
Application Report
SPRAA98B – October 2007

1

DSP/BIOS Power Management for OMAP3430
Scott Gary, Ramsey Harris Software Development Systems

ABSTRACT

This document provides a summary of the configuration and application programming
interfaces (APIs) for the C64x+ version of the DSP/BIOS Power Manager (PWRM
module) included in the DSP/BIOS 5.31 product release. The OMAP3430 device is the
only C64x+ device with PWRM support in this DSP/BIOS release.

Contents
1 Overview ..2
2 Configuration...3

2.1 Configuration Properties..3
2.2 PWRM Manager Properties ..4
2.3 Graphical View ..9

3 DSP/BIOS Power Manager API Reference ..11
PWRM_getCapabilities ...12
PWRM_getCPULoad ..13
PWRM_getCurrentSetpoint...15
PWRM_getDependencyCount ..16
PWRM_getLoadMonitorInfo..17
PWRM_getNumSetpoints ...18
PWRM_getSetpointInfo...19
PWRM_initSetpointInfo ...20
PWRM_registerNotify..22
pwrmNotifyFxn ..25
PWRM_releaseDependency...27
PWRM_resetCPULoadHistory ..28
PWRM_setDependency..29
PWRM_signalEvent ..30
PWRM_sleepDSP...32
PWRM_startCPULoadMonitoring ...35
PWRM_stopCPULoadMonitoring..36
PWRM_unregisterNotify..37
PWRM_validateSetpoint ...38

4 Special Considerations...39
4.1 Sleep Mode Disruption of DSP/BIOS CLK Services ...39
4.2 Effect of Load Monitoring on IDL Loop Processing ...39

5 References...40

SPRAA98B

2 DSP/BIOS Power Management for OMAP3430

1 Overview
This document summarizes the configuration and application programming interfaces (APIs) for
the C64x+ version of the DSP/BIOS Power Manager (PWRM module) included in the DSP/BIOS
5.31 product release. The OMAP3430 device is the only C64x+ device with PWRM support in
this DSP/BIOS release.

The DSP/BIOS PWRM module provides ways to use the following power-related features within
an OMAP3430 application:

• CPU load monitoring. Your application can gather information about the percentage of
time the CPU has been idle recently, and can take action to conserve power based on the
results.

• Dynamic resource tracking. You can make runtime PWRM API calls to inform the Power
Manager of the specific resources (for example, clock domains, peripherals, and clock pins)
that your application is dependent upon. With this knowledge of required resources, PWRM
can idle resources that have no declared dependencies.

• Retention state. You can put the DSP a low-power state where all memory and logic
contents are retained.

• Hibernation state. You can completely power off the DSP, with context saved before going
off, and restored upon power on.

• Voltage and frequency scaling. On the OMAP3430, dynamic changes to the operating
voltage and frequency of the CPU are possible using ARM-side code. This is called V/F
scaling. Since power usage is linearly proportional to the frequency and quadratically
proportional to the voltage, using V/F scaling can result in significant power savings.

On the OMAP3430 platform, setpoint changes occur only via ARM-side control code. These
changes may occur either because DSP Bridge has requested a change to the setpoint or
because an independent (ARM-side) decision has been made to change the setpoint.
Whether the change request is made by DSP Bridge or by ARM-side code, the PWRM
module does not control the actual V/F scaling. Instead, its role is to send out scaling event
notifications to any DSP-side code that has registered with PWRM for scaling notifications.

More specifically, when a setpoint is about to change, DSP Bridge calls PWRM_signalEvent
to signal the PWRM_PENDINGSETPOINTCHANGE event to any PWRM clients registered
for this event. When notifications have completed, DSP Bridge acknowledges this to the
ARM-side control code so that scaling can proceed. Following the setpoint change, DSP
Bridge calls PWRM_signalEvent to signal the PWRM_DONESETPOINTCHANGE event to
any registered clients. As part of these notifications, PWRM's internal setpoint variable is
updated and GBL_setFrequency is called to update the CPU frequency known to
DSP/BIOS.

SPRAA98B

DSP/BIOS Power Management for OMAP3430 3

2 Configuration

2.1 Configuration Properties

The following list shows the properties that can be configured in a Tconf script, along with their
types and default values. For details, see the PWRM Manager Properties section.

Module Configuration Parameters
Name Type Default (Enum Options)

ENABLE Bool false

IDLECPU Bool false

IDLEFXN Extern prog.extern("_PWRM_F_idleStopClk")

LOADENABLE Bool false

NUMSLOTS Numeric 1

USECLKPRD Bool false

CLKTICKSPERSLOT Numeric 10

SLOTHOOKFXN Extern prog.extern(“FXN_F_nop”)

RESOURCETRACKING Bool false

USERRESOURCES Numeric 0

SHAREDRESOURCEFXN Extern prog.extern(“FXN_F_nop”)

SCALING Bool false

WARMBOOTMEMSEG Reference prog.get(“IRAM”)

CTXBUFMEMSEG Reference prog.get(“IRAM”)

SCM_BASEADDR Address 0x48002000

CM_BASEADDR Address 0x48004000

PRM_BASEADDR Address 0x48306000

IVAMMU_BASEADDR Address 0x5D000000

USETIMER Bool false

TIMERID Enumerated String “Timer 6”

TIMERBASEADDR Address 0

TIMERINPUTCLK Unsigned 32

TIMERPERIOD Numeric 10

TIMERINTR Reference HWI_UNUSED

SPRAA98B

4 DSP/BIOS Power Management for OMAP3430

2.2 PWRM Manager Properties

The following global properties can be set for the PWRM module in the PWRM Manager
Properties dialog of Gconf or in a Tconf script:

Enable PWRM Manager. Check this box if you want to enable the power manager. If you do not
plan to use the power manager, you should leave it disabled to reduce the size of your
application. You must check this box if you intend to configure other PWRM properties.

Tconf Name: ENABLE Type: Bool
Example: bios.PWRM.ENABLE = true;

Idle CPU during BIOS idle loop. Check this box to have PWRM idle the CPU during IDL loop
processing. This box must be checked if you plan to use PWRM’s CPU load monitoring feature.

Tconf Name: IDLECPU Type: Bool
Example: bios.PWRM.IDLECPU = true;

Idle function. This property configures an idle function to be called each time the idle thread
passes through the idle loop. The IDLECPU property must be true to allow the IDLEFXN
property to be defined. You can assign your own idle function or one of the two functions
provided by the PWRM module: _PWRM_F_idleStopClk and _PWRM_F_idleStandby. A third
function is provided, _PWRM_F_idleGem, which may be called from your own idle function but
should not be used as the idle function itself because it does not set the PDCCMD register. If
you use this function, your idle function must first set the desired value in the PDCCMD register
and then call the _PWRM_F_idleGem function.

These functions perform the following actions.

• _PWRM_F_idleStopClk: (default configuration) Sets PDCCMD to stop GEM clocks,
performs steps to monitor the CPU load, and executes the idle instruction.

• _PWRM_F_idleStandby: Sets PDCCMD to place GEM into standby mode, performs steps
to monitor the CPU load, and executes the idle instruction.

• _PWRM_F_idleGem: Performs steps to monitor the CPU load and executes the idle
instruction.

The idle function signature is:

Void idleFxn(Void)

Tconf Name: IDLEFXN Type: Extern
Example: bios.PWRM.IDLEFXN = prog.extern(“_PWRM_F_idleStopClk”);

Enable CPU Load Monitoring. Check this box if you want PWRM to measure and accumulate
CPU idle time. The “Idle CPU during BIOS idle loop” box must be checked for this box to be
writeable.

Tconf Name: LOADENABLE Type: Bool
Example: bios.PWRM.LOADENABLE = true;

SPRAA98B

DSP/BIOS Power Management for OMAP3430 5

Number of history slots to buffer. This property allows you to specify the number of “slots” or
intervals of CPU load history to be buffered within PWRM. The “Enable CPU Load Monitoring”
box must be checked for this property to be writeable.

Tconf Name: NUMSLOTS Type: Numeric
Example: bios.PWRM.NUMSLOTS = 5;

Use CLK and PRD for finalizing slots. Check this box if you want to use the DSP/BIOS CLK
and PRD modules to determine when a history slot should be finalized (completed). Currently
this the only supported method for finalizing slots, and you should always check this box if you
want to use PWRM’s CPU load monitoring feature. The “Enable CPU Load Monitoring” box must
be checked for this box to be writeable.

Tconf Name: USECLKPRD Type: Bool
Example: bios.PWRM.USECLKPRD = true;

Number of CLK ticks per slot. This property allows you to specify the duration of CPU load
history slots, in terms of CLK clock ticks. For example, if the CLK module is configured for 1 tick
per millisecond, then a value of 10 for this property means CPU history slot has a duration of 10
milliseconds. The “Use CLK and PRD for finalizing slots” box must be checked for this box to be
writeable.

Tconf Name: CLKTICKSPERSLOT Type: Numeric
Example: bios.PWRM.CLKTICKSPERSLOT = 10;

Hook function to call upon slot finalization. This property allows you to configure a function
to be called upon the finalization of each history slot. This function will be called as the last step
of finalization, after the slot data has been written to PWRM’s internal history buffer. The “Use
CLK and PRD for finalizing slots” box must be checked for this property to be writeable.

The callout function signature is:

Void slotHookFxn(Uns arg0)

When this function is called, arg0 indicates the slot finalization timestamp.

Tconf Name: SLOTHOOKFXN Type: Extern
Example: bios.PWRM.SLOTHOOKFXN = prog.extern(“myHookFunction”);

Enable Resource Tracking. Check this box if you want to enable PWRM support for dynamic
resource tracking.

Tconf Name: RESOURCETRACKING Type: Bool
Example: bios.PWRM.RESOURCETRACKING = true;

SPRAA98B

6 DSP/BIOS Power Management for OMAP3430

Number of user-defined resources to support. This property allows you to define additional
resources (beyond those device-specific resources supported by default), that can be tracked
and reference counted by PWRM. For example, for OMAP3430, the header file pwrm3430.h
defines a PWRM_Resource enumeration listing the resources PWRM supports by default. The
last element of this enumeration is “PWRM_3430_USER_BASE”, which can serve as a resource
ID for the first user-defined resource. If, for example, you specify that there are two user-defined
resources, PWRM allocates reference counting support for these resources at PWRM
initialization time, and recognizes these resources as IDs PWRM_3430_USER_BASE and
PWRM_3430_USER_BASE+1. The “Enable Resource Tracking” box must be checked for this
property to be writeable.

Tconf Name: USERRESOURCES Type: Numeric
Example: bios.PWRM.USERRESOURCES = 4;

Callout function for shared resources. This property allows you to specify the function PWRM
should call upon 0 1 and 1 0 reference count transitions.

For example, when a driver declares the first dependency upon a resource (via a call to
PWRM_setDependency), this is a 0 1 reference count transition. When this occurs, PWRM
makes a callout to the configured function to perform the necessary processing to enable the
resource. Subsequent calls to set more dependencies on the same resource result in
increments of the reference count, but no further calls to the callout function. Dependencies
upon the resource can be released via calls to PWRM_releaseDependency, and when the last
dependency upon the resource is released, this is 1 0 reference count transition, and PWRM
will callout again to the configured function to do the necessary processing to disable the
resource.

The callout function signature is:

Uns resourceCallout(Uns arg0, Uns arg1)

When this function is called: arg0 indicates the resourceID of the corresponding call to
PWRM_setDependency or PWRM_releaseDependency; and arg1 is PWRM_SET if a 0 1
transition occurred, or PWRM_RELEASE if a 1 0 transition occurred. The callout function
should return TRUE on success, and FALSE if a failure occurs.

The “Enable Resource Tracking” box must be checked for this property to be writeable.

Tconf Name: SHAREDRESOURCEFXN Type: Extern
Example: bios.PWRM.SHAREDRESOURCEFXN = prog.extern(“rsrcCallout”);

Enable V/F Scaling Support. Check this box to enable PWRM’s support for V/F scaling.

Tconf Name: SCALING Type: Bool
Example: bios.PWRM.SCALING = true;

SPRAA98B

DSP/BIOS Power Management for OMAP3430 7

MEM section for hibernate resume code. This property allows you to specify the MEM section
where PWRM’s code for resuming from the PWRM_HIBERNATE sleep mode should be located.
Since the C64x+ processor is powered off during hibernation, you must specify an external MEM
section that remains powered during hibernation.

Tconf Name: WARMBOOTMEMSEG Type: Reference
Example: bios.PWRM.WARMBOOTMEMSEG = prog.get(“DDR”);

MEM section for hibernate context. This property allows you to specify the MEM section
where the DSP context should be saved to prior to powering off the DSP for the
PWRM_HIBERNATE sleep mode. You must specify an external MEM section that remains
powered during hibernation.

Tconf Name: CTXBUFMEMSEG Type: Reference
Example: bios.PWRM.CTXBUFMEMSEG = prog.get(“DDR”);

Base address of System Control Module (SCM). When enabling the IVA MMU, use this
configuration property to specify the virtual address mapped to the physical address of the
System Control Module. The IVA MMU must map one page (4 KB) of virtual memory starting at
the given address.

Tconf Name: SCM_BASEADDR Type: Address
Example: bios.PWRM.SCM_BASEADDR = 0x12007000;

Base address of Clock Manager (CM). When enabling the IVA MMU, use this configuration
property to specify the virtual address mapped to the physical address of the Clock Manager.
The IVA MMU must map one page (4 KB) of virtual memory starting at the given address.

Tconf Name: CM_BASEADDR Type: Address
Example: bios.PWRM.CM_BASEADDR = 0x12004000;

Base address of Power & Reset Manager (PRM). When enabling the IVA MMU, use this
configuration property to specify the virtual address mapped to the physical address of the
Power & Reset Manager. The IVA MMU must map one page (4 KB) of virtual memory starting at
the given address.

Tconf Name: PRM_BASEADDR Type: Address
Example: bios.PWRM.PRM_BASEADDR = 0x12006000;

Base address of IVA MMU. When enabling the IVA MMU, use this configuration property to
specify the virtual address mapped to the physical address of the IVA MMU. The IVA MMU must
map one page (4 KB) of virtual memory starting at the given address.

Tconf Name: IVAMMU_BASEADDR Type: Address
Example: bios.PWRM.IVAMMU_BASEADDR = 0x12005000;

Use timer based CPU load monitoring. To use timer-based CPU load monitoring, set the
USETIMER property to 1. Note, you must first set USECLKPRD to 0 in order to select the timer
configuration (bios.PWRM.USECLKPRD = 0).

Tconf Name: USETIMER Type: Bool
Example: bios.PWRM.USETIMER = 1;

SPRAA98B

8 DSP/BIOS Power Management for OMAP3430

Select timer. Select which timer to use as the time base for CPU load monitoring. You may
choose Timer 5, 6, 7, or 8. Note that you cannot use the same timer that is being used for the
DSP/BIOS clock.

Tconf Name: TIMERID Type: Enumerated String
Example: bios.PWRM.TIMERID = “Timer 7”;

Base address of timer. When enabling the IVA MMU, use this configuration property to specify
the virtual address mapped to the physical address of the timer. The IVA MMU must map one
page (4 KB) of virtual memory starting at the given address. If the IVA MMU is disabled, the
timer physical address must be specified.

Tconf Name: TIMERBASEADDR Type: Address
Example: bios.PWRM.TIMERBASEADDR = 0x4903C000;

Timer input clock speed. The timer input clock speed must be specified. It is specified in KHz.

Tconf Name: TIMERINPUTCLK Type: Unsigned
Example: bios.PWRM.TIMERINPUTCLK = 19200;

Timer period. Specify the period at which the timer should finalize the CPU load monitoring
slots. The period is specified in milliseconds.

Tconf Name: TIMERPERIOD Type: Unsigned
Example: bios.PWRM.TIMERPERIOD = 10;

Timer interrupt. Specify which CPU interrupt the timer should be routed to.

Tconf Name: TIMERINTR Type: Reference
Example: bios.PWRM.TIMERINTR = prog.get(“HWI_INT15”);

SPRAA98B

DSP/BIOS Power Management for OMAP3430 9

2.3 Graphical View

The following dialog allows you to set PWRM properties in GConf:

Figure 1. PWRM Properties Dialog (top portion)

SPRAA98B

10 DSP/BIOS Power Management for OMAP3430

Figure 2. PWRM Properties Dialog (lower portion)

SPRAA98B

DSP/BIOS Power Management for OMAP3430 11

3 DSP/BIOS Power Manager API Reference
The PWRM APIs for C64x+ are summarized in the following table, and listed on the following
pages in reference format.

Function Purpose

PWRM_getCapabilities Get information on PWRM’s capabilities on the current platform

PWRM_getCPULoad Get CPU load information as measured by PWRM.

PWRM_getCurrentSetpoint Get the current setpoint in effect

PWRM_getDependencyCount Get count of dependencies currently declared on a resource.

PWRM_getLoadMonitorInfo Get PWRM load monitor configuration info.

PWRM_getNumSetpoints Get the number of setpoints supported for the current platform

PWRM_getSetpointInfo Get the corresponding frequency and voltage for a setpoint

PWRM_initSetpointInfo Initialize PWRM’s setpoint info.

PWRM_registerNotify Register a function to be called on a specific power event

PWRM_releaseDependency Release a dependency that has been previously declared.

PWRM_resetCPULoadHistory Reset PWRM’s CPU load history buffer.

PWRM_setDependency Declare a dependency upon a resource.

PWRM_signalEvent Signal a PWRM event to clients who’ve registered for the event.

PWRM_sleepDSP Transition the DSP to a new sleep state

PWRM_startCPULoadMonitoring Start CPU load monitoring.

PWRM_stopCPULoadMonitoring Stop CPU load monitoring.

PWRM_unregisterNotify Unregister for an event notification from PWRM.

PWRM_validateSetpoint Check whether a setpoint conflicts with constraints of registered
notification clients.

SPRAA98B

12 DSP/BIOS Power Management for OMAP3430

PWRM_getCapabilities Get information on PWRM capabilities on the current platform

Syntax status = PWRM_getCapabilities(capsMask);

Parameters Uns * capsMask /* ptr to location of capabilities mask */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description PWRM_getCapabilities returns information about the PWRM module’s
capabilities on the current platform.

The capsMask parameter should point to the location where PWRM_getCapabilities should write
a bitmask that defines the capabilities. You can use the following constants to check for
capabilities in the bitmask:

Name Usage
PWRM_CLOADMONITORING The PWRM module supports CPU load monitoring.

PWRM_CRESOURCETRACKING The PWRM module supports dynamic resource tracking.

PWRM_CVFSCALING The PWRM module supports voltage and frequency scaling.

PWRM_getCapabilities returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded.

PWRM_EINVALIDPOINTER The operation failed because the capsMask parameter was NULL.

Example

PWRM_Status status;
Uns capsMask;

/* Query PWRM capabilities on this platform */
status = PWRM_getCapabilities(&capsMask);
if (status == PWRM_SOK) {
 LOG_printf(TRACE, "Caps mask=0x%X", capsMask);
 if ((capsMask & PWRM_CVFSCALING) == 0) {
 LOG_printf(TRACE, "V/F scaling not supported!");
 }
}
else {
 LOG_printf(TRACE, "ERROR: status = %x", status);
}

SPRAA98B

DSP/BIOS Power Management for OMAP3430 13

PWRM_getCPULoad Get CPU load information

Syntax status = PWRM_getCPULoad(numSlots, loadInfo);

Parameters Uns numSlots; /* # of history slots of load info to retrieve */
 PWRM_CPULoadInfo *loadInfo;
 /* array of load info structures to be filled by PWRM */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description PWRM_getCPULoad reports CPU load information accumulated by the PWRM
module. Load history is accumulated in “slots” of a configured duration. (See PWRM Manager
Properties on page 4 for details on configuring the number of slots to be buffered by PWRM and
the duration of those slots.)

The PWRM_CPULoadInfo structure reports the total number of CPU cycles for the slot, the
number of those cycles where the CPU was busy, and a timestamp indicating when the slot was
finalized (completed).

typedef struct PWRM_CPULoadInfo {
 Uns busyCycles; /* number of cycles CPU was busy */
 Uns totalCycles; /* total number of CPU cycles in slot */
 Uns timeStamp; /* time when slot finalized */
} PWRM_CPULoadInfo;

The numSlots parameter specifies how many history slots of the loadInfo array should be written
by PWRM. History slots are reported in last-in, first-out (LIFO) order. In other words, the most
recently finalized history slot is reported in the first element of the loadInfo array, the slot
previous to that is reported in the second element, and so on.

PWRM maintains a ring buffer of history slots. Once all history slots have been filled, finalizing
the next slot causes the oldest history slot to be overwritten. The number of slots buffered in
PWRM is configured statically. If numSlots is greater than the number of slots maintained by
PWRM, then a PWRM_EOUTOFRANGE error is reported, and no history data is copied to
loadInfo.

If a history slot is “empty” then the slot data elements have a default (reset) value:

PWRM_CPULoadInfo _PWRM_resetLoad = {
 0, /* busyCycles */
 0, /* totalCycles */
 0 /* timestamp */
};

Slots are empty if not enough time has passed for PWRM’s internal slot buffer to fill, either since
startup, or since a call to PWRM_resetCPULoadHistory.

SPRAA98B

14 DSP/BIOS Power Management for OMAP3430

PWRM only reports load information for finalized slots. In other words, PWRM does not report
information on the currently filling but not yet completed slot. It is only when the current slot is
finalized that the accumulated busy and total cycles will be stored in PWRM’s ring buffer.

PWRM_getCPULoad returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded.

PWRM_EINITFAILURE The operation failed because there was a failure during load monitor
initialization.

PWRM_EINVALIDPOINTER The operation failed because the loadInfo parameter was NULL.

PWRM_ENOTSUPPORTED The operation failed because load monitoring is not enabled.

PWRM_EOUTOFRANGE The operation failed because numSlots is greater than the number of history
slots PWRM has been configured to maintain.

Example

#define NUMSLOTS 5

PWRM_CPULoadInfo history[NUMSLOTS];

status = PWRM_getCPULoad(NUMSLOTS, history);
if (status == PWRM_SOK) {
 displayCPULoad(history);
}
else {
 LOG_printf(TRACE, "Error: status = %x", status);
}

SPRAA98B

DSP/BIOS Power Management for OMAP3430 15

PWRM_getCurrentSetpoint Get the current setpoint

Syntax status = PWRM_getCurrentSetpoint(setpoint);

Parameters Uns *setpoint; /* current V/F setpoint */

Return Value PWRM_Status status; /* returned status */

Reentrant No

Description PWRM_getCurrentSetpoint returns the V/F scaling setpoint currently in use. The
setpoint parameter should point to the location where PWRM_getCurrentSetpoint should write
the current setpoint.

PWRM_getCurrentSetpoint returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded.

PWRM_EINVALIDPOINTER The operation failed because the setpoint parameter was NULL.

PWRM_EINITFAILURE A failure occurred while initializing V/F scaling support; V/F scaling is
unavailable.

PWRM_ENOTSUPPORTED The operation failed because V/F scaling is not enabled.

Constraints and Calling Context

• Attempts to call PWRM_getCurrentSetpoint before PWRM_initSetpointInfo is called result in
a return code of PWRM_EINITFAILURE. Once PWRM_initSetpointInfo is successfully
called, PWRM_getCurrentSetpoint should become functional.

• If a call to PWRM_getCurrentSetpoint is made during a change to the current setpoint, the
value PWRM_getCurrentSetpoint returns may be the old setpoint and not the new setpoint.

Example

PWRM_Status status;
Uns currSetpoint;
status = PWRM_getCurrentSetpoint(&currSetpoint);
if (status == PWRM_SOK) {
 LOG_printf(TRACE, "Setpoint: %d", currSetpoint);
}
else {
 LOG_printf(TRACE, "ERROR: status = %x", status);
}

SPRAA98B

16 DSP/BIOS Power Management for OMAP3430

PWRM_getDependencyCount Get count of dependencies declared on resource

Syntax status = PWRM_getDependencyCount(resourceID, count);

Parameters Uns resourceID; /* resource ID */
 Uns *count; /* pointer to where count is written */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description PWRM_getDependencyCount returns the number of dependencies that are
currently declared on a resource. Normally this corresponds to the number of times
PWRM_setDependency has been called for the resource, minus the number of times
PWRM_releaseDependency has been called for the same resource.

Resource IDs are device-specific, and are defined in a PWRM_Resource enumeration in a
device-specific header file. For example, see pwrm3430.h for OMAP3430. Additionally, users
may declare “user-defined” resources, and reference these as an offset to the last enumerated
pre-defined resource. For more information, see the "Number of user-defined resources to
support" description in the PWRM Manager Properties section on page 4.

PWRM_getDependencyCount returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded, and the reference count was written to the location

pointed to by count.

PWRM_EINITFAILURE An error occurred during initialization for user-defined resources.

PWRM_EINVALIDPOINTER The operation failed because the count parameter was NULL.

PWRM_ENOTSUPPORTED The operation failed because resource tracking is not enabled.

PWRM_EOUTOFRANGE The specified resourceID is outside the range of valid pre-defined or user-
defined resource IDs.

Example

/* Display some dependency counts */
LOG_printf(TRACE, "Initial dependencies:");

PWRM_getDependencyCount(PWRM_3430_GPTIMER_5, &count);
LOG_printf(TRACE, "GPT5 count = %d", count);

PWRM_getDependencyCount(PWRM_3430_BIOS_CLK, &count);
LOG_printf(TRACE, "BIOS CLK count = %d", count);

PWRM_getDependencyCount(PWRM_3430_MCBSP_1,&count);
LOG_printf(TRACE, "MCBSP_1 count = %d", count);

SPRAA98B

DSP/BIOS Power Management for OMAP3430 17

PWRM_getLoadMonitorInfo Get PWRM load monitor configuration

Syntax status = PWRM_getLoadMonitorInfo(monitorInfo)

Parameters PWRM_LoadMonitorInfo *monitorInfo;
 /* pointer to PWRM_LoadMonitorInfo structure */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description PWRM_getLoadMonitorInfo returns information about PWRM’s load monitor
configuration, in the structure pointed to by monitorInfo.

typedef struct PWRM_LoadMonitorInfo {
 Uns numSlots; /* number of history slots */
 Uns ticksPerSlot; /* number of CLK ticks per slot */
} PWRM_LoadMonitorInfo;

PWRM_getLoadMonitorInfo returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded.

PWRM_EINVALIDPOINTER The operation failed because the monitorInfo parameter was NULL.

PWRM_ENOTSUPPORTED The operation failed because CPU load monitoring is not enabled.

Example

PWRM_LoadMonitorInfo monitorInfo;
status = PWRM_getLoadMonitorInfo(&monitorInfo);
if (status == PWRM_SOK) {
 LOG_printf(TRACE, "numSlots=%d, ticksPerSlot=%d",
 monitorInfo.numSlots, monitorInfo.ticksPerSlot);
}
else {
 LOG_printf(TRACE, "Error: status = %x", status);
}

SPRAA98B

18 DSP/BIOS Power Management for OMAP3430

PWRM_getNumSetpoints Get the number of setpoints supported by platform

Syntax status = PWRM_getNumSetpoints(numberSetpoints);

Parameters Uns *numberSetpoints; /* number of supported setpoints */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description PWRM_getNumSetpoints returns the number of setpoints supported by the
platform. The numberSetpoints parameter should point to the location where
PWRM_getNumSetpoints should write the number of setpoints.

PWRM_getNumSetpoints returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded.

PWRM_EINVALIDPOINTER The operation failed because the numberSetpoints parameter was NULL.

PWRM_EINITFAILURE V/F scaling support has not been initialized; V/F scaling is unavailable.

PWRM_ENOTSUPPORTED The operation failed because V/F scaling is not enabled.

Constraints and Calling Context

• Attempts to call PWRM_getNumSetpoints before PWRM_initSetpointInfo is called result in
a return code of PWRM_EINITFAILURE. Once PWRM_initSetpointInfo is successfully
called, PWRM_getNumSetpoints should become functional.

Example

PWRM_Status status;
Uns numSetpoints;

status = PWRM_getNumSetpoints(&numSetpoints);
if (status == PWRM_SOK) {
 LOG_printf(TRACE, "NumSetpoints: %d", numSetpoints);
}
else {
 LOG_printf(TRACE, "Error: status = %x", status);
}

SPRAA98B

DSP/BIOS Power Management for OMAP3430 19

PWRM_getSetpointInfo Get frequency and voltage for a setpoint

Syntax status = PWRM_getSetpointInfo(setpoint, frequency, voltage);

Parameters Uns setpoint; /* the setpoint to query */
 Uns *frequency; /* CPU frequency (in kHz) */
 Uns *voltage; /* CPU core voltage (in millivolts) */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description This function returns the DSP CPU frequency and voltage for a given setpoint.

The setpoint parameter should specify the setpoint value for which you want to know the
frequency and voltage on this platform. The frequency parameter should point to the location
where PWRM_getSetpointInfo should write the CPU frequency for the specified setpoint. The
voltage parameter should point to the location where PWRM_getSetpointInfo should write the
CPU core voltage for the specified setpoint.

PWRM_getSetpointInfo returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded.

PWRM_EINVALIDPOINTER The operation failed because the frequency or voltage parameter was NULL.

PWRM_EINITFAILURE V/F scaling support has not been initialized; V/F scaling is unavailable.

PWRM_ENOTSUPPORTED The operation failed because V/F scaling is not enabled.

PWRM_EOUTOFRANGE The operation failed because the setpoint parameter is out of range of valid
setpoints for the platform.

Constraints and Calling Context

• Attempts to call PWRM_getSetpointInfo before PWRM_initSetpointInfo is called result in a
return code of PWRM_EINITFAILURE. Once PWRM_initSetpointInfo is successfully called,
PWRM_getSetpointInfo should become functional.

Example

#define MAX_SETPOINTS 4
PWRM_Status status;

/* arrays for saving setpoint info */
Uns freq[MAX_SETPOINTS];
Uns volts[MAX_SETPOINTS];

status = PWRM_getSetpointInfo(i, &freq[i], &volts[i]);
if (status != PWRM_SOK) {
 LOG_printf(TRACE, "Error: status=%x", status);
}

SPRAA98B

20 DSP/BIOS Power Management for OMAP3430

PWRM_initSetpointInfo Initialize V/F setpoint information for this platform

Syntax status = PWRM_initSetpointInfo(numSetpoints, currentSetpoint,
 setpointInfo);

Parameters Uns numSetpoints ; /* number of setpoints */
 Uns currentSetpoint ; /* the current setpoint */
 PWRM_SetpointInfo * setpointInfo; /* setpoint info array */

Return Value PWRM_Status status; /* returned status */

Reentrant No

Description PWRM_initSetpointInfo is called during program initialization to inform PWRM of
the number of V/F setpoints available on the platform, the current setpoint, and the voltage and
frequency information for each setpoint. Setpoint voltage and frequency details are specified via
the setpointInfo array of PWRM_SetpointInfo structures.

typedef struct PWRM_SetpointInfo {
 Uns frequency; /* frequency in kHz */
 Uns voltage; /* voltage in millivolts */
} PWRM_SetpointInfo;

The first element of the array corresponds to setpoint “0”, the second element for setpoint “1”,
etc.

PWRM_initSetpointInfo should be called only once during initialization. Attempts to call other
setpoint related APIs (for example, PWRM_getNumSetpoints) before PWRM_initSetpointInfo is
called will result in PWRM_EINITFAILURE return codes from those APIs. Once
PWRM_initSetpointInfo is successfully called, the related setpoint APIs should become
functional.

If PWRM_initSetpointInfo is called more than once, a PWRM_ETOOMANYCALLS error is
returned.

PWRM_initSetpointInfo returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded.

PWRM_EFAIL The operation failed due to a memory allocation failure.

PWRM_EINVALIDPOINTER The operation failed because the setpointInfo parameter was NULL.

PWRM_ENOTSUPPORTED The operation failed because V/F scaling is not enabled.

PWRM_ETOOMANYCALLS The operation failed because setpoint info had already been initialized in a
previous call.

Constraints and Calling Context

• PWRM_initSetpointInfo should only be called once, during program initialization.

SPRAA98B

DSP/BIOS Power Management for OMAP3430 21

Example

#define NUM_SETPOINTS 4

PWRM_SetpointInfo platformSPInfo[NUM_SETPOINTS];
/* initialize setpoint info array */

. . .

/* now populate PWRM's setpoint info */
status = PWRM_initSetpointInfo(NUM_SETPOINTS,2,platformSPInfo);
if (status != PWRM_SOK) {
 LOG_printf(TRACE, "Error: status = %x", status);
}

SPRAA98B

22 DSP/BIOS Power Management for OMAP3430

PWRM_registerNotify Register a function to be called on a specific power event

Syntax status = PWRM_registerNotify(eventType, eventMask, notifyFxn,
 clientArg, notifyHandle, delayedCompletionFxn);

Parameters PWRM_Event eventType; /* type of power event */
 LgUns eventMask; /* event-specific mask */
 Fxn notifyFxn; /* function to call on event */
 Arg clientArg; /* argument to pass to notifyFxn */
 PWRM_NotifyHandle *notifyHandle; /* handle for unregistering */
 Fxn *delayedCompletionFxn; /* funct. for delayed completion */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description PWRM_registerNotify registers a function to be called when a specific power
event occurs. Registrations and the corresponding notifications are processed in FIFO order.
The function registered must behave as described in the pwrmNotifyFxn section.

The eventType parameter identifies the type of power event for which the notify function being
registered is to be called. This parameter has an enumerated type of PWRM_Event. This
parameter may have one of the following values:

Name Usage
PWRM_PENDINGSETPOINTCHANGE V/F setpoint is about to change.

PWRM_DONESETPOINTCHANGE The pending V/F setpoint change has now been made.

PWRM_GOINGTOSTANDBY The DSP is going to standby state.

PWRM_AWAKEFROMSTANDBY The DSP has awoken from standby.

PWRM_GOINGTORETENTION The DSP is going to retention state.

PWRM_AWAKEFROMRETENTION The DSP has awoken from retention.

PWRM_GOINGTORETENTIONALT The DSP is going to retention state.

PWRM_AWAKEFROMRETENTIONALT The DSP has awoken from retention.

PWRM_GOINGTOHIBERNATE The DSP is going to hibernate (off) state.

PWRM_AWAKEFROMHIBERNATE The DSP has awoken from hibernate.

The eventMask parameter is an event-specific mask. Currently eventMask is relevant only to
setpoint changes, but it may be used in the future for other power events. For V/F setpoint
registrations, this mask defines the setpoints the client supports. For example, if the client
supports only one setpoint, it should set only the single corresponding bit in eventMask.

The notifyFxn parameter specifies the function to call when the specified power event occurs.
The notifyFxn must behave as described in the pwrmNotifyFxn section.

SPRAA98B

DSP/BIOS Power Management for OMAP3430 23

The clientArg parameter is an arbitrary argument to be passed to the client upon notification.
This argument may allow one notify function to be used by multiple instances of a driver (that is,
the clientArg can be used to identify the instance of the driver that is being notified).

The notifyHandle parameter should point to the location where PWRM_registerNotify should
write a notification handle. If the application later needs to unregister the notification function, the
application should pass this handle to PWRM_unregisterNotify.

The delayedCompletionFxn is a pointer to a function provided by the PWRM module to the client
at registration time. If a client cannot act immediately upon notification, its notify function should
return PWRM_NOTIFYNOTDONE. Later, when the action is complete, the client should call the
delayedCompletionFxn to signal PWRM that it has finished. The delayedCompletionFxn is a
void function, taking no arguments, and having no return value. If a client can and does act
immediately on the notification, it should return PWRM_NOTIFYDONE in response to
notification, and should not call the delayedCompletionFxn.

For example, for a DMA driver to prepare for a setpoint change, it may need to wait for the
current DMA transfer to complete. When the driver’s DMA completes (for example, on the next
hardware interrupt), it calls the delayedCompletionFxn function provided when it registered for
notification. This completion function tells the PWRM module that the driver is finished.
Meanwhile, the PWRM module was able to continue notifying other clients, and was waiting for
all clients to signal completion.

This function returns one of the following constants as a status value of type PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded.

PWRM_EFAIL The operation failed due to a memory allocation failure.

PWRM_EINVALIDPOINTER The operation failed because the notifyFxn, notifyHandle or
delayedCompletionFxn parameter was NULL.

PWRM_EINVALIDEVENT Operation failed because eventType is invalid.

Constraints and Calling Context

• PWRM_registerNotify cannot be called from a SWI or HWI. This is because
PWRM_registerNotify internally calls MEM_alloc, which may cause a context switch.

SPRAA98B

24 DSP/BIOS Power Management for OMAP3430

Example

/* client #1 allows all setpoints */
#define ALLSETPOINTSALLOWED 0xFFFFFFFF

/* client #2 doesn't allow lowest 4 setpoints */
#define SOMESETPOINTSALLOWED 0xFFFFFFF0

/* notification handles */
PWRM_NotifyHandle notifyHandle1;
PWRM_NotifyHandle notifyHandle2;

/* pointers to returned delayed completion fxns */
Fxn delayFxn1;
Fxn delayFxn2;

/* client #1 registers pre-setpoint notification */
PWRM_registerNotify(PWRM_PENDINGSETPOINTCHANGE,
 ALLSETPOINTSALLOWED, (Fxn)myNotifyFxn1,
 (Arg)0x1111, ¬ifyHandle1, (Fxn *) &delayFxn1);

/* client #2 registers post-setpoint notification */
PWRM_registerNotify(PWRM_DONESETPOINTCHANGE,
 SOMESETPOINTSALLOWED, (Fxn)myNotifyFxn2,
 (Arg)0x2222, ¬ifyHandle2, &delayFxn2);

SPRAA98B

DSP/BIOS Power Management for OMAP3430 25

pwrmNotifyFxn Function to be called for power event notification

Syntax status = notifyFxn(eventType, eventArg1, eventArg2, clientArg);

Parameters PWRM_Event eventType; /* type of power event */
 Arg eventArg1; /* event-specific argument */
 Arg eventArg2; /* event-specific argument */
 Arg clientArg; /* arbitrary argument */

Return Value PWRM_NotifyResponse status; /* returned status */

Description PWRM_registerNotify registers a function to be called when a specific power
event occurs. Clients, which are typically drivers, register notification functions they need to run
when a particular power event occurs.

This topic describes the required prototype and behavior of such notification functions. Your
application must provide and register these functions. Registered functions are called internally
by the PWRM module.

The eventType parameter identifies the type of power event for which the notify function is being
called. This parameter has an enumerated type of PWRM_Event. The values for this parameter
are listed in the PWRM_registerNotify topic.

The eventArg1 and eventArg2 parameters are event-specific arguments. Currently, eventArg1
and eventArg2 are used only for V/F scaling events:

• PWRM_PENDINGSETPOINTCHANGE. The eventArg1 holds the current setpoint, and
eventArg2 holds the pending setpoint.

• PWRM_DONESETPOINTCHANGE. The eventArg1 holds the previous setpoint, and
eventArg2 holds the new setpoint.

The clientArg parameter holds the arbitrary argument passed to PWRM_registerNotify when this
function was registered. This argument may allow one notify function to be used by multiple
instances of a driver (that is, the clientArg can be used to identify the instance of the driver that
is being notified).

The notification function must return one of the following constants as a status value of type
PWRM_NotifyResponse:

Name Usage
PWRM_NOTIFYDONE The client processed the notification function successfully.

PWRM_NOTIFYNOTDONE The client must wait for interrupt processing to occur before it can proceed.
The client must later call the delayedCompletionFxn specified when this
function was registered with PWRM_registerNotify.

PWRM_NOTIFYERROR Notification cannot be processed. Either an internal client error occurred or the
client was notified of an event it could not process. (For V/F setpoint changes,
the client registers setpoints it can accommodate to avoid this error.) When a
client returns this error, the caller of the PWRM function that triggered the
notification receives a PWRM_EFAIL return status.

SPRAA98B

26 DSP/BIOS Power Management for OMAP3430

Constraints and Calling Context

• The notification function should not call PWRM APIs that trigger a notification event (for
example, PWRM_sleepDSP). If such an API is called, the PWRM_EBUSY status code is
returned.

Example

/* notification function prototypes */
PWRM_NotifyResponse myNotifyFxn1(
 PWRM_Event eventType, Arg eventArg1, Arg eventArg2, Arg clientArg);
PWRM_NotifyResponse myNotifyFxn2(
 PWRM_Event eventType, Arg eventArg1, Arg eventArg2, Arg clientArg);

/* ======== myNotifyFxn1 ======== */
PWRM_NotifyResponse myNotifyFxn1(
 PWRM_Event eventType, Arg eventArg, Arg eventArg2, Arg clientArg)
{
#if VERBOSE
 LOG_printf(TRACE, "\nclient #1 notify, PENDINGSETPOINTCHANGE");
 LOG_printf(TRACE, "eventArg=%p, eventArg2=%p", eventArg, eventArg2);
 LOG_printf(TRACE, "clientArg=%p", clientArg);
 LOG_printf(TRACE, "signal notify complete");
#endif
 return(PWRM_NOTIFYDONE); /* notify complete */
}

SPRAA98B

DSP/BIOS Power Management for OMAP3430 27

PWRM_releaseDependency Release a dependency that was previously declared

Syntax status = PWRM_releaseDependency(resourceID);

Parameters Uns resourceID; /* resource ID */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description This function is the companion to PWRM_setDependency. It releases a resource
dependency that was previously set.

Resource IDs are device-specific, and are defined in a PWRM_Resource enumeration in a
device-specific header file. For example, see pwrm3430.h for OMAP3430. Additionally, users
may declare “user-defined” resources, and reference these as an offset to the last enumerated
pre-defined resource. For more information, see the "Number of user-defined resources to
support" description in the PWRM Manager Properties section on page 4.

PWRM_ETOOMANYCALLS is returned if you call PWRM_releaseDependency when there are
no dependencies currently declared for the specified resource (either because all have been
released or because none were set).

PWRM_releaseDependency returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded, and dependency has been released.

PWRM_EINITFAILURE An error occurred during initialization for user-defined resources.

PWRM_EFAIL The operation failed while attempting to release the resource.

PWRM_ENOTSUPPORTED The operation failed because resource tracking is not enabled.

PWRM_EOUTOFRANGE The specified resourceID is outside the range of valid pre-defined or user-
defined resource IDs.

PWRM_ETOOMANYCALLS A dependency was not previously set and was therefore not released.

Example

/* Release dependency upon MCBSP #1 */
PWRM_releaseDependency(PWRM_3430_MCBSP_1);

SPRAA98B

28 DSP/BIOS Power Management for OMAP3430

PWRM_resetCPULoadHistory Clear the CPU load history buffered by PWRM

Syntax status PWRM_resetCPULoadHistory(sync)

Parameters Bool sync /* flag for action when slot finalizes */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description PWRM_resetCPULoadHistory is used to clear any accumulated CPU load
history maintained by PWRM. All of the history slots maintained in PWRM’s internal ring buffer
are reset to their “empty” state. (See _PWRM_resetLoad in the PWRM_getCPULoad
description.)

Calling PWRM_resetCPULoadHistory does not affect the periodic finalization of history slots by
PWRM. The currently accumulating slot finalizes “on schedule” at the same time as if
PWRM_resetCPULoadHistory was not called. The sync flag determines what is to be done
when the currently accumulating slot completes:

• If sync is TRUE, then the new load accumulated from the time
PWRM_resetCPULoadHistory is called until the current time is discarded, and no new
history data is available from PWRM until the next slot finalizes.

• If sync is FALSE, then the new load accumulated from the time
PWRM_resetCPULoadHistory is called until the current time is stored in the first history slot.
This slot is shorter in duration than a “normal” slot (which has the duration statically
configured for PWRM). This shorter duration is indicated in the totalCycles field of this slot’s
PWRM_CPULoadInfo structure.

PWRM_resetCPULoadHistory returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded.

PWRM_EINITFAILURE The operation failed because there was a failure during load monitor
initialization.

PWRM_ENOTSUPPORTED The operation failed because load monitoring is not enabled.

Example

status = PWRM_resetCPULoadHistory(TRUE);
if (status != PWRM_SOK) {
 LOG_printf(TRACE, "Error: status = %x", status);
}

SPRAA98B

DSP/BIOS Power Management for OMAP3430 29

PWRM_setDependency Declare a dependency upon a resource

Syntax status = PWRM_setDependency(resourceID);

Parameters Uns resourceID; /* resource ID */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description This function sets a dependency on a resource. It is the companion to
PWRM_releaseDependency.

Resource IDs are device-specific, and are defined in a PWRM_Resource enumeration in a
device-specific header file. For example, see pwrm3430.h for OMAP3430. Additionally, users
may declare “user-defined” resources, and reference these as an offset to the last enumerated
pre-defined resource. For more information, see the "Number of user-defined resources to
support" description in the PWRM Manager Properties section on page 4.

PWRM_setDependency returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded, and dependency has been set.

PWRM_EINITFAILURE An error occurred during initialization for user-defined resources.

PWRM_EFAIL The operation failed while attempting to enable the resource.

PWRM_ENOTSUPPORTED The operation failed because resource tracking is not enabled.

PWRM_EOUTOFRANGE The specified resourceID is outside the range of valid pre-defined or user-
defined resource IDs.

Example

/* Declare a driver dependency upon McBSP #1 */
PWRM_setDependency(PWRM_3430_MCBSP_1);

SPRAA98B

30 DSP/BIOS Power Management for OMAP3430

PWRM_signalEvent Signal a power event to registered notification clients

Syntax status = PWRM_signalEvent(eventType, eventArg1, eventArg2,
 notifyTimeout);

Parameters PWRM_Event eventType; /* the power event to be signaled */
 Arg eventArg1; /* event argument #1 */
 Arg eventArg2; /* event argument #2 */
 Uns notifyTimeout; /* max time to wait for notification */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description PWRM_signalEvent provides a mechanism for an application to signal power
events. PWRM_signalEvent only signals the event occurrence; it does not implement the actual
power event processing.

For example, on a platform where V/F scaling is accomplished on a separate processor,
PWRM_signalEvent can be called by the DSP application before the scaling to notify registered
clients on this processor of the PWRM_PENDINGSETPOINTCHANGE event. Similarly, after the
scaling, PWRM_signalEvent can be called to signal the PWRM_DONESETPOINTCHANGE
event. Here PWRM is not orchestrating the change to the V/F setpoint, but its registration,
notification, and signaling capabilities allow synchronization between scaling by the other
processor and the affected software on this processor.

PWRM_signalEvent is intended only for signaling power events that are outside the full control
of the PWRM implementation on the current platform. It can be used for V/F scaling notification
as described above when PWRM does not implement the actual scaling. For events where
PWRM does orchestrate the processing, for example the PWRM_GOINGTORETENTION and
PWRM_AWAKEFROMRETENTION events for PWRM_sleepDSP, PWRM handles the
notifications automatically, and PWRM_signalEvent must not be used for these events. In other
words, PWRM_signalEvent only validates that the indicated eventType is within the range of
valid events for the platform; it does not validate whether it makes sense for the application to
trigger the signaling of the indicated event.

PWRM_signalEvent returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded.

PWRM_EFAIL A notification failure occurred.

PWRM_EINVALIDEVENT The operation failed because eventType is invalid.

PWRM_ETIMEOUT A registered notification function did not respond within the specified
notifyTimeout.

SPRAA98B

DSP/BIOS Power Management for OMAP3430 31

Constraints and Calling Context

• PWRM_signalEvent can be called from a HWI or SWI only if notifyTimeout is 0.

Example

status = PWRM_signalEvent(PWRM_DONESETPOINTCHANGE, previousSetpoint, newSetpoint, 0);
if (status != PWRM_SOK) {
 LOG_printf(TRACE, "Error: status = %x", status);
}

SPRAA98B

32 DSP/BIOS Power Management for OMAP3430

PWRM_sleepDSP Transition the DSP to a new sleep state

Syntax status = PWRM_sleepDSP(sleepCode, sleepArg, notifyTimeout);

Parameters Uns sleepCode; /* new sleep state */
 LgUns sleepArg; /* a sleepCode-specific argument */
 Uns notifyTimeout; /* max time to wait for notification */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description PWRM_sleepDSP transitions the DSP to a new sleep state.

The sleepCode parameter indicates the new sleep state for the DSP. The following constants
may be used on OMAP3430:

Name Usage
PWRM_RETENTION The DSP is put into a low-power state in which all memory and logic contents

are retained.

PWRM_RETENTIONALT The DSP is put into a low-power state in which all memory and logic contents
are retained. This sleepCode allows the application to define two retention
states. For example, one with clocks running and one with clocks stopped.

PWRM_HIBERNATE The DSP is completely powered off, with context saved before going off, and
restored upon power on.

PWRM_STANDBY The GEM is put into a power-saving mode. Its clock is turned off. This mode
has a minimal latency for wakeup.

A successful call to PWRM_sleepDSP returns when the DSP has awoken from the specified
sleep state.

The sleepArg parameter may be zero or the address of an array that begins with a control word
and is optionally followed by four words that indicate the wakeup conditions for returning from
the sleep state to the CPU active state. The control word and wakeup conditions are specified
via five masks with the following ordering:

Uns control; /* control bits as defined below */
Uns WUGEN_MEVT0; /* bits to be set in WUGEN_MEVT0 register */
Uns WUGEN_MEVT1; /* bits to be set in WUGEN_MEVT1 register */
Uns WUGEN_MEVT2; /* bits to be set in WUGEN_MEVT2 register */
Uns WUGEN_MEVT3; /* bits to be set in WUGEN_MEVT3 register */

SPRAA98B

DSP/BIOS Power Management for OMAP3430 33

The control word should be initialized to zero. The bits in the control word may be set with the
following constants:

• PWRM_ARGSWUGENMASK. When set, this bit indicates that the sleepArg array contains
four additional words that define the wakeup conditions. If this bit is not set, only the first
element of the array (the control word itself) is referenced.

• PWRM_ARGSNOPLLCONFIG. When set, this bit indicates that the IVA2 DPLL
configuration will not be modified by PWRM_sleepDSP. It is assumed to be configured as
needed to support the given sleep code. If this bit is not set, PWRM_sleepDSP will
configure the IVA2 DPLL as needed to support the given sleep code.

Prior to activating the sleep state, PWRM_sleepDSP uses the specified masks to set the
corresponding bits in the WUGEN_MEVTx registers. Bits that are cleared correspond to events
that can wake the DSP from the sleep state. Bits that are set correspond to events that will be
blocked as wakeup events by the WUGEN. After CPU wakeup from a sleep state, the WUGEN
event mask registers are restored to their original state. Any pending interrupt that was not
configured as a wakeup event but had been allowed to propagate prior to calling
PWRM_sleepDSP is allowed to pass through once the original event masks are restored.

The notifyTimeout parameter is the maximum amount of time (in system clock ticks) to wait for
registered notification functions (set by PWRM_registerNotify) to respond to a delayed
completion, before declaring failure and returning PWRM_ETIMEOUT. If the notifyTimeout
parameter is zero, then all notification functions must return PWRM_NOTIFYDONE—they
cannot request a delayed completion. If a notification function does not return, the system will
hang. The notifyTimeout is not used to abandon a notification function; rather it indicates the
amount of time PWRM_sleepDSP waits for all delayed completion requests to complete. The
wait-loop is entered after all notification functions have been invoked.

PWRM_sleepDSP returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK A successful sleep and wake occurred.

PWRM_EFAIL A general failure occurred. Could not sleep the DSP.

PWRM_ENOTIMPLEMENTED The requested sleep mode is not implemented on this platform.

PWRM_ETIMEOUT A registered notification function did not respond within the specified
notifyTimeout.

PWRM_EBUSY The requested operation cannot be performed at this time; PWRM is busy
processing a previous request.

Due to the critical system nature of sleep commands, clients that register for sleep notification
should make every effort to respond immediately to the sleep event.

The application should treat return values of PWRM_ETIMEOUT or PWRM_EFAIL as critical
system failures. These values indicate the notification client is unresponsive, and the system is
in an unknown state.

SPRAA98B

34 DSP/BIOS Power Management for OMAP3430

Constraints and Calling Context

• PWRM_sleepDSP cannot be called from an HWI.

• This API cannot be called from a program’s main() function.

• PWRM_sleepDSP can only be called from a SWI if notifyTimeout is 0.

Example

#define TIMEOUT 10 /* notification timeout after 10 ticks */
Uns sleepArgs[5];

/* set wakeup conditions */
sleepArgs[0] = PWRM_ARGSWUGENMASK | PWRM_ARGSNOPLLCONFIG;
sleepArgs[1] = 0xFFFFFFBF; /* enable GP timer 5 as wakeup */
sleepArgs[2] = 0x0000FFFF; /* no wakeups via WUGEN_MEVT1 */
sleepArgs[3] = 0x000FFFFF; /* no wakeups via WUGEN_MEVT2 */
sleepArgs[4] = 0x00000001; /* no wakeups via WUGEN_MEVT3 */

LOG_printf(TRACE, "Putting DSP to retention...");
status = PWRM_sleepDSP(PWRM_RETENTION, (LgUns)(&sleepArgs), TIMEOUT);
LOG_printf(TRACE, "DSP is awake from retention");
LOG_printf(TRACE, "Returned 0x%x", status);

SPRAA98B

DSP/BIOS Power Management for OMAP3430 35

PWRM_startCPULoadMonitoring Start CPU load monitoring

Syntax status = PWRM_startCPULoadMonitoring();

Parameters none

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description This function starts the collection of CPU load information for the purpose of
monitoring the CPU load.

When CPU load monitoring is started, an internal call to PWRM_resetCPULoadHistory() is
made. PWRM_setDependency() is also called to declare a dependency on the timer. If timer-
based CPU load monitoring is being used, the timer is reloaded and started.

PWRM_startCPULoadMonitoring returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded, and the dependency has been released.

PWRM_EINITFAILURE An error occurred during initialization for user-defined resources.

PWRM_EFAIL The operation failed while attempting to release the resource.

PWRM_ENOTSUPPORTED The operation failed because resource tracking is not enabled.

PWRM_EOUTOFRANGE The specified resourceID is outside the range of valid pre-defined or user-
defined resource IDs.

Example

PWRM_startCPULoadMonitoring();

SPRAA98B

36 DSP/BIOS Power Management for OMAP3430

PWRM_stopCPULoadMonitoring Stop CPU load monitoring

Syntax status = PWRM_stopCPULoadMonitoring();

Parameters none

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description This function stops the collection of CPU load information for the purpose of
monitoring the CPU load. While stopped, no calls are made to the configured slot hook function.

If timer-based load monitoring is being used, the timer is stopped. In all cases, an internal call to
PWRM_releaseDependency() is made to release the dependency on the timer.

PWRM_stopCPULoadMonitoring returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded, and the dependency has been released.

PWRM_EINITFAILURE An error occurred during initialization for user-defined resources.

PWRM_EFAIL The operation failed while attempting to release the resource.

PWRM_ENOTSUPPORTED The operation failed because resource tracking is not enabled.

PWRM_EOUTOFRANGE The specified resourceID is outside the range of valid pre-defined or user-
defined resource IDs.

PWRM_ETOOMANYCALLS A dependency was not previously set and was therefore not released.

Example

PWRM_stopCPULoadMonitoring();

SPRAA98B

DSP/BIOS Power Management for OMAP3430 37

PWRM_unregisterNotify Unregister for an event notification from PWRM

Syntax status = PWRM_unregisterNotify(notifyHandle);

Parameters PWRM_NotifyHandle notifyHandle; /* handle to function */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description PWRM_unregisterNotify unregisters an event notification that was registered by
PWRM_registerNotify. For example, when an audio codec device is closed, it no longer needs to
be notified, and must unregister for event notification.

The notifyHandle parameter is the parameter that was provided by PWRM_registerNotify when
the function was registered.

PWRM_unregisterNotify returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The function was successfully unregistered.

PWRM_EFAIL The operation failed due to a memory free failure.

PWRM_EINVALIDHANDLE The operation failed because notifyHandle is invalid.

Constraints and Calling Context

• This API cannot be called from a program’s main() function.

Example

PWRM_NotifyHandle notifyHandle1;
PWRM_registerNotify(PWRM_PENDINGSETPOINTCHANGE, ALLSETPOINTSALLOWED,
 (Fxn)myNotifyFxn1, (Arg)0x1111, ¬ifyHandle1, (Fxn *) &delayFxn1);

PWRM_unregisterNotify(notifyHandle1);

SPRAA98B

38 DSP/BIOS Power Management for OMAP3430

PWRM_validateSetpoint Validate a setpoint versus constraints of registered clients

Syntax status = PWRM_validateSetpoint(setpoint);

Parameters Uns setpoint; /* setpoint to validate */

Return Value PWRM_Status status; /* returned status */

Reentrant Yes

Description PWRM_validateSetpoint can be used to check whether a given setpoint has
been declared as not supported during registrations for V/F scaling notifications. If the setpoint
does not conflict with any registered constraints then PWRM_SOK is returned.

For example, a serial port driver may only be able to operate at a subset of available setpoints,
and it indicates this via the eventMask parameter when it calls PWRM_registerNotify.
Application code can quickly check to see if there is any such constraint on a setpoint by calling
PWRM_validateSetpoint.

PWRM_validateSetpoint returns one of the following constants as a status value of type
PWRM_Status:

Name Usage
PWRM_SOK The operation succeeded, no registered V/F scaling notification clients have

indicated they cannot support the specified setpoint.

PWRM_EINITFAILURE V/F scaling support has not been initialized; V/F scaling is unavailable.

PWRM_ENOTSUPPORTED The operation failed because either: V/F scaling is not enabled, or a
registered V/F scaling notification client has indicated it cannot support the
specified setpoint.

PWRM_EOUTOFRANGE The operation failed because the setpoint parameter is out of range of valid
setpoints for the platform.

Constraints and Calling Context

• Attempts to call PWRM_validateSetpoint before PWRM_initSetpointInfo is called result in a
return code of PWRM_EINITFAILURE. Once PWRM_initSetpointInfo is successfully called,
PWRM_validateSetpoint should become functional.

Example

#define NUM_SETPOINTS 32
for (i = 0; i < NUM_SETPOINTS; i++) {
 status = PWRM_validateSetpoint(i);
 if (status == PWRM_SOK) {
 LOG_printf(TRACE, "SETPOINT %d is OK", i);
 }
}

SPRAA98B

DSP/BIOS Power Management for OMAP3430 39

4 Special Considerations
C64x+ developers must observe the following special considerations and cautions when using
the DSP/BIOS Power Manager.

4.1 Sleep Mode Disruption of DSP/BIOS CLK Services

Invoking power-saving sleep modes on some platforms can have a significant impact upon the
CLK module’s accuracy and correctness. Two examples for OMAP3430 are:

• Putting the DSP into the PWRM_RETENTION state causes the C64x+ timestamp counter
to freeze after some hardware transition delays. When the DSP wakes from retention, calls
to CLK_gethtime do not account for the cycles that the timestamp counter was frozen. Also,
if the CLK module’s corresponding timer interrupt is not a wakeup condition, then clock ticks
can be missed while the DSP is in retention, so the number of CLK ticks reported by
CLK_getltime when the DSP eventually wakes can be in error.

• Putting the DSP into PWRM_HIBERNATE causes the C64x+ timestamp counter to be reset
to zero when power to the DSP is turned back on. This means that even for a short
hibernate time, the value reported by CLK_gethtime upon wakeup will be less than a value
read immediately before going to hibernate. And similar to the retention case, if the CLK
module’s corresponding timer interrupt is not a wakeup condition for hibernate, then CLK
ticks can be missed and not reported by subsequent calls to CLK_getltime.

4.2 Effect of Load Monitoring on IDL Loop Processing

To implement CPU load monitoring, PWRM measures and accumulates the number of CPU
cycles spent in the CPU’s “IDLE” instruction. This method allows for both energy savings while
the CPU is idle waiting for an interrupt, and for a high accuracy measure of true CPU idle time.

The tradeoff for using this technique is that when PWRM idles the CPU, the DSP/BIOS idle (IDL)
loop execution is “frozen” until the next CPU interrupt. This means that any other processing
placed in the IDL loop does not run continuously, but runs only once per wakeup from the IDLE
instruction, before IDLE is invoked again.

For debug environments, when the idle loop is configured to run the RTA data pump to pass
data to the debug host, this means that HST channel data will not flow freely, dynamic updating
of the real-time analysis data in CCStudio plugins will stall, and updates can appear “choppy” in
CCStudio. If this presents a problem during debug, PWRM’s CPU load monitoring feature
should be disabled until the necessary debugging has been completed or until it is time to
deploy the application. Idling by PWRM in the idle loop is ultimately intended for deployed
systems, where there is no CCStudio debugger attached.

SPRAA98B

40 DSP/BIOS Power Management for OMAP3430

5 References
The following documents provide information about power management on the C55x platform.
While the details of PWRM configuration and APIs are different for the OMAP3430, some of the
background information provided in these documents is useful for OMAP3430 applications.

• TMS320 DSP/BIOS User's Guide (SPRU423)

• TMS320C5000 DSP/BIOS API Reference (SPRU404)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by
all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such
use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power Wireless www.ti.com/lpw Video & Imaging www.ti.com/video

 Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com/
http://www.ti.com/audio
http://dataconverter.ti.com/
http://www.ti.com/automotive
http://dsp.ti.com/
http://www.ti.com/broadband
http://interface.ti.com/
http://www.ti.com/digitalcontrol
http://logic.ti.com/
http://www.ti.com/military
http://power.ti.com/
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com/
http://www.ti.com/security
http://www.ti-rfid.com/
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	DSP/BIOS Power Management for OMAP3430
	1 Overview
	2 Configuration
	2.1 Configuration Properties
	2.2 PWRM Manager Properties
	2.3 Graphical View

	3 DSP/BIOS Power Manager API Reference
	4 Special Considerations
	4.1 Sleep Mode Disruption of DSP/BIOS CLK Services
	4.2 Effect of Load Monitoring on IDL Loop Processing

	5 References

