
Description Called when a route with an expiration timeout has expired and been removed from the

table.

MSG_RTC_REMOVED Route has been Manually Removed

Parameters
Paraml Route IP
Param2 Route IP Mask (all ones for host route)
Description Called when a route has been manually removed from the table. This message is not

generated when static routes are removed at system shutdown. Generally, a route can
only be removed when its reference count reaches zero. This cannot happen to a static
route or a route with an expiration timeout. For the former, no message is ever
generated. For the latter, the MSG_RTC_EXPIRED message is used.

MSG_RTC_MODIFIED Route has been Manually Modified

Parameters
Paraml Route IP
Param2 Route IP Mask (all ones for host route)
Description Called when a route has been manually modified via the RtModify() call. The stack does
not use this function, so if it is not called by an application, this message will never
occur.

MSG_RTC_REDIRECT Route has been Redirected

Parameters
Paraml Route IP
Param2 New Destination Gateway IP
Description Called when an ICMP redirect message is received for a given IP host address.
Because the invention of classless subnets, all redirects are treated as HOST redirects.
If the stack is configured to generate redirect routes automatically (will do so by default),
this message will occur after the new static host redirect route has been created (which
will also generate a MSG_RTC_NEW message). If the stack does not create the redirect
route, this message occurs before the socket layer is notified so that if a new route is
created as a result of this message, the sockets layer will find it.
SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 143

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

MSG_RTC_DUPIP — A Duplicate IP Address has been Detected in the System www.ti.com

MSG_RTC_DUPIP
Parameters

Paraml
Param?2

Description

A Duplicate IP Address has been Detected in the System

Duplicated IP
Pointer to 6 byte MAC address of offending device

Called when an ARP packet is received from a device that has an IP address that is the
same as the IP address of the stack on that physical interface. Depending on the age of
the address, the application may wish to destroy the binding.

A.12.2 Route Control API Functions

RTCAddHook

Syntax
Return Value

Description

RTCRemoveHook

Syntax
Return Value

Description

Hook RTC Messages

uint RTCAddHook (void (*pfn)(uint, UINT32, UINT32));
1 if the hook was installed, or NULL on an error (too many hooks).

Called to hook a message function to receive route control messages. The argument is a
pointer to a message function of the type:

voi d MyMsgFun(ui nt Msg, U NT32 Parandl, Ul NT32 Paran?);
Note that the supplied callback function is called from within an lIExit()/lIEnter() pair, and
thus may call the stack API directly, but may not call any applications API functions, like

sockets functions. If such action is required, the callback function may call lIExit() when
called and then llEnter() before returning.

When the hook is no longer required, the function may be unhooked by calling
RTCRemoveHook().

Unhook RTC Messages

void RTCRemoveHook (void (*pfn)(uint, UINT32, UINT32));
None.

Called to remove a previously hooked callback function.

A.13 Configuring the Stack

The stack has multiple configuration options that can be changed by the system programmer. This is
possible by altering the default values in a stack configuration structure before the stack is initialized.

144 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

Configuring the Stack

A.13.1 Configuration Structure

This section describes a data structure that is generated automatically by the XGCONF configuration. If

you are using XGCONF for configuration, you can ignore the structure described here.

The stack internal configuration structure is _ipcfg. Any element in this structure may be modified before
the initial system call to ExecOpen(). This structure should not be modified after this initial call.

The _ipcfg structure is of type IPCONFIG, which is defined as follows:

typedef
ui
ui
ui
ui
ui
ui
ui
ui
ui
ui
ui
ui
ui
ui

struct _ipconfig {

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

int

ui
ui
ui
ui
ui

ui
ui
ui
ui

ui

ui

nt
nt
nt
nt
nt

nt
nt
nt
nt

nt

nt

int

} | PCONFI G

| cnpDoRedi rect ;
lempTtl;

| cnpTt | Echo;

| pl ndex;

| pFor war di ng;

| pNat Enabl e;

| pFi | t er Enabl e;

| pReasmVaxTi ne;
| pReasmvaxSi ze;
| pDi rect edBCast ;
TcpReasmvaxPkt ;
Rt cEnabl eDebug;
Rt cAdvTi ne;

Rt cAdvLi fe;

Rt cAdvPref;

Rt Ar pDownTi ne;
Rt Keepal i veTi ne;
Rt Ar pl nactvity;
Rt Cl oneTi meout ;
Rt Def aul t MT'U,
SockTt | Def aul t;
SockTosDef aul t;
SockMaxConnect ;
SockTi meConnect ;
SockTi nel o;
SockTcpTxBuf Si ze;
SockTcpRxBuf Si ze;
SockTepRxLimt;
SockUdpRxLimit;
SockBuf M nTx;
SockBuf M nRx;

Pi peTi nel o;

Pi peBuf Si ze;

Pi peBuf M nTx;

Pi peBuf M nRx;
TcpKeepl dl €;

TcpKeepl ntvl ;

TcpKeephMaxl dl e;

| cnpDont Repl yBCast ;

| cnpDont Repl yMCast ;

Rt Gar p;

| cnpDont Repl yEcho;
UdpSendl cnpPor t Unr each;

TcpSendRst ;
SockRawEt hRxLi mi t;

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

Update Rt Table on ICWP redirect (1l=Yes)
TTL for | CWP nmessages RFC1700 says 64
TTL for | CWMP echo RFC1700 says 64

IP Start |ndex

I P Forwarding (1 = Enabl ed)

| P NAT Enable (1 = Yes)

IP Filtering Enable (1 = Yes)

Max reassenbly time in seconds

Max reassenbly packet size

Look for directed BCast |P addresses
Max reasm pkts held by TCP socket
Enabl e Route Control Messages (1=0n)
Tine in sec to send RtAdv (0O=don't)
Litetine of route in RtAdv

Preference Level (signed) in RtAdv
Tine 5 failed ARPs keep Rt down (sec)
VAL| DATED route tineout (sec)

ARP I nactivity Tinmeout (sec)

INITIAL route timeout (sec)

Default MIU for internal routes

Def aul t Packet TTL

Def aul t Packet TOS

Max Socket Connecti ons

Max tine to connect (sec)

Default Socket 1O tineout (sec)

TCP Transmit buffer size

TCP Receive buffer size (copy node)
TCP Receive limt (non-copy node)

UDP Receive limt

Mn Tx space for "able to wite"

Mn Rx data for "able to read"

Default Pipe 10 tineout (sec)

Pi pe internal buffer size

Mn Tx space for "able to wite"

Mn Rx data for "able to read"

Time (in 0.1 sec) connection nuse be idle
for TCP to send first keepalive probe.
Tinme (in 0.1 sec) between consecutive TCP
keep alive probes

Time (in 0.1 sec) that a TCP connection can
go without responding to a probe before
bei ng dropped

Don't Reply To | CMP ECHO REQ packets
sent to BCast or Directed BCast

Don't Reply To | CMP ECHO REQ packets
sent to Milti-Cast

How t o handl e recei ved gratuitous ARP
Don't Reply to | CMP ECHO packets

Send | CMP Port Unreach if UDP port

is opened or not.

Send RST if TCP port is opened or not.
Raw Et hernet Receive limt

SPRU524H—-May 2001 -Revised February 2012
Submit Documentation Feedback

Internal Stack Functions

Copyright © 2001-2012, Texas Instruments Incorporated

145

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

_ipcfg.lcmpDoRedirect — Update Route Table on ICMP Redirect www.ti.com

The structure entries are defined as follows:

_ipcfg.IcmpDoRedirect Update Route Table on ICMP Redirect

Default Value

Description

_ipcfg.lcmpTtl
Default Value

Description

_ipcfg.lcmpTtlEcho

Default Value

Description

_ipcfg.lpindex
Default Value

Description

1 (Yes)
When set, causes ICMP to automatically create a route to perform redirects on an IP
host to the gateway supplied in the redirect message. If set to false (0), you can take

whatever action you feel necessary as the ICMP redirect will also generate a route
control message.

TTL for ICMP Messages

64

This is the TTL value ICMP will use in messages it generates as a result of routing IP
packets. Legal values are in the range of (1-255).

TTL for ICMP ECHO Reply Messages

255

This is the TTL value ICMP will use in echo reply messages it generates in response to
receiving echo requests. Legal values are in the range of (1-255).

IP Start Index

1

This is the initial value that is placed in the IP Id field for IP packets generated by the
system. Legal values are in the range of (1-65535).

_ipcfg.lpForwarding IP Forwarding Enable

Default Value

Description

_ipcfg.lpNatEnable

Default Value

Description

0 (No)

When set to true (1), this allows the stack to forward packets it receives for other IP
address to their next hop destination (i.e., it allows the stack to act as a router).

IP Network Address Translation Enable

0 (No)

When set to true (1), this allows the stack to make use of the network address
translation (NAT) module. Note that in addition to setting this structure element, NAT
must also be configured. This is described in the following section.

_ipcfg.IpFilterEnable P Filtering Enable

Default Value

0 (No)

Description When set to true (1), this allows the stack to make use of the IP filtering module. Note
that this is automatically turned on when NAT is enabled in the stack. This module is
described in more detail in the NAT Service section of this document.

146 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com _ipcfg.IpReasmMaxTime — Maximum IP Packet Reassembly Time in Seconds

_ipcfg.IpReasmMaxTime Maximum IP Packet Reassembly Time in Seconds

Default Value 10

Description This is the maximum time that the stack will hold IP packet fragments while attempting to
assemble a complete packet. If the time expires before all the fragments arrive, the
packet is discarded.

_ipcfg.IpReasmMaxSize Maximum IP Packet Reassembly Packet Size in Bytes

Default Value 3020

Description This is the maximum packet size that the stack will attempt to reassemble. As soon as
the stack determines that the total packet size exceeds this value, the packet is
discarded. The default size of 3020 is the maximum size given the default
implementation of the packet buffer manager (PBM). If a larger size is desired, then
large buffer support must be added to the PBM module. This value is not otherwise
restricted. Note the MAC and IP headers are not included in this size limit.

_ipcfg.lpDirectedBCast Look for Directed Broadcast IP Packets

Default Value 1 (Yes)

Description A directed broadcast address is one where all the bits in the subnet portion of the
address are set to 1. For example, on the network 192.168.1.0:255.2555.255.0, the IP
address 192.168.1.255 would be a directed broadcast IP. This address is treated as a
broadcast for both IP send and receive. The IP layer can be told to disable directed
broadcast by setting this value to zero. When disabled, the directed broadcast address is
treated like any other host address.

_ipcfg.TcpReasmMaxPkt Maximum Reassembly Packets Held by TCP Socket

Default Value 2

Description The TCP layer has its own packet reassembly module, allowing TCP packets to arrive
out of order, and yet be properly reassembled without the need to retransmit data. One
potential issue with embedded environments where the socket receive buffers are large
is that a significant number of packets can be tied up in TCP if the first packet of a large
burst is lost. This value allows you to specify the maximum number of packets the TCP
layer will hold per socket pending reassembly, or in other words, the maximum number
of out of order packets allowed.

_ipcfg.RtcEnableDebug Enable Route Control Messages

Default Value 0 (No)

Description Route control messages keep the system informed of route updates. When set to Yes
(1), this variable causes RTC to process the route control message and convert the
message into a debug call to lIDebugMessage(). Note that an application may also hook
into the RTC message loop using the RTCAddHook () function.

_ipcfg.RtcAdvTime Time in Seconds to Send Router Advertisments

Default Value 0 (Do not Send Router Advertisements)

Description The stack has the ability to automatically send ICMP router advertisements at a
predetermined interval. Setting this variable to a non-zero value determines the interval.

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 147

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

_ipcfg.RtcAdvLife — Lifetime of Route in Router Advertisments www.ti.com

_ipcfg.RtcAdvLife

Default Value

Description

_ipcfg.RtcAdvPref

Default Value

Description

_ipcfg.RtDownTime

Default Value

Description

Lifetime of Route in Router Advertisments

120

If sending router advertisements (see above), this is the route lifetime that will be sent in
the ICMP message.

Preference Level of Route in Router Advertisments

0

If sending router advertisements (see above), this is the route preference level that will
be sent in the ICMP message. This value is signed.

Time in Seconds a Route is "Down" Due to Failed ARP

20

To stop an application from sending endless packets to a route that is not responding to
ARP, the route is brought down for a period of time so that the application will receive an
error when IP attempts to send. After the designated time, the route is brought back up
and will attempt more ARP requests if used again.

_ipcfg.RtKeepAliveTime Time in Seconds a Validated Route is Held

Default Value

Description

1200

Routes should not be held indefinitely. Use of a route is also not sufficient to keep the
route alive. This value represents the time an ARP validated route is held before it
expires. If the route is revalidated via ARP during this period, the period is extended for
this interval from that point in time.

_ipcfg.RtArplnactivity ARP Inactivity timeout in seconds

Default Value

Description

3

Time in seconds beyond which a route and an associated LLI/ARP entry if unused is
considered inactive or idle. Inactive ARP entries lifetime is not extended using ARP
revalidation process and are instead deleted. The associated route entry is also
removed.

_ipcfg.RtCloneTimeout Default Timeout in Seconds of a Cloned Route

Default Value

120

Description When a host route is first cloned from a network route, it is assigned this default timeout.
Once the route is validated via ARP, the timeout is extended (see above).
148 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com _ipcfg.RtDefaultMTU — Default MTU for Local Routes

_ipcfg.RtDefaultMTU Default MTU for Local Routes

Default Value 1500

Description When a route is created, it gets its MTU from the egress device. However, if the route is
local to the system, there is no egress device. In this case, a default MTU is used.

_ipcfg.SockTtIDefault Default TTL for Packets Sent via a Socket

Default Value 64

Description This is the default IP packet TTL value of packets sent via a socket. Note that the
application can override this value with the sockets API.

_ipcfg.SockTosDefault Default TOS for Packets Sent via a Socket

Default Value 0

Description This is the default IP packet TOS value of packets sent via a socket. Note that the
application can override this value with the sockets API.

_ipcfg.SockMaxConnect Maximum Connections on a Listening Socket

Default Value 8

Description This is the maximum number of connections a socket will pend waiting for a sockets
accept() call from the application. Note: This value is also the upper bounds of the
maximum connection argument supplied by an application via the sockets listen()
function (calls with higher values are silently rounded down).

_ipcfg.SockTimeConnect Maximum Time in Seconds to Wait on a Connect

Default Value 80

Description This is the maximum amount to time the sockets layer will wait on an actively connecting
socket. The default value of 80 is a few seconds longer than the TCP keep time, so TCP
will generate the official (more accurate) timeout error.

_ipcfg.SockTimelo Maximum Time in Seconds to Wait on Socket Read/Write

Default Value 0

Description This is the maximum amount of time the sockets layer will wait on a read or write
operation without any progress. For example, if the user calls send() with a very large
buffer, the function will not time out so long as some fraction of the data is sent during
the timeout period. After every successful transfer of data, the timeout period is reset. A
timeout value of ZERO means never time out.

_ipcfg.SockTcpTxBufSize TCP Transmit Buffer Size

Default Value 8192

Description This is the size of the TCP send buffer. A TCP send buffer is allocated for every TCP
socket. This value cannot be overridden by the sockets option function.

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 149

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

_ipcfg.SockTcpRxBufSize — TCP Receive Buffer Size (Copy Mode) www.ti.com

_ipcfg.SockTcpRxBufSize TCP Receive Buffer Size (Copy Mode)

Default Value

Description

8192

This is the size of the TCP receive buffer allocated for a standard TCP socket. Note that
only SOCK_STREAM sockets use receive buffers. This value cannot be overridden by
the sockets option function.

_ipcfg.SockTcpRxLimit TCP Receive Limit (Non-Copy Mode)

Default Value

Description

8192

This is the maximum number of cumulative bytes contained in packet buffers than can
be queued up at any given TCP based socket. Note that only TCP sockets using
SOCK_STREAMNC queue packet buffers directly to a socket. This value cannot be
overridden by the sockets option function.

_ipcfg.SockUdpRxLimit UDP Receive Limit

Default Value

Description

8192

This is the maximum number of cumulative bytes contained in packet buffers than can
be queued up at any given UDP or RAW based socket. This value cannot be overridden
by the sockets option function.

_ipcfg.SockBufMinTx Min Size in Bytes for Socket "Able to Write"

Default Value

Description

2048

This is the size in bytes required to be free in the TCP buffer before it is regarded as
able to write by the system. (Affects how the write fd set behaves in a select() call.) This
value is usually about 25% to 50% of the send buffer size. UDP and RAW IP sockets are
always able to write.

_ipcfg.SockBufMinRx Min Size in Bytes for Socket "Able to Read"

Default Value

Description

_ipcfg.PipeTimelo
Default Value

Description

1

This is the size in bytes required to be present in a socket buffer for it to be regarded as
able to be read by the system. (Affects how the read fd set behaves in a select() call.)
Alter at your own risk.

Maximum Time in Seconds to Wait on Pipe Read/Write

0

This is maximum amount to time the file layer will wait on a read or write operation on a
pipe without any progress. For example, if the user calls send() with a very large buffer,
the function will not time out as long as some fraction of the data is sent during the
timeout period. After every successful transfer of data, the timeout period is reset. A
timeout value of ZERO means never time out.

150 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

_ipcfg.PipeBufSize — Size in Bytes of Each End of a Pipe Buffer

_ipcfg.PipeBufSize
Default Value

Description

Size in Bytes of Each End of a Pipe Buffer

1024

This is the size of a Pipe send and receive buffer. This value is only examined when
pipes are created, so changing this value will not affect the buffering of existing pipes.

_ipcfg.PipeBufMinTx Min Size in Bytes for Pipe Able to Write

Default Value

Description

256

This is the size in bytes required to be free in the Pipe buffer before it is regarded as
able to write by the system. (Affects how the write fd set behaves in a select() call.) It is
usually about 25% to 50% of the send buffer size. This value is only examined when
pipes are created, so changing this value will not affect the buffering of existing pipes.

_ipcfg.PipeBufMinRx Min Size in Bytes for Pipe "Able to Read"

Default Value

Description

_ipcfg.TcpKeepldle
Default Value

Description

1

This is the size in bytes required to be present in the Pipe receive buffer for it to be
regarded as able to be read by the system. (Affects how the read fd set behaves in a
select() call.) Alter at your own risk. This value is only examined when pipes are created,
so changing this value will not affect the buffering of existing pipes.

Keep Idle Time (0.1 Sec Units)

72000 (2 hours)

This parameter only affects sockets that have specified the SO_KEEPALIVE socket
option. It is the time a TCP connection can be idle before KEEP probes are sent.

_ipcfg.TcpKeeplintvl Keep Probe Interval (0.1 Sec Units)

Default Value

Description

750 (75 seconds)

This parameter only affects sockets that have specified the SO_KEEPALIVE socket
option. It specifies the time between probe intervals once TCP begins sending KEEP
probes.

_ipcfg.TcpKeepMaxldle Keep Probe Timeout (0.1 Sec Units)

Default Value

Description

6000 (10 minutes)

This parameter only affects sockets that have specified the SO_KEEPALIVE socket
option. It is the time the TCP will continue to send unanswered KEEP probes before
timing out the connection.

_ipcfg.lcmpDontReplyBCast Do NOT Reply to ICMP Echo Request Packets Sent to broadcast/directed

Default Value

addresses

0 (Reply to ICMP Echo Request packets sent to broadcast/directed broadcast
addresses)

Description When set, causes ICMP to not reply to ICMP Echo Request packets sent to broadcast or
directed broadcast addresses.
SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 151

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

_ipcfg.lcmpDontReplyMCast — Do NOT Reply to ICMP Echo Request Packets Sent to multicast addresses ~ www.ti.com

_ipcfg.lcmpDontReplyMCast Do NOT Reply to ICMP Echo Request Packets Sent to multicast

Default Value

Description

_ipcfg.RtGarp
Default Value

Description

addresses

0 (Reply to ICMP Echo Request packets sent to multicast addresses)

When set, causes ICMP to not reply to ICMP Echo Request packets sent to multicast
addresses.

How to handle received gratuitous ARP packets

0 (Discard received gratuitous ARP packets)

The hosts may send gratuitous ARP packets to broadcast their [IP number, MAC
address] information to inform other hosts in the network. This parameter determines the
handling policy of received gratuitous ARP packets based on the following configuration
values:

0 - Discard the received gratuitous ARP packets. (default)
1 - If host is already in the routing table, update MAC address only.

2 - If host is already in the routing table, update MAC address. If host is not the routing
table, add to the table. This option can cause growing of the table by adding entries for
not communicated host's information, and consumes more memory.

_ipcfg.lcmpDontReplyEcho Reply to ICMP Echo Request Packet

Default Value

Description

0 (Reply to ICMP Echo Request packets with ICMP Echo Reply)

The ICMP Echo Request can be used to determine if a host on the Internet is
responding. The host receiving ICMP Echo Request replies with ICMP Echo Reply
packet. The ping program uses ICMP Echo Request/Reply packets. It is a valuable tool
diagnosing host and network problem. However, it can also be used to discover the IP
numbers of hosts connected on the Internet. This option allows configuring to reply ICMP
Echo Request packets or not.

0 - Reply to ICMP Echo Request packets
1 - Do NOT reply to ICMP Echo Request packets

_ipcfg.UdpSendicmpPortUnreach Reply with ICMP Port Unreachable if UDP port is not listened

Default Value

Description

1 (Reply with ICMP Port Unreachable message)

The "port scanning" is used to discover which services is used on a host. If a UDP port
is not listened, the NDK replies with an "ICMP Port Unreachable" message to any
received UDP datagram. So, you can find that if a UDP port is not open, and by
exclusively determine which ports are open. This option allows configuring to reply or not
to not listened UDP ports.

0 - Do NOT reply with ICMP Port Unreachable message
1 - Reply with ICMP Port Unreachable message

152 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

TEXAS

INSTRUMENTS

www.ti.com _ipcfg.TcpSendRst — Reply with RST message if TCP port is not listened

_ipcfg.TcpSendRst Reply with RST message if TCP port is not listened

Default Value 1 (Reply with RST message)

Description The "port scanning” is used to discover which services is used on a host. If a TCP port is

not listened, the NDK replies with an RST message to a connection attempt (received
SYN message). So, you can find that if a TCP port is not open, and by exclusively
determine which ports are open. This option allows configuring to reply or not to not
listened TCP ports.

0 - Do NOT reply with RST message
1 - Reply with RST message

_ipcfg.SockRawEthRxLimit Raw Ethernet socket receive limit

Default Value 8192

Description This is the maximum number of cumulative bytes contained in packet buffers than can

be queued up at any given Raw ethernet socket. This value cannot be overridden by the
sockets option function.

A.14 Network Address Translation

The stack includes a small network address translation (NAT) function that can be used to setup virtual
networks when the stack is acting as a router. When enabled, NAT will translate routed packets sent from
or to a targeted virtual network.

If you are using XGCONF to configure your application, you can configure the NAT service to be enabled
in the application by checking the box in the property sheet to add the module to your configuration. See
the SPRU523 (Tl Network Developer's Kit (NDK) User's Guide.) and the context-sensitive help for details.

A.14.1 Operation

NAT works by altering the TCP/UDP port numbers of a packet sent from a virtual network, and then using
an alternate IP on the physical network to transfer the packet. For ICMP packets, the Id field of ICMP
requests is used.

When configured, NAT will have a target virtual network that consists of a IP base address and a subnet
mask. It also has a physical IP address that is used as a type of proxy for the translated packets.

The types of packets translated include:

* Any TCP or UDP packet

» ICMP ECHO and TSTAMP packets sent from the virtual network

* ICMP ECHOREPLY and TSTAMPREPLY packets sent to the virtual network

e ICMP error packets sent to the virtual network in response to a translated packet sent from the virtual
network

The translation entries are created dynamically, and have a lifetime based on their protocol. ICMP and
UDP translation entries have a fixed time limit based on the last time they were accessed. TCP expiration
is based on the state of the TCP connection.

Note that some protocols (like FTP) communicate TCP/UDP port information in the packet payload. These
types of protocols will not function under NAT without a custom proxy program to alter the packet payload.
Individual proxies are not provided.

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 153
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Network Interface Management Unit (NIMU)

13 TEXAS
INSTRUMENTS

www.ti.com

A.15 Network Interface Management Unit (NIMU)

A.15.1 Synopsis

NIMU architecture replaces the existing LL packet layer architecture, originally designed to communicate
with only one instance of the device driver. It adds flexibility to the NDK core stack by adding the capability
to communicate and control multiple device drivers simultaneously. In comparison to single-port serial
device applications, the new NIMU architecture is best suited for Ethernet type devices where it is
common to have multiple instances running concurrently.

NIMU implementation has two parts:

* NIMU NDK core layer that defines the APIs for the network applications to communicate with device
drivers in an abstract manner. It also provides an interface between the NDK core stack and the device

drivers.

» NIMU device driver interface counterpart that implements the NIMU APIs for the specific device driver.

Figure A-1 showcases NIMU architecture.

NDK Core Stack

NIMU NDK Core Layer

NIMU Network Interface
Object 1
(Device Independent)

NIMU Network Interface
Object 2:
(Device Independent)

Mini Driver for Device 1
(Device Dependent)

Mini Driver for Device 2
(Device Dependent)

Figure A-1. NIMU Architecture

154

Internal Stack Functions

SPRU524H—-May 2001-Revised February 2012

Copyright © 2001-2012, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

Network Interface Management Unit (NIMU)

A.15.2 Data Structure Definition

The NIMU network interface object is equivalent to the device independent packet layer. Each NIMU

network interface object is described with the following data structure:
typedef struct NETIF_DEVI CE

{

LI ST_NODE 1 nks;

/* Device ldentification */
ui nt i ndex;
char name[MAX_| NTERFACE_NAME_LEN] ;

/* Device Specific Information */
uint flags;

uint ntu;

U NT8 nac_address[6];

/* Internal Use: Nunber of references held. */
ui nt Ref Count;
uint type;

/* Pointer to 'driver specific private data' */
voi d* pvt_dat a;

/***

kkkkkkkkkhkkkkkkkk*%x Dlver Interface Functlons kkkkkhkkhkkhkkhkkhkkkkkkkkkkk*
LR R EEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEREEEEREEEEEEEEEEEEEEY]

int (*start)(struct NETIF_DEVI CE* ptr_net_device);

int (*stop)(struct NETIF_DEVI CE* ptr_net_device);

void (*poll)(struct NETIF_DEVI CE* ptr_net_device, uint timer_tick);

int (*send)(struct NETIF_DEVI CE* ptr_net_device, PBM Handl e hPkt);

voi d (*pkt_service) (struct NETIF_DEVI CE* ptr_net_device);

int (*ioctl)(struct NETIF_DEVICE* ptr_net_device, uint cnd,
voi d* pbuf, uint size);

int (*add_header) (struct NETIF_DEVI CE* ptr_net_devi ce, PBM Handl e hPkt,
U NT8* dst_mac, U NT8* src_nac, U NT16 ether_type);

} NETI F_DEVI CE;

SPRU524H—-May 2001 -Revised February 2012

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

Internal Stack Functions

155

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

links — Pointers to the next and previous devices www.ti.com

The structure entries are described below:

links

Description

index

Description

name

Description

flags

Description

mtu

Description

mac_address

Pointers to the next and previous devices

Holds pointers to the previous and next devices in the chain of NIMU registered devices
in the system.

Unique number to identity the device in the system

Numerically identifies devices uniquely in the system. Driver authors can specify a value
for the index; but in the case of conflicts its value will be modified to be unique in the
system by the core. Therefore, if driver authors are using this in their code it is best to
re-read the value after the 'registration’ process.

Device name

Name of the device to identify it uniquely in the system. Driver authors can specify a
name for the device; but in the case of conflicts its value will be modified to be unique in
the system. Therefore, if driver authors are using this in their code it is best to re-read
the value after the 'registration’ process.

Device specific flags

Contains additional information which further describes the network device and its
properties. Driver authors should not set this value as this is used for internal operations
inside the NDK stack.

Maximum transmission unit for the device

This defines the maximum size of a packet that can be transmitted over the device
without any fragmentation. Driver authors should configure this value to the maximum
data payload that can be carried without the corresponding Layer2 header. For example,
in Ethernet this will be 1514 (maximum data payload) - 14 (L2 Ethernet header) = 1500.
By default, the value for mtu is 1500.

Hardware address of this device

Description This is the hardware address of the device that uniquely identifies the device.

RefCount Reference count of the device

Description This indicates the number of references of network interface objects held by
components. Network Interface objects can only be removed from the system if there are
no references of them held in the system. This is used internally by the NIMU control
module and should never be modified by the driver.

type Defines the interface type

Description For compatibility with the old network interface object, this is set to HTYPE_ETH or
HTYPE_PPP depending on the type of network interface object. Moving forward, this
field will be obsolete and application authors should use the field instead.

156 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

pvt_data — Pointer to device-specific private data

pvt_data

Description

Pointer to device-specific private data

This can be used by the driver authors to store any additional driver-specific data.
Memory allocation, Initialization and cleanup is the responsibility of the driver author the
NDK NIMU module does not use this field in any way and is opaque to the NDK core
stack.

The driver interface functions can be described as follows:

start

Syntax

Return Value

Description

stop

Syntax

Return Value

Description

Callback function registered by driver to open the controller

#i ncl ude <stknai n. h>
int (*start) (NETIF_DEVICE* ptr_netif_device);

The function returns a value of 0 on success and a negative value on error.

The device start function is a registered call back function which is populated by the
device driver author in the network interface object control block. Once the network
interface object is registered with the NIMU NDK core stack during the registration
process, the NDK core stack will call out this function. Device driver authors are
recommended to place hardware initialization and start-up code in this callback function.
After the successful completion of the API, the driver should be able to receive and
transmit packets from the hardware. Driver authors must specify this callback function or
else the NIMU registration will fail.

Callback function registered by driver to close the controller

#i ncl ude <stkmai n. h>
int (*stop) (NETIF_DEVI CE* ptr_netif device);

The function returns a value of 0 on Success and a negative value on error.

The device stop function is a registered call back function which is populated by the
device driver author in the network interface object control block. The function is invoked
by the NDK core stack when the NIMU network interface object is being unregistered
from the NIMU system. Driver authors are recommended to place the hardware
controller shutdown code in this API. After the successful completion of this API, the
driver should not be able to receive or transmit packets. Driver authors must specify this
callback function or else the NIMU registration will fail.

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 157
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
poll — Callback function registered by driver to be called periodically by the NDK. www.ti.com
poll Callback function registered by driver to be called periodically by the NDK.

Syntax #i ncl ude <stkmain. h>

Return Value

Description

void (*poll) (NETIF_DEVI CE* ptr_netif _device, uint
timer_tick);

None

The call back function is used by the NDK core stack to periodically call the driver. Driver
authors can use this function to monitor link activity or do any work outside the kernel
mode context. The callback function registered here is not called from kernel mode.

Table A-1 summarizes the significance of timer_tick.

Table A-1. timer_tick

timer_tick

Definition

1

The polling function is called because of a timer event. It is recommended that device authors use this for doing
periodic activities such as link management, watchdog timers, etc.

This indicates that the polling function has been called because the driver has indicated a
STKEVENT _si gnal . This is useful for device authors to signify some activity outside kernel mode.

send

Syntax

Return Value

Description

pkt_service

Syntax

Return Value

Description

Callback function registered by driver to send packets.

#i ncl ude <stkmai n. h>

int (*send) (NETIF_DEVI CE* ptr_netif_device, PBM Handl e
hPkt) ;

The function returns a value of 0 on success and a negative value on error. On success,
the packet memory cleanup needs to be handled by the driver; but if an error is returned,
the NDK core stack will cleanup the packet.

The device send function is an API which is used by the core NDK stack to pass packets
to the driver for transmission. Driver authors must specify this callback function or else
the NIMU registration will fail.

Callback function registered by driver for the NDK stack to receive packets

#i ncl ude <stknai n. h>
voi d (*pkt_service) (NETIF_DEVI CE* ptr_netif_device);

None

The APl is used by the NDK core stack to receive packets from the driver. This is
indicated through the STKEVENT _si gnal API once the packets have been received.
The NDK core scheduler detects this signal and ensures that the appropriate packet
service API is called. This function is called from kernel mode. The drivers should handle
conditions where even though this API is called there are no packets in the receive
gueue.

158 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

ioctl — Callback function registered by driver for the NDK stack to get/set configuration

ioctl

Syntax

Return Value

Description

add_header

Syntax

Return Value

Description

Callback function registered by driver for the NDK stack to get/set configuration

#i ncl ude <st kmai n. h>

void (*ioctl) (NETIF_DEVICE* ptr_device, uint cnd,
voi d*pBuf, uint size);

The function returns a value of 0 on Success and a negative value on error.

This APl is used by the NDK core stack to be able to get/set configuration in the drivers.
The interface can now be used to configure the multicast address list, change device
MAC address, etc. Each NIMU network interface object can also identify its own custom
IOCTL commands to do any device-specific configuration. This function is called from
kernel mode.

Callback function registered by driver for the NDK stack to add custom L2 header

#i ncl ude <st kmai n. h>

voi d (*add_header) (NETI F_DEVI CE* ptr_netif device,
PBM Handl e hPkt, Ul NT8* dst_nmac, U NT8* src_nac, U NT16
et her _type);

None

This is a registered call back function added by the driver to add custom layer2 headers
on packets. This is called by the NDK core stack after layer3 has done its work. Ethernet
driver authors can set this API to be NIMUAddEthernetHeader”. However, if the driver is
not a standard Ethernet driver, this can be used to add an appropriate layer2 header.
For example, If the driver is USB-RNDIS, then this function can be defined to add not
only the standard Ethernet header, but also the RNDIS header. If there are custom
headers, then ensure there is sufficient head room in the packet buffers which are being
allocated. Configuration of header and trailer sizes are provided by the NIMU exported
API NI MUSet RsvdSi zel nf 0. This function is called from kernel mode.

A.15.3 NIMU Configuration

For sample NIMU API usage, please refer to the DSK6455 and DM642 Ethernet driver code in the latest
platform specific packages.

A.15.4 API Function Overview

NIMURegister
NIMUUnregister

Registers a NIMU compliant network interface object
Un-registers a NIMU compliant network interface object

NIMUGetRsvdSizelnfo Get current header and trailer size
NIMUSetRsvdSizelnfo Set current header and trailer size

NIMUReceivePacket Interface API to pass packets to the NDK core stack
NIMUloctl Get/set configuration from the NIMU module and drivers

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 159
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
NIMURegister — Callback Registers a NIMU compliant network interface object www.ti.com
A.15.5 API Function Description
NIMURegister Callback Registers a NIMU compliant network interface object
Syntax #i ncl ude <stknmai n. h>
int Nl MJURegi ster (NETIF_DEVI CE* ptr_netif_device);

Return Value

Description

NIMUUnregister

Syntax

Return Value

Description

The function returns a value of 0 on success and a negative value on error.

The API is used to register a NIMU compliant network interface object with the core NDK
NIMU module. As part of the registration process, the API will also invoke the start’ API
to open and begin the corresponding the network device.

Un-registers a NIMU compliant network interface object

#i ncl ude <stkmai n. h>
i nt NI MJUnregister (NETIF_DEVI CE* ptr_netif device);

The function returns a value of O on success and a negative value on error.

The API is used to un-register a previously registered NIMU compliant network interface
object from the core NDK NIMU module. As part of the un-registration process, the API
will also invoke the stop API to close the corresponding network device. This APl can
only be called from within kernel mode.

NIMUGetRsvdSizelnfo Get current header and trailer size

Syntax

Return Value

Description

include <stkmain.h>
void NIMUGetRsvdSizelnfo (int* hdr_size, int* trail_size);

The function returns the current header and trailer reserved space.

All packets set aside by the network interface management unit are allocated reserving
some space for headers and trailers. The API is used to get the current header and
trailer size that NIMU will use from this point on. This APl can only be called from within
kernel mode.

NIMUSetRsvdSizelnfo Set current header and trailer size

Syntax

Return Value

Description

#i ncl ude <stknmai n. h>
voi d NI MJSet RsvdSi zel nfo (int hdr_size, int trail_size);

None

All packets set aside by the network interface management unit are allocated reserving
some space for headers and trailers. The API is used to set the current header and
trailer size that NIMU will use from this point on. There are no validations done on the
header and trailer size values passed to the function. It is assumed that the system
authors have configured this value correctly. This API can only be called from within
kernel mode.

160 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com NIMUReceivePacket — Interface API to pass packets to the NDK Core stack

NIMUReceivePacket Interface API to pass packets to the NDK Core stack

Syntax #i ncl ude <stkmain. h>
i nt Nl MJRecei vePacket (PBM Handl e hPkt) ;
Return Value The function returns the 0 on success and <0 on error. Note that in case of error, the

function will clean the packet memory.

Description This is the interface function which has been exported by the NIMU module to pass
received packets to the networking stack. This API is available only for NIMU network
interface objects and replaces the Et her RxPacket API, which handles the LL packet
architecture. This API can only be called from within kernel mode.

NIMUloctl Get/Set configuration from the NIMU Module and Drivers

Syntax #i ncl ude <stkmain. h>
int NIMJ octl (uint cnd, N MJ |F REQ ptr _ninmu_ifreq, void*
pBuf, uint size);

Return Value The function returns the 0 on success and a negative value on error.

Description This function is used to get and set configuration parameters from either the NIMU

module or to the NIMU network interface objects driver attached to the NIMU module.
The NIMU_IF_REQ structure is defined as follows:

typedef struct N MJ_|F_REQ
{

ui nt i ndex; /* Device |Index */
char nanme[MAX_| NTERFACE_NAMVE_LEN]; /* Device Nanme */
} NIMJ_I F_REQ

The structure is used to identify the NIMU network interface object which is being
referred to. The introduction of NIMU network interface objects can be referred by a
name or by a unique index. The NIMU IOCTL Interface searches for a matching device
using the name; if no device is found then the device index is used to find a matching
device. If none is found then an error is returned. The cnd parameter is used to specify
the command, and pBuf and size are defined on a per command basis. Table A-2
summarizes the set of supported IOCTL commands and the values expected in the pBuf
and size.

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 161
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

NIMUloctl — Get/Set configuration from the NIMU Module and Drivers www.ti.com

Table A-2. IOCTL Commands

Command pBuf Size Description

NIMU_GET_DEVICE_HANDLE &HANDLE 4 Use this to get the NIMU device handle associated with the
device.

NIMU_GET_DEVICE_MTU &UINT16 Use this to get the MTU associated with the device.

NIMU_SET_DEVICE_MTU &UINT16 Use this to set the MTU associated with the device. No
validations are done on this.

NIMU_GET_DEVICE_MAC &UINTS[6] Get the device MAC address.

NIMU_SET_DEVICE_MAC &UINTS[6] Set the device MAC address. In this case the MAC address is
also passed down to the NIMU Network interface object so that
the MINI-driver can also be reconfigured. If this is not supported
by the driver the IOCTL fails.

NIMU_GET_DEVICE_NAME &UINTS8 20 Use this API to translate the device index to device name. The
device name is returned in pBuf

NIMU_GET_DEVICE_INDEX &UINT16 2 Use this API to translate the device name to device index. The
device index is returned in pBuf

NIMU_ADD_MULTICAST_ADDRESS &UINT8[6] 6 This API is used to add a multicast MAC address to the device
multicast list. This IOCTL needs to be handled in the NIMU
Network Interface Object Driver.

NIMU_DEL_MULTICAST_ADDRESS &UINTS[6] 6 This API is used to delete a multicast MAC address to the device

multicast list. This IOCTL needs to be handled in the NIMU
Network Interface Object Driver.

Typically, most of the requests are done for a specific network interface object; but in some cases,
configuration might be required for all NIMU network interface objects. In the case of these special cmd,
the value of the interface request is NULL. These special case cmd are shown in Table A-3.

Table A-3. Special Case cmd

Command

pBuf

Size

Description

NIMU_GET_NUM_NIMU_OBJ &UINT16

NIMU_GET_ALL_INDEX &UINT16

2

Objects) *

Use this to get the number of NIMU network interface
objects active in the system.

(Number of NIMU The APl is used to populate an array of all device index’s

present in the system. Memory allocated should be

sizeof(UINT16) sufficient to store all this information. Use the above API to

get an active count and allocate memory appropriately for
pBuf.

This API cannot be called from kernel mode. It is recommended that system application authors use this
API instead of directly trying to access low layer information.

162

Internal Stack Functions

SPRU524H—-May 2001-Revised February 2012
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com Virtual LAN (VLAN) Support

A.16 Virtual LAN (VLAN) Support

A.16.1 Synopsis

Virtual LAN (VLAN) support in NDK adds the capability of receiving and transmitting VLAN tagged packets
through the stack. VLAN support in NDK is available only in conjunction with NIMU architecture.

Figure A-2 highlights the VLAN module components in reference to the NIMU enabled NDK stack.

NDK Core Stack
TCP ubP ICMP Layer 4
IP Stack Layer 3
|
PPP Stack VLAN Layer2 Stack Layer 2
|
NIMU NDK Core Layer
VLAN Network Interface VLAN Network Interface
Object 1 (VLAN TAG 10) Object 2 (VLAN TAG 20)
|

Ethernet Source Interface
(NIMU Network Object)

Mini Driver for Device 1
(Device Dependent)

Figure A-2. VLAN Module Placement in NIMU Enabled NDK Stack

VLAN implementation has 2 parts:

* VLAN Layer2 stack that is responsible for the addition and deletion of VLAN headers in the transmit
and receive paths.

* VLAN network interface objects which are instances of NIMU devices with VLAN specific attributes like

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 163

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Virtual LAN (VLAN) Support www.ti.com

a VLAN ldentifier, user priority, etc.

A VLAN network interface object is a NIMU device characterized additionally by these VLAN specific
attributes:

* VLAN Identifier - Each VLAN node is identified by a unique VLAN identifier per source interface.

e Source Interface - The VLAN source interface is the actual physical interface on which the VLAN
nodes are executing. This is the actual physical Ethernet interface on which packets are received and
transmitted.

» Default Priority - VLAN tagged packets carry a 16-bit tag also known as the tag control information
(TCI) header. This field internally carries a 3-bit user priority. The value here is the default priority
which is filled in these fields if the packet to be transmitted has no priority specified.

« User Priority Mapping - The user priority mappings are specified to remap the packet priority to a 3-bit
user priority.

A.16.2 User Priority Mapping Configuration

A user application can configure the user priority for a VLAN device using the well known setsockopt API
which is discussed in great detail in Section 3.3.3. The following sections provide an example on how the
VLAN user priority can be communicated by an application to the VLAN module in the core stack and how
they are translated to bits in VLAN header of the packets.

A.16.2.1 User Priority Configuration

Figure A-3 shows two applications that use the NDK stack to communicate with other devices on the
network through an Ethernet interface. The applications use the socket APIs described in Section 3.3.3 to
send/receive packets through the device. With VLAN support, there should be a mechanism which the
application authors will use to communicate the VLAN user priority value to associate their socket to the
stack. This enables the stack to mark the user priority bits appropriately in the VLAN headers of the
packets.

In Figure A-3, let's assume that Applicationl is a high priority application and Application2 is a lower
priority application. The network administrators on which the Ethernet is physically connected should have
defined a Traffic Conditioning Agreement. All devices connected on that network should comply to this
agreement that defines the user priority values for high and low priority application.

Application 1 Application 2

@ SOCKT API @

NDK Stack

!

@ Ethernet Driver @

Figure A-3. VLAN Example

164 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com Virtual LAN (VLAN) Support

Assuming that the traffic condition agreement mentioned in Section A.16.2.1 is as follows:

Table A-4. User Priorities for Traffic Agreement

Application Priority VLAN User Priority Bits
High 7
Low 5
Undefined 0

This implies that all packets generated by Application1 should be marked with the user priority value of 7.
Similarly, all packets generated by Application2 should be marked with the user priority value of 5.

Each application is capable of sending and receiving packets only through the socket interface; therefore,
you need to ensure that all sockets that send packets in Applicationl are mapped to the correct priority
level to ensure that they are marked to the user priority value of 7.

The other advantage of working out priority at the socket level instead of the application level is that
granularity exists which allows prioritization even inside the applications. For example, one data flow in
Applicationl could be low priority while the other could be high priority.

As mentioned before, the user priority can be communicated by the application using setsockopt API with
the socket option parameter set to SO_PRIORITY and the value set to the appropriate user priority. Note
that the valid range for the user priority is 0 — 7; although a value of OxXFFFF can be used to reset the
priority back to default. For more details on how to get/set the user priority using getsockopt() and
setsockopt() socket APIs, see Section 3.3.3.

Example

The following example configures the socket priority to be O:

U NT16 priority = O;

if (setsockopt(s, SOL_SOCKET, SO PRICRITY, &priority, sizeof(priority) < 0)
printf ("TEST Case Failed: Ox%\n", fdError());

NOTE: Configuration of the socket priority is equivalent of indicating what the priority of the
application is. The socket priority has no meaning outside the stack and is only used
internally.

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 165

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Virtual LAN (VLAN) Support www.ti.com

A.16.2.2 Marking Packet Priority

This section documents how the translation needs to be done to mark the user priority bits. Once an
application has marked the socket priority, the VLAN module translates the socket priority to user priority
bits using the following formula:

prio_mapping[socket_priority] = VLAN User Priority

Table A-4 shows the traffic conditioning agreement for the VLAN user priority bits. It indicates that
Application1 has HIGH priority so the VLAN module should mark its VLAN user priority bits set to 7 and
that Application2 has LOW priority so the VLAN module should mark its VLAN user priority bits set to 5.

To satisfy this requirement, Application1 should have the following code snippet:

U NT16 priority = O;
if (setsockopt(s, SO._SOCKET, SO PRIORITY, &priority, sizeof(priority) < 0)
printf ("TEST Case Failed: Ox%\n", fdError());

The idea is that all packets generated by Application1 will have a socket priority of 0 (HIGH).

Similarly, Application2 should have the following code snippet:

U NT16 priority = 1;
if (setsockopt(s, SOL_SOCKET, SO PRIOCRITY, &priority, sizeof(priority) < 0)
printf ("TEST Case Failed: 0x%\n", fdError());

The idea is that all packets generated by Application2 will have a socket priority of 1 (LOW).

The VLAN device should be created with the following code snippet:

/* By default: We configure the priority mapping to be as follows: -
* Priority | VLAN User Priority

* %k ok ok k% ok
~No o~ wNEFE O
[N elNellololNolé RN

*

*/
pri o_mappi ng[0]
pri o_mappi ng[1]
pri o_mappi ng[2]
pri o_mappi ng[3]
pri o_mappi ng[4]
pri o_mappi ng[5]
pri o_mappi ng[6]
pri o_mappi ng[7]

T T T TR TR TR TR
eeeeeaH

/* Use the VLAN APl to create a new VLAN device. */
if (VLANAddDevi ce (src_index, 10, 0, prio_mapping) < 0)
printf ("Error VLAN Fail ed errcode=%\n");

The important point to note in this example is the configuration of the user priority table. This is basically
the translation of the traffic conditioning agreement to an array.

With the VLAN device created as follows, if a packet is transmitted from Applicationl it is marked with a
socket priority of 0, and then it is translated by the VLAN module to user priority 7.

166 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

VLANInit — Initializes the VLAN module in the core NDK stack.

A.16.3 API Function Overview

The following are

the APIs exported by the VLAN module in the core stack.

VLANInit Initializes the VLAN module in the core NDK stack.
VLANDeinit Deinitalizes the VLAN module and shuts down all the VLAN
enabled NIMU network interface objects in the system.
VLANReceivePacket Handles all VLAN tagged packets on the receive path.
VLANAddDevice Creates a VLAN device on a specified NIMU interface.
VLANDelDevice Deletes a previously created VLAN device.

A.16.4 API Functions

VLANInit

Syntax

Return Value

Description

VLANDeinit

Syntax

Return Value

Description

VLANReceivePacket

Syntax

Return Value

Initializes the VLAN module in the core NDK stack.

#i ncl ude <stkmai n. h>
void VLANInit (void)

None

This function is used to initialize the VLAN module in the NDK core stack. It is for
internal stack usage only and should not be called by any application directly. This
function is called as a part of the stack bring up, i.e., NC_NetStart invocation by the user
application. It initializes the header and trailer sizes for VLAN NIMU objects that would
be created in the system later by a user application.

Deinitalizes VLAN module and shuts down VLAN enabled NIMU network interface
objects

#i ncl ude <stkmai n. h>

voi d VLANDei nit (void);

None

This function is used to shutdown the VLAN module in the core stack. It closes and
shuts down any VLAN enabled NIMU network interface objects existent in the system.
This function is for internal stack usage only and should not be called by any application
directly. It is called as a part of stack teardown, i.e., when the user application invokes
NC_NetStop function.

Handles all VLAN tagged packets on the receive path

#i ncl ude <stknain. h>
ui nt VLANRecei vePacket (PBM Handl e hPkt) ;

Returns OxFFFF on error and on success returns the values of the encapsulated
protocol.

Description This function is called by the NIMU receive function when a VLAN tagged packet is
received. It validates the packet and ensures that there is a valid VLAN node on the
system that can process the packet. This function is for internal stack usage only and
should not be called by any application directly.

SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 167

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
VLANAddDevice — Create a VLAN Network Interface object www.ti.com
VLANAddDevice Create a VLAN Network Interface object
Syntax #i ncl ude <stkmain. h>
i nt VLANAddDevi ce (uint src_index, U NT16 vl an_id,

Return Value

Description

VLANDelDevice

Syntax

Return Value

U NT8 default_priority, U NT8 prio_mapping[]);

This function returns the device index of the new VLAN network interface object created
on a success or a hegative value on error.

This API enables system developers to create a VLAN Network Interface object on a
specified NIMU source interface based on the arguments supplied. Note that this
function must be called from user mode only.

Deletes a previously created VLAN device

#i ncl ude <stknai n. h>
i nt VLANDel Devi ce (Ul NT16 dev_i ndex) ;

This function returns 0 on a success or a negative value on error.

Description This API deletes a previously created VLAN network interface object. The device index
passed is the index returned from the prior invocation of the VLANAddDevice API. Note
that this function must be called from user mode only.

168 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com Raw Ethernet Module

A.17 Raw Ethernet Module

A.17.1 Synopsis

A new module called the Raw Ethernet Module has been added to the NIMU enabled NDK stack to
handle the Raw Ethernet packet traffic through NDK. A Raw Ethernet packet can be defined as an
Ethernet packet whose Protocol type (Offset 12 in the Ethernet header) doesn't match any of the well
known standard protocol types like IP (0x800), IPv6 (0x806), VLAN (0x8100), PPPoE Control (0x8863),
PPPoOE Data (0x8864). The Raw Ethernet Module interfaces with the application and the stack to provide
the APIs required in configuring a raw ethernet socket, and in sending and receiving packets using it.

Figure A-4 shows the placement of the Raw Ethernet module in the NDK stack.

c
o c
E=4 o
© E=}
o 2 3
User Application S User Application =
N <
g o
"4
Send / Receive Raw Send / Receive
Ethernet Packets IP Packets
L__________________ SocketAPi___________________|
: “_ Layer 4-TCP/UDP /ICMP / TCP6 / UDP6 / ICMPv6 1
NDK Stack | Raw Ethernet === ==TToara TN Y 2
| Module : ::—_—_-_-_-_-_—_L—i!_el_i_-_l—ii_l—tlf-_-_—_—_—.-_-_—l
I -
N N i S
IP Stack
" Layer2—VLAN/Ethernet 1
NIMU Core Layer (Interface Between Stack and Eth Driver)
Raw Qs are i Send / Receive Ethernet Packets
all Serviced to
Completion Before Raw Raw IP IP
IP Qs are Serviced. Packet || Packet Ethernet NIMU Layer Packet || Packet
Primitive QoS Rx Q Tx Q Rx Q Tx Q
Implementation ¢
Requested by ALU
Rx Tx Packet Queues to
EMAC Driver Buffer| Ethernet Driver |Buffer | Replenish Buffers in the
Queue Queue EMAC BDs
- EMAC CSL
EMAC Buffer Descriptors
EMAC H/W EMAC Hardware Peripheral
Figure A-4. Raw Ethernet Channel Manager Module in NDK
SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 169

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Raw Ethernet Module www.ti.com

As the Figure A-4 illustrates, traditional data path for the IP packets is different from the data path followed
by the Raw Ethernet packets. The complete Layer 4, Layer 3 and Layer 2 processing in the NDK IP stack
is bypassed for the Raw Ethernet packets. The Raw Ethernet packets alternatively travel through the Raw
Ethernet Module which maintains a mapping between the custom Ethernet type configured and the
interface on which the packets should be transmitted. This mapping is maintained in the “Raw Ethernet
Socket” object structure. Also, shown in the above figure is the implementation of Raw Ethernet
prioritization implementation in the driver using separate queues for IP and raw Ethernet traffic. This
implementation is just an illustration of how this feature can be extended further to suit any application
demands and is not really tied in with the design of Raw Ethernet Socket and Modules.

NOTE: The Raw Ethernet Module is supported only with NIMU enabled NDK stacks and drivers.

For more details on the Raw Ethernet Socket APIs, see Section 3.4 of this document.

A.17.2 Raw Ethernet Data Prioritization - Socket Priority Use Case

A user application can use the Socket Priority to add any sort of special differentiation that the raw
Ethernet application would require for all packets travelling using the specified socket. For example, if
there exists two raw Ethernet sockets, they could be both configured with different priorities using
setsockopt() API discussed in Section 3.4.2 of this document. Further, a desired QoS scheme can be
implemented in the Ethernet driver using this priority that is carried onto the packets. It can be also used
by an application to map the priority to certain transmission properties like EMAC channel number on
which the packets are to be transmitted etc. This section describes one such implementation of Socket
Priority to implement Raw Ethernet Packet Prioritization over traditional IP traffic.

A.17.2.1 Socket Priority Configuration

In this specific use case, the application requires that:
« Raw Ethernet traffic and traditional IP traffic to be sent out on two separate EMAC channels.

e Further, it also requires that both on Transmit (Tx) and Receive (Rx) paths, the Raw ethernet data is
always serviced before the IP data.

For the implementation to achieve this is two fold also:

» For requirement 1, the application would have to create a Raw ethernet socket and configure the
socket priority to carry the EMAC channel number. The Raw Ethernet module in turn will ensure that all
packets travelling using this socket are tagged with the EMAC channel number in their "PktPriority"
field. The socket priority configuration is shown in the example below :

The following example creates a Raw Ethernet socket and configures the EMAC channel nhumber to 3
using socket priority:

SOCKET sraw = | NVALI D_SOCKET;

U NT16 priority = O;

int retval, val;

/* Allocate the file environnent for this task */
f dOpenSessi on(TaskSel f());

/* Create the raw ethernet socket */
sraw = socket (AF_RAWETH, SOCK_RAWETH, 0x300);
if(sraw == | NVALI D_SOCKET)
{
printf("Fail socket, %\n", fdError());
fdd oseSession (TaskSel f());
return;

}

/* Configure the transmt device */
val = 1;
retVal = setsockopt(sraw, SOL_SOCKET, SO | FDEVI CE, &val, sizeof(val));
if(retVval)
printf("error in setsockopt \n");

170

Internal Stack Functions SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com Raw Ethernet Module

/* Configure the EMAC channel nunber */
val = 3;
retVal = setsockopt(sraw, SOL_SOCKET, SO PRIORITY, &val, sizeof(val));
if(retVal)
printf("error in setsockopt \n");

» Secondly, to implement the prioritization and also obtain the EMAC channel number on which the
packet needs to be transmitted, the EMAC driver can inspect the "PktPriority" field of the packet and
use it to enqueue the packet to the hardware accordingly. A code snippet from the ethernet driver is
shown below for illustration purposes:

This is a code snippet from the "Send" routine of the ethernet driver.

/* Peek into the packet to check out if any prioritization is needed.

*
*
* All raw ethernet packets are tagged with the EMAC channel nunber onto
* which they need to be sent outin the PktPriority field.

*/
if (((PBM_Pkt *)hPkt)->PktPriority != PRI ORI TY_UNDEFI NED)
{
/* Enqueue the packet in the Raw Tx Queue and send it for transm ssion.
* Use the PktPriority field now as the EMAC channel nunber on which
* packet needs to be Txed
*/
}
el se
{
/* This is just a normal |P packet. Enqueue the packet in the
* Tx queue and send it for transm ssion.
*/
}

For more details on this use case implementation, please refer to the Ethernet driver code packaged in the
NSP for TCI6488.

A.17.3 API Function Overview

The following APIs are exported by the Raw Ethernet module of the core NDK stack:

RawEthTxPacket API to send out Raw ethernet data using Raw ethernet sockets
RawEthTxPacketNC API to send out Raw ethernet data using Raw ethernet sockets without any
copy
RawEthRxPacket API to handle raw ethernet packets received by the stack
SPRU524H—-May 2001 -Revised February 2012 Internal Stack Functions 171

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

RawEthTxPacket — Sends out Raw ethernet data, creates a copy of the data. www.ti.com
A.17.4 API Functions
RawEthTxPacket Sends out Raw ethernet data, creates a copy of the data.
Syntax int RawEthTxPacket (HANDLE hRawEthSock, char* pBuffer, int len);
Parameters

hRawEthSock Handle to the raw ethernet socket

pBuffer Handle to the data buffer that needs to be sent

len Length of data contained in the data buffer pBuffer.
Return Value

0 Successfully sent out the packet

ENOBUFS Error allocating memory for the packet. Packet not sent out.
Description This is the API called by the Raw Ethernet sockets module to transmit data sent by the

application. This API allocates memory for the packet and the buffer according to the
length specified, copies over the contents of the application buffer to the packet, and
finally populates any socket priority configured on the socket to the PktPriority field of the
packet for further use by the stack or the driver. It also increments the Raw ethernet
success stats if the transmit succeeded. This API invokes the NIMUSendPacket API to
send out the packet eventually.

RawEthTxPacketNC Sends out Raw ethernet data, without any copy of the data.

Syntax int RawEthTxPacketNC (HANDLE hRawEthSock, char* pBuffer, int len, HANDLE hPkt);
Parameters

hRawEthSock Handle to the raw ethernet socket

pBuffer Handle to the data buffer that needs to be sent

len Length of data contained in the data buffer pBuffer

hPkt Handle to the packet that needs to be sent. The pBuffer is the data buffer

Return Value

0 Successfully sent out the packet
EINVAL Bad Packet / Buffer Handles. Packet not sent out
Description This is the API called by the Raw Ethernet sockets module to transmit data sent by the

application without making any copy of it on the Tx path. This APl is very useful for
applications which have very definite performance requirements for their application. The
buffers and packet handles passed here can be obtained in advance using the socket
API getsendncbuff() by the application , then can be used to fill data and finally invoke
the sendnc() API to transmit this data. The send no-copy API of the raw Ethernet socket
module in turn invokes this API for finally transmitting the data. The raw Ethernet socket
APIs are all discussed in detail in Section 3.4 of this document. This API validates the
packet and buffer handles, and populates any socket priority configured on the socket to
the PktPriority field of the packet for further use by the stack or the driver. It finally
invokes the NIMUSendPacket API to send out the packet eventually. It also increments
the Raw Ethernet success stats if the transmit succeeded. No memory allocations or
copies are made by this API and hence is less intensive in terms of performance.

172 Internal Stack Functions SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

RawEthRxPacket — Receive handler for Raw ethernet traffic in the stack.

RawEthRxPacket

Syntax

Parameters

hPkt

Return Value

0
1

Description

Receive handler for Raw ethernet traffic in the stack.

int RawEthRxPacket (PBM_Handle hPkt);

Handle to the packet which is passed up to the stack by the Ethernet

Success
Error

This API is called by the NIMU layer when the Ethernet if a raw Ethernet socket object
exists for the Ethernet type in the packet and if so enqueus in the socket buffer for the
application to receive. No copies are made of the packet and the buffers further on the
receive path by the Raw Ethernet socket layer and the packet is as is handed over for

the application to use. This API also increments the Raw Ethernet receive stats

accordingly.

A.18 Obtaining Stack Statistics

Stack statistics are available from global structures or global arrays exported by the stack library. The

declaration of these global identifiers appears in the interface specification for the individual protocols. The
following protocols contain statistics information:

Protocol
IP

ICMP
TCP
UDP

Raw Transport (non-TCP/UDP)
Network Address Translation

Raw Ethernet

Statistics Definition
IPIF.H

ICMPIF.H

TCPIF.H

UDPIF.H

RAWIF.H

NATIF.H
RAWETHIF.H

SPRU524H—-May 2001 -Revised February 2012
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

Internal Stack Functions

173

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Appendix B
I ’.{‘IE)S(’;A"IEUMENTS SPRU524H—May 2001 —-Revised February 2012

Network Address Translation

This section is required only for system programming that needs low level access to the Network Address
Translation (NAT) layer. This API does not apply to sockets application programming.

This section describes functions that are callable from the kernel layer. You should be familiar with the
operation of the operation of lIEnter()/IIExit() functions before attempting to use the APIs described in this
section (see Section A.1.2).

NAT has a unique status in the stack software because it can be an integral part of programming at both
the user and kernel levels, or can be entirely redundant and even purged from the stack build.

This section describes the operation of the Network Address Translation software included in the NDK,
how to configure it, how to install port mappings, and how to program proxy filter routines to support
protocols like FTP.

Topic Page
=t O N O 0T =T = o] o PP 175
= NN I o o A0 1Y =T o 1 o Y 185
e T N N I o 0 QA = PP 187
174 Network Address Translation SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com NAT Operation
B.1 NAT Operation

NAT is a translation of packet IP address. It is used by the stack when routing, to translate the IP address
of a packet to/from a private LAN from/to a public WAN. NAT is required when the IP address paradigms
on either side of the router are incompatible; for example, virtual addresses vs. physical addresses, or
private vs. public. In the case of a home LAN, NAT allows multiple clients on the home LAN to use a
single ISP account by sharing the router WAN IP address obtained from the ISP.

B.1.1 Typical Configuration

For the examples that follow, consider the typical configuration illustrated in Figure B-1. The NDK is
executing as a home router (HR) and connects the home LAN subnet (192.168.0.x) to the Internet (WAN)
via an ISP that has assigned HR an address of 128.1.2.12. The hosts on the home network (H1 and H2)
have obtained their internet addresses from HR via DHCP. The IP of HR on the home LAN as well as the
IP subnet used by the home LAN is pre-configured in HR. Figure B-1 also shows a host on the public
internet (IH) to which the LAN hosts will connect. Lastly, it is assumed that the home LAN subnet is virtual,
and NAT is required to allow H1 and H2 to share the WAN IP address assigned to HR by the ISP
(128.1.2.12).

64.1.1.100 Internet Host
(IH)

Internet
Home Router
128.1.2.12 (HR)
Using NAT
192.168.0.1
192.168.0.32 192.168.0.33
Host 1 I-Ii_c’)A\n':le Host 2
(H1) (H2)
192.168.0.x

Figure B-1. Basic Home Network Configuration

B.1.2 Basic NAT

When sharing a single WAN IP address, the IP address obtained from the ISP is assigned to the router
(the NDK in routing mode). Client machines that are to share the IP address are placed on the home LAN.
The router routes traffic between the LAN and the WAN (internet via the ISP).

As packets traverse from the LAN to the WAN across the router, the source IP address of the packet (a
LAN address) is replaced with the public IP address of the router. The result is that all packets sent to the
WAN appear to have originated from the router with the public IP address obtained from the ISP.

As packets traverse from the WAN to the LAN across the router, the destination IP address of the packet
(the router's WAN IP as obtained from the ISP) is replaced with the home LAN IP address of the physical
client machine to which the packet is ultimately destined.

To perform this translation successfully, some details must be addressed. First, to allow multiple clients to
share the public IP address in a non-ambiguous fashion, there must exist a deterministic method of
mapping packets from the WAN to their correct destination on the LAN. This is done by keeping records of
LAN IP clients that have initiated IP traffic, and by altering the TCP/UDP port (or ICMP Id field) as well as
the IP address when performing the translation.

Every time a LAN client sends a packet to the WAN, the local IP address, port/id, and protocol is recorded
for reverse mapping, as well as the destination IP address and port for security. When a packet is
received from the WAN, the destination port/id is checked against the current database of NAT entries to
see if the packet's destination address and port/id should be translated to a LAN client.

SPRU524H—-May 2001 -Revised February 2012 Network Address Translation 175

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

NAT Operation www.ti.com

For example, when accessing the Internet, all communication is normally initiated by the client. In this
case, communication will be initiated by H1 or H2. Assume that H1 attempts to establish an HTTP
connection with the Internet host (IH). It will send a connection request to the IP address assigned to IH,
and a TCP port value of 80, which is HTTP. The request will be from its own IP address with an
ephemeral port value that is picked from a pool (consider it random for these purposes- for example,
1001). So the request will be addressed as follows:

Packet 1
To From Protocol
64.1.1.100 : 80 192.168.0.32 : 1001 TCP

When the router HR receives this packet, it searches for a NAT entry that matches the From address of
the packet. Because this is the first packet, assume the table is empty. When no entry is found, (skipping
proxies for now) the router will create a new entry. It does this by recording information from packet 1, as
well as picking a new port value from its own pool that has been specifically reserved for NAT (assume
the range is 50000 to 55000, and that it chooses 50001). The new port is used as the packet's source
port. The NAT entry record would look like the following:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port | Mapped Port | IP Protocol TCP State Timeout
64.1.1.100 80 192.168.0.32 1001 50001 TCP SYNSENT 00:01:00

The Local IP and Local Port values are those that are local to hosts on the home LAN. The Foreign IP
value is the foreign side of the connection as viewed by hosts on the home LAN. The Mapped Port value
is the source port when the packet is sent from HR. The source IP address used in the packet is that
assigned to HR by the ISP. The IP protocol of the packet is recorded, and when using TCP, the state of
the TCP connection is tracked to establish a reasonable timeout value. The SYNSENT value indicates
that a connection request was sent. Before a full connection is established, the timeout is set fairly low -
for example, 1 minute.

As the packet is transmitted from HR to the ISP, it would look like the following:
Packet 1 (modified)

To From Protocol
64.1.1.100 : 80 128.1.2.12 : 50001 TCP

When IH receives the packet, it believes that the connection request came from HR. It thus sends the
response packet to HR. The packet would be addressed as follows:

Packet 2 (response to packet 1)

To From Protocol
128.1.2.12 : 50001 64.1.1.100 : 80 TCP

When HR receives the packet, it checks the NAT entry table for an entry with a Mapped Port value equal
to the destination port of the packet (in this case 50001). The value of Protocol and the source IP
address/port values must also match the Protocol, Foreign IP, and Foreign Port fields of the NAT entry.
This helps ensure that the reply is from the desired server.

Network Address Translation SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com NAT Operation

Here, HR finds the entry and proceeds to modify the packet. It replaces the destination address/port with
the local address/port stored in the entry. It also resets the timeout of the entry. After modification, the
packet would be addressed as follows:

Packet 2 (modified)

To From Protocol
192.168.0.32 : 1001 64.1.1.100 : 80 TCP

Once a connection is established, the timeout of the entry is set high (for example, five hours), because
TCP connections can stay connected for an indefinite period of time without exchanging any packets.

If H2 attempts to connect to the same host simultaneously, it can share the public IP address assigned to
HR. For example, H2 sends a connection request to IH addressed as follows:

Packet 3
To From Protocol
64.1.1.100 : 80 192.168.0.33 : 1024 TCP

HR would not find a NAT entry for 192.168.0.33:1024, so it would create one:
NAT Entry Table

Foreign IP Foreign Port Local IP Local Port | Mapped Port | IP Protocol TCP State Timeout
64.1.1.100 80 192.168.0.33 1024 50002 TCP SYNSENT 00:01:00
64.1.1.100 80 192.168.0.32 1001 50001 TCP CONNECT 04:59:23

The modified packet and its reply would proceed similar to packets 1 and 2. Packets that pass from the
LAN to the WAN are searched based on Local IP combined with Local Port. Packets that pass from the
WAN to the LAN are searched based on Mapped Port. Note that for all entries on the NAT entry table,
these values are unique.

B.1.3 NAT Port Mapping

So far, you have examined communication that has been initiated by hosts on the home LAN. Note that
any unsolicited packets sent to HR from the WAN will not match any entry in the NAT table. These
packets will be forwarded to the internal protocol stacks on HR, where they may or may not be used.

Now assume that a host on the home LAN (for example, H2) must place an HTTP server on the Internet.
With what has been examined so far, it would be impossible to contact such a server from the WAN
because no unsolicited traffic (like an HTTP connect request) can pass from the WAN to the LAN.
However, H2 can acquire a portion of HR's WAN presence by mapping one of the well-known port values
on the public WAN IP address to itself through port mapping.

In port mapping, a NAT entry is created to send all traffic destined for a specific port on the public IP
address to an alternate destination. For well known ports like HTTP, the port value is not usually altered.
Only the destination IP address changes. In this case, port 80 (HTTP) on the public IP address is mapped
to port 80 of the LAN host H2. The entry would look as follows:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port | IP Protocol TCP State Timeout
wild wild 192.168.0.32 80 80 TCP - STATIC
SPRU524H—-May 2001 -Revised February 2012 Network Address Translation 177

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

NAT Operation www.ti.com

When a connection request arrives from a remote host for the public IP address assigned to HR, as with
the basic NAT discussion of the previous section, the destination port of the packet is matched with the
Mapped Port value of the NAT entry. Normally, the Foreign IP and Port of the NAT entry must also match
for source IP and port of the packet, but here the values are wild. This is because when the entry is
created, the foreign peer is unknown. Because, every TCP connection state must be tracked in its own
NAT entry, a second entry must be spawned. Any match of a wild NAT entry will spawn a fully qualified
entry. For example, assume the following packet arrives:

Packet 4
To From Protocol
128.1.2.12: 80 64.1.1.100 : 2006 TCP

The resulting NAT entry table would be:
NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port | IP Protocol TCP State Timeout
64.1.1.100 2006 192.168.0.32 80 80 TCP SYNSENT 00:01:00
wild wild 192.168.0.32 80 80 TCP - STATIC

The packet sent to the LAN by HR would be:
Packet 4 (modified)

To From Protocol
192.168.0.32 : 80 64.1.1.100 : 2006 TCP

Note that the wildcard entry's timeout is STATIC. This means that the entry will never expire. Note that
when the new entry is spawned, it acquires a timeout.

One last point to note here is that the installation of a port map for port 80 does not prohibit HR from
running its own HTTP server hosted on its private LAN IP address (192.168.0.1). This means that local
hosts could get to a local HTTP server on 192.168.0.1, and the public HTTP server on 192.168.0.32, but
outside hosts connecting to 128.1.2.12 could only get to the public HTTP server on 192.168.0.32.

178

Network Address Translation SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

TEXAS

INSTRUMENTS

www.ti.com

NAT Operation

For example, assume the same topology as before, with the HR running both and HTTP and Telnet
servers, H1 running an HTTP server, and H2 running a Telnet server. This is illustrated in Figure B-2.

64.1.1.100

Internet Host

(IH)

Internet
128.1.2.12 Hom(i' E;’Uter HTTP Server
Using NAT Telnet Server
192.168.0.1
192.168.0.32 192.168.0.33
Home
Host 1 LAN Host 2
(H1) (H2)
192.168.0.
HTTP x Telnet
Server Server

Figure B-2. Public Servers on the Home Network

To make the servers on H1 and H2 public, the following NAT port mapping entries are installed on HR:
NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port | IP Protocol TCP State Timeout
wild wild 192.168.0.33 23 23 TCP — STATIC
wild wild 192.168.0.32 90 90 TCP — STATIC

With these mappings, the externally available HTTP server and Telnet server publicly accessible on the
WAN IP (128.1.2.12) are actually executing on H1 and H2. However, HR can have its own HTTP and
Telnet servers and make them available to hosts on the LAN.

Also note that, regardless of how hosts on the LAN access HR (either through 192.168.0.1 or 128.1.2.12),
their packets are not processed via NAT. Thus, they are never altered. The following are some connection

examples:

Client Protocol Used Target Address Resulting Server Connection
IH HTTP 128.1.2.12 HTTP on H1

H2 HTTP 128.1.2.12 HTTP on HR

H2 HTTP 192.168.0.1 HTTP on HR

H2 HTTP 192.168.0.32 HTTP on H1

IH Telnet 128.1.2.12 Telnet on H2

H1 Telnet 128.1.2.12 Telnet on HR

H1 Telnet 192.168.0.1 Telnet on HR

H1 Telnet 192.168.0.33 Telnet on H2

SPRU524H—-May 2001 -Revised February 2012
Submit Documentation Feedback

Network Address Translation 179

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

NAT Operation

www.ti.com

B.1.4 NAT Proxy Filters

B.1.4.1 Problem Synopsis

Translating the IP destination address of a packet via NAT guarantees that all packets can be redirected
to their correct physical destination, but it does not guarantee that the information will be understood by
the recipient. Because one side of the connection always believes they are actually connected to a
different IP address than their physical peer, there is a possibility that the application using the information
will become confused. The confusion arises when there is information in the packet payload that is
dependent on the IP address/port of the peer connection.

B.1.4.2 Problem Example - FTP Clients on the LAN

As a straightforward example of a situation that requires a proxy filter, consider FTP (file transfer protocol).
FTP actually uses two ports to transmit a file. The first port establishes the control connection. Then, new
ports establish the data connection to actually send the file. The FTP protocol allows an FTP client to
specify its port for the data connection to the server. If no port is specified by the client, the client's control
port value is used.

The above scenario presents a couple problems for standard NAT. First, if NAT creates an entry for the
FTP control connection, the entry could not be used for the data connection. As an example, H1 sends an
FTP connection request to IH. The packet would be addressed as follows:

Packet 1

To From Protocol

64.1.1.100: 21 192.168.0.32 : 1137 TCP

HR would not find a NAT entry for 192.168.0.33:1137, so it would create one:

NAT Entry Table
Foreign IP Foreign Port Local IP Local Port Mapped Port | IP Protocol TCP State Timeout
64.1.1.100 21 192.168.0.32 1137 50003 TCP SYNSENT 00:01:00

The modified packet and its reply would proceed as discussed in Section B.1.2. The modified packet
would be:

Packet 1 (modified)

Protocol
TCP

To From
64.1.1.100: 21 128.1.2.12 : 50003

Now assume that eventually the FTP server on IH attempts to establish a data connection back to what it
thinks is the FTP client's ephemeral port (50003). Note classic FTP uses port 20 to establish data
connections. Its connection request packet would be:

Packet 2 (Data connection request)

Protocol
TCP

To From
128.1.2.12 : 50003 64.1.1.100: 20

Network Address Translation SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com NAT Operation

Because there is no NAT entry record that will match the address values in this packet (specifically port 20
in the From field), this packet will not be forwarded to the FTP client. For this to work, there must be a port
mapping installed for 64.1.1.100 that has a wildcard port value (it is not certain that the connection request
will arrive on port 20). The NAT entry table would be as follows:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port | IP Protocol TCP State Timeout
64.1.1.100 wild 192.168.0.32 1137 50003 TCP - STATIC
64.1.1.100 21 192.168.0.32 1137 50003 TCP CONNECT 04:58:39

With such a mapping, if a connection request from port 20 arrived, the wild card entry would be matched,
and another entry spawned for port 20 on IH. The table would look as follows:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port | IP Protocol TCP State Timeout
64.1.1.100 20 192.168.0.32 1137 50003 TCP SYNSENT 00:01:00
64.1.1.100 wild 192.168.0.32 1137 50003 TCP - STATIC
64.1.1.100 21 192.168.0.32 1137 50003 TCP CONNECT 04:58:39

The second issue in dealing with an FTP client is that the client can change the port on which the FTP
server attempts connection. This is done via a PORT command sent from the client to the server. The
PORT command contains information about the client in the packet payload.

For example, assume the FTP client (H1) creates a new socket for the data connection, and its ephemeral
port value is 1142. H1 would then send an FTP PORT command on the control connection to the server.
The server would then attempt a connection. The following is an approximation of the operation (it is not
the exact syntax of the port command).

Packet 3 (FTP Client H1 Sends Port Command for Port 1142)

To From Protocol Packet Payload
64.1.1.100: 21 192.168.0.32 : 1137 TCP "PORT 192.168.0.32, 1142"

As a reminder, the FTP server would normally see the packet as:
Packet 3 (modified incorrectly)

To From Protocol Packet Payload
64.1.1.100: 21 128.1.2.12 : 50003 TCP "PORT 192.168.0.32, 1142"

This packet creates a couple of problems. First, the IP address in the PORT command does not match the
IP address of the FTP server's connected peer. This would produce an error. Plus, the IP address in the
PORT command is not a real Internet address. Lastly, even if the FTP server tried to connect to
128.1.2.12:1142, there is no mapping for the port number in the NAT entry table.

SPRU524H—-May 2001 -Revised February 2012 Network Address Translation 181

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

NAT Operation www.ti.com

The correct procedure for modifying this packet is to solve all the above problems. First, a new NAT entry
is created for 192.168.0.32:1142. The foreign IP address is left as a wildcard because as before, because
it is not certain what port the FTP server will use. The NAT entry table would then look as follows:

NAT Entry Table

Foreign IP Foreign Port Local IP Local Port Mapped Port | IP Protocol TCP State Timeout
64.1.1.100 wild 192.168.0.32 1142 50004 TCP - 00:02:00
64.1.1.100 wild 192.168.0.32 1137 50003 TCP - STATIC
64.1.1.100 21 192.168.0.32 1137 50003 TCP CONNECT 04:58:39

To review, note that you have the original NAT entry for the FTP control connection, and now two wildcard
entries for possible FTP data connection requests.

The final step of the modification is to alter the payload of the packet so that the information in the PORT
command matches the WAN IP address of HR (128.1.1.21) and the Mapped Port of the new NAT entry
(50004). The correctly modified packet would be:

Packet 3 (modified correctly)

To From Protocol Packet Payload
64.1.1.100: 21 128.1.2.12 : 50003 TCP "PORT 128.1.2.12, 50004"

It is also possible for a client to request the FTP server to create a new port (the PASV command), but
that does not create any issues for FTP clients on the LAN. If the FTP server were on the LAN and the
client on the WAN, the proxy process would key off the PASV command.

B.1.4.3 NDK Support for Proxy Filters

The modification procedure discussed above does have some multifaceted problems:

1. The creation of the first data connection wildcard entry depends on the knowledge by some entity that
an FTP control connection has occurred, and what IP/PORT the connection occurred on.

2. The creation of the second data connection wildcard entry depends on the detection of a PORT
command being passed from the client to the server.

3. The modification of the data payload of the packet containing the PORT command requires that some
entity is examining packet payloads.

4. Modification of a TCP packet payload can permanently alter the values of the TCP sequence and
acknowledge fields in the TCP header of all future packets on the control connection.

The first three problems are very specific to FTP, and the fourth problem (TCP sequence) is specific to
any alteration of a TCP packet payload. Fortunately, the proxy filter support routines remove much of the
burden of supporting these transformations.

The solution is twofold. First, the stack allows you to install proxy filter callback functions on specified
TCP/UDP port values, either outgoing (for clients) or incoming (for servers). There are three callback
functions involved.

The first callback function Enable is called when a new connection is attempted, or when the NAT entry
expires. This function allows you to establish the basic connection state for the protocol in question. In the
case of the FTP client example, the first wildcard data connection mapping would be installed here. Note
that this function can also be used to filter connection requests. If this function returns zero, the connection
request is ignored.

The second and third callback functions are mirrors of the other. They are the Tx and Rx functions. The Tx
callback is called with the IP header of every packet that passes from the LAN to the WAN for the
connection in question, while the Rx callback is called with the IP header of every packet that passes from
the WAN to the LAN. While in these functions, the programmer can call a packet modify function to modify
the payload of the packet. The system will automatically track and perform modifications to the TCP
sequence values (when using TCP).

182

Network Address Translation SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

TEXAS
INSTRUMENTS

www.ti.com

NAT Operation

In the case of the FTP client, there would be no Rx callback because only packets from the client need to
be examined. The Tx callback would look for PORT commands from the client, and when one was

detected, it would install the second wildcard port mapping as discussed in the previous section, and then
modify the packet payload so that the PORT command reflected the WAN IP of HR, and the Mapped Port

of the NAT entry.

B.1.4.4 FTP Proxy Filter Example Code

From the discussion in this section, it would be easy to draw the conclusion that developing proxy filter
code would be horribly complicated. However, the actual implementation is straightforward. The code to
implement the filter discussed in Section B.1.4.3 is shown below. The API for NAT and Proxy is discussed

in the following sections.

/1
/] GetVal - Convert ASCI| decimal string to integer
/1
static uint GetVal(U NT8 **pData)
{

uint v = 0;

while(**pData >= '0' && **pData <= '9')

v = v*10 + (*(*pData)++ - '0");

(*pDat a) ++; return(v);

}

I

/1l FTPCProxyEnable - Proxy for FTP Clients behind firewall

I

/1 NOTE: Proxy callback function operate at the kernel |evel. They
/1 may not meke calls to user-level functions.

/1
int FTPCProxyEnabl e(NATINFO *pin, uint Enable)
{
HANDLE hNat ;
/1 Some inplenentations of FTP require the host to listen for
/1 connections on the epheneral port used to connect to the FTP
/] server. W create a STATIC mapping to handle this.
if(Enable)
{
/1 Create it
hNat = Nat New(pNI ->I PLocal, pN ->PortLocal, pN ->I|PForeign,
| PPROTO_TCP, pNI - >Port Mapped, 0);
pNl - >pUser Data = hNat ;
}
el se
{
/1 Destroy it
Nat Free(pN ->pUserData);
}
return(l);
}
/1

/1l FTPCProxyTx - Proxy for FTP Cients behind firewall
/1
/1 NOTE: Proxy callback function operate at the kernel |evel. They
/1 may not make calls to user-level functions.
/1
int FTPCProxyTx(NATINFO *pN, |PHDR *pl pHdr)
{
Ul NT16 Length, O fset;
TCPHDR *pTcpHdr ;
Ul NT8 *pDat a;
HANDLE hNAT;
NATI NFO *pNI New,
char tnpstr[32];

SPRU524H—-May 2001 -Revised February 2012
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

Network Address Translation 183

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

NAT Operation

13 TEXAS
INSTRUMENTS

www.ti.com

Ul NT16 Por t New;
I PN | PNew;

pData = (Ul NT8*) pl pHdr;

/'l Get pointer to TCP header
O fset = (plpHdr->VerLen & Oxf) * 4;
pTcpHdr = (TCPHDR *) (pData + O fset);

/Il Get length of the |IP payl oad
Length = HNC16(pl pHdr->Total Len) - O fset;

/1 Get the offset into the TCP payl oad and payl oad size
O fset += pTcpHdr->HdrLen >> 2;
Length -= pTcpHdr->HdrLen >> 2;

/1 Get pointer to TCP payl oad
pData += O fset;

/1

/1l For clients, we only care about sending PORT commands

/1

/'l For exanple, if our client IPis 192.138.139.32, and it reports
/1 port 384, the formof the command sent to the FTP server woul d
/1 be: "PORT 192,138, 139, 32,1, 128\r\n"

/1

/1 W replace the Client IPwith the router's IP, and the client
/1 port with a NAT port which is napped to the client port.

/1

if(!strncnp(pbData, "PORT ", 5))

/1l Get the IP/Port declared by sender

/'l Formis "il,i2,i3,i4,pl, p2"

pData += 5;

| PNew = ((U NT32) GetVal (&pDada)) << 24;
I PNew | = ((UINT32)Get Val (&pDada)) << 16;
I PNew | = ((UINT32)Get Val (&pDada)) << 8;
I PNew | = ((UI NT32) Get Val (&pData));

| PNew = htonl (1 PNew) ;

Port New = GCet Val (&pDat a) ;

Port New = (PortNew<<8) + GetVal (&pData);

/1 Add a NAT mapping to client's IP and Port
hNAT = Nat New(| PNew, PortNew, pN ->|PForeign, 0, |PPROTO TCP,
0, NAT_| DLE_SECONDS);
i f (! hNAT)
return(0);

/1 Get Server |IP and Mapped Port
| PNew = htonl (NatlpServer);

pNI New = Nat Get PNI (hNAT);

Port New = pNI New >Por t Mapped;

/1l Print a replacement string with | P and Port
sprintf(tmpstr, "%, %, %, %, %, %u\r\n",
((uint)(1PNew >> 24)), ((uint)(lIPNew >> 16) &xFF),
((uint) (I PNew >> 8) &xFF), ((uint) (I PNew) &xFF),
Por t New>>8, Port New&0xFF) ;

/! Replace the original string with ours
ProxyPacket Mod(Of f set+5, Length-5, strlen(tnpstr), tnpstr);
}

return(l);

184

Network Address Translation

Copyright © 2001-2012, Texas Instruments Incorporated

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com NAT Port Mapping

B.2 NAT Port Mapping

NAT port mapping allows a client machine on the LAN (or home network) to appear on a specific port of
the router's public WAN IP address. This APl (and NAT in general) is only used when the NDK is acting
as an IP router, and when the IP network on one side of the router is using virtual IP addresses.

The functions described in this section illustrates how to install and remove port mappings. The functional
operation of NAT and NAT Port Mapping is discussed in more detail in Section B.1.

B.2.1 Function Overview

The following functions create and destroy port mappings:

NatNew() Create a new NAT entry (for port mapping)
NatFree() Free a NAT entry
NatGetPNI() Get a pointer to a NAT entry's NATINFO structure

B.2.2 NAT Entry Information Structure

A port mapping is just a NAT entry. Each NAT entry has its own information structure. This NATINFO
structure allows you to examine the status of a particular entry.

The specification of the NATINFO structure is as follows:
typedef struct _natinfo {

uint TcpState; /1 Current TCP State (Sinplified)
#define NI _TCP_CLOSED 0 /1 C osed or closing
#define NI _TCP_SYNSENT 1 /1 Connecting
#define NI _TCP_ESTAB 2 /] Established

I PN | PLocal ; /1 Translated | P Address

Ul NT16 Port Local ; /1 Transl ated TCP/ UDP Port

I PN | PFor ei gn; /1 1P Address of Foreign Peer

Ul NT16 Port Foreign; // Port of Foreign Peer

Ul NT8 Prot ocol ; /'l 1P Potocol

Ul NT16 Por t Mapped; /1 Locally Mapped TCP/ UDP Port (router)
HANDLE hProxyEntry; // Handle to Proxy Entry (if any)

Ul NT32 Ti neout ; /1 Expiration time in SECONDS
voi d *pUser Dat a; /1 Pointer to proxy callback data
} NATI NFQ

The individual fields are defined as follows:
e uint TcpState;

This is a condensed version of the state of the TCP connection that is being translated by this entry.
This field is only valid when the Protocol field is set to IPPROTO_TCP. The defined values are:

NI_TCP_CLOSED The connection is closed
NI_TCP_SYNSENT The peers are in the process of connecting
NI_TCP_ESTAB A connection has been established

* | PN IPLocal;
This is the IP address (in network format) of the peer host on the local network (LAN). It is the entity
that has been assigned a virtual IP address behind the firewall.

e U NT16 PortlLocal;

This is the port in use by the peer host on the local network (LAN). It is the entity that has been
assigned a virtual IP address behind the firewall.

* | PN I PForeign;
This is the IP address (in network format) of the peer host on the public network (WAN). It is the entity
that is on the physical network outside the firewall.

e UINT16 Port Foreign;

SPRU524H—-May 2001 -Revised February 2012 Network Address Translation 185

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

NatNew — Create a NAT Entry (for Port Mapping) www.ti.com

This is the port in use by the peer host on the public network (WAN). It is the entity that is on the
physical network outside the firewall.

e U NT8 Protocol;

This is protocol in use by the NAT entry. It must be IPPROTO_TCP, IPPROTO_UDP, or
IPPROTO_ICMP.

U NT16 Port Mapped;
This is the port in use by the router on its public (WAN) IP address. It is this port that maps back to a
specific local IP/port on the LAN.

* HANDLE hProxyEntry;
When a NAT entry is created as a result of a proxy filter being installed on a specific port, the HANDLE
to the proxy filter that spawned the NAT entry is stored here.

U NT32 Timeout;
This is time in seconds when the proxy entry will expire. The system checks with a fairly large
granularity, so the actual expiration can occur 10 to 20 seconds later. If this value is ZERO, the entry is

static. A NAT entry must be specified as STATIC when it is created. Setting Timeout to ZERO wiill
cause the entry to expire in 0 to 20 seconds.

e void * pUserDat a;
This field is reserved for use by proxy filter callback functions. It is not used by the system software.

The NAT information structure is of little importance when only port mapping is required. It is mostly for
use in NAT proxy filters.

B.2.3 NAT API Functions

NatNew

Syntax

Parameters

IPLocal
PortLocal
IPForeign
PortForeign
Protocol
PortMapped
Timeout

Return Value

Description

Create a NAT Entry (for Port Mapping)

HANDLE NatNew(IPN IPLocal, UINT16 PortLocal, IPN IPForeign, UINT16 PortForeign,
UINTS8 Protocol, UINT16 PortMapped, UINT32 Timeout);

IP address (in network format) of host on the LAN to map
TCP/UDP port value of host on the LAN to map

IP address of WAN peer (usually NULL/wild for port mappings)
TCP/UDP port of WAN peer (usually NULL/wild)

IP protocol (IPPROTO_TCP or IPPROTO_UDP)

Port on router's public WAN to map (usually a well-known port)
Timeout of entry in seconds (NULL for STATIC)

Handle to NAT entry, or NULL on error.

This function creates a NAT entry with the parameters as specified.

For example, to allow a host on a virtual IP address of 1.2.3.4 to run a Telnet server
reachable via the router's public (physical) IP address, a mapping would be installed to
map TCP port 23 (telnet) to 1.2.3.4:23. If the connection were to be open to all foreign
hosts, then IPForeign and PortForeign would be left NULL. The value of Timeout would
also be NULL to make the entry STATIC.

hNat Tel net = Nat New(ht onl (0x01020304), 23, 0, O,
| PPROTO TCP, 23, 0);

The function returns a handle to the NAT entry created. This handle should be freed with
NatFree() when the mapping is no longer desired.

186 Network Address Translation SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

NatFree — Destroy a NAT Entry

NatFree

Syntax

Parameters

hNat

Return Value

Description

NatGetPNI

Syntax

Parameters

hNat

Return Value

Description

Destroy a NAT Entry

void NatFree(HANDLE hNat);

Handle to NAT entry created with NatNew()

None.

This function frees the supplied NAT entry. It is called to remove a STATIC NAT entry
that is no longer required.

Get a Pointer to a NAT Entry's NATINFO Structure

NATINFO NatGetPNI(HANDLE hNat);

Handle to NAT entry created with NatNew()

Pointer to NATINFO structure or NULL on error.

This function returns a pointer to the NATINFO structure defined in Section B.2.2. It is
used mainly by NAT proxy filter callback functions.

B.3 NAT Proxy Filters

NAT proxy filters allow NAT to operate correctly with network protocols that have addressing specific data
in their packet payload data. This API (and NAT in general) is only used when the NDK is acting as an IP

router

, and when the IP network on one side of the router is using virtual IP addresses.

The functions described in this section illustrate how to install and remove port proxy filters and their
associated callback functions. The functional operation of NAT and NAT Port Mapping, and NAT Proxy is
discussed in more detail in Section B.2.2.

B.3.1 Function Overview

The following functions create and destroy proxy filters:

ProxyNew() Create Proxy Filter for NAT entries
ProxyFree() Destroy a Proxy Filter declaration

The following function can be called from within a proxy filter callback function:

ProxyPacketMod() = Modify a packet being processed by NAT

SPRU524H—-May 2001 -Revised February 2012 Network Address Translation 187
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

ProxyEnableCallback — Proxy Enable Callback Function www.ti.com

B.3.2 NAT Proxy Filter Callback Functions

The proxy filter callback functions allow the proxy programmer to examine NAT entry properties as the
entries are created, plus the examination of packet data as packets pass between the LAN and WAN. This
section describes the syntax of the callback functions that are supplied to the proxy filter when it is first
installed in the system.

ProxyEnableCallback Proxy Enable Callback Function

Syntax int SampleProxyEnableCallback(NATINFO *pNI, uint EnableFlag);
Parameters
pNI Pointer to NATINFO structure of NAT entry created
EnableFlag Set to 1 for an enable request
Return Value 1 to allow normal operation, or NULL to abort new NAT entry.
Description This function is called when a NAT entry containing a proxy is created or destroyed.

When the entry is created, the value of EnableFlag is 1. When the entry is being
destroyed, the value of EnableFlag is zero.

When EnableFlag is set, the return value of this function determines if the NAT entry will
be enabled. If this function returns NULL, the NAT entry is immediately destroyed (in this
event, the callback is not called a second time for this destroy). This can be used to
restrict peer connections.

ProxyTx/RxCallback Proxy Tx/Rx Callback Functions

Syntax int SampleProxyTxCallback(NATINFO *pNI, IPHDR *plpHdr);
int SampleProxyRxCallback(NATINFO *pNI, IPHDR *plpHdr);

Parameters
pNI Pointer to NATINFO structure of NAT entry in use
plpHdr Pointer to the IP header of the packet being translated

Return Value 1 to allow normal operation, or NULL to abort the supplied packet.

Description This function is called when a packet is crossing the router from the WAN to the LAN
(Rx callback) or from the LAN to the WAN (Tx callback). The NAT entry containing a
proxy that matches the packet is described by the supplied NATINFO structure. This
structure was described in Section B.2.2.

The purpose of the callback is to examine the packet and take appropriate action based
on its contents. The packet payload can be easily modified by the ProxyPacketMod()
function described later in this section. The translation of the IP address and port
information cannot be altered by this callback; however, the callback can act as a packet
filter and discard unwanted packets by returning a value of NULL.

188 Network Address Translation SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com ProxyNew — Create a New Proxy Filter for NAT Entries

B.3.3 NAT Proxy API Functions

ProxyNew Create a New Proxy Filter for NAT Entries

Syntax HANDLE ProxyNew(uint NatMode, UINT8 Protocol, UINT16 Port, IPN IPTarget, int
(*pfnEnableCb)(NATINFO *, uint), int (*pfnTXCb)(NATINFO *, IPHDR *), int
(*pfMRXCDb)(NATINFO *, IPHDR *));

Parameters
NatMode Port direction to detect (NAT_MODE_RX or NAT_MODE_TX)
Protocol Protocol to use (IPPROTO_TCP or IPPROTO_UDP)
Port Port value for RX or TX packets to detect
IPTarget New IP destination NAT_MODE_RX proxy
pfnEnableCb Pointer to proxy Enable callback function (NULL if none)
pfnTxCh Pointer to proxy Tx callback function (NULL if none)
pfnRxCb Pointer to proxy Rx callback function (NULL if none)

Return Value Handle to new proxy, or NULL on error.

Description This function creates a hook that is examined whenever a new NAT entry is created.
The calling parameter NatMode specifies the direction of the proxy (NAT_MODE_RX for
servers behind the firewall, and NAT_MODE_TX for clients behind the firewall).

The Protocol and Port values are the IP protocol and well known port of the protocol to
proxy.

For example, if setting up a FTP client proxy, set:

NatMode = NAT_MODE_TX, Protocol = IPPROTO_TCP, and Port = 21.

IPTarget is used only in server proxies (when NatMode is set to NAT_MODE_RX). This
specifies the machine behind the firewall that is actually providing the service.

The three pointers to callback functions correspond to the proxy filter callback functions
described in the previous section.

The function returns a handle to the new proxy. Note that a proxy handle is not the same
as (or compatible with) a NAT entry handle.

The proxy should be destroyed by calling ProxyFree() when it is no longer needed.

ProxyFree Destroy a Proxy Filter Declaration

Syntax void ProxyFree(HANDLE hProxy);

Parameters

hProxy Handle to Proxy Filter entry created with ProxyNew()

Return Value None.

Description This function frees the supplied Proxy Filter entry. It is called to remove an entry that is
no longer required.

SPRU524H—-May 2001 -Revised February 2012 Network Address Translation 189

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

ProxyPacketMod — Modify the Contents of a Packet www.ti.com
ProxyPacketMod Modify the Contents of a Packet
Syntax IPHDR *ProxyPacketMod(uint Offset, uint OldSize, uint NewSize, UINT8 *pNewData);
Parameters

Offset Offset in bytes from start of IP header to first modified byte

OldSize Size of old data at Offset

NewsSize Size of new data to replace old data at Offset

pNewData Pointer to new data to replace old data

Return Value

Pointer to new IP header of packet. This pointer is used for further modifications (if
needed).

Description This function may only be called from a proxy filter callback function. Its purpose is to
modify the contents of a TCP or UDP packet, and perform the necessary adjustments for
packet size - including TCP sequencing adjustment.

190 Network Address Translation SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS

Appendix C

SPRU524H—May 2001 —-Revised February 2012

Point-to-Point Protocol

Point to point protocol (PPP) was originally designed as a replacement for SLIP (serial line IP) in sending
IP packets via a serial line. In addition to its massive popularity in performing this function, PPP has also
been increasingly used for the transmission of packets over other media. This is due to PPP's inherent
peer-to-peer nature, allowing for per-connection security and billing.

The NDK has built-in support for both PPP servers and clients. The PPP support API is designed to be
shared by one or more physical devices. One obvious device that can be hooked to PPP is a serial line,
but the stack also contains support for PPP over Ethernet (PPPoE). The low level PPP API as well as
Serial HDLC and PPPoE are all discussed in this appendix.

Topic Page

C.1 LOW LEVEl PPP SUP PO tuiuiiititieeitette et s et a e e et e e s e e et e a e e e e e ananeeees 192

C.2 Serial HDLC Client and Server SUPPOIT ...c.eeieieieeeeeeenrnrareeeeeaeeeenenansnreaeneenes 200

C.3 PPPOE Client and Server SUPPOIT ...cueuiueueeieieieieaeeetuenenansasaeeaeaeeenensnansnanaeaeaenes 204

C.4 Creating PPP Server USer ACCOUNES ...iuiuieieieieeniiieneniaieiaseaeeesnensnsnseseseneneeass 207
SPRU524H—-May 2001 -Revised February 2012 Point-to-Point Protocol 191

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Low Level PPP Support www.ti.com

C.1 Low Level PPP Support

This section describes the operation of the PPP support API included in the NDK.

NOTE: Unlike the HDLC and PPPoE APIs that are application callable, the low level PPP support
API is designed to be called from the kernel layer only. You should be thoroughly familiar
with the operation of the kernel and the llIEnter()/IIExit() functions before attempting to use the
APIs described in this section.

C.1.1 PPP Operation

PPP is very much like Ethernet in that there is a defined packet format. The basic PPP packet is shown
below. It consists of flag delimiters, address and control bytes, protocol field (similar to ether-type under
Ethernet), and a two byte checksum.

Figure C-1. Standard PPP Frame Over Serial Line

Flag (7E) | Addr (FF) ‘ Control (03) | Protocol ‘ Payload ‘ CRC | Flag (7E) ‘

1 1 1 2 1500 2 1

To abstract out the actual processing of the PPP data from the processing of the PPP frame encoding, the
PPP support included in the NDK expects a smaller frame, consisting of the protocol and payload fields
only. This format is shown in Figure C-2.

Figure C-2. PPP Frame Processed by PPP API

Protocol | Payload

2 Size specified by layer 2 (about 1500)

The abstraction of PPP from the layer 2 encoding allows PPP to be carried by a variety of physical
devices. The programming interface to the PPP layer called by the application is actually exposed by the
layer 2 encoder. This layer 2 encoder is referred to as a serial interface (Sl), but does not have to be a
serial port. This interoperation between PPP and the Sl is shown in Figure C-3. The functions shown in
the dotted rectangle are those provided by the serial interface software.

Application Software <

PPP Connect
> Session API

\4

I Timer I

\4

Hardware

| Stack
4—|—| Packet Encoding |

| TX Packet# Call Status

| Serial Interface
| (SI) Callback

|
|
|
|
Packet Decoding| > TCP/IP
|
|
|
i

Figure C-3. Serial Interface (Sl) Abstraction

192

Point-to-Paint Protocol SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com Low Level PPP Support

As shown in Figure C-3, the Sl interface has the responsibility of providing for connection control, a timer
used by PPP for timeout, packet encoding and decoding, and a Sl callback function for status messages
and packet transmission. Note that the Sl driver developer also defines the actual API used by the
application software to establish and tear down PPP connection sessions. There is no specific
requirements in specifying the session API for any particular PPP device, but the APIs defined for HDLC
and PPPoE can be used as a guide.

C.1.2 Function Overview

The Sl interface module is charged with communicating with both the hardware and the application
program, but the PPP packets themselves are processed via the PPP support functions in the stack. The
PPP support software provides the following functions for use by the SI module:

pppNew() Create a new PPP connection instance
pppFree() Destroy an existing PPP connection instance
pppTimer() Inform PPP that a 1 second timer tick has expired
pppInput() Pass in a received PPP packet for processing

The formal declaration of these functions appear later in this section (see Section C.1.6).

NOTE: These functions can only be called in kernel mode. See Appendix for programming in kernel
mode.

C.1.3 Supported Protocols
In keeping with trying to maintain a small footprint, the PPP software supports a subset of the general
PPP protocols. The following are supported:
» Link Control Protocol (LCP)
» Internet Protocol Control Protocol (IPCP)
« Password Authentication Protocol (PAP)
e Challenge Handshake Authentication Protocol (CHAP) using MD5
» Internet Protocol (IP)

C.1.4 Sl Module Callback Function

The PPP support API is used for connection instance creation and destruction, and to pass received
packets to the stack. To get information about PPP back from the stack, and to allow the stack to request
the transmission of PPP packets, the SI module supplies a callback function. A pointer to this callback is
passed to PPP as a parameter to pppNew().

NOTE: This function is called in kernel mode. See Appendix for programming in kernel mode.

SPRU524H—-May 2001 -Revised February 2012 Point-to-Point Protocol 193

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
SIControl — Notify the Serial Interface of a Change in Status, or when S| Needs to Transmit a Packet www.ti.com
C.1.4.1 Function Declaration
The SI callback function is provided in the SI code module using the following definition:
SIControl Notify the Serial Interface of a Change in Status, or when Sl Needs to Transmit a
Packet
Syntax void SIControl(HANDLE hSl, uint Message, UINT32 Data, PBM_Handle hPkt);
Parameters
hSl Handle to Sl private data
Message Message code describing the PPP event
Data Additional data concerning the message
hPkt Handle to a PBM packet when Message is SI_ MSG_SENDPACKET
Return Value None.
Description This function is called when a PPP needs to notify the serial interface (SI) of a change in
status, or when it needs Sl to transmit a packet.
The hSI parameter is a handle (pointer to a void) that is originally passed to PPP via
pppNew(). This value allows the SI module to know which of its own connection
instances is in use. The PPP instance handle in use is not supplied, but rather should be
obtained by reference from the supplied Sl handle. If the programmer of the SI module
does not wish to track handles, then this parameter may be NULL (always as originally
supplied to pppNew()). This is NOT the handle to the PPP instance that is passed to
other functions in the PPP API.
The purpose of the callback is determined by the value of the Message parameter. The
following message values are defined for this parameter:
SI_MSG_CALLSTATUS PPP connection status has changed
SI_MSG_SENDPACKET PPP is requesting a packet to be encoded and transmitted
SI_MSG_PEERCMAP LCP has received the peer's 32 bit asynchronous character map

C.1.4.2 SI_MSG_CALLSTATUS Message

When this message value is set, the callback function was called by PPP to update the status of the
connection instance. When the callback is called with this message, the value of Data contains additional
information about the call. Data can be set to any of the following values:

SI_CSTATUS_WAITING Connection instance is idle
S| CSTATUS_NEGOTIATE Instance in LCP negotiation stage
SI_CSTATUS_AUTHORIZE Instance in authorization stage
SI_CSTATUS_CONFIGURE Instance in IP configuration stage
SI_CSTATUS_CONNECTED Instance is fully connected and operational
SI_CSTATUS_DISCONNECT Connection dropped
SI_CSTATUS_DISCONNECT_LCP Connection dropped in LCP stage
SI_CSTATUS_DISCONNECT_AUTH Connection dropped in authorization stage
SI_CSTATUS_DISCONNECT_IPCP Connection dropped in IP configuration stage

194 Point-to-Paint Protocol SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com SIControl — Notify the Serial Interface of a Change in Status, or when S| Needs to Transmit a Packet

If Data is set to any of disconnect messages, pppFree() should be called to destroy the connection
instance. For all other status values, no action is required.

NOTE: Itis always safe to assume that when the value of Data >= SI_CSTATUS_DISCONNECT,
the message is some type of disconnect.

C.1.4.3 SI_MSG_ SENDPACKET Message

When this message value is set, the callback function was called by PPP to transmit a packet. The Data
parameter is set to the 16 bit PPP protocol of the packet, and the hPkt parameter contains a handle to a
packet (PKT) object that contains the packet payload. It is the job of the Sl callback function to encode the
packet and transmit it on the physical hardware.

C.1.4.4 SI_MSG_ PEERCMAP Message

Serial interfaces to PPP require a translation map for the first 32 character values. This map informs the
packet encoded which characters must be escaped and which do not. The default value of the peer CMAP
should be Oxffffffff, and updated only when this message is received. Whether or not PPP will attempt to
exchange CMAP information with its peer, is determined by passing flags to pppNew() when the
connection instance is created.

C.1.45 Example Callback Function Implementation

The following is an example of a SI module callback function from the HDLC module code in the example
applications. The code illustrates the basic processing that must be done for the various Sl callback
messages. The function calls made in this example are described in Appendix .

voi d hdlcSlI (HANDLE hSl, uint Mg, U NT32 Aux, PBM Handl e hPkt)
{

HDLC | NSTANCE *pi = (HDLC_|I NSTANCE *) hSI ;

HANDLE hTnp;

ui nt O fset, Size;

Ul NT8 * pBuf ;

swi t ch(Msg)

case Sl _MSG _CALLSTATUS:
/1 Update Connection Status
pi ->Status = (uint)Aux;
if(Aux >= S| _CSTATUS_DI SCONNECT)
{
/'l O ose PPP
if(pi->hPPP)
{
hTnp = pi - >hPPP;
pi - >hPPP = 0;
pppFree(hTnp);
}
}

br eak;

case Sl _MSG_PEERCVAP:
/1 Update Qut CMAP for Transmt
pi - >cmap_out = Aux;
I'l Seri al HDLCPeer Map(pi ->DevSerial, Aux);
br eak;

case S| _MSG_SENDPACKET:
if('hPkt)
{

SPRU524H—-May 2001 -Revised February 2012 Point-to-Point Protocol 195

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

SIControl — Notify the Serial Interface of a Change in Status, or when S| Needs to Transmit a Packet www.ti.com

DbgPrintf(DBG ERROR "hdlcSl: No packet");
br eak;

}

O fset = PBM get DataOf fset (hPkt);
Si ze = PBM get Val i dLen(hPkt);

/1 Make sure packet is valid, with roomfor protocol, roomfor checksum
if((OFfset<4) || ((Ofset+Size+2)>PBM get Buf ferLen(hPkt)))

DbgPrint f(DBG_ERROR "hdl cSl: Bad packet");
PBM free(hPkt);
br eak;

}

/! Add in 2 byte Protocol and 2 byte header. Al so add in size for
/1 2 byte checksum Note that the outgoing checksumis corrected
Il (calculated) by the serial driver.

O fset -= 4;

Size += 6;

PBM set Dat aCf f set (hPkt, Offset);

PBM set Val i dLen(hPkt, Size);

pBuf = PBM get Dat aBuf f er (hPkt) +Of f set ;

*pBuf ++ = OxFF;

*pBuf ++ = 0x03;

*pBuf ++ = (Ul NT8) (Aux/ 256) ;

*pBuf = (Ul NT8) (Aux%256) ;

/1 Send the buffer to the serial driver
I'l Seri al SendPkt (pi - >DevSerial, hPkt);
br eak;

C.1.5 Tips for Implementing a PPP Serial Interface (SI) Module Instance

C.1.5.1 Multiple Instances

PPP supports multiple instances, but the SI module implementation tracks multiple instances of itself. This
is done in two ways. One method is for the SI module to have a locally global head pointer to its first
instance, and an array or linked list for additional instances. Or, the instance can be bound to the next
layer down. In the case of the HDLC module, one PPP instance is bound to one serial port driver instance.
So the HDLC module does not need to track instances independently.

When a new PPP connection is established, a new S| module instance should be allocated and a handle
to the new Sl instance is passed to the pppNew() function. The handle that pppNew() returns must be
associated with the handle to the Sl instance. The PPP handle must be passed to all other PPP API
functions, and PPP will pass back the Sl instance handle to the Sl callback function.

When new data arrives from the hardware, it is the responsibility of the SI module to associate that data
with a specific Sl instance. The Sl instance can then be accessed to retrieve the handle to the PPP
instance to use with any PPP function calls. In the case of HDLC, the Sl instance is known because it is
associated with a particular serial device instance.

C.1.5.2 Using the Timer Object

PPP requires that its pppTimer() function be called once every second. This can be PRD driven if
necessary, but the timer callback cannot be called from a PRD because it must be called from within
kernel mode (an lIEnter()/lIExit()) pairing.

196 Point-to-Paint Protocol SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com pppNew — Create a New PPP Connection Instance

C.1.5.3 Registering Packet Padding Requirements

Although a serial interface will probably not have any special requirements for packets from the stack, it
must at least be able to construct valid packets to send to the ppplnput() function. To use the packet
allocation function provided by the IF API (see Appendix), the SI module should declare its padding
requirements via the IFSetPad() function. For a serial interface that does not use the packet buffer to
physically send the packet, the size of the PPP header would be 4 bytes (2 byte HDLC header and 2 byte
protocol field), and the padding would be 2 bytes (checksum).

C.1.6 PPP API Functions

The following is the full description of the PPP functions described in this section.
pppNew Create a New PPP Connection Instance
Syntax HANDLE pppNew(HANDLE hSl, uint pppFlags, uint mru, IPN IPServer, IPN IPMask, IPN

IPClient, char *Username, char *Password, UINT32 cmap, void (*pfnSICtrl)(HANDLE,
uint, UINT32, HANDLE));

Parameters
hSl Handle to SI module to be passed back to callback function
pppFlags Connection option flags
mru Maximum receive unit (maximum size of Payload)
IPServer IP address of server in server mode (NULL in client mode)
IPMask IP subnet mask of client in server mode (NULL in client mode)
IPClient IP address of client in server mode (NULL in client mode)
Username Pointer to username in client mode (NULL in server mode)
Password Pointer to password in client mode (NULL in server mode)
cmap 32-bit local CMAP to pass to peer
pfnSICtrl Pointer to SI module callback function
Return Value Handle to new PPP connection instance, or NULL on error.
Description This function is called to create a new PPP connection instance. The type of connection
created is determined by the calling parameters.

* hSI - This is a private handle created by the caller that points back to the caller's
instance data. It is passed back to the caller via the callback function pointed to by
pfnSICtrl, and can be used to link back to caller's instance data when the callback is
executed.

* pppFlags - The flags determine what type of connection instance to create, and what
type of options to support in the connection instance. In the pppFlags parameter, one
and only one of the following flags must be set:

PPPFLG_SERVER Create PPP server connection instance
PPPFLG_CLIENT Create PPP client connection instance
SPRU524H—-May 2001 -Revised February 2012 Point-to-Point Protocol 197

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

pppNew — Create a New PPP Connection Instance www.ti.com

When operating in SERVER mode, any of the following flags can also be set:

PPPFLG_OPT_AUTH_PAP Require PAP authentication
PPPFLG_OPT_AUTH_CHAP Require CHAP authentication
PPPFLG_OPT_USE_MSE Use MS extensions as server
PPPFLG_OPT_LOCALDNS Claim Local IP as DNS server
PPPFLG_SIOPT_SENDCMAP Send an async character map
PPPFLG_SIOPT_RECVCMAP Accept an async character map
PPPFLG_CH1 Allow server channel/group 1 account users
PPPFLG_CH2 Allow server channel/group 2 account users
PPPFLG_CH3 Allow server channel/group 3 account users
PPPFLG_CH4 Allow server channel/group 4 account users
PPPFLG_OPT_ALLOW_IP Allow client to declare its own IP address
PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

When operating in CLIENT mode, any of the following flags can also be set:

PPPFLG_OPT_USE_MSE Use MS extensions as client

PPPFLG_OPT_CLIENT_P2P Treat the connection as a pure peer to peer (i.e., do
not create a default route using the peer as a
gateway)

PPPFLG_SIOPT_SENDCMAP Send an async character map

PPPFLG_SIOPT_RECVCMAP Accept an async character map

PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

mru - The MRU is maximum receive unit, or the maximum size of the payload portion
of a PPP packet. For a standard serial link, the MRU is typically 1500, but can be
smaller.

IPServer - When creating the PPP instance in SERVER mode, this is the IP address
in network format of the NDK reported to the peer. When operating in CLIENT mode,
this value is NULL.

IPMask - When creating the PPP instance in SERVER mode, this is the IP subnet
mask of the peer's IP network reported to the peer. When operating in CLIENT mode,
this value is NULL.

IPClient - When creating the PPP instance in SERVER mode, this is the IP address
in network format of the peer reported to the peer. When operating in CLIENT mode,
this value is NULL.

Username - When creating the PPP instance in CLIENT mode, this is a pointer to a
NULL terminated string containing the username to use in PAP or CHAP
authentication. The maximum string length is defined by PPPNAMELEN. When
operating in SERVER mode, this value is NULL.

Password - When creating the PPP instance in CLIENT mode, this is a pointer to a
NULL terminated string containing the password to use in PAP or CHAP
authentication. The maximum string length is defined by PPPNAMELEN. When
operating in SERVER mode, this value is NULL.

cmap - When the PPPFLG_SIOPT_SENDCMAP flag is set in the pppFlags
parameter, this is the CMAP value that is sent to the peer; otherwise it is NULL.

pfnSICtrl - This is a required pointer to the caller's callback function to handle status
updates from the stack, and requests to transmit PPP packets. See Section C.1.4 for
more detail.

198 Point-to-Point Protocol

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

pppFree — Destroy PPP Connection Instance

pppFree

Syntax

Parameters

hPPP

Return Value

Description

ppplnput

Syntax

Parameters

hPPP
pPkt

Return Value

Description

pppTimer

Syntax

Parameters

hPPP

Return Value

Description

When run in SERVER mode, the name of the PPP server defaults to DSPIP in CHAP
authentication; however, this can be changed by using the
CFGITEM_SYSINFO_REALMPPP configuration tag. For example:

/1 Name our authentication group for PPP (Max size = 31)

/'l This is the authentication "real m nane returned by the PPP
/1 server when authentication is required.

/1 (Note the length "16" includes the NULL term nator)

Cf gAddEnt ry(hCfg, CFGTAG SYSINFO, CFG TEM SYSI NFO REALMPPP,
0, 16, (UINT8 *)"PPP_SAVPLE_NAME', 0);

When successful, this function returns a handle to a new PPP instance. This handle is
used by the caller when calling other functions in the PPP API.

Destroy PPP Connection Instance

void pppFree(HANDLE hPPP);

Handle to PPP instance created with pppNew()

None.

This function is called to close and destroy a PPP connection instance created with
pppNew(). This function must be called to free the PPP handle, even if the PPP
connection itself is already disconnected.

Send a PPP Packet to PPP for Processing

void pppInput(HANDLE hPPP, PBM_Pkt *pPkt);

Handle to PPP instance created with pppNew()
Pointer to a PBM packet

None.

This function is called when a PPP packet is received on a active serial interface. The
packet is data decoded into the PPP protocol and payload fields, and given to PPP as a
packet object. The handle hPPP is the PPP connection instance returned from pppNew()
for this connection, and pPkt is a packet object created by the packet buffer manager
(PBM).

Notify PPP of One Second Tick

void pppTimer(HANDLE hPPP);

Handle to PPP instance created with pppNew()

None.

This function is called on an active PPP instance to notify PPP that one second has
elapsed. Because the PPP API is entirely stateless, it relies on the serial interface for
time tick notification.

SPRU524H—-May 2001 -Revised February 2012

Point-to-Point Protocol 199

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Serial HDLC Client and Server Support www.ti.com

C.2 Serial HDLC Client and Server Support

This implementation of HDLC for the NDK library is included in the example applications. It interfaces to
the serial port driver described in the HAL.

NOTE: The HDLC API is user-callable. Unlike the low level PPP support API, you should not use
the lIEnter()/llExit() functions when calling the functions described in this section.

C.2.1 Function Overview

Called by Application:

hdicNew() Create a Serial HDLC Client Session

hdlcFree() Destroy a Serial HDLC Client Session
hdlcGetStatus() Get the Call Status of a Serial HDLC Client Session
hdlcsNew() Create a Serial HDLC Server Session

hdlcsFree() Destroy a Serial HDLC Server Session

hdlcsGetStatus() Get the Call Status of a Server HDLC Client Session
Called by Serial Port Driver:
hdiclnput() Send HDLC input buffer for processing

C.2.2 HDLC API Functions

hdlcNew Create a Serial HDLC Client Session
Syntax HANDLE hdIicNew(uint Dev, uint pppFlags, UINT32 cmap, char *Username, char
*Password);
Parameters
Dev Physical index of serial port to use
pppFlags Connection option flags
cmap Async control character map
Username Pointer to client account username
Password Pointer to client account password
Return Value If it succeeds, the function returns a handle to a HDLC client instance. Otherwise, it
returns NULL.
Description This function is called to create a new serial HDLC client instance on the physical serial
interface specified by the index Dev.

* pppFlags - The flags determine what type of connection instance to create, and what
type of options to support in the connection instance. In the pppFlags parameter, the
following flag must be set:

PPPFLG_CLIENT Create PPP client connection instance
In addition, any of the following flags can also be set:
PPPFLG_OPT_USE_MSE Use MS extensions as client
PPPFLG_OPT_CLIENT_P2P Treat the connection as a pure peer to peer (i.e.,
don't create a default route using the peer as a
gateway).
200 Point-to-Paint Protocol SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

hdlcFree — Destroy a Serial HDLC Client Session

PPPFLG_SIOPT_SENDCMAP
PPPFLG_SIOPT_RECVCMAP

PPPFLG_OPT_ALLOW_HC

hdlcFree

Syntax

Parameters

hHDLC

Return Value

Description

hdlcGetStatus

Syntax

Parameters

hHDLC

Return Value

SI_CSTATUS_WAITING
SI_CSTATUS_NEGOTIATE
S|_CSTATUS_AUTHORIZE
SI_CSTATUS_CONFIGURE
SI_CSTATUS_CONNECTED
S|_CSTATUS_DISCONNECT
SI_CSTATUS_DISCONNECT_LCP
S|_CSTATUS_DISCONNECT_AUTH
SI_CSTATUS_DISCONNECT _[PCP

Send an async character map (strongly
recommended)

Accept an async character map (strongly
recommended)

Allow peer to negotiate PFC/ACFP

e cmap - This is the desired value of the async character control map that is sent to the
peer to allow frame compression by skipping the escape coding of characters when it
is not required. The mask contains a set bit for each character (0 to 31) that must be
escaped when sent by the peer. If the PPPFLG_SIOPT_SENDCMAP option is not
set, it is assumed that all 32 characters must be sent via the escape sequence.

» Username - This is a pointer to a NULL terminated string containing the username to
use in PAP or CHAP authentication. The maximum string length is defined by
PPPNAMELEN.

e Password - This is a pointer to a NULL terminated string containing the password to
use in PAP or CHAP authentication. The maximum string length is defined by
PPPNAMELEN.

When successful, this function returns a handle to a new serial HDLC instance. The
current status of the connection can be queried at any time by calling hdlcGetStatus().

Destroy a Serial HDLC Client Session

void hdlcFree(HANDLE hHDLC);

Handle to HDLC Client Session

None.

This function is called to close and destroy a serial HDLC client session that was created
with hdlcNew(). This function is always called once for every HDLC instance handle. If
the connection is no longer active, it frees the instance memory. If the connection is still
active, it disconnects the call first.

Get the Status of a Serial HDLC Client Session

uint hdlcGetStatus(HANDLE hHDLC);

Handle to HDLC Client Session

This function returns a uint that will be set to one of the following values:

Connection is idle (HDLC session opening)
Connection in LCP negotiation stage
Connection in authorization stage
Connection in IP configuration stage
Connection is fully connected and operational
Connection dropped

Connection dropped in LCP stage
Connection dropped in authorization stage
Connection dropped in IP configuration stage

SPRU524H—-May 2001 -Revised February 2012

Point-to-Point Protocol 201

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
hdlcsNew — Create a Serial HDLC Server Session www.ti.com
Description This function is called to get the connection status of a serial HDLC client session using

the HDLC instance handle returned from hdlcNew(). This function can be called anytime
after the handle is created with hdicNew(), and before it is destroyed with hdicFree().

hdlcsNew Create a Serial HDLC Server Session
Syntax HANDLE hdlcsNew(uint Dev, uint pppFlags, UINT32 cmap, IPN IPServer, IPN IPMask,
IPN IPClient);
Parameters
Dev Physical index of serial port to use

pppFlags Connection option flags
cmap Async control character map
IPServer IP address of server in network format
IPMask IP subnet mask in network format of the peer's network
IPClient IP address in network format of the client
Return Value If it succeeds, the function returns a handle to a serial HDLC server instance. Otherwise,
it returns NULL.
Description This function is called to create a new serial HDLC server instance on the physical serial
interface specified by the index Dev.

* pppFlags - The flags determine what type of connection instance to create, and what
type of options to support in the connection instance. In the pppFlags parameter, the
following flag must be set:

PPPFLG_SERVER Create PPP server connection instance
In addition, any of the following flags can also be set:

PPPFLG_OPT_AUTH_PAP Require PAP authentication

PPPFLG_OPT_AUTH_CHAP Require CHAP authentication (PAP is fallback when
specified)

PPPFLG_OPT_USE_MSE Use MS extensions as server

PPPFLG_SIOPT_SENDCMAP Send an async character map (strongly
recommended)

PPPFLG_SIOPT_RECVCMAP Accept an async character map (strongly
recommended)

PPPFLG_CH1 Allow server channel/group 1 account users

PPPFLG_CH2 Allow server channel/group 2 account users

PPPFLG_CHS3 Allow server channel/group 3 account users

PPPFLG_CH4 Allow server channel/group 4 account users

PPPFLG_OPT_ALLOW_IP Allow client to declare its own IP address

PPPFLG_OPT_ALLOW_HC Allow peer to negotiate PFC/ACFP

cmap - This is the desired value of the async character control map that is sent to the
peer to allow frame compression by skipping the escape coding of characters when it
is not required. The mask contains a set bit for each character (0 to 31) that must be
escaped when sent by the peer. If the PPPFLG_SIOPT_SENDCMAP option is not
set, it is assumed that all 32 characters must be sent via the escape sequence.

IPServer - This is the IP address in network format of the NDK reported to the peer.
IPMask - This is the IP subnet mask of the peer's IP network reported to the peer.

202 Point-to-Point Protocol

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

hdlcsFree — Destroy a Serial HDLC Server Session

hdlcsFree

Syntax

Parameters

hHDLC

Return Value

Description

hdlcsGetStatus

Syntax

Parameters

hHDLC

Return Value

* |PClient - This is the IP base address in network format of the IP address to be
assigned to the client.

When successful, this function returns a handle to a new serial HDLC server instance.
The current status of the connection can be queried at any time by calling
hdlcsGetStatus().

The name of the PPP server defaults to DSPIP in CHAP authentication; however, this
can be changed by using the CFGITEM_SYSINFO_REALMPPP configuration tag. For
example:

/1 Name our authentication group for PPP (Max size = 31)

/1l This is the authentication "real m' nane returned by the PPP

/1 server when authentication is required.

/1 (Note the length "16" includes the NULL termi nator)

Cf gAddEnt ry(hCfg, CFGTAG SYSINFO, CFG TEM SYSI NFO REALMPPP,
0, 16, (UINT8 *)"PPP_SAMPLE NAME", 0);

Destroy a Serial HDLC Server Session

void hdlcsFree(HANDLE hHDLC);

Handle to HDLC Server Session

None.

This function is called to close and destroy a serial HDLC server session that was
created with hdlcsNew(). This function is always called once for every HDLC instance
handle. If the connection is no longer active, it frees the instance memory. If the
connection is still active, it disconnects the call first.

Get the Status of a Serial HDLC Server Session

uint hdlcsGetStatus(HANDLE hHDLC);

HDLC Server Session

This function returns a uint that will be set to one of the following values:

SI_CSTATUS_WAITING Connection is idle (PPPOE session opening)
SI_CSTATUS_NEGOTIATE Connection in LCP negotiation stage
SI_CSTATUS_AUTHORIZE Connection in authorization stage
SI_CSTATUS_CONFIGURE Connection in IP configuration stage
SI_CSTATUS_CONNECTED Connection is fully connected and operational
SI_CSTATUS_DISCONNECT Connection dropped
S| CSTATUS_DISCONNECT_LCP Connection dropped in LCP stage
SI_CSTATUS_DISCONNECT_AUTH Connection dropped in authorization stage
S|I_CSTATUS_DISCONNECT_IPCP Connection dropped in IP configuration stage
SPRU524H—-May 2001 -Revised February 2012 Point-to-Point Protocol 203

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

PPPoOE Client and Server Support www.ti.com

Description

This function is called to get the connection status of a serial HDLC server session using
the HDLC instance handle returned from hdlcsNew(). This function can be called
anytime after the handle is created with hdlcsNew(), and before it is destroyed with
hdlcsFree().

C.3 PPPoE Client and Server Support

The PPPoE (PPP over Ethernet) specification allows for PPP packets to be transmitted in a peer to peer
method over an Ethernet tunnel. The standard has gained in popularity because it allows for the use of
multiple user accounts on a single Ethernet network.

The implementation of PPPoE supplied in the NDK library is built into the stack library code, and linked to
the Ether object that handles packets from all Ethernet devices in the HAL layer. Thus, is it not necessary
to access or alter the HAL to use PPPoOE.

The software can be used as a PPP server or PPP client, but not both simultaneously. In both cases,
PPPoE uses the the PPP programming interfaces described earlier in this section. Thus, for server mode,
the PPP server will use the same user account information as a serial based server.

NOTE: The PPPoOE API is user callable. Unlike the low level PPP support API, you should not use

the lIEnter()/lIExit() functions when calling the functions described in this section.

C.3.1 Function Overview
The PPPoE function API is short:

pppoeNew() Create a PPPOE Client Session

pppoeFree() Destroy a PPPoE Client Session
pppoeGetStatus() Get the Call Status of a PPPoE Client Session
pppoesNew() Create a PPPOE Server Session
pppoesFree() Terminate a PPPoOE Server Session

C.3.2 PPPoOE API Functions

pppoeNew

Syntax

Parameters

hEther

pppFlags
Username

Password

Return Value

Create a PPPoE Client Session

HANDLE pppoeNew(HANDLE hEther, uint pppFlags, INT8 *Username, INT8
*Password);

Handle to Ether device on which to look for a PPPOE server
Connection option flags

Pointer to client account username

Pointer to client account password

If it succeeds, the function returns a handle to a PPPoE client instance. Otherwise, it
returns NULL.

Description This function is called to create a new PPPoOE client instance on the Ether type interface
specified by the handle hEther.

* pppFlags - The flags determine what type of connection instance to create, and what
type of options to support in the connection instance. In the pppFlags parameter, the
following flag must be set:

204 Point-to-Paint Protocol SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

pppoeFree — Destroy a PPPoE Client Session

PPPFLG_CLIENT

PPPFLG_OPT_USE_MSE
PPPFLG_OPT_CLIENT_P2P

PPPFLG_OPT_ALLOW_HC

pppoeFree

Syntax

Parameters
hPPPOE

Return Value

Description

pppoeGetStatus

Syntax

Parameters

hPPPOE

Return Value

SI_CSTATUS_WAITING
SI_CSTATUS_NEGOTIATE
SI_CSTATUS_AUTHORIZE
SI_CSTATUS_CONFIGURE
S|_CSTATUS_CONNECTED
S|_CSTATUS_DISCONNECT
S|_CSTATUS_DISCONNECT_LCP
SI_CSTATUS_DISCONNECT_AUTH
S|_CSTATUS_DISCONNECT_[PCP

Create PPP client connection instance

In addition, any of the following flags can also be set:

Use MS extensions as client

Treat the connection as a pure peer to peer (i.e., do not
create a default route using the peer as a gateway)

Allow peer to negotiate PFC/ACFP

» Username - This is a pointer to a NULL terminated string containing the username to
use in PAP or CHAP authentication. The maximum string length is defined by
PPPNAMELEN.

» Password - This is a pointer to a NULL terminated string containing the password to
use in PAP or CHAP authentication. The maximum string length is defined by
PPPNAMELEN.

When successful, this function returns a handle to a new PPPoE instance The current
status of the PPPOE connection can be queried at any time by calling pppoeGetStatus().

Destroy a PPPoE Client Session

void pppoeFree(HANDLE hPPPOE);

Handle to PPPoE Client Session

None.

This function is called to close and destroy a PPPOE client session that was created with
pppoeNew(). This function is always called once for every PPPOE instance handle. If the
connection is no longer active, it frees the instance memory. If the connection is still
active, it first disconnects the call.

Get the Status of a PPPoE Client Session

uint pppoeGetStatus(HANDLE hPPPOE);

Handle to PPPoE Client Session

This function returns a uint that will be set to one of the following values:

Connection is idle (PPPOE session opening)
Connection in LCP negotiation stage
Connection in authorization stage
Connection in IP configuration stage
Connection is fully connected and operational
Connection dropped

Connection dropped in LCP stage
Connection dropped in authorization stage
Connection dropped in IP configuration stage

SPRU524H—-May 2001 -Revised February 2012

Point-to-Point Protocol 205

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

pppoesNew — Create a PPPOE Server Session

13 TEXAS
INSTRUMENTS

www.ti.com

Description

pppoesNew

Parameters

hEther
pppFlags
SessionMax
IPServer
IPMask
IPClientBase
ServerName
ServiceName

Return Value

Description

PPPFLG_SERVER

PPPFLG_OPT_AUTH_PAP
PPPFLG_OPT_AUTH_CHAP
PPPFLG_OPT_USE_MSE
PPPFLG_OPT_LOCALDNS

This function is called to get the connection status of a PPPoE client session using the
PPPOE instance handle returned from pppoeNew(). This function can be called anytime
after the handle is created with pppoeNew(), and before it is destroyed with pppoeFree().

Create a PPPOE Server Session

HANDLE pppoesNew(HANDLE hEther, uint pppFlags, uint SessionMax, IPN IPServer,
IPN IPMask, IPN IPClientBase, INT8 *ServerName, INT8 *ServiceName);

Handle to Ether device on which to invoke the PPPoE server
Connection option flags

Maximum number of client connections allowed

IP address of server in network format

IP subnet mask in network format of the client address pool
IP base address in network format of the client address pool
Server name reported via PPPoE protocol

Service name reported via PPPoOE protocol

If it succeeds, the function returns a handle to a PPPoE server instance. Otherwise, it
returns NULL.

This function is called to create a new PPPoE server instance on the Ether type interface
specified by the handle hEther.

» SessionMax - This value is the maximum number of simultaneous peer connections
to be allowed at any given time. Thus, it is also the minimum size of the client IP
address pool.

* pppFlags - The flags determine what type of connection instance to create, and what
type of options to support in the connection instance. In the pppFlags parameter, the
following flag must be set:

Create PPP server connection instance

In addition, any of the following flags can also be set:

Require PAP authentication

Require CHAP authentication
Use MS extensions as server
Claim Local IP as DNS server

PPPFLG_CH1 Allow server channel/group 1 account users
PPPFLG_CH2 Allow server channel/group 2 account users
PPPFLG_CH3 Allow server channel/group 3 account users
PPPFLG_CH4 Allow server channel/group 4 account users

PPPFLG_OPT_ALLOW_IP
PPPFLG_OPT_ALLOW_HC

Allow client to declare its own IP address
Allow peer to negotiate PFC/ACFP

» IPServer - This is the IP address in network format of the NDK reported to the peer.
e IPMask - This is the IP subnet mask of the peer's IP network reported to the peer.

» |IPClientBase - This is the IP base address in network format of the IP address pool
to be assigned to and reported to peer connections. The size of the address pool is
determined by the value of SessionMax.

» ServerName - This is a required pointer to a NULL terminated string containing the

Point-to-Point Protocol

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com pppoesFree — Destroy a PPPOE Server Session

server name that is reported to PPPOE clients. The maximum length of this name
including the NULL terminator is defined by PPPOE_NAMESIZE. If a longer name is
supplied, this function will fail.

» ServiceName - This is a required pointer to a NULL terminated string containing the
service name that is reported to PPPoE clients. The maximum length of this name,
including the NULL terminator, is defined by PPPOE_NAMESIZE. If a longer name is
supplied, this function will fail.

The name of the PPP server defaults to DSPIP in CHAP authentication. This is
independent of the PPPoE server name. However, the name can be changed by
using the CFGITEM_SYSINFO_REALMPPP configuration tag. For example:

/1 Name our authentication group for PPP (Max size = 31)

/1 This is the authentication "realn nane returned by the PPP
/1 server when authentication is required.

/1 (Note the length "16" includes the NULL term nator)

Cf gAddEnt ry(hCfg, CFGTAG SYSINFO, CFG TEM SYSI NFO REALMPPP,
0, 16, (UINT8 *)"PPP_SAMPLE_NAME', 0);

When successful, this function returns a handle to a new PPPOE server instance. The
status of individual connections is not available to the caller, but tracked automatically by
PPPoE. When sessions are added or destroyed, the IP address callback supplied to
NC_NetStart() is called and connections can be tracked by the applications programmer
via this function callback.

pppoesFree Destroy a PPPoE Server Session

Syntax

void pppoesFree(HANDLE hPPPOES);

Parameters

Return

hPPPOES Handle to PPPoE Server Session

Value None.

Description This function is called to close and destroy a PPPOE server session that was created

with pppoesNew(). This function is always called once to shut down the PPPOE server.
Any external client currently connected to the server is disconnected.

C.4 Creating PPP Server User Accounts
To use the PPP or PPPOE protocol in server mode, it advisable to protect access to the system through
the use of a PPP authentication protocol. The PPP supplied in the stack library allows for the use of either
PAP or CHAP in user authentication. The database of authorized users (name and password) is stored in
the configuration system.

C.4.1 Adding and Reviewing User Accounts
The definition of the user account entry in the configuration system is defined in Section G.3.6. Note in
that section that the server channel flags PPPFLG_CH1 through PPPFLG_CH4 are duplicated in both the
server flags and the client account flags. This allows the system programmer to allow different classes of
services for different channels.
The methodology of adding, querying, and removing user accounts is the same for any other tag in the
configuration system. Some simple examples follow. More example code can be found in the sample
console program.

SPRU524H—-May 2001 -Revised February 2012 Point-to-Point Protocol 207

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Creating PPP Server User Accounts www.ti.com

C.4.1.1 Adding a PPP User Account

The following code adds a PPP user account for the user supplied in name with a password supplied in
password. Note that it also uses the AcctFind() function to verify that the account does not already exist.

voi d Acct Add(char *name, char *password)
{

Cl _ACCT CA;

HANDLE hAcct ;

int rc;

/'l Check string lengths for name and password
if(strlen(name) >= CFG_ACCTSTR_MAX ||
strlen(password) >= CFG_ACCTSTR_MAX)
{
printf("Nane or password too |long, % character max\n\n",
CFG_ACCTSTR_MAX- 1) ;
return;

}

/Il See if the account already exists
hAcct = Acct Fi nd(tok2);

i f(hAcct)

{

printf("Account exits - renmove old account first\n\n");

/1 W& nust de-reference the account we found
Cf gEnt r yDeRef (hAcct) ;
return;

}

/1 Fill in the CA record
strcpy(CA. User nane, nane);
strcpy(CA. Password, password);

/1 Gve user access to all channels
CA. Fl ags =
CFG_ACCTFLG_CH1| CFG_ACCTFLG_CH2| CFG_ACCTFLG_CH3| CFG_ACCTFLG_CH4;

/1 Add it to the configuration
rc = CfgAddEntry(0, CFGTAG ACCT, CFG TEM ACCT_PPP,
CFG_ADDMODE_NOCSAVE, si zeof (Cl _ACCT), (U NT8 *)&CA, 0);

if(rc <0)

printf("Error adding account\n");
el se

printf("Account added\n");
return;

C.4.1.2 Searching for a PPP User Account

The following code implements the AcctFind() function called in the previous example. Note that the same
method could be used to print out a list of all accounts.

HANDLE Acct Fi nd(char *nane)
{

HANDLE hAcct ;

Cl _ACCT CA;

int rc;

int size;

/1l Get the first user account
rc = CfgGetEntry(0, CFGTAG _ACCT, CFGA TEM ACCT_PPP, 1, &hAcct);

/1 1f there are no accounts, then we did not find it
if(rc <= 0)

208 Point-to-Paint Protocol SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com Creating PPP Server User Accounts

return(0);

/1 Search until we run out of accounts or have a match
whi | e(1)
{
/]l Get the data for this entry into CA
size = sizeof (CA);
rc = CfgEntryGet Dat a(hAcct, &size, (U NT8 *)&CA);
if(rc <= 0)

/1 This is an unexpected error - deref the handle and abort
Cf gEnt r yDeRef (hAcct) ;
return(0);

}

/!l See if the usernane matches the search nane. |If so, return
/1 the referenced handl e
if(!strcnmp(name, CA. Usernane))

return(hAcct);

/1 Since we did not match, get the next entry. If there is no
/1 next entry, we are done searching.
rc = CfgGet Next Entry(0, hAcct, &hAcct);
if(rc <= 0)
return(0);

}

C.4.1.3 Removing a PPP User Account
Removing a specific user account is done by finding the account and removing the entry handle.

The following uses the AcctFind() function to find the target account.
voi d Acct Del ete(char *nane)

{
HANDLE hAcct ;

/1 Find the account to delete
hAcct = Acct Fi nd(nane) ;

/1 1f we found the account, renove it
i f (hAcct)
{
Cf gRenpveEntry(0, hAcct);
printf("Account renoved\n");

SPRU524H—-May 2001 -Revised February 2012 Point-to-Point Protocol 209

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS

As discussed in the introduction, hardware devices are supported through a Hardware Adaptation Layer.

Appendix D

Hardware Adaptation Layer (HAL)

This section describes the HAL API.

This section is required only for system programming that needs low level access to the hardware for

configuration and monitoring. This APl does not apply to sockets application programming.

Topic

D.1
D.2
D.3
D.4
D.5

Page

L@ Y= Y= PP 211
Low-Level LED Driver (IHHUSErLEed)cuiuiuieieieiiiiiiiiiieieieneeenseesssasaseneneeenenes 211
Low-Level Timer Driver (IITIMEr) ...ttt e e e e e e e e e e eees 213
Low-Level Packet Driver (IIPACKEL) ...ciuiuiiiiiiiiie e e e e 214
Low-Level Serial Port Driver (IISerial)uueiieiiiiiiiii e e e 218

210

Hardware Adaptation Layer (HAL)

Copyright © 2001-2012, Texas Instruments Incorporated

SPRU524H—May 2001 —-Revised February 2012

SPRU524H—-May 2001-Revised February 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

TEXAS
INSTRUMENTS

www.ti.com Overview

D.1

Overview

The function of the HAL is to provide resources to the stack library functions and allow them to operate
independently of the current run-time environment. The HAL contains the functionality required by the
stack that depends directly on the hardware in a particular environment.

D.1.1 HAL Function Types

The HAL is interspersed with two different types of functions; those that are called at kernel level (inside
an lIEnter()/llIExit() pairing), and those that are not. (For more information on the lIEnter() and IIExit()
functions, see Section A.1.)

To distinguish kernel level functions from application support functions, both have been given a different
naming conventions. Kernel level functions are named with an Il prefix, without a leading underscore, for
example: | IPacketSend(), while application functions have an underscore, for example: _lIPacketlnit().

D.1.2 External Calls from HAL Functions

D.2

Because HAL functions are called from the stack kernel, they are executing within an lIEnter()/llExit() pair.
These HAL functions can call the stack API directly, but should not call normal application functions.

If a HAL function must call an external application function, or if it is going to call a potentially blocking
function, then it should first call lIExit(). Then, when it has completed, it should call lIEnter() before
returning to the stack. It is important not to block while in an IIEnter() / lIExit() pair.

Low-Level LED Driver (llUserLed)

The User LED driver is not really a driver at all. It is a collection of functions to control (ON|JOFF|TOGGLE)
LED lights on a given hardware platform.

D.2.1 Function Overview

Application Functions:

_llUserLedinit() Initialize the LED displays to their default state
_lluserLedShutdown() Shut down the LED environment
LED_ON() Turn on a LED
LED_OFF() Turn off a LED
LED_TOGGLE() Toggle the state of a LED
SPRU524H—-May 2001 -Revised February 2012 Hardware Adaptation Layer (HAL) 211

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

_llUserLedInit — Initialize the LED Displays to their Default State

13 TEXAS
INSTRUMENTS

www.ti.com

D.2.2 Low-Level LED API Functions

The following functions are required.

_llUserLedInit

Syntax
Return Value

Description

Initialize the LED Displays to their Default State

void _ llUserLedInit();
None.

This function initializes anything necessary to get the LED displays to their default state.

_llUserLedShutdown Shutdown the LED Environment

Syntax
Return Value

Description

LED_ON

Syntax

Description

LED_OFF

Syntax

Description

LED_TOGGLE

Syntax

Description

void _llUserLedShutdown();
None.

This function is called when shutting down the system to shut down and clean up the
LED environment. Typically, this is an empty function.

Turn On an LED

void LED_ON(UINT32 ledld);

This function turns on the specified LED in the calling argument.
Turn Off an LED

void LED_OFF(UINT32 ledld);

This function turns off the LED specified in the calling argument.

Toggle the State of an LED

void LED_TOGGLE(UINT32 ledld);

This function toggles the on/off state of an LED specified in the calling argument.

212 Hardware Adaptation Layer (HAL)

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

Low-Level Timer Driver (IITimer)

D.3 Low-Level Timer Driver (lITimer)

The stack code requires a very basic simple time function. It consists of two parts: a function API, which
can be called from the stack to get the current time, and a scheduler that sends timer event notifications
every 100ms using the STKEVENT event object.

D.3.1 Function Overview

Application Functions:

_lITimerlnit() Initialize Timer Environment

_lITimerShutdown() Shutdown Timer Environment
Kernel Layer Functions:

[ITimerGetTime() Get the Current Time

lITimerGetStartTime() Get the Initial Startup Time

D.3.2 Low-Level Timer API Functions

The following functions are required.

_lITimerlnit

Syntax
Return Value

Description

_lITimerShutdown

Syntax

Return Value

Initialize Timer Environment

void _lITimerInit(STKEVENT_Handle hEvent, UINT32 ctime);
None.

This function is called to initialize the timer environment, and to set the initial time. The
value of ctime is the number of seconds elapsed from a known reference. An initial value
of zero is also acceptable. The stack software is only tracks relative time. Take care
when setting this value because the stack does not manage the timer value wrapping.
This occurs every 136 years, or in 2116 if time is based off of Jan 1, 1980.

Every 100mS, the timer driver will indicate a timer event to the event object specified by
hEvent. This STKEVENT object is discussed in Section A.4.

Shutdown Timer Environment

void _lITimerShutdown();

None.

Description This function is called when shutting down the system, to shut down and clean up the
timer environment.
SPRU524H—-May 2001 -Revised February 2012 Hardware Adaptation Layer (HAL) 213

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
IITimerGetTime — Get Current Time in Seconds and Milliseconds www.ti.com
[ITimerGetTime Get Current Time in Seconds and Milliseconds
Syntax UINT32 lITimerGetTime(UINT32 *pMSFrac);
Description Returns the number of seconds that have elapsed since the timer driver was started. If

the pointer pMSFrac is non-zero, the function writes the fractional seconds (in
milliseconds) to this location (0 to 999).

NOTE: Although the stack does not require real time, do not simply use a
millisecond timer and divide by 1000, as the value will wrap every 50
days. Device drivers should attempt to provide a time value accurate
down to millisecond granularity.

[ITimerGetStartTime Get the Initial Startup Time

Syntax UINT32 lITimerGetStartTime();
Return Value Initial start time in seconds.
Description Returns the initial start time that was passed to _lITimerOpen().

D.4 Low-Level Packet Driver (IIPacket)

The stack code requires a very basic packet function library. Note that although the high level packet API
is documented here, the HAL contains a generic packet driver that implements this API. It is more efficient
to use the standard lIPacket driver and provide a hardware specific mini-driver than to implement the
lIPacket API from scratch. The lIPacket mini-driver is described in the support package documentation for
your hardware platform (TMS320C6000 Network Developer's Kit (NDK) Support Package for DSK6455
User's Guide (SPRUES4) or TMS320C6000 Network Developer's Kit (NDK) Support Package for
EVMDM®642 User's Guide (SPRUESS)).

D.4.1 Function Overview

Application Functions:
_lIPacketlnit() Initialize Driver Environment and Enumerate Devices
_lIPacketShutdown () Shutdown Driver Environment
_lIPacketServiceCheck() =~ Check for Packet Activity

Kernel Layer Functions:

lIPacketOpen() Open Driver and Bind Logical Ether Object to Device Id
lIPacketClose() Close Driver and Unbind Logical Ether Object from Device Id
lIPacketSetRxFilter() Set Packet Receive Filter
lIPacketGetMacAddr() Get MAC address
lIPacketGetMCastMax() Get the Maximum Number of Multicast Addresses
lIPacketGetMCast() Get Multicast Address List
lIPacketSetMCast() Set Multicast Address List
lIPacketService() Service a Queued Packet
lIPacketSend() Send a Packet
lIPacketloctl() Execute Driver Specific IOCTL command.
214 Hardware Adaptation Layer (HAL) SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRUES4
http://www.ti.com/lit/pdf/SPRUES5
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com _lIPacketInit — Initialize Driver Environment and Enumerate Devices

D.4.2 Low-Level Packet API Functions

The low-level support layer must provide the following functions:

_lIPacketInit Initialize Driver Environment and Enumerate Devices

Syntax uint _lIPacketIinit(STKEVENT_Handle hEvent);

Return Value Returns the number of physical packet devices.

Description This function is called by NETCTRL to initialize the packet driver environment. This

function also enumerates all the physical packet devices in the system, and returns a
device count. The stack will then call the lIPacketOpen() function once for each physical
device indicated.

The hEvent calling parameter is a handle to a STKEVENT object that must be signaled
whenever a packet is received. This STKEVENT object is discussed in Section A.4.

_lIPacketShutdown Shutdown Driver Environment

Syntax void _lIPacketShutdown();
Return Value None.
Description This function is called by NETCTRL to indicate a final shutdown of the packet driver

environment. When called, there should be no currently open packet drivers, and
_lIPacketlnit() will be called again before any call to lIPacketOpen().

_lIPacketServiceCheck Check for Ethernet Packet Activity

Syntax void _lIPacketServiceCheck(uint fTimerTick);
Return Value None.
Description This function is called by NETCTRL to check if packets are available from the Ethernet

device. In a polling system, this function is called continuously. In an interrupt driven
semaphore system, it is called when packet activity is indicated via the STKEVENT
object, and also by the scheduler at 100ms timer intervals for dead man polling checks.

In both polling and interrupt environments, the fTimerTick flag will be set whenever a
100ms timer tick has occurred.

If any new packets are detected from within this function, the packet driver should signal
the STKEVENT object in the passive mode (do not set the fHwAsynch flag in the
STKEVENT_signal() function). This only applies to new packet events detected from
within this function. The STKEVENT object is discussed in Section A.4.

[IPacketOpen Open Driver and Bind Logical Ether Object to Device ID

Syntax uint lIPacketOpen(uint dev, HANDLE hEther);

Return Value This function should return 1 on success, and 0 on failure.

Description Opens the low level packet driver specified by the one's based index dev. The maximum

value of dev is the number of devices returned from the _lIPacketlnit() function. When
opening the device, the packet driver should bind the physical index with the logical
Ether object handle specified in hEther. This handle is used in receive indications to the
stack.

SPRU524H—-May 2001 -Revised February 2012 Hardware Adaptation Layer (HAL) 215

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
lIPacketClose — Close Driver and Unbind Logical Ether Object from Device ID www.ti.com
[IPacketClose Close Driver and Unbind Logical Ether Object from Device ID
Syntax void lIPacketClose(uint dev);

Return Value None.
Description Closes the low level packet driver specified by the one's based index dev. The maximum

value of dev is the number of devices returned from the _lIPacketlnit() function. After this
call, the packet driver should no longer attempt to indicate received packets to the stack.

[IPacketSetRxFilter Set Packet Receive Filter

Syntax void lIPacketSetRxFilter(uint dev, uint filter);
Return Value None.
Description Called to set the types of packets that should be received via the receive indication

function. Each level of filter is inclusive of the previous level. They are:

ETH_PKTFLT_NOTHING No Packets

ETH_PKTFLT_DIRECT Only directed Ethernet

ETH_PKTFLT_BROADCAST Directed plus Ethernet Broadcast
ETH_PKTFLT_MULTICAST Directed, Broadcast, and selected Ethernet Multicast
ETH_PKTFLT_ALLMULTICAST Directed, Broadcast, and all Multicast
ETH_PKTFLT_ALL All packets

[IPacketGetMacAddr Get MAC Address

Syntax void lIPacketGetMacAddr(uint dev, UINT8 *pbData);

Return Value None.

Description Copies the 6 byte MAC address of the physical device index dev into the supplied data
buffer.

[IPacketGetMCastMax Get the Maximum Number of Multicast Addresses

Syntax uint lIPacketGetMCastMax(uint dev);

Return Value The maximum number of 6 byte MAC addresses that can be supplied for
[IPacketSetMCast().

Description Called to get the maximum number of multicast addresses that can be supported on the

physical packet device.

[IPacketGetMCast Get Multicast Address List

Syntax uint lIPacketGetMCast(uint dev, uint maxaddr, UINT8 *pbAddr);
Return Value The number of 6 byte MAC addresses written to pbAddr.
Description Called to get the current list of multicast addresses installed on the physical device. The

maximum size of the list (supplied as an address count) is in maxaddr. The list is a
contiguous stream of 6 byte addresses pointed to by pbAddr. The function returns the
number of addresses in the list supplied.

216 Hardware Adaptation Layer (HAL) SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com [IPacketSetMCast — Set Multicast Address List

[IPacketSetMCast Set Multicast Address List

Syntax void lIPacketSetMCast(uint dev, uint addrcnt, UINT8 *pbAddr);
Return Value None.
Description Called to install a list of multicast addresses on the physical device. The size of the list

(supplied as an address count) is in addrcnt. The list is a contiguous stream of 6 byte
addresses pointed to by pbAddr. The new list preempts any previously installed list, and
thus an address count of ZERO removes all multicast addresses.

[IPacketService Service a Queued Packet
Syntax void lIPacketService();
Description This function is called to inform the driver that it may now indicate any queued packet

buffers to the Ether object corresponding to the physical ingress device. Packet drivers
must internally queue their own packets. Queued packets cause events to be sent to the
scheduler that will in turn call this function.

Packets are passed to the Ether object via EtherRxPacket().

[IPacketSend Send a Packet
Syntax void lIPacketSend(uint dev, PBM_Handle hPkt);
Description Called to send a packet out the physical packet device indicated by dev. The information

about the packet (size and location) is contained in the PBM packet buffer specified by
the handle hPkt. Once the packet has been sent, the packet buffer must be freed by
calling PBM_free().

The PBM packet buffer object is described in detail in Section A.3.

[IPacketloctl Execute Driver Specific IOCTL Command
Syntax uint lIPacketloctl(uint dev, uint cmd, void *arg);
Return Value This function returns 1 for success.
Description Called to execute the driver specific IOCTL command. For detailed information about the

set of commands specific to your device, check the NDK Support Package document of
your hardware platform.

SPRU524H—-May 2001 -Revised February 2012 Hardware Adaptation Layer (HAL) 217

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Low-Level Serial Port Driver (lISerial) www.ti.com

D.5 Low-Level Serial Port Driver (lISerial)

In the current directory structure, the serial port driver (lISerial) may or may not be part of the HAL
directory (as it is an optional component). However, it is part of the HAL architecture, and should be
programmed using the same guidelines used for the lITimer and lIPacket drivers..

D.5.1 Function Overview

Application Functions:

_lISeriallnit() Initialize Driver Environment and Enumerate Devices
_lISerialShutdown() Shutdown Driver Environment
_lISerialServiceCheck() Check for packet activity
_lISerialSend() Send Raw Data to the Serial Port
Kernel Layer Functions:
lISerialOpen() Open Driver in Character Mode
lISerialClose() Close Driver Character mode
lISerialOpenHDLC() Open Driver HDLC Session
lISerialCloseHDLC() Close Driver HDLC Session
lISerialConfig() Set Serial Port Configuration
lISerialHDLCPeerMap() Update the HDLC encoding peer CMAP
lISerialService() Service HDLC Packets
lISerialSendPkt() Send a Serial Data Packet

D.5.2 Low-Level Serial APl Functions

The low level support layer must provide the following functions:

_lISeriallnit Initialize Driver Environment and Enumerate Devices

Syntax uint _lISeriallnit(STKEVENT _Handle hEvent);

Return Value Returns the number of physical serial devices.

Description This function is called by NETCTRL to initialize the system to use the serial port. It also

enumerates all the physical devices in the system, and returns a device count. The stack
will then call the lISerialOpen() function and/or the lISerialOpenHDLC() function for each
physical device it requires.

The hEvent calling parameter is a handle to a STKEVENT object that must be signaled
whenever a serial packet (or raw data) is received. This STKEVENT object is discussed
in Section A.4.

_lISerialShutdown Shutdown Driver Environment

Syntax void _lISerialShutdown();
Return Value None.
Description This function is called by NETCTRL to indicate a final shutdown of the serial driver

environment. When called, there should be no currently open serial drivers, and
_liSeriallnit() will be called again before any call to lISerialOpen() or lISerialOpenHDLC().

218 Hardware Adaptation Layer (HAL) SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com _lISerialServiceCheck — Check for Serial Port Activity

_lISerialServiceCheck Check for Serial Port Activity

Syntax uint _lISerialServiceCheck(uint fTimerTick);
Return Value None.
Description This function is called by NETCTRL to check if serial packets (or data) are available from

the serial device. In a polling system, this function is called continuously. In an interrupt
driven semaphore system, it is called when packet activity is indicated via the
STKEVENT object, and also by the scheduler at 100mS timer intervals for dead man
polling checks.

In both polling and interrupt environments, the fTimerTick flag will be set whenever a
100mS timer tick has occurred.

If any new serial packets are detected from within this function, the packet driver should
signal the STKEVENT object in the passive mode (do not set the fHwAsynch flag in the
STKEVENT _signal() function). This only applies to new packet events detected from
within this function. The STKEVENT object is discussed in Section A.4.

Finally, if the driver is only open in character mode (not HDLC), and there are characters
for the character mode device waiting, they are passed into the user application from this
function by calling character mode input callback function passed to lISerialOpen().

_lISerialSend Send Raw Data to the Serial Port

Syntax uint _lISerialSend(uint dev, UINT8 *pBuf, uint len);

Return Value The number of bytes sent to the serial port.

Description This function is called by the application to send raw unpacketized serial data to the

serial port. This function may only be called when the serial driver is not open for HDLC
mode. The function returns the number of bytes sent, which will always be either the
number of bytes it was told to send specified by the len parameter, or NULL on an error.

Note that this function is provided mainly for convenience to the application programmer.
The implementation of this function is to packetize the data specified in the pBuf and len
parameters into a PBM buffer, and then call SerialSendPkt().

[ISerialOpen Open Driver in Character Mode

Syntax uint lISerialOpenCharmode(uint dev, void (*pCharmodeRxCb)(char c));

Return Value This function should return 1 on success, and 0 on failure.

Description Opens the low level serial driver specified by the one's based index dev in character

mode. The maximum value of dev is the number of devices returned from the
_lISeriallnit() function.

Character mode input simply passes all characters received at the port to the character
mode receiver.

When opening the device, the driver should save the callback function pointer
pCharmodeRxCDb. This function is called for each character received while in character
mode when the _lISerialServiceCheck() function is called. Serial drivers queue up serial
data, signaling an event to the STKEVENT object passed to _lISeriallnit(), and then pass
the serial data to the application callback function from within the _lISerialServiceCheck()
function.

When the driver is opened in HDLC mode, no character mode input is received. When
the HDLC mode is closed, the character mode becomes active again.

SPRU524H—-May 2001 -Revised February 2012 Hardware Adaptation Layer (HAL) 219

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
lISerialClose — Close Driver Character Mode www.ti.com
[ISerialClose Close Driver Character Mode
Syntax void lISerialClose(uint dev);

Return Value None.
Description Closes the character mode of the low level serial driver specified by the one's based

index dev. Once called, the serial driver should not attempt to call any character mode
callback function.

[ISerialOpenHDLC Open Driver HDLC Session

Syntax uint lISerialOpenHDLC(uint dev, HANDLE hHDLC, void (*cbTimer)(HANDLE h), void
(*cbHDLCInput)(PBM_Handle hPkt));

Return Value This function should return 1 on success, and 0 on failure.

Description Opens the low level serial driver specified by the one's based index dev in HDLC mode.
The maximum value of dev is the number of devices returned from the _lISeriallnit()
function.

The hHDLC parameter is a handle to the HDLC device. Any HDLC packet received has
its Rx interface in the PBM packet buffer set to this device handle.

The callback function cbTimer is called by the driver every second to drive any timeouts
required by the caller. Note the serial driver calls cbTimer from kernel mode.

Serial drivers queue up HDLC packets. When a complete HDLC packet is ready, the
driver signals an event to the STKEVENT object passed to _lISeriallnit(), and then
passes the HDLC packet (as a PBM packet buffer) to the application callback function
cbHDLClInput from within the lISerialService() function.

This is similar to character mode operation, but different because the entire packet is
passed over at one time, and it is done from the lISerialService() function, not from
_lISerialServiceCheck() as with character mode data. The cbHDLClInput function is
called from kernel mode while the character mode application callback is not.

When the driver is in HDLC mode, the driver receives serial data as HDLC packets, and
creates a PBM packet buffer object to hold each HDLC frame. Note that the HDLC flag

character (0x7E) is always removed from the HDLC packets. The HDLC packet passed
to the cbHDLClInput function is formatted as follows:

\ Addr (FF) | Control (03) \ Protocol \ Payload | CRC \
1 1 2 1500 2

The serial driver processes the HDLC packet data as it arrives to remove any escaped
characters and to verify the CRC. When a HDLC packet is ready, the driver signals an
event to the STKEVENT object.

lISerialCloseHDLC Close Driver HDLC Session

Syntax void lISerialCloseHDLC(uint dev);
Return Value None.
Description Closes the HDLC mode of the low level serial driver specified by the one's based index

dev. Once called, the serial driver should not attempt to indicate HDLC frame buffers to
the scheduler or stack. Any queued buffers should be flushed.

220 Hardware Adaptation Layer (HAL) SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

lISerialConfig — Configure Serial Port

[ISerialConfig

Syntax
Return Value

Description

Configure Serial Port

void lISerialConfig(uint dev, uint baud, uint mode, uint flowctrl);
None.

This function is called to configure the serial port attributes for the indicated device.

The value of baud is the baud rate, and must be an even denominator of 230400, up to
a maximum baud rate of 230400. For example: 230400, 115200, 57600, 38400, 28800,
and 19200 are all legal values, while 56000 is not.

The value of mode indicates the mode of the device including data bits, parity, and stop
bits. Only the two most commonly used modes are defined:

HAL SERIAL_MODE_8N1 8 Data Bits, No Parity, 1 Stop Bit
HAL_SERIAL_MODE_7E1 7 Data Bits, Even Parity, 1 Stop Bit

The value of flowctrl indicates the desired flow control operation. Legal values for this
parameter are:

HAL_SERIAL_FLOWCTRL_NONE No Flow Control
HAL_SERIAL_FLOWCTRL_HARDWARE Hardware Flow Control

This function can be called before or after the device is opened.

lISerialHDLCPeerMap Update the HDLC Encoding Peer CMAP

Syntax
Return Value

Description

lISerialService

Syntax
Return Value

Description

void lISerialHDLCPeerMap(uint dev, UINT32 peerMap);
None.

When in HDLC mode, the serial driver sends all serial data as HDLC frames. This
requires it to add the frame flag characters, and do any character escaping necessary to
encode the frame for transmission over the serial link. This includes escaping characters
that appear in the peer's character map (CMAP).

By default, the CMAP is set to OXFFFFFFFF. For character codes O to 31, if the bit
(1<<charval) is set in the CMAP, then the serial driver performs an HDLC escape
sequence when sending the character in an HDLC frame.

This function allows the application to update the peer's CMAP as it gets information
from the peer allowing it to do so.

Service HDLC Packets

void lISerialService();
None.

This function is called to inform the driver that it may now indicate any queued HDLC
buffers to the HDLC callback function corresponding to the serial port. Serial drivers
internally queue a PBM packet buffer for each HDLC frame received. When a new
packet is received, the driver signals the STKEVENT object, which will cause this
function to be called by the network scheduler.

SPRU524H—-May 2001 -Revised February 2012 Hardware Adaptation Layer (HAL) 221
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
lISerialSendPkt — Send a Serial Data Packet www.ti.com
[ISerialSendPkt Send a Serial Data Packet
Syntax void lISerialSendPkt(uint dev, PBM_Handle hPkt);

Return Value None.
Description Called to send a serial data packet out the physical serial device indicated by dev. The

information about the packet (size and location) is contained in the PBM packet buffer
specified by the handle hPkt. Once the packet has been sent, the packet buffer must be
freed by calling PBM_free().

The data is treated as raw bytes when the driver is not open in HDLC mode. When in
HDLC mode, the data packet is an HDLC frame with the following format:

‘ Addr (FF) | Control (03) ‘ Protocol ‘ Payload | CRC ‘
1 1 2 1500 2

Note that the CRC on the packet does not need to be valid. The serial port driver will
validate the CRC when the packet is sent. However, the 2 byte space-holder for the
CRC must be present in the packet.

222 Hardware Adaptation Layer (HAL) SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS

Appendix E

SPRU524H—May 2001 —-Revised February 2012

Web Programming with the HTTP Server

The easiest way to get information from an embedded network device is through the web server. The
HTTP server pulls files from the embedded file system (EFS) that is included in the NDK software
package's OS adaptation layer. These files can be compiled into the application, located on a network file
system, a memory-based file system, or on a physical disk interfaced to the DSP. The NDK HTTP server
accesses files through the EFS application interface, which can be ported to any file system desired. The
server currently supports the HTTP/1.0 protocol.

Common Gateway Interface (CGI) programs execute on a web server and process input from a user.
They are useful as interfaces to services running on the device. Writing CGI programs for the NDK is
relatively simple and only requires a few specific functions. A single CGl interface function can be written
to support both HTTP POST requests and GET requests.

The CGI program is built from a single C callable entry-point (or CGlI function). Each CGl function is called
on its own independent task thread. The task threads are created with a priority of OS_TASKPRINORM
and a stack size of OS_TASKSTKHIGH. Note that consecutive calls to the same CGlI function will not be
on the same task thread. Thus, CGlI functions cannot share sockets from one call to the next. In general,
there is no persistent data in a CGl function.

Also, file detection of CGI functions is done purely on the file extension. If the file ends with .cfg (case
insensitive), then a POST or a GET of the file will result in a call to the CGI function mapped to that
filename. A POST call to a non-CGil file is not allowed.

Topic Page

E.1 Adding WED CONTENT ...uiiieieiiiit ettt ettt e e e e et e aea e et e e n e seeanananan 224

E.2 WIItiNG CGl FUNCHIONS tuiuiitiiiiiiitiiiie ettt ettt e e et e e e e et e a e a e e e e anananes 225

E.3 HTTP AUthentiCationcciviiiiiiii et e et e e e e e e e e sar e s e e eeenanannens 229

R @ I U T 0 o Q= 11 0] PP 231

E.5 HTTP Server EXported FUNCLIONSouiuieiiiiiiiieeeiieieie et eeeeeaea e e e e e e eeeeaenennens 233
SPRU524H—-May 2001 -Revised February 2012 Web Programming with the HTTP Server 223

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Adding Web Content www.ti.com

E.1 Adding Web Content

E.1.1 Operation

As previously mentioned, the HTTP server allows access to files using the embedded file system (EFS)
API. The default installation of this APl is a RAM based file system that resides in the OS adaptation layer.
This OS adaptation layer allows the HTTP server to work on any file storage device contained in the
system.

The default RAM based file system is built up mainly from a standard file I/O API, with the addition of
some private functions. These private functions allow files to be created and destroyed by passing in
memory pointers to where they are stored. These functions are fully documented in Section 2.6.

E.1.2 Converting Standard HTML Files

The example code supplied with the NDK adds Web pages by converting them from binary HTML files
into data arrays declared in C. An MS-DOS utility binsrc is supplied to allow conversion of filesto a C
array.

The calling format for binsrc is:

binsrc <input file name> <output file name> <identifier>

Parameters:
input file name File to be converted
output file name Name for file containing C data representation of the input file name
identifier C name for data

For example, to convert an HTML file default.htm for use by EFS, the following command could be
executed from the Windows command window:

bi nsrc default.htmdefault.c DEFAULT

The file default.c would contain the following:

#def i ne DEFAULT_SI ZE 1610
unsi gned char DEFAULT[] = {0x3C, 0x21, 0x64, Ox6F, 0x63, 0x74, 0x79, 0x70, O0x65,
0x20, 0x68, 0x74,

E.1.3 Declaring HTML Files to EFS

Once the HTML file is converted to a memory image, the file is declared to the EFS file system by calling
the function efs_createfile(). All the HTML files are typically created at the same time, during initialization,
and before the HTTP server is actually invoked. In the example code, there are two functions used,
AddWebFiles() and RemoveWebFiles(). These functions include all the code necessary to initialize and
clean up the EFS file environment.

An example implementation of AddWebFiles() is shown below. Note the addition of two file creation calls.
The first call to efs_createfile() creates the file declared in default.c as converted from the file default.htm.
The second call creates a CGl file that is a C function entry-point. When a post is attempted to

sanpl e. cgi , the function cgiSample() is called.

/'l Include our externally converted pages
#pragma DATA_SECTI ON(DEFAULT, "HTMLDATA");
#i ncl ude "default.c"

/1 Declare our CA@ function entry point
static int cgi Sanpl e(SOCKET ht ml Sock, int ContentlLength);

/1 Qur function to initialize EFS with our Wb files
voi d AddWebFi | es(voi d)
{
efs_createfile("index. htm ", DEFAULT_SIZE, DEFAULT);
efs_createfile("sanple.cgi", 0, (U NT8 *)cgi Sanpl e);
}

224

Web Programming with the HTTP Server SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com Writing CGI Functions

Once the above code is run, the EFS system is ready for the HTTP server to serve up the content. Note
the inclusion of the #pragma to place the converted Web page into a memory section named HTMLDATA.
This allows the page to be placed out of the way by specifying the section's location in the linker
command file.

E.1.4 Cleaning up HTML Files

Because the EFS system uses memory records to simulate file content from static data, the system
should be flushed or cleaned when shutting down or rebooting. In the example code, the function
RemoveWebFiles() is called when the EFS files are no longer required.

An implementation of RemoveWebFiles() that corresponds to the AddWebFiles() function shown above
would be as follows:

voi d RenobveWebFi |l es(voi d)

{
ef s_destroyfil e("sanple.cgi");
ef s_destroyfile("index.htm");

E.2 Writing CGI Functions

E.2.1 Adding Functions to the EFS

CGI programs must be in the EFS for the HTTP server to see them. An example of this was shown in the
previous section by adding an entry for the file sample.cgi that translated into the C function cgiSample().
Whenever a POST is made to the file sanpl e. cgi , the cgiSample() function is called.

E.2.2 CGI Function Declaration
The standard declaration for a CGlI function in C is:

Function CGI Function Declaration
Syntax static int cgiSample(SOCKET htmlSock, int ContentLength, char *pArgs);
Parameters
htmISock The network socket on which the HTTP POST was issued
ContentLength The size of the POST content waiting on socket htmlSock
pArgs Pointer to NULL terminated arguments from a CGI 'GET'
Return Value All CGl functions return 1 if the input socket is left open, and O if it is closed or

transferred to another thread.

Description This function reads in the HTTP POST content from the socket htmlSock, and writes out
an HTML reply based on the function and the form content read. The size of the form
content is specified by ContentLength.

The CGI function must decide whether or not to close the socket on which the POST
arrived. By default, the socket is normally left open, but in some cases may need to be
closed. It is also possible that the CGI function may wish to take control of the socket
and close it at a later point in time.

SPRU524H—-May 2001 -Revised February 2012 Web Programming with the HTTP Server 225

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

cgiParseVars — Parse CGI Form POST Input www.ti.com

The function must return either 0 or 1 to indicate the status of the socket htmlSock. If the
socket is closed or passed on to another task, the function returns 0. If the socket is still
active, the function returns 1.

When there is any doubt whether or not to close the socket, the socket is typically left
open for the HTTP server to close when appropriate.

The ContentLength argument is the size of the CGI argument still to be read from the
socket. On a CGI GET operation, the arguments have already been read from the
socket and are passed as a NULL terminated string in the pArgs parameter. Note that in
any given CGl call, either one or both of these parameters can be NULL. It is also
possible for pArgs to point to a zero length string.

E.2.3 Parsing CGI Form Data

The first task a CGI function will most likely perform is to read the POST form data from the socket. This
can be done easily because two of the calling arguments to the function are the socket to read and the
size of the data. To remain reentrant, the CGI function should allocate its memory buffer to hold the form
data.

After reading in the data from the socket, each form entry can be parsed from the from by using the
supplied example function: cgiParseVars().This function can be used to parse the NULL terminated option
string that may also be passed to the CGI function. The formal definition of the function is shown below.

Note that this function replaces parsePostVars(),a similar function that was included in earlier versions of
the NDK. The parsePostVars() function was not reentrant, and has been purged from the NDK release.
The source code to cgiParseVars() is included in the example application code shipped with the stack.

cgiParseVars Parse CGI Form POST Input
Syntax char *cgiParseVars(char Postinput[], int *pParselndex);
Parameters
Postinput(] Pointer to the form data read in from the HTTP request socket
pParselndex Pointer to an int holding the current parse position (initially zero)
Return Value A pointer to a NULL terminated string within Postinput[], signifying the name or value of
a form entry. Also updates the value pointed to by pParselndex.
Description Reads input from a CGI POST operation pointed to by Postinput[] at an offset pointed to

by pParselndex and returns in sequence a pointer to the name and then the value of
each post entry. This function modifies the data in Postinput[]. It also updates the current
parsing position in the variable pParselndex. The parse index must be set to 0 on initial
call.

On the initial call to this function, the integer value pointed to by pParselndex should
contain zero.

On reaching the end of the input, the function sets pParselndex to -1. If called again, the
function will return a NULL pointer and leave the value of pParselndex unchanged.

E.2.4 Parsing CGI Multi-Part Form Data

In some cases, it is preferable to use a multi-part form when posting CGI data. The multi-part form is
specified in the HTML code by adding the tag ENCTYPE="multipart/form-data" to the form type. When
this form type is used, form entries are sent in a slightly different format than with the standard form, thus
an alternate CGlI parsing function is required.

After reading in the data from the socket, each form entry can be parsed from the multi-part form by using
the supplied example function: cgiParseMultiVars().This function parses the post data into individual
records. The formal definition of the function is shown below.

226

Web Programming with the HTTP Server SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com cgiParseMultiVars — Parse CGI Form Multi-Part POST Input

cgiParseMultiVars Parse CGI Form Multi-Part POST Input

Syntax int cgiParseMultiVars(char *buffer, int buflen, CGIPARSEREC *recs, int maxrecs);
Parameters
buffer Buffer holding the entire post content
buflen Length of the post content
recs Pointer to an array of records of type CGIPARSEREC
maxrecs The maximum number of records that can be written to recs
Return Value The number of valid records parsed, or -1 on a parsing error.
Description Reads input from a CGI POST operation pointed to by buffer, with length buflen, and

returns a collection of CGIPARSEREC records to recs. The caller must provide buffer
space to hold recs, and indicate the maximum number of records that can be written to
the buffer in maxrecs.

The CGIPARSEREC record is defined as follows:

typedef struct {

char *Nane; /1 NULL term nated entry "nane"

char *Filename; // NULL termnated "filename" or NULL if not a file
char *Type; /1 NULL term nated "Content-Type" or NULL if no type
char *Dat a; /1l Pointer to file or entry data (NULL termfor string)
int Dat aSi ze; /1 Length of data (valid on strings and file data)

} CA PARSEREC;

This function modifies the data in buffer to add string delimiters. This function should
only be called once to parse all entries from the form data.

E.2.5 Sending HTTP/HTML Replies

After parsing the CGI POST form data, the CGI function should send some sort of reply to the requesting
client. The reply takes the form of an HTTP message signifying success or error, potentially followed by
HTML data.

The HTTP server supplies several functions to aid in building and sending HTTP data over the socket. In
addition, the example applications contain various MACROS than can also help in initially developing a
CGil function. The HTTP functions are fully described at the end of this section, but the main reply
functions are usually one of the following:

httpSendFullResponse() Send full HTTP response, including a status code and an HTML file
httpSendErrorResponse() Send full HTTP error response, including an HTML message

or
httpSendStatusLine() Send HTTP status response, including a status code and content
type
httpSendEntityLength() Send HTTP content length and terminate HTTP header (optional)
httpSendClientStr() Used after httpSendStatusLine() to send content data
SPRU524H—-May 2001 -Revised February 2012 Web Programming with the HTTP Server 227

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

cgiParseMultiVars — Parse CGl Form Multi-Part POST Input www.ti.com

As an example of using these functions, consider the two response MACROS included in
inc\nettools\httpif.h.

/11

/1 Cormmon error responses

/1

#define http404(Sock) httpSendError Response(Sock, HTTP_NOT_FOUND)

#define http501(Sock) httpSendError Response(Sock, HTTP_NOT_| MPLEMENTED)

These MACROS use the error response function to send a full error message to the client. Alternately, the
httpSendStatusLine() function can be used to start a message that is completed by the application. Under
normal circumstances, a CGI function will use the httpSendStatusLine() function to send an OK message
to the client, followed by the httpSendClientStr() function to send client data in the form of a NULL
terminated string. Note that an additional carriage return and line feed are required to separate the header
from the HTML data.

For example, the following code sends a quick Success message.

/1 Send response status
htt pSendSt at usLi ne(Sock, HTTP_OK, CONTENT_TYPE HTM.);

/1 Termi nate the response header
htt pSendd i ent Str(Sock, CRLF);

/1 Send the Success Message
htt pSendd i ent Str(Sock, "<htm ><hl1>Success! </hl>
</htm >");

Note that the httpSendClientStr() function replaces the httpSendClientData()function from earlier releases
of the NDK. For data sizes that can be represented by an integer, client data can also be sent simply by
calling the sockets send() function.

E.2.6 HTML Error Response

The HTTP server generates a generic error response message for several possible HTTP errors. The
function httpSendErrorResponse() is part of this function. The error response consists of two parts, the
HTTP header and the HTML response message. It is the HTML message that is displayed to the web
browser when an error occurs.

The default HTML message used by the HTTP server is quite plain. For example, on the error 404, it
generates:

<html><body><h1>HTTP/1.0 404 - File Not Found</h1></body></html>

Some application developers may wish to enhance the HTML generation of errors. This is done by
hooking a callback function into the HTTP server error processing. The callback hook is defined as:

_extern int (*httpErrorResponseHook)(SOCKET Sock, int StatusCode);

Any function using the callback must generate the content length tag, and then the entire HTML response
page. (The content length is the length of the HTML response.) It can be written using the
httpSendEntityLength() function.

If the application does not wish to handle the error, it can return NULL indicating that it did not handle the
error. In this case, the HTTP server will use the default HTML. If the application returns 1, this tells the
HTTP server that the HTTP response was completed by the callback function.

The httpErrorResponseHook function pointer is NULL by default. If an application needs to install a
callback to this pointer, the value should be set before the HTTP server is initialized.

As an example of how the callback function may look, here is the default error response function. Any
substitute function provided by the application would be quite similar:

typedef struct _codestr {

int code;
char *string;
} CODESTR;
/1 Note MAX string length is 30 (since Data[] is 80 bytes)
CODESTR codestr[] = {
228 Web Programming with the HTTP Server SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

TEXAS
INSTRUMENTS

www.ti.com HTTP Authentication

E.3

{ HTTP_.OX, " X' },

{ HTTP_NO_CONTENT, " No Content" },

{ HTTP_AUTH REQUI RED, " Authori zation Required" },
{ HTTP_NOT_FOUND, " File Not Found" },

{ HTTP_NOT_| MPLEMENTED, " Not | npl emrented" },

{ HTTP_NOT_ALLOWED, " Not Allowed" },

{ 0, " Unknown" }

int httpSendError HTML(SOCKET Sock, int StatusCode)

char Data[80];
int I;

/1 Build the HTML response into Data[]

sprintf(Data, "<htm ><body><h1>HTTP/1.0 9%3d -", StatusCode);
for(i=0;codestr[i].code && codestr[i].code!=StatusCode;i ++);
strcat (Data, codestr[i].string);

strcat (Data, "</ hl></body></htm >");

/1 Send the length of the HTM. response
/1 (this also term nates the HTTP header)
htt pSendEntitylLengt h(Sock, strlen(Data));

/1 Send the respone data
htt pSendd i ent Str(Sock, Data);
return(l);

HTTP Authentication

The HTTP server included in the NDK supports the Basic method of HTTP authentication, which is MIME
encoding of the username and password.

As with other HTTP functionality, the HTTP server calls an EFS function to perform file access
authentication. The EFS function used is efs_filecheck(). The function is passed the filename of the file to
be authenticated, and the username and password of the user attempting to access the file.

The exact method used to designate a file as protected and to authorize individual access, is determined
by the implementation of the efs_filecheck() function. This section describes the operation of the example
implementation of efs_filecheck() provided in the NDK.

E.3.1 Authorization Realms

Regardless of implementation of the authentication scheme at the EFS layer, the HTTP server
understands the authority system to be based on four authorization realms. The realms are enumerated 1
to 4, and the authorization realm index (when required) is returned to the HTTP server by the
efs_filecheck() function.

When the HTTP server indicates to the client that authorization is required, it supplies the name of the
authorization realm to the client. The application programmer can specify the name of each authorization
realm by using the configuration system. The configuration tag CFGTAG_SYSI NFOis used for storing
authorization realm names. The item numbers used for the four realms are CFGA TEM _SYSI NFO_REALML
through CFG TEM SYSI NFO_REALM4.

For example, to set the name of authorization realm 1, while building the configuration, the programmer
could write:

/1 Name our authentication group for HITP (Max size = 31)
/1 This is the authorization "realn nane returned by the HTTP
/] server when authentication is required on group 1.
Cf gAddEntry(hCfg, CFGTAG SYSI NFO, CFGA TEM SYSI NFO_REALML,
0, 30, (UINT8 *)"DSP_CLI ENT_DEMO AUTHENTI CATE1", 0);

If no realm name is supplied in the configuration, then a default realm name is used by the HTTP server.

SPRU524H—-May 2001 -Revised February 2012 Web Programming with the HTTP Server 229
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

HTTP Authentication www.ti.com

E.3.2 User Accounts

How and whether user accounts are stored in the system is entirely up to the system programmer. The
user account is only accessed directly in the efs_filecheck() function.

However, the default implementation of efs_filecheck() uses the configuration system to access
usernames and passwords. These user accounts can be added to the configuration system at any time.
As an example, the following code adds a sample account to access authorization realm 1. The username
and password are simply username and password respectively:

O _ACCT CA;

/Il Create a sanple user account who is a menber of realm 1.
strcpy(CA. Usernane, "usernane");

strcpy(CA. Password, "password");

CA. Fl ags = CFG_ACCTFLG CH1; // WMake a nenber of realm1l

rc = CfgAddEntry(hCfg, CFGTAG ACCT, CFG TEM ACCT_REALM
0, sizeof (CI_ACCT), (UINT8 *)&CA 0);

E.3.3 Designating Protected Files

As with the authorization user accounts, the method of how a file is designated as protected depends on
the implementation of the efs_filecheck() function.

In the default implementation, files are grouped for authorization by their first level directory. For example,
the files index.html and banner.gif would both carry the same authorization requirements, while the files
mydir/sample.cgi and mydir/sample.htm would carry a different authorization. The file group is marked for
authorization by placing a special file in the directory, named %R%. This file is exactly 4 bytes long, and
contains an integer value, being the realm index 1 to 4. If there is no %R% file in the directory, then no
authorization is required.

For example, the following code sets up a small web page in an unprotected space (the root directory),
and then sets up sample.cgi and sample.htm in a protected directory, requiring authentication on
authorization realm 1.

/1

/1 The authentication schene works by | ooking for files naned %% in the subdirectory
/1 of any given filename, or in the root directory if no subdirectory exits. The file
/'l contains a single 4 byte int that is the authentication realmindex. If there is
/1 no file, there is no authentication.

/1

/1 Note for this inplementation, only the first subdirectory |level is validated.

/1

/1 The int "QurRealnm will be our "9%R% realmfile, forcing any file

/Il located in the sane directory to be authenticated on realm1. The

/1 system supports realns 1 to 4.

/1

/1 Note that we are only going to protect the "protected/" subdir,

/1 but it is also possible to protect the entire web site by putting

/Il a %% file in the root. Al so, you can have the root protected

/1l on (say) realm1, and a subdir on (say) realm?2, allow ng for

/1 "users" (nenbers of realm1l) and "superusers" (nenbers of both

/'l realm1 and realm 2).

/1

static int QurRealm= 1,

voi d AddWebFi | es(voi d)

{
efs_createfile("index. htm", DEFAULT_SIZE, DEFAULT);
efs_createfile("logobar.gif", LOGOBAR SIZE, LOGOBAR);
efs_createfil e("dspchip.gif", DSPCH P_SIZE, DSPCHI P);
efs_createfile("informecgi", 0, (UNT8 *)cgilnform;
efs_createfile("protected/ %96, 4, (U NT8 *)&QurReal m;
efs_createfil e("protected/ sanple. htn, SAMPLE_SIZE, SAMPLE);
efs_createfile("protected/ sanple.cgi", 0, (U NT8*)cgi Sanple);

}

230 Web Programming with the HTTP Server SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

CGl Function Example

E.4 CGI Function Example

As an example of using all the concepts described so far, consider a simple example. Assume an
applications programmer wishes to create a Web form that inputs and processes user data.

E.4.1 Create the HTML Page

The HTML page can be created with an HTML editor, or by hand. For this example, there is an HTML
page that contains a simple CGI form. The contents of the example page, def aul t . ht mare shown

below.
<htnl >

<head><titl e>Cd Sanple</title></head>

<body>

<h1>C3 Sanpl e Fornx/hl>
<hr W DTH="100% >

Fill inthe formfields and hit 'Submit'.
<f orm name="ny_f orni' met hod="POST" action="sanpl e.cgi ">
Name: <input type="text" name="nane">

I dislike spam <input type="checkbox" name="spani val ue="no!">

Favorite Pizza:
<input type="radi 0" name="pi zza" val ue="pepperoni "> Pepperoni
<i nput type="radi 0" name="pizza" val ue="sausage"> Sausage
<i nput type="radi 0" name="pizza" val ue="cheese" checked> Cheese
<i nput type="radi 0" nane="pi zza" val ue="other"> C her

Favorite Col or: <select nanme="col or">

<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti

on
on
on
on
on
on
on
on

val ue="red"> Red

val ue="green"> G een

val ue="Dbl ue"> Bl ue

val ue="yel | ow'> Yel | ow
val ue="cyan"> Cyan

val ue="nmagent a"> Magent a
val ue="bl ack"> Bl ack

val ue="white"> Wite

</ sel ect>

</ p>

<input type="submit"> <input type="reset">

</form
</ body> </ htm >

The next step performed is to convert this HTML file to C source file, as seen in Section E.1.2. Once the
page is in C source code form, it can be added to the program.

E.4.2 Create the Base WEBPAGE Source File

Once the HTML pages are ready in source form, the main WEBPAGE.C source file is created. This file
will perform all the necessary Web processing in the example. The basic source code declares the HTML
pages as files to the EFS file system. To do this, it exports two functions called from the main network
initialization routine, AddWebFiles() and RemoveWebFiles(). Note that a CGI function is also declared to
handle processing of the CGI form contained on the Web page, called sample.cgi.

SPRU524H—-May 2001 -Revised February 2012 Web Programming with the HTTP Server 231
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

CGI Function Example www.ti.com

The source code as defined so far is shown below.

static int cgi Sanpl e(SOCKET html Sock, int ContentlLength, char *pArgs)
{

char *nane = 0, *spam= 0, *pizza = 0, *color = 0;

char *buffer, *key, *val ue;

int len;

i nt parsel ndex;

char htm buf [MAX_RESPONSE_SI ZE] ;

/'l The pArgs paraneter is used for passing argunents
/1 on the address line using the '?" operator. It is
/1 typcially not used on a CA POST

/1 1. Read in the request data

/'l First, allocate a buffer for the request
buffer = (char*) mmBul kAl |l oc(ContentlLength + 1);
if (!'buffer)

got o ERROR;

/'l Now read the data fromthe client
len = recv(htm Sock, buffer, ContentLength, MSG WAI TALL);
if (len<1)

got o ERROR;

/1 2. Parse request using cgiParsevars(), or a simlar function

/]l Setup to parse the post data
parsel ndex = 0;
buf fer[ContentLength] = "\0";

/1 Process request variables until there are none left to do
{

key = cgi ParseVars(buffer, &parselndex);

val ue = cgi ParseVars(buffer, &parselndex);

if(!'strcnp("nanme”, key))
name = val ue;

else if(!strcenp("pizza", key))
pi zza = val ue;

else if(!strcnp("spant, key))
spam = val ue;

else if(!strcnp("color"”, key))
col or = val ue;

} while (parselndex !=-1);

/1 3. Process request in sone neaningful way .
Il (K, we really don't do this here.)

/1 4. Send a response. Keep in mnd the first line of the
/'l response shoul d indi cate whether the request was

/'l successful or not.

htt pSendSt at usLi ne(ht ml Sock, HTTP_OK, CONTENT_TYPE_HTM.);
/1 5. Send appropriate headers

/1 No nore header data to send - CRLF term nates header
htm (CRLF);

/1 6. Send the response data

/1 Build our HTML response

/'l Here we'll just echo back the input we received
// to an HTM. table.

/1

232 Web Programming with the HTTP Server SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

TEXAS

INSTRUMENTS

www.ti.com

HTTP Server Exported Functions

E.5

ht m (" <ht M ><body t ext =#000000 bgcol or=#ffffff>\r\n");

ht m (" <h1>Form | nformati on</ h1>");
htm (divider);

htm ("<tabl e border cellspaci ng=0 cel | paddi ng=5>\r\n");

if(name)
{
sprintf(htm buf, tablefnt, "Name:", name);
htm (htnl buf);
}
if(spam)
{
sprintf(htmbuf, tablefnt, "Likes Spam", spam);
htm (htnl buf);
}
if(pizza)
sprintf(htm buf, tablefnt, "Favorite Pizza:", pizza);
htm (htnl buf);
}
if(color)
{
sprintf(htm buf, tablefnt, "Favorite Color:", color);
htm (htnl buf);
}

htm ("</tabl e>
\r\n");
ht m (di vi der);

htm ("Return to Mai n Page

\r\n");

htm (" </body></htm >\r\n");
ERROR:
if(buffer)
mBul kFree(buffer);

return(1);

HTTP Server Exported Functions

The HTTP server module exports several functions and strings to aid in the creation of a CGI function.

This section contains the formal specification for these functions. The first part of this appendix describes
how to use these functions in creating a HTTP CGl function in C.

E.5.1 Commonly Used Strings

To aid in the creation of the response data, some commonly used HTML strings can be defined. Some of
these are already defined in the HTTPI F. Hfile. These include the following (note that all entries, except

the first three, include a trailing space character.):

Global Name
DEFAULT_NANME

CRLF

SPACE

HTTP_VER
CONTENT_LENGTH
CONTENT_TYPE
CONTENT_TYPE_APPLET

String Value

"index. htm™"

"\r\n"

"HTTP/ 1.0 "
"Content-length: "
"Content-type: "
"application/octet-stream"”

SPRU524H—-May 2001 -Revised February 2012
Submit Documentation Feedback

Web Programming with the HTTP Server

Copyright © 2001-2012, Texas Instruments Incorporated

233

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

httpSendStatusLine — Send the Status of this Request to the Client www.ti.com

Global Name String Value

CONTENT_TYPE_AU "audi o/ au”

CONTENT_TYPE_DCC "application/msword "

CONTENT_TYPE_G F "image/gif "

CONTENT_TYPE_HTM_ “text/htm "

CONTENT_TYPE_JPG "image/jpeg "

CONTENT_TYPE_MPEG "vi deo/ npeg "

CONTENT_TYPE_PDF "application/pdf "

CONTENT_TYPE_WAV "audi o/ wav "

CONTENT_TYPE_ZI P

E.5.2 Function Overview

"application/zip "

The basic HTTP Server exported functions are as follows:

httpSendStatusLine()
httpSendClientStr()
httpSendFullResponse()
httpSendEntityLength()
httpSendErrorResponse()

Send the status of this request to the client
Send NULL terminated string data to client
Send a full formatted response to the client
Send the content length and terminate HTTP header
Send a full formatted response to the client

E.5.3 HTTP Server Exported API Functions

httpSendStatusLine Send the Status of this Request to the Client

Syntax void httpSendStatusLine(SOCKET Sock, int StatusCode, char *ContentType);
Parameters
Sock Socket on which to send
StatusCode HTTP status code of the request
ContentType HTTP type string of the response
Return Value None.
Description Sends a formatted response message to Sock with the given status code and content

type. The value of ContentType can be NULL if no ContentType is required.

The status code and content type should match HTTP standard definitions. Some
content type strings are listed in Section E.5.1. The pre-defined status codes include:

HTTP_OK
HTTP_NO_CONTENT
HTTP_AUTH_REQUIRED
HTTP_NOT_FOUND
HTTP_NOT_ALLOWED
HTTP_NOT_IMPLEMENTED

(200)
(204)
(401)
(404)
(405)
(501)

234 Web Programming with the HTTP Server

SPRU524H—-May 2001-Revised February 2012
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

httpSendClientStr — Send NULL Terminated String Data to Client

httpSendClientStr
Syntax

Parameters

Sock
Response

Return Value

Description

Send NULL Terminated String Data to Client

void httpSendClientStr(SOCKET Sock, char *Response);

Socket on which to send
Pointer to NULL terminated string
None.

This function sends the indicated NULL terminated response string to the indicated client
socket. In other words, it calls strlen() and send().

httpSendFullResponse Send a Full Formatted Response to the Client

Syntax

Parameters

Sock
StatusCode

RequestedFile

Return Value

Description

httpEntityLength
Syntax

Parameters

Sock
EntityLength

Return Value

Description

void httpSendFullResponse(SOCKET Sock, int StatusCode, char *RequestedFile);

Socket on which to send
HTTP status code of the request
Pointer to filename of file to include in body

None.

Sends a full formatted response message to Sock, including the file indicated by the
filename pointed to by RequestedFile. The status code for this call is usually HTTP_OK.

Send the Content Length and Terminate HTTP Header

void httpSendEntityLength(SOCKET Sock, INT32 EntityLength);

Socket on which to send
Length of the entity (usually HTML page) to follow the HTTP header

None.

Writes out the entity length tag, and terminates the HTTP header with an additional
CRLF. Because the header is terminated, this must be the last tag written. Entity data
should follow immediately.

SPRU524H—-May 2001 -Revised February 2012

Web Programming with the HTTP Server 235

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
httpSendErrorResponse — Send a Full Formatted Error Response to the Client www.ti.com
httpSendErrorResponse Send a Full Formatted Error Response to the Client
Syntax void httpSendErrorResponse(SOCKET Sock, int StatusCode);

Parameters
Sock Socket on which to send
StatusCode HTTP status code of the request
Return Value None.
Description Sends a full formatted error response message to Sock, including a small HTML file

displaying the status code. For example, HTTP_NOT_FOUND would generate:
<html><body><h1>HTTP/1.0 404 — File Not Found</h1></body></html>

236 Web Programming with the HTTP Server SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Appendix F
I ’.{‘IE)S(’;A"EUMENTS SPRU524H—May 2001 —-Revised February 2012

IP Version 6 (IPv6) Stack API

This section discusses use of the API for the IPv6 stack.

Topic Page

N SV o 1= PPt 238

F.2 APl Functions and Data StrUCTUIEScieiuiuiuiiiiiiiiiiiatieesieieaeeaeasaeaeaeeasnsaeneananaaes 239
SPRU524H—-May 2001 -Revised February 2012 IP Version 6 (IPv6) Stack API 237

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Synopsis

13 TEXAS
INSTRUMENTS

www.ti.com

F.1

Synopsis

The IPv6 stack is designed to be modular and coexist with the traditional IPv4 stack. The IPv6 stack can
be easily built in or out of an application using the " _INLCUDE_IPv6_CODE" compilation flag. IPv6 stack
is available only with NIMU enabled architectures. Default stack builds are provided with IPv6 stack

enabled. The TMS320C6000 Network Developer's Kit (NDK) User's Guide (SPRU523) has details on the
various IPv6 stack builds packaged in the NDK.

The IPv6 stack is similar in its architecture to the IPv4 stack with respect to the components it is made of.
Figure F-1 shows the main building blocks of IPv6.

Socket Layer Extensions for IPv6

TCP UDP ICMPv6
IPv6 Core Stack
MLD Bind6 Route6
| |
Core IPv6 Stack
LLI6

NUMU Network Interface
Object #1

NUMU Network Interface

Object #2

Figure F-1. NDK IPv6 Architectural Block Diagram

The IPv6 stack components and the RFCs it supports are as follows:
* IPv6 Core Stack

Neighbor Cache Support
Routing Table Support
Extension Header Support
Fragmentation/Reassembly
Binding Lifetime Management

Routing Table Lifetime Management

RFCs

 RFC 3596 DNS Extensions to Support IPv6
* RFC 2460 Internet Protocol Version 6 - Only support for processing of extension headers
* RFC 2461 Neighbor Discovery for IPv6

* RFC 2462 IPv6 Stateless Address Autoconfiguration

* RFC 2463 IPv6 Internet Control Message Protocol (ICMPv6) for IPv6
* RFC 2464 Transmission of IPv6 Packets over Ethernet Networks

* RFC 3484 Default Address Selection for IPv6 - Implemented partially
 RFC 3587 IPv6 Global Unicast Address Format
» RFC 3493 Basic Socket Interface Extensions for IPv6 - Implemented but not fully. No compatibility with

238

IP Version 6 (IPv6) Stack API

SPRU524H—-May 2001-Revised February 2012

Copyright © 2001-2012, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com API Functions and Data Structures

IPv4 nodes, multicast, getaddrinfo/freeaddrinfo.
» RFC 2373 IPv6 Addressing Architecture - No support for IPv6 addresses embedded with 1Pv4.
* Layer4 Support
ICMPv6

- RAW

- UDP

- TCP
» Socket Layer Extensions for IPv6
* Application Support

- TFTP

— Telnet

— Web Server

— DNS

F.2 APl Functions and Data Structures

The IP Version 6 (IPv6) Stack APl and data structures can be downloaded from the following URL:
http://www-s.ti.com/sc/techlit/spru524.zip

F.2.1 Socket Support for IPv6
The following is a list of Socket API that is supported:

» socket

e bind

e listen

e connect

e getpeername
e getsockname

e send

» sendto

e recv

* recvfrom

» setsockopt (limited IPv6 options supported)
» getsockopt (limited IPv6 options supported)
» close

* shutdown

The No-Copy variants for receive are not currently supported for IPv6 sockets.

SPRU524H—-May 2001 -Revised February 2012 IP Version 6 (IPv6) Stack API 239

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www-s.ti.com/sc/techlit/spru524.zip
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

API Functions and Data Structures www.ti.com

F.2.2 Architecture

Figure F-2 illustrates the internal architecture block diagram for the socket layer:

Application Domain

- ©

£ =z g s BB o...... 2

8 = c » [} 9] L)

a] 8 5 »n x o

A
SOCKET
BSD Socket API Layer
Yes No
V4 Implementation of the V6 Implementation of the
BSD Socket API BSD Socket API

Figure F-2. Internal Architecture Block Diagram for Socket Layer

When a socket is created, it is marked as either an IPv4 socket or an IPv6 socket, i.e., in the socket
creation the socket family selected is either AF_INET (IPv4) or AF_INET6 (IPv6). This is then used as a
de-multiplexing field to differentiate which socket implementation needs to be selected. This architecture
reduces the impact on the existing IPv4 implementation of sockets.

F.2.3 Socket Options
The IPv6 socket layer supports all the standard socket properties except the following:
« SO_IFDEVICE
The option binds the socket to an interface and ensures that packets are transmitted on the specified
interface.
 SO_TXTIMESTAMP
This is a Texas Instruments specific option that was used for time stamping the path through the IPv6
Stack.
Of all the IPv6 specific options, the only one currently supported is the IPV6_UNICAST_HOPS, which
allows the configuration of the Hop Limit in the packet. Remaining options will be added in future releases.
F.2.4 Daemon6
NDK supports a module called Daemon, which is a single network task that monitors the socket status of
multiple network servers. When activity is detected, the daemon creates a task thread specifically to
handle the new activity. This is more efficient than having multiple servers, each with their own listening
thread.
Since the Daemon operates on sockets, a new module called Daemon6 has been created that does the
same functionality as Daemon except that it operates on V6 sockets.
240

IP Version 6 (IPv6) Stack API SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com API Functions and Data Structures

The following snippet of code indicates how Echo Servers on UDP can be made to operate on both IPV4
and IPV6

hEchoUdp = DaenmonNew(SOCK DGRAM 0, 7, dtask_udp_echo, OS_TASKPRI NORM
OS_TASKSTKNORM 0, 1);

#i fdef _1 NCLUDE_| Pv6_CODE

hEchoUdp6 = Daenpn6New (SOCK_DGRAM | PV6_UNSPECI FI ED_ADDRESS, 7,
dt ask_udp_echo6, OS_TASKPRI NORM
0S_TASKSTKNORM 0, 1);

#endi f

F.2.5 Nettools Applications

The Net-Tools module in the NDK stack has multiple applications that are provided to System developers.
These applications provide basic services such as Telnet, TFTP etc. This section documents the
modifications in these applications to support IPv6.

F.2.5.1 Telnet

Telnet is implemented as a server daemon that resides on port 23 and waits for incoming connections.
The Telnet protocol by itself is agnostic to the Layer3 implementation i.e. IPv4 or IPv6. To be able to
support IPv6 the following code needs to be added in the application startup code:
hTel net 6 = Daemon6New (SOCK_STREAM | PV6_UNSPEC! FI ED_ADDRESS, 23,

(int(*)(SOCKET, U NT32))tel netd ientProcess,

OS_TASKPRI NORM OS_TASKSTKLOW

(Ul NT32) Consol eCpen, 2);

The code uses the Daemon6 API described above and starts the Telnet Daemon that opens an IPv6
socket on port 23. There is no conflict since the IPv4 Telnet daemon has also opened port 23 since the
socket library for IPv4 and IPv6 are different.

With these modifications the Telnet daemon works over IPv6. There is one minor change in the Telnet
code base that needs to be addressed. This is a display issue; after performing the telnet the server
displays the Peer IP Address and Port Information.

For example, on IPv4 the display is as follows:

TCP/ I P Stack Exanple dient
Wel cone connection : 192.168.1.2:3881

Wel cone to the consol e program
Enter '?'" or '"help' for a list of commands.
>

On IPv6, the display code needs to be modified as follows to display the IPv6 address of the peer:

TCP/ I P Stack Exanple dient
Wel come connection : fe80::a00:9ff: fedc: fbdc: 1061

Wel come to the consol e program
Enter '?" or 'help' for a list of conmmands.
>

SPRU524H—-May 2001 -Revised February 2012 IP Version 6 (IPv6) Stack API 241

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

API Functions and Data Structures www.ti.com

F.2.5.2 Web Server

The Web Server is implemented as a server daemon that resides on port 80 and waits for incoming
connections. Much like Telnet; the web server is agnostic to the layer3 protocol.

The following snippet of code needs to be added to the application startup code to start the web server as
a daemon:
hweb6 = Daenon6New (SOCK_STREAM | PV6_UNSPECI FI ED_ADDRESS HTTPPORT,

httpd i ent Process, OS _TASKPRI NORM OS_TASKSTKH CH,
0, MAX_CONN) ;

Besides this, there are no additional modifications required in the HTTP code.

F.253 TFTP

The TFTP is an IPv6 client that implements the Trivial File Transfer Protocol over IPv6. The TFTP protocol
uses the IP Address and Port information to ensure that data packets being received match the peer
server and port information; this is typically implemented by most TFTP implementations for a more
secure file transfer.

To achieve modularity, a new module TFTP6 has been created, which was based on the TFTP module.
Modifications have been done to ensure that the TFTP6 module uses the AF_INET6 family for socket
creation and the security checks are done with respect to the IPv6 addresses.

The following new API has been published to be able to retrieve a file over an IPv6 network through
TFTP:

int Nt6TftpRecv (I P6N Tftpl P, char *szFil eNane, char *FileBuffer,
U NT32 *Fil eSize, U NT16 *pError Code);

F.2.5.4 DNS Client

The existent DNS Client in NDK is capable of doing IPv4 forward and reverse name resolutions [2]. This
has now been extended to do IPv6 forward and reverse AAAA (Quad-A) type DNS lookups as described
in RFC 3596 [2] over IPv4 network. Currently, there is no support for the DNS client to communicate with
an IPv6 DNS server; i.e., the DNS client is only capable of doing name resolutions by communicating with
an IPv4 DNS server. DNS over IPv6 network is left for a future release.

To be able to support IPv6 name resolution, the following changes have been made to the existing
implementation of DNS:

A new Record type T_AAAA specific to the Internet class has been defined that can store a single IPv6
address. The IANA assigned value of the type is 28 (decimal) [2].

» The basic HOSTENT data structure has been modified (as shown below) such that it can hold both
IPv4 and IPv6 addresses.

*

/
@ri ef

The structure describes the Host Nane - | P Address record

@letail s

The HOSTENT structure holds information such as | Pv4/v6
address, host nane mappings for a given host. It is used

* by the DNS resol ver in conveying such HostName - | P Address
* mappings to a user application.

*/

struct _hostent {

/**

* @rief This is the official nane / Fully Qualified Domain Nanme
* (FQDN) of the host.

*/

char *h_nane;

R

/**

* @rief This indicates the address family of the |IP address that
* maps to the given hostname. The values it takes are AF_| NET (v4) /
* AF_I NET6 (v6).

242 IP Version 6 (IPv6) Stack API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

API Functions and Data Structures

*/
int h_addrtype;

/**

* @rief This indicates the length (in bytes) of the | P address that follows.
* For |Pv4 address it is set to 4, and for | Pv6 address set to 16 bytes.

*/

int h_|length;

/**

* @rief This is the nunber of |IP addresses returned for the given
* host nane.

*/

int h_addrcnt;

#i fndef _| NCLUDE_| Pv6_CODE

/**
* @rief Li st of upto MAXI PADDR | Pv4 addresses (Network fornat) that nap
* to the given hostnane.
*
/

| PN h_addr [MAXI PADDR] ;

#el se
/**
* @rief Li st of upto MAXI PADDR | Pv4/ 1 Pv6 addresses that map to gi ven hostnane.
*/
char* h_addr_| i st[MAXI PADDR] ;
#endi f
}

NOTE: The field h_addr was an array of IPv4 addresses in IPN format. To make it generic enough
to hold both IPv4 and IPv6 addresses, this field is now replaced with h_addr_list. The field
h_addr_list in the current implementation is an array of strings and it holds the IPv4/v6
addresses as pointers to IPN/IP6N, respectively. The following is an example illustration of
how one could use the h_addr_list field to access IPv4/IPv6 address from the new
HOSTENT structure.

IPv4 lllustration:

I PN | PTnp;
ret code = DNSGet Host ByXXX(argl, ... argn);
for(retcode = 0; retcode < phe->h_addrcnt; retcode++)
{

I PTnp = (I PN) RdNet 32(phe->h_addr _|ist[0]);

ConPrintf ("I PAddr = ");

ConPrint!| PN(I PTrp) ;

ConPrintf("\n");
}

IPv6 lllustration:
I P6N | Pv6Tnp;
retcode = DNSGet Host ByXXX(argl, ... argn);
for(retcode = 0; retcode < phe->h_addrcnt; retcode++)
{

| Pv6Tnp = *(1 P6N *)phe->h_addr_list[O0];

ConPrintf("1Pv6 Addr = ");

Conl Pv6Di spl ayl PAddr ess(| Pv6Tnp) ;

ConPrintf("\n");
}
* Two new APIs have been added for hostname to IPv6 address and IPv6 address to hostname

resolution. The following are the two new APIs:

SPRU524H—-May 2001 -Revised February 2012 IP Version 6 (IPv6) Stack API 243

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
API Functions and Data Structures www.ti.com
IPv6 Address to Hostname Resolution API (reverse DNS lookup for IPv6):
/**
* @ Description
* @
* This function does reverse DNS | ookup on the supplied
* | Pv6 Address. On a successful return, pScrapBuf can be
* treated as a HOSTENT structure. The size of the scrap
* buffer (size) nmust be greater than the size of the structure
* as the structure will contain pointers into the scrap
* buffer, and the scrp buffer is also used for tenporary
* name storage. 512 bytes of scrap buffer menory shoul d be
* sufficient for nobst requests.
*
* @araniin] |PAddr
* The 1 Pv6 address that needs to be resolved in | P6N fornat.
*
* @aranfout] pScrapBuf
* Scrap buffer area to hold the results on a successful
* DNS resol uti on.
*
* @aranfin] size
* Si ze of the scrap buffer avail able.
*
* @etval
* Success - O
*
* @etval
* Error - >0, error code to deternmine the error.
*/
i nt DNSGet Host ByAddr 2(| P6N | PAddr, void *pScrapBuf, int size);
244 IP Version 6 (IPv6) Stack API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com API Functions and Data Structures

Hostname to IPv6 Address Resolution API (forward DNS lookup for IPv6):

/**

* @ Description

* @

* This function does DNS | ookup on the supplied hostnane.

* On a successful return, the pScrapBuf can be treated as a

* HOSTENT structure. The size of the scrap buffer (size)

* nmust be greater than the size of the structure as the

* structure will contain pointers into the scrap buffer, and
* the scrap buffer is also used for tenporary nane storage.

* 512 bytes should be sufficient for nobst DNS requests.

*

* If the host nanme "Nane" is termnated with a dot ('."'), the
* dot is renoved. If the name contains a dot anywhere, it is
* used unnodified for an initial |ookup. If the |lookup fails -
* the appropriate DNS error code is returned. No default

* domai n | ookups are perfornmed for IPv6, so if the hostnane

* provi ded by user doesnt contain a dot, inplying no

* domai n nane is provided, this function returns a foram error.

* @aranfin] Nane
* The hostnanme to be resol ved supplied by the user.

* @aranfin] af _famly

* The fam |y (AF_I NET/ AF_I NET6) of the |IP address to which the
* query needs to be resolved to. If AF_INET is provided as the
* argunent, then DNSGet HostByNane is called in turn for |Pv4

* | ookup.

* @aranfout] pScrapBuf
* Scrap buffer area to hold the results on a successful
* DNS resol ution.

* @aranfin] size

* Si ze of the scrap buffer avail able.

*

* @etval

* Success - 0

*

* @etval

* Error - >0, error code to determine the error.
*/

i nt DNSGet Host ByNane2(char *Nanme, U NT8 af _famly, void *pScrapBuf, int size);

SPRU524H—-May 2001 -Revised February 2012 IP Version 6 (IPv6) Stack API

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

245

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

API Functions and Data Structures www.ti.com

F.2.6 Configuring the IPv6 Stack

One of the key differences between IPv6 and IPv4 is that the IPv6 stack needs to be instantiated at run
time. This is because all IPv6 enabled interfaces automatically get a link local address, which is identified
by the unique MAC address. Once an IPv6 address is assigned, it is mandatory that the IPv6 stack
perform the Duplicate Address Detection process to ensure address uniqueness.

This implies that unlike IPv4 addresses cannot be assigned to the interface before the Ethernet Link is up
because this will imply that the DAD packets never get transmitted out hence defeating the overall
purpose.

RFC 2462, Section 5.3, states the following:

A node forms a link-local address whenever an interface becomes enabled. An interface may become
enabled after any of the following events:

« The interface is initialized at system startup time.

» The interface is reinitialized after a temporary interface failure or after being temporarily disabled by
system management.

» The interface attaches to a link for the first time.
» The interface becomes enabled by system management after having been administratively disabled.
In order to support IPv6 all Platform Support Packages should be modified such that the above mentioned

API's are added in the Ethernet Link Change code. This is outside the context of the document and should
be addressed in the NDK Support Package documentation.

Initialization and de-Initialization of the IPv6 stack is the responsibility of the system application and should
be used in conjunction with the Link change events described above. Figure F-3 showcases the various
entities in the system:

System Network Support
Application Package
IPv6Interfacelnit IPv6InterfaceDelnit
IPv6 Stack

Figure F-3. IPv6 Stack Instantiation Placement

The IPv6 stack provides the necessary API's, which are responsible for the initialization and cleanup of
the IPv6 stack instance on the interface.

For user convenience, a sample command prompt demonstration has been provided with the IPv6 stack
to initialize and attach the IPv6 stack to a desired interface, and to demonstrate the use of various IPv6
utilities. For more details, see the IPv6 Stack Testing section of the Tl Network Developer's Kit (NDK)
v2.21 User's Guide (SPRU523) document.

246 IP Version 6 (IPv6) Stack API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Appendix G
I ’.{‘IE)S(’;A"SUMENTS SPRU524H—May 2001 —-Revised February 2012

Legacy Configuration Manager API

To simplify the configuration process, the NDK now recommends that you use the XGCONF configuration
tool within CCS to configure an application's use of NDK modules. Use of that tool is described in the TI
Network Developer's Kit (NDK) User's Guide (SPRU523). XGCONF is the same configuration tool used to
configure SYS/BIOS.

This appendix provides legacy documentation for the configuration APl used for configuration in previous
versions of the NDK.

Topic Page

G.1 Configuration MELNOASc.cueeieiiie ettt et e et e e e e e e e e neaeeens 248

(T O o o [0 =0 1Y/ = T =T =T PP 248

G.3 Configuration SPeCITICAION ...uiuiuiiiiitiiii ettt e e e e aeees 263

L | oY) =1 = 1 o o o Yo =T [1= 276
SPRU524H—-May 2001 -Revised February 2012 Legacy Configuration Manager API 247

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Configuration Methods www.ti.com

G.1

G.2

Configuration Methods

Internally, the XGCONF configuration tool generates C code that calls into and updates the configuration
database used in previous versions of the NDK. In fact, you can still choose to use the configuration API if
you have legacy code. However, you must choose one method or the other to configure your application.

NOTE: You should not mix configuration methods. If you have legacy NDK applications that use the
old C-based configuration method, you should either continue to use that method or convert
the configuration entirely to an *.cfg file configuration. If a project uses both methods, there
will be conflicts between the two configurations.

This appendix describes the C APIs that legacy NDK applications use to create and manage a system
configuration.

Configuration Manager

The configuration manager is a collection of API functions to help you create and manipulate a
configuration. The manager API is independent of the configuration specification.

The configuration is arranged as a database with a master key (called Tag) that defines the class of
configuration item. A second key (called Item) determines the sub-item type in the tag class. For each tag
and item, there can be multiple instances. Iltems can be further distinguished by their instance value.

The configuration is based on an active database. That is, any change to the database can cause an
immediate reaction in the system. For example, if a route is added to the configuration, it is added to the
system route table. If the route is then removed from the configuration, it is removed from the system
route table.

To facilitate the active procession of configuration changes in a generic fashion, the configuration API
allows the installation of service provider callback functions that are called to handle specific tag values in
the configuration.

Configurations can be set active or inactive. When a configuration is active, any change to the
configuration results in a change in the system. When a configuration is inactive, it behaves like a
standard database. Part of the main initialization sequence is to make the system configuration active, and
then inactive when shutting down.

Both the configurations and configuration entries are referenced by a generic handle. Configuration
functions (named as CfgXxx()) take a configuration handle parameter, while configuration entry functions
(name as CfgEntryXxx()) take a configuration entry handle parameter. These handles are not
interchangeable.

Configuration entry handles are referenced. This means that each handle contains an internal reference
count so that the handle is not destroyed by one task while another task expects it to stay valid. Functions
that return a configuration entry handle supply a referenced handle in that its reference count has already
been incremented for the caller. The caller can hold this handle indefinitely, but should dereference it
when it is through. There are three calls that dereference a configuration entry handle. These are:
CfgRemoveEntry(), CfgGetNextEntry(), and most simply CfgEntryDeRef(). See individual function
descriptions for more information.

The PPP module in the stack library and several modules in the NETTOOLS library make use of a default
configuration to store and search for data. The default configuration is accessed by passing in a NULL
configuration handle to any function that takes the hCfg parameter (except CfgFree()). The default
configuration is specified by calling CfgSetDefault().

248

Legacy Configuration Manager API SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

Configuration Manager

G.2.1 Function Overview

The configuration access functions (in functional order) are as follows:

Configuration Functions:

CfgNew()
CfgFree()
CfgSetDefault()
CfgGetDefault()
CfgLoad()
CfgSave()
CfgSetExecuteOrder()
CfgExecute()
CfgSetService()
CfgAddEntry()
CfgRemoveEntry()
CfgGetEntryCnt()
CfgGetEntry()
CfgGetNextEntry()
CfgGetimmediate()

Create a new configuration

Destroy a configuration

Set default configuration

Get default configuration

Load configuration from a linear memory buffer

Save configuration to a linear memory buffer

Set the tag initialization and shutdown order on execute
Make the configuration active or inactive

Sets service callback function for a particular tag

Add a configuration entry to a configuration

Remove entry from configuration

Get the number of item instances for a tag/item pair
Get a referenced handle to a configuration entry
Return supplied entry handle and get next entry handle

Get configuration entry data without getting an entry handle

Configuration Entry Functions:

CfgEntryRef()
CfgEntryDeRef()
CfgEntryGetData()
CfgEntrySetData()
CfgEntrylInfo()

Add a reference to a configuration entry handle
Remove a reference to a configuration entry handle
Get configuration entry data from entry handle
Replace data block of entry data using entry handle
Get information on a configuration entry handle

SPRU524H—-May 2001 -Revised February 2012

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

Legacy Configuration Manager API

249

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

CfgAddEntry — Add Configuration Entry to Configuration www.ti.com

G.2.2 Configuration API Functions

CfgAddEntry

Syntax

Parameters

hCfg

Tag

Item

Mode

Size

pData
phCfgEntry

Return Value

Add Configuration Entry to Configuration

int CfgAddEntry(HANDLE hCfg, uint Tag, uint Iltem, uint Mode, uint Size, UINT8 *pData,
HANDLE *phCfgEntry);

Handle to configuration

Tag value of new entry

Item value of new entry

Mode flags for how to add entry

Size of entry data pointed to by pData

Pointer to entry data

Pointer to where to write handle of new configuration entry

Returns 1 on success with successful processing by a service callback function (see
CfgSetService())

Returns 0 on success with no processing performed by a service callback function
Returns less than 0 but greater than CFGERROR_SERVICE on a configuration error
The possible configuration errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter
CFGERROR_RESOURCES Memory allocation error while adding entry

Returns less than or equal to CFGERROR_SERVICE when the service callback function
returns an error. Service errors are specific to the service callback functions installed and
are thus implementation dependent. The original error return from the service callback
can be retrieved by using the CFG_GET_SERVICE_ERROR() macro:

Servi ceError Code = CFG_GET_SERVI CE_ERROR(Cf gAddEnt r yRet ur nVal ue) ;

NOTE: On a service error, the configuration entry is still added to the
configuration, and an entry handle is written to phCfgEntry when the
pointer is supplied.

Description This function creates a new configuration entry and adds it to the configuration.
The phCfgEntry parameter is an optional pointer that can return a handle to the newly
added configuration entry. When the phCfgEntry parameter is valid, the function writes
the referenced handle of the new configuration entry to the location specified by this
parameter. It is then the caller's responsibility to dereference this handle when it is
finished with it. When the parameter phCfgEntry is NULL, no entry handle is returned,
but the function return value is still valid.
Configuration entry handles are dereferenced by calling one of the following:
CfgEntryDeRef() Stop using the entry
CfgRemoveEntry() Stop using entry and remove it from the configuration
CfgGetNextEntry() Stop using entry and get next entry
250 Legacy Configuration Manager API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com CfgAddEntry — Add Configuration Entry to Configuration

If the execution state of the configuration is active (see CfgExecute()), the addition of
the configuration entry is immediately reflected in the operating state of the system.

Multiple configuration entries can exist with the same Tag and Item key values. The
system creates a third key (Instance) to track these duplicate keyed entries. However, by
default, the configuration system does not allow for fully duplicate entries. Entries are full
duplicates if there exists another entry with the same Tag and Item key values and an
exact duplicate data section (size and content). When a full duplicate entry is detected,
the new (duplicate) entry is not created.

There are some options that determine how the entry is added to the configuration by
using flags that can be set in the Mode parameter. The default behavior when adding an
object is as follows:

» Multiple instances with the same Tag and Item values are allowed.

» However, duplicate instances with the same Tag, Item, Size, and pData contents are
ignored.

* New entries are saved to the linear buffer if or when CfgSave() is used.
To modify the default behavior, one or more of the following flags can be set:

CFG_ADDMODE_UNIQUE Replace all previous entry instances with this single entry.

CFG_ADDMODE_DUPLICATE Allow full duplicate entry (duplicate Tag, Item, and entry data).
Requests to add duplicates are normally ignored.

CFG_ADDMODE_NOSAVE Do not include this entry in the linear buffer in CfgSave().

NOTE: Setting both the CFG_ADDMODE_UNIQUE and
CFG_ADDMODE_DUPLICATE flags is the same as only setting
CFG_ADDMODE_UNIQUE.

SPRU524H—-May 2001 -Revised February 2012 Legacy Configuration Manager API 251

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

CfgExecute — Set the Execution State (Active/lnactive) of the Configuration

13 TEXAS
INSTRUMENTS

www.ti.com

CfgExecute

Syntax

Parameters

hCfg
fExecute

Return Value

CFGERROR_BADHANDLE
CFGERROR_BADPARAM
CFGERROR_ALREADY

Description

CfgFree

Syntax

Parameters

hCfg

Return Value

Description

CfgGetDefault

Syntax
Parameters
Return Value

Description

Set the Execution State (Active/lnactive) of the Configuration

int CfgExecute(HANDLE hCfg, int fExecute);

Handle to configuration
Desired execute state (1 = active)

Returns 0 on success, or less than 0 on an operation error. The possible errors are:

Invalid hCfg handle
Invalid function parameter
Configuration is already in desired state

When a configuration is first created, it is in an inactive state, so changes to the
configuration are not reflected by changes to the system.

Executing the configuration (setting fExecute to 1) causes all current entries in the
configuration to be loaded, and any further changes in the configuration to be
immediately reflected in the system.

Disabling execution of the configuration (setting fExecute to 0) causes all configuration
entries to be unloaded from the system (note that they are not removed from the
configuration). Any further changes to the configuration are not reflected by changes to
the system.

Destroy a Configuration Handle

void CfgFree(HANDLE hCfg);

Handle to configuration

None.

Destroys a configuration. Unloads and frees all configuration entries and frees the
configuration handle. After this call, the configuration handle hCfg is invalid.

Get Default Configuration Handle

HANDLE CfgGetDefault();
None.
Returns a handle to the current default configuration, or NULL if None.

This function returns the current default configuration handle. The default handle is used
in any function that takes a hCfg parameter, when the specified parameter is NULL. At
initialization, there is no default configuration. It must be allocated by CfgNew() and then
specified via CfgSetDefault(). Normally, the default configuration is reserved for system
use.

252 Legacy Configuration Manager API

SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
www.ti.com CfgGetEntry — Get Configuration Entry from Configuration
CfgGetEntry Get Configuration Entry from Configuration
Syntax int CfgGetEntry(HANDLE hCfg, uint Tag, uint Item, uint Index, HANDLE *phCfgEntry);
Parameters
hCfg Handle to configuration
Tag Tag value of entry
ltem Item value of entry
Index Instance index to get (1 to n)
phCfgEntry Pointer to where to write configuration entry handle
Return Value Returns 1 if a matching entry was found
Returns 0 if a matching entry was not found
Returns less than 0 on error
The possible configuration errors are:
CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter
Description This function searches the configuration for an entry matching the supplied Tag and Item
parameters and an index matching the supplied Index parameter. For example, when
Index is 1, the first instance is returned, when Index is 2, the second instance is
returned. The total number of instances can be found by calling CfgGetEntryCnt().
The phCfgEntry parameter is an optional pointer that can return the handle of the
configuration entry found by this function. When the phCfgEntry parameter is valid, the
function writes the referenced handle of the configuration entry found to this pointer. It is
the caller's responsibility to dereference the handle when it is no longer needed. When
the parameter phCfgEntry is NULL, no entry handle is returned, but the function return
value is still valid (found or not found).
Configuration entry handles are dereferenced by the calling one of the following:
CfgEntryDeRef() Stop using the entry
CfgRemoveEntry() Stop using entry and remove it from the configuration
CfgGetNextEntry() Stop using entry and get next entry
NOTE: Do not attempt to use the Index value to enumerate all entry instances in
the configuration. The index of an entry handle is valid only at the time of
the call as an item can move up and down in the list as configuration
changes are made. To enumerate every entry for a Tag/ltem pair, start
with Index 1, and then use CfgGetNextEntry() to get additional entries.
SPRU524H—-May 2001 -Revised February 2012 Legacy Configuration Manager API 253

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

CfgGetEntryCnt — Get the Number of Entry Instances for the Supplied Tag/ltem Pair www.ti.com
CfgGetEntryCnt Get the Number of Entry Instances for the Supplied Tag/ltem Pair
Syntax int CfgGetEntryCnt(HANDLE hCfg, uint Tag, uint Item);
Parameters

hCfg Handle to configuration

Tag Tag value of query

ltem Iltem value of query

Return Value

Returns 0 or greater on success (number if instances found) or less than O on error.
The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter
Description This function searches the configuration for all instances matching the supplied Tag and

CfgGetimmediate

Syntax

Parameters

hCfg
Tag
Item
Index
Size
pData

Return Value

Description

Item parameters and returns the number of instances found.

Get Configuration Entry Data Directly from Configuration

int CfgGetimmediate(HANDLE hCfg, uint Tag, uint Item, uint Index, int Size, UINT8
* .
pData);

Handle to configuration

Tag value of entry

Item value of entry

Instance index to get (1 to n)

Size of buffer to receive data
Pointer to data buffer to receive data

Number of bytes copied

This function is a useful shortcut when searching the configuration for well known
entries. It searches the configuration for entries matching the supplied Tag and ltem
parameters and uses the item matching the supplied Index parameter. For example, if
Index is 1, the first instance is used, if Index is 2, the second instance is used. The total
number of instances can be found by calling CfgGetEntryCnt().

Instead of returning a referenced handle to the configuration entry (as with the more
generic CfgGetEntry() function), this function immediately gets the entry data for this
entry and copies it to the data buffer pointed to by pData.

The increased simplicity does decrease the function's flexibility. This function returns the
number of bytes copied, so it will return 0 for any of the following reasons:

* A supplied parameter is incorrect
* The item was not found
» The supplied buffer size (specified by Size) was not large enough to hold the data

254 Legacy Configuration Manager API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com CfgGetNextEntry — Get the Next Entry Instance Matching the Supplied Entry Handle

CfgGetNextEntry Get the Next Entry Instance Matching the Supplied Entry Handle

Syntax int CfgGetNextEntry(HANDLE hCfg, HANDLE hCfgEntry, HANDLE *phCfgEntryNext);
Parameters

hCfg Handle to configuration

hCfgEntry Handle to last configuration entry

phCfgEntryNext Pointer to receive handle of next configuration entry
Return Value Returns 1 if a next entry was found

Returns 0 if a next entry was not found
Returns less than 0 on error

The possible configuration errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter

NOTE: The handle hCfgEntry is not dereferenced on the event of an error.

Description This function serves two purposes. First, it dereferences the configuration entry handle
supplied in hCfgEntry. After this call, the handle is invalid (unless there was more than
one reference to it). Secondly, this function returns a referenced configuration entry
handle to the next instance (if any) of an entry that matches the Tag and Item values of
the supplied entry.

When the parameter phCfgEntryNext is NULL, no entry handle is returned, but the
function always returns 1 if such an entry was found and 0 when not.

When the phCfgEntryNext parameter is not NULL, the function writes a referenced
handle to the configuration entry to the location specified by this parameter. It is then the
caller's responsibility to dereference this handle when it is finished with it.

Configuration entry handles are dereferenced by the calling one of the following:

CfgEntryDeRef() Stop using the entry
CfgRemoveEntry() Stop using entry and remove it from the configuration
CfgGetNextEntry() Stop using entry and get next entry
SPRU524H—-May 2001 -Revised February 2012 Legacy Configuration Manager API 255

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

CfgLoad — Load a Configuration from a Linear Memory Block www.ti.com
CfgLoad Load a Configuration from a Linear Memory Block
Syntax int CfgLoad(HANDLE hCfg, int Size, UINT8 *pData);
Parameters

hCfg Handle to configuration

Size Size of memory block to load

pData Pointer to memory block to load

Return Value

CFGERROR_
CFGERROR_

Description

CfgNew

Syntax
Parameters

Return Value

Returns the number of bytes loaded, or less than 0 on an error. The possible errors are:

BADHANDLE Invalid hCfg handle

BADPARAM Invalid function parameter
The configuration system features the ability for the manager to convert a configuration
database to a linear block of memory for storage in non-volatile memory. The
configuration can then be converted back on reboot.
This function converts a linear block of memory to a configuration by loading each
configuration entry it finds in the coded data block. Note that CfgLoad() can be used to
load entries into a configuration that already has pre-existing entries, but the method of
entry is not preserved (see Mode parameter of CfgAddEntry()). To ensure that the
resulting configuration exactly matches the one converted with CfgSave() , this function
should only be called on an empty configuration handle.
Create a New Configuration
HANDLE CfgNew();
None.

Returns handle to a new configuration or NULL on memory allocation error.

Description Creates a configuration handle that can be used with other configuration functions. The
new handle defaults to the inactive state (see CfgExecute()).
256 Legacy Configuration Manager API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

www.ti.com

CfgRemoveEntry — Remove Configuration Entry from Configuration by Handle

CfgRemoveEntry

Syntax

Parameters

hCfg
hCfgEntry

Return Value

CFGERROR_
CFGERROR_

Description

Remove Configuration Entry from Configuration by Handle

int CfgRemoveEntry(HANDLE hCfg, HANDLE hCfgEntry);

Handle to configuration
Configuration entry to remove

Returns 0 on success or less than 0 on error.
The possible errors are:

BADHANDLE Invalid hCfg handle
BADPARAM Invalid function parameter

NOTE: The handle hCfgEntry is not dereferenced on the event of an error.

This function removes a configuration entry from a configuration.

If the execution state of the configuration is active (see CfgExecute()), then the removal
of the configuration entry is immediately reflected in the operating state of the system.

This function also performs a single dereference operation on the configuration entry
handle, so the handle is invalid after the call (unless there was more than one reference
made). Although the entry handle is not freed until all handle references have been
removed, it is always removed from the configuration immediately.

SPRU524H—-May 2001 -Revised February 2012 Legacy Configuration Manager API 257
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

CfgSave — Save a Configuration to a Linear Memory Block www.ti.com
CfgSave Save a Configuration to a Linear Memory Block
Syntax int CfgSave(HANDLE hCfg, int *pSize, UINT8 *pData);
Parameters

hCfg Handle to configuration

pSize Pointer to size of memory block

pData Pointer to memory block to load

Return Value

Returns the number of bytes written, O on a size error (value at pSize set to required
size), or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter
Description One of the features of the configuration system is the ability for the manager to convert a

CfgSetDefault

Syntax

Parameters

hCfg

Return Value

Description

configuration database to a linear block of memory for storage in non-volatile memory.
The configuration can then be converted back on reboot.

This function saves the contents of the configuration specified by hCfg into the linear
block of memory pointed to by pData.

The size of the data buffer is initially pointed to by the pSize parameter. If this size value
pointed to by this pointer is zero (pSize cannot itself be NULL), the function does not
attempt to save the configuration but rather calculates the size required and writes this
value to the location specified by pSize. In fact, any time the value at pSize is less than
the size required to store the configuration, the function returns 0 and the value at pSize
is set to the size required to store the data.

The pData parameter points to the data buffer to receive the configuration information.
This pointer can be null if *pSize is zero. Note that the pointer pSize must always be
valid.

Set Default Configuration Handle

HANDLE CfgSetDefault(HANDLE hCfg);

Handle to configuration to set as default, or NULL to clear default

None.

This function sets the current default configuration handle to that specified in hCfg. The
default handle is used in any function that takes a hCfg parameter, when the specified
parameter is NULL. At initialization, there is no default configuration. It must be allocated
by CfgNew() and then specified via CfgSetDefault(). Normally, the default configuration
is reserved for system use. The default configuration handle should not be freed until it is
cleared by calling CfgSetDefault(0).

258 Legacy Configuration Manager API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

CfgSetService — Set Service Callback Function for Configuration Tag

CfgSetService

Syntax

Parameters

hCfg
Tag
pChb

Return Value

Set Service Callback Function for Configuration Tag

int CfgSetService(HANDLE hCfg, uint Tag, int (*pCb) (HANDLE, uint, uint, uint,
HANDLE));

Handle to configuration
Tag value to change
Pointer to service callback function

Returns 0 on success, or less than 0 on error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle
CFGERROR_BADPARAM Invalid function parameter
Description To give the configuration the ability to be active - i.e., to make real-time changes to the

system as the configuration changes, the configuration manager must have the ability to
make changes to the system. To enable this in a generic fashion, the configuration
manager allows for the installation of service callback functions for each configuration
tag value.
This function sets the service function for a particular configuration tag. Service function
pointers default to NULL, and when they are NULL, no service is performed for the
configuration entry (it becomes information data only).
When invoked, the service callback function is passed back information about the
affected entry. The callback function is defined as:
int CbSrv(HANDLE hCfg, uint Tag, uint Item, uint Op, HANDLE hCfgEntry),

hCfg HANDLE to Config

Tag Tag value of entry changed

Item Item value of entry changed

Op Operation (CFGOP_ADD or CFGOP_REMOVE)

hCfgEntry Non-Referenced HANDLE to entry added or removed
The callback should return 1 on success, 0 on pass, and <0 on error.

NOTE: The configuration entry handle passed to the callback function is not
referenced, as its scope expires when the callback function returns.
SPRU524H—-May 2001 -Revised February 2012 Legacy Configuration Manager API 259

Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
CfgSetExecuteOrder — Set the Tag Initialization and Shutdown Order on Execute www.ti.com
CfgSetExecuteOrder Set the Tag Initialization and Shutdown Order on Execute
Syntax int CfgSetExecuteOrder(HANDLE hCfg, uint Tags, uint *pOpenOrder, uint
*pCloseOrder);

Parameters

hCfg Handle to configuration

Tags Number of tag values in pOpenOrder and pCloseOrder

pOpenOrder Pointer to array of tag values in initialization order

pCloseOrder Pointer to array of tag values in shutdown order
Return Value Returns zero on success, or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfg handle

CFGERROR_BADPARAM Invalid function parameter
Description The configuration APl has no knowledge of the configuration database specification.

Thus, it has no concept of a priority in loading and unloading configuration entries. The
default order for both loading and unloading is by ascending tag value.

You may require that the application specify the exact order in which entries should be
initialized (specified in pOpenOrder) and shut down (specified in pCloseOder). Both
arrays must be provided - even if they are identical pointers. The number of elements in
each array is specified by the Tags parameter. This must exactly match the maximum
number of tags in the system defined by CFGTAG_MAX. An entry of O in either order
array is used as a placeholder for tags that have not yet been defined.

G.2.3 Configuration Entry API Functions

CfgEntryDeRef Remove a Reference to a Configuration Entry Handle

Syntax int CfgEntryDeRef(HANDLE hCfgEntry);

Parameters
hCfgEntry Handle to configuration entry

Return Value Returns 0 on success, or less than 0 on an operation error. The possible errors are:
CFGERROR_BADHANDLE Invalid hCfgEntry handle

Description This function removes a reference to the configuration entry handle supplied in

hCfgEntry. It is called by an application when it wishes to discard a referenced
configuration entry handle. Once this function is called, the handle should no longer be
used.

260 Legacy Configuration Manager API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com CfgEntryGetData — Get Configuration Entry Data

CfgEntryGetData Get Configuration Entry Data

Syntax int CfgEntryGetData(HANDLE hCfgEntry, int *pSize, UINT8 *pData);
Parameters
hCfgEntry Handle to configuration entry
pSize Pointer to size of data buffer
pData Pointer to data buffer
Return Value Returns the number of bytes written, O on a size error (value at pSize set to required

size), or less than 0 on an operation error. The possible errors are

CFGERROR_BADHANDLE Invalid hCfgEntry handle
CFGERROR_BADPARAM Invalid function parameter
Description This function acquires the entry data of the configuration entry specified by the entry

handle in hCfgEntry.

The value pointed to by pSize is set to the size of the supplied buffer, or zero to get the
required size (the pointer pSize must be valid, but the value at the pointer can be zero).
If the value at pSize is zero, or less than the number of bytes required to hold the entry
data, this function returns 0, and the number of bytes required to hold the data is stored
at pSize.

The pData parameter points to the data buffer to receive the configuration entry data.
This pointer can be null if *pSize is zero.

CfgEntryInfo Get Information on a Configuration Entry
Syntax int CfgEntrylnfo(HANDLE hCfgEntry, int *pSize, UINT8 **ppData);
Parameters
hCfgEntry Handle to configuration entry
pSize Location to receive the size of the configuration entry data buffer
ppData Location to receive the pointer to the configuration entry data buffer
Return Value Returns 0 on success, or less than 0 on an operation error. The possible errors are:
CFGERROR_BADHANDLE Invalid hCfgEntry handle
Description This function acquires the size and pointer to a configuration entry's data buffer.

The entry handle is supplied hCfgEntry. A pointer to receive the size of the entry's data
buffer is supplied in pSize, and a pointer to receive a pointer to the entry's data buffer is
supplied in ppData. Either pointer parameter can be left NULL if the information is not
required.

This function should be used with great care. Direct manipulation of the configuration
entry data should only be attempted on informational tags, and only when the caller
holds a referenced handle to the configuration entry. This function is used in
configuration service callback functions, which are called only when the configuration is
in a protected state.

SPRU524H—-May 2001 -Revised February 2012 Legacy Configuration Manager API 261

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
CfgEntryRef — Add a Reference to a Configuration Entry Handle www.ti.com
CfgEntryRef Add a Reference to a Configuration Entry Handle
Syntax int CfgEntryRef(HANDLE hCfgEntry);
Parameters
hCfgEntry Handle to configuration entry

Return Value

Returns 0 on success, or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfgEntry handle

Description

This function adds a reference to the configuration entry handle supplied in hCfgEntry. It
is called by an application when it intends to use a configuration entry handle beyond the
scope of the function that obtained it from the configuration. This normally occurs when
one user function calls another and passes it a handle.

The handle should be dereferenced when no longer needed. Configuration entry handles
are dereferenced by calling one of the following:

CfgEntryDeRef() Stop using the entry
CfgRemoveEntry() Stop using entry and remove it from the configuration
CfgGetNextEntry() Stop using entry and get next entry
CfgEntrySetData (Re)Set Configuration Entry Data
Syntax int CfgEntrySetData(HANDLE hCfgEntry, int Size, UINT8 *pData);
Parameters
hCfgEntry Handle to configuration entry
Size Size of data buffer
pData Pointer to data buffer

Return Value

Returns the number of bytes written, O on a size error (new size does not match old
size), or less than 0 on an operation error. The possible errors are:

CFGERROR_BADHANDLE Invalid hCfgEntry handle
CFGERROR_BADPARAM Invalid function parameter
Description This function replaces the entry data of the configuration entry specified by the entry

handle in hCfgEntry.

The new entry data is pointed to by the pData parameter, with a size indicated by Size.
Note that the new data must be an exact replacement for the old. The size of the new
buffer must exactly match the old size.

This function should be used for configuration entries that are for information purposes
only. Note that if a service provider callback is associated with the Tag value of this
entry, the processing function is not called as a result of this data update. This function
only updates the data stored for this configuration entry.

262 Legacy Configuration Manager API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I

TEXAS
INSTRUMENTS

www.ti.com Configuration Specification

G.3

Configuration Specification

Specifying all the available configuration options for the stack would require a separate document. This
section details that part of the configuration that is relied upon by the Network Control (NC) initialization
functions, or the services contained in the NETTOOLS library. The stack itself does not reference the
configuration system. It has its own simpler method that is detailed in Appendix A, but it is redundant
when using the configuration API. In fact, they conflict, as the Network Control functions assume full
control of it.

G.3.1 Organization

As already mentioned, the configuration is arranged as a database with the value Tag as a major key, and
the value Item as a minor key. Every major stack configuration component has a major key (Tag) value,
including: network services (protocol servers), connected IP networks, gateway routes, connected client
entities, global system information, and low-level stack configuration.

Most of these tags require service callback functions to implement the system functionality. For example,
when an IP network is added using the CFGTAG_IPNET tag, there must be a function that makes the
corresponding system calls that adds the network to the system route table. All these server callback
functions are contained in the NETCTRL directory. Although source code to these functions is provided,
many of the system calls they make can only be understood by reading the attached appendices.

The tag values currently defined are:

CFGTAG_SERVICE Network Service

CFGTAG_IPNET IP Network (Address, subnet mask, etc.)
CFGTAG_ROUTE IP Gateway Route

CFGTAG_CLIENT IP Client (Client IP, Hostname, etc)

CFGTAG_ACCT Client user account (name, password, etc.)
CFGTAG_SYSINFO Global System Information

CFGTAG_OS Operating System Configuration entry
CFGTAG_IP IP Stack Configuration entry

NOTE: The configuration support is currently not available for IPv6 stack management. IPv6 stack
management can be done only using the APIs and data structure exported by it. IPv6 stack
APIs and data structures are discussed in Appendix F of this document.

G.3.2 Network Service Specification (CFGTAG_SERVICE)

The network services tag is perhaps the most time saving feature of the configuration. It allows you to
instruct the system of what tasks to execute, and how they should be executed. It is also the most
complicated configuration entry.

Network services are identified by a configuration Tag parameter value of CFGTAG_SERVICE.

Note that all these services are obtained directly from the NETTOOLS services API. The configuration
system adds a level of abstraction so that a list of services can be added to a configuration, and then the
service provider callback functions contained in the Network Control initialization routines can
automatically load the services at runtime without having to call the NETTOOLS API directly.

SPRU524H—-May 2001 -Revised February 2012 Legacy Configuration Manager API 263
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Configuration Specification www.ti.com

G.3.2.1 Service Types

The type of service is indicated by the value of the Iltem parameter supplied to the CfgAddEntry() function.
The defined service types include (by Item):

CFGITEM_SERVICE_TELNET Telnet Server
CFGITEM_SERVICE_HTTP HTTP Server
CFGITEM_SERVICE_NAT Network Address Translation
System
CFGITEM_SERVICE_DHCPSERVER DHCP Server
CFGITEM_SERVICE_DHCPCLIENT DHCP Client
CFGITEM_SERVICE_DNSSERVER DNS Server

G.3.2.2 Common Argument Structure
Each individual service has its own specific configuration instance structure, but they all share a generic
argument structure. This is defined as follows:

/1 Common Service Argunents
typedef struct _ci_srvargs {

ui nt Item /1 Copy of Itemvalue (init to NULL)

HANDLE hServi ce; /1l Handle to service (init to NULL)

ui nt Mode; /1 Fl ags

ui nt St at us; /] Service Status (init to NULL)

ui nt Report Code; // Standard NETTOCOLS Report Code

ui nt I f1dx; /1 1f physical |ndex

I PN | PAddr ; /1 Host |P Address

voi d(*pCbSrv) (ui nt, uint, uint, HANDLE); // CbFun for status change
} Cl SARGS;

The individual fields are defined as follows:
e uint ltem
This is a copy of the Item value used when the entry is added to the configuration. Its initial value

should be NULL, but it is overwritten by the service provider callback. It is used so that the status
callback function can be provided with the original Item value.

e HANDLE hServi ce;
This is the handle to the service as returned by the NETTOOLS function corresponding to the type of
service requested. Its initial value should be NULL, and it is initialized by the service callback function

when the service is started. The value is needed to shut down the service when the configuration is
unloaded.

e uint Mde;

The mode parameter is a collection of flags representing the desired execution behavior of the service.
One or more of the following flags can be set:

CIS_FLG_IFIDXVALID Specifies the Ifldx field is valid.
CIS_FLG_RESOLVEIP Requests that Ifldx be resolved to an IP address before service execution is initiated.
CIS_FLG_CALLBYIP Specifies that the service should be invoked by IP address. (This is the default behavior when

IFIDXVALID is not set, but this flag can be set with IFIDXVALID when RESOLVEIP is also
set. If IFIDXVALID is set and this bit is not set, the service is invoked by physical device .)

CIS_FLG_RESTARTIPTERM A service that is dependent on a valid IP address (as determined by the RESOLVEIP flag) is
shut down if the IP address becomes invalid. When this flag is set, the service will be
restarted when a new address becomes available. Otherwise; the service will not be
restarted.

264 Legacy Configuration Manager API SPRU524H—-May 2001 —-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

Configuration Specification

ui nt Status;

The status parameter contains the service status as detected by the Net Control service callback
function that initiates the service with NETTOOLS. The value of status should be initialized to NULL. Its
defined values are:

CIS_SRV_STATUS_DISABLED Service not active (NULL state)

CIS_SRV_STATUS_WAIT Net Control is waiting on IP resolution to start service
CIS_SRV_STATUS_IPTERM Service was terminated because it lost its IP address
CIS_SRV_STATUS_FAILED Service failed to initialize via its NETTOOLS open function

CIS_SRV_STATUS_ENABLED Service enabled and initialized properly

ui nt Report Code;

All the services available via the configuration can also be launched directly via a NETTOOLS API.
The NETTOOLS service API has a standard service reporting callback function that is mirrored by the
configuration system via the Net Control service provider callback. This variable holds the last report
code reported by the NETTOOLS service invoked by this configuration entry.

uint | fldx;

This is the physical device Index (1 to n) on which the service is to be executed. For example, when
launching a DHCP server service, the physical interface is that connected to the home network. For
more generic services (like Telnet), the service can be launched by a pre-defined IP address (or
INADDR_ANY as a wildcard). When launching by IP address only, this field is left NULL. If the field is
valid, the CIS_FLG_IFIDXVALID flag should be set in Mode.

| PN | PAddr ;

This is the IP address (in network format) on which to initiate the service. This IP address can specify
the wildcard INADDR_ANY, in which case the service will accept connections to any valid IP address
on any device. Note that some services (like DHCP server) do not support being launched by an IP
address and require a device Index (supplied in Ifldx) on which to execute.
voi d(*pChbSrv) (uint, uint, uint,

HANDLE) ;
The pCbSrv parameter contains a callback function that is called when the status of the service
changes. It can be set to NULL if a callback is not required. The specification of the callback function is
as follows:

void StatusCall back(uint Item uint
Status, uint Code, HANDLE hCfgEntry)

Item Item value of entry changed

Status New status

Code Report code (if any)

hCfgEntry Non-Referenced HANDLE to entry with status change

Note that the Status parameter is the same as the Status field described in the CISARGS structure.
The Code parameter is that returned by the NETTOOLS service callback, which is a lower-level status
callback function used by Net Control.

SPRU524H—-May 2001 -Revised February 2012 Legacy Configuration Manager API 265
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

Configuration Specification

13 TEXAS
INSTRUMENTS

www.ti.com

G.3.23

Individual Configuration Entry Instance Structures

The following code defines the instance structures used for each of the defined configuration entries using
the configuration service tag. Note that all structures contain the previously mentioned CISARGS
structure. Some services require more information and their configuration entry structure contains an
additional parameter structure as defined in the service's NETTOOLS API. Others do not require a

parameter structure.

/1 Telnet Entry Data
typedef struct _ci_service_telnet {
Cl SARGS ci sar gs; /1 Common ar gunents

NTPARAM TELNET param // Tel net paraneters

} Cl _SERVI CE_TELNET;

/1 HTTP Server Entry Data
typedef struct _ci_service_http {
Cl SARGS ci sar gs; /1 Common ar gunents
NTPARAM HTTP par am /1 HTTP paraneters
} Cl _SERVI CE_HTTP;

/1 NAT Service Entry Data

typedef struct _ci_service_nat {
Cl SARGS ci sar gs; /1 Common ar gunent s
NTPARAM NAT par am /1 NAT paraneters

} Cl _SERVI CE_NAT;

/1 DHCP Server Entry Data
typedef struct _ci_service_dhcps {
Cl SARGS ci sar gs; /1 Common ar gunents
NTPARAM DHCPS param // DHCPS paraneters
} ClI _SERVI CE_DHCPS;

/1 DHCP dient Service
typedef struct _ci_service_dhcpc {
Cl SARGS ci sar gs; /1 Common ar gunents
NTPARAM DHCP param // DHCP paraneters
} Cl _SERVI CE_DHCPC;

/1 DNS Server Service
typedef struct _ci_service_dnss {

Cl SARGS ci sar gs; /1 Common ar gunents
} Cl _SERVI CE_DNSSERVER;

266

Legacy Configuration Manager API

SPRU524H—-May 2001-Revised February 2012
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com Configuration Specification

G.3.2.4 Specifying Network Services

G.3.2.4.1 Specifying Telnet Service Using the Configuration

The Telnet service can be specified as public because it can connect using any IP address, or an IP
address of a specific interface. When accepting connections to any system IP address, the service is
specified with the CALLBYIP flag and an IP address of INADDR_ANY. When a private connection is
desired, the service is specified by the physical interface on which connections are allowed to occur.
Because an IP address is required to initialize the service, the RESOLVEIP flag should also be set in the
latter case. For example, the following code specifies that the telnet server should run using the IP
address INADDR_ANY.

t el net _exanpl e()

{
Cl _SERVI CE_TELNET tel net;

bzero(&t elnet, sizeof(telnet));

tel net.cisargs. | PAddr = | NADDR_ANY;

tel net.cisargs. pCbSrv = &ServiceReport;

tel net. param MaxCon = 2;

tel net. param Cal | back = &Consol eQpen;

Cf gAddEntry(hCfg, CFGTAG_SERVI CE, CFG TEM SERVI CE_TELNET,
0, sizeof(telnet), (U NT8 *)&elnet, 0);

}
The above code is all that is required when using the configuration system to invoke this service.

G.3.2.4.2 Specifying DHCP Server Service Using the Configuration

Because the DHCP server service executes on a specific interface, it is never executed based on an IP
address. Thus, it cannot be used with the CALLBYIP flag in the standard configuration service structure.
However, because an IP host address is required to initialize the service on a specific interface, the
RESOLVEIP flag should be set in cases where the IP address is not pre-assigned. For example, the
following code specifies that the DHCP server should run on the interface specified by the physical index
dhcpsldx. Here, the home networks have already been written to the configuration, so the RESOLVEIP
flag is not necessary. The address pool being used is already stored in IPPoolBase and PoolSize. The
DHCPS is requested to report the local server address as a DNS server to DHCP clients.

dhcp_server _exanpl e()

{
Cl _SERVI CE_DHCPS dhcps;

bzero(&dhcps, sizeof (dhcps));

dhcps. ci sargs. Mode = CI S_FLG_| FI DXVALI D;
dhcps. ci sargs. | fl1dx = dhcpsl dx;

dhcps. ci sargs. pCbSrv = &Servi ceReport;

/1 Report our address as a DNS server to clients, and use the
/'l network's |ocal domain namne.
dhcps. param Fl ags = DHCPS_FLG LOCALDNS | DHCPS_FLG_LOCALDOVAI N;

/'l Assign the | P address pool
dhcps. par am Pool Base = | PPool Base;
dhcps. par am Pool Count = Pool Si ze;

Cf gAddEnt ry(hCfg, CFGTAG_SERVI CE, CFG TEM SERVI CE_DHCPSERVER, O,
si zeof (dhcps), (U NT8 *)&dhcps, 0);
}

The above code is all that is required when using the configuration system to invoke this service.

SPRU524H—-May 2001 -Revised February 2012 Legacy Configuration Manager API 267
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Configuration Specification www.ti.com

G.3.2.4.3 Specifying DHCP Client Service Using the Configuration

Because the DHCP client service executes on a specific interface, it is never executed based on an IP
address. Thus, it cannot be used with the CALLBYIP flag in the standard configuration service structure.
Also, because the service runs without an IP host address, the RESOLVEIP flag should never be set. For
example, the following code specifies that the DHCP client should run on the interface specified by the
physical Index dhcpldx.

dhcp_client_exanpl e()

{
Cl _SERVI CE_DHCPC dhcpc;

bzero(&dhcpc, sizeof (dhcpc));
dhcpc. ci sargs. Mode = CI'S_FLG_| Fl DXVALI D;
dhcpce. cisargs. | fldx = dhepl dx;
dhcpc. ci sargs. pCbSrv = &Servi ceReport;
Cf gAddEnt ry(hCfg, CFGTAG SERVI CE, CFG TEM SERVI CE_DHCPCLI ENT, 0,
si zeof (dhcpc), (U NT8 *)&dhcpe, 0);
}

The above code is all that is required when using the configuration system to invoke this service.

G.3.2.4.4 Specifying HTTP Service Using the Configuration

The service can be specified as public as it can connect using any IP address, or an IP address of a
specific interface. When accepting connections to any system IP address, the service is specified with the
CALLBYIP flag and an IP address of INADDR_ANY. When a private connection is desired, the service is
specified by the physical interface on which connections are allowed to occur. Because an IP address is
required to initialize the service, the RESOLVEIP flag should also be set in the latter case.

For example, the following code specifies that the HTTP server should run using the IP address
INADDR_ANY.

htt p_exanpl e()
Cl _SERVI CE_HTTP htt p;

bzero(&http, sizeof(http));
http. ci sargs. | PAddr = | NADDR_ANY;
http. ci sargs. pCbSrv = &Servi ceReport;
Cf gAddEntry(hCfg, CFGTAG_SERVI CE, CFG TEM SERVI CE_HTTP, O,
sizeof (http), (U NT8 *)&http, 0);
}

The above code is all that is required when using the configuration system to invoke this service.

G.3.2.4.5 Specifying DNS Service Using the Configuration

The service can be specified as public because it can connect using any IP address, or an IP address of a
specific interface. When accepting connections to any system IP address, the service is specified with the
CALLBYIP flag and an IP address of INADDR_ANY. When a private connection is desired, the service is
specified by the physical interface on which connections are allowed to occur. Because an IP address is
required to initialize the service, the RESOLVEIP flag should also be set in the latter case.

For example, the following code specifies that the server should run using the IP address INADDR_ANY.
dns_server _exanpl e()

{
Cl _SERVI CE_DNSSERVER dnss;

bzero(&dnss, sizeof(dnss));
dnss. ci sargs. | PAddr = | NADDR_ANY;
dnss. ci sargs. pCbSrv = &Servi ceReport;
Cf gAddEntry(hCfg, CFGTAG SERVI CE, CFG TEM SERVI CE_DNSSERVER, O,
si zeof (dnss), (U NT8 *)&dnss, 0);
}

The above code is all that is required when using the configuration system to invoke this service.

268

Legacy Configuration Manager API SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com Configuration Specification

G.3.2.4.6 Specifying NAT Service Using the Configuration

Because the NAT service executes on a specified public interface, it is never executed based on an IP
address. Thus, it cannot be used with the CALLBYIP flag in the standard configuration service structure.
In addition, because the public IP host address is required to initialize the service, the RESOLVEIP flag
should be set when the IP address is not pre-assigned.

For example, the following code specifies that the NAT service should run on the interface specified by the
physical index natldx. Here, the DHCP client service is used to obtain the public IP address (the address
assigned to natldx), so at this point the IP address is unknown. Thus, the RESOLVEIP flag is set in the
execution mode parameter. This informs the configuration service manager not to invoke NAT until it has
resolved an IP address for the target interface. The RESTART flag is also set to tell the service to restart
NAT if a public IP address is lost and regained. In this example, it is assumed that all networks in the
192.168.x.x/255.255.0.0 subnet are part of the NAT group to be translated.

The MTU parameter to the NAT configuration allows the programmer to set a limit on the MTU negotiated
during a TCP connection. This prevents TCP packet traffic from being unnecessarily fragmented. For
example, when routing between Ethernet and PPPoE over NAT, the MTU should be set to the smaller
MTU of the two, which is PPPoE's limit of 1492. In the example below, it is assumed that the system is
Ethernet to Ethernet, and thus, it uses the full 1500.

nat _servi ce_exanpl e()

{
Cl _SERVI CE_NAT nat ;

bzero(&nat, sizeof(nat));

/1 Do not start NAT until we resolve an |IP address on its IF

nat.cisargs. Mode = CI'S FLG | FIDXVALID | C S FLG RESOLVEI P |
Cl S_FLG_RESTARTI PTERM

nat.cisargs.|fldx = natldx;

nat. ci sargs. pCbSrv = &Servi ceReport;

/'l Include all 192.168.x.x addresses in NAT group
nat.param | PVirt = htonl (0xc0a80000);

nat. param | PMask = ht onl (0xffff0000);

nat . param MU = 1500;

Cf gAddEntry(hCfg, CFGTAG SERVI CE, CFG TEM SERVI CE_NAT, 0,
sizeof (nat), (U NT8 *)&nat, 0); }

The above code is all that is required when using the configuration system to invoke this service.

To use NAT, it must be configured via the following function. Also, by default, the NAT code is not called
by the stack. This increases stack efficiency when NAT is not in use. To enable the NAT module, the
IpNatEnable element of the stack configuration structure must be set.

Note that when using the NAT service feature in NETTOOLS or when using the configuration system, this
low-level configuration is not required.

SPRU524H—-May 2001 -Revised February 2012 Legacy Configuration Manager API 269

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS

NatSetConfig — Configure the Network Address Translation Module www.ti.com

NatSetConfig Configure the Network Address Translation Module

Syntax void NatSetConfig(IPN IPAddr, IPN IPMask, IPN IPServer, uint MTU);

Parameters

IPAddr IP address of the Virtual Network

IPMask IP mask of the Virtual Network

IPServer Physical IP address of the server that will host the NAT translation
MTU IP Packet MTU (1500 for Ethernet, 1492 for PPPOE, etc.)

Description This function configures NAT with a virtual network and a physical server. Note that both
the virtual and physical addresses must also be contained in the stack's route table. NAT
should only be used when the stack is acting as a router, and when there are more than
one Ethernet devices present.

The MTU parameter must be in the range of 64 to 1500. When set less than 1500, TCP
connection negotiation will be altered so that TCP sessions through NAT will be limited
to the MTU specified. This prevents unnecessary fragmentation when using NAT over
dissimilar packet devices. (Note this MTU is the IP packet MTU, not the TCP MTU.)

G.3.3 IP Network Specification (CFGTAG_IPNET)

The IPNET entry specifies what IP networks are to appear on which physical interfaces. When specifying
an IPNET entry to the configuration, the Tag parameter is set to CFGTAG_IPNET, and the Item parameter
is set to the Index (1 to n) of the physical interface on which the network is to appear.

The IPNET entry instance structure is defined as follows:

/1 1 PNet Instance
typedef struct _ci_ipnet {

ui nt Net Type; /1 Network address type flags

I PN | PAddr ; /1 | P Address

I PN | PMask; /1 Subnet Mask

HANDLE hBi nd; /1 Binding handle (initially NULL)

char Domai n[CFG_DOVAI N_MAX]; // | PNet Domai n Nane
} Cl _I PNET;

The individual fields are defined as follows:
e uint NetType;

CFG_NETTYPE_DYNAMIC Address created by DHCP CLIENT
CFG_NETTYPE_VIRTUAL Virtual Network used by DNS resolver
CFG_NETTYPE_DHCPS Virtual Net Server reported by DHCP SERVER

This is type of network that appears on the interface. The network type determines how the network is
treated by some services like NAT, DHCP, and DNS. The value is a collection of one or more of the
following flags.

Most of the flags deal with the virtual network (or home network). If none of these flags are set, the
network is a normal physical network. Note that virtual and non-virtual networks should not appear on the
same interface. Also, only one network entry on each interface can have any of these flags set, although
more than one of these flags can be set in that one entry.

* | PN | PAddr;

This is the IP address of the stack on the designated interface. When the NetType flag DHCPS is set,
this address is also the gateway address reported to DHCP clients served by the DHCP server service.

« |PN | PMask;
This is the IP network subnet mask.
e HANDLE hBi nd;

270

Legacy Configuration Manager API SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com NatSetConfig — Configure the Network Address Translation Module

This is the stack's internal binding handle for the network. Each connected network is represented as a
binding internally to the stack. This is discussed further in the appendices at the end of this document.
The value should be initialized to NULL.

e char Domai n[CFG_DOVAI N_MAX] ;
This is the domain name of the network. It should be a full domain like homel.net, not just homel.

G.3.4 |P Gateway Route Specification (CFGTAG_ROUTE)

The ROUTE entry specifies a route from one network to another via a specified IP gateway. When
specifying a ROUTE entry to the configuration, the Tag parameter is set to CFGTAG_ROUTE, and the
Item parameter is not used (set to zero).

The ROUTE entry instance structure is defined as follows:

/1 Route |nstance
typedef struct _ci_route {

I PN | PDest Addr; // Destination Network Address

I PN | PDest Mask; // Subnet Mask of Destination

I PN | PGat eAddr; // Gateway |P Address

HANDLE hRout e; /'l Route handle (initially NULL)
} Cl _ROUTE;

The individual fields are defined as follows:
e | PN | PDest Addr ;

This is the IP base address of the IP network of the network that is made accessible via the IP
gateway. This value should be pre-masked with the IPDestMask so that:

(IPDestAddr & IPDestMask) = IPDestMask
This is used as a sanity check by the system. For a default route, the value is zero.
* | PN | PDest Mask;

This is the mask of the IP network accessible by the IP gateway. For a host route, the value is
OXFFFFFFFF, while for a default route, the value is zero.

e |PN | PGat eAddr ;

This the IP address of the gateway through which the specified IP network is accessible. It must be an
IP address that is available on a locally connected network, i.e., one gateway cannot point to another.

« HANDLE hRout €;

This is a handle to the route created by this configuration entry. All routes are represented as route
handles internally to the stack. This is discussed further in the appendices at the end of this document.
The value should be initialized to NULL.

G.3.5 Client Record Specification (CFGTAG_CLIENT)

The CLIENT entry specifies a record of a client that appears on the indicated physical interface. When
specifying a CLIENT entry to the configuration, the Tag parameter is set to CFGTAG_CLIENT, and the
Item parameter is set to the index (1 to n) of the physical interface on which the client appears.

Client records exist for two purposes:

1. They are used to resolve DNS queries on virtual networks.

2. They are used by the DHCP server service to track DHCP clients on the serviced virtual network.
Client records are created automatically in some DHCP server configurations (when using an address
pool), but they can also be added manually. This allows an application to build a pre-defined fixed list of
clients and their designated IP addresses on a virtual (home) network.

The CLIENT entry instance structure is defined as follows:

typedef struct _ci_client {

ui nt Cient Type; /'l Entry Status
ui nt St at us; /1 DHCPS Status (init to ZERO
I PN | PAddr ; /1 Cient |P Address
char MacAddr [6] ; /1 Cient Physical Address
SPRU524H—-May 2001 -Revised February 2012 Legacy Configuration Manager API 271

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS

INSTRUMENTS
NatSetConfig — Configure the Network Address Translation Module www.ti.com
char Host nane[CFG_HOSTNAME_MAX] ; // dient Hostnane
U NT32 TinmeStat us; /1 Time of last status change
U NT32 Ti meExpire; /1 Expiration Time from Ti neStat us
} Cl_CLI ENT;

The individual fields are defined as follows:
e uint CientType;

This is type of client record. There are only two types - those created by DHCP server from an address
pool, and those created manually by an application.

CFG_CLIENTTYPE_DYNAMIC Entry created via DHCPS
CFG_CLIENTTYPE_STATIC Entry created manually
e uint Status;

This is status of the client record. It is used by the DHCP server to track the state of the client and its
lease to its IP address. The status can also be NULL for STATIC entries.

CFG_CLIENTSTATUS_PENDING Supplied via DHCP OFFER
CFG_CLIENTSTATUS_VALID Validated by DHCP REQUEST
CFG_CLIENTSTATUS_STATIC Reported via DHCP INFORM or non-DHCP application
CFG_CLIENTSTATUS_INVALID Invalidated by DHCP DECLINE

* | PN | PAddr;

This is IP address of the client.
e char MacAddr|[6];
This is physical Ethernet address of the client.
e char
Host name[CFG_HOSTNAME_MAX] ;

This is the hostname of the client. It is recorded by the DHCP server service, even if the record is
STATIC. Thus, when running DHCP server, even with a fixed client list, DHCP clients can specify their
own host names, and these names will be available to the DNS resolver, i.e., DNS server and DNS
client.

« U NT32 TineStat us;

This is the last time that the Status parameter was validated. It is thus the start time of a DHCP client
lease.
 UINT32 Ti neExpire;

This is the total time in seconds of a DHCP client lease reported by the DHCP server to its clients.
When using an address pool for the DHCP server, the server chooses this value.

G.3.6 Client User Account (CFGTAG_ACCT)

The ACCT entry specifies an account record of a client that has access to the system. When specifying a
ACCT entry to the configuration, the Tag parameter is set to CFGTAG_ACCT, and the Item parameter is
set to the account type. Currently, the NDK has only one generic account type. Both PPP authentication
and EFS authorization realms use this type. Valid types values are:

CFGITEM_ACCT_SYSTEM System user account (PPP and EFS)
CFGITEM_ACCT_PPP PPP user account (SYSTEM)
CFGITEM_ACCT_REALM EFS Authorization Realm user account (SYSTEM)

The ACCT entry instance structure is defined as follows:

typedef struct _ci_acct {
ui nt Fl ags; /1 Account Fl ags
char User name[CFG_ACCTSTR_MAX]; // Usernane
char Passwor d[CFG_ACCTSTR_MAX]; // Password

} Cl _ACCT;

272

Legacy Configuration Manager API SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com NatSetConfig — Configure the Network Address Translation Module

The individual fields are defined as follows:

e uint Flags;
The flags determine the access granted by channel or group. The channels or groups that any given
PPP server will allow is determined when the PPP server is invoked. The same is true of the HTTP

authentication realms. A single client account can be a member of one or more groups, therefore, one
or more of the following flags can be set:

CFG_ACCTFLG_CH1 Allow access to channel/group/realm 1
CFG_ACCTFLG_CH2 Allow access to channel/group/realm 2
CFG_ACCTFLG_CH3 Allow access to channel/group/realm 3
CFG_ACCTFLG_CH4 Allow access to channel/group/realm 4

e char
User name[CFG_ACCTSTR_MAX] ;

This is the username of the client.

e char
Passwor d[CFG_ACCTSTR_MAX] ;

This is the password corresponding to the supplied client username.

G.3.7 System Information Specification (CFGTAG_SYSINFO)

The SYSINFO entry contains various types of global system information. There is no service callback
function associated with these entries, as they are static information only. When specifying a SYSINFO
entry to the configuration, the Tag parameter is set to CFGTAG_SYSINFO, and the Item parameter is set
to the system information item in question.

Note that the first 256 values for Item are reserved for items that exactly match the corresponding DHCP
protocol information tag value. For example:

#def i ne CFA TEM_DHCP_DOVAI NNAMESERVER 6 // Stack's DNS servers
#defi ne CFG TEM DHCP_HOSTNAME 12 // Stack's host nane

These values are read by various network services, and are written in one of two ways.

First, when the standard DHCP client is executing, it will take full control over the first 256 Item values. It
fills in the entries when it obtains its address lease, and purges them when the lease expires. There is a
set of default entries that the DHCP client will always request. Additional information requests can be
made by configuring the DHCP client, and the resulting replies will be added to the configuration.

Second, when there is no DHCP client service, the network application must manually write values to the
configuration for the Item values it views as important. A minimum configuration would include hostname,
domain name, and a list of domain name servers. Note that multiple IP addresses should be stored as
multiple instances of the same Item, not concatenated together with a longer byte length.

G.3.8 Extended System Information Tags

The following tag values are reserved for NDK and services configuration (see Appendix and Section E.3
for more information on PPP and HTTP realms):

CFGITEM_SYSINFO_REALM1 Realm Name 1 (maximum 31 chars)
CFGITEM_SYSINFO_REALM2 Realm Name 2 (maximum 31 chars)
CFGITEM_SYSINFO_REALM3 Realm Name 3 (maximum 31 chars)
CFGITEM_SYSINFO_REALM4 Realm Name 4 (maximum 31 chars)
CFGITEM_SYSINFO_REALMPPP Server Name for PPP (maximum 31 chars)
CFGITEM_SYSINFO_EVALCALLBACK Callback function registered by application. It is

used by the Evaluation version of the NDK to
notify the application five minutes before the
expiration of the 24-hour evaluation period.

SPRU524H—-May 2001 -Revised February 2012 Legacy Configuration Manager API 273

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

NatSetConfig — Configure the Network Address Translation Module

13 TEXAS
INSTRUMENTS

www.ti.com

G.3.9 OS/IP Stack Configuration Item Specification (CFGTAG_OS, CFGTAG_IP)

The OS and IP tags specify entries that alter various configuration options that can be adjusted in the
operating system and low-level stack operation. When specifying an entry to the configuration, the Tag
parameter is set to CFGTAG_OS or CFGTAG_IP, and the Item parameter is set to the configuration item
to set (these are listed below).

Creating a configuration entry results in an alteration of the system's internal configuration structures, but
because these entries are also part of the configuration object (hCfg), they can be stored off and recorded
as part of the CfgSave() functionality. Thus, using the configuration API has a significant advantage over
modifying the internal structures manually.

Removing an entry restores the default value to the internal stack configuration. Entries that are not
present cannot be read, and an error return on read implies the entry is in its default state.

The following is the list of configuration items. All items are of type int or uint. They correspond exactly to
the internal system configuration structures. For more information on these fields, see the internal
configuration discussion in both the Section 2.1.1 section earlier in this document, and the Configuring the
Stack section in the attached appendix Section A.13.

When creating a configuration entry for one of these tags, the entry should be specified as unique. For

example, to enable routing in the IP stack that code would be as follows:

/1 Enable |P routing
uint tnmp = 1;

Cf gAddEnt ry(hCf g, CFGTAG | P, CFG TEM | P_| PFORWARDI NG

CFG_ADDMCODE_UNI QUE, si zeof (uint),

(U NT8 *) &t np, 0);

The following item values correspond directly to the OS and IP Stack configuration structures _oscf g

and _ipcfg

For more information on these structures, see Section 2.1.1 and Section A.13.1.

When Tag is CFGTAG_QOS, the value of Item can be one of the following:

CFGITEM_OS_DBGPRINTLEVEL
CFGITEM_OS_DBGABORTLEVEL
CFGITEM_OS_TASKPRILOW
CFGITEM_OS_TASKPRINORM
CFGITEM_OS_TASKPRIHIGH
CFGITEM_OS_TASKPRIKERN
CFGITEM_OS_TASKSTKLOW
CFGITEM_OS_TASKSTKNORM
CFGITEM_OS_TASKSTKHIGH

Debug message print threshold
Debug message abort threshold
Lowest priority for stack task
Normal priority for stack task
Highest priority for stack task
Kernel-level priority (highest)
Minimum stack size

Normal stack size

Stack size for high volume tasks

When Tag is CFGTAG_IP, the value of Item can be one of the following:

CFGITEM_IP_ICMPDOREDIRECT
CFGITEM_IP_ICMPTTL
CFGITEM_IP_ICMPTTLECHO
CFGITEM_IP_IPINDEXSTART
CFGITEM_IP_IPFORWARDING
CFGITEM_IP_IPNATENABLE
CFGITEM_IP_IPREASMMAXTIME
CFGITEM_IP_IPREASMMAXSIZE
CFGITEM_IP_DIRECTEDBCAST
CFGITEM_IP_TCPREASMMAXPKT
CFGITEM_IP_RTCENABLEDEBUG
CFGITEM_IP_RTCADVTIME

Add route on ICMP redirect (1 = Yes)

TTL for ICMP messages (RFC1700 says 64)
TTL for ICMP echo (RFC1700 says 64)

IP Protocol Start Index

IP Forwarding Enable (1 = Yes)

IP NAT Translation Enable (1 = Yes)

Maximum IP reassembly time in seconds
Maximum IP reassembly packet size

Support directed BCast IP addresses (1 = Yes)
Maximum out of order packets held by TCP socket
Enable route control dbg messages (1 = Yes)
Time in sec to send Router Adv. (0 = don't)

274 Legacy Configuration Manager API

SPRU524H—-May 2001-Revised February 2012
Submit Documentation Feedback

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

www.ti.com

NatSetConfig — Configure the Network Address Translation Module

CFGITEM_IP_RTCADVLIFE
CFGITEM_IP_RTCADVPREF
CFGITEM_IP_RTARPDOWNTIME
CFGITEM_IP_RTKEEPALIVETIME
CFGITEM_IP_RTARPINACTIVITY

CFGITEM_IP_RTCLONETIMEOUT
CFGITEM_IP_RTDEFAULTMTU
CFGITEM_IP_RTGARP

CFGITEM_IP_SOCKTTLDEFAULT
CFGITEM_IP_SOCKTOSDEFAULT
CFGITEM_IP_SOCKMAXCONNECT

CFGITEM_IP_SOCKTIMECONNECT

CFGITEM_IP_SOCKTIMEIO
CFGITEM_IP_SOCKTCPTXBUF
CFGITEM_IP_SOCKTCPRXBUF
CFGITEM_IP_SOCKTCPRXLIMIT
CFGITEM_IP_SOCKUDPRXLIMIT
CFGITEM_IP_SOCKMINTX
CFGITEM_IP_SOCKMINRX
CFGITEM_IP_PIPETIMEIO
CFGITEM_IP_PIPEBUFMAX
CFGITEM_IP_PIPEMINTX
CFGITEM_IP_PIPEMINRX
CFGITEM_IP_TCPKEEPIDLE
CFGITEM_IP_TCPKEEPINTVL
CFGITEM_IP_TCPKEEPMAXIDLE
CFGITEM_IP_ICMPDONTREPLYBC

CFGITEM_IP_ICMPDONTREPLYMC

CFGITEM_IP_ICMPDONTREPLYEC

CFGITEM_IP_UDPSENDICMPUNREACH

CFGITEM_IP_TCPSENDRST

CFGITEM_IP_SOCKRAWETHRXLIMIT

CFGITEM_IP_MAX

Lifetime of route in RtAdv if active
Preference of route in RtAdyv if active
Time 5 failed ARPs keeps route down
Timeout of validated route in seconds

Time in seconds beyond which an unused route is
considered inactive and is cleaned up.

Timeout of newly cloned route in seconds
MTU for internal routes

Set processing policy of received gratuitous ARP
packets

Default IP TTL for Sockets

Default IP TOS for Sockets

Maximum connections on listening socket
Maximum time for connect socket

Default Maximum time for socket send/rcv
TCP Transmit allocated buffer size

TCP Receive allocated buffer size (copy mode)
TCP Receive limit (non-copy mode)
UDP/RAW Receive limit

Default min Tx space for able to write

Default min Rx data for able to read
Maximum time for pipe send/rcv call

Pipe internal buffer size

Pipe min Tx space for able to write

Pipe min Rx data for able to read

Idle time before 1st TCP keep probe

TCP keep probe interval

Maximum TCP keep probing time before drop

Do not reply to ICMP Echo Request packets sent to
broadcast/directed broadcast IP addresses (1 =
Yes)

Do not reply to ICMP Echo Request packets sent to
multicast IP addresses (1 = Yes)

Do not reply to any ICMP Echo Request packet
(0=Reply)

Reply with ICMP Unreachable packet to connection
attempts to a not listened UDP port (1=Reply)

Reply with RST packet to connection attempts to a
not listened TCP port (1=Reply)

Raw Ethernet socket receive limit
Maximum CFGTAG_STACK item

SPRU524H—-May 2001 -Revised February 2012
Submit Documentation Feedback

Legacy Configuration Manager API 275

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

13 TEXAS
INSTRUMENTS

Initialization Procedure www.ti.com

G4

Initialization Procedure

For applications that do not use XGCONF configuration, the basic process of stack initialization is as
follows:

1.

Initialize the operating system environment with the initialization function NC_SystemOpen(Priority,
OpMode). This function must always be called first - before any other NDK related function. The
calling parameters determine the priority and operating mode of the network event scheduler.

Create a new configuration via CfgNew().

Build the new configuration via configuration API calls, or load a previous configuration from non-
volatile memory using CfgLoad().

Boot the stack with the configuration by calling NC_NetStart(hCfg, pfnStart, pfnStop, pfnNetIP) with a
handle to the configuration, plus pointers to three user supplied callback functions for start, stop, and
IP address change operations. The NC_NetStart() function does not return until the stack session has
terminated. The configuration handle hCfg becomes the default configuration for the system.

After some preliminary initialization, the NC_NetStart() function creates a new thread that calls the user
supplied callback function for the start operation. At this point, the callback function creates task
threads for its networking requirements. This start function does not need to return immediately, but
should return at some point - i.e., the callback function should not take permanent control of the calling
thread. If system shutdown is initiated before the start function returns, some resources may not be
freed.

Under normal operation, the network does not shut down until the NC_NetStop() function is called. At
some point after a call to NC_NetStop(), the original NC_NetStart() thread calls the user supplied
callback function for the stop operation. In this callback function, the application shuts down any
operation it initiated in the start callback function and frees any allocated resources. After the stop
callback function returns, NDK functionality is no longer available.

The original call to NC_NetStart() returns with the return value as set by the return parameter passed
in the call to NC_NetStop(). The application can immediately reboot the NDK by calling NC_NetStart()
again, with or without reloading a new configuration. This is useful for a reboot command.

When the system is ready for a final shutdown, the following actions are performed:

1.

When NC_NetStart() returns and the session is over, call the CfgFree() function to free the
configuration handle created with CfgNew().

After all resources have been freed, call the NC_SystemClose() function to complete the system
shutdown.

276

Legacy Configuration Manager API SPRU524H—-May 2001-Revised February 2012

Submit Documentation Feedback
Copyright © 2001-2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

I3 TEXAS
INSTRUMENTS

Appendix H

SPRU524H—May 2001 —-Revised February 2012

Revision History

Table H-1 lists the changes made since the previous version of this document.

Table H-1. Document Revision History

Reference Additions/Modifications/Deletions
Change Summary for NDK 2.1
Section 4.1 New graphical configuration support for NDK modules has been added through the
XGCONF configuration tool in CCS. Many settings that had to be made in C code
can now be made with this tool.
Section 4.2.1 If you use XGCONF for configuration, the initialization process is automated and you

Related Documentation From Texas
Instruments

Appendix G

Title Page
How to Use This Manual

Related Documentation From Texas
Instruments

Section 1.1.1
Section 2.6.3
Section 3.4.2

Section G.3.1
Section G.3.9
Chapter 5
Section A.5

Section A.17
Section A.7.1
Section A.7.3

Section A.7.5
Section A.13.1
Section A.18

can configure hook functions to be executed at various defined points.

In addition to C6000 support, the NDK now supports the Cortex-A8 and ARM9 in
ELF format.

The legacy configuration documentation has been moved to an appendix.
DSP/BIOS 5.x is no longer supported; use the NDK with SYS/BIOS 6.30+.

Changes in Earlier Versions
Changed 1.94 to 2.00

Added text

Added reference

Added text
Added new sections

Added new section "Raw Ethernet Sockets Programming Interface" - following
sections renumbered accordingly

Added noter
Added/deleted text
Add text

Added new section "Jumbo Packet Buffer Manager (Jumbo PBM) Object " -
following sections renumbered accordingly

Added new section "Raw Ethernet Module"- following sections renumbered
accordingly

Added new section "ARP Revalidation Logic"- following sections renumbered
accordingly

Added new section “Information Structure”- following sections renumbered
accordingly

Added new modules
Added/deleted text
Added text

SPRU524H—-May 2001 -Revised February 2012
Submit Documentation Feedback

Revision History 277

Copyright © 2001-2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524H

	Table of Contents
	Preface
	1 Introduction
	1.1 What This Document Covers
	1.1.1 Supplemental API Information

	2 Operating System Abstraction API
	2.1 Operating System Configuration
	2.1.1 Configuration Structure

	2.2 Task Support
	2.2.1 Function Overview
	2.2.2 Task API Functions

	2.3 Semaphore Support
	2.3.1 Function Overview
	2.3.2 Semaphore API Functions

	2.4 Memory Allocation Support
	2.4.1 Function Overview
	2.4.2 Memory Allocation API Functions

	2.5 Print and Debug Support
	2.5.1 Standard API Functions
	2.5.2 Debug API Functions

	2.6 File I/O Support for Embedded Systems
	2.6.1 Function Overview
	2.6.2 EFS Custom API Functions
	2.6.3 EFS Standard API Functions

	2.7 Interrupt Management Support
	2.7.1 Configuration Structure
	2.7.2 Function Overview
	2.7.3 Interrupt Manager API Overview

	3 Sockets and Stream IO API
	3.1 File Descriptor Environment
	3.1.1 Organization
	3.1.2 Initializing the File System Environment
	3.1.2.1 When to Initialize the File Descriptor Environment

	3.2 File Descriptor Programming Interface
	3.2.1 Function Overview
	3.2.2 File Descriptor API Functions
	3.2.3 File Descriptor Set (fd_set) Macros

	3.3 Sockets Programming Interface
	3.3.1 Enhanced No-Copy Socket Operation
	3.3.2 Function Overview
	3.3.3 Sockets API Functions

	3.4 Raw Ethernet Sockets Programming Interface
	3.4.1 Function Overview
	3.4.2 Raw Ethernet Sockets API Functions

	3.5 Full Duplex Pipes Programming Interface
	3.5.1 Pipe API Functions

	3.6 Internet Group Management Protocol (IGMP)

	4 Initialization and Configuration
	4.1 Configuration Methods
	4.2 Network Control Initialization Procedure (NETCTRL)
	4.2.1 Initialization Procedure
	4.2.2 Function Overview
	4.2.3 Network Control API Functions

	5 Network Tools Library - Support Functions
	5.1 Generic Support Calls
	5.1.1 Function Overview
	5.1.2 Network Tools Support API Functions

	5.2 DNS Support Calls
	5.2.1 Function Overview
	5.2.2 Standard Types and Definitions
	5.2.2.1 Host Entry Structure
	5.2.2.2 Function Return Codes

	5.2.3 DNS Support API Functions

	5.3 TFTP Support
	5.3.1 TFTP Support API Functions

	5.4 TCP/UDP Server Daemon Support
	5.4.1 Server Daemon Support API Functions
	5.4.2 Server Daemon Example

	6 Network Tools Library - Services
	6.1 Service Calling Conventions
	6.1.1 Specifying Network Services Using the Configuration
	6.1.1.1 Service Report Function

	6.1.2 Invoking Network Services by NETTOOLS API

	6.2 Telnet Server Service
	6.2.1 Telnet Parameter Structure
	6.2.2 Invoking the Service via NETTOOLS API

	6.3 DHCP Server Service
	6.3.1 Operation
	6.3.2 DHCP Server Parameter Structure
	6.3.3 Invoking the Service via NETTOOLS API

	6.4 DHCP Client Support
	6.4.1 Operation
	6.4.2 DHCP Client Parameter Structure
	6.4.3 Invoking the Service via NETTOOLS API

	6.5 HTTP Server Support
	6.5.1 Operation
	6.5.2 HTTP Server Parameter Structure
	6.5.3 Using the HTTP Server and Adding Web Content
	6.5.4 Invoking the Service via NETTOOLS API

	6.6 DNS Server Service
	6.6.1 Operation
	6.6.2 DNS Server Parameter Structure
	6.6.3 Invoking the Service via NETTOOLS API

	6.7 Network Address Translation (NAT) Service
	6.7.1 Operation
	6.7.2 NAT Server Parameter Structure
	6.7.3 Invoking the Service via NETTOOLS API

	A Internal Stack Functions
	A.1 Overview
	A.1.1 Interrupts and Preemption
	A.1.2 Proper Use of the llEnter() and llExit() Functions
	A.1.3 Objects

	A.2 Stack Executive (Exec)
	A.2.1 API Functions

	A.3 Packet Buffer Manager (PBM) Object
	A.3.1 Object Type
	A.3.2 API Function Overview
	A.3.3 API Function Description

	A.4 Packet Buffer Manager Queue (PBMQ) Object
	A.4.1 Object Type
	A.4.2 API Function Overview
	A.4.3 API Function Description

	A.5 Jumbo Packet Buffer Manager (Jumbo PBM) Object
	A.5.1 API Function Overview
	A.5.2 API Function Description

	A.6 Stack Event (STKEVENT) Object
	A.6.1 Object Type
	A.6.2 API Function Overview
	A.6.3 API Function Description

	A.7 Link Layer Information (LLI) Object
	A.7.1 ARP Revalidation Logic
	A.7.2 Object Type
	A.7.3 Information Structure
	A.7.4 API Function Overview
	A.7.5 API Functions

	A.8 Interface (IF) Object
	A.8.1 Object Type
	A.8.2 API Function Overview
	A.8.3 API Function Description

	A.9 Ether Object
	A.9.1 Object Type
	A.9.2 API Function Overview
	A.9.3 API Functions

	A.10 Binding Object
	A.10.1 Object Type
	A.10.2 BIND API Functions

	A.11 Route Object
	A.11.1 Object Type
	A.11.2 Route Entry Flags Definition
	A.11.3 Route Entry Flags Guidelines
	A.11.4 API Functions

	A.12 Route Control Object
	A.12.1 Route Control Messages
	A.12.2 Route Control API Functions

	A.13 Configuring the Stack
	A.13.1 Configuration Structure

	A.14 Network Address Translation
	A.14.1 Operation

	A.15 Network Interface Management Unit (NIMU)
	A.15.1 Synopsis
	A.15.2 Data Structure Definition
	A.15.3 NIMU Configuration
	A.15.4 API Function Overview
	A.15.5 API Function Description

	A.16 Virtual LAN (VLAN) Support
	A.16.1 Synopsis
	A.16.2 User Priority Mapping Configuration
	A.16.2.1 User Priority Configuration
	A.16.2.2 Marking Packet Priority

	A.16.3 API Function Overview
	A.16.4 API Functions

	A.17 Raw Ethernet Module
	A.17.1 Synopsis
	A.17.2 Raw Ethernet Data Prioritization - Socket Priority Use Case
	A.17.2.1 Socket Priority Configuration

	A.17.3 API Function Overview
	A.17.4 API Functions

	A.18 Obtaining Stack Statistics

	B Network Address Translation
	B.1 NAT Operation
	B.1.1 Typical Configuration
	B.1.2 Basic NAT
	B.1.3 NAT Port Mapping
	B.1.4 NAT Proxy Filters
	B.1.4.1 Problem Synopsis
	B.1.4.2 Problem Example - FTP Clients on the LAN
	B.1.4.3 NDK Support for Proxy Filters
	B.1.4.4 FTP Proxy Filter Example Code

	B.2 NAT Port Mapping
	B.2.1 Function Overview
	B.2.2 NAT Entry Information Structure
	B.2.3 NAT API Functions

	B.3 NAT Proxy Filters
	B.3.1 Function Overview
	B.3.2 NAT Proxy Filter Callback Functions
	B.3.3 NAT Proxy API Functions

	C Point-to-Point Protocol
	C.1 Low Level PPP Support
	C.1.1 PPP Operation
	C.1.2 Function Overview
	C.1.3 Supported Protocols
	C.1.4 SI Module Callback Function
	C.1.4.1 Function Declaration
	C.1.4.2 SI_MSG_CALLSTATUS Message
	C.1.4.3 SI_MSG_ SENDPACKET Message
	C.1.4.4 SI_MSG_ PEERCMAP Message
	C.1.4.5 Example Callback Function Implementation

	C.1.5 Tips for Implementing a PPP Serial Interface (SI) Module Instance
	C.1.5.1 Multiple Instances
	C.1.5.2 Using the Timer Object
	C.1.5.3 Registering Packet Padding Requirements

	C.1.6 PPP API Functions

	C.2 Serial HDLC Client and Server Support
	C.2.1 Function Overview
	C.2.2 HDLC API Functions

	C.3 PPPoE Client and Server Support
	C.3.1 Function Overview
	C.3.2 PPPoE API Functions

	C.4 Creating PPP Server User Accounts
	C.4.1 Adding and Reviewing User Accounts
	C.4.1.1 Adding a PPP User Account
	C.4.1.2 Searching for a PPP User Account
	C.4.1.3 Removing a PPP User Account

	D Hardware Adaptation Layer (HAL)
	D.1 Overview
	D.1.1 HAL Function Types
	D.1.2  External Calls from HAL Functions

	D.2 Low-Level LED Driver (llUserLed)
	D.2.1 Function Overview
	D.2.2 Low-Level LED API Functions

	D.3 Low-Level Timer Driver (llTimer)
	D.3.1 Function Overview
	D.3.2 Low-Level Timer API Functions

	D.4 Low-Level Packet Driver (llPacket)
	D.4.1 Function Overview
	D.4.2 Low-Level Packet API Functions

	D.5 Low-Level Serial Port Driver (llSerial)
	D.5.1 Function Overview
	D.5.2 Low-Level Serial API Functions

	E Web Programming with the HTTP Server
	E.1 Adding Web Content
	E.1.1 Operation
	E.1.2 Converting Standard HTML Files
	E.1.3 Declaring HTML Files to EFS
	E.1.4 Cleaning up HTML Files

	E.2 Writing CGI Functions
	E.2.1 Adding Functions to the EFS
	E.2.2 CGI Function Declaration
	E.2.3 Parsing CGI Form Data
	E.2.4 Parsing CGI Multi-Part Form Data
	E.2.5 Sending HTTP/HTML Replies
	E.2.6 HTML Error Response

	E.3 HTTP Authentication
	E.3.1 Authorization Realms
	E.3.2 User Accounts
	E.3.3 Designating Protected Files

	E.4 CGI Function Example
	E.4.1 Create the HTML Page
	E.4.2 Create the Base WEBPAGE Source File

	E.5 HTTP Server Exported Functions
	E.5.1 Commonly Used Strings
	E.5.2 Function Overview
	E.5.3 HTTP Server Exported API Functions

	F IP Version 6 (IPv6) Stack API
	F.1 Synopsis
	F.2 API Functions and Data Structures
	F.2.1 Socket Support for IPv6
	F.2.2 Architecture
	F.2.3 Socket Options
	F.2.4 Daemon6
	F.2.5 Nettools Applications
	F.2.5.1 Telnet
	F.2.5.2 Web Server
	F.2.5.3 TFTP
	F.2.5.4 DNS Client

	F.2.6 Configuring the IPv6 Stack

	G Legacy Configuration Manager API
	G.1 Configuration Methods
	G.2 Configuration Manager
	G.2.1 Function Overview
	G.2.2 Configuration API Functions
	G.2.3 Configuration Entry API Functions

	G.3 Configuration Specification
	G.3.1 Organization
	G.3.2 Network Service Specification (CFGTAG_SERVICE)
	G.3.2.1 Service Types
	G.3.2.2 Common Argument Structure
	G.3.2.3 Individual Configuration Entry Instance Structures
	G.3.2.4 Specifying Network Services
	G.3.2.4.1 Specifying Telnet Service Using the Configuration
	G.3.2.4.2 Specifying DHCP Server Service Using the Configuration
	G.3.2.4.3 Specifying DHCP Client Service Using the Configuration
	G.3.2.4.4 Specifying HTTP Service Using the Configuration
	G.3.2.4.5 Specifying DNS Service Using the Configuration
	G.3.2.4.6 Specifying NAT Service Using the Configuration

	G.3.3 IP Network Specification (CFGTAG_IPNET)
	G.3.4 IP Gateway Route Specification (CFGTAG_ROUTE)
	G.3.5 Client Record Specification (CFGTAG_CLIENT)
	G.3.6 Client User Account (CFGTAG_ACCT)
	G.3.7 System Information Specification (CFGTAG_SYSINFO)
	G.3.8 Extended System Information Tags
	G.3.9 OS / IP Stack Configuration Item Specification (CFGTAG_OS, CFGTAG_IP)

	G.4 Initialization Procedure

	H Revision History

