OMAP35x EVM Linux PSP

User Guide

13 TeExAs

INSTRUMENTS

02.01.03.11

Publication date 10 September 2009

i3 TEXas
INSTRUMENTS

Version 02.01.03.11 Platform Support Products

i3 TEXas
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other
changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant
information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions
of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and
other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where mandated by government requirements,
testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using
Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating
safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other
Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used. Information published by TI
regarding third-party products or services does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl
under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated
warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by Tl for that product or service voids all express and
any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any
such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably be expected
to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent
that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely
responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Tl products in such safety-critical applications,
notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives
against any damages arising out of the use of Tl products in such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are specifically designated
by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military specifications. Buyers acknowledge and
agree that any such use of Tl products which Tl has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible
for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI
as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications,
TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security
Security www.ti.com/security
Telephony www.ti.com/telephony

Mailing Address:

Texas Instruments,
Post Office Box 655303,
Dallas, Texas 75265

Video & Imaging

Wireless

www.ti.com/video

www.ti.com/wireless

Version 02.01.03.11

Platform Support Products

amplifier.ti.com
www.ti.com/audio
dataconverter.ti.com
www.ti.com/automotive
dsp.ti.com
www.ti.com/broadband
interface.ti.com
www.ti.com/digitalcontrol
logic.ti.com
www.ti.com/military
power.ti.com
www.ti.com/opticalnetwork
microcontroller.ti.com
www.ti.com/security
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

i3 TEXas
INSTRUMENTS

Version 02.01.03.11 Platform Support Products

i3 TEXAS

INSTRUMENTS
Table of Contents
Read This Firstccicciiiirierimmsmsss s s ssassassanssnssnssnnsns XVii
1. Installationcccciiciirierimmmmmmse s s s s s s s s nsnnsnnsnns 1
1.1. System RequIirementsocvviiiiii i i nnneea s 2
1.2, Installation ..oocviiriiiii e 3
1.3. Installation Steps ..coiviiiiiiiii 5
1.4. Environment Setup ..cooiiiiiiiiiic 6
1.5. Setup NFS filesystemccoiiiiiiiiiiiiiii i 7
2. X-loader ...cciciiiiniri i nn 9
2.1, Introduclion ...oveiii i 10
2.2. Compiling X-Loadercccviiiiiiiiiiiii i 11
2.3. Signing x-load.bin ... 12
2.4. Flashing X-loadercciiiiiiiiiiiii e 13
2.4.1. ONENAND oot 13
2.4.2. NAND .ottt 13
2.5. Preparing MMC/SD for bootcoiiiiiiiiiiiiiiiiiiicia 14
2.5.1. Creating bootable partitionc.ccooiiiiiiiinn, 14
2.5.2. Copying X-loaderccciiiiiiiiiiiiii i 14
C T U L - 7o T o 15
3.1. Compiling U-BOOtoiiiiiiiiiiii i i e 17
3.2. Flashing U-Bootccoiiiiiiii e 18
3.2.1. ONENAND ottt 18
3.2.2. Micron NAND ..ot e 18
3.3. Configuring U-Bootc..coviiiiiiiici i 19
3.3.1. Using ramdisk imagec.ccoviiiiiiiiiiiiiiiic i 19
3.3.2. Using NFS (Default U-Boot configuration) 19
3.3.3. Using NFS with no DHCP in LinUXcvceveiiiiennens 20
3.4. Managing ONeNANDcoiiiii e e 22

Version 02.01.03.11 Platform Support Products iii

i3 TEXAS

INSTRUMENTS OMAP35x EVM Linux PSP
3.4.1. Marking a bad blockcoiiiiiiiiiiii 22
3.4.2. Erasing ONeNAND ..ot e 22
3.4.3. Writing to ONeNANDccoeieiiiiiiiiiiiiieieieeeeaenns 23
3.4.4. Reading from ONeNANDcciiiiiiiiiiiiiiiie i 23
3.4.5. Scrubbing ONeNANDccoiiiiiiiiiiici e 24

3.5. Managing NAND ...coiiiiiiii i e 25
3.5.1. Marking a bad blockcoiiiiiiiiiii 25
3.5.2. Viewing bad blocksccoiiiiiiiiiiiii 25
3.5.3. Erasing NANDouiviiiiiiiiieieieeie e ans 25
3.5.4. Writing t0 NANDoviniiiiiii e 26
3.5.5. Reading from NANDccoiiiiiiiiiiiiiiiiiciii i 27
3.5.6. Unlocking NAND address spaceccvvvvvvinennnnns 27
3.5.7. NAND ECC algorithm selectioncccoviviiinnnnnn. 28

T (=T T 29

4.1. Compiling Linux Kernelccooiiiiiiiiiiiiiiiiiiii i 30

4.2. Configuring Linux Kernelccooiiiiiiiiiiiiiiiiiiiieci e 31
4.2.1. Build configuration for OMAP35Xcccoviviiiiiiinnnnns 31

4.3. Booting Linux Kernelccoiiiiiiiiiiiiiiiiiciiciiei e 34
4.3.1. Selecting boot modeccoiiiiiiiii 34

5. AUIiO DFIVEr .iucieiiiierieisiersimssse s sns s s s snn s snmsasnmsnnnnsnnnnss 37

5.1, INtroducCtionooeiiiii i 39
5.1.1. RefErenCesccoviiiiiiiiiii e 39
5.1.2. Acronyms & Definitionsccoiiiiiiiiiiiiiiiiieii 39

5.2, FEATUIES ..uiiiiiiiii i e 41
5.2.1. Features Supportedccoviiiiiiiiiiiiii 41
5.2.2. Constraintscoviiiiiiiii 41

5.3. Architecture ... 43
5.3.1. ALSA SOC Layer ..ciiiiiiiiiieeeeieeeaeaeae e 43
5.3.2. DESIgN it s 43

5.4. Driver Configurationccoiiiiiiiiiiiiiiii 45

Platform Support Products Version 02.01.03.11

i3 TEXAS

INSTRUMENTS OMAP35x EVM Linux PSP
5.4.1. Configuration Stepsccoiviiiiiiiiiiiiii i 45
5.4.2. Installation ... 55

5.5. Software Interfacesccooviiiiiiiii 56
5.5.1. Application Interfacecccoviiiiiiiiiiiiiiiiii 56
5.5.2. Driver Interfacecocoviiiiiiiiiiiii s 59

5.6. Sample Applicationsciviiiiiiiiiiii 63
5.6.1. Introductionccoiiiiiiiii 63
5.6.2. A minimal playback applicationcoceeinen. 63
5.6.3. A minimal record applicationcooiiiiiiiinin. 67

5.7. Revision HisStoryccviiiiiiiii i e e 70

6. Display Driver ...iccciiciiiic i mss s sssssssssssasssassnsssssnssnnnsnnns 71

6.1, INtrodUCtioncoviiiiiiii 73
6.1.1. Referencescooviiiiiiiii 73
6.1.2. Acronyms & Definitionscccoeiviiiiiiiiiiiiiiininen, 73
6.1.3. Hardware OVEervieWcccoieviiiiiiiiiniieiinniieinenns 73

6.2, FEALUMES ..iviiiii i 74
6.2.1. OVEIVIEW ottt nneeenes 74
6.2.2. USAQE .iiiiiiiiiii it e i 74

6.3. Architecturecooiiiii 101
6.3.1. Driver Architecturecoooiiiiiiii 101
6.3.2. Software Design Interfacescoveevviiiiiinnnnn. 101

6.4. Software Interfacesccooiiiiiiiiiiii 103
6.4.1. 'fbdev' Driver Interfacecccovvviiiiiiiininnnne. 103
6.4.2. V4L2 Driver Interfacecoooviiiiiiiiiiiiiien 104
6.4.3. SYSFS Software Design Interfaces 106

6.5. Driver Configurationccciiiiiiiiiiiiiiiic e 107
6.5.1. Configuration Stepsccovviiiiiiiiiiiiiic 107
6.5.2. Installationc.cooiiiiii 113

6.6. Sample Application FIOW ...cccoiiiiiiiiiiiiii e 115

6.7. ReVvision Historyccoviiiiiiii i i i 117

Version 02.01.03.11

Platform Support Products v

i3 TEXAS

INSTRUMENTS OMAP35x EVM Linux PSP
7. ReSIZer DIIVEr ..ccicivrsierissesisssss s s snssassnsassnsnnsnsnnnannns 119
7.1, INtrodUuCtion ...ocieiieii 121
7.1.1. Referencesccoiiiiiiiiiii i 121

2% 7 Vo g o] 11 0 4 1 T TP 121

7.1.3. Hardware OVErVIEWcociiviiiiiiiniiiiiiineieiieinns 121

7.2, FEALUIES .iviiiiiii i 122
7.2.1. Overview of features supportedccevevennne. 122

7.2.2. Usage of Featurescoiviiiiiiiiiiiiiiiiiiiiiiinenns 122

7.2.3. ConStraints ...icvviiiiiiii i 128

7.3. Architecture ... 130

7.4. Software Interfacecooiiiiiiiiii 131
7.4.1. Application Programming Interface 131

T (@ L G X 132

7.4.3. Data Structuresccooviiiiiiiiiiiie 136

7.5. Driver Configurationccoiiiiiiiiiiiiiiiic e 141
7.5.1. Configuration Stepscoviiiiiiiiiiiiiiii 141

7.6. Sample Application FIOW ...ccciiiiiiiiiiiiiiciii e 144

7.7. Revision Historyccoviiiiiiiiiic i i e 145

8. Daughter Card Moduleccviciiiiiiirmirsssrre s s sransnans 147
8.1. Mass Market Daughter Cardcoviiiiiiiiiiiiiiiiii e 148
8.1.1. Acronyms & Definitionsc.ccoiiiiiiiiiiiiniiie, 148

8.1.2. INtroductioncocoiiiiiiiiiii 148

8.2. Block Diagram ..ciiiiiiiiiii i 149

8.3. Board Illustrationccooviiiiiiiii 150

8.4. Features supported under softwareccoviiiiiiiinnns 151

9. Capture Driver ...ciccciiciirressmasmsssmssssssssasssanssassssnsssnnsnnns 153
9.1, Introduction ..o 155
9.1.1. REfErenCesociiiiieii i 156

9.1.2. Acronyms & Definitionsccccoiiiiiiiiiiiiniiie, 157

Vi Platform Support Products Version 02.01.03.11

i3 TEXAS

INSTRUMENTS OMAP35x EVM Linux PSP
0.2, FEAUIES .ot 158
9.2.1. Supported featurescovviiiiiiiiiiii 158
9.2.2. Constraints/Limitationscccvviiiiiiiiiiiiiiiiiiinnn 158
9.2.3. KNOWN ISSUES ..ciiiiiiiiiiiiiiiiini e 158

9.3. Architectureoiiiiiiii i 160
9.3.1. System Diagramcciiiiiiiiiiiii 160
9.3.2. Software Design Interfacescccovviviiiiiiinnnnns 162

9.4. Driver Configurationccooiiiiiiiiiiii 178
9.4.1. Configuration Stepsccovviiiiiiiiiiiiiiic 178
9.4.2. Installationc.coiiiiiiii 182

9.5. Sample Applicationsccciiiiiiiiiii 184
9.5.1. INtroducCtioncocoiiiiiiiiiiiii 184
9.5.2. Hardware Setupccviiiiiiiiiiii i 184
9.5.3. Provided Sample Applicationsc.cccoevviiiiinnnns 184

10. USB DIiVer .cicirerereresasessisssarasasesassssssssasasasasasasassssssasanass 185
10.1. Introductioncoviiiiii 187
10.1.1. Referencesccoviiiiiiiiiiiii e 187
10.1.2. Hardware OVEIrVIEWc.iiiiiiiiiiiiiiiiieiieineeanens 187
10.2. FEAtUIES ..viiiiiiii i e 189
10.2.1. Supportedcoiiiiiii i 189
10.2.2. Not supportedcooiiiiiiiiiiii 189
10.3. Driver configurationccciiiiiiiiiiiiiiiii 191
10.3.1. USB phy selection for MUSB OTG port 191
10.3.2. USB controller in host modecccevieiiinnnens 191
10.3.3. MUSB OTG controller in gadget mode 192
10.3.4. MUSB OTG controller in OTG mode 193
10.3.5. Host mode applicationscccoviiiiiiiiiii i, 194
10.3.6. USB Controller and USB MSC HOST 194
10.3.7. USB HID Cl@SS .vevivieeieieieeieeeneeeeenenenensns 195
10.3.8. USB Controller and USB HIDc.cccvvuvnvnennnnn. 196
10.3.9. USB AUIO .iuvuiiiiiiiiiiiieeeeeeee e e eeeens 196

Version 02.01.03.11

Platform Support Products vii

i3 TEXAS

INSTRUMENTS OMAP35x EVM Linux PSP
10.3.10. USB Vid€0 ...oviveiiiiieieiiieienineieienee e e e e e 197
10.3.11. Gadget Mode Applicationsc.ccevvvviiiennnnn. 198
10.3.12. CDC/RNDIS gadgetcoovvvviiieiiiiienenenenenenes 199
10.3.13. USB OTG (HNP/SRP) testingccceevvvvvnnnnns 200

10.4. Software Interfaceccooiiiiiiiii 202
10.4. 1. SYSIS ittt 202
10.4.2. ProCfs it 202

10.5. Revision historyccoiiiiiiiiiiiii 203

11. MMC DFIVEr .iciciiirarerereresesessssssasasasasassssssssasssasasasnnsnnssnnas 205

11.1. Introductionccoeviiiiiii 206
11.1.1. Referencescooviiiiiiiiiii i 206
11.1.2. Acronyms & Definitionscocoeiiiiiiiieiiinnen, 206

11.2. FEAtUIES .viiiiiiii i e 207
11.2.1. Features Supportedccovviiiiiiiiiiiiiiiie e 207
11.2.2. Features Not Supportedccoovvviiiiiiiiiiinnnn, 207
11.2.3. Limitations ...oocvviiiiiiiii 207

11.3. Revision History ...ccoviiiiii i i 208

12. Power Managementccciiieimminecminssmmsnsmmsnssssannnnnannns 209

12.1. Introductioncoviiiiiii 211
12.1.1. Referencescooviiiiiiiiiiii i 211

12,2, FEAUIES ..viiiiiii i e 212
12.2.1. Supportedcoiiiiiii 212
12.2.2. Not Supportedccoviiiiiiiiii 212
12.2.3. LimMitationsocovviiiiiii 212

12.3. Architecture ... 213
12.3.1. CPUIAIE v 213
12.3.2. Dynamic Tick Suppressionccocvviviiiiiiinnnnn. 215
12.3.3. Suspend & RESUME ...cviiiiiiiiiiiiiii i 215

12.4. Configurationccoiiiiiiiii i 216
12.4.1. CpUIdIE wevririeeieee e 216

Viii Platform Support Products Version 02.01.03.11

i3 TEXAS

INSTRUMENTS OMAP35x EVM Linux PSP
12.4.2. CPUMTEQ viiiiiiii i i e 217

12.4.3. SmartReflexXcooviiiiiiii 217

12.5. Software Interfaceccooviiiiiiiii 219

12.5.1. CpUIdIE wevrerieiieee e 219

12.5.2. Suspend & RESUME ...ciiiiiiiiiiiiiiiii i 220

12.5.3. SmartReflexXccoviiiiiii 220

12.6. Revision HisStorycoviiiiii i 222

Version 02.01.03.11 Platform Support Products ix

i3 TEXas
INSTRUMENTS

Version 02.01.03.11 Platform Support Products

i3 TEXas
INSTRUMENTS

List of Figures

4.1. Boot switch positioncciviiiiiiiii 34
5.1. ALSA SoC ArchiteCturecooiieiiiiiiii e 44
5.2. Configure ALSA Driver: SteP 2 ...iieiiiiiiiiiiiieee e 45
5.3. Configure ALSA Driver: Step 3 ..iiiiiiiiiiiiiiiii i 46
5.4. Configure ALSA Driver: Step 4 ...oovviiiiiiiiiiiiiic i 47
5.5. Configure ALSA Driver: Step 5 .oiiiiiiiiiiiiiiiii i 48
5.6. Configure ALSA Driver: Step 6 ..covvviiiiiiiiiiiiii i eieaaeans 49
5.7. Configure ALSA Driver: StEP 7 .ouiiiiiiiiiiie i eaeaees 50
5.8. Configure ALSA Driver: Step 8 ..iiiiiiiiiiiiiiiiii e 51
5.9. Configure ALSA Driver: Step 9 .ciiiiiiiiiiiiiiiiii i 52
5.10. Configure ALSA Driver: Step 10 ...ccvvviiiiiiiiicii e 53
5.11. Configure ALSA Driver: Step 11 ...ooiiiiiiiiiii e 54
5.12. Configure ALSA Driver: Step 12 ...ooiiiiiiiiiiii e 55
5.13. OMAP3 ALSA Driver : Half duplex playbackc.ccoeviinis 58
5.14. OMAP3 ALSA Driver : Half duplex recordccvvvvinviinnnnnns 58
5.15. State Diagram ...c.oiviiiiiiiiiiiii e 61
5.16. Data flow path ...ccoiiiiiii 62
6.1. Video source color KeYingcooeiiieiiiiiiiiiii e eeee 84
6.2. Video destination color Keyingccovieiiiiiiiiiiiiiieeee 85
6.3. Alpha blending with almost 50% transparency 88
6.4. Alpha blending with almost 100% transparency 89
6.5. Alpha blending with almost 0% transparencyc.ccvvvvunen. 89
6.6. 1-BPP Data Memory Organizationcoveviiiiiiiinineinenn, 94
6.7. 2-BPP Data Memory Organizationcooveiiiiiiiiniinienienn, 94
6.8. 4-BPP Data Memory Organizationcoveiiiiiiiiiin e, 94
6.9. 8-BPP Data Memory Organizationcoveviiiiiiiiiiiineinens, 94
6.10. 12-BPP Data Memory Organizationccceviiiiiiiiiiininiennns 95
6.11. 16-BPP Data Memory Organizationcccevviiiiiiiiinininnnnns 95
6.12. 24-BPP Data Memory Organizationccceviiiiiiiiiinininnnnns 95
6.13. ARGB 32-BPP Data Memory Organizationcccovvvviieinnnns 95

Version 02.01.03.11 Platform Support Products Xi

i3 TEXAS

INSTRUMENTS OMAP35x EVM Linux PSP
6.14. RGBA 32-BPP Data Memory Organizationc.ccoevevinnen. 95
6.15. 24-BPP Packed Data Memory Organizationcccvvevnenn. 96
6.16. UYVY 4:2:2 Data Memory Organizationcceevvviiinnnninns 96
6.17. YUV2 4:2:2 Data Memory Organizationccovviivviiiinnnnn. 96
6.18. OMAP35x Display Subsystem Architecturecocoevnen. 101
6.19. Configure V4L2 video Driver: Step 2 ..ccivviiiiiiiiiiiiiiiiieeene, 107
6.20. configure V4L2 video Driver: Step 3 ...ciiiiiiiiiiiiiiiiiiieans 107
6.21. Configure V4L2 video Driver: Step 4ooovviiiiiiiiiiiiiiinennn, 108
6.22. Configure V4L2 video Driver: Step 5 .cooivviiiiiiiiiiiiiiiiene, 108
6.23. Configure V4L2 video Driver: Step 6 ...c.ovevviiiiiiiiiiiiiineinnn, 109
6.24. Configure Graphics display Driver: Step 2 ...ccovvviiviiiiiiinnnnns 109
6.25. configure Graphics display Driver: Step 3coiiiiiiiiiiiinnnns 110
6.26. configure Graphics display Driver: Step 4ccoovvviiiviiinnnns 110
6.27. configure Graphics display Driver: Step 5 ...cocvovviiiiiiiiiiinnnns 111
6.28. Select TV as default output device: Step 6covvvviiiiiiinnnnnn. 111
6.29. Select NTSC_M as TV mode: Step 6 .ovvvvviiiiiiiiiiiiiiiieieaenn 112
6.30. Select Composite out as TV out interface: Step 6 113
6.31. Application for v4l2 driver using MMAP buffers 115
6.32. Application for FBDEV drivercccviiiiiiiiiiiiciiiiciiciie e 116
7.1. OMAP Resizer HW Block Diagramcciiiiiiiiiiiiiiii i 121
7.2. Basic Architecture of Resizer Drivercccoviviiiiiiiiieiiinninnnn. 130
7.3. Configure omap-resizer Driver: Step 2 cooivviiiiiiiiiiiiiciiienne, 141
7.4. configure omap-resizer Driver: Step 3 ..o 141
7.5. Configure omap-resizer Driver: Step 4 ..oovviiiiiiiiiiiiiiiiienne, 142
7.6. Configure omap-resizer Driver: Step 5 covivviiiiiiiiiiiiiiiiiie, 142
7.7. Configure omap-resizer Driver: Step 6 ..oovvvvviiiiiiiiiiiiiiene, 143
7.8. Resizer Sample Application FIOWcooeviiiiiiiiiiiiiiiicie 144
8.1. BIOCK Diagram ...ciiiiiiiiii i i 149
8.2. Board TIHUStrationccoiiiiiiiii e 150
9.1. Capture Driver Component OVerviewccvoiiviiiiinneiiinnennns 155
9.2. Capture Physical Input Interfacecoooiiiiiiiiiiiiiiiiicccie, 156

Xii Platform Support Products Version 02.01.03.11

i3 TEXAS

INSTRUMENTS OMAP35x EVM Linux PSP
9.3. Capture Driver Basic Architectureccoooiiiiiiiiiiiiiiiiiiinen, 160
9.4. Configure Capture Driver: Step 4 ...ccoiviiiiiiiiiiiiiiiciie i 178
9.5. Configure Capture Driver: Step 5 ..o e 179
9.6. Configure Capture Driver: Step 6 ...ccovviiiiiiiiiiiiiiic i i 179
9.7. Configure Capture Driver: Step 7 ..cvoiiiiiiiiiiiiiiiiici e 180
9.8. Configure Capture Driver: Step 8 ...cciiiiiiiiiiiiiiiiici e 181
9.9. Configure Capture Driver: Step 9 ...coiiiiiiiiiiiiiiiii e 182
10.1. MUSB OTG: Location of Mini-AB receptacle on the EVM 188
10.2. MUSB OTG: Location of USB PHY from NXP on the EVM 188
10.3. USB Driver: Illustration of Mass Storage Class 194
10.4. USB Driver: Illustration of HID Classccocovviiiiiniinnnnn. 195
12.1. cpuidle OVEINVIEW ..iiiiiiiiii i e 213

Version 02.01.03.11 Platform Support Products Xiii

i3 TEXas
INSTRUMENTS

Version 02.01.03.11 Platform Support Products Xiv

i3 TEXas
INSTRUMENTS

List of Tables

oY A ol /0] £ 1V o 2 P 39
5.2. Audio Driver : Constraintscccoiiiiiiiiiii e 41
5.3. Device INterfacecciieiiiiii i 56
5.4, ProcC INterface ...ocooeiiiiii e 56
5.5. Commonly Used APISccciiiiiiiiiiiiii i nae e 57
T R Y o 1V o 1= 73
6.2. Memory requirement for V4L2 and FBDEV driver Buffers 77
7.1. Resizer: Input Size Calculationcocoviiiiiiiiiiiiiiice s 126
7.2. Resizer: open System Call argumentscoovviiiiiiiiiennnns 131
7.3. Resizer: close system call argumentsc.coeiiiiiiiinnennn. 131
7.4. Resizer: mmap system call argumentsc.ccvviviiviniinenens 132
7.5. Resizer: munmap system call argumentsccoeinnens 132
7.6. Resizer: ioctl RSZ_S_PARAMS argumentscccvviniennnns. 133
7.7. Resizer: ioctl RSZ_G_PARAMS argumentsc.cevvvvvnvinnnnn. 133
7.8. Resizer: ioctl RSZ_G_STATUS argumentcoceviinviennennn. 134
7.9. Resizer: ioctl RSZ_S_EXP argumentcccoviiviiiiiiiiiiinnnnnns 134
7.10. Resizer: ioctl RSZ_RESIZE argumentsccveevivvineinennnnnn. 135
7.11. Resizer: ioctl RSZ_REQBUF argumentscccovvivvieiinnnnnnnn. 135
7.12. Resizer: ioctl RSZ_QUERYBUF argumentsccvvvvinvinnnns 136
7.13. Resizer: ioctl RSZ_QUEUEBUF argumentsccocvvvvvinennn. 136
7.14. Resizer: Parameters Configuration Structure fields 137
7.15. Resizer: Request Buffer Structure fieldscccovvveiiniinnnens 137
7.16. Resizer: Buffer structure fields ..o 138
7.17. Resizer: Luma enhancement structure fields 138
7.18. Resizer: Status structure fieldsccoooviiiiiiiiiii, 139
7.19. Resizer: Crop Size structure fieldscoovvviiiiiiiiiiiiiinnn, 139
£ 2 IO 1 TG ol o] 1 o 1= 148
9.1. Capture Driver ACFONYMS .iviuvviiriiiierieeeanesaeesaneeannesanneannes 157
10.1. OMAP3 USB Driver: sysfs attributescoviviiiiiiiiininns 202
1 8 IO Yol 0)V o = 206

Version 02.01.03.11 Platform Support Products XV

i3 TEXAS
INSTRUMENTS OMAP35x EVM Linux PSP

12.1. C-states in OMAP3 ... 214

XVi Platform Support Products Version 02.01.03.11

i3 TEXAS

INSTRUMENTS

Read This First

About This Manual

This document describes how to install and work with Texas
Instruments' (TI) Platform Support Package for OMAP35x platform for
Linux 2.6.29-rc3. The PSP Package serves to provide a fundamental
software platform for development, deployment and execution. This
abstracts the functionality provided by the hardware. The product forms
the basis for all application development on this platform.

In this context, the document contains instructions to:
e Install the release
e Build the sources contained in the release

The document also provides detailed overview of specific drivers and
modules contained in the PSP package.

e Audio Driver

e Video Display Driver
o Resizer Driver

e Video Capture Driver
e USB Driver

e MMC Driver

e Power Management

Version 02.01.03.11

Platform Support Products Xvii

i3 TEXAS

Read This First

INSTRUMENTS How to Use This Manual

How to Use This Manual

This document includes the following chapters:

Chapter 1, Installation - describes the installation procedure for
OMAP35x EVM Linux PSP package.

Chapter 2, x-loader - describes the procedure to build and execute
the x-loader. and

Chapter 3, U-Boot - describes the procedure to build and execute
U-Boot.

Chapter 4, Kernel - describes the procedure to build and execute
the Linux kernel.

Chapter 5, Audio Driver - describes the implementation of audio
driver.

Chapter 6, Display Driver - describes the implementation of video
display driver.

Chapter 7, Resizer Driver - describes the implementation of resizer
driver.

Chapter 8, Daughter Card Module - describes the features available
on Daughter card.

Chapter 9, Capture Driver - describes the implementation of video
capture driver.

Chapter 10, USB Driver - describes the implementation of USB
driver.

Chapter 11, MMC Driver - describes the implementation of MMC
driver.

Chapter 12, Power Management - describes the power management
frameworks.

Please go through the Release Notes document available in the release
package before starting the installation.

Notation of information elements

The document may contain these additional elements:

Warning
This is an example of warning message. It usually indicates a non-

recoverable change, e.g. formatting a filesystem.

XViii

Platform Support Products Version 02.01.03.11

I3 TEXAS Read This First
INSTRUMENTE If You Need Assistance

Caution

This is an example of caution message.

Important

This is an example of important message.

Note

This is an example of additional note. This usually indicates additional
information in the current context.

Tip

This is an example of a useful tip.

If You Need Assistance

For any assistance, please send an mail to software support
[mailto:softwaresupport@ti.com].

Trademarks
OMAP™ is a trademark of Texas Instruments Incorporated.

All other trademarks are the property of the respective owner.

Version 02.01.03.11 Platform Support Products XiX

mailto:softwaresupport@ti.com
mailto:softwaresupport@ti.com

i3 TEXas
INSTRUMENTS

Version 02.01.03.11

Platform Support Products

XX

i3 TEXas
INSTRUMENTS

Installation

Abstract

Table of Contents

1.1. System RequUIr€mMeENtS ...ccviiiiiiiii i e e 2
1.2, Installationccooviiiiiiii 3
1.3. Installation Steps ..cciiiiiiii 5
1.4. Environment Setup ..cooviiiiiiiii i e 6
1.5. Setup NFS filesystemciiiiiiiiii e 7

Version 02.01.03.11 Platform Support Products 1

f TEXAS Installation
INSTRUMENTE System Requirements

1.1. System Requirements

Hardware Requirements:

e OMAP EVM Main Board (REV C or later) and OMAP35XX Processor
Board with OMAP35x ES 2.1/3.1 Processor (REV B or later) This
release also supports the OMAP EVM2 Main board with ES3.1
processor.

Software Requirements:

e Code Sourcery ARM tool chain version 2008-q1

2 Platform Support Products Version 02.01.03.11

f TEXAS Installation
INSTRUMENTS Installation

1.2. Installation

Extract the contents of release package with the following command:

$ tar -xvfz OVAP35x- PSP- SDK- MM nm pp. bb. tgz

This creates a directory OMAP35x-PSP-SDK-MM.mm.pp.bb with the
following contents:

\ - - - OVAP35x- PSP- SDK- MM nm pp. bb
-- License.htm
-- Software-manifest. htm
-- docs
| -- Buil di ng- Root Fs- Arago. ht m
| -- Dat aSheet - MM mm pp. bb. pdf
| -- GettingStarted. pdf
| -- MgrationGui de- MM nm pp. bb. pdf
| -- Rel easeNot es- MM mMm pp. bb. pdf
“-- User Gui de- MM nmm pp. bb. pdf
-- host-tools
-- |inux
T-- signGP
-- src
T-- signGP.c
-- Wi ndows
| -- PumpKI N. exe
| -- PumpKIN. hl p
| -- peripheral -boot -i nages
| | -- Readne.txt
| | -- dnld_startup_onmap3_evm bin
| “-- peripheral -u-boot. bin
|-- utilities
| Conmuni cati onl nterface. dl |
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I | --

| | -- CoreEngine.dll
| | -- Downl oadWility. exe
| | “-- Downl oadUtility.ini
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-- inmages
- boot-strap
“-- x-load. bin.ift
- exanpl es
- fs
| -- nfs-base.tar.gz
|-- nfs.tar.gz
| -- ramdi sk-base. gz
| -- ramdi sk. gz
| -- rootfs-base.jffs2
-- rootfs.jffs2
- kernel
“-- ul mage
- u- boot
“-- u-boot.bin
- utils

Version 02.01.03.11 Platform Support Products 3

i3 TEXas
INSTRUMENTS

Installation
Installation

I
|__
I
I
I
I
I
|__
I
I
I
I
I
I
mm

“-- itbok.bin
scripts
| -- Readne.txt
|-- initenv-mcron.txt
| -- initenv-sanmsung. txt
| -- reflash-mcron.txt
*-- reflash-sansung. t xt

src
| -- boot-strap
| | -- ChangelLog- MM nm pp. bb
| | -- ShortLog
| | -- Unified-patch- MM mm pp. bb. gz
| | -- diffstat-MM nm pp. bb
| | -- x-1 oader - pat ches-
WM pp. bb.tar. gz
| | “-- x-loader-MM nm pp. bb.tar. gz
| | -- exanpl es
| | ‘-- exanples.tar.gz
| | -- kernel
| | | -- Readne.txt
| | | -- ChangelLog- MM nm pp. bb
| | | -- ShortLog
| | | -- Unified-patch- MM mm pp. bb. gz
| | | -- diffstat-MM nm pp. bb
| | | -- kernel - pat ches-
MM mm pp. bb.tar. gz
| | -- linux-MM mm pp. bb.tar. gz
| | -- u-boot
| | | -- Readne.txt
| | | -- ChangelLog- MM nm pp. bb
| | | -- ShortLog
| | | -- Unified-patch- MM mm pp. bb. gz
| | | -- diffstat-MM nm pp. bb
| | | -- u-boot-MM nm pp. bb.tar. gz
| | *-- uboot - pat ches-
MM mm pp. bb.tar. gz
| T-- utils
| | | -- Readne.txt
| | | -- | TBOK- AND- UBOOT. t ar . bz2
| | “-- dnld-util-target.tar.bz2
|-- test-suite
|-- Iftb-MM mm pp. bb. tar. gz
-- I ptb-MM mm pp. bb.tar. gz
Important

The values of MM, mm, pp and bb in this illustration will vary across
the releases and actually depends on individual component versions.

Platform Support Products

Version 02.01.03.11

f TEXAS Installation
INSTRUMENTE Installation Steps

1.3. Installation Steps

Instructions for initial setup of the EVM are contained in the OMAP3 EVM
Users Guide included with the EVM Kkit.

Refer section 2.1 for the detailed instructions to bring-up the EVM.

To use the pre-built binaries included in the release, skip to section 2.4.
You can always return to section 2.1 for instructions on how to build the
x-loader, u-boot and Linux kernel.

Version 02.01.03.11 Platform Support Products 5

f TEXAS Installation
INSTRUMENTS Environment Setup

1.4. Environment Setup

1. Set the environment variable PATH to contain the binaries of the
CodeSourcery cross-compiler tool-chain.
2. For example, in bash:

$ export PATH=/ opt/t ool chai n/ 2008- ql/ bi n: $PATH

Add location of u-boot tools to the PATH environment variable.

3. For example, in bash:

$ export PATH=/ opt/u-boot/t ool s: $PATH

Note

n Actual instructions and the path setting will depend upon your shell
and location of the tools

6 Platform Support Products Version 02.01.03.11

f TEXAS Installation
INSTRUMENTS

Setup NFS filesystem

1.5. Setup NFS filesystem

This step is required when root filesystem is mounted from an NFS
location.

Extract the contents of the NFS image (nfs.tar.bz2) to a directory
exported via NFS.

$ cd /opt/nfs/target
$ tar xjfv nfs.tar.bz2

Important
Execute this command as 'root' user. Some of the files included in this

archive require root permissions for creation.

Version 02.01.03.11 Platform Support Products

i3 TEXas
INSTRUMENTS

Version 02.01.03.11 Platform Support Products

i3 TEXAS

INSTRUMENTS
Abstract

Table of Contents

2.1, INtroduCtion ...ieiiiii e 10
2.2. Compiling X-Loadericiviiiiiiiii i i e e 11
2.3. Signing X-load.bin ... 12
2.4. Flashing X-loaderccoiiiiiiiii i e 13
2.4.1. ONENAND .ottt 13
2.4.2. NAND ottt e e 13
2.5. Preparing MMC/SD for bootcciviiiiiiiiiii 14
2.5.1. Creating bootable partitioncccociiiiiiiiiiiiiini 14
2.5.2. Copying X-loadercccoiiiiiiiiiiiiiic e 14

Version 02.01.03.11 Platform Support Products 9

f TEXAS x-loader
INSTRUMENTS Introduction

2.1. Introduction

X-loader is loaded by ROM boot loader into internal RAM. X-loader
support boot from OneNAND, NAND, MMC/SD.

10 Platform Support Products Version 02.01.03.11

f TEXAS x-loader
INSTRUMENTS Compiling X-Loader

2.2. Compiling X-Loader

Change to the base of the X-Loader directory.

$ cd ./x-1oad

Remove the intermediate files generated during build. This step is not
necessary when building for the first time.

$ nmake CROSS_COWPI LE=ar m none- | i nux- gnueabi - ARCH=ar m di st cl ean
Choose the configuration for OMAP3 EVM.

$ make CROSS_COWPI LE=ar m none- | i nux- gnueabi - ARCH=arm
omap3evm confi g

Initiate the build.
$ make CROSS_COWPI LE=ar m none- | i nux- gnueabi - ARCH=arm

On successful completion, file x-1 oad. bi n will be created in the current
directory.

Version 02.01.03.11 Platform Support Products 11

f TEXAS x-loader
INSTRUMENTS Signing x-load. bin

2.3. Signing x-load.bin

The file x-1 oad. bi n needs to be signed before it can be used by the
ROM bootloader.

To sign the X-Loader binary: (look for signGP tool under host-tools/linux
folder)

$ signGP x-load. bin

The signing utility creates x- 1 oad. bi n. i ft in the current directory.

12 Platform Support Products Version 02.01.03.11

f TEXAS x-loader
INSTRUMENTS Flashing x-loader

2.4. Flashing x-loader

2.4.1. OneNAND

To flash the x-loader into OneNAND, execute following commands at the
U-Boot prompt:

OVAP3EVM# mw. b 0x80000000 OxFF 0x100000
OVAP3EVM# tftp 0x80000000 x-1oad.bin.ift

Note

On Older U-boot versions(from PSP 1.0.x releases), the OneNand
will have to be unlocked before write/erase operation. For subsequent
releases of u-boot, this step is not required.

OMAP3EVMt onenand unl ock 0x000000 0x20000

OVAP3EVMt onenand erase 0x00000000 0x00080000
OVAP3EVME onenand wite 0x80000000 0x0 0x10000

2.4.2. NAND

To flash the x-loader into Micron NAND, execute following commands at
the U-Boot prompt:

OVAP3EVM{ nmw. b 0x80000000 OxFF 0x100000
OVAP3EVM¢ tftp 0x80000000 x-Iload. bin.ift
OVAP3EVM¢ nand unl ock

OVAP3EVME nand erase 0 40000

OVAP3EVMt nandecc hw

OVAP3EVM{ nand wite.i 0x80000000 O 40000
OVAP3EVME nand | ock

Note

nandecc command has changed from the previous release.

Version 02.01.03.11 Platform Support Products 13

i3 TEXAS

x-loader

INSTRUMENTS Preparing MMC/SD for boot

2.5. Preparing MMC/SD for boot

2.5.1. Creating bootable partition

To be able to boot from MMC/SD, there should be valid bootable partition
on the card.

Use HP USB Disk Storage Format Tool (available from http://
www.sysanalyser.com/sp27213.exe) and follow the steps below:

Specifically Use version 2.0.6 of the HP Disk Format Tool. Later versions
do work well with the boot code.

Connect the card reader to the Windows machine where the
formatting tool has been installed.

Insert MMC/SD card into the card reader.
Launch the HP USB Disk Storage Format Tool.
Select FAT32 as File System.

Click on Start.

After formatting is done Click OK.

2.5.2. Copying x-loader

Copy the x-1 oad. bin.ift to the MMC/SD card and rename it as MLO.

Once the U-Boot and Linux kernel are built, u- boot . bi n, ul rage and
randi sk. gz should be copied to the card.

14

Platform Support Products Version 02.01.03.11

http://www.sysanalyser.com/sp27213.exe
http://www.sysanalyser.com/sp27213.exe

i3 TEXas
INSTRUMENTS

U-Boot

Abstract

This chapter describes the steps required to build and configure u-boot to use different filesystems
during the kernel boot.

It also describes new commands for managing bad blocks.

Table of Contents

3.1. Compiling U-BoOtviiiiiiii i 17
3.2. FIashing U-BoOOt ...ciiiiiiiiiii i 18
3.2.1. ONENAND ..ot aeaas 18
3.2.2. MIicron NAND ...uirieii e 18
3.3. Configuring U-Boot ...cciiiiiiii i 19
3.3.1. Using ramdisk imageccoiiiiiiiiiiiiiiiiiicici e 19
3.3.2. Using NFS (Default U-Boot configuration) 19

Version 02.01.03.11 Platform Support Products 15

i3 TEXAS

INSTRUMENTS U-Boot
3.3.3. Using NFS with no DHCP in LiNUXcovveiiiiniiiiienennns 20

3.4. Managing ONeNAND ...t s e 22
3.4.1. Marking a bad block ..o 22
3.4.2. Erasing ONeNAND ...ttt e 22
3.4.3. Writing to ONENANDoviviiiiiiiieieireee e e 23
3.4.4. Reading from ONeNANDcoiiiiiiiiiiiicii e 23
3.4.5. Scrubbing ONeNANDcoiiiiiiii e 24

3.5. Managing NANDciiiiiii i i e s e e e 25
3.5.1. Marking a bad block ..o 25
3.5.2. Viewing bad blocksccoiiiiiiiiiiii 25
3.5.3. Erasing NAND ...c.ouiniiiiiieeee e e e e 25
3.5.4. Writing £0 NAND ...oouiiiiiiiiieee e eneees 26
3.5.5. Reading from NAND ...ttt 27
3.5.6. Unlocking NAND address SpPaceccvvevviiviiniiinnnninnnns 27
3.5.7. NAND ECC algorithm selectionccccoevviiiiiiiiiinnnnne. 28

16

Platform Support Products Version 02.01.03.11

13 TEXAS U-Boot
INSTRUMENTS Compiling U-Boot

3.1. Compiling U-Boot

Change to the base of the u-boot directory.

$ cd ./ u-boot

Remove the intermediate files generated during build. This step is not
necessary when building for the first time.

$ nmake CROSS_COWPI LE=ar m none- | i nux- gnueabi - ARCH=ar m di st cl ean

Choose the configuration for OMAP3 EVM.

$ make CROSS_COWPI LE=ar m none- | i nux- gnueabi - ARCH=arm
omap3_evm confi g

Initiate the build.
$ make CROSS_COWPI LE=ar m none- | i nux- gnueabi - ARCH=ar m

On successful completion, file u- boot . bi n will be created in the current
directory.

Note
The u-boot build commands have changed from the previous release.

Version 02.01.03.11 Platform Support Products 17

13 TEXAS U-Boot
INSTRUMENTS Flashing U-Boot

3.2. Flashing U-Boot

3.2.1. OneNAND

To flash u-boot. bin to the OneNAND execute the commands listed
below:

OVAP3EVM# mw. b 0x80000000 OxFF 0x100000
OVAP3EVM# tftp 0x80000000 u-boot. bin

Note

With Older U-boot versions(from PSP 1.0.x releases), the OneNand
will have to be unlocked before erase/write operation. For subsequent
releases of u-boot, this step is not required.

OVAP3EVME onenand unl ock 0x000000 0x300000

OVAP3EVME onenand erase 0x00080000 0x001C0000
OVAP3EVME onenand wite 0x80000000 0x80000 0x1C0000

3.2.2. Micron NAND

To flash u-boot . bi n to the Micron NAND execute the commands listed
below:

OVAP3EVME mw. b 0x80000000 OxFF 0x100000

OVAP3EVMt tftp 0x80000000 u-boot. bin

OVAP3EVM¢ nand unl ock

OVAP3EVME nand erase 0x80000 0x1C0000

OVAP3EVMt nandecc sw

OVAP3EVME nand write.i 0x80000000 0x80000 0x1C0000
OVAP3EVME nand | ock

Note

nandecc command has changed from the previous release.

18 Platform Support Products Version 02.01.03.11

13 TEXAS U-Boot
INSTRUMENTS Configuring U-Boot

3.3. Configuring U-Boot

This section assumes that EVM has been setup properly.

1. Enable UART1 on the EVM : On Jumper J8 select 1-2

2. Connect EVM (UART1) to the HOST PC through serial cable.
3. Start a terminal emulator (e.g. Hyperterm) on the HOST PC.
4. Power on EVM and wait for u-boot to come up.

Some commands entered on the console are long. The command
text may appear wrapped in the document. Wherever indicated, these
commands must be entered in a single line.

3.3.1. Using ramdisk image

Set the boot ar gs:

OVAP3EVMt setenv bootargs mem=128M consol e=ttyS0, 115200n8
root =/ dev/ramD rw initrd=0x81600000, 16M i p=dhcp
nmpur at e=600

Note
The entire command should be entered in a single line.

Set the boot cnd:

OVAP3EVMt setenv bootcnd ' dhcp;

tftp 0x80000000 ul nage;tftp O0x81600000 randi sk. gz;
boot m 80000000'

Note
The entire command should be entered in a single line.

3.3.2. Using NFS (Default U-Boot configuration)

Set the boot ar gs:

OVAP3EVMt set env bootargs consol e=ttyS0, 115200n8 noinitrd

Version 02.01.03.11 Platform Support Products 19

13 TEXAS U-Boot
INSTRUMENTS Using NFS with no DHCP in Linux

i p=dhcp rw root=/dev/nfs nfsroot=192. 168. 1. 101:
[opt/ nfs/target, nol ock, rsi ze=4096, wsi ze=4096 nmem=128M
nmpur at e=600

Note

* The entire command should be entered in a single line.

. Replace NFS server IP address(192.168.1.101) and mount path(/
opt/nfs/target) with actuals based on your NFS server setting.

Set the boot cnd:

OVAP3EVMt setenv 'bootcnd dhcp;tftp 0x80000000 ul nage; boot mi

3.3.3. Using NFS with no DHCP in Linux

Disable the DHCP support in the build configuration:

Device Drivers
Networking Support
Networking options
IP: DHCP Support

Set the boot ar gs:

OVAP3EVMt setenv bootargs 'consol e=ttyS0, 115200n8 noinitrd rw
root =/ dev/ nfs nfsroot=192.168. 1. 101:
/opt/ nfs/target, nol ock, rsi ze=4096, wsi ze=4096 nmem=128M
nmpur at e=600'

Set the boot cnd:

OVAP3EVMt setenv bootcnd ' dhcp; setenv addi p setenv boot args
$(boot ar gs)
i p=$(i paddr): $(serverip): $(gat ewayi p): $(net mask) :
$(hostnane):: of f eth=$(ethaddr);run addip;
tftp 0x80000000 ul nage; boot m 0x80000000

Note

The entire command should be entered in a single line.

20 Platform Support Products Version 02.01.03.11

I3 TEXAS U-Boot
INSTRUMENTS Using NFS with no DHCP in Linux

Important

To save the variables on the flash, use the u-boot command saveenv.

Version 02.01.03.11 Platform Support Products 21

13 TEXAS U-Boot
INSTRUMENTS Managing OneNAND

3.4. Managing OneNAND

The u-boot has been updated to include bad block management for
OneNAND. These updates also impacted behavior of existing OneNAND
commands. This section describes the new and modified commands
added for the purpose.

3.4.1. Marking a bad block

To forcefully mark a block as bad:

OVAP3EVM¢ onenand nar kbad <of f set >

For example, to mark block 32 (assuming erase block size of 128Kbytes)
as bad block - offset = blocknum * 128 * 1024:

OVAP3EVME onenand nar kbad 0x400000

3.4.2. Erasing OneNAND

To erase OneNAND blocks in the address range:

OVAP3EVMt onenand erase <stof faddr> <endof f addr >
or

OMAP3EVME onenand erase bl ock <stbl knum endbl knune

Note
The behavior of this command was modified.

This commands skips bad blocks (both factory or user marked)
encountered within the specified range.

Important
If the erase operation fails, the block is marked bad and the command

aborts. To continue erase operation, the command needs to be re-
executed for the remaining blocks in the range.

For example, to erase blocks 32 through 34:

22 Platform Support Products Version 02.01.03.11

13 TEXAS U-Boot
INSTRUMENTS Writing to OneNAND

OVAP3EVMt onenand erase 0x00400000 0x00440000
or
OVAP3EVMt onenand erase bl ock 32-34

3.4.3. Writing to OneNAND

To write /len bytes of data from a memory buffer located at addrto the
OneNAND block offset:

OVAP3EVMt onenand wite <addr> <of fset> <l en>

Note
The behavior of this command was modified.

If a bad block is encountered during the write operation, it is skipped
and the write operation continues from next 'good' block.

Important
If the write fails on ECC check, the block where the failure occurred

is marked bad and write operation is aborted. The command needs to
be re- executed to complete the write operation. The offset and length
for reading have to be page aligned else the command will abort.

For example, to write 0x40000 bytes from memory buffer at address
0x80000000 to OneNAND - starting at block 32 (offset 0x400000):

OVAP3EVMt onenand write 0x80000000 0x400000 0x40000

3.4.4. Reading from OneNAND

To read /en bytes of data from OneNAND block at offset to memory buffer
located at addr:

OVAP3EVME onenand read <addr> <offset> <len>

Note
The behavior of this command was modified.

Version 02.01.03.11 Platform Support Products 23

I3 TEXAS
INSTRUMENTS

U-Boot
Scrubbing OneNAND

If a bad block is encountered during the read operation, it is skipped and
the read operation continues from next 'good' block.

Important

If the read fails on ECC check, the block where the failure occurred
is marked bad and read operation is aborted. The command needs
to be re- executed to complete the read operation. But, the data in
just marked bad block is irrecoverably lost. The offset and length for
reading have to be page aligned else the command will abort.

For example, to read 0x40000 bytes from OneNAND - starting at block
32 (offset 0x400000) to memory buffer at address 0x80000000:

OVAP3EVMt onenand read 0x80000000 0x400000 0x40000

3.4.5. Scrubbing OneNAND

This command operation is similar to the erase command, with a
difference that it doesn't care for bad blocks. It attempts to erase all
blocks in the specified address range.

To scrub OneNAND blocks in the address range:

OVAP3EVMt onenand scrub <stof faddr> <eof f addr >

or

OMAP3EVMt onenand scrub bl ock <stbl knum endbl knune

Note

This is a new command.

Important

The command does not check whether the block is a user marked or
factory marked bad block. This command fails on a factory marked
bad block.

Important

If the erase operation fails, the block is marked as bad and the
command aborts. The command needs to be re-executed for the
remaining blocks in the range.

24

Platform Support Products Version 02.01.03.11

13 TEXAS U-Boot
INSTRUMENTS Managing NAND

3.5. Managing NAND

The u-boot has been updated to include NAND flash support

3.5.1. Marking a bad block

To forcefully mark a block as bad:

OMAP3EVM¢ nand mar kbad <of f set >

Note
This is a new command.

For example, to mark block 32 (assuming erase block size of 128Kbytes)
as bad block - offset = blocknum * 128 * 1024:

OVAP3EVME nand mar kbad 0x400000

3.5.2. Viewing bad blocks

Gives a list of bad blocks in NAND

OVAP3EVME nand bad

Note
The user marked bad blocks can be viewed by using this command

only after a reset.

3.5.3. Erasing NAND

To erase NAND blocks in the address range or using block numbers

OMAP3EVMt nand erase <stoffaddr> <l en>

Version 02.01.03.11 Platform Support Products 25

I3 TEXAS U-Boot
INSTRUMENTS Writing to NAND

Note
The behavior of this command was modified.

This commands skips bad blocks (both factory or user marked)
encountered within the specified range.

Important
If the erase operation fails, the block is marked bad and the command

aborts. To continue erase operation, the command needs to be re-
executed for the remaining blocks in the range.

For example, to erase blocks 32 through 34

OVAP3EVME nand erase 0x00400000 0x40000

3.5.4. Writing to NAND

To write /en bytes of data from a memory buffer located at addrto the
NAND block offset:

OMAP3EVMt nand wite <addr> <of fset> <l en>

Note
The behavior of this command was modified.

If a bad block is encountered during the write operation, it is skipped
and the write operation continues from next 'good' block.

Important
If the write fails on ECC check, the block where the failure occurred

is marked bad and write operation is aborted. The command needs to
be re- executed to complete the write operation. The offset and length
for reading have to be page aligned else the command will abort.

For example, to write 0x40000 bytes from memory buffer at address
0x80000000 to NAND - starting at block 32 (offset 0x400000):

OVAP3EVM# nand write 0x80000000 0x400000 0x40000

26

Platform Support Products Version 02.01.03.11

13 TEXAS U-Boot
INSTRUMENTS Reading from NAND

3.5.5. Reading from NAND

To read /en bytes of data from NAND block at offset to memory buffer
located at addr:

OMAP3EVMt nand read <addr> <offset> <l en>

Note
The behavior of this command was modified.

If a bad block is encountered during the read operation, it is skipped and
the read operation continues from next 'good' block.

Important
If the read fails on ECC check, the block where the failure occurred

is marked bad and read operation is aborted. The command needs
to be re- executed to complete the read operation. But, the data in
just marked bad block is irrecoverably lost. The offset and length for
reading have to be page aligned else the command will abort.

For example, to read 0x40000 bytes from NAND - starting at block 32
(offset 0x400000) to memory buffer at address 0x80000000:

OVAP3EVM¢ nand read 0x80000000 0x400000 0x40000

3.5.6. Unlocking NAND address space

To unlock NAND flash for writing

OVAP3EVME nand unl ock <of fset> <l en>

Note
This is a new command.

For example, to unlock block 32 (assuming erase block size of
128Kbytes)

Version 02.01.03.11 Platform Support Products 27

I3 TEXAS U-Boot
INSTRUMENTE NAND ECC algorithm selection

OMAP3EVMt nand unl ock 0x20000

3.5.7. NAND ECC algorithm selection

To select ECC algorithm for NAND

OVAP3EVME nandecc <sw hw>

Note

To write X-loader from U-Boot, ECC algorithm to be selected is HW
since bootrom uses this algorithm for reading. To write U-Boot from U-
Boot, ECC algorithm to be selected is SW.

OVAP3EVMt nandecc hw
or
OVAP3EVMt nandecc sw

28 Platform Support Products Version 02.01.03.11

i3 TEXAS

INSTRUMENTS
Abstract

Table of Contents

4.1. Compiling Linux Kernelcoviiiiiiiiiii i e e 30

4.2. Configuring Linux Kernelc.ccoeiiiiiiiiiiiii e 31

4.2.1. Build configuration for OMAP35X ...ccciviiiiiiiiiiiiiininenns 31

4.3. Booting Linux KerNelccoiiiiiiiiiiiiiic s naea 34

4.3.1. Selecting boot modeccviiiiiiiii 34

Version 02.01.03.11

Platform Support Products 29

f TEXAS Kernel
INSTRUMENTE Compiling Linux Kernel

4.1. Compiling Linux Kernel

Change to the base of the Linux source directory.

Create default configuration for the OMAP3EVM.

$ make CROSS_COWPI LE=ar m none- | i nux- gnueabi - ARCH=arm
omap3_evm def confi g

Initiate the build.

Note
For the kernel image(ulmage) to be built, mkimage utility must be

included in the path. mkimage utility is generated(under tools folder)
while building u-boot.bin

$ nake CROSS_COWPI LE=ar m none- | i nux- gnueabi - ARCH=ar m ul mage

On successful completion, file ul mage will be created in the directory ./
arch/ arni boot .

Copy this file to the root directory of your TFTP server.

30 Platform Support Products Version 02.01.03.11

f TEXAS Kernel
INSTRUMENTE Configuring Linux Kernel

4.2. Configuring Linux Kernel

Enter following command to make changes to default configuration. The
configuration options for various drivers will be described in the PSP
datasheet

$ nake CROSS_COWPI LE=ar m none- | i nux- gnueabi - ARCH=ar m nenuconfig

Following drivers are enabled in the default configuration:

Serial port

° Mentor USB in Host mode

e USB EHCI
) Ethernet
e MMC/SD

e Video Display
e Audio
. NAND and OneNAND

e Touchscreen

4.2.1. Build configuration for OMAP35x

The default configuration included in the release contains all default
values to build Linux kernel for OMAP35x EVM. The specific processor
type - OMAP3503, OMAP3515, OMAP3525 and OMAP3530 - is detected
at runtime.

This section illustrates these configuration items for reference.

To create default configuration:

$ make CROSS_COWPI LE=ar m none- | i nux- gnueabi - ARCH=arm
omap3_evm def confi g

To view configuration:

$ nake CROSS_COWPI LE=ar m none- | i nux- gnueabi - ARCH=ar m nenuconfi g

Version 02.01.03.11 Platform Support Products 31

13 TEXAS Kernel
INSTRUMENTS Build configuration for OMAP35x

From the onscreen menu, select System Type:

General setup --->

Enabl e | oadabl e nodul e support --->
Enabl e the bl ock | ayer --->

System Type --->

Bus support --->

Kernel Features --->

——
* *
[E——

These items would be selected by default:
e OMAP35x Family

e OMAP 3530 EVM board

ARM systemtype (TI OVAP) --->
TI OVAP | npl ementations --->
OVAP34xx Based System
OVAP3430 support
OVAP35x Family
*** OVAP Board Type ***
OVAP3 LDP board
OVAP 3430 SDP board
OVAP 3530 EVM board

—_—
E
—_

—— —
— e —

Choose Exit to return to the previous menu.

4.2.1.1. Power module PR785

The OMAP3EVM ships with power module using TPS65950 PMIC. If the
board uses PR785 power module, following changes are necessary:

From the onscreen menu, select System Type.

Code maturity |level options --->
General setup --->

Loadabl e nodul e support --->

Bl ock | ayer --->

System Type --->

Now select PR785 Power board selection for OMAP3 EVM --->,

ARM systemtype (TI OWAP) --->

32

Platform Support Products Version 02.01.03.11

13 TEXAS Kernel
INSTRUMENTS Build configuration for OMAP35x

TI OVAP | npl ementations --->
- OMAP34xx Based System
OVAP3430 support
OVAP35x Fanily
*** OVAP Board Type ***
OVAP3 LDP board
OVAP 3430 SDP board
OVAP 3530 EVM board
PR785 Power board selection for OMAP3 EVM --->
[1] Power board for OVAP3 EVM
[1] OVAP3 BEAGLE board

—_—
* X
[

———
— e —

Now select Power board for OMAP3 EVM.
Return back to main menu, and select Device Drivers
Now select Multifunction device drivers

From this sub-menu, deselect Texas Instruments TWL4030/
TPS659x0 Support.

Return back to main menu, and select Device Drivers
Now select Voltage and Current Regulator Support

From this sub-menu, select TPS6235X Power regulator for
OMAP3EVM (NEW)

Save the configuration.

Version 02.01.03.11 Platform Support Products 33

I TEXAS Kernel
INSTRUMENTS Booting Linux Kernel

4.3. Booting Linux Kernel

4.3.1. Selecting boot mode

Boot mode can be selected using dip switch SW4 on the EVM. It is shown
below in figure boot switch and "SW-1" in the figure indicates pin 1
position in the SW4 dip switch on the EVM and similarly it is mapped
for other pins.

Boot Mode SW-1 | SW-2 | SW-3 | SW-4 | SW-5 | SW-6
MMC with OneNAND OFF OFF ON ON ON X
MMC with OneNAND ON OFF OFF ON ON X
MMC with NAND OFF ON ON ON OFF X
MMC with NAND ON ON ON OFF OFF X
OneNAND ON ON ON ON ON X
OneNAND ON OFF OFF ON OFF X
NAND OFF ON ON ON ON X
NAND OFF ON OFF ON OFF X

Figure 4.1. Boot switch position

Note
This selection identifies the location from where the x-loader and u-

boot binaries are executed.

Power on EVM and wait for u-boot to come up.

Important
Ensure that u-boot environment variables boot ar gs and boot cnd

are properly set. See section 3.3 for more details.

In addition, set these environment variables with correct values:
a. serverip

b. bootfile

For example:

OVAP3EVM{ setenv serverip xX.XX.XX. XX
OVAP3EVMt setenv bootfile ul mage

34 Platform Support Products Version 02.01.03.11

f TEXAS Kernel
INSTRUMENTE Selecting boot mode

To boot the Linux kernel from OneNAND/NAND:

OVAP3EVMt boot

To boot the Linux kernel from MMC/SD card, set the mmcboot
environment variable as follows (only an illustration - substitute with
actual image path and load address for your system)

OVAP3EVMt setenv mmtboot 'mmtinit; fatload nmc 0 0x82000000
ul mage; boot m 0x82000000'
OVAP3EVM¢ saveenv

In case of boot from MMC/SD card and using ramdisk image as the
filesystem, set the mmcboot environment variable as follows (only an
illustration - substitute with actual image path and load address for your
system)

OVAP3EVMt setenv mmtboot 'mmtinit; fatload nmc 0 0x82000000
ul mage; fatload mt 0 0x83600000 randi sk.gz; boot m 0x82000000'
OVAP3EVMt saveenv

Once setup, the mmcboot variable can be exercised as follows:

OMAP3EVMY run mmtboot

Once the Linux kernel boots, login as "root". No password is required.

Version 02.01.03.11 Platform Support Products 35

i3 TEXas
INSTRUMENTS

Version 02.01.03.11

Platform Support Products

36

i3 TEXAS

INSTRUMENTS
Abstract
Table of Contents
L A 1 0o/ o Yo [ot o o] o R 39
T I A 20 1] =] 2 (oS 39
5.1.2. Acronyms & Definitionscoviviiiiiiiiiiiiicc 39
o T A LT | 11 T 41
5.2.1. Features Supportedc.cooiiiiiiiiiiiiii 41
5.2.2. CoNnStraints ..iiiiiiiiiiiiiiiiiii i 41
5.3, ArChitECEUNE it e 43
5.3.1. ALSA SOC LAyl .iiiiiiiiiiiiiiii it it e e e 43
5.3, 2, DBSIgN it s 43
5.4. Driver Configurationccooiiiiiiiiiiiii e 45
Version 02.01.03.11 Platform Support Products 37

i3 TEXas
INSTRUMENTS

Audio Driver

5.4.1. Configuration Stepscv.e.
5.4.2. Installationcoiiiiiiiiinns
5.5. Software Interfacescceviiiiinnnns
5.5.1. Application Interface
5.5.2. Driver Interfacecccoevennnnn.
5.6. Sample Applicationscoovviiiiinnnn.
5.6.1. Introductioncocviiiiiiiininnns
5.6.2. A minimal playback application
5.6.3. A minimal record application

5.7. Revision Historycccooiiviiiiiiiiiinnnn .

38

Platform Support Products

Version 02.01.03.11

I TEXAS Audio Driver
INSTRUMENTS Introduction

5.1. Introduction

The TWL4030 audio module contains audio analog inputs and outputs.
It is connected to the main OMAP35x processor through the TDM/I2S
interface (audio interface) and used to transmit and receive audio data.
The TWL4030 codec is connected via Multi-Channel Buffered Serial Port
(McBSP) interface, a communication peripheral, to the main processor.

McBSP provides a full-duplex direct serial interface between the device
(OMAP35x processor) and other devices in the system such as the
TWL4030 codec. It provides a direct interface to industry standard
codecs, analog interface chips (AICs) and other serially connected A/D
and D/A devices:

e Inter-IC Sound (I2S) compliant devices
e Pulse Code Modulation (PCM) devices
e Time Division Multiplexed (TDM) bus devices.

The TWL4030 audio module is controlled by internal registers that can
be accessed by the high speed I2C control interface.

This user manual defines and describes the usage of user level and
platform level interfaces of the ALSA SoC Audio driver.

5.1.1. References

1. ALSA SoC Project Homepage [http://www.alsa-project.org/main/
index.php/ASoC]

2. ALSA Project Homepage [http://www.alsa-project.org/main/
index.php/Main_Page]

3. ALSA User Space Library [http://www.alsa-project.org/alsa-doc/
alsa-lib/]

4. Using ALSA Audio API [http://www.equalarea.com/paul/alsa-
audio.html/]

Author: Paul Davis

5. TWL4030 OMAP Power Management and System Companion Device
Silicon Revision 2.1. (Author: Texas Instruments)

Literature Number: SWCU026D
5.1.2. Acronyms & Definitions

Acronym Definition
ALSA Advanced Linux Sound Architecture

Version 02.01.03.11 Platform Support Products 39

http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/Main_Page
http://www.alsa-project.org/main/index.php/Main_Page
http://www.alsa-project.org/main/index.php/Main_Page
http://www.alsa-project.org/alsa-doc/alsa-lib/
http://www.alsa-project.org/alsa-doc/alsa-lib/
http://www.alsa-project.org/alsa-doc/alsa-lib/
http://www.equalarea.com/paul/alsa-audio.html/
http://www.equalarea.com/paul/alsa-audio.html/
http://www.equalarea.com/paul/alsa-audio.html/

i3 TEXAS

Audio Driver

INSTRUMENTE Acronyms & Definitions
Acronym Definition
ALSA SoC ALSA System on Chip
DMA Direct Memory Access
I2C Inter-Integrated Circuit
McBSP Multi-channel Buffered Serial Port
PCM Pulse Code Modulation
TDM Time Division Multiplexing
0ss Open Sound System
12S Inter-IC Sound

Table 5.1. Acronyms

40

Platform Support Products Version 02.01.03.11

i3 TEXAS

INSTRUMENTS

Audio Driver
Features

5.2. Features

This section describes the supported features and constraints of the ALSA

SoC Audio driver.

5.2.1. Features Supported

e Supports TWL4030 audio codec in ALSA SoC framework.

e Supports audio in both mono and stereo modes.

e Multiple sample rate support (8 KHz, 11.025 KHz, 12 KHz, 16 KHz,
22.05 KHz, 24 KHz, 32 KHz, 44.1 KHz and 48 KHz) for both capture

and playback.

e Supports simultaneous playback and record (full-duplex mode).

e 16 Bit Little Endian Signed PCM data.

e I2S mode of operation.

e Interleaved access mode.

e Start, stop, pause and resume feature.

e Supports mixer interface for TWL4030 audio codec.

e MCcBSP is configured as slave and TWL4030 Codec is configured as

master.

5.2.2. Constraints

Constraint

Support for synthesizer

Remark

and Synthesizer and midi interfaces are

similar interfaces other than ones not supported as many codecs do

described in supported features.

Formats other than 12S.

not support the same. If any codec
driver does support it, it would be a
specific functionality of that driver
alone.

Formats such as TDM, Left and
Right Justified are currently not
supported.

Opening of the same stream (Play/ The audio driver will support a

Record) multiple times

Configuration of McBSP as Master. TWL4030

single input (RECORD) and a
single output stream (PLAY). The
audio driver will not allow opening
the same stream (Play/Record)
multiple times concurrently.

codec needs to be
configured in Master mode only,

Version 02.01.03.11

Platform Support Products

41

I TEXAS Audio Driver
INSTRUMENTS Constraints

Constraint Remark
and therefore McBSP can only be
used as slave along with this codec.

Configuration of capture and TWL4030 codec wuses McBSP
playback streams in different instance 2 on OMAP3 EVM.
sampling rates. This McBSP instance has a
limitation that when used in
full-duplex mode, both reception
and transmission could only use
the same clock signal and the
same frame synchronization signal.
Hence capture and playback
streams cannot be configured for
two different sampling frequencies.

0SS emulation layer support. 0SS emulation layer is not
supported because of which
0SS based applications (for e.g.
madplay) may not work properly.

Table 5.2. Audio Driver : Constraints

Platform Support Products Version 02.01.03.11

i3 TEXAS

Audio Driver

INSTRUMENTS Architecture

5.3. Architecture

5.3.1. ALSA SoC Layer

The overall project goal of the ALSA System on Chip (ASoC) layer is to
provide better ALSA support for embedded system on chip procesors and
portable audio codecs. Currently there is some support in the kernel for
SoC audio, however it has some limitations:

5.3.2. Design

Currently, codec drivers are often tightly coupled to the underlying
SoC cpu. This is not really ideal and leads to code duplication.

There is no standard method to signal user initiated audio events.
e.g. Headphone/Mic insertion, Headphone/Mic detection after an
insertion event.

Current drivers tend to power up the entire codec when playing (or
recording) audio. This is fine for a PC, but tends to waste a lot of
power on portable devices. There is also no support for saving power
via changing codec oversampling rates, bias currents, etc.

The ASoC layer is designed to address these issues and provide the
following features:

Codec independence: Allows reuse of codec drivers on other
platforms and machines.

Easy I2S/PCM audio interface setup between codec and SoC. Each
SoC interface and codec registers it's audio interface capabilities with
the core and are subsequently matched and configured when the
application hw params are known.

Dynamic Audio Power Management (DAPM): DAPM automatically
sets the codec to it's minimum power state at all times. This includes
powering up/down internal power blocks depending on the internal
codec audio routing and any active streams.

Pop and click reduction: Pops and clicks can be reduced by powering
the codec up/down in the correct sequence (including using digital
mute). ASoC signals the codec when to change power states.

To achieve all this, ASoC basically splits an embedded audio system into
three components:

Codec driver: The codec driver is platform independent and contains
audio controls, audio interface capabilities, codec dapm definition
and codec IO functions.

Platform driver: The platform driver contains the audio dma engine
and audio interface drivers (e.g. I12S, AC97, PCM) for that platform.

Version 02.01.03.11

Platform Support Products 43

i3 TEXas
INSTRUMENTS

Audio Driver
Design

e Machine driver: The machine driver handles any machine specific
controls and audio events. i.e. turing on an amp at start of playback.

Following architecture diagram shows all the components and the
interactions among them:

Native ALSA Application Native ALSA Application
ALSA Library
User Space
Kernel Space
ALSA Kernel APT
FY
A
ALSA SoC Core
¥ ¥
Cn!flec s __'P Mac'hine - o Plat'fnrm
Driver Driver Driver
I
L A
AIC23
TWL4030 Codec McBSP
Codec Driver
A
Control Interface Data Transfer
(120) System DMA Interface (McBSP)
OMAP 35x
Audio Codec
TWL4030/AIC23 .
(/) Audio Hardware

Figure 5.1. ALSA SoC Architecture

44 Platform Support Products

Version 02.01.03.11

I TEXAS Audio Driver
INSTRUMENTS Driver Configuration

5.4. Driver Configuration

5.4.1. Configuration Steps
To enable audio driver support in the kernel:
1. Open menuconfig options from kernel command prompt.

2. Select Device Drivers as shown here:

Linux Eernel Configuration

Brrow keys navigate the memu. <Enter> selects submenus --->.

Highlighted letters are hotkeys. Pressing <¥> includes, <N> excludes,

<M> modularizes features. Press <Escy<Esc» to exit, <?» for Help, </>

for Search. legend: [*] built-in [] excluded <M> module < >
A |:_}

CPU Power Management --->

Floating point emulation --->»

Userspace binary formats --—>

Power management options --->
[*] Metworking support --—»

Device Drivers --->

File systems ---»

Kernel hacking ---»

Security options --—>»
-%- Cryptographic APT --->
Li4)

< Exit » < Help »

Figure 5.2. Configure ALSA Driver: Step 2

3. Select Device Drivers > Sound card support as shown here:

Version 02.01.03.11 Platform Support Products 45

i3 TEXAS

INSTRUMENTS

Audio Driver

Configuration Steps

4.

Device Drivers

Brrow keys navigate the menu. <Enter> selscts submenus —-->.
Highlighted letters are hotkeys. Pressing <¥» includes, <N»> excludes,
<M> modularizes features. Press <Escx<Bscr to exit, <%» for Help, </»
for Search. Iegend: [*] built-in [] excluded <M> module < >

A |:_}

[¥] Watchdog Timer Support ---»
Sonics Silicon Backplane ---»
Multifunction device drivers ---»
Multimedia devices ---»

Graphics support ---»

(%> Sound card support --->

[*] BID Devices ---»

[*] USB support --->

<¥» MMC/SD/SDIO card support ---»

T > Sony MemoryStick card support (EXPERIMENTAL)

(+)

-

< Exit » < Help »

Figure 5.3. Configure ALSA Driver: Step 3

Select Device Drivers > Sound card support > Advanced Linux

Sound Architecture as shown here:

46

Platform Support Products

Version 02.01.03.11

i3 TEXAS

INSTRUMENTS

Audio Driver

Configuration Steps

Sound card support
Brrow keys navigate the menu. <Enter> selscts submenus —-->.

for Search. Iegend: [*] built-in [] excluded <M> module < >

Highlighted letters are hotkeys. Pressing <¥» includes, <N»> excludes,
<M> modularizes features. Press <Escx<Bscr to exit, <%» for Help, </»

--- Sound card support

Advanced Linux Sound Architecturs
< » Open Sound System (DEPRECATED) --->

< Exit » < Help »

Figure 5.4. Configure ALSA Driver: Step 4

Select Device Drivers > Advanced Linux Sound Architecture > OSS
PCM (digital audio) API and OSS PCM (digital audio) API - Include

plugin system (NEW), as shown here:

Version 02.01.03.11

Platform Support Products

47

i3 TEXAS

INSTRUMENTS

Audio Driver
Configuration Steps

6.

Advanced Linux Sound Architecturs

Brrow keys navigate the menu. <Enter> selscts submenus —-->.
Highlighted letters are hotkeys. Pressing <¥» includes, <N»> excludes,
<M> modularizes features. Press <Escx<Bscr to exit, <%» for Help, </»
for Search. Iegend: [*] built-in [] excluded <M> module < >

--- Advanced Linux Sound Architecture
< » Sequencer support
< » 085 Mixer RPI

055 PCM (digital audio) APT

[1 Dynamic device file minor numbers
[*] Support old ALSA RPI

[*] Verbose procfs contents

[1 Verbose printk

[1 Debug

Li+)

[*] 035 PCM (digital audio) API - Include plugin system (NEW)

< Exit » < Help »

Figure 5.5. Configure ALSA Driver: Step 5

Select Device Drivers > Advanced Linux Sound
Dynamic device file minor numbers as shown here:

Architecture >

48

Platform Support Products

Version 02.01.03.11

I TEXAS Audio Driver
INSTRUMENTE Configuration Steps

Bdvanced Linux Sound Architecturs
Brrow keys navigate the menu. <Enter> selscts submenus —-->.
Highlighted letters are hotkeys. Pressing <¥» includes, <N»> excludes,
<M> modularizes features. Press <Escx<Bscr to exit, <%» for Help, </»
for Search. Iegend: [*] built-in [] excluded <M> module < >

--- Advanced Linux Sound Architecturs

< » Sequencer support

< » 085 Mizer API

<*> (035 PCM (digital audio) API

[*] 035 PCM (digital audio) API - Include plugin system (NEW)

Dynamic device file minor mumbers
[*] Support old ALSA RPI
[*] Verbose procfs contents
[1 Verbose printk
[1 Debug
L(+)

< Exit » < Help »

Figure 5.6. Configure ALSA Driver: Step 6

7. Select Device Drivers > Sound > Advanced Linux Sound Architecture
> Support old ALSA API as shown here:

Version 02.01.03.11 Platform Support Products 49

I TEXAS Audio Driver
INSTRUMENTE Configuration Steps

Bdvanced Linux Sound Architecturs
Brrow keys navigate the menu. <Enter> selscts submenus —-->.
Highlighted letters are hotkeys. Pressing <¥» includes, <N»> excludes,
<M> modularizes features. Press <Escx<Bscr to exit, <%» for Help, </»
for Search. Iegend: [*] built-in [] excluded <M> module < >

--- Advanced Linux Sound Architecturs

< » Sequencer support

< » 085 Mizer API

<*> (035 PCM (digital audio) API

[*] 035 PCM (digital audio) API - Include plugin system (NEW)
[¥*] Dynamic device file minor numbers

Support old ALSA API
[*] Verbose procfs contents
[1 Verbose printk
[1 Debug

< Exit » < Help »

Figure 5.7. Configure ALSA Driver: Step 7

8. Select Device Drivers > Sound > Advanced Linux Sound Architecture
> ALSA for SoC audio support as shown here:

Platform Support Products Version 02.01.03.11

I TEXAS Audio Driver
INSTRUMENTE Configuration Steps

Bdvanced Linux Sound Architecturs
Brrow keys navigate the menu. <Enter> selscts submenus —-->.
Highlighted letters are hotkeys. Pressing <¥» includes, <N»> excludes,
<M> modularizes features. Press <Escx<Bscr to exit, <%» for Help, </»
for Search. Iegend: [*] built-in [] excluded <M> module < >

A |:_}

[¥*] Dynamic device file minor numbers

[*] Support old ALSA RPI

[*] Verbose procfs contents

[1 Verbose printk

[1 Debug

[*] Generic sound devices ---»
[*] REM sound devices ---»

[*] 5PI sound devices ---»

[*] USE sound devices ---»

ALSE for SoC audio support ---»

< Exit » < Help »

Figure 5.8. Configure ALSA Driver: Step 8

9. Select Device Drivers > Sound > Advanced Linux Sound Architecture
> ALSA for SoC audio support > SoC Audio for the Texas Instruments
OMAP chips and SoC Audio support for OMAP3EVM board, as shown
here:

Version 02.01.03.11 Platform Support Products 51

I TEXAS Audio Driver
INSTRUMENTE Configuration Steps

AL5A for SoC audio support
Brrow keys navigate the menu. <Enter> selscts submenus —-->.
Highlighted letters are hotkeys. Pressing <¥» includes, <N»> excludes,
<M> modularizes features. Press <Escx<Bscr to exit, <%» for Help, </»
for Search. Iegend: [*] built-in [] excluded <M> module < >

--- BLSA for 3oC avdio support
¢ SoC Audio for the Texas Instruments OMAP chips

<*> 50C Andio support for OMAP3EVM board
< » Build all ASoC CODEC drivers (NEW)

< Exit » < Help »

Figure 5.9. Configure ALSA Driver: Step 9

10. To enable McBSP hardware, select System Type as shown here:

52

Platform Support Products Version 02.01.03.11

i3 TEXAS

INSTRUMENTS

Audio Driver
Configuration Steps

Linuz Kernel Configuration

Brrow keys navigate the menu. <Enter> selscts submenus —-->.
Highlighted letters are hotkeys. Pressing <¥» includes, <N»> excludes,
<M> modularizes features. Press <Escx<Bscr to exit, <%» for Help, </»
for Search. Iegend: [*] built-in [] excluded <M> module < >

General setup --->
[*] Enable loadable module support ---»
[*] Enable the block layer --->

System Type
Bus support --->
Fernel Features ---»

Boot options ---»

CPU Power Management ---»

Floating point emulation --->»
I Userspace binary formats ---»
(+)

< Exit » < Help »

Figure 5.10. Configure ALSA Driver: Step 10

11. Select System Type > TI OMAP Implementations as shown here:

Version 02.01.03.11

Platform Support Products

53

i3 TEXas
INSTRUMENTS

Audio Driver
Configuration Steps

System Type
Brrow keys navigate the menu. <Enter> selscts submenus —-->.
Highlighted letters are hotkeys. Pressing <¥» includes, <N»> excludes,
<M> modularizes features. Press <Escx<Bscr to exit, <%» for Help, </»
for Search. Iegend: [*] built-in [] excluded <M> module < >

ARM system type (TI OMARP) --->

TI OMAP Implementations ---»
-%- OMAP34xx Based System
-¥- (MAP3430 support
[*] OMAP3Sx Family

*&% OMAP Board Type *¥¥

OMAP3 LDP board

[]

[1 OMEP 3430 SDP hoard

[*] OMAEP 3530 EVM hoard

[1 OMAP 3530 EVM daughter card hoard
Li+

< Exit » < Help »

Figure 5.11. Configure ALSA Driver: Step 11

12. Select System Type > TI OMAP Implementations > McBSP Support,
as shown here:

Platform Support Products Version 02.01.03.11

i3 TEXas
INSTRUMENTS

Audio Driver
Installation

Brrow keys navigats the menu.
Highlighted letters are hotkeys.
<M> modularizes features.

TI OMAP Implementations

(-]

<Enter> selects submenus --->.

Pressing <Y> includes, <N» excludes,
Press <BEscx<Esce to exit, <?» for Help, </>
for Search. Iegend: [*] built-in [] excluded <M> module < >

[1 GPIQ switch support

[¥] OMAP multiplexing support

[1 Multiplexing debug output

[¥*] Warn about pins the hootloader didn't set up

-%- MCBSP support]
[1 MMU framework support
< » Mailbox framework support
System timer (Use 3Z2KHZ timer) ---»
(128) Kernel internal timer frequency for 32KEz timer
fl} GPTIMER used for system tick timer
()

< Exit » < Help »

Figure 5.12. Configure ALSA Driver: Step 12

5.4.2. Installation

5.4.2.1. Driver built statically

If the audio driver is built statically into the kernel, it is activated during

boot-up. There is no special procedure to install the driver.

Version 02.01.03.11

Platform Support Products

55

i3 TEXas
INSTRUMENTS

Audio Driver
Software Interfaces

5.5. Software Interfaces

This section provides the details of the Application Interface and the
Driver Interface for the ALSA Audio driver.

5.5.1. Application Interface

Application developer uses ALSA-lib, a user space library, rather than the
kernel API. The library offers 100% of the functionality of the kernel API,
but adds major improvements in usability, making the application code

simpler and better looking.
The online-documentation for the same is available at:
http://www.alsa-project.org/alsa-doc/alsa-lib/

5.5.1.1. Device Interface

The operational interface in / dev/ contains three main types of devices:
(a) PCM devices for recording or playing digitized sound samples, (b)
CTL devices that allow manipulating the internal mixer and routing of the
card, and (c) MIDI devices to control the MIDI port of the card, if any.

Name Description

/dev/snd/controlCO Control devices (i.e. mixer, etc).

/dev/snd/pcmC0DOc PCM Card 0 Device 0 Capture
device.

/dev/snd/pcmC0DOp PCM Card 0 Device 0 Playback
device..

Table 5.3. Device Interface
5.5.1.2. Proc Interface

The /proc/asound kernel interface is a status and configuration
interface. A lot of useful information about the sound system can be
found in the / pr oc/ asound subdirectory.

See the table below for different proc entries in / pr oc/ asound:

Name Description

cards List of registered cards.

version Version and date the driver was
built on.

devices List of registered ALSA devices.

56 Platform Support Products Version 02.01.03.11

http://www.alsa-project.org/alsa-doc/alsa-lib/

i3 TEXAS

Audio Driver
Application Interface

INSTRUMENTS
Name
pcm
cardX/ (X = 0-7)
cardX/pcmOp
cardX/pcm0Oc

Table 5.4. Proc Interface

5.5.1.3. Commonly Used APIs

Description
The list of allocated PCM streams.
The card specific directory.

The directory of the given PCM
playback stream.

The directory of the given PCM
capture stream.

Some of the commonly used APIs to write an ALSA based application are:

Name
snd_pcm_open
snd_pcm_close

snd_pcm_hw_params_any

snd_pcm_hw_params_test_
<<parameter>>

snd_pcm_hw_params_set_
<<parameter>>

snd_pcm_hw_params
snd_pcm_writei
snd_pcm_readi

snd_pcm_prepare
snd_pcm_drop

snd_pcm_drain

Table 5.5. Commonly Used APIs

Description
Opens a PCM stream.

Closes a previously opened PCM
stream.

Fill params with a full configuration
space for a PCM.

Test the availability of important
parameters like number of
channels, sample rate etc.

snd_pcm_hw_params_test_format,
snd_pcm_hw_params_test_rate,
etc.

Set the different
parameters.

configuration

snd_pcm_hw_params_set_format,
snd_pcm_hw_params_set_rate,
etc.

Install one PCM
configuration chosen
configuration space.

Write interleaved frames to a PCM.

Read interleaved frames from a
PCM.

Prepare PCM for use.

Stop a PCM dropping pending
frames.

Stop a PCM preserving pending
frames.

hardware
from a

Version 02.01.03.11

Platform Support Products

57

13 TEXAS Audio Driver
INSTRUMENTS Application Interface

5.5.1.4. User Space Interactions

This section depicts the sequence of operations for a simple playback
and capture application.

OMAP Audio

UserSpaceApplication Driver

|:| 1: snd_pcm_open = open the PCM stream
T (SND_PCM_STREAM_PLAYBACK)

2: snd_pcm_hw_params_set_access - set access type

L J
-) I

3. snd_pcm_hvw_params_sel_format — set the format

L]

4: snd_pcm_hvw_params_sel_rate_near - set the sample rate

5: snd_pcm_hw_params_set_channels - mono or stereo

6: snd_pcm_hw_params - set the PCM to SETUP & PREPARED State

T: snd_pem_writel —write interleaved data

L

& snd_pcm_close - close the PCM stream

Figure 5.13. OMAP3 ALSA Driver : Half duplex playback

Q
AN
o OMAF Audio
UserSpaceApplication Driver

1: snd_pem_open — open the PCM stream
(SND_PCM_STREAM_CAFTURE)

2; snd_pcm_hw_params_set_access - set access type

3: snd_pcm_hw_params_set_format - set the format

4; snd_pem_hw_params_set_rate_near - set the sample rate

§: snd_pem_hw_params_set_channels - mono or stereo

6: =nd_pcm_hw_params — set the PCM to SETUP & PREPARED State

7. snd_pcm_readi — read interleaved data

8 snd_pcm_close — close the PCM stream

Figure 5.14. OMAP3 ALSA Driver : Half duplex record

58 Platform Support Products Version 02.01.03.11

I TEXAS Audio Driver
INSTRUMENTS Driver Interface

5.5.2. Driver Interface

This section describes the various function entry points into the various
platform specific drivers of the audio driver.

The platform specific codec drivers are required to implement the
mentioned entry points and register with the device driver framework by
calling pl atformdri ver_regi ster and platformdevice_register
with the appropriate data structures. The framework calls the
corresponding pr obe function in which the sound card is regsitered and
new PCM streams are created. The platform specific audio driver is
required to register itself with the kernel to let the kernel know about
its availability.

5.5.2.1. Description
The platform specific ALSA audio driver is instantiated as a

'platform_driver' and is expected to implement the following function
hooks, for the core ALSA layer to probe it and handle correctly:

codec_cl ock_on ()

Initializes the McBSP peripheral and the TWL4030 audio codec.

codec_cl ock_off ()

Used for cleanup.

codec_configure_dev ()

Used to configure the TWL4030 codec.

codec_set_sanplerate ()

Used to set the desired sample rate.

codec_set _stereonode ()
Used to set the desired mode: mono or stereo.

Moreover, as mentioned above, while probing, the various PCM related
functions which can be performed on the actual underlying codec are also
registered via function hooks. They are codec specific functions which
will be called from the OMAP audio layer on receiving the specific request
from the user space.

Both capture and playback side PCM functions need to be registered.
Following is a list of all the functions which could be implemented for a
specific codec:

Version 02.01.03.11 Platform Support Products 59

I TEXAS Audio Driver
INSTRUMENTS Driver Interface

open
Codec initialization. The first function to be called during the initialization
of the communication paths and do the initial stuff required for the codec

to become operational. Codec is assumed to be operational at the end
of this stage.

cl ose
Codec clean up operations are done here. This function is the last to be

called and is to be designed to request all the communication paths to
shutdown. Codec is no longer operational at the end of this stage.

i oct |

This is used for any special action to pcm ioctls. But usually you can pass
a generic ioctl callback, snd_pcmlib_ioctl.

hw_par ans
This is called when the hardware parameter (hw_params) is set up by
the application, that is, once when the buffer size, the period size, the

format, etc. are defined for the pcm substream. Many hardware setups
should be done in this callback, including the allocation of buffers.

hw free

This is called to release the resources allocated via hw_params.

pr epar e

This callback is called when the PCM is "prepared". You can set the format
type, sample rate, etc. here. The difference from hw _parans () is that

the prepare callback will be called at each time snd_pcm prepare () is
called, i.e. when recovered after under-runs, etc.

trigger

This data transfer hook is called for transmits and receives to send/
receive data.

poi nt er

This data transfer hook is used to query the codec driver as to the location
of the transfer of the current buffer.

Platform Support Products Version 02.01.03.11

i3 TEXAS

Audio Driver

INSTRUMENTS Driver Interface

5.5.2.2. States

. eniry data frams r

1 axdia_regester codec | II

Suspendimesume | .
T intidized | dala Iransier com plete | Operation |
[

audio_unregister codec :Ine}!\ dpen
ri LY I'-_

i
:." Ready |
Shubcervn : data transfer request
enry/ codec ind
| el uninit codec Syspend
suspend/resLm F‘l'_ | Jesume
. et | Susperded

endryf Sefup up Suspend locks - presend any kedher data brars Brs 1o happenilush butiers
| el Re-ni codec, remowe lock

Figure 5.15. State Diagram

The diagram above defines the various generic high level states
through which the audio driver transitions during its life time. On the
driver initialization, the various data structures are initialized, all the
devices are registered and basic operations to make the driver ready
for operation are done. It is the combination of both codec's driver
initialization along with the audio driver's initialization that the audio
driver completes entry into the initialized state.

When an application initiates an open, the codec is configured to default
settings. Further configurations are done based on specific requests
sent to the driver. These would include the volume control settings, the
sampling rate information, whether the data is to be read/played to the
device etc. On completion of the default configuration of the driver, the
driver enters in to ready state where the driver is ready for data transfer.

The application may now initiate data read/write operations based on
which DMA is used to transfer the data to or from the codec. The
operational stage is thus stated to be reached where transfers are
operational. This DMA data transfer operation is done asynchronously.
Once the data transfer is completed, the driver goes back into its ready
state awaiting more data transfer.

Once the application is completed, it initiates a close, at which, if the
driver is in operational mode, current pending transfers are emptied and

Version 02.01.03.11

Platform Support Products 61

i3 TEXAS

INSTRUMENTS

Audio Driver
Driver Interface

5.5.2.3. Data Flow

it moves to ready stage. The driver then transitions to the initialized
state after the codec is shutdown from the ready state.

During operational or ready stage, if a suspend request is received, the
driver locks out any further data transfers and enters into suspended
state after shutting down the codec. On resumption, the driver moves
into ready state after re-initializing the codec, awaiting further data
transfers to happen. When the driver is being shutdown, the data

structures, if any, are cleaned up and the driver exits.

The data transfer flow from the user space to the actual hardware is
illustrated below:

Transfer from

—
User space char * lt('erﬂnel =pace
User buffer OMAP. ucheeraf::llg;]
Space [Audio maintained by the
Applicatio I[ER audio driver, if
required.
odec
Codec river
Hardware
DMA Transmits \‘r\ \lﬁ kernel space
data over - Helper buffer is used to
connectivity OMdA: Driver configure the DMA
interface to the Hardware channel by the DMA
Codec. driver.

Figure 5.16. Data flow path

62

Platform Support Products

Version 02.01.03.11

I TEXAS Audio Driver
INSTRUMENTE Sample Applications

5.6. Sample Applications

This chapter describes the sample application provided along with the

package. The binary and the source for these sample application can are

available in the Examples directory of the Release Package folder.
5.6.1. Introduction

Writing an audio application involves the following steps:

e Opening the audio device.

e Set the parameters of the device.

° Receive audio data from the device or deliver audio data to the
device.

e Close the device.

These steps are explained in detail in this section.

Note
User space ALSA libraries can be downloaded from this link [http://

www.alsa-project.org/main/index.php/Download].

User needs to build and install them before he starts using the ALSA
based applications.

5.6.2. A minimal playback application

This program opens an audio interface for playback, configures it for
stereo, 16 bit, 44.1kHz, interleaved conventional read/write access.
Then its delivers a chunk of random data to it, and exits. It represents
about the simplest possible use of the ALSA Audio API, and isn't meant
to be a real program.

5.6.2.1. Opening the audio device

To write a simple PCM application for ALSA, we first need a handle for the
PCM device. Then we have to specify the direction of the PCM stream,
which can be either playback or capture. We also have to provide some
information about the configuration we would like to use, like buffer size,
sample rate, pcm data format. So, first we declare:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <al sa/asoundli b. h>

#def i ne BUFF_SI ZE 4096

Version 02.01.03.11 Platform Support Products 63

http://www.alsa-project.org/main/index.php/Download
http://www.alsa-project.org/main/index.php/Download
http://www.alsa-project.org/main/index.php/Download

I TEXAS Audio Driver
INSTRUMENTE A minimal playback application

int nmain (int argc, char *argv[])
{ .
int err;
short buf [BUFF_SI ZE] ;
int rate = 44100; /* Sanple rate */
unsi gned int exact_rate; /* Sanple rate returned by */

/* Handl e for the PCM device */
snd_pcmt *pl ayback_handl e;

/* Playback stream */
snd_pcm streamt stream = SND_PCM STREAM PLAYBACK;

/* This structure contains informtion about */
/* the hardware and can be used to specify the */
/* configuration to be used for the PCM stream */
snd_pcm _hw_parans_t *hw_par ans;

The most important ALSA interfaces to the PCM devices are the "plughw"
and the "hw" interface. If you use the "plughw" interface, you need
not care much about the sound hardware. If your soundcard does not
support the sample rate or sample format you specify, your data will
be automatically converted. This also applies to the access type and
the number of channels. With the "hw" interface, you have to check
whether your hardware supports the configuration you would like to use.
Otherwise, user can use the default interface for playback by:

/* Name of the PCM device, |ike plughw 0,0 */
/* The first nunmber is the nunber of the soundcard, */
/* the second nunber is the nunber of the device. */
static char *device = "default"; /* playback device */

Now we can open the PCM device:

/* Open PCM The | ast paraneter of this function is the node. */
if ((err = snd_pcm open (&playback_handl e,
device, stream 0)) < 0) {
fprintf (stderr, "cannot open audi o device (%)\n",
snd_strerror (err));
exit (1);
}

5.6.2.2. Setting the parameters of the device
Now we initialize the variables and allocate the hwpar ans structure:
/* Al'locate the snd_pcm hw params_t structure on the stack. */

if ((err = snd_pcm hw parans_mal |l oc (&w parans)) < 0) {
fprintf (stderr, "cannot allocate hardware paraneters (%)\n",

64 Platform Support Products Version 02.01.03.11

I TEXAS Audio Driver
INSTRUMENTE A minimal playback application

snd_strerror (err));
exit (1);
}

Before we can write PCM data to the soundcard, we have to specify
access type, sample format, sample rate, number of channels, number
of periods and period size. First, we initialize the hwparams structure
with the full configuration space of the soundcard:

/* Init hwparans with full configuration space */
if ((err = snd_pcm hw parans_any (playback_handl e,
hw parans)) < 0) {
fprintf (stderr, "cannot initialize hardware
paraneter structure (%)\n",

snd_strerror (err));
exit (1);

}

Now configure the desired parameters. For this example, we assume
that the soundcard can be configured for stereo playback of 16 Bit
Little Endian data, sampled at 44100 Hz. Therefore, we restrict the
configuration space to match this configuration only.

The access type specifies the way in which multi-channel data is stored
in the buffer. For INTERLEAVED access, each frame in the buffer contains
the consecutive sample data for the channels. For 16 Bit stereo data,
this means that the buffer contains alternating words of sample data for
the left and right channel.

/* Set access type. */
if ((err = snd_pcm hw _parans_set _access (playback_handl e,
hw_paranms, SND_PCM ACCESS RW | NTERLEAVED)) < 0) {
fprintf (stderr, "cannot set access type (%)\n"
snd_strerror (err));
exit (1);
}

/* Set sanple format */
if ((err = snd_pcm hw parans_set_format (playback_handl e,
hw_parans, SND_PCM FORMAT_S16_LE)) < 0) {
fprintf (stderr, "cannot set sanple format (%)\n"
snd_strerror (err));

exit (1);
}
/* Set sanple rate. |If the exact rate is not supported */
/* by the hardware, use nearest possible rate. */

exact _rate = rate,

if ((err = snd_pcm hw_parans_set _rate_near (playback_handl e,
hw_parans, &exact_rate, 0)) < 0) {
fprintf (stderr, "cannot set sanple rate (%)\n"
snd_strerror (err));

Version 02.01.03.11 Platform Support Products 65

I TEXAS Audio Driver
INSTRUMENTE A minimal playback application

exit (1);
}

if (rate != exact_rate) {
fprintf(stderr, "The rate % Hz is not supported by
your hardware.\n ==> Using %l
Hz instead.\n", rate, exact_rate);

}

/* Set nunber of channels */
if ((err = snd_pcm hw_parans_set _channel s (pl ayback_handl e,
hw_parans, 2)) < 0) {
fprintf (stderr, "cannot set channel count (%)\n",
snd_strerror (err));
exit (1);
}

Now we apply the configuration to the PCM device pointed to by
pcm handl e and prepare the PCM device.

/* Apply HW paranmeter settings to PCM device and prepare
* devi ce.
*/
if ((err = snd_pcm hw parans (playback_handl e,
hw_parans)) < 0) {
fprintf (stderr, "cannot set paraneters (%)\n",
snd_strerror (err));
exit (1);
}

snd_pcm hw_parans_free (hw_parans);

if ((err = snd_pcmprepare (playback_handle)) < 0) {
fprintf (stderr, "cannot prepare audio
interface for use (%)\n", snd_strerror (err));
exit (1);
}

5.6.2.3. Writing data to the device

After the PCM device is configured, we can start writing PCM data to it.
The first write access will start the PCM playback. For interleaved write
access, we use the function:

/* Wite sone junk data to produce sound. */
if ((err =
snd_pcmwitei (playback_handl e, buf, BUFF_SIZE/ 2))
= BUFF_SI ZE/ 2) {
fprintf (stderr, "wite to audio interface failed (%)\n",
snd_strerror (err));
exit (1);
} else {
fprintf (stdout, "snd_pcmwitei successful\n");

66 Platform Support Products Version 02.01.03.11

I TEXAS Audio Driver
INSTRUMENTE A minimal record application

After the PCM playback is started, we have to make sure that our
application sends enough data to the soundcard buffer. Otherwise, a
buffer under-run will occur. After such an under-run has occurred,
snd_pcm prepar e should be called.

5.6.2.4. Closing the device

After the data has been transferred, the device needs to be closed by
calling:

snd_pcm cl ose (pl ayback_handl e);
exit (0);
}

5.6.3. A minimal record application

This program opens an audio interface for capture, configures it for
stereo, 16 bit, 44.1kHz, interleaved conventional read/write access.
Then its reads a chunk of random data from it, and exits. It isn't meant
to be a real program.

Note that it is not possible to use one pcm handle for both playback and
capture. So you have to configure two handles if you want to access the
PCM device in both directions.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <al sa/ asoundl i b. h>

#def i ne BUFF_SI ZE 4096

int nmain (int argc, char *argv[])
{ .
int err;
short buf [BUFF_SI ZE] ;
int rate = 44100; /* Sanple rate */
int exact_rate; /* Sanple rate returned by */

snd_pcmt *capture_handl e;

/* This structure contains information about */
/* the hardware and can be used to specify the */
/* configuration to be used for the PCM stream */
snd_pcm hw_parans_t *hw_par ans;

/* Name of the PCM device, like hw. 0,0 */

/* The first nunber is the nunber of the soundcard, */
/* the second nunber is the nunber of the device. */
static char *device = "default"; /* capture device */

Version 02.01.03.11 Platform Support Products 67

I TEXAS Audio Driver
INSTRUMENTE A minimal record application

/* Open PCM The |ast parameter of this function is
* the node.

*/

if ((err = snd_pcm.open (&capture_handl e, device

SND_PCM STREAM CAPTURE, 0)) < 0) {

fprintf (stderr, "cannot open audio device (%)\n"
snd_strerror (err));
exit (1);

}

memset (buf, 0, BUFF_SI ZE) ;

/* Al'locate the snd_pcm hw paranms_t structure on the stack. */
if ((err = snd_pcm hw parans_mal | oc (&w_parans)) < 0) {
fprintf (stderr, "cannot allocate hardware
paraneter structure (%)\n",
snd_strerror (err));
exit (1);
}

/* Init hwparans with full configuration space */
if ((err = snd_pcm hw_parans_any (capture_handl e,
hw_parans)) < 0) {
fprintf (stderr, "cannot initialize hardware
paraneter structure (%)\n",

snd_strerror (err));
exit (1);

}

/* Set access type. */
if ((err = snd_pcm hw _parans_set _access (capture_handl e,
hw_par ans,

SND_PCM ACCESS RW | NTERLEAVED)) < 0) {
fprintf (stderr, "cannot set access type (%)\n"
snd_strerror (err));
exit (1);

}

/* Set sanple format */
if ((err = snd_pcm hw _parans_set _format (capture_handle,
hw_par ans,
SND_PCM _FORMAT_S16_LE)) < 0) {
fprintf (stderr, "cannot set sanple format (%)\n"
snd_strerror (err));
exit (1);
}

/* Set sanple rate. |If the exact rate is not supported */
/* by the hardware, use nearest possible rate. */
exact _rate = rate;

if ((err = snd_pcm hw _parans_set _rate_near (capture_handl e,
hw_parans, &exact_rate, 0)) < 0) {
fprintf (stderr, "cannot set sanple rate (%)\n"
snd_strerror (err));
exit (1);
}

68 Platform Support Products Version 02.01.03.11

I TEXAS Audio Driver
INSTRUMENTE A minimal record application

if (rate != exact_rate) {
fprintf(stderr, "The rate % Hz is not supported "
"by your hardware.\n ==> Using % "
"Hz instead.\n", rate, exact_rate);

}

/* Set nunber of channels */
if ((err = snd_pcm hw_parans_set _channel s(capture_handl e,
hw_parans, 2)) < 0) {
fprintf (stderr, "cannot set channel count (%s)\n"
snd_strerror (err));
exit (1);
}

/* Apply HW paraneter settings to PCM device and
* prepare device

*/

if ((err = snd_pcm hw_parans (capture_handl e,

hw_parans)) < 0) {
fprintf (stderr, "cannot set paraneters (%)\n",
snd_strerror (err));
exit (1);

}

snd_pcm _hw_par ans_free (hw_parans);

if ((err = snd_pcmprepare (capture_handle)) < 0) {
fprintf (stderr, "cannot prepare audio interface for use

(%)\n",
snd_strerror (err));
exit (1);

}

/* Read data into the buffer. */

if ((err = snd_pcmreadi (capture_handle, buf, 128)) != 128) {
fprintf (stderr, "read fromaudio interface failed (%)\n"
snd_strerror (err));
exit (1);

} else {
fprintf (stdout, "snd_pcmreadi successful\n");

}

snd_pcm cl ose (capture_handl e);
exit (0);

Version 02.01.03.11 Platform Support Products 69

I TEXAS Audio Driver
INSTRUMENTS Revision History

5.7. Revision History

0.97 Added proc and device related information and reorganized
the content.

0.97p1 Added constraint that configuration of capture and playback
streams in different sampling rates is not possible because
of McBSP instance 2 limitation.

2.6.29.

70

Platform Support Products Version 02.01.03.11

i3 TEXAS

INSTRUMENTS
Abstract

Table of Contents

(S 20 PR 0}l o Y [0t o oY I 73
6.1.1., REfEIENCES it i i e e e eaaas 73
6.1.2. Acronyms & Definitionsccoviiiiiiiiiiiii i 73
6.1.3. Hardware OVEIVIEW ...uuiiiiiiiiiiiiiiiiiiiiiiiiiiiinsanseess 73

ST T) | = 74
ST T O 1 =T o 1< Y 74
6.2.2. USAQGE ittt it e 74
6.3, ArChitBCIUIE .o e e 101
6.3.1. Driver Architecturecooiiiiiiiii s 101
6.3.2. Software Design Interfacescccoovviiiiiiiiiiiiiiiiinnnn, 101

Version 02.01.03.11

Platform Support Products 71

i3 TEXas
INSTRUMENTS

Display Driver

6.4. Software Interfacesccovvvvvvivvviiinnnns

6.4.1. 'fbdev' Driver Interface

6.4.2. V4L2 Driver Interface

6.4.3. SYSFS Software Design Interfaces
6.5. Driver Configurationccoevviiinnnn.
6.5.1. Configuration Stepsc.....
6.5.2. Installationcccooviiiiininnn,
6.6. Sample Application Flowc.eueee.

6.7. Revision Historyccoeviiiiiiviiiiinniinnnn

72

Platform Support Products

Version 02.01.03.11

I TEXAS Display Driver
INSTRUMENTS Introduction

6.1. Introduction

This chapter describes the driver overview along with the supported
features and constraints

6.1.1. References

1. Video for Linux Two Home Page [http://linux.bytesex.org/v412/]

2. Video for Linux Two API Specification [http://v4l2spec.bytesex.org/
v4l2spec/v4l2.pdf]

6.1.2. Acronyms & Definitions

Acronym Definition

V4L2 Video for Linux Two

DSS Display SubSystem

NTSC National Television System Committee
PAL Phase Alternating Line

LCD Liquid Crystal Display

Table 6.1. Acronyms

6.1.3. Hardware Overview

The display subsystem provides the logic to display a video frame from
the memory frame buffer (either SDRAM or SRAM) on a liquid-crystal
display (LCD) panel or a TV set. The display subsystem integrates the
following elements

e Display controller (DISPC) module
e Remote frame buffer interface (RFBI) module

e Serial display interface (SDI) complex input/output (I/O) module
with the associated phased-locked loop (PLL)

e Display serial interface (DSI) complex I/O module and a DSI protocol
engine

e DSIPLL controller that drives a DSI PLL and high-speed (HS) divider
e NTSC/PAL video encoder

Version 02.01.03.11 Platform Support Products 73

http://linux.bytesex.org/v4l2/
http://linux.bytesex.org/v4l2/
http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf
http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf
http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf

i3 TEXAS

Display Driver

INSTRUMENTS Features

6.2. Features

6.2.1. Overview

6.2.2. Usage

The OMAP35x Display driver supports the following features:

Supports LCD display interface at VGA resolution (480*640)

Supports TV display interface at NTSC/PAL resolutions on Video
Pipelines (both S-Video out and composite out is supported)

Supports DVI digital interface at 720P and 480P resolution.

Supports Graphics pipeline and two video pipelines. Graphics
pipeline is supported through fbdev and video pipelines through
V4L2

Supported color formats: On OSD (Graphics pipeline): RGB565,
RGB888, ARGB and RGBA. On Video pipelines: YUV422 interleaved,
RGB565, RGB888.

Configuration of parameters such as height and width of display
screen, bits-per-pixel etc.

Supports setting up of OSD and Video pipeline destinations (TV
or LCD). Through syfs for OSD and compile time option for video
pipelines

Supports buffer management through memory mapped and user
pointer buffer exchange for application usage (mmaped)

Supports rotation - 0, 90, 180 and 270 degrees on LCD and TV
output

Supports destination and source colorkeying on Video pipelines
through V4L2

Supports alpha blending through ARGB pixel format on Video2
pipeline and RGBA and ARGB format on graphics pipeline and global
alpha blending

Usage of each feature supported by driver is explained below.

6.2.2.1. Opening and Closing of Driver

The device can be opened using open call from the application, with
the device name and mode of operation as parameters. Application can
open the driver only in blocking mode. Non-blocking mode of open is
not supported.

74

Platform Support Products Version 02.01.03.11

I TEXAS Display Driver
INSTRUMENTS Usage

V4L2 Driver

The driver will expose two software channels (/dev/v4l/videol and /dev/
v4l/video2), one for each video pipeline. Both of these channels supports
only blocking mode of operations. These channels can only be opened
once.

/* call to open a video Display |ogical channe

in bl ocking node */

vi deo2f d_bl ocki ng =open ("/dev/v4l/videol", O RDWR);
/* closing of channels */

cl ose (video2fd_bl ocking);

FBDEYV Driver

The driver will expose one software channels (/dev/fb0) for the graphics
pipeline. The driver cannot be opened multiple times. Driver can be
opened once only.

/* call to open a graphics Display |ogical channe
in bl ocking node */

f bOf d_bl ocki ng =open ("/dev/fb0", O RDWR);

/* closing of channels */

cl ose (fbOfd_bl ocking);

6.2.2.2. Command Line arguments
V4L2 Driver

V4L2 driver supports command line argument for specifying default
number of buffers and buffer size for both the video pipelines. These
arguments are videol_numbuffers, video2_numbuffers, videol_bufsize
and video2_bufsize. Once number of buffers specified at the time of
insertion, these many buffers are always available until driver is removed
from the kernel.

V4L2 driver uses the VRFB buffers for rotation. Because of the limitation
of the VRFB engine these buffers are quite big in size. Size of the
VRFB buffers is listed in buffer managment section. VRFB buffers are
allocated by driver during vidioc_reqgbufs ioctl if the rotation is enabled
and freed during vidioc_streamoff. But under heavy system load memory
fragmentation may occur and VFRB buffer allocation may fail. To address
this issue V4L2 driver provides command line argument to allocate
the VRFB buffers at driver init time and buffers will be freed when
driver is unloaded. Command line argument is vid1_static_vrfb_alloc and
vid2_static_vrfb_alloc for videol and video2 nodes respectively.

For dynamic build of the driver, these argument are specified at the time
of inserting the driver. For static build of the driver, these argument can

Version 02.01.03.11 Platform Support Products 75

I TEXAS Display Driver
INSTRUMENTS Usage

be specified along with boot time arguments. Following example shows
how to specify command line argument for static and dynamic build.

Insert the dynamically built module with following parameters

insnmod omap_vout. ko vi deol_nunbuffers=3 vi deo2_nunbuffers=3
vi deol_buf si ze=644000 vi deo2_buf si ze=644000
vidl_static_vrfb_alloc=y vid2_static_vrfb_alloc=y

Set the boot ar gsfor statically compiled driver on bootloader:

OVAP3EVMt setenv bootargs consol e=ttyS0, 115200n8 nenm=128M
root =/ dev/nfs noinitrd nfsroot=172.24.190. 19: nfs-

server/ hone, nol ock, rsi ze=4096, wsi ze=4096 i p=dhcp
omap_vout . vi deol_nunbuf f er s=3 omap_vout . vi deo2_nunbuf f er s=3
omap_vout . vi deol_buf si ze=64400 omap_vout . vi deo2_buf si ze=64400
omap_vout.vidl _static_vrfb_alloc=y
omap_vout.vid2_static_vrfb_alloc=y npurate=600

Note

The entire command should be entered in a single line.

FBDEV Driver

FBDEV driver supports command line argument for enabling/setting
rotation angle, rotation type and size of vram. These command line
arguments can only be used with boot time arguments as FBDEV driver
only supports static build. Following example shows how to specify 90
degree rotation in boot time argument.

Set the boot ar gs for enabling rotation:

setenv bootargs consol e=ttyS0, 115200n8 nen¥128M noi nitrd
root =/ dev/ nfs nfsroot=172. 24. 133. 229: / hone/ user/ r enot e/
_install, nol ock, rsi ze=4096, wsi ze=4096 i p=dhcp omapfb. rotate=1
omapfb. rotate_type=1 npurat e=600

Following example shows how to specify size of framebuffer in boot time
argument.

Set the boot ar gs for specifing size of framebuffer:

setenv bootargs consol e=ttyS0, 115200n8 nen¥128M noi nitrd
root =/ dev/ nfs nfsroot=172.24.133. 229:/ hone/ user/ r enot e/

_install, nol ock, rsi ze=4096, wsi ze=4096 i p=dhcp vram=20M
omapf b. vr anF20M npur at e=600

Note

The entire command should be entered in a single line.

Platform Support Products Version 02.01.03.11

i3 TEXAS

Display Driver

INSTRUMENTS Usage

6.2.2.3. Buffer Management

Driver Without Rotation With Rotation

FBDEV Driver|A single buffer of size|A single buffer of size
1280*720*4*2 bytes 2048*720*4 bytes

V4L2 Driver |Single buffer takes|Same requirement as
1280*720*4 bytes. Number|without rotation.

of buffers can be configures|Additionally allocates one
using VIDIOC_REQBUFS |buffer of size 1695744 bytes
ioctl and command line|for each context. Number
argument. of context are same as the
number of buffers allocated
using REQBUFS not more
than four.

Table 6.2. Memory requirement for V4L2 and FBDEV driver Buffers
V4L2 Driver

Memory Mapped buffer mode and User pointer buffer mode are the two
memory allocation modes supported by driver.

In Memory map buffer mode, application can request memory from the
driver by calling VIDIOC_REQBUFS ioctl. In this mode, maximum number
of buffers is limited to VIDEO_MAX_FRAME (defined in driver header
files) and is limited by the available memory in the kernel. If driver is not
able to allocate the requested number of buffer, it will return the number
of buffer it is able to allocate. The main steps that the application must
perform for buffer allocation are:

1) Allocating Memory

This ioctl is used to allocate memory for frame buffers. This is a necessary
ioctl for streaming I0. It has to be called for both drivers buffer mode
and user buffer mode. Using this ioctl, driver will identify whether driver
buffer mode or user buffer mode will be used.

Ioctl: VIDIOC_REQBUFS

It takes a pointer to instance of the v4l 2_r equest buf f er s structure as
an argument.

User can specify the buffer type (V4L2_ BUF_TYPE VI DEO OUTPUT),
number of buffers, and memory type (V4L2_MEMORY_MVAP,
V4L2_MEMORY_USERPTR) at the time of buffer allocation. In case of driver
buffer mode, this ioctl also returns the actual number of buffers allocated
in count member of v4l 2_r equest buf f er structure

It can be called with zero number of buffers to free up all the
buffers already allocated. It also frees allocated buffers when application
changes buffer exchange mechanism. Driver always allocates buffers
of maximum image size supported. If application wants to change

Version 02.01.03.11

Platform Support Products 77

I TEXAS Display Driver
INSTRUMENTS Usage

buffer size, it can be done through videol_buffsize and video2_buffsize
command line arguments

When rotation is enabled, driver also allocates buffer for the VRFB virtual
memory space along with the mmap or user buffer. It allocates same
number of buffers as the mmap or user buffers. Maximum number of
buffers, which can be allocated, is 4 when rotation is enabled.

/* structure to store buffer request paraneters */
struct v4l 2_requestbuffers reqbuf;
reqbuf. count = nunbuffers;
reqbuf.type = V4L2_BUF_TYPE_VI DEO_OUTPUT;
reqbuf. menory = VAL2_ MEMORY_MVAP;
ret = ioctl(fd , VID OC_REQBUFS, &reqgbuf);
if(ret <0) {
printf("cannot allocate nenory\n");
cl ose(fd);
return -1;

2) Getting physical address

This ioctl is used to query buffer information like buffer size and buffer
physical address. This physical address is used in m-mapping the buffers.
This ioctl is necessary for driver buffer mode as it provides the physical
address of buffers, which are used to mmap system call the buffers.

Ioctl: VIDIOC_QUERYBUF

It takes a pointer to instance of v4l 2_buf f er structure as an argument.
User has to specify the buffer type (V4L2_BUF_TYPE_ VI DEO OUTPUT),
buffer index, and memory type (V4L2_MEMORY_MVAP) at the time of

querying.

/* allocate buffer by VID OC_REQBUFS */

/* structure to query the physical address
of allocated buffer */

struct v4l 2_buffer buffer;

/* buffer index for quering -0 */

buf fer.index 0;

buffer. type = VAL2_BUF_TYPE_VI DEO OUTPUT;
buf fer. menory = VAL2_MEMORY_MVAP;

if (ioctl(fd, VIDI OC_QUERYBUF, &buffer) < 0) {
printf("buffer query error.\n");
cl ose(fd);
exit(-1);

/*The buffer.moffset will contain the physical
address returned fromdriver*/

3) Mapping Kernel space address to user space

Platform Support Products Version 02.01.03.11

I TEXAS Display Driver
INSTRUMENTS Usage

Mapping the kernel buffer to the user space can be done via mmap. User
can pass buffer size and physical address of buffer for getting the user
space address

/* allocate buffer by VID OC_REQBUFS */

/* query the buffer using VID OC_QUERYBUF */

/* addr hold the user space address */

unsi gned int addr;

Addr = mmap(NULL, buffer.size, PROT_READ | PROT_WRI TE, MAP_SHARED,
fd, buffer.moffset);

/* buffer. moffset is same as returned from VI Dl OC_QUERYBUF */

FBDEV Driver

FBDEV driver supports only memory mapped buffers. If rotation is not
enabled at the time of insertion of the driver, it allocates one physically
contiguous buffers, which can support 640X480 resolution for all buffer
formats supported. If rotation is enabled, driver allocates single buffer
of maximum resolution for the VRFB memory space. Following steps are
required to map buffers in application memory space

1) Getting fix screen information

FBIOGET_FSCREENINFO ioctl is used to get the not-changing screen
information like physical address of the buffer, size of the buffer, line
length.

/* Getting fix screen information */
struct fb_fix _screeninfo fix;
ret = ioctl(display_fd, FBIOGET_FSCREEN NFO, &fi x)
if(ret <0) {
printf("Cannot get fix screen information\n");
exi t(0);
}
printf("Line length = %\ n",fix.line_length);
printf("Physical Address = %\n",fix.smemstart);
printf("Buffer Length = %\ n",fix.snmem.len);

2) Getting Variable screen information

FBIOGET_VSCREENINFO ioctl is used to get the variable screen
information like resolution, bits per pixel etc.

/* Getting fix screen information */
struct fb_var_screeninfo var;
ret = ioctl(display_fd, FBIOGET_VSCREEN NFO, &var);
if(ret <0) {
printf("Cannot get variable screen information\n");
exit(0);
}
printf("Resolution = %x%\n", var.xred, var.yres);
printf("bites per pixel = %\ n", var. bpp);

Version 02.01.03.11 Platform Support Products 79

i3 TEXAS

Display Driver

INSTRUMENTS Usage

6.2.2.4. Rotation

3) Mapping Kernel space address to user space

Mapping the kernel buffer to the user space can be done via mmap
system call.

/* addr hold the user space address */

unsi gned int addr, buffersize;

/* Get the fix screen info */

/* Get the variable screen information */

buffersize = fix.line_length * var.yres;

addr = mmap(NULL, buffersize, PROT_READ | PROT_WRI TE, MAP_SHARED,
fd, 0);

/* buffer.moffset is sanme as returned from VI D OC_QUERYBUF */

Rotation is implemented with use of Rotation Engine module in Virtual
Rotation Frame Buffer module in OMAP35X. Rotation engine supports
rotation of an image with degree 0, 90, 180 and 270. There are 12
contexts available for rotating an image and there are four virtual
memory space associated with each context. To rotate an image, image
is written to 0 degree virtual memory for a context and rotated image can
read back from the virtual memory for that angle of the same context.

For using Rotation Engine, User has to allocate physical memory and
provide address of the memory to the rotation engine. The buffer size
for this physical buffer should be large enough to store the image to
be rotated. When program writes to the virtual address of the context,
rotation engine write to this memory space and when program reads
image from virtual address, rotation engine reads image from this buffer
with rotation angle.

V4L2 Driver

V4L2 driver supports rotation by using rotation engine in the VRFB
module. Driver allocates physical buffers, required for the rotation
engine, when application calls VIDIOC_REQBUFS ioctl. Therefore, when
this ioctl is called driver allocates buffers for storing image and allocates
buffers for the rotation engine. It also programs VRFB rotation engine
when this ioctl is called. At the time of enqueing memory mapped
buffer, driver copies entire image from mmaped buffer to buffer for the
rotation engine using DMA. DSS is programmed to take image from VRFB
memory space when rotation is enabled. So DSS always gets rotated
image. Maximum four buffers can be allocated using REQBUFS ioctl when
rotation is enabled.

Driver provides ioctl interface for enabling/disabling and changing the
rotation angle. These ioctls are VIDIOC_S_CTRL/VIDIOC_G_CTRL as
drive allocates buffer for VRFB during REQBUFS ioctl, application has
to enable/set the rotation angle before calling REQBUFS ioctl. After
enabling rotation, application can change the rotation angle. Rotation

80

Platform Support Products Version 02.01.03.11

I TEXAS Display Driver
INSTRUMENTS Usage

angle cannot be changed while streaming is on. Following code shows
how to set rotation angle to 90 degree.

Important
Rotation value must be set using VI DI OC_S_CTRL before setting any

format using VI DI OC_S_FMT as VI DI OC_S_FMT uses rotation value
for calculating buffer formats. Also VI DI OC_S_FMI' ioctl must be
called after changing the rotation angle to change parameters as per
the new rotation angle

struct v4l 2_control control;
int degree = 90;

control.id = V4L2_CI D_ROTATI ON;
control.val ue = degree;
ret = ioctl(fd, VIDIOC_S CTRL, &control);
if (ret <0) {
perror("VIDIOC_S CTRL\n");
cl ose(fd);
exit(0);
}
/* Rotation angle is now set to 90 degree. Application can now do
streaming to see rotated i nage*/

FBDEV Driver

FBDEV driver supports rotation by using rotation engine in the VRFB
module. For using this feature of the driver, rotation has to be enabled.
Application can enable rotation by enabling/setting rotation angle in boot
time argument of the kernel for FBDEV driver. One of the fields in the
fb_var_screeninfo structure has been used for 'rotate' field. Applications
can thus use the FBIOPUT_VSCREENINFO ioctl to set the rotation angle.
Applications have to set this 'rotate' field in the fb_var_screeninfo
structure equal to the angle of rotation (0, 90, 180 or 270) and call this
ioctl. Frame buffer driver also supports the rotation through sysfs entry.
Any one of the two method can be used to configure rotation.

Constraint: While doing rotation x-resolution virtual should be equal to
x-resolution. y-resolution virtual should be greater than or equal to y-
resolution. Please note that VRFB rotation engine requires alignment of
32 bytes in horizontal size and 32 lines in vertical size. So while doing
rotation x-resolution should be 32 byte aligned and y resolution and y
resolution virtual should be 32 lines aligned. For example for 360X360
required resolution with 16bpp no of bytes per line comes to 360*2=720.
Which is not 32 byte aligned. While no of lines comes to 360 which is also
not 32 lines aligned. So actual resolution should be set to 368X368. But
if same resolution is required for 32bpp then no of bytes per line comes
to 360*4 that is 1440. Which is 32 byte aligned so actual resolution
should be set to 360X368. Also the maximum y-res virtual possible is
2048 because of VRFB limitation when rotation enabled.

Version 02.01.03.11 Platform Support Products 81

i3 TEXAS

Display Driver

INSTRUMENTS Usage

Important
FBDEYV driver internally reverses/manages the xres and yres for the 90

and 270 degree rotation, so user must give original values for rotation.

var.rotate variable should not be modified when rotation is not selected
through command line arguments else behaviour is unexpected.

Important
By default frame buffer driver allocates the buffer for single 720P frame

considering 0 degree rotation.

This allocation can be overridden using the command line arguments
"vram= and omapfb.vram="

Memory requirement can be calculated by following equation

(2048 * yres_virtual * max_Bpp)* NO_OF BUFFERS, 2048 is the
default pitch required by VRFB, yres_virtual = maximum virtual y-
resolution required, max_Bpp = maximum bytes per pixel required,
NO_OF_BUFFERS = Number of buffers required for panning.

So for 720*1280 resolution with 32bpp with two buffers with 90 or 270
degree rotation it comes to (2048 * 1280 * 4) * 2 = 20971520 bytes
which rounds upto 20M bytes. so above command line arguments will
look like

"vram=20M omapfb.vram=20M"

So it is not desirable to have panning for 720P resolution. For 480P it
comes to (2048 * 720 * 4) * 2 which is equal to 11796480 bytes with
rounding up it is 12M bytes.

Rotation is supported for 16bpp, 24 unpacked bpp and 32 bpp.

Rotation can be enabled by using "omapfb.rotate=1" and
"omapfb.rotate_type=1" boot time argument given to the boot loader.
Following gives an example of enabling rotation by setting rotation angle
of 90 degree. Value of omapfb.rotate can be 0, 1, 2 or 3 where 0 = 0
degree, 1 = 90 degree, 2 = 180 degree and 3 = 270 degree.

OVAP3EVMt setenv bootargs 'consol e=ttyS0, 115200n8 nmen=128M
noi nitrd root=/dev/nfs nfsroot=172.24.133.229:/ hone/

filesys, nol ock, rsi ze=4096, wsi ze=4096 i p=dhcp omapfb.rotate=1
omapfb.rotate_type=1 vram=20M onapf b. vr am=20M npur at e=600'

Note
This whole command should written in single line

82

Platform Support Products Version 02.01.03.11

I TEXAS Display Driver
INSTRUMENTS Usage

Following code listings demos how to set the rotation in frame buffer
driver using ioctl and sysfs entry.

struct fb_var_screeninfo var;
/* Set the rotation through ioctl. */
/* Get the Variable screen info through "FBI OGET_VSCREEN NFO' */
var.rotate = 1; /* To set rotation angle to 90 degree */

if (ioctl(fb, FBIOPUT_VSCREENI NFO, &var)<0) {

perror ("Error: FBl OPUT_VSCREEN NFO n");

exit(4);
}

Setting the rotation through sysfs where 0 - 0 degree, 1 - 90 degree, 2
- 180 degree and 3 - 270 degree respectively

echo 1 > /sys/class/graphics/fb0/rotate

6.2.2.5. Color Keying

There are two types of transparent color keys: Video source transparency
and graphics destination transparency key. The encoded pixel color value
is compared to the transparency color key. For CLUT bitmaps, the palette
index is compared to the transparency color key and not to the palette
value pointed out by the palette index.

Version 02.01.03.11 Platform Support Products 83

I3 TEXAS
INSTRUMENTS

Display Driver
Usage

Color

Cwverlay Manager
Top Layer Yideo 1 ar 2

Bottom Layer Graphics

Cutput Screen

I Jﬁ
-

Figure 6.1. Video source color Keying

84

Platform Support Products

Version 02.01.03.11

I3 TEXAS

Display Driver

INSTRUMENTS Usage

Graphics

SCREEN

Figure 6.2. Video destination color Keying

Constraint:The video source transparency color key and graphics
destination transparency color key cannot be active at the same time.
Color keys are only available in V4L2 Driver.

Video source transparency color key value allows defining a color that
the matching pixels with that color in the video pipelines are replaced
by the pixels in graphics pipeline. It is limited to RGB formats only and
non-scaling cases.

The Graphics destination color key allows defining a color that the
nonmatching pixels in the graphics pipelines prevent video overlay. The
destination transparency color key is applicable only in the graphics
region when graphics and video overlap. Otherwise, the destination
transparency color key is ignored.

One of the colors keys can be activated at a time. This implies both
key cannot be used simultaneously. All color key related IOCTLs are not
pipeline oriented. An application can configure keys through either of two
device nodes. Following example shows how to enable source color key.

struct v4l 2_franebuffer franebuffer;

ret = ioctl (fd, VID OC_G FBUF, &franebuffer);

Version 02.01.03.11

Platform Support Products 85

I TEXAS Display Driver
INSTRUMENTS Usage

if (ret <0) {
perror ("VID OC_G FBUF");
exit(1l);

}
/* Set SRC_COLOR KEYING if device supports that */
i f(framebuffer.capability & VAL2_FBUF_CAP_SRC CHROVAKEY) {

framebuffer.flags | = VAL2_FBUF_FLAG _SRC_CHROVAKEY;
ret = ioctl (fd, VIDI OC_S FBUF, &franmebuffer);
if (ret <0) {
perror ("VID OC_S FBUF");
exit(1);
}
}

Below example shows how to disable source color keying

struct v4l 2_franebuffer franebuffer;

ret = ioctl (fd, VID OC_G FBUF, &franebuffer);
if (ret <0) {

perror ("VID OC_G FBUF");

exit(1);

}
i f(framebuffer.capability & VAL2_FBUF_CAP_SRC CHROVAKEY) {
franmebuffer.flags & ~VAL2_FBUF_FLAG SRC_CHROVAKEY;

ret = ioctl (fd, VIDIOC S FBUF, &framebuffer);
if (ret <0) {
perror ("VID OC_S FBUF");
exit(1l);
}
}

Below example show how to enable destination color keying

struct v4l 2_franebuffer franebuffer;

ret = ioctl (fd, VID OC_G FBUF, &franebuffer);
if (ret <0) {
perror ("VIDI OC_G FBUF");
exit(1);
}
/* Set SRC_COLOR KEYING if device supports that */
if(franebuffer.capability & V4L2_FBUF_CAP_CHROMAKEY) ({

framebuffer.flags | = V4L2_FBUF_FLAG CHROVAKEY;
ret = ioctl (fd, VIDIOC S FBUF, &framebuffer);
if (ret <0) {

perror ("VIDI OC_S FBUF");

exit(1);

}
}

Below example shows how to disable destination color keying

86

Platform Support Products Version 02.01.03.11

I TEXAS Display Driver
INSTRUMENTS Usage

struct v4l 2_franebuffer franebuffer;

ret = ioctl (fd, VID OC_G FBUF, &franebuffer);
if (ret <0) {

perror ("VID OC_G FBUF");

exit(1l);

}
i f(framebuffer.capability & VAL2_FBUF_CAP_CHROVAKEY) {
framebuffer.flags & ~VAL2_FBUF_FLAG CHROMAKEY;

ret = ioctl (fd, VIDIOC S FBUF, &framebuffer);
if (ret <0) {
perror ("VID OC_S FBUF");
exit(1);
}
}

Below program listing shows how to set the chromakey value. Please
note that chroma key value should be set before enabling the chroma
keying. Overlay manager should not be changed between the setting up
of chroma key and enabling the chroma keying.

struct v4l2_format fnt;
u8 chromakey = 0xF800; /* Red col or RGB565 format */
frt.type = VAL2_BUF_TYPE_VI DEO OVERLAY;

ret = ioctl(fd, VIDIOC_ G FMI, &fnt);
if (ret <0) {

perror("VID OC_G FMN\n");
close(fd);

exit(0);

}

frmt.fnt.w n.chromakey = chronakey;

ret = ioctl(fd, VIDIOC_S FMI, &fnt);
if (ret <0) {

perror("VID OC_G FMN\ n");
close(fd);

exit(0);

}

Below example shows how to get the chromakey value.

struct v4l2_format fnt;
frt.type = VAL2_BUF_TYPE_VI DEO OVERLAY;

ret = ioctl(fd, VIDIOC_ G FMI, &fnt);
if (ret <0) {

perror("VID OC_G FMN\n");
close(fd);

exit(0);

printf("d obal al pha value read is %\n", fnt.fmt.w n.chromakey);

Version 02.01.03.11 Platform Support Products 87

.’ TEXAS Display Driver
INSTRUMENTS Usage

6.2.2.6. Alpha Blending

Alpha blending is a process of blending a foreground color with a
background color and producing a new blended color. New blended color
depends on the transparency factor referred to as alpha factor of the
foreground color. If the alpha factor is 100% then blended image will
have only foreground color. If the alpha factor is 0% blended image
will have only back ground color. Any value between 0 to 100% will
blend the foreground and background color to produce new blended color
depending upon the alpha factor.

Figure 6.3. Alpha blending with almost 50% transparency

88

Platform Support Products Version 02.01.03.11

I3 TEXAS

Display Driver

INSTRUMENTS Usage

Figure 6.4. Alpha blending with almost 100% transparency

Figure 6.5. Alpha blending with almost 0% transparency

Overlay manager of DSS is capable of supporting the alpha blending.
This is done by displaying more that one layer (video and graphics) to
the same output device TV or LCD. Overlay manager supports normal
mode and alpha mode of operation. In normal mode graphics plane is
at bottom on top of it is videol and video2 is on top of videol. While in

Version 02.01.03.11

Platform Support Products 89

I TEXAS Display Driver
INSTRUMENTS Usage

alpha mode videol plane is at bottom, video2 is on top of videol, and
graphics plane is above video2. Alpha mode is selectable on any of the
output device TV or LCD.

Video2 and graphics layer of the DSS is capable of supporting alpha
blending. Two types of alpha blending is supported global and pixel alpha
blending. ARGB and RGBA formats of the video2 and graphics pipeline
supports pixel based alpha blending. In which A represent the alpha
value for each pixel. Thus, each pixel can have different alpha value.
While global alpha is the constant alpha factor for the pipeline for all the
pixels. Both can be used in conjunction.

Both V4L2 and Frame buffer driver supports alpha blending based on
pixel format for video2 and graphics pipeline respectively. Global alpha
blending is also supported through V4L2 and Fbdev ioctls. Before using
any of the alpha blending methods alpha blending needs to be enabled
on the selected output device through V4L2 ioctl. Alpha blending will be
enabled on the output device to which video pipeline is connected

Following program listing will enable alpha blending. Its a V4L2 driver
ioctl.

struct v4l 2_franebuffer franebuffer;

ret = ioctl (fd, VID OC_G FBUF, &franebuffer);
if (ret <0) {

perror ("VID OC_S FBUF");

return O;

}

framebuffer.flags | = V4AL2_FBUF_FLAG LOCAL_ALPHA;
ret = ioctl (fd, VIDIOC_S FBUF, &franebuffer);
if (ret <0) {

perror ("VID OC_S FBUF");

return O;

}

Following program listing will disable alpha blending Its a V4L2 driver
ioctl.

struct v4l 2_franebuffer franebuffer;

ret = ioctl (fd, VID OC_G FBUF, &franebuffer);
if (ret <0) {

perror ("VID OC_S FBUF");

return O;

}

framebuffer.flags & ~VA4L2_FBUF_FLAG LOCAL_ALPHA;
ret = ioctl (fd, VIDIOC_S FBUF, &franebuffer);
if (ret <0) {

perror ("VID OC_S FBUF");

return O;

Platform Support Products Version 02.01.03.11

I TEXAS Display Driver
INSTRUMENTS Usage

}
V4L2 Driver

V412 driver supports alpha blending through ARGB pixel format as well
as global alpha value.

To set the pixel alpha value set ARGB format by setting format type to
VAL2 Pl X FMI_RGEB32. Call VI DI OC S FMrioctl of the driver to set it to
ARGB format. Note: RGBA format is not supported.

struct v4l2_format fnt;
/* Set the video type*/
fm.type = V4L2_BUF_TYPE_VI DEO_OUTPUT;
/* Set the width and hei ght of the picture*/
fmt.fnt.pix.width = 400;
fm.fnt.pix. height = 400;
/* Set the format to ARGB */
frt.fnt.pix. pixelformat = V4L2_PlI X _FMI_RGB32;
/* Call set format loctl */
ret = ioctl(fd, VIDIOC_S FMI, &fnt);
if (ret <0) {
perror("VIDIOCC_S FMN\ n");
cl ose(fd);
exit(0);
}

Setting the global alpha value is supported through
V4L2_BUF_TYPE_VIDEO_OVERLAY format type. Below programlisting
shows how to set the global alpha value for video2 pipeline.

struct v4l 2_format fnt;
u8 gl obal _al pha = 128;
fm.type = V4L2_BUF_TYPE_VI DEO OVERLAY;

ret = ioctl(fd, VIDIOC_ G FMI, &fnt);

if (ret <0) {

perror("VID OC_G FMN\n");

cl ose(fd);

exit(0);

}

fnt.fnt.wn. gl obal _al pha = gl obal _al pha;

ret = ioctl(fd, VIDIOC_S FMI, &fnt);
if (ret <0) {

perror("VID OC_G FMN\n");

cl ose(fd);

exit(0);

}

FBDEV Driver

Frame buffer driver supports setting of pixel alpha value as well as global
alpha value

Version 02.01.03.11 Platform Support Products 91

I TEXAS Display Driver
INSTRUMENTS Usage

Pixel alpha value is supported through 32 bpp. Setting the offsets
correctly will set the pixel format as ARGB or RGBA. Below program
listing shows how to set ARGB pixel format.

fb_var_screeninfo var;

/* Get variable screen information. Variable screen information
* gives information |like size of the inmage, bites per pixel,
* virtual size of the inmage etc. */

ret = ioctl(display_fd, FBI OGET_VSCREEN NFO, &var);

if (ret <0) {

perror("Error reading variable information.\n");
exit(3);

}

/* Set bits per pixel and offsets*/

var.red. | ength= 8;

var.green.length = 8;

var. blue.length = 8;

var.transp. | ength= 8;

var.transp. of fset = 24;

var.red. of fset = 16;

var. green. of fset =8;

var. bl ue. of fset = 0;

var. bits_per_pixel = 32;

if (ioctl(display_fd, FBI OPUT_VSCREEN NFO, &var)<0) {

perror ("Error: FBl OPUT_VSCREENI NFO n");
exit(4);

}

Below programlisting shows how to set the global alpha value for
graphics pipeline

struct fb_var_screeninfo var;
int global _al pha = 128;

if (ioctl(fb, FBI OGET_VSCREENI NFO, &var)) {
perror("Error reading variable information.\n");
exit(3);

}

var.reserved[0] = gl obal _al pha;

if (ioctl(fb, FBI OPUT_VSCREENI NFO, &var)) {
perror("Error witing variable information.\n");
exit(3);

}

Note

Before using the global alpha or pixel based alpha on graphics pipeline.
Alpha blending needs to be enabled using V4L2 ioctl described under
V4L2 driver in this section.

92

Platform Support Products Version 02.01.03.11

I TEXAS Display Driver
INSTRUMENTS Usage

6.2.2.7. Buffer Format

Buffer format describes the pixel format in the image. It also describes
the memory organization of each color component within the pixel
format. In all buffer formats, blue value is always stored in least
significant bits, then green value and then red value.

V4L2 Driver

Video layer supports following buffer format: YUYV, UYVY,
RGB565, RGB24 (packed and unpacked). The corresponding
v4l2 defines for pixel format are V4L2_PI X FMT_YUYV,
VAL2_ Pl X_FMT_UYVY, VA4L2_PlI X _FMI_RGB565, V4L2_Pl X_FMI_RGB24
(packed), V4L2 Pl X FMI_RGB32. (For videol and video2
V4L2_PIX_FMT_RGB32 corresponds to RGB24 unpacked).

Buffer format can be changed using VIDIOC_S_FMT ioctl with type
as V4L2_BUF_TYPE_VIDEO_OUTPUT and appropriate pixel format type.
Following example shows how to change pixel format to RGB565

struct v4l 2_format fnt
fm.type = V4L2_BUF_TYPE_VI DEO_OUTPUT;
fmt.fmt.pix. pixelformat = V4L2_PI X FMI_RGB565;
ret = ioctl(fd, VIDIOC_S FMI, &fnt);
if (ret <0) {

perror("VIDIOCC_S FMN\ n");

cl ose(fd);

exit(0);

FBDEV Driver

Graphics layer supports following buffer format: RGB24(un-packed)
and RGB565. Buffer format can be changed in FBDEV driver by using
bpp, red, green, and blue fields of fb_vscreeninfo structure and ioctl
FBIOPUT_VSCREENINFO. Application needs to specify bits per pixel and
length and offset of red, green and blue component. Bits-per-pixel and
color depth in the pixel aren't quite the same thing. The display controller
supports color depths of 1, 2, 4, 8, 12, 16, 24 and 32 bits. Color depth
and bits-per-pixel are the same for depths of 1, 2, 4, 8, and 16 bits,
but for a color depth of 12 bits the pixel data is padded to 16 bits-per-
pixel, and for a color depth of 24 bits the pixel data is padded to 32 bits-
per-pixel. So application has to specify bits per pixel 16 and 32 for the
color depth 12 and 24. To specify exact color depth, red, green and blue
member of the fb_varscreeninfo can be used. Following example shows
how to set 12 and 24 bits per pixels.

Struct fb_varscreeninfo var
var. bpp = 16;

var.red.l ength
var . red. of f set

var.green.length = var.blue.length = 4;
8;

Version 02.01.03.11 Platform Support Products 93

i3 TEXas
INSTRUMENTS

Display Driver

Usage

var. green. of fset = 4;
var. bl ue. of fset = 0;
ret = ioctl(fd, FBlI OPUT_VSCREENI NFO, &var);
if (ret <0) {
perror (" FBI OPUT_VSCREENI NFO n") ;
close(fd);
exit(0);
}

Buffer Formats

Byte3 Byte2 Bytel ByteO
P31 P24|P23 P16|(P15 P8|P7 PO

Figure 6.6. 1-BPP Data Memory Organization
Byte3 Byte2 Bytel ByteO
P15 P12|P11 P8 | P7 P4 | P3 PO

Figure 6.7. 2-BPP Data Memory Organization
Byte3 Byte2 Bytel ByteO
P7 P6 |P5 P4 | P3 P2 | P1 PO

Figure 6.8. 4-BPP Data Memory Organization
Byte3 Byte2 Bytel ByteO
P3 P2 P1 PO

Figure 6.9. 8-BPP Data Memory Organization

94

Platform Support Products

Version 02.01.03.11

i3 TEXas
INSTRUMENTS

Display Driver

Usage
Byte 3 Byte 2 Byte 1 Byte O
Unused R1 G1 B1 Unused R1 Gl Bl
Figure 6.10. 12-BPP Data Memory Organization
Byte3 Byte2 Bytel ByteO
R1 G1 B1 | RO GO BO
Figure 6.11. 16-BPP Data Memory Organization
Byte3 Byte2 Bytel ByteO
Unused R G B
Figure 6.12. 24-BPP Data Memory Organization
Byte3 Byte2 Bytel ByteO
A R G B
Figure 6.13. ARGB 32-BPP Data Memory Organization
Byte3 Byte2 Bytel ByteO
R G B A

Figure 6.14. RGBA 32-BPP Data Memory Organization

Version 02.01.03.11

Platform Support Products

95

I TEXAS Display Driver

INSTRUMENTS Usage
Byte 3 Byte 2 Byte 1 Byte O
wWo B1 RO G0 BO
wi G2 B2 R1 Gl
w2 R3 G3 B3 R2

Figure 6.15. 24-BPP Packed Data Memory Organization

Byte3 Byte2 Bytel ByteO

CrO Y1 Cbo YO

Figure 6.16. UYVY 4:2:2 Data Memory Organization

Byte3 Byte2 Bytel ByteO

Y1 CrO YO Cbo

Figure 6.17. YUV2 4:2:2 Data Memory Organization

6.2.2.8. Display Window

The video pipelines can be connected to either an DVI output LCD output
or a TV output through compile time option. Although the display Driver
computes a default display window whenever the image size or cropping
is changed, an application should position the display window via the
VIDIOC_S_FMT I/0 control with the V4L2_BUF_TYPE_VIDEO_OVERLAY
buffer type. When a switch from LCD to TV or from TV to LCD happens,
an application is expected to adjust the display window. V4L2 driver only
supports change of display window.

Following example shows how to change display window size.

struct v4l2_format fnt;
Fmt . type = V4L2_BUF_TYPE_VI DEO_OVERLAY,
fm.fnt.win wleft = 0;
fm.fm.win wtop = 0;
frt.ft.wn wwdth = 200;
fot.fnt.wn. w height = 200;

96 Platform Support Products Version 02.01.03.11

i3 TEXAS

Display Driver

INSTRUMENTS Usage

6.2.2.9. Cropping

6.2.2.10. Scaling

ret = ioctl(fd, VIDIOC_S FMI, &fnt);
if (ret <0) {

perror("VIDI OC_S_FMMNn");
close(fd);

exit(0);

}

/* Display w ndow size and position is changed now */

The V4L2 Driver allows an application to define a rectangular portion
of the image to be rendered via the VID OC_S CROP Ioctl with
the v4L2_BUF_TYPE_VI DEO OQUTPUT buffer type. When application calls
VI DI OC_S FM ioctl, driver sets default cropping rectangle that is the
largest rectangle no larger than the image size and display windows size.
The default cropping rectangle is centered in the image. All cropping
dimensions are rounded down to even numbers. Changing the size of
the cropping rectangle will in general also result in a new default display
window. As stated above, an application must adjust the display window
accordingly.

Following example shows how to change crop size.

struct v4l 2_crop crop;
crop.type = VA4L2_BUF_TYPE_VI DEO OUTPUT;
crop.c.left = 0;
crop.c.top = O;
crop.c.w dth = 320;
crop. c. hei ght = 320;
ret = ioctl(fd, VIDIOC_ S CROP, &crop);
if (ret <0) {

perror("VIDIOC_S CROP\n");

cl ose(fd);

exit(0);
}

/* I mage cropping rectangle is now changed */

Video pipe line contains scaling unit which is used when transferring
pixels from the system memory to the LCD panel or the TV set.
The scaling unit consists of two scaling blocks: The vertical scaling
block followed by the horizontal scaling block. The two scaling units
are independent: Neither of them, only one, or both can be used
simultaneously.

As scaling unit is on video pipeline, scaling is only supported in V4L2
driver. Scaling is not explicitly exposed at the API level. Instead, the
horizontal and vertical scaling factors are based on the display window
and the image cropping rectangle. The horizontal scaling factor is
computed by dividing the width of the display window by the width of the

Version 02.01.03.11

Platform Support Products 97

I TEXAS Display Driver
INSTRUMENTS Usage

cropping rectangle. Similarly, the vertical scaling factor is computed by
dividing the height of the display window by the height of the cropping
rectangle.

Down-scaling is limited upto factor 0.5 and the up-scaling factor to 8 in
the software, while hardware supports from 0.25x to 8x both horizontally
and vertically . The display Driver makes sure the limits are never
exceeded.

Below example shows how to scale image by factor of 2.

struct v4l 2_format fnt;
struct v4l 2_crop crop
/* Changi ng di splay wi ndow size to 200x200 */
fmt.type = VAL2_BUF_TYPE_VI DEO_OVERLAY;
fm.fm.win wleft = 0;
fm.fm.win.wtop = 0;
frmt.fmt.wn. wwdth = 200;
fmt.fnt.wn. w height = 200;
ret = ioctl(fd, VIDIOC_ S FMI, &fnt);
if (ret <0) {
perror("VIDIOC_S FMN\ n");
cl ose(fd);
exit(0);
}
/* Changing crop wi ndow size to 400x400 */
crop.type = V4L2_BUF_TYPE_VI DEO _OUTPUT;
crop.c.left = 0;
crop.c.top = 0;
crop.c.width = 400;
crop. c. hei ght = 400;
ret = jioctl(fd, VIDIOC_S CROP, &crop);
if (ret <0) {
perror("VIDIOC_S CROP\n");
cl ose(fd);
exit(0);
}

/* I mage shoul d be now scal ed by factor 2 */

6.2.2.11. Color look table

The graphics pipeline supports the color look up table. The CLUT mode
uses the encoded pixel values from the input image as pointers to index
the 24-bit-wide CLUT value: 1-BPP pixels address 2 entries, 2-BPP pixels
address 4 entries, 4-BPP pixels address 16 entries, and 8-BPP pixels
address 256 entries.

Driver supports 1, 2, 4 and 8 bits per pixel image format using color
lookup table. FBIOPUTCMAP and FBIOGETCMAP can be used to set
and get the color map table. When CLUT is set, the driver makes the
hardware to reload the CLUT.

Following example shows how to change CLUT.

98 Platform Support Products Version 02.01.03.11

I TEXAS Display Driver
INSTRUMENTS Usage

struct fb_cmap cnap;
unsi gned short r[4] ={0xFF, 0x00, 0x00, OxFF};
unsi gned short g[4] ={0x00, OxFF, 0x00, OxFF};
unsi gned short b[4] ={0x00, 0x00, OxFF, 0x00};
cmap. len = 4;
cmap.red = r;
chap. green = g;
cmap. bl ue = b;
if (ioctl(fd, FBI OPUTCMAP, &cmap)) {

perror (" FBl OPUTCMAP\ n") ;

exit(3);

6.2.2.12. Streaming

V4L2 driver supports the streaming of the buffer. To do streaming
minimum of three buffers should be requested by the application
by using VIDIOC_REQBUFS ioctl. Once driver allocates the requested
buffers application should call VIDIOC_QUERYBUF and mmap to get the
physical address of the buffers and map the kernel memory to user space
as explained earlier. Following are the steps to enable streaming.

1. Fill the buffers with the image to be displayed in the proper format.
2. Queue buffers to the driver queue using VIDIOC_QBUF ioctl.

3. Start streaming using VIDIOC_STREAMON ioctl.

4. Call VIDIOC_DQBUF to get the displayed buffer.

5. Repeat steps 1,2,4 and 5 in a loop for the frame count to be displayed.
6. Call VIDIOC_STREAMOFF ioctl to stop streaming.

Following example shows how to do streaming with V412 driver.

/* Initially fill the buffer */
struct v4l 2_requestbuffers req;
struct v4l 2_buffer buf;

struct v4l 2_format fnt;

/* Fill the buffers with the image */

/* Enqueue buffers */

for (i =0; i <reqg.count; i++) {
buf . type = V4L2_BUF_TYPE_VI DEO OUTPUT;
buf.index = i;

buf . menory = V4L2_MEMORY_MVAP;
ret = ioctl(fd, VID OC_QBUF, &buf);
if (ret <0) {

perror("VIDI OC_Q@BUR\ n");

for (j =0; j <req.count; j++){
/[* Unmap all the buffers if call fails */
exit(0);

Version 02.01.03.11 Platform Support Products 99

I TEXAS Display Driver
INSTRUMENTS Usage

}
printf("ViD OC_ QBUF = %\ n",i);

}
}
/* Start stream ng */
a=20;

ret = ioctl(fd, VIDI OC_STREAMN, &a);
if (ret <0) {
perror (" VI DI OC_STREAMON n") ;

for (i =0; i <req.count; i++)
/* Unmap all the buffers if call fails */
exit(0);

/* loop for streaming with 500 Franes*/
for(i =0 ;i < LOOPCOUNT ;i ++) {
ret = ioctl(fd, VIDI OC_D@BUF, &buf);
if(ret < 0){
perror (" VI DI OC_DQ@BUR n");
for (j =0; j <req.count; j++){
/* Unmap all the buffers if call fails */
exit(0);
}

/* Fill the buffer with new data
fill(buff_info[buf.index].start, fnt.fnt.pix.wdth,
fnt.fnt.pix.height,0);
/ Queue the buffer again */
ret = ioctl(fd, VID OC_QBUF, &buf);
if(ret < 0){
perror("VIDI OC_Q@BUR n");
for (j =0; j <req.count; j++){
/* Unmap all the buffers if call fails */
exit(0);
}
}
}

/* Streanming of f */
ret = ioctl(fd, VID OC_STREAMOFF, &a);
if (ret <0) {
perror (" VI DI OC_STREAMOFF\ n");
for (i =0; i <req.count; i++){
/* Unmap all the buffers if call fails */
exit(0);
}
}

100 Platform Support Products Version 02.01.03.11

i3 TEXas
INSTRUMENTS

Display Driver
Architecture

6.3. Architecture

This chapter describes the Driver Architecture and Design concepts

6.3.1. Driver Architecture

OMAP35x display hardware integrates one graphics pipeline, two video
pipelines, and two overlay managers (one for digital and one for analog
interface). Digital interface is used for LCD and DVI output and analog

interface is used for TV out.

The primary functionality of the display driver is to provide interfaces to
user level applications and management to OMAP35x display hardware.

This includes, but is not limited to:

e GUI rendering through the graphics pipeline.

e Static image or video rendering through two video pipelines.

e Connecting each of three pipelines to either LCD or TV output so the
display layer is presented on the selected output path.

e Image processing (cropping, rotation,

resizing, and etc).

Control GUI Streaming
Applications Applications Applications

- —F=---d-- —-F-

Idevivdlivideo

mirroring, color conversion,

User Space

. sysfs Idevifb0 idevivdivideo2
interfaces FBDEV Driver Vd4L2 Driver Kernel Space
LCD Display
DSS Library
¢-| DWVI Display
Hardware
Graphics Video1 Video2
pipeline pipeline pipeline
DSS Hardware
LCD Overlay Digital Overay
Manager Manager

Figure 6.18. OMAP35x Display Subsystem Architecture

6.3.2. Software Design Interfaces

Above figure shows the major components that makes up the DSS

software sub-system

Version 02.01.03.11 Platform Support Products

101

I TEXAS Display Driver
INSTRUMENTE Software Design Interfaces

Display Library

This is a HAL/functional layer controlling the bulk of DSS hardware. It
exposes the number of APIs controlling the overlay managers, clock, and
pipelines to the user interface drivers like V4L2 and FBDEV.

It also exposes the functions for registering and de-registering of the
various display devices like LCD and DVI to the DSS overlay managers.
SYSFS interfaces

The SYSFS interfaces are mostly used as the control path for configuring
the DSS parameters which are common between FBDEV and V4L2 like
the panel size, pixel clock frequency, alpha blending etc.

It is also used for switching the output of the pipeline to either LCD or
Digital overlay manager. In future sysfs entries might also be used to
switch the modes like NTSC, PAL on TV and 480P, 720P on DVI outputs.

Note

n Please note that due to clock source limitation while switching the
output DSS2 throws error message "Could not find exact pixel

clock" (In order to fix this we need to use DSI input clock source).

Frame Buffer Driver

This driver is registered with the FBDEV subsystem, and is responsible
for managing the graphics layer frame buffer. Driver creates / dev/ f b0 as
the device node. Application can open this device node to open the driver
and negotiate parameters with the driver through frame buffer ioctls.
Application maps driver allocated buffers in the application memory
space and fills them for the driver to display.

Video Applications & V4L2 subsystem

Video applications (camera, camcorder, image viewer, etc.) use the
standard V4L2 APIs to render static images and video to the video layers,
or capture/preview camera images.

This driver is responsible for managing the video layers' frame buffers.
It is a V4L2 compliant driver with some additions to implement special
software requirements that target OMAP35x hardware features . This
driver conforms to the Linux driver model. For using the driver,
application should create the device nodes / dev/ v4l / vi deoland / dev/
v4l / vi deo2device nodes for two video layers. Application can open the
driver by opening these device nodes and negotiate the parameters by
V4L2 ioctls. Initially application can request the driver to allocate number
of buffers and MMAPs these buffers. Then the application can fill up these
buffers and pass them to driver for display by using the standard V4L2
streaming ioctls.

102 Platform Support Products Version 02.01.03.11

i3 TEXAS

Display Driver

INSTRUMENTE Software Interfaces

6.4. Software Interfaces

6.4.1. 'fbdeVv’ Driver Interface

6.4.1.1. Application Interface

open ()

To open a framebuffer device

cl ose ()

To close a framebuffer device

ioctl ()

To send ioctl commands to the framebuffer driver.

map ()

To obtain the framebuffer region as mmap'ed area in user space.

6.4.1.2. Supported Standard IOCTLs

FBI OCGET_VSCREENI NFQ, FBI OPUT_VSCREENI NFO

These I/0 controls are used to query and set the so-called variable screen
info. This allows an application to query or change the display mode,
including the color depth, resolution, timing etc. These I/O controls
accept a pointer to a struct fb_var_screeninfo structure. The video mode
data supplied in the fb_var_screeninfo struct is translated to values
loaded into the display controller registers.

FBI OGET_FSCREENI NFO
This I/O control can be used by applications to get the fixed properties

of the display, e.g. the start address of the framebuffer memory. This I/
O control accepts a pointer to a struct fb_fix_screeninfo

FBlI OGETCVAP, FBI OPUTCVAP
These I/O controls are used to get and set the color-map for the

framebuffer. These I/O controls accept a pointer to a struct fb_cmap
structure.

FBI O_BLANK

This I/O control is used to blank or unblank the framebuffer console.

Version 02.01.03.11

Platform Support Products 103

I TEXAS Display Driver
INSTRUMENTS VAL2 Driver Interface

6.4.1.3. Data Structures

fb_var_screeninfo
This structure is used to query and set the so-called variable screen

information. This allows an application to query or change the display
mode, including the color depth, resolution, timing etc.

fb fix _screeninfo

This structure is used by applications to get the fixed properties of the
display, e.g. the start address of the framebuffer memory, framebuffer
length etc.

fb_cmap
This structure is used to get/set the color-map for the framebuffer

6.4.2. VAL 2 Driver Interface

6.4.2.1. Application Interface
open
To open a video device
cl ose
To close a video device
i octl
To send ioctl commands to the display driver.
mrap
To memory map a driver allocated buffer to user space

6.4.2.2. Supported Standard IOCTLs

Note

This section describes the standard V4L2 IOCTLs supported by the
Display Driver. Standard IOCTLs that are not listed here are not
supported. The Display Driver handles the unsupported ones by
returning EI NVALerror code.

104 Platform Support Products Version 02.01.03.11

I TEXAS Display Driver
INSTRUMENTS VAL2 Driver Interface

VI Dl OC_QUERYCAP

This is used to query the driver's capability. The video driver fills a
v412_capability struct indicating the driver is capable of output and
streaming.

VI DI OC_ENUM_FMT

This is used to enumerate the image formats that are supported by the
driver. The driver fills a v4l12_fmtdesc struct.

VI Dl OC_G_FMT

This is used to get the current image format or display window depending
on the buffer type. The driver fills the information to a v4I2_format
struct.

VI DI OC_TRY_FMI

This is used to validate a new image format or a new display window
depending on the buffer type. The driver may change the passed values
if they are not supported. Application should check what is granted.

VI Dl OC_S_FMT

This is used to set a new image format or a new display window
depending on the buffer type. The driver may change the passed values
if they are not supported. Application should check what is granted if
VIDIOC_TRY_FMT is not used first.

VI DI CC_CROPCAP

This is used to get the default cropping rectangle based on the
current image size and the current display panel size. The driver fills a
v412_cropcap struct.

VI DI OC_G_CROP

This is used to get the current cropping rectangle. The driver fills a
v4l2_crop struct.

VI DI OC_S_CROP

This is used to set a new cropping rectangle. The driver fills a v412_crop
struct. Application should check what is granted.

VI DI OC_REQBUFS

This is used to request a number of buffers that can later be memory
mapped. The driver fills a v4l2_requestbuffers struct. Application should
check how many buffers are granted.

Version 02.01.03.11 Platform Support Products 105

I TEXAS Display Driver
INSTRUMENTE SYSFS Software Design Interfaces

VI DI OC_QUERYBUF

This is used to get a buffer's information so mmap can be called for that
buffer. The driver fills a v4l2_buffer struct.

VI DI OC_QBUF

This is used to queue a buffer by passing a v4l2_buffer struct associated
to that buffer.

VI DI OC_DQBUF

This is used to dequeue a buffer by passing a v4l2_buffer struct
associated to that buffer.

VI DI OC_STREAMON

This is used to turn on streaming. After that, any VIDIOC_QBUF results
in an image being rendered.

VI DI OC_S_CTRL VI Dl OC_G_CTRL VI DI OC_QUERYCTRL

These ioctls are used to set/get and query various V4L2 controls
like rotation, mirror and background color. Currently only rotation is
supported

VI DI OC_STREAMOFF

This is used to turn off streaming.

6.4.3. SYSFS Software Design Interfaces

Currently we are not supporting the sysfs interfaces for functions like
changing the output, changing the mode and alpha blending. But bulk of
sysfs entries are exported by DSS library. Please refer to the Migration
guide for detailed explanation on sysfs entries supported.

Note
SYSFS entries are not included as part of official release and are not

tested to the extent of productization.

106 Platform Support Products Version 02.01.03.11

I3 TEXAS
INSTRUMENTS

Display Driver
Driver Configuration

6.5. Driver Configuration

6.5.1. Configuration Steps
To enable V4L2 video driver:

1. Open menuconfig options from kernel command prompt.

2. Select Device Drivers as shown here:

Linux Kernel Configuration
hrrow keys navigate the menu. <Enter> selects submenus =-=-->.
Highlighted letters are hotkeys. Pressing <¥» includes, <N» excludes,
<M» modularizes features. Fress <Eschx<BEsc> to exit, <> for Help, </»
for Search. Legend: [*] built=in [] excluded <M» module < > module

General setup ===
[*] Enable loadable module support ===
=%¥= Enable the block layer ===k
System Type ===>
Bus support ===>
Kernel Features ===>»
Boot options ===3
Floating point emulation =-=>
Userspace binary formats --->
Fower management options --->
Networking --->

File systems -

Kernel hacking --->

Becurity options -—-->
Li+)

EESEEE < Exit > < Help >

Figure 6.19. Configure V4L2 video Driver: Step 2

3. Select Device Drivers > Multimedia devices as shown here:

Device Drivers

Brrow keys navigate the menu. <Enter> selects submenus >
Highlighted letters are hotkeys. Fressing <¥»> includes, <N> excludes,
<M> modularizes features. Fress <Esckx<Escr to exit, <i» for Help, </>»

for Search.
~ =)
<M> ISD

Legend: [*] built=in [] excluded «<M» module < > module

] Watc

hdog Ti
Sonic i

o5 Silic

[*] HID Dewices (NEW) --->
I+
{+)

m < Exit > < Help >

Figure 6.20. configure V4L2 video Driver: Step 3

4. Select Video For Linux

Version 02.01.03.11 Platform Support Products 107

I3 TEXAS

INSTRUMENTS

Display Driver
Configuration Steps

5.

6.

Multimedia devices

for Search. Legend: [¥] built=in [] excluded <M»> module

[*]

= x

o For Linux BEI 1 (DEFRECRTED)
e Wideo For Linux BET 1
Linux (NEW)
wkw Myltimedia driwvers ¥¥%
] Load and attach frontend and tuner driwer

[NEW)
compatible Layer

hrrow keys navigate the menu. <Enter> selects submenus --->».
Highlighted letters are hotkeys. Fressing <¥»> includes, <N> excludes,
<M>» modularizes features.

Eress <Esckx<Escr to exit, <i» for Help, </>»

¢ » module

modules as needed [(NEW
Customize analog and hybrid tuner modules to build ([NEW)

===

[¥*] wideo capture adapters (NEW) --->
Radio Bdapters (NEW) ---3>
] DRE adapters (NEW)
lselact:] < Exit > < Help >

Figure 6.21. Configure V4L2 video Driver: Step 4

Select Device Drivers > Multimedia devices

> Video capture

adapaters as shown here and go inside the main menu:

Multimedia dewvices

Lrrow keys navigate the menu.

Highlighted letters are hotkeys
<M> modularizes features. F
for Search. Legend: [*]

5 submenus =--->.

built=in [] excluded <> module

ltimedia core support ¥
Linux

Video For Linux REI 1 (DEERECRTED] (NEW)

Video For Linux BEI 1 compatible Layer

Linux (NEW)

ltimedia driwvers ¥¥¥

<
i*]
w

< x>

Tune

odules to build (NEW)

Bdapters (NEW)
[] DBE adapters (WEW)

ing <¥» includes, <N»> excludes,
to exit, <i> for Help, </>»
< » module

[1 Load and attach frontend and tuner driwver modules as needed (NEW

m——3

< Exit >

Figure 6.22. Configure V4L2 video Driver: Step 5

Select OMAP2/OMAP3 V4L2-DSS Drivers.Select Videoout library
Videoout driver support under OMAP2/OMAP3 V4L2-DSS Drivers

108

Platform Support Products

Version 02.01.03.11

’ TEXAS Display Driver
INSTRUMENTS Configuration Steps

Video capture adapters
arraw keys navigate the menu., <Enter> selects submenus ---». Highlighted
letters are hotkeys. Pressing <Y¥»> includes, <N> excludes, <M> modularizes
features, Press <Bscx<Bscx to exit, <> for Help, </» for Search. Legend: [*]
puilt-in [] excluded <¥>» module < > module capable

--- Video capture adapters
[1 Enable advanced debug functionality

[1 Enable ald-style fized minor ranges for video devices

[*] Rutoselect pertinent encoders/decoders and other helper chips
< x> irtual Video Driver

< r ides For Linux

< » CPiAZ Video For Linux

< > SRAESI4ER, BRRSIE] Teletext processor
4% Teletext

(MRF Video

EEEE < it > < Help »

Figure 6.23. Configure V4L2 video Driver: Step 6
To enable Frame buffer driver.
1. Open menuconfig options from kernel command prompt.

2. Select Device Drivers as shown here:

Linux Kernel Configuration
ARrrow Weys navigate the menu. <Enter> ssl submenus --->.

Highlighted letters are hothkeys. Pressing <¥> includes, <N:» excludes,
<M> modularizes features. 33 <Eac»<EaC exit, «7?» for Help, </ />

for Ssarch. Legend: [*] bui in [] excluded <M> module < > module
Zaneral gstup --->
[*] Enable loadable module support ---3»
[*] Enable the block layer --->
System Type --->
BluE SUppOrT --->
Kernel Features --->

Kernel hacking

<select] < Exit » < Help »

Figure 6.24. Configure Graphics display Driver: Step 2

3. Select Device Drivers > Graphics Supports as shown here:

Version 02.01.03.11 Platform Support Products 109

I3 TEXAS

INSTRUMENTS

Display Driver
Configuration Steps

4.

Dewice Driwers
krrow keys navigate the mepu. <Enter> selects submenus ---». Highlighted
letters sre hotkeys. Pressing <¥> includes, <N» excludes, <M> modularizes
features. FPress <Bscx<BEsc> to exit, <> for Kelp, </> for Search. ILegend: [¥]
buile-in [] excluded «<M> module < > module capahle
(=)
< » Dallzs' 1re SUppOrT ---3
< » ECWer s class support --->
< > Hardware Monitoring support ---»
< > Generic Thermal sysfs driver ===
[*] Watchdog Timer Support --->
Senics 3 n Backplane --->
11 ien dewice drivers ---»
devices --->
R
[*] HID Devices --->
[t] USB support =---»
—Li+)
< Exit > < Help »

Figure 6.25. configure Graphics display Driver: Step 3

Select Support for frame buffer devices under Graphics support as

shown.

Graphics support

Brrow Keys navigate the memu.
letters are hotkeys.
features.

bailt-in [

<Enter> selects submenus ---». Highlighted
Pressing <¥> includes, <N> excluodes, <M> modularizes
Press <BEscrcEsc» to exit, <> for Help, </> for Search.
] excluded <M> module < > module capable

Legend: [*]

als
ry size (MB) (NEW)
fer suppert (EXFERIMENTAL) (NEW)
OMAR2/ 3 Display Device Drivers ---»
[] Backlight & LCD device suppert >
Display device support --->
Censole display driver support ---»
[1 Beotup logo (NEW) --->
< Exit » < Help »

Figure 6.26. configure Graphics display Driver: Step 4

Select OMAP2/3 Frame buffer support (EXPERIMENTAL) and 1 as
Number of Frame buffers. Select 1 will allow the Graphics pipeline of
the DSS to be controlled by FBDEV interface and both video pipelines
by V4L2 interface. Selecting 2 will allow graphic pipeline and 1 video
pipeline to be controlled by FBDEV interface and one video pipeline
by V4L2 interface. Selecting 3 will allow all the three DSS pipelines

to be controlled by FBDEV interface.

110

Platform Support Products

Version 02.01.03.11

I3 TEXAS

INSTRUMENTS

Display Driver
Configuration Steps

Graphics support

Arrow keys navigate the menu.
letters are hotkeys.
features.
built-in

<Enter> sslects submenus --—->.

Press <Escx<Bsc» to exit, <> for Help, </> for Search.
[] excluded «<M» medule < > medule capable

Highlighted
Pressing <¥> includes, <N» excludes, <M> modularizes
Legend:

[*]

« » Lowlewel widee cutput switch controls

<t> support for frame buffer deviees ---»

{2) Consistent DMR memory size (MB) (NEW)

<*» OMAPZ/3 frame buffer support (EXPERIMENTRL)

[1 ©Debug support for OMAPZ/3 EB

[1 Force main display to autcmatic update mode (NEW)

OMRPZ/3 Display

ce Drivers --->»
[1 Backlight & LCD device support --—-»
Display device support ---»
Censole display driver suppert --->
[] Bootup laga (KEH) ===3>

< Exit > < Help »

Figure 6.27. configure Graphics display Driver: Step 5

There are some other configuration parameters which user can select

during building of kernel -

- Select the TV as the default output device for Videol and Video2
pipeline - Select the NTSC_M as the default mode for TV. Without this

default mode will be PAL_BDGHI.

1. Open menuconfig options from kernel command prompt. Select
Device Drivers > Multimedia devices > Video capture adapaters as

mentioned in section "V4L2 video driver:"

2. Select "Use TV Managaer" under the VID1 Overlay manager for
selecting TV as default output for Videol or under VID2 Overlay
manager for selecting the TV as default output for video2.

Wigeo capture adapters

< » module capable

--- Wideo capture adapters

[1 Enable advanced debug functlopality

1 Enshle ald-style fixed minor ranges for wideo devices
i*] Rutoselect pertinent encoders/idesoders apd other helper chips
< » Virtual Video Driver

CFiA Wideo For Linux

CEiRZ Video For Linuk

SRRSZAER, SARSZE] Teletext Processor

£ EARSZ4Y Teleatexs processor

< > OMAP ISP Previewer

<%x OMAF ISF Resizer

< > OMARF] Cameca supoort

T {iise TV Manager) d

VIDZ Ovwecley manager (Use TV Mapager] ---»
IV Hode (D22 BTEC M model ---»

i Sol camers 5'JPP3!:

Rrpow key: navigate the nenu. <Entec> selects submenus --->. Highlighted letters are
hotkeys. Fressing <¥»> includes, <N» excludes, <M> medulapizes features, Press <EBsca<Beox
o exit, <> for Help, <> for Search. GLegend: [¥] built-in [] excluded <po> module

Lz Loz < Exit = < Help =

Figure 6.28. Select TV as default output device: Step 6

To select the NTSC_M as the default mode for TV. Without this default

mode will be PAL_BDGHI.

Version 02.01.03.11

Platform Support Products

111

I3 TEXAS
INSTRUMENTS

Display Driver
Configuration Steps

1. Open menuconfig options from kernel command prompt. Select
Device Drivers > Multimedia devices > Video capture adapaters as
mentioned in section "V4L2 video driver:"

2. Select "Use NTSC_M Mode" as the TV mode from the choice menu.

ghted letters are
Press <Eac»«<Esc»

1 <M>» modole

(Use TV Manager) -
TV Manager] ---X

< Help

Figure 6.29. Select NTSC_M as TV mode: Step 6

To select the Composite or S-Video out as the default TV out interface.
The default output interface will be S-Video.

Please note that for OMAP3EVM-1 (<Rev-E) user should set SW1.6 to
proper position for selection between S-Vid/CVBS.

ON - Enable S-Video output interface path on OMAP3EVM-1 OFF - Enable
CVBS output interface path on OMAP3EVM-1

1. Open menuconfig options from kernel command prompt. Select
System Type > TI OMAP Implementations > VENC support.

2. Select "OMAP2_VENC_OUT_TYPE (Use Composite output interface)"
as the TV out interface from the choice menu.

112 Platform Support Products Version 02.01.03.11

I TEXAS Display Driver
INSTRUMENTS Installation

TI (MAP Implementations
Arrow keys navigate the menu. <Bnter> selects submenus ---»,
Highlighted letters are hotkeys. Pressing <V> includes, <MN» excludes,
<M» nodularizes features. Press <Bscr<Bsc» to exit, <7» for Help, </»
for §earch. Legend: [*] built-in [| excluded «M» nodule < >
~i-)
-*- (MRPZ/3 Display Subsystem support (EXPERIMENTRL
[1 Debug support
[1 FEFBEI support
[*] VENC support
OMREZ VENC ['VPE z site output interface)

501 support
[*] D8I support
[*] Use D8I PLL for PCLE (EXPERIMENTAL)

Fake VEYNC irg from manual update displays
(4] Minimun FCE/PCE ratio (for scaling

< BExit > < Help >

Figure 6.30. Select Compaosite out as TV out interface: Step 6

6.5.2. Installation

6.5.2.1. Driver built statically

If the v412 video driver is built statically into the kernel, it is activated
during boot-up. If frame buffer driver is built statically it gets activated
during bootup. Modular build of frame buffer is not supported.

6.5.2.2. Driver built as loadable module

If the video driver and video library has been configured to be a
loadable modules, then the driver are built as a modules with the name
omap_vout.ko and omap_voutlib.ko, which will be placed under directory
drivers/media/video/omap/ in the kernel tree.

Copy this driver files on to the target board and issue the following
command to insert the driver:

i nsmod omap_vout . ko
i nsnod omap_voutlib. ko

There might be some dependencies for this module on other modules,
These modules also need to be inserted before inserting V4L2 video
driver.

To remove the driver, issue the following command:

rmod onmap_vout. ko

Version 02.01.03.11 Platform Support Products 113

I TEXAS Display Driver
INSTRUMENTS Installation

rmod omap_voutlib. ko

114 Platform Support Products Version 02.01.03.11

i3 TEXAS

INSTRUMENTS

Display Driver
Sample Application Flow

6.6. Sample Application Flow

This chapter describes the application flow using the V412 and FBDEV

drivers.

Open the VAL2 driver node

l

Set format using
VIDIOC S FMT

l

Set orop using
VIDIOC 8 CROP

Request buffers using
VIDIOC REQEUF

|

Query buffers using
VIDIOC QUERYBUF

|

mmap the buffers to
application space

l

Fill the buffers

|

queue the filled buffers
using VIDIOC QEUF

l

start streaming using
VIDIOC ST N

|

De-gqueue the displayed
buffers using VIDIOC DQBUF

F

stop streaming using
VIDIOC STREAMOFF

Close the driver node

Figure 6.31. Application for v4l2 driver using MMAP buffers

Version 02.01.03.11

Platform Support Products

115

I3 TEXAS
INSTRUMENTS

Display Driver
Sample Application Flow

Open the FEDEB driver node

et var scoreen info using
FBIOGET VSCREENINFO

I

Get fix screen info using
FBIOGET FSCREENINFO

1

Get var screen info using
FBIOGET VSCREENINFO

Change the Variable screen
paramaters as desired

|

Put the wvar screen info
using FBIOPUT VSCREENINFO

l

mmap the buffers to
application space

!

Close the driver node

Figure 6.32. Application for FBDEV driver

116

Platform Support Products

Version 02.01.03.11

I TEXAS Display Driver
INSTRUMENTS Revision History

6.7. Revision History

Version 02.01.03.11 Platform Support Products 117

i3 TEXas
INSTRUMENTS

Version 02.01.03.11 Platform Support Products 118

i3 TEXAS

INSTRUMENTS
Abstract

Table of Contents

7.1, INtrodUCHION .oiiiiii i s 121
7.1, 1, REfEIENCES it e 121

2% T Vo o o] 21/ 2 0 1T 121
7.1.3. Hardware OVEIrVIEW ..oiiiiiiiiiiiiiiiiiiie i iiiiiianneeeeens 121

720 < T=) 1 = 122
7.2.1. Overview of features supportedccviiiiiiiiiinnnns 122
7.2.2. Usage of Featuresccoviiiiiiiiiiiiiiiiiciii i 122
7.2.3. Constraints .iiiiiiiiiiiiiiii e 128

7.3, ArChitBCEUIE i e 130
7.4, Software INterface ...ooovviiiiiiiiiiiiic s 131

Version 02.01.03.11

Platform Support Products 119

i3 TEXas
INSTRUMENTS

Resizer Driver

7.4.1. Application Programming Interface
7.4.2. IOCTLS tiiiiiiieeeeeeeaeeens
7.4.3. Data Structurescovevinenns
7.5. Driver Configurationcooevviiinnnn.
7.5.1. Configuration Steps
7.6. Sample Application Flowc.e.eee.

7.7. Revision Historyccoeviiiiiiiiiiiiencinnnnn

120

Platform Support Products

Version 02.01.03.11

I TEXAS Resizer Driver
INSTRUMENTS Introduction

7.1. Introduction

This section provides overview of the Resizer Hardware.

7.1.1. References

e Video for Linux Two API Specification [http://v4l2spec.bytesex.org/
v4l2spec/v412.pdf]

7.1.2. Acronyms

e V4L2: Video For Linux 2

7.1.3. Hardware Overview
The OMAP Resizer module enables up scaling and down scaling. It resizes

YUV422 image and stores output image in the RAM. The following figure
shows the block diagram for Resizer module.

=<7
Trapsuit

Formatter

!

Harizontal .' Luirria - Wartical
Resizar | Enhancemeant Regizer

Ramd
Buiffer
Interface

White Buffer
Interface
[(SDRAM})

-~

Programmable Coefficient

Wert Coef Storage
B Phases » 4 Taps
R

4 Phases x 7 Taps

Horz Coef Storage
& Phases x 4 Taps
1]

4 Phases x 7 Taps

Figure 7.1. OMAP Resizer HW Block Diagram

The Resizer module performs digital zoom either up sampling or down
sampling on image/video data within a range of 0.25x to 4x resizing. The
input source can be sent to either the preview engine/CCDC or memory,
and the output is sent to memory.

The Resizer module performs horizontal resizing, then vertical resizing,
independently. Between them, there is an optional edge-enhancement
feature. This process is shown in the above Figure.

Version 02.01.03.11 Platform Support Products 121

http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf
http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf
http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf

i3 TEXAS

Resizer Driver

INSTRUMENTS Features

7.2. Features

This section describes features supported by the resizer driver.

7.2.1. Overview of features supported

The Resizer driver supports the following features:

e Resizes input frame stored in RAM and stores output frame in RAM.
e Supports resizing from 1/4x to 4x.

e Supports independent horizontal and vertical resizing.

e Supports YUV422 packed data and Color Separate data.

e Supports driver allocated and user provided buffers.

e Supports Luminance Enhancement.

e Supports configuration of read request cycles.

7.2.2. Usage of Features

Following sections provides details about the drive supported features.

7.2.2.1. Opening and Closing the Driver

The device can be opened using open call from the application with
device name and mode of operation as parameters. Mode can be
blocking, non-blocking and readwrite. Application can open the driver
in either blocking mode or non-blocking mode. If driver is opened in
blocking mode, RSZ_RESIZE ioctl will block until resizing task is over for
that channel. If the driver is opened in non-blocking mode, RSZ_RESIZE
ioctl returns if hardware is busy serving other channel.

Driver can be opened multiple times. Driver maintains software channels
for all opened instances. If multiple resizing task is submitted at the
same time, driver serializes the resizing task.

To close a specific device, application calls the close function with the
file handle.

/* call to open a Resizer logical channel in blocking node */
rszfd_bl ocki ng =open ("/dev/omap-resizer", O RDWR);

/* closing of channels */

cl ose (rszfd_bl ocking);

122

Platform Support Products Version 02.01.03.11

I TEXAS Resizer Driver
INSTRUMENTE Usage of Features

7.2.2.2. Buffer Management

Resizer Driver requires buffers for storing input/output images. Buffers
can be allocated by the driver itself or application can provide the buffers.
These buffers need to be virtually contiguous. Physically buffers can be
scattered in the memory.

The Resizer Driver supports two memory usage models.
e Memory map/Driver allocated buffer mode

e User Pointer Exchange

7.2.2.2.1. Memory map/Driver Allocated buffer

In Memory map buffer mode, application can request memory from the
driver by calling RSZ_REQBUF ioctl. With this ioctl, application passes
pointer to the structure v4l 2_requestbuffers . In this structure,
buffer exchange mechanism can be specified. For memory map buffer
exchange mechanism, it should be V4L2_ MEMORY_MVAP. Driver always
allocates buffer of maximum size required to store input or output image.
If output image width is less than input image width, a single buffer
can be used to store input and output images. Otherwise, at least, two
buffers are required to store input and output images. Application can
request as many buffers as it wants. Buffer with the index 0 is always
used as the input buffer and other buffer can be used as the output buffer.

The main steps that the application must perform for buffer allocation
are:

e Allocating Memory

e Getting Physical Address

e Mapping Kernel Space Address to User Space
Allocating Memory:

Application can allocate buffers using RSZ_REQBUF IOCTL. While
allocating the buffers, the application have to specify the buffer type,
number of buffers and memory type. Here the buffer type must be
V4L2_BUF_TYPE_VI DEO_CAPTURE. Number of buffers can be greater than
or equal to one. If output image is less than input image, number of
buffers can be one. Drivers always uses maximum of input and output
image size as the buffer size.

This ioctl takes object of v4l 2_r equest buffer structure.

/* structure to store buffer request paraneters */

struct v4l 2_request buffers reqbuf;

regbuf. type =VAL2_BUF_TYPE_VI DEO CAPTURE;

reqbuf.count = 2; /* nunber of buffers */

reqbuf. menory = V4L2_MEMORY_MVAP; /* Type of buffer exchange
mechani sm */

Version 02.01.03.11 Platform Support Products 123

I TEXAS Resizer Driver
INSTRUMENTE Usage of Features

if(ioctl(rszfd, RSZ_REQBUF, ®buf)< 0) {
perror (" RSZ_REQBUF failed\n");
cl ose(rszfd);
exit(-1);

/* The above exanple will allocate 2 buffers */

Getting Physical Address:

The RSZ_QUERYBUF IOCTL can obtain the physical address of the
allocated buffer. Application has to specify the index, buffer type and
buffer's memory type at time of calling this ioctl. Buffer type must be
VAL2_BUF_TYPE_VI DEO_CAPTURE. Index of each type of buffer starts from
0. Buffer memory type must be V4L2_MEMORY_MVAP for driver allocated
buffers. The driver fills the size and physical address, and then returns
to the application so that the relevant data can be used to mmap the
buffer to user space.

This ioctl takes object of the structure v4l 2_buffer.

/* allocate buffer by RSZ_REQBUF */
/* structure to query the physical address of allocated buffer */
struct v4l 2 buffer buffer;
buffer.index = 0; /* buffer index - 0 */
buffer.type = VAL2_BUF_TYPE_VI DEO CAPTURE; /* |nput buffer */
if (ioctl(rszfd, RSZ_QUERYBUF, &buffer) < 0) {
perror("RSZ_QUERYBUF ioctl failed\n");
cl ose(rszfd);
exit(-1);
}
/* The buffer.moffset will contain the physical address returned
fromdriver */

Mapping Kernel Space Address to User Space:

Mapping the kernel buffer to the user space is done via the Linux mrap
system call. Application must pass the buffer size and buffer's physical
address for getting the user mapped address.

/* allocate buffer by RSZ_REQBUF */

/* query the buffer using RSZ_REQBUF */

/* addr hold the user space address */

unsi gned | ong addr;

addr = mmap(NULL, buffer.size, PROT_READ | PROT_WRI TE,
MAP_SHARED, rszfd, buffer.offset);

/* buffer.offset is sane as returned from RSZ_QUERYBUF */

7.2.2.2.2. User Pointer Exchange

Application informs driver whether to use memory mapped buffer or user
buffer in memory allocation operation (RSZ_REQBUFS ioctl). This ioctl is

124 Platform Support Products Version 02.01.03.11

i3 TEXAS

Resizer Driver

INSTRUMENTE Usage of Features

being used when request for buffer allocation is submitted to the driver.
Along with ioctl, application has to specify either memory mapped or user
buffer to be used. If user provided buffer is used, application has to pass
memory type as V4L2_MEMORY_USERPTR. Then at the time of en-queueing
buffers, application can specify pointer to the virtually contiguous buffer
allocated by the application and size of the buffer. This size of the buffer,
specified at the time of en-queueing buffer, must be page-aligned. This
size must be same for the input and output buffer and must be maximum
of input and output image size.

/* structure to store buffer request paraneters */
struct v4l 2_request buffers reqbuf;
regbuf. type =V4L2_BUF_TYPE_VI DEO_CAPTURE;
reqbuf.count = 2; /* nunber of buffers */
reqbuf. menory = V4L2_MEMORY_USERPTR;, /* Type of buffer exchange
mechani sm */
if(ioctl(rszfd, RSZ_REQBUF, ®buf)< 0) {
perror (" RSZ_REQBUF failed\n");
cl ose(rszfd);
exit(-1);

/* This above exanple will allocate 2 buffer descriptors */

7.2.2.3. Parameter Configuration

7.2.2.3.1. Resizing

The Resizer module takes input image from RAM, resizes it horizontally
and vertically using given resizing ratio and stores output image in
RAM. The Resizer module can up scale or down scale image data with
independent resizing factors in the horizontal and vertical directions.
The resizing ratio is calculated using formula 256/ N where value
of N can range from 64 to 1024. The Resizer module uses the
same resampling algorithm for the horizontal and vertical directions.
The resizing/resampling algorithm uses a programmable polyphase
sample rate converter (resampler). The polyphase filter coefficients are
programmable so that any user-specified filter can be implemented.

For horizontal and vertical direction, application has to provide 32
coefficients. These coefficient values are dependent on resizing ratio. The
Resizer hardware uses 4 taps and 8 phases filters for the resizing range
of 1/2x to 4x and 7 taps and 4 phases filters for a resizing range of 1/4x
to 1/2x for both the direction. So different set of coefficients must be
provided for 4 taps and 8 phases filters and 7 taps and 4 phases filter.

As the hardware uses multi tape poly phase filters, filter requires more
input pixel than following equation calculates.

Input size = output size * N/ 256; /* 256 where Nis from64 to
1024 */

Version 02.01.03.11

Platform Support Products 125

I TEXAS Resizer Driver
INSTRUMENTE Usage of Features

Input size is also dependent on the starting phase and rounding issues
in the resizing algorithm of the hardware. The input width and height
parameters must be programmed strictly according to these equations
given in following table otherwise, incorrect hardware operation may

occur.
Ratio 1/2x to 4x Ration 1/4x to 1/2x

Input width (32*sph+(ow-1)*hrsz (64*sph+(ow-1)*hrsz
+16)>>(8+7) +32)>>(8+7)

Input height (32*spv+(oh-1)*vrsz (64*spv+(oh-1)*vrsz
+16)>>(8+4) +32)>>(8+7)

Table 7.1. Resizer: Input Size Calculation

Wher e
sph = horizontal starting phase
spv = vertical starting phase
ow = out put width
oh = out put hei ght
hrsz hori zontal resize val ue
Vrsz vertical resize val ue.

Application sets the resizing ratio by providing input size and output size
parameters in RSZ_S PARAMS ioctl. This ioctl takes object of r sz_par ans
structures. Application provides input width, pitch and height and output
width, pitch and height. Driver calculates the resizing ratio for horizontal
and vertical direction using below equation.

Hori zontal _ratio = (input_w dth-N)*256/ (output_wi dt h-1);

VWere N = 7 for ratio in between 1/4x to 1/2x 4 for ratio
in between 1/2x to 4x

Similar equation is used to calculate vertical resizing ratio. So this
equation must be used by the application when calculating input and
output size for the given resizing ratio.

Actual Resizing operation is performed when application calls
RSZ_RESIZE ioctl. This ioctl programs Resizer Hardware, submits
resizing task and waits for it to be completed. This ioctl will block the
application if the resizer driver is opened in blocking mode. If it is opened
in non-blocking mode, it will simply return with busy if the hardware
is busy. Before submitting resizing task, the input and output buffers
must be en-queued to the driver so the drive will come to know which
buffers to be used as input and output. Also resize ioctl, as an side effect,
removed buffers from the queue. So if resizing task required to be re-
submitted, buffers must be en-queued again. So whenever resizing task
is submitted, input and output buffers must also be enqued first.

126 Platform Support Products Version 02.01.03.11

I TEXAS Resizer Driver
INSTRUMENTE Usage of Features

7.2.2.3.2. Chroma Algorithm

Chroma components, which are 2:1 horizontally down sampled with
respect to luma, have two methods of horizontal resizing: Filtering
with luma, andBil i near interpol ation. The Chroma algorithm option
can be selected in the cbilin field of rsz_parans structure. However,
filtering with luma is only intended for down sampling, and bilinear
interpolation is only intended for up sampling.

There are two possible values of cbilin member of r sz_par ans structures.
0 and 1. 0 indicates that the chrominance uses the same processing
as the luminance and 1 indicates that the chrominance uses bilinear
interpolation processing.

7.2.2.3.3. Input/output image format

Resizer module supports two types of image format. One is YUV422
packed data and the other is color separate data. Input image format
can be selected by providing one of RSZ | NTYPE_YCBCR422 16BI T or
RSZ_| NTYPE_PLANAR 8BI T value to inptype member of rsz_parans
structure. Configured input image format is used for both input and
output image.

When YUV422 interleaved (packed) image format is selected, resizer
module resizes entire image and stores it in output buffer.

When color separate image format is selected, application has to resize
each of the color components separately.Application must open three
instances of the resizer driver and resize each color components in one
instance separately. Application must provide correct input and output
size of the each color components when resizing color components.

7.2.2.3.4. Pixel Format

Resizer module supports two pixel format YUYV and UYVY. Pixel
format can be selected by providing one of RSZ Pl X FMI_YUYV or
RSZ_PI X _FMI_UYVY value to pi x_fmt member of rsz_par ans structure.
Configured pixel format is used for both input and output image. When
color separate input data is used, this field is ignored.

7.2.2.3.5. Luma Enhancement

Edge enhancement can be applied to the horizontally resized luminance
component before the output of the horizontal stage is sent to the line
memories and the vertical stage. type member of rsz_yenh member of
rsz_parans structure can be set to disable edge enhancement, or to
select a 3-tap or a 5-tap horizontal high-pass filter (HPF) for luminance
enhancement. So possible values of type is 0, 1 or 2 for disabling
luma enhancement, selecing 3 tap filed or selecting 5 tap filter. If edge
enhancement is selected, the two left-most and two right-most pixels
in each line are not outputted to the line memories and the vertical

Version 02.01.03.11 Platform Support Products 127

I TEXAS Resizer Driver
INSTRUMENTS Constraints

stage. When luma enhancement is enabled, maximum output width can
be 1280 when 1/2x to 4x vertical resizing ratio is selected and 640 when
1/4x to 1/2x vertical resizing ratio is selected.

Luma enhancement algorithm is as follows.

HPF (Y_IN) = Y_IN convolved with {[-0.5, 1, 0.5] or [-0.25, -0.5, 1.5,
-0.5, -0.25]}

Implemented as [-1, 2, -1] >> 1, [-1, -2, 6, -2, -1] >> 2)
Saturate HPF(Y) between -256 and +255

Hpgain = (|HPF(Y)| - CORE) * SLOP

Saturate hpgain between 0 and GAIN

Y_OUT = Y_IN + (HPF (Y_IN) * hpgain + 8) >> 4
Saturate Y_OUT between 0 and 255

Application have to provide core, slope and gain members of rsz_yenh
member of rsz_params structure.

7.2.2.3.6. Configuring the Read cycle for Resizer module

ISP module supports configuration of number of clock cycles between
two consecutive read request from resizer module. Value supported is
0 - Ox3FF.

unsi gned int read_exp;

read_exp = Oxe;

ret_val = ioctl(fd, RSZ_S EXP, &read_exp);

if (ret_val){

printf("\nUnable to set the read cycle expand register\n");
return ret_val;

}

The default configuration of read cycle is OxE.

7.2.3. Constraints

e Fordriver allocated buffers, driver allocates maximum size of buffers
for both input and output.

All input/output buffers addresses and pitch must be 32 bytes
aligned.

Output image size cannot be more than 2047x2047.

Output width must be even.

128 Platform Support Products Version 02.01.03.11

I TEXAS Resizer Driver
INSTRUMENTS Constraints

e OQOutput width must be 16 byte aligned for vertical resizing.

e The horizontal start pixel must be within the range: 0 to 15 for color
interleaved, 0 to 31 for color separate data.

Version 02.01.03.11 Platform Support Products 129

’ TEXAS Resizer Driver

INSTRUMENTS Architecture
7.3. Architecture
Following block diagram shows the basic architecture of the Resizer
Driver -
Application User Space
Resizer Application Interface Kernel Space

l

Resizer Hardware Interface

l

Hardware

Figure 7.2. Basic Architecture of Resizer Driver

Resizer Driver provides Resizer Hardware access to a channel by
using Linux Character driver interface. Driver supports all the features
supported by the hardware. It provides easy way of configuring
the hardware. To understand this, that the hardware module driver
implements, is briefly described in this section.

130 Platform Support Products Version 02.01.03.11

I TEXAS Resizer Driver
INSTRUMENTS Software Interface

7.4. Software Interface

This section describes the Data Structures, Enumerations, and API
Specifications used in the OMAP Resizer Driver.

7.4.1. Application Programming Interface

7.4.1.1. open

Description

Opens the device driver for processing.

Prototype

int fd = open(devi ce_nane, node);

Field Description

devi ce_nane It is / dev/ omap-resi zer

node O_RDWR or ORed with O_NONBLOCK

Table 7.2. Resizer: open System Call arguments

Return Values

Zero on success, or negative if an error has occurred.
7.41.2. close

Description

Close the device.

Prototype
cl ose(fd);
Field Description
fd File descriptor returned from open call.

Table 7.3. Resizer: close system call arguments

Return Values
Zero on success.

El NTR, if driver could not get the handle.

Version 02.01.03.11 Platform Support Products 131

i3 TEXAS

Resizer Driver

INSTRUMENTS 10CTLs

7.4.1.3. mmap

7.4.1.4. munmap

7.4.2.10CTLs

Description
Map the kernel space buffer to user space.
Prototype

void * mmap(void *, size_t image_size, int prot, int
flags, int fd, off_t offset)

Field Description

void * Generally NULL

i mage_si ze Buffer size that needs to be mapped
flag PROT_SHARED

fd File descriptor

of f set Physical address of the buffer

Table 7.4. Resizer: mmap system call arguments
Return Values
Zero on success.

EAGAI N, if the address is not found.

Description

Unmap the frame buffers that were previously mapped to user space
using mmap() system call.
Prototype

voi d *rmunmap(void *start_addr, size_t |ength)

Field Description
start_addr Start address of buffer which is to be unmapped.
| ength Length of buffer.

Table 7.5. Resizer: munmap system call arguments
Return Values

Zero on success, or Negative if an error has occurred.

132

Platform Support Products Version 02.01.03.11

I TEXAS Resizer Driver
INSTRUMENTS 10CTLs

7.4.2.1. RSZ_S_PARAMS
Description

Set the resizer parameters necessary for processing.
Prototype

int ioctl(int fd, RSZ S PARAMS, struct rsz_paranms *argp)

Field Description

fd File handle associated with fd.
cnd RSZ_S PARAMS ioctl command.
argp Pointer to r sz_par ans structure.

Table 7.6. Resizer: ioctl RSZ_S PARAMS arguments
Return Values

Zero on success,

El NVAL, if parameters are incorrect.

El NTR, if device is in use by the same channel handle.

7.4.2.2. RSZ_G_PARAMS
Description

Get the Resizer parameters that are previously being set.
Prototype

int ioctl(int fd, RSZ G PARAMS, struct rsz_parans *argp)

Field Description

fd File handle associated with fd.
cmd RSZ_G_PARAMS ioctl command.
argp Pointer to r sz_par ans structure.

Table 7.7. Resizer: ioctl RSZ_G_PARAMS arguments
Return Values
Zero on success,

El NVAL, if device is not configured before calling this API.

7.4.2.3. RSZ_G_STATUS
Description

Version 02.01.03.11 Platform Support Products 133

I TEXAS Resizer Driver
INSTRUMENTS 10CTLs

Get the channel status for the particular current Resizer channel.
Prototype

int ioctl(int fd, RSZ G STATUS, struct rsz_status *argp)

Field Description

fd File handle associated with fd.
cmd RSZ_G_STATUS ioctl command.
argp Pointer to r sz_st at us structure.

Table 7.8. Resizer: ioctl RSZ_G_STATUS argument

Return Values

Zero on success,

7.4.2.4.RSZ_S_EXP
Description

Configure the Read cycle required for Resizer module. This configuration
is provided per channel.

Prototype
int ioctl(int fd, RSZ_S EXP, unsigned int *argp)
Field Description
fd File handle associated with fd.
cmd RSZ_S EXP ioctl command.
argp Pointer to unsi gned i nt.

Table 7.9. Resizer: ioctl RSZ_S EXP argument

Return Values

Zero on success,

7.4.2.5. RSZ_RESIZE

Description

Starts the Resizer processing for the parameters previously set by
RSZ_S_PARANMS
Prototype

int ioctl(int fd, RSZ_RESIZE, int *argp)

134 Platform Support Products Version 02.01.03.11

.
I TEXAS Resizer Driver

INSTRUMENTS 10CTLs
Field Description
fd File handle associated with fd.
cmd RSZ_RESI ZE ioctl command.
argp Pointer to int.

Table 7.10. Resizer: ioctl RSZ_RESI ZE arguments
Return Values

Zero on success,

El NVAL, if parameters are incorrect.

EBUSY/ EI NTR, if device is in use by the same channel handle.

7.4.2.6. RSZ_REQBUF
Description

Request to allocate buffers
Prototype

int ioctl(int fd, RSZ REQBUF, struct v4l 2_requestbuffers *argp)

Field Description

fd File handle associated with fd.

cmd RSZ_ REQBUF ioctl command.

argp Pointer to v4l 2_r equest buf f er s structure.

Table 7.11. Resizer: ioctl RSZ_REQBUF arguments
Return Values

Zero on success,

ENOMVEM, if memory is not available.

El NTR, if device is in use by the same channel handle.

7.4.2.7. RSZ_QUERYBUF
Description

Request physical address of buffers allocated by the RSZ_REQBUF
Prototype

int ioctl(int fd, RSZ _QUERYBUF, struct v4l2_buffer *argp)

Version 02.01.03.11 Platform Support Products 135

.
I TEXAS Resizer Driver

INSTRUMENTS Data Structures
Field Description
fd File handle associated with fd.
cmd RSZ_QUERYBUF ioctl command.
argp Pointer to v4l 2_buf f er structure.

Table 7.12. Resizer: ioctl RSZ_QUERYBUF arguments
Return Values

Zero on success,

El NVAL/ EFAULT, if parameters are incorrect.

El NTR, if device is in use by the same channel handle.

7.4.2.8. RSZ_QUEUEBUF

Description

Queue the buffer for resize operation.
Prototype

int ioctl(int fd, RSZ QUEUEBUF, struct v4l2_buffer *argp)

Field Description

fd File handle associated with fd.
cmd RSZ_QUEUEBUF ioctl command.
argp Pointer to v4l 2_buf f er structure.

Table 7.13. Resizer: ioctl RSZ_QUEUEBUF arguments
Return Values

Zero on success,

El NVAL/ EFAULT, if parameters are incorrect.

El NTR, if device is in use by the same channel handle.

7.4.3. Data Structures

7.4.3.1. Resizer Parameters Configuration Structure

struct rsz_parans {
__s832 in_hsize;
__s832 in_vsize;
_s32 in_pitch;
832 inptyp;
__s32 vert_starting_pixel;

136 Platform Support Products Version 02.01.03.11

i3 TEXas
INSTRUMENTS

Resizer Driver
Data Structures

_s32
_s32
_s32
_s32
_s32
_s32
_s32
_s32
__ulé
__ulé6

cbilin;

pi x_fnt;
out _hsi ze
out _vsi ze
out _pitch;
hst ph;

vst ph;

b

Name

i n_hsi ze

i n_vsize

in_pitch

i nptype
vert_starting_pixel
horz_starting_pixe
chilin

pi x_fnt

out _hsi ze

out _vsize

out _pitch

hst ph

vst ph
tapafilt_coeffs
tap7filt_coeffs

yenh_par ans

horz_starting_pi xel

tap4filt_coeffs[32];
tap7filt_coeffs[32];
struct rsz_yenh yenh_parans;

Description

Width of the input image in pixels.
Height of the input image in pixels.
Pitch of input image in bytes.

Input image format.

Vertical starting pixel.

Horizontal starting pixel.

Chroma resizing algorithm.

Image Pixel format for YUV422 image.
Width of the output image in pixels.
Height of the output image in pixels.
Pitch of the output image in bytes.
Horizontal starting phase.

Vertical starting phase.

Set of coefficients for scaling ratio 0.5x - 4x.

Set of coefficients for scaling ratio 0.25x -
0.5x.

Luma Enhancement parameters.

Table 7.14. Resizer: Parameters Configuration Structure fields

7.4.3.2. Request Buffer Structure

struct v4l 2_requestbuffer {

unsi gned int type
unsi gned int count;

enum v4l 2_menory menory;

Name
type

Description
Buffer type VAL2_BUF_TYPE_VI DEO CAPTURE.

Version 02.01.03.11

Platform Support Products

137

.
I TEXAS Resizer Driver

INSTRUMENTS Data Structures
Name Description
count Number of buffers to be allocated.
nenory Type of the buffer exchange mechanism
requested.

Table 7.15. Resizer: Request Buffer Structure fields

7.4.3.3. Buffer structure

struct v4l 2_buffer {

unsi gned int index;

unsi gned int type;

enum v4l 2_nenory nenory;
uni on {
unsi gned | ong of fset;
unsi gned | ong userptr

}m

}

Name Description

i ndex Index of the input/output buffer.

type Type of the buffer is
V4L2_BUF_TYPE_ VI DEO CAPTURE.

of f set/userptr Physical/virtual address of the buffer.

nmenor y Type of memory, V4L2 NMEMORY_MVAP or

VAL2_MEMORY_USERPTR.

Table 7.16. Resizer: Buffer structure fields

7.4.3.4. Luma enhancement structure

struct rsz_yenh {

__S32 type;

__u8 gain;

__u8 char sl op;

__u8 core;

}

Name Description

type Luma Enhancement algorithm.
gai n Gain.

sl op Slop.

core Core.

Table 7.17. Resizer: Luma enhancement structure fields

138 Platform Support Products Version 02.01.03.11

i3 TEXas
INSTRUMENTS

Resizer Driver
Data Structures

7.4.3.5. Status structure

struct rsz_status {
__s32 chan_busy;

__S32 hw_busy;

832 src;
}

Name Description
chan_busy Status of the channel.
hw_busy Status of the hardware.
src Input source.

Table 7.18. Resizer: Status structure fields

7.4.3.6. Crop Size structure

struct rsz_cropsize {

__u32 hcrop;
__u32 vcrop;
}
Name Description
hcr op Number of pixels cropped in horizontal direction.
vecrop Number of pixels cropped in vertical direction.

Table 7.19. Resizer: Crop Size structure fields

7.4.3.7. Input/Output image format

This describes the input and output image format, which can be YUV
interleaved 16 bit or planar 8 bit. This can be specified in i npt ype field
of the rsz_par ans structure.

#define RSZ_I NTYPE_YCBCR422_16BIT 0
#define RSZ_| NTYPE_PLANAR 8BIT 1

7.4.3.8. Pixel Format

This describes pixel format for the YUV interleaved data. This can be
specified in pi x_fmt member of rsz_par ans structure.

#define RSZ_PI X_FMI_UYvY 1 /* cbh:y:cr:y */
#define RSZ_PI X_FMI_YUYV O /* y:ch:y:cr */

Version 02.01.03.11 Platform Support Products 139

I TEXAS Resizer Driver
INSTRUMENTS Data Structures

140 Platform Support Products Version 02.01.03.11

I3 TEXAS
INSTRUMENTS

Resizer Driver
Driver Configuration

7.5. Driver Configuration

7.5.1. Configuration Steps
To enable OMAP Resizer driver:

1. Open menuconfig options from kernel command prompt.

2. Select Device Drivers as shown here:

Linux Kernel Configuration
hrrow keys navigate the menu. <Enter> selects submenus =-=-->.
Highlighted letters are hotkeys. Pressing <¥» includes, <N» excludes,
<M» modularizes features. Fress <Eschx<BEsc> to exit, <> for Help, </»
for Search. Legend: [*] built=in [] excluded <M» module < > module

General setup ===
[*] Enable loadable module support ===
=%¥= Enable the block layer ===k
System Type ===>
Bus support ===>
Kernel Features ===>»
Boot options ===3
Floating point emulation =-=>
Userspace binary formats --->
Fower management options --->
Networking --->

File systems -

Kernel hacking --->

Becurity options -—-->
Li+)

EESEEE < Exit > < Help >

Figure 7.3. Configure omap-resizer Driver: Step 2

3. Select Device Drivers > Multimedia devices as shown here:

Device Drivers

Brrow keys navigate the menu. <Enter> selects submenus >
Highlighted letters are hotkeys. Fressing <¥»> includes, <N> excludes,
<M> modularizes features. Fress <Esckx<Escr to exit, <i» for Help, </>»

for Search.
~ =)
<M> ISD

Legend: [*] built=in [] excluded «<M» module < > module

] Watc

hdog Ti
Sonic i

o5 Silic

[*] HID Dewices (NEW) --->
I+
{+)

m < Exit > < Help >

Figure 7.4. configure omap-resizer Driver: Step 3

4. Select Video For Linux

Version 02.01.03.11 Platform Support Products 141

I3 TEXAS

INSTRUMENTS

Resizer Driver
Configuration Steps

5.

6.

Multimedia devices

Brrow keys navigate the menu. <Enter> selects
Highlighted letters are hotkeys.
<M>» modularizes features.

Legend: [*] b

Eressing <¥» includes,
Bress <Escrx<Escr to exit,
1lt=in [] excluded

<N
<?» for
<> module

[*] eg Fx Linux BEI 1 (DEERECATED) (NEW)
=¥= Video For Linux BREI 1 compatible Layer
< > DWB for Linux (NEW)

wkw Myltimedia driwvers ¥¥%
] Load and attach frontend and tuner driwver modules as
Customize analog and hybrid tuner modules
[*] wideo capture adapters (NEW)
] Radio Bdapters (NEW)
] DRE adapters (NEW)

===

-2

submenus =--->r.

to build (NEW)

excludes,
Help, </>
¢ » module

needed [NEW
——

Figure 7.5. Configure omap-resizer Driver: Step 4

Select Device Drivers > Multimedia devices > Video capture
adapaters as shown here and go inside the main menu:

Multimedia dewvices

Lrrow keys navigate the menu. <Enter> selects submenus --->».
Highlighted letters are hotkeys. Fressing <¥» includes, <N>»
<M> modularizes features. ess <Escx<Esc> to exit, <i> for
for Search. Legend: [*] built [1 excluded <M> module

t=in

%% Multimedia core support ¥¥¥

<¥> Wideo For nux
i*] Enable Video For Linux BRFI 1 (DEERECRTED) (MEW)
=W En @ Wideo For Linux BFI 1 compatible Layer

< » DVE for Linux (NEW)
%% Mpltimedia driwe

[1 Load and attach frontend and tuner driver modules as
Customize analog and h i modules

rg wEw

Radio ﬁdépte:s |HEWJ
[] DBE adapters (WEW)

-

to build (NEW)

excludes,
Help, </>»
< » module

needed (WEW
———b

Figure 7.6. Configure omap-resizer Driver: Step 5

Select "OMAP ISP Resizer" option to enable resizer driver,

142

Platform Support Products

Version 02.01.03.11

I3 TEXAS
INSTRUMENTS

Resizer Driver

Configuration Steps

Brrow keys navigate

Video capture adapters

the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <v» includes, <§» excludes,
<> modularizes features. Press <Escx<Esch to exit, <?» for Help, </>
Legend: [*] built-in [] excluded <M> module < >

CPiA Video For Linux

CPiA} Wideo For Limux

SEAS246R, SRRS231 Teletext processor
SRASZ49 Teletext processor

OMEPZ/OMRE3 V4L2-DSS drivers
OMARP Video out library
OMAP Video out driver

pport

< Exit » < Help >

Figure 7.7. Configure omap-resizer Driver: Step 6

Version 02.01.03.11

Platform Support Products

143

’ TEXAS Resizer Driver
INSTRUMENTS Sample Application Flow

7.6. Sample Application Flow

This section shows application flow diagram for resizer application.

1. Open Resizer Dnver

3. RSZ_REQBUF ioct

h 4

4. RSZ_QUERYBUF ioctl

5. mmap buffers

y

6. Fill the buffer with image dala

Y

7. RSZ_QUEUEBUF ioctl

A

8. RSZ_RESIZE ioctl

9 unmap buffers

4

10. Close the dnver

Figure 7.8. Resizer Sample Application Flow

144 Platform Support Products Version 02.01.03.11

I TEXAS Resizer Driver
INSTRUMENTS Revision History

7.7. Revision History

Version 02.01.03.11 Platform Support Products 145

i3 TEXas
INSTRUMENTS

Version 02.01.03.11 Platform Support Products 146

i3 TEXAS

INSTRUMENTS

Daughter Card Module

Abstract
Table of Contents
8.1. Mass Market Daughter Cardc.ccoiiiiiiiiiiii 148
8.1.1. Acronyms & Definitionsccvvvviiiiiiiiiiiii e 148
8.1.2. Introductioncviviiiiiii e 148
8.2. BIOCK Diagram ...ciiviiiiii i i i 149
8.3. Board IHustrationcoiiiiiiiii e 150
8.4. Features supported under softwarecooeviiiiiiiiiiinen, 151

Version 02.01.03.11

Platform Support Products 147

l TEXAS Daughter Card Module
INSTRUMENTS Mass Market Daughter Card

8.1. Mass Market Daughter Card

8.1.1. Acronyms & Definitions

Acronym Definition

MMDC Multi-Media Daughter Card/Customer Daughter
Card

Table 8.1. MMDC Acronyms

8.1.2. Introduction

OMAP35x daughter-card (MMDC) supports following features which are
not available on the main OMAP3EVM-1 (<Rev-E).

Note
Please note that all the MMDC components/peripherals have been

moved on-board for OMAP3EVM-2 (>=Rev-E). So this section is
applicable only for OMAP3EVM-1 (<Rev-E).

1. TVP5146 decoder interface supporting BT656 format.

2. Supports 3 types of video input types - S-Video, Composite and
component.

3. Supports 8/10 bit output interface from TVP5146.
4. Supports interface for Micron sensor.

5. HSUSB TRANSCEIVER- USB83320 supporting EHCI on port 2

148 Platform Support Products Version 02.01.03.11

’ TEXAS Daughter Card Module
INSTRUMENTS Block Diagram

8.2. Block Diagram

The top level block depicts the features supported on the daughter-card.

PROCELS0M BOARD
ORAAF 35031538
1]
Camrvamn | e
Fort
Il i PO
oy
A FEMD
Fmi
* (F14
1k OO
ek
R
HET
13 kREF
e |4

Figure 8.1. Block Diagram

Version 02.01.03.11 Platform Support Products 149

’ TEXAS Daughter Card Module
INSTRUMENTS Board Iilustration

8.3. Board lllustration

The various connectors and hardware modules on the daughter card are

illustrated in the picture below:
] - L
B N\cs |

=it}

J—

Lt

gARD
tr

-
=
-
z
=
-
-
=
L

D sMsC83320 - il
HSUSB-PHY 8 & Component
L TR - F d

Figure 8.2. Board lllustration

150 Platform Support Products Version 02.01.03.11

l TEXAS Daughter Card Module
INSTRUMENTE Features supported under software

8.4. Features supported under software

e Video capture (BT656 interface) using the TVP5146 decoder.
e Support Composite and S-video interface only.

e EHCI on USB port-2 using HSUSB TRANSCEIVER- USB83320.

Version 02.01.03.11 Platform Support Products 151

i3 TEXas
INSTRUMENTS

Version 02.01.03.11 Platform Support Products 152

i3 TEXAS

INSTRUMENTS
Abstract

Table of Contents

9.1, INtrodUCHION eiiiiii i e 155
9.1.1. REfEIENCES .iiiiiiiiiiiiii i ree s 156
9.1.2. Acronyms & Definitionscccvviiiiiiiiiiiiii 157

1 T =T) [o = 158
9.2.1. Supported featuresccoviiiiiiiiiiiii 158
9.2.2. Constraints/Limitations ... 158
9.2.3. KNOWN ISSUEBS 1iiiiiiiiiiiiiiiiiiiitieeeresernsnnssnsnninssnnssrses 158

0.3, ArChIEECEUIE it e 160
O9.3.1. System Diagram ...iiiiiiiiiiiii i e 160
9.3.2. Software Design Interfacesccoviiiiiiiiiiiiiiiiiiinns 162

Version 02.01.03.11

Platform Support Products 153

i3 TEXas
INSTRUMENTS

Capture Driver

9.4. Driver Configurationccvvvviininnn.
9.4.1. Configuration Steps
9.4.2. Installationcoooeiiiiiinnnnn.

9.5. Sample Applicationscceevviiiiiinnn
9.5.1. Introductionc.cooviiiiiinienn.
9.5.2. Hardware Setupcovvvviinnnnnen.
9.5.3. Provided Sample Applications

154

Platform Support Products

Version 02.01.03.11

f TEXAS Capture Driver
INSTRUMENTS Introduction

9.1. Introduction

The camera ISP is a key component for imaging and video applications
such as video preview, video record, and still-image capture with or
without digital zooming.

The camera ISP provides the system interface and the processing
capability to connect RAW image-sensor modules and video decoders to
the OMAP35x device.

The capture module consists of the following interfaces:
e One S-video SD input in BT.656 format.
e One Composite SD input in BT.656 format.

Both these video inputs are connected to one TVP5146 decoder and the
application can select between these two inputs using standard V4L2
interface.

Note
Only one input can be captured or selected at any given point of time.

The following figure shows the basic block diagram of capture interface.

Application Layer | Video Capture Application

A A

L1 v

Driver Layer V4L2 Layer
'y
 J
Camera Driver
H__,--—""/ﬂ \
ISP Driver TVP5146
Decoder Driver
A A A

Hardware Layqr

L J h J

OMAP35X ISPMMU K_————] TVP5146

Figure 9.1. Capture Driver Component Overview

Version 02.01.03.11 Platform Support Products 155

f TEXAS Capture Driver
INSTRUMENTS References

The following figure shows the physical connection and inputs for
TVP5146 decoder.

OMAP3ISE Daughter Card

@ CVBE

. | sviges | TVP5146

E-hit BTa56
Mux

&-hit BTA56

V

OMAFP3I5E Main
Board

OMLAP3ISX
ISP

Figure 9.2. Capture Physical Input Interface

The V4L2 Capture driver model is used for capture module. The
V4L2 driver model is widely used across many platforms in the Linux
community. V4L2 provides good streaming support and support for many

buffer formats. It also has its own buffer management mechanism that
can be used.

9.1.1. References

1. OMAP35x Camera Interface Subsystem (ISP) TRM
Author: Texas Instruments, Inc.

Literature Number: SPRUFA2

2. OOMAP35x Memory Management Units (MMUs)TRM
Author: Texas Instruments, Inc.

Literature Number: SPRUFF5

3. Video for Linux Two API Specification
Author: Michael H Schimek

Version: 0.23

156 Platform Support Products Version 02.01.03.11

i3 TEXAS

INSTRUMENTS

Capture Driver
Acronyms & Definitions

9.1.2. Acronyms & Definitions

Acronym
MMDC

3A
API
CCDC
DMA
1/0
IOCTL
MMU
vaL2
YUV

Definition

Mass Market Daughter Card/Customer Daughter
Card

Auto White Balance, Auto Focus, Auto Exposure
Application Programming Interface

Input interface block of ISP

Direct Memory Access

Input & Output

Input & Output Control

Memory Management Unit

Video for Linux specification version 2

Luminance + 2 Chrominance Difference Signals
(Y, Cr, Cb) Color Encoding

Table 9.1. Capture Driver Acronyms

Version 02.01.03.11

Platform Support Products 157

i3 TEXAS

Capture Driver

INSTRUMENTS Features

9.2. Features

9.2.1. Supported features

The ISP Capture Driver provides the following features:

Supports one software channel of capture and a corresponding
device node (/dev/videoO) is created.

Supports single I/0 instance and multiple control instances.

Supports buffer access mechanism through memory mapping and
user pointers.

Supports dynamic switching among input interfaces with some
necessary restrictions wherever applicable.

Supports NTSC and PAL standard on Composite and S-Video
interfaces.

Supports 8-bit BT.656 capture in UYVY and YUYV interleaved
formats.

Supports standard V4L2 IOCTLs to get/set various control
parameters like brightness, contrast, saturation, hue and auto gain
control.

TVP5146 (TVP514x) decoder driver module can be used statically or
dynamically (insmod and rmmod supported).

9.2.2. Constraints/Limitations

Following are the constraints for ISP Capture Driver:

The camera ISP driver supports only static module build.

Dynamic switching of resolution and dynamic switching of interfaces
is not supported when streaming is on.

Driver buffer addresses and pitch must be aligned to 32 byte
boundary.

Cropping and scaling operations and their corresponding V4L2
IOCTLs are not supported.

9.2.3. Known Issues

In loopback sample application, the video displayed on the LCD
has interlacing artifacts when viewing fast moving objects. This is
because the input video is in interlaced mode @ 30 FPS while the

158

Platform Support Products Version 02.01.03.11

f TEXAS Capture Driver
INSTRUMENTS Known Issues

LCD works in progressive mode @ 60 FPS. The frame rate conversion
and de-interlacing is not done in the current sample application.

e Field id is not coming proper on mass market daughter card. This
results in flickering of image.

e Video quality issues observed with video test patterns.
e Buffer Constraints: - I0 mapped buffer is not supported.

e Both MMDC and OMAP3EVM-2 (>=Rev-E) does not work
simultaneously, they are mutual exclusive from software point of
view.

Version 02.01.03.11 Platform Support Products 159

i3 TEXAS

INSTRUMENTS

Capture Driver
Architecture

9.3. Architecture

9.3.1. System Diagram

Following block diagram shows basic architecture of the ISP Capture
Driver.

Applications

25
/ Algorithms

Preview
Wrapper

Resizer
Wrapper

DRY- Camera

Omap3axcam

l

Decoder Driverl
(TYP5146)

h 4

Decoder Driver2

v v h

A T —

[HHEIS

Hist
H3A

Preview | | Resizer |

Figure 9.3. Capture Driver Basic Architecture

The system architecture diagram illustrates the software components
that are relevant to the Camera Driver. Some components are outside
the scope of this design document. The following is a brief description
of each component in the figure.

Camera Applications: Camera applications refer to any application that
accesses the device node that is served by the Camera Driver. These
applications are not in the scope of this design. They are here to present
the environment in which the Camera Driver is used.

V4L2 Subsystem: The Linux V4L2 subsystem is used as an
infrastructure to support the operation of the Camera Driver. Camera
applications mainly use the V4L2 API to access the Camera Driver
functionality. A Linux 2.6 V4L2 implementation is used in order to support
the standard features that are defined in the V4L2 specification.

160

Platform Support Products Version 02.01.03.11

f TEXAS Capture Driver
INSTRUMENTS System Diagram

Video Buffer Library: This library comes with V4L2. It provides helper
functions to cleanly manage the video buffers through a video buffer
queue object.

Camera Driver: The Camera Driver allows capturing video through an
external decoder. It is a V4L2-compliant driver with addition of an OMAP3
ISP hardware feature. This driver conforms to the Linux driver model
for power management. The camera driver is registered to the V4L2
layer as a master device driver. Any slave decoder driver added to the
V4L2 layer will be attached to this driver through the new V4L2 master-
slave interface layer. The current implementation supports only one slave
device.

Decoder Driver: The Camera Driver is designed to be OMAP dependent,
but platform and board independent. It is the decoder driver that
manages the board connectivity. A decoder driver must implement the
new V4L2 master-slave interface. It should register to the V4L2 layer as
a slave device. Changing a decoder requires implementation of a new
decoder driver; it does not require changing the Camera Driver. Each
decoder driver exports a set of IOCTLs to the master device through
function pointers.

ISP Library: The ISP library exports APIs to configure ISP module and
clocks to the sensor/decoder. It is the central interrupt handler where
callback routines for ISP interrupts are handled. This also manages the
video buffers.

CCDC library: CCDC is a HW block in Camera ISP which acts as a data
input port. It receives data from the sensor/decoder through parallel or
serial interface. The CCDC library exports API to configure CCDC module.
It is configured by the ISP driver based on the sensor/decoder attached
and desired output from the camera driver.

MMU library: MMU is a HW block in Camera ISP that handles the
translation from virtual into physical addresses. The camera subsystem
issues virtual addresses to the ISP MMU and the ISP MMU translates
these virtual addresses into physical addresses to access the actual
memory. Using this the camera driver captures video data in fragmented
physical memory without moving data. The MMU library exports API to
configure MMU module.

Preview library: Preview is a HW block in Camera ISP which is
responsible for image processing and color conversion. It has HW blocks
for image processing algorithms. Preview library allows camera driver to
configure, enable and disable the individual HW blocks in the preview
module. This module will be used only when a RAW sensor is connected
to the ISP.

Resizer library: Resizer is a HW block in Camera ISP which is
responsible for image downscaling and upscaling. It has HW filters which
resize the input image based on configuration. Resizer library allows
camera driver to query and configure the resizer module. Resizer in
OMAP3 ISP supports resizing ratios from 1/4 to 4. Resizer also has

Version 02.01.03.11 Platform Support Products 161

I TEXAS Capture Driver
INSTRUMENTE Software Design Interfaces

multipass approach which can be used to overcome this limitation.
Current camera driver only supports on the fly mode of operation. In this
mode image is taken from sensor and passed to application without any
memory to memory operations in ISP and so multipass resizer operations
are not supported.

H3A library: H3A is a HW block in Camera ISP which is responsible
for collecting image statistics that can be used by other algorithms. It
generates auto focus, auto white balance, auto exposure and histogram
statistics. H3A library allows user space algorithms to configure and
request these statistics through custom IOCTLs.

9.3.2. Software Design Interfaces

9.3.2.1. Opening and Closing of driver

The device can be opened using open call from the application, with the
device name and mode of operation as parameters. Application should
open the driver in blocking mode. In this mode, DQBUF IOCTL will not
return until an empty frame is available.

/* call to open a video capture |ogical channel in blocking node
*
/
fd = open("/dev/video0", O RDWR);
/* closing of channel */
close (fd);

9.3.2.2. Buffer Management

ISP Capture driver can work with physically non-contiguous buffers. It
uses the ISP MMU to capture data to buffers scattered to a set of page
frames. Hence, in user pointer mode the application can allocate buffers
in user space, which need not be physically contiguous, and pass this
directly to driver for capture operation. The only restriction for the user
buffer is that, the buffer should be aligned to 32 bytes boundary. The
driver supports both memory usage modes:

1) Memory map buffer mode
2) User Pointer mode

In Memory map buffer mode, application can request memory from
the driver by calling VI DI OC_REQBUFS IOCTL. In user buffer mode,
application needs to allocate memory using some other mechanism in
user space like mal | oc or nmenal i gn. In driver buffer mode, maximum
number of buffers is limited to VI DEO MAX FRAME (defined in driver
header files) and is limited by the available memory in the kernel.

The main steps that the application must perform for buffer allocation
are:

162 Platform Support Products Version 02.01.03.11

I TEXAS Capture Driver
INSTRUMENTE Software Design Interfaces

1) Allocating Memory

2) Getting Physical Address

3) Mapping Kernel Space Address to User Space
1. Allocating Memory

This IOCTL is used to allocate memory for frame buffers. This is the
necessary IOCTL for streaming IO. It has to be called for both driver
buffer mode and user buffer mode. Using this IOCTL, driver will know
whether driver buffer mode or user buffer mode will be used.

Ioctl: VIDIOC_REQBUFS

It takes a pointer to instance of v4l 2_r equest buf f er s structure as an
argument.

User should specify buffer type as (V4L2_BUF_TYPE VI DEO CAPTURE),
number of buffers, and memory type (V4L2_MEMORY_MVAP,
VAL2_NMEMORY_USERPTR) at the time of buffer allocation.

Constraint: This IOCTL can be called only once from the application. This
IOCTL is necessary IOCTL.

Example:

/* structure to store buffer request paraneters */
struct v4l 2_request buffers reqbuf;

reqbuf. count = nunbuffers;
regbuf.type = VAL2_BUF_TYPE_VI DEO CAPTURE;
reqbuf. menory = V4L2_MEMORY_MVAP;
ret = ioctl(fd, VID OC_REQUFS, &reqgbuf);
if (ret <0) {

printf("cannot allocate nenory\n");

cl ose(fd);

return -1,

}

printf("Nunmber of buffers allocated = %\ n", reqgbuf.count);

2. Getting Physical Address

This IOCTL is used to query buffer information like buffer size and buffer
physical address. This physical address is used in mmapping the buffers.
This IOCTL is necessary for driver buffer mode as it provides the physical
address of buffers, which are used to mmap system call the buffers.

Ioctl: VIDIOC_QUERYBUF

It takes a pointer to instance of v4l 2_buf f er structure as an argument.

Version 02.01.03.11 Platform Support Products 163

I TEXAS Capture Driver
INSTRUMENTE Software Design Interfaces

User has to specify buffer type as (V4L2_BUF_TYPE_ VI DEO CAPTURE) ,
buffer index, and memory type (V4L2_MEMORY _MVAP) at the time of

querying.

Example:

/* allocate buffer by VID OC_REQBUFS */
/* structure to query the physical address of allocated buffer */
struct v4l 2_buffer buffer;

buffer.index = 0; /* buffer index for quering -0 */
buf fer.type = VAL2_BUF_TYPE_VI DEO CAPTURE;
buf fer. menory = V4L2_MEMORY_MVAP;
if (ioctl(fd, VID OC_ QUERYBUF, &buffer) < -1) {
printf("buffer query error.\n");
cl ose(fd);
exit(-1);

The buffer.moffset will contain the physical address returned
fromdriver.

3. Mapping Kernel Space Address to User Space

Mapping the kernel buffer to the user space can be done via mmap. This
is only required for MMAP buffer mode. User can pass buffer size and
physical address of buffer for getting the user space address.

Example:

/* allocate buffer by VID OC_REQBUFS */

/* query the buffer using VID OC_QUERYBUF */

/* addr hold the user space address */

int addr;

addr = mmap(NULL, buffer.size, PROT_READ | PROT_WRI TE,
MAP_SHARED, fd, buffer.moffset);

/* buffer.moffset is same as returned from VI Dl OC_QUERYBUF */

9.3.2.3. Query Capabilities

This IOCTL is used to verify kernel devices compatibility with V4L2
specification and to obtain information about individual hardware
capabilities. In this case, it will return capabilities provided by ISP
capture driver and current decoder driver.

Ioctl: VIDIOC_QUERYCAP

164 Platform Support Products Version 02.01.03.11

I TEXAS Capture Driver
INSTRUMENTE Software Design Interfaces

Capabilities can be video capture (V4L2_CAP_VI DEO CAPTURE) and
streaming (V4L2_CAP_STREAM NG) .

It takes pointer to v4l 2_capabi | i ty structure as an argument.

Capabilities can be accessed by capabilities field in the v4l 2_capability
structure.

Example:

struct v4l 2_capability capability;

ret = ioctl(fd, VID OC_QUERYCAP, &capability);
if (ret <0) {

printf("Cannot do QUERYCAP\n");

return -1;

}

if (capability.capabilities & VAL2_CAP_VI DEO CAPTURE) {
printf("Capture capability is supported\n");
}

if (capability.capabilities & VAL2_CAP_STREAM NG {
printf("Stream ng is supported\n");
}

9.3.2.4. Input Enumeration

This IOCTL is used to enumerate the information of available inputs
(analog interface). It includes information like name of input type and
supported standards for that input type.

Ioctl: VIDIOC_ENUMINPUT

It takes pointer to v4l 2_i nput structure. Application provides the index
number for which it requires the information, in index member of
v4l 2_i nput structure.

Index with value zero indicates first input type of the decoder. It returns
combination of the standards supported on this input in the std member
of v4l 2_i nput structure.

Example:

struct v4l 2_input input;

i =0;
while(l) {
i nput.index =i;
ret = ioctl(fd, VIDI OC_ENUM NPUT, & nput);
if (ret <0)
br eak;
printf("name = %\n", input.nane);

Version 02.01.03.11 Platform Support Products 165

i3 TEXAS

Capture Driver

INSTRUMENTE Software Design Interfaces

9.3.2.5. Set Input

9.3.2.6. Get Input

i ++;

This IOCTL is used to set input type (analog interface type).
Ioctl: VIDIOC_S_INPUT

This IOCTL takes pointer to integer containing index of the input which
has to be set.

Application will provide the index number as an argument.

0 - Composite input,
1 - S-Video input.

Example:

int index = 1; /*To set S-Video input*/
struct v4l 2_input input;

ret = ioctl(fd, VIDIOC_S I NPUT, & ndex);
if (ret <0) {

perror("VIDI OC_S | NPUT\ n");

cl ose(fd);

return -1,

}

i nput.index = index;
ret = ioctl(fd, VID OC_ENUM NPUT, & nput);
if (ret <0) {

perror ("VI DI OC_ENUM NPUT\ n");

cl ose(fd);

return -1,

}

printf("name of the input = %\n",input.nane);

This IOCTL is used to get the current input type (analog interface type).
Ioctl: VIDIOC _G_INPUT

This IOCTL takes pointer to integer using which the detected inputs will
be returned. It will return the first detected inputs. If no inputs are
detected, it returns an error to the application.

Application will provide the index nhumber as an output argument.

It will set the detected input as the current input.

166

Platform Support Products Version 02.01.03.11

i3 TEXAS

Capture Driver

INSTRUMENTE Software Design Interfaces

Example:

int input;
struct v4l 2_input input;

ret = ioctl(fd, VIDIOC G |INPUT, & nput);
if (ret <0) {

perror("VID OC_G I NPUT\ n");

cl ose(fd);

return -1;

}

i nput.index = index;
ret = ioctl(fd, VIDI OC_ENUM NPUT, & nput);
if (ret <0) {

perror("VID OC_ENUM NPUT\ n") ;

cl ose(fd);
return -1;
}
printf("name of the input = %\n", input.name);

9.3.2.7. Standard Enumeration

This IOCTL is used to enumerate the information regarding video
standards.

This IOCTL is used to enumerate all the standards supported by the
registered decoder.

Ioctl: VIDIOC_ENUMSTD

This IOCTL takes a pointer to v4l 2_standard structure. Application
provides the index of the standard to be enumerated in the index
member of this structure. It provides information like standard name,
standard ID defined at V4L2 header files (few new standards are included
in the respective decoder header files, which were not available in
standard V4L2 header files), and numerator and denominator values for
frame period and frame lines.

It takes index as an argument as a part of v4l 2_st andar d structure.

Index with value zero provides information for the first standard among
all the standards of all the registered decoders.

If the index value exceeds the number of supported standards, it returns
an error.

Example:

struct v4l 2_standard standard;

i =0;

Version 02.01.03.11

Platform Support Products 167

I TEXAS Capture Driver
INSTRUMENTE Software Design Interfaces

while(1l) {
standard. i ndex = i;
ret = ioctl(fd, VID OC_ENUMSTD, &standard);
if (ret <0)
br eak;

printf("name = %\n", std.nane);
printf("franelines = %\n", std.franelines);
printf("nunerator = %\ n",

std. franmeperi od. nunerator);
printf("denom nator = %\ n",

std. franmeperi od. denom nator);
| ++;

9.3.2.8. Standard Detection

This IOCTL is used to detect the current video standard set in the current
decoder.

Ioctl: VIDIOC_QUERYSTD

It takes a pointer to v4l 2_std_i d instance as an output argument.
Driver will call the current decoder's function internally (which has been
initialized) to detect the current standard set in hardware. Support of
this IOCTL depends on decoder device, whether it can detect a standard
or not.

Note: This IOCTL should be called by the application so that the camera
driver can configure ISP properly with the detected decoder standard.

Standard IDs are defined in the V4L2 header files
Example:

v4l 2_std_id std;

struct v4l 2_standard standard;

ret = ioctl(fd, VID OC_QUERYSTD, &std);

if (ret <0) {
perror ("VI DI OC_QUERYSTD\ n");

cl ose(fd);
return -1,
}
while(1l) {

standard. i ndex = i;
ret = ioctl(fd, VID OC_ENUMSTD, &standard);
if (ret <0)

br eak;

if (standard.std & std) {
printf("% standard detected\n",
st andar d. nane) ;

168 Platform Support Products Version 02.01.03.11

I TEXAS Capture Driver
INSTRUMENTE Software Design Interfaces

br eak;

i ++;

9.3.2.9. Set Standard
This IOCTL is used to set the standard in the decoder.
Ioctl: VIDIOC S _STD

It takes a pointer to v4l 2_st d_i d instance as an input argument. If the
standard is not supported by the decoder, the driver will return an error

Standard IDs are defined in the V4L2 header files (few new standards
are included in respective decoder header files, which were not available
in standard V4L2 header files).

Note: Application need not call this IOCTL as the decoder can auto detect
the current standard. This is required only when the application needs
to set a particular standard. In this case, the decoder driver auto detect
function is disabled. Auto detect can be enabled again only by closing
and re-opening the driver.

Example:

v4l 2 _std_id std = V4L2_STD NTSC;

ret = ioctl(fd, VIDIOC_S STD, &std);
if (ret <0) {

perror("S _STD\n");

cl ose(fd);

return -1;

}
while(l) {
standard. i ndex = i;
ret = ioctl(fd, VID OC_ ENUMSTD, &standard);
if (ret <0)
br eak;

if (standard.std & std) {
printf("% standard is selected\n");
br eak;

i ++;

9.3.2.10. Get Standard
This IOCTL is used to get the current standard in the current decoder.

Ioctl: VIDIOC_G_STD

Version 02.01.03.11 Platform Support Products 169

I TEXAS Capture Driver
INSTRUMENTE Software Design Interfaces

It takes a pointer to v4l 2_st d_i d instance as an output argument.
Standard IDs are defined in the V4L2 header files

Example:

v4l 2_std_id std;

ret = ioctl(fd, VIDIOC_ G STD, &std);
if (ret <0) {
perror("G_STD\n");

cl ose(fd);
return -1;
}
while(1) {
standard. i ndex = i;
ret = ioctl(fd, VID OC_ENUMSTD, &standard);
if (ret <0)
br eak;
if (standard.std & std) {
printf("% standard is selected\n");
br eak;
}
i ++;
}

9.3.2.11. Format Enumeration

This IOCTL is used to enumerate the information of pixel formats. The
driver supports only two pixel form at -8-bit UYVY interleaved and 8-bit
YUYV interleaved.

Ioctl: VIDIOC_ENUM_FMT

It takes a pointer to instance of v4l 2_f nt desc structure as an output
parameter.

Application must provide the buffer type in the type argument of
v4l 2_f mt desc structure as V4L2_BUF_TYPE_ VI DEO CAPTURE and index
member of this structure as zero.

Example:

struct v4l 2_fntdesc fnt;

i = 0;

while(1l) {
fnt.index = i;
ret = ioctl(fd, VIDI OC_ENUM FMI, &fnt);
if (ret <0)

br eak;

170 Platform Support Products Version 02.01.03.11

i3 TEXAS

Capture Driver

INSTRUMENTE Software Design Interfaces

printf("description = %\n",fnt.description);

if (fm.type == VAL2_BUF_TYPE_VI DEO_CAPTURE)
printf("Video capture type\n");

if (fm.pixelformat == V4L2_PI X_FMI_YUYV)
printf("V4L2_Pl X FMI_YUYW n");

i ++;

9.3.2.12. Set Format

This IOCTL is used to set the format parameters. The format parameters
are line offset, storage format, pixel format, and so on. This IOCTL is
one of the necessary IOCTL. If it is not set, it uses the following default
values:

e Default storage format - V4L2_FIELD_INTERLACED

This IOCTL expects proper width and height members of the
v4l 2_format structure from application as per the standard selected.

Please note that, V4L2_FI ELD | NTERLACED is the only storage format
supported.

The application can decide the buffer pixel format using pixelformat
member of this IOCTL. The current driver supports - 8-bit UYVY
interleaved and 8-bit YUYV interleaved formats.

The desired pitch of the buffer can be set by using the bytesperline
member. The pitch should be at least one line size in bytes. When
changing the pitch, the application should also modify the sizeimage
member accordingly - sizeimage should be at least pitch * image height.

The driver allocates buffer of size sizeimage member of the v4l 2_f or mat
structure passed through this IOCTL for both mmap buffer and user
pointer mode. Driver validates the provided buffer size along with the
other members and uses this buffer size for calculating offsets for storing
video data.

This IOCTL is a necessary IOCTL for the user buffer mode because driver
will know the buffer size for user buffer mode. If it not called for the
user buffer mode, driver assumes the default buffer size and calculates
offsets accordingly.

Ioctl: VIDIOC_S_FMT

It will take pointer to instance of v4l2_format structure as an input
parameter.

If the type member is VAL2_ BUF_TYPE VI DEO CAPTURE, it checks pixel
format, pitch value, and image size. It returns an error, if the parameters
are invalid.

Example:

Version 02.01.03.11

Platform Support Products 171

I TEXAS Capture Driver
INSTRUMENTE Software Design Interfaces

struct v4l2_format fnt;

fm.type = VAL2_BUF_TYPE_VI DEO_CAPTURE;
fm.fnt.pix. pixelformat = V4L2_PI X_FMI_UYVY;
/* for NTSC standard */
frt.fnt.pix.width = 720;
fm.fnt.pix. height = 480;
frmt.fmt.pix.field = VAL2_FI ELD_I NTERLACED;
ret = ioctl(fd, VIDIOC_S FMI, &fnt);
if (ret <0) {

perror("VIDIOCC_S FMN\ n");

cl ose(fd);

return -1,

9.3.2.13. Get Format
This IOCTL is used to get the current format parameters.
Ioctl: VIDIOC G_FMT

It takes a pointer to instance of v4l 2_format structure as an input
parameter.

Driver provides format parameters in the structure pointer passed as an
argument.

v4l 2_format structure contains parameters like pixel format, image
size, bytes per line, and field type.

For type V4L2_BUF_TYPE_VI DEO CAPTURE, the v4l2_pix_format
structure of fmt union is filled.

Example:

struct v4l2_format fnt;

fm.type = VAL2_BUF_TYPE_VI DEO_CAPTURE;
ret = ioctl(fd, VIDIOC G FMI, &fnt);
if (ret <0) {

perror("VIDIOC_G FMN\n");

cl ose(fd);

return -1;

}

if (fm.fnt.pix. pixelformat == VAL2_PlI X_FMI_YUYV)
printf("8-bit UYVY pixel format\n");

printf("Size of the buffer = %\n", fmt.fnt.pix.sizei nage);
printf("Line offset = %\n", fm.fnt.pix. bytesperline);

if (fmt.fmt.pix.field == VAL2_FI ELD | NTERLACED)
printf("Storate format is interlaced frame format");

172 Platform Support Products Version 02.01.03.11

I TEXAS Capture Driver
INSTRUMENTE Software Design Interfaces

9.3.2.14. Try Format

This IOCTL is used to validate the format parameters provided by the
application. It checks parameters and returns the correct parameter, if
any parameter is incorrect. It returns error only if the parameters passed
are ambiguous.

Ioctl: VIDIOC_TRY_FMT

It takes a pointer to instance of v4l2_format structure as an input/output
parameter

If the type member is V4L2_BUF_TYPE_VI DEO CAPTURE, it checks pixel
format, pitch value, and image size. It returns errors to the application,
if the parameters are invalid.

Example:

struct v4l2 format fnt;

fn.type = V4L2_BUF_TYPE_VI DEO_CAPTURE;
ft.fnt.pix. pixelformat = V4L2_PlI X_FMI_UYVY;
fnt.fnt.pix.sizei mage = size;
fmt.fnt.pix. bytesperline = pitch;
fm.fnt.pix.field = VAL2_FI ELD_| NTERLACED,
ret = ioctl(fd, VIDIOC_TRY_FMI, &fnt);
if (ret <0) {

perror("VI D OC_TRY_FMIN n");

cl ose(fd);

return -1;

9.3.2.15. Query Control

This IOCTL is used to get the information of controls that is, brightness,
contrast, and so on supported by the current decoder.

Ioctl: VIDIOC_QUERYCTRL

This IOCTL takes a pointer to the instance of v4l 2_queryctrl structure
as the argument and returns the control information in the same pointer.
Application provides the control ID in the v4l 2_queryctrl id memberin
this structure. This control ID is defined in V4L2 header file, for which
information is needed.

If the control command specified by Id is not supported in current
decoder, driver will return an error.

Example:

struct v4l 2_queryctrl ctrl;

Version 02.01.03.11 Platform Support Products 173

i3 TEXAS

Capture Driver

INSTRUMENTE Software Design Interfaces

ctrl.id = VAL2_Cl D_CONTRAST;
ret = ioctl(fd, VID OC_QUERYCTRL, &ctrl);
if (ret <0) {

perror (" VI DI OC_QUERYCTRL \n");

cl ose(fd);

return -1,

}

printf("name = %\n", ctrl.name);
printf("mn=9% max = %l step = % default = %l\n",
ctrl.mnimm ctrl.maxinum ctrl.step, ctrl.default_val ue);

9.3.2.16. Set Control

This IOCTL is used to set the value for a particular control in current
decoder. To set the control value, this IOCTL can also be called when
streaming is on.

Ioctl: VIDIOC_S_CTRL

It takes a pointer to instance of v4l 2_control structure as an input
parameter.

Application provides control ID and control values in the v4l 2_contr ol
id and value member in this structure. If the control command specified
by Id is not supported in the current decoder and if value of the control
is out of range, driver returns an error. Otherwise, it sets the control in
the registers.

Example:

struct v4l 2 _control ctrl;

ctrl.id = VAL2_Cl D_CONTRAST;
ctrl.value = 100;
ret = ioctl(fd, VIDIOC_S CTRL, &ctrl);
if (ret <0) {

perror("VIDIOC_S CTRL\n");

cl ose(fd);

return -1;

9.3.2.17. Get Control

This IOCTL is used to get the value for a particular control in the current
decoder.

Ioctl: VIDIOC_G_CTRL

It takes a pointer to instance of v4l 2_control structure as an output
parameter. Application provides the control ID of id member in this

174

Platform Support Products Version 02.01.03.11

I TEXAS Capture Driver
INSTRUMENTE Software Design Interfaces

structure. If the control command specified by Id is not supported in the
current decoder, driver returns an error. Otherwise, it returns the value
of the control in the value member of the v4l 2_control structure.

Example:

struct v4l 2_control ctrl;

ctrl.id = VAL2_Cl D_CONTRAST;
ret = ioctl(fd, VIDIOC_G CTRL, &ctrl);
if (ret <0) {

perror("VIDIOC_G CTRL\n");

cl ose(fd);

return -1,

}

printf("value = %&\n", ctrl.value);

9.3.2.18. Queue Buffer

This IOCTL is used to enqueue the buffer in buffer queue. This IOCTL will
enqueue an empty buffer in the driver buffer queue. This IOCTL is one
of necessary IOCTL for streaming IO. If no buffer is enqueued before
starting streaming, driver returns an error as there is no buffer available.
So at least one buffer must be enqueued before starting streaming. This
IOCTL is also used to enqueue empty buffers after streaming is started.

Ioctl: VIDIOC_QBUF

This IOCTL takes a pointer to instance of v4l 2_buffer structure
as an argument. Application has to specify the buffer type
(VAL2_BUF_TYPE_VI DEO CAPTURE), buffer index, and memory type
(V4AL2_NMEMORY_MVAP or VAL2_ MEMORY_USERPTR) at the time of queuing.
For the user pointer buffer exchange mechanism, application also has
to provide buffer pointer in the m.userptr member of v4l 2_buffer
structure.

Driver will enqueue buffer in the driver's incoming queue.

It will take pointer to instance of v4l12_ buffer structure as an input
parameter.

Example:

struct v4l 2_buffer buf;

buf.type = V4L2_BUF_TYPE_VI DEO _CAPTURE;
buf . type = VA4L2_MEMORY_MVAP;
buf.index = 0O;
ret = ioctl(fd, VID OC_QBUF, &buf);
if (ret <0) {
perror("VIDI OC_Q@BUR\ n");
cl ose(fd);

Version 02.01.03.11 Platform Support Products 175

i3 TEXAS

Capture Driver

INSTRUMENTE Software Design Interfaces

return -1;

9.3.2.19. Dequeue Buffer

This IOCTL is used to dequeue the buffer in the buffer queue. This IOCTL
will dequeue the captured buffer from buffer queue of the driver. This
IOCTL is one of necessary IOCTL for the streaming I0. This IOCTL can
be used only after streaming is started. This IOCTL will block until an
empty buffer is available.

Note: The application can dequeue all buffers from the driver - the driver
will not hold the last buffer to itself. In this case, the driver will disable
the capture operation and the capture operation resumes when a buffer
is queued to the driver again.

Ioctl: VIDIOC_DQBUF

It takes a pointer to instance of v412_buffer structure as an output
parameter.

Application has to specify the buffer type
(VAL2_BUF_TYPE_VI DEO_CAPTURE) and memory type
(VAL2_MEMORY_MVAP or VAL2_MEMORY_USERPTR) at the time of
dequeueing.

If this IOCTL is called with the file descriptor, with which VI DI OC_REQBUF
is not performed, driver will return an error.

Driver will enqueue buffer, if the buffer queue is not empty.

Example:

struct v4l 2 buffer buf;

buf.type = V4L2_BUF_TYPE_VI DEO CAPTURE;
buf . type VAL2_NMEMORY_MVAP;
ret = ioctl(fd, VID OC_DQBUF, &buf);
if (ret <0) {
perror (" VI D OC_DQ@BUF\ n");
cl ose(fd);
return -1;

9.3.2.20. Stream On

This IOCTL is used to start video capture functionality.
Ioctl: VIDIOC _STREAMON

If streaming is already started, this IOCTL call returns an error.

176

Platform Support Products Version 02.01.03.11

I TEXAS Capture Driver
INSTRUMENTE Software Design Interfaces

Example:

v4l 2_buf _type buftype = VA4L2_BUF_TYPE_VI DEO CAPTURE;
ret = ioctl(fd, VIDI OC_STREAMON, &buftype);
if (ret <0) {

perror("VID OC_STREAMON \n");

cl ose(fd);

return -1;

9.3.2.21. Stream Off

This IOCTL is used to stop video capture functionality.
Ioctl: VIDIOC_STREAMOFF
If streaming is not started, this IOCTL call returns an error.

Example:

v4l 2_buf _type buftype = VA4L2_BUF_TYPE_VI DEO CAPTURE;
ret = ioctl(fd, VID OC_STREAMOFF, &buftype);
if (ret <0) {

perror (" VI Dl OC_STREAMOFF \ n");

cl ose(fd);

return -1;

Version 02.01.03.11 Platform Support Products 177

f TEXAS Capture Driver
INSTRUMENTS Driver Configuration

9.4. Driver Configuration

9.4.1. Configuration Steps

To enable capture driver support in the kernel:
1. Open menuconfig options from kernel command prompt.

2. Select Device Drivers as shown here:

Linuz Kernel Configuration

Brrow keys navigate the menu. <Enter> selscts submenus —-->.

Highlighted letters are hotkeys. Pressing <¥> includes, <N»> excludes,

<M> modularizes features. Press <Escx<Bscr to exit, <%» for Help, </»

for Search. Iegend: [*] built-in [] excluded <M> module < >
A |:_}

CPU Power Management ---»

Floating point emulation --->»
Userspace binary formats ---»
Power management options ---»

[¥] Networking support ---»

Device Drivers

File systems --->»

Kernel hacking --->»

Security options ---»
-%*- Cryptographic API --->
Li+)

< Exit » < Help »

Figure 9.4. Configure Capture Driver: Step 4

3. Select Device Drivers > Multimedia devices as shown here:

178 Platform Support Products Version 02.01.03.11

f TEXAS Capture Driver
INSTRUMENTE Configuration Steps

Device Drivers
Brrow keys navigate the memu. <Enter> selects submenus --->.

Highlighted letters are hotkeys. Pressing <¥> includes, <N»> excludes,
<M> modularizes features. Press <Escy<Esc» to exit, <?» for Help, </>

for Search. legend: [*] built-in [] excluded <M> module < >
(-]
< » Hardware Monitoring support --->
< » Generic Thermal sysfs driver ---»
[*] Watchdog Timer Support ---»
Sonics Silicon Backplane ---»
Multifunction device drivers ---»

Multimedia devices

Graphics support ---»
< » Sound card support ---—>
[*] BID Devices ---»
[*] USB support --->
Li+)

< Exit » < Help »

Figure 9.5. Configure Capture Driver: Step 5

4. Select Device Drivers > Multimedia devices > Video capture
adapters as shown here:

Multimedia devices
Brrow keys navigate the menu. <Enter> selscts submenus —-->.
Highlighted letters are hotkeys. Pressing <¥> includes, <N»> excludes,
<M> modularizes features. Press <Escx<Bscr to exit, <%» for Help, </»
for Search. Iegend: [*] built-in [] excluded <M> module < >

(-]

<*> Video For Linux

[*] Enable Video For Linux API 1 (DEPRECATELD)

< » VB for Linux

% Multimedia drivers #%%
[1 Load and attach frontend and tuner driver modules as needed
[1 customize analog and hybrid tuner modules to build ---»

Video capture adapters ---»
[¥] Radio Adapters --->
[*] DAE adapters
< » [DBBUSE driver

< Exit » < Help »

Figure 9.6. Configure Capture Driver: Step 6

Version 02.01.03.11 Platform Support Products 179

f TEXAS Capture Driver
INSTRUMENTE Configuration Steps

5. Select Device Drivers > Multimedia devices > Video capture
adapters > OMAP 3 Camera support as shown here:

Video capture adapters
Brrow keys navigate the menu. <Enter> selscts submenus —-->.
Highlighted letters are hotkeys. Pressing <¥> includes, <N»> excludes,
<M> modularizes features. Press <Escx<Bscr to exit, <%» for Help, </»
for Search. Iegend: [*] built-in [] excluded <M> module < >
A |:_}
< » CPik Video For Linux
< » CPiA2 Video For Linux
< » SAAS246A, SAAS281 Teletext processor
< » SBAS249 Teletext processor
(k> OMAP 3 Camera support
< » (MRP ISP Previewsr
<¥> (MAP ISP Resizer
[*]1 OMRPZ/OMAP3 V4L2-DSS drivers
<y OMAP Video out library
T*> OMAP Video out driver
(+)

< Exit » < Help »

Figure 9.7. Configure Capture Driver: Step 7

6. Select Device Drivers > Multimedia devices > Video capture
adapters > Encoders/decoders and other helper chips as shown
here:

180 Platform Support Products Version 02.01.03.11

f TEXAS Capture Driver
INSTRUMENTE Configuration Steps

Video capture adapters
Brrow keys navigate the memu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <¥> includes, <N»> excludes,
<M> modularizes features. Press <Escy<Esc» to exit, <?» for Help, </>
for Search. legend: [*] built-in [] excluded <M> module < >

--- Video capture adapters

[1 Enable advanced debug functionality

[1 Enable old-style fixed minor ranges for video devices

[1 &Zutoselect pertinent encoders/decoders and other helper chi
Encoder =rs and other helper chips

> Virtual Video Driver
> CPik Video For Linux
» CPiA2 Video For Linux
>
>

SBAS246A, SAAS281 Teletext processor
SBAS249 Teletext processor

— A A A A A

-
=

< Exit » < Help »

Figure 9.8. Configure Capture Driver: Step 8

7. Select Device Drivers > Multimedia devices > Video capture
adapters > Encoders/decoders and other helper chips > Texas
Instruments TVP514x video decoder as shown here:

Version 02.01.03.11 Platform Support Products 181

f TEXAS Capture Driver
INSTRUMENTS Installation

Encoders/decoders and other helper chips
Brrow keys navigate the memu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <¥> includes, <N»> excludes,
<M> modularizes features. Press <Escy<Esc» to exit, <?» for Help, </>
for Search. legend: [*] built-in [] excluded <M> module < >
(-]
< > Philips SAAT111 video decoder
< > Philips SAAT114 video decoder
< > Philips SEAT113/4/5 video decoders
< > Philips 5BAT171/3/4 audio/video decoders
< > Philips SAAT191 video decoder
k> Texas Instruments TVPS14x video decoder|
< » Texas Instruments TVES130 video decoder
< » vpx3220a, vpxl216b & vpxd2ldc video decoders
*#% Video and audio decoders #%+
T > Conexant CX2584x audio/video decoders
(1]

< Exit » < Help »

Figure 9.9. Configure Capture Driver: Step 9

9.4.2. Installation

Note

Please note that the software detects and configures the peripherals
dynamically/run-time depending on EVM revision. In case of
OMAP3EVM-1 (<Rev-E) it configures the peripherals on MMDC and in
case of OMAP3EVM-2 (>=Rev-E) it configures On-board peripherals.

9.4.2.1. Driver built statically

If the OMAP35x Camera driver and TVP514x driver are built statically into
the kernel, it is activated during boot-up. There is no special procedure
to install the driver.

9.4.2.2. Driver built as loadable module

The OMAP35x Camera driver and OMAP35x daughter card (applicable
for OMAP3EVM-1 (<Rev-E)) driver cannot be build as a loadable module.
Only the TVP514x driver can be build as a module. If the driver has
been configured to be a loadable module, then the driver is built as
a module with the name tvp514x.ko, which will be placed under the
directory dri vers/ medi a/ vi deo in the kernel tree.

182 Platform Support Products Version 02.01.03.11

f TEXAS Capture Driver
INSTRUMENTS Installation

Copy this driver file on to the target board and issue the following
command to insert the driver:

i nsnod tvp514x. ko

To remove the driver, issue the following command:

rmod tvp514x. ko

Version 02.01.03.11 Platform Support Products 183

f TEXAS Capture Driver
INSTRUMENTE Sample Applications

9.5. Sample Applications

This chapter describes the sample application provided along with the
package. The binary and the source for these sample application can are
available in the Examples directory of the Release Package folder.

9.5.1. Introduction
Writing a capture application involves the following steps:
e Opening the capture device.
e Set the parameters of the device.
e Allocate and initialize capture buffer
e Receive video data from the device.

e Close the device.

9.5.2. Hardware Setup
Following are the steps required to run the capture sample application:

e If you are using OMAP3EVM-1 (<Rev-E) revision board, connect the
OMAP35x daughter card module containing the TVP5146 deocoder
to the OMAP35x main board. For OMAP3EVM-2 (>=Rev-E), all the
peripherals including TVP5146 decoder is present on board.

e Connect a DVD player/camera generating a NTSC video signal to the
S-Video or Composite jack of the daughter card or EVM.

e Run the sample application after booting the kernel.

9.5.3. Provided Sample Applications

Following are the list of capture sample application provided with the
release:

e MMAP Loopback Application (saMmapLoopback.c):

This sample application using driver allocated buffers to capture
video data from any one of the active inputs and displays the video
in the LCD using display driver.

184 Platform Support Products Version 02.01.03.11

i3 TEXAS

INSTRUMENTS
Abstract

Table of Contents

10.1. INtrodUCEION ciiiiiiii it s reeees 187
10.1.1. REfEIrENCES ittt e ree s 187
10.1.2. Hardware OVEIVIEW ...vviiiiiiiiiiiiiiiiiiiieeeessiiiiiiisnnns 187
IO =T) o = 189
10.2.1. Supported ..ocviiiiii 189
10.2.2. Not supportedccviiiiiiiiiiii 189
10.3. Driver configurationccoiiiiiiiiiiiiii 191
10.3.1. USB phy selection for MUSB OTG portccccvvnnne. 191
10.3.2. USB controller in host modeccovviiiiiiiiiiiiiiineen, 191
10.3.3. MUSB OTG controller in gadget mode 192

Version 02.01.03.11 Platform Support Products 185

i3 TEXAS

INSTRUMENTS USB Driver
10.3.4. MUSB OTG controller in OTG modecocevvvnnnnnnn. 193
10.3.5. Host mode applicationscccooieiiiiiiiiiiiiii i, 194
10.3.6. USB Controller and USB MSC HOSTcocvvvenenenenen. 194
10.3.7. USB HID Cl@SS .iuvuvuirininininininininnnannenenenenenenenenenens 195
10.3.8. USB Controller and USB HIDcocvvviiininininnnnnes 196
10.3.9. USB AUIO ..uvuirininiiieee e e e e e eenes 196
10.3.10. USB VIidE0 ..viviriiiiiiiiieiiieiiieneneneneeeeeeeenenenenns 197
10.3.11. Gadget Mode Applicationscccceviiiiiiiiiiiiiiienne, 198
10.3.12. CDC/RNDIS gadgetcoovviniriniiiiiiiinienineienenenenens 199
10.3.13. USB OTG (HNP/SRP) testingcccevvuvrinininnnnninnnns 200

10.4. Software Interfaceccooiiiiiiiii 202
10.4. 1. SYSIS ittt 202
10.4.2. ProCis it i 202

10.5. Revision historyccciiiiiiiiiii 203

186

Platform Support Products Version 02.01.03.11

13 TEXAS USB Driver
INSTRUMENTS Introduction

10.1. Introduction

TI OMAP35x has a host cum gadget controller MUSB OTG,an EHCI and
its companion OHCI controller.There are three USB ports which are to be
controlled by either EHCI or OHCI controller individually.

In ES2.0/2.1 silicon all the three port can either be configured in PHY
mode or in TLL mode at a time.This limitation got resolved in ES3.0/3.1
silicon where PHY/TLL mode selection can be done on per port basis.
The salient features of the MUSB OTG controller are:

e High/full speed operation as USB peripheral.

e High/full/low speed operation as Host controller.

e The host controller for a multi-point USB system (when connected
via hub).

e USB On-The-Go compliant USB controller.

e 15 Transmit and 15 Receive Endpoints other than the mandatory
Control Endpoint 0.

e 16 Kilobytes of Endpoint FIFO RAM for USB packet buffering.
e Double buffering FIFO.

e Support for Bulk split and Bulk combine

e Support for high bandwidth Isochronous transfer

. Dual Mode HS DMA controller with 8 channels.

10.1.1. References

1. OMAP35x Technical Reference Manual

10.1.2. Hardware Overview

The OMAP35x MUSB OTG controller sits on the L3 and L4 interconnect.
It can be an L3 master while performing DMA transfers and an L4 target
when host CPU/DMA engine is the master.

OMAP3EVM-1 (<=Rev-E) has an OTG compliant USB PHY from NXP (ISP
1504) and OMAP3EVM-2 (>=Rev-E) has NXP USB PHY ISP1507.

The USB controller in the SoC is connected to the NXP PHY located on
the EVM. A mini-AB USB port connects to the PHY. Hence, there is only
one root port for the USB controller.

Version 02.01.03.11 Platform Support Products 187

I3 TEXAS USB Driver
INSTRUMENTS Hardware Overview

Figure 10.2. MUSB OTG: Location of USB PHY from NXP on the EVM

The OMAP35x HS USB port2 is connected to SMSC USB83320 high
speed PHY on Mistral/Multimedia daughter card (MMDC) attached to
OMAP3EVM-1 (<=Rev-E) whereas on OMAP3EVM-2 (>=Rev-E) it is
connected to SMSC USB3320 PHY.

Portl and Port3 are not available either on MMDC attached to
OMAP3EVM-1 (<=Rev-E) or OMAP3EVM-2 (>=Rev-E).

188 Platform Support Products Version 02.01.03.11

13 TEXAS USB Driver
INSTRUMENTS Features

10.2. Features

The MUSB OTG and EHCI drivers supports a significant subset of all the
features provided by the USB controller. The following section discusses
the supported and unsupported features in this release.

10.2.1. Supported

The Driver supports the following features for MUSB OTG port:

e Can be built in-kernel (part of vmlinux) as well as a driver module
(musb_hdrc.ko).

e Audio Class in Host mode.

¢ Video Class in Host mode.

e Mass Storage Class in Host mode.

e Mass Storage Class in Gadget mode.

e Hub Class in Host mode.

e Human Interface Devices (HID) in Host mode.

e Communication Device Class (CDC) in Gadget mode.

e Remote Network Driver Interface Specification (RNDIS) Gadget
support.

e OTG support which includes support for Host Negotiation Protocol
(HNP) and Session Request Protocol (SRP).

10.2.2. Not supported

The following features are not currently supported by driver:

e OHCI support as OHCI port is not available either on MMDC attached
to OMAP3EVM-1 (<=Rev-E) or OMAP3EVM-2 (>=Rev-E).

10.2.2.1. Limitations

e Thereis alimitation in the power that is supplied by the charge pump
on OMAP3EVM-1 (<=Rev-E).

OMAP3EVM-2 (>=Rev-E) supports 500mA of power.
e Mentor USB OTG RTL version 1.4 has a hardware issue with Inventra

DMA causing DMA lock-up when both TX and RX DMA channels are
simultaneously enabled.

Version 02.01.03.11 Platform Support Products 189

13 TEXAS USB Driver
INSTRUMENTS Not supported

We have enabled use of System DMA for all Rx transfers to work
around this issue.As system DMA performance is low thus Rx
through put is lower.

e Driver doesn't behave as expected when power management is
enabled.

190 Platform Support Products Version 02.01.03.11

13 TEXAS USB Driver
INSTRUMENTS Driver configuration

10.3. Driver configuration

The MUSB OTG controller is used in Host and Gadget modes while EHCI
is used only in Host mode.The following section shows the configuration
options for USB and its associated class drivers.

10.3.1. USB phy selection for MUSB OTG port

Please select NOP USB transceiver for MUSB support.

Device Drivers --->
USB support --->
*** OTG and related infrastructure ***
[1] GPIO based peripheral -only VBUS sensing 'transceiver'
[1 Philips ISP1301 with OVAP OTG
[1] TW.4030 USB Transcei ver Driver
[*] NOP USB Transceiver Driver

10.3.2. USB controller in host mode

10.3.2.1. MUSB OTG Host Configuration

Device Drivers --->
USB support --->
<*> Support for Host-side USB
*** M scel | aneous USB options ***
USB device fil esystem
USB devi ce cl ass-devi ces (DEPRECATED)
*** USB Host Controller Drivers ***
<*> | nventra H ghspeed Dual Role Controller (TI, ...)
*** OMAP 343x hi gh speed USB support ***
Driver Mbde (USB Host) --->
Di sabl e DMA (al ways use PI O
Use System DMA for Rx endpoints
Enabl e debuggi ng nmessages

[*]
[*]

———
* %
— i —

10.3.2.2. EHCI Configuration

Port-2 will automatically be selected for OMAP3EVM and would be
configured in PHY mode.

Device Drivers --->
USB support --->
<*> Support for Host-side USB
*** M scel |l aneous USB options ***

Version 02.01.03.11 Platform Support Products 191

13 TEXAS USB Driver

INSTRUMENTE MUSB OTG controller in gadget mode
[*] USB device filesystem
[*] USB device cl ass-devi ces (DEPRECATED)
<*> EHCI HCD (USB2.0) Support
[*]

Sel ect PHY/ TLL node for USB ports on OVAP24xx/ OMAP35xX --->
Port2 in PHY/ TLL node (PHY node) --->

[1 Root hub transaction translators

*** USB Host Controller Drivers ***

10.3.3. MUSB OTG controller in gadget mode

10.3.3.1. Configuration

Please do not disable support for host side usb as this will disable EHCI
host interface also.Gadget option in driver mode will appear only when
gadget support is also selected.Please enable gadget support as given
below.

Device Drivers --->
USB support --->
<*> USB Gadget Support --->
] Debuggi ng nmessages (DEVELOPMENT) NEW
] Debugging information files (DEVELOPMENT) NEW
) Maxi mum VBUS power usage (2-500md) NEW
USB Peripheral Controller (Inventra HDRC Peripheral (TI, ...))
[
<M> USB Gadget Drivers
<M> Fi |l e-backed Storage Gadget

[
[
(2

Please make sure that Inventra HDRC is selected as USB peripheral
controller which will appear only when "USB Peripheral (gadget stack)"
is selected in driver mode as shown below.

Device Drivers --->
USB support --->
<*> Support for Host-side USB
*** M scel |l aneous USB options ***
USB device fil esystem
USB devi ce cl ass-devi ces (DEPRECATED)
*** USB Host Controller Drivers ***
<*> | nventra H ghspeed Dual Role Controller (TI, ...)
*** OMAP 343x high speed USB support ***
Driver Mbde (USB Peripheral (gadget stack)) --->
Di sabl e DVA (al ways use PIO
Use System DMA for Rx endpoints
Enabl e debuggi ng nessages

[*]
[*]

———
* *
— e —

192 Platform Support Products Version 02.01.03.11

13 TEXAS USB Driver
INSTRUMENTS MUSB OTG controller in OTG mode

10.3.4. MUSB OTG controller in OTG mode

10.3.4.1. OTG Configuration

Both Host and Gadget driver should be selected for OTG support.If
gadget driver is build as module then the host side module will be
initialized only after gadget module is inserted after bootup.

If "Rely on targeted peripheral list" is also selected then make sure
to update "drivers/usb/core/otg_whitelist.h" with the desired supported
device class identification ids.

OTG option in driver mode will appear only when gadget support is also
selected.Please enable gadget support as given below.

Device Drivers --->
USB support --->
<*> USB Gadget Support --->
] Debuggi ng nessages (DEVELOPMENT) NEW
] Debugging information files (DEVELOPMENT) NEW
) Maxi mum VBUS power usage (2-500md) NEW
USB Peripheral Controller (Inventra HDRC Peripheral (TI, ...))
[
<M> USB Gadget Drivers
<M> Fi |l e-backed Storage Gadget

[
[
(2

Please make sure that Inventra HDRC is selected as USB peripheral
controller which will appear only when OTG is selected as below.

Device Drivers --->
USB support --->
<*> Support for Host-side USB
*** M scel |l aneous USB options ***
USB device fil esystem
USB devi ce cl ass-devi ces (DEPRECATED)
*** USB Host Controller Drivers ***
<*> | nventra H ghspeed Dual Role Controller (TI, ...)
*** OVAP 343x high speed USB support ***
Driver Mbde (Both Host and peripheral : USB OTG (On
The Go) Device) --->
[1] Disable DVA (al ways use PIO
[*] Use System DMA for Rx endpoints
[*] Enabl e debuggi ng nessages

[*]
[*]

Version 02.01.03.11 Platform Support Products 193

i3 TEXas
INSTRUMENTS

USB Driver

Host mode applications

10.3.5. Host mode applications

10.3.5.1. Mass Storage Driver

This figure illustrates the stack diagram of the system with USB Mass

Storage class.

Uzer Space Hast Application

Kernel Space

File systern and SCSI layer

1]

MSC class driver

!

JSE core and hub driver

|

Hast Contraller Driver (HCD)

Hardware MUSE or EHCI controllar

F

JSE phy for MUSE ar EHCI

Figure 10.3. USB Driver: Illustration of Mass Storage Class

10.3.6. USB Controller and USB MSC HOST

10.3.6.1. Configuration

Device Drivers --->
SCSI devi ce support --->
<*> SCS| device support
[*] | egacy /proc/scsi/support
--- SCSI support type (disk, tape,
<*> SCSI disk support
USB support --->
<*> Support for Host-side USB
*** M scel |l aneous USB options ***
[*] USB device filesystem

CD- ROV)

194 Platform Support Products

Version 02.01.03.11

13 TEXAS USB Driver
INSTRUMENTS USB HID Class

[*] USB device cl ass-devi ces (DEPRECATED)

*** USB Host Controller Drivers ***

<*> | nventra H ghspeed Dual Role Controller (TI, ...)
*** OMAP 343x high speed USB support ***
Driver Mbde (USB Host) --->

Di sabl e DVA (al ways use PIO

Use System DMA for Rx endpoints

Enabl e debuggi ng nessages

USB Device Cl ass drivers

USB Mass Storage support

| ———
* *

N
* 1

Vv o e

10.3.6.2. Device nodes

The SCSI sub system creates /dev/sd* devices with help of mdeuv.

10.3.6.3. Limitations

USB Mass Storage Class gadget devices that do not respond to HS PING
command during control transfer will not work with this host controller.
Some USB MSC devices from Transcend behave this way (idVendor:
0x0ea0, idProduct: 0x2168 from the USB device descriptor).

10.3.7. USB HID Class

USB Mouse and Keyboards that conform to the USB HID specifications
are supported.

Jzer Space Hast Application

F

Ewents and Input layer

1]

JSE HID class driver
USE core and hub driver

]
Haost Controller Driver (HCD)

;

Hardware MUSE or EHCI controller

Kernel Space

¥
Jse phy far MUSE or EHCI

Figure 10.4. USB Driver: lllustration of HID Class

Version 02.01.03.11 Platform Support Products 195

13 TEXAS USB Driver
INSTRUMENTS USB Controller and USB HID

10.3.8. USB Controller and USB HID

10.3.8.1. Configuration

Device Drivers --->

USB support --->

<*> Support for Host-side USB

*** M scel | aneous USB options ***

[*] USB device filesystem

[*] USB device cl ass-devi ces (DEPRECATED)

*** USB Host Controller Drivers ***

<*> | nventra H ghspeed Dual Role Controller (TI, ...)
*** OVAP 343x high speed USB support ***
Driver Mbde (USB Host) --->

[] Disable DVA (al ways use PIO

[*] Use System DVA for Rx endpoints

[*] Enabl e debuggi ng nessages

H D Devices --->

<*> CGeneric H D Support

*** USB | nput Devices ***
<*> USB Human I nterface Device(full H D) support

10.3.8.2. Device nodes

The event sub system creates /dev/input/event* devices with the help
of mdev.

10.3.9. USB Audio

10.3.9.1. Configuration

Device Drivers --->
Sound --->
<*> Sound card support
Advanced Linux Sound Architecture --->

<*> Advanced Li nux Sound Architecture
[*] Dynamic device file mnor nunber
[*] Support old ALSA API
USB devices --->
<*> USB Audi o/ M DI driver
USB support --->
<*> Support for Host-side USB
*** M scel | aneous USB options ***
[*] USB device filesystem
[*] USB device cl ass-devi ces (DEPRECATED)
*** USB Host Controller Drivers ***
<*> | nventra H ghspeed Dual Role Controller (TI, ...)
*** OMAP 343x high speed USB support ***
Driver Mbde (USB Host) --->

196 Platform Support Products Version 02.01.03.11

13 TEXAS USB Driver
INSTRUMENTS USB Video

[] Disable DVA (al ways use Pl O
[*] Use System DMA for Rx endpoints
[*] Enabl e debuggi ng nessages

10.3.9.2. Resources

For testing USB Audio support we need any ALSA compliant audio player/
capture application. Kindly read the Audio driver section to get more
inputs on this.

10.3.10. USB Video

10.3.10.1. Configuration

Device Drivers --->
Mul ti medi a devices --->
*** Multinmedia core support ***
<*> Video for Linux
[*] Enable Video for Linux APl 1 (DEPRI CATED)
[*] Enable Video for Linux APl 1 (conpatible) |ayer
*** Multinedia Drivers ***
[*] Video capture adapters --->
[*] VAL USB devices --->
<*> USB Video O ass (UVQ)
USB Support --->
<*> Support for Host-side USB
*** M scel | aneous USB options ***
[*] USB device filesystem
[*] USB device cl ass-devi ces (DEPRECATED)
*** USB Host Controller Drivers ***
<*> | nventra Hi ghspeed Dual Role Controller (TI, ...)
*** OMAP 343x high speed USB support ***
Driver Mdde (USB Host) --->
Di sabl e DMA (al ways use Pl O
Use System DMA for Rx endpoints
Enabl e debuggi ng nessages

—_—r——
* *
[—

10.3.10.2. Resources

For testing USB Video support we need a user level application like
mplayer to stream video from an USB camera.

If you are using mplayer as the capture application, then you must export
the DISPLAY to a X server. Then, execute the following command:

mpl ayer tv:// -tv driver=vdl 2: wi dt h=320: hei ght =240

Version 02.01.03.11 Platform Support Products 197

I3 TEXAS USB Driver
INSTRUMENTE Gadget Mode Applications

10.3.11. Gadget Mode Applications

File Storage Gadget: This is the Mass storage gadget driver.

Uszser Space

Kernel Space

Gadget storage driver

|

Gadget contraller driver

I
u

Hardware MUSE controller

USE phy for MUSE

10.3.11.1. Configuration

Device Drivers --->

USB support --->

<*> Support for USB Gadgets

USB Peripheral Controller (Inventra HDRC Peripheral (TI, ...))
-

<M> USB Gadget Drivers

<M> Fi |l e-backed Storage Gadget

<*> | nventra H ghspeed Dual Role Controller (TI, ...)
*** OVAP 343x high speed USB support ***
Driver Mbde (USB Peripheral (gadget stack)) --->
[] Disable DVA (al ways use PIO
[*] Use System DVA for Rx endpoints
[*] Enabl e debuggi ng nessages

10.3.11.2. Installation of File Storage Gadget Driver
Let us assume that we are interested in exposing /dev/mmcblk0 block

device to the file storage gadget driver. To that effect we need to issue
the following command to load the file storage gadget driver.

insmod <g_file_storage. ko> file=/dev/mctbl kO stall =0

198 Platform Support Products Version 02.01.03.11

13 TEXAS USB Driver
INSTRUMENTS CDC/RNDIS gadget

10.3.12. CDC/RNDIS gadget

The CDC RNDIS gadget driver that is used to send standard Ethernet
frames using USB.Please enable "Use System DMA for Rx endpoints" to
fix the flood ping hang issue with packet size of more than 16KB.

10.3.12.1. Configuration for USB controller and CDC/RNDIS Gadget

Device Drivers --->

USB support --->

<*> Support for USB Gadgets

USB Peri pheral Controller (Inventra HDRC Peripheral (Tl, ...))
—

<M> USB Gadget Drivers

<M> Et her net Gadget

[*] RNDI S support (EXPERI MENTAL) (NEW

<*> | nventra Hi ghspeed Dual Role Controller (TI, ...)
*** OMAP 343x high speed USB support ***
Driver Mbde (USB Peripheral (gadget stack)) --->
[1] Disable DVA (al ways use PI O
[*] Use System DVA for Rx endpoints
[*] Enabl e debuggi ng nessages

Please do not select RNDIS support for testing ethernet gadget with
Linux 2.4, IXIA and MACOS host machine.

USB Peri pheral Controller (Inventra HDRC Peripheral (Tl, ...))
->

<M> USB Gadget Drivers
<M> Et hernet Gadget
[] RNDI S support (EXPERI MENTAL) (NEW

10.3.12.2. Installation of CDC/RNDIS Gadget Driver

Installing the CDC/RNDIS gadget driver is as follows:

$ insnmpbd <path to g_ether. ko>

10.3.12.3. Setting up USBNet

The CDC/RNDIS Gadget driver will create a Ethernet device by the name
usb0. You need to assign an IP address to the device and bring up the
device. The typical command for that would be:

Version 02.01.03.11 Platform Support Products 199

i3 TEXAS

USB Driver

INSTRUMENTS USB OTG (HNP/SRP) testing
$ ifconfig usb0 <IP_ADDR> netmask 255.255.255.0 up

For details on usage of USBNet, refer this

url. [http://embedded.seattle.intel research.net/wiki/index.php?

title=Setting_up_USBnet]

10.3.13. USB OTG (HNP/SRP) testing

Please choose the configuration as described in driver configuration
section for OTG and follow the steps below for testing.

1.

2.

Boot the OTG build image on two OMAP35xx EVM.

If gadget driver is built as module then insert it to complete USB
initialization.

Connect mini-A side of the OTG cable to one of the EVM (say EVM-1)
and mini-B side on the other (say EVM-2).

In this scenario EVM-1 will become initial host or A-device and EVM-2
will become initial device or B-device.A-device will provide bus power
throughout the bus communication even if it becomes peripheral
using HNP.

There will not be any connect event at this point of time as Vbus
power is not yet switched-on.Vbus power can be switched-on from
A-device or from B-device using SRP.

Request to switch-on the Vbus power using below command on any
EVM.

$ echo "F" > /proc/driver/nusb_hdrc

If this command is executed on B-device then SRP protocol will be
used to request A-device to switch-on the Vbus power.

Now the connect event occurs, enumeration will complete and
gadget driver on B-device will be ready to use if this driver is in
"Targeted Peripheral List (TPL)" of A-device.

If TPL is disabled on A-device then gadget driver will be ready to
use soon after enumeration.

If TPL is enabled and gadget driver of B-device is not in TPL list of
A-device then there will be an automatic trial of HNP from usb core
by suspending the bus.This will cause a role switch and B-device
will enumerate A-device. Now the gadget driver of A-device will be
configured if it is on the TPL list of B-device.

200

Platform Support Products Version 02.01.03.11

http://embedded.seattle.intel research.net/wiki/index.php?title=Setting_up_USBnet
http://embedded.seattle.intel research.net/wiki/index.php?title=Setting_up_USBnet
http://embedded.seattle.intel research.net/wiki/index.php?title=Setting_up_USBnet
http://embedded.seattle.intel research.net/wiki/index.php?title=Setting_up_USBnet

I3 TEXAS USB Driver
INSTRUMENTS USB OTG (HNP/SRP) testing

Currently this is the only way possible for HNP testing but we have
added a suspend proc entry to start HNP in other than this scenario.

6. Complete all the communication between A-device and B-device.

7. Start HNP by executing below command on host side.

$ echo "S" > /proc/driver/nmusb_hdrc

It will suspend the bus and role-switch will follow after that.

8. Repeat step 4,5,6 and 7 for further testing.

Version 02.01.03.11 Platform Support Products 201

i3 TEXAS

INSTRUMENTS

USB Driver
Software Interface

10.4. Software Interface

10.4.1. sysfs

10.4.2. procfs

The USB driver exposes its state/control through the sysfs and the procfs
interfaces. The following sections talks about these.

SYSFS attribute

Description

mode

The entry / sys/ devi ces/ pl atform
musb_hdrc. 0/ node is a read-only entry. It will
show the state of the OTG (though this feature
is not supported) state machine. This will be true
even if the driver has been compiled without
OTG support. Only the states like A_HOST,
B_PERIPHERAL, that makes sense for non-OTG
will show up.

vbus

The entry / sys/ devi ces/ pl at f orml
nusb_hdrc. 0/ vbus is a write-only entry. It is used
to set the VBUS timeout value during OTG. If the
current OTG state is a_wait_bcon then then urb
submission is disabled.

Table 10.1. OMAP3 USB Driver: sysfs attributes

The profcs entry / proc/ dri ver/ musb_hdrc is used to control the driver
behaviour as well as check the status of the driver.

The following command will show the usage of this proc entry

$ echo "?" > [proc/driver/musb_hdrc

Specifically the most important usage of this entry would be to start an
USB session(host mode) by issuing the following command:

$ echo "F" > /proc/driver/nusb_hdrc

202

Platform Support Products

Version 02.01.03.11

13 TEXAS USB Driver
INSTRUMENTS Revision history

10.5. Revision history

02.00.00 Initial release.

Version 02.01.03.11 Platform Support Products 203

i3 TEXas
INSTRUMENTS

Version 02.01.03.11 Platform Support Products 204

i3 TEXAS

INSTRUMENTS
Abstract

Table of Contents

3 R Y [0 o o) 206
11.1.1, REfEIrENCES ittt i ree e 206
11.1.2. Acronyms & Definitionsccoooeviiiiiiiiiiicii 206

3 A T o1 L 207
11.2.1. Features Supportedccoviiiiiiiiiiiii e 207
11.2.2. Features Not Supportedcccoviiiiiiiiiiiiie e 207
11.2.3, Limitations ciiiiii i i 207
11.3. Revision History ..o e 208

Version 02.01.03.11 Platform Support Products 205

i3 TEXAS

MMC Driver

INSTRUMENTS Introduction

11.1. Introduction

TI OMAP 35x has an multimedia card high-speed/secure data/secure
digital I/0 (MMC/SD/SDIO) host controller, which provides an interface
between microprocessor and either MMC, SD memory cards, or SDIO
cards. The current version of the user guide talks about the MMC/SD
controller.The MMC driver is implemented on top of host controller as
a HSMMC controller driver and supports MMC, SD, SD High Speed and
SDHC cards. The salient features of the aforementioned HSMMC host
controller are:

11.1.1. References
1.
2.

Full compliance with MMC/SD command/response sets as defined in
the Specification.

Support:

e 1-bit or 4-bit transfer mode specifications for SD and SDIO cards
e 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards
Built-in 1024-byte buffer for read or write

32-bit-wide access bus to maximize bus throughput

Single interrupt line for multiple interrupt source events

Two slave DMA channels (1 for TX, 1 for RX)

Designed for low power and Programmable clock generation

MMCA Homepage [http://www.mmca.org/home]

SD ORG Homepage [http://www.sdcard.org/home]

11.1.2. Acronyms & Definitions

Acronym Definition

MMC Multimedia card
HSMMC High Speed MMC
SD Secure Digital
SDHC SD High Capacity
SDIO SD Input/Output

Table 11.1. Acronyms

206

Platform Support Products Version 02.01.03.11

http://www.mmca.org/home
http://www.mmca.org/home
http://www.sdcard.org/home
http://www.sdcard.org/home

i3 TEXAS

MMC Driver

INSTRUMENTS Features

11.2. Features

11.2.1. Features Supported

The Driver supports the following features:

e The driver is built in-kernel (part of vmlinux).

e MMC cards including High Speed cards.

e SD cards including SD High Speed and SDHC cards.

e Uses block bounce buffer to aggregate scatterred blocks

11.2.2. Features Not Supported

The following features are not currently supported by driver:
e SDIO functionality is not supported.
e MMC 8-bit mode is not supported.

e MMC/SD cards cannot be removed while mount operation is
in progress. If the card is removed, data integrity cannot be
guaranteed.

11.2.3. Limitations

e The driver sometimes reports CRC error during read because of
hardware issue.

Version 02.01.03.11

Platform Support Products 207

13 TEXAS MMC Driver
INSTRUMENTS Revision History

11.3. Revision History

208 Platform Support Products Version 02.01.03.11

i3 TEXAS

INSTRUMENTS
Abstract
cpuidl e

Table of Contents

12,1, INtrodUCHION ciiiiiiii i e e e e e 211

12.1.1, REfEIrENCES it i et ee e 211

0 =T) [o = 212

12.2.1. Supported ..o 212

12.2.2. Not Supportedccviiiiiiiiiiiic e 212

)0 T I | = o) 1 212

12.3. ArChiteCtUIre v e 213

12.3.1. CpUIdIE e 213

12.3.2. Dynamic Tick SUPPresSionccvvveviiiiiiiieiiieeiinennn. 215

Version 02.01.03.11 Platform Support Products 209

i3 TEXas
INSTRUMENTS

Power Management

12.3.3. Suspend & Resume
12.4. Configurationcoooiiiiiiiiiiiiiiinnen.
12.4.1. cpuidle ...cooiviiiiiiiii
12.4.2. cpufreq ..coooovvviiiiiiiiiiiiiiene,
12.4.3. SmartReflexcccoeeviinnens
12.5. Software Interfacecoveeininnnne.
12.5.1. cpuidle ...coviiiiiiiiii
12.5.2. Suspend & Resume
12.5.3. SmartReflexcccveeiiinnens
12.6. Revision Historycoovviiviviiiinnnnnns

210

Platform Support Products

Version 02.01.03.11

f TEXAS Power Management
INSTRUMENTS Introduction

12.1. Introduction

OMAP35x silicon provides a rich set of power management features.
These features are described in detail in the OMAP35x TRM.

In summary:
e Clock control at the module and clock domain level.

e 16 power domains i.e. 16 sets of one or more hardware modules
sharing same power source.

e Control of scalable voltage domains.
e Independent scaling of OPPs for the VDD1 and VDD?2.

MPU and IVA (in case of OMAP3530) share the voltage domain VDD1.
Other modules are located in VDD?2.

e Support for transitioning power and voltage domains to retention/
off and wakeup on event.

12.1.1. References

1. Proceedings of the Linux Symposium, June 27-30, 2007 [http://
ols.108.redhat.com/2007/Reprints/pallipadi-Reprint.pdf]

Authors: Venkatesh Pallipadi, Shaohua Li, Adam Belay

Version 02.01.03.11 Platform Support Products 211

http://ols.108.redhat.com/2007/Reprints/pallipadi-Reprint.pdf
http://ols.108.redhat.com/2007/Reprints/pallipadi-Reprint.pdf
http://ols.108.redhat.com/2007/Reprints/pallipadi-Reprint.pdf

f TEXAS Power Management
INSTRUMENTS Features

12.2. Features

The power management features available in this release are based on
the proposed PM interface for OMAP. This interface is described in the
filename Docunent at i on/ ar i OVAP/ onmap_pm

12.2.1. Supported

This is list of features supported in this release:
e Supports Dynamic Tick framework.

e Supports the cpuidle framework with MPU and Core transition to
RETENTION and OFF states. The menu governor is supported.

e Basic implementation for cpufreqg.

e Support SmartReflex with automatic (hardware-controlled) mode of
operation.

12.2.2. Not Supported

This is list of features not supported in the current release:

e Allow drivers and applications to limit the idle state that can be
entered.

e Support for SmartReflex with manual (software-controlled) mode of
operation.

12.2.3. Limitations

This is list of limitations that exist in the current release:

e Some of the drivers do not leverage the power-saving features
supported by the silicon.

They need to enable/ disable corresponding clocks via cl k_enabl e()
and cl ock_di sabl e() only when the clocks are really needed.

e After the system is suspended, the resume operation does not
succeed from the keypad and touchscreen.

212 Platform Support Products Version 02.01.03.11

i3 TEXAS

Power Management

INSTRUMENTS Architecture

12.3. Architecture

12.3.1. cpuidle

The cpuidle framework consists of two key components:
e A governor that decides the target C-state of the system.

e Adriver thatimplements the functions to transition to target C-state.

12.3.1.1. System Diagram

12.3.1.2. C-states

User level [_.l":ys.-"|:|v=7.'i.|:v=:f:jr:temfnpufc_‘u‘uﬂfcpuidle]

Interfaces

[Ssys/devices/system/cpu/cpuidle]

Governors l menu] [Iadder]

[Generic cpuidle infrastructure]

Drivers [acpi-cpuidle] I halt-idle]

arch/platform specific drivers

[Processor driver]

Figure 12.1. cpuidle overview

The idle loop is executed when the Linux scheduler has no thread to run.
When the idle loop is executed, current 'governor' is called to decide the
target C-state. Governor decides whether to continue in current state/
transition to a different state. Current 'driver' is called to transition to
the selected state.

A C-state is used to identify the power state supported through the cpu
idle loop. Each C-state is characterized by its:

e Power consumption
e Wakeup latency
e Preservation of processor state while in 'the' state.

The definition of C-states in the OMAP3 are a combination of the MPU
and CORE states. Currently these C-states have been defined:

Version 02.01.03.11

Platform Support Products 213

i3 TEXAS

Power Management

INSTRUMENTS cpuidie
State Description
C1 MPU WFI + Core active
C2 MPU WFI + Core inactive
C3 MPU CSWR + Core inactive
C4 MPU OFF + Core inactive
C5 MPU RET + CORE RET
C6 MPU OFF + CORE RET
Cc7 MPU OFF + CORE OFF

Table 12.1. C-states in OMAP3

12.3.1.3. CPU Idle Governor

The current implementation supports the 'menu' governor to decide the
target C-state of the system.

12.3.1.4. CPU Idle Driver

The cpuidle driver registers itself with the framework during boot-up
and populates the C-sates with exit latency, target residency (minimum
period for which the state should be maintained for it to be useful) and
flag to check the bus activity.

In ACPI implementation, flag CPUI DLE_FLAG _CHECK BMis used to specify
the states requiring bus monitoring interface to be checked. In the
OMAP3 implementation, this flag is used to identify the C-states that
require CORE domain activity to be checked.

Once the governor has decided the target C-state, the control reaches
the function omap3_enter i dl e(). Here, the C-state is adjusted based
on the value of valid flag corresponding to the chosen state.

Note
The value of valid flag for the idle states relates to / sys/ power/

enabl e_of f _node. If transition to OFF mode is disabled, the idle
states that require MPU to be turned OFF are made valid.

12.3.1.5. Performance considerations

Once idle power management is enabled, the system will transition
across sleep states of varying latency. This transition can impact the
runtime performace of the drivers.

The current implementation does not support any mechanism to prevent
the idle state transitions. However, function pair omap2_bl ock_sl eep()
and omap2_al | ow sl eep() can be used to prevent transitions away from
the C1 state.

214

Platform Support Products Version 02.01.03.11

I TEXAS Power Management
INSTRUMENTE Dynamic Tick Suppression

Important
Functions omap2_bl ock_sl eep() and omap2_al | ow sl eep()

should be used to protect idle state transition in a controlled and narrow
scope - where driver is doing real work. Else, power consumption will
increase.

12.3.2. Dynamic Tick Suppression

The dynamic tick suppression is achieved through generic Linux
framework for the same.

A 32K timer (HZ=128) is used by the tick suppression algorithm.

12.3.3. Suspend & Resume

The suspend operation results in the system transitioning to the lowest
power state being supported.

The drivers implement the suspend() function defined in the LDM. When
the suspend for the system is asserted, the suspend() function is called
for all drivers. The drivers release the clocks to reach the desired low
power state.

The actual transition to suspend is implemented in the function
omap3_pm suspend() .

Version 02.01.03.11 Platform Support Products 215

f TEXAS Power Management
INSTRUMENTS Configuration

12.4. Configuration
To enable/ disable power management start the Linux Kernel

Configuration tool.

$ make menuconfig

Select Power management options from the main menu.

Kernel Features --->

Boot options --->

CPU Power Managenment --->

Fl oating point emulation --->

User space binary formats --->

Power nanagenment options --->
[*] Networking support --->

Device Drivers --->

Select Power Management support to toggle the power management
support.

*

[*] Power Management support

[1] Power Managenent Debug Support
[*] Suspend to RAM and st andby

< > Advanced Power Managenment Enul ation

12.4.1. cpuidle

Start the Linux Kernel Configuration tool.

$ nmake nenuconfig

Select CPU Power Management from the main menu.

System Type --->
Bus support --->

216 Platform Support Products Version 02.01.03.11

f TEXAS Power Management
INSTRUMENTS cpufreq

Kernel Features --->

Boot options --->

CPU Power Managenment --->

Fl oating point emulation --->
Userspace binary formats --->

Select CPU idle PM support to enable the cpuidle driver.

[1 CPU Frequency scaling
[*] CPU idle PM support

12.4.2. cpufreq

Start the Linux Kernel Configuration tool.

$ make menuconfig

Select CPU Power Management from the main menu.

System Type --->

Bus support --->

Kernel Features --->

Boot options --->

CPU Power Managenment --->

Fl oating point emulation --->
User space binary formats --->

Select CPU idle PM support to enable the cpuidle driver.

* Frequency scal i ng

[*] CPU
[] CPU idl e PMsupport

12.4.3. SmartReflex

Start the Linux Kernel Configuration tool.

$ nmake nenuconfig

Version 02.01.03.11 Platform Support Products 217

f TEXAS Power Management
INSTRUMENTS SmartReflex

Select System Type from the main menu.

[*] Enable the block |ayer --->
System Type --->
Bus support --->
Boot options --->
CPU Power Managenment --->

Select TI OMAP Implementations from the menu.

ARM systemtype (TI OVAP) --->
TI OVAP | npl ementations --->
OVAP34xx Based System

OVAP3430 support
OVAP35x Fanmily

—_—
E
—_—

Select SmartReflex support from the menu.

[1] Emt debug nessages from cl ockdonain | ayer
[*] SmartRefl ex support
[1] Smart Refl ex testing support

218 Platform Support Products Version 02.01.03.11

i3 TEXAS

Power Management

INSTRUMENTS Software Interface

12.5. Software Interface

12.5.1. cpuidle

The cpuidle framework defines a standard interface through /sys
interface.

The parameters controlling cpuidle can be viewed via via / sys interface.

$ Is -1 /sys/devices/systeni cpu/ cpuidl e/
current _driver
current_governor_ro

$

current_governor_ro lists the current governor.

$ cat /sys/devices/system cpu/ cpuidl e/ current_governor_ro
nenu
$

current_driver lists the current driver.

$ cat /sys/devices/system cpu/cpuidle/current_driver
omap3_idl e

$

The cpuidle interface also exports information about each idle state. This
information is organized in a directory corresponding to each idle state.

$ |s -1 /sys/devices/systenm cpu/ cpu0/ cpuidl e
st at e0

statel

st at e2

st ate3

st ate4

st at eb5

st at e6

$

$ Is -1 /sys/devices/systenm cpu/ cpu0O/ cpui dl e/ st at e0
desc

| at ency

nane

Version 02.01.03.11

Platform Support Products 219

f TEXAS Power Management
INSTRUMENTS Suspend & Resume

power
time
usage

12.5.1.1. Idle state transition

To allow/prevent the processor to enter idle states, execute these
commands:

$ echo 1 > /sys/power/sleep_while_idle
$ echo 0 > /sys/power/sleep_while_idle

Some of the clocks are not explicitly enabled and disabled on idle. To
allow these clocks to be enabled/ disabled execute these commands:

$ echo 1 > /sys/power/clocks_off_while_idle
$ echo 0 > /sys/power/clocks_off_while_idle

To allow/ prevent transition to OFF mode:

$ echo 1 > /sys/power/enabl e_of f _nbpde
$ echo 0 > /sys/power/enabl e_of f _nbpde

12.5.2. Suspend & Resume

The suspend for device can be asserted as follows:

$ echo -n "nenl' > /sys/power/state

To wakeup, press a key on the OMAP3EVM keypad; or tap any on the
serial console.

12.5.3. SmartReflex

To enable/ disable SmartReflex for VDD1:

$ echo 1 > /sys/power/sr_vddl_aut oconp
$ echo 0 > /sys/power/sr_vddl_aut oconp

To enable/ disable SmartReflex for VDD2:

220 Platform Support Products Version 02.01.03.11

f TEXAS Power Management
INSTRUMENTS SmartReflex

$ echo 1 > /sys/power/sr_vdd2_aut oconp
$ echo 0 > /sys/power/sr_vdd2_aut oconp

Version 02.01.03.11 Platform Support Products 221

f TEXAS Power Management
INSTRUMENTS Revision History

12.6. Revision History

02.00.00 Initial version for this GIT based release.

02.01.01 Updated C-state definition.
Moved configuration information from DataSheet

Release specific updates.

222 Platform Support Products Version 02.01.03.11

	OMAP35x EVM Linux PSP
	Table of Contents
	Read This First
	Installation
	1.1. System Requirements
	1.2. Installation
	1.3. Installation Steps
	1.4. Environment Setup
	1.5. Setup NFS filesystem

	x-loader
	2.1. Introduction
	2.2. Compiling X-Loader
	2.3. Signing x-load.bin
	2.4. Flashing x-loader
	2.4.1. OneNAND
	2.4.2. NAND

	2.5. Preparing MMC/SD for boot
	2.5.1. Creating bootable partition
	2.5.2. Copying x-loader

	U-Boot
	3.1. Compiling U-Boot
	3.2. Flashing U-Boot
	3.2.1. OneNAND
	3.2.2. Micron NAND

	3.3. Configuring U-Boot
	3.3.1. Using ramdisk image
	3.3.2. Using NFS (Default U-Boot configuration)
	3.3.3. Using NFS with no DHCP in Linux

	3.4. Managing OneNAND
	3.4.1. Marking a bad block
	3.4.2. Erasing OneNAND
	3.4.3. Writing to OneNAND
	3.4.4. Reading from OneNAND
	3.4.5. Scrubbing OneNAND

	3.5. Managing NAND
	3.5.1. Marking a bad block
	3.5.2. Viewing bad blocks
	3.5.3. Erasing NAND
	3.5.4. Writing to NAND
	3.5.5. Reading from NAND
	3.5.6. Unlocking NAND address space
	3.5.7. NAND ECC algorithm selection

	Kernel
	4.1. Compiling Linux Kernel
	4.2. Configuring Linux Kernel
	4.2.1. Build configuration for OMAP35x
	4.2.1.1. Power module PR785

	4.3. Booting Linux Kernel
	4.3.1. Selecting boot mode

	Audio Driver
	5.1. Introduction
	5.1.1. References
	5.1.2. Acronyms & Definitions

	5.2. Features
	5.2.1. Features Supported
	5.2.2. Constraints

	5.3. Architecture
	5.3.1. ALSA SoC Layer
	5.3.2. Design

	5.4. Driver Configuration
	5.4.1. Configuration Steps
	5.4.2. Installation
	5.4.2.1. Driver built statically

	5.5. Software Interfaces
	5.5.1. Application Interface
	5.5.1.1. Device Interface
	5.5.1.2. Proc Interface
	5.5.1.3. Commonly Used APIs
	5.5.1.4. User Space Interactions

	5.5.2. Driver Interface
	5.5.2.1. Description
	5.5.2.2. States
	5.5.2.3. Data Flow

	5.6. Sample Applications
	5.6.1. Introduction
	5.6.2. A minimal playback application
	5.6.2.1. Opening the audio device
	5.6.2.2. Setting the parameters of the device
	5.6.2.3. Writing data to the device
	5.6.2.4. Closing the device

	5.6.3. A minimal record application

	5.7. Revision History

	Display Driver
	6.1. Introduction
	6.1.1. References
	6.1.2. Acronyms & Definitions
	6.1.3. Hardware Overview

	6.2. Features
	6.2.1. Overview
	6.2.2. Usage
	6.2.2.1. Opening and Closing of Driver
	6.2.2.2. Command Line arguments
	6.2.2.3. Buffer Management
	6.2.2.4. Rotation
	6.2.2.5. Color Keying
	6.2.2.6. Alpha Blending
	6.2.2.7. Buffer Format
	6.2.2.8. Display Window
	6.2.2.9. Cropping
	6.2.2.10. Scaling
	6.2.2.11. Color look table
	6.2.2.12. Streaming

	6.3. Architecture
	6.3.1. Driver Architecture
	6.3.2. Software Design Interfaces

	6.4. Software Interfaces
	6.4.1. 'fbdev' Driver Interface
	6.4.1.1. Application Interface
	6.4.1.2. Supported Standard IOCTLs
	6.4.1.3. Data Structures

	6.4.2. V4L2 Driver Interface
	6.4.2.1. Application Interface
	6.4.2.2. Supported Standard IOCTLs

	6.4.3. SYSFS Software Design Interfaces

	6.5. Driver Configuration
	6.5.1. Configuration Steps
	6.5.2. Installation
	6.5.2.1. Driver built statically
	6.5.2.2. Driver built as loadable module

	6.6. Sample Application Flow
	6.7. Revision History

	Resizer Driver
	7.1. Introduction
	7.1.1. References
	7.1.2. Acronyms
	7.1.3. Hardware Overview

	7.2. Features
	7.2.1. Overview of features supported
	7.2.2. Usage of Features
	7.2.2.1. Opening and Closing the Driver
	7.2.2.2. Buffer Management
	7.2.2.2.1. Memory map/Driver Allocated buffer
	7.2.2.2.2. User Pointer Exchange

	7.2.2.3. Parameter Configuration
	7.2.2.3.1. Resizing
	7.2.2.3.2. Chroma Algorithm
	7.2.2.3.3. Input/output image format
	7.2.2.3.4. Pixel Format
	7.2.2.3.5. Luma Enhancement
	7.2.2.3.6. Configuring the Read cycle for Resizer module

	7.2.3. Constraints

	7.3. Architecture
	7.4. Software Interface
	7.4.1. Application Programming Interface
	7.4.1.1. open
	7.4.1.2. close
	7.4.1.3. mmap
	7.4.1.4. munmap

	7.4.2. IOCTLs
	7.4.2.1. RSZ_S_PARAMS
	7.4.2.2. RSZ_G_PARAMS
	7.4.2.3. RSZ_G_STATUS
	7.4.2.4. RSZ_S_EXP
	7.4.2.5. RSZ_RESIZE
	7.4.2.6. RSZ_REQBUF
	7.4.2.7. RSZ_QUERYBUF
	7.4.2.8. RSZ_QUEUEBUF

	7.4.3. Data Structures
	7.4.3.1. Resizer Parameters Configuration Structure
	7.4.3.2. Request Buffer Structure
	7.4.3.3. Buffer structure
	7.4.3.4. Luma enhancement structure
	7.4.3.5. Status structure
	7.4.3.6. Crop Size structure
	7.4.3.7. Input/Output image format
	7.4.3.8. Pixel Format

	7.5. Driver Configuration
	7.5.1. Configuration Steps

	7.6. Sample Application Flow
	7.7. Revision History

	Daughter Card Module
	8.1. Mass Market Daughter Card
	8.1.1. Acronyms & Definitions
	8.1.2. Introduction

	8.2. Block Diagram
	8.3. Board Illustration
	8.4. Features supported under software

	Capture Driver
	9.1. Introduction
	9.1.1. References
	9.1.2. Acronyms & Definitions

	9.2. Features
	9.2.1. Supported features
	9.2.2. Constraints/Limitations
	9.2.3. Known Issues

	9.3. Architecture
	9.3.1. System Diagram
	9.3.2. Software Design Interfaces
	9.3.2.1. Opening and Closing of driver
	9.3.2.2. Buffer Management
	9.3.2.3. Query Capabilities
	9.3.2.4. Input Enumeration
	9.3.2.5. Set Input
	9.3.2.6. Get Input
	9.3.2.7. Standard Enumeration
	9.3.2.8. Standard Detection
	9.3.2.9. Set Standard
	9.3.2.10. Get Standard
	9.3.2.11. Format Enumeration
	9.3.2.12. Set Format
	9.3.2.13. Get Format
	9.3.2.14. Try Format
	9.3.2.15. Query Control
	9.3.2.16. Set Control
	9.3.2.17. Get Control
	9.3.2.18. Queue Buffer
	9.3.2.19. Dequeue Buffer
	9.3.2.20. Stream On
	9.3.2.21. Stream Off

	9.4. Driver Configuration
	9.4.1. Configuration Steps
	9.4.2. Installation
	9.4.2.1. Driver built statically
	9.4.2.2. Driver built as loadable module

	9.5. Sample Applications
	9.5.1. Introduction
	9.5.2. Hardware Setup
	9.5.3. Provided Sample Applications

	USB Driver
	10.1. Introduction
	10.1.1. References
	10.1.2. Hardware Overview

	10.2. Features
	10.2.1. Supported
	10.2.2. Not supported
	10.2.2.1. Limitations

	10.3. Driver configuration
	10.3.1. USB phy selection for MUSB OTG port
	10.3.2. USB controller in host mode
	10.3.2.1. MUSB OTG Host Configuration
	10.3.2.2. EHCI Configuration

	10.3.3. MUSB OTG controller in gadget mode
	10.3.3.1. Configuration

	10.3.4. MUSB OTG controller in OTG mode
	10.3.4.1. OTG Configuration

	10.3.5. Host mode applications
	10.3.5.1. Mass Storage Driver

	10.3.6. USB Controller and USB MSC HOST
	10.3.6.1. Configuration
	10.3.6.2. Device nodes
	10.3.6.3. Limitations

	10.3.7. USB HID Class
	10.3.8. USB Controller and USB HID
	10.3.8.1. Configuration
	10.3.8.2. Device nodes

	10.3.9. USB Audio
	10.3.9.1. Configuration
	10.3.9.2. Resources

	10.3.10. USB Video
	10.3.10.1. Configuration
	10.3.10.2. Resources

	10.3.11. Gadget Mode Applications
	10.3.11.1. Configuration
	10.3.11.2. Installation of File Storage Gadget Driver

	10.3.12. CDC/RNDIS gadget
	10.3.12.1. Configuration for USB controller and CDC/RNDIS Gadget
	10.3.12.2. Installation of CDC/RNDIS Gadget Driver
	10.3.12.3. Setting up USBNet

	10.3.13. USB OTG (HNP/SRP) testing

	10.4. Software Interface
	10.4.1. sysfs
	10.4.2. procfs

	10.5. Revision history

	MMC Driver
	11.1. Introduction
	11.1.1. References
	11.1.2. Acronyms & Definitions

	11.2. Features
	11.2.1. Features Supported
	11.2.2. Features Not Supported
	11.2.3. Limitations

	11.3. Revision History

	Power Management
	12.1. Introduction
	12.1.1. References

	12.2. Features
	12.2.1. Supported
	12.2.2. Not Supported
	12.2.3. Limitations

	12.3. Architecture
	12.3.1. cpuidle
	12.3.1.1. System Diagram
	12.3.1.2. C-states
	12.3.1.3. CPU Idle Governor
	12.3.1.4. CPU Idle Driver
	12.3.1.5. Performance considerations

	12.3.2. Dynamic Tick Suppression
	12.3.3. Suspend & Resume

	12.4. Configuration
	12.4.1. cpuidle
	12.4.2. cpufreq
	12.4.3. SmartReflex

	12.5. Software Interface
	12.5.1. cpuidle
	12.5.1.1. Idle state transition

	12.5.2. Suspend & Resume
	12.5.3. SmartReflex

	12.6. Revision History

