
TMS320 DSP/BIOS v5.42

User’s Guide

Literature Number: SPRU423I
August 2012

Preface
SPRU423I—August 2012

Read This First

About This Manual

This manual describes DSP/BIOS 5.42, which may have been installed as part of the Code Composer
Studio (CCS) 5.3 or higher installation. The standalone installer for DSP/BIOS 5.42 can be used with
CCS 5.1 or CCS 5.2. (CCSv3 and CCSv4 are no longer supported by DSP/BIOS.)

DSP/BIOS gives developers of mainstream applications on Texas Instruments TMS320 DSP devices the
ability to develop embedded real-time software. DSP/BIOS provides a small firmware real-time library
and easy-to-use tools for real-time tracing and analysis.

You should read and become familiar with the TMS320 DSP/BIOS API Reference Guide for your
platform. The API reference guide is a companion volume to this user’s guide.

Notational Conventions

This document uses the following conventions:

• Program listings, code examples, and interactive displays are shown in a special typeface.
Examples use a bold version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you enter from items that the
system displays (such as prompts, command output, error messages, etc.).

Here is a sample program listing:

Void copy(HST_Obj *input, HST_Obj *output)

{

 PIP_Obj *in, *out;

 Uns *src, *dst;

 Uns size;

}

• Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you
specify the information within the brackets. Unless the square brackets are in a bold typeface, do not
enter the brackets themselves.

• Throughout this manual, 64 can represent the two-digit numeric appropriate to your specific DSP
platform. If your DSP platform is C62x based, substitute 62 each time you see the designation 64.
For example, DSP/BIOS assembly language API header files for the C6000 platform will have a suffix
of .h62. For the C2800 platform, the suffix will be .h28. For a C64x, C55x, or C28x DSP platform,
substitute 64, 55, or 28 for each occurrence of 64. Also, each reference to Code Composer Studio
C5000 can be substituted with Code Composer Studio C6000 depending on your DSP platform.

• Information specific to a particular device is designated with one of the following icons:
SPRU423I—August 2012 Read This First 2
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I

Related Documentation From Texas Instruments www.ti.com
Related Documentation From Texas Instruments

The following sources describe TMS320 devices and related support tools. To obtain a copy of any of
these TI documents, visit the Texas Instruments website at www.ti.com.

TMS320C28x DSP/BIOS API Reference (literature number SPRU625)
TMS320C5000 DSP/BIOS API Reference (literature number SPRU404)
TMS320C6000 DSP/BIOS API Reference (literature number SPRU403)

describes the DSP/BIOS API functions, which are alphabetized by name. The API Reference Guide is the
companion to this user’s guide.

DSP/BIOS Textual Configuration (Tconf) User’s Guide (literature number SPRU007) describes the scripting
language used to configure DSP/BIOS applications.

DSP/BIOS Driver Developer's Guide (literature number SPRU616)
describes the IOM model for device driver development and integration into DSP/BIOS applications.

DSP/BIOS wiki page:
http://processors.wiki.ti.com/index.php/Category:DSPBIOS

Code Composer Studio Online Help provides information about Code Composer Studio.

Code Composer Studio wiki page:
http://processors.wiki.ti.com/index.php/CCSv5

TMS320C2000 Assembly Language Tools User's Guide (SPRU513)
TMS320C55x Assembly Language Tools User’s Guide (SPRU280)
TMS320C6000 Assembly Language Tools User's Guide (SPRU186)

describes the assembly language tools (assembler, linker, and other tools used to develop assembly lan-
guage code), assembler directives, macros, common object file format, and symbolic debugging directives
for the C5000 generation of devices.

TMS320C2000 Optimizing C/C++ Compiler User's Guide (literature number SPRU514) describes the C2000
C/C++ compiler and the assembly optimizer. This C/C++ compiler accepts ANSI standard C/C++ source
code and produces assembly language source code for the C2000 generation of devices. The assembly
optimizer helps you optimize your assembly code.

TMS320C55x Optimizing C Compiler User’s Guide (literature number SPRU281) describes the C55x C
compiler. This C compiler accepts ANSI standard C source code and produces TMS320 assembly language
source code for the C55x generation of devices.

TMS320C6000 Optimizing C Compiler User's Guide (literature number SPRU187) describes the C6000
C/C++ compiler and the assembly optimizer. This C/C++ compiler accepts ANSI standard C/C++ source
code and produces assembly language source code for the C6000 generation of devices. The assembly
optimizer helps you optimize your assembly code.

TMS320C55x Programmer's Guide (literature number SPRU376) describes ways to optimize C and assembly
code for the TMS320C55x DSPs and
includes application program examples.

TMS320C6000 Programmer's Guide (literature number SPRU189) describes the C6000 CPU architecture,
instruction set, pipeline, and interrupts for these digital signal processors.
3 Read This First SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com
http://processors.wiki.ti.com/index.php/CCSv5
http://processors.wiki.ti.com/index.php/Category:DSPBIOS

www.ti.com Related Documentation
TMS320C6000 Peripherals Reference Guide (literature number SPRU190)
describes common peripherals available on the TMS320C6000 family of
digital signal processors. This book includes information on the internal data and program memories, the
external memory interface (EMIF), the host port, multichannel buffered serial ports, direct memory access
(DMA), clocking and phase-locked loop (PLL), and the power-down modes.

TMS320C28x DSP CPU and Instruction Reference Guide (literature number SPRU430).

Related Documentation

You can use the following books to supplement this reference guide:

The C Programming Language (second edition), by Brian W. Kernighan and Dennis M. Ritchie,
published by Prentice-Hall, Englewood Cliffs, New Jersey, 1988

Programming in C, Kochan, Steve G., Hayden Book Company

Programming Embedded Systems in C and C++, by Michael Barr, Andy Oram (Editor), published by
O'Reilly & Associates; ISBN: 1565923545, February 1999

Real-Time Systems, by Jane W. S. Liu, published by Prentice Hall; ISBN: 013099651, June 2000

Principles of Concurrent and Distributed Programming (Prentice Hall International Series in
Computer Science), by M. Ben-Ari, published by Prentice Hall; ISBN: 013711821X, May 1990

American National Standard for Information Systems-Programming Language C X3.159-1989,
American National Standards Institute (ANSI standard for C); (out of print)

Trademarks

MS-DOS, Windows, and Windows NT are trademarks of Microsoft Corporation.

The Texas Instruments logo and Texas Instruments are registered trademarks of Texas Instruments.
Trademarks of Texas Instruments include: TI, XDS, Code Composer, Code Composer Studio, Probe
Point, Code Explorer, DSP/BIOS, RTDX, Online DSP Lab, BIOSuite, SPOX, TMS320, TMS320C54x,
TMS320C55x, TMS320C62x, TMS320C64x, TMS320C67x, TMS320C28x, TMS320C5000,
TMS320C6000 and TMS320C2000.

All other brand or product names are trademarks or registered trademarks of their respective companies
or organizations.

August 15, 2012
SPRU423I—August 2012 Read This First 4
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Contents

1 About DSP/BIOS . 12
1.1 DSP/BIOS Features and Benefits. 12
1.2 DSP/BIOS Components . 14
1.3 Naming Conventions . 19
1.4 For More Information . 24

2 Program Generation . 25
2.1 Using DSP/BIOS in CCS Projects . 26
2.2 Using the DSP/BIOS Configuration Tool . 31
2.3 How hello.c Uses DSP/BIOS . 32
2.4 The Development Cycle . 33
2.5 Configuring DSP/BIOS Applications Statically . 33
2.6 Creating DSP/BIOS Objects Dynamically. 37
2.7 Files Used to Create DSP/BIOS Programs. 39
2.8 Using Makefiles to Build Applications . 40
2.9 Using DSP/BIOS with the Run-Time Support Library . 42
2.10 DSP/BIOS Startup Sequence . 43
2.11 Using C++ with DSP/BIOS . 45
2.12 User Functions Called by DSP/BIOS . 47
2.13 Calling DSP/BIOS APIs from Main . 47

3 Instrumentation . 49
3.1 An Overview of Real-Time Analysis . 50
3.2 Real-Time Analysis Tools in CCS. 51
3.3 RTOS Object Viewer (ROV) . 59
3.4 Instrumentation Performance . 62
3.5 Instrumentation APIs . 64
3.6 Implicit DSP/BIOS Instrumentation. 73
3.7 Instrumentation for Field Testing . 79
3.8 Real-Time Data Exchange . 79

4 Thread Scheduling . 84
4.1 Overview of Thread Scheduling . 84
4.2 Hardware Interrupts . 91
4.3 Software Interrupts . 102
4.4 Tasks . 112
4.5 The Idle Loop . 120
4.6 Power Management . 121
4.7 Semaphores . 127
4.8 Mailboxes . 132
4.9 Timers, Interrupts, and the System Clock. 137
4.10 Periodic Function Manager (PRD) and the System Clock . 140
SPRU423I—August 2012 Contents 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I

Contents www.ti.com
5 Memory and Low-level Functions . 143
5.1 Memory Management . 143
5.2 System Services . 151
5.3 Queues . 153

6 Input/Output Methods . 158
6.1 I/O Overview . 158
6.2 Comparing Pipes and Streams. 159
6.3 Comparing Driver Models . 160
6.4 Data Pipe Manager (PIP Module) . 163
6.5 Message Queues . 167
6.6 Host Channel Manager (HST Module) . 176
6.7 I/O Performance Issues . 178

7 Streaming I/O and Device Drivers . 179
7.1 Overview of Streaming I/O and Device Drivers . 180
7.2 Creating and Deleting Streams. 182
7.3 Stream I/O—Reading and Writing Streams . 183
7.4 Stackable Devices . 192
7.5 Controlling Streams . 196
7.6 Selecting Among Multiple Streams. 197
7.7 Streaming Data to Multiple Clients . 198
7.8 Streaming Data Between Target and Host . 199
7.9 Device Driver Template . 200
7.10 Streaming DEV Structures . 201
7.11 Device Driver Initialization. 203
7.12 Opening Devices . 203
7.13 Real-Time I/O . 206
7.14 Closing Devices . 209
7.15 Device Control . 210
7.16 Device Ready . 211
7.17 Types of Devices . 213
6 Contents SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Figures www.ti.com
Figures

1–1 DSP/BIOS Components . 14
1–2 Configuration Tool Module Tree . 17
2–1 Files in a DSP/BIOS Application. 39
3–1 LOG Buffer Sequence . 66
3–2 Target/Host Variable Accumulation . 67
3–3 Current Value Deltas From One STS_set. 69
3–4 Current Value Deltas from Base Value. 70
3–5 Monitoring Stack Pointers (C5000 platform) . 75
3–6 Monitoring Stack Pointers (C6000 platform) . 75
3–7 Calculating Used Stack Depth . 76
3–8 RTDX Data Flow between Host and Target . 80
4–1 Thread Priorities . 89
4–2 Preemption Scenario . 91
4–3 The Interrupt Sequence in Debug Halt State . 95
4–4 The Interrupt Sequence in the Run-time State . 97
4–5 Software Interrupt Manager . 104
4–6 SWI Properties Dialog Box . 105
4–7 Using SWI_inc to Post an SWI . 108
4–8 Using SWI_andn to Post an SWI . 109
4–9 Using SWI_or to Post an SWI. 109
4–10 Using SWI_dec to Post an SWI . 110
4–11 Execution Mode Variations . 114
4–12 Trace from Example 4-7 . 120
4–13 Power Event Notification. 125
4–14 Trace Results from Example 4-11 . 132
4–15 Trace Results from Example 4-15 . 136
4–16 Interactions Between Two Timing Methods . 137
4–17 Trace Log Output from Example 4-16. 140
5–1 Allocating Memory Segments of Different Sizes . 148
5–2 Memory Allocation Trace . 151
5–3 Trace Results from Example 5-18 . 157
6–1 Input/Output Stream . 159
6–2 The Two Ends of a Pipe . 163
6–3 Writers and Reader of a Message Queue . 168
6–4 Components of the MSGQ Architecture . 169
6–5 MSGQ Function Calling Sequence. 169
6–6 Transports in a Multi-Processor Example . 173
6–7 Remote Transport . 174
6–8 Events on Sending Message to Remote Processor . 175
7–1 Device-Independent I/O in DSP/BIOS . 180
7–2 Device, Driver, and Stream Relationship . 182
7–3 How SIO_get Works . 185
7–4 Output Trace for Example 7-5 . 188
7–5 Results for Example 7-6. . 190
7 Figures SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Figures
7–6 The Flow of Empty and Full Frames . 193
7–7 Sine Wave Output for Example 7-9 . 196
7–8 Flow of DEV_STANDARD Streaming Model . 207
7–9 Placing a Data Buffer to a Stream . 207
7–10 Retrieving Buffers from a Stream . 208
7–11 Stacking and Terminating Devices . 213
7–12 Buffer Flow in a Terminating Device. 214
7–13 In-Place Stacking Driver . 214
7–14 Copying Stacking Driver Flow. 215
SPRU423I—August 2012 Figures 8
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

SPRU423I—August 2012 Tables 9
Submit Documentation Feedback

www.ti.com Tables

Tables

1–1 DSP/BIOS Modules . 15
1–2 DSP/BIOS Standard Data Types: . 21
1–3 Memory Segment Names . 22
1–4 Standard Memory Segments . 23
2–1 Methods of Referencing C6000 Global Objects . 35
2–2 Files Not Included in rtsbios . 42
2–3 Stack Modes on the C5500 Platform . 45
3–1 Examples of Code-size Increases Due to an Instrumented Kernel . 64
3–2 TRC Constants: . 71
3–3 Variables that can be Monitored with HWI . 77
3–4 STS Operations and Their Results . 78
4–1 Comparison of Thread Characteristics . 87
4–2 Comparison of Thread Characteristics (continued) . 88
4–3 Thread Preemption . 90
4–4 SWI Object Function Differences . 107
4–5 CPU Registers Saved During Software Interrupt . 111
6–1 Comparison of Pipes and Streams . 160
7–1 Generic I/O to Internal Driver Operations . 181

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Examples www.ti.com
Examples

2-1 Creating and Referencing Dynamic Objects.. 2-38

2-2 Deleting a Dynamic Object ... 2-38

2-3 Sample Makefile for a DSP/BIOS Program ... 2-41

2-4 Declaring Functions in an Extern C Block.. 2-46

2-5 Function Overloading Limitation .. 2-46

2-6 Wrapper Function for a Class Method ... 2-46

3-1 Gathering Information About Differences in Values... 3-69

3-2 Gathering Information About Differences from Base Value ... 3-70

3-3 The Idle Loop ... 3-74

4-1 Interrupt Behavior for C28x During Real-Time Mode... 4-94

4-2 Code Regions That are Uninterruptible ... 4-98

4-3 Constructing a Minimal ISR on C6000 Platform ... 4-101

4-4 HWI Example on C55x Platform ... 4-102

4-5 HWI Example on C28x Platform ... 4-102

4-6 Creating a Task Object .. 4-117

4-7 Time-Slice Scheduling ... 4-118

4-8 Creating and Deleting a Semaphore.. 4-127

4-9 Setting a Timeout with SEM_pend... 4-128

4-10 Signaling a Semaphore with SEM_post... 4-128

4-11 SEM Example Using Three Writer Tasks .. 4-129

4-12 Creating a Mailbox ... 4-132

4-13 Reading a Message from a Mailbox .. 4-133

4-14 Posting a Message to a Mailbox .. 4-133

4-15 MBX Example With Two Types of Tasks... 4-134

4-16 Using the System Clock to Drive a Task.. 4-140

5-1 Linker Command File (C6000 Platform) .. 5-145

5-2 Linker Command File (C55x and C28x Platforms) .. 5-145

5-3 Using MEM_alloc for System-Level Storage ... 5-146

5-4 Allocating an Array of Structures ... 5-146

5-5 Using MEM_free to Free Memory.. 5-147

5-6 Freeing an Array of Objects ... 5-147

5-7 Memory Allocation (C5000 and C28x Platforms)... 5-149

5-8 Memory Allocation (C6000 Platform) ... 5-150

5-9 Coding To Halt Program Execution with SYS_exit or SYS_abort.............................. 5-151

5-10 Using SYS_abort with Optional Data Values ... 5-152

5-11 Using Handlers in SYS_exit ... 5-152

5-12 Using Multiple SYS_NUMHANDLERS ... 5-152

5-13 DSP/BIOS Error Handling ... 5-152

5-14 Using doError to Print Error Information .. 5-153

5-15 Managing QUE Elements Using Queues... 5-153

5-16 Inserting into a Queue Atomically .. 5-154
10 Examples SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Examples
5-17 Using QUE Functions with Mutual Exclusion Elements... 5-154

5-18 Using QUE to Send Messages ... 5-155

7-1 Creating a Stream with SIO_create ... 7-183

7-2 Freeing User-Held Stream Buffers... 7-183

7-3 Inputting and Outputting Data Buffers.. 7-184

7-4 Implementing the Issue/Reclaim Streaming Model ... 7-184

7-5 Basic SIO Functions .. 7-186

7-6 Adding an Output Stream to Example 7-5 ... 7-189

7-7 Using the Issue/Reclaim Model ... 7-191

7-8 Opening a Pair of Virtual Devices .. 7-192

7-9 Data Exchange Through a Pipe Device... 7-194

7-10 Using SIO_ctrl to Communicate with a Device .. 7-196

7-11 Changing Sample Rate.. 7-197

7-12 Synchronizing with a Device ... 7-197

7-13 Indicating That a Stream is Ready... 7-197

7-14 Polling Two Streams .. 7-198

7-15 Using SIO_put to Send Data to Multiple Clients .. 7-198

7-16 Using SIO_issue/SIO_reclaim to Send Data to Multiple Clients 7-199

7-17 Required Statements in dxx.h Header File .. 7-200

7-18 Table of Device Functions ... 7-201

7-19 The DEV_Fxns Structure ... 7-201

7-20 The DEV_Frame Structure .. 7-201

7-21 The DEV_Handle Structure ... 7-202

7-22 Initialization by Dxx_init.. 7-203

7-23 Opening a Device with Dxx_open.. 7-203

7-24 Opening an Input Terminating Device ... 7-204

7-25 Arguments to Dxx_open .. 7-204

7-26 The Parameters of SIO_create .. 7-204

7-27 The Dxx_Obj Structure .. 7-205

7-28 Typical Features for a Terminating Device .. 7-205

7-29 Template for Dxx_issue for a Typical Terminating Device... 7-208

7-30 Template for Dxx_reclaim for a Typical Terminating Device 7-208

7-31 Closing a Device ... 7-209

7-32 Making a Device Ready .. 7-211

7-33 SIO_Select Pseudocode ... 7-212
SPRU423I—August 2012 Examples 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Chapter 1
SPRU423I—August 2012

About DSP/BIOS

DSP/BIOS is a scalable real-time kernel. It is designed to be used by applications that require real-time
scheduling and synchronization, host-to-target communication, or real-time instrumentation. DSP/BIOS
provides preemptive multi-threading, hardware abstraction, real-time analysis, and configuration tools.

1.1 DSP/BIOS Features and Benefits

DSP/BIOS is designed to minimize memory and CPU requirements on the target. This design goal is
accomplished in the following ways:

• All DSP/BIOS objects can be configured statically and bound into an executable program image. This
reduces code size and optimizes internal data structures.

• Instrumentation data (such as logs and traces) are formatted on the host.

• The APIs are modularized so that only those APIs that are used by the program need to be bound
into the executable program.

• The library is optimized to require the smallest possible number of instruction cycles, with a
significant portion implemented in assembly language.

• Communication between the target and DSP/BIOS analysis tools is performed within the background
idle loop. This ensures that DSP/BIOS analysis tools do not interfere with the program’s tasks. If the
target CPU is too busy to perform background tasks, the DSP/BIOS analysis tools stop receiving
information from the target until the CPU is available.

• Error checking that would increase memory and CPU requirements has been kept to a minimum.
Instead, the API reference documentation specifies constraints for calling API functions. It is the
responsibility of the application developer to meet these constraints.

In addition, the DSP/BIOS API provides many options for program development:

• A program can dynamically create and delete objects that are used in special situations. The same
program can use both objects created dynamically and objects created statically.

1.1 DSP/BIOS Features and Benefits. 12

1.2 DSP/BIOS Components . 14

1.3 Naming Conventions . 19

1.4 For More Information . 24

Topic Page
SPRU423I—August 2012 About DSP/BIOS 12
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I

www.ti.com DSP/BIOS Features and Benefits
• The threading model provides thread types for a variety of situations. Hardware interrupts, software
interrupts, tasks, idle functions, and periodic functions are all supported. You can control the priorities
and blocking characteristics of threads through your choice of thread types.

• Structures to support communication and synchronization between threads are provided. These
include semaphores, mailboxes, and resource locks.

• Two I/O models are supported for maximum flexibility and power. Pipes are used for target/host
communication and to support simple cases in which one thread writes to the pipe and another reads
from the pipe. Streams are used for more complex I/O and to support device drivers.

• Low-level system primitives are provided to make it easier to handle errors, create common data
structures, and manage memory usage.

The DSP/BIOS API standardizes DSP programming for a number of TI devices and provides easy-to-
use powerful program development tools. These tools reduce the time required to create DSP programs
in the following ways:

• The Tconf configuration script generates code required to statically declare objects used within the
program.

• The configuration detects errors earlier by validating properties before the program is built.

• Configuration scripts can be modified in a text editor to include branching, looping, testing of
command-line arguments and more.

• Logging and statistics for DSP/BIOS objects are available at run-time without additional
programming. Additional instrumentation can be programmed as needed.

• The DSP/BIOS analysis tools allow real-time monitoring of program behavior.

• DSP/BIOS provides a standard API. This allows DSP algorithm developers to provide code that can
be more easily integrated with other program functions.

• DSP/BIOS is integrated within the Code Composer Studio IDE, requires no runtime license fees, and
is fully supported by Texas Instruments. DSP/BIOS is a key a component of TI's eXpressDSPTM real-
time software technology.

1.1.1 What’s New in DSP/BIOS 5.42?

• DSP/BIOS is installed as part of a Code Composer Studio v5.3 or higher installation.

• DSP/BIOS 5.42 cannot be used with CCS v3 or v4. (Use an older version of DSP/BIOS if you do not
want to upgrade to the latest version of CCS.)

• XDCtools versions 3.25 and higher no longer provide support for the TCF configuration files used
with DSP/BIOS. DSP/BIOS 5.42 has been updated to provide its own TCF configuration support,
without the need for XDCtools.
SPRU423I—August 2012 About DSP/BIOS 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

DSP/BIOS Components www.ti.com
1.2 DSP/BIOS Components

Figure 1–1 shows DSP/BIOS components within the program generation and debugging environment of
Code Composer Studio:

Figure 1–1 DSP/BIOS Components

• DSP/BIOS API. On the host PC, you write programs (in C, C++, or assembly) that call DSP/BIOS
API functions.

• DSP/BIOS Configuration Tool. You create a configuration that defines static objects to be used in
your program. The configuration generates files that you compile and link with the program.

• DSP/BIOS Analysis Tools. These tools in Code Composer Studio let you test the program on the
target device while monitoring CPU load, timing, logs, thread execution, and more. (Thread refers to
any thread of execution: hardware interrupt, software interrupt, task, or idle function.)

The sections that follow provide an overview of these DSP/BIOS components.

TargetHost

Target hardware

DSP application program

DSP

Code Composer Studio

JTAG
RTDX

Code Composer debugger

DSP/BIOS Analysis Tools

cfg.h
cfg_c.c
cfg.cmd
cfg.s62
cfg.h62

Compiler,
assembler,

lnker...

Code
generation

tools
Code Composer project

.asm.h.c

Code Composer editor

source files

DSP/BIOS API

DSP/BIOS
Configuration

executable

DSP/BIOS

Host emulation support

.tcf
(config
script)
14 About DSP/BIOS SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com DSP/BIOS Components
1.2.1 DSP/BIOS Real-Time Kernel and API

DSP/BIOS is a scalable real-time kernel, designed for applications that require real-time scheduling and
synchronization, host-to-target communication, or real-time instrumentation. DSP/BIOS provides
preemptive multi-threading, hardware abstraction, real-time analysis, and configuration tools.

The DSP/BIOS API is divided into modules. Depending on what modules are configured and used by the
application, the size of DSP/BIOS can range from about 500 to 6500 words of code. All the operations
within a module begin with the letter codes shown Figure 1–1.

Application programs use DSP/BIOS by making calls to the API. All DSP/BIOS modules provide C-
callable interfaces. Most C-callable interfaces can also be called from assembly language, provided that
C calling conventions are followed. Some of the C interfaces are actually C macros and therefore, cannot
be used when called from assembly language. Refer to the TMS320 DSP/BIOS API Reference Guide for
your platform for details.

Table 1–1. DSP/BIOS Modules

Module Description

ATM Atomic functions written in assembly language

BUF Fixed-length buffer pool manager

C28, C55, C62, C64 Target-specific functions, platform dependent

CLK Clock manager

DEV Device driver interface

GBL Global setting manager

GIO General I/O manager

HOOK Hook function manager

HST Host channel manager

HWI Hardware interrupt manager

IDL Idle function manager

LCK Resource lock manager

LOG Event log manager

MBX Mailbox manager

MEM Memory segment manager

MSGQ Message queue manager

PIP Buffered pipe manager

POOL Allocator pool manager

PRD Periodic function manager

PWRM Power manager (’C55x and ’C6748 only)

QUE Atomic queue manager

RTDX Real-time data exchange settings

SEM Semaphore manager

SIO Stream I/O manager

STS Statistics object manager

SWI Software interrupt manager
SPRU423I—August 2012 About DSP/BIOS 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

DSP/BIOS Components www.ti.com
1.2.2 DSP/BIOS Configuration Tool

A DSP/BIOS configuration allows you to optimize your application by creating objects and setting their
properties statically, rather than at run-time. This both improves run-time performance and reduces the
application footprint.

The source file for a configuration is a DSP/BIOS Tconf script, which has a file extension of .tcf. There
are two ways to access a DSP/BIOS configuration:

• Textually. You can edit the text of the script using Code
Composer Studio or a separate text editor. You code the
configuration using JavaScript syntax. See the DSP/BIOS
Textual Configuration (Tconf) User’s Guide (SPRU007) for details.

• Graphically. You can view configurations in read-only mode
with the DSP/BIOS Configuration Tool, a graphical editor that
functions as a macro recorder for scripts. The interface is
similar to that of the Windows Explorer. The script is shown
in the right pane as you create it.

You can set a wide range of parameters used by DSP/BIOS at run time. The objects you create are used
by the application’s DSP/BIOS API calls. These objects include software interrupts, tasks, I/O streams,
and event logs.

SYS System services manager

TRC Trace manager

TSK Multitasking manager

Module Description
16 About DSP/BIOS SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com DSP/BIOS Components
Figure 1–2 Configuration Tool Module Tree

When you save a configuration, Tconf generates files to be included in the project. Using static
configuration, DSP/BIOS objects can be pre-configured and bound into an executable program image.
Alternately, a DSP/BIOS program can create and delete certain objects at run time.

In addition to minimizing the target memory footprint by eliminating run-time code and optimizing internal
data structures, creating static objects detects errors earlier by validating object properties before
program compilation.

See the DSP/BIOS online help and Section 2.5, Configuring DSP/BIOS Applications Statically, page 2-
33, for details.
SPRU423I—August 2012 About DSP/BIOS 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

DSP/BIOS Components www.ti.com
1.2.3 DSP/BIOS Analysis Tools

The DSP/BIOS analysis tools complement the Code Composer Studio environment by enabling real-time
program analysis of a DSP/BIOS application. You can visually monitor a DSP application as it runs with
minimal impact on the application’s real-time performance.

In CCS, the DSP/BIOS analysis tools are found in the Tools > RTOS Analyzer > RTA (Legacy) menu,
as shown here.

See the DSP/BIOS online help and Chapter 3, Instrumentation for details about individual analysis tools.
18 About DSP/BIOS SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Naming Conventions
Unlike traditional debugging, which is external to the executing program, program analysis requires the
target program contain real-time instrumentation services. By using DSP/BIOS APIs and objects,
developers automatically instrument the target for capturing and uploading real-time information to the host
through the Code Composer Studio DSP/BIOS analysis tools.

Several broad real-time program analysis capabilities are provided:

• Program tracing. Displaying events written to target logs, reflecting dynamic control flow during
program execution

• Performance monitoring. Tracking summary statistics that reflect use of target resources, such as
processor load and timing

• File streaming. Binding target-resident I/O objects to host files

When used in tandem with other debugging capabilities of Code Composer Studio, the DSP/BIOS real-
time analysis tools provide critical views into target program behavior during program execution—where
traditional debugging techniques that stop the target offer little insight. Even after the debugger halts the
program, information already captured by the host with the DSP/BIOS analysis tools can provide insight
into the sequence of events that led up to the current point of execution

Later in the software development cycle, when regular debugging techniques become ineffective for
attacking problems arising from time-dependent interactions, the DSP/BIOS analysis tools have an
expanded role as the software counterpart of the hardware logic analyzer.

1.3 Naming Conventions

Each DSP/BIOS module has a unique name that is used as a prefix for operations (functions), header
files, and objects for the module. This name is comprised of 3 or more uppercase alphanumerics.

Throughout this manual, 64 represents the two-digit numeric appropriate to your specific DSP platform.
If your DSP platform is C6200 based, substitute 62 each time you see the designation 64. For example,
DSP/BIOS assembly language API header files for the C6000 platform will have a suffix of .h62. For a
C55x DSP platform, substitute 55 for each occurrence of 64. Also, each reference to Code Composer
Studio C5000 can be substituted with Code Composer Studio C6000.

All identifiers beginning with upper-case letters followed by an underscore (XXX_*) should be treated as
reserved words.

1.3.1 Module Header Names

Each DSP/BIOS module has two header files containing declarations of all constants, types, and
functions made available through that module’s interface.

• xxx.h. DSP/BIOS API header files for C programs. Your C source files should include std.h and the
header files for any modules the C functions use.

• xxx.h##. DSP/BIOS API header files for assembly programs. Assembly source files should include
the appropriate xxx.h## header file for any module the assembly source uses. For example, hwi.h62.
This file contains macro definitions specific to this device.
SPRU423I—August 2012 About DSP/BIOS 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Naming Conventions www.ti.com
Your program must include the header file for each module used in a particular program source file. In
addition, C source files must include std.h before any module header files. (See Section 1.3.4, Data Type
Names, page 1-21, for more information.) The std.h file contains definitions for standard types and
constants. After including std.h, you can include the other header files in any sequence. For example:

#include <std.h>

#include <tsk.h>

#include <sem.h>

#include <prd.h>

#include <swi.h>

DSP/BIOS includes a number of modules that are used internally. These modules are undocumented
and subject to change at any time. Header files for these internal modules are distributed as part of
DSP/BIOS and must be present on your system when compiling and linking DSP/BIOS programs.

1.3.2 Object Names

System objects included in the configuration by default typically have names beginning with a 3- or 4-
letter code for the module that defines or uses the object. For example, the default configuration includes
a LOG object called LOG_system.

Note: Objects you create statically should use a common naming convention of your
choosing. You might want to use the module name as a suffix in object names. For
example, a TSK object that encodes data might be called encoderTsk.

1.3.3 Operation Names

The format for a DSP/BIOS API operation name is MOD_action where MOD is the letter code for the
module that contains the operation, and action is the action performed by the operation. For example,
the SWI_post function is defined by the SWI module; it posts a software interrupt.

This implementation of the DSP/BIOS API also includes several built-in functions that are run by various
built-in objects. Here are some examples:

• CLK_F_isr. Run by an HWI object to provide the low-resolution CLK tick.

• PRD_F_tick. Run by the PRD_clock CLK object to manage PRD_SWI and system tick.

• PRD_F_swi. Triggered by PRD_tick to run the PRD functions.

• _KNL_run. Run by the lowest priority SWI object, KNL_swi, to run the task scheduler if it is enabled.
This is a C function called KNL_run. An underscore is used as a prefix because the function is called
from assembly code.

• _IDL_loop. Run by the lowest priority TSK object, TSK_idle, to run the IDL functions.

• IDL_F_busy. Run by the IDL_cpuLoad IDL object to compute the current CPU load.

• RTA_F_dispatch. Run by the RTA_dispatcher IDL object to gather real-time analysis data.

• LNK_F_dataPump. Run by the LNK_dataPump IDL object to manage the transfer of real-time
analysis and HST channel data to the host.

• HWI_unused. Not actually a function name. This string is used in the configuration to mark unused
HWI objects.
20 About DSP/BIOS SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Naming Conventions
Note: Your program code should not call any built-in functions whose names begin with
MOD_F_. These functions are intended to be called only as function parameters
specified in the configuration.

Symbol names beginning with MOD_ and MOD_F_ (where MOD is any letter code for a DSP/BIOS
module) are reserved for internal use.

1.3.4 Data Type Names

The DSP/BIOS API does not explicitly use the fundamental types of C such as int or char. Instead, to
ensure portability to other processors that support the DSP/BIOS API, DSP/BIOS defines its own
standard data types. In most cases, the standard DSP/BIOS types are uppercase versions of the
corresponding C types.

The data types, shown in Table 1–2, are defined in the std.h header file.

Table 1–2. DSP/BIOS Standard Data Types:

Additional data types are defined in std.h, but are not used by DSP/BIOS APIs.

In addition, the standard constant NULL (0) is used by DSP/BIOS to signify an empty pointer value. The
constants TRUE (1) and FALSE (0) are used for values of type Bool.

Object structures used by the DSP/BIOS API modules use a naming convention of MOD_Obj, where
MOD is the letter code for the object’s module. If your program code uses any such objects created in
the configuration, it should make an extern declaration for the object. For example:

extern LOG_Obj trace;

Running the configuration script automatically generates a C header to file that contains the appropriate
declarations for all DSP/BIOS objects created by the configuration (<program>.cfg.h). This file should be
included by the application’s source files to declare DSP/BIOS objects.

Type Description

Arg Type capable of holding both Ptr and Int arguments

Bool Boolean value

Char Character value

Fxn Pointer to a function

Int Signed integer value

LgInt Large signed integer value

LgUns Large unsigned integer value

Ptr Generic pointer value

String Zero-terminated (\0) sequence (array) of characters

Uns Unsigned integer value

Void Empty type
SPRU423I—August 2012 About DSP/BIOS 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Naming Conventions www.ti.com
1.3.5 Memory Segment Names

The memory segment names used by DSP/BIOS are described in Table 1–3. You can change the origin,
size, and name of most default memory segments in the configuration.

Table 1–3. Memory Segment Names

Memory Segment Names, C55x Platform

Memory Segment Names, C6000 EVM Platform

Memory Segment Names, C6000 DSK Platform

Memory Segment Names, C2800 DSK Platform

Segment Description

IDATA Primary block of data memory

DATA1 Secondary block of data memory (not contiguous with
DATA)

PROG Program memory

VECT DSP Interrupt vector table memory segment

Segment Description

IPRAM Internal (on-device) program memory

IDRAM Internal (on-device) data memory

SBSRAM External SBSRAM on CE0

SDRAM0 External SDRAM on CE2

SDRAM1 External SDRAM on CE3

Segment Description

SDRAM External SDRAM

Segment Description

BOOTROM Boot code memory

FLASH Internal flash program memory

VECT Interrupt vector table when VMAP=0

VECT1 Interrupt vector table when VMAP=1

OTP One time programmable memory via flash registers

H0SARAM Internal program RAM

L0SARAM Internal data RAM

M1SARAM Internal user and task stack RAM
22 About DSP/BIOS SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Naming Conventions
1.3.6 Standard Memory Sections

The configuration defines standard memory sections and their default allocations as shown in Table 1–
4. You can change these default allocations using the MEM Manager. For more detail, see MEM Module
in the TMS320 DSP/BIOS API Reference Guide for your platform.

Table 1–4. Standard Memory Segments

C55x Platform

C6000 Platform

Sections Segment

System stack Memory (.stack),
System Stack Memory (.sysstack)

DATA

BIOS Kernel State Memory (.sysdata) DATA

BIOS Objects, Configuration Memory (.*obj) DATA

BIOS Program Memory (.bios) PROG

BIOS Startup Code Memory (.sysinit, .gblinit, .trcinit) PROG

Application Argument Memory (.args) DATA

Application Program Memory (.text) PROG

BIOS Heap Memory DATA

Secondary BIOS Heap Memory DATA1

Sections Segment

System stack memory (.stack) IDRAM

Application constants memory (.const) IDRAM

Program memory (.text) IPRAM

Data memory (.data) IDRAM

Startup code memory (.sysinit) IPRAM

C initialization records memory (.cinit) IDRAM

Uninitialized variables memory (.bss) IDRAM
SPRU423I—August 2012 About DSP/BIOS 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

For More Information www.ti.com
C2800 Platform

1.4 For More Information

For more information about the components of DSP/BIOS and the modules in the DSP/BIOS API, see
the DSP/BIOS section of the online help system, or the TMS320 DSP/BIOS API Reference Guide for
your platform.

Sections Segment

System stack memory (.stack) M1SARAM

Program memory (.text) IPROG

Data memory (.data) IDATA

Applications constants memory (.const) IDATA

Startup code memory (.sysinit) IPROG

C initialization records memory (.cinit) IDATA

Uninitialized variables memory (.bss) IDATA
24 About DSP/BIOS SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Chapter 2
SPRU423I—August 2012

Program Generation

This chapter describes the process of generating programs with DSP/BIOS. It also explains which files
are generated by DSP/BIOS components and how they are used.

2.1 Using DSP/BIOS in CCS Projects . 26

2.2 Using the DSP/BIOS Configuration Tool. 31

2.3 How hello.c Uses DSP/BIOS. 32

2.4 The Development Cycle . 33

2.5 Configuring DSP/BIOS Applications Statically. 33

2.6 Creating DSP/BIOS Objects Dynamically . 37

2.7 Files Used to Create DSP/BIOS Programs . 39

2.8 Using Makefiles to Build Applications . 40

2.9 Using DSP/BIOS with the Run-Time Support Library 42

2.10 DSP/BIOS Startup Sequence . 43

2.11 Using C++ with DSP/BIOS . 45

2.12 User Functions Called by DSP/BIOS . 47

2.13 Calling DSP/BIOS APIs from Main . 47

Topic Page
SPRU423I—August 2012 Program Generation 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I

Using DSP/BIOS in CCS Projects www.ti.com
2.1 Using DSP/BIOS in CCS Projects

The following sections explain how to create and work with projects in Code Composer Studio that use
DSP/BIOS.

2.1.1 Creating a CCS Project for DSP/BIOS Applications

To create a new CCS project that uses DSP/BIOS, follow these steps.

1. Open CCS and choose File > New > CCS Project from the menu bar.

2. In the New CCS Project dialog, type a Project name. For example, to begin creating a project using
"hello world" example code provided with DSP/BIOS, you can type "hellobios5". The default project
location is a folder with the same name as the project in your current workspace.

3. In the Family drop-down field, select your platform type. For example, you might select "C2000",
"C5500", or "C6000".

4. In the Variant row, select or type a filter on the left. This shortens the list of device variants in the right
drop-down field. Then, select the actual device you are using. For example, you might select
"Generic devices" in the filter field and "Generic C64x+ Device" in the second field.

5. In the Connection drop-down field, select how you connect to the device. The choices depend on
the device you selected; typically you can choose the Data Snapshot Viewer, a simulator, or an
emulator.
26 Program Generation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Using DSP/BIOS in CCS Projects
6. If you need to use a non-default setting for the device endianness, the TI Code Generation Tools
version, the output format (COFF or ELF), or the Runtime support library, click the arrow next to the
Advanced settings label to display fields for those settings. Typically, you will not need to do this.

Note: You should not specify your own linker command file when you are getting started
using DSP/BIOS. A linker command file will be created and used automatically when
you build the project.

7. In the Project templates area, scroll down to the DSP/BIOS v5.xx Examples item and expand the
list of devices. Select your device and then an example for that device. A description of the selected
template is shown to the right of the template list.
SPRU423I—August 2012 Program Generation 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Using DSP/BIOS in CCS Projects www.ti.com
2.1.2 Adding a DSP/BIOS Configuration to an Existing Project

If you want to use the DSP/BIOS APIs in a project, that project needs to have a DSP/BIOS Configuration
file (.tcf). You can add this type of file to an existing project as follows:

1. Choose File > New > DSP/BIOS v5.xx Configuration.

2. Click Browse next to the Project field, and select the CCS project to which you want to add
DSP/BIOS support. Click OK.

3. Change the Filename to match your project name (if it doesn’t already match). For example, if your
project name is "hellobios5", change the configuration filename to hellobios5.tcf. Click Next.

4. Select a platform for the configuration from the list. You can type a filter—for example, 64—to shorten
the list. Click Next.

5. In the list of DSP/BIOS Features, you can disable features if you are sure you won’t want to use them.
Disabling features reduces the application’s code size, but limits functionality. Then, click Finish.

— Real-Time Analysis. Disabling this feature prevents the gathering of LOG, STS, and other
instrumentation data from the target. See Section 3.1.

— RTDX. Real-Time Data eXchange provides for target-host communication. If you disable RTDX,
you will not be able to view real-time analysis (RTA) data. The ROV tool provides stop-mode
access to data, and is supported even if RTDX is disabled. See Section 3.8.

— TSK Manager. Tasks are threads that allow yielding and can use thread synchronization objects
such as semaphores. Most applications use tasks, but some may only use hardware and
software interrupts. See Section 4.4.

6. After you click Finish, the DSP/BIOS Configuration Tool opens. In the Configuration Tool window,
perform any tasks required by your application. See Section 2.2 for details on performing these tasks.

7. Save the configuration by choosing File > Save or clicking the Save icon. You can close the
DSP/BIOS Configuration Tool at this point, but can always return later to make further changes.

2.1.2.1 Notes for Adding DSP/BIOS to Existing Projects

If your project previously had its own linker command file, you may want to remove the old linker
command file from the project or use both linker command files. In a DSP/BIOS application,
programcfg.cmd is your project's linker command file. This file already includes directives for the linker
to use the appropriate libraries (e.g., bios.a62, rtdx.lib, rts64plus.lib), so you do not need to add any of
these library files to your project.

For most DSP/BIOS applications the generated linker command file, programcfg.cmd, suffices to
describe all memory segments and allocations. All DSP/BIOS memory segments and objects are
handled by this linker command file. In addition, most commonly used sections (such as .text, .bss, .data,
etc.) are already included in programcfg.cmd. Their locations (and sizes, when appropriate) can be
controlled from the MEM Manager in the configuration. In some cases an application can require an
additional linker command file (app.cmd) to describe application-specific sections that are not described
in the linker command file generated by the configuration.
28 Program Generation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Using DSP/BIOS in CCS Projects
If your project includes the vectors.asm source file, you should remove that file from the project.
Hardware interrupt vectors are automatically defined in the DSP/BIOS configuration.

Code Composer Studio software automatically scans all dependencies in your project files, adding the
necessary DSP/BIOS and RTDX header files for your configuration to your project's include folder. So,
you don’t need to explicitly add DSP/BIOS header files to the project.

2.1.3 Adding a Source File to a CCS Project

Add a C source file to your DSP/BIOS project in one of the following ways:

• You can create a new file by choosing File > New > Source File.

• You can add an existing file to your project by choosing Project > Add Files (copies the file to your
workspace) or Project > Link Files to Active Project (does not copy the file; uses the original
location).

For example, you might choose Project > Add Files and browse to the
C:\ti\bios_5_##_##_##\packages\ti\bios\examples directory to add the hello.c file. See Section 2.3
for a brief overview of how hello.c uses DSP/BIOS.

Note that the provided examples expect specific filenames for the DSP/BIOS Configuration File. For
example, hello.c #includes hellocfg.h, which would be generated from a configuration file called
hello.tcf. If your configuration file has a different name, you should modify the #include statement.
For example, if your configuration file is hellobios5.tcf, modify the hello.c file to #include the
hellobios5cfg.h file.

2.1.4 Create a CCS Target Configuration File

Create a target configuration for CCS project to use when debugging as follows:

1. Choose File > New > Target Configuration File.

2. Type a filename for the target configuration, which will be stored as part of the CCS project. For
example, you might type TCI6482sim.ccxml if that reflects the target you want to use. Then, click
Finish.

3. In the Connection field for your target configuration, choose the type of connection you have to the
target.

4. Type part of the target name in the Device filter field. For example, you might choose the "TI
Simulator" connection and filter by "64xp" to find a C64x+ simulator.

5. Check the box next to your target.

6. Choose File > Save or click the Save button to save your target configuration.

2.1.5 Build a DSP/BIOS Project

Build your DSP/BIOS project as follows:

1. Choose Project > Build Active Project.

2. Examine the log in the Console tab to diagnose any errors. Notice that when you build, the DSP/BIOS
Configuration .tcf file is processed to generate a number of files that are listed in the Debug node of
the project list.
SPRU423I—August 2012 Program Generation 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Using DSP/BIOS in CCS Projects www.ti.com
2.1.6 Run a DSP/BIOS Project

Run an application as follows:

1. Choose Run > Debug or click the Debug icon. This causes CCS to switch to the CCS Debug
perspective. Your application runs and halts before the first statement in main().

2. Set breakpoints by double-clicking in the margin next to lines where you want to stop. For example,
in hello.c you might set a breakpoint on the return; line.

3. Choose Tools > RTOS Object View (ROV) to open a view that allows you to view the state of objects
created with DSP/BIOS.

4. Expand the hierarchy in the ROV tool so you can select the "trace" LOG.

5. Choose Target > Run or click the Run icon to run to the breakpoint.

6. The information for the "trace" LOG should now show the message sent by LOG_printf.

7. See Section 3.3 for more information about using the ROV tool. See Section 3.2 for information about
using Real-Time Analysis tools for debugging.

2.1.7 Converting Legacy CCS Projects to CCS 5.x Projects

To import a CCSv3.3 project, choose Project > Import Legacy CCSv3.3 Project in CCS. Follow the
instructions in the import wizard.

To import a CCSv4 or CCSv5 project, choose Project > Import Existing CCS Eclipse Project. Follow
the instructions in the import wizard.

For more information about converting legacy projects to CCS v5.x projects, go to
http://processors.wiki.ti.com/index.php/Migrating_to_CCSv5.

If you are importing a project that uses DSP/BIOS, the wizard asks you to select the version of DSP/BIOS
you want the imported project to use. It is recommended that you select a DSP/BIOS 5.4x version. This
version of DSP/BIOS is compatible with previous 5.x versions.

If you select a SYS/BIOS 6.x version, you will need to make changes to your source code and
configuration. (See the documentation for SYS/BIOS instead of DSP/BIOS.)
30 Program Generation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com
http://processors.wiki.ti.com/index.php/Migrating_to_CCSv5

www.ti.com Using the DSP/BIOS Configuration Tool
2.2 Using the DSP/BIOS Configuration Tool

The DSP/BIOS Configuration Tool lets you configure the modules that make up the DSP/BIOS kernel.
The modules are shown in the left pane of the tool.

Modules have a manager, for which you can set properties. In addition, most modules let you create
object instances, for which you can set properties.

In the DSP/BIOS Configuration Tool, you can perform the following actions:

• Create and name objects. See Section 2.2.1.

• Set global properties for the application, module manager properties, and object properties. See
Section 2.2.2.

• Set priorities for software interrupts and tasks. See Section 2.2.3.

• Add comments and blank lines to the script. See Section 2.2.4.
SPRU423I—August 2012 Program Generation 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

How hello.c Uses DSP/BIOS www.ti.com
2.2.1 Creating Objects in the Configuration Tool

To create a new object with the Configuration Tool, follow these steps:

1. Select the manager for the object type you want to create. For example, if you want to create an SWI
object, select the SWI manager.

2. Choose Object > Insert or right-click and choose Insert.

3. Type a name for the new object in the Insert Object dialog.

2.2.2 Setting Properties in the Configuration Tool

To set properties for a module or object, follow these steps:

1. Select the manager or object whose properties you want to set and choose Object > Properties or
right-click and choose Properties. Global properties for the configuration are in the System category.

2. In the Properties dialog, change the property settings as desired. Items with a large number of
properties have the tabs that contain various categories of properties. For context-sensitive help
about properties, click Help in any Properties dialog.

3. When you have finished setting properties, click OK.

2.2.3 Setting Priorities in the Configuration Tool

You can set priority levels for SWI or TSK object. Likewise, you can set the execution order of CLK, PRD,
IDL, and HOOK objects. To set such priorities or execution orders, follow these steps:

1. In the Configuration Tool, highlight the manager whose priorities or order you want to set.

2. Notice that the objects in the middle pane of the window are listed by priority or execution order. (If
you do not see the priority list in the right half of the window, right-click on the manager and choose
Ordered collection view from the menu.)

3. Drag objects to the priority levels or execution order you want to use.

2.2.4 Modifying the Script in the Configuration Tool

The right pane of the Configuration Tool shows the current .tcf script. As you make changes to objects
and properties, the statements that create that configuration are shown in the right pane. You can modify
the script slightly by clicking on a location in the script and choosing Insert Comment or Insert Blank
Line. If you want to make more substantial changes to the text of the script, you can use CCS to open
the *.tcf file with a Text Editor.

2.3 How hello.c Uses DSP/BIOS

The hello.c program uses DSP/BIOS’s LOG module to send a message to the host.

The first few lines include the header files for DSP/BIOS modules used in this file. In DSP/BIOS
programs, always include the std.h file first, then include the module header files. This example uses the
LOG module, so that header file is also included.

#include <std.h>

#include <log.h>
32 Program Generation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com The Development Cycle
The program must also include the header file that will be generated from the .tcf configuration file. This
file has the filename <tcf_file>cfg.h. For example, if the .tcf file for a project is hello.tcf, the #include
statement would be as follows:

#include "hellocfg.h"

The main() function simply prints a message to a log using the LOG_printf API. This API is very efficient.
To reduce execution time, LOG_printf just passes raw data to the host PC; formatting is done on the PC.

/* ======== main ======== */

Void main()

{

 LOG_printf(&trace, "hello world!");

After the main() function is complete, it returns. In more complicated applications, the return statement
has the effect of turning control over to DSP/BIOS scheduling to run hardware interrupts (HWI), software
interrupts (SWI), tasks (TSK), and idle functions (IDL) as needed.

 /* fall into DSP/BIOS idle loop */

 return;

2.4 The Development Cycle

DSP/BIOS supports iterative program development cycles. You can create the basic framework for an
application and test it with a simulated processing load before the DSP algorithms are in place. You can
easily change the priorities and types of program threads that perform various functions.

A sample DSP/BIOS development cycle includes the following steps, though iteration can occur for any
step or group of steps:

1. Configure static objects for your program to use. This can be done using the DSP/BIOS Configuration
Tool or the Tconf scripting language.

2. Write a framework for your program. You can use C, C++, assembly, or a combination of the
languages.

3. Add files to your project and compile and link the program using Code Composer Studio.

4. Test program behavior using a simulator or initial hardware and the DSP/BIOS analysis tools. You
can monitor logs and traces, statistics objects, timing, software interrupts, and more.

5. Repeat steps 1-4 until the program runs correctly. You can add functionality and make changes to
the basic program structure.

6. When production hardware is ready, modify the configuration to support the production board and
test your program on the board.

2.5 Configuring DSP/BIOS Applications Statically

As Section 1.2.2, DSP/BIOS Configuration Tool, page 1-16 describes, DSP/BIOS configurations allow
you create objects and set their properties statically, rather than at run-time. You can choose to create a
configuration graphically, textually, or using a combination of these methods.

The DSP/BIOS Textual Configuration (Tconf) User’s Guide (SPRU007) contains details on the syntax
used in configuration scripts.
SPRU423I—August 2012 Program Generation 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Configuring DSP/BIOS Applications Statically www.ti.com
2.5.1 When to Use Graphical Configuration

Use the DSP/BIOS Configuration Tool for the following advantages:

• If you want a tree-view interface that makes it easy to see the available properties for each module
and object.

• If you want to be prevented from making errors by the interface, which provides drop-down lists of
valid values and disables invalid commands and fields.

You can use a text editor to modify a configuration script and then reload the script into the DSP/BIOS
Configuration Tool for further graphical editing. There are certain restrictions on graphical editing after
you have edited a script or started a new configuration session.

2.5.2 When to Use a Text Editor

Use a text editor to modify a script if you want the following advantages:

• If you want a script to use branching, looping, and other constructs.

• If you want to create a number of similar objects. You can do this with cut-and-paste or by looping
over a create method.

• If you want to modularize settings you use in a set of applications. For example, if your applications
all use similar instrumentation objects, all applications can include a single file that creates those
objects.

• If you want the configuration to use the same symbol definitions as program source files. You can do
this by defining variables for use in scripts and generating a C header file from the script to be
included by the program source code.

• If you want to create similar configurations, you can pass command-line arguments to a script. For
example, you might optimize a program by varying the number of tasks created and testing resulting
applications.

• If you want to use standard code editing tools. For example, to merge changes from multiple
developers, compare application configurations, and cut and paste between program configurations.

• If you want to use UNIX.

DSP/BIOS configurations should not be confused with other items used for configuration within Code
Composer Studio.

2.5.3 Referencing Statically Created DSP/BIOS Objects

Statically-created objects that you reference in a program need to be declared as extern variables outside
all function bodies. For example, the following declarations make the PIP_Obj object visible in all
functions that follow its definition in the program.

extern far PIP_Obj inputObj; /* C6000 devices */

 or

extern PIP_Obj inputObj; /* C5000 and C2800 devices */

The configuration generates a file that contains these declarations. The file has a name of the form *cfg.h,
where * is the name of your program. This file can be #included in C files that reference DSP/BIOS
objects.
34 Program Generation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Configuring DSP/BIOS Applications Statically
2.5.3.1 Small and Large Model Issues for C6000

Although DSP/BIOS itself is compiled using the small model, you can compile DSP/BIOS applications
using either the C6000 compiler’s small model or any variation of the large model. (See the
TMS320C6000 Optimizing Compiler User’s Guide (SPRU187G).) In fact, you can mix compilation
models within the application code provided all global data that is accessed by using a displacement
relative to B14 is placed no more than 32K bytes away from the beginning of the .bss section.

DSP/BIOS uses the .bss section to store global data. However, objects configured statically are not
placed in the .bss section. This maximizes your flexibility in the placement of application data. For
example, the frequently accessed .bss can be placed in on-device memory while larger, less frequently
accessed objects can be stored in external memory.

The small model makes assumptions about the placement of global data in order to reduce the number
of instruction cycles. If you are using the small model (the default compilation mode) to optimize global
data access, your code can be modified to make sure that it references statically-created objects
correctly.

There are four methods for dealing with this issue. These methods are described in the sections following
and have the pros and cons as shown in Table 2–1.

Table 2–1. Methods of Referencing C6000 Global Objects

2.5.3.2 Referencing Static DSP/BIOS Objects in the Small Model

In the small model, all compiled code accesses global data relative to a data page pointer register. The
register B14 is treated as a read-only register by the compiler and is initialized with the starting address
of the .bss section during program startup. Global data is assumed to be at a constant offset from the
beginning of the .bss section and this section is assumed to be at most 32K bytes in length. Global data,
therefore, can be accessed with a single instruction like the following:

LDW *+DP(_x), A0 ; load _x into A0 (DP = B14)

Since objects created statically are not placed in the .bss section, you must ensure that application code
compiled with the small model references them correctly. There are three ways to do this:

Method

Declare
objects
with far

Use global
object
pointers

Objects
adjacent
to .bss

Compile
with large
model

Code works independent of compilation model Yes Yes Yes Yes

Code works independent of object placement Yes Yes No Yes

C code is portable to other compilers No Yes Yes Yes

Statically-created object size not limited to 32K bytes Yes Yes No Yes

Minimizes size of .bss Yes Yes No Yes

Minimizes instruction cycles No
(3 cycles)

No
(2-6 cycles)

Yes
(1 cycle)

No
(3 cycles)

Minimizes storage per object No
(12 bytes)

No
(12 bytes)

Yes
(4 bytes)

No
(12 bytes)

Easy to program; easy to debug Somewhat Error prone Somewhat Yes
SPRU423I—August 2012 Program Generation 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Configuring DSP/BIOS Applications Statically www.ti.com
• Declare static objects with the far keyword. The DSP/BIOS compiler supports this common extension
to the C language. The far keyword in a data declaration indicates that the data is not in the .bss
section.

For example, to reference a PIP object called inputObj that was created statically, declare the object
as follows:

extern far PIP_Obj inputObj;

if (PIP_getReaderNumFrames(&inputObj)) {

 . . .

}

• Create and initialize a global object pointer. You can create a global variable that is initialized to the
address of the object you want to reference. All references to the object must be made using this
pointer, to avoid the need for the far keyword. For example:

extern PIP_Obj inputObj;

/* input MUST be a global variable */

PIP_Obj *input = &inputObj;

if (PIP_getReaderNumFrames(input)) {

 . . .

}

Declaring and initializing the global pointer consumes an additional word of data (to hold the 32-bit
address of the object).

Also, if the pointer is a static or automatic variable this technique fails. The following code does not
operate as expected when compiled using the small model:

extern PIP_Obj inputObj;

static PIP_Obj *input = &inputObj; /* ERROR!!!! */

if (PIP_getReaderNumFrames(input)) {

 . . .

}

• Place all objects adjacent to .bss. If all objects are placed at the end of the .bss section, and the
combined length of the objects and the .bss data is less than 32K bytes, you can reference these
objects as if they were allocated within the .bss section:

extern PIP_Obj inputObj;

if (PIP_getReaderNumFrames(&inputObj)) {

 . . .

}

You can guarantee this placement of objects by using the configuration as follows:

a) Declare a new memory segment by creating a MEM object and setting its properties (i.e., the
base and length); or use one of the preexisting data memory MEM objects.

b) Place all objects that are referenced by small model code in this memory segment.

c) Place Uninitialized Variables Memory (.bss) in this same segment.
36 Program Generation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Creating DSP/BIOS Objects Dynamically
2.5.3.3 Referencing Static DSP/BIOS Objects in the Large Model

In the large model, all compiled code accesses data by first loading the entire 32-bit address into an
address register and then using the indirect addressing capabilities of the LDW instruction to load the
data. For example:

MVKL _x, A0 ; move low 16-bits of _x’s address into A0

MVKH _x, A0 ; move high 16-bits of _x’s address into A0

LDW *A0, A0 ; load _x into A0

Application code compiled with any of the large model variants is not affected by the location of static
objects. If all code that directly references statically-created objects is compiled with any large model
option, code can reference the objects as ordinary data:

extern PIP_Obj inputObj;

if (PIP_getReaderNumFrames(&inputObj)) {

 . . .

}

The -ml0 large model option is identical to small model except that all aggregate data is assumed to be
far. This option causes all static objects to be assumed to be far objects but allows scalar types (such as
int, char, long) to be accessed as near data. As a result, the performance degradation for many
applications is quite modest.

2.6 Creating DSP/BIOS Objects Dynamically

For typical DSP applications, most objects should be created statically because they are used throughout
program execution. A number of default objects are automatically defined in the configuration template.
Creating objects statically provides the following benefits:

• Reduced code size. For a typical module, the XXX_create() and XXX_delete() functions contain
50% of the code required to implement the module. If you avoid using any calls to TSK_create() and
TSK_delete(), the underlying code for these functions is not included in the application program. The
same is true for other modules. By creating objects statically, you can dramatically reduce the size
of your application program.

• Improved run-time performance. In addition to saving code space, avoiding dynamic creation of
objects reduces the time your program spends performing system setup.

Creating objects statically has the following limitations:

• Static objects are created whether or not they are needed. You may want to create objects
dynamically if they will be used only as a result of infrequent run-time events.

• You cannot delete static objects at run-time using the XXX_delete functions.

You can create many, but not all, DSP/BIOS objects by calling the function XXX_create where XXX
names a specific module. Some objects can only be created statically. Each XXX_create function
allocates memory for storing the object’s internal state information, and returns a handle used to
reference the newly-created object when calling other functions provided by the XXX module.
SPRU423I—August 2012 Program Generation 37
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Creating DSP/BIOS Objects Dynamically www.ti.com
Most XXX_create functions accept as their last parameter a pointer to a structure of type XXX_Attrs
which is used to assign attributes to the newly-created object. By convention, the object is assigned a set
of default values if this parameter is NULL. These default values are contained in the constant structure
XXX_ATTRS listed in the header files, enabling you to first initialize a variable of type XXX_Attrs and then
selectively update its fields with application-dependent attribute values before calling XXX_create.
Sample code that creates a dynamic object using the TSK_create is shown in Example 2-1.

Example 2-1 Creating and Referencing Dynamic Objects

The XXX_create function passes back a handle that is an address to the task’s object. This handle is can
then be passed as an argument when referencing, for example, deleting the object, as shown in Example
2-2. Objects created with XXX_create are deleted by calling the function XXX_delete. This frees the
object’s internal memory back to the system for later use.

Use the global constant XXX_ATTRS to copy the default values, update its fields, and pass as the
argument to the XXX_create function.

Example 2-2 Deleting a Dynamic Object

Dynamically-created DSP/BIOS objects allow for a program to adapt at runtime.

#include <tsk.h>
TSK_Attrs attrs;
TSK_Handle task;

attrs = TSK_ATTRS;
attrs.name = "reader";
attrs.priority = TSK_MINPRI;

task = TSK_create((Fxn)foo, &attrs);

TSK_delete (task);
38 Program Generation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Files Used to Create DSP/BIOS Programs
2.7 Files Used to Create DSP/BIOS Programs

Figure 2–1 shows files used to create DSP/BIOS applications. Files you write are shown with a white
background; generated files have a gray background. The word program represents the name of your
project or program. The number 62 is replaced by 28, 55, or 64 as appropriate for your platform.

Figure 2–1 Files in a DSP/BIOS Application

Program Files

• program.c. Program source file containing the main function. You can also have additional .c source
files and program .h files. For user functions, see Section 2.12, User Functions Called by DSP/BIOS.

• program.tcf. The Tconf script that generates the configuration files when run. This is the source file
for the configuration. This is the file you add to a Code Composer Studio project to make the
configuration part of the application.

• *.asm. Optional assembly source file(s). One of these files can contain an assembly language
function called _main as an alternative to using a C or C++ function called main.

• module.h. DSP/BIOS API header files for C or C++ programs. Your source files should include std.h
and the header files for any modules the program uses.

• module.h62. DSP/BIOS API header files for assembly programs. Assembly source files should
include the *.h64 header file for any module the assembly source uses.

• program.obj. Object file(s) compiled or assembled from your source file(s)

• *.obj. Object files for optional assembly source file(s)

• *.cmd. Optional linker command file(s) that contains additional sections for your program not defined
by the DSP/BIOS configuration.

• program.out. An executable program for the target (fully compiled, assembled, and linked). You can
load and run this program with Code Composer Studio commands.

program.out

compile or
assemble

assemble

link

generate

include

program.c
*.cmd

(optional)

program.tcf

programcfg.cmd
programcfg.s62

programcfg.h62

*.objprogram.obj programcfg.obj

*.asm, *.c, *.h,
and/or *.cpp

module.h62module.h

compile
programcfg.h

programcfg_c.c

programcfg_c..obj
SPRU423I—August 2012 Program Generation 39
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Using Makefiles to Build Applications www.ti.com
Static Configuration Files

When you build a project that contains a *.tcf file in CCS, the following files are automatically created and
added to the Debug folder of the project list (where "program" is the configuration file name and 62 is
replaced by 28, 55, or 64 as appropriate for your platform):

• programcfg.cmd. Linker command file for DSP/BIOS objects. This file defines DSP/BIOS-specific
link options and object names, and generic data sections for DSP programs (such as .text, .bss,
.data, etc.).

• programcfg.h. Includes DSP/BIOS module header files and declares external variables for objects
created in the configuration.

• programcfg_c.c. Defines DSP/BIOS related objects. (No longer defines CSL objects.)

• programcfg.s62. Assembly language source file for DSP/BIOS settings.

• programcfg.h62. Assembly language header file included by programcfg.s62.

• program.cdb. Stores configuration settings for use by run-time analysis tools. In previous versions,
this was the configuration source file. It is now generated by running the *.tcf file. This file is used by
the DSP/BIOS analysis tools.

• programcfg.obj. Object file created from the source file generated by the configuration.

2.8 Using Makefiles to Build Applications

You can build your DSP/BIOS executables using a Code Composer Studio project or using your own
makefile. The Code Composer Studio software includes gmake.exe, the GNU make utility.

For details specific to your version of DSP/BIOS, see the SetupGuide.html and release_notes.html files
in your DSP/BIOS installation.

As an alternative to building your program as a Code Composer Studio project, you can use a makefile.

In the following example, the C source code file is volume.c, additional assembly source is in load.asm,
and the configuration file is volume.cdb. This makefile is for use with gmake, which is included with the
Code Composer Studio software.

A typical makefile for compiling and linking a DSP/BIOS program is shown in Example 2-3.

Unlike the Code Composer Studio project, makefiles allow for multiple linker command files. If the
application requires additional linker command files you can easily add them to the CMDS variable in the
example makefile shown in Example 2-3. However, they must always appear after the programcfg.cmd
linker command file generated by the Configuration Tool.
40 Program Generation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Using Makefiles to Build Applications
Example 2-3 Sample Makefile for a DSP/BIOS Program

Makefile for creation of program named by the PROG variable
The following naming conventions are used by this makefile:
<prog>.asm - C55 assembly language source file
<prog>.obj - C55 object file (compiled/assembled source)
<prog>.out - C55 executable (fully linked program)
<prog>cfg.s55 - configuration assembly source file
generated by Configuration Tool
<prog>cfg.h55 - configuration assembly header file
generated by Configuration Tool
<prog>cfg.cmd - configuration linker command file
generated by Configuration Tool

include $(TI_DIR)/c5400/bios/include/c55rules.mak

#
Compiler, assembler, and linker options.
-g enable symbolic debugging
CC55OPTS = -g
AS55OPTS =
-q quiet run
LD55OPTS = -q

Every DSP/BIOS program must be linked with:
$(PROG)cfg.o55 - object resulting from assembling
$(PROG)cfg.s55
$(PROG)cfg.cmd - linker command file generated by
the Configuration Tool. If additional
linker command files exist,
$(PROG)cfg.cmd must appear first.
#
PROG = volume
OBJS = $(PROG)cfg.obj load.obj
LIBS =
CMDS = $(PROG)cfg.cmd

Targets:
all:: $(PROG).out

$(PROG).out: $(OBJS) $(CMDS)
$(PROG)cfg.obj: $(PROG)cfg.h55
$(PROG).obj:

$(PROG)cfg.s55 $(PROG)cfg.h55 $(PROG)cfg.cmd:
 @ echo Error: $@ must be manually regenerated:
 @ echo Open and save $(PROG).cdb within the DSP/BIOS Configuration Tool.
 @ check $@

.clean clean::
 @ echo removing generated configuration files ...
 @ remove -f $(PROG)cfg.s55 $(PROG)cfg.h55 $(PROG)cfg.cmd
 @ echo removing object files and binaries ...
 @ remove -f *.obj *.out *.lst *.map
SPRU423I—August 2012 Program Generation 41
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Using DSP/BIOS with the Run-Time Support Library www.ti.com
2.9 Using DSP/BIOS with the Run-Time Support Library

The linker command file generated by the configuration automatically includes directives to search the
necessary libraries including a DSP/BIOS, RTDX, and a run-time support library. The run-time support
library is created from rts.src, which contains the source code for the run-time support functions. These
are standard ANSI functions that are not part of the C language (such as functions for memory allocation,
string conversion, and string searches). A number of memory management functions that are defined
within rts.src are also defined within the DSP/BIOS library. These are malloc, free, memalign, calloc, and
realloc. The libraries support different implementations. For example, the DSP/BIOS versions are
implemented with the MEM module and therefore make use of the DSP/BIOS API calls MEM_alloc and
MEM_free. Because the DSP/BIOS library provides some of the same functionality found in the run-time
support library, the DSP/BIOS linker command file includes a special version of the run-time support
library called rtsbios that does not include the files shown in Table 2–2.

Table 2–2. Files Not Included in rtsbios

In many DSP/BIOS projects, it is necessary to use the –x linker switch in order to force the rereading of
libraries. For example, if printf references malloc and malloc has not already been linked in from the
DSP/BIOS library, it forces the DSP/BIOS library to be searched again in order to resolve the reference
to malloc.

Note: The run-time support library implements printf with breakpoints. Depending on how
often your application uses printf and the frequency of the calls, printf() can interfere
with RTDX, thus affecting real-time analysis tools such as the Raw Log and Statistics
Data, and preventing these tools from updating. This is because the printf breakpoint
processing has higher priority processing than RTDX. It is therefore recommended to
use LOG_printf in place of calls to printf wherever possible within DSP/BIOS
applications.

Note: It is recommended that you use the DSP/BIOS library version of malloc, free,
memalign, calloc and realloc within DSP/BIOS applications. When you are not
referencing these functions directly in your application but call another run-time support
function which references one or more of them, add '-u _symbol', (for example, -u
_malloc) to your linker options. The -u linker option introduces a symbol, such as
malloc, as an unresolved symbol into the linker's symbol table. This causes the linker
to resolve the symbol from the DSP/BIOS library rather than the run-time support
library. If in doubt, you can examine your map file for information on the library sources
of your application.

C55x Platform C6000 Platform

memory.c memory.c

boot.c sysmem.c

autoinit.c

boot.c
42 Program Generation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com DSP/BIOS Startup Sequence
2.10 DSP/BIOS Startup Sequence

When a DSP/BIOS application starts up, the calls or instructions in the autoinit.c and boot.snn files
determine the startup sequence. Compiled versions of these files are provided with the bios.ann and
biosi.ann libraries and the source code is available on the distribution disks received with your product.
The DSP/BIOS startup sequence, as specified in the source code of the boot files is shown below. You
should not need to alter the startup sequence.

1. Initialize the DSP. A DSP/BIOS program starts at the C or C++ environment entry point c_int00. The
reset interrupt vector is set up to branch to c_int00 after reset.

At the beginning of c_int00 for the C55x platform, the data (user) stack pointer (XSP) and the system
stack pointer (XSSP) are both set up to point to the bottom of the user and system stacks,
respectively. Additionally, the XSP is aligned to an even address boundary.

For the C6000 platform, at the beginning of c_int00, the system stack pointer (B15) and the global
page pointer (B14) are set up to point to the end of the stack section and the beginning of .bss,
respectively. Control registers such as AMR, IER, and CSR are also initialized.

2. Initialize the .bss from the .cinit records. Once the stacks are set up, the initialization routine is
called to initialize the variables from the .cinit records.

3. Call BIOS_init to initialize the modules used by the application. BIOS_init performs basic
module initialization. BIOS_init invokes the MOD_init macro for each DSP/BIOS module used by the
application. BIOS_init is generated by the configuration and is located in the programcfg.snn file.

— HWI_init sets up the ISTP and the interrupt selector registers, sets the NMIE bit in the IER on the
C6000 platform, and clears the IFR on all platforms. See the HWI Module Section in the TMS320
DSP/BIOS API Reference Guide for your platform for more information.

Note: When configuring an interrupt, DSP/BIOS plugs in the corresponding ISR (interrupt
service routine) into the appropriate location of the interrupt service table. However,
DSP/BIOS does not enable the interrupt bit in IER. It is your responsibility to do this at
startup or whenever appropriate during the application execution.

— HST_init initializes the host I/O channel interface. The specifics of this routine depend on the
particular implementation used for the host to target link. For example, in the C6000 platform, if
RTDX is used, HST_init enables the bit in IER that corresponds to the hardware interrupt
reserved for RTDX.

— IDL_init calculates the idle loop instruction count. If the Auto calculate idle loop instruction
count property was set to true in the Idle Function Manager configuration, IDL_init calculates the
idle loop instruction count at this point in the startup sequence. The idle loop instruction count is
used to calibrate the CPU load displayed by the CPU Load Graph (see Section 3.6.1, The CPU
Load, page 3-73).

4. Process the .pinit table. The .pinit table consists of pointers to initialization functions. For C++
programs, class constructors of global objects execute during .pinit processing.

5. Call your program’s main routine. After all DSP/BIOS modules have completed their initialization
procedures, your main routine is called. This routine can be written in assembly, C, C++ or a
combination. Because the C compiler adds an underscore prefix to function names, this can be a C
or C++ function called main or an assembly function called _main.
SPRU423I—August 2012 Program Generation 43
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

DSP/BIOS Startup Sequence www.ti.com
Since neither hardware nor software interrupts are enabled yet, you can take care of initialization
procedures for your own application (such as calling your own hardware initialization routines) from
the main routine. Your main function can enable individual interrupt mask bits, but it should not call
HWI_enable to globally enable interrupts.

6. Call BIOS_start to start DSP/BIOS. Like BIOS_init, BIOS_start is also generated by the
configuration and is located in the programcfg.snn file. BIOS_start is called after the return from your
main routine. BIOS_start is responsible for enabling the DSP/BIOS modules and invoking the
MOD_startup macro for each DSP/BIOS module. If the TSK Manager is enabled in the configuration,
the call to BIOS_start does not return. For example:

— CLK_startup sets up the PRD register, enables the bit in the IER for the timer chosen in the CLK
Manager, and finally starts the timer. (This macro is only expanded if you enable the CLK
Manager in the configuration.)

— PIP_startup calls the notifyWriter function for each created pipe object.

— SWI_startup enables software interrupts.

— HWI_startup enables hardware interrupts by setting the GIE bit in the CSR on the C6000
platform.

— TSK_startup enables the task scheduler and launches the highest priority task that is ready to
run. If the application has no tasks that are currently ready, the TSK_idle executes and calls
IDL_loop. Once TSK_startup is called, the application begins and thus execution does not return
from TSK_startup or from BIOS_start. TSK_startup runs only if the Task Manager is enabled in
the configuration.

7. Execute the idle loop. You can enter the idle loop in one of two ways. If the Task Manager is
enabled, the Task scheduler runs TSK_idle which calls IDL_loop. If the Task Manager is disabled,
the call to BIOS_start returns and a call to IDL_loop follows. By calling IDL_loop, the boot routine falls
into the DSP/BIOS idle loop forever. At this point, hardware and software interrupts can occur and
preempt idle execution. Since the idle loop manages communication with the host, data transfer
between the host and the target can now take place.

2.10.1 Advanced Startup: C5500 Platform Only

On the C5500 platform, the architecture allows the software to reprogram the start of the vector tables
(256 bytes in overall length) by setting the registers IVPD and IVPH. By default, the hardware reset loads
0xFFFF to both these registers and the reset vector is fetched from location 0xFF – FF00. To move the
vector tables to a different location, it is necessary to write the desired address into IVPD and IVPH after
the hardware reset and then do a software reset, at which time the new values in IVPD and IVPH take
effect.

The macro HWI_init loads the configured vector table address into IVPD and IVPH but must be followed
by a software reset to actually bring the new IVPD and IVPH into effect.
44 Program Generation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Using C++ with DSP/BIOS
The C5500 platform also allows for three possible stack modes (see Table 2–3). To configure the
processor in any of the non-default modes, the user is required to set bits 28 and 29 to the reset vector
location appropriately using the Code Composer Studio debugger tool and then to apply a software reset.
For more information, please see the TMS320C55x DSP CPU Reference Guide.

Table 2–3. Stack Modes on the C5500 Platform

In addition, the DSP/BIOS configuration should set the Stack Mode property of the HWI Manager to
match the mode used by the application. See the TMS320C5000 DSP/BIOS API Reference Guide for
details.

2.11 Using C++ with DSP/BIOS

DSP/BIOS applications can be written in C++. An understanding of issues regarding C++ and DSP/BIOS
can help to make C++ application development proceed smoothly. These issues concern memory
management, name mangling, calling class methods from configured properties, and special
considerations for class constructors and destructors.

2.11.1 Memory Management

The functions new and delete are the C++ operators for dynamic memory allocation and deallocation.
Within DSP/BIOS applications, these operators are reentrant because they are implemented with the
DSP/BIOS memory management functions MEM_alloc and MEM_free. However, memory management
functions require that the calling thread obtain a lock to memory before proceeding if the requested lock
is already held by another thread, blocking results. Therefore, new and delete should be used by TSK
objects only.

The functions new and delete are defined by the run-time support library, not the DSP/BIOS library. Since
the DSP/BIOS library is searched first, some applications can result in a linker error stating that there are
undefined symbols that were first referenced within the rtsbios (the run-time support) library. This linker
error is avoided by using the -x linker option which forces libraries to be searched again in order to resolve
undefined references. See Section 2.9, Using DSP/BIOS with the Run-Time Support Library for more
information.

2.11.2 Name Mangling

The C++ compiler implements function overloading, operator overloading, and type-safe linking by
encoding a function's signature in its link-level name. The process of encoding the signature into the
linkname is referred to as name mangling. Name mangling could potentially interfere with a DSP/BIOS
application since you use function names within the configuration to refer to functions declared in your

Stack Mode Description Reset Vector Settings

2x16 Fast Return SP/SSP independent,
RETA/CFCT used for fast
return functionality

XX00 : XXXX : <24-bit vector address>

2x16 Slow Return SP/SSP independent,
RETA/CFCT not used

XX01 : XXXX : <24-bit vector address>

1x32 Slow Return
(Reset default)

SP/SSP synchronized,
RETA/CFCT not used

XX02 : XXXX : <24-bit vector address>
SPRU423I—August 2012 Program Generation 45
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Using C++ with DSP/BIOS www.ti.com
C++ source files. To prevent name mangling and thus to make your functions recognizable within the
configuration, it is necessary to declare your functions in an extern C block as shown in the code fragment
of Example 2-4.

Example 2-4 Declaring Functions in an Extern C Block

This allows you to refer to the functions within the configuration. For example, if you had an SWI object
which should run function1() every time that the SWI posts, you would use function1 for the function
property of that SWI object.

Functions declared within the extern C block are not subject to name mangling. Since function
overloading is accomplished through name mangling, function overloading has limitations for functions
that are called from the configuration. Only one version of an overloaded function can appear within the
extern C block. The code in Example 2-5 would result in an error.

Example 2-5 Function Overloading Limitation

While you can use name overloading in your DSP/BIOS C++ applications, only one version of the
overloaded function can be called from the configuration.

Default parameters is a C++ feature that is not available for functions called from the configuration. C++
allows you to specify default values for formal parameters within the function declaration. However, a
function called from the configuration must provide parameter values. If no values are specified, the
actual parameter values are undefined.

2.11.3 Calling Class Methods from the Configuration

Often, the function that you want to reference within the configuration is the member function of a class
object. It is not possible to call these member functions directly from the configuration, but it is possible
to accomplish the same action through wrapper functions. By writing a wrapper function which accepts
a class instance as a parameter, you can invoke the class member function from within the wrapper.

A wrapper function for a class method is shown in Example 2-6.

Example 2-6 Wrapper Function for a Class Method

Any additional parameters that the class method requires can be passed to the wrapper function.

extern "C" {
Void function1();
Int function2();
}

extern “C” {

Int addNums(Int x, Int y);

Int addNums(Int x, Int y, Int z); // error, only one version

 // of addNums is allowed

}

Void wrapper (SampleClass myObject)
{
 myObject->method();
}

46 Program Generation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com User Functions Called by DSP/BIOS
2.11.4 Class Constructors and Destructors

Any time that a C++ class object is instantiated, the class constructor executes. Likewise, any time that
a class object is deleted, the class destructor is called. Therefore, when writing constructors and
destructors, you should consider the times at which the functions are expected to execute and tailor them
accordingly. It is important to consider what type of thread will be running when the class constructor or
destructor is invoked.

Various guidelines apply to which DSP/BIOS API functions can be called from different DSP/BIOS
threads (tasks, software interrupts, and hardware interrupts). For example, memory allocation APIs such
as MEM_alloc and MEM_calloc cannot be called from within the context of a software interrupt. Thus, if
a particular class is instantiated by a software interrupt, its constructor must avoid performing memory
allocation. Similarly, it is important to keep in mind the time at which a class destructor is expected to run.
Not only does a class destructor execute when an object is explicitly deleted, but also when a local object
goes out of scope. You need to be aware of what type of thread is executing when the class destructor
is called and make only those DSP/BIOS API calls that are appropriate for that thread. For further
information on function callability, see the TMS320 DSP/BIOS API Reference Guide for your platform.

2.12 User Functions Called by DSP/BIOS

User functions called by DSP/BIOS objects (IDL, TSK, SWI, PIP, PRD, and CLK objects) need to follow
specific conventions in order to ensure that registers are used properly and that values are preserved
across function calls.

On the C6x and C55x platforms, all user functions called by DSP/BIOS objects need to conform to C
compiler register conventions for their respective platforms. This applies to functions written both in C
and assembly languages.

The compiler distinguishes between C and assembly functions by assuming that all C function names
are preceded by an underscore, and assembly function names are not preceded by an underscore.

For more information on C register conventions, see the optimizing compiler user’s guide for your
platform.

2.13 Calling DSP/BIOS APIs from Main

The main routine in a DSP/BIOS application is for user initialization purposes such as configuring a
peripheral, or enabling individual hardware interrupts. It is important to recognize that main does not fall
into any of the DSP/BIOS threads types (HWI, SWI, TSK, or IDL), and that when program execution
reaches main, not all of the DSP/BIOS initialization is complete. This is because DSP/BIOS initialization
takes place in two phases: during BIOS_init which runs before main, and during BIOS_start which runs
after your program returns from main.

Certain DSP/BIOS API calls should not be made from the main routine, because the BIOS_start
initialization has not yet run. BIOS_start is responsible for enabling global interrupts, configuring and
starting the timer, and enabling the schedulers so that DSP/BIOS threads can start executing. Therefore,
DSP/BIOS calls that are not appropriate from main are APIs which assume hardware interrupts and the
timer are enabled, or APIs that make scheduling calls that could block execution. For example, functions
such as CLK_gethtime and CLK_getltime should not be called from main because the timer is not
running. HWI_disable and HWI_enable should not be called because hardware interrupts are not globally
SPRU423I—August 2012 Program Generation 47
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Calling DSP/BIOS APIs from Main www.ti.com
enabled. Potentially blocking calls, such as SEM_pend or MBX_pend, should not be called from main
because the scheduler is not initialized. Scheduling calls such as TSK_disable, TSK_enable,
SWI_disable, or SWI_enable are also not appropriate within main.

BIOS_init, which runs before main, is responsible for initialization of the MEM module. Therefore, it is
okay to call dynamic memory allocation functions from main. Not only are the MEM module functions
allowed (MEM_alloc, MEM_free, etc.), but APIs for dynamic creation and deletion of DSP/BIOS objects,
such as TSK_create and TSK_delete, are also allowed.

While blocking calls are not permitted from main, scheduling calls that make a DSP/BIOS thread ready
to run are permitted. These are calls such as SEM_post or SWI_post. If such a call is made from main,
the readied thread is scheduled to run after the program returns from main and BIOS_start finishes
executing.

See the TMS320 DSP/BIOS API Reference Guide for your platform for more information on a particular
DSP/BIOS function call. The Constraints and Calling Context sections indicates if the API cannot be
called from main.
48 Program Generation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Chapter 3
SPRU423I—August 2012

Instrumentation

DSP/BIOS provides both explicit and implicit ways to perform real-time program analysis. These
mechanisms are designed to have minimal impact on the application’s real-time performance.

3.1 An Overview of Real-Time Analysis . 50

3.2 Real-Time Analysis Tools in CCS . 51

3.3 RTOS Object Viewer (ROV) . 59

3.4 Instrumentation Performance . 62

3.5 Instrumentation APIs . 64

3.6 Implicit DSP/BIOS Instrumentation . 73

3.7 Instrumentation for Field Testing . 79

3.8 Real-Time Data Exchange . 79

Topic Page
SPRU423I—August 2012 Instrumentation 49
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I

An Overview of Real-Time Analysis www.ti.com
3.1 An Overview of Real-Time Analysis

Real-time analysis is the analysis of data acquired during real-time operation of a system. The intent is
to easily determine whether the system is operating within its design constraints, is meeting its
performance targets, and has room for further development.

Note: RTDX is occasionally not supported for the initial releases of a new DSP device or
board. On platforms where RTDX is not supported, the RTA tools in CCS are non-
functional.

3.1.1 Real-Time Versus Cyclic Debugging

The traditional debugging method for sequential software is to execute the program until an error occurs.
You then stop the execution, examine the program state, insert breakpoints, and reexecute the program
to collect information. This kind of cyclic debugging is effective for non-real-time sequential software.
However, cyclic debugging is rarely as effective in real-time systems because real-time systems are
characterized by continuous operation, nondeterministic execution, and stringent timing constraints.

The DSP/BIOS instrumentation APIs and the DSP/BIOS Analysis Tools are designed to complement
cyclic debugging tools to enable you to monitor real-time systems as they run. This real-time monitoring
data lets you view the real-time system operation so that you can effectively debug and performance-
tune the system.

3.1.2 Software Versus Hardware Instrumentation

Software monitoring consists of instrumentation code that is part of the target application. This code is
executed at run time, and data about the events of interest is stored in the target system’s memory. Thus,
the instrumentation code uses both the computing power and memory of the target system.

The advantage of software instrumentation is that it is flexible and that no additional hardware is required.
Unfortunately, because the instrumentation is part of the target application, performance and program
behavior can be affected. Without using a hardware monitor, you face the problem of finding a balance
between program perturbation and recording sufficient information. Limited instrumentation provides
inadequate detail, but excessive instrumentation perturbs the measured system to an unacceptable
degree.

DSP/BIOS provides several mechanisms that allow you to control precisely the balance between
intrusion and information gathered. In addition, the DSP/BIOS instrumentation operations all have fixed,
short execution times. Since the overhead time is fixed, the effects of instrumentation are known in
advance and can be factored out of measurements.
50 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Real-Time Analysis Tools in CCS
3.2 Real-Time Analysis Tools in CCS

DSP/BIOS supports several Real-Time Analysis (RTA) tools provided by Code Composer Studio. These
tools provides raw log information as well as graphs in real-time (while the target is running). The
subsections that follow briefly introduce the RTA tools in CCS. In order to use RTA tools, your application
must be configured to include support for RTA.

To open a tool while debugging an application, choose Tools > RTOS Analyzer > RTA (Legacy) from
the menu bar in CCS. This menu lists the available graphs and tables provided for real-time analysis.
SPRU423I—August 2012 Instrumentation 51
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Real-Time Analysis Tools in CCS www.ti.com
Information about DSP/BIOS modules is available in the following real-time analysis tools:

Module Tools That Show Information About this Module

BUF BUF in the RTOS Object View shows usage information.

CLK Execution Graph shows clock ticks.

KNL in the RTOS Object View shows the current value of the clock used for timer
functions and task sleep alarms.

RTA Control Panel disables CLK logging.

DEV DEV in the RTOS Object View shows status information.

GBL KNL in the RTOS Object View shows the type of processor.

HWI CPU Load Graph shows load consumed by all threads other than IDL threads.

Execution Graph shows HWI execution in the Other Threads row.

RTA Control Panel disables HWI statistics.

Statistics View shows statistics gathered for HWI objects.

IDL Execution Graph shows IDL function execution in the Other Threads row.

LCK No information provided unless program explicitly instruments these objects.

LOG Execution Graph provides a graphical view of system log data.

RTA Control Panel disables implicit logging for SWI, PRD, CLK, and TSK modules.

Property page for the RTA Control Panel sets the polling rate for LOG data.

MBX MBX in the RTOS Object View shows status information.

MEM KNL in the RTOS Object View shows the system stack location, size, and peak usage.

TSK in the RTOS Object View shows stack use by tasks.

MEM in the RTOS Object View shows usage information.

MSGQ MSGQ in the RTOS Object View shows usage information.

PIP RTA Control Panel disables PIP statistics.

Statistics View shows statistics gathered for PIP objects.

PRD Execution Graph shows PRD ticks.

CPU Load Graph shows load consumed by all threads other than IDL threads.

RTA Control Panel disables PRD logging and statistics.

Statistics View shows statistics gathered for PRD objects.

QUE No information provided unless program explicitly instruments these objects.

RTDX See the RTDX help.
52 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Real-Time Analysis Tools in CCS
SEM Execution Graph shows SEM posts.

SEM in the RTOS Object View shows status information.

SIO SIO in the RTOS Object View shows status information.

STS CPU Load Graph provides a graphical view of data collected by built-in STS objects.

RTA Control Panel disables implicit statistics accumulation for SWI, PRD, PIP, HWI, and
TSK modules.

Property page for the RTA Control Panel sets the polling rate for statistics data.

Statistics View shows statistics gathered by STS objects.

SWI CPU Load Graph shows load consumed by all threads other than IDL threads.

Execution Graph shows SWI execution.

SWI in the RTOS Object View shows status information.

RTA Control Panel disables SWI logging and statistics.

Statistics View shows statistics gathered for SWI objects.

TRC RTA Control Panel disables and enables global tracing and trace bits for various modules.

Property page for the RTA Control Panel sets the polling rate for TRC data set
programmatically.

TSK CPU Load Graph shows load consumed by all threads other than IDL threads.

Execution Graph shows task execution.

KNL in the RTOS Object View lists tasks blocked by timers.

MBX in the RTOS Object View lists tasks blocked by pending or posting on a mailbox.

SEM in the RTOS Object View lists tasks blocked by pending on a semaphore.

TSK in the RTOS Object View shows status information.

RTA Control Panel disables TSK logging and statistics.

Statistics View shows statistics gathered for TSK objects.

Module Tools That Show Information About this Module
SPRU423I—August 2012 Instrumentation 53
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Real-Time Analysis Tools in CCS www.ti.com
3.2.1 RTA Control Panel

The RTA Control Panel lets you see and set what type of logging is performed at run-time. You can open
this panel by choosing Tools > RTOS Analyzer > RTA (Legacy) > RTA Control Panel from the CCS
menu bar.

Important: In general, you should avoid modifying log settings unless you are familiar with the
effects that change will have.

The checkboxes in the Diagnostics row correspond to the TRC module constants shown in Table 3–2.
The Logger Buffer row also lists all LOG instances in the application, along with CPU Load and STS.
Disabling a LOG instance, affects messages in the Raw Logs and Printf Logs tools. Disabling CPU Load
logging disables updates to the CPU Load and Load Data tools. Disabling STS logging disables updates
to the Statistics Data tool.

You can enable and disable various types of logging and diagnostics at run-time. To change the setting
for a field, click in the field so you can see the drop-down arrow. Click the drop-down arrow and select
Enable Logging or Disable Logging (or for the Diagnostics row, select RUNTIME_ON or
RUNTIME_OFF). Then click on or tab to another field to apply the change.

This panel contains the following toolbar icons:

 Close all RTA tools, including this one.

 Refresh view of settings by getting the current runtime settings from the target application.

 Automatically fit the columns to their current contents.

 Expand all nodes in the Logger Buffer column.

 Collapse all nodes in the Logger Buffer column.

 Set duration (in minutes) for RTA data streaming from the target. The default is to stream as long
as the target application is running.

 Toggle data streaming from the target on or off. The default is on.
54 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Real-Time Analysis Tools in CCS
3.2.2 Raw Logs

By default, the Raw Logs tool displays complete unformatted log data. The default columns displayed
are: time, seqID, arg1...arg4, and formattedMsg. You can open this tool by choosing Tools > RTOS
Analyzer > RTA (Legacy) > Raw Logs from the CCS menu bar.

This table displays all the log records that have been sent from the target. This contains all the records
used by the RTA tools to populate their graphs and tables. In addition, the following types of logs are also
shown:

• Any implicit LOG messages from other modules

• Any user-defined LOGs or LOG_printf() calls

This tool contains the following toolbar icons:

 Toggle view with group setting on and off. (Shift+G)

 Open the Find In dialog for searching this log.

 Open the Set Filter Expression dialog for filtering the log records to match a pattern.

 Pause data updates from the target. This is useful when you are using the Find or Filter dialogs.
(Shift+F5)

 Automatically fit the columns to their current contents.

 Refresh data from the target. This is useful if you have stopped data streaming or paused updates.

 Toggle data streaming from the target on or off. The default is on.

Grouping in the RTA views refers to synchronizing the views so that moving around in one view causes
similar movement to happen automatically in another. For example, if you group the CPU load graph with
Raw Logs, then if you click on the CPU Load graph, the Raw Log displays the closest record to where
you clicked in the graph.

You can right-click on this tool to choose from a menu of options. In addition to some of the toolbar
commands, you can use the following additional commands from the right-click menu:

• Column Settings. This command opens a dialog that lets you hide or display various columns. You
can also change the alignment, font, and display format of a column (for example, decimal, binary,
or hex).

• Copy. This command copies the selected text to the clipboard.

• Data > Export Selected. This command lets you select a .csv (comma-separated value) file to
contain the selected data.
SPRU423I—August 2012 Instrumentation 55
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Real-Time Analysis Tools in CCS www.ti.com
• Data > Export All. This command lets you select a .csv (comma-separated value) file to contain all
the data currently displayed in the log.

• Groups. This command lets you define groups to contain various types of log messages.

3.2.3 Printf Logs

The Printf Log is a convenient way to view all the user-generated LOG_printf() messages. By default, the
Printf Log tool displays the time, seqID, and formattedMsg. You can open this tool by choosing Tools >
RTOS Analyzer > RTA (Legacy) > Printf Logs from the CCS menu bar.

The toolbar icons and right-click menu for the Printf Logs tool are the same as for the Raw Logs tool
(Section 3.2.2).

3.2.4 CPU Load

The CPU Load tool shows the percentage of time the application is not in the idle loop. You can open this
tool by choosing Tools > RTOS Analyzer > RTA (Legacy) > CPU Load from the CCS menu bar.

See Section 3.6.1 for information about how CPU load is calculated.

This tool contains the following toolbar icons:

 Select a measuring mode for time marking. The mode choices are Freeform or Snap to Data. The
axis choices are X-Axis, Y-Axis, or Both. When you click on the graph, a marker of the type you have
selected is placed. When you drag your mouse around the graph, the time is shown in red.

 Toggle view with group setting on and off. (Shift+G)

 If you have enabled the view with group setting, you can choose to align a group by centering.
56 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Real-Time Analysis Tools in CCS
 If you have enabled the view with group setting, you can choose to align a group using a horizontal
range.

 Click this icon to zoom in on the graph by spreading out the x-axis.

 Click this icon to zoom out.

 Choose to reset the zoom level to the default or choose a specific zoom level.

 Refresh data from the target. This is useful if you have stopped data streaming or paused updates.

 Open the Find In dialog for searching this graph.

 Open the Set Filter Expression dialog for filtering the log records to match a pattern.

 Pause data updates from the target. This is useful when you are using the Find or Filter dialogs.
(Shift+F5)

 Toggle data streaming from the target on or off. The default is on.

You can right-click on this tool to choose from a menu of options. In addition to some of the toolbar
commands, you can use the following additional commands from the right-click menu:

• Legend. Toggle this command to hide the graph legend.

• Horizontal Axis. Toggle this command to hide the x-axis time markings.

• Vertical Axis. Toggle this command to hide the y-axis thread labels.

• Show Grid Lines. Toggle on or off the x-axis and y-axis grid lines you want to see.

• Display As. Choose the marker you want to use to display the data. The default is a connected line,
but you can choose from various marker styles and sizes.

• Auto Scale. Scales the load data to fit the range in use. For example, if the range is between 70%
and 90%, it zooms in on that range to make changes more visible. When auto scale is turned on, the
scale may change as new data arrives.

• Reset Auto Scale. Resets the scale to better display the current data.

• Data > Export All. This command lets you select a .csv (comma-separated value) file to contain all
the data currently displayed in the log.

• Groups. This command lets you define groups to contain various types of log messages.

• Insert Measurement Mark. Inserts a marker at the location where you right clicked.

• Remove Measurement Mark. Lets you select a marker to remove.

• Remove All Measurement Marks. Removes all markers you have placed.

• Display Properties. Opens a dialog that lets you change the colors, scales, display formats, and
labels on the graph.
SPRU423I—August 2012 Instrumentation 57
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Real-Time Analysis Tools in CCS www.ti.com
3.2.5 Load Data

The Load Data tool is a convenient way to view all the CPU load-related logs. By default, the Load Data
tool displays the time, taskHandle, task, cpuTime, total, and load for each load-related message. You can
open this tool by choosing Tools > RTOS Analyzer > RTA (Legacy) > Load Data from the CCS menu
bar.

The messages shown in this tool are the raw data used to plot the CPU Load graph.

The toolbar icons and right-click menu for the Load Data tool are the same as for the Raw Logs tool
(Section 3.2.2).

3.2.6 Statistics Data

The Statistics Data tool lets you view statistics about thread execution. You can open this tool by
choosing Tools > RTOS Analyzer > RTA (Legacy) > Statistics Data from the CCS menu bar.

By default, the Statistics Data tool displays the STS object name, count, total, max, and average for each
STS object.

The toolbar icons and right-click menu for the Load Data tool are the same as for the Raw Logs tool
(Section 3.2.2).
58 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com RTOS Object Viewer (ROV)
3.3 RTOS Object Viewer (ROV)

If you are using DSP/BIOS with CCS, the RTOS Object Viewer (ROV) is a debugging tool you can use
with applications that make use of DSP/BIOS. This viewer provides state information about all the
modules in the application. (CCSv3 called this tool the Kernel Object View or KOV.)

ROV is a stop-mode debugging tool, which means it can receive data about an application only when the
target is halted, not when it is running. ROV provides data at stop points even if you have disabled RTDX
in your application. In contrast, the Real-Time Analysis (RTA) tools require RTDX.

To open ROV, follow these steps:

1. Load your application for debugging. If you are using a multi-core device, select the device you want
to debug before opening ROV.

2. Choose Tools > RTOS Object View (ROV) from the CCS menus. This opens the ROV area at the
bottom of the CCS window. (You can open ROV at any time while you have an application loaded.)

3. Run the application to a breakpoint at which you want to view information.

4. In the left pane of the ROV, select a module from the expandable tree.

5. In the right pane of the ROV, you may need to expand a hierarchy of objects or select a tab to view
the data you want. (The tabs vary depending on the module you select.)

When you reload or rerun the application, ROV clears all of its cached data.

When the application halts at a breakpoint, ROV refreshes the currently displayed information. If any data
has changed since the last time ROV requested that particular data, ROV displays that data in red text.
Keep in mind, however, that ROV only retrieves data when it is requested. If ROV did not get an item at
the last breakpoint, it has nothing to compare it to at the current breakpoint. In short, if a field is not red,
this does not necessarily mean that the data did not change.

While the target is running, you may continue to explore ROV. Any data that was retrieved at the last
breakpoint is shown with a gray background. If data was not retrieved, you see a "Target running..."
message that indicates that ROV cannot retrieve new data while the target is running.

ROV highlights errors by making the background red. Hover your mouse over a field with a red
background to see the error message. ROV can detect the following types of errors:

• Validation errors. Modules can provide validation information for ROV. For example, a particular
structure field can have a maximum value of 32. If the value on the target is 33, the module can report
this as a problem.
SPRU423I—August 2012 Instrumentation 59
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

RTOS Object Viewer (ROV) www.ti.com
• Memory. ROV may report bad memory accesses or other detectable problems.

• ROV errors. ROV reports standard exceptions if a corrupted data from the target causes ROV-
related code in a module to behave incorrectly.

3.3.1 Tasks

The properties listed for tasks (TSK) are as follows:

• Name. The name of the task. The name is taken from the label for statically-configured tasks and is
generated for dynamically-created tasks. The label matches the name in the configuration.

• Handle. The address of the task object header on the target.

• State. The current state of the task: Ready, Running, Blocked, or Terminated.

• Priority. The task’s priority as set in the configuration or as set by the API. Valid priorities are 0
through 15.

• Timeout. If blocked with a timeout, the clock value at which the task alarm will occur.

• Time Remaining. Time remaining until the timeout expires.

• Blocked On. If blocked on a semaphore or mailbox, the name of the SEM or MBX object the task is
blocked on.

• Stack Base. Beginning address of the task stack.

• Stack Size. Size of the task stack.

• Stack Peak. Peak amount of the task stack used at any one time.

• Start of SysStack. Beginning address of the system stack. (C55x only)

• Size of SysStack. Size of the system stack. (C55x only)

• SysStack Peak. Peak amount of the system stack used at any one time. (C55x only)

3.3.2 Software Interrupts

The properties listed for software interrupts (SWI) are as follows.

• Name. The name of the software interrupt object. The name is taken from the label for statically-
configured software interrupts and is generated for dynamically-created software interrupts. The
label matches the name in the configuration.

• Handle. The address of the software interrupt object header on the target.

• State. The software interrupt’s current state. Valid states are Inactive, Ready, and Running.

• Priority. The software interrupt’s priority as set in the configuration or during creation. Valid priorities
are 0 through 15.

• Mailbox Value. The software interrupt’s current mailbox value.

• Function. The name of the function called by this software interrupt.

• arg0, arg1. The arguments sent to the function by this software interrupt. These are set in the
configuration or during creation.

• Function Address. The address of the function on the target.
60 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com RTOS Object Viewer (ROV)
3.3.3 Mailboxes

The properties listed for mailboxes (MBX) are as follows:

• Name. The name of the mailbox. The name is taken from the label for statically-configured mailboxes
and is generated for dynamically-created mailboxes. The label matches the name in the
configuration.

• Handle. The address of the mailbox object header on the target.

• # Tasks Pending. The number of tasks currently blocked waiting to read a message from this
mailbox.

• Tasks Pending. A pull-down list of the names of tasks currently blocked waiting to read a message
from this mailbox.

• # Tasks Blocked Posting. The number of tasks currently blocked waiting to write a message to this
mailbox.

• Tasks Posting. A pull-down list of the names of tasks currently blocked waiting to write a message
to this mailbox.

• # Msgs. The current number of messages that the mailbox contains.

• Max Msgs. The maximum number of messages the mailbox can hold. This matches the value set
during configuration or creation.

• Msg Size. The size of each message in the processor’s minimum addressable data units (MADUs).
This matches the values set during configuration or creation.

• Mem Segment. The name of the memory segment in which the mailbox is located. You can right-
click on a segment name and choose the Go To command to display that MEM segment in the ROV
tool.

3.3.4 Semaphores

The properties listed for semaphores (SEM) are as follows.

• Name. The name of the semaphore. The name is taken from the label for statically-configured
semaphores and is generated for dynamically-created semaphores. The label matches the name in
the configuration.

• Handle. The address of the semaphore object header on the target.

• Count. The current semaphore count. This is the number of pends that can occur before blocking.

• # Tasks Pending. The number of tasks currently pending on the semaphore.

• Tasks Pending. A pull-down list of the names of tasks pending on the semaphore.

3.3.5 Memory

DSP/BIOS allows you to configure memory segment objects. A segment may or may not contain a heap
from which memory may be allocated dynamically. ROV focuses on displaying the properties of dynamic
memory heaps within memory segment objects. The properties listed for memory segments and heaps
(MEM) are as follows.

• Name. The name of a memory segment object as configured.

• Largest Free Block. The maximum amount of contiguous memory that is available for allocation in
the heap within this memory segment.
SPRU423I—August 2012 Instrumentation 61
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Instrumentation Performance www.ti.com
• Free Mem. The total amount of memory (in MADUs) that is not in use by the application and is free
to be allocated from the heap.

• Used Mem. The amount of memory (in MADUs) that has been allocated from the heap. If this value
is equal to the total size, a warning is indicated by coloring this field red.

• Total Size. The total number of minimum addressable units (MADUs) in the heap.

• Start Address. The starting location of the heap.

• End Address. The ending location of the heap.

• Mem Segment. The number of the memory segment in which the heap is located.

3.3.6 Buffer Pools

The properties listed for buffer pools (BUF) are as follows.

• Name. The name of the buffer pool object. The name is taken from the label for statically-configured
pools and is generated for dynamically-created pools. The label matches the name in the
configuration.

• Segment ID. The name of the memory segment in which the buffer pool exists.

• Size of Buffer. The size (in MADUs) of each memory buffer inside the buffer pool.

• # Buffers in Pool. The number of buffers in the buffer pool.

• # Free Buffers. The current number of available buffers in the buffer pool.

• Pool Start Address. The address on the target where the buffer pool starts.

• Max Buffers Used. The peak number of buffers that have been used in the pool.

3.4 Instrumentation Performance

When all implicit DSP/BIOS instrumentation is enabled, the CPU load increases less than one percent in
a typical application. Several techniques have been used to minimize the impact of instrumentation on
application performance:

• Instrumentation communication between the target and the host is performed in the background
(IDL) thread, which has the lowest priority, so communicating instrumentation data does not affect
the real-time behavior of the application.

• From the host, you can control the rate at which the host polls the target. You can stop all host
interaction with the target if you want to eliminate all unnecessary external interaction with the target.

• The target does not store implicit statistics information unless tracing is enabled. You also have the
ability to enable or disable the explicit instrumentation of the application by using the TRC module
and one of the reserved trace masks (TRC_USER0 and TRC_USER1).

• Log and statistics data are always formatted on the host. The average value for an STS object and
the CPU load are computed on the host. Computations needed for RTA tool displays are performed
on the host.
62 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Instrumentation Performance
• LOG, STS, and TRC module operations are very fast and execute in constant time, as shown in the
following list:

— LOG_printf and LOG_event: approximately 25 instructions
• STS_add: approximately 10 instructions
• STS_delta: approximately 15 instructions
• TRC_enable and TRC_disable: approximately four instructions

— LOG_printf and LOG_event: approximately 32 instructions
• STS_add: approximately 18 instructions
• STS_delta: approximately 21 instructions
• TRC_enable and TRC_disable: approximately six instructions

• Each STS object uses only eight or four words of data memory, for the C5000 platform or the C6000
platform, respectively. This means that the host always transfers the same number of words to
upload data from a statistics object.

• Statistics are accumulated in 32-bit variables on the target and in 64-bit variables on the host. When
the host polls the target for real-time statistics, it resets the variables on the target. This minimizes
space requirements on the target while allowing you to keep statistics for long test runs.

• You can specify the buffer size for LOG objects. The buffer size affects the program’s data size and
the time required to upload log data.

• For performance reasons, implicit hardware interrupt monitoring is disabled by default. When
disabled, there is no effect on performance. When enabled, updating the data in statistics objects
consumes between 20 and 30 instructions per interrupt for each interrupt monitored.

3.4.1 Instrumented Versus Non-instrumented Kernel

It is possible to disable support for kernel instrumentation by changing the global properties of the
application. The GBL module has a property called Enable Real Time Analysis. By setting this property
to false, you can achieve optimal code size and execution speed. This is accomplished by linking with a
DSP/BIOS library that does not support the implicit instrumentation. However, this also has the effect of
removing support for DSP/BIOS Analysis Tools and explicit instrumentation such as the LOG, TRC, and
STS module APIs.

The Table 3–1 presents examples of code size increases when working with the instrumented versus
non-instrumented kernel. These figures provide a general idea of the amount of code increase that can
be expected when working with the instrumented kernel.

Table 3–1 uses as samples two projects that utilize many of the DSP/BIOS features. By including
DSP/BIOS modules, the applications incorporate the instrumentation code. Therefore the following
numbers are representative of the amount of code size incurred by the instrumentation, and are not
affected by the size or variations among users' applications. The first application, Slice, contains the TSK,
SEM, and PRD modules, while the second, Echo, uses the PRD and SWI modules. Neither application
is specifically designed for minimizing code size.

For information on DSP/BIOS kernel performance benchmarks, including a comparison of the
instrumented versus non-instrumented kernels’ performances, see Application Report SPRA662,
DSP/BIOS Timing Benchmarks on the TMS320C6000 DSP.
SPRU423I—August 2012 Instrumentation 63
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Instrumentation APIs www.ti.com
Table 3–1. Examples of Code-size Increases Due to an Instrumented Kernel

a) Example: Slice

b) Example: Echo

3.5 Instrumentation APIs

Effective instrumentation requires both operations that gather data and operations that control the
gathering of data in response to program events. DSP/BIOS provides the following three API modules
for data gathering:

• LOG (Event Log Manager). Log objects capture information about events in real time. System
events are captured in the system log. You can configure additional logs. Your program can add
messages to any log.

• STS (Statistics Object Manager). Statistics objects capture count, maximum, and total values for
any variables in real time. Statistics about SWI (software interrupt), PRD (period), HWI (hardware
interrupt), PIP (pipe), and TSK (task) objects can be captured automatically. In addition, your
program can create statistics objects to capture other statistics.

• HST (Host Channel Manager). The host channel objects described in Chapter 7, Input/Output
Overview and Pipes, allow a program to send raw data streams to the host for analysis.

LOG and STS provide an efficient way to capture subsets of a real-time sequence of events that occur
at high frequencies or a statistical summary of data values that vary rapidly. The rate at which these
events occur or values change may be so high that it is either not possible to transfer the entire sequence
to the host (due to bandwidth limitations) or the overhead of transferring this sequence to the host would
interfere with program operation. DSP/BIOS provides the TRC (Trace Manager) module for controlling
the data gathering mechanisms provided by the other modules. The TRC module controls which events
and statistics are captured either in real time by the target program or interactively through the DSP/BIOS
Analysis Tools.

Controlling data gathering is important because it allows you to limit the effects of instrumentation on
program behavior, ensure that LOG and STS objects contain the necessary information, and start or stop
recording of events and data values at run time.

Description (all sizes in MADUs)

C55x Platform C6000 Platform

Size with non-instrumented kernel 32,000 78,900

Size with instrumented kernel 33,800 86,600

Size increase with instrumented kernel 1,800 7,700

Description (all sizes in MADUs)

C55x Platform C6000 Platform

Size with non-instrumented kernel 41,200 68,800

Size with instrumented kernel 42,800 76,200

Size increase with instrumented kernel 1,600 7,400
64 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Instrumentation APIs
3.5.1 Explicit versus Implicit Instrumentation

The instrumentation API operations are designed to be called explicitly by the application. The LOG
module operations allow you to explicitly write messages to any log. The STS module operations allow
you to store statistics about data variables or system performance. The TRC module allows you to enable
or disable log and statistics tracing in response to a program event.

The LOG and STS APIs are also used internally by DSP/BIOS to collect information about program
execution. These internal calls in DSP/BIOS routines provide implicit instrumentation support. As a result,
even applications that do not contain any explicit calls to the DSP/BIOS instrumentation APIs can be
monitored and analyzed using the DSP/BIOS Analysis Tools. For example, the execution of a software
interrupt is recorded in a LOG object called LOG_system.

In addition, worst-case ready-to-completion times for software interrupts and overall CPU load are
accumulated in STS objects. See Section 3.5.4.2, Control of Implicit Instrumentation, page 3-71, for more
information about what implicit instrumentation can be collected.

3.5.2 Event Log Manager (LOG Module)

This module manages LOG objects, which capture events in real time while the target program executes.

User-defined logs contain any information your program stores in them using the LOG_event and
LOG_printf operations. You can view messages in these logs in real time with the CCS Printf Logs RTA
tool. To access this tool, choose Tools > RTOS Analyzer > RTA (Legacy) > Printf Logs from the CCS
menu bar.

A log can be either fixed or circular. This distinction is important in applications that enable and disable
logging programmatically (using the TRC module operations as described in section 3.4.4, Trace
Manager (TRC Module), page 3-13).

• Fixed. The log stores the first messages it receives and stops accepting messages when its
message buffer is full. As a result, a fixed log stores the first events that occur since the log was
enabled.

• Circular. The log automatically overwrites earlier messages when its buffer is full. As a result, a
circular log stores the last events that occur.

You configure LOG objects statically and assign properties such as the length and location of the
message buffer.

You specify the length of each message buffer in words. Individual messages use four words of storage
in the log’s buffer. The first word holds a sequence number. The remaining three words of the message
structure hold event-dependent codes and data values supplied as parameters to operations such as
LOG_event, which appends new events to a LOG object.

As shown in Figure 3–1, LOG buffers are read from the target and stored in a much larger buffer on the
host. Records are marked empty as they are copied up to the host.
SPRU423I—August 2012 Instrumentation 65
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Instrumentation APIs www.ti.com
Figure 3–1 LOG Buffer Sequence

LOG_printf uses the fourth word of the message structure for the offset or address of the format string
(for example, %d, %d). The host uses this format string and the two remaining words to format the data
for display. This minimizes both the time and code space used on the target since the actual printf
operation (and the code to perform the operation) are handled on the host.

LOG_event and LOG_printf both operate on logs with interrupts disabled. This allows hardware interrupts
and other threads of different priorities to write to the same log without having to worry about
synchronization.

Log messages shown in a message log window are numbered to indicate the order in which the events
occurred. These numbers are an increasing sequence starting at 0. If your log never fills up, you can use
a smaller log size. If a circular log is not long enough or you do not poll the log often enough, you may
miss some log entries that are overwritten before they are polled. In this case, you see gaps in the log
message numbers. You may want to add an additional sequence number to the log messages to make
it clear whether log entries are being missed.

The DSP/BIOS online help describes LOG objects and their parameters. See LOG Module in the
TMS320 DSP/BIOS API Reference Guide for your platform for information on the LOG module API calls.

HostTarget

LOG object

LOG buffer

read
&

clear
66 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Instrumentation APIs
3.5.3 Statistics Object Manager (STS Module)

This module manages statistics objects, which store key statistics while a program runs.

You configure individual statistics objects statically. Each STS object accumulates the following statistical
information about an arbitrary 32-bit wide data series:

• Count. The number of values on the target in an application-supplied data series

• Total. The arithmetic sum of the individual data values on the target in this series

• Maximum. The largest value already encountered on the target in this series

• Average. Using the count and total, the Statistics Data tool calculates the average on the host

Calling the STS_add operation updates the statistics object of the data series being studied. For
example, you might study the pitch and gain in a software interrupt analysis algorithm or the expected
and actual error in a closed-loop control algorithm.

DSP/BIOS statistics objects are also useful for tracking absolute CPU use of various routines during
execution. By bracketing appropriate sections of the program with the STS_set and STS_delta
operations, you can gather real-time performance statistics about different portions of the application.

You can view these statistics in real time with the Statistics Data tool. To access the Statistics Data tool,
choose Tools > RTOS Analyzer > RTA (Legacy) > Statistics Data from the CCS menu bar.

Although statistics are accumulated in 32-bit variables on the target, they are accumulated in 64-bit
variables on the host. When the host polls the target for real-time statistics, it resets the variables on the
target. This minimizes space requirements on the target while allowing you to keep statistics for long test
runs. The Statistics Data tool can optionally filter the data arithmetically before displaying it as shown in
Figure 3–2.

Figure 3–2 Target/Host Variable Accumulation

By clearing the values on the target, the host allows the values displayed to be much larger without risking
lost data due to values on the target wrapping around to 0. If polling of STS data is disabled or very
infrequent, there is a possibility that the STS data wraps around, resulting in incorrect information.

While the host clears the values on the target automatically, you can clear the 64-bit objects stored on
the host by right-clicking on the STS Data window and choosing Clear from the shortcut menu.

The host read and clear operations are performed with interrupts disabled to allow any thread to update
any STS object reliably. For example, an HWI function can call STS_add on an STS object and no data
is missing from any STS fields.

Target Host

read
&

clear

Accumulate Filter = (A*x + B) / C Display

Count

(A x total + B) / C

(A x max + B) / C

Count

Total

Maximum

Count

Total

0 Max

32

Previous

Count

Total

Max

Average(A x total + B) /
(C x count)

64
SPRU423I—August 2012 Instrumentation 67
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Instrumentation APIs www.ti.com
This instrumentation process provides minimal intrusion into the target program. A call to STS_add
requires approximately 20 instructions on the C5000 platform and 18 instructions on the C6000 platform.
Similarly, an STS object uses only eight or four words of data memory on the C5000 or C6000 platforms,
respectively. Data filtering, formatting, and computation of the average is done on the host.

You can control the polling rate for statistics information with the RTA Control Panel Property Page. If you
set the polling rate to 0, the host does not poll the target for information about the STS objects unless you
right-click on the Statistics Data tool and choose Refresh Window from the pop-up menu.

3.5.3.1 Statistics About Varying Values

STS objects can be used to accumulate statistical information about a time series of 32-bit data values.

For example, let Pi be the pitch detected by an algorithm on the ith frame of audio data. An STS object
can store summary information about the time series {Pi}. The following code fragment includes the
current pitch value in the series of values tracked by the STS object:

pitch = `do pitch detection`

STS_add(&stsObj, pitch);

The Statistics Data tool displays the number of values in the series, the maximum value, the total of all
values in the series, and the average value.

3.5.3.2 Statistics About Time Periods

In any real-time system, there are important time periods. Since a period is the difference between
successive time values, STS provides explicit support for these measurements.

For example, let Ti be the time taken by an algorithm to process the ith frame of data. An STS object can
store summary information about the time series {Ti}. The following code fragment illustrates the use of
CLK_gethtime (high-resolution time), STS_set, and STS_delta to track statistical information about the
time required to perform an algorithm:

STS_set(&stsObj, CLK_gethtime());

 `do algorithm`

STS_delta(&stsObj, CLK_gethtime());

STS_set saves the value of CLK_gethtime as the contents of the previous value field (set value) in the
STS object. STS_delta subtracts this set value from the new value it is passed. The result is the
difference between the time recorded before the algorithm started and after it was completed; that is, the
time it took to execute the algorithm (Ti). STS_delta then invokes STS_add and passes this result as the
new contents of the previous value field to be tracked.

The host can display the count of times the algorithm was performed, the maximum time to perform the
algorithm, the total time performing the algorithm, and the average time.

The set value is the fourth component of an STS object. It is provided to support statistical analysis of a
data series that consist of value differences, rather than absolute values.

3.5.3.3 Statistics About Value Differences

Both STS_set and STS_delta update the contents of the previous value field in an STS object.
Depending on the call sequence, you can measure specific value differences or the value difference
since the last STS update. Example 3-1 shows code for gathering information about differences between
specific values. Figure 3–3 shows current values when measuring differences from the base value.
68 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Instrumentation APIs
Example 3-1 Gathering Information About Differences in Values

Figure 3–3 Current Value Deltas From One STS_set

STS_set(&sts, targetValue); /* T0 */

"processing"

STS_delta(&sts, currentValue); /* T1 */

"processing"

STS_delta(&sts, currentValue); /* T2 */

"processing"

STS_delta(&sts, currentValue); /* T3 */

"processing"

Time T

T
1

T
2

T
0

T
3

Previous value

Delta

C
u

rr
en

t
V

al
u

e
x

Dx 3

Dx 2

Dx 1

Current value
SPRU423I—August 2012 Instrumentation 69
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Instrumentation APIs www.ti.com
Example 3-2 gathers information about a value’s difference from a base value. Figure 3–4 illustrates the
current value when measuring differences from a base value.

Example 3-2 Gathering Information About Differences from Base Value

Figure 3–4 Current Value Deltas from Base Value

The DSP/BIOS online help describes statistics objects and their parameters. See STS Module in the
TMS320 DSP/BIOS API Reference Guide for your platform for information on the STS module API calls.

3.5.4 Trace Manager (TRC Module)

The TRC module allows an application to enable and disable the acquisition of analysis data in real time.
For example, the target can use the TRC module to stop or start the acquisition of data when it discovers
an anomaly in the application’s behavior.

STS_set(&sts, baseValue);

"processing"

STS_delta(&sts, currentValue);

STS_set(&sts, baseValue);
"processing"

STS_delta(&sts, currentValue);

STS_set(&sts, baseValue);

"processing"

STS_delta(&sts, currentValue);

STS_set(&sts, baseValue);

"processing"

Time T

T
1

T
0

STS_set

STS_delta

Base value

C
ur

re
nt

 V
al

ue
 x

T
2 T

3
T

4

Dx 1

Dx 2

Dx 4

T
set

Dx 3

T
set

T
set
70 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Instrumentation APIs
Control of data gathering is important because it allows you to limit the effects of instrumentation on
program behavior, ensure that LOG and STS objects contain the necessary information, and start or stop
recording of events and data values at run time.

For example, by enabling instrumentation when an event occurs, you can use a fixed log to store the first
n events after you enable the log. By disabling tracing when an event occurs, you can use a circular log
to store the last n events before you disable the log.

3.5.4.1 Control of Explicit Instrumentation

You can use the TRC module to control explicit instrumentation as shown in this code fragment:

if (TRC_query(TRC_USER0) == 0) {

 `LOG or STS operation`

}

Note: TRC_query returns 0 if all trace types in the mask passed to it are enabled, and is not
0 if any trace types in the mask are disabled.

The overhead of this code fragment is just a few instruction cycles if the tested bit is not set. If an
application can afford the extra program size required for the test and associated instrumentation calls,
it is very practical to keep this code in the production application simplifying the development process and
enabling field diagnostics. This is, in fact, the model used within the DSP/BIOS instrumented kernel.

3.5.4.2 Control of Implicit Instrumentation

The TRC module manages a set of trace bits that control the real-time capture of implicit instrumentation
data through logs and statistics objects. For greater efficiency, the target does not store log or statistics
information unless tracing is enabled. (You do not need to enable tracing for messages explicitly written
with LOG_printf or LOG_event and statistics added with STS_add or STS_delta.)

DSP/BIOS defines constants for referencing specific trace bits as shown in Figure 3–2. The trace bits
allow the target application to control when to start and stop gathering system information. This can be
important when trying to capture information about a specific event or combination of events.

By default, all TRC constants are enabled. However, TRC_query returns non-zero if either the
TRC_GBLHOST or TRC_GBLTARG constants are disabled. This is because no tracing is done unless
these bits are set.

Table 3–2. TRC Constants:

Constant Tracing Enabled/Disabled Default

TRC_LOGCLK Logs low-resolution clock interrupts on

TRC_LOGPRD Logs system ticks and start of periodic functions on

TRC_LOGSWI Logs posting, start, and completion of software interrupt functions on

TRC_LOGTSK Logs events when a task is made ready, starts, becomes blocked, resumes
execution, and terminates. This constant also logs semaphore posts.

on

TRC_STSHWI Gathers statistics on monitored register values within HWIs on

TRC_STSPIP Counts the number of frames read from or written to data pipe on

TRC_STSPRD Gathers statistics on the number of ticks elapsed during execution of
periodic functions

on
SPRU423I—August 2012 Instrumentation 71
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Instrumentation APIs www.ti.com
Note: Updating Task Statistics. If TSK_deltatime is not called by a task, its statistics will
never be updated in the Statistics Data tool, even if TSK accumulators are enabled in
the RTA Control Panel.

TSK statistics are handled differently than other statistics because TSK functions
typically run an infinite loop that blocks while waiting for other threads. In contrast, HWI
and SWI functions run to completion without blocking. Because of this difference,
DSP/BIOS allows programs to identify the "beginning" of a TSK function's processing
loop by calling TSK_settime and the "end" of the loop by calling TSK_deltatime.

You can enable and disable these trace bits in the following ways:

• From the host, choose Tools > RTOS Analyzer > RTA (Legacy) > RTA Control Panel from the
CCS menu bar. This panel allows you to adjust the balance between information gathering and time
intrusion at run time. By disabling various implicit instrumentation types, you lose information but
reduce the overhead of processing.

• From the target code, enable and disable trace bits using the TRC_enable and TRC_disable
operations, respectively. For example, the following C code disables tracing of log information for
software interrupts and periodic functions:

TRC_disable(TRC_LOGSWI | TRC_LOGPRD);

For example, in an overnight run you might be looking for a specific circumstance. When it occurs,
your program can perform the following statement to turn off all tracing so that the current
instrumentation information is preserved:

TRC_disable(TRC_GBLTARG);

Any changes made by the target program to the trace bits are reflected in the RTA Control Panel. For
example, you could cause the target program to disable the tracing of information when an event occurs.
On the host, you can simply wait for the global target enable check box to be cleared and then examine
the log.

TRC_STSSWI Gathers statistics on number of instruction cycles or time elapsed from post
to completion of software interrupt

on

TRC_STSTSK Gather statistics on length of TSK execution from when a task is made
ready to run until a call to TSK_deltatime() is made; measured in timer
interrupt units or CLK ticks.

on

TRC_USER0
and
TRC_USER1

Enables or disables sets of explicit instrumentation actions. You can use
TRC_query to check the settings of these bits and either perform or omit
calls based on the result. DSP/BIOS does not use or set these bits.

on

TRC_GBLHOST Simultaneously starts or stops gathering all enabled types of tracing. This bit
must be set in order for any implicit instrumentation to be performed. This
can be important if you are trying to correlate events of different types. This
bit is usually set at run time on the host with the RTA Control Panel.

on

TRC_GBLTARG Controls implicit instrumentation. This bit must also be set in order for any implicit
instrumentation to be performed, and can only be set by the target program.

on

Constant Tracing Enabled/Disabled Default
72 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Implicit DSP/BIOS Instrumentation
3.6 Implicit DSP/BIOS Instrumentation

The instrumentation needed to allow the DSP/BIOS Analysis Tools to display the raw logs, system
statistics, and CPU load are built automatically into a DSP/BIOS program to provide implicit
instrumentation. You can enable different components of DSP/BIOS implicit instrumentation by using the
RTA Control Panel Analysis Tool in Code Composer, as described in section 3.4.4.2, Control of Implicit
Instrumentation, page 3-15.

DSP/BIOS instrumentation is efficient—when all implicit instrumentation is enabled, the CPU load
increases less than one percent for a typical application. See Section 3.4, Instrumentation Performance,
page 3-62, for details about instrumentation performance.

3.6.1 The CPU Load

The CPU load is defined as the percentage of instruction cycles that the CPU spends doing application
work. That is, the percentage of the total time that the CPU is:

• Running hardware interrupts, software interrupts, tasks, or periodic functions

• Performing I/O with the host

• Running any user routine

• In power-save or hardware idle mode (’C55x only)

When the CPU is not doing any of these, it is considered idle.

Although the CPU is idle during power-save mode, which is supported on ’C55x through the PWRM
module, the DSP/BIOS idle loop cannot run. As a result, the CPU load cannot be calculated and is shown
as 100%.

To view the CPU Load tool, choose Tools > RTOS Analyzer > RTA (Legacy) > CPU Load from the
CCS menu bar.

All CPU activity is divided into work time and idle time. To measure the CPU load over a time interval T,
you need to know how much time during that interval was spent doing application work (tw) and how much
of it was idle time (ti). From this you can calculate the CPU load as follows:

Since the CPU is always either doing work or in idle it is represented as follows:

You can rewrite this equation:

You can also express CPU load using instruction cycles rather than time intervals:

3.6.1.1 Measuring the CPU Load

In a DSP/BIOS application, the CPU is doing work when any of the following are occurring:

• hardware interrupts are serviced

CPUload
tw

T
----- 100=

T tw ti+=

CPUload
tw

tw ti+
-------------- 100=

CPUload
cw

cw ci+
---------------- 100=
SPRU423I—August 2012 Instrumentation 73
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Implicit DSP/BIOS Instrumentation www.ti.com
• software interrupts and periodic functions are run

• task functions are run

• user functions are executed from the idle loop

• HST channels are transferring data to the host

• real-time analysis data is uploaded to the DSP/BIOS Analysis Tools

When the CPU is not performing any of those activities, it is going through the idle loop, executing the
IDL_cpuLoad function, and calling the other DSP/BIOS IDL objects. In other words, the CPU idle time in
a DSP/BIOS application is the time that the CPU spends doing the routine in Example 3-3.

To measure the CPU load in a DSP/BIOS application over a time interval T, it is sufficient to know how
much time was spent going through the loop, shown in Figure 3-3, and how much time was spent doing
application work.

Example 3-3 The Idle Loop

Over a period of time T, a CPU with M MIPS (million instructions per second) executes M x T instruction
cycles. Of those instruction cycles, cw are spent doing application work. The rest are spent executing the
idle loop shown in Example 3-3. If the number of instruction cycles required to execute this loop once is
l1, the total number of instruction cycles spent executing the loop is
N x l1 where N is the number of times the loop is repeated over the period T. Hence, you have total
instruction cycles equals work instruction cycles plus idle instruction cycles.

From this expression you can rewrite cw as:

3.6.1.2 Calculating the Application CPU Load

Using the previous equations, you can calculate the CPU load in a DSP/BIOS application as:

To calculate the CPU load you need to know l1 and the value of N for a chosen time interval T, over which
the CPU load is being measured.

The IDL_cpuLoad object in the DSP/BIOS idle loop updates an STS object, IDL_busyObj, that keeps
track of the number of times the IDL_loop runs, and the time as kept by the DSP/BIOS high-resolution
clock (see Section 4.9, Timers, Interrupts, and the System Clock, page 4-137). This information is used
by the host to calculate the CPU load according to the equation above.

’Idle_loop:

 Perform IDL_cpuLoad

 Perform all other IDL functions (user/system functions)

 Goto IDL_loop’

MT cw Nl1+=

cw MT Nl1–=

CPUload
cw

MT
--------- 100

MT NI1–

MT
------------------------ 100 1

NI1

MT
---------– 

  100= = =
74 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Implicit DSP/BIOS Instrumentation
The host uploads the STS objects from the target at the polling rate set in the RTA Control Panel Property
Page. The information contained in IDL_busyObj is used to calculate the CPU load. The IDL_busyObj
count provides a measure of N (the number of times the idle loop ran). The IDL_busyObj maximum is not
used in CPU load calculation. The IDL_busyObj total provides the value T in units of the high-resolution
clock.

To calculate the CPU load you still need to know l1 (the number of instruction cycles spent in the idle
loop). When the Auto calculate idle loop instruction count box is enabled for the Idle Function Manager,
DSP/BIOS calculates l1 at initialization from BIOS_init.

The host uses the values described for N, T, l1, and the CPU MIPS to calculate the CPU load as follows:

3.6.2 Hardware Interrupt Count and Maximum Stack Depth

You can track the number of times an individual HWI function has been triggered by configuring the
monitor parameter for an HWI object to track the stack pointer. An STS object is created automatically
for each hardware ISR that is monitored as shown in Figures
 3–5 and 3–6.

Figure 3–5 Monitoring Stack Pointers (C5000 platform)

Figure 3–6 Monitoring Stack Pointers (C6000 platform)

For hardware interrupts that are not monitored, there is no overhead—control passes directly to the HWI
function. For interrupts that are monitored, control first passes to a stub function generated by the
configuration. This function reads the selected data location, passes the value to the selected STS
operation, and finally branches to the HWI function.

CPUload 1
Nl1

MT
---------– 100=

IVT

00 : br isr0

02 : br isr1

2n : br isrn

isr0

isr1

isrn

IVT

00 : br isr0

02 : br stub1

2n : br isrn

isr0

stub1

isrn

isr1

Default Configuration Monitoring isr1

IST

00 : b isr0

20 : b isr1

20n : b isrn

isr0

isr1

isrn

IST

00 : b isr0

20 : b stub1

20n : b isrn

isr0

stub1

isrn

isr1

Default Configuration Monitoring isr1
SPRU423I—August 2012 Instrumentation 75
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Implicit DSP/BIOS Instrumentation www.ti.com
The enable HWI accumulations check box in the RTA Control Panel must be selected in order for HWI
function monitoring to take place. If this type of tracing is not enabled, the stub function branches to the
HWI function without updating the STS object.

The number of times an interrupt is triggered is recorded in the Count field of the STS object. When the
stack pointer is monitored, the maximum value reflects the maximum position of the top of the system
stack when the interrupt occurs. This can be useful for determining the system stack size needed by an
application. To determine the maximum depth of the stack, follow these steps (see Figure 3–7):

1. In your .tcf file, set the monitor field for the HWI object to Stack Pointer. You should also change the
operation field to STS_add(–*addr).

These changes give you the minimum value of the stack pointer in the maximum field of the STS
object. This is the top of the stack, since the stack grows downward in memory.

2. Link your program and use the nmti program, which is described in Chapter 2, Utility Programs in the
TMS320 DSP/BIOS API Reference Guide for your platform, to find the address of the end of the
system stack. Or, you can find the address in Code Composer by using a Memory window or the map
file to find the address referenced by the GBL_stackend symbol. (This symbol references the top of
the stack.)

3. Run your program and view the STS object that monitors the stack pointer for this HWI function in
the Statistics Data tool.

4. Subtract the minimum value of the stack pointer (maximum field in the STS object) from the end of
the system stack to find the maximum depth of the stack.

ROV displays stack information for all targets. (See Section 3.3, RTOS Object Viewer (ROV))

Figure 3–7 Calculating Used Stack Depth

C
o

nf
ig

ur
ed

 S
ta

ck

free

Low
Address

GBL_stackbeg

GBL_stackend

SP

Used
Stack

used stack depth = {GBL_stackend - min(SP)}

STS_add(--*addr) = min(SP)

High
Address
76 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Implicit DSP/BIOS Instrumentation
3.6.3 Monitoring Variables

In addition to counting hardware interrupt occurrences and monitoring the stack pointer, you can monitor
any register or data value each time a hardware interrupt is triggered.

This implicit instrumentation can be enabled for any HWI object. Such monitoring is not enabled by
default. The performance of your interrupt processing is not affected unless you enable this type of
instrumentation in the configuration. The statistics object is updated each time hardware interrupt
processing begins. Updating such a statistics object consumes between 20 and 30 instructions per
interrupt for each interrupt monitored.

To enable implicit HWI instrumentation:

1. Open the properties window for any HWI object and choose a register to monitor in the monitor field.

You can monitor any variable shown in Table 3–3, or you can monitor nothing. When you choose to
monitor a variable, the configuration automatically creates an STS object to store the statistics for the
variable.

Table 3–3. Variables that can be Monitored with HWI

2. Set the operation parameter to the STS operation you want to perform on this value.

You can perform one of the operations shown in Table 3–4 on the value stored in the variable you
select. For all these operations, the number of times this hardware interrupt has been executed is
stored in the count field (see Figure 3–2). The max and total values are stored in the STS object on
the target. The average is computed on the host.

C55x Platform C6000 Platform C28x Platform

Data Value Data Value Data Value

Top of system stack

Stack pointer Stack Pointer Stack Pointer

General purpose
register:

General purpose
 register:

General purpose
register:

ac0
ac1
ac2
ac3
brc0
brc1
ifr0
ifr1
imr0
imr1
reta
rea0

rea1
rptc
rsa0
rsa1
st0
st1
st2
st3
t0
t1
t2
t3

trn0
trn1
xar0
xar1
xar2
xar3
xar4
xar5
xar6
xar7
xcdp
xdp

a0
a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11

a12
a13
a14
a15
a16-
a31

(C64x
only)
b0
b1
b2
b3
b4
b5

b6
b7
b8
b9
b10
b11
b12
b13
b14
b1
b16-
b31

(C64x
only)

ah
al
idp
ifr
ier

ph
pl
st0
st1
t
tl

xar0
xar1
xar2
xar3
xar4
xar5
xar6
xar7
SPRU423I—August 2012 Instrumentation 77
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Implicit DSP/BIOS Instrumentation www.ti.com
Table 3–4. STS Operations and Their Results

3. You may also set the properties of the corresponding STS object to filter the values of this STS object
on the host.

For example, you might want to watch the top of the system stack to see whether the application is
exceeding the allocated stack size. The top of the system stack is initialized to 0xBEEF on the C5000
platform and to 0xC0FFEE on the C6000 platform when the program is loaded. If this value ever changes,
the application has either exceeded the allocated stack or some error has caused the application to
overwrite the application’s stack.

One way to watch for the allocated stack size being exceeded is to follow these steps:

1. In the configuration, enable implicit instrumentation on any regularly occurring HWI function. Change
the monitor property for the HWI object to Top of SW Stack with STS_delta(*addr) as the operation.

2. Set the prev property of the corresponding STS object to 0xBEEF on the C5000 and C2800 platform
or to 0xC0FFEE on the C6000 platform.

3. Load your program in Code Composer and use the Statistics Data tool to view the STS object that
monitors the stack pointer for this HWI function.

4. Run your program. Any change to the value at the top of the stack is seen as a non-zero total (or
maximum) in the corresponding STS object.

3.6.4 Interrupt Latency

Interrupt latency is the maximum time between the triggering of an interrupt and when the first instruction
of the HWI executes. You can measure interrupt latency for the timer interrupt by following the
appropriate steps for your platform:

STS Operation Result

STS_add(*addr) Stores maximum and total for the data value or register value

STS_delta(*addr) Compares the data value or register value to the prev property of the STS object (or a
value set consistently with STS_set) and stores the maximum and total differences.

STS_add(-*addr) Negates the data value or register value and stores the maximum and total. As a
result, the value stored as the maximum is the negated minimum value. The total
and average are the negated total and average values.

STS_delta(-*addr) Negates the data value or register value and compares the data value or register
value to the prev property of the STS object (or a value set programmatically with
STS_set). Stores the maximum and total differences. As a result, the value stored
as the maximum is the negated minimum difference.

STS_add(|*addr|) Takes the absolute value of the data value or register value and stores the
maximum and total. As a result, the value stored as the maximum is the largest
negative or positive value. The average is the average absolute value.

STS_delta(|*addr|) Compares the absolute value of the register or data value to the prev property of the
STS object (or a value set programmatically with STS_set). Stores the maximum
and total differences. As a result, the value stored as the maximum is the largest
negative or positive difference and the average is the average variation from the
specified value.
78 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Instrumentation for Field Testing
Note: It is currently not possible to calculate interrupt latency on the C5500 using DSP/BIOS
because the C55x timer access is outside data space.

1. Configure the HWI object specified by the CPU Interrupt property of the CLK Manager to monitor a
Data Value.

2. Set the addr parameter to the address of the timer counter register for the on-device timer used by
the CLK Manager.

3. Set the type to unsigned.

4. Set the operation parameter to STS_add(*addr).

5. Set the Host Operation parameter of the corresponding STS object, HWI_INT14_STS, to A * X + B.
Set A to 4 and B to 0.

1. Configure the HWI_TINT object to monitor the tim register.

2. Set the operation parameter to STS_add(*addr).

3. Set the host operation parameter of the HWI_TINT_STS object to A*x + B. Set A to -1 and B to the
value of the PRD register.

The STS objects HWI_TINT_STS (C5000) or HWI_INT14_STS (C6000) then display the maximum time
(in instruction cycles) between when the timer interrupt was triggered and when the Timer Counter
Register was able to be read. This is the interrupt latency experienced by the timer interrupt. The interrupt
latency in the system is at least as large as this value.

3.7 Instrumentation for Field Testing

The embedded DSP/BIOS run-time library and DSP/BIOS Analysis Tools support a new generation of
testing and diagnostic tools that interact with programs running on production systems. Since DSP/BIOS
instrumentation is so efficient, your production program can retain explicit instrumentation for use with
manufacturing tests and field diagnostic tools, which can be designed to interact with both implicit and
explicit instrumentation.

3.8 Real-Time Data Exchange

Real-Time Data Exchange (RTDX) provides real-time, continuous visibility into the way DSP applications
operate in the real world. The RTDX plug-ins allow system developers to transfer data between a host
computer and DSP devices without interfering with the target application. The data can be analyzed and
visualized on the host using any OLE automation client. This shortens development time by giving you a
realistic representation of the way your system actually operates.

Note: RTDX is occasionally not supported for the initial releases of a new DSP device or
board.

RTDX consists of both target and host components. A small RTDX software library runs on the target
DSP. The DSP application makes function calls to this library’s API in order to pass data to or from it. This
library makes use of a scan-based emulator to move data to or from the host platform via a JTAG
interface. Data transfer to the host occurs in real time while the DSP application is running.
SPRU423I—August 2012 Instrumentation 79
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Real-Time Data Exchange www.ti.com
On the host platform, an RTDX host library operates in conjunction with Code Composer Studio. Displays
and RTA tools communicate with RTDX via an easy-to-use COM API to obtain the target data and/or to
send data to the DSP application. Designers can use their choice of standard software display packages,
including:

• LabVIEW from National Instruments
• Real-Time Graphics Tools from Quinn-Curtis
• Microsoft Excel

Alternatively, you can develop your own Visual Basic or Visual C++ applications. Instead of focusing on
obtaining the data, you can concentrate on designing the display to visualize the data in the most
meaningful way.

3.8.1 RTDX Applications

RTDX is well suited for a variety of control, servo, and audio applications. For example, wireless
telecommunications manufacturers can capture the outputs of their vocoder algorithms to check the
implementations of speech applications.

Embedded control systems also benefit from RTDX. Hard disk drive designers can test their applications
without crashing the drive with improper signals to the servo-motor. Engine control designers can analyze
changing factors (like heat and environmental conditions) while the control application is running.

For all of these applications, you can select visualization tools that display information in a way that is
most meaningful to you.

3.8.2 RTDX Usage

RTDX can be used with or without DSP/BIOS. RTDX is available with the PC-hosted Code Composer
Studio running Windows 98, or Windows NT version 4.0. RTDX in simulation is supported.

This document assumes that the reader is familiar with C, Visual Basic or Visual C++, and OLE/ActiveX
programming.

3.8.3 RTDX Flow of Data

Code Composer Studio data flow between the host (PC) and the target (TI processor) as shown in Figure
3–8.

Figure 3–8 RTDX Data Flow between Host and Target

Host Target

JTAG
interfaceOLE

automation
client

(optional)
log file

RTDX Target
Library

Target DSP
application

Code
ComposerOLE

interface User interface
RTDX host

library
80 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Real-Time Data Exchange
3.8.3.1 Target to Host Data Flow

To record data on the target, you must declare an output channel and write data to it using routines
defined in the user interface. This data is immediately recorded into an RTDX target buffer defined in the
RTDX target library. The data in the buffer is then sent to the host via the JTAG interface.

The RTDX host library receives this data from the JTAG interface and records it. The host records the
data into either a memory buffer or to an RTDX log file (depending on the RTDX host recording mode
specified).

The data can be retrieved by any host application that is an OLE automation client. Some typical
examples of OLE-capable host applications are:

• Visual Basic applications
• Visual C++ applications
• Lab View
• Microsoft Excel

Typically, an RTDX OLE automation client is a display that allows you to visualize the data in a meaningful
way.

3.8.3.2 Host to Target Data Flow

For the target to receive data from the host, you must first declare an input channel and request data from
it using routines defined in the user interface. The request for data is recorded into the RTDX target buffer
and sent to the host via the JTAG interface.

An OLE automation client can send data to the target using the OLE Interface. All data to be sent to the
target is written to a memory buffer within the RTDX host library. When the RTDX host library receives a
read request from the target application, the data in the host buffer is sent to the target via the JTAG
interface. The data is written to the requested location on the target in real time. The host notifies the
RTDX target library when the operation is complete.

3.8.3.3 RTDX Target Library User Interface

The user interface provides the safest method of exchanging data between a target application and the
RTDX host library.

The data types and functions defined in the user interface handle the following functions:

• Enable a target application to send data to the RTDX host library

• Enable a target application to request data from the RTDX host library

• Provide data buffering on the target. A copy of your data is stored in a target buffer prior to being sent
to the host. This action helps ensure the integrity of the data and minimizes real-time interference.

• Provide interrupt safety. You can call the routines defined in the user interface from within interrupt
handlers.

• Ensure correct utilization of the communication mechanism. It is a requirement that only one datum
at a time can be exchanged between the host and target using the JTAG interface. The routines
defined in the user interface handle the timing of calls into the lower-level interfaces.

3.8.3.4 RTDX Host OLE Interface

The OLE interface describes the methods that enable an OLE automation client to communicate with the
RTDX host library.
SPRU423I—August 2012 Instrumentation 81
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Real-Time Data Exchange www.ti.com
The functions defined in the OLE interface:

• Enable an OLE automation client to access the data that was recorded in an RTDX log file or is being
buffered by the RTDX Host Library

• Enable an OLE automation client to send data to the target via the RTDX host library

3.8.4 RTDX Modes

The RTDX host library provides the following modes of receiving data from a target application:

• Non-continuous. The data is written to a log file on the host. Noncontinuous mode should be used
when you want to capture a finite amount of data and record it in a log file.

• Continuous. The data is simply buffered by the RTDX host library; it is not written to a log file.
Continuous mode should be used when you want to continuously obtain and display the data from a
DSP application, and you don't need to store the data in a log file.

Note: To drain the buffer(s) and allow data to continuously flow up from the target, the OLE
automation client must read from each target output channel on a continual basis.
Failure to comply with this constraint may cause data flow from the target to cease, thus
reducing the data rate, and possibly resulting in channels being unable to obtain data.
In addition, the OLE automation client should open all target output channels on startup
to avoid data loss to any of the channels.

3.8.5 Special Considerations When Writing Assembly Code

The RTDX functionality in the user library interface can be accessed by a target application written in
assembly code.

See the TMS320C55x Optimizing Compiler User’s Guide (SPRU281B) or the TMS320C6000 Optimizing
Compiler User’s Guide (SPRU187G) for information about the C calling conventions, run-time
environment, and run-time-support functions applicable to your platform.

3.8.6 Target Buffer Size

The RTDX target buffer is used to temporarily store data that is waiting to be transferred to the host. You
may want to reduce the size of the buffer if you are transferring only a small amount of data. Alternately,
you may need to increase the size of the buffer if you are transferring blocks of data larger than the default
buffer size.

You can change the RTDX buffer size in the .tcf configuration file.

3.8.7 Sending Data From Target to Host or Host to Target

The user library interface provides the data types and functions for:

• Sending data from the target to the host
• Sending data from the host to the target

The following data types and functions are defined in the header file rtdx.h. They are available via
DSP/BIOS or standalone.

• Declaration Macros
— RTDX_CreateInputChannel
82 Instrumentation SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Real-Time Data Exchange
• RTDX_CreateOutputChannel

• Functions
— RTDX_channelBusy

• RTDX_disableInput
• RTDX_disableOutput
• RTDX_enableOutput
• RTDX_enableInput
• RTDX_read
• RTDX_readNB
• RTDX_sizeofInput
• RTDX_write

• Macros
— RTDX_isInputEnabled

• RTDX_isOutputEnabled

See the TMS320 DSP/BIOS API Reference Guide for your platform for detailed descriptions of all RTDX
functions.
SPRU423I—August 2012 Instrumentation 83
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Chapter 4
SPRU423I—August 2012

Thread Scheduling

This chapter describes the types of threads a DSP/BIOS program can use, their behavior, and their
priorities during program execution.

4.1 Overview of Thread Scheduling

Many real-time DSP applications must perform a number of seemingly unrelated functions at the same
time, often in response to external events such as the availability of data or the presence of a control
signal. Both the functions performed and when they are performed are important.

These functions are called threads. Different systems define threads either narrowly or broadly. Within
DSP/BIOS, the term is defined broadly to include any independent stream of instructions executed by the
DSP. A thread is a single point of control that can contain a subroutine, an interrupt service routine (ISR),
or a function call.

DSP/BIOS enables your applications to be structured as a collection of threads, each of which carries
out a modularized function. Multithreaded programs run on a single processor by allowing higher-priority
threads to preempt lower-priority threads and by allowing various types of interaction between threads,
including blocking, communication, and synchronization.

Real-time application programs organized in such a modular fashion—as opposed to a single,
centralized polling loop, for example—are easier to design, implement, and maintain.

4.1 Overview of Thread Scheduling. 84

4.2 Hardware Interrupts . 91

4.3 Software Interrupts . 102

4.4 Tasks . 112

4.5 The Idle Loop . 120

4.6 Power Management. 121

4.7 Semaphores. 127

4.8 Mailboxes . 132

4.9 Timers, Interrupts, and the System Clock . 137

4.10 Periodic Function Manager (PRD) and the System Clock. 140

Topic Page
SPRU423I—August 2012 Thread Scheduling 84
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I

www.ti.com Overview of Thread Scheduling
DSP/BIOS provides support for several types of program threads with different priorities. Each thread
type has different execution and preemption characteristics. The thread types (from highest to lowest
priority) are:

• Hardware interrupts (HWI), which includes CLK functions

• Software interrupts (SWI), which includes PRD functions

• Tasks (TSK)

• Background thread (IDL)

These thread types are described briefly in the following section and discussed in more detail in the rest
of this chapter.

4.1.1 Types of Threads

The four major types of threads in a DSP/BIOS program are:

• Hardware interrupts (HWI). Triggered in response to external asynchronous events that occur in
the DSP environment. An HWI function (also called an interrupt service routine or ISR) is executed
after a hardware interrupt is triggered in order to perform a critical task that is subject to a hard
deadline. HWI functions are the threads with the highest priority in a DSP/BIOS application. For a
DSPs running at 200 MHz, HWIs should be used for application tasks that need to run at frequencies
approaching 200 kHz and that need to be completed within deadlines of 2 to 100 microseconds. For
faster DSPs, HWIs should be used for task that run at proportionally higher frequencies and have
proportionally shorter deadlines. See Section 4.2, Hardware Interrupts, page 4-91, for details about
hardware interrupts.

• Software interrupts (SWI). Patterned after hardware interrupt (HWIs). While HWIs are triggered by
a hardware interrupt, software interrupts are triggered by calling SWI functions from the program.
Software interrupts provide additional priority levels between hardware interrupts and TSKs. SWIs
handle threads subject to time constraints that preclude them from being run as tasks, but whose
deadlines are not as severe as those of hardware ISRs. Like HWI’s, SWI’s threads always run to
completion. Software interrupts should be used to schedule events with deadlines of 100
microseconds or more. SWIs allow HWIs to defer less critical processing to a lower-priority thread,
minimizing the time the CPU spends inside an interrupt service routine, where other HWIs can be
disabled. See Section 4.3, Software Interrupts, page 4-102, for details about software interrupts.

• Tasks (TSK). Tasks have higher priority than the background thread and lower priority than software
interrupts. Tasks differ from software interrupts in that they can wait (block) during execution until
necessary resources are available. DSP/BIOS provides a number of structures that can be used for
inter task communication and synchronization. These structures include queues, semaphores, and
mailboxes. See Section 4.4, Tasks, page 4-112, for details about tasks.

• Background thread. Executes the idle loop (IDL) at the lowest priority in a DSP/BIOS application.
After main returns, a DSP/BIOS application calls the startup routine for each DSP/BIOS module and
then falls into the idle loop. The idle loop is a continuous loop that calls all functions for the IDL
objects. Each function must wait for all others to finish executing before it is called again. The idle
loop runs continuously except when it is preempted by higher-priority threads. Only functions that do
not have hard deadlines should be executed in the idle loop. See Section 4.5, The Idle Loop, page
4-120, for details about the background thread.

There are several other kinds of functions that can be performed in a DSP/BIOS program. These are
performed within the context of one of the thread types in the previous list.
SPRU423I—August 2012 Thread Scheduling 85
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Overview of Thread Scheduling www.ti.com
• Clock (CLK) functions. Triggered at the rate of the on-device timer interrupt. By default, these
functions are triggered by a hardware interrupt and are performed as HWI functions. See Section 4.9,
Timers, Interrupts, and the System Clock, page 4-137, for details.

• Periodic (PRD) functions. Performed based on a multiple of either the on-device timer interrupt or
some other occurrence. Periodic functions are a special type of software interrupt. See Section 4.10,
Periodic Function Manager (PRD) and the System Clock, page 4-140, for details.

• Data notification functions. Performed when you use pipes (PIP) or host channels (HST) to
transfer data. The functions are triggered when a frame of data is read or written to notify the writer
or reader. These functions are performed as part of the context of the function that called PIP_alloc,
PIP_get, PIP_free, or PIP_put.

4.1.2 Choosing Which Types of Threads to Use

The type and priority level you choose for each thread in an application program has an impact on
whether the threads are scheduled on time and executed correctly. DSP/BIOS static configuration makes
it easy to change a thread from one type to another.

Here are some rules for deciding which type of object to use for each task to be performed by a program:

• SWI or TSK versus HWI. Perform only critical processing within hardware interrupt service routines.
HWIs should be considered for processing hardware interrupts (IRQs) with deadlines down to the
5-microsecond range, especially when data may be overwritten if the deadline is not met. Software
interrupts or tasks should be considered for events with longer deadlines—around 100 microseconds
or more. Your HWI functions should post software interrupts or tasks to perform lower-priority
processing. Using lower-priority threads minimizes the length of time interrupts are disabled
(interrupt latency), allowing other hardware interrupts to occur.

• SWI versus TSK. Use software interrupts if functions have relatively simple interdependencies and
data sharing requirements. Use tasks if the requirements are more complex. While higher-priority
threads can preempt lower priority threads, only tasks can wait for another event, such as resource
availability. Tasks also have more options than SWIs when using shared data. All input needed by a
software interrupt’s function should be ready when the program posts the SWI. The SWI object’s
mailbox structure provides a way to determine when resources are available. SWIs are more memory
efficient because they all run from a single stack.

• IDL. Create background functions to perform noncritical housekeeping tasks when no other
processing is necessary. IDL functions do not typically have hard deadlines. Instead, they run
whenever the system has unused processor time.

• CLK. Use CLK functions when you want a function to be triggered directly by a timer interrupt. These
functions run as HWI functions and should take minimal processing time. The default CLK object,
PRD_clock, causes a tick for the periodic functions. You can add additional CLK objects to run at the
same rate. However, you should minimize the time required to perform all CLK functions because
they run as HWI functions.

• PRD. Use PRD functions when you want a function to run at a rate based on a multiple of the on-
device timer’s low-resolution rate or another event (such as an external interrupt). These functions
run as SWI functions.

• PRD versus SWI. All PRD functions run at the same SWI priority, so one PRD function cannot
preempt another. However, PRD functions can post lower-priority software interrupts for lengthy
processing routines. This ensures that the PRD_swi software interrupt can preempt those routines
when the next system tick occurs and PRD_swi is posted again.
86 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Overview of Thread Scheduling
4.1.3 A Comparison of Thread Characteristics

Table 4–1 provides a comparison of the thread types supported by DSP/BIOS.

Table 4–1. Comparison of Thread Characteristics

Notes: 1) If you disable the TSK Manager, IDL threads use the system stack.

Characteristic HWI SWI TSK IDL

Priority Highest 2nd highest 2nd lowest Lowest

Number of
priority levels

DSP-dependent 15. Periodic
functions run at
priority of the
PRD_swi SWI
object. Task
scheduler runs at
lowest priority.

16 (Including 1
for the ID loop)

1

Can yield and
pend

No, runs to
completion except
for preemption

No, runs to
completion except
for preemption

Yes Should not; would
prevent PC from
getting target
information

Execution states

Inactive, ready,
running

Inactive, ready,
running

Ready, running,
blocked,
terminated

Ready, running

Scheduler
disabled by

HWI_disable SWI_disable TSK_disable Program exit

Posted or made
ready to run by

Interrupt occurs SWI_post,
SWI_andn,
SWI_dec, SWI_inc,
SWI_or

TSK_create main() exits and no
other thread is
currently running

Stack used
System stack
(1 per program)

System stack
(1 per program)

Task stack
(1 per task)

Task stack used by
default (see Note 1)

Context saved
when preempts
other thread

Customizable Certain registers
saved to system
stack (see Note 2)

Entire context
saved to task
stack

--Not applicable--

Context saved
when blocked

--Not applicable-- --Not applicable-- Saves the C
register set
(see optimizing
compiler user’s
guide for your
platform)

--Not applicable--
SPRU423I—August 2012 Thread Scheduling 87
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Overview of Thread Scheduling www.ti.com
Table 4–2. Comparison of Thread Characteristics (continued)

2) See Section 4.3.7, Saving Registers During Software Interrupt Preemption, page 4-111, for a list of saved registers.

3) HWI objects cannot be created dynamically because they correspond to DSP interrupts. However, interrupt functions can be
changed at run time.

4) When a HWI function calls HWI_enter, it can pass a bitmask that indicates which interrupts to enable while the HWI function
runs. An enabled interrupt can preempt the HWI function even if the enabled interrupt has a lower priority than the current
interrupt.

4.1.4 Thread Priorities

Within DSP/BIOS, hardware interrupts have the highest priority. The priorities among the set of HWI
objects are not maintained implicitly by DSP/BIOS. The HWI priority only applies to the order in which
multiple interrupts that are ready on a given CPU cycle are serviced by the CPU. Hardware interrupts are
preempted by another interrupt unless that interrupt is disabled by resetting the GIE bit in the CSR, or by
setting the corresponding bit in the IER.

Characteristic HWI SWI TSK IDL

Share data with
thread via

Streams, queues,
pipes, global
variables

Streams, queues,
pipes, global
variables

Streams, queues,
pipes, locks,
mailboxes, global
variables

Streams, queues,
pipes, global
variables

Synchronize with
thread via

--Not applicable-- SWI mailbox Semaphores,
mailboxes

-Not applicable--

Function hooks

No No Yes: initialize,
create, delete, exit,
task switch, ready

No

Static creation

Included in default
configuration
template

Yes Yes Yes

Dynamic creation Yes (see Note 3) Yes Yes No

Dynamically
change priority

No (see Note 4) Yes Yes No

Implicit logging

None Post and
completion events

Ready, start, block,
resume, and
termination events

None

Implicit statistics Monitored values Execution time Execution time None
88 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Overview of Thread Scheduling
Figure 4–1 Thread Priorities

Software interrupts have lower priority than hardware interrupts. There are 14 priority levels available for
software interrupts. Software interrupts can be preempted by a higher-priority software interrupt or any
hardware interrupt. Software interrupts cannot block.

Tasks have lower priority than software interrupts. There are 15 task priority levels. Tasks can be
preempted by any higher-priority thread. Tasks can block while waiting for resource availability and
lower-priority threads.

The background idle loop is the thread with the lowest priority of all. It runs in a loop when the CPU is not
busy running another thread.

4.1.5 Yielding and Preemption

The DSP/BIOS schedulers run the highest-priority thread that is ready to run except in the following
cases:

• The thread that is running disables some or all hardware interrupts temporarily (with HWI_disable or
HWI_enter), preventing hardware ISRs from running.

• The thread that is running disables software interrupts temporarily (with SWI_disable). This prevents
any higher-priority software interrupt from preempting the current thread. It does not prevent
hardware interrupts from preempting the current thread.

• The thread that is running disables task scheduling temporarily (with TSK_disable). This prevents
any higher-priority task from preempting the current task. It does not prevent software and hardware
interrupts from preempting the current task.

• The highest-priority thread is a task that is blocked. This occurs if the task calls TSK_sleep,
LCK_pend, MBX_pend, or SEM_pend.

Clock
Functions

(CLK)

Hardware
Interrupts

(HWI)

Periodic
Functions

(PRD)

Software
Signals
(SWI)

14 levels

Tasks
(TSK)

15 levels

P
rio

rit
y

Background
Thread
(IDL)
SPRU423I—August 2012 Thread Scheduling 89
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Overview of Thread Scheduling www.ti.com
Both hardware and software interrupts can interact with the DSP/BIOS task scheduler. When a task is
blocked, it is often because the task is pending on a semaphore which is unavailable. Semaphores can
be posted from HWIs and SWIs as well as from other tasks. If an HWI or SWI posts a semaphore to
unblock a pending task, the processor switches to that task if that task has a higher priority than the
currently running task.

When running either an HWI or SWI, DSP/BIOS uses a dedicated system interrupt stack, called the
system stack. Each task uses its own private stack. Therefore, if there are no TSK tasks in the system,
all threads share the same system stack. Because DSP/BIOS uses separate stacks for each task, both
the application and task stacks can be smaller. Because the system stack is smaller, you can place it in
precious fast memory.

Table 4–3 shows what happens when one type of thread is running (top row) and another thread
becomes ready to run (left column). The results depend on whether or not the type of thread that is ready
to run is enabled or disabled. (The action shown is that of the thread that is ready to run.)

Table 4–3. Thread Preemption

Figure 4–2 shows the execution graph for a scenario in which SWIs and HWIs are enabled (the default),
and a hardware interrupt routine posts a software interrupt whose priority is higher than that of the
software interrupt running when the interrupt occurs. Also, a second hardware interrupt occurs while the
first ISR is running. The second ISR is held off because the first ISR masks off (that is, disables) the
second interrupt during the first ISR.

Thread Running

Thread Posted HWI SWI TSK IDL

Enabled HWI Preempts Preempts Preempts Preempts

Disabled HWI Waits for
reenable

Waits for
reenable

Waits for
reenable

Waits for
reenable

Enabled, higher-priority SWI —— Preempts Preempts Preempts

Disabled SWI Waits Waits for
reenable

Waits for
reenable

Waits for
reenable

Lower priority SWI Waits Waits —— ——

Enabled, higher-priority TSK —— —— Preempts Preempts

Disabled TSK Waits Waits Waits for
reenable

Waits for
reenable

Lower priority TSK Waits Waits Waits ——
90 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Hardware Interrupts
Figure 4–2 Preemption Scenario

In Figure 4–2, the low priority software interrupt is asynchronously preempted by the hardware interrupts.
The first ISR posts a higher-priority software interrupt, which is executed after both hardware interrupt
routines finish executing.

4.2 Hardware Interrupts

Hardware interrupts handle critical processing that the application must perform in response to external
asynchronous events. The DSP/BIOS HWI module is used to manage hardware interrupts.

In a typical DSP system, hardware interrupts are triggered either by on-device peripherals or by devices
external to the DSP. In both cases, the interrupt causes the processor to vector to the ISR address. The
address to which a DSP/BIOS HWI object causes an interrupt to vector can be a user routine or the
common system HWI dispatcher.

Hardware ISRs can be written using assembly language, C, or a combination of both. HWI functions are
usually written in assembly language for efficiency. To allow an HWI object’s function to be written
completely in C, the system HWI dispatcher should be used.

All hardware interrupts run to completion. If an HWI is posted multiple times before its ISR has a chance
to run, the ISR runs only one time. For this reason, you should minimize the amount of code performed
by an HWI function. If the GIE bit is enabled, a hardware interrupt can be preempted by any interrupt that
is enabled by the IEMASK.

If an HWI function calls any of the PIP APIs—PIP_alloc, PIP_free, PIP_get, PIP_put—the pipe's
notifyWriter or notifyReader functions run as part of the HWI context.
SPRU423I—August 2012 Thread Scheduling 91
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Hardware Interrupts www.ti.com
Note: The interrupt keyword or INTERRUPT pragma must not be used when HWI objects are
used in conjunction with C functions. The HWI_enter/HWI_exit macros and the HWI
dispatcher contain this functionality, and the use of the C modifier can cause program
failure.

4.2.1 Configuring Interrupts

In the base DSP/BIOS configuration, the HWI Manager contains an HWI object for each hardware
interrupt in your DSP.

You can configure the ISR for each hardware interrupt in the DSP. You enter the name of the ISR that is
called in response to a hardware interrupt for the corresponding HWI object in the .tcf configuration file.
DSP/BIOS takes care of setting up the interrupt table so that each hardware interrupt is handled by the
appropriate ISR. You can also configure the memory segment where the interrupt table is located.

The DSP/BIOS online help describes HWI objects and their parameters. See HWI Module in the TMS320
DSP/BIOS API Reference Guide for your platform for reference information on the HWI module API calls.

4.2.2 Disabling and Enabling Hardware Interrupts

Within a software interrupt or task, you can temporarily disable hardware interrupts during a critical
section of processing. The HWI_disable and HWI_enable/HWI_restore functions are used in pairs to
disable and enable interrupts.

When you call HWI_disable, interrupts are globally disabled in your application. On the C6000 platform,
HWI_disable clears the GIE bit in the control status register (CSR). On the C5000 and C2800 platforms,
HWI_disable sets the INTM bit in the ST1 register. On both platforms, this prevents the CPU from taking
any maskable hardware interrupt. Hardware interrupts, therefore, operate on a global basis, affecting all
interrupts, as opposed to affecting individual bits in the interrupt enable register. To reenable interrupts,
call HWI_enable or HWI_restore. HWI_enable always enables the GIE bit on the C6000 platform or
clears the INTM bit in the ST1 register on the C5000 and C2800 platforms, while HWI_restore restores
the value to the state that existed before HWI_disable was called.

4.2.3 Impact of Real-Time Mode Emulation on DSP/BIOS

TI Emulation supports two debug execution control modes:

• Stop mode

• Real-time mode

Stop mode provides complete control of program execution, allowing for disabling of all interrupts. Real-
time mode allows time-critical interrupt service routines to be performed while execution of other code is
halted. Both execution modes can suspend program execution at break events, such as occurrences of
software breakpoint instructions or specified program space or data-space accesses.

In real-time mode, background codes are suspended at break events while continuing to execute the
time-critical interrupt service routines (also referred to as foreground code.)

4.2.3.1 Interrupt Behavior for C28x During Real-Time Mode

Real-time mode for C28x is defined by three different states:
92 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Hardware Interrupts
• Debug Halt state

• Single Instruction state

• Run state

Debug Halt State: This state is entered through a break event, such as the decoding of a software
breakpoint instruction or the occurrence of an analysis breakpoint/watchpoint or a request from the host
processor.

When halted, time-critical interrupts can still be serviced. An interrupt is defined as time critical
interrupt/real-time interrupt if the interrupt has been enabled in the IER and DBGIER register. Note that
the INTM bit is ignored in this case.

However, the DBGM bit can be used to prevent the CPU from entering the halt state (or perform debug
access) in undesirable regions of code. If INTM and DBGM are used together, then it is possible to protect
regions of code from being interrupted by any type of interrupt. It also ensures that debugger updates of
registers/memory cannot occur in that region of code.

SETC INTM, DEGM

/ Uninterruptable, unhaltable region of code

CLRC INTM, DBGM

If the breakpoint is present in real-time, it halts the CPU and causes it to enter into DEBUG HALT mode.
This is identical to the behavior of breakpoints when in stopmode. Note that software breakpoints replace
the original instruction -- so it is not possible to safely ignore or delay the software breakpoint’s execution;
otherwise, you will not be executing the intended set of instructions. However, other forms of causes of
halting the CPU can be delayed. It’s important to note that placing software breakpoints is a "deliberate
act" -- you know exactly where you are going to halt, whereas with other forms of halting (such as via the
CCS Halt command or a watchpoint or other triggering event), the user will often not know where in the
program execution the halt will occur.

The user should never place breakpoints in locations where interrupts or halts are forbidden. However,
it is possible that a halt from CCS could be initiated when the CPU is in the uninterruptible, unhaltable
region of code, in which case the halt will be delayed until DBGM is no longer set. This is just like an
interrupt, which will be delayed until INTM is no longer set.

As an example, assume there is a variable called Semaphore, which is incremented in an ISR, and
decremented in the main loop. Because of the way interrupts and debug accesses are handled, neither
can occur in the italicized regions below:
SPRU423I—August 2012 Thread Scheduling 93
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Hardware Interrupts www.ti.com
Example 4-1 Interrupt Behavior for C28x During Real-Time Mode

MAIN_LOOP:

; Do some stuff

SETC INTM, DBGM

/ Uninterruptible, unhaltable region of code

MOV ACC, @Semaphore

SUB ACC, #1 ;Let’s do "*Semaphore--;" really inefficiently!

MOV @Semaphore, ACC

CLRC INTM, DBGM

; Do some more stuff

B MAIN_LOOP

; By default, INTM and DBGM are set in an ISR so you can’t halt or interrupt

RT_ISR:

; Do some stuff

MOV ACC, @Semaphore

ADD ACC, #1 ;Let’s do "*Semaphore--;" really inefficiently!

MOV @Semaphore, ACC

; Do some more stuff

IRET

Note: The code above is safe if the debugger issues a halt; you cannot halt in the italicized
regions above, so the PC will always be at the B MAIN_LOOP instruction. If the user
sets a watchpoint to occur when the address Semaphore is accessed, the CPU will not
be able to halt until after CLRC INTM, DBGM is executed. The same result will occur if
the user sets a hardware breakpoint on RT_ISR. If the user sets a software breakpoint
in the italicized regions above, the CPU will halt, but the debugger will report this as an
error and indicate that this is an improper operation. In this case, an atomic C28x
instruction, such as DEC or INC, should have been used.
94 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Hardware Interrupts
Figure 4–3 The Interrupt Sequence in Debug Halt State

Single Instruction State: This state is entered when you tell the debugger to execute a single instruction
by using RUN 1 or a STEP 1 command. The CPU executes the single instruction pointed to by PC and
then returns to the debug halt state. If an interrupt occurs in this state and RUN 1 command was used to
enter the state, CPU can service the interrupt. However, if STEP 1 was used to enter the state, CPU
cannot service the interrupt. This is true for both stop mode and real-time mode.

No

No
Yes

Yes

Interrupt request sent to CPU

Check DBGIER bit

Check IER bit

Clear corresponding IER bit

Empty pipeline

Increment and temporarily store PC

Fetch interrupt vector

Increment SP by 1

Perform automatic context save

Clear corresponding IER bit

Set INTM & DBGM, Clear loop,
EALLOW, IDLESTAT

Load PC with fetch vector

Execute interrupt service routine

Program continues
SPRU423I—August 2012 Thread Scheduling 95
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Hardware Interrupts www.ti.com
Note that it is safe to assume that INTM will be respected while single-stepping. Also, if you single-step
the code from the previous example, all of the uninterruptible, unhaltable code will be executed as "one
instruction" as follows:

PC initially here -> SETC INTM, DBGM

; Uninterruptible, unhaltable region of code

MOV ACC, @Semaphore

SUB ACC, #1 ;Let’s do "*Semaphore--;" really inefficiently!

MOV @Semaphore, ACC

CLRC INTM, DBGM

; Do some more stuff

PC will stop here -> B MAIN_LOOP
96 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Hardware Interrupts
Run State: This state is entered when you use a run command from the debugger interface. CPU
services all the interrupts, depending on the INTM bit and the IER register value.

Figure 4–4 The Interrupt Sequence in the Run-time State

DSP/BIOS has some code segments that need to be protected from interrupts; these code sections are
called critical sections. If these segments are interrupted, and interrupt calls some DSP/BIOS API, it is
bound to corrupt the program results. Therefore, it is important to surround the code with SET INTM,
DBGM and CLRC INTM, DBGM.

Example 4-2 shows two code examples of regions protected from all interrupts.

No

No
Yes

Yes

Interrupt request sent to CPU

Check INTM bit

Check IER bit

Clear corresponding IER bit

Empty pipeline

Increment and temporarily store PC

Fetch interrupt vector

Increment SP by 1

Perform automatic context save

Clear corresponding IER bit

Set INTM & DBGM, Clear loop,
EALLOW, IDLESTAT

Load PC with fetch vector

Execute interrupt service routine

Program continues
SPRU423I—August 2012 Thread Scheduling 97
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Hardware Interrupts www.ti.com
Example 4-2 Code Regions That are Uninterruptible

(a) Assembly Code

(b) C Code

Using HWI_restore instead of HWI_enable allows the pair of calls to be nested. If the calls are nested,
the outermost call to HWI_disable turns interrupts off, and the innermost call to HWI_disable does
nothing. Interrupts are not reenabled until the outermost call to HWI_restore. Be careful when using
HWI_enable because this call enables interrupts even if they were already disabled when HWI_disable
was called.

Note: DSP/BIOS kernel calls that can cause task rescheduling (for example, SEM_post and
TSK_sleep) should be avoided within a block surrounded by HWI_disable and
HWI_enable since the interrupts can be disabled for an indeterminate amount of time
if a task switch occurs.

4.2.4 Context and Interrupt Management Within Interrupts

When a hardware interrupt preempts the function that is currently executing, the HWI function must save
and restore any registers it uses or modifies. DSP/BIOS provides the HWI_enter assembly macro to save
registers and the HWI_exit assembly macro to restore registers. Using these macros gives the function
that was preempted the same context when it resumes running. In addition to the register context
saving/restoring functionality, the HWI_enter/HWI_exit macros perform the following system level
operations:

• ensure the SWI and TSK schedulers are called at the appropriate times

• disable/restore individual interrupts while the ISR executes

The HWI_enter assembly macro must be called prior to any DSP/BIOS API calls that could post or affect
a software interrupt or semaphore. The HWI_exit assembly macro must be called at the very end of the
function’s code.

.include hwi.h55

...

HWI_disable A ; disable all interrupts, save the old intm
value in reg A

 ’do some critical operation’

HWI_restore A0

.include hwi.h

Uns oldmask;

oldmask = HWI_disable();

 ’do some critical operation; ’

 ’do not call TSK_sleep(), SEM_post, etc.’

HWI_restore(oldmask);
98 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Hardware Interrupts
In order to support interrupt routines written completely in C, DSP/BIOS provides an HWI dispatcher that
performs these enter and exit macros for an interrupt routine. An HWI can handle context saving and
interrupt disabling using this HWI dispatcher or by explicitly calling HWI_enter and HWI_exit. The HWI
configuration properties allow you to choose whether the HWI dispatcher is used for individual HWI
objects. The HWI dispatcher is the preferred method for handling interrupts.

The HWI dispatcher, in effect, calls the configured HWI function from within an HWI_enter/HWI_exit
macro pair. This allows the HWI function to be written completely in C. It would, in fact, cause a system
crash were the dispatcher to call a function that contains the HWI_enter/HWI_exit macro pair. Using the
dispatcher therefore allows for only one instance of the HWI_enter and HWI_exit code.

Note: The interrupt keyword or INTERRUPT pragma must not be used when HWI objects are
used in conjunction with C functions.The HWI_enter/HWI_exit macros and the HWI
dispatcher contain this functionality, and the use of the C modifier can cause program
failure.

Whether called explicitly, C55 or by the HWI dispatcher, the HWI_enter and HWI_exit macros prepare an
ISR to call any C function. In particular, the ISR is prepared to call any DSP/BIOS API function that is
allowed to be called from the context of an HWI. (See Functions Callable by Tasks, SWI Handlers, or
Hardware ISRs in the TMS320 DSP/BIOS API Reference Guide for your platform for a complete list of
these functions.)

Note: When using the system HWI dispatcher on the C6000platforms, the HWI function must
not call HWI_enter and HWI_exit.

Regardless of which HWI dispatching method is used, DSP/BIOS uses the system stack during the
execution of both SWIs and HWIs. If there are no TSK tasks in the system, this system stack is used by
all threads. If there are TSK tasks, each task uses its own private stack. Whenever a task is preempted
by an SWI or HWI, DSP/BIOS uses the system stack for the duration of the interrupt thread.

The C55x platform can have seven parameters in all, the first five specify which CPU registers to save
as context, and the last two can specify two interrupt mask bitmaps.

HWI_enter and HWI_exit both take four parameters on the C6000 platform:

• The first two, ABMASK and CMASK, specify which A, B, and control registers are to be saved and
restored by the ISR.

• The third parameter on the C6000 platform, IEMASK, is a mask of those interrupts that are to be
disabled between the HWI_enter and HWI_exit macro calls.

When an interrupt is triggered, the processor disables interrupts globally (by clearing the GIE bit in
the control status register (CSR)) and then jumps to the ISR set up in the interrupt service table. The
HWI_enter macro reenables interrupts by setting the GIE in the CSR. Before doing so, HWI_enter
selectively disables bits in the interrupt enable register (IER) determined by the IEMASK parameter.
Hence, HWI_enter gives you control to select what interrupts can and cannot preempt the current
HWI function.
SPRU423I—August 2012 Thread Scheduling 99
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Hardware Interrupts www.ti.com
When HWI_exit is called, the bit pattern in the IEMASK determines what interrupts are restored by
HWI_exit by setting the corresponding bits in the IER. Of the interrupts in IEMASK, HWI_exit restores
only those that were disabled with HWI_enter. If upon exiting the ISR you do not want to restore one
of the interrupts that was disabled with HWI_enter, do not set that interrupt bit in IEMASK in HWI_exit.
HWI_exit does not affect the status of interrupt bits that are not in IEMASK.

• The fourth parameter on the C6000 platform, CCMASK, specifies the value to place in the cache
control field of the CSR. This cache state remains in effect for the duration of code executed between
the HWI_enter and HWI_exit calls. Some typical values for this mask are defined in c62.h62 (for
example, C62_PCC_ENABLE). You can OR the PCC code and DCC code together to generate
CCMASK. If you use 0 as CCMASK, a default value is used. You set this value using GBL properties
in the .tcf configuration file.

CLK_F_isr, which handles one of the on-device timer interrupts when the Clock Manager is enabled,
also uses the cache value set in the configuration. HWI_enter saves the current CSR status before
it sets the cache bits as defined by CCMASK. HWI_exit restores CSR to its value at the interrupted
context.

The predefined masks C62_ABTEMPS and C62_CTEMPS (C62x) or C64_ABTEMPS and
C64_CTEMPS (C64x) specify all of the C language temporary A/B registers and all of the temporary
control registers, respectively. These masks can be used to save the registers that can be freely used by
a C function. When using the HWI dispatcher on the C6000 platform, there is no ability to specify a
register set, so the registers specified by these masks are all saved and restored.

For example, if your HWI function calls a C function you would use:

HWI_enter C62_ABTEMPS, C62_CTEMPS, IEMASK, CCMASK

 `isr code`

HWI_exit C62_ABTEMPS, C62_CTEMPS, IEMASK, CCMASK

HWI_enter should be used to save all of the C run-time environment registers before calling any C or
DSP/BIOS functions. HWI_exit should be used to restore these registers.

In addition to saving and restoring the C run-time environment registers, HWI_enter and HWI_exit make
sure the DSP/BIOS scheduler is called only by the outermost interrupt routine if nested interrupts occur.
If the HWI or another nested HWI triggers an SWI handler with SWI_post, or readies a higher priority task
(for example, by calling SEM_ipost or TSK_itick), the outermost HWI_exit invokes the SWI and TSK
schedulers. The SWI scheduler services all pending SWI handlers before performing a context switch to
a higher priority task (if necessary).

HWI_enter and HWI_exit both take four parameters on the C2800 platform:

• The first parameter, AR_MASK, specifies which CPU registers (xar0-xar7) are to be saved and
restored by the ISR.

• The second parameter of HWI_enter and HWI_exit on the C28x platform, ACC_MASK, specifies the
mask of ACC, p, and t registers to be stored and restored by the ISR.

• The third parameter, MISC_MASK, specifies the mask of registers ier, ifr, DBGIER, st0, st1, and dp.

• The fourth parameter, IERDISABLEMASK, specifies which bits in the IER are to be turned off.

When an interrupt is triggered, the processor switches off IER bits and disables interrupts globally (by
setting the INTM bit in the status register ST1) and then jumps to the ISR setup in the interrupt vector
table. The HWI_enter macro reenables interrupts by clearing the INTM bit in the ST1 register. Before
doing so, HWI_enter selectively disables some interrupts by clearing the appropriate bits in the Interrupt
Enable Register (IER). The bits that are cleared in the IER register are determined by the
100 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Hardware Interrupts
IERDISABLEMASK input parameter passed as fourth parameter to the HWI_enter macro. Hence,
HWI_enter gives you control to select what interrupts can and cannot preempt the current HWI function.
When HWI_exit is called, you can also provide the IERRESTOREMASK parameter. The bit pattern in the
IERRESTOREMASK determines what interrupts are restored by HWI_exit, by setting the corresponding
bits in the IER. Of the interrupts in IERRESTOREMASK, HWI_exit restores only those that were disabled
with HWI_enter. If upon exiting the ISR you do not wish to restore one of the interrupts that was disabled
with HWI_enter, do not set that interrupt bit in the IERRESTOREMASK in HWI_exit. HWI_exit does not
affect the status of interrupt bits that are not in IERRESTOREMASK.

See Functions Callable by Tasks, SWI Handlers, or Hardware ISRs in the TMS320 DSP/BIOS API
Reference Guide for your platform for a complete list of functions that can be called by an ISR.

Note: HWI_enter and HWI_exit must surround all statements in any DSP/BIOS assembly or
C language HWIs that reference DSP/BIOS functions. Using the HWI dispatcher
satisfies this requirement.

Example 4-3 provides assembly language code for constructing a minimal HWI on the C6000 platform
when the user has selected not to use the HWI dispatcher. An example on the C55x platform is shown
in Example 4-4. These examples use HWI_enter and give you more precise control.

Example 4-3 Constructing a Minimal ISR on C6000 Platform

;
; ======== myclk.s62 ========
;
 .include "hwi.h62" ; macro header file

IEMASK .set 0
CCMASK .set c62_PCC_DISABLE
 .text

;
; ======== myclkisr ========
;
 global _myclkisr
_myclkisr:

 ; save all C run-time environment registers
 HWI_enter C62_ABTEMPS, C62_CTEMPS, IEMASK, CCMASK

 b _TSK_itick ; call TSK itick (C function)
 mvkl tiret, b3
 mvkh tiret, b3

 nop 3

tiret:

 ; restore saved registers and call DSP/BIOS scheduler
 HWI_exit C62_ABTEMPS, C62_CTEMPS, IEMASK, CCMASK

 .end
SPRU423I—August 2012 Thread Scheduling 101
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Software Interrupts www.ti.com
Example 4-4 HWI Example on C55x Platform

Example 4-5 HWI Example on C28x Platform

4.2.5 Registers

DSP/BIOS registers saved and restored with C functions conform to standard C compiler code. For more
information, either about which registers are saved and restored, or by the TMS320 functions conforming
to the Texas Instruments C run-time model, see the optimizing compiler user’s guide for your platform.

4.3 Software Interrupts

Software interrupts are patterned after hardware ISRs. The SWI module in DSP/BIOS provides a
software interrupt capability. Software interrupts are triggered programmatically, through a call to a
DSP/BIOS API such as SWI_post. Software interrupts have priorities that are higher than tasks but lower
than hardware interrupts.

The SWI module should not be confused with the SWI instruction that exists on many processors. The
DSP/BIOS SWI module is independent from any processor-specific software interrupt features.

SWI threads are suitable for handling application tasks that occur at slower rates or are subject to less
severe real-time deadlines than those of hardware interrupts.

The DSP/BIOS APIs that can trigger or post a software interrupt are:

• SWI_andn
• SWI_dec
• SWI_inc
• SWI_or

;
; ======== _DSS_isr ========
;
_DSS_isr:
 HWI_enter C55_AR_T_SAVE_BY_CALLER_MASK,

C55_ACC_SAVE_BY_CALLER_MASK,
C55_MISC1_SAVE_BY_CALLER_MASK,
C55_MISC2_SAVE_BY_CALLER_MASK,
C55_MISC3_SAVE_BY_CALLER_MASK,
0FFF7h,0
; macro has ensured ’C’ convention,
; including SP alignment!

 call _DSS_cisr
 HWI_exit C55_AR_T_SAVE_BY_CALLER_MASK,

C55_ACC_SAVE_BY_CALLER_MASK,
C55_MISC1_SAVE_BY_CALLER_MASK,
C55_MISC2_SAVE_BY_CALLER_MASK,
C55_MISC3_SAVE_BY_CALLER_MASK,
0FFF7h,0

;
; ======== _DSS_isr ========
;
_DSS_isr:
 HWI_enter AR_MASK,ACC_MASK,MISC_MASK,IERDISABLEMASK
 lcr _DSS_cisr
 HWI_exit AR_MASK,ACC_MASK,MISC_MASK,IERDISABLEMASK
102 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Software Interrupts
• SWI_post

The SWI Manager controls the execution of all software interrupts. When the application calls one of the
APIs above, the SWI Manager schedules the function corresponding to the software interrupt for
execution. To handle all software interrupts in an application, the SWI Manager uses SWI objects.

If a software interrupt is posted, it runs only after all pending hardware interrupts have run. An SWI routine
in progress can be preempted at any time by an HWI; the HWI completes before the SWI handler
resumes. On the other hand, SWI handlers always preempt tasks. All pending software interrupts run
before even the highest priority task is allowed to run. In effect, an SWI handler is like a task with a priority
higher than all ordinary tasks.

Note: Two things to remember about SWI are:

An SWI handler runs to completion unless it is interrupted by a hardware interrupt or
preempted by a higher priority SWI.

When called within an HWI ISR, the code sequence calling any of the SWI functions
which can trigger or post a software interrupt must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

4.3.1 Creating SWI Objects

As with many other DSP/BIOS objects, you can create SWI objects either dynamically (with a call to
SWI_create) or statically (in the configuration). Software interrupts you create dynamically can also be
deleted during program execution.

To add a new software interrupt to the configuration, create a new SWI object in the .tcf configuration file.
Set the function property for each software interrupt to run a function when the object is triggered by the
application. You can also configure up to two arguments to be passed to each SWI function.

You can determine from which memory segment SWI objects are allocated. SWI objects are accessed
by the SWI Manager when software interrupts are posted and scheduled for execution.

The DSP/BIOS online help describes SWI objects and their properties. See SWI Module in the TMS320
DSP/BIOS API Reference Guide for your platform for reference information on the SWI module API calls.

To create a software interrupt dynamically, use a call with this syntax:

swi = SWI_create(attrs);

Here, swi is the interrupt handle and the variable attrs points to the SWI attributes. The SWI attribute
structure (of type SWI_Attrs) contains all those elements that can be statically configured for an SWI.
attrs can be NULL, in which case, a default set of attributes is used. Typically, attrs contains at least a
function for the handler.

Note: SWI_create can only be called from the task level, not from an HWI or another SWI.

SWI_getattrs can be used to retrieve all the SWI_Attrs attributes. Some of these attributes can change
during program execution, but typically they contain the values assigned when the object was created.

SWI_getattrs(swi, attrs);
SPRU423I—August 2012 Thread Scheduling 103
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Software Interrupts www.ti.com
4.3.2 Setting Software Interrupt Priorities

There are different priority levels among software interrupts. You can create as many software interrupts
as your memory constraints allow for each priority level. You can choose a higher priority for a software
interrupt that handles a thread with a shorter real-time deadline, and a lower priority for a software
interrupt that handles a thread with a less critical execution deadline.

To set software interrupt priorities with the Configuration Tool, follow these steps:

1. In the Configuration Tool, highlight the Software Interrupt Manager. Notice SWI objects in the middle
pane of the window shown in Figure 4–5. They are organized in priority level folders. (If you do not
see a list of SWI objects in the middle pane, right-click on the SWI Manager, then choose View
Ordered collection view.)

Figure 4–5 Software Interrupt Manager

2. To change the priority of a SWI object, drag the software interrupt to the folder of the corresponding
priority. For example, to change the priority of SWI0 to 3, select it with the mouse and drag it to the
folder labeled Priority 3.

Software interrupts can have up to 15 priority levels. The highest level is SWI_MAXPRI (14). The lowest
is SWI_MINPRI (0). The priority level of 0 is reserved for the KNL_swi object, which runs the task
scheduler. See Section 4.3.3, Software Interrupt Priorities and Application Stack Size, page 4-105, for
stack size restrictions. You cannot sort software interrupts within a single priority level.

The Property window for an SWI object shows its numeric priority level (from 0 to 14; 14 is the highest
level). You can also set the priority by selecting the priority level from the menu in the Property window
as shown in Figure 4–6.
104 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Software Interrupts
Figure 4–6 SWI Properties Dialog Box

4.3.3 Software Interrupt Priorities and Application Stack Size

All threads in DSP/BIOS, excluding tasks, are executed using the same system stack.

The system stack stores the register context when a software interrupt preempts another thread. To allow
the maximum number of preemptions that can occur at run time, the required stack size grows each time
you add a software interrupt priority level. Thus, giving software interrupts the same priority level is more
efficient in terms of stack size than giving each software interrupt a separate priority.

The default system stack size for the MEM module is 256 words. You can change the sizes in the
configuration. The estimated sizes required are shown in the status bar at the top of the Configuration
Tool.

You can have up to 15 software interrupt priority levels, but each level requires a larger system stack. If
you see a pop-up message that says “the system stack size is too small to support a new software
interrupt priority level,” increase the Application Stack Size property of the Memory Section Manager.

Creating the first PRD object creates a new SWI object called PRD_swi (see Section 4.10, Periodic
Function Manager (PRD) and the System Clock, page 4-140, for more information on PRD). If no SWI
objects have been created before the first PRD object is added, adding PRD_swi uses the first priority
level, producing a corresponding increase in the required system stack.

If the TSK Manager has been enabled, the TSK scheduler (run by an SWI object named KNL_swi)
reserves the lowest SWI priority level. No other SWI objects can have that priority.

4.3.4 Execution of Software Interrupts

Software interrupts can be scheduled for execution with a call to SWI_andn, SWI_dec, SWI_inc, SWI_or,
and SWI_post. These calls can be used virtually anywhere in the program—interrupt service routines,
periodic functions, idle functions, or other software interrupt functions.

When an SWI object is posted, the SWI Manager adds it to a list of posted software interrupts that are
pending execution. Then the SWI Manager checks whether software interrupts are currently enabled. If
they are not, as is the case inside an HWI function, the SWI Manager returns control to the current thread.
SPRU423I—August 2012 Thread Scheduling 105
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Software Interrupts www.ti.com
If software interrupts are enabled, the SWI Manager checks the priority of the posted SWI object against
the priority of the thread that is currently running. If the thread currently running is the background idle
loop or a lower priority SWI, the SWI Manager removes the SWI from the list of posted SWI objects and
switches the CPU control from the current thread to start execution of the posted SWI function.

If the thread currently running is an SWI of the same or higher priority, the SWI Manager returns control
to the current thread, and the posted SWI function runs after all other SWIs of higher priority or the same
priority that were previously posted finish execution.

Note: Two things to remember about SWI:

When an SWI starts executing it must run to completion without blocking.

When called from within an HWI, the code sequence calling any of the SWI functions
which can trigger or post a software interrupt must be either wrapped within an
HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

SWI functions can be preempted by threads of higher priority (such as an HWI or an SWI of higher
priority). However, SWI functions cannot block. You cannot suspend a software interrupt while it waits for
something—like a device—to be ready.

If an SWI is posted multiple times before the SWI Manager has removed it from the posted SWI list, its
SWI function executes only once, much like an HWI is executed only once if the hardware interrupt is
triggered multiple times before the CPU clears the corresponding interrupt flag bit in the interrupt flag
register. (See Section 4.3.5, Using an SWI Object’s Mailbox, page 4-106, for more information on how to
handle SWIs that are posted multiple times before they are scheduled for execution.)

Applications should not make any assumptions about the order in which SWI handlers of equal priority
are called. However, an SWI handler can safely post itself (or be posted by another interrupt). If more
than one is pending, all SWI handlers are called before any tasks run.

4.3.5 Using an SWI Object’s Mailbox

Each SWI object has a 32-bit mailbox, which is used either to determine whether to post the software
interrupt or as values that can be evaluated within the SWI function.

SWI_post, SWI_or, and SWI_inc post an SWI object unconditionally:

• SWI_post does not modify the value of the SWI object mailbox when it is used to post a software
interrupt.

• SWI_or sets the bits in the mailbox determined by a mask that is passed as a parameter, and then
posts the software interrupt.

• SWI_inc increases the SWI's mailbox value by one before posting the SWI object.

SWI_andn and SWI_dec post the SWI object only if the value of its mailbox becomes 0:

• SWI_andn clears the bits in the mailbox determined by a mask passed as a parameter.

• SWI_dec decreases the value of the mailbox by one.

Table 4–4 summarizes the differences between these functions.
106 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Software Interrupts
Table 4–4. SWI Object Function Differences

The SWI mailbox allows you to have tighter control over the conditions that should cause an SWI function
to be posted, or the number of times the SWI function should be executed once the software interrupt is
posted and scheduled for execution.

To access the value of its mailbox, an SWI function can call SWI_getmbox. SWI_getmbox can be called
only from the SWI's object function. The value returned by SWI_getmbox is the value of the mailbox
before the SWI object was removed from the posted SWI queue and the SWI function was scheduled for
execution.

When the SWI Manager removes a pending SWI object from the posted object’s queue, its mailbox is
reset to its initial value. The initial value of the mailbox should be set in the .tcf configuration file. If while
the SWI function is executing it is posted again, its mailbox is updated accordingly. However, this does
not affect the value returned by SWI_getmbox while the SWI functions execute. That is, the mailbox value
that SWI_getmbox returns is the latched mailbox value when the software interrupt was removed from
the list of pending SWIs. The SWI's mailbox however, is immediately reset after the SWI is removed from
the list of pending SWIs and scheduled for execution. This gives the application the ability to keep
updating the value of the SWI mailbox if a new posting occurs, even if the SWI function has not finished
its execution.

For example, if an SWI object is posted multiple times before it is removed from the queue of posted
SWIs, the SWI Manager schedules its function to execute only once. However, if an SWI function must
always run multiple times when the SWI object is posted multiple times, SWI_inc should be used to post
the SWI as shown in Figure 4–7.

When an SWI has been posted using SWI_inc, once the SWI Manager calls the corresponding SWI
function for execution, the SWI function can access the SWI object mailbox to know how many times it
was posted before it was scheduled to run, and proceed to execute the same routine as many times as
the value of the mailbox.

Action
Treats Mailbox as
Bitmask

Treats Mailbox as
Counter

Does not Modify
Mailbox

Always post SWI_or SWI_inc SWI_post

Post if it becomes zero SWI_andn SWI_dec —
SPRU423I—August 2012 Thread Scheduling 107
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Software Interrupts www.ti.com
Figure 4–7 Using SWI_inc to Post an SWI

If more than one event must always happen for a given software interrupt to be triggered, SWI_andn
should be used to post the corresponding SWI object as shown in Figure 4–8. For example, if a software
interrupt must wait for input data from two different devices before it can proceed, its mailbox should have
two set bits when the SWI object was configured. When both routines that provide input data have
completed their tasks, they should both call SWI_andn with complementary bitmasks that clear each of
the bits set in the SWI mailbox default value. Hence, the software interrupt is posted only when data from
both processes is ready.

Program configuration

SWI object myswi Function myswiFxn()

Program
execution · Calls SWI_inc(&myswi)

· myswi is posted

· Calls SWI_inc(&myswi)
· myswi is posted again
 before it is scheduled
 for execution

· SWI manager removes
 myswi from the posted
 SWI queue
· myswiFxn() is
 scheduled for execution

· myswiFxn() starts
 execution

Mailbox
value

Value returned by
SWI_getmbox

0

1

2

0 2

0 2

· myswiFxn() is
 preempted by ISR that
 calls SWI_inc(&myswi)
· myswi is added to the
 posted SWI queue

· myswiFxn() continues
 execution

1 2

1 2

myswiFxn()
 { . . .
 repetitions = SWI_getmbox();
 while (repetitions --){
 ‘run SWI routine‘

 }

 . . .
 }
108 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Software Interrupts
Figure 4–8 Using SWI_andn to Post an SWI

In some situations the SWI function can call different routines depending on the event that posted it. In
that case the program can use SWI_or to post the SWI object unconditionally when an event happens.
This is shown in Figure 4–9. The value of the bitmask used by SWI_or encodes the event type that
triggered the post operation, and can be used by the SWI function as a flag that identifies the event and
serves to choose the routine to execute.

Figure 4–9 Using SWI_or to Post an SWI.

Program configuration

SWI object myswi Function myswiFxn()

Program
execution · Calls

 SWI_andn(&myswi, 0x1)
· myswi is not posted

· Calls
 SWI_andn(&myswi, 0x2)
· myswi is posted

· SWI manager removes
 myswi from the posted
 SWI queue
· myswiFxn() is scheduled
 for execution

· myswiFxn() starts
 execution

Mailbox
value

Value returned by
SWI_getmbox

0 ... 1 1 ...

0 ... 1 0

0 ... 0 0

0 ... 1 1

0 ... 1 1

...

...

0 ... 0 0

0 ... 0 0

Program configuration

SWI object myswi Function myswiFxn()

Program
execution · Calls

 SWI_or(&myswi, 0x1)
· myswi is posted

· myswiFxn() is executed†

· Calls
 SWI_or(&myswi, 0x2)
· myswi is posted

· myswiFxn() is executed

Mailbox
value

Value returned by
SWI_getmbox

0 ... 0 0 ...

0 ... 0 1

0 ... 0 0

0 ... 1 0

0 ... 0 0

...

0 ... 0 1

...

0 ... 1 0
SPRU423I—August 2012 Thread Scheduling 109
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Software Interrupts www.ti.com
If the program execution requires that multiple occurrences of the same event must take place before an
SWI is posted, SWI_dec should be used to post the SWI as shown in Figure 4–10. By configuring the
SWI mailbox to be equal to the number of occurrences of the event before the SWI should be posted and
calling SWI_dec every time the event occurs, the SWI is posted only after its mailbox reaches 0; that is,
after the event has occurred a number of times equal to the mailbox value.

Figure 4–10 Using SWI_dec to Post an SWI

4.3.6 Benefits and Tradeoffs

There are two main benefits to using software interrupts instead of hardware interrupts.

First, SWI handlers can execute with all hardware interrupts enabled. To understand this advantage,
recall that a typical HWI modifies a data structure that is also accessed by tasks. Tasks therefore need
to disable hardware interrupts when they wish to access these data structures in a mutually exclusive
way. Obviously, disabling hardware interrupts always has the potential to degrade the performance of a
real-time system.

Conversely, if a shared data structure is modified by an SWI handler instead of an HWI, mutual exclusion
can be achieved by disabling software interrupts while the task accesses the shared data structure
(SWI_disable and SWI_enable are described later in this chapter). Thus, there is no effect on the ability
of the system to respond to events in real-time using hardware interrupts.

It often makes sense to break long ISRs into two pieces. The HWI takes care of the extremely time-critical
operation and defers the less critical processing to an SWI handler.

The second advantage is that an SWI handler can call some functions that cannot be called from an HWI,
because an SWI handler is guaranteed not to run while DSP/BIOS is updating internal data structures.
This is an important feature of DSP/BIOS and you should become familiar with the table, Functions
Callable by Tasks, SWI Handlers, or Hardware ISRs in the TMS320 DSP/BIOS API Reference Guide for
your platform that lists DSP/BIOS functions and the threads from which each function can be called.

Program configuration

SWI object myswi Function myswiFxn()

Program
execution · Calls SWI_dec(&myswi)

· myswi is not posted

· Calls SWI_dec(&myswi)
· myswi is posted

· SWI manager removes
 myswi from the posted
 SWI queue
· myswiFxn() is scheduled
 for execution

· myswiFxn() starts
 execution

Mailbox
value

Value returned by
SWI_getmbox

2

1

0

2 0

2 0
110 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Software Interrupts
Note: SWI handlers can call any DSP/BIOS function that does not block. For example,
SEM_pend can make a task block, so SWI handlers cannot call SEM_pend or any
function that calls SEM_pend (for example, MEM_alloc, TSK_sleep).

On the other hand, an SWI handler must complete before any blocked task is allowed to run. There might
be situations where the use of a task might fit better with the overall system design, in spite of any
additional overhead involved.

4.3.7 Saving Registers During Software Interrupt Preemption

When a software interrupt preempts another thread, DSP/BIOS preserves the context of the preempted
thread by automatically saving all of the CPU registers shown in Table 4–5 onto the system stack.

Table 4–5. CPU Registers Saved During Software Interrupt

All registers listed in Table 4–5 are saved when a software interrupt preempts another thread. It is not
necessary for a SWI handler written in either C or assembly to save any registers. However, if the SWI
handler is written in assembly, it is safest to follow the register conventions and save the "save on entry"
registers, since future DSP/BIOS implementations may not save these registers. These "save on entry"
registers are a10 through a15 and b10 through b15 for C6000. (See the optimizing compiler user’s guide
for your platform for more details on C register conventions.)

An SWI function that modifies the IER register should save it and then restore it before it returns. If the
SWI function fails to do this, the change becomes permanent and any other thread that starts to run or
that the program returns to afterwards can inherit the modification to the IER.

The context is not saved automatically within an HWI function. You must use the HWI_enter and
HWI_exit macros or the HWI dispatcher to preserve the interrupted context when an HWI function is
triggered.

4.3.8 Synchronizing SWI Handlers

Within an idle loop function, task, or software interrupt function, you can temporarily prevent preemption
by a higher-priority software interrupt by calling SWI_disable, which disables all SWI preemption. To
reenable SWI preemption, call SWI_enable.

C55x Platform C6000 Platform C28x Platform

ac0
ac1
ac2
ac3
brc1
brs1
csr
rea0

rea1
rptc
rsa0
rsa1
st0
st1
st2
st3

t0
t1
trn1
xar1
xar2
xar3
xar4

a0–a9
a16- a31
(C64x
only)
b0–99

b16-
b31
 (C64x
only)
CSR
AMR

al
ah
xar0
xar4
xar5
xar6
xar7

xt
ph
pl
dp
SPRU423I—August 2012 Thread Scheduling 111
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Tasks www.ti.com
Software interrupts are enabled or disabled as a group. An individual software interrupt cannot be
enabled or disabled on its own.

When DSP/BIOS finishes initialization and before the first task is called, software interrupts have been
enabled. If an application wishes to disable software interrupts, it calls SWI_disable as follows:

key = SWI_disable();

The corresponding enable function is SWI_enable.

SWI_enable(key);

key is a value used by the SWI module to determine if SWI_disable has been called more than once. This
allows nesting of SWI_disable / SWI_enable calls, since only the outermost SWI_enable call actually
enables software interrupts. In other words, a task can disable and enable software interrupts without
having to determine if SWI_disable has already been called elsewhere.

When software interrupts are disabled, a posted software interrupt does not run at that time. The interrupt
is “latched” in software and runs when software interrupts are enabled and it is the highest-priority thread
that is read to run.

Note: An important side effect of SWI_disable is that task preemption is also disabled. This
is because DSP/BIOS uses software interrupts internally to manage semaphores and
clock ticks.

To delete a dynamically created software interrupt, use SWI_delete.

The memory associated with swi is freed. SWI_delete can only be called from the task level.

4.4 Tasks

DSP/BIOS task objects are threads that are managed by the TSK module. Tasks have higher priority
than the idle loop and lower priority than hardware and software interrupts.

The TSK module dynamically schedules and preempts tasks based on the task’s priority level and the
task’s current execution state. This ensures that the processor is always given to the highest priority
thread that is ready to run. There are 15 priority levels available for tasks. The lowest priority level (0) is
reserved for running the idle loop.

The TSK module provides a set of functions that manipulate task objects. They access TSK object
through handles of type TSK_Handle.

The kernel maintains a copy of the processor registers for each task object. Each task has its own run-
time stack for storing local variables as well as for further nesting of function calls.

Stack size can be specified separately for each TSK object. Each stack must be large enough to handle
normal subroutine calls as well as a single task preemption context. A task preemption context is the
context that gets saved when one task preempts another as a result of an interrupt thread readying a
higher priority task. If the task blocks, only those registers that a C function must save are saved to the
task stack. To find the correct stack size, you can make the stack size large and then use Code
Composer Studio software to find the stack size actually used.
112 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Tasks
All tasks executing within a single program share a common set of global variables, accessed according
to the standard rules of scope defined for C functions.

4.4.1 Creating Tasks

You can create TSK objects either dynamically (with a call to TSK_create) or statically (in the
configuration). Tasks that you create dynamically can also be deleted during program execution.

4.4.1.1 Creating and Deleting Tasks Dynamically

You can spawn DSP/BIOS tasks by calling the function TSK_create, whose parameters include the
address of a C function in which the new task begins its execution. The value returned by TSK_create is
a handle of type TSK_Handle, which you can then pass as an argument to other TSK functions.

TSK_Handle TSK_create(fxn, attrs, [arg,] ...)

 Fxn fxn;

 TSK_Attrs *attrs

 Arg arg

A task becomes active when it is created and preempts the currently running task if it has a higher priority.

The memory used by TSK objects and stacks can be reclaimed by calling TSK_delete. TSK_delete
removes the task from all internal queues and frees the task object and stack by calling MEM_free.

Any semaphores, mailboxes, or other resources held by the task are not released. Deleting a task that
holds such resources is often an application design error, although not necessarily so. In most cases,
such resources should be released prior to deleting the task.

Void TSK_delete(task)

 TSK_Handle task;

Note: Catastrophic failure can occur if you delete a task that owns resources that are needed
by other tasks in the system. See TSK_delete, in the TMS320 DSP/BIOS API
Reference Guide for your platform for details.

4.4.1.2 Creating Tasks Statically

You can also create tasks statically using Tconf. The configuration allows you to set a number of
properties for each task and for the TSK Manager itself. For a complete description of all TSK properties,
see TSK Module in the TMS320 DSP/BIOS API Reference Guide for your platform.

While it is running, a task that was created statically behaves exactly the same as a task created with
TSK_create. You cannot use the TSK_delete function to delete statically-created tasks. See Section 2.6,
Creating DSP/BIOS Objects Dynamically, page 2-37, for a discussion of the benefits of creating objects
statically.

The default configuration template defines the TSK_idle task which must have the lowest priority. It runs
the functions defined for the IDL objects when no higher-priority task or interrupt is ready.

Note: DSP/BIOS splits the specified stack space equally between user (data) stack memory
and system stack memory.
SPRU423I—August 2012 Thread Scheduling 113
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Tasks www.ti.com
When you configure tasks to have equal priority, they are scheduled in the order in which they are created
in the configuration script. Tasks can have up to 16 priority levels. The highest level is 15 and the lowest
is 0. The priority level of 0 is reserved for the system idle task. You cannot sort tasks within a single priority
level by setting the order property.

If you want a task to be initially suspended, set its priority to -1. Such tasks are not scheduled to run until
their priority is raised at run-time.

4.4.2 Task Execution States and Scheduling

Each TSK task object is always in one of four possible states of execution:

1. Running, which means the task is the one actually executing on the system’s processor;

2. Ready, which means the task is scheduled for execution subject to processor availability;

3. Blocked, which means the task cannot execute until a particular event occurs within the system; or

4. Terminated, which means the task is “terminated” and does not execute again.

Tasks are scheduled for execution according to a priority level assigned to the application. There can be
no more than one running task. As a rule, no ready task has a priority level greater than that of the
currently running task, since TSK preempts the running task in favor of the higher-priority ready task.
Unlike many time-sharing operating systems that give each task its “fair share” of the processor,
DSP/BIOS immediately preempts the current task whenever a task of higher priority becomes ready to
run.

The maximum priority level is TSK_MAXPRI (15); the minimum priority is TSK_MINPRI (1). If the priority
is less than 0, the task is barred from further execution until its priority is raised at a later time by another
task. If the priority equals TSK_MAXPRI, the task execution effectively locks out all other program activity
except for the handling of hardware interrupts and software interrupts.

During the course of a program, each task’s mode of execution can change for a number of reasons.
Figure 4–11 shows how execution modes change.

Figure 4–11 Execution Mode Variations

Functions in the TSK, SEM, and SIO modules alter the execution state of task objects: blocking or
terminating the currently running task, readying a previously suspended task, re-scheduling the current
task, and so forth.

TSK_TERMINATED

TSK_create()
task is created

TSK_BLOCKED

TSK_READY

TSK_yield(),
preemption

TSK_tick(),
SEM_post()
task is readied

TSK_RUNNING

task suspends
TSK_sleep(),...
SEM_pend(),...

task exits
TSK_exit()

TSK_delete() task is deleted

TSK_delete()
task is deleted
114 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Tasks
There is one task whose execution mode is TSK_RUNNING. If all program tasks are blocked and no
hardware or software interrupt is running, TSK executes the TSK_idle task, whose priority is lower than
all other tasks in the system. When a task is preempted by a software or hardware interrupt, the task
execution mode returned for that task by TSK_stat is still TSK_RUNNING because the task will run when
the preemption ends.

Note: Do not make blocking calls, such as SEM_pend or TSK_sleep, from within an IDL
function. Doing so prevents DSP/BIOS analysis tools from gathering run-time
information.

When the TSK_RUNNING task transitions to any of the other three states, control switches to the
highest-priority task that is ready to run (that is, whose mode is TSK_READY). A TSK_RUNNING task
transitions to one of the other modes in the following ways:

• The running task becomes TSK_TERMINATED by calling TSK_exit, which is automatically called if
and when a task returns from its top-level function. After all tasks have returned, the TSK Manager
terminates program execution by calling SYS_exit with a status code of 0.

• The running task becomes TSK_BLOCKED when it calls a function (for example, SEM_pend or
TSK_sleep) that causes the current task to suspend its execution; tasks can move into this state
when they are performing certain I/O operations, awaiting availability of some shared resource, or
idling.

• The running task becomes TSK_READY and is preempted whenever some other, higher-priority task
becomes ready to run. TSK_setpri can cause this type of transition if the priority of the current task
is no longer the highest in the system. A task can also use TSK_yield to yield to other tasks with the
same priority. A task that yields becomes ready to run.

A task that is currently TSK_BLOCKED transitions to the ready state in response to a particular event:
completion of an I/O operation, availability of a shared resource, the elapse of a specified period of time,
and so forth. By virtue of becoming TSK_READY, this task is scheduled for execution according to its
priority level; and, of course, this task immediately transitions to the running state if its priority is higher
than the currently executing task. TSK schedules tasks of equal priority on a first-come, first-served
basis.

4.4.3 Testing for Stack Overflow

When a task uses more memory than its stack has been allocated, it can write into an area of memory
used by another task or data. This results in unpredictable and potentially fatal consequences. Therefore,
a means of checking for stack overflow is useful.

Two functions, TSK_checkstacks, and TSK_stat, can be used to watch stack size. The structure returned
by TSK_stat contains both the size of its stack and the maximum number of MADUs ever used on its
stack, so this code segment could be used to warn of a nearly full stack:

TSK_Stat statbuf; /* declare buffer */

TSK_stat(TSK_self(), &statbuf); /* call func to get status */

if (statbuf.used > (statbuf.attrs.stacksize * 9 / 10)) {

 LOG_printf(&trace, "Over 90% of task's stack is in use.\n")

}

See the TSK_stat and TSK_checkstacks sections in the TMS320 DSP/BIOS API Reference Guide for
your platform, for a description and examples of their use.
SPRU423I—August 2012 Thread Scheduling 115
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Tasks www.ti.com
4.4.4 Task Hooks

An application may specify functions to be called for various task-related events. Such functions are
called hook functions. Hook functions can be called for program initialization, task creation (TSK_create),
task deletion (TSK_delete), task exits (TSK_exit), task readying, and task context switches (TSK_sleep,
SEM_pend, etc.). Such functions can be used to extend a task’s context beyond the basic processor
register set.

A single set of hook functions can be specified for the TSK module manager. To create additional sets of
hook functions, use the HOOK module. For example, an application that integrates third-party software
may need to perform both its own hook functions and the hook functions required by the third-party
software. In addition, each HOOK object can maintain a private data environment for each task.

When you configure the initial HOOK object, any TSK module hook functions you have specified are
automatically placed in a HOOK object called HOOK_KNL. To set any properties of this object other than
the Initialization function, use the TSK module properties. To set the Initialization function property of the
HOOK_KNL object, use the HOOK object properties. If you configure only a single set of hook functions
using the TSK module, the HOOK module is not used.

For details about hook functions, see the TSK Module and HOOK Module topics in the TMS320
DSP/BIOS API Reference Guide for your platform.

4.4.5 Task Hooks for Extra Context

Consider, for example, a system that has special hardware registers (say, for extended addressing) that
need to be preserved on a per task basis. In Example 4-6 the function doCreate is used to allocate a
buffer to maintain these registers on a per task basis, doDelete is used to free this buffer, and doSwitch
is used to save and restore these registers.

If task objects are created statically, the Switch function should not assume (as Example 4-6 does) that
a task’s environment is always set by the Create function.
116 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Tasks
Example 4-6 Creating a Task Object

 Non-pointer type function arguments to LOG_printf need explicit type casting to (Arg) as shown in the
following code example:

LOG_printf(&trace, "Task %d Done", (Arg)id);

#define CONTEXTSIZE `size of additional context`

Void doCreate(task)
 TSK_Handle task;
{
 Ptr context;

 context = MEM_alloc(0, CONTEXTSIZE, 0);
 TSK_setenv(task, context); /* set task environment */
}

Void doDelete(task)
 TSK_Handle task;
{
 Ptr context;

 context = TSK_getenv(task); /* get register buffer */
 MEM_free(0, context, CONTEXTSIZE);
}

Void doSwitch(from, to)
 TSK_Handle from;
 TSK_Handle to;
{
 Ptr context;

 static Int first = TRUE;
 if (first) {
 first = FALSE;
 return;
 }

 context = TSK_getenv(from); /* get register buffer */
 context = `hardware registers`; / save registers */

 context = TSK_getenv(to); /* get register buffer /
 `hardware registers` = *context; /* restore registers */
}
Void doExit(Void)
{
 TSK_Handle usrHandle;
 /* get task handle, if needed */
 usrHandle = TSK_self();

 `perform user-defined exit steps`
}
SPRU423I—August 2012 Thread Scheduling 117
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Tasks www.ti.com
4.4.6 Task Yielding for Time-Slice Scheduling

Example 4-7 demonstrates an implementation of a time-slicing scheduling model that can be managed
by a user. This model is preemptive and does not require any cooperation (which is, code) by the tasks.
The tasks are programmed as if they were the only thread running. Although DSP/BIOS tasks of differing
priorities can exist in any given application, the time-slicing model only applies to tasks of equal priority.

In this example, the prd0 PRD object is configured to run a simple function that calls the TSK_yield()
function every one millisecond. The prd1 PRD object is configured to run a simple function that calls the
SEM_post(&sem) function every 16 milliseconds.

Figure 4–12 shows the trace resulting from Example 4-7,.

Example 4-7 Time-Slice Scheduling

/*
 * ======== slice.c ========
 * This example utilizes time-slice scheduling among three
 * tasks of equal priority. A fourth task of higher
 * priority periodically preempts execution.
 *
 * A PRD object drives the time-slice scheduling. Every
 * millisecond, the PRD object calls TSK_yield()
 * which forces the current task to relinquish access to
 * to the CPU. The time slicing could also be driven by
 * a CLK object (as long as the time slice was the same interval
 * as the clock interrupt), or by another hardware
 * interrupt.
 *
 * The time-slice scheduling is best viewed in the Execution
 * Graph with SWI logging and PRD logging turned off.
 *
 * Because a task is always ready to run, this program
 * does not spend time in the idle loop. Calls to IDL_run()
 * are added to force the update of the Real-Time Analysis
 * tools. Calls to IDL_run() are within a TSK_disable(),
 * TSK_enable() block because the call to IDL_run()
 * is not reentrant.
 */

#include <std.h>

#include <clk.h>
#include <idl.h>
#include <log.h>
#include <sem.h>
#include <swi.h>
#include <tsk.h>

#include "slicecfg.h"

Void task(Arg id_arg);
Void hi_pri_task(Arg id_arg);
Uns counts_per_us; /* hardware timer counts per microsecond */
118 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Tasks
Example 4.7 Time-Slice Scheduling (continued)

/* ======== main ======== */
Void main()
{
 LOG_printf(&trace, "Slice example started!");
 counts_per_us = CLK_countspms() / 1000;
}

/* ======== task ======== */
Void task(Arg id_arg)
{
 Int id = ArgToInt(id_arg);
 LgUns time;
 LgUns prevtime;

 /*
 * The while loop below simulates the work load of
 * the time sharing tasks
 */
 while (1) {
 time = CLK_gethtime() / counts_per_us;

 /* print time only every 200 usec */
 if (time >= prevtime + 200) {
 prevtime = time;
 LOG_printf(&trace, "Task %d: time is(us) Ox%x",
 id, (Int)time);
 }

 /* check for rollover */
 if (prevtime > time) {
 prevtime = time;
 }

 /*
 * pass through idle loop to pump data to the Real-Time
 * Analysis tools
 */
 TSK_disable();
 IDL_run();
 TSK_enable();
 }
}

/* ======== hi_pri_task ======== */
Void hi_pri_task(Arg id_arg)
{
 Int id = ArgToInt(id_arg);

 while (1) {
 LOG_printf(&trace, "Task %d here", id);

 SEM_pend(&sem, SYS_FOREVER);
 }
}

SPRU423I—August 2012 Thread Scheduling 119
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

The Idle Loop www.ti.com
Figure 4–12 Trace from Example 4-7

4.5 The Idle Loop

The idle loop is the background thread of DSP/BIOS, which runs continuously when no hardware
interrupt service routines, software interrupt, or tasks are running. Any other thread can preempt the idle
loop at any point.

The IDL Manager allows you to insert functions that execute within the idle loop. The idle loop runs the
IDL functions you configured. IDL_loop calls the functions associated with each one of the IDL objects
one at a time, and then starts over again in a continuous loop. The functions are called in the same order
in which they were created. Therefore, an IDL function must run to completion before the next IDL
function can start running. When the last idle function has completed, the idle loop starts the first IDL
function again. Idle loop functions are often used to poll non-real-time devices that do not (or cannot)
generate interrupts, monitor system status, or perform other background activities.

The idle loop is the thread with lowest priority in a DSP/BIOS application. The idle loop functions run only
when no other hardware interrupts, software interrupts, or tasks need to run. Communication between
the target and the DSP/BIOS analysis tools is performed within the background idle loop. This ensures
that the DSP/BIOS analysis tools do not interfere with the program's processing. If the target CPU is too
busy to perform background processes, the DSP/BIOS analysis tools stop receiving information from the
target until the CPU is available.

By default, the idle loop runs the functions for these IDL objects:

• LNK_dataPump manages the transfer of real-time analysis data (for example, LOG and STS data),
and HST channel data between the target DSP and the host. This is handled using RTDX.

On the C55x and C6000 platforms, the host PC triggers an interrupt to transfer data to and from the
target. This interrupt has a higher priority than SWI, TSK, and IDL functions. The actual HWI function
runs in a very short time. Within the idle loop, the LNK_dataPump function does the more time-
consuming work of preparing the RTDX buffers and performing the RTDX calls. Only the actual data
transfer is done at high priority. This data transfer can have a small effect on real-time behavior,
particularly if a large amount of LOG data must be transferred.

• RTA_dispatcher is a real-time analysis server on the target that accepts commands from DSP/BIOS
analysis tools, gathers instrumentation information from the target, and uploads it at run time.
RTA_dispatcher sits at the end of two dedicated HST channels; its commands/responses are routed
from/to the host via LNK_dataPump.
120 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Power Management
• IDL_cpuLoad uses an STS object (IDL_busyObj) to calculate the target load. The contents of this
object are uploaded to the DSP/BIOS analysis tools through RTA_dispatcher to display the CPU
load.

• PWRM_idleDomains calls a function to idle various DSP clock domains within the DSP/BIOS idle
loop. Various clock domains to idle can be selected in the PWRM module configuration. When a HWI,
SWI, or TSK thread is ready to run, the idled clock domains are restored to their previous
configuration.

4.6 Power Management

The DSP/BIOS Power Manager, PWRM, is a DSP/BIOS module that lets you reduce the power
consumption of your application. The PWRM module is currently available for the ’C5509A EVM and the
C6748 EVM. Partial support for other ’C55x devices is also available. See the DSP/BIOS release notes
to determine which features are supported on different devices.

The PWRM module provides the following capabilities:

• Resource Tracking. You can make runtime PWRM API calls to inform the Power Manager of the
specific resources (for example, clock domains, peripherals, and clock pins) that your application is
dependent upon. With this knowledge of required resources, PWRM can aggressively idle resources
that have no declared dependencies. See Section 4.6.1.

• Scaling Voltage and Frequency. You can dynamically change the operating voltage and frequency
of the CPU. This is called V/F scaling. Since power usage is linearly proportional to the frequency
and quadratically proportional to the voltage, using the PWRM module can result in significant power
savings. See Section 4.6.2.

• Using Sleep Modes. You can activate sleep modes to save power during inactivity. See Section
4.6.3.

• Coordinating Sleep and Scaling. You can coordinate sleep modes and V/F scaling using
registration and notification mechanisms provided by the PWRM module. See Section 4.6.4.

The ’C55x PWRM module provides these additional capabilities:

• Idling Clock Domains. You can idle specific clock domains to reduce active power consumption.
See Section 4.6.5.

• Saving Power at Boot Time. You can specify a power-saving function to be called automatically at
boot time. This function can idle power-using peripherals as desired. See Section 4.6.6.

• DSP Device Initialization. You can have PWRM perform device-specific power saving operations
at boot time. For example, PWRM can automatically idle clock domains that aren't usually needed
by default (for example, DMA), or it can idle-enable certain peripherals so that they sit in their lowest
power state until they are needed. See Section 4.6.7.

Note: It is important to note that the PWRM module does not ensure that the application can
meet its scheduling requirements. Meeting such requirements is the responsibility of
the application and the developer.
SPRU423I—August 2012 Thread Scheduling 121
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Power Management www.ti.com
4.6.1 Resource Tracking

A typical DSP/BIOS application uses a set of peripherals—timers, serial ports, etc.—to accomplish its
purpose. Typically device drivers manage low-level peripheral accesses, but sometimes applications
access peripherals directly. In both these scenarios, the DSP/BIOS kernel itself does not "know" which
peripherals are being used. This information is distributed across the application code and drivers, and
is not stored within the kernel. As a consequence, the DSP/BIOS Power Manager does not know what
resources are actually required by an application at any given instance, so it cannot aggressively idle
resources without possibly "breaking" the application.

On some devices PWRM provides a "resource tracking" feature to allow more aggressive power
management. Applications, drivers, and DSP/BIOS modules can call PWRM APIs to declare
dependencies upon specific resources as those resources are needed. When resources are no longer
needed—for example, when a port is closed or when there is no work for an audio driver to do—a
companion PWRM API call can be made to release the resource dependency. PWRM counts the "set"
and "release" calls, and automatically turns ON a resource when the first "set" operation occurs, and
automatically turns OFF that resource when the last "release" call occurs.

Resource tracking can be used in conjunction with PWRM's device initialization feature (available on
some ’C55x devices):

1. At boot time PWRM initializes resources to be powered down.

2. When the application needs to use a resource (for example, DMA) it calls PWRM_setDependency
to register the dependency. PWRM then automatically powers up the resource (for example, by un-
idling the DMA clock domain).

3. When the resource is no longer needed, the application calls PWRM_releaseDependency. If there
are no other dependencies still registered on that resource, PWRM automatically powers it down (for
example, by idling the DMA domain).

You may have legacy code that cannot be easily modified to add PWRM resource tracking calls. For
example, a driver may only be available in binary form. In such situations, you can add calls to
PWRM_setDependency at boot time to declare dependencies in legacy code.

The resources tracked by PWRM will vary from device to device, and are described in the corresponding
DSP/BIOS release notes.

4.6.2 Scaling Voltage and Frequency

Active power dissipation of a CMOS-based DSP is linearly proportional to the clock rate (frequency), and
quadratically proportional to the operating voltage. Additionally, the operating voltage determines the
maximum clock rate available.

Therefore, if an application can reduce the CPU clock rate and still meet its processing deadlines, it can
produce a linearly proportional savings in power dissipation. However, reducing the CPU clock rate also
proportionally extends the execution time, so the application must be carefully analyzed to make sure it
can still meets its real-time requirements.

If the clock frequency can be reduced and the new frequency is compatible with a lower operating voltage
supported by the DSP, then potentially significant additional savings can be also be made by reducing
the voltage, due to the quadratic relationship.
122 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Power Management
The PWRM module allows an application to call PWRM_changeSetpoint to change the operating voltage
and frequency (V/F). So, for example, when an application switches to a mode with reduced processing
requirements, it can step down the voltage and frequency to reduce power usage. Or, an application
might accumulate "slack" time in its data-dependent processing, and then reduce V/F to absorb the slack
time while running at lower power.

Applications also can learn about the V/F scaling features supported by a platform using the
PWRM_getCurrentSetpoint, PWRM_getNumSetpoints, PWRM_getSetpointInfo, and
PWRM_getTransitionLatency functions.

The PWRM module also supports coordination of V/F changes across the application, through a
registration and notification mechanism. Additionally, clients can indicate to PWRM the V/F setpoints they
support. PWRM will check the client-registered constraints before attempting to transition to the
requested setpoint.

The PWRM module makes V/F scaling changes using a platform-specific Power Scaling Library (denoted
PSL for ’C55x devices, and PSCL for 'C6748). These libraries are implemented only for certain platforms.
For additional information about using the ’C55x Power Scaling Library, with PWRM or alone, see Using
the Power Scaling Library on the TMS320C5510 (SPRA848).

4.6.2.1 Effects on the DSP/BIOS CLK Module

On some ’C55x devices, for example the ’C5509A, the clock affected by V/F scaling (CPU) is the same
clock that drives the timer used by DSP/BIOS for clock services (the CLK module). This means changing
the V/F setpoint disrupts DSP/BIOS clock services. To minimize disruption, the PWRM module allows
the DSP/BIOS CLK module to register for notification of V/F scaling events. When notified of a new V/F
setpoint, the CLK module reprograms the timer to tick at the same rate used prior to the scaling operation.

As a result, low-resolution time (CLK_getltime) continues to function following frequency scaling.
However, a small amount of absolute time may be lost due to the reprogramming operation. The loss
occurs because the DSP/BIOS timer halts temporarily as the last step before V/F scaling occurs. As soon
as possible after a scaling operation, the timer begins ticking at the same rate used before the scaling
operation. During the scaling operation, time essentially "stands still" for DSP/BIOS and the application.
No effort is made to catch up for time lost while the clock was stopped or while the timer was
reprogrammed to tick at the same rate using the new CPU frequency. Also, absolute accuracy varies
depending upon how well the new input frequency can be divided down to generate the selected tick rate.

High-resolution time (CLK_gethtime) can be used in combination with V/F scaling with the following
caveats:

• Across setpoint transitions, comparing CLK_gethtime deltas produces an erroneous value. Between
setpoint transitions, CLK_gethtime can still be used to get high-resolution deltas.

• The rate at which the timer increments or decrements is usually different at different V/F setpoints.

4.6.3 Using Sleep Modes

PWRM allows applications to activate sleep modes, which place the DSP in a low-power state.
Configuration and implementation of sleep modes vary across target platforms, and can include idling
clocks, reducing operating voltage, and powering off subsystems. For example, for the ’C5509A, two
sleep modes are supported: deep sleep and sleep until restart.

• Deep sleep allows the DSP to enter a minimum power state while waiting for an external interrupt.
When the interrupt occurs, the DSP gracefully and quickly resumes processing where it left off. By
default, all clock domains are idled in deep sleep, but PWRM allows you to override this and
configure the specific clock domains to be idled during deep sleep.
SPRU423I—August 2012 Thread Scheduling 123
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Power Management www.ti.com
• Sleep until restart is a more drastic mode. The DSP is put into a minimal power state with no
intention of resuming until the DSP is rebooted.

The PWRM module also supports coordination of sleep state changes across the application, through a
registration and notification mechanism. For example, a driver that controls an external codec can
register to be notified when the DSP is going to deep sleep, so that it can tell the external device to go to
a low power state. When the DSP wakes from deep sleep, the driver again gets notified, and sends the
appropriate command to wake the codec.

The sleep modes supported by PWRM vary from device to device, and are described in the
corresponding DSP/BIOS release notes.

4.6.4 Coordinating Sleep and Scaling

PWRM allows code that cares about power events to be registered for notification when specific power
events occur. Similarly, code can be un-registered when it no longer needs notification.

For example, clients can call PWRM_registerNotify to register to be notified about the following types of
events:

• Power events:

— The V/F setpoint is about to change.

— The pending V/F setpoint change has now been made.

• Sleep events:

— The DSP is going to deep sleep.

— The DSP has awoken from deep sleep.

— The DSP is going to deep sleep and must be restarted to resume.

Figure 4–13 shows a sequence in which clients register and get notified of V/F power scaling events.
124 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Power Management
Figure 4–13 Power Event Notification

The numbered steps are as follows:

1. Application code registers to be notified of V/F setpoint changes. For example, different EMIF
settings may be needed for different setpoints, so the application registers control code with the
power manager (PWRM) so that it can change EMIF settings when there is a change to the setpoint.

2. A DSP/BIOS link driver using DMA for transfers to/from external memory registers to be notified of
V/F setpoint changes. For example, prior to a setpoint change, the driver may need to temporarily
stop DMA operations to external memory.

3. Packaged target content similarly registers for notification on setpoint changes.

4. The application decides to change the V/F setpoint, and calls PWRM_changeSetpoint to initiate the
setpoint change. It may do this, for example, because of a change in the device's mode.

5. Before the setpoint change, PWRM validates the change request and then notifies all registered
clients of the impending setpoint change. Clients are notified in the same order they registered for
notification (FIFO order).

6. PWRM calls the Power Scaling Library to change the V/F setpoint.

7. After the setpoint change, PWRM notifies clients that the setpoint has been changed.

If a client's notification function can take immediate action it should do so and return
PWRM_NOTIFYDONE. If the notification function cannot take action because it must wait, it should
return PWRM_NOTIFYNOTDONE. Later, when that client has completed its required action (for
SPRU423I—August 2012 Thread Scheduling 125
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Power Management www.ti.com
example, on the next interrupt from the device), it should call the delayedCompletionFunction indicated
to it by PWRM_registerNotify. The PWRM module waits until all clients have returned
PWRM_NOTIFYDONE before continuing. If a client does not signal that it is done within the timeout
specified, PWRM returns PWRM_ETIMEOUT, indicating a system failure.

Before notifying clients of a power event, PWRM firsts disable SWI and TSK scheduling to protect against
preemption while the event is being processed. The following table shows when SWI and TSK scheduling
is disabled and re-enabled around event processing:

Since SWI and TSK scheduling are disabled during PWRM notifications, clients cannot rely on SWI or
TSK scheduling to finish PWRM event processing. HWIs can be used to determine and signal completion
of processing of the power event. For example, to allow an in-process DMA operation to complete, the
DMA ISR can still run, and then call the delayedCompletionFunction to signal to PWRM that the client
has finished processing the event.

4.6.5 Idling Clock Domains

TI DSPs include an "IDLE" instruction that gates off DSP clocks to reduce active power consumption.
This is the primary mechanism used to reduce power consumption at run-time. On the ’C55x, clocks are
divided into the following clock domains: CPU, CACHE, DMA, EMIF, PERIPH, and CLKGEN. On some
’C55x devices, such as the 'C5509A, these domains can be idled by setting the corresponding bit in the
Idle Configuration Register (ICR), and then executing the IDLE instruction.

When idling clock domains, care must be used to avoid adverse effects on application scheduling. For
example, if a task decides to idle the DSP CPU until more data arrives, other tasks of equal or lower
priority cannot run until the next interrupt occurs. The task has inadvertently blocked scheduling of other
tasks. To avoid this situation, the DSP CPU should only be idled within the DSP/BIOS idle loop, which
runs when no other threads are ready to run.

To facilitate this, the PWRM module allows you to automatically idle selected clock domains in the
DSP/BIOS idle loop. The clock domains to be idled can be statically configured using PWRM module
properties, and can be changed dynamically with the PWRM_configure function.

When PWRM is configured to idle clock domains in the IDL loop, other IDL loop processing does not run
as regularly as it did previously. For example, when real-time analysis is enabled, the idle loop runs
functions to compute the CPU load, to gather real-time analysis data from the DSP, and to pump data
from the DSP to Code Composer Studio. When PWRM idling is enabled, the PWRM_F_idleDomains
function is added to the list of idle loop functions. If PWRM idles the CPU domain, then each time
PWRM_F_idleDomains runs in the idle loop, the CPU domain is suspended until the next interrupt
occurs. As a result, dynamic updating of real-time analysis data in Code Composer Studio stalls or
appears "choppy".

Idling clock domains within the idle loop is intended for use in deployed systems; that is, those for
systems in which Code Composer Studio is not used.

Type of Event Disable SWI & TSK Scheduling Re-enable Scheduling

V/F Scaling Before notifying clients registered for
pending setpoint change notification.

After changing the setpoint and notifying clients
registered for completed setpoint change
notification.

Sleep Before notifying clients registered for
pending sleep notification.

After wakeup and notifying clients registered
for completed sleep notification.
126 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Semaphores
The PWRM_idleClocks function provides a way to idle clock domains immediately and indefinitely. If for
example, an application runs entirely from on-chip memory, it can call PWRM_idleClocks to idle the EMIF
clock domain.

4.6.6 Saving Power at Boot Time

DSPs typically boot up fully powered and at their maximum clock rate. However, there are inevitably
powered resources that are not needed initially, or that may never be used by a particular application.

On some ’C55x devices, such as the 'C5509A, PWRM provides a hook mechanism that allows you to
specify a function to be called at boot time to turn off or idle powered resources until they are actually
needed. For example, when a driver is opened later in application execution, it can power up the
underlying physical device. If the driver is later closed, it can power the device back down.

Within the boot function, you can do things such as commanding external devices to go to a low power
mode. Although such functionality could be implemented directly in the main routine, the boot hook
mechanism allows you to closely associate power-related code with the Power Manager.

4.6.7 Device Initialization by the Power Manager

The hook mechanism described in the previous section is intended to be used by applications to power
down external peripheral devices, such as an audio amplifier or a radio subsystem, at boot time. On some
’C55x devices, such as the 'C5509A, PWRM also provides a "Device Initialization" mechanism whereby
PWRM traverses the DSP device at boot time, putting all appropriate on-chip peripherals and domains
into their lowest power state. As the application runs, the peripherals and domains can be awoken as
needed. Device initialization by PWRM is configurable as ON or OFF. The PWRM actions during device
initialization are device-specific, and are described in the corresponding DSP/BIOS release notes.

4.7 Semaphores

DSP/BIOS provides a fundamental set of functions for intertask synchronization and communication
based upon semaphores. Semaphores are often used to coordinate access to a shared resource among
a set of competing tasks. The SEM module provides functions that manipulate semaphore objects
accessed through handles of type SEM_Handle.

SEM objects are counting semaphores that can be used for both task synchronization and mutual
exclusion. Counting semaphores keep an internal count of the number of corresponding resources
available. When count is greater than 0, tasks do not block when acquiring a semaphore.

The functions SEM_create and SEM_delete are used to create and delete semaphore objects,
respectively, as shown in Example 4-8. You can also create semaphore objects statically. See Section
2.6, Creating DSP/BIOS Objects Dynamically, page 2-37, for a discussion of the benefits of creating
objects statically.

Example 4-8 Creating and Deleting a Semaphore

SEM_Handle SEM_create(count, attrs);
 Uns count;
 SEM_Attrs *attrs;

Void SEM_delete(sem);
 SEM_Handle sem;
SPRU423I—August 2012 Thread Scheduling 127
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Semaphores www.ti.com
The semaphore count is initialized to count when it is created. In general, count is set to the number of
resources that the semaphore is synchronizing.

SEM_pend waits for a semaphore. If the semaphore count is greater than 0, SEM_pend simply
decrements the count and returns. Otherwise, SEM_pend waits for the semaphore to be posted by
SEM_post.

Note: When called within an HWI, the code sequence calling SEM_post or SEM_ipost must
be either wrapped within an HWI_enter/HWI_exit pair or invoked by the HWI
dispatcher.

The timeout parameter to SEM_pend, as shown in Example 4-9, allows the task to wait until a timeout,
to wait indefinitely (SYS_FOREVER), or to not wait at all (0). SEM_pend’s return value is used to indicate
if the semaphore was acquired successfully.

Example 4-9 Setting a Timeout with SEM_pend

Example 4-10 provides an example of SEM_post, which is used to signal a semaphore. If a task is waiting
for the semaphore, SEM_post removes the task from the semaphore queue and puts it on the ready
queue. If no tasks are waiting, SEM_post simply increments the semaphore count and returns.

Example 4-10 Signaling a Semaphore with SEM_post

4.7.1 SEM Example

Example 4-11 provides sample code for three writer tasks which create unique messages and place them
on a queue for one reader task. The writer tasks call SEM_post to indicate that another message has
been enqueued. The reader task calls SEM_pend to wait for messages. SEM_pend returns only when a
message is available on the queue. The reader task prints the message using the LOG_printf function.

The three writer tasks, reader task, semaphore, and queues in this example program were created
statically.

Since this program employs multiple tasks, a counting semaphore is used to synchronize access to the
queue. Figure 4–14 provides a view of the results from Example 4-10. Though the three writer tasks are
scheduled first, the messages are read as soon as they have been enqueued because the reader’s task
priority is higher than that of the writer.

Bool SEM_pend(sem, timeout);
 SEM_Handle sem;
 Uns timeout; /* return after this many system clock ticks*/

Void SEM_post(sem);
SEM_Handle sem;
128 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Semaphores
Example 4-11 SEM Example Using Three Writer Tasks

 /*
* ======== semtest.c ========
 *
 * Use a QUE queue and SEM semaphore to send messages from
 * multiple writer() tasks to a single reader() task. The
 * reader task, the three writer tasks, queues, and semaphore
 * are created statically.
 *
 * The MsgObj’s are preallocated in main(), and put on the
 * free queue. The writer tasks get free message structures
 * from the free queue, write the message, and then put the
 * message structure onto the message queue.
 * This example builds on quetest.c. The major differences are:
 * - one reader() and multiple writer() tasks.
 * - SEM_pend() and SEM_post() are used to synchronize
 * access to the message queue.
 * - ‘id’ field was added to MsgObj to specify writer()
 * task id.
 *
 * Unlike a mailbox, a queue can hold an arbitrary number of
 * messages or elements. Each message must, however, be a
 * structure with a QUE_Elem as its first field.
 */

#include <std.h>
#include <log.h>
#include <mem.h>
#include <que.h>
#include <sem.h>
#include <sys.h>
#include <tsk.h>
#include <trc.h>

#define NUMMSGS 3 /* number of messages */
#define NUMWRITERS 3 /* number of writer tasks created with */
 /* Config Tool */

typedef struct MsgObj {
 QUE_Elem elem; /* first field for QUE */
 Int id; /* writer task id */
 Char val; /* message value */
} MsgObj, *Msg;

Void reader();
Void writer();

/*
 * The following objects are created statically.
 */
extern SEM_Obj sem;

extern QUE_Obj msgQueue;
extern QUE_Obj freeQueue;

extern LOG_Obj trace
SPRU423I—August 2012 Thread Scheduling 129
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Semaphores www.ti.com
Example 4.11 SEM Example Using Three Writer Tasks (continued)

 /*
 * ======== main ========
 */
Void main()
{
 Int i;
 MsgObj *msg;
 Uns mask;

 mask = TRC_LOGTSK | TRC_LOGSWI | TRC_STSSWI | TRC_LOGCLK;
 TRC_enable(TRC_GBLHOST | TRC_GBLTARG | mask);

 msg = (MsgObj *)MEM_alloc(0, NUMMSGS * sizeof(MsgObj), 0);
 if (msg == MEM_ILLEGAL) {
 SYS_abort(“Memory allocation failed!\n”);
 }

 /* Put all messages on freequeue */
 for (i = 0; i < NUMMSGS; msg++, i++) {
 QUE_put(&freeQueue, msg);
 }
}

/*
 * ======== reader ========
 */
Void reader()
{
 Msg msg;
 Int i;

 for (i = 0; i < NUMMSGS * NUMWRITERS; i++) {
 /*
 * Wait for semaphore to be posted by writer().
 */
 SEM_pend(&sem, SYS_FOREVER);

 /* dequeue message */
 msg = QUE_get(&msgQueue);

 /* print value */
 LOG_printf(&trace, “read ‘%c’ from (%d).”, msg->val, msg->id);

 /* free msg */
 QUE_put(&freeQueue, msg);
 }
 LOG_printf(&trace, “reader done.”);
}

130 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Semaphores
Example 4.11 SEM Example Using Three Writer Tasks (continued)

Non-pointer type function arguments to LOG_printf need explicit type casting to (Arg) as shown in the
following code example:
LOG_printf(&trace, "Task %d Done", (Arg)id);

 /*
 * ======== writer ========
 */
Void writer(Int id)
{
 Msg msg;
 Int i;

 for (i = 0; i < NUMMSGS; i++) {
 /*
 * Get msg from the free queue. Since reader is
higher
 * priority and only blocks on sem, this queue is
 * never empty.
 */
 if (QUE_empty(&freeQueue)) {
 SYS_abort(“Empty free queue!\n”);
 }
 msg = QUE_get(&freeQueue);

 /* fill in value */
 msg->id = id;
 msg->val = (i & 0xf) + ‘a’;
 LOG_printf(&trace, “(%d) writing ‘%c’ ...”, id,
msg->val);

 /* enqueue message */
 QUE_put(&msgQueue, msg);

 /* post semaphore */
 SEM_post(&sem);

 /* what happens if you call TSK_yield() here? */
 /* TSK_yield(); */
 }
 LOG_printf(&trace, “writer (%d) done.”, id);
}

SPRU423I—August 2012 Thread Scheduling 131
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Mailboxes www.ti.com
Figure 4–14 Trace Results from Example 4-11

4.8 Mailboxes

The MBX module provides a set of functions to manage mailboxes. MBX mailboxes can be used to pass
messages from one task to another on the same processor. An intertask synchronization enforced by a
fixed length shared mailbox can be used to ensure that the flow of incoming messages does not exceed
the ability of the system to process those messages. The examples given in this section illustrate just
such a scheme.

The mailboxes managed by the MBX module are separate from the mailbox structure contained within a
SWI object.

MBX_create and MBX_delete are used to create and delete mailboxes, respectively. You can also create
mailbox objects statically. See Section 2.6, Creating DSP/BIOS Objects Dynamically, page 2-37, for a
discussion of the benefits of creating objects statically.

You specify the mailbox length and message size when you create a mailbox as shown in Example 4-12.

Example 4-12 Creating a Mailbox

MBX_Handle MBX_create(msgsize, mbxlength, attrs)
 Uns msgsize;
 Uns mbxlength;
 MBX_Attrs *attrs;

Void MBX_delete(mbx)
 MBX_Handle mbx;
132 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Mailboxes
MBX_pend is used to read a message from a mailbox as shown in Example 4-13. If no message is
available (that is, the mailbox is empty), MBX_pend blocks. In this case, the timeout parameter allows
the task to wait until a timeout, to wait indefinitely, or to not wait at all.

Example 4-13 Reading a Message from a Mailbox

Conversely, MBX_post is used to post a message to the mailbox as shown in Example 4-14. If no
message slots are available (that is, the mailbox is full), MBX_post blocks. In this case, the timeout
parameter allows the task to wait until a timeout, to wait indefinitely, or to not wait at all.

Example 4-14 Posting a Message to a Mailbox

4.8.1 MBX Example

Example 4-15 provides sample code showing two types of tasks created statically: a single reader task
which removes messages from the mailbox, and multiple writer tasks which insert messages into the
mailbox. The resultant trace from Example 4-15 is shown in Figure 4–15.

Note: When called within an HWI, the code sequence calling MBX_post must be either
wrapped within an HWI_enter/HWI_exit pair or invoked by the HWI dispatcher.

Bool MBX_pend(mbx, msg, timeout)
 MBX_Handle mbx;
 Void *msg;
 Uns timeout; /* return after this many */
 /* system clock ticks */

Bool MBX_post(mbx, msg, timeout)
 MBX_Handle mbx;
 Void *msg;
 Uns timeout; /* return after this many */
 /* system clock ticks */

Bool MBX_post(mbx, msg, timeout)
 MBX_Handle mbx;
 Void *msg;
 Uns timeout; /* return after this many */
 /* system clock ticks */
SPRU423I—August 2012 Thread Scheduling 133
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Mailboxes www.ti.com
Example 4-15 MBX Example With Two Types of Tasks

/*
 * ======== mbxtest.c ========
 * Use a MBX mailbox to send messages from multiple writer()
 * tasks to a single reader() task.
 * The mailbox, reader task, and 3 writer tasks are created
 * statically.
 *
 * This example is similar to semtest.c. The major differences
 * are:
 * - MBX is used in place of QUE and SEM.
 * - the ‘elem’ field is removed from MsgObj.
 * - reader() task is *not* higher priority than writer task.
 * - reader() looks at return value of MBX_pend() for timeout
 */

#include <std.h>

#include <log.h>
#include <mbx.h>
#include <tsk.h>

#define NUMMSGS 3 /* number of messages */
#define TIMEOUT 10

typedef struct MsgObj {
 Int id; /* writer task id */
 Char val; /* message value */
} MsgObj, *Msg;

/* Mailbox created with Config Tool */
extern MBX_Obj mbx;

/* "trace" Log created with Config Tool */
extern LOG_Obj trace;

Void reader(Void);
Void writer(Int id);

/*
 * ======== main ========
 */
Void main()
{
 /* Does nothing */
}

134 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Mailboxes
Example 4.15 MBX Example With Two Types of Tasks (continued)

After the program runs, review the trace log contents. The results should be similar to that shown in
Figure 4–15.

/*
 * ======== reader ========
 */
Void reader(Void)
{
 MsgObj msg;
 Int i;

 for (i=0; ;i++) {

 /* wait for mailbox to be posted by writer() */
 if (MBX_pend(&mbx, &msg, TIMEOUT) == 0) {
 LOG_printf(&trace, "timeout expired for MBX_pend()");
 break;
 }

 /* print value */
 LOG_printf(&trace, "read ’%c’ from (%d).", msg.val, msg.id);
 }
 LOG_printf(&trace, "reader done.");
}

/*
 * ======== writer ========
 */
Void writer(Int id)
{
 MsgObj msg;
 Int i;

 for (i=0; i < NUMMSGS; i++) {
 /* fill in value */
 msg.id = id;
 msg.val = i % NUMMSGS + (Int)(‘a’);

 LOG_printf(&trace, "(%d) writing ‘%c’ ...", id, (Int)msg.val);

 /* enqueue message */
 MBX_post(&mbx, &msg, TIMEOUT);

 /* what happens if you call TSK_yield() here? */
 /* TSK_yield(); */
 }
 LOG_printf(&trace, "writer (%d) done.", id);
}

SPRU423I—August 2012 Thread Scheduling 135
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Mailboxes www.ti.com
Figure 4–15 Trace Results from Example 4-15

Associated with the mailbox at creation time is a total number of available message slots, determined by
the mailbox length you specify when you create the mailbox. In order to synchronize tasks writing to the
mailbox, a counting semaphore is created and its count is set to the length of the mailbox. When a task
does an MBX_post operation, this count is decremented. Another semaphore is created to synchronize
the use of reader tasks with the mailbox; this counting semaphore is initially set to zero so that reader
tasks block on empty mailboxes. When messages are posted to the mailbox, this semaphore is
incremented.

In Example 4-15, all the tasks have the same priority. The writer tasks try to post all their messages, but
a full mailbox causes each writer to block indefinitely. The readers then read the messages until they
block on an empty mailbox. The cycle is repeated until the writers have exhausted their supply of
messages.

At this point, the readers pend for a period of time according to the following formula, and then time out:

TIMEOUT*1ms/(clock ticks per millisecond)

After this timeout occurs, the pending reader task continues executing and then concludes.

At this point, it is a good idea to experiment with the relative effects of scheduling order and priority, the
number of participants, the mailbox length, and the wait time by combining the following code
modifications:

• Creation order or priority of tasks

• Number of readers and writers

• Mailbox length parameter (MBXLENGTH)

• Add code to handle a writer task timeout
136 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Timers, Interrupts, and the System Clock
4.9 Timers, Interrupts, and the System Clock

DSPs typically have one or more on-device timers which generate a hardware interrupt at periodic
intervals. DSP/BIOS normally uses one of the available on-device timers as the source for its own system
clock. Using the on-device timer hardware present on most TMS320 DSPs, the CLK module supports
time resolutions close to the single instruction cycle.

You define the system clock parameters in the DSP/BIOS configuration settings. In addition to the
DSP/BIOS system clock, you can set up additional clock objects for invoking functions each time a timer
interrupt occurs.

On the C6000 platform, you can also define parameters for the CLK module’s HWI object, since that
object is pre-configured to use the HWI dispatcher. This allows you to manipulate the interrupt mask and
cache control mask properties of the CLK ISR.

DSP/BIOS provides two separate timing methods—the high- and low-resolution times and the system
clock. In the default configuration, the low-resolution time and the system clock are the same. However,
your program can drive the system clock using some other event, such as the availability of data. You
can disable or enable the CLK Manager’s use of the on-device timer to drive high- and low-resolution
times. You can drive the system clock using the low-resolution time, some other event, or not at all. The
interactions between these two timing methods are shown in Example 4–16.

Figure 4–16 Interactions Between Two Timing Methods

4.9.1 High- and Low-Resolution Clocks

Using the CLK Manager in the configuration, you can disable or enable DSP/BIOS’ use of an on-device
timer to drive high- and low-resolution times on the Clock Manager Properties.

The C6000 platform has multiple general-purpose timers. On the C6000, the configuration allows you to
select the on-device timer that is used by the CLK Manager. On all platforms, you can configure the
period at which the timer interrupt is triggered. See CLK Module in the TMS320 DSP/BIOS API
Reference Guide for your platform, for more details about these properties. By entering the period of the
timer interrupt, DSP/BIOS automatically sets up the appropriate value for the period register.

Default configuration:
Low-resolution time and

system clock are the same

Low-resolution time
and system clock

are different

Only low- and high-
resolution times available;

timeouts don't elapse

Only system clock
available; CLK functions

don't run

No timing method;
CLK functions don't run;

timeouts don't elapse
Not possible

CLK module drives
system clock

CLK manager
enabled

CLK manager
disabled

Other event drives
system clock

No event drives
system clock
SPRU423I—August 2012 Thread Scheduling 137
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Timers, Interrupts, and the System Clock www.ti.com
When the CLK Manager is enabled on the C6000 platform, the timer counter register is incremented
every four CPU cycles. When the CLK Manager is enabled on the C28x platform, the timer counter is
decremented at the following rate, where CLKOUT is the DSP clock speed in MIPS (see the GBL
properties in the TMS320 DSP/BIOS API Reference Guide for your platform) and TDDR is the value of
the timer divide-down register as shown in the following equation.

When this register reaches 0 on the C28x platform, or the value set for the period register on the C6000
platform, the counter is reset. On the C28x, it is reset to the value in the period register. On the C6000, it
is reset to 0. At this point, a timer interrupt occurs. When a timer interrupt occurs, the HWI object for the
selected timer runs the CLK_F_isr function, which causes these events to occur:

• The low-resolution time is incremented by 1 on the C6000, C2800, and C5000 platforms.

• All the functions specified by CLK objects are performed in sequence in the context of that ISR.

Therefore, the low-resolution clock ticks at the timer interrupt rate and the clock’s time is equal to the
number of timer interrupts that have occurred. To obtain the low-resolution time, you can call
CLK_getltime from your application code.

The CLK functions performed when a timer interrupt occurs are performed in the context of the hardware
interrupt that caused the system clock to tick. Therefore, the amount of processing performed within CLK
functions should be minimized and these functions can invoke only DSP/BIOS calls that are allowable
from within an HWI.

Note: CLK functions should not call HWI_enter and HWI_exit as these are called internally
when DSP/BIOS runs CLK_F_isr. Additionally, CLK functions should not use the
interrupt keyword or the INTERRUPT pragma in C functions.

The high-resolution clock ticks at the same rate the timer counter register is incremented on the C6000
platform and decremented on the C28x platforms. Hence, the high-resolution time is the number of times
the timer counter register has been incremented or decremented. On the C6000 platform, this is
equivalent to the number of instruction cycles divided by 4. The CPU clock rate is high, therefore, the
timer counter register can reach the period register value (C6000 platform) or 0 (C28x platform) very
quickly.

On the C6000 platform, the 32-bit high-resolution time is calculated by multiplying the low-resolution time
(that is, the interrupt count) by the value of the period register and adding the current value of the timer
counter register. To obtain the value of the high-resolution time you can call CLK_gethtime from your
application code. The value of both clock restart at 0 when the maximum 32-bit value is reached.

On the C28x platform, the 32-bit high resolution time is calculated by multiplying the low-resolution time
(that is, interrupt count) by the value of the period register, and adding the difference between the period
register value and the value of the timer counter register. To obtain the value of the high-resolution time,
you can call CLK_gethtime from your application code, the value of the clock restart at the value in the
period register when 0 is reached.

Other CLK module APIs are CLK_getprd, which returns the value set for the period register in the
configuration; and CLK_countspms, which returns the number of timer counter register increments or
decrements per millisecond.

CLKOUT / (TDDR + 1)
138 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Timers, Interrupts, and the System Clock
Modify the properties of the CLK Manager to configure the low-resolution clock. For example, to make
the low-resolution clock tick every millisecond (.001 sec), type 1000 in the CLK Manager’s
Microseconds/Int field. The configuration automatically calculates the correct value for the period
register.

You can directly specify the period register value if you set the Directly configure on-device timer registers
property to true. On the C6000 platform, to generate a 1 millisecond (.001 sec) system clock period on a
160 MIPS processor using the CPU clock/4 to drive the clock, the period register value is:

Period = 0.001 sec * 160,000,000 cycles per second / 4 cycles = 40,000

To do the same thing on C28x platforms with a 40 MIPS processor using the CPU to drive the clock, the
period register value is:

Period = 0.001 sec * 40,000,000 cycles per second = 40,000

4.9.2 System Clock

Many DSP/BIOS functions have a timeout parameter. DSP/BIOS uses a system clock to determine when
these timeouts should expire. The system clock tick rate can be driven using either the low-resolution
time or an external source.

The TSK_sleep function is an example of a function with a timeout parameter. After calling this function,
its timeout expires when a number of ticks equal to the timeout value have passed in the system clock.
For example, if the system clock has a resolution of 1 microsecond and we want the current task to block
for 1 millisecond, the call should look like this:

/* block for 1000 ticks * 1 microsecond = 1 msec */

TSK_sleep(1000)

Note: Do not call TSK_sleep or SEM_pend with a timeout other than 0 or SYS_FOREVER if
the program is configured without something to drive the PRD module. In a default
configuration, the CLK module drives the PRD module.

If you are using the default CLK configuration, the system clock has the same value as the low-resolution
time because the PRD_clock CLK object drives the system clock.

There is no requirement that an on-device timer be used as the source of the system clock. An external
clock, for example one driven by a data stream rate, can be used instead. If you do not want the on-device
timer to drive the low-resolution time, destroy the CLK object named PRD_clock in the configuration
script. If an external clock is used, it can call PRD_tick to advance the system clock. Another possibility
is having an on-device peripheral such as the codec that is triggering an interrupt at regular intervals, call
PRD_tick from that interrupt’s HWI. In this case, the resolution of the system call is equal to the frequency
of the interrupt that is calling PRD_tick.

4.9.3 Example—System Clock

Example 4-16, clktest.c, shows a simple use of the DSP/BIOS functions that use the system clock,
TSK_time and TSK_sleep. The task, labeled task, in clktest.c sleeps for 1000 ticks before it is awakened
by the task scheduler. Since no other tasks have been created, the program runs the idle functions while
task is blocked. The program assumes that the system clock is configured and driven by PRD_clock. The
trace log output for the code in Example 4-16 would be similar to that shown in Example 4–17.
SPRU423I—August 2012 Thread Scheduling 139
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Periodic Function Manager (PRD) and the System Clock www.ti.com
Example 4-16 Using the System Clock to Drive a Task

Non-pointer type function arguments to LOG_printf need explicit type casting to (Arg) as shown in the
following code example:
 LOG_printf(&trace, "Task %d Done", (Arg)id);

Figure 4–17 Trace Log Output from Example 4-16

4.10 Periodic Function Manager (PRD) and the System Clock

Many applications need to schedule functions based on I/O availability or some other programmed event.
Other applications can schedule functions based on a real-time clock.

The PRD Manager allows you to create objects that schedule periodic execution of program functions.
To drive the PRD module, DSP/BIOS provides a system clock. The system clock is a 32-bit counter that
ticks every time PRD_tick is called. You can use the timer interrupt or some other periodic event to call
PRD_tick and drive the system clock.

/* ======== clktest.c =======
 * In this example, a task goes to sleep for 1 sec and
 * prints the time after it wakes up. */

#include <std.h>

#include <log.h>
#include <clk.h>
#include <tsk.h>

extern LOG_Obj trace;

/* ======== main ======== */
Void main()
{
 LOG_printf(&trace, "clktest example started.\n");
}

Void taskFxn()
{
 Uns ticks;

 LOG_printf(&trace, "The time in task is: %d ticks",
(Int)TSK_time());

 ticks = (1000 * CLK_countspms()) / CLK_getprd();

 LOG_printf(&trace, "task going to sleep for 1 second... ");
 TSK_sleep(ticks);
 LOG_printf(&trace, "...awake! Time is: %d ticks",
(Int)TSK_time());
}

140 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Periodic Function Manager (PRD) and the System Clock
There can be several PRD objects, but all are driven by the same system clock. The period of each PRD
object determines the frequency at which its function is called. The period of each PRD object is specified
in terms of the system clock time; that is, in system clock ticks.

To schedule functions based on certain events, use the following procedures:

• Based on a real-time clock. Set the Use CLK Manager to Drive PRD property to true for the PRD
module properties. By doing this you are setting the timer interrupt used by the CLK Manager to drive
the system clock. When you do this a CLK object called PRD_clock is added to the CLK module. This
object calls PRD_tick every time the timer interrupt goes off, advancing the system clock by one tick.

Note: When the CLK Manager is used to drive PRD, the system clock that drives PRD
functions ticks at the same rate as the low-resolution clock. The low-resolution and
system time coincide.

• Based on I/O availability or some other event. Set the Use the CLK Manager to Drive PRD
property to false for the PRD module properties. Your program should call PRD_tick to increment the
system clock. In this case the resolution of the system clock equals the frequency of the interrupt from
which PRD_tick is called.

4.10.1 Invoking Functions for PRD Objects

When PRD_tick is called two things can occur:

• PRD_D_tick, the system clock counter, increases by one; that is, the system clock ticks.

• An SWI called PRD_swi is posted if the number of PRD_ticks that have elapsed is equal to a value
that is the greatest power of two among the common denominators of the PRD function periods. For
example, if the periods of three PRD objects are 12, 24, and 36, PRD_swi runs every four ticks. It
does not simply run every 12 or 6 ticks because those intervals are not powers of two.

When a PRD object is created statically, a new SWI object is automatically added called PRD_swi.

When PRD_swi runs, its function executes the following type of loop:

for ("Loop through period objects") {

 if ("time for a periodic function")

 "run that periodic function";

}

Hence, the execution of periodic functions is deferred to the context of PRD_swi, rather than being
executed in the context of the HWI where PRD_tick was called. As a result, there can be a delay between
the time the system tick occurs and the execution of the periodic objects whose periods have expired with
the tick. If these functions run immediately after the tick, you should configure PRD_swi to have a high
priority with respect to other threads in your application.

4.10.2 Interpreting PRD and SWI Statistics

Many tasks in a real-time system are periodic; that is, they execute continuously and at regular intervals.
It is important that such tasks finish executing before it is time for them to run again. A failure to complete
in this time represents a missed real-time deadline. While internal data buffering can be used to recover
from occasional missed deadlines, repeated missed deadlines eventually result in an unrecoverable
failure.
SPRU423I—August 2012 Thread Scheduling 141
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Periodic Function Manager (PRD) and the System Clock www.ti.com
The implicit statistics gathered for SWI functions measure the time from when a software interrupt is
ready to run and the time it completes. This timing is critical because the processor is actually executing
numerous hardware and software interrupts. If a software interrupt is ready to execute but must wait too
long for other software interrupts to complete, the real-time deadline is missed. Additionally, if a task starts
executing, but is interrupted too many times for too long a period of time, the real-time deadline is also
missed.

The maximum ready-to-complete time is a good measure of how close the system is to potential failure.
The closer a software interrupt’s maximum ready-to-complete time is to its period, the more likely it is that
the system cannot survive occasional bursts of activity or temporary data-dependent increases in
computational requirements. The maximum ready-to-complete time is also an indication of how much
headroom exists for future product enhancements (which invariably require more MIPS).

Note: DSP/BIOS does not implicitly measure the amount of time each software interrupt
takes to execute. This measurement can be determined by running the software
interrupt in isolation using either the simulator or the emulator to count the precise
number of execution cycles required.

It is important to realize even when the sum of the MIPS requirements of all routines in a system is well
below the MIPS rating of the DSP, the system can not meet its real-time deadlines. It is not uncommon
for a system with a CPU load of less than 70% to miss its real-time deadlines due to prioritization
problems. The maximum ready-to-complete times monitored by DSP/BIOS, however, provide an
immediate indication when these situations exist.

When statistics accumulators for software interrupts and periodic objects are enabled, the host
automatically gathers the count, total, maximum, and average for the following types of statistics:

• SWI. Statistics about the period elapsed from the time the software interrupt was posted to its
completion.

• PRD. The number of periodic system ticks elapsed from the time the periodic function is ready to run
until its completion. By definition, a periodic function is ready to run when period ticks have occurred,
where period is the period parameter for this object.

You can set the units for the SWI completion period by setting CLK Manager parameters. This period is
measured in instruction cycles if the CLK module’s Use high resolution time for internal timings parameter
is set to True (the default). If this CLK parameter is set to False, SWI statistics are displayed in units of
timer interrupt periods. You can also choose milliseconds or microseconds for Statistics Units on the
Statistics Data tool.

For example, if the maximum value for a PRD object increases continuously, the object is probably not
meeting its real-time deadline. In fact, the maximum value for a PRD object should be less than or equal
to the period (in system ticks) property of this PRD object. If the maximum value is greater than the
period, the periodic function has missed its real-time deadline.
142 Thread Scheduling SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Chapter 5
SPRU423I—August 2012

Memory and Low-level Functions

This chapter describes the low-level functions found in the DSP/BIOS real-time multitasking kernel.
These functions are embodied in the following software modules:

• MEM and BUF, which manage allocation of variable-length and fixed-length memory

• SYS, which provides miscellaneous system services

• QUE, which manages queues

This chapter also presents several simple example programs that use these modules. The API functions
are described in greater detail in the TMS320 DSP/BIOS API Reference Guide for your platform.

5.1 Memory Management

The Memory Section Manager (MEM module) manages named memory segments that correspond to
physical ranges of memory. If you want more control over memory segments, you can create your own
linker command file and include the linker command file created when you run the configuration script.

The MEM module also provides a set of functions for dynamically allocating and freeing variable-sized
blocks of memory. The BUF module provides a set of functions for dynamically allocating and freeing
fixed-sized blocks of memory.

Unlike standard C functions like malloc, the MEM functions enable you to specify which segment of
memory is used to satisfy a particular request for storage. Real-time DSP hardware platforms typically
contain several different types of memory: fast, on-device RAMs; zero wait-state external SRAMs; slower
DRAMs for bulk data; and several others. Having explicit control over which memory segment contains
a particular block of data is essential to meeting real-time constraints in many DSP applications.

The MEM module does not set or configure hardware registers associated with a DSPs memory
subsystem. Such configuration is your responsibility and is typically handled by software loading
programs, or in the case of Code Composer Studio, the GEL start-up or menu options. For example, to
access external memory on a C6000 platform, the External Memory Interface (EMIF) registers must first

5.1 Memory Management . 143

5.2 System Services . 151

5.3 Queues . 153

Topic Page
SPRU423I—August 2012 Memory and Low-level Functions 143
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I

Memory Management www.ti.com
be set appropriately before any access. The earliest opportunity for EMIF initialization within DSP/BIOS
would be during the user initialization function (see Global Settings in the TMS320 DSP/BIOS API
Reference Guide for your platform).

The MEM functions allocate and free variable-sized memory blocks. Memory allocation and freeing are
non-deterministic when using the MEM module, since this module maintains a linked list of free blocks
for each particular memory segment. MEM_alloc and MEM_free must transverse this linked list when
allocating and freeing memory.

5.1.1 Configuring Memory Segments

The templates provided with DSP/BIOS define a set of memory segments. These segments are
somewhat different for each supported DSP board. If you are using a hardware platform for which there
is no configuration template, you need to customize the MEM objects and their properties. You can
customize MEM segments in the following ways:

• Insert a new MEM segment and define its properties. For details on MEM object properties, see the
TMS320 DSP/BIOS API Reference Guide for your platform.

• Change the properties of an existing MEM segment.

• Delete some MEM segments, particularly those that correspond to external memory locations.
However, you must first change any references to that segment made in the properties of other
objects and managers. To find dependencies on a particular MEM segment, right-click on that
segment and select Show Dependencies from the pop-up menu. Deleting or renaming the IPRAM
and IDRAM (C6000 platform) or IPROG and IDATA (C5000 platform) segments is not recommended.

• Rename some MEM segments. To rename a segment, follow these steps:

a) Remove dependencies to the segment you want to rename. To find dependencies on a particular
MEM segment, right-click on that segment and select Show Dependencies from the pop-up
menu.

b) Rename the segment. You can right-click on the segment name and choose Rename from the
pop-up menu to edit the name.

c) Recreate dependencies on this segment as needed by selecting the new segment name in the
properties for other objects.

5.1.2 Disabling Dynamic Memory Allocation

If small code size is important to your application, you can reduce code size significantly by removing the
capability to dynamically allocate and free memory. If you remove this capability, your program cannot
call any of the MEM functions or any object creation functions (such as TSK_create). You should create
all objects that are used by your program in the configuration.

To remove the dynamic memory allocation capability, set the No Dynamic Memory Heaps properties for
the MEM Manager to true.

If dynamic memory allocation is disabled and your program calls a MEM function (or indirectly calls a
MEM function by calling an object creation function), an error occurs. If the segid passed to the MEM
function is the name of a segment, a link error occurs. If the segid passed to the MEM function is an
integer, the MEM function will call SYS_error.
144 Memory and Low-level Functions SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Memory Management
5.1.3 Defining Segments in Your Own Linker Command File

The MEM Manager allows you to select which memory segments contain various types of code and data.
If you want more control over where these items are stored, set the User .cmd file for non-DSP/BIOS
segments property in the properties for the MEM Manager to true.

You should then create your own linker command file that begins by including the linker command file
created by running the configuration script. For example, your own linker command file might look like
one of those shown in Example 5-1 or Example 5-2.

Example 5-1 Linker Command File (C6000 Platform)

Example 5-2 Linker Command File (C55x and C28x Platforms)

/* First include DSP/BIOS generated cmd file. */
-l designcfg.cmd

SECTIONS {
 /* place high-performance code in on-device ram */
 .fast_text: {
 myfastcode.lib*(.text)
 myfastcode.lib*(.switch)
 } > IPRAM

 /* all other user code in off device ram */
 .text: {} > SDRAM0
 .switch: {} > SDRAM0
 .cinit: {} > SDRAM0
 .pinit: {} > SDRAM0

 /* user data in on-device ram */
 .bss: {} > IDRAM
 .far: {} > IDRAM
}

/* First include DSP/BIOS generated cmd file. */
-l designcfg.cmd

SECTIONS {
 /* place high-performance code in on-device ram */
 .fast_text: {
 myfastcode.lib*(.text)
 myfastcode.lib*(.switch)
 } > IPROG PAGE 0

 /* all other user code in off device ram */
 .text: {} > EPROG0 PAGE 0
 .switch: {} > EPROG0 PAGE 0
 .cinit: {} > EPROG0 PAGE 0
 .pinit: {} > EPROG0 PAGE 0

 /* user data in on-device ram */
 .bss: {} > IDATA PAGE 1
 .far: {} > IDATA PAGE 1
}

SPRU423I—August 2012 Memory and Low-level Functions 145
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Memory Management www.ti.com
5.1.4 Allocating Memory Dynamically

DSP/BIOS provides functions in two modules for dynamic memory allocation: MEM and BUF. The MEM
module allocates variable-size blocks of memory. The BUF module allocates fixed-size buffers from
buffer pools.

5.1.4.1 Memory Allocation with the MEM Module

Basic storage allocation may be handled using MEM_alloc, whose parameters specify a memory
segment, a block size, and an alignment as shown in Example 5-3. If the memory request cannot be
satisfied, MEM_alloc returns MEM_ILLEGAL.

Example 5-3 Using MEM_alloc for System-Level Storage

The segid parameter identifies the memory segment from which memory is to be allocated. This identifier
can be an integer or a memory segment name defined in the configuration.

The memory block returned by MEM_alloc contains at least the number of minimum addressable data
units (MADUs) indicated by the size parameter. A minimum addressable unit for a processor is the
smallest datum that can be loaded or stored in memory. An MADU can be viewed as the number of bits
between consecutive memory addresses. The number of bits in an MADU varies with different DSP
devices, for example, the MADU for the C5000 platform is a 16-bit word, and the MADU for the C6000
platform is an 8-bit byte.

The memory block returned by MEM_alloc starts at an address that is a multiple of the align parameter;
no alignment constraints are imposed if align is 0. An array of structures might be allocated as shown in
Example 5-4.

Example 5-4 Allocating an Array of Structures

Many DSP algorithms use circular buffers that can be managed more efficiently on most DSPs if they are
aligned on a power of 2 boundary. This buffer alignment allows the code to take advantage of circular
addressing modes found in many DSPs.

If no alignment is necessary, align should be 0. MEM’s implementation aligns memory on a boundary
equal to the number of words required to hold a MEM_Header structure, even if align has a value of 0.
Other values of align cause the memory to be allocated on an align word boundary, where align is a
power of 2.

Ptr MEM_alloc(segid, size, align)
 Int segid;
 Uns size;
 Uns align;

typedef struct Obj {
 Int field1;
 Int field2;
 Ptr objArr;
} Obj;

objArr = MEM_alloc(SRAM, sizeof(Obj) * ARRAYLEN, 0);
146 Memory and Low-level Functions SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Memory Management
MEM_free frees memory obtained with a previous call to MEM_alloc, MEM_calloc, or MEM_valloc. The
parameters to MEM_free—segid, ptr, and size—specify a memory segment, a pointer, and a block size
respectively, as shown in Example 5-5. The values of these parameters must be the same as those used
when allocating the block of storage.

Example 5-5 Using MEM_free to Free Memory

Example 5-6 displays a function call which frees the array of objects allocated in Example 5-5.

Example 5-6 Freeing an Array of Objects

5.1.4.2 Memory Allocation with the BUF Module

The BUF module maintains pools of fixed-size buffers. These buffer pools can be created statically or
dynamically. Dynamically-created buffer pools are allocated from a dynamic memory heap managed by
the MEM module. The BUF_create function creates a buffer pool dynamically. Applications typically
create buffer pools statically when size and alignment constraints are known at design time. Run-time
creation is used when these constraints vary during execution.

Within a buffer pool, all buffers have the same size and alignment. Although each frame has a fixed
length, the application can put a variable amount of data in each frame, up to the length of the frame. You
can create multiple buffer pools, each with a different buffer size.

Buffers can be allocated and freed from a pool as needed at run-time using the BUF_alloc and BUF_free
functions.

The advantages of allocating memory from a buffer pool instead of from the dynamic memory heaps
provided by the MEM module include:

• Deterministic allocation times. The BUF_alloc and BUF_free functions require a constant amount
of time. Allocating and freeing memory through a heap is not deterministic.

• Callable from all thread types. Allocating and freeing buffers is atomic and non-blocking. As a
result, BUF_alloc and BUF_free can be called from all types of DSP/BIOS threads: HWI, SWI, TSK,
and IDL. In contrast, HWI and SWI threads cannot call MEM_alloc.

• Optimized for fixed-length allocation. In contrast MEM_alloc is optimized for variable-length
allocation.

• Less fragmentation. Since the buffers are of fixed-size, the pool does not become fragmented.

5.1.5 Getting the Status of a Memory Segment

You can use MEM_stat to obtain the status of a memory segment in the number of minimum addressable
data units (MADUs). In a manner similar to MEM_alloc, MEM_calloc, and MEM_valloc (refer to Example
5-3), the size used and length values are returned by MEM_stat.

Void MEM_free(segid, ptr, size)
 Int segid;
 Ptr ptr;
 Uns size;

MEM_free(SRAM, objArr, sizeof(Obj) * ARRAYLEN);
SPRU423I—August 2012 Memory and Low-level Functions 147
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Memory Management www.ti.com
If you are using the BUF module, you can call BUF_stat to get statistics for a buffer pool. You can also
call BUF_maxbuff to get the maximum number of buffers that have been used in a pool.

5.1.6 Reducing Memory Fragmentation

As mentioned previously, using the BUF module to allocate and free fixed-length buffers from buffer pools
reduces memory fragmentation.

Repeatedly allocating and freeing variable-size blocks of memory can lead to memory fragmentation.
When this occurs, calls to MEM_alloc can return MEM_ILLEGAL if there is no contiguous block of free
memory large enough to satisfy the request. This occurs even if the total amount of memory in free
memory blocks is greater than the amount requested.

To minimize memory fragmentation when allocating variable-size memory blocks, you can use separate
memory segments for allocations of different sizes as shown in Figure 5–1.

Figure 5–1 Allocating Memory Segments of Different Sizes

Note: To minimize memory fragmentation, allocate smaller, equal-sized blocks of memory
from one memory segment and larger equal-sized blocks of memory from a second
segment.

5.1.7 MEM Example

Example 5-7 and Example 5-8 use the functions MEM_stat, MEM_alloc, and MEM_free to highlight
several issues involved with memory allocation. Figure 5–2 shows the trace results from Example 5-7 or
Example 5-8.

In Example 5-7 and Example 5-8, memory is allocated from IDATA and IDRAM memory using
MEM_alloc, and later freed using MEM_free. printmem is used to print the memory status to the trace
buffer. The final values (for example, “after freeing...”) should match the initial values.

Segment #

0

1

Target Memory
Allocate small
blocks from one
segment for
messages

Allocate large
blocks from
another segment
for streams
148 Memory and Low-level Functions SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Memory Management
Example 5-7 Memory Allocation (C5000 and C28x Platforms)

Non-pointer type function arguments to LOG_printf need explicit type casting to (Arg) as shown in the
following code example:
LOG_printf(&trace, "Task %d Done", (Arg)id);

/* ======== memtest.c ========
 * This code allocates/frees memory from different memory segments.
 */

#include <std.h>
#include <log.h>
#include <mem.h>

#define NALLOCS 2 /* # of allocations from each segment */
#define BUFSIZE 128 /* size of allocations */

/* "trace" Log created by Configuration Tool */
extern LOG_Obj trace;
#ifdef -28-
extern Int IDATA;
#endif
#ifdef -55-
extern Int DATA;
#endif
static Void printmem(Int segid);
/*
 * ======== main ========
 */
Void main()
{
 Int i;
 Ptr ram[NALLOCS];
 LOG_printf(&trace, "before allocating ...");
 /* print initial memory status */
 printmem(IDATA);
 LOG_printf(&trace, "allocating ...");
 /* allocate some memory from each segment */
 for (i = 0; i < NALLOCS; i++) {
 ram[i] = MEM_alloc(IDATA, BUFSIZE, 0);
 LOG_printf(&trace, "seg %d: ptr = 0x%x", IDATA, ram[i]);
 }
 LOG_printf(&trace, "after allocating ...");
 /* print memory status */
 printmem(IDATA);
 /* free memory */
 for (i = 0; i < NALLOCS; i++) {
 MEM_free(IDATA, ram[i], BUFSIZE);
 }
 LOG_printf(&trace, "after freeing ...");
 /* print memory status */
 printmem(IDATA);
}
/*
 * ======== printmem ========
 */
static Void printmem(Int segid)
{
 MEM_Stat statbuf;
 MEM_stat(segid, &statbuf);
 LOG_printf(&trace, "seg %d: O 0x%x", segid, statbuf.size);
 LOG_printf(&trace, "\tU 0x%x\tA 0x%x", statbuf.used, stat-
buf.length);
}

SPRU423I—August 2012 Memory and Low-level Functions 149
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Memory Management www.ti.com
Example 5-8 Memory Allocation (C6000 Platform)

/* ======== memtest.c ========
 * This program allocates and frees memory from
 * different memory segments.
 */

#include <std.h>
#include <log.h>
#include <mem.h>

#define NALLOCS 2 /* # of allocations from each segment */
#define BUFSIZE 128 /* size of allocations */

/* "trace" Log created by Configuration Tool */
extern LOG_Obj trace;
extern Int IDRAM;
static Void printmem(Int segid);

/*
 * ======== main ========
 */
Void main()
{
 Int i;
 Ptr ram[NALLOCS];
 LOG_printf(&trace, "before allocating ...");
 /* print initial memory status */
 printmem(IDRAM);
 LOG_printf(&trace, "allocating ...");
 /* allocate some memory from each segment */
 for (i = 0; i < NALLOCS; i++) {
 ram[i] = MEM_alloc(IDRAM, BUFSIZE, 0);
 LOG_printf(&trace, "seg %d: ptr = 0x%x", IDRAM, ram[i]);
 }
 LOG_printf(&trace, "after allocating ...");
 /* print memory status */
 printmem(IDRAM);
 /* free memory */
 for (i = 0; i < NALLOCS; i++) {
 MEM_free(IDRAM, ram[i], BUFSIZE);
 }
 LOG_printf(&trace, "after freeing ...");
 /* print memory status */
 printmem(IDRAM);
}
/*
 * ======== printmem ========
 */
static Void printmem(Int segid)
{
 MEM_Stat statbuf;
 MEM_stat(segid, &statbuf);
 LOG_printf(&trace, "seg %d: O 0x%x", segid, statbuf.size);
 LOG_printf(&trace, "\tU 0x%x\tA 0x%x", statbuf.used, stat-
buf.length);
}

150 Memory and Low-level Functions SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com System Services
Figure 5–2 Memory Allocation Trace

The program in Example 5-7 and Example 5-8 gives board-dependent results. O indicates the original
amount of memory, U the amount of memory used, and A the length in MADUs of the largest contiguous
free block of memory. The addresses you see are likely to differ from those shown in Example 5–2.

5.2 System Services

The SYS module provides a basic set of system services patterned after similar functions normally found
in the standard C run-time library. As a rule, DSP/BIOS software modules use the services provided by
SYS in lieu of similar C library functions.

You can configure a function to be run whenever the program calls one of these SYS functions. See the
SYS reference section in the TMS320 DSP/BIOS API Reference Guide for your platform for details.

5.2.1 Halting Execution

SYS provides two functions as seen in Example 5-9 for halting program execution: SYS_exit, which is
used for orderly termination; and SYS_abort, which is reserved for catastrophic situations. Since the
actions that should be performed when exiting or aborting programs are inherently system-dependent,
you can modify configuration settings to invoke your own routines whenever SYS_exit or SYS_abort is
called.

Example 5-9 Coding To Halt Program Execution with SYS_exit or SYS_abort

The functions in Example 5-9 terminate execution by calling whatever routine is specified for the Exit
function and Abort function properties of the SYS module. The default exit function is UTL_halt. The
default abort function is _UTL_doAbort, which logs an error message and calls _halt. The _halt function
is defined in the boot.c file; it loops infinitely with all processor interrupts disabled.

SYS_abort accepts a format string plus an optional set of data values (presumably representing a
diagnostic message), which it passes to the function specified for the Abort function property of the SYS
module as shown in Example 5-10.

Void SYS_exit(status)
 Int status;

Void SYS_abort(format, [arg,] ...)
 String format;
 Arg arg;
SPRU423I—August 2012 Memory and Low-level Functions 151
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

System Services www.ti.com
Example 5-10 Using SYS_abort with Optional Data Values

The single vargs parameter is of type va_list and represents the sequence of arg parameters originally
passed to SYS_abort. The function specified for the Abort function property can pass the format and
vargs parameters directly to SYS_vprintf or SYS_vsprintf prior to terminating program execution. To
avoid the large code overhead of SYS_vprintf or SYS_vsprintf, you can use LOG_error instead to simply
print the format string.

SYS_exit likewise calls whatever function is bound to the Exit function property, passing on its original
status parameter. SYS_exit first executes a set of handlers registered through the function SYS_atexit
as described Example 5-11.

Example 5-11 Using Handlers in SYS_exit

The function SYS_atexit provides a mechanism that enables you to stack up to SYS_NUMHANDLERS
(which is set to 8) clean-up routines as shown in Example 5-12. The handlers are executed before
SYS_exit calls the function bound to the Exit function property. SYS_atexit returns FALSE when its
internal stack is full.

Example 5-12 Using Multiple SYS_NUMHANDLERS

5.2.2 Handling Errors

SYS_error is used to handle DSP/BIOS error conditions as shown in Example 5-13. Application
programs as well as internal functions use SYS_error to handle program errors.

Example 5-13 DSP/BIOS Error Handling

SYS_error uses whatever function is bound to the Error function property to handle error conditions. The
default error function in the configuration template is _UTL_doError, which logs an error message. In
Example 5-14, Error function can be configured to use doError which uses LOG_error to print the error
number and associated error string.

(*(Abort_function)) (format, vargs)

(*handlerN)(status)
 ...
(*handler2)(status)
(*handler1)(status)

(*(Exit_function))(status)

Bool SYS_atexit(handler)
 Fxn handler;

Void SYS_error(s, errno, ...)
 String s;
 Uns errno;
152 Memory and Low-level Functions SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Queues
Example 5-14 Using doError to Print Error Information

The errno parameter to SYS_error can be a DSP/BIOS error (for example, SYS_EALLOC) or a user error
(errno >= 256). See TMS320 DSP/BIOS API Reference Guide for your platform for a table of error codes
and strings.

Note: Error checking that would increase memory and CPU requirements has been kept to a
minimum in the DSP/BIOS APIs. Instead, the API reference documentation specifies
constraints for calling DSP/BIOS API functions. It is the responsibility of the application
developer to meet these constraints.

5.3 Queues

The QUE module provides a set of functions to manage a list of QUE elements. Though elements can
be inserted or deleted anywhere within the list, the QUE module is most often used to implement a FIFO
list—elements are inserted at the tail of the list and removed from the head of the list. QUE elements can
be any structure whose first field is of type QUE_Elem. In Example 5-15, QUE_Elem is used by the QUE
module to enqueue the structure while the remaining fields contain the actual data to be enqueued.

QUE_create and QUE_delete are used to create and delete queues, respectively. Since QUE queues
are implemented as linked lists, queues have no maximum size. This is also shown in Example 5-15.

Example 5-15 Managing QUE Elements Using Queues

Void doError(String s, Int errno, va_list ap)
{
 LOG_error("SYS_error called: error id = 0x%x", errno);
 LOG_error("SYS_error called: string = '%s'", s);
}

typedef struct QUE_Elem {
 struct QUE_Elem *next;
 struct QUE_Elem *prev;
} QUE_Elem;

typedef struct MsgObj {
 QUE_Elem elem;
 Char val;
} MsgObj;

QUE_Handle QUE_create(attrs)
 QUE_Attrs *attrs;

Void QUE_delete(queue)
 QUE_Handle queue;
SPRU423I—August 2012 Memory and Low-level Functions 153
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Queues www.ti.com
5.3.1 Atomic QUE Functions

QUE_put and QUE_get are used to atomically insert an element at the tail of the queue or remove an
element from the head of the queue. These functions are atomic in that elements are inserted and
removed with interrupts disabled. Therefore, multiple threads can safely use these two functions to
modify a queue without any external synchronization.

QUE_get atomically removes and returns the element from the head of the queue, whereas, QUE_put
atomically inserts the element at the tail of the queue. In both functions, the queue element has type Ptr
to avoid unnecessary type casting as shown in Example 5-16.

Example 5-16 Inserting into a Queue Atomically

5.3.2 Other QUE Functions

Unlike QUE_get and QUE_put, there are a number of QUE functions that do not disable interrupts when
updating the queue. These functions must be used in conjunction with some mutual exclusion
mechanism if the queues being modified are shared by multiple threads.

QUE_dequeue and QUE_enqueue are equivalent to QUE_get and QUE_put except that they do not
disable interrupts when updating the queue.

QUE_head is used to return a pointer to the first element in the queue without removing the element.
QUE_next and QUE_prev are used to scan the elements in the queue—QUE_next returns a pointer to
the next element in the queue and QUE_prev returns a pointer to the previous element in the queue.

QUE_insert and QUE_remove are used to insert or remove an element from an arbitrary point within the
queue.

Example 5-17 Using QUE Functions with Mutual Exclusion Elements

Ptr QUE_get(queue)
 QUE_Handle queue;
Ptr QUE_put(queue, elem)
 QUE_Handle queue;
 Ptr elem;

Ptr QUE_dequeue(queue)
 QUE_Handle queue;

Void QUE_enqueue(queue, elem)
 QUE_Handle queue;
 Ptr elem;

Ptr QUE_head(queue)
 QUE_Handle queue;

Ptr QUE_next(qelem)
 Ptr qelem;

Ptr QUE_prev(qelem)
 Ptr qelem;
Void QUE_insert(qelem, elem)
 Ptr qelem;
 Ptr elem;

Void QUE_remove(qelem)
 Ptr qelem;
154 Memory and Low-level Functions SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Queues
Note: Since QUE queues are implemented as doubly linked lists with a header node,
QUE_head, QUE_next, or QUE_prev may return a pointer to the header node itself (for
example, calling QUE_head on an empty queue). Be careful not to call QUE_remove
and remove this header node.

5.3.3 QUE Example

Example 5-18 uses a QUE queue to send five messages from a writer to a reader task. The functions
MEM_alloc and MEM_free are used to allocate and free the MsgObj structures.

The program in Example 5-18 yields the results shown in Figure 5–3. The writer task uses QUE_put to
enqueue each of its five messages and then the reader task uses QUE_get to dequeue each message.

Example 5-18 Using QUE to Send Messages

/*
 * ======== quetest.c ========
 * Use a QUE queue to send messages from a writer to a read
 * reader.
 *
 * The queue is created by the Configuration Tool.
 * For simplicity, we use MEM_alloc and MEM_free to manage
 * the MsgObj structures. It would be way more efficient to
 * preallocate a pool of MsgObj's and keep them on a 'free'
 * queue. Using the Config Tool, create 'freeQueue'. Then in
 * main, allocate the MsgObj's with MEM_alloc and add them to
 * 'freeQueue' with QUE_put.
 * You can then replace MEM_alloc calls with QUE_get(freeQueue)
 * and MEM_free with QUE_put(freeQueue, msg).
 *
 * A queue can hold an arbitrary number of messages or elements.
 * Each message must, however, be a structure with a QUE_Elem as
 * its first field.
 */

#include <std.h>
#include <log.h>
#include <mem.h>
#include <que.h>
#include <sys.h>

#define NUMMSGS 5 /* number of messages */

typedef struct MsgObj {
 QUE_Elem elem; /* first field for QUE */
 Char val; /* message value */
} MsgObj, *Msg;

extern QUE_Obj queue;

/* Trace Log created statically */
extern LOG_Obj trace;

Void reader();
Void writer();
SPRU423I—August 2012 Memory and Low-level Functions 155
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Queues www.ti.com
Example 5.18 Using QUE to Send Messages (continued)

Non-pointer type function arguments to LOG_printf need explicit type casting to (Arg) as shown in the
following code example:
LOG_printf(&trace, "Task %d Done", (Arg)id);

/* ======== main ======== */
Void main()
{
 /*
 * Writer must be called before reader to ensure that the
 * queue is non-empty for the reader.
 */
 writer();
 reader();
}

/* ======== reader ======== */
Void reader()
{
 Msg msg;
 Int i;
 for (i=0; i < NUMMSGS; i++) {
 /* The queue should never be empty */
 if (QUE_empty(&queue)) {
 SYS_abort("queue error\n");
 }
 /* dequeue message */
 msg = QUE_get(&queue);

 /* print value */
 LOG_printf(&trace, "read '%c'.", msg->val);
 /* free msg */
 MEM_free(0, msg, sizeof(MsgObj));
 }
}

/* ======== writer ======== */
Void writer()
{
 Msg msg;
 Int i;
 for (i=0; i < NUMMSGS; i++) {
 /* allocate msg */
 msg = MEM_alloc(0, sizeof(MsgObj), 0);
 if (msg == MEM_ILLEGAL) {
 SYS_abort("Memory allocation failed!\n");
 }
 /* fill in value */
 msg->val = i + 'a';
 LOG_printf(&trace, "writing '%c' ...", msg->val);
 /* enqueue message */
 QUE_put(&queue, msg);
 }
}

156 Memory and Low-level Functions SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Queues
Figure 5–3 Trace Results from Example 5-18
SPRU423I—August 2012 Memory and Low-level Functions 157
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Chapter 6
SPRU423I—August 2012

Input/Output Methods

This chapter provides an overview of DSP/BIOS data transfer methods, and discusses pipes in particular.

6.1 I/O Overview

At the application level, input and output may be handled by stream, pipe, message queue, or host
channel objects. Each type of object has its own module for managing data input and output.

Note: An alternative to pipes and streams is to use the GIO class driver to interface with IOM
mini-drivers. The DSP/BIOS Driver Developer's Guide (SPRU616) describes the GIO
class driver and the IOM mini-driver model.

The information in this chapter related to stream and pipe objects is still relevant if you
are using IOM mini-drivers with streams or pipes.

A stream is a channel through which data flows between an application program and an I/O device. This
channel can be read-only (input) or write-only (output) as shown in Figure 6–1. Streams provide a simple
and universal interface to all I/O devices, allowing the application to be completely ignorant of the details
of an individual device’s operation.

6.1 I/O Overview. 158

6.2 Comparing Pipes and Streams . 159

6.3 Comparing Driver Models. 160

6.4 Data Pipe Manager (PIP Module) . 163

6.5 Message Queues . 167

6.6 Host Channel Manager (HST Module) . 176

6.7 I/O Performance Issues . 178

Topic Page
SPRU423I—August 2012 Input/Output Methods 158
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I

www.ti.com Comparing Pipes and Streams
Figure 6–1 Input/Output Stream

An important aspect of stream I/O is its asynchronous nature. Buffers of data are input or output
concurrently with computation. While an application is processing the current buffer, a new input buffer
is being filled and a previous one is being output. This efficient management of I/O buffers allows streams
to minimize copying of data. Streams exchange pointers rather than data, thus reducing overhead and
allowing programs to meet real-time constraints more readily.

A typical program gets a buffer of input data, processes the data, and then outputs a buffer of processed
data. This sequence repeats over and over, usually until the program is terminated.

Digital-to-analog converters, video frame grabbers, transducers, and DMA channels are just a few
examples of common I/O devices. The stream module (SIO) interacts with these different types of
devices through devices (managed by the DEV module) that use the DSP/BIOS programming interface.

Data pipes are used to buffer streams of input and output data. These data pipes provide a consistent
software data structure you can use to drive I/O between the DSP device and all kinds of real-time
peripheral devices. There is more overhead with a data pipe than with streams, and notification is
automatically handled by the pipe manager. All I/O operations on a pipe deal with one frame at a time;
although each frame has a fixed length, the application can put a variable amount of data in each frame
up to the length of the frame.

Separate pipes should be used for each data transfer thread, and a pipe should only have a single reader
and a single writer, providing point to point communication. Often one end of a pipe is controlled by an
HWI and the other end is controlled by an SWI function. Pipes can also transfer data between two
application threads.

Message queues allow for the structured sending and receiving of variable length messages. This
module can be used for messaging between multiple processors. See Section 6.5, Message Queues for
a description of message queues.

Host channel objects allow an application to stream data between the target and the host. Host channels
are statically configured for input or output. Each host channel is internally implemented using a data pipe
object.

6.2 Comparing Pipes and Streams

DSP/BIOS supports two different models for data transfer. The pipe model is used by the PIP and HST
modules. The stream model is used by the SIO and DEV modules.

Both models require that a pipe or stream have a single reader thread and a single writer thread. Both
models transfer buffers within the pipe or stream by copying pointers rather than by copying data between
buffers.

In general, the pipe model supports low-level communication, while the stream model supports high-
level, device-independent I/O. Table 6–1 compares the two models in more detail.

Application
ProgramInput Output
SPRU423I—August 2012 Input/Output Methods 159
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Comparing Driver Models www.ti.com
Table 6–1. Comparison of Pipes and Streams

6.3 Comparing Driver Models

Below the application level, DSP/BIOS provides two device driver models that enable applications to
communicate with DSP peripherals: IOM and SIO/DEV.

• IOM model. The components of the IOM model are illustrated in the following figure. It separates
hardware-independent and hardware-dependent layers. Class drivers are hardware independent;
they manage device instances, synchronization and serialization of I/O requests. The lower-level

Pipes
(PIP and HST)

Streams
(SIO and DEV)

Programmer must create own driver structure. Provides a more structured approach to device-driver
creation.

Reader and writer can be any thread type or host
PC.

One end must be handled by a task (TSK) using SIO calls.
The other end must be handled by an HWI using Dxx calls.

PIP functions are non-blocking. Program must
check to make sure a buffer is available before
reading from or writing to the pipe.

SIO_put, SIO_get, and SIO_reclaim are blocking functions
and causes a task to wait until a buffer is available.
(SIO_issue is non-blocking.)

Uses less memory and is generally faster. More flexible; generally simpler to use.

Each pipe owns its own buffers. Buffers can be transferred from one stream to another
without copying. (In practice, copying is usually necessary
anyway because the data is processed.)

Pipes must be created statically in the
configuration.

Streams can be created either at run time or statically in the
configuration. Streams can be opened by name.

No built-in support for stacking devices. Support is provided for stacking devices.

Using the HST module with pipes is an easy way
to handle data transfer between the host and
target.

A number of device drivers are provided with DSP/BIOS.
160 Input/Output Methods SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Comparing Driver Models
mini-driver is hardware-dependent. The IOM model can be used with either pipes or streams via the
PIO and DIO adapters. See the DSP/BIOS Driver Developer’s Guide (SPRU616) for more
information on the IOM model.

• SIO/DEV model. This model provides a streaming I/O interface. The application indirectly invokes
DEV functions implemented by the device driver managing the physical device attached to the
stream, using generic functions provided by the SIO module. The SIO/DEV model cannot be used
with pipes. See Chapter 7 for more information on the SIO/DEV model.

For either model, you create a user-defined device object using the DEV module. The model used by this
device is identified by its function table type. A type of IOM_Fxns is used with the IOM model. A type of
DEV_Fxns is used with the DEV/SIO model.

You can create device objects through static configuration or dynamically through the DEV_createDevice
function. The DEV_deleteDevice and DEV_match functions are also provided for managing device
objects.

The following sub-sections describe how to create user-defined devices when using various I/O driver
objects and models. For details on API function calls and configuration parameters see the TMS320
DSP/BIOS API Reference Guide for your platform.

6.3.1 Creating a Device for Use with an IOM Mini-Driver

If you plan to use an IOM mini-driver with the GIO class driver, create a user-defined device statically or
with a DEV_createDevice call similar to that shown below:

DEV_Attrs gioAttrs = {

 NULL, /* device id */
 NULL, /* device parameters */
 DEV_IOMTYPE, /* type of the device */
 NULL /* device global data ptr */
};

status = DEV_createDevice("/codec", &DSK6X_EDMA_IOMFXNS,

 (Fxn)DSK6X_IOM_init, &gioAttrs);

Application / Framework

SIO APIsPIP APIs

PIO Adapter DIO Adapter

GIO APIs

IOM Mini-Driver(s)

Device
Driver

On-Chip Peripheral Hardware

Chip Support Library (CSL)

Off-Chip Peripheral Hardware

Class
Driver

Mini-
Driver
SPRU423I—August 2012 Input/Output Methods 161
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Comparing Driver Models www.ti.com
6.3.2 Creating a Device for Use with Streams and the DIO Adapter

If you plan to use an IOM mini-driver with SIO streams and the DIO adapter, create a user-defined device
statically or with a DEV_createDevice call similar to that shown below:

DIO_Params dioCodecParams ={

 "/codec", /* device name */

 NULL /* chanParams */

};

DEV_Attrs dioCodecAttrs = {

 NULL, /* device id */
 &dioCodecParams, /* device parameters */
 DEV_SIOTYPE, /* type of the device */
 NULL /* device global data ptr */
};

status = DEV_createDevice("/dio_codec", &DIO_tskDynamicFxns,

 (Fxn)DIO_init, &dioCodecAttrs);

The driver function table passed to DEV_createDevice should be DIO_tskDynamicFxns for use with
tasks (TSKs) or DIO_cbDynamicFxns for use with software interrupts (SWIs).

6.3.3 Creating a Device for Use with the SIO/DEV Model

If you plan to use SIO streams with the SIO/DEV model and a device driver that uses the DEV_Fxns
function table type, create a user-defined device statically or with a DEV_createDevice call similar to that
shown below:

DEV_Attrs devAttrs ={

 NULL, /* device id */
 NULL, /* device parameters */
 DEV_SIOTYPE, /* type of the device */
 NULL /* device global data ptr */
}

status = DEV_createDevice("/codec", &DSK6X_EDMA_DEVFXNS,

 (Fxn)DSK6X_DEV_init, &devAttrs);

The device function tables passed to DEV_createDevice should be of type DEV_Fxns.

6.3.4 Creating a Device for Use with Provided Software Drivers

DSP/BIOS provides several software drivers that use the SIO/DEV model. These are described in the
DEV module section of the TMS320 DSP/BIOS API Reference Guide for your platform. Creating the
user-defined device for these drivers is similar to creating a user-defined device for other SIO/DEV model
drivers.
162 Input/Output Methods SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Data Pipe Manager (PIP Module)
6.4 Data Pipe Manager (PIP Module)

Pipes are designed to manage block I/O (also called stream-based or asynchronous I/O). Each pipe
object maintains a buffer divided into a fixed number of fixed length frames, specified by the numframes
and framesize properties. All I/O operations on a pipe deal with one frame at a time. Although each frame
has a fixed length, the application can put a variable amount of data in each frame (up to the length of
the frame).

As shown in Figure 6–2, a pipe has two ends. The writer end is where the program writes frames of data.
The reader end is where the program reads frames of data.

Figure 6–2 The Two Ends of a Pipe

Data notification functions (notifyReader and notifyWriter) are performed to synchronize data transfer.
These functions are triggered when a frame of data is read or written to notify the program that a frame
is free or data is available. These functions are performed in the context of the function that calls PIP_free
or PIP_put. They can also be called from the thread that calls PIP_get or PIP_alloc. When PIP_get is
called, DSP/BIOS checks whether there are more full frames in the pipe. If so, the notifyReader function
is executed. When PIP_alloc is called, DSP/BIOS checks whether there are more empty frames in the
pipe. If so, the notifyWriter function is executed.

A pipe should have a single reader and a single writer. Often, one end of a pipe is controlled by an HWI
and the other end is controlled by a software interrupt function. Pipes can also be used to transfer data
within the program between two application threads.

During program startup (which is described in detail in Section 2.10, DSP/BIOS Startup Sequence, page
2-43), the BIOS_start function enables the DSP/BIOS modules. As part of this step, the PIP_startup
function calls the notifyWriter function for each pipe object, since at startup all pipes have available empty
frames.

There are no special format or data type requirements for the data to be transferred by a pipe.

The DSP/BIOS online help describes data pipe objects and their parameters. See PIP Module in the
TMS320 DSP/BIOS API Reference Guide for your platform for information on the PIP module API.

6.4.1 Writing Data to a Pipe

The steps that a program should perform to write data to a pipe are as follows:

1. A function should first check the number of empty frames available to be filled with data. To do this,
the program must check the return value of PIP_getWriterNumFrames. This function call returns the
number of empty frames in a pipe object.

2. If the number of empty frames is greater than 0, the function then calls PIP_alloc to get an empty
frame from the pipe.

ReaderWriter

1. PIP_alloc
2. Writes data into allocated frame
3. PIP_put (runs notifyReader)

1. PIP_get
2. Reads data from frame just received

3. PIP_free (runs notifyWriter)
SPRU423I—August 2012 Input/Output Methods 163
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Data Pipe Manager (PIP Module) www.ti.com
3. Before returning from the PIP_alloc call, DSP/BIOS checks whether there are additional empty
frames available in the pipe. If so, the notifyWriter function is called at this time.

4. Once PIP_alloc returns, the empty frame can be used by the application code to store data. To do
this the function needs to know the frame's start address and its size. The API function
PIP_getWriterAddr returns the address of the beginning of the allocated frame. The API function
PIP_getWriterSize returns the number of words that can be written to the frame. (The default value
for an empty frame is the configured frame size.)

5. When the frame is full of data, it can be returned to the pipe. If the number of words written to the
frame is less than the frame size, the function can specify this by calling the PIP_setWriterSize
function. Afterwards, call PIP_put to return the data to the pipe.

6. Calling PIP_put causes the notifyReader function to run. This enables the writer thread to notify the
reader thread that there is data available in the pipe to be read.

The code fragment in Figure 6-1 demonstrates how to write data to a pipe.

Example 6-1 Writing Data to a Pipe

6.4.2 Reading Data from a Pipe

To read a full frame from a pipe, a program should perform the following steps:

1. The function should first check the number of full frames available to be read from the pipe. To do
this, the program must check the return value of PIP_getReaderNumFrames. This function call
returns the number of full frames in a pipe object.

2. If the number of full frames is greater than 0, the function then calls PIP_get to get a full frame from
the pipe.

3. Before returning from the PIP_get call, DSP/BIOS checks whether there are additional full frames
available in the pipe. If so, the notifyReader function is called at this time.

extern far PIP_Obj writerPipe; /* created statically */

writer()
{
 Uns size;
 Uns newsize;
 Ptr addr;

 if (PIP_getWriterNumFrames(&writerPipe) > 0) {
 PIP_alloc(&writerPipe); /* allocate an empty frame */
 }
 else {
 return; /* There are no available empty frames */
 }

 addr = PIP_getWriterAddr(&writerPipe);
 size = PIP_getWriterSize(&writerPipe);

 ' fill up the frame '

 /* optional */
 newsize = 'number of words written to the frame';
 PIP_setWriterSize(&writerPipe, newsize);

 /* release the full frame back to the pipe */
 PIP_put(&writerPipe);
}

164 Input/Output Methods SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Data Pipe Manager (PIP Module)
4. Once PIP_get returns, the data in the full frame can be read by the application. To do this the function
needs to know the frame's start address and its size. The API function PIP_getReaderAddr returns
the address of the beginning of the full frame. The API function PIP_getReaderSize returns the
number of valid data words in the frame.

5. When the application has finished reading all the data, the frame can be returned to the pipe by
calling PIP_free.

6. Calling PIP_free causes the notifyWriter function to run. This enables the reader thread to notify the
writer thread that there is a new empty frame available in the pipe.

The code fragment in Example 6-2 demonstrates how to read data from a pipe.

Example 6-2 Reading Data from a Pipe

6.4.3 Using a Pipe's Notify Functions

The reader or writer threads of a pipe can operate in a polled mode and directly test the number of full or
empty frames available before retrieving the next full or empty frame. The examples in Section 6.4.1,
Writing Data to a Pipe, page 6-163, and Section 6.4.2, Reading Data from a Pipe, page 6-164,
demonstrate this type of polled read and write operation.

When used to buffer real-time I/O streams written (read) by a hardware peripheral, pipe objects often
serve as a data channel between the HWI routine triggered by the peripheral itself and the program
function that ultimately reads (writes) the data. In such situations, the application can effectively
synchronize itself with the underlying I/O stream by configuring the pipe's notifyReader (notifyWriter)
function to automatically post a software interrupt that runs the reader (writer) function.

When the HWI routine finishes filling up (reading) a frame and calls PIP_put (PIP_free), the pipe’s notify
function can be used to automatically post a software interrupt. In this case, rather than polling the pipe
for frame availability, the reader (writer) function runs only when the software interrupt is triggered; that
is, when frames are available to be read (written).

extern far PIP_Obj readerPipe; /* created statically */

reader()
{
 Uns size;
 Ptr addr;

 if (PIP_getReaderNumFrames(&readerPipe) > 0) {
 PIP_get(&readerPipe); /* get a full frame */
 }
 else {
 return; /* There are no available full frames */
 }

 addr = PIP_getReaderAddr(&readerPipe);
 size = PIP_getReaderSize(&readerPipe);

 ' read the data from the frame '

 /* release the empty frame back to the pipe */
 PIP_free(&readerPipe);
}

SPRU423I—August 2012 Input/Output Methods 165
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Data Pipe Manager (PIP Module) www.ti.com
Such a function would not need to check for the availability of frames in the pipe, since it is called only
when data is ready. As a precaution, the function can still check whether frames are ready, and if not,
cause an error condition, as in the following example code

if (PIP_getReaderNumFrames(&readerPipe) = 0) {
 error(); /* reader function should not have been posted! */
}

Hence, the notify function of pipe objects can serve as a flow-control mechanism to manage I/O to other
threads and hardware devices.

6.4.4 Calling Order for PIP APIs

Each pipe object internally maintains a list of empty frames and a counter with the number of empty
frames on the writer side of the pipe, and a list of full frames and a counter with the number of full frames
on the reader side of the pipe. The pipe object also contains a descriptor of the current writer frame (that
is, the last frame allocated and currently being filled by the application) and the current reader frame (that
is, the last full frame that the application got and that is currently reading).

When PIP_alloc is called, the writer counter is decreased by one. An empty frame is removed from the
writer list and the writer frame descriptor is updated with the information from this frame. When the
application calls PIP_put after filling the frame, the reader counter is increased by one, and the writer
frame descriptor is used by DSP/BIOS to add the new full frame to the pipe's reader list.

Note: Every call to PIP_alloc must be followed by a call to PIP_put before PIP_alloc can be
called again: the pipe I/O mechanism does not allow consecutive PIP_alloc calls. Doing
so would overwrite previous descriptor information and would produce undetermined
results. This is shown in Example 6-3.

Example 6-3 Using PIP_alloc

Similarly when PIP_get is called, the reader counter is decreased by one. A full frame is removed from
the reader list and the reader frame descriptor is updated with the information from this frame. When the
application calls PIP_free after reading the frame, the writer counter is increased by one, and the reader
frame descriptor is used by DSP/BIOS to add the new empty frame to the pipe's writer list. Hence, every
call to PIP_get must be followed by a call to PIP_free before PIP_get can be called again as shown in
Example 6-4.

The pipe I/O mechanism does not allow consecutive PIP_get calls. Doing so would overwrite previous
descriptor information and produce undetermined results.

/* correct */ /* error! */
PIP_alloc(); PIP_alloc();
... ...
PIP_put(); PIP_alloc();
... ...
PIP_alloc(); PIP_put();
... ...
PIP_put(); PIP_put();
166 Input/Output Methods SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Message Queues
Example 6-4 Using PIP_get

6.4.4.1 Avoiding Recursion Problems

Care should be applied when a pipe's notify function calls PIP APIs for the same pipe.

Consider the following example: A pipe's notifyReader function calls PIP_get for the same pipe. The
pipe's reader is an HWI routine. The pipe's writer is an SWI routine. Hence the reader has higher priority
than the writer. (Calling PIP_get from the notifyReader in this situation can make sense because this
allows the application to get the next full buffer ready to be used by the reader—the HWI routine—as soon
as it is available and before the hardware interrupt is triggered again.)

The pipe's reader function, the HWI routine, calls PIP_get to read data from the pipe. The pipe's writer
function, the SWI routine, calls PIP_put. Since the call to the notifyReader happens within PIP_put in the
context of the current routine, a call to PIP_get also happens from the SWI writer routine.

Hence, in the example described two threads with different priorities call PIP_get for the same pipe. This
could have catastrophic consequences if one thread preempts the other and as a result, PIP_get is called
twice before calling PIP_free, or PIP_get is preempted and called again for the same pipe from a different
thread.

Note: As a general rule to avoid recursion, you should avoid calling PIP functions as part of
notifyReader and notifyWriter. If necessary for application efficiency, such calls should
be protected to prevent reentrancy for the same pipe object and the wrong calling
sequence for the PIP APIs.

6.5 Message Queues

The MSGQ module supports the structured sending and receiving of variable length messages. This
module can be used for homogeneous or heterogeneous multi-processor messaging. A substantially
similar MSGQ API is implemented in DSP/BIOS Link for certain TI general-purpose processors (GPPs),
particularly those used in OMAP devices.

MSGQ provides more sophisticated messaging than other modules. It is typically used for complex
situations such as multi-processor messaging. The following are key features of the MSGQ module:

• Writers and readers can be relocated to another processor with no runtime code changes.

• Timeouts are allowed when receiving messages.

• Readers can determine the writer and reply back.

• Receiving a message is deterministic when the timeout is zero.

/* correct */ /* error! */
PIP_get(); PIP_get();
... ...
PIP_free(); PIP_get();
... ...
PIP_get(); PIP_free();
... ...
PIP_free(); PIP_free();
SPRU423I—August 2012 Input/Output Methods 167
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Message Queues www.ti.com
• Sending a message is deterministic (the call, but not the delivery).

• Messages can reside on any message queue.

• Supports zero-copy transfers.

• Can send and receive from HWIs, SWIs and TSKs.

• Notification mechanism is specified by application.

• Allows QoS (quality of service) on message buffer pools. For example, using specific buffer pools for
specific message queues.

Messages are sent and received via a message queue. A reader is a thread that gets (reads) messages
from a message queue. A writer is a thread that puts (writes) a message to a message queue. Each
message queue has one reader and can have many writers. A thread may read from or write to multiple
message queues.

Figure 6–3 Writers and Reader of a Message Queue

Conceptually, the reader thread owns a message queue. The reader thread opens a message queue.
Writer threads locate existing message queues to get access to them.

Messages must be allocated from the MSGQ module. Once a message is allocated, it can be sent on
any message queue. Once a message is sent, the writer loses ownership of the message and should not
attempt to modify the message. Once the reader receives the message, it owns the message. It may
either free the message or re-use the message.

Messages in a message queue can be of variable length. The only requirement is that the first field in the
definition of a message must be a MSGQ_MsgHeader element.

typedef struct MyMsg {

 MSGQ_MsgHeader header;

 ...

} MyMsg;

The MSGQ API uses the MSGQ_MsgHeader internally. Your application should not modify or directly
access the fields in the MSGQ_MsgHeader.

The MSGQ module has the following components:

• MSGQ API. Applications call the MSGQ functions to open and use a message queue object to send
and receive messages. For an overview, see “MSGQ APIs” on page 169. For details, see the
sections on the individual APIs.

• Allocators. Messages sent via MSGQ must be allocated by an allocator. The allocator determines
where and how the memory for the message is allocated. For more about allocators, see “Allocators”
on page 172.

MSGQ
object

W riter 1

Reader

W riter 2
168 Input/Output Methods SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Message Queues
• Transports. Transports are responsible for locating and sending messages with other processors.
For more about transports, see “Transports” on page 172.

Figure 6–4 Components of the MSGQ Architecture

Allocators and transports have a standard interface. The allocator and transport interface functions are
called by the MSGQ functions and not by the application. DSP/BIOS provides a simple static allocator;
other allocators and transports can be implemented by following the standard interface.

Note: This document does not discuss how to write an allocator or a transport. Information about
designing allocators and transports will be provided in a future document.

6.5.1 MSGQ APIs

The MSGQ APIs are used to open and close message queues and to send and receive messages. The
MSGQ APIs shield the application from having to contain any knowledge about transports and allocators.

The following figure shows the call sequence of the main MSGQ functions:

Figure 6–5 MSGQ Function Calling Sequence

The reader calls the following APIs:

• MSGQ_open

• MSGQ_get

• MSGQ_free

• MSGQ_close

MSGQ APIs

Allocators

Drivers

Transports

MSGQ_open()
MSGQ_locate()

MSGQ_alloc()

MSGQ_close()
MSGQ_release()

MSGQ_free()

MSGQ_get()
MSGQ_put()

startup
run
termination
SPRU423I—August 2012 Input/Output Methods 169
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Message Queues www.ti.com
A writer calls the following APIs:

• MSGQ_locate or MSGQ_locateAsync

• MSGQ_alloc

• MSGQ_put

• MSGQ_release

Wherever possible, the MSGQ APIs have been written to have a deterministic execution time. This allows
application designers to be certain that messaging will not consume an unknown number of cycles.

In addition, the MSGQ functions support use of message queues from all types of DSP/BIOS threads:
HWIs, SWIs, and TSKs. That is, calls that may be synchronous (blocking) have an asynchronous (non-
blocking) alternative.

6.5.2 Static Configuration

In order to use the MSGQ module and the allocators it depends upon, you must statically configure the
following:

• MSGQ_config variable in application code (see below)

• ENABLEMSGQ property of the MSGQ module in the .tcf file

• PROCID property of the GBL module in the .tcf file

• ENABLEPOOL property of the POOL module in the .tcf file

• POOL_config variable in application code

See the DSP/BIOS Application Programming Interface Guide for your platform for information about
setting the properties mentioned in this list.

An application must provide a filled in MSGQ_config variable in order to use the MSGQ module.

MSGQ_Config MSGQ_config;

The MSGQ_Config type has the following structure:

typedef struct MSGQ_Config {
 MSGQ_Obj *msgqQueues; /* Array of message queue handles */
 MSGQ_TransportObj *transports; /* Array of transports */
 Uint16 numMsgqQueues; /* Number of message queue handles*/
 Uint16 numProcessors; /* Number of processors */
 Uint16 startUninitialized; /* First msgq to init */
 MSGQ_Queue errorQueue; /* Receives async transport errors*/
 Uint16 errorPoolId; /* Alloc error msgs from poolId */
} MSGQ_Config;

The fields in the MSGQ_Config structure are described in the following table:

Field Type Description

msgqQueues MSGQ_Obj * Array of message queue objects. The fields of each object do
not need to be initialized.

transports MSGQ_TransportObj * Array of transport objects. The fields of each object must be
initialized.
170 Input/Output Methods SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Message Queues
Internally, MSGQ references its configuration via the MSGQ_config variable. If the MSGQ module is
enabled (via the .tcf configuration file) but the application does not provide the MSGQ_config variable,
the application cannot be linked successfully.

In the MSGQ_Config structure, and array of MSGQ_TransportObj items defines transport objects with
the following structure:

typedef struct MSGQ_TransportObj {

 MSGQ_MqtInit initFxn; /* Transport init func */

 MSGQ_TransportFxns *fxns; /* Interface funcs */

 Ptr params; /* Setup parameters */

 Ptr object; /* Transport-specific object */

 Uint16 procId; /* Processor Id talked to */

} MSGQ_TransportObj;

The following table describes the fields in the MSGQ_TransportObj structure:

If no parameter structure is specified (that is, MSGQ_NOTRANSPORT is used) in the
MSGQ_TransportObj, the transport uses its default parameters.

numMsgqQueues Uint16 Length of the msgqQueues array.

numProcessors Uint16 Length of the transports array.

startUninitialized Uint16 Index of the first message queue to initialize in the
msgqQueue array. This should be set to 0.

errorQueue MSGQ_Queue Message queue to receive transport errors. Initialize to
MSGQ_INVALIDMSGQ.

errorPoolId Uint16 Allocator to allocate transport errors. Initialize to
POOL_INVALIDID.

Field Type Description

initFxn MSGQ_MqtInit Initialization function for this transport. This function is called during
DSP/BIOS startup. More explicitly it is called before main().

fxns MSGQ_TransportFxns * Pointer to the transport's interface functions.

params Ptr Pointer to the transport's parameters. This field is transport-specific.
Please see documentation provided with your transport for a
description of this field.

info Ptr State information needed by the transport. This field is initialized
and managed by the transport. Refer to the specific transport imple-
mentation to determine how to use this field

procId Uint16 Numeric ID of the processor that this transport communicates with.
The current processor must have a procId field that matches the
GBL.PROCID property.

Field Type Description
SPRU423I—August 2012 Input/Output Methods 171
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Message Queues www.ti.com
The following is an example MSGQ configuration for a single-processor application.

#define NUMMSGQUEUES 4 /* # of local message queues*/

#define NUMPROCESSORS 1 /* Single processor system */

static MSGQ_Obj msgQueues[NUMMSGQUEUES];

static MSGQ_TransportObj transports[NUMPROCESSOR] =

 {MSGQ_NOTRANSPORT};

MSGQ_Config MSGQ_config = {

 msgQueues,

 transports,

 NUMMSGQUEUES,

 NUMPROCESSORS,

 0,

 MSGQ_INVALIDMSGQ,

 POOL_INVALIDID

};

6.5.3 Allocators

All messages sent via the MSGQ module must be allocated by an allocator. The allocator determines
where and how the memory for the message is allocated.

An allocator is an instance of an implementation of the allocator interface. An application may instantiate
one or more instances of an allocator.

The POOL module describes standard interface functions that allocators must provide. The allocator
interface functions are called internally by the MSGQ module and not by user applications. A simple static
allocator called STATICPOOL is provided with DSP/BIOS, but other allocators can be implemented by
following the standard interface.

Note: This document does not discuss how to write an allocator. Information about designing
allocators and transports will be provided in a future document.

An application can use multiple allocators. The purpose of having multiple allocators is to allow an
application to regulate its message usage. For example, an application can allocate critical messages
from one pool of fast on-chip memory and non-critical messages from another pool of slower external
memory.

6.5.4 Transports

The job of the transport is to communicate across a physical link to another processor. The transport
interface allows you to change the underlying communication mechanism without changing the
application (except for the configuration of the transport).

A transport is an instance of an implementation of the transport interface. There is an array of transports
on each processor. There is at most one transport between any two processors. This array is based on
processor IDs. So the first element (the 0th index) of the transport array on each processor contains the
transport to processor 0. On processor 0, the first element is a MSGQ_NOTRANSPORT transport that
is never used.
172 Input/Output Methods SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Message Queues
For example, consider the system shown in the following figure, in which three processors are running
DSP/BIOS. The transports are indicated by the arrows.

Figure 6–6 Transports in a Multi-Processor Example

Since there are three processors in the system, there must be an array of three transports on each
processor.

This example uses MSGQ_NOTRANSPORT for the array locations that correspond to the current
processor. In addition, if two separate processors do not communicate in your system, you must use the
MSGQ_NOTRANSPORT in the appropriate locations in the transport arrays.

The MSGQ module describes the standard interface functions that transports must provide. The
transport interface functions are called by the MSGQ functions and not by user applications.

Note: This document does not discuss how to write a transport. Information about designing
allocators and transports will be provided in a future document.

The protocol between transports is transport-specific, but must have the ability to locate message queues
and send messages across the physical boundary. The following figure shows an example of sending a
message to a message queue on another processor.

Processor Transport Array

Processor 0 [0]: MSGQ_NOTRANSPORT transport
[1]: transport to processor 1 based on shared memory
[2]: transport to processor 2 based on HPI

Processor 1 [0]: transport to processor 0 based on shared memory
[1]: MSGQ_NOTRANSPORT transport
[2]: transport to processor 2 based on DMA

Processor 2 [0]: transport to processor 0 based on HPI
[1]: transport to processor 1 based on DMA
[2]: MSGQ_NOTRANSPORT transport

Processor 0 Processor 1

Processor 2

Shared memory-based
transports

HPI-based
transports

DMA-based
transports

Transport
array

Transport
array

Transport
array
SPRU423I—August 2012 Input/Output Methods 173
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Message Queues www.ti.com
Figure 6–7 Remote Transport

6.5.5 Multi-Processor Issues

One of the key features of the MSGQ module is transparency in a multi-processor environment. Moving
a reader from one processor to another causes no change in the writer code. Similarly, moving a writer
to another processor causes no change in the reader.

On each processor, there is one transport for each of the other processors. For instance, in a system that
has four processors that communicate with each other, each processor must have three transports (one
to talk to each of the other three processors) and one MSGQ_NOTRANSPORT transport. If two
processors have more than one physical link between them (for example, shared memory and serial), it
is up to the transport to manage the two links (for example, to determine which messages go on which
link)

When a message is allocated, the ID of the allocator is embedded into the MSGQ_MsgHeader portion
of the allocated message. This makes it easy to free the message later. That is, the application does not
need to remember which allocator was used to allocate the message.

Some transports are copy-based. When such transports send a message to a remote processor, the
message is copied to the physical link (for example, TCP/IP). In the case of a copy-based transport, the
transport on the source processor frees the message after it is copied. The transport on the destination
processor allocates a message and sends it to the destination message queue. All the transport's
allocations and frees are transparent to the application. The reader thread is still responsible for freeing
or re-using the received message.

The following figure shows the sequence of events that occur when sending a message to a remote
processor via a copy-based transport. After these events, the message can be received via a MSGQ_get
on the remote processor.

MSGQ APIs Msg Repositories MSGQ APIs Msg Repositories

Processor 1 MSGQ_get()Processor 0

physical link

TransportAllocator . . . Allocator TransportAllocator . . . Allocator

MSGQ_put()
174 Input/Output Methods SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Message Queues
Figure 6–8 Events on Sending Message to Remote Processor

For transports that are zero-copy based (for example, using shared memory), the transport simply signals
the other side that a message is present. There are no intermediate allocations or frees in this case. The
reader is still responsible for freeing or re-using the received message.

In either type of transport, the allocator configuration must be the same on different processors. Take the
following two examples:

• Zero-copy based remote transport. If allocator 0 is a shared memory allocator on processor A,
then allocator 0 on processor B must act on that same shared memory.

• Copy based remote transport. If allocator 1 allocates messages of size 64 bytes, then allocator 1
on processor B must also allocate messages of 64 bytes (if messages are flowing in both directions).
The underlying allocation mechanisms may be different, but the sizes of the messages must be the
same.

Routing is the ability to send a message from one processor to another processor via an intermediate
processor. Routing is needed when there is no physical link between two processors. Routing is not
directly supported by the MSGQ module. Routing can be built on top of the MSGQ module, but must be
managed at the application level. For example, you might create a thread that acts as a router.

Neither MSGQ nor the transport perform an endian conversion on the user portion of a message. The
transport performs necessary endian conversion on the MSGQ_MsgHeader portion of the message, but
not on the rest of the message. It is up to the application to manage endian conversion of the remainder
of the message.

6.5.6 Data Transfer Module Comparison

There are several modules available in DSP/BIOS for data movement:

• MBX. Mailbox module.

• MSGQ. Message queue module

• PIP. Pipe module.

• QUE. Queue module

M SGQ

1. MSGQ _put()

2 . put()

3 . Queue m sg
 internally

5 . Free m sg v ia
M SGQ _free()

return to ca ller

Local
Processor

Remote
Processor

loca l
app lication

rem ote
transport

a lloca tor a llocator M SGQ
rem ote

transport

Physical
Link

loca l
app lication

 physica l link

7 . Q ueue m sg

4 . Copy m sg across

5 . MSGQ _alloc()
buf to put m sg in to

6 . MSGQ _put() on local
transport

 on repository
SPRU423I—August 2012 Input/Output Methods 175
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Host Channel Manager (HST Module) www.ti.com
• SIO. Streaming I/O module.

Both SIO and PIP use a streaming model. Here are the differences between streaming and messaging
from a DSP/BIOS perspective:

• A stream is a continuous sequence of real-time data. Streaming is point-to-point: one writer and one
reader. It typically is performed with zero copying.

• A message is an asynchronous piece of control information. Messaging is generally performed with
multiple writers and one reader.

There are several differences between MSGQ, QUE, and MBX. Each module has its pros and cons.
Ultimately, it is up to the application designer to decide which one fits their application best. The following
list describes issues to consider when making a decision:

• Multi-Processor Support. MSGQ offers multi-processor support. Neither QUE nor MBX does.

• Message Ownership. Once a message is sent by MSGQ_put or QUE_put, ownership of the
message is relinquished. The reader gets ownership once the message is received. In the MBX
module, once a message is sent by MBX_post, the message is copied internally in MBX before the
call returns. So once the MBX_post returns, the sender still controls the buffer.

• Message Copying. The MBX module is copy based. QUE is zero-copy. For MSGQ, intra-processor
transfers are zero-copy actions. An inter-processor transfer may or may not be copy based (depends
on the transport).

• Notification Mechanisms. Both MSGQ and MBX offer notification mechanisms. So the reader can
block while waiting for a message. Additionally, MSGQ allows user specified notification mechanisms
(instead of always a semaphore in MBX). So the notification could be the posting of a SWI. QUE has
no type of notification mechanism. It is up to the application to handle this-for example, by polling or
by using semaphores in the application.

• Message Size and Number. The MBX module has a fixed length and number of messages per
mailbox. These values are specified when the mailbox is created. Both QUE and MSGQ allow for
variable sized messages. They have no maximum number of messages that may be waiting to be
received.

• Complexity and Footprint. The MSGQ module offers many advanced features. However, this
comes with added complexity and a larger footprint. For applications that do not need these
advanced features and flexibility, the QUE or MBX modules might be a better solution because of
lower footprint and easier use.

6.6 Host Channel Manager (HST Module)

The HST module manages host channel objects, which allow an application to stream data between the
target and the host. Host channels are configured for input or output. Input streams read data from the
host to the target. Output streams transfer data from the target to the host.

Note: HST channel names cannot start with a leading underscore (_).

Each host channel is internally implemented using a pipe object. To use a particular host channel, the
program uses HST_getpipe to get the corresponding pipe object and then transfers data by calling the
PIP_get and PIP_free operations (for input) or PIP_alloc and PIP_put operations (for output).

The code for reading data might look like Example 6-5.
176 Input/Output Methods SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Host Channel Manager (HST Module)
Example 6-5 Reading Data Through a Host Channel

Each host channel can specify a data notification function to be performed when a frame of data for an
input channel (or free space for an output channel) is available. This function is triggered when the host
writes or reads a frame of data.

HST channels treat files as 16- or 32-bit words of raw data, depending on the platform. The format of the
data is application-specific, and you should verify that the host and the target agree on the data format
and ordering. For example, if you are reading 32-bit integers from the host, you need to make sure the
host file contains the data in the correct byte order. Other than correct byte order, there are no special
format or data type requirements for data to be transferred between the host and the target.

While you are developing a program, you can use HST objects to simulate data flow and to test changes
made to canned data by program algorithms. During early development, especially when testing signal
processing algorithms, the program would explicitly use input channels to access data sets from a file for
input for the algorithm and would use output channels to record algorithm output. The data saved to a file
with the output host channel can be compared with expected results to detect algorithm errors. Later in
the program development cycle, when the algorithm appears sound, you can change the HST objects to
PIP objects communicating with other threads or I/O drivers for production hardware.

6.6.1 Transfer of HST Data to the Host

While the amount of usable bandwidth for real-time transfer of data streams to the host ultimately
depends on the choice of physical data link, the HST Channel interface remains independent of the
physical link. The HST Manager in the configuration allows you to choose among the physical
connections available.

On the C55x and C6000 platforms, the host PC triggers an interrupt to transfer data to and from the
target. This interrupt has a higher priority than SWI, TSK, and IDL functions. The actual ISR function runs
in a very short time. Within the idle loop, the LNK_dataPump function does the more time-consuming
work of preparing the RTDX buffers and performing the RTDX calls. Only the actual data transfer is done
at high priority. This data transfer can have a small effect on real-time behavior, particularly if a large
amount of LOG data must be transferred.

extern far HST_Obj input;

readFromHost()
{
 PIP_Obj *pipe;
 Uns size;
 Ptr addr;

 pipe = HST_getpipe(&input) /* get a pointer to the host
 channel's pipe object */
 PIP_get(pipe); /* get a full frame from the
 host */
 size = PIP_getReaderSize(pipe);
 addr = PIP_getReaderAddr(pipe);

 ' read data from frame '

 PIP_free(pipe); /* release empty frame to the host */
}

SPRU423I—August 2012 Input/Output Methods 177
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

I/O Performance Issues www.ti.com
6.7 I/O Performance Issues

If you are using an HST object, the host PC reads or writes data using the function specified by the
LNK_dataPump object. This is a built-in IDL object that runs its function as part of the background thread.
On the C55x and C6000 platforms, the actual data transfer occurs at high priority.

The polling rates you set in the LOG, STS, and TRC controls do not control the data transfer rate for HST
objects. Faster polling rates actually slow the data transfer rate somewhat because LOG, STS, and TRC
data also need to be transferred.
178 Input/Output Methods SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Chapter 7
SPRU423I—August 2012

Streaming I/O and Device Drivers

This chapter describes issues relating to writing and using device drivers that use the DEV_Fxns model,
and gives several programming examples.

7.1 Overview of Streaming I/O and Device Drivers 180

7.2 Creating and Deleting Streams . 182

7.3 Stream I/O—Reading and Writing Streams 183

7.4 Stackable Devices . 192

7.5 Controlling Streams . 196

7.6 Selecting Among Multiple Streams . 197

7.7 Streaming Data to Multiple Clients . 198

7.8 Streaming Data Between Target and Host . 199

7.9 Device Driver Template. 200

7.10 Streaming DEV Structures . 201

7.11 Device Driver Initialization . 203

7.12 Opening Devices . 203

7.13 Real-Time I/O . 206

7.14 Closing Devices. 209

7.15 Device Control . 210

7.16 Device Ready . 211

7.17 Types of Devices . 213

Topic Page
SPRU423I—August 2012 Streaming I/O and Device Drivers 179
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I

Overview of Streaming I/O and Device Drivers www.ti.com
7.1 Overview of Streaming I/O and Device Drivers

Note: This chapter describes devices the use the DEV_Fxns function table type. The
DSP/BIOS Driver Developer's Guide (SPRU616) describes a newer device driver
model—the IOM model, which uses a function table of type IOM_Fxns. See that
document for a description of how to create IOM mini-drivers and how to integrate IOM
mini-drivers into your applications.

The information in this chapter related to using SIO streams is still relevant if you are
using SIO streams with IOM mini-drivers.

Chapter 6 describes the device-independent I/O operations supported by DSP/BIOS from the vantage
point of an application program. Programs indirectly invoke corresponding functions implemented by the
driver managing the particular physical device attached to the stream, using generic functions provided
by the SIO module. As shown in the shaded portion of Figure 7–1, this chapter describes device-
independent I/O in DSP/BIOS from the driver’s perspective of this interface.

Figure 7–1 Device-Independent I/O in DSP/BIOS

Unlike other modules, your application programs do not issue direct calls to driver functions that
manipulate individual device objects managed by the SIO module. Instead, each driver module exports
a specifically named structure of a specific type (DEV_Fxns), which in turn is used by the SIO module to
route generic function calls to the proper driver function.

As illustrated in Table 7–1, each SIO operation calls the appropriate driver function by referencing this
table. Dxx designates the device-specific function which you write for your particular device.

ISR

Driver

Application

Device

SIO

DEV
180 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Overview of Streaming I/O and Device Drivers
Table 7–1. Generic I/O to Internal Driver Operations

These internal driver functions can rely on virtually all of the capabilities supplied by DSP/BIOS, ranging
from the multitasking features of the kernel to the application-level services. Drivers use the device-
independent I/O interface of DSP/BIOS to communicate indirectly with other drivers, especially in
supporting stackable devices.

Generic I/O Operation Internal Driver Operation

SIO_create(name, mode, bufsize, attrs) Dxx_open(device, name)

SIO_delete(stream) Dxx_close(device)

SIO_get(stream, &buf) Dxx_issue(device) and
Dxx_reclaim(device)

SIO_put(stream, &buf, nbytes) Dxx_issue(device) and
Dxx_reclaim(device)

SIO_ctrl(stream, cmd, arg) Dxx_ctrl(device, cmd, arg)

SIO_idle(stream) Dxx_idle(device, FALSE)

SIO_flush(stream) Dxx_idle(device, TRUE)

SIO_select(streamtab, n, timeout) Dxx_ready(device, sem)

SIO_issue(stream, buf, nbytes, arg) Dxx_issue(device)

SIO_reclaim(stream, &buf, &arg) Dxx_reclaim(device)

SIO_staticbuf(stream, &buf) none
SPRU423I—August 2012 Streaming I/O and Device Drivers 181
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Creating and Deleting Streams www.ti.com
Figure 7–2 illustrates the relationship between the device, the Dxx device driver, and the stream
accepting data from the device. SIO calls the Dxx functions listed in DEV_Fxns, the function table for the
device. Both input and output streams exchange buffers with the device using the atomic queues
devicetodevice and devicefromdevice.

Figure 7–2 Device, Driver, and Stream Relationship

For every device driver you need to write Dxx_open, Dxx_idle, Dxx_input, Dxx_output, Dxx_close,
Dxx_ctrl, Dxx_ready, Dxx_issue, and Dxx_reclaim.

7.2 Creating and Deleting Streams

To enable your application to do streaming I/O with a device, the device must first be added to the
configuration. You can add a device for any driver included in the product distribution or a user-supplied
driver. To use a stream to perform I/O with a device, first configure the device. Then, create the stream
object in the configuration or at runtime with the SIO_create function.

7.2.1 Creating Streams Statically

In the configuration, you can create streams and set the properties for each stream and for the SIO
Manager itself. You cannot use the SIO_delete function to delete statically-created streams.

7.2.2 Creating and Deleting Streams Dynamically

You can also create a stream at run time with the SIO_create function as shown in Example 7-1.

SIO_create()
SIO_ctrl()
SIO_get()
SIO_put()

todevice fromdevice SIO

Device Driver

Stream

Device

open
ctrl

issue
reclaim

.

.

.

DEV_Fxns

Dxx_open()
Dxx_ctrl()
Dxx_issue()
Dxx_reclaim()

DEV_FXNS DEV_Frame

.

.

.

.

.

.

182 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Stream I/O—Reading and Writing Streams
Example 7-1 Creating a Stream with SIO_create

SIO_create creates a stream and returns a handle of type SIO_Handle. SIO_create opens the device(s)
specified by name, specifying buffers of size bufsize. Optional attributes specify the number of buffers,
the buffer memory segment, the streaming model, etc. The mode parameter is used to specify whether
the stream is an input (SIO_INPUT) or output (SIO_OUTPUT) stream.

Note: The parameter name must be the same as the name configured for the device but
preceded by a slash character (/). For example, for a device called sine, name should
be “/sine.”

If you open the stream with the streaming model (attrsmodel) set to SIO_STANDARD (the default),
buffers of the specified size are allocated and used to prime the stream. If you open the stream with the
streaming model set to SIO_ISSUERECLAIM, no stream buffers are allocated, since the creator of the
stream is expected to supply all necessary buffers.

SIO_delete, shown in Example 7-2, closes the associated device(s) and frees the stream object. If the
stream was opened using the SIO_STANDARD streaming model, it also frees all buffers remaining in the
stream. User-held stream buffers must be explicitly freed by the user’s code.

Example 7-2 Freeing User-Held Stream Buffers

7.3 Stream I/O—Reading and Writing Streams

There are two models for streaming data in DSP/BIOS: the standard model and the Issue/Reclaim model.
The standard model provides a simple method for using streams, while the Issue/Reclaim model
provides more control over the stream operation.

SIO_get and SIO_put implement the standard stream model as shown in Example 7-3. SIO_get is used
to input the data buffers. SIO_get exchanges buffers with the stream. The bufp parameter is used to pass
the device a buffer and return a different buffer to the application. SIO_get returns the number of bytes
in the input buffer. The SIO_put function performs the output of data buffers, and, like SIO_get,
exchanges physical buffers with the stream. SIO_put takes the number of bytes in the output buffer

SIO_Handle SIO_create(name, mode, bufsize, attrs)
 String name;
 Int mode;
 Uns bufsize;
 SIO_Attrs *attrs;

Int SIO_delete(stream)
 SIO_Handle stream;
SPRU423I—August 2012 Streaming I/O and Device Drivers 183
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Stream I/O—Reading and Writing Streams www.ti.com
Example 7-3 Inputting and Outputting Data Buffers

Note: Since the buffer pointed to by bufp is exchanged with the stream, the buffer size,
memory segment, and alignment must correspond to the attributes of stream.

SIO_issue and SIO_reclaim are the calls that implement the Issue/Reclaim streaming model as shown
in Example 7-4. SIO_issue sends a buffer to a stream. No buffer is returned, and the stream returns
control to the task without blocking. arg is not interpreted by DSP/BIOS, but is offered as a service to the
stream client. arg is passed to each device with the associated buffer data. It can be used by the stream
client as a method of communicating with the device drivers. For example, arg could be used to send a
time stamp to an output device, indicating exactly when the data is to be rendered. SIO_reclaim requests
a stream to return a buffer.

Example 7-4 Implementing the Issue/Reclaim Streaming Model

If no buffer is available, the stream will block the task until the buffer becomes available or the stream’s
timeout has elapsed.

At a basic level, the most obvious difference between the standard and Issue/Reclaim models is that the
Issue/Reclaim model separates the notification of a buffer’s arrival (SIO_issue) and the waiting for a
buffer to become available (SIO_reclaim). So, an SIO_issue/SIO_reclaim pair provides the same buffer
exchange as calling SIO_get or SIO_put.

The Issue/Reclaim streaming model provides greater flexibility by allowing the stream client to control the
number of outstanding buffers at runtime. A client can send multiple buffers to a stream, without blocking,
by using SIO_issue. The buffers are returned, at the client’s request, by calling SIO_reclaim. This allows
the client to choose how deep to buffer a device and when to block and wait for a buffer.

The Issue/Reclaim streaming model also provides greater determinism in buffer management by
guaranteeing that the client’s buffers are returned in the order that they were issued. This allows a client
to use memory from any source for streaming. For example, if a DSP/BIOS task receives a large buffer,

Int SIO_get(stream, bufp)
 SIO_Handle stream;
 Ptr *bufp;

Int SIO_put(stream, bufp, nbytes)
 SIO_Handle stream;
 Ptr *bufp;
 Uns nbytes;

Int SIO_issue(stream, pbuf, nbytes, arg)
 SIO_Handle stream;
 Ptr pbuf;
 Uns nbytes;
 Arg arg;

Int SIO_reclaim(stream, bufp, parg)
 SIO_Handle stream;
 Ptr *bufp;
 Arg *parg;
184 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Stream I/O—Reading and Writing Streams
that task can pass the buffer to the stream in small pieces—simply by advancing a pointer through the
larger buffer and calling SIO_issue for each piece. This works because each piece of the buffer is
guaranteed to come back in the same order it was sent.

7.3.1 Buffer Exchange

An important part of the streaming model in DSP/BIOS is buffer exchange. To provide efficient I/O
operations with a low amount of overhead, DSP/BIOS avoids copying data from one place to another
during certain I/O operations. Instead, DSP/BIOS uses SIO_get, SIO_put, SIO_issue, and SIO_reclaim
to move buffer pointers to and from the device. Figure 7–3 shows a conceptual view of how SIO_get
works.

Figure 7–3 How SIO_get Works

In Figure 7–3, the device driver associated with stream fills a buffer as data becomes available. At the
same time, the application program is processing the current buffer. When the application uses SIO_get
to get the next buffer, the new buffer that was filled by the input device is swapped for the buffer passed
in. This is accomplished by exchanging buffer pointers instead of copying bufsize bytes of data, which
would be very time consuming. Therefore, the overhead of SIO_get is independent of the buffer size.

In each case, the actual physical buffer has been changed by SIO_get. The important implication is that
you must make sure that any references to the buffer used in I/O are updated after each operation.
Otherwise, you are referencing an invalid buffer.

SIO_put uses the same exchange of pointers to swap buffers for an output stream. SIO_issue and
SIO_reclaim each move data in only one direction. Therefore, an SIO_issue/SIO_reclaim pair result in
the same swapping of buffer pointers.

Note: A single stream cannot be used by more than one task simultaneously. That is, only a
single task can call SIO_get/SIO_put or
SIO_issue/SIO_reclaim at once for each stream in your application.

SIO_get (stream, &bufp)

Free Buffer

Exchange

Full Buffer

Application
Program

Device
Driver
SPRU423I—August 2012 Streaming I/O and Device Drivers 185
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Stream I/O—Reading and Writing Streams www.ti.com
7.3.2 Example - Reading Input Buffers from a DGN Device

The program in Example 7-5 illustrates some of the basic SIO functions and provides a straightforward
example of reading from a stream. For a complete description of the DGN software generator driver, see
the DGN section in the TMS320 DSP/BIOS API Reference Guide for your platform.

The configuration template for Example 7-5 can be found in the siotest directory of the DSP/BIOS
distribution. A DGN device called sineWave is used as a data generator to the SIO stream inputStream.
The task streamTask calls the function doStreaming to read the sine data from the inputStream and prints
it to the log buffer trace. The output for Example 7-5 appears as sine wave data in Figure 7–4.

Example 7-5 Basic SIO Functions

/*
 * ======== siotest1.c ========
 * In this program a task reads data from a DGN sine device
 * and prints the contents of the data buffers to a log buffer.
 * The data exchange between the task and the device is done
 * in a device independent fashion using the SIO module APIs.
 *
 * The stream in this example follows the SIO_STANDARD streaming
 * model and is created statically.
 *
 */

#include <std.h>

#include <log.h>
#include <sio.h>
#include <sys.h>
#include <tsk.h>

extern Int IDRAM1; /* MEM segment ID defined by Conf tool */
extern LOG_Obj trace; /* LOG object created with Conf tool */
extern SIO_Obj inputStream; /* SIO object created w Conf tool */
extern TSK_Obj streamTask; /* pre-created task */

SIO_Handle input = &inputStream; /* SIO handle used below */

Void doStreaming(Uns nloops); /* function for streamTask */

/*
 * ======== main ========
 */
Void main()
{
 LOG_printf(&trace, "Start SIO example #1");
}

186 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Stream I/O—Reading and Writing Streams
Example 7.5 Basic SIO Function (continued)

 * ======== doStreaming ========
 * This function is the body of the pre-created TSK thread
 * streamTask.
 */
Void doStreaming(Uns nloops)
{
 Int i, j, nbytes;
 Int *buf;
 status = SIO_staticbuf(input, (Ptr *)&buf);
 if (status ! = SYS_ok) {
 SYS_abort(“could not acquire static frame:);
 }

 for (i = 0; i < nloops; i++) {
 if ((nbytes = SIO_get(input, (Ptr *)&buf)) < 0) {
 SYS_abort("Error reading buffer %d", i);
 }

 LOG_printf(&trace, "Read %d bytes\nBuffer %d data:",
nbytes, i);
 for (j = 0; j < nbytes / sizeof(Int); j++) {
 LOG_printf(&trace, "%d", buf[j]);
 }
 }

 LOG_printf(&trace, "End SIO example #1");
}

SPRU423I—August 2012 Streaming I/O and Device Drivers 187
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Stream I/O—Reading and Writing Streams www.ti.com
Figure 7–4 Output Trace for Example 7-5

7.3.3 Example - Reading and Writing to a DGN Device

Example 7-6 adds new SIO operations to the previous one. An output stream, outputStream, has been
added to the configuration. streamTask reads buffers from a DGN sine device as before, but now it sends
the data buffers to outputStream rather than printing the contents to a log buffer. The stream
outputStream sends the data to a DGN user device called printData. Device printData takes the data
buffers received and uses the DGN_print2log function to display their contents in a log buffer. The log
buffer is specified by the user in the configuration.
188 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Stream I/O—Reading and Writing Streams
Example 7-6 Adding an Output Stream to Example 7-5

Non-pointer type function arguments to LOG_printf() need explicit type casting to (Arg) as shown in the
following code example:
LOG_printf(&trace, "Task %d Done", (Arg)id);

For more details on how to add and configure a DGN device statically, see the DGN section in the
TMS320 DSP/BIOS API Reference Guide for your platform.

 ======== Portion of siotest2.c ========
/* SIO objects created with conf tool */
extern far LOG_Obj trace;
extern far SIO_Obj inputStream;
extern far SIO_Obj outputStream;
extern far TSK_Obj streamTask;
SIO_Handle input = &inputStream;
SIO_Handle output = &outputStream;
...

Void doStreaming(Uns nloops)
{
Void doStreaming(Arg nloops_arg)
{
 Int i, nbytes;
 Int *buf;
 Long nloops = (Long) nloops_arg;
 if (SIO_staticbuf(input, (Ptr *)&buf) == 0) {
 SYS_abort("Error reading buffer ");
 }

 for (i = 0; i < nloops; i++) {
 if ((nbytes = SIO_get(input, (Ptr *)&buf)) < 0) {
 SYS_abort("Error reading buffer %d", (Arg)i);
 }
 if (SIO_put(output, (Ptr *)&buf, nbytes) < 0) {
 SYS_abort("Error writing buffer %d", (Arg)i);
 }
 }
 LOG_printf(&trace, "End SIO example #2");
}
/* ======== DGN_print2log ========
 * User function for the DGN user device printData. It takes as an argument
 * the address of the LOG object where the data stream should be printed. */

Void DGN_print2log(Arg arg, Ptr addr, Uns nbytes)
{
 Int i;
 Int *buf;
 buf = (Int *)addr;

 for (i = 0; i < nbytes/sizeof(Int); i++) {
 LOG_printf((LOG_Obj *)arg, "%d", buf[i]);
 }
}

SPRU423I—August 2012 Streaming I/O and Device Drivers 189
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Stream I/O—Reading and Writing Streams www.ti.com
In the output for this example, sine wave data is as follows.

Figure 7–5 Results for Example 7-6.

7.3.4 Example - Stream I/O using the Issue/Reclaim Model

Example 7-7 is functionally equivalent to Example 7-6. However, the streams are now created using the
Issue/Reclaim model, and the SIO operations to read and write data to a stream are SIO_issue and
SIO_reclaim.

In this model, when streams are created dynamically, no buffers are initially allocated so the application
must allocate the necessary buffers and provide them to the streams to be used for data I/O. For static
streams, you can allocate static buffers in the configuration by checking the Allocate Static Buffer(s)
check box for the SIO object.
190 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Stream I/O—Reading and Writing Streams
Example 7-7 Using the Issue/Reclaim Model

The output for Example 7-7 is the same as found in Example 7–5.

 /* ======== doIRstreaming ======== */
Void doIRstreaming(Uns nloops)
{
 Ptr buf;
 Arg arg;
 Int i, nbytes;

 /* Prime the stream with a couple of buffers */
 buf = MEM_alloc(IDRAM1, SIO_bufsize(input), 0);
 if (buf == MEM_ILLEGAL) {
 SYS_abort("Memory allocation error");
 }
 /* Issue an empty buffer to the input stream */
 if (SIO_issue(input, buf, SIO_bufsize(input), NULL) < 0) {
 SYS_abort("Error issuing buffer %d", i);
 }

 buf = MEM_alloc(IDRAM1, SIO_bufsize(input), 0);
 if (buf == MEM_ILLEGAL) {
 SYS_abort("Memory allocation error");
 }

 for (i = 0; i < nloops; i++) {
 /* Issue an empty buffer to the input stream */
 if (SIO_issue(input, buf, SIO_bufsize(input), NULL) < 0) {
 SYS_abort("Error issuing buffer %d", i);
 }
 /* Reclaim full buffer from the input stream */
 if ((nbytes = SIO_reclaim(input, &buf, &arg)) < 0) {
 SYS_abort("Error reclaiming buffer %d", i);
 }
 /* Issue full buffer to the output stream */
 if (SIO_issue(output, buf, nbytes, NULL) < 0) {
 SYS_abort("Error issuing buffer %d", i);
 }
 /* Reclaim empty buffer from the output stream to be reused */
 if (SIO_reclaim(output, &buf, &arg) < 0) {
 SYS_abort("Error reclaiming buffer %d", i);
 }
 }
 /* Reclaim and delete the buffers used */
 MEM_free(IDRAM1, buf, SIO_bufsize(input));
 if ((nbytes = SIO_reclaim(input, &buf, &arg)) < 0) {
 SYS_abort("Error reclaiming buffer %d", i);
 }
 if (SIO_issue(output, buf, nbytes, NULL) < 0) {
 SYS_abort("Error issuing buffer %d", i);
 }
 if (SIO_reclaim(output, &buf, &arg) < 0) {
 SYS_abort("Error reclaiming buffer %d", i);
 }

 MEM_free(IDRAM1, buf, SIO_bufsize(input));
}

SPRU423I—August 2012 Streaming I/O and Device Drivers 191
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Stackable Devices www.ti.com
7.4 Stackable Devices

The capabilities of the SIO module play an important role in fostering device-independence within
DSP/BIOS in that logical devices insulate your application programs from the details of designating a
particular device. For example, /dac is a logical device name that does not imply any particular DAC
hardware. The device-naming convention adds another dimension to device-independent I/O that is
unique to DSP/BIOS—the ability to use a single name to denote a stack of devices.

Note: By stacking certain data streaming or message passing devices atop one another, you
can create virtual I/O devices that further insulate your applications from the underlying
system hardware.

Consider, as an example, a program implementing an algorithm that inputs and outputs a stream of fixed-
point data using a pair of A/D-D/A converters. However, the A/D-D/A device can take only the 14 most
significant bits of data, and the other two bits have to be 0 if you want to scale up the input data.

Instead of cluttering the program with excess code for data conversion and buffering to satisfy the
algorithm’s needs, we can open a pair of virtual devices that implicitly perform a series of transformations
on the data produced and consumed by the underlying real devices as shown in
Example 7-8.

Example 7-8 Opening a Pair of Virtual Devices

In Example 7-8, the virtual input device, /scale2/a2d, actually comprises a stack of two devices, each
named according to the prefix of the device name specified in your configuration file.

• /scale2 designates a device that transforms a fixed-point data stream produced by an underlying
device (/a2d) into a stream of scaled fixed-point values; and

• /a2d designates a device managed by the A/D-D/A device driver that produces a stream of fixed-
point input from an A/D converter.

The virtual output device, /mask2/d2a, likewise denotes a stack of two devices. Figure 7–6 shows the
flow of empty and full frames through these virtual source and sink devices as the application program
calls the SIO data streaming functions.

SIO_Handle input;
SIO_Handle output;
Ptr buf;
Int n;

buf = MEM_alloc(0, MAXSIZE, 0);

input = SIO_create("/scale2/a2d", SIO_INPUT, MAXSIZE, NULL);
output = SIO_create("/mask2/d2a", SIO_OUTPUT, MAXSIZE, NULL);

while (n = SIO_get(input, &buf)) {

 `apply algorithm to contents of buf`

 SIO_put(output, &buf, n);
}

SIO_delete(input);
SIO_delete(output);
192 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Stackable Devices
Figure 7–6 The Flow of Empty and Full Frames

7.4.1 Example - SIO_create and Stacking Devices

Example 7-9, illustrates two tasks, sourceTask and sinkTask, that exchange data through a pipe device.

sourceTask is a writer task that receives data from an input stream attached to a DGN sine device and
redirects the data to an output stream attached to a DPI pipe device. The input stream also has a stacking
device, scale, on top of the DGN sine device. The data stream coming from sine is first processed by the
scale device (that multiplies each data point by a constant integer value), before it is received by
sourceTask.

sinkTask is a reader task that reads the data that sourceTask sent to the DPI pipe device through an input
stream, and redirects it to a DGN printData device through an output stream.

The devices in Example 7-9 have been configured statically. The devices sineWave and printDat are
DGN devices. pip0 is a DPI device. scale is a DTR stacking device. For more information on how to add
and configure DPI, DGN, and DTR devices, see the DPI, DGN and DTR drivers description in the
TMS320 DSP/BIOS API Reference Guide for your platform.

The streams in Example 7-9 have also been added to the configuration. The input stream for the
sourceTask task is inStreamSrc.

When you configure an SIO stream that uses a stacking device, you must first enter a configured terminal
device in the Device Control Parameter property. The name of the terminal device must be preceded by
a slash character (/). In the example we use /sineWave, where sineWave is the name of a configured
DGN terminal device. Then select the stacking device (scale) from the dropdown list in the Device
property. The configuration will not allow you to select a stacking device in Device until a terminal device
has been entered in Device Control Parameter. The other SIO streams created for Example 7-9 are
outStreamSrc (output stream for sourceTask), inStreamSink (input stream for sinkTask), and
outStreamSink (output stream for sinkTask). The devices used by these streams are the terminal devices
pip0 and printData.

/scale2

/a2d

/mask2

/d2a

Application
Program

SI O_ge t ()
Source Device Sink Device

SI O_pu t ()
SPRU423I—August 2012 Streaming I/O and Device Drivers 193
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Stackable Devices www.ti.com
Example 7-9 Data Exchange Through a Pipe Device

/*
 * ======== siotest5.c ========
 * In this program two tasks are created that exchange data
 * through a pipe device. The source task reads sine wave data
 * from a DGN device through a DTR device stacked on the sine
 * device, and then writes it to a pipe device. The sink task
 * reads the data from the pipe device and writes it to the
 * printData DGN device. The data exchange between the tasks
 * and the devices is done in a device independent fashion
 * using the SIO module APIs.
 *
 * The streams in this example follow the SIO_STANDARD streaming
 * model and are created statically.
 */

#include <std.h>

#include <dtr.h>
#include <log.h>
#include <mem.h>
#include <sio.h>
#include <sys.h>
#include <tsk.h>

#define BUFSIZE 128

#ifdef _62_
#define SegId IDRAM
extern Int IDRAM; /* MEM segment ID defined with conf tool */
#endif

#ifdef _55_
#define SegId DATA
extern Int DATA; /* MEM segment ID defined with conf tool */
#endif

extern LOG_Obj trace; /* LOG object created with conf tool */
extern TSK_Obj sourceTask; /* TSK thread objects created via conf tool */
extern TSK_Obj sinkTask;
extern SIO_Obj inStreamSrc; /* SIO streams created via conf tool */
extern SIO_Obj outStreamSrc;
extern SIO_Obj inStreamSink;
extern SIO_Obj outStreamSink;

/* Parameters for the stacking device "/scale" */
DTR_Params DTR_PRMS = {
 20, /* Scaling factor */
 NULL,
 NULL
};

Void source(Uns nloops); /* function body for sourceTask above */
Void sink(Uns nloops); /* function body for sinkTask above */

static Void doStreaming(SIO_Handle input, SIO_Handle output, Uns nloops);

/*
194 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Stackable Devices
Example 7.9 Data Exchange Through a Pipe Device (continued)

The output for Example 7-9 is scaled sine wave data as in Figure 7–7.

 * ======== main ========
 */
Void main()
{
 LOG_printf(&trace, "Start SIO example #5");
}

/*
 * ======== source ========
 * This function forms the body of the sourceTask TSK thread.
 */
Void source(Uns nloops)
{
 SIO_Handle input = &inStreamSrc;
 SIO_Handle output = &outStreamSrc;

 /* Do I/O */
 doStreaming(input, output, nloops);
}

/*
 * ======== sink ========
 * This function forms the body of the sinkTask TSK thread.
 */
Void sink(Uns nloops)
{
 SIO_Handle input = &inStreamSink;
 SIO_Handle output = &outStreamSink;

 /* Do I/O */
 doStreaming(input, output, nloops);

 LOG_printf(&trace, "End SIO example #5");
}

/*
 * ======== doStreaming ========
 * I/O function for the sink and source tasks.
 */
static Void doStreaming(SIO_Handle input, SIO_Handle output, Uns nloops)
{
 Ptr buf;
 Int i, nbytes;

 if (SIO_staticbuf(input, &buf) == 0){
 SYS_abort("Eror reading buffer %d", i);
 }
 for (i = 0; i < nloops; i++) {
 if ((nbytes = SIO_get (input, &buf)) <0) {
 SYS_abort ("Error reading buffer %d", i);
 }
 if (SIO_put (output, &buf, nbytes) <0) {
 SYS_abort ("Error writing buffer %d", i);
 }
 }
}

SPRU423I—August 2012 Streaming I/O and Device Drivers 195
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Controlling Streams www.ti.com
Figure 7–7 Sine Wave Output for Example 7-9

You can edit sioTest5.c and change the scaling factor of the DTR_PRMS, rebuild the executable and see
the differences in the output to myLog.

A version of Example 7-9, where the streams are created dynamically at runtime by calling SIO_create
is available in the product distribution (siotest4.c, siotest4.cdb).

7.5 Controlling Streams

A physical device typically requires one or more specialized control signals in order to operate as desired.
SIO_ctrl makes it possible to communicate with the device, passing it commands and arguments. Since
each device admits only specialized commands, you need to consult the documentation for each
particular device. The general calling format is shown in Example 7-10.

Example 7-10 Using SIO_ctrl to Communicate with a Device

The device associated with stream is passed the command represented by the device-specific cmd. A
generic pointer to the command’s arguments is also passed to the device. The actual control function that
is part of the device driver then interprets the command and arguments and acts accordingly.

Assume that an analog-to-digital converter device /a2d has a control operation to change the sample
rate. The sample rate might be changed to 12 kHz as shown in Example 7-11.

Int SIO_ctrl(stream, cmd, arg)
 SIO_Handle stream;
 Uns cmd;
 Ptr arg;
196 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Selecting Among Multiple Streams
Example 7-11 Changing Sample Rate

In some situations, you can synchronize with an I/O device that is doing buffered I/O. There are two
methods to synchronize with the devices: SIO_idle and SIO_flush. Either function leaves the device in
the idled state. Idling a device means that all buffers are returned to the queues that they were in when
the device was initially created. That is, the device is returned to its initial state, and streaming is stopped.

For an input stream, the two functions have the same results: all unread input is lost. For an output
stream, SIO_idle blocks until all buffered data has been written to the device. However, SIO_flush
discards any data that has not already been written. SIO_flush does not block as shown in Example 7-12.

Example 7-12 Synchronizing with a Device

An idle stream does not perform I/O with its underlying device. Thus, you can turn a stream off until further
I/O is needed by calling SIO_idle or SIO_flush.

7.6 Selecting Among Multiple Streams

The SIO_select function allows a single DSP/BIOS task to wait until an I/O operation can be performed
on one or more of a set of SIO streams without blocking. For example, this mechanism is useful in the
following applications:

• Non-blocking I/O. Real-time tasks that stream data to a slow device (for example, a disk file) must
ensure that SIO_put does not block.

• Multitasking. In virtually any multitasking application there are daemon tasks that route data from
several sources. The SIO_select mechanism allows a single task to handle all of these sources.

SIO_select is called with an array of streams, an array length, and a time-out value. SIO_select blocks
(if timeout is not 0) until one of the streams is ready for I/O or the time-out expires. In either case, the
mask returned by SIO_select indicates which devices are ready for service (a 1 in bit j indicates that
streamtab[j] is ready) as shown in Example 7-13.

Example 7-13 Indicating That a Stream is Ready

 SIO_Handle stream;

stream = SIO_create("/a2d", ...);

SIO_ctrl(stream, DAC_RATE, 12000);

Void SIO_idle(stream);
 SIO_Handle stream;
Void SIO_flush(stream);
 SIO_Handle stream;

Uns SIO_select(streamtab, nstreams, timeout)
 SIO_Handle streamtab[]; /* stream table */
 Uns nstreams; /* number of streams */
 Uns timeout; /* return after this many */
 /* system clock ticks */
SPRU423I—August 2012 Streaming I/O and Device Drivers 197
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Streaming Data to Multiple Clients www.ti.com
7.6.1 Programming Example

In Example 7-14, two streams are polled to see if an I/O operation will block.

Example 7-14 Polling Two Streams

7.7 Streaming Data to Multiple Clients

A common problem in multiprocessing systems is the simultaneous transmission of a single data buffer
to multiple tasks in the system. Such multi-cast transmission, or scattering of data, can be done easily
with DSP/BIOS SIO streams. Consider the situation in which a single processor sends data to four client
processors.

Streaming data between processors in this context is somewhat different from streaming data to or from
an acquisition device, such as an A/D converter, in that a single buffer of data must go to one or more
clients. The DSP/BIOS SIO functions SIO_get/SIO_put are used for data I/O.

SIO_put automatically performs a buffer exchange between the buffer already at the device level and the
application buffer. As a result, the user no longer has control over the buffer since it is enqueued for I/O,
and this I/O happens asynchronously at the interrupt level. This forces the user to copy data in order to
send it to multiple clients. This is shown in Example 7-15.

Example 7-15 Using SIO_put to Send Data to Multiple Clients

SIO_Handle stream0;
SIO_Handle stream1;
SIO_Handle streamtab[2];
Uns mask;

...

streamtab[0] = stream0;
streamtab[1] = stream1;

while ((mask = SIO_select(streamtab, 2, 0)) == 0) {

 `I/O would block, do something else`

}

if (mask & 0x1) {
 `service stream0`
}
if (mask & 0x2) {
 `service stream1`
}

SIO_put(inStream, (Ptr)&bufA, npoints);

`fill bufA with data`
for (`all data points`) {
 bufB[i] = bufC[i] = bufD[i] ... = bufA[i];
}
SIO_put(outStreamA, (Ptr)&bufA, npoints);
SIO_put(outStreamB, (Ptr)&bufB, npoints);
SIO_put(outStreamC, (Ptr)&bufC, npoints);
SIO_put(outStreamD, (Ptr)&bufD, npoints);
198 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Streaming Data Between Target and Host
Copying the data wastes CPU cycles and requires more memory, since each stream needs buffers. If
you were double-buffering, Example 7-15 would require eight buffers (two for each stream).

Example 7-16, illustrates the advantage of SIO_issue and SIO_reclaim in this situation. The application
performs no copying, and it uses only two buffers. In each call, SIO_issue simply enqueues the buffer
pointed to by bufA onto outStream’s todevice queue without blocking. Since there is no copying or
blocking, this method greatly reduces the time between having a buffer of data ready for transmission
and the time the buffer can be sent to all clients. In order to remove the buffers from the output devices,
corresponding SIO_reclaim functions must be called.

Example 7-16 Using SIO_issue/SIO_reclaim to Send Data to Multiple Clients

Note: Using SIO_issue to send the same buffer to multiple devices does not work with device
drivers that modify the data in the buffer, since the buffer is simultaneously being sent
to multiple devices. For example, a stacking device that transforms packed data to
unpacked data is modifying the buffer at the same time that another device is outputting
the buffer.

The SIO_issue interface provides a method for allowing all communications drivers access to the same
buffer of data. Each communications device driver, which typically uses DMA transfers, then transfers
this buffer of data concurrently. The program does not return from the four SIO_reclaims until a buffer is
available from all of the streams.

In summary, the SIO_issue/SIO_reclaim functions offer the most efficient method for the simultaneous
transmission of data to more than one stream. This is not a reciprocal operation: the
SIO_issue/SIO_reclaim model solves the scatter problem quite efficiently for output, but does not
accommodate gathering multiple data sources into a single buffer for input.

7.8 Streaming Data Between Target and Host

You can configure host channel objects (HST objects), which allow an application to stream data
between the target and files on the host. In DSP/BIOS analysis tools, you bind these channels to host
files and start them.

DSP/BIOS includes a host I/O module (HST) that makes it easy to transfer data between the host
computer and target program. Each host channel is internally implemented using an SIO stream object.
To use a host channel, the program calls HST_getstream to get the corresponding stream handle, and
then transfers the data using SIO calls on the stream.

You configure host channels, or HST objects, for input or output. Input channels transfer data from the
host to the target, and output channels transfer data from the target to the host.

SIO_issue(outStreamA, (Ptr)bufA, npoints, NULL);
SIO_issue(outStreamB, (Ptr)bufA, npoints, NULL);
SIO_issue(outStreamC, (Ptr)bufA, npoints, NULL);
SIO_issue(outStreamD, (Ptr)bufA, npoints, NULL);

SIO_reclaim(outStreamA, (Ptr)&bufA, NULL);
SIO_reclaim(outStreamB, (Ptr)&bufA, NULL);
SIO_reclaim(outStreamC, (Ptr)&bufA, NULL);
SIO_reclaim(outStreamD, (Ptr)&bufA, NULL, SYS_FOREVER);
SPRU423I—August 2012 Streaming I/O and Device Drivers 199
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Device Driver Template www.ti.com
7.9 Device Driver Template

Since device drivers interact directly with hardware, the low-level details of device drivers can vary
considerably. However, all device drivers must present the same interface to SIO. In the following
sections, an example driver template called Dxx is presented. The template contains (mainly) C code for
higher-level operations and pseudocode for lower-level operations. Any device driver should adhere to
the standard behavior indicated for the Dxx functions.

You should study the Dxx driver template along with one or more actual drivers. You can also refer to the
Dxx functions in the TMS320 DSP/BIOS API Reference Guide for your platform where xx denotes any
two-letter combination. For details about configuring device drivers, including both custom drivers and
the drivers provided with DSP/BIOS, you need to reference the specific device driver.

7.9.1 Typical File Organization

Device drivers are usually split into multiple files. For example:

• dxx.h—Dxx header file

• dxx.c—Dxx functions

• dxx_asm.s##—(optional) assembly language functions

Most of the device driver code can be written in C. The following description of Dxx does not use
assembly language. However, interrupt service routines are usually written in assembly language for
efficiency, and some hardware control functions also need to be written in assembly language.

We recommend that you become familiar at this point with the layout of one of the software device
drivers, such as DGN. In particular, you should note the following points:

• The header file, dxx.h, typically contains the required statements shown in Example 7-17 in addition
to any device-specific definitions:

Example 7-17 Required Statements in dxx.h Header File

• Device parameters, such as Dxx_Params, are specified as properties of the device object in the
configuration.

The required table of device functions is contained in dxx.c. This table is used by the SIO module to call
specific device driver functions. For example, SIO_put uses this table to find and call
Dxx_issue/Dxx_reclaim. The table is shown in Example 7-18.

/*
 * ======== dxx.h ========
 */

#include <dev.h>
extern DEV_Fxns Dxx_FXNS;
/*
 * ======== Dxx_Params ========
 */
typedef struct {

 `device parameters go here`

} Dxx_Params;
200 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Streaming DEV Structures
Example 7-18 Table of Device Functions

7.10 Streaming DEV Structures

The DEV_Fxns structure contains pointers to internal driver functions corresponding to generic I/O
operations as shown in Example 7-19.

Example 7-19 The DEV_Fxns Structure

Device frames are structures of type DEV_Frame used by SIO and device drivers to enqueue/dequeue
stream buffers. The devicetodevice and devicefromdevice queues contain elements of this type
(Example 7-20).

Example 7-20 The DEV_Frame Structure

Example 7-20 has the following parameters:

• link is used by QUE_put and QUE_get to enqueue/dequeue the frame.

• addr contains the address of the stream buffer.

• size contains the logical size of the stream buffer. The logical size can be less than the physical buffer
size.

• misc is an extra field which is reserved for use by a device.

DEV_Fxns Dxx_FXNS = {
 Dxx_close,
 Dxx_ctrl,
 Dxx_idle,
 Dxx_issue,
 Dxx_open,
 Dxx_ready,
 Dxx_reclaim
};

typedef struct DEV_Fxns {
 Int (*close)(DEV_Handle);
 Int (*ctrl)(DEV_Handle, Uns, Arg);
 Int (*idle)(DEV_Handle, Bool);
 Int (*issue(DEV_Handle);
 Int (*open)(DEV_Handle, String);
 Bool (*ready)(DEV_Handle, SEM_Handle);
 Int (*reclaim)(DEV_Handle);
} DEV_Fxns;

typedef struct DEV_Frame { /* frame object */
 QUE_Elem link; /* queue link */
 Ptr addr; /* buffer address */
 Uns size; /* buffer size */
 Arg misc; /* reserved for driver */
 Arg arg; /* user argument */
 Uns cmd; /* mini-driver command */
 Int status; /* status of command */
} DEV_Frame;
SPRU423I—August 2012 Streaming I/O and Device Drivers 201
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Streaming DEV Structures www.ti.com
• arg is an extra field available for you to associate information with a particular frame of data. This field
should be preserved by the device.

• cmd is a command code for use with mini-drivers that use the IOM model described in the DSP/BIOS
Driver Developer's Guide (SPRU616). The command code tells the mini-driver what action to
perform.

• status is a field set by an IOM mini-driver before calling a callback function.

Device driver functions take a DEV_Handle as their first or only parameter, followed by any additional
parameters. The DEV_Handle is a pointer to a DEV_Obj, which is created and initialized by SIO_create
and passed to Dxx_open for additional initialization. Among other things, a DEV_Obj contains pointers
to the buffer queues that SIO and the device use to exchange buffers. All driver functions take a
DEV_Handle as their first parameter.

Example 7-21 The DEV_Handle Structure

Example 7-21 has the following parameters:

• todevice is used to transfer DEV_Frame frames to the device. In the SIO_STANDARD
(DEV_STANDARD) streaming model, SIO_put puts full frames on this queue, and SIO_get puts
empty frames here. In the SIO_ISSUERECLAIM (DEV_ISSUERECLAIM) streaming model,
SIO_issue places frames on this queue.

• fromdevice is used to transfer DEV_Frame frames from the device. In the SIO_STANDARD
(DEV_STANDARD) streaming model, SIO_put gets empty frames from this queue, and SIO_get gets
full frames from here. In the SIO_ISSUERECLAIM (DEV_ISSUERECLAIM) streaming model,
SIO_reclaim retrieves frames from this queue.

• bufsize specifies the physical size of the buffers in the device queues.

• nbufs specifies the number of buffers allocated for this device in the SIO_STANDARD streaming
model, or the maximum number of outstanding buffers in the SIO_ISSUERECLAIM streaming model.

• segid specifies the segment from which device buffers were allocated (SIO_STANDARD).

• mode specifies whether the device is an input (DEV_INPUT) or output (DEV_OUTPUT) device.

• devid is the device ID.

• params is a generic pointer to any device-specific parameters. Some devices have additional
parameters which are found here.

typedef DEV_Obj *DEV_Handle;

typedef struct DEV_Obj { /* device object */
 QUE_Handle todevice; /* downstream frames here */
 QUE_Handle fromdevice; /* upstream frames here */
 Uns bufsize; /* buffer size */
 Uns nbufs; /* number of buffers */
 Int segid; /* buffer segment ID */
 Int mode; /* DEV_INPUT/DEV_OUTPUT */
 LgInt devid; /* device ID */
 Ptr params; /* device parameters */
 Ptr object; /* ptr to dev instance obj */
 DEV_Fxns fxns; /* driver functions */
 Uns timeout; /* SIO_reclaim timeout value */
 Uns align; /* buffer alignment */
 DEV_Callback *callback; /* pointer to callback */
} DEV_Obj;
202 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Device Driver Initialization
• object is a pointer to the device object. Most devices create an object that is referenced in successive
device operations.

• fxns is a DEV_Fxns structure containing the driver’s functions. This structure is usually a copy of
Dxx_FXNS, but it is possible for a driver to dynamically alter these functions in Dxx_open.

• timeout specifies the number of system ticks that SIO_reclaim will wait for I/O to complete.

• align specifies the buffer alignment.

• callback specifies a pointer to a channel-specific callback structure. The DEV_Callback structure
contains a callback function and two function arguments. The callback function is typically
SWI_andnHook or a similar function that posts a SWI. Callbacks can only be used with the
issue/reclaim model. This callback allows SIO objects to be used with SWI threads.

Only the object and fxns fields should ever be modified by a driver’s functions. These fields are
essentially output parameters of Dxx_open.

7.11 Device Driver Initialization

The driver function table Dxx_FXNS is initialized in dxx.c, as shown in Section 7.10, Streaming DEV
Structures, page 7-201.

Additional initialization is performed by Dxx_init. The Dxx module is initialized when other application-
level modules are initialized. Dxx_init typically calls hardware initialization routines and initializes static
driver structures as shown in Example 7-22.

Example 7-22 Initialization by Dxx_init

Although Dxx_init is required in order to maintain consistency with DSP/BIOS configuration and
initialization standards, there are actually no DSP/BIOS requirements for the internal operation of
Dxx_init. There is in fact no standard for hardware initialization, and it can be more appropriate on some
systems to perform certain hardware setup operations elsewhere in Dxx, such as Dxx_open. Therefore,
on some systems, Dxx_init might simply be an empty function.

7.12 Opening Devices

Dxx_open opens a Dxx device and returns its status seen in Example 7-23:

Example 7-23 Opening a Device with Dxx_open

/*
 * ======== Dxx_init ========
 */

Void Dxx_init()
{
 `Perform hardware initialization`
}

status = Dxx_open(device, name);
SPRU423I—August 2012 Streaming I/O and Device Drivers 203
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Opening Devices www.ti.com
SIO_create calls Dxx_open to open a Dxx device as seen in Example 7-24.

Example 7-24 Opening an Input Terminating Device

This sequence of steps illustrates the opening process for an input-terminating device:

1. Find string matching a prefix of /adc16 in DEV_devtab device table. The associated DEV_Device
structure contains driver function, device ID, and device parameters.

2. Allocate DEV_Obj device object.

3. Assign bufsize, nbufs, segid, etc. fields in DEV_Obj from parameters and SIO_Attrs passed to
SIO_create.

4. Create todevice and fromdevice queues.

5. If opened for DEV_STANDARD streaming model, allocate attrs.nbufs buffers of size BUFSIZE and
put them on todevice queue.

6. Call Dxx_open with pointer to new DEV_Obj and remaining name string using syntax as shown:

 status - Dxx_open (device, "16")

7. Validate fields in DEV_Obj pointed to by device.

8. Parse string for additional parameters (for example, 16 kHz).

9. Allocate and initialize device-specific object.

10. Assign device-specific object to deviceobject.

The arguments to Dxx_open are shown in Example 7-25.

Example 7-25 Arguments to Dxx_open

The device parameter points to an object of type DEV_Obj whose fields have been initialized by
SIO_create. name is the string remaining after the device name has been matched by SIO_create using
DEV_match.

Recall that SIO_create takes the parameters and is called as shown in Example 7-26.

Example 7-26 The Parameters of SIO_create

The name parameter passed to SIO_create is typically a string indicating the device and an additional
suffix, indicating some particular mode of operation of the device. An analog-to-digital converter might
have the base name /adc, while the sampling frequency might be indicated by a tag such as 16 for 16
kHz. The complete name passed to SIO_create would be /adc16.

input = SIO_create("/adc16", SIO_INPUT, BUFSIZE, NULL)

DEV_Handle device; /* driver handle */
String name; /* device name */

stream = SIO_create(name, mode, bufsize, attrs);
204 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Opening Devices
SIO_create identifies the device by using DEV_match to match the string /adc against the list of
configured devices. The string remainder 16 would be passed to Dxx_open to set the ADC to the correct
sampling frequency.

Dxx_open usually allocates a device-specific object that is used to maintain the device state, as well as
necessary semaphores. For a terminating device, this object typically has two SEM_Handle semaphore
handles. One is used for synchronizing I/O operations (for example, SIO_get, SIO_put, SIO_reclaim).
The other handle is used with SIO_select to determine if a device is ready. A device object would typically
be defined as shown in Example 7-27.

Example 7-27 The Dxx_Obj Structure

Example 7-28 provides a template for Dxx_open, showing the function’s typical features for a terminating
device.

Example 7-28 Typical Features for a Terminating Device

typedef struct Dxx_Obj {
 SEM_Handle sync; /* synchronize I/O */
 SEM_Handle ready; /* used with SIO_select() */
 `other device-specific fields`
} Dxx_obj, *Dxx_Handle;

Int Dxx_open(DEV_Handle device, String name)
{
 Dxx_Handle objptr;

 /* check mode of device to be opened */
 if (`device->mode is invalid`) {
 return (SYS_EMODE);
 }
 /* check device id */
 if (`device->devid is invalid`) {
 return (SYS_ENODEV);
 }

 /* if device is already open, return error */
 if (`device is in use`) {
 return (SYS_EBUSY);
 }
 /* allocate device-specific object */
 objptr = MEM_alloc(0, sizeof (Dxx_Obj), 0);

 `fill in device-specific fields`
 /*
 * create synchronization semaphore ... */
 objptr->sync = SEM_create(0 , NULL);
 /* initialize ready semaphore for
SIO_select()/Dxx_ready() */
 objptr->ready = NULL;

 `do any other device-specific initialization required`

 /* assign initialized object */
 device->object = (Ptr)objptr;

 return (SYS_OK);
}

SPRU423I—August 2012 Streaming I/O and Device Drivers 205
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Real-Time I/O www.ti.com
The first two steps take care of error checking. For example, a request to open an output-only device for
input should generate an error message. A request to open channel ten on a five-channel system should
also generate an error message.

The next step is to determine if the device is already opened. In many cases, an opened device cannot
be re-opened, so a request to do so generates an error message.

If the device can be opened, the rest of Dxx_open consists of two major operations. First, the device-
specific object is initialized, based in part on the deviceparams settings passed by SIO_create. Second,
this object is attached to deviceobject. Dxx_open returns SYS_OK to SIO_create, which now has a
properly initialized device object.

The configurable device parameters are used to set the operating parameters of the hardware. There are
no DSP/BIOS constraints on which parameters should be set in Dxx_init rather than in Dxx_open.

The object semaphore objptrsync is typically used to signal a task that is pending on the completion of
an I/O operation. For example, a task can call SIO_put, which can block by pending on objptrsync.
When the required output is accomplished, SEM_post is called with objptsync. This makes a task
blocked in Dxx_output ready to run.

DSP/BIOS does not impose any special constraints on the use of synchronization semaphores within a
device driver. The appropriate use of such semaphores depends on the nature of the driver requirements
and the underlying hardware.

The ready semaphore, objptrready, is used by Dxx_ready, which is called by SIO_select to determine
if a device is available for I/O. This semaphore is explained in Section 4.7, Semaphores, page 4-127.

7.13 Real-Time I/O

In DSP/BIOS there are two models that can be used for real-time I/O—the DEV_STANDARD streaming
model and the DEV_ISSUERECLAIM streaming model. Each of these models is described in this
section.

7.13.1 DEV_STANDARD Streaming Model

In the DEV_STANDARD streaming model, SIO_get is used to get a non-empty buffer from an input
stream. To accomplish this, SIO_get first places an empty frame on the device->todevice queue. SIO_get
then calls Dxx_issue, which starts the I/O and then calls Dxx_reclaim pending, until a full frame is
available on the device->fromdevice queue. This blocking is accomplished by calling SEM_pend on the
device semaphore objptr->sync that is posted whenever a buffer is filled.

Dxx_issue calls a low-level hardware function to initiate data input. When the required amount of data
has been received, the frame is transferred to device->fromdevice. Typically, the hardware device
triggers an interrupt when a certain amount of data has been received. Dxx handles this interrupt by
means of an HWI (ISR in Figure 7–8), which accumulates the data and determine if more data is needed
for the waiting frame. If the HWI determines that the required amount of data has been received, the HWI
transfers the frame to device->fromdevice and then call SEM_post on the device semaphore. This allows
the task, blocked in Dxx_reclaim, to continue. Dxx_reclaim then returns to SIO_get, which will complete
the input operation as illustrated in Figure 7–8.
206 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Real-Time I/O
Figure 7–8 Flow of DEV_STANDARD Streaming Model

Note that objptr->sync is a counting semaphore and that tasks do not always block here. The value of
objptr->sync represents the number of available frames on the fromdevice queue.

7.13.2 DEV_ISSUERECLAIM Streaming Model

In the DEV_ISSUERECLAIM streaming model, SIO_issue is used to send buffers to a stream. To
accomplish this, SIO_issue first places the frame on the device->todevice queue. It then calls Dxx_issue
which starts the I/O and returns.

Dxx_issue calls a low-level hardware function to initialize I/O.

SIO_reclaim is used to retrieve buffers from the stream. This is done by calling Dxx_reclaim, which blocks
until a frame is available on the device->fromdevice queue. This blocking is accomplished by calling
SEM_pend on the device semaphore objptr->sync, just as for Dxx_issue. When the device HWI (ISR in
Figure 7–9 and Figure 7–10) posts to objptr->sync, Dxx_reclaim is unblocked, and returns to
SIO_reclaim. SIO_reclaim then gets the frame from the device->fromdevice queue and returns the buffer.
This sequence is shown in Figure 7–9 and Figure 7–10.

Figure 7–9 Placing a Data Buffer to a Stream

Application Dxx_moduleSIO_module

SIO_put(outStream, &bufp, BUFSIZE)

SIO_get(inStream, &bufp)

 1) Put bufp on todevice queue.
 2) Call Dxx_issue function.
 3) Call Dxx_reclaim function.

 4) Get next buffer from
 fromdevice queue.
 5) Set bufp to point to this
 buffer.

 1) Put bufp on todevice queue.
 2) Call Dxx_issue function.
 3) Call Dxx_reclaim function.

 4) Get next buffer from
 fromdevice queue.
 5) Set bufp to point to this
 buffer.

 1) Get next buffer from todevice
 queue and make “visible” to ISR.
 2) If first “get,” enable interrupts.
 3) Pend on semaphore for
 non-empty buffer on fromdevice
 queue.

 1) Get next buffer from todevice
 queue and make “visible” to ISR.
 2) If first “put,” enable interrupts.
 3) Pend on semaphore for empty
 buffer on fromdevice queue.

SIO_issue(outstream,bufp,nbytes,arg)

SIO_reclaim(outstream,&bufp,parg,timeout)

 1) Put full bufp on
 todevice queue

 2) Call Dxx_issue()

 1) Call Dxx_reclaim()

 2) Get empty bufp from
 fromdevice queue

 1) Get next buffer from todevice
 queue and make "visible" to ISR,
 2) If first "issue," enable interrupts

 Pend on semaphore until anempty
 buffer is available on fromdevice
 queue

Application SIO_module Dxx_module
SPRU423I—August 2012 Streaming I/O and Device Drivers 207
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Real-Time I/O www.ti.com
Figure 7–10 Retrieving Buffers from a Stream

Figure 7-29 is a template for Dxx_issue for a typical terminating device.

Example 7-29 Template for Dxx_issue for a Typical Terminating Device

A call to Dxx_issue starts the device for the appropriate mode, either DEV_INPUT or DEV_OUTPUT.
Once the device is known to be started, Dxx_issue simply returns. The actual data handling is performed
by an HWI.

Figure 7-30 is a template for Dxx_reclaim for a typical terminating device.

Example 7-30 Template for Dxx_reclaim for a Typical Terminating Device

A call to Dxx_reclaim waits for the HWI to place a frame on the device->fromdevice queue, then returns.

SIO_issue(outstream,bufp,nbytes,arg)

SIO_reclaim(outstream,&bufp,parg,timeout)

 1) Put empty bufp on
 todevice queue

 2) Call Dxx_issue()

 1) Call Dxx_reclaim()

 2) Get full bufp from
 fromdevice queue

 1) Get next buffer from todevice
 queue and make "visible" to ISR,
 2) If first "issue," enable interrupts

 Pend on semaphore until a full
 buffer is available on fromdevice
 queue

Application SIO_module Dxx_module

/*
 * ======== Dxx_issue ========
 */
Int Dxx_issue(DEV_Handle device)
{
 Dxx_Handle objptr = (Dxx_Handle) device->object;

 if (`device is not operating in correct mode`) {
 `start the device for correct mode`
 }

 return (SYS_OK);
}

/*
 * ======== Dxx_reclaim ========
 */
Int Dxx_reclaim(DEV_Handle device)
{
 Dxx_Handle objptr = (Dxx_Handle) device->object;

 if (SEM_pend(objptr->sync, device->timeout)) {
 return (SYS_OK);
 }
 else { /* SEM_pend() timed out */
 return (SYS_ETIMEOUT);
 }
}

208 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Closing Devices
Dxx_reclaim calls SEM_pend with the timeout value specified at the time the stream is created (either
statically or with SIO_create) with this value. If the timeout expires before a buffer becomes available,
Dxx_reclaim returns SYS_ETIMEOUT. In this situation, SIO_reclaim does not attempt to get anything
from the device->fromdevice queue. SIO_reclaim returns SYS_ETIMEOUT, and does not return a buffer.

7.14 Closing Devices

A device is closed by calling SIO_delete, which in turn calls Dxx_idle and Dxx_close. Dxx_close closes
the device after Dxx_idle returns the device to its initial state, which is the state of the device immediately
after it was opened. This is shown in Example 7-31.

Example 7-31 Closing a Device

/*
 * ======== Dxx_idle ========
 */
Int Dxx_idle(DEV_Handle device, Bool flush)
{
 Dxx_Handle objptr = (Dxx_Handle) device->object;
 Uns post_count;

/*
 * The only time we will wait for all pending data
 * is when the device is in output mode, and flush
 * was not requested.
 */
 if ((device->mode == DEV_OUTPUT) && !flush)
 {
/* first, make sure device is started */
 if (`device is not started` &&
 `device has received data`) {
 `start the device`
 }

/*
 * wait for all output buffers to be consumed by the
 * output HWI. We need to maintain a count of how many
 * buffers are returned so we can set the semaphore later.
 */
 post_count = 0;
 while (!QUE_empty(device->todevice)) {
 SEM_pend(objptr->sync, SYS_FOREVER);
 post_count++;
 }

 if (`there is a buffer currently in use by the HWI`) {
 SEM_pend(objptr->sync, SYS_FOREVER);
 post_count++;
 }

 `stop the device`
SPRU423I—August 2012 Streaming I/O and Device Drivers 209
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Device Control www.ti.com
Example 7.31 Closing a Device (continued)

The arguments to Dxx_idle are:

DEV_Handle device; /* driver handle */

Bool flush; /* flush indicator */

The device parameter is, as usual, a pointer to a DEV_Obj for this instance of the device. flush is a
boolean parameter that indicates what to do with any pending data while returning the device to its initial
state.

For a device in input mode, all pending data is always thrown away, since there is no way to force a task
to retrieve data from a device. Therefore, the flush parameter has no effect on a device opened for input.

For a device opened for output, however, the flush parameter is significant. If flush is TRUE, any pending
data is thrown away. If flush is FALSE, the Dxx_idle function does not return until all pending data has
been rendered.

7.15 Device Control

Dxx_ctrl is called by SIO_ctrl to perform a control operation on a device. A typical use of Dxx_ctrl is to
change the contents of a device control register or the sampling rate for an A/D or D/A device. Dxx_ctrl
is called as follows:

status = Dxx_ctrl(DEV_Handle device, Uns cmd, Arg arg);

• cmd is a device-specific command.

 /*
 * Don't simply SEM_reset the count here. There is a
 * possibility that the HWI had just completed working on a
 * buffer just before we checked, and we don't want to mess
 * up the semaphore count.
 */
 while (post_count > 0) {
 SEM_post(objptr->sync);
 post_count--;
 }
 }
else {
 /* dev->mode = DEV_INPUT or flush was requested */
 `stop the device`

 /*
 * do standard idling, place all frames in fromdevice
 * queue
 */
 while (!QUE_empty(device->todevice)) {
 QUE_put(device->fromdevice,
 QUE_get(device->todevice));
 SEM_post(objptr->sync);
 }
 }

 return (SYS_OK);
}

210 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Device Ready
• arg provides an optional command argument.

Dxx_ctrl returns SYS_OK if the control operation was successful; otherwise, Dxx_ctrl returns an error
code.

7.16 Device Ready

Dxx_ready is called by SIO_select to determine if a device is ready for I/O. Dxx_ready returns TRUE if
the device is ready and FALSE if the device is not. The device is ready if the next call to retrieve a buffer
from the device will not block. This usually means that there is at least one available frame on the queue
device->fromdevice when Dxx_ready returns as shown in Example 7-32. Refer to Section 7.6, Selecting
Among Multiple Streams, page 7-197, for more information on SIO_select.

Example 7-32 Making a Device Ready

If the mode is DEV_INPUT, the streaming model is DEV_STANDARD. If the device has not been started
already, the device is started. This is necessary, since in the DEV_STANDARD streaming model,
SIO_select can be called by the application before the first call to SIO_get.

The device’s ready semaphore handle is set to the semaphore handle passed in by SIO_select. To better
understand Dxx_ready, consider the following details of SIO_select.

SIO_select can be summarized in pseudocode as shown in Example 7-33.

 Bool Dxx_ready(DEV_Handle dev, SEM_Handle sem)
{
 Dxx_Handle objptr = (Dxx_Handle)device->object;

 /* register the ready semaphore */
 objptr->ready = sem;

 if ((device->mode == DEV_INPUT) &&
 ((device->model == DEV_STANDARD) &&
 `device is not started`)) {
 `start the device`
 }

 /* return TRUE if device is ready */
 return (`TRUE if device->fromdevice has a frame or
 device won't block`);
}

SPRU423I—August 2012 Streaming I/O and Device Drivers 211
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Device Ready www.ti.com
Example 7-33 SIO_Select Pseudocode

SIO_select makes two calls to Dxx_ready for each Dxx device. The first call is used to register sem with
the device, and the second call (with sem = NULL) is used to un-register sem.

Each Dxx_ready function holds on to sem in its device-specific object (for example, objptr->ready = sem).
When an I/O operation completes (that is, a buffer has been filled or emptied), and objptr->ready is not
NULL, SEM_post is called to post objptr->ready.

If at least one device is ready, or if SIO_select was called with timeout equal to 0, SIO_select does not
block; otherwise, SIO_select pends on the ready semaphore until at least one device is ready, or until the
time-out has expired.

/*
 * ======== SIO_select ========
 */
Uns SIO_select(streamtab, n, timeout)
 SIO_Handle streamtab[]; /* array of streams */
 Int n; /* number of streams */
 Uns timeout; /* passed to SEM_pend() */
{
 Int i;
 Uns mask = 1; /* used to build ready mask */
 Uns ready = 0; /* bit mask of ready streams */
 SEM_Handle sem; /* local semaphore */
 SIO_Handle *stream; /* pointer into streamtab[] */

 /*
 * For efficiency, the "real" SIO_select() doesn't call
 * SEM_create() but instead initializes a SEM_Obj on the
 * current stack.
 */
 sem = SEM_create(0, NULL);

 stream = streamtab;

 for (i = n; i > 0; i--, stream++) {
 /*
 * call each device ready function with 'sem'
 */
 if (`Dxx_ready(device, sem)`)
 ready = 1;
 }
 }
 if (!ready) {
 /* wait until at least one device is ready */
 SEM_pend(sem, timeout);
 }
 ready = 0;

 stream = streamtab;

 for (i = n; i > 0; i--, stream++) {
 /*
 * Call each device ready function with NULL.
 * When this loop is done, ready will have a bit set
 * for each ready device.
 */
 if (`Dxx_ready(device, NULL)`)
 ready |= mask;
 }
 mask = mask << 1;
 }

 return (ready);
}

212 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Types of Devices
Consider the case where a device becomes ready before a time-out occurs. The ready semaphore is
posted by whichever device becomes ready first. SIO_select then calls Dxx_ready again for each device,
this time with sem = NULL. This has two effects. First, any additional Dxx device that becomes ready will
not post the ready semaphore. This prevents devices from posting to a semaphore that no longer exists,
since the ready semaphore is maintained in the local memory of SIO_select. Second, by polling each
device a second time, SIO_select can determine which devices have become ready since the first call to
Dxx_ready, and set the corresponding bits for those devices in the ready mask.

7.17 Types of Devices

There are two main types of devices: terminating devices and stackable devices. Each exports the same
device functions, but they implement them slightly differently. A terminating device is any device that is a
data source or sink. A stackable device is any device that does not source or sink data, but uses the DEV
functions to send (or receive) data to or from another device. Refer to Figure 7–11 to see how the stacking
and terminating devices fit into a stream.

Figure 7–11 Stacking and Terminating Devices

Within the broad category of stackable devices, there are two distinct types. These are referred to as in-
place stacking devices and copying stacking devices. The in-place stacking device performs in-place
manipulations on data in buffers. The copying stacking device moves the data to another buffer while
processing the data. Copying is necessary for devices that produce more data than they receive (for
example, an unpacking device or an audio decompression driver), or because they require access to the
whole buffer to generate output samples and cannot overwrite their input data (for example, an FFT
driver). These types of stacking devices require different implementation, since the copying device might
have to supply its own buffers.

Figure 7–12 shows the buffer flow of a typical terminating device. The interaction with DSP/BIOS is
relatively simple. Its main complexities exist in the code to control and stream data to and from the
physical device

Task

SIO

Stackable
Device

Terminating
Device

SIO calls

DEV calls
SPRU423I—August 2012 Streaming I/O and Device Drivers 213
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Types of Devices www.ti.com
Figure 7–12 Buffer Flow in a Terminating Device

Figure 7–13 shows the buffer flow of an in-place stacking driver. All data processing is done in a single
buffer. This is a relatively simple device, but it is not as general-purpose as the copying stacking driver.

Figure 7–13 In-Place Stacking Driver

Figure 7–14 shows the buffer flow of a copying stacking driver. Notice that the buffers that come down
from the task side of the stream never actually move to the device side of the stream. The two buffer pools
remain independent. This is important, since in a copying stacking device, the task-side buffers can be a
different size than the device-side buffers. Also, care is taken to preserve the order of the buffers coming
into the device, so the SIO_ISSUERECLAIM streaming model can be supported

Current
Device

To/From Physical Device

fromdevice queuetodevice queue

Underlying
Device

fromdevice queuetodevice queue

ReclaimIssue

Current
Device

fromdevice queuetodevice queue
214 Streaming I/O and Device Drivers SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com Types of Devices
Figure 7–14 Copying Stacking Driver Flow

Current
Device

fromdevice queuetodevice queue

Underlying
Device

fromdevice queuetodevice queue

Input
Processing

incoming buffer queue
Output

Processing

Reclaim
Issue

outgoing buffer queue
SPRU423I—August 2012 Streaming I/O and Device Drivers 215
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

Index
.bss section 36

.c files 39

.h files 19, 39

.o29 files 39

.o50 files 39

.o62 files 39

.pinit table 43

.tcf file 16, 33
*.cmd 39
*.obj 39

A
algorithm

times 68
alignment

of memory 146
allocators 168, 172
Analysis Tools 18, 19, 50, 73
application stack

measuring 75
application stack size 105
Arg 21
assembly header files 39
atomic queue 153
attributes

assigning 38
autoinit.c 43
average 67

B
B14 register 35
background processes 85
background threads

suggested use 86
BIOS_init 43, 44
BIOS_start 44
BIOSREGS memory segment 22
Bool 21
boot.c 43
buffer

length 65
buffer size

LOG objects 63
buffers

and devices 183
and streams 183

exchanging 182, 185

C
C run-time 100
C++ 45
calloc 42
catastrophic failure 113
channels 176
Char 21
class constructor 47
class destructor 47
class methods 46
clear 67
CLK

default configuration 139
CLK functions 138
CLK manager 44
CLK module 137
CLK_F_isr function 20
CLK_startup 44
clktest1.c 139
clock 137

CLK example 139
See also CLK module

clock functions 86
suggested use 86

clocks
real time vs. data-driven 141

Code Composer Studio
debugging capabilities of 19

compiling 40
components 14
configuration 16, 33

steps 31
constant 21
constants

trace 71
trace enabling 71

conventions 19
count 67, 76
counting semaphores. See semaphores
CPU load 20, 62, 73, 74

measuring 73
tracking 68

CPU Load tool 56
create function 116
current value 68
cyclic debugging 50
SPRU423I—August 2012 Index 216
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I

2

www.ti.com
D
data

exchange sequence 207
exchanging with devices 207
gathering 64, 71

data analysis 68
data notification functions 86
data transfer 177
data types 21
data value

monitoring 77
debugging 59

environment 14
delete function 116
DEV_ISSUERECLAIM. See Issue/Reclaim streaming

model
DEV_STANDARD. See standard streaming model
development cycle 33
device

name 62
device drivers

and synchronization semaphores 206
file organization 200
header file 200
object 202
standard interface 200
structures 201
table of functions 181

devices
closing 209

See also Dxx_close, SIO_delete
communication 196
controlling 196, 210

See also Dxx_ctrl, SIO_ctrl
DEV_Fxns table 182
DEV_Handle 202
DEV_Obj 202
exchanging data 206, 207
frame structure 201
idling 209, 210, 211, 212

See also Dxx_idle
initialization of 203
opening 203
parameters 200
readying 211

See also Dxx_ready, SIO_select
stackable 213
stacking 192
synchronizing 197
terminating 213
typedef structure 205
virtual 192

DSP/BIOS
Analysis Tools 18

DSP/BIOS Configuration Tool 16, 33

files generated 40
Dxx_ctrl 210
Dxx_idle 209

example code 209, 210, 211, 212
Dxx_init 203
Dxx_input

initiating data input 206
Dxx_issue

initializing I/O 207
sample code for a terminating device 208

Dxx_open
and terminating device 205
error checking 206
operation of 206

Dxx_ready
example code 211

dxx.h 200
dynamic object 38

E
EDATA memory segment 22
EDATA1 memory segment 22
environment registers 100
EPROG memory segment 22
EPROG1 memory segment 22
error handling

by Dxx_open 206
program errors 152
SPOX system services 152

Event Log Manager 64, 65
examples

controlling streams 197, 198, 199, 200, 201, 202,
203, 204, 205, 208, 209, 210, 211, 212

Dxx_idle 209, 210, 211, 212
Dxx_issue and terminating device 208
Dxx_ready 211
memory management 148
multiple streams 198
SIO_select 212
system clock 139
task hooks for extra context 116
virtual I/O devices 192

Excel
Microsoft 80

executable files 39
execution mode

blocked 114
priority level 114
ready 114
running 114
terminated 114
TSK_BLOCKED 115
TSK_READY 115
TSK_RUNNING 115
TSK_TERMINATED 115
17 Index SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com
execution times 63
exit function 116
explicit instrumentation 65

F
FALSE 21
far

keyword 36, 37
fast return 45
field testing 79
file names 39
file streaming 19
files

generated by Configuration Tool 40
fragmentation of memory, minimizing 148
free 42
frequencies

typical for HWI vs. SWI
function names 20, 45

G
global data 35

accessing 35
global object pointer 36
gmake 40
gmake.exe 40
GPPs

messaging with 167

H
halting program execution

SYS_abort 151
SYS_exit 151

handle 38
hardware interrupt

and SEM_post or SEM_ipost 128
hardware interrupts 85

counting 75
statistics 77
typical frequencies

header files 39
including 19
naming conventions 19

heap
end 62
size 62
start 62

high-resolution times 137
hook functions 116
HOOK module 116
HOOK_KNL object 116
Host Channel Manager 64
host channels 176
host clear 67
host operation 79
HST module 176

for instrumentation 64

HST_init 43
HWI

dispatching 99
parameters 99
writing 91

HWI accumulations
enable 76

HWI dispatcher 99
HWI interrupt

triggering 91
HWI interrupts. See hardware interrupts
HWI ISR

and mailboxes 133
HWI module

implicit instrumentation 75
HWI_disable 92
HWI_enable 92
HWI_enter

and HWI_exit 99
HWI_restore 92

versus HWI_enable 98
HWI_startup 44
HWI_unused 20

I
I/O

and driver functions 181
performance 178
real-time 206

I/O devices, virtual 192
IDATA memory segment 22
identifier 19
IDL manager 120
IDL thread 62
IDL_busyObj 74
IDL_cpuLoad 121
IDL_F_busy function 20
IDL_init 43
IDL_loop 20, 74
idle loop 44, 74, 89, 120

instruction count box 75
IDRAM0 memory segment 22
IDRAM1 memory segment 22
IER 43
implicit instrumentation 73
initialization function 116
initialize 43, 44

43
See also .bss section 43

instructions
number of 68

instrumentation 49, 50, 64, 71
explicit 71
explicit vs. implicit 65
hardware interrupts 77
implicit 72, 73, 77
software vs. hardware 50

Int 21
interrupt

configuring 92
context and management 98
SPRU423I—August 2012 Index 218
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com
enabling and disabling 92
hardware 91
keyword 92
software 102
software triggering 102

interrupt latency 78
interrupt service routine 43
interrupt service table 43
interrupts 91
inter-task synchronization 127
IPRAM memory segment 22
IPROG memory segment 22
ISR 43, 73

HWI_enter 100
HWI_exit 100

Issue/Reclaim streaming model 183, 184, 202, 207
IVPD 44
IVPH 44

J
JTAG 81

K
kernel 15
KNL_run 20

L
LabVIEW 80
large model 37
LgInt 21
LgUns 21
linker

command file 28, 42
options 42

linker switch 42
linking 40
LNK_dataPump 120
LNK_dataPump object 178
LNK_F_dataPump 20
Load Data tool 58
Log

records on host 55
log 65

circular 65
fixed 65

LOG module
explicit instrumentation 65
overview 65

LOG_printf 42
logs

performance 62
low-resolution times 137

M
MADU 151
mailbox

and SWI objects 106
handle 61
length 136
memory segment number 61
message size 61
messages 61
name 61
priority 136
scheduling 136
wait time 136

mailboxes 61
creating. See MBX_create
deleting. See MBX_delete
MBX example 133
MBX module 132
posting a message to. See MBX_post
reading a message from. See MBX_pend

makefile 40
makefiles 40
malloc 42
map file 42
mask

predefined 100
MAU 146
maximum 67
MBX_create 132
MBX_delete 132
MBX_pend 133
MBX_post 133
MEM manager 28
Mem manager 36
MEM module 143
MEM_alloc 146
MEM_free 147
MEM_stat 147
memory

contiguous 61
freeing 38
management functions 42
segment names 22

memory management 143
allocating. See MEM_alloc
freeing. See MEM_free
MEM example 148
reducing fragmentation 148

memory page
in Kernel View 61

memory segment
declare 36

memory, alignment of 146
message log

message numbering 66
message queues 167
message slots 136
Minimum addressable data units 151
minimum addressable unit. See MAU
mode

continuous 82
non-continuous 82
219 Index SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

SPRU42
Submit

www.ti.com
modules
MSGQ 167

MSGQ module 167
MSGQ_config variable 170
MSGQ_TransportObj structure 171
multi-processor messaging 167
multitasking. See tasks

N
name mangling 45, 46
name overloading 46
namespace

and device parameters 200
and devices 192

naming conventions 19, 45
near

keyword 37
nmti 76
notify function 177
notifyReader function 163
notifyWriter function 163
NULL 21

O
object

pre-configured 17
SWI 103

object files 39
object names 20
object structures 21
Object Viewer 59
objects

deleting 38
naming conventions 19
referencing 34

OLE 79, 81
automation client 82

OLE/ActiveX 80
opening, devices 203
operations

HWI objects 79
names 20

optimization
instrumentation 62

overview 14

P
performance

I/O 178

instrumentation 62
real-time statistics 68

performance monitoring 19
period 68
Periodic Function Manager 140
periodic functions 86

suggested use 86
PIP_startup 44
poll rate 62
polling

disabled 67
POOL module 172
portability 21
PRD functions 141
PRD module

implicit instrumentation 142
PRD_F_swi 20
PRD_F_tick function 20
predefined masks 100
preemption 89
previous value field 68
printf 42
Printf Logs tool 56
priorities

setting for software interrupts 104
processes 85
program

error handling. See SYS_error
halting execution of 151

program analysis 49
program tracing 19
program.cdb 40
program.tcf 39
programcfg_c.c 40
programcfg.cmd 40
programcfg.h 40
programcfg.h62 40
programcfg.obj 40
programcfg.s62 40
project

creating 26
Ptr 21
PWRM_idleDomains 121

Q
queue

QUE module 153
Quinn-Curtis 80

R
rate

clock ticks 138
3I—August 2012 Index 220
Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com
polling 62, 67, 75
Raw Logs tool 55
ready function 116
realloc 42
real-time 64
real-time analysis 50

See alsoRTA 15
Real-Time Analysis tools 51
Real-Time Data Exchange

See RTDX
real-time deadline 141
real-time I/O 206
Real-Time versus Cyclic Debugging 50
Refresh Window 68
register

monitoring 77
register context

extending 116
registers

monitoring in HWI 77
saving and restoring 102
saving when preempted 111

reserved function names 20
ROV 59
RTA Control Panel 54, 72
RTA tools 51
RTA_dispatcher 120
RTA_F_dispatch function 20
RTDX 42, 79

data flow 81
header files 29
host library 81

RTOS Object Viewer 59
rts.src 42
Runtime Object Viewer 59
run-time support library 42

S
SBSRAM memory segment 22
SDRAM0 memory segment 22
SDRAM1 memory segment 22
See also startup 43
SEM_create 127
SEM_delete 127
SEM_pend 128
SEM_post 128
semaphore

count 61
handle 61
name 61

semaphores 61, 127
creating. See SEM_create
deleting. See SEM_delete
signal. See SEM_post
synchronization, and device drivers 206
waiting on. See SEM_pend

servo 80
SIO module

mapping to driver function table 181
SIO_create

name passed to 204

to open devices 182
SIO_ctrl

general calling format 196
SIO_delete

to close devices 183
SIO_flush

to synchronize devices 197
SIO_get

exchanging buffers 183
SIO_idle

to synchronize devices 197
SIO_ISSUERECLAIM. See Issue/Reclaim streaming model
SIO_put

outputting and exchanging buffers 183
SIO_reclaim

retrieving buffers 207
SIO_select

and multiple streams 197
calls to Dxx_ready 212
pseudo-code 212

SIO_STANDARD. See standard streaming model
slow return 45
small model 35, 36
software interrupt 73

and application stack size 105
creating 103
deleting 112
enabling and disabling 112
execution 105
handle 60
mailbox 60
name 60
priorities 104
priority 60
priority levels 105
state 60

software interrupt handler (SWI handler) 102
creating and deleting 103
synchronizing 111
using 110

software interrupts 85
benefits and tradeoffs 110
setting priorities 104
suggested use 86

software interrupts page
in Kernel Object View 60

software interrupts. See interrupts
source files 39
space requirements 67
SPOX error conditions 152
stack

end 60
size 60
start 60

stack modes 45
stack overflow 115
stack overflow check 115
stack pointer 76
stack size

and task objects 112
stackable devices

writing 213
standard streaming model 183, 202
221 Index SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com
and buffers 183
implementing 183

standardization 13
startup 43
startup sequence

43
static configuration 16, 33
static objects 37
statistics 62

accumulating 68
gathering 142
performance 62
units 142

Statistics Data tool 58, 67
Statistics Manager 67
Statistics Object Manager 64
std.h 20, 21
std.h header file 21
streaming models 183

main description 206
See also Issue/Reclaim, standard streaming model

streams
buffer exchange 182
buffer management 185
controlling 196
creating 183
creating. See SIO_create 183
data buffer input 183
data buffer input. See also SIO_get 183
data buffer output 183
data buffer output. See also SIO_put 183
definition of 158
deleting. See also SIO_delete 183
idle 197
input 158
multiple 197
output 158
polling 198
reading data from 183
selecting among multiple 197

String
Uns 21

STS module
explicit instrumentation 67
implicit instrumentation 142
operations on registers 77
overview 67

STS operations 78
STS_add 67, 68

uses of 78
STS_delta 67, 68

uses of 78
STS_set 67, 68
suspended mode 114
SWI 102

and blocking 106
and preemption 106
posting 107
Property window 104

SWI module
implicit instrumentation 142

SWI object 103
SWI_getattrs 103

SWI_startup 44
switch function 116
synchronization 15
SYS module 151
SYS_error 152, 153
system clock 137, 139
system clock parameters 137
system services

handling errors 152
SYS module 151

system stack 60, 90

T
target executable 39
task

execution state 114
handle 60
name 60
priority 60
scheduler 90
scheduling 114
stack usage 60
state 60

Task Manager 44
task stack

overflow checking 115
tasks 84

blocked 115
creating 113
creating. See TSK_create
deleting. See TSK_delete
execution modes. See execution mode
hook functions 116
idle 115
preserving hardware registers 116
priority levels 114
scheduling 115
task objects 112
terminating. See TSK_exit
TSK module 112

Tconf script 16, 33
textual scripting 16, 33
thread 14

preemption 90
priorities 88
type comparisons 87

threads
choosing types 86

time
idle 73
work 73

timer
interrupt rate 138

timer counter register 138
time-slicing scheduling 118
timing methods 137
total 67
trace state 71

performance 62
tracing 62
transports 169, 172
SPRU423I—August 2012 Index 222
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com
TRC module 62
control of implicit instrumentation 71
explicit instrumentation 70

TRC_disable 72
constants 71

TRC_enable 72
constants 71

TRUE 21
TSK_create 113
TSK_delete 113
TSK_exit 115

when automatically called 115
TSK_startup 44
type casting 131, 140

U
Uninitialized Variables Memory 36
USER traces 72
user traces 62
user-defined logs 65
USERREGS memory segment 22

V
value

current 68
difference 68
previous 68

variable-length messages 167
variables

monitoring 77
watching 77

VECT memory segment 22
Visual Basic 80
Visual C++ 80
Void 21

W
words

data memory 63
of code 15

wrapper function 46
223 Index SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

www.ti.com
224 SPRU423I—August 2012
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU423I
http://www.ti.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its semiconductor products and services per JESD46C and to discontinue any product or
service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such
information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at
the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty
in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each
component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products
and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services
are used. Information published by TI regarding third-party products or services does not constitute a license to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the
patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for
such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or
service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive
business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related require-
ments concerning its products, and any use of TI components in its applications, notwithstanding any applications-related infor-
mation or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and
implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen
the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its
representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s
goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety
standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of
the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended
for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use
of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for
compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Compo-
nents which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible
for any failure of such components to meet such requirements.

Mailing Address: Texas Instruments, Post Office Box 655303 Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

	TMS320 DSP/BIOS v5.42 User's Guide
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks

	Contents
	Figures
	Tables

	Examples
	About DSP/BIOS
	1.1 DSP/BIOS Features and Benefits
	1.1.1 What’s New in DSP/BIOS 5.42?

	1.2 DSP/BIOS Components
	1.2.1 DSP/BIOS Real-Time Kernel and API
	1.2.2 DSP/BIOS Configuration Tool
	1.2.3 DSP/BIOS Analysis Tools

	1.3 Naming Conventions
	1.3.1 Module Header Names
	1.3.2 Object Names
	1.3.3 Operation Names
	1.3.4 Data Type Names
	1.3.5 Memory Segment Names
	1.3.6 Standard Memory Sections

	1.4 For More Information

	Program Generation
	2.1 Using DSP/BIOS in CCS Projects
	2.1.1 Creating a CCS Project for DSP/BIOS Applications
	2.1.2 Adding a DSP/BIOS Configuration to an Existing Project
	2.1.2.1 Notes for Adding DSP/BIOS to Existing Projects

	2.1.3 Adding a Source File to a CCS Project
	2.1.4 Create a CCS Target Configuration File
	2.1.5 Build a DSP/BIOS Project
	2.1.6 Run a DSP/BIOS Project
	2.1.7 Converting Legacy CCS Projects to CCS 5.x Projects

	2.2 Using the DSP/BIOS Configuration Tool
	2.2.1 Creating Objects in the Configuration Tool
	2.2.2 Setting Properties in the Configuration Tool
	2.2.3 Setting Priorities in the Configuration Tool
	2.2.4 Modifying the Script in the Configuration Tool

	2.3 How hello.c Uses DSP/BIOS
	2.4 The Development Cycle
	2.5 Configuring DSP/BIOS Applications Statically
	2.5.1 When to Use Graphical Configuration
	2.5.2 When to Use a Text Editor
	2.5.3 Referencing Statically Created DSP/BIOS Objects
	2.5.3.1 Small and Large Model Issues for C6000
	2.5.3.2 Referencing Static DSP/BIOS Objects in the Small Model
	2.5.3.3 Referencing Static DSP/BIOS Objects in the Large Model

	2.6 Creating DSP/BIOS Objects Dynamically
	2.7 Files Used to Create DSP/BIOS Programs
	2.8 Using Makefiles to Build Applications
	2.9 Using DSP/BIOS with the Run-Time Support Library
	2.10 DSP/BIOS Startup Sequence
	2.10.1 Advanced Startup: C5500 Platform Only

	2.11 Using C++ with DSP/BIOS
	2.11.1 Memory Management
	2.11.2 Name Mangling
	2.11.3 Calling Class Methods from the Configuration
	2.11.4 Class Constructors and Destructors

	2.12 User Functions Called by DSP/BIOS
	2.13 Calling DSP/BIOS APIs from Main

	Instrumentation
	3.1 An Overview of Real-Time Analysis
	3.1.1 Real-Time Versus Cyclic Debugging
	3.1.2 Software Versus Hardware Instrumentation

	3.2 Real-Time Analysis Tools in CCS
	3.2.1 RTA Control Panel
	3.2.2 Raw Logs
	3.2.3 Printf Logs
	3.2.4 CPU Load
	3.2.5 Load Data
	3.2.6 Statistics Data

	3.3 RTOS Object Viewer (ROV)
	3.3.1 Tasks
	3.3.2 Software Interrupts
	3.3.3 Mailboxes
	3.3.4 Semaphores
	3.3.5 Memory
	3.3.6 Buffer Pools

	3.4 Instrumentation Performance
	3.4.1 Instrumented Versus Non-instrumented Kernel

	3.5 Instrumentation APIs
	3.5.1 Explicit versus Implicit Instrumentation
	3.5.2 Event Log Manager (LOG Module)
	3.5.3 Statistics Object Manager (STS Module)
	3.5.3.1 Statistics About Varying Values
	3.5.3.2 Statistics About Time Periods
	3.5.3.3 Statistics About Value Differences

	3.5.4 Trace Manager (TRC Module)
	3.5.4.1 Control of Explicit Instrumentation
	3.5.4.2 Control of Implicit Instrumentation

	3.6 Implicit DSP/BIOS Instrumentation
	3.6.1 The CPU Load
	3.6.1.1 Measuring the CPU Load
	3.6.1.2 Calculating the Application CPU Load

	3.6.2 Hardware Interrupt Count and Maximum Stack Depth
	3.6.3 Monitoring Variables
	3.6.4 Interrupt Latency

	3.7 Instrumentation for Field Testing
	3.8 Real-Time Data Exchange
	3.8.1 RTDX Applications
	3.8.2 RTDX Usage
	3.8.3 RTDX Flow of Data
	3.8.3.1 Target to Host Data Flow
	3.8.3.2 Host to Target Data Flow
	3.8.3.3 RTDX Target Library User Interface
	3.8.3.4 RTDX Host OLE Interface

	3.8.4 RTDX Modes
	3.8.5 Special Considerations When Writing Assembly Code
	3.8.6 Target Buffer Size
	3.8.7 Sending Data From Target to Host or Host to Target

	Thread Scheduling
	4.1 Overview of Thread Scheduling
	4.1.1 Types of Threads
	4.1.2 Choosing Which Types of Threads to Use
	4.1.3 A Comparison of Thread Characteristics
	4.1.4 Thread Priorities
	4.1.5 Yielding and Preemption

	4.2 Hardware Interrupts
	4.2.1 Configuring Interrupts
	4.2.2 Disabling and Enabling Hardware Interrupts
	4.2.3 Impact of Real-Time Mode Emulation on DSP/BIOS
	4.2.3.1 Interrupt Behavior for C28x During Real-Time Mode

	4.2.4 Context and Interrupt Management Within Interrupts
	4.2.5 Registers

	4.3 Software Interrupts
	4.3.1 Creating SWI Objects
	4.3.2 Setting Software Interrupt Priorities
	4.3.3 Software Interrupt Priorities and Application Stack Size
	4.3.4 Execution of Software Interrupts
	4.3.5 Using an SWI Object’s Mailbox
	4.3.6 Benefits and Tradeoffs
	4.3.7 Saving Registers During Software Interrupt Preemption
	4.3.8 Synchronizing SWI Handlers

	4.4 Tasks
	4.4.1 Creating Tasks
	4.4.1.1 Creating and Deleting Tasks Dynamically
	4.4.1.2 Creating Tasks Statically

	4.4.2 Task Execution States and Scheduling
	4.4.3 Testing for Stack Overflow
	4.4.4 Task Hooks
	4.4.5 Task Hooks for Extra Context
	4.4.6 Task Yielding for Time-Slice Scheduling

	4.5 The Idle Loop
	4.6 Power Management
	4.6.1 Resource Tracking
	4.6.2 Scaling Voltage and Frequency
	4.6.2.1 Effects on the DSP/BIOS CLK Module

	4.6.3 Using Sleep Modes
	4.6.4 Coordinating Sleep and Scaling
	4.6.5 Idling Clock Domains
	4.6.6 Saving Power at Boot Time
	4.6.7 Device Initialization by the Power Manager

	4.7 Semaphores
	4.7.1 SEM Example

	4.8 Mailboxes
	4.8.1 MBX Example

	4.9 Timers, Interrupts, and the System Clock
	4.9.1 High- and Low-Resolution Clocks
	4.9.2 System Clock
	4.9.3 Example—System Clock

	4.10 Periodic Function Manager (PRD) and the System Clock
	4.10.1 Invoking Functions for PRD Objects
	4.10.2 Interpreting PRD and SWI Statistics

	Memory and Low-level Functions
	5.1 Memory Management
	5.1.1 Configuring Memory Segments
	5.1.2 Disabling Dynamic Memory Allocation
	5.1.3 Defining Segments in Your Own Linker Command File
	5.1.4 Allocating Memory Dynamically
	5.1.4.1 Memory Allocation with the MEM Module
	5.1.4.2 Memory Allocation with the BUF Module

	5.1.5 Getting the Status of a Memory Segment
	5.1.6 Reducing Memory Fragmentation
	5.1.7 MEM Example

	5.2 System Services
	5.2.1 Halting Execution
	5.2.2 Handling Errors

	5.3 Queues
	5.3.1 Atomic QUE Functions
	5.3.2 Other QUE Functions
	5.3.3 QUE Example

	Input/Output Methods
	6.1 I/O Overview
	6.2 Comparing Pipes and Streams
	6.3 Comparing Driver Models
	6.3.1 Creating a Device for Use with an IOM Mini-Driver
	6.3.2 Creating a Device for Use with Streams and the DIO Adapter
	6.3.3 Creating a Device for Use with the SIO/DEV Model
	6.3.4 Creating a Device for Use with Provided Software Drivers

	6.4 Data Pipe Manager (PIP Module)
	6.4.1 Writing Data to a Pipe
	6.4.2 Reading Data from a Pipe
	6.4.3 Using a Pipe's Notify Functions
	6.4.4 Calling Order for PIP APIs
	6.4.4.1 Avoiding Recursion Problems

	6.5 Message Queues
	6.5.1 MSGQ APIs
	6.5.2 Static Configuration
	6.5.3 Allocators
	6.5.4 Transports
	6.5.5 Multi-Processor Issues
	6.5.6 Data Transfer Module Comparison

	6.6 Host Channel Manager (HST Module)
	6.6.1 Transfer of HST Data to the Host

	6.7 I/O Performance Issues

	Streaming I/O and Device Drivers
	7.1 Overview of Streaming I/O and Device Drivers
	7.2 Creating and Deleting Streams
	7.2.1 Creating Streams Statically
	7.2.2 Creating and Deleting Streams Dynamically

	7.3 Stream I/O —Reading and Writing Streams
	7.3.1 Buffer Exchange
	7.3.2 Example - Reading Input Buffers from a DGN Device
	7.3.3 Example - Reading and Writing to a DGN Device
	7.3.4 Example - Stream I/O using the Issue/Reclaim Model

	7.4 Stackable Devices
	7.4.1 Example - SIO_create and Stacking Devices

	7.5 Controlling Streams
	7.6 Selecting Among Multiple Streams
	7.6.1 Programming Example

	7.7 Streaming Data to Multiple Clients
	7.8 Streaming Data Between Target and Host
	7.9 Device Driver Template
	7.9.1 Typical File Organization

	7.10 Streaming DEV Structures
	7.11 Device Driver Initialization
	7.12 Opening Devices
	7.13 Real-Time I/O
	7.13.1 DEV_STANDARD Streaming Model
	7.13.2 DEV_ISSUERECLAIM Streaming Model

	7.14 Closing Devices
	7.15 Device Control
	7.16 Device Ready
	7.17 Types of Devices

	Index

