
Application Report
SPRAAI5 – February 2008

1

Using IRES and RMAN Framework Components for ‘C64x+
Murat Karaorman, Gunjan Dang Software Development Organization

ABSTRACT

IRES is a TMS320 DSP Algorithm Standard (xDAIS) interface for management and
utilization of special resource types such as hardware accelerators, certain types of
memory and DMA. RMAN is a generic Resource Manager that manages software
components’ logical resources based on their IRES interface configuration. Both IRES
and RMAN are Framework Component modules. This document presents an overview of
IRES and RMAN, with examples.

Contents
1 Introduction ...2
2 IRES: Standard Interface for Resource Negotiation and Utilization...3

2.1 IRES and RMAN Modules...3
2.2 IRES Interface Definition ...5

2.2.1 IRES Resource Descriptors: IRES_ResourceDescriptor...6
2.2.2 IRES Interface Functions: IRES_Fxns ..7
2.2.3 Generic IRES Resource Object and Handle Structures ..9
2.2.4 Generic IRES Protocol Arguments ..9
2.2.5 Concrete IRES Resource Interfaces..10
2.2.6 Algorithm IRES Implementation Example..15

2.3 Cooperative Multitasking and Preemption...16
2.3.1 Non-Cooperative Multi-Tasking ...17
2.3.2 Cooperative Multi-Tasking – Yielding to the Same Priority..18
2.3.3 Cooperative Multi-tasking – Yielding to Higher Priority..19

3 RMAN: ‘C64x+ DMA Resource Manager ...21
3.1 Introduction..21
3.2 Using RMAN for Algorithm Integration ..21
3.3 IRESMAN: Standard Interface for Implementing Device-specific Resource Managers23

3.3.1 IRES Resource Description ires_<resource>.h...23
3.3.2 IRESMAN Resource Manager Description iresman_<resource>.h.............................23

3.4 RMAN Configuration ...26
3.4.1 XDC Configuration Parameters ...26
3.4.2 Low-level “C” Configuration Parameters ...28

3.5 RMAN Configuration Examples...30
3.5.1 Static and Dynamic Registration of Resource Managers with RMAN30
3.5.2 Configuring RMAN to use DSKT2 ...30
3.5.3 Configuring RMAN to Not Use DSKT2 ..31

3.6 Other Configuration Parameters ...31
3.7 Configuring RMAN Without Using RTSC ..32
3.8 Configuring RMAN Using RTSC Tooling...32
3.9 RMAN Version support..33

SPRAAI5

2 Using IRES and RMAN Framework Components for ‘C64x+

3.10 RMAN Functions ...33
3.10.1 RMAN_exit...34
3.10.2 RMAN_init..35
3.10.3 RMAN_register ..35
3.10.4 RMAN_unregister ..36
3.10.5 RMAN_assignResources...36

4 References ...40

Figures
Figure 1. IRES Function Calling Sequence..5
Figure 2. IALG and IDMA3 Interfaces and Application Implemented with Framework

Components ...6
Figure 3. Non-Cooperative Multitasking...18
Figure 4. Cooperative Multi-tasking: Yielding to the Same Priority ..19
Figure 5. Cooperative Multi-tasking: Yielding to a Higher Priority ..20
Figure 6. IRESMAN Functions Calling Sequence..24
Figure 7. RMAN Functions Calling Sequence..34

Tables
Table 1. IRES Functions...4
Table 2. IRES_ResourceDescriptor...4
Table 3. RMAN Functions ..4

1 Introduction
Media applications require multiple algorithms to run concurrently and share available system
resources (CPU, Memory, DMA, Hardware Accelerators, etc.) with high utilization rates.
Application frameworks must ensure minimal overhead for context switching, algorithm/resource
initialization, activation and deactivation to meet the real-time, scheduling and quality-of-service
requirements.

The TMS320 DSP Algorithm Standard (xDAIS) defines standard interfaces for algorithms to
request and acquire resources from the application framework. The standard also defines
properties and types of resources, along with rules and guidelines for their use, initialization, and
sharing.

IALG is the primary interface that xDAIS algorithms must implement. The IALG interface defines
a standard “memory” resource type with specific size, alignment, space, and physical address
attributes, and defines how the algorithm accesses memory through IALG-defined query,
initialization, relocation, activation and deactivation stages. Standard IALG-specified functions
enable the application framework to statically or dynamically query an algorithm’s instance
memory requirements, allocate and assign the requested “memory” and use the algorithm
instance to perform its specific functions.

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 3

The IDMA2 and IDMA3 interfaces were introduced as optional secondary xDAIS interfaces to
manage and utilize “DMA” resources, but did not support some types of physical or logical
resources, such as hardware accelerators, non-IALG memory types or certain DMA resources.
IRES is a new generic, extendible interface that supports new resource types. Algorithms must
still implement the IALG interface for instance creation, activation and deactivation, and may
implement IRES as an optional, secondary resource management and utilization interface for
new resource types.

This document presents an overview of the IRES interface, along with some concrete
resource types and resource managers that illustrate the definition, management and use
of new types of resources.

2 IRES: Standard Interface for Resource Negotiation and Utilization

2.1 IRES and RMAN Modules

IRES is a generic, resource-agnostic, extendible resource query, initialization and activation
interface. The application framework must define, implement and support concrete resource
interfaces in the form of IRES extensions. Each algorithm implements the “generic” IRES
interface to request one or more “concrete” IRES resources.

IRES defines standard interface functions that the framework uses to query, initialize,
activate/deactivate and reallocate concrete IRES resources. To create an algorithm instance
within an application framework, the algorithm and the application framework must agree on the
concrete IRES resource types that are being requested. The framework must call the IRES
interface functions, in addition to the IALG functions, to perform IRES resource initialization,
activation and deactivation.

The IRES interface also introduces support for a new standard protocol for cooperative pre-
emption, in addition to the IALG-style non-cooperative sharing of scratch resources. Cooperative
preemption allows activated algorithms to yield to higher priority tasks sharing common scratch
resources.

Framework Components includes the following modules and interfaces to support algorithms
requesting IRES-based resources:

• IRES. This is the standard interface allowing the client application to query and provide the
algorithm with its requested IRES resources.

• RMAN. This is the generic IRES-based resource manager. It manages and grants concrete
IRES resources to requesting algorithms and applications. RMAN uses a new standard
interface, the IRESMAN, to support runtime registration of concrete IRES resource
managers.

Client applications call the algorithm’s IRES interface functions to query its concrete IRES
resource requirements. If the requested IRES resource type matches a concrete IRES resource
interface supported by the application framework, and a resource is available, then the client
grants the algorithm logical IRES resource handles representing the granted resources. Each
granted handle provides the algorithm with access to the resource as defined by the concrete
IRES resource interface.

SPRAAI5

4 Using IRES and RMAN Framework Components for ‘C64x+

The following tables summarize the API functions and structures used by the IRES and RMAN
interfaces.

Table 1. IRES Functions
Functions Description

getResourceDescriptors () Query function to obtain the list of IRES resources requested by the algorithm
instance.

numResourceDescriptors() Query function to obtain the number of IRES resources requested.
initResources() Assignment function to grant the algorithm instance the list of IRES resources it

requested. The algorithm can initialize internal instance memory with resource
information, but may not use or access the resource state until the resource is
activated via the activateResource call.

reinitResources() Re-assignment function to grant the algorithm instance a list of "modified" IRES
resources.

deinitResources() De-initialization function to revoke the resources that have been granted to the
algorithm instance.

activateResource()

Resource activation call to grant the algorithm instance exclusive access to a
potentially shared resource. The algorithm can now access, initialize and/or
restore from a context saved during previous deactivation to use the resource.

activateAllResources() Resource activation call to grant the algorithm instance exclusive access to all
resources it acquired via IRES. Algorithm can now access, initialize and/or restore
from a context saved during previous deactivation to use the resources.

deactivateResource() Resource deactivation call to revoke the algorithm instance's exclusive access to
the potentially shared resource.

deactivateAllResources() Resource deactivation call to revoke the algorithm instance's exclusive access to
ALL shared resources. Algorithm must save any context that is needed to restore
the state during the next resource activation call.

Table 2. IRES_ResourceDescriptor
Structure Fields Description

resourceName String containing the package name to identify the resource.
protocolArgs Pointer to the Resource Protocol Arguments. The Resource Manager selects the

appropriate Resource Protocol based on the supplied "resourceName", and uses
the protocol to construct the IRES Resource Handle.

revision The revision of the IRES_ResourceProtocol Interface expected by the client
algorithm.

handle The handle to the object representing the requested resource. The handle is
initially set to 'null' by the requesting algorithm. The Resource Manager allocates
the resource and constructs the handle.

Table 3. RMAN Functions
Functions Description

RMAN_init Initialize the RMAN object with static information from the headers/configuration.
RMAN_exit Finalization method of the RMAN module.
RMAN_register Register the protocol/protocol revision and the device-specific resource manager

implementation with the Resource Registry of RMAN.
RMAN_unregister Unregister the protocol and the corresponding resource manager implementation

from the Resource Registry.
RMAN_assignResources Query, allocate and assign the resources the algorithm requested via IRES

interface.

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 5

Functions Description
RMAN_freeResources Free resources held by the algorithm resource handle.
RMAN_activateResource Activate a particular resource held by the algorithm.
RMAN_activateAllResources Activate all resources held by the algorithm.
RMAN_deactivateResource Deactivate a particular resource held by the algorithm.
RMAN_deactivateAllResources Deactivate all resources held by the algorithm.

2.2 IRES Interface Definition

The IRES interface is implemented by algorithms that need concrete resources defined by
extending the IRES interface. The application framework Resource Manager calls the
algorithm’s IRES interface functions to query and subsequently allocate and grant the requested
resources. RMAN is one such reference resource manager delivered as part of TI’s Framework
Components package, however, applications may choose to supply their own IRES compliant
resource managers.

An algorithm implements the IRES interface by defining and initializing a global structure of type
IRES_Fxns. Every function defined in this structure must be implemented and assigned to the
appropriate field in the structure. Figure 1 illustrates the calling sequence for IRES functions, and
how they relate to the IALG functions executed during algorithm instance creation and real-time
operation.

Figure 1. IRES Function Calling Sequence

The getResourceDescriptors() and reinitResources() functions can be called at any time in the
algorithm’s real-time stages. The algMoved() and algNumAlloc() functions were omitted from this
figure for simplicity.

algAlloc algInit numResourceDescriptors

getResourceDescriptors

initResources

Algorithm Creation Stages

algFree getResourceDescriptors

Algorithm
Termination Stages

reinitResources

algActivate

activateAllResources

“process”

algDeactivate

Algorithm Real-Time Stages

deactivateAllResources

SPRAAI5

6 Using IRES and RMAN Framework Components for ‘C64x+

The getResourceDescriptors() and initResources() functions must be called after IALG::algInit().
The numResourceDescriptors() function, called here after algInit(), can be called before the
algorithm instance object is created if the framework wants to query the algorithm about its IRES
resource requirements before creating the instance object.

Note: Framework Components provides an IRES resource manager, RMAN, that provides APIs
to grant resources to algorithms by calling their IRES functions. This is discussed in Section 2.1.

Figure 2 illustrates a typical system with an algorithm implementing the IALG and IRES
interfaces and the application with the Framework Components RMAN resource manager.

Algorithm entry–points
exposed in v–table

Access Resources
Upon activation

Call the IALG interface to:
+ create algorithm instances
+ activate & deactivate
+ move

Call the IRES
interface functions
to request and grant
resources

IALG
v-table

IRES
v-table

RMAN Algorithm
Implementation

Application
Framework

DSKT2

Call the IRES interface functions to:
+ activate & deactivate resources.
+ supply yield functions to support

co-operative pre-emption

IRES_EDMA
3 ResourceIRES_VICP

Resource

Can be configured to use
DSKT2 for
+ memory allocation fxns
+ get/set context, lock/unlock

fxns required for resource
yielding

Call the IRESMAN functions to:
+ obtain resource memory req’s
+ construct & destruct resource

handles
Figure 2. IALG and IDMA3 Interfaces and Application Implemented with Framework Components

2.2.1 IRES Resource Descriptors: IRES_ResourceDescriptor

The IRES functions use the IRES_ResourceDescriptors to characterize each logical IRES
resource granted to the requesting algorithm or module. The Resource Manager utilizes the
information in the resource descriptor to allocate the resource, and then passes its handle to the
algorithm instance.

The IRES_ResourceDescriptor structure has the following fields:

String resourceName
IRES_ProtocolArgs *protocolArgs
IRES_ProtocolRevision *revision
IRES_Obj *handle

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 7

This list describes these fields:

• String resourceName
String containing the package name to identify the resource.

• IRES_ProtocolArgs *protocolArgs
Pointer to the Resource Protocol Arguments. The Resource Manager selects the
appropriate Resource Protocol based on the supplied "resourceName", and uses the
protocol to construct the IRES Resource Handle.

• IRES_ProtocolRevision *revision
The revision of the IRES_ResourceProtocol Interface expected by the client algorithm.

• IRES_Obj *handle
The handle to the object representing the requested resource. The handle is initially set to
'null' by the requesting algorithm. The Resource Manager allocates the resource and
constructs the handle.

2.2.2 IRES Interface Functions: IRES_Fxns

The application framework calls IRES interface functions (IRES_Fxns) to query and grant
resources requested by the algorithm at initialization time, and to make changes to these
resources at run-time.

Void* IRES_Fxns::implementationId
IRES_Status(* IRES_Fxns::getResourceDescriptors)(IALG_Handle handle,
 IRES_ResourceDescriptor *resourceDescriptors)
Int32(* IRES_Fxns::numResourceDescriptors)(IALG_Handle handle)
IRES_Status(* IRES_Fxns::initResources)(IALG_Handle handle,
 IRES_ResourceDescriptor *resourceDescriptor,
 IRES_YieldFxn yieldFxn,
 IRES_YieldArgs yieldArgs)
IRES_Status(* IRES_Fxns::reinitResources)(IALG_Handle handle,
 IRES_ResourceDescriptor *resourceDescriptor,
 IRES_YieldFxn yieldFxn,
 IRES_YieldArgs yieldArgs)
IRES_Status(* IRES_Fxns::deinitResources)(IALG_Handle handle,
 IRES_ResourceDescriptor *resourceDescriptor)
IRES_Status(* IRES_Fxns::activateResource)(IALG_Handle handle, IRES_Handle resourceHandle)
IRES_Status(* IRES_Fxns::activateAllResources)(IALG_Handle handle)
IRES_Status(* IRES_Fxns::deactivateResource)(IALG_Handle handle, IRES_Handle resourceHandle)
IRES_Status(* IRES_Fxns::deactivateAllResources)(IALG_Handle handle)

SPRAAI5

8 Using IRES and RMAN Framework Components for ‘C64x+

The IRES interfaces functions are described in the following list:

• implementationId. Unique pointer that identifies the module implementing this interface.

• getResourceDescriptors. Query function to obtain the list of IRES resources requested by
the algorithm instance.

• numResourceDescriptors. Query function to obtain the number of IRES resources
requested by the algorithm instance, which is also the number of resource descriptors that
must be passed to the getResourceDescriptors() function.

• initResources. Assignment function to grant the algorithm instance the list of IRES
resources it requested. The algorithm can initialize internal instance memory with resource
information, but may not use or access the resource state until the resource is activated via
the activateResource call.

• reinitResources. Re-assignment function to grant the algorithm instance a list of "modified"
IRES resources. The algorithm may choose to not support the re-assignment and indicate
this by returning failure status. In case of success the algorithm updates its internal state to
reflect the new resource information, but may not use or access the resource state until the
resource is activated via the activateResource call.

• deinitResources. Deinitialization function to revoke the resources that were granted to the
algorithm instance.

• activateResource. Resource activation call to grant the algorithm instance exclusive
access to the potentially shared resource. Once activated, the algorithm can access,
initialize and/or restore from a previous context saved during deactivation. Activating each
resource individually optimizes resource management by the framework.

• activateAllResources. Resource activation call to grant the algorithm instance exclusive
access to all resources it acquired via IRES. Once activated, the algorithm can access,
initialize and/or restore from a previous context saved during deactivation.

• deactivateResource. Resource deactivation call to revoke the algorithm instance's
exclusive access to the potentially shared resource. Algorithm must save any context that is
needed to restore the state during the next resource activation call.

• deactivateAllResources. Resource deactivation call to revoke the algorithm instance's
exclusive access to ALL shared resources. The algorithm must save any context that is
needed to restore the state during the next resource activation call.

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 9

2.2.3 Generic IRES Resource Object and Handle Structures

Each IRES resource object holds the private state associated with the resource. The application
framework resource manager creates and initializes this state with the physical or logical
attributes of the concrete resource type that has been allocated. The Concrete IRES Resource
interface defines the concrete resource object properties.

When the resource is created with its persistent field set to “false”, the resources assigned to the
handle are considered to be “scratch”, as the definition applies to IALG memory attributes.
Algorithms must initialize the resource state each time they are put in an “active” state, via an
IRES activation call (following IALG::algActivate), and must save any necessary channel context
when they are deactivated.

The IRES_Obj structure has the following fields:

Int32 persistent
Void(* function)() getStaticProperties

This list describes these fields:

• Int32 persistent
Indicates if the resource has been allocated as persistent or scratch.

• Void(* getStaticProperties)(struct IRES_Obj *resourceHandle, IRES_Properties
*resourceProperties)
Obtains static properties associated with this resource, such as the device’s register layer.

2.2.4 Generic IRES Protocol Arguments

The abstract protocol arguments structure defines the resource independent fields common to
all IRES resource types. Each algorithm will supply, as part of the extended IRES resource
descriptor definition, a structure containing the attributes of the type of concrete IRES resource
that it is requesting. The extended IRES interface of the concrete resource type defines the
resource-specific attributes extending the IRES_ProtocolArgs structure definition. The structure
containing the actual arguments must be allocated by the algorithm as part of its IALG instance
memory.

The IRES_ProtocolArgs structure has the following fields:

Int32 size
IRES_RequestMode mode

This list describes these fields:

• Int32 size
Size of this structure in bytes.

• IRES_RequestMode mode
The mode can be either IRES_SCRATCH or IRES_PERSISTENT. When persistent, the
resource will be allocated exclusively for this algorithm.

SPRAAI5

10 Using IRES and RMAN Framework Components for ‘C64x+

2.2.5 Concrete IRES Resource Interfaces

The abstract IRES interface is convenient for defining a resource-agnostic communication
protocol through which algorithms can request and receive resources. However, algorithms will
always request resources with a well-defined IRES-based interface. The abstract IRES layer
allows the algorithm to simply use a “name”, “revision”, and “mode” to identify the concrete
resource it is requesting. The algorithm will also supply the resource protocol arguments, as
defined by the extended concrete resource interface.

The framework’s responsibility is to ‘locate’ the type of request designated by the algorithm’s
IRES resource descriptor, and if the name and revision matches any of the concrete IRES
resource types it supports, then it can parse the concrete resource protocol arguments supplied
in the resource descriptor, allocate the resource and give the algorithm the handle using the
generic IRES functions.

Algorithms and frameworks can define and introduce new resource types, or use supported
concrete resource types which may be pre-defined by standard suppliers, such as Texas
Instruments Framework Components. This section presents two concrete IRES resource
interfaces defined and supported by TI Framework Components: IRES_EDMA3CHAN and
IRES_HDVICP. Additional resource types have been introduced and documented by standard TI
Framework Components releases.

Each concrete IRES resource interface definition may supply the following extensions to the
abstract IRES interface to define:

• A name representing the new resource type.

• Revision information with each resource interface, to support evolution of the concrete
resource types.

• The resource-specific protocol arguments that the algorithm uses to characterize the
resource it is requesting.

• The properties of the specific resource instance that is allocated and passed to the
algorithm via the IRES handle. This means extending the IRES Object definition, introducing
the attributes of the allocated resource that are made visible via the extended IRES handle.

• The common, static properties of the concrete resource. These are the attributes of the
resource that are made visible by the new resource definition that do not depend on the
resource protocol arguments that were used to request the resource with, for example, the
base register addresses of the hardware accelerator resource.

• A functional interface for the resource. This is not required, but optionally the extended
static property of the resource interface can define a functional interface that the algorithm
uses to perform operations on the resource.

• Additional resource-specific types and structures that can be used by the algorithm to
request and use the resource.

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 11

2.2.5.1 EDMA3 Concrete Resource Interface

The IRES EDMA3 Resource Interface, IRES_EDMA3CHAN, allows algorithms to request and
receive handles representing EDMA3 resources associated with a single EDMA3 channel. This
is a very low-level resource definition specifically for the ‘C64x+ EDMA3 controller. Note that the
existing xDAIS IDMA3 and IDMA2 interfaces can still be used to request logical DMA channels,
but the IRES EDMA3CHAN interface provides the ability to request resources with finer
precision than with IDMA2 or IDMA3.

2.2.5.1.1 EDMA3 Channel Protocol Arguments

The following attributes are used by the algorithm when requesting an IRES_EDMA3CHAN
resource:

int size
IRES_RequestMode mode
short numPaRams
short paRamIndex
short numTccs
short tccIndex
short qdmaChan
short edmaChan
short contiguousAllocation
short shadowPaRamsAllocation

The field definitions are described in the following list:

• int size
Size of this structure in bytes.

• IRES_RequestMode mode
The mode can be either IRES_SCRATCH or IRES_PERSISTENT. When persistent, the
resource will be allocated exclusively for this algorithm.

• short numPaRams
Number of EDMA3 Parameter RAMs (PaRAMs) requested. Can request 0 to
IRES_EDMA3CHAN_MAXPARAMS many PaRams with a single request descriptor.

• short paRamIndex
Describes the type of paRams required. Can specify the start Index of a particular PaRam
block (if numPaRams > 1 and requesting contiguous PaRams) or request any PaRAM
block, via selecting IRES_EDMA3CHAN_PARAM_ANY.

• short numTccs
The number of TCC(s) requested: 0 to IRES_EDMA3CHAN_MAXTCCS.

SPRAAI5

12 Using IRES and RMAN Framework Components for ‘C64x+

• short tccIndex
Type of TCCs required. Can either specify the start Index of the TCC (if numPaRams > 1
and requesting contiguous TCCs), or request any TCC via IRES_EDMA3CHAN_TCC_ANY.

• short qdmaChan
QDMA channel number that is being requested. Either a specific QDMA channel, or “any”
available channel can be requested via IRES_EDMA3CHAN_QDMACHAN_ANY, otherwise
select “none” via IRES_EDMA3CHAN_CHAN_NONE.

• short edmaChan
EDMA channel number that is being requested. Either a specific EDMA channel, or “any”
available channel can be requested via IRES_EDMA3CHAN_EDMACHAN_ANY, otherwise
select “none” via IRES_EDMA3CHAN_CHAN_NONE.

• short contiguousAllocation
Flag indicating if contiguous allocation of PaRams and TCCs is required.

• short shadowPaRamsAllocation
Flag indicating if additional memory should be allocated as part of the IRES handle object,
which may be used for shadowing the physical PaRams.

2.2.5.1.2 EDMA3 Resource Properties

The following fields are introduced as an extension of the IRES_Obj structure:

IRES_Obj ires
IRES_EDMA3CHAN_PaRamStruct *shadowPaRams
unsigned int *assignedPaRamAddresses
short *assignedPaRamIndices
short *assignedTccIndices
short assignedNumPaRams
short assignedNumTccs
short assignedQdmaChannelIndex
short assignedEdmaChannelIndex
unsigned int esrBitMaskL
unsigned int esrBitMaskH
unsigned int iprBitMaskL
unsigned int iprBitMaskH

The IRES extension fields are described in the following list:

• IRES_EDMA3CHAN_PaRamStruct *shadowPaRams
Pointer to memory allocated for shadowing PaRams, if requested.

• unsigned int *assignedPaRamAddresses
Physical Addresses of assigned PaRams.

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 13

• short *assignedPaRamIndices
Indices of the assigned PaRams.

• short *assignedTccIndices
Indices of the assigned TCCs.

• short assignedNumPaRams
Number of assigned PaRams.

• short assignedNumTccs
Number of assigned TCCs.

• short assignedQdmaChannelIndex
Assigned QDMA channel index, if requested.

• short assignedEdmaChannelIndex
Assigned EDMA channel index, if requested.

• unsigned int esrBitMaskL
Event set register bit masks to trigger EDMA3 transfer on the allocated channel, if
requested.

• unsigned int esrBitMaskH
Event set register bit masks to trigger EDMA3 transfer on the allocated channel if
requested.

• unsigned int iprBitMaskL
Interrupt pending register bit mask to pend on transfer completion.

• unsigned int iprBitMaskH
Interrupt pending register bit mask to pend on transfer completion.

Many of these fields are very specific in their definition and usage, and they are mentioned here
as reference only. Please see the API reference for the specific revision of the interface
definition.

2.2.5.1.3 EDMA3 Static Resource Properties

The following attributes are defined by the IRES_EDMA3CHAN_Properties structure to
represent the static properties of the EDMA3 peripheral, that is exposed to the algorithm
instance through the assigned resource handle’s getStaticProperties() function pointer.

• numDmaChannels. Total number of DMA channels supported by the EDMA3 Controller.

• numQdmaChannels. Total number of QDMA channels supported by the EDMA3
Controller.

• numTccs. Total number of TCCs supported by the EDMA3 Controller.

SPRAAI5

14 Using IRES and RMAN Framework Components for ‘C64x+

• numPaRAMSets. Number of PaRAM Sets supported by the EDMA3 Controller.

• numEvtQueue. Number of Event Queues in the EDMA3 Controller.

• numTcs. Number of Transfer Controllers (TCs) in the EDMA3 Controller.

• numRegions. Number of Regions on this EDMA3 controller.

• dmaChPaRAMMapExists. Channel mapping configuration. A value of 0 (NO channel
mapping) implies that there is fixed association for a channel number to a parameter entry
number. In other words, PaRAM entry n corresponds to channel n.

• memProtectionExists. Boolean indicating existence or lack of a memory protection
feature.

• IRES_EDMA3CHAN_EDMA3RegisterLayer *globalRegs. Pointer to Global Register
Region of EDMA3 Channel Controller Registers. The definition of this structure corresponds
to the physical layout of the registers that can be accessed as named fields of the structure
definition.

2.2.5.2 HDVICP Hardware Accelarator Concrete Resource Interface

The IRES HDVICP Resource Interface, IRES_HDVICP, allows algorithms to request and receive
handles representing Hardware Accelerator resource, HDVICP, on supported hardware
platforms, such as DM6467. For example, on DM6467, where there are two HDVICP co-
processor subsystems, algorithms can request and acquire one of the co-processors using a
single IRES request descriptor.

IRES_HDVICP is an example of a very simple resource type definition, which operates at the
granularity of the entire processor and does not publish any details about the resource that is
being acquired other than the ‘id’ of the processor. It leaves it up to the algorithm to manage
internals of the resource based on the ‘id’.

2.2.5.2.1 HDVICP Protocol Arguments

The following attributes are used by the algorithm when requesting an IRES_HDVICP resource:

int base.size
IRES_RequestMode base.mode
IRES_HDVICP_RequestType id

The field definitions are described in the following list:

• int size
Size of this structure in bytes.

• IRES_RequestMode mode
The mode can be either IRES_SCRATCH or IRES_PERSISTENT. When persistent, the
resource will be allocated exclusively for this algorithm.

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 15

• IRES_HDVICP_RequestType id
IRES_HDVICP_RequestType can be one of the following co-processor types:

– IRES_HDVICP_ID_0 -> HDVICP processor 0

– IRES_HDVICP_ID_1 -> HDVICP processor 1

– IRES_HDVICP_ID_ANY -> Any available HDVICP processor

On DM6467, these processors are not symmetric, and HDVICP processor-0 has more hardware
capabilities for ‘video encoding’, so algorithms can request the right processor type based on the
functional requirements.

2.2.5.2.2 HDVICP Resource Properties

The following fields are introduced as an extension of the IRES_Obj structure:

• Void *info
Currently undefined.

• Int id
The ID of the HDVICP coprocessor that has been granted. Must be either
IRES_HDVICP_ID_0 or IRES_HDVICP_ID_1.

2.2.6 Algorithm IRES Implementation Example

1. Use the supported IRES interface header to request, for example, an HDVICP resource:

#include <ti/sdo/fc/ires/hdvicp/ires_hdvicp.h>

2. Allocate instance memory (via IALG) for each IRES request descriptor’s protocol argument
structure. In this example, the memory allocated is defined as the IALG instance object’s
structure’s member, protocolArgs, which is an array of type IRES_HDVICP_ProtocolArgs.

3. Implement the IRES::getRequestDescriptors() function, and fill out an IRES resource
descriptor for an HDVICP processor resource:

resourceDescriptors[0].resourceName = IRES_HDVICP_PROTOCOLNAME;
resourceDescriptors[0].revision = &IRES_HDVICP_PROTOCOLREVISION;

/* Fill the HDVICP protocol args to request:
 * - Either processor 0 or 1 (i.e. ANY)
 * - as scratch HDVICP resource
 */
algHandle->protocolArgs[0].base.size =
 sizeof(IRES_HDVICP_ProtocolArgs);
algHandle->protocolArgs[0].base.mode = IRES_SCRATCH;
algHandle->protocolArgs[0].id = IRES_HDVICP_ID_ANY;
/* Pass the request args in the descriptor */
resourceDescriptors[0].protocolArgs =
 (IRES_ProtocolArgs *)&(algHandle->protocolArgs);

SPRAAI5

16 Using IRES and RMAN Framework Components for ‘C64x+

4. Implement the IRES::initResources() function, where the algorithm instance receives the
allocated resource handles and saves them for its use.

– Allocate space in instance memory to save resource handles and any related state
information.

– Save any framework-supplied ‘yield’ function pointer & args, should the codec choose to
support “cooperative preemption” by yielding. (Optional.)

algHandle->hdvicp =
 (IRES_HDVICP_Handle)resourceDescriptor[0].handle;
/* Obtain the actual ID of HDVICP Resource granted */
algHandle->hdvicpID = (IRES_HDVICP_RequestType)
 ((IRES_HDVICP_Handle)resourceDescriptor[0].handle)->id;
/* Save the Yield function pointer and arguments */
algHandle->yieldFxn = yieldFxn;
algHandle->yieldArgs = yieldArgs;

5. Implement the IRES::activateAllResources() function, where the algorithm performs
necessary initialization of any volatile state associated with the resource, e.g.:

– Reset and load the HDVICP ARM968 & other subsystems.

– Set up the IPC between GEM and HDVICP.

6. Implement IRES::deactivateAllResources() function.

This is where algorithm does all the necessary work to save any volatile state associated
with the resource that it will need later to activate it during the next IRES activation stage.

2.3 Cooperative Multitasking and Preemption

A significant enhancement introduced by the IRES interface is to define a standard protocol for
algorithms’ cooperation with their multi-tasked or preemptive operating frameworks to support
efficient context switching and resource sharing.

The primary motivation behind this enhancement is to enable demanding media applications
which require multiple algorithms to run concurrently and share available system resources
(CPU, Memory, DMA, Hardware Accelerators, etc.) with high utilization rates. Application
frameworks need to ensure minimal overhead for context switching, algorithm/resource
initialization, activation and deactivation, otherwise they may not meet the real-time, scheduling
and quality-of-service requirements.

A majority of current xDAIS/xDM-compliant codecs process data streams in large-granularity
chunks (e.g. full video-frame) during which they cannot be pre-empted. Framework context
switches can only occur at frame boundaries, resulting in long periods of non-preemptible
operation that may lead to problems at the application level: long latency and response times,
priority inversions and under-utilization of resources, which may cause problems with quality and
real-time operation.

Without standard interfaces for cooperation, typical frameworks may not support unconstrained
pre-emption for common architectures due to hardware limitations to do context save/restores
on shared resources (e.g. EDMA3, VICP/IMCOP). Additionally, even when the hardware
provides support for preemption, the context save/restores may be too expensive without
algorithm-specific or application-specific knowledge.

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 17

Changing the granularity of data for processing requires API changes (e.g. to support processing
frames vs. frame-slices) which impacts both algorithm and application development schedules
and complexity.

IRES introduces support for cooperative preemption by specifying a standard way for
frameworks to supply algorithms a “yield” function pointer and arguments. In return, the
algorithms are encouraged to cooperate by calling this framework supplied “yield” function at
points of its own choosing, during its “active processing” stages. When the algorithm calls the
yield function, it supplies the state-dependent, efficient context save and restore functions, which
the framework calls only when there is a real context switch. The algorithm, for example a video
encoder, may transparently “yield” at “slice” boundaries, allowing context switches/preemption to
occur at sub-frame granularity, while allowing the framework to operate on a full-frame
granularity.

The following subsections describe example event sequences for non-cooperative and
cooperative multitasking.

2.3.1 Non-Cooperative Multi-Tasking

Without the ability to yield, algorithms must run to completion once they have been activated and
their ‘processing’ interface functions are called. The timing diagram in Figure 3 illustrates, as
explained below:

1. The framework application starts processing in the context of Thread. Event 1 corresponds
to an asynchronous arrival of a request to perform a ‘process’ operation on algorithm
instance, A. In this example, Thread 1 is ready to run, so it starts processing by first
performing an IALG::Activation of algorithm instance A, then calls A’s process function,
which runs to completion without issuing “yield.”

2. Event 2 corresponds to the framework’s receipt of an asynchronous request, using the
second thread, Thread 2, to call ‘process’ operation using algorithm instance B. At this
point, Thread 2 cannot be scheduled to run, since Thread 1, which is same or higher
priority, is actively running.

3. Thread 1, algorithm instance A, runs to completion and exits or blocks in application
framework-defined state (e.g. RMS layer in Bridge, Codec Engine Frameworks).

4. The O/S context switches and Thread 2 can run. Thread 2 subsequently activates, runs
and deactivates algorithm instance B.

5. Thread 2 exits or blocks in the framework layer, awaiting next processing request to arrive.

SPRAAI5

18 Using IRES and RMAN Framework Components for ‘C64x+

Figure 3. Non-Cooperative Multitasking

2.3.2 Cooperative Multi-Tasking – Yielding to the Same Priority

The timing diagram in Figure 4 and the steps below describe the event where two threads yield
to the same priority:

1. The framework application starts processing in the context of Thread. Event 1 corresponds
to an asynchronous arrival of a request to perform a ‘process’ operation on algorithm
instance, A. In this example Thread 1 is ready to run, so it starts by acquiring a group
resource lock, which succeeds. It then activates algorithm instance A, and calls A’s
process function.

2. The framework receives an event indicating a request for Thread 2 to run. At this point,
Thread 2 cannot be scheduled to run, since Thread 1, which is same or higher priority, is
actively running.

3. Thread 1’s algorithm A, inside its process() function calls IRES Yield.

4. Thread 1, executing the framework supplied Yield() function, releases the group-lock, and
issues a blocking O/S function (such as TSK_yield in DSP BIOS).

5. Thread 1 is blocked and O/S context switches to the same priority available thread, 2.

6. Thread 2 starts running, acquires group-lock, checks the ‘yield context’, and discovers that
there is a “yielding” algorithm, A. Therefore it saves A’s context by calling the Yield-
Context supplied_A::contextSave().

7. Thread 2 activates algorithm instance B, and then calls its process() function.

8. When Algorithm B’s process() returns, Thread 2 deactivates B, releases the group-lock,
and exits or blocks awaiting next request. When Thread 1 is blocked, the O/S context
switches to resume the blocked thread, Thread 1.

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 19

9. Thread 1 resumes inside the Yield() function, attempts to acquire the group-lock, which
succeeds since algorithm B has released the lock in (8). At this point, the Yield function
discovers that a context switch has occurred, so it restores its own algorithm A’s context
by calling Yield Context supplied A::contextRestore.

10. Thread 1, upon restoring A’s context, readies to resume.

11. Thread 1 Yield() function returns, resuming A::process() to the point where it had issued
Yield.

12. Thread 1 releases group-lock, exits or blocks.

Figure 4. Cooperative Multi-tasking: Yielding to the Same Priority

2.3.3 Cooperative Multi-tasking – Yielding to Higher Priority

Error! Reference source not found. shows the event sequence for a low priority thread that
yields to a higher priority thread. The steps are as follows:

1. The framework application starts processing in the context of Thread. Event 1 corresponds
to an asynchronous arrival of a request to perform a ‘process’ operation on algorithm
instance, A. In this example Thread 1 is ready to run, so it starts by acquiring a group
resource lock, which succeeds. It then activates algorithm instance A, and calls A’s
process function.

2. Framework receives asynchronous request to run Higher Priority Thread 2. An O/S
context switch occurs to run Thread 2, however, this thread blocks in attempting to acquire
the group-lock, which forces a context switch back to Thread 1.

3. Thread 1, algorithm A, inside its process() function calls IRES Yield.

4. Thread 1, executing the framework supplied Yield() function, releases the group-lock,

5. Thread 2, which was blocked on the group-lock, can now run, and an O/S context switch
to Thread 2 takes place.

SPRAAI5

20 Using IRES and RMAN Framework Components for ‘C64x+

6. Thread 2 acquires group-lock, checks the ‘yield context’, and discovers that there is a
“yielding” algorithm, A. Therefore it saves A’s context by calling the Yield-Context
supplied_A::contextSave()

7. Thread 2, returns from saving yielding algorithm A’s context, activates algorithm B, calls its
process(), which runs to completion. Then it deactivates B.

8. Thread 2 is done, exits or blocks waiting for the next request. This allows the O/S to
resume Thread 1.

9. Thread 1, inside IRES Yield function, where it had just released the group resource lock,
re-acquires-group-lock successfully. The yield function discovers that a context switch has
occurred, so it restores its own algorithm A’s context by calling Yield Context supplied
A::contextRestore.

10. Thread 1 restores A’s context, update its internal yield context state.

11. Thread 1 returns from the IRES Yield() function, resuming back to A’s process(), function,
to the instruction where it had issued Yield.

12. Thread 1, releases group-lock, exits or blocks.

Figure 5. Cooperative Multi-tasking: Yielding to a Higher Priority

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 21

3 RMAN: ‘C64x+ DMA Resource Manager

3.1 Introduction

RMAN is a generic Resource Manager responsible for granting and reclaiming logical resources
to/from requesting algorithms or other software components based on their IRES interface
specification. These resources could be, for instance, individual EDMA3 resources (DMA,
QDMA channels, PaRams, TCCs) on C64x+ based devices, an HDVICP instance on a Davinci-
HD device, a logical IMX unit of the VICP coprocessor on the DM648 device, etc.

The application framework configures RMAN during system start-up (prior to its first use) with
appropriate OS-specific memory allocation and semaphore operation functions. At run-time,
individual resource managers are registered with RMAN and are then used to grant logical IRES
resource handles to algorithms that correspond to physical resources allocated from the system.
The granularity of the resource that can be requested depends on the specific implementation of
the resource manager, and is described in the IRES interface of the resource
(ires_<resource>.h). The resources may be requested and granted as either scratch or
persistent resources.

RMAN has the ability to support multiple versions of individual resource managers. It performs
compatibility checks between the resource manager (IRESMAN implementation) registered with
RMAN, and the version of the IRES interface implemented by the algorithm requesting the
resource. A resource is granted only if the two versions are compatible. Other features of RMAN
include support for cooperative preemption and multi-tasking. RMAN supports cooperative yield
of an algorithm to another of same or higher priority. It uses Framework Components’ DSKT2
library to manage contexts of yielding algorithms. For details on this feature see Section 2.3.

RMAN functions are intended to provide application frameworks a convenient and easy-to-use
layer to integrate algorithms that request, and in some cases share, hardware resources.

3.2 Using RMAN for Algorithm Integration

The following steps provide a convenient set of instructions for using the RMAN module to grant
resources to algorithm instances that request IRES resources. These code snippets are from the
RMAN examples included with the Framework Components product. This example
demonstrates how RMAN would grant resources to an algorithm that requests EDMA3
resources.

1. Include the RMAN and IRESMAN_EDMA3CHAN module in the application. You can use
the RMAN module as provided or make changes to it as needed by the application.

#include <ti/sdo/fc/rman/rman.h>
#include <ti/sdo/fc/ires/edma3chan/iresman_edma3Chan.h>

SPRAAI5

22 Using IRES and RMAN Framework Components for ‘C64x+

2. Call the RMAN module initialization functions and register the resource managers
corresponding to the resources that will be requested by the algorithm instances.

static IRESMAN_edma3ChanParams configParams;

if (IRES_OK != RMAN_init()) {
 printf(“RMAN initialization failed\n”);
 return -1;
}

size = sizeof(IRESMAN_Edma3ChanParams);
configParams.baseConfig.allocFxn = RMAN_PARAMS.allocFxn;
configParams.baseConfig.freeFxn = RMAN_PARAMS.freeFxn;
configParams.baseConfig.size = size;

 if (IRES_OK ! = RMAN_register(&IRESMAN_EDMA3CHAN,
 (IRESMAN_Params *)&configParams)) {
 printf(“Registration of resource with RMAN failed\n”);
}

3. Use the RMAN module to grant resources requested by the algorithms.

if (IRES_OK != RMAN_assignResources((IALG_Handle) algHandle,
 (IRES_Fxns *)resFxns, scratchGroupId)) {
 printf("Assign Resource Failed \n");
 return -1;
}

4. Activate the resources that have been granted to the algorithm algHandle.

RMAN_activateAllResources((IALG_Handle)algHandle, (IRES_Fxns *)resFxns,
 scratchGroupId);

5. Deactivate and then free the resources after the algorithm is done using them. Unregister
the resource manager from RMAN and exit if no more algorithms will be assigned
resources.

RMAN_deactivateAllResources((IALG_Handle)algHandle, (IRES_Fxns *)resFxns,
 scratchGroupId);

if (IRES_OK != RMAN_freeResources((IALG_Handle)(algHandle),
 resFxns, scratchGroupId)) {
 printf("Free Resource Failed \n");
 return -1;
}

if (IRES_OK != RMAN_unregister(&IRESMAN_EDMA3CHAN)) {
 printf("Unregister of Resource Manager Failed \n");
 return -1;
}

RMAN_exit();

Note: The above code snippets indicate only the calls to the RMAN module. For more
information on how the algorithm requests the IRES resources see Section 2.2.6. For the
complete example that includes steps to create algorithm instance (using DSKT2), refer to the
RMAN examples that are included as part of the Framework Components product.

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 23

3.3 IRESMAN: Standard Interface for Implementing Device-specific Resource
Managers

The IRESMAN interface is a standard interface that needs to be implemented by individual
resource managers that manage hardware resources in a system. RMAN responds to
algorithms’ request for resources by obtaining resource handles from these resource managers
that have been registered with it.

The IRESMAN interface defined in <ti/sdo/fc/ires/iresman.h> may be extended by individual
resource manager implementations to better characterize the actual resource. For instance, the
IRESMAN_EDMA3CHAN interface represents and grants EDMA3 resources at the granularity of
a single EDMA/QDMA channel, TCC or PaRam set. Several resource manager implementations
are available as part of the Framework Components package (EDMA3CHAN, HDVICP, VICP,
NULL RESOURCE). The application framework should register the appropriate IRESMAN
resource managers with RMAN to be able to satisfy the resource requirements of algorithms
being instantiated. Third-party resource manager implementations may also be registered with
RMAN as long as they implement the IRESMAN interface.

The following subsections describe the important elements of any IRESMAN resource manager
implementation.

3.3.1 IRES Resource Description ires_<resource>.h

This file describes the IRES_<resource>_Obj structure, an extension of the IRES_Obj type
defined in ires_common.h, that defines the structure of the logical resource object that is
returned to requesting algorithms. It also contains information on what arguments are required to
request this resource. It implements and extends the IRES_ProtocolArgs data type to define
resource-specific arguments. This file needs to be included by the algorithm that requests the
particular IRES resource.

Detailed information on the IRES interface can be found in Sections 2.2.3, 2.2.4 and 2.2.5.

3.3.2 IRESMAN Resource Manager Description iresman_<resource>.h

This file implements the IRESMAN_Fxns interface defined in <ti/sdo/fc/ires/iresman.h> that has
APIs used to acquire and release logical IRES handles. RMAN internally calls this interface in
response to an algorithm’s resource requirements. This file should be included by the application
or framework that registers a resource with RMAN.

When the framework registers the IRESMAN resource manager implementation with RMAN
using the RMAN_register call, it uses two arguments. The first is an implementation of the
IRESMAN_Fxns function table, and second, registration parameters that are required to initialize
and set up the IRESMAN resource manager.

These two elements are described in detail in the subsections that follow.

SPRAAI5

24 Using IRES and RMAN Framework Components for ‘C64x+

3.3.2.1 IRESMAN Registration Parameters (IRESMAN_Params)

IRESMAN_Params are the initialization parameters required by the IRESMAN implementation.
These parameters extend the type IRESMAN_Params (ti/sdo/fc/ires/iresman.h) that include
memory allocation functions used to allocate IRES resource handles and other internal objects.
These parameters may be extended to include specific information that may be used to initialize
and configure the device resource manager.

3.3.2.2 IRESMAN Functions (IRESMAN_Fxns)

IRESMAN_Fxns is a global structure to be defined and initialized by individual resource
manager implementations. A pointer to this structure must be passed to RMAN during the
RMAN_register call. These functions are called by RMAN during various stages of an
application. The sections that follow describe the individual functions that need to be
implemented and Figure 6 indicates the various stages in the application when the functions are
called by RMAN.

Figure 6. IRESMAN Functions Calling Sequence

3.3.2.3 getProtocolName

This function returns a string representing the name of the protocol. When an algorithm requests
a resource, the name of the resource is matched against this string to determine if the resource
is available via RMAN. This function is called to identify the IRESMAN resource manager during
the initial registration stages, and also during the intermediate stages while serving the requests
of an algorithm.

The syntax is:

String (*getProtocolName)();

 init

Resource Manager Registration Stages

exit

Resource Manager
Un-register Stages

getProtocolRevision

getProtocolName

getHandle

“process”

freeHandle

Intermediate Stages

getProtocolName

getProtocolRevision

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 25

3.3.2.4 getProtocolRevision

This function returns a pointer to the IRES_ProtocolRevision type that indicates the version of a
particular resource. When an algorithm requests a resource, compatibility between the version of
the resource requested and that supported by the IRESMAN resource manager (returned by this
call) is checked to determine if the resource can be made available by RMAN. This function is
also called to identify the IRESMAN resource manager during the initial registration stages.

The syntax is:

IRES_ProtocolRevision * (* getProtocolRevision)();

3.3.2.5 init

This function creates and initializes the IRESMAN resource manager implementation. The
initialization arguments IRESMAN_Params are passed to this function to initialize the resource
manager. It is called during the initial registration stages of the resource manager.

The syntax is:

IRES_Status (* init)(IRESMAN_Params * initArgs);

3.3.2.6 exit

This function deletes the IRESMAN resource manager when it is no longer needed. It is called
during the un-registration of the resource manager, in the termination stages of the application
framework.

The syntax is:

IRES_Status (* exit)();

3.3.2.7 getHandle

This function returns resource handles (IRES_Handle) corresponding to the resources
requested. The details of the resource request are described in the IRES_ProtocolArgs
argument passed to this call. The IRES_ProtocolArgs type can be extended to include resource
specific details. The IRES_Handle returned may be a representation of an abstract resource or
an actual hardware resource being allocated to a particular algorithm. Like the protocolArgs, the
IRES_Handle type can be extended to represent the specific resource in detail.

This function is called to grant an algorithm the resources it requires, before it is activated.

The syntax is:

IRES_Handle (* getHandle)(IALG_Handle algHandle,
 IRES_ProtocolArgs * protocolArgs, Int scratchGroupId,
 IRES_Status * status);

SPRAAI5

26 Using IRES and RMAN Framework Components for ‘C64x+

3.3.2.8 freeHandle
This function releases resource handles (IRES_Handle) that are no longer required by an
algorithm. The handle is passed to this call that contains the details of the actual resource that is
to be freed. This function is called to release the resources held by an algorithm, after it has
been de-activated.
The syntax is:

IRES_Status (* freeHandle)(IALG_Handle algHandle,
 IRES_Handle resourceHandle, IRES_ProtocolArgs * protocolArgs,
 Int scratchGroupId);

3.4 RMAN Configuration
The RMAN module grants abstract IRES resource handles to requesting DSP algorithms. It
internally calls the IRES interface of the algorithms to query and grant the IRES resources. It
obtains these resources by calling the IRESMAN interface of the individual resource managers
that have been registered with it.

Each configuration option can be set at design time by the system integrator to ensure correct
operation of RMAN in the execution environment.

There are two ways to configure RMAN parameters:
• You can use a low-level C language based approach to directly modify an interface-defined

global configuration structure, RMAN_PARAMS, as defined in the RMAN API specification.
The RMAN_PARAMS structure defines the configurable parameters of the RMAN module.
Other global variables that describe the internal RMAN table that is used to hold the
registered IRESMAN entires can also be modified in a similar manner.

• Alternately, you can use XDC tooling to configure the RTSC module, RMAN. The XDC
tooling approach generates the same low-level C based global configuration structures, so
the configuration technology used does not matter to the underlying RMAN library
implementation.

The following sections describe the configuration parameters of the RMAN module.

3.4.1 XDC Configuration Parameters
The RMAN parameters are configurable using XDC tooling via the RTSC RMAN package
interface. These parameters are specified in RMAN.xdc and are listed here.

uInt RMAN.tableSize
uInt RMAN.maxAlgs
bool RMAN.useDSKT2
String RMAN.persistentAllocFxn
String RMAN.persistentFreeFxn
bool RMAN.yieldSamePriority
String RMAN.semCreateFxn
String RMAN.semDeleteFxn
String RMAN.semPendFxn
String RMAN.semPostFxn
bool RMAN.debug

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 27

These parameters are described in the following list:

• uInt RMAN.tableSize
The total number of entries required in the RMAN_TABLE to hold the various IRESMAN
resource managers that will be registered statically or dynamically with RMAN. For
example, if RMAN will be managing only the EDMA3 and HDVICP resources, tableSize can
be set to 2.

• uInt RMAN.maxAlgs
The maximum number of algorithm instances that will use the RMAN module to obtain
resources.

• bool RMAN.useDSKT2
A flag indicating if DSKT2 can be used to supply the memory allocation functions and to
provide algorithm yield support required by RMAN. If this is set to true, then the following
configuration parameter settings are ignored:

 RMAN.persistentAllocFxn,

 RMAN.persistentFreeFxn

These are internally set to DSKT2’s persistent memory allocation and free functions.

• String RMAN.persistentAllocFxn
Function for allocating persistent memory for RMAN’s internal objects. This parameter need
not be set if RMAN.useDSKT2 is set to true.

• String RMAN.persistentFreeFxn
Function to free memory allocated by RMAN’s persistentAllocFxn function. This parameter
need not be set if RMAN.useDSKT2 is set to true.

• bool RMAN.yieldSamePriority
Flag indicating if RMAN should allow yields to algorithms of the same priority when
performing cooperative preemption. Since support for cooperative preemption is provided
via the DSKT2 library, this parameter is required to be set only if RMAN.useDSKT2 is true.

• String RMAN.semCreateFxn
Function to create semaphores that might be used by individual resource managers
(IRESMAN) registered with RMAN.

• String RMAN.semDeleteFxn
Function to delete semaphores that were created using the RMAN.semCreateFxn function

• String RMAN.semPendFxn
Function to pend on semaphores created using the RMAN.semCreateFxn function.

• String RMAN.semPostFxn
Function to post on semaphores created using the RMAN.semCreateFxn function.

SPRAAI5

28 Using IRES and RMAN Framework Components for ‘C64x+

• bool RMAN.debug
A value of true for the debug parameter enables the debug profile of the RMAN library. This
results in a larger and slower version of the library being linked in. It provides extra
parameter checking and causes debug statements to be generated in the DSP/BIOS SYS
trace buffer.

• bool RMAN.trace
A value of true for the trace parameter enables the trace profile of the RMAN library. This
will result in a larger and slower library being linked in, but it will provide trace statements for
debugging purposes.

3.4.2 Low-level “C” Configuration Parameters

In a non-XDC environment, configuration parameters may be set or modified using low-level C
language. The global RMAN configuration structure (RMAN_PARAMS) and other global
variables may be modified to configure RMAN as appropriate.

The following configuration variables and structures are supported:

short RMAN_Params::numRegistries
IRESMAN_PersistentAllocFxn * RMAN_PARAMS::allocFxn
IRESMAN_PersistentFreeFxn * RMAN_PARAMS::freeFxn
IRES_YieldFxn RMAN_PARAMS::yieldFxn
Bool RMAN_PARAMS::yieldSamePriority
far IRESMAN_Fxns * RMAN_TABLE[RMAN_PARAMS_NUMREGISTRIES]
far short RMAN_FREE_ENTRIES[RMAN_PARAMS_NUMREGISTRIES]
far short RMAN_numRegistryEntries
far IRESMAN_Fxns ** RMAN_registryEntries
far IRESMAN_Params ** RMAN_registryResmanArgs

These structures and variables are described in this list:

• short RMAN_Params::numRegistries
Number of entries required in the RMAN_TABLE to hold the various IRESMAN resource
managers that will be registered statically or dynamically with RMAN. Since a NULL
resource is pre-registered with the RMAN_TABLE during initialization, the value of this field
should be the total number of resources being registered (statically and dynamically) plus
one. See RTSC module RMAN’s parameter RMAN.tableSize. The value of numRegistries is
computed by adding one to the configured tableSize.

• IRESMAN_PersistentAllocFxn * RMAN_PARAMS::allocFxn
Function for allocating persistent memory for RMAN’s internal objects and also to satisfy
memory requirements of other IRESMAN implementations. Same as RTSC module
RMAN’s parameter RMAN.persistentAllocFxn.

• IRESMAN_PersistentFreeFxn * RMAN_PARAMS::freeFxn
Function for freeing persistent memory allocated for RMAN’s internal objects and other
IRESMAN objects. Same as RTSC module RMAN’s parameter RMAN.persistentFreeFxn.

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 29

• IRES_YieldFxn RMAN_PARAMS::yieldFxn
Function to support yields of DSKT2 based algorithms to other algorithms of same or higher
priority. If DSKT2 is being used to manage algorithm memory and scratch groups etc, set
this to function RMAN_yield, else this should be set to NULL.

• Bool RMAN_PARAMS::yieldSamePriority
Flag to indicate if algorithms should yield to others of the same priority. This flag is used
only if the yieldFxn is set to RMAN_yield. Same as RTSC module RMAN’s parameter
RMAN.yieldSamePriority.

• far IRESMAN_Fxns * RMAN_TABLE[RMAN_PARAMS_NUMREGISTRIES];
Table to store IRESMAN entries that will be registered with RMAN. The size of this table
should be the same as RMAN_PARAMS::numRegistries. RTSC module RMAN’s parameter
RMAN.tableSize dictates the size of this table.

• far short RMAN_FREE_ENTRIES[RMAN_PARAMS_NUMREGISTRIES];
Table to store the entries that are freed when a resource is un-registered from RMAN using
the RMAN_unregister API. The size of this table should be the same as
RMAN_PARAMS::numRegistries. RTSC module RMAN’s parameter RMAN.tableSize
dictates the size of this table.

• far short RMAN_numRegistryEntries = 0;
Number of entries to be registered statically with the Resource Registry table, RMAN.
Instead of calling RMAN_register to individually register resource managers at run-time,
resources could be registered statically by populating these variables
RMAN_numRegistryEntries, RMAN_registryEntries, RMAN_registryResmanArgs. Populate
this variable with the total number of entries that will be registered statically. Information in
these variables will be used to pre-register these resource managers during the call to
RMAN_init.

• far IRESMAN_Fxns ** RMAN_registryEntries = NULL;
Array of IRESMAN (resource manager) configuration entries to be registered statically with
RMAN. Instead of calling RMAN_register to individually register resource managers at run-
time, resources could be registered statically by populating these variables:
RMAN_numRegistryEntries, RMAN_registryEntries, RMAN_registryResmanArgs. Populate
this variable with an array of IRESMAN_Fxns pointers that correspond to the resource
managers that need to be registered statically. Information in these variables will be used to
pre-register these resource managers during the call to RMAN_init.

• far IRESMAN_Params ** RMAN_registryResmanArgs = NULL;
Initialization arguments for the IRESMAN configuration entries to be registered statically
with RMAN. Instead of calling RMAN_register to individually register resource managers at
run-time, resources may be registered statically by populating these variables:
RMAN_numRegistryEntries, RMAN_registryEntries, RMAN_registryResmanArgs. Populate
this variable with an array of Pointers to initialization arguments for various IRESMAN
resource managers. Information in these variables will be used to pre-register these
resource managers during the call to RMAN_init.

SPRAAI5

30 Using IRES and RMAN Framework Components for ‘C64x+

3.5 RMAN Configuration Examples

The following subsections discuss some common RMAN configuration scenarios.

3.5.1 Static and Dynamic Registration of Resource Managers with RMAN

As mentioned in the previous section, resources can be registered both statically and
dynamically with RMAN. The size of the RMAN table needs to be configured large enough to
hold all the entries that are registered including the “NULL resource” that is pre-registered with
RMAN by default.

If you use XDC to configure RMAN, then you do not need to account for the NULL resource. Set
RMAN.tableSize to be equal to the total number of entries (static and dynamic) that will be
registered with RMAN. Internally the XDC tooling generated “C” code will adjust for the one extra
entry that is required.

For non-XDC configuration, set the field numRegistries in the RMAN_PARAMS structure to a
value that is equal to the total number of entries that will be registered with RMAN plus one. The
extra entry is required for the NULL resource entry that will be pre-registered with RMAN at init
time.

Static registration of resources is currently not available via XDC configuration. To configure
static registration of resources, simply modify the following global variables before calling
RMAN_init:

• RMAN_numRegistryEntries to the number of entries being registered statically.

• RMAN_registryEntries to point to an array of pointers to the IRESMAN_Fxns, i.e. the
individual resource manager implementation function table.

• RMAN_registryResmanArgs to point to an array of pointers to the IRESMAN_Params, i.e.
the initialization arguments required by the individual resource manager implementations.

3.5.2 Configuring RMAN to use DSKT2

RMAN can be configured to use Framework Components’ DSKT2 library to manage its memory
allocation, etc. and also to provide support for cooperative preemption to algorithms.

Using XDC tooling, setting RMAN.useDSKT2 to true lets the DSKT2 library provide appropriate
memory allocation functions, and a suitable “yield” function that is required to support
cooperative preemption among algorithms. If .useDSKT2 is set to true, then the following RMAN
configuration parameters need not be set individually:

• RMAN.persistentAllocFxn

• RMAN.persistentFreeFxn

These functions are set to appropriate DSKT2 memory allocation functions. Configured in this
manner, RMAN will now allow algorithms to perform cooperative preemption. To control whether
an algorithm should be preempted by an algorithm of the same priority, set
RMAN.yieldSamePriority to true or false.

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 31

Even in the absence of XDC tooling, DSKT2 may be used to manage memory allocation and to
support cooperative preemption. However, individual fields of the RMAN_PARAMS structure
need to be set to corresponding DSKT2 functions:

• RMAN_PARAMS.allocFxn should be set to DSKT2_allocPersistent function.

• RMAN_PARAMS.freeFxn should be set to DSKT2_freePersistent function.

If cooperative preemption is to be supported, set RMAN_PARAMS.yieldFxn to the RMAN_yield
function exposed by the RMAN module.

Also set the field yieldSamePriority to indicate support for yields to algorithms of the same
priority.

3.5.3 Configuring RMAN to Not Use DSKT2

RMAN can be configured independently of DSKT2 to use other application- or framework-
supplied functions to perform memory allocation.

Using XDC tooling, set RMAN.persistentAllocFxn to an appropriate memory allocation function
of the type:

typedef Bool (fxn)(IALG_MemRec * memTab, Int numRecs)

For the RMAN.persistentFreeFxn, supply a function of the type:

typedef Void (fxn)(IALG_MemRec *memTab, Int numRecs)

These functions will be used to allocate and free memory for internal objects required by RMAN.

In the traditional “C” approach, simply set the following parameters of the RMAN_PARAMS
structure to functions of the type mentioned above: allocFxn, freeFxn.

Note: Cooperative preemption support is available only if DSKT2-supplied functions are used to
perform memory allocation/free/ Please do not attempt to supply a customized yield function;
simply leave the field as NULL. Currently only the DSKT2-based yield function (RMAN_yield) is
supported, and only when the DSKT2 library is used to manage the scratch groups.

3.6 Other Configuration Parameters
Other configuration parameters for RMAN include functions to create and delete semaphores,
and functions to pend/post on them.

RMAN doesn’t use these semaphore functions, but some IRESMAN implementations may use
RMAN’s configured semaphore function implementations to protect access to critical sections in
the code or to prevent simultaneous access to global registers/data structures.

Using XDC tooling, configure the following parameters of the RTSC module RMAN:

• RMAN.semCreateFxn to a function with the signature Void * fxn(Int key, Int count);

• RMAN.semDeleteFxn to a function with the signature Void fxn(Void * sem;)

• RMAN.semPendFxn to a function with signature Int fxn(Void * sem, unsigned int timeout);

• RMAN.semPostFxn to a function with signature Void fxn(Void * sem);

SPRAAI5

32 Using IRES and RMAN Framework Components for ‘C64x+

Since these functions are not used by RMAN directly, they are not part of the RMAN_Params
structure and are not required to be configured in a non-XDC environment. You would directly
configure the semaphore functions explicitly for the modules that require semaphores (for
example, IRESMAN_EDMA3CHAN).

3.7 Configuring RMAN Without Using RTSC

The non-RTSC way to configure the RMAN configuration parameters is straightforward. Include
the rman.h header in your C file and override each of the parameters with the modified values.
By default, an RMAN_TABLE and an RMAN_FREE_ENTRIES table will be created of size 10.
To change the defaults, create corresponding variables of desired size. See the code snippet
below as an example of how to configure RMAN without using RTSC:

#include <xdc/std.h>
#include <ti/sdo/fc/rman/rman.h>

#define RMAN_PARAMS_NUMREGISTRIES 5
extern Bool DSKT2_allocPersistent(IALG_MemRec *memTab, Int numRecs);
extern Void DSKT2_freePersistent(IALG_MemRec *memTab, Int numRecs);

/* Table to store the registration entries */
far IRESMAN_Fxns * RMAN_TABLE[RMAN_PARAMS_NUMREGISTRIES];
far short RMAN_FREE_ENTRIES[RMAN_PARAMS_NUMREGISTRIES];

Int main(Void)
{
 RMAN_PARAMS.numRegistries = RMAN_PARAMS_NUMREGISTRIES;
 RMAN_PARAMS.allocFxn = DSKT2_allocPersistent;
 RMAN_PARAMS.freeFxn = DSKT2_freePersistent;
 RMAN_PARAMS.yieldFxn = RMAN_yield;
 RMAN_PARAMS.yieldSamePrioirty = true;
 . . .
}

3.8 Configuring RMAN Using RTSC Tooling

In the program configuration file, configure the RTSC module RMAN’s parameters whose default
values you need to change. See the snippet of a .cfg file below that configures RMAN:

/*
 * Configure RMAN module
 */
var RMAN = xdc.useModule('ti.sdo.fc.rman.RMAN');

RMAN.useDSKT2 = false;
RMAN.persistentAllocFxn = "myAllocFxn" ;
RMAN.persistentFreeFxn = "myFreeFxn" ;
RMAN.tableSize = 10;
RMAN.semCreateFxn = "mySemCreate";
RMAN.semDeleteFxn = "mySemDelete";
RMAN.semPendFxn = "mySemPend";
RMAN.semPostFxn = "mySemPost";

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 33

3.9 RMAN Version support

RMAN has support for versioning of IRES resources that are requested by the algorithms and
whose corresponding resource managers are registered with RMAN. The versions are of the
type IRES_ProtocolRevision defined in the file <ti/xdais/ires_common.h>.

Each resource is associated with a version that is defined in its header file ires_<resource>.h

The version has three parts, namely the Major, Source and Radius. RMAN checks all parts of
the version returned by the IRESMAN implementation, against that specified by an algorithm
requesting a resource of the same name.

Currently RMAN does a check to ensure that the versions are an exact match. It will raise an
error when an algorithm is built with a different version of a resource protocol definition than the
version used by the registered IRESMAN resource manager implementation.

3.10 RMAN Functions

RMAN functions perform the following resource management functions:

1. Assign and reclaim resources that algorithms request and that are supported by the
individual resource managers registered with RMAN.

– RMAN uses the IRES interface of algorithms to query and grant different resources
from/to requesting algorithms.

– RMAN uses the IRESMAN interface of individual resource managers to obtain handles
to different resources as requested by an algorithm.

2. Allocates and frees memory using the memory allocation/free functions that are configured
for it.

– Allocates memory for IRES_ResourceDescriptor objects required to query for resource
requirement information from algorithms and to supply that to IRESMAN
implementations.

3. Activates and deactivates individual or all resources assigned to a particular algorithm.

– Resources can be individually or collectively activated after the corresponding
algorithms memory has been activated (for example, after DSKT2_activate is called for
an algorithm).

– Resources can be individually or collectively deactivated before the corresponding
algorithms’ memory has been deactivated (for example, before DSKT2_deactivate is
called for an algorithm).

The RMAN API includes several functions that are discussed in detail in the following
subsections.

SPRAAI5

34 Using IRES and RMAN Framework Components for ‘C64x+

Figure 7 shows the calling sequence of the RMAN API functions.

Figure 7. RMAN Functions Calling Sequence

3.10.1 RMAN_exit

This is the finalization method for the RMAN module. There are no parameters and the return
value indicates if the call was successful. This function should be called if RMAN will no longer
be required by the application or framework.

The syntax is:

IRES_Status RMAN_exit(Void);

Parameters:

None

Return Values:

IRES_OK Success.

IRES_EFAIL Fatal error; un-registering some of the resources failed.

 RMAN_register

Resource Manager Initial stages

RMAN_exit

Resource Manager
Termination Stages

RMAN_assignResources

RMAN_activateResource/
RMAN_activateAllResources

RMAN_deactivateResouce/
RMAN_deactivateAllResour

Intermediate Stages

RMAN_init

“process”

RMAN_unregister
RMAN_freeResources

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 35

3.10.2 RMAN_init

This is the initialization method for the RMAN module. There are no parameters and the return
value indicates if the call was successful. This function needs to be called before any other
RMAN function is called.

The syntax is:

IRES_Status RMAN_init(Void);

Parameters:

None

Return Values:

IRES_OK Success.

IRES_ENOMEM Memory allocation failed

IRES_ENORESOURCE Error registering NULL resource or other statically registered resources.

3.10.3 RMAN_register

This registers an IRESMAN resource manager implementation with RMAN. RMAN stores these
entries in an internal resource registry table along with their version information and compares
them against algorithms’ resource requests.

The syntax is:

IRES_Status RMAN_register(IRESMAN_Fxns * resmanFxns,
 IRESMAN_Params * initArgs);

Parameters:

resmanFxns Resource specific implementation of the IRESMAN interface functions
(IRESMAN_Fxns).

initArgs Arguments to the initialization interface (init) of the IRESMAN
implementation being registered.

Return Values:

IRES_OK Success.

IRES_ENOINIT RMAN_init call not completed successfully yet.

IRES_EEXISTS Same protocol is being re-registered.

IRES_EFAIL Fatal error; exit call on the older entry of the same protocol (same
name, same version) failed.

IRES_ENORESOURCE Initialization of IRESMAN implementation failed.

SPRAAI5

36 Using IRES and RMAN Framework Components for ‘C64x+

3.10.4 RMAN_unregister

This un-registers an IRESMAN resource manager implementation when RMAN will no longer
need to grant the particular resource to a requesting algorithm.

The syntax is:

IRES_Status RMAN_unregister(IRESMAN_Fxns * resmanFxns);

Parameters:
resmanFxns Resource-specific implementation of the IRESMAN interface

functions (IRESMAN_Fxns) to be un-registered.

Return Values:
IRES_OK Success.

IRES_ENOINIT RMAN_init call not completed successfully yet, or RMAN_exit has
already been called.

IRES_ENOTFOUND Could not find the entry being un-registered in the internal RMAN
table.

IRES_EFAIL Fatal error; exit call on the IRESMAN implementation failed.

3.10.5 RMAN_assignResources

This function assigns one or more resources of the same or different type, requested by an
algorithm. It matches algorithm requests with a list of registered IRESMAN resource managers
to obtain the resource handles and pass them back to the algorithm.

The syntax is:

IRES_Status RMAN_assignResources(IALG_Handle algHandle,
 IRES_Fxns * resFxns,
 Int scratchGroupId);

Parameters:

algHandle Algorithm handle.

resFxns IRES interface implementation handle of the
algorithm.

scratchGroupId Scratch group number to which the algorithm belongs
and/or from which the resource is being requested.

Return Values:

IRES_OK Success.

IRES_EALG Call to one of the IRES interface functions of the
algorithm failed.

IRES_ENOMEM Memory allocation failed.

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 37

IRES_ENOTFOUND Count not find registered IRESMAN implementation
corresponding to the resources requested by the
algorithm.

IRES_EFAIL Fatal error; could not find previously registered
IRESMAN entry, or had trouble freeing previously
allocated handles.

IRES_ENORESOURCE Could not obtain resource handle from the IRESMAN
resource manager.

3.10.5.1 RMAN_freeResources

This function frees IRES resources allocated to the algorithm. The resources are returned to the
corresponding IRESMAN resource manager. This API should be called when the resources are
no longer required by the algorithm, and after the resources have been deactivated.

The syntax is:

IRES_Status RMAN_freeResources(IALG_Handle algHandle,
 IRES_Fxns *resFxns,
 Int scratchGroupId);

Parameters:

algHandle Algorithm Handle

resFxns IRES interface implementation handle of the
algorithm.

scratchGroupId Scratch group number in which the algorithm belongs
and/or to which the resource is being returned.

Return Values:

IRES_OK Success.

IRES_EALG Calls to one of the IRES interface functions of the
algorithm failed.

IRES_ENOMEM Memory allocation failed.

IRES_ENOTFOUND Count not find registered IRESMAN implementation
corresponding to the resources requested by the
algorithm.

IRES_EFAIL Fatal error; could not find previously registered
IRESMAN entry or had trouble freeing previously
allocated handles.

IRES_ENORESOURCE Could not obtain list of allocated resource handles
from the IRES interface of the algorithm.

SPRAAI5

38 Using IRES and RMAN Framework Components for ‘C64x+

3.10.5.2 RMAN_activateResource

This function activates an IRES resource handle held by the algorithm. Use this function
whenever a single resource in a particular scratch group is to be activated. It should be called
only after the memory associated with a particular algorithm has been activated (i.e., after
DSKT2_activate has been called for that particular algorithm).

The syntax is:

IRES_Status RMAN_activateResource(IALG_Handle algHandle,
 IRES_Handle resourceHandle,
 IRES_Fxns * resFxns,
 Int scratchGroupId);

Parameters:

algHandle Algorithm handle.

resourceHandle Handle to the resource being activated.

resFxns IRES interface implementation handle of the algorithm.

scratchGroupId Scratch group number in which the algorithm/resource belongs.

Return Values:

IRES_OK Success.

IRES_EALG Calls to one of the IRES interface functions of the algorithm
failed.

3.10.5.3 RMAN_deactivateResource

This API deactivates an IRES resource handle held by the algorithm. Use this function to
deactivate a single resource in a particular scratch group. Call this function before the memory
associated with a particular algorithm has been deactivated (i.e., before DSKT2_deactivate has
been called for that particular algorithm).

The syntax is:

IRES_Status RMAN_deactivateResource(IALG_Handle algHandle,
 IRES_Handle resourceHandle,
 IRES_Fxns * resFxns,
 Int scratchGroupId);

SPRAAI5

Using IRES and RMAN Framework Components for ‘C64x+ 39

Parameters:

algHandle Algorithm handle.

resourceHandle Handle to the resource being deactivated.

resFxns IRES interface implementation handle of the algorithm.

scratchGroupId Scratch group number in which the algorithm/resource belongs.

Return Values:

IRES_OK Success.

IRES_EALG Calls to one of the IRES interface functions of the algorithm failed.

3.10.5.4 RMAN_activateAllResources

This function activates all IRES resource handles held by the algorithm. Use this function to
activate all IRES resources in a particular scratch group. Call this function only after the memory
associated with a particular algorithm has been activated (i.e., after DSKT2_activate has been
called for that particular algorithm).

IRES_Status RMAN_activateAllResources(IALG_Handle algHandle,
 IRES_Fxns * resFxns,
 Int scratchGroupId);

Parameters:

algHandle Algorithm handle.

resFxns IRES interface implementation handle of the algorithm.

scratchGroupId Scratch group number in which the algorithm/resource belongs.

Return Values:

IRES_OK Success.

IRES_EALG Calls to one of the IRES interface functions of the algorithm
failed.

SPRAAI5

40 Using IRES and RMAN Framework Components for ‘C64x+

3.10.5.5 RMAN_deactivateAllResources

This function deactivates all IRES resource handles held by the algorithm. Use this function to
deactivate all IRES resources in a particular scratch group. Call this function before the memory
associated with a particular algorithm has been deactivated (i.e., before DSKT2_deactivate has
been called for that particular algorithm).

The syntax is:

IRES_Status RMAN_deactivateResource(IALG_Handle algHandle,
 IRES_Handle resourceHandle,
 IRES_Fxns * resFxns,
 Int scratchGroupId);

Parameters:

algHandle Algorithm handle.

resourceHandle Handle to the resource being deactivated.

scratchGroupId Scratch group number to which the algorithm/resource belongs.

Return Values:

IRES_OK Success.

IRES_EALG Calls to one of the IRES interface functions of the algorithm failed.

4 References
• TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)

• TMS320 DSP Algorithm Standard API Reference (SPRU360)

• TMS320 DSP Algorithm Standard Developer’s Guide (SPRU424)

• TMS320C6000 Peripherals Reference Guide (SPRU190)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by
all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such
use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power Wireless www.ti.com/lpw Video & Imaging www.ti.com/video

 Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com/
http://www.ti.com/audio
http://dataconverter.ti.com/
http://www.ti.com/automotive
http://dsp.ti.com/
http://www.ti.com/broadband
http://interface.ti.com/
http://www.ti.com/digitalcontrol
http://logic.ti.com/
http://www.ti.com/military
http://power.ti.com/
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com/
http://www.ti.com/security
http://www.ti-rfid.com/
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	Using IRES and RMAN Framework Components for ‘C64x+
	1 Introduction
	2 IRES: Standard Interface for Resource Negotiation and Utilization
	2.1 IRES and RMAN Modules
	2.2 IRES Interface Definition
	2.2.1 IRES Resource Descriptors: IRES_ResourceDescriptor
	2.2.2 IRES Interface Functions: IRES_Fxns
	2.2.3 Generic IRES Resource Object and Handle Structures
	2.2.4 Generic IRES Protocol Arguments
	2.2.5 Concrete IRES Resource Interfaces
	2.2.5.1 EDMA3 Concrete Resource Interface
	2.2.5.1.1 EDMA3 Channel Protocol Arguments
	2.2.5.1.2 EDMA3 Resource Properties
	2.2.5.1.3 EDMA3 Static Resource Properties
	2.2.5.2 HDVICP Hardware Accelarator Concrete Resource Interface
	2.2.5.2.1 HDVICP Protocol Arguments
	2.2.5.2.2 HDVICP Resource Properties

	2.2.6 Algorithm IRES Implementation Example

	2.3 Cooperative Multitasking and Preemption
	2.3.1 Non-Cooperative Multi-Tasking
	2.3.2 Cooperative Multi-Tasking – Yielding to the Same Priority
	2.3.3 Cooperative Multi-tasking – Yielding to Higher Priority

	3 RMAN: ‘C64x+ DMA Resource Manager
	3.1 Introduction
	3.2 Using RMAN for Algorithm Integration
	3.3 IRESMAN: Standard Interface for Implementing Device-specific Resource Managers
	3.3.1 IRES Resource Description ires_<resource>.h
	3.3.2 IRESMAN Resource Manager Description iresman_<resource>.h
	3.3.2.1 IRESMAN Registration Parameters (IRESMAN_Params)
	3.3.2.2 IRESMAN Functions (IRESMAN_Fxns)
	3.3.2.3 getProtocolName
	3.3.2.4 getProtocolRevision
	3.3.2.5 init
	3.3.2.6 exit
	3.3.2.7 getHandle
	3.3.2.8 freeHandle

	3.4 RMAN Configuration
	3.4.1 XDC Configuration Parameters
	3.4.2 Low-level “C” Configuration Parameters

	3.5 RMAN Configuration Examples
	3.5.1 Static and Dynamic Registration of Resource Managers with RMAN
	3.5.2 Configuring RMAN to use DSKT2
	3.5.3 Configuring RMAN to Not Use DSKT2

	3.6 Other Configuration Parameters
	3.7 Configuring RMAN Without Using RTSC
	3.8 Configuring RMAN Using RTSC Tooling
	3.9 RMAN Version support
	3.10 RMAN Functions
	3.10.1 RMAN_exit
	3.10.2 RMAN_init
	3.10.3 RMAN_register
	3.10.4 RMAN_unregister
	3.10.5 RMAN_assignResources
	3.10.5.1 RMAN_freeResources
	3.10.5.2 RMAN_activateResource
	3.10.5.3 RMAN_deactivateResource
	3.10.5.4 RMAN_activateAllResources
	3.10.5.5 RMAN_deactivateAllResources

	4 References

