1    /*
     2     * Copyright (c) 2015, Texas Instruments Incorporated
     3     * All rights reserved.
     4     *
     5     * Redistribution and use in source and binary forms, with or without
     6     * modification, are permitted provided that the following conditions
     7     * are met:
     8     *
     9     * *  Redistributions of source code must retain the above copyright
    10     *    notice, this list of conditions and the following disclaimer.
    11     *
    12     * *  Redistributions in binary form must reproduce the above copyright
    13     *    notice, this list of conditions and the following disclaimer in the
    14     *    documentation and/or other materials provided with the distribution.
    15     *
    16     * *  Neither the name of Texas Instruments Incorporated nor the names of
    17     *    its contributors may be used to endorse or promote products derived
    18     *    from this software without specific prior written permission.
    19     *
    20     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    21     * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
    22     * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    23     * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
    24     * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
    25     * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
    26     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
    27     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
    28     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
    29     * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
    30     * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    31     */
    32    /*
    33     *  ======== Task.xdc ========
    34     *
    35     */
    36    
    37    package ti.sysbios.knl;
    38    
    39    import xdc.rov.ViewInfo;
    40    
    41    import xdc.runtime.Error;
    42    import xdc.runtime.Assert;
    43    import xdc.runtime.Diags;
    44    import xdc.runtime.Log;
    45    import xdc.runtime.IHeap;
    46    
    47    import ti.sysbios.knl.Queue;
    48    
    49    /*!
    50     *  ======== Task ========
    51     *  Task Manager.
    52     *
    53     *  The Task module makes available a set of functions that manipulate task
    54     *  objects accessed through pointers of type {@link #Handle}. Tasks represent
    55     *  independent threads of control that conceptually execute functions in
    56     *  parallel within a single C program; in reality, concurrency is achieved
    57     *  by switching the processor from one task to another.
    58     *
    59     *  All tasks executing within a single program share a common set of
    60     *  global variables, accessed according to the standard rules of scope
    61     *  defined for C functions.
    62     *
    63     *  Each task is in one of five modes of execution at any point in time:
    64     *  running, ready, blocked, terminated, or inactive. By design, there is
    65     *  always one
    66     *  (and only one) task currently running, even if it is only the idle task
    67     *  managed internally by Task. The current task can be suspended from
    68     *  execution by calling certain Task functions, as well as functions
    69     *  provided by other modules like the Semaphore or Event Modules.
    70     *  The current task
    71     *  can also terminate its own execution. In either case, the processor
    72     *  is switched to the highest priority task that is ready to run.
    73     *
    74     *  You can assign numeric priorities to tasks. Tasks are
    75     *  readied for execution in strict priority order; tasks of the same
    76     *  priority are scheduled on a first-come, first-served basis.
    77     *  The priority of the currently running task is never lower
    78     *  than the priority of any ready task. Conversely, the running task
    79     *  is preempted and re-scheduled for execution whenever there exists
    80     *  some ready task of higher priority.
    81     *
    82     *  @a(Task Stacks)
    83     *
    84     *  When you create a task, it is provided with its own run-time stack,
    85     *  used for storing local variables as well as for further nesting of
    86     *  function calls. Each stack must be large enough to handle normal
    87     *  subroutine calls and one task preemption context.
    88     *  A task preemption context is the context that gets saved when one task
    89     *  preempts another as a result of an interrupt thread readying
    90     *  a higher-priority task.
    91     *
    92     *  See sections 3.5.3 and 7.5 of the BIOS User's Guide for further
    93     *  discussions regarding task stack sizing.
    94     *
    95     *  Certain system configuration settings will result in
    96     *  task stacks needing to be large enough to absorb two interrupt
    97     *  contexts rather than just one. 
    98     *  Setting {@link ti.sysbios.BIOS#logsEnabled BIOS.logsEnabled} to 'true'
    99     *  or installing any Task hooks will have the side effect of allowing
   100     *  up to two interrupt contexts to be placed on a task stack. Also
   101     *  see {@link #minimizeLatency Task.minimizeLatency}.
   102     *
   103     *  @a(Task Deletion)
   104     *
   105     *  Any dynamically created task that is not in the Task_Mode_RUNNING
   106     *  state (ie not the currently running task) can be deleted using the
   107     *  {@link #delete} API.
   108     *
   109     *  Task_delete() removes the task from all internal queues and calls
   110     *  Memory_free() is used to free the task object and its stack.
   111     *  Memory_free() must acquire a lock to the memory before proceeding.
   112     *  If another task already holds a lock to the memory, then the thread
   113     *  performing the delete will be blocked until the memory is unlocked.
   114     *
   115     *  Note:
   116     *  Task_delete() should be called with extreme care.
   117     *  As mentioned above, the scope of Task_delete() is limited to
   118     *  freeing the Task object itself, freeing the task's stack memory
   119     *  if it was allocated at create time, and removing the task from
   120     *  any SYS/BIOS-internal state structures.
   121     *
   122     *  SYS/BIOS does not keep track of any resources the task may have
   123     *  acquired or used during its lifetime.
   124     *
   125     *  It is the application's responsibility to guarantee the integrity
   126     *  of a task's partnerships prior to deleting that task.
   127     *
   128     *  For example, if a task has obtained exclusive access to a resource,
   129     *  deleting that task will make the resource forever unavailable.
   130     *
   131     *  Task_delete() sets the referenced task handle to NULL. Any subsequent
   132     *  call to a Task instance API using that null task handle will behave
   133     *  unpredictably and will usually result in an application crash.
   134     *
   135     *  Assuming a task completely cleans up after itself prior to calling
   136     *  Task_exit() (or falling through the the bottom of the task
   137     *  function), it is then safest to use Task_delete() only when a task
   138     *  is in the 'Task_Mode_TERMINATED' state.
   139     *
   140     *  Delete hooks:
   141     *  You can specify application-wide Delete hook functions that
   142     *  run whenever a task is deleted. See the discussion of Hook Functions
   143     *  below for details.
   144     *
   145     *  Task_delete() constraints:
   146     *  @p(blist)
   147     *  -The task cannot be the currently executing task (Task_self()).
   148     *  -Task_delete cannot be called from a Swi or Hwi.
   149     *  -No check is performed to prevent Task_delete from being used on a
   150     *  statically-created object. If a program attempts to delete a task object
   151     *  that was created statically, the Memory_free() call will result in an
   152     *  assertion failure in its corresponding Heap manager, causing the
   153     *  application to exit.
   154     *  @p
   155     *
   156     *  @a(Stack Alignment)
   157     *
   158     *  Stack size parameters for both static and dynamic tasks are rounded
   159     *  up to the nearest integer multiple of a target-specific alignment
   160     *  requirement.
   161     *
   162     *  In the case of Task's which are created with a user-provided stack,
   163     *  both the base address and the stackSize are aligned. The base address
   164     *  is increased to the nearest aligned address. The stack size is decreased
   165     *  accordingly and then rounded down to the nearest integer multiple of the
   166     *  target-specific required alignment.
   167     *
   168     *  @p(html)
   169     *  <a name="hookfunc"></a>
   170     *  @p
   171     *
   172     *  @a(Hook Functions)
   173     *
   174     *  Sets of hook functions can be specified for the Task module.  Each
   175     *  set can contains these hook functions:
   176     *  @p(blist)
   177     *  -Register: A function called before any statically created tasks
   178     *      are initialized at runtime.  The register hook is called at boot time
   179     *      before main() and before interrupts are enabled.
   180     *  -Create: A function that is called when a task is created.
   181     *      This includes tasks that are created statically and those
   182     *      created dynamically using {@link #create} or {@link #construct}.
   183     *      The create hook is called outside of a Task_disable/enable block and
   184     *   before the task has been added to the ready list.
   185     *  -Ready: A function that is called when a task becomes ready to run.
   186     *   The ready hook is called from within a Task_disable/enable block with
   187     *   interrupts enabled.
   188     *  -Switch: A function that is called just before a task switch
   189     *      occurs. The 'prev' and 'next' task handles are passed to the Switch
   190     *      hook. 'prev' is set to NULL for the initial task switch that occurs
   191     *      during SYS/BIOS startup.  The Switch hook is called from within a
   192     *      Task_disable/enable block with interrupts enabled.
   193     *  -Exit:      A function that is called when a task exits using
   194     *      {@link #exit}.  The exit hook is passed the handle of the exiting
   195     *      task.  The exit hook is called outside of a Task_disable/enable block
   196     *      and before the task has been removed from the kernel lists.
   197     *  -Delete: A function that is called when any task is deleted at
   198     *      run-time with {@link #delete}.  The delete hook is called outside
   199     *      of a Task_disable/enable block.
   200     *  @p
   201     *  Hook functions can only be configured statically.
   202     *
   203     *  If you define more than one set of hook functions, all the functions
   204     *  of a particular type will be run when a Task triggers that type of
   205     *  hook.
   206     *
   207     *  @a(Warning)
   208     *  Configuring ANY Task hook function will have the side effect of allowing
   209     *  up to two interrupt contexts beings saved on a task stack. Be careful
   210     *  to size your task stacks accordingly.
   211     *
   212     *  @p(html)
   213     *  <B>Register Function</B>
   214     *  @p
   215     *
   216     *  The Register function is provided to allow a hook set to store its
   217     *  hookset ID.  This id can be passed to {@link #setHookContext} and
   218     *  {@link #getHookContext} to set or get hookset-specific context.  The
   219     *  Register function must be specified if the hook implementation
   220     *  needs to use {@link #setHookContext} or {@link #getHookContext}.
   221     *  The registerFxn hook function is called during system initialization
   222     *  before interrupts have been enabled.
   223     *
   224     *  @p(code)
   225     *  Void myRegisterFxn(Int id);
   226     *  @p
   227     *
   228     *  @p(html)
   229     *  <B>Create and Delete Functions</B>
   230     *  @p
   231     *
   232     *  The create and delete functions are called whenever a Task is created
   233     *  or deleted.  They are called with interrupts enabled (unless called
   234     *  at boot time or from main()).
   235     *
   236     *  @p(code)
   237     *  Void myCreateFxn(Task_Handle task, Error_Block *eb);
   238     *  @p
   239     *
   240     *  @p(code)
   241     *  Void myDeleteFxn(Task_Handle task);
   242     *  @p
   243     *
   244     *  @p(html)
   245     *  <B>Switch Function</B>
   246     *  @p
   247     *
   248     *  If a switch function is specified, it is invoked just before the new task
   249     *  is switched to.  The switch function is called with interrupts enabled.
   250     *
   251     *  This function can be used to save/restore additional task context (for
   252     *  example, external hardware registers), to check for task stack overflow,
   253     *  to monitor the time used by each task, etc.
   254     *
   255     *  @p(code)
   256     *  Void mySwitchFxn(Task_Handle prev, Task_Handle next);
   257     *  @p
   258     *
   259     *  To properly handle the switch to the first task your switchFxn should
   260     *  check for "prev == NULL" before using prev:
   261     *
   262     *  @p(code)
   263     *  Void mySwitchFxn(Task_Handle prev, Task_Handle next)
   264     *  {
   265     *      if (prev != NULL) {
   266     *          ...
   267     *      }
   268     *      ...
   269     *  }
   270     *  @p
   271     *
   272     *  @p(html)
   273     *  <B>Ready Function</B>
   274     *  @p
   275     *
   276     *  If a ready function is specified, it is invoked whenever a task is made
   277     *  ready to run.   The ready function is called  with interrupts enabled
   278     *  (unless called at boot time or from main()).
   279     *
   280     *  @p(code)
   281     *  Void myReadyFxn(Task_Handle task);
   282     *  @p
   283     *
   284     *  @p(html)
   285     *  <B>Exit Function</B>
   286     *  @p
   287     *
   288     *  If an exit function is specified, it is invoked when a task exits (via
   289     *  call to Task_exit() or when a task returns from its' main function).
   290     *  The Exit Function is called with interrupts enabled.
   291     *
   292     *  @p(code)
   293     *  Void myExitFxn(Task_Handle task);
   294     *  @p
   295     *
   296     *  @p(html)
   297     *  <h3> Calling Context </h3>
   298     *  <table border="1" cellpadding="3">
   299     *    <colgroup span="1"></colgroup> <colgroup span="5" align="center">
   300     *  </colgroup>
   301     *
   302     *    <tr><th> Function                 </th><th>  Hwi   </th><th>  Swi   </th>
   303     *  <th>  Task  </th><th>  Main  </th><th>  Startup  </th></tr>
   304     *    <!--                                                       -->
   305     *    <tr><td> {@link #create}          </td><td>   N    </td><td>   N    </td>
   306     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   307     *    <tr><td> {@link #disable}         </td><td>   Y    </td><td>   Y    </td>
   308     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   309     *    <tr><td> {@link #exit}            </td><td>   N    </td><td>   N    </td>
   310     *  <td>   Y    </td><td>   N    </td><td>   N    </td></tr>
   311     *    <tr><td> {@link #getIdleTask}     </td><td>   Y    </td><td>   Y    </td>
   312     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   313     *    <tr><td> {@link #Params_init}     </td><td>   Y    </td><td>   Y    </td>
   314     *  <td>   Y    </td><td>   Y    </td><td>   Y    </td></tr>
   315     *    <tr><td> {@link #restore}         </td><td>   Y    </td><td>   Y    </td>
   316     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   317     *    <tr><td> {@link #self}            </td><td>   Y    </td><td>   Y    </td>
   318     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   319     *    <tr><td> {@link #sleep}           </td><td>   N    </td><td>   N    </td>
   320     *  <td>   Y    </td><td>   N    </td><td>   N    </td></tr>
   321     *    <tr><td> {@link #yield}           </td><td>   Y    </td><td>   Y    </td>
   322     *  <td>   Y    </td><td>   N    </td><td>   N    </td></tr>
   323     *    <tr><td> {@link #construct}       </td><td>   N    </td><td>   N    </td>
   324     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   325     *    <tr><td> {@link #delete}          </td><td>   N    </td><td>   N    </td>
   326     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   327     *    <tr><td> {@link #destruct}        </td><td>   N    </td><td>   N    </td>
   328     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   329     *    <tr><td> {@link #getEnv}          </td><td>   Y    </td><td>   Y    </td>
   330     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   331     *    <tr><td> {@link #getHookContext}  </td><td>   Y    </td><td>   Y    </td>
   332     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   333     *    <tr><td> {@link #getMode}         </td><td>   Y    </td><td>   Y    </td>
   334     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   335     *    <tr><td> {@link #getPri}          </td><td>   Y    </td><td>   Y    </td>
   336     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   337     *    <tr><td> {@link #getFunc}         </td><td>   Y    </td><td>   Y    </td>
   338     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   339     *    <tr><td> {@link #setEnv}          </td><td>   Y    </td><td>   Y    </td>
   340     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   341     *    <tr><td> {@link #setHookContext}  </td><td>   Y    </td><td>   Y    </td>
   342     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   343     *    <tr><td> {@link #setPri}          </td><td>   Y    </td><td>   Y    </td>
   344     *  <td>   Y    </td><td>   N    </td><td>   N    </td></tr>
   345     *    <tr><td> {@link #stat}            </td><td>   Y    </td><td>   Y    </td>
   346     *  <td>   Y    </td><td>   Y    </td><td>   N    </td></tr>
   347     *    <tr><td colspan="6"> Definitions: <br />
   348     *       <ul>
   349     *         <li> <b>Hwi</b>: API is callable from a Hwi thread. </li>
   350     *         <li> <b>Swi</b>: API is callable from a Swi thread. </li>
   351     *         <li> <b>Task</b>: API is callable from a Task thread. </li>
   352     *         <li> <b>Main</b>: API is callable during any of these phases: </li>
   353     *           <ul>
   354     *             <li> In your module startup after this module is started
   355     *  (e.g. Task_Module_startupDone() returns TRUE). </li>
   356     *             <li> During xdc.runtime.Startup.lastFxns. </li>
   357     *             <li> During main().</li>
   358     *             <li> During BIOS.startupFxns.</li>
   359     *           </ul>
   360     *         <li> <b>Startup</b>: API is callable during any of these phases:</li>
   361     *           <ul>
   362     *             <li> During xdc.runtime.Startup.firstFxns.</li>
   363     *             <li> In your module startup before this module is started
   364     *  (e.g. Task_Module_startupDone() returns FALSE).</li>
   365     *           </ul>
   366     *       </ul>
   367     *    </td></tr>
   368     *
   369     *  </table>
   370     *  @p
   371     */
   372    
   373    @DirectCall
   374    @ModuleStartup      /* generate a call to Task_Module_startup at startup */
   375    @InstanceInitStatic /* Construct/Destruct CAN becalled at runtime */
   376    @InstanceFinalize   /* generate call to Task_Instance_finalize on delete */
   377    @InstanceInitError  /* instance init can fail */
   378    @Template ("./Task.xdt") /* generate function to create a SMP specific
   379                                module state structure and initialize it */
   380    
   381    module Task
   382    {
   383    
   384        // -------- Module Constants --------
   385    
   386        // -------- Module Types --------
   387    
   388        /*! Task function type definition. */
   389        typedef Void (*FuncPtr)(UArg, UArg);
   390    
   391        /*! "All Task Blocked" function type definition. */
   392        typedef Void (*AllBlockedFuncPtr)(Void);
   393    
   394        /*!
   395         *  Task execution modes.
   396         *
   397         *  These enumerations are the range of modes or states that
   398         *  a task can be in. A task's current mode can be gotten using
   399         *  {@link #stat}.
   400         */
   401        enum Mode {
   402            Mode_RUNNING,           /*! Task is currently executing. */
   403            Mode_READY,             /*! Task is scheduled for execution. */
   404            Mode_BLOCKED,           /*! Task is suspended from execution. */
   405            Mode_TERMINATED,        /*! Task is terminated from execution. */
   406            Mode_INACTIVE           /*! Task is on inactive task list */
   407        };
   408    
   409        /*!
   410         *  Task Status Buffer.
   411         *
   412         *  Passed to and filled in by {@link #stat};
   413         */
   414        struct Stat {
   415            Int     priority;       /*! Task priority. */
   416            Ptr     stack;          /*! Task stack. */
   417            SizeT   stackSize;      /*! Task stack size. */
   418            IHeap.Handle stackHeap; /*! Heap used to alloc stack. */
   419            Ptr     env;            /*! Global environment struct. */
   420            Mode    mode;           /*! Task's current mode. */
   421            Ptr     sp;             /*! Task's current stack pointer. */
   422            SizeT   used;           /*! max # of words used on stack. */
   423        };
   424    
   425        /*!
   426         *  Task hook set type definition.
   427         *
   428         *  Sets of hook functions can be specified for the Task module.
   429         *  See {@link #hookfunc Hook Functions} for details.
   430         */
   431        struct HookSet {
   432            Void (*registerFxn)(Int);
   433            Void (*createFxn)(Handle, Error.Block *);
   434            Void (*readyFxn)(Handle);
   435            Void (*switchFxn)(Handle, Handle);
   436            Void (*exitFxn)(Handle);
   437            Void (*deleteFxn)(Handle);
   438        };
   439    
   440        /*! "Don't care" task affinity */
   441        const UInt AFFINITY_NONE = ~(0);
   442    
   443        /*!  @_nodoc */
   444        metaonly struct BasicView {
   445            String      label;
   446            Int         priority;
   447            String      mode;
   448            String      fxn[];
   449            UArg        arg0;
   450            UArg        arg1;
   451            SizeT       stackSize;
   452            Ptr         stackBase;
   453            String      curCoreId;
   454            String      affinity;
   455        }
   456    
   457        /*!  @_nodoc */
   458        metaonly struct DetailedView {
   459            String      label;
   460            Int         priority;
   461            String      mode;
   462            String      fxn[];
   463            UArg        arg0;
   464            UArg        arg1;
   465            String      stackPeak;
   466            SizeT       stackSize;
   467            Ptr         stackBase;
   468            String      curCoreId;
   469            String      affinity;
   470            String      blockedOn;
   471        }
   472    
   473        /*!  @_nodoc */
   474        metaonly struct ModuleView {
   475            String      schedulerState;
   476            String      readyQMask[];
   477            Bool        workPending;
   478            UInt        numVitalTasks;
   479            Ptr         currentTask[];
   480            String      hwiStackPeak;
   481            SizeT       hwiStackSize;
   482            Ptr         hwiStackBase;
   483        }
   484    
   485        /*!  @_nodoc (not used by view) */
   486        metaonly struct CallStackView {
   487            Int         depth;
   488            String      decode;
   489        }
   490    
   491        /*!  @_nodoc */
   492        metaonly struct ReadyQView {
   493            Ptr         task;
   494            Ptr         next;
   495            Ptr         prev;
   496            Ptr         readyQ;
   497            String      label;
   498            Int         priority;
   499            String      mode;
   500            String      fxn[];
   501            String      curCoreId;
   502            String      affinity;
   503        }
   504    
   505        /*! @_nodoc */
   506        @Facet
   507        metaonly config ViewInfo.Instance rovViewInfo =
   508            ViewInfo.create({
   509                viewMap: [
   510                    ['Basic',    {type: ViewInfo.INSTANCE,     viewInitFxn: 'viewInitBasic',    structName: 'BasicView'}],
   511                    ['Detailed', {type: ViewInfo.INSTANCE,     viewInitFxn: 'viewInitDetailed', structName: 'DetailedView'}],
   512                    ['CallStacks',  {type: ViewInfo.TREE,         viewInitFxn: 'viewInitCallStack', structName: 'CallStackView'}],
   513                    ['ReadyQs',     {type: ViewInfo.TREE_TABLE,   viewInitFxn: 'viewInitReadyQs',   structName: 'ReadyQView'}],
   514                    ['Module',      {type: ViewInfo.MODULE,       viewInitFxn: 'viewInitModule',    structName: 'ModuleView'}],
   515                ]
   516            });
   517    
   518        // -------- Module Parameters --------
   519    
   520        // Logs
   521    
   522        /*! Logged on every task switch */
   523        config Log.Event LM_switch = {
   524            mask: Diags.USER1 | Diags.USER2,
   525            msg: "LM_switch: oldtsk: 0x%x, oldfunc: 0x%x, newtsk: 0x%x, newfunc: 0x%x"
   526        };
   527    
   528        /*! Logged on calls to Task_sleep */
   529        config Log.Event LM_sleep = {
   530            mask: Diags.USER1 | Diags.USER2,
   531            msg: "LM_sleep: tsk: 0x%x, func: 0x%x, timeout: %d"
   532        };
   533    
   534        /*! Logged when a task is made ready to run (ie Semaphore_post()) */
   535        config Log.Event LD_ready = {
   536            mask: Diags.USER2,
   537            msg: "LD_ready: tsk: 0x%x, func: 0x%x, pri: %d"
   538        };
   539    
   540        /*! Logged when a task is blocked (ie Semaphore_pend()) */
   541        config Log.Event LD_block = {
   542            mask: Diags.USER2,
   543            msg: "LD_block: tsk: 0x%x, func: 0x%x"
   544        };
   545    
   546        /*! Logged on calls to Task_yield */
   547        config Log.Event LM_yield = {
   548            mask: Diags.USER1 | Diags.USER2,
   549            msg: "LM_yield: tsk: 0x%x, func: 0x%x, currThread: %d"
   550        };
   551    
   552        /*! Logged on calls to Task_setPri */
   553        config Log.Event LM_setPri = {
   554            mask: Diags.USER1 | Diags.USER2,
   555            msg: "LM_setPri: tsk: 0x%x, func: 0x%x, oldPri: %d, newPri %d"
   556        };
   557    
   558        /*!
   559         *  Logged when Task functions fall thru the bottom
   560         *  or when Task_exit() is explicitly called.
   561         */
   562        config Log.Event LD_exit = {
   563            mask: Diags.USER2,
   564            msg: "LD_exit: tsk: 0x%x, func: 0x%x"
   565        };
   566    
   567        /*! Logged on calls to Task_setAffinity */
   568        config Log.Event LM_setAffinity = {
   569            mask: Diags.USER1 | Diags.USER2,
   570            msg: "LM_setAffinity: tsk: 0x%x, func: 0x%x, oldCore: %d, oldAffinity %d, newAffinity %d"
   571        };
   572    
   573        /*! Logged on every task schedule entry */
   574        config Log.Event LM_schedule = {
   575            mask: Diags.USER3,
   576            msg: "LD_schedule: coreId: %d, workFlag: %d, curSetLocal: %d, curSetX: %d, curMaskLocal: %d"
   577        };
   578    
   579        /*! Logged when no scheduling work was found */
   580        config Log.Event LM_noWork = {
   581            mask: Diags.USER3,
   582            msg: "LD_noWork: coreId: %d, curSetLocal: %d, curSetX: %d, curMaskLocal: %d"
   583        };
   584    
   585        // Errors
   586    
   587        /*!
   588         *  Error raised when a stack overflow (or corruption) is detected.
   589         *
   590         *  This error is raised by kernel's stack checking function.  This
   591         *  function checks the stacks before every task switch to make sure
   592         *  that reserved word at top of stack has not been modified.
   593         *
   594         *  The stack checking logic is enabled by the {@link #initStackFlag} and
   595         *  {@link #checkStackFlag} configuration parameters.  If both of these
   596         *  flags are set to true, the kernel will validate the stacks.
   597         */
   598        config Error.Id E_stackOverflow  = {
   599            msg: "E_stackOverflow: Task 0x%x stack overflow."
   600        };
   601    
   602        /*!
   603         *  Error raised when a task's stack pointer (SP) does not point
   604         *  somewhere within the task's stack.
   605         *
   606         *  This error is raised by kernel's stack checking function.  This
   607         *  function checks the SPs before every task switch to make sure
   608         *  they point within the task's stack.
   609         *
   610         *  The stack checking logic is enabled by the {@link #initStackFlag} and
   611         *  {@link #checkStackFlag} configuration parameters.  If both of these
   612         *  flags are set to true, the kernel will validate the stack pointers.
   613         */
   614        config Error.Id E_spOutOfBounds  = {
   615            msg: "E_spOutOfBounds: Task 0x%x stack error, SP = 0x%x."
   616        };
   617    
   618        config Error.Id E_deleteNotAllowed = {
   619            msg: "E_deleteNotAllowed: Task 0x%x."
   620        };
   621    
   622        // Asserts
   623    
   624        /*! Asserted in Task_create and Task_delete */
   625        config Assert.Id A_badThreadType = {
   626            msg: "A_badThreadType: Cannot create/delete a task from Hwi or Swi thread."
   627        };
   628    
   629        /*! Asserted in Task_delete */
   630        config Assert.Id A_badTaskState = {
   631            msg: "A_badTaskState: Can't delete a task in RUNNING state."
   632        };
   633    
   634        /*! Asserted in Task_delete */
   635        config Assert.Id A_noPendElem = {
   636            msg: "A_noPendElem: Not enough info to delete BLOCKED task."
   637        };
   638    
   639        /*! Asserted in Task_create */
   640        config Assert.Id A_taskDisabled = {
   641            msg: "A_taskDisabled: Cannot create a task when tasking is disabled."
   642        };
   643    
   644        /*! Asserted in Task_create */
   645        config Assert.Id A_badPriority = {
   646            msg: "A_badPriority: An invalid task priority was used."
   647        };
   648    
   649        /*! Asserted in Task_sleep */
   650        config Assert.Id A_badTimeout = {
   651            msg: "A_badTimeout: Can't sleep FOREVER."
   652        };
   653    
   654        /*! Asserted in Task_setAffinity */
   655        config Assert.Id A_badAffinity = {
   656            msg: "A_badAffinity: Invalid affinity."
   657        };
   658    
   659        /*! Asserted in Task_sleep */
   660        config Assert.Id A_sleepTaskDisabled = {
   661            msg: "A_sleepTaskDisabled: Cannot call Task_sleep() while the Task scheduler is disabled."
   662        };
   663    
   664        /*! Asserted in Task_getIdleTaskHandle */
   665        config Assert.Id A_invalidCoreId = {
   666            msg: "A_invalidCoreId: Cannot pass a non-zero CoreId in a non-SMP application."
   667        };
   668    
   669        /*!
   670         *  Number of Task priorities supported. Default is 16.
   671         *
   672         *  The maximum number of priorities supported is
   673         *  target specific and depends on the number of
   674         *  bits in a UInt data type. For 6x and ARM devices
   675         *  the maximum number of priorities is therefore 32.
   676         *  For 28x, 55x, and MSP430 devices, the maximum number of
   677         *  priorities is 16.
   678         */
   679        config UInt numPriorities = 16;
   680    
   681        /*!
   682         *  Default stack size (in MAUs) used for all tasks.
   683         *
   684         *  Default is obtained from the family-specific TaskSupport module
   685          *  (e.g. {@link ti.sysbios.family.arm.m3.TaskSupport},
   686          *  {@link ti.sysbios.family.c62.TaskSupport}).
   687         */
   688        config SizeT defaultStackSize;
   689    
   690        /*!
   691         *  Default memory section used for all statically created task stacks.
   692         *
   693         *  The default stack section name is target/device specific.
   694         *  For C6x targets it is ".far:taskStackSection".
   695         *  For C28x targets it is ".taskStackSection".
   696         *  For GNU targets it is ".bss".
   697         *  For all other targets it is ".bss:taskStackSection".
   698         *
   699         *  By default, all statically created task stacks are grouped together
   700         *  into the defaultStackSection and placed where ever
   701         *  the target specific defaultStackSection base section name
   702         *  (ie .bss, .far, .ebss) is placed.
   703         *
   704         *  To place all task stacks into a different memory segment,
   705         *  add the following to your config script:
   706         *
   707         *  @p(code)
   708         *  Program.sectMap[Task.defaultStackSection] = new Program.SectionSpec();
   709         *  Program.sectMap[Task.defaultStackSection].loadSegment =
   710         *                   "yourMemorySegment";
   711         *  @p
   712         *
   713         *  To group all task stacks into a different section AND place that
   714         *  section into a specific memory segment, add the following to your
   715         *  config script:
   716         *
   717         *  @p(code)
   718         *  Task.defaultStackSection = ".yourSectionName";
   719         *  Program.sectMap[Task.defaultStackSection] = new Program.SectionSpec();
   720         *  Program.sectMap[Task.defaultStackSection].loadSegment =
   721         *                   "yourMemorySegment";
   722         *  @p
   723         *
   724         *  Where "yourSectionName" can be just about anything, and
   725         *                   "yourMemorySegment"
   726         *  must be a memory segment defined for your board.
   727         */
   728        metaonly config String defaultStackSection;
   729    
   730        /*!
   731         *  Default Mem heap used for all dynamically created task stacks.
   732         *
   733         *  Default is null.
   734         */
   735        config IHeap.Handle defaultStackHeap;
   736    
   737        /*!
   738         *  Default core affinity for newly created tasks.
   739         *
   740         *  Default is Task_AFFINITY_NONE, meaning don't care.
   741         */
   742        metaonly config UInt defaultAffinity = AFFINITY_NONE;
   743    
   744        /*!
   745         *  Create a task (of priority 0) to run the Idle functions in.
   746         *
   747         *  When set to true, a task is created that continuously calls the
   748         *  {@link Idle#run Idle_run()} function, which, in turn calls each of
   749         *  the configured Idle functions.
   750         *
   751         *  When set to false, no Idle Task is created and it is up to the
   752         *  user to call the Idle_run() function if the configured Idle
   753         *  functions need to be run. Or, by adding the following lines to
   754         *  the config script, the Idle functions will run whenever all
   755         *  tasks are blocked ({@link #allBlockedFunc Task.allBlockedFunc}):
   756         *
   757         *  @p(code)
   758         *  Task.enableIdleTask = false;
   759         *  Task.allBlockedFunc = Idle.run;
   760         *  @p
   761         *
   762         *  Default is true.
   763         *
   764         *  @see #idleTaskStackSize
   765         *  @see #idleTaskStackSection
   766         *  @see #idleTaskVitalTaskFlag
   767         *  @see #allBlockedFunc
   768         */
   769        metaonly config Bool enableIdleTask = true;
   770    
   771        /*!
   772         *  Reduce interrupt latency by enabling interrupts
   773         *  within the Task scheduler.
   774         *
   775         *  By default, interrupts are disabled within certain critical
   776         *  sections of the task scheduler when switching to a different
   777         *  task thread. This default behavior guarantees that a task stack
   778         *  will only ever absorb ONE ISR context. Nested interrupts all run
   779         *  on the shared Hwi stack.
   780         *
   781         *  While most users find this behavior desirable, the resulting
   782         *  impact on interrupt latency is too great for certain applications.
   783         *
   784         *  By setting this parameter to 'true', the worst case interrupt latency
   785         *  imposed by the kernel will be reduced but will result in task stacks
   786         *  needing to be sized to accommodate one additional interrupt context.
   787         *
   788         *  See sections 3.5.3 and 7.5 of the BIOS User's Guide for further
   789         *  discussions regarding task stack sizing.
   790         *
   791         *  Also see {@link ti.sysbios.BIOS#logsEnabled BIOS.logsEnabled}
   792         *  and the discussion on Task hooks.
   793         */
   794        metaonly config Bool minimizeLatency = false;
   795    
   796        /*!
   797         *  Idle task stack size in MAUs.
   798         *
   799         *  Default is inherited from module config defaultStackSize.
   800         */
   801        metaonly config SizeT idleTaskStackSize;
   802    
   803        /*!
   804         *  Idle task stack section
   805         *
   806         *  Default is inherited from module config defaultStackSection;
   807         */
   808        metaonly config String idleTaskStackSection;
   809    
   810        /*!
   811         *  Idle task's vitalTaskFlag.
   812         *  (see {@link #vitalTaskFlag}).
   813         *
   814         *  Default is true.
   815         */
   816        metaonly config Bool idleTaskVitalTaskFlag = true;
   817    
   818        /*!
   819         *  Function to call while all tasks are blocked.
   820         *
   821         *  This function will be called repeatedly while no tasks are
   822         *  ready to run.
   823         *
   824         *  Ordinarily (in applications that have tasks ready to run at startup),
   825         *  the function will run in the context of the last task to block.
   826         *
   827         *  In an application where there are no tasks ready to run
   828         *  when BIOS_start() is called, the allBlockedFunc function is
   829         *  called within the BIOS_start() thread which runs on the system/ISR
   830         *  stack.
   831         *
   832         *  By default, allBlockedFunc is initialized to point to an internal
   833         *  function that simply returns.
   834         *
   835         *  By adding the following lines to the config script, the Idle
   836         *  functions will run whenever all tasks are blocked:
   837         *
   838         *  @p(code)
   839         *  Task.enableIdleTask = false;
   840         *  Task.allBlockedFunc = Idle.run;
   841         *  @p
   842         *
   843         *  @see #enableIdleTask
   844         *
   845         *  @a(constraints)
   846         *  The configured allBlockedFunc is designed to be called repeatedly.
   847         *  It must return in order for the task scheduler to check if all
   848         *  tasks are STILL blocked and if not, run the highest priority task
   849         *  currently ready to run.
   850         *
   851         *  The configured allBlockedFunc function is called with interrupts
   852         *  disabled. If your function must run with interrupts enabled,
   853         *  surround the body of your code with  Hwi_enable()/Hwi_restore()
   854         *  function calls per the following example:
   855         *
   856         *  @p(code)
   857         *  Void yourFunc() {
   858         *      UInt hwiKey;
   859         *
   860         *      hwiKey = Hwi_enable();
   861         *
   862         *      ...         // your code here
   863         *
   864         *      Hwi_restore(hwiKey);
   865         *  }
   866         *  @p
   867         */
   868        config AllBlockedFuncPtr allBlockedFunc = null;
   869    
   870        /*!
   871         *  Initialize stack with known value for stack checking at runtime
   872         *  (see {@link #checkStackFlag}).
   873         *
   874         *  This is also useful for inspection of stack in debugger or core
   875         *  dump utilities.
   876         *  Default is true.
   877         */
   878        config Bool initStackFlag = true;
   879    
   880        /*!
   881         *  Check 'from' and 'to' task stacks before task context switch.
   882         *
   883         *  The check consists of testing the top of stack value against
   884         *  its initial value (see {@link #initStackFlag}). If it is no
   885         *  longer at this value, the assumption is that the task has
   886         *  overrun its stack. If the test fails, then the
   887         *  {@link #E_stackOverflow} error is raised.
   888         *
   889         *  Runtime stack checking is only performed if {@link #initStackFlag} is
   890         *  also true.
   891         *
   892         *  Default is true.
   893         *
   894         *  To enable or disable full stack checking, you should set both this
   895         *  flag and the {@link ti.sysbios.hal.Hwi#checkStackFlag}.
   896         *
   897         *  @a(Note)
   898         *  Enabling stack checking will add some interrupt latency because the
   899         *  checks are made within the Task scheduler while interrupts are
   900         *  disabled.
   901         */
   902        config Bool checkStackFlag = true;
   903    
   904        /*!
   905         *  Automatically delete terminated tasks.
   906         *
   907         *  If this feature is enabled, an Idle function is installed that
   908         *  deletes dynamically created Tasks that have terminated either
   909         *  by falling through their task function or by explicitly calling
   910         *  Task_exit().
   911         *
   912         *  A list of terminated Tasks that were created dynmically is
   913         *  maintained internally. Each invocation of the installed Idle function
   914         *  deletes the first Task on this list. This one-at-a-time process
   915         *  continues until the list is empty.
   916         *
   917         *  @a(Note)
   918         *  This feature is disabled by default.
   919         *
   920         *  @a(WARNING)
   921         *  When this feature is enabled, an error will be raised if the user's
   922         *  application attempts to delete a terminated task. If a terminated task
   923         *  has already been automatically deleted and THEN the user's application
   924         *  attempts to delete it (ie: using a stale Task handle), the results are
   925         *  undefined and probably catastrophic!
   926         *
   927         */
   928        config Bool deleteTerminatedTasks = false;
   929    
   930        /*!
   931         *  Const array that holds the HookSet objects.
   932         *
   933         *  See {@link #hookfunc Hook Functions} for details about HookSets.
   934         */
   935        config HookSet hooks[length] = [];
   936    
   937        // -------- Module Functions --------
   938    
   939        /*!
   940         *  ======== addHookSet ========
   941         *  addHookSet is used in a config file to add a hook set.
   942         *
   943         *  Configures a set of hook functions for the
   944         *  Task module. Each set contains these hook functions:
   945         *
   946         *  @p(blist)
   947         *  -Register: A function called before any statically created tasks
   948         *  are initialized at runtime.  The register hook is called at boot time
   949         *  before main() and before interrupts are enabled.
   950         *  -Create: A function that is called when a task is created.
   951         *  This includes tasks that are created statically and those
   952         *  created dynamically using {@link #create} or {@link #construct}.
   953         *  The create hook is called outside of a Task_disable/enable block and
   954         *   before the task has been added to the ready list.
   955         *  -Ready: A function that is called when a task becomes ready to run.
   956         *   The ready hook is called from within a Task_disable/enable block with
   957         *   interrupts enabled.
   958         *  -Switch: A function that is called just before a task switch
   959         *  occurs. The 'prev' and 'next' task handles are passed to the Switch
   960         *  hook. 'prev' is set to NULL for the initial task switch that occurs
   961         *  during SYS/BIOS startup.  The Switch hook is called from within a
   962         *  Task_disable/enable block with interrupts enabled.
   963         *  -Exit:  A function that is called when a task exits using
   964         *  {@link #exit}.  The exit hook is passed the handle of the exiting
   965         *  task.  The exit hook is called outside of a Task_disable/enable block
   966         *  and before the task has been removed from the kernel lists.
   967         *  -Delete: A function that is called when any task is deleted at
   968         *  run-time with {@link #delete}.  The delete hook is called outside
   969         *  of a Task_disable/enable block.
   970         *  @p
   971         *  Hook functions can only be configured statically.
   972         *
   973         *  See {@link #hookfunc Hook Functions} for more details.
   974         *
   975         *  HookSet structure elements may be omitted, in which case those
   976         *  elements will not exist.
   977         *
   978         *  For example, the following configuration code defines a HookSet:
   979         *
   980         *  @p(code)
   981         *  // Hook Set 1
   982         *  Task.addHookSet({
   983         *     registerFxn: '&myRegister1',
   984         *     createFxn:   '&myCreate1',
   985         *     readyFxn:    '&myReady1',
   986         *     switchFxn:   '&mySwitch1',
   987         *     exitFxn:     '&myExit1',
   988         *     deleteFxn:   '&myDelete1'
   989         *  });
   990         *  @p
   991         *
   992         *  @param(hook)    structure of type HookSet
   993         */
   994        metaonly Void addHookSet(HookSet hook);
   995    
   996        /*!
   997         *  @_nodoc
   998         *  ======== Task_startup ========
   999         *  Start the task scheduler.
  1000         *
  1001         *  Task_startup signals the end of boot operations, enables
  1002         *  the Task scheduler and schedules the highest priority ready
  1003         *  task for execution.
  1004         *
  1005         *  Task_startup is called by BIOS_start() after Hwi_enable()
  1006         *  and Swi_enable(). There is no return from this function as the
  1007         *  execution thread is handed to the highest priority ready task.
  1008         */
  1009        Void startup();
  1010    
  1011        /*!
  1012         *  ======== Task_enabled ========
  1013         *  Returns TRUE if the Task scheduler is enabled
  1014         *
  1015         *  @_nodoc
  1016         */
  1017        Bool enabled();
  1018    
  1019        /*!
  1020         *  @_nodoc
  1021         *  ======== unlockSched ========
  1022         *  Force a Task scheduler unlock. Used by Core_atExit() & Core_hwiFunc()
  1023         *  to unlock Task scheduler before exiting.
  1024         *
  1025         *  This function should only be called after a Hwi_disable() has entered
  1026         *  the Inter-core gate and disabled interrupts locally.
  1027         */
  1028        Void unlockSched();
  1029    
  1030        /*!
  1031         *  ======== Task_disable ========
  1032         *  Disable the task scheduler.
  1033         *
  1034         *  {@link #disable} and {@link #restore} control Task scheduling.
  1035         *  {@link #disable} disables all other Tasks from running until
  1036         *  {@link #restore} is called. Hardware and Software interrupts
  1037         *  can still run.
  1038         *
  1039         *  {@link #disable} and {@link #restore} allow you to ensure that
  1040         *  statements
  1041         *  that must be performed together during critical processing are not
  1042         *  preempted by other Tasks.
  1043         *
  1044         *  The value of the key returned is opaque to applications and is meant
  1045         *  to be passed to Task_restore().
  1046         *
  1047         *  In the following example, the critical section is
  1048         *  not preempted by any Tasks.
  1049         *
  1050         *  @p(code)
  1051         *  key = Task_disable();
  1052         *      `critical section`
  1053         *  Task_restore(key);
  1054         *  @p
  1055         *
  1056         *  You can also use {@link #disable} and {@link #restore} to
  1057         *  create several Tasks and allow them to be invoked in
  1058         *  priority order.
  1059         *
  1060         *  {@link #disable} calls can be nested.
  1061         *
  1062         *  @b(returns)     key for use with {@link #restore}
  1063         *
  1064         *  @a(constraints)
  1065         *  Do not call any function that can cause the current task to block
  1066         *  within a {@link #disable}/{@link #restore} block. For example,
  1067         *  {@link ti.sysbios.knl.Semaphore#pend Semaphore_pend}
  1068         *  (if timeout is non-zero),
  1069         *  {@link #sleep}, {@link #yield}, and Memory_alloc can all
  1070         *  cause blocking.
  1071         */
  1072        UInt disable();
  1073    
  1074        /*!
  1075         *  @_nodoc
  1076         *  ======== enable ========
  1077         *  Enable the task scheduler.
  1078         *
  1079         *  {@link #enable} unconditionally enables the Task scheduler and
  1080         *  schedules the highest priority ready task for execution.
  1081         *
  1082         *  This function is called by {@link #startup} (which is called by
  1083         *  {@link ti.sysbios.BIOS#start BIOS_start}) to begin multi-tasking
  1084         *  operations.
  1085         */
  1086        Void enable();
  1087    
  1088        /*!
  1089         *  ======== restore ========
  1090         *  Restore Task scheduling state.
  1091         *
  1092         *  {@link #disable} and {@link #restore} control Task scheduling
  1093         *  {@link #disable} disables all other Tasks from running until
  1094         *  {@link #restore} is called. Hardware and Software interrupts
  1095         *  can still run.
  1096         *
  1097         *  {@link #disable} and {@link #restore} allow you to ensure that
  1098         *  statements
  1099         *  that must be performed together during critical processing are not
  1100         *  preempted.
  1101    
  1102         *  In the following example, the critical section is not preempted
  1103         *  by any Tasks.
  1104         *
  1105         *  @p(code)
  1106         *  key = Task_disable();
  1107         *      `critical section`
  1108         *  Task_restore(key);
  1109         *  @p
  1110         *
  1111         *  You can also use {@link #disable} and {@link #restore} to create
  1112         *  several Tasks and allow them to be performed in priority order.
  1113         *
  1114         *  {@link #disable} calls can be nested.
  1115         *
  1116         *  {@link #restore} returns with interrupts enabled if the key unlocks
  1117         *  the scheduler
  1118         *
  1119         *  @param(key)     key to restore previous Task scheduler state
  1120         *
  1121         *  @a(constraints)
  1122         *  Do not call any function that can cause the current task to block
  1123         *  within a {@link #disable}/{@link #restore} block. For example,
  1124         *  {@link ti.sysbios.knl.Semaphore#pend Semaphore_pend()}
  1125         *  (if timeout is non-zero),
  1126         *  {@link #sleep}, {@link #yield}, and Memory_alloc can all
  1127         *  cause blocking.
  1128         *
  1129         *  {@link #restore} internally calls Hwi_enable() if the key passed
  1130         *  to it results in the unlocking of the Task scheduler (ie if this
  1131         *  is root Task_disable/Task_restore pair).
  1132         */
  1133        Void restore(UInt key);
  1134    
  1135        /*!
  1136         *  @_nodoc
  1137         *  ======== restoreHwi ========
  1138         *  Restore Task scheduling state.
  1139         *  Used by dispatcher. Does not re-enable Ints.
  1140         */
  1141        Void restoreHwi(UInt key);
  1142    
  1143        /*!
  1144         *  ======== self ========
  1145         *  Returns a handle to the currently executing Task object.
  1146         *
  1147         *  Task_self returns the object handle for the currently executing task.
  1148         *  This function is useful when inspecting the object or when the current
  1149         *  task changes its own priority through {@link #setPri}.
  1150         *
  1151         *  No task switch occurs when calling Task_self.
  1152         *
  1153         *  Task_self will return NULL until Tasking is initiated at the end of
  1154         *  BIOS_start().
  1155         *
  1156         *  @b(returns)     address of currently executing task object
  1157         */
  1158        Handle self();
  1159    
  1160        /*!
  1161         *  ======== selfMacro ========
  1162         *  Returns a handle to the currently executing Task object.
  1163         *
  1164         *  Task_selfMacro is identical to {@link #self} but is implemented as
  1165         *  and inline macro.
  1166         *
  1167         *  @b(returns)     address of currently executing task object
  1168         */
  1169        @Macro
  1170        Handle selfMacro();
  1171    
  1172        /*!
  1173         *  @_nodoc
  1174         *  ======== checkStacks ========
  1175         *  Check for stack overflow.
  1176         *
  1177         *  This function is usually called by the {@link #HookSet} switchFxn to
  1178         *  make sure task stacks are valid before performing the context
  1179         *  switch.
  1180         *
  1181         *  If a stack overflow is detected on either the oldTask or the
  1182         *  newTask, a {@link #E_stackOverflow} Error is raised and the system
  1183         *  exited.
  1184         *
  1185         *  In order to work properly, {@link #checkStacks} requires that the
  1186         *  {@link #initStackFlag} set to true, which it is by default.
  1187         *
  1188         *  You can call {@link #checkStacks} directly from your application.
  1189         *  For example, you can check the current task's stack integrity
  1190         *  at any time with a call like the following:
  1191         *
  1192         *  @p(code)
  1193         *  Task_checkStacks(Task_self(), Task_self());
  1194         *  @p
  1195         *
  1196         *  @param(oldTask)  leaving Task Object Ptr
  1197         *  @param(newTask)  entering Task Object Ptr
  1198         */
  1199        Void checkStacks(Handle oldTask, Handle newTask);
  1200    
  1201        /*!
  1202         *  ======== exit ========
  1203         *  Terminate execution of the current task.
  1204         *
  1205         *  Task_exit terminates execution of the current task, changing its mode
  1206         *  from {@link #Mode_RUNNING} to {@link #Mode_TERMINATED}. If all tasks
  1207         *  have been terminated, or if all remaining tasks have their
  1208         *  vitalTaskFlag attribute set to FALSE, then SYS/BIOS terminates the
  1209         *  program as a whole by calling the function System_exit with a status
  1210         *  code of 0.
  1211         *
  1212         *  Task_exit is automatically called whenever a task returns from its
  1213         *  top-level function.
  1214         *
  1215         *  Exit Hooks (see exitFxn in {@link #HookSet}) can be used to provide
  1216         *  functions that run whenever a task is terminated. The exitFxn Hooks
  1217         *  are called before the task has been blocked and marked
  1218         *  {@link #Mode_TERMINATED}.
  1219         *  See {@link #hookfunc Hook Functions} for more information.
  1220         *
  1221         *  Any SYS/BIOS function can be called from an Exit Hook function.
  1222         *
  1223         *  Calling {@link #self} within an Exit function returns the task
  1224         *  being exited. Your Exit function declaration should be similar to
  1225         *  the following:
  1226         *  @p(code)
  1227         *  Void myExitFxn(Void);
  1228         *  @p
  1229         *
  1230         *  A task switch occurs when calling Task_exit unless the program as a
  1231         *  whole is terminated
  1232         *
  1233         *  @a(constraints)
  1234         *  Task_exit cannot be called from a Swi or Hwi.
  1235         *
  1236         *  Task_exit cannot be called from the program's main() function.
  1237         */
  1238        Void exit();
  1239    
  1240        /*!
  1241         *  ======== sleep ========
  1242         *  Delay execution of the current task.
  1243         *
  1244         *  Task_sleep changes the current task's mode from {@link #Mode_RUNNING}
  1245         *  to {@link #Mode_BLOCKED}, and delays its execution for nticks
  1246         *  increments of the {@link Clock system clock}. The actual time
  1247         *  delayed can be up to 1 system clock tick less than nticks due to
  1248         *  granularity in system timekeeping and the time elapsed per
  1249         *  tick is determined by {@link Clock#tickPeriod Clock_tickPeriod}.
  1250         *
  1251         *  After the specified period of time has elapsed, the task reverts to
  1252         *  the {@link #Mode_READY} mode and is scheduled for execution.
  1253         *
  1254         *  A task switch always occurs when calling Task_sleep if nticks > 0.
  1255         *
  1256         *  @param(nticks)  number of system clock ticks to sleep
  1257         *
  1258         *  @a(constraints)
  1259         *  Task_sleep cannot be called from a Swi or Hwi, or within a
  1260         *  {@link #disable} / {@link #restore} block.
  1261         *
  1262         *  Task_sleep cannot be called from the program's main() function.
  1263         *
  1264         *  Task_sleep should not be called from within an Idle function. Doing
  1265         *  so prevents analysis tools from gathering run-time information.
  1266         *
  1267         *  nticks cannot be {@link ti.sysbios.BIOS#WAIT_FOREVER BIOS_WAIT_FOREVER}.
  1268         */
  1269        Void sleep(UInt32 nticks);
  1270    
  1271        /*!
  1272         *  ======== yield ========
  1273         *  Yield processor to equal priority task.
  1274         *
  1275         *  Task_yield yields the processor to another task of equal priority.
  1276         *
  1277         *  A task switch occurs when you call Task_yield if there is an equal
  1278         *  priority task ready to run.
  1279         *
  1280         *  Tasks of higher priority preempt the currently running task without
  1281         *  the need for a call to Task_yield. If only lower-priority tasks are
  1282         *  ready to run when you call Task_yield, the current task continues to
  1283         *  run. Control does not pass to a lower-priority task.
  1284         *
  1285         *  @a(constraints)
  1286         *  When called within an Hwi, the code sequence calling Task_yield
  1287         *  must be invoked by the Hwi dispatcher.
  1288         *
  1289         *  Task_yield cannot be called from the program's main() function.
  1290         */
  1291        Void yield();
  1292    
  1293        /*!
  1294         *  ======== getIdleTask ========
  1295         *  returns a handle to the idle task object (for core 0)
  1296         */
  1297        Handle getIdleTask();
  1298    
  1299        /*!
  1300         *  ======== getIdleTaskHandle ========
  1301         *  returns a handle to the idle task object for the specified coreId
  1302         *  (should be used only in applications built with
  1303         *  {@link ti.sysbios.BIOS#smpEnabled} set to true)
  1304         *
  1305         *  @a(Note)
  1306         *  If this function is called in a non-SMP application, coreId should
  1307         *  always be 0.
  1308         */
  1309        Handle getIdleTaskHandle(UInt coreId);
  1310    
  1311        /*!
  1312         *  @_nodoc
  1313         *  ======== startCore ========
  1314         *  begin tasking on a core
  1315         */
  1316        Void startCore(UInt coreId);
  1317    
  1318        /*!
  1319         *  ======== getNickName ========
  1320         *
  1321         */
  1322        metaonly String getNickName(Any tskView);
  1323    
  1324    instance:
  1325    
  1326        /*!
  1327         *  ======== create ========
  1328         *  Create a Task.
  1329         *
  1330         *  Task_create creates a new task object. If successful, Task_create
  1331         *  returns the handle of the new task object. If unsuccessful,
  1332         *  Task_create returns NULL unless it aborts.
  1333         *
  1334         *  The fxn parameter uses the {@link #FuncPtr} type to pass a pointer to
  1335         *  the function the Task object should run. For example, if myFxn is a
  1336         *  function in your program, your C code can create a Task object
  1337         *  to call that
  1338         *  function as follows:
  1339         *
  1340         *  @p(code)
  1341         *  Task_Params taskParams;
  1342         *
  1343         *  // Create task with priority 15
  1344         *  Task_Params_init(&taskParams);
  1345         *  taskParams.stackSize = 512;
  1346         *  taskParams.priority = 15;
  1347         *  Task_create((Task_FuncPtr)myFxn, &taskParams, &eb);
  1348         *  @p
  1349         *
  1350         *  The following statements statically create a task in the
  1351         *  configuration file:
  1352         *
  1353         *  @p(code)
  1354         *  var params = new Task.Params;
  1355         *  params.instance.name = "tsk0";
  1356         *  params.arg0 = 1;
  1357         *  params.arg1 = 2;
  1358         *  params.priority = 1;
  1359         *  Task.create('&tsk0_func', params);
  1360         *  @p
  1361         *
  1362         *  If NULL is passed instead of a pointer to an actual Task_Params
  1363         *  struct, a
  1364         *  default set of parameters is used. The "eb" is an error block that
  1365         *  you can use
  1366         *  to handle errors that may occur during Task object creation.
  1367         *
  1368         *  The newly created task is placed in {@link #Mode_READY} mode, and is
  1369         *  scheduled to begin concurrent execution of the following function
  1370         *  call:
  1371         *
  1372         *  @p(code)
  1373         *  (*fxn)(arg1, arg2);
  1374         *  @p
  1375         *
  1376         *  As a result of being made ready to run, the task runs any
  1377         *  application-wide Ready functions that have been specified.
  1378         *
  1379         *  Task_exit is automatically called if and when the task returns
  1380         *  from fxn.
  1381         *
  1382         *  @p(html)
  1383         *  <B>Create Hook Functions</B>
  1384         *  @p
  1385         *
  1386         *  You can specify application-wide Create hook functions in your config
  1387         *  file that run whenever a task is created. This includes tasks that
  1388         *  are created statically and those created dynamically using
  1389         *  Task_create.
  1390         *
  1391         *  For Task objects created statically, Create functions are called
  1392         *  during the Task module initialization phase of the program startup
  1393         *  process prior to main().
  1394         *
  1395         *  For Task objects created dynamically, Create functions
  1396         *  are called after the task handle has been initialized but before the
  1397         *  task has been placed on its ready queue.
  1398         *
  1399         *  Any SYS/BIOS function can be called from Create functions.
  1400         *  SYS/BIOS passes the task handle of the task being created to each of
  1401         *  the Create functions.
  1402         *
  1403         *  All Create function declarations should be similar to this:
  1404         *  @p(code)
  1405         *  Void myCreateFxn(Task_Handle task);
  1406         *  @p
  1407         *
  1408         *  @param(fxn)     Task Function
  1409         *
  1410         *  @a(constraints)
  1411         *  @p(blist)
  1412         *  - The fxn parameter and the name attribute cannot be NULL.
  1413         *  - The priority attribute must be less than or equal to
  1414         *  ({@link #numPriorities} - 1) and greater than or equal to one (1)
  1415         *  (priority 0 is owned by the Idle task).
  1416         *  - The priority can be set to -1 for tasks that will not execute
  1417         *  until another task changes the priority to a positive value.
  1418         *  - The stackHeap attribute must identify a valid memory Heap.
  1419         *  @p
  1420         */
  1421        create(FuncPtr fxn);
  1422    
  1423        // -------- Handle Parameters --------
  1424    
  1425        /*! Task function argument. Default is 0 */
  1426        config UArg arg0 = 0;
  1427    
  1428        /*! Task function argument. Default is 0 */
  1429        config UArg arg1 = 0;
  1430    
  1431        /*!
  1432         *  Task priority (0 to Task.numPriorities-1, or -1).
  1433         *  Default is 1.
  1434         */
  1435        config Int priority = 1;
  1436    
  1437        /*!
  1438         *  Task stack pointer. Default = null.
  1439         *
  1440         *  Null indicates that the stack is to be allocated by create().
  1441         *
  1442         *  Example: To statically initialize "tsk0"'s stack to a literal
  1443         *  address, use the following syntax:
  1444         *
  1445         *  @p(code)
  1446         *      Program.global.tsk0.stack = $addr(literal);
  1447         *  @p
  1448         *
  1449         */
  1450        config Ptr stack = null;
  1451    
  1452        /*!
  1453         *  Task stack size in MAUs.
  1454         *
  1455         *  The default value of 0 means that the module config
  1456         *  {@link #defaultStackSize} is used.
  1457         */
  1458        config SizeT stackSize = 0;
  1459    
  1460        /*!
  1461         *  Mem section used for statically created task stacks.
  1462         *
  1463         *  Default is inherited from module config defaultStackSection.
  1464         */
  1465        metaonly config String stackSection;
  1466    
  1467        /*!
  1468         *  Mem heap used for dynamically created task stack.
  1469         *
  1470         *  The default value of NULL means that the module config
  1471         *  {@link #defaultStackHeap} is used.
  1472         */
  1473        config IHeap.Handle stackHeap = null;
  1474    
  1475        /*! Environment data struct. */
  1476        config Ptr env = null;
  1477    
  1478        /*!
  1479         *  Exit system immediately when the last task with this
  1480         *  flag set to TRUE has terminated.
  1481         *
  1482         *  Default is true.
  1483         */
  1484        config Bool vitalTaskFlag = true;
  1485    
  1486        /*!
  1487         *  The core which this task is to run on. Default is Task_AFFINITY_NONE
  1488         *
  1489         *  If there is a compelling reason for a task to be pinned to a
  1490         *  particular core, then setting 'affinity' to the corresponding core
  1491         *  id will force the task to only be run on that core.
  1492         *
  1493         *  The default affinity is inherited from {@link #defaultAffinity
  1494         *  Task.defaultAffinity}
  1495         *  which in turn defaults to {@link #AFFINITY_NONE Task_AFFINITY_NONE},
  1496         *  which means the task can be run on either core.
  1497         *
  1498         *  Furthermore,  Task_AFFINITY_NONE implies that the task can be moved
  1499         *  from core to core as deemed necessary by the Task scheduler in order
  1500         *  to keep the two highest priority ready tasks running simultaneously.
  1501         */
  1502        config UInt affinity;
  1503    
  1504        // -------- Handle Functions --------
  1505    
  1506        /*!
  1507         *  @_nodoc
  1508         *  ======== getArg0 ========
  1509         *  Returns arg0 passed via params to create.
  1510         *
  1511         *  @b(returns)     task's arg0
  1512         */
  1513        UArg getArg0();
  1514    
  1515        /*!
  1516         *  @_nodoc
  1517         *  ======== getArg1 ========
  1518         *  Returns arg1 passed via params to create.
  1519         *
  1520         *  @b(returns)     task's arg1
  1521         */
  1522        UArg getArg1();
  1523    
  1524        /*!
  1525         *  ======== getEnv ========
  1526         *  Get task environment pointer.
  1527         *
  1528         *  Task_getEnv returns the environment pointer of the specified task. The
  1529         *  environment pointer references an arbitrary application-defined data
  1530         *  structure.
  1531         *
  1532         *  If your program uses multiple hook sets, {@link #getHookContext}
  1533         *  allows you to get environment pointers you have set for a particular
  1534         *  hook set and Task object combination.
  1535         *
  1536         *  @b(returns)     task environment pointer
  1537         */
  1538        Ptr getEnv();
  1539    
  1540        /*!
  1541         *  ======== getFunc ========
  1542         *  Get Task function and arguments
  1543         *
  1544         *  If either arg0 or arg1 is NULL, then the corresponding argument is not
  1545         *  returned.
  1546         *
  1547         *  @param(arg0)    pointer for returning Task's first function argument
  1548         *  @param(arg1)    pointer for returning Task's second function argument
  1549         *
  1550         *  @b(returns)     Task function
  1551         */
  1552        FuncPtr getFunc(UArg *arg0, UArg *arg1);
  1553    
  1554        /*!
  1555         *  ======== getHookContext ========
  1556         *  Get hook set's context for a task.
  1557         *
  1558         *  For example, this C code gets the HookContext, prints it,
  1559         *  and sets a new value for the HookContext.
  1560         *
  1561         *  @p(code)
  1562         *  Ptr pEnv;
  1563         *  Task_Handle myTask;
  1564         *  Int myHookSetId1;
  1565         *
  1566         *  pEnv = Task_getHookContext(task, myHookSetId1);
  1567         *
  1568         *  System_printf("myEnd1: pEnv = 0x%lx, time = %ld\n",
  1569         *                (ULong)pEnv, (ULong)Timestamp_get32());
  1570         *
  1571         *  Task_setHookContext(task, myHookSetId1, (Ptr)0xc0de1);
  1572         *  @p
  1573         *
  1574         *  See {@link #hookfunc Hook Functions} for more details.
  1575         *
  1576         *  @param(id)      hook set ID
  1577         *  @b(returns)     hook set context for task
  1578         */
  1579        Ptr getHookContext(Int id);
  1580    
  1581        /*!
  1582         *  ======== getPri ========
  1583         *  Get task priority.
  1584         *
  1585         *  Task_getPri returns the priority of the referenced task.
  1586         *
  1587         *  @b(returns)     task priority
  1588         */
  1589        Int getPri();
  1590    
  1591        /*!
  1592         *  @_nodoc
  1593         *  ======== setArg0 ========
  1594         *  Set arg0 (used primarily for legacy support)
  1595         */
  1596        Void setArg0(UArg arg);
  1597    
  1598        /*!
  1599         *  @_nodoc
  1600         *  ======== setArg1 ========
  1601         *  Set arg1 (used primarily for legacy support)
  1602         */
  1603        Void setArg1(UArg arg);
  1604    
  1605        /*!
  1606         *  ======== setEnv ========
  1607         *  Set task environment.
  1608         *
  1609         *  Task_setEnv sets the task environment pointer to env. The
  1610         *  environment pointer references an arbitrary application-defined
  1611         *  data structure.
  1612         *
  1613         *  If your program uses multiple hook sets, {@link #setHookContext}
  1614         *  allows you to set environment pointers for any
  1615         *  hook set and Task object combination.
  1616         *
  1617         *  @param(env)     task environment pointer
  1618         */
  1619        Void setEnv(Ptr env);
  1620    
  1621        /*!
  1622         *  ======== setHookContext ========
  1623         *  Set hook instance's context for a task.
  1624         *
  1625         *  For example, this C code gets the HookContext, prints it,
  1626         *  and sets a new value for the HookContext.
  1627         *
  1628         *  @p(code)
  1629         *  Ptr pEnv;
  1630         *  Task_Handle myTask;
  1631         *  Int myHookSetId1;
  1632         *
  1633         *  pEnv = Task_getHookContext(task, myHookSetId1);
  1634         *
  1635         *  System_printf("myEnd1: pEnv = 0x%lx, time = %ld\n",
  1636         *                (ULong)pEnv, (ULong)Timestamp_get32());
  1637         *
  1638         *  Task_setHookContext(task, myHookSetId1, (Ptr)0xc0de1);
  1639         *  @p
  1640         *
  1641         *  See {@link #hookfunc Hook Functions} for more details.
  1642         *
  1643         *  @param(id)              hook set ID
  1644         *  @param(hookContext)     value to write to context
  1645         */
  1646        Void setHookContext(Int id, Ptr hookContext);
  1647    
  1648        /*!
  1649         *  ======== setPri ========
  1650         *  Set a task's priority
  1651         *
  1652         *  Task_setpri sets the execution priority of task to newpri, and returns
  1653         *  that task's old priority value. Raising or lowering a task's priority
  1654         *  does not necessarily force preemption and re-scheduling of the caller:
  1655         *  tasks in the {@link #Mode_BLOCKED} mode remain suspended despite a
  1656         *  change in priority; and tasks in the {@link #Mode_READY} mode gain
  1657         *  control only if their new priority is greater than that of the
  1658         *  currently executing task.
  1659         *
  1660         *  newpri should be set to a value greater than or equal to 1 and
  1661         *  less than or equal to ({@link #numPriorities} - 1).  newpri can also
  1662         *  be set to -1 which puts the the task into the INACTIVE state and the
  1663         *  task will not run until its priority is raised at a later time by
  1664         *  another task.  Priority 0 is reserved for the idle task.
  1665         *  If newpri equals ({@link #numPriorities} - 1), execution of the task
  1666         *  effectively locks out all other program activity, except for the
  1667         *  handling of interrupts.
  1668         *
  1669         *  The current task can change its own priority (and possibly preempt its
  1670         *  execution) by passing the output of {@link #self} as the value of the
  1671         *  task parameter.
  1672         *
  1673         *  A context switch occurs when calling Task_setpri if a currently
  1674         *  running task priority is set lower than the priority of another
  1675         *  currently ready task, or if another ready task is made to have a
  1676         *  higher priority than the currently running task.
  1677         *
  1678         *  Task_setpri can be used for mutual exclusion.
  1679         *
  1680         *  If a task's new priority is different than its previous priority,
  1681         *  then its relative placement in its new ready task priority
  1682         *  queue can be different than the one it was removed from. This can
  1683         *  effect the relative order in which it becomes the running task.
  1684         *
  1685         *  The effected task is placed at the head of its new priority queue
  1686         *  if it is the currently running task. Otherwise it is placed at
  1687         *  at the end of its new task priority queue.
  1688         *
  1689         *  @param(newpri) task's new priority
  1690         *  @b(returns)     task's old priority
  1691         *
  1692         *  @a(constraints)
  1693         *  newpri must be a value between 1 and ({@link #numPriorities} - 1) or -1.
  1694         *
  1695         *  The task cannot be in the {@link #Mode_TERMINATED} mode.
  1696         *
  1697         *  The new priority should not be zero (0). This priority level is
  1698         *  reserved for the Idle task.
  1699         */
  1700        UInt setPri(Int newpri);
  1701    
  1702        /*!
  1703         *  ======== stat ========
  1704         *  Retrieve the status of a task.
  1705         *
  1706         *  Task_stat retrieves attribute values and status information about a
  1707         *  task.
  1708         *
  1709         *  Status information is returned through statbuf, which references a
  1710         *  structure of type {@link #Stat}.
  1711         *
  1712         *  When a task is preempted by a software or hardware interrupt, the task
  1713         *  execution mode returned for that task by Task_stat is still
  1714         *  {@link #Mode_RUNNING}  because the task runs when the preemption ends.
  1715         *
  1716         *  The current task can inquire about itself by passing the output of
  1717         *  {@link #self} as the first argument to Task_stat. However, the task
  1718         *  stack pointer (sp) in the {@link #Stat} structure is the value from
  1719         *  the previous context switch.
  1720         *
  1721         *  Task_stat has a non-deterministic execution time. As such, it is not
  1722         *  recommended to call this API from Swis or Hwis.
  1723         *
  1724         *  @param(statbuf) pointer to task status structure
  1725         *
  1726         *  @a(constraints)
  1727         *  statbuf cannot be NULL;
  1728         */
  1729        Void stat(Stat *statbuf);
  1730    
  1731        /*!
  1732         *  ======== getMode ========
  1733         *  Retrieve the {@link #Mode} of a task.
  1734         */
  1735        Mode getMode();
  1736    
  1737        /*!
  1738         *  ======== setAffinity ========
  1739         *  Set task's core affinity (should be used only in applications built
  1740         *  with {@link ti.sysbios.BIOS#smpEnabled} set to true)
  1741         *
  1742         *  If the new core ID is different than the current core affinity
  1743         *  a reschedule will be performed immediately.
  1744         *
  1745         *  @a(constraints)
  1746         *  Must NOT be called with interrupts disabled
  1747         *  (ie within a Hwi_disable()/Hwi_restore() block).
  1748         *
  1749         *  Must NOT be called with tasking disabled
  1750         *  (ie within a Task_disable()/Task_restore() block).
  1751         *
  1752         *  @b(returns)     task's previous core affinity
  1753         */
  1754        UInt setAffinity(UInt coreId);
  1755    
  1756        /*!
  1757         *  ======== getAffinity ========
  1758         *  Return task's core affinity (should be used only in applications built
  1759         *  with {@link ti.sysbios.BIOS#smpEnabled} set to true)
  1760         *
  1761         *  @b(returns)     task's current core affinity
  1762         */
  1763        UInt getAffinity();
  1764    
  1765        /*!
  1766         *  @_nodoc
  1767         *  ======== block ========
  1768         *  Block a task.
  1769         *
  1770         *  Remove a task from its ready list.
  1771         *  The effect of this API is manifest the next time the internal
  1772         *  Task scheduler is invoked.
  1773         *  This can be done directly by embedding the call within a
  1774         *  {@link #disable}/{@link #restore} block.
  1775         *  Otherwise, the effect will be manifest as a result of processing
  1776         *  the next dispatched interrupt, or by posting a Swi, or by falling
  1777         *  through the task function.
  1778         *
  1779         *  @a(constraints)
  1780         *  If called from within a Hwi or a Swi, or main(), there is no need
  1781         *  to embed the call within a {@link #disable}/{@link #restore} block.
  1782         */
  1783        Void block();
  1784    
  1785        /*!
  1786         *  @_nodoc
  1787         *  ======== unblock ========
  1788         *  Unblock a task.
  1789         *
  1790         *  Place task in its ready list.
  1791         *  The effect of this API is manifest the next time the internal
  1792         *  Task scheduler is invoked.
  1793         *  This can be done directly by embedding the call within a
  1794         *  {@link #disable}/{@link #restore} block.
  1795         *  Otherwise, the effect will be manifest as a result of processing
  1796         *  the next dispatched interrupt, or by posting a Swi, or by falling
  1797         *  through the task function.
  1798         *
  1799         *  @a(constraints)
  1800         *  If called from within a Hwi or a Swi, or main(), there is no need
  1801         *  to embed the call within a {@link #disable}/{@link #restore} block.
  1802         */
  1803        Void unblock();
  1804    
  1805        /*!
  1806         *  @_nodoc
  1807         *  ======== blockI ========
  1808         *  Block a task.
  1809         *
  1810         *  Remove a task from its ready list.
  1811         *  Must be called within Task_disable/Task_restore block
  1812         *  with interrupts disabled.
  1813         *  This API is meant to be used internally.
  1814         */
  1815        Void blockI();
  1816    
  1817        /*!
  1818         *  @_nodoc
  1819         *  ======== unblockI ========
  1820         *  Unblock a task.
  1821         *
  1822         *  Place task in its ready list.
  1823         *  Must be called within Task_disable/Task_restore block
  1824         *  with interrupts disabled.
  1825         *  This API is meant to be used internally.
  1826         *
  1827         *  @param(hwiKey) key returned from Hwi_disable()
  1828         */
  1829        Void unblockI(UInt hwiKey);
  1830    
  1831    internal:   /* not for client use */
  1832    
  1833        /*! Target-specific support functions. */
  1834        proxy SupportProxy inherits ti.sysbios.interfaces.ITaskSupport;
  1835    
  1836        /*
  1837         *  ======== schedule ========
  1838         *  Find highest priority ready task and invoke it.
  1839         *
  1840         *  Must be called with interrupts disabled.
  1841         */
  1842        Void schedule();
  1843    
  1844        /*
  1845         *  ======== enter ========
  1846         *  Task's initial entry point before entering task function.
  1847         */
  1848        Void enter();
  1849    
  1850        /*
  1851         *  ======== sleepTimeout ========
  1852         *  This function is the clock event handler for sleep.
  1853         */
  1854        Void sleepTimeout(UArg arg);
  1855    
  1856        /*
  1857         *  ======== postInit ========
  1858         *  finish initializing static and dynamic Tasks
  1859         */
  1860        Int postInit(Object *task, Error.Block *eb);
  1861    
  1862        /*
  1863         *  Number of statically constructed Task objects.
  1864         *  Shouldn't be set directly by the user's
  1865         *  config (it gets set by instance$static$init).
  1866         */
  1867        config UInt numConstructedTasks = 0;
  1868    
  1869        /*
  1870         *  ======== allBlockedFunction ========
  1871         *  default function to be called
  1872         */
  1873        Void allBlockedFunction();
  1874    
  1875        /*
  1876         *  ======== deleteTerminatedTasksFunc ========
  1877         *  Idle func that deletes the first terminated task it finds
  1878         *  in the queue of dynamically created tasks
  1879         */
  1880        Void deleteTerminatedTasksFunc();
  1881    
  1882        /*
  1883         *  ======== Task_processVitalTasks ========
  1884         *  Call BIOS_exit() when last vitalTask exits or is
  1885         *  deleted.
  1886         */
  1887        Void processVitalTaskFlag(Object *task);
  1888    
  1889        /*
  1890         *  ======== startupHookFunc ========
  1891         *  Called by core 0 just before switch to first task
  1892         */
  1893        config Void (*startupHookFunc)(Void) = null;
  1894    
  1895        /*
  1896         *  Common object used by all blocked tasks to enable Task_delete()
  1897         *  to remove a task from any pend Q it is placed on while blocked.
  1898         */
  1899        struct PendElem {
  1900            Queue.Elem      qElem;
  1901            Task.Handle     task;
  1902            Clock.Handle    clock;
  1903        };
  1904    
  1905        struct Instance_State {
  1906            Queue.Elem      qElem;          // Task's readyQ element
  1907            volatile Int    priority;       // Task priority
  1908            UInt            mask;           // curSet mask = 1 << priority
  1909            Ptr             context;        // ptr to Task's saved context
  1910                                            // while not in RUNNING mode.
  1911            Mode            mode;           // READY, BLOCKED, RUNNING, etc
  1912            PendElem        *pendElem;      // ptr to Task, Semaphore, Event,
  1913                                            // or GateMutexPri PendElem
  1914            SizeT           stackSize;      // Task's stack buffer size
  1915            Char            stack[];        // buffer used for Task's stack
  1916            IHeap.Handle    stackHeap;      // Heap to allocate stack from
  1917            FuncPtr         fxn;            // Task function
  1918            UArg            arg0;           // Task function 1st arg
  1919            UArg            arg1;           // Task function 2nd arg
  1920            Ptr             env;            // Task environment pointer
  1921            Ptr             hookEnv[];      // ptr to Task's hook env array
  1922            Bool            vitalTaskFlag;  // TRUE = shutdown system if
  1923                                            // last task like this exits
  1924            Queue.Handle    readyQ;         // This Task's readyQ
  1925            UInt            curCoreId;      // Core this task is currently running on.
  1926            UInt            affinity;       // Core this task must run on
  1927                                            // Task_AFFINITY_NONE = don't care
  1928        };
  1929    
  1930        struct Module_State {
  1931            volatile Bool   locked;         // Task scheduler locked flag
  1932            volatile UInt   curSet;         // Bitmask reflects readyQ states
  1933            Bool            workFlag;       // Scheduler work is pending.
  1934                                            // Optimization. Must be set
  1935                                            // whenever readyQs are modified.
  1936            UInt            vitalTasks;     // number of tasks with
  1937                                            // vitalTaskFlag = true
  1938            Handle          curTask;        // current Task instance
  1939            Queue.Handle    curQ;           // current Task's readyQ
  1940            Queue.Object    readyQ[];       // Task ready queues
  1941    
  1942            volatile UInt   smpCurSet[];    // Bitmask reflects readyQ states
  1943                                            // curSet[n] = core n
  1944                                            // curSet[Core.numCores] = don't care
  1945            volatile UInt   smpCurMask[];   // mask of currently running tasks
  1946            Handle          smpCurTask[];   // current Task instance ([0] = core 0, etc)
  1947            Queue.Handle    smpReadyQ[];    // core ready queues
  1948                                            // [0] = core0 readyQs
  1949                                            // [1] = core1 readyQs
  1950                                            // [numCores] = don't care readyQs
  1951            Queue.Object    inactiveQ;      // Task's with -1 priority
  1952            Queue.Object    terminatedQ;    // terminated dynamically created Tasks
  1953    
  1954            Handle          idleTask[];             // Idle Task handles
  1955            Handle          constructedTasks[];     // array of statically
  1956                                                    // constructed Tasks
  1957        };
  1958    
  1959        struct RunQEntry {
  1960            Queue.Elem      elem;
  1961            UInt            coreId;
  1962            Int             priority;
  1963        };
  1964    
  1965        struct Module_StateSmp {
  1966            Queue.Object            *sortedRunQ;     // A queue of RunQEntry elems
  1967                                                     // that is  sorted by priority
  1968            volatile RunQEntry       smpRunQ[];      // Run queue entry handles for
  1969                                                     // each core
  1970        };
  1971    }