
Application Report
SPRAAS7F – July 2011

1

Migrating a DSP/BIOS 5 Application to SYS/BIOS 6
Steven Connell SYS/BIOS Kernel Team

ABSTRACT

This application note introduces DSP/BIOS 5.x users to SYS/BIOS 6. It provides details
and an example about using the legacy support. It further provides advice about migrating
applications to take advantage of SYS/BIOS 6 features. This application note also
discusses issues encountered when upgrading both from DSP/BIOS 5 to SYS/BIOS 6 and
from Code Composer Studio 3.x to 4.

This application report contains example code that can be downloaded from this link:
http://www-s.ti.com/sc/techlit/spraas7.zip

Contents
1 Introduction to SYS/BIOS 6.x Legacy Support .. 2

1.1 What Legacy Support is Provided? .. 3
1.2 What Does this Application Note Cover? ... 3
1.3 What is the General Migration Procedure? .. 4
1.4 Software Requirements .. 4

2 Converting Your Configuration ... 5
2.1 Conversion Tool Syntax .. 6
2.2 Specifying Environment Variables to the Conversion Tool .. 7
2.3 How Memory Map Settings Are Translated.. 7
2.4 Steps to Convert a Tconf Script to a RTSC Configuration Script 8
2.5 Memory Map Issues for C28x Users .. 8

3 Converting and Updating Your CCS Project ... 9
3.1 Migrating Code Composer Studio Projects .. 9
3.2 Updating a CCSv4 Project to Build with a Generated Platform Package 10
3.3 Updating the Project’s Compiler Search Path .. 12
3.4 Updating a CCSv4 Project’s Search Path to Find Included Configuration Files 12
3.5 Building and Running the Project ... 13

4 Converting Your C Code .. 14
4.1 Legacy Module Mappings and API Guide .. 14
4.2 Extending Your Legacy Program with SYS/BIOS 6 APIs .. 16

5 Migrating Memory Configurations .. 18
5.1 Memory and RTSC Platforms ... 18
5.2 Memory Segments and Sections .. 19
5.3 Heaps .. 20
5.4 Dynamic Memory Allocation ... 21

6 Migrating Library Builds .. 22
6.1 Creating a New Library Project for CCSv4 ... 22
6.2 Updating the Compiler Search Paths for CCSv4 Library Projects 23

7 Porting the Mailbox Example to SYS/BIOS 6 Using Legacy Support 24
7.1 Copying the Mailbox Example Files ... 24
7.2 Converting the Mailbox Configuration Using the Conversion Tool 25

http://www-s.ti.com/sc/techlit/spraas7.zip�

SPRAAS7F

2 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

7.3 Creating a CCSv4 Project for the Mailbox Program ... 26
7.4 Updating the Compiler Search Path ... 30
7.5 Building and Running the Application ... 31
7.6 Using XGCONF to View the SYS/BIOS Configuration ... 32

8 Porting the Mailbox Example to SYS/BIOS 6 with New Modules and APIs 33
8.1 Updating the Configuration Files... 33
8.2 Updating the C Source File ... 42
8.3 Building and Running the Application ... 46

9 Adding SYS/BIOS Tasks and Communication to a Legacy Application 48
9.1 Adding Two New SYS/BIOS 6 Tasks to a Legacy Program .. 49
9.2 Communicating Between the Existing Legacy TSKs and the New Tasks 51

10 Conclusion ... 55
11 References ... 55
A Unsupported DSP/BIOS 5 APIs ... 56
B Unsupported DSP/BIOS 5 Tconf Properties and Methods ... 57

B.1 Tconf prog.decl() and prog.extern() Methods ... 57
B.2 CLK Module Properties ... 58
B.3 GBL Module Properties ... 58
B.4 HWI Module Properties ... 58
B.5 IDL Module Properties .. 58
B.6 LOG Module Properties .. 58
B.7 MEM Module Properties .. 59
B.8 PRD Module Properties .. 59
B.9 SWI Module Properties ... 59
B.10 TSK Module Properties ... 59

C Performance Benchmarks ... 60
C.1 C64 Timing Benchmarks ... 60
C.2 C64 Sizing Benchmarks .. 61

1 Introduction to SYS/BIOS 6.x Legacy Support
This application note introduces DSP/BIOS 5.x users to SYS/BIOS 6. It provides details about
the legacy support that is provided and how to make use of it. It further provides advice about
migrating applications to take advantage of SYS/BIOS 6 features.

The intention of this application note is to help you upgrade to SYS/BIOS 6 quickly and
effectively, with minimal overhead, through examples and reference information about legacy
module and API support. The information in this application note will hopefully act as a bridge to
connect the old world of DSP/BIOS 5 to the new world of SYS/BIOS 6.

This application note also discusses issues encountered when upgrading both from DSP/BIOS 5
to 6 and from Code Composer Studio 3.x to 4. The CCS steps in this application note apply to
CCSv4.2.

Along with SYS/BIOS 6.x, you must use XDCtools 3.x, which provides tools and APIs that
implement the RTSC standard. For documentation on these additional tools, see Section 11.

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 3

1.1 What Legacy Support is Provided?

SYS/BIOS 6 provides legacy support for most targets and APIs to make it easy for you to
migrate DSP/BIOS 5 applications to SYS/BIOS 6. The following bullet points highlight SYS/BIOS
6 legacy support:

• The vast majority of DSP/BIOS 5 C APIs are fully supported and callable within SYS/BIOS 6,
requiring no changes to existing C code.

• Tconf configuration (*.tcf) code is supported within SYS/BIOS 6 with some adjustments.

• A DSP/BIOS 5 program that uses supported legacy C APIs and has an updated configuration
will be 100% compatible after a rebuild.

• SYS/BIOS 6 does not support all targets that were previously supported by DSP/BIOS 5. The
following targets are not supported by SYS/BIOS 6: C54x, C55x, C62x, C64x, and C67x. For
a full list of targets and devices that are supported, please refer to the SYS/BIOS Release
Notes, which is in the top-level SYS/BIOS installation directory.

Expanding on these highlights, most DSP/BIOS 5 legacy C APIs still exist in SYS/BIOS 6, and
may be called without making any C code changes. Allowing you to move C code forward,
unchanged, minimizes migration overhead. A small number of modules and their APIs are no
longer supported, either because they are no longer part of SYS/BIOS or because support for
them did not make sense. The number of these deprecated modules and APIs was minimized.

Legacy Tconf configuration support is also provided, but in this case you must make some
changes to that code in order to build. The changes needed for simple configurations are
minimal. For more advanced configurations, a conversion utility is provided to translate Tconf
configurations to RTSC configurations.

With these qualifications, existing DSP/BIOS 5 programs you upgrade to build in the SYS/BIOS
6 build environment will be 100% supported after updating the configuration and rebuilding,
provided that their legacy program does not use any unsupported legacy APIs or modules.

Note: This document uses the term "Tconf configuration" to describe DSP/BIOS 5 configuration
scripts. Note that both “Tconf configuration” and "DSP/BIOS configuration" refer to the same
thing: the *.tcf file used to configure your DSP/BIOS 5 application.

1.2 What Does this Application Note Cover?
The sections in this application note are divided into the following categories:

• Summary Information. Section 1 provides this introduction. Section 10 and 11 provide a
conclusion and a list of related documents.

• Procedures. Sections 2 through 6 give you step-by-step instructions for the following tasks:
– Section 2, “Converting Your Configuration”
– Section 3, “Converting and Updating Your CCS Project”
– Section 4, “Converting Your C Code”
– Section 5, “Migrating Memory Configurations”
– Section 6, “Migrating Library Builds”

SPRAAS7F

4 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

• Mailbox Example. Sections 7 through 9 demonstrate the migration process using the
DSP/BIOS 5 mailbox example:

– Section 7, “Porting the Mailbox Example to SYS/BIOS 6 Using Legacy Support”
– Section 8, “Porting the Mailbox Example to SYS/BIOS 6 with New Modules and APIs”
– Section 9, “Adding SYS/BIOS Tasks and Communication to a Legacy Application”

• Reference. Appendixes A through C
– Appendix A, “Unsupported DSP/BIOS 5 APIs”
– Appendix B, “Unsupported DSP/BIOS 5 Tconf Properties”
– Appendix C, “Performance Benchmarks”

1.3 What is the General Migration Procedure?
In general, the migration process involves the following steps:
1. Convert a DSP/BIOS 5 Tconf configuration to a RTSC configuration. See Sections 2 and 5.
2. Migrate the build environment if necessary. See Section 3 (and Section 6 if you are building

a library).
3. Update the C source file(s) if necessary. See Section 4.
4. Build and run the migrated application.

1.4 Software Requirements
Please ensure that the following components have been installed and set up properly before
attempting to migrate the DSP/BIOS 5 mailbox example to SYS/BIOS 6:

• CCSv4 or higher
– CCSv4 or CCSv5 is required in order to configure SYS/BIOS using the XGCONF tool as

described in Section 7.6. Steps and figures in this document use CCSv4.2.

• XDCtools
– XDCtools is installed along with CCSv4. Steps in this document use XDCtools 3.20.
– For setup details and instructions, please see the XDCtools Getting Started Guide that is

included with the XDCtools installation. The instructions in this application note require
you to have set up a repository directory.

• SYS/BIOS 6
– SYS/BIOS is installed along with CCSv4. Steps in this document use SYS/BIOS 6.30.
– For setup details and instructions, please see the SYS/BIOS 6 Getting Started Guide

that is included with the SYS/BIOS installation.

• IPC 1.2x
– IPC is installed along with CCSv4.2. Steps in this document use IPC 1.21.
– For setup details and instructions, please see the SYS/BIOS Inter-Processor

Communication (IPC) and I/O User’s Guide (SPRUGO6).

• DSP/BIOS 5
– The steps in this application note are based on the “mailbox” example, which is

packaged with DSP/BIOS 5. Some newer releases of DSP/BIOS 5.x did not ship with

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 5

the mailbox example. If your DSP/BIOS 5.x installation does not have the mailbox
example, you can download it from http://www-s.ti.com/sc/techlit/spraas7.zip.

• Drivers
– You must have already installed the appropriate drivers for your hardware configuration,

if necessary. Many common drivers are installed as part of the other installations.

2 Converting Your Configuration
In SYS/BIOS 6, programs no longer use a Tconf configuration script. Instead, they use a RTSC
configuration script (*.cfg file), which is similar but somewhat different. Legacy users need to
convert existing Tconf scripts to RTSC configuration scripts in order to build with SYS/BIOS 6
legacy support.

It’s important to note that this does not mean that your Tconf configuration code must be thrown
out! Most Tconf configuration settings and properties are still supported as they were in
DSP/BIOS 5, with no changes to those configuration properties required. The degree of difficulty
in making this conversion varies from script to script.

If the Tconf configuration script contains settings for modules and/or properties that are no
longer supported, you will be notified of this by warning messages that are displayed either at
program build time or when the conversion tool (explained in Section 7.2) is run.

SYS/BIOS 6 includes a conversion tool that is provided by the “ti.bios.conversion” package. You
run this tool using the xs command provided by XDCtools. This conversion tool converts a
legacy Tconf configuration script into a RTSC configuration script and a RTSC platform package.
The generated RTSC configuration script and platform package are then added to the CCSv4
project in order to build the converted program.

Before using the conversion tool, please gather the following information that is needed in order
to create a RTSC configuration script:

• The full paths of any Tconf include files (*.tci) that are imported by the application Tconf script
(*.tcf).

• A repository location on your computer in which the configuration tool will store the generated
RTSC platform package. This can be any location on your computer, for example
"C:\myRepository".

Note: If your configuration file imports any additional configuration files (*.tci files) by means of
calls to utils.importFile(), then you must update your CCSv4 project with the location of
these files so that XDCtools can find them at configuration time. See Section 3.4, "Updating a
CCSv4 Project’s Search Path to Find Included Configuration Files” for how to do this.

http://www-s.ti.com/sc/techlit/spraas7.zip�

SPRAAS7F

6 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

2.1 Conversion Tool Syntax
The full syntax for the conversion tool command line is as follows:

xs [xs options] ti.bios.conversion [-v|--help] [-i] [-c outfile.cfg]
[--pr package repository] [--pn package name] infile.tcf

Options:
• -c name of the output RTSC configuration file
• --pr location of the repository to contain the generated RTSC platform package
• --pn name of the platform instance
• -v show details during build
• --xp set a package path
• --help show command line options
• -i content of imported files is copied into the output file

The xs --xp option sets a package path. In order to use SYS/BIOS 6, you must add the
location of its packages to the path. For example:

xs --xp "C:/Program Files/Texas Instruments/bios_6/packages" ti.bios.conversion
 [-v|--help] [-c outfile.cfg] [--pr package repository] [--pn package name] infile.tcf

If your Tconf script imports Tconf include files (*.tci) from different directories, you must add
paths to these directories to the package path. The paths can be absolute or relative to the
current working directory. For example, if "infile.tcf" contains the following statement, and
"helper.tci" is in a directory "sub" relative to the current working directory, then the --xp option
should be set to "<bios_install_dir>/packages;sub".

utils.importFile('helper.tci');

Without the -i option, any lines that import files are left unchanged in the generated RTSC
configuration script, and the imported files are not converted. If the -i option is added to the
command line, all imported files are converted and their contents are copied inline into the
generated RTSC configuration script. Each imported file is clearly separated by comments in
case you want to split the generated script into separate files again.

Note: If your *.tci files contain any calls to the methods prog.extern() or prog.decl(), we
recommend that you use the -i option when running the conversion tool. This option causes the
conversion tool to parse each *.tci file and to change all references to these methods
appropriately.

Alternatively, if you do not want to use the -i option, you may convert all prog.extern() or
prog.decl() calls manually, as described in Section B.1.

The output from the conversion tool is a RTSC platform package and a RTSC configuration
script (with the same name as the Tconf script, but with the extension .tcf replaced with .cfg).
You can specify the name of the generated configuration script as well as the name of the
platform using the -c and --pn options, respectively.

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 7

The conversion tool makes changes like the following to the Tconf script (exact statements will
vary), and saves them in the RTSC configuration script:

Old Syntax New Syntax
utils.loadPlatform xdc.loadPackage(‘ti.bios.tconf’)
prog.gen() <blank>
<instance>.fxn = prog.extern("fxn"); <instance>.fxn = "fxn";
<instance>.arg0 = prog.decl("foo"); <instance>.arg0 = $externPtr("foo");
bios.MEM.[LOAD]TEXTSEG =
prog.get("sectionname");

Program.sectMap[".text"].[run|load]Segment
= "sectionname";

In previous versions of the conversion tool, unsupported MEM configuration code was placed in
a comment in the *.cfg file, and a warning stated that the property was no longer supported.
This is no longer the case; unsupported properties are ignored when generating the *.cfg file.

2.2 Specifying Environment Variables to the Conversion Tool
If your original Tconf script accesses any environment variables through the environment
array, you need to define such variables on the command line for both the conversion tool.
Define environment variables using the -D option. For example, if your script contains a
statement like this:

utils.loadPlatform(environment[’config.platform’]);

Define ‘config.platform’ on the command lines for the conversion tool as follows:

xs ti.bios.conversion -Dconfig.platform=ti.platforms.evmDM6437 ...

2.3 How Memory Map Settings Are Translated
In addition to the *.cfg file, the conversion tool generates a RTSC platform package. This
platform package contains a memory map configuration and platform-specific configuration
(such as clockRate and deviceName), and will be used within your CCSv4 project to build the
legacy program you are converting.

The conversion tool extracts memory map information from the Tconf script and saves
equivalent information in the platform package. The platform package's memory map
corresponds to the memory map created by the legacy program's Tconf script. The platform
package also contains information from bios.MEM and bios.GBL parameters in the Tconf script.

Memory-related commands in the new RTSC configuration script are ignored because, at the
time that configuration script is parsed, no changes to the memory map are allowed. The
memory map is already defined in the platform package, which is processed before the RTSC
configuration script. However, commands that create and determine the size of heaps are still
valid and are processed at configuration time.

You should use the generated RTSC platform as the RTSC Platform you specify in your CCSv4
project settings (either when creating the project, or by updating the project's build options).

The generated RTSC platform package will be saved to the location which is specified with the
conversion tool's --pr command line option.

For more on memory configurations, see Section 5 of this document and Chapter 5 of the
SYS/BIOS User’s Guide (SPRUEX3)..

SPRAAS7F

8 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

2.4 Steps to Convert a Tconf Script to a RTSC Configuration Script
1. At a MS-DOS command prompt, change (cd) to the directory that contains the Tconf script

you wish to convert.
2. Run the following command to convert a Tconf script to a RTSC configuration script. (Notice

the space after the --xp option.)

>xs --xp "%XDCPATH%" ti.bios.conversion -c myConfig.cfg
 --pr <full path to repository location> --pn myPlatform <filename>.tcf

Running this command for a Tconf script that loads the “evmDM6437” platform yields output
similar to the following:

Platform: ti.platforms.evmDM6437
 params.catalogName:ti.catalog.c6000
 params.deviceName:DM6437
 params.clockRate:594
Target: ti.targets.C64P
Clock Rate: 594

This command also creates the following files:
• myConfig.cfg
• <filename>cfg.h (where <filename> is the filename of the .tcf file)
• myPlatform: a directory containing the generated RTSC platform package, located in the

repository specified on the command line

The “ti.bios.conversion” utility converts the *.tcf file to a RTSC configuration file called
myConfig.cfg and also creates a RTSC platform "myPlatform". This RTSC configuration script, in
combination with the custom RTSC platform "myPlatform", may now be used to configure your
application and build with SYS/BIOS 6.

The contents of the myConfig.cfg file will be very similar to those of the original *.tcf file. The tool
essentially strips out calls to utils.loadPlatform(), prog.decl(), prog.extern(), and
prog.gen(), leaving all other code intact. The tool also generates the file myConfig.h, which
may need to be included by your application’s C source file.

Note: If any of the generated files (myConfig.cfg or myConfig.h) already exist in the current
directory, or if the platform package directory myPlatform is already populated, the conversion
tool overwrites them with new generated files. To prevent any data loss, please make sure to
back up any files that have the same name as those specified as command line arguments to
the conversion tool.

2.5 Memory Map Issues for C28x Users
SYS/BIOS 6 uses a larger stack than DSP/BIOS 5, as well as having a slightly larger footprint.
In result, it is possible that not all code and data from a legacy DSP/BIOS 5 program will fit into
the same memory map with SYS/BIOS 6. If your legacy program places a lot of code or data in
internal memory, you may see link time errors when building your converted program.

If this happens, you may need to decrease the system stack size by adding the following
configuration code at the end of the *.cfg file generated by the conversion tool:

Program.stack = 0x200;

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 9

You may also need to modify the placement of other memory sections, for example by moving
them into external memory, in order for the program to link without errors.

For more information on placing memory sections, see Section 5.2, “Memory Segments and
Sections” of this document, as well as the section on “Placing Sections into Memory Segments"
in the SYS/BIOS User's Guide.

3 Converting and Updating Your CCS Project
The following subsections describe changes you may need to make within your Code Composer
Studio project. The CCS steps in this application note apply to CCSv4.2.

3.1 Migrating Code Composer Studio Projects

To migrate your DSP/BIOS 5 application to SYS/BIOS 6, you will need to create a new CCSv4
project. This is true even if you have already created a CCSv4 project for your DSP/BIOS 5
application.

Use the following general steps to migrate your legacy DSP/BIOS 5 application to build with
SYS/BIOS 6. These steps are covered in greater detail for the mailbox example in Section 7.3,
“Creating a CCSv4 Project for the Mailbox Program”.
1. Use the New CCS Project wizard in CCSv4 (File > New > CCS Project) to create a new

project, selecting the correct hardware platform and choosing the SYS/BIOS > Generic
Examples > Hello Example” project template.

SPRAAS7F

10 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

2. On the “RTSC Configuration Settings” page, make sure the RTSC Target is specified
correctly.

3. Choose a RTSC Platform and RTSC Build-Profile. For RTSC Platform, you should select
the platform package that was created as a result of running the Conversion Tool, as
described in Section 2, “Converting Your Configuration.” The steps required to choose the
generated RTSC platform will be very similar to those covered in Section 3.2, “Updating a
CCSv4 Project to Build with a Generated Platform Package.” For RTSC Build-Profile, you
should choose “release” in most cases.

4. Click Finish. The project creation wizard creates a CCS project with the name you
specified.

5. Delete the following source files from the CCS project: hello.c, common.cfg.xs, and
hello.cfg.

6. Add your source file(s) to the project.
7. Add the migrated RTSC configuration to the project. Details for converting a Tconf

configuration to a RTSC configuration are provided in Section 2, “Converting Your
Configuration”. Also, please see Section 7.2, “Converting the Mailbox Configuration Using
the Conversion Tool”.

8. Configure the project build settings to match those from your CCSv3 project. You can add
compiler options, assembler options, linker options, and include paths to the new project, as
well as any special #defines that were set in the CCSv3 project.

9. Rebuild the project, load the program, and then run.

See the RTSC+Eclipse QuickStart topic in the RTSC-pedia wiki for details about creating a
CCSv4 project that uses RTSC and SYS/BIOS 6 content. See the CCSv4 online help for more
about converting CCSv4 projects.

3.2 Updating a CCSv4 Project to Build with a Generated Platform Package

As mentioned in Section 2.3, the conversion tool creates a RTSC platform package, which is a
custom platform that is generated based on your original *.tcf file. User-created RTSC platform
packages are used to create user-defined Memory segments and to change the pre-defined
Memory segments that ship for a default platform. The platform package generated by the
conversion tool contains settings for any memory changes in the Tconf configuration script
passed to it.

In order to use a custom RTSC platform package in your build, you must select this platform
under the "RTSC platform" field in the project's properties (either when creating the project, or by
updating the project's properties). Use the following steps to build your project using this
generated RTSC platform package:

http://rtsc.eclipse.org/docs-tip/RTSC+Eclipse_QuickStart�
http://rtsc.eclipse.org/docs-tip�

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 11

1. In the project pane, right-click on your project, and select Build Properties.
2. In the CCS Build category of the Properties dialog, choose the RTSC tab.
3. If you have installed more than one version of XDCtools or DSP/BIOS 6.x, make sure the

version you want to use is selected.
4. Add the path to RTSC platform package repository. This allows CCSv4 to build with the

RTSC platform package generated from the conversion tool. Do this by clicking the Add
button next to the "Products and Repositories" tab.

 For example, to add a RTSC platform package located in the repository "C:\myRepository",

enter the repository path in the "Select repository from file-system" field and click OK.

5. In the RTSC Platform field, select your custom RTSC platform from the drop down list. For

example, if the repository "C:\myRepository" contains a customized RTSC platform package
generated from the conversion tool called "myEvmDm6437", you would see the following:

6. Click OK to apply these changes to the project.

For more information on custom platform files and how to use them in CCSv4, see Section 7.3,
“Creating a CCSv4 Project for the Mailbox Program”.

SPRAAS7F

12 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

3.3 Updating the Project’s Compiler Search Path

Since your program’s C file probably contains #include directives for legacy DSP/BIOS header
files, such as std.h, your project may need to be updated to pass the path to these legacy
header files to the compiler. This section shows how to update your project to add the following
include path:

<SYS/BIOS 6 Install Dir>/packages/ti/bios/include

Follow these steps to add this include file directory to the compiler search path.
1. In the CCSv4 project pane, right-click on your project and select Build Properties.
2. In the left pane of the project’s Properties dialog, select C/C++ Build. You will see the build

properties in the right pane.
3. In the “Configuration Settings” area, choose the Tool Settings tab, then click the + sign

next to C6000 Compiler to show the list of compiler option categories:
4. Click Include Options, then click the + icon next to Add dir to #include search path

(--include path):

5. Click File system and browse to find the \packages\ti\bios\include directory of your

SYS/BIOS installation and click OK.
6. Click OK in the Properties dialog to apply the settings you added.

3.4 Updating a CCSv4 Project’s Search Path to Find Included Configuration Files

If your configuration imports any Tconf include files (*.tci), you must update the build options of
your project to add the paths to where those files are located. This is necessary so that RTSC
can locate them at configuration time. Note that if you have converted your Tconf script using the
conversion tool with the -i option, these steps won’t be necessary, as all of the content of the
Tconf include files will have been migrated into the generated RTSC configuration script.

Follow these steps to update your project settings with the search path to these include files:
1. In the CCSv4 project pane, right click on your project, and select Build Properties. Choose

the C/C++ Build category.

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 13

2. In the “Configuration Settings” area, choose the Tool Settings tab and scroll down to the
XDCtools->Advanced Options item.

3. Click the “+” icon for the box that says “Java properties
(-D)”.

4. In the Enter Value dialog that opens, add:

config.importPath=<full path to Tconf include files>

For example, if your Tconf include files are all stored in the root of drive C:\, you should add
the following to the text box:

5. Click OK to accept the new option.
6. Click OK in the Properties dialog to apply the settings you changed. All of your program’s

Tconf include files will now be found at configuration time the next time you build the project.

3.5 Building and Running the Project

At this point, if your legacy C code does not contain any deprecated DSP/BIOS APIs, you will be
able to build your project.
1. Create a target configuration by choosing File  New  Target Configuration. Name the

configuration and use the Basic tab to create a target configuration. Press Ctrl+S to save
the configuration. Use View  Target Configurations to see a list of your saved
configurations. Right-click on the one you want to use and choose Set As Default from the
pop-up menu.

2. Select Project  Build Active Project to build the mailbox application using SYS/BIOS 6.
3. Select Target  Debug Active Project to launch the TI debugger and load the program.
4. Run the application by selecting Target  Run or by pressing the F8 key.

If you have build problems in your C code at this point, it may be because your program is using
modules and or APIs that are no longer supported. Please refer to the table of legacy modules in
Section 4.1 and the list of deprecated APIs in Appendix A for information on unsupported APIs
and modules.

Note for C28x: As described in Section 2.5, SYS/BIOS 6 uses a larger stack than DSP/BIOS 5,
as well as having a slightly larger footprint. As a result, it is possible that not all code and data
from a legacy DSP/BIOS 5 program will fit into the same memory map with SYS/BIOS 6. If your
legacy program places a lot of code or data in internal memory, you may see link time errors
when building your converted program.

SPRAAS7F

14 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

4 Converting Your C Code
Most DSP/BIOS 5 legacy C APIs still exist in SYS/BIOS 6, and may be called without making
any C code changes. However, a small number of modules and their APIs are no longer
supported, either because they are no longer part of SYS/BIOS or because support for them did
not make sense. The number of these deprecated modules and APIs was kept to a minimum.

4.1 Legacy Module Mappings and API Guide

The following table maps legacy DSP/BIOS 5 modules to their SYS/BIOS 6 module
counterparts. It lists both the legacy support module for identical APIs and the “new version” of
that module introduced in SYS/BIOS 6. While most legacy modules are supported, we
recommend that you use the new SYS/BIOS 6 modules if you are writing new code.

Table 1. Module Mappings from DSP/BIOS 5 to SYS/BIOS 6

DSP/BIOS
5 Legacy
Module

SYS/BIOS 6
Legacy Module

Recommended SYS/BIOS 6
Module

Legacy APIs
Supported? Support Plan

ATM None None Yes Legacy support only

BCACHE None ti.sysbios.hal.Cache and
ti.sysbios.family.c64p.Cache Yes --

BUF ti.bios.BUF ti.sysbios.heaps.HeapBuf Yes --

C62 None ti.sysbios.hal.Hwi and
ti.sysbios.family.c64p.Hwi Yes --

C64 None ti.sysbios.hal.Hwi and
ti.sysbios.family.c64p.Hwi Yes --

CLK ti.bios.CLK ti.sysbios.knl.Clock and
xdc.runtime.Timestamp Yes --

DEV ti.bios.DEV ti.sdo.io.IDriver Yes --

DIO ti.bios.DIO None Yes Legacy support only

DGN ti.bios.DGN ti.sdo.io.drivers.Generator Yes --

DGS None None No Will not be supported

DHL None None No Will not be supported

DNL None None Yes Legacy support only

DOV None None Yes Legacy support only

DPI ti.bios.DPI None Yes Legacy support only

DST None None No Will not be supported

DTR None ti.sdo.io.converters.Transformer Yes --

ECM ti.bios.ECM ti.sysbios.family.c64p.
EventCombiner Yes --

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 15

DSP/BIOS
5 Legacy
Module

SYS/BIOS 6
Legacy Module

Recommended SYS/BIOS 6
Module

Legacy APIs
Supported? Support Plan

GBL ti.bios.GBL ti.sysbios.BIOS and
ti.sysbios.hal.Cache Yes* --

GIO ti.bios.GIO ti.sdo.io.Stream Yes --

HOOK ti.bios.HOOK ti.sysbios.knl.Task Yes --

HST None None No Will not be supported

HWI ti.bios.HWI ti.sysbios.hal.Hwi Yes* --

IDL ti.bios.IDL ti.sysbios.knl.Idle Yes --

LCK ti.bios.support.Lck ti.sysbios.gates.GateMutex Yes --

LOG ti.bios.LOG xdc.runtime.LoggerBuf Yes Supported in XDCtools

MBX ti.bios.MBX ti.sysbios.knl.Mailbox Yes --

MEM ti.bios.MEM xdc.runtime.Memory and
ti.sysbios.heaps.HeapMem Yes Supported in XDCtools

MPC None None No To be supported in a
future release

MSGQ ti.bios.MSGQ ti.sdo.ipc.MessageQ Yes Supported in IPC

PIP None None No Will not be supported

POOL ti.bios.POOL xdc.runtime.Memory and
ti.sysbios.heaps.Heap* Yes Supported in XDCtools

PRD ti.bios.PRD ti.sysbios.knl.Clock Yes* --

QUE ti.bios.QUE ti.sdo.utils.List Yes Supported in IPC

RTDX ti.bios.RTDX
ti.sysbios.rta.Agent and RTA Tools
in stop-mode, or
System Analyzer and UIA

No --

SEM ti.bios.SEM ti.sysbios.knl.Semaphore Yes --

SIO ti.bios.SIO ti.sdo.io.Stream Yes --

STS ti.bios.STS None Yes
No RTA tool support.
Legacy APIs allow
compiling and linking.

SWI ti.bios.SWI ti.sybios.knl.Swi Yes --

SYS
ti.bios.SYS
 and
ti.bios.support.Sys

xdc.runtime.System and
xdc.runtime.Error Yes Supported in XDCtools

TRC None xdc.runtime.Diags Yes Supported in XDCtools

TSK ti.bios.TSK ti.sysbios.knl.Task Yes* --

SPRAAS7F

16 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

* Most legacy APIs are supported for this module. See Appendix A for the list of APIs that are no
longer supported for this module.

4.2 Extending Your Legacy Program with SYS/BIOS 6 APIs

Once you have updated a legacy program to build and run using SYS/BIOS 6, you can expand
that program with code that leverages the new SYS/BIOS 6 APIs and features.

Using a combination of legacy code and new code in the same SYS/BIOS program is supported.
However, if you want to combine the old with the new like this, there are certain precautions you
must take to ensure that things will work smoothly. This section provides guidelines and
examples for extending a DSP/BIOS 5 legacy program using the SYS/BIOS 6 modules in the C
code and RTSC configuration.

See Sections 9 and 9.2 for examples that add SYS/BIOS 6 API calls to the mailbox example.

4.2.1 Place New Configuration Code After Legacy Configuration Code

When you extend a legacy application’s RTSC configuration file with configuration statements for
SYS/BIOS 6 modules, you must place the new configuration code after the existing legacy
configuration code.

If SYS/BIOS 6 modules are configured before legacy modules, the result may be a build-time
error that states that certain legacy modules must be used before certain new modules. You can
easily avoid this problem by adding all configuration of SYS/BIOS 6 and XDCtools modules to
the end of your RTSC configuration script. This includes any useModule() calls, as well as any
code to configure those modules.

If a configuration contains settings for equivalent properties using both the SYS/BIOS 6 and
DSP/BIOS 5 names, then the SYS/BIOS 6 setting takes precedence. For example, if a
configuration contained the following statements, the net result of these equivalent settings
would be to configure the CPU speed to be 400MHz (the SYS/BIOS 6 setting).

bios.GBL.CLKOUT = 500; /* DSP/BIOS 5 */

xdc.global.BIOS = xdc.useModule('ti.sysbios.BIOS"); /* SYS/BIOS 6 */
BIOS.cpuFreq = 400;

4.2.2 Place Header File #include Directives for SYS/BIOS 6 Before Legacy Directives

When you update a legacy C file to include SYS/BIOS 6 header files, it is important that you add
the #include directives for those header files before the existing #include directives for legacy
DSP/BIOS header files.

Currently, if you add any SYS/BIOS 6 header file #include directives after any legacy #includes,
then the SYS/BIOS 6 API calls in that C file will be listed as undefined symbols at link time. So,
when updating a legacy file for use with SYS/BIOS 6, just make sure to include the SYS/BIOS 6
headers first.

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 17

There is an alternative workaround for this issue, in case you do not want to worry about the
order of #include directives. If any SYS/BIOS 6 APIs are listed as unresolved symbols due to the
order of header file inclusion, you may instead call those APIs using their “long names,” which
prepend the package name for a particular module’s API.

For example, suppose the following call results in an undefined symbol error due to #include
ordering:

Task_sleep(10);

You can change this SYS/BIOS 6 API call to the following to use the “long name” alternative to
resolve the undefined symbol:

ti_sysbios_knl_Task_sleep(10);

4.2.3 Communicating Between Old Code and New Code

Your program can communicate between legacy code and new code that uses SYS/BIOS 6
APIs. For example, if your program contains a legacy TSK C function, and a new Task function
has been added, communication between the two is allowed with some simple guidelines.

In general, it is highly recommended that your new SYS/BIOS 6 code use legacy APIs and
objects to communicate with legacy code, and vice versa.

An example of this is a legacy TSK that pends on a legacy SEM object via the following call:

SEM_pend(legacy_sem, 10);

If you add a SYS/BIOS 6 Task function and want this Task function to post the SEM object
legacy_sem, then the new Task function should use the legacy DSP/BIOS API to do so, even
though this Task itself is not legacy code, as follows:

SEM_post(legacy_sem);

The same applies for the opposite case; if a new Task function pends on a SYS/BIOS 6
Semaphore object via the following call:

Semaphore_pend(new_sem, 10);

Then a legacy TSK function should also post the Semaphore using the new code:

Semaphore_post(new_sem);

All interactions between new and old code should match new APIs/objects and legacy
APIs/objects in this manner.

To be clear, the following example shows an incorrect use of mixing and matching of old code
with new code. The following incorrect code demonstrates how not to mix new APIs with legacy
objects:

Semaphore_post(legacy_sem); // WRONG! - can’t use new API with legacy object!

SPRAAS7F

18 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

5 Migrating Memory Configurations
DSP/BIOS 5 provided MEM, the memory manager, for managing new memory segments, heaps
and sections, and for loading specific sections into certain memory segments. The MEM module
was also used for dynamic memory allocation.

All this functionality is available in SYS/BIOS 6 in the Memory (xdc.runtime.Memory), HeapMem
(ti.sysbios.heaps.HeapMem), and Program modules.

The subsections that follow provide an overview of Memory segments and sections, Heaps, and
dynamic memory allocation in SYS/BIOS 6. For more details, see Chapter 5 of the SYS/BIOS
User’s Guide (SPRUEX3).

Note for C28x: As described in Section 2.5, SYS/BIOS 6 uses a larger stack than DSP/BIOS 5,
as well as having a slightly larger footprint. As a result, it is possible that not all code and data
from a legacy DSP/BIOS 5 program will fit into the same memory map with SYS/BIOS 6. If your
legacy program places a lot of code or data in internal memory, you may see link time errors
when building your converted program.

5.1 Memory and RTSC Platforms
In DSP/BIOS 5, the MEM manager module was used to create new MEM segments for user
applications. In SYS/BIOS 6, MEM segments have been replaced by XDCtools Memory
segments, which are specified in the project’s RTSC platform.

The most significant difference between MEM segments and Memory segments is how they are
created. While DSP/BIOS 5 MEM segments were created or modified in the configuration script,
SYS/BIOS 6 Memory segments are created or modified using the RTSC platform wizard. When
you use the conversion tool, a RTSC platform with memory segments that match those in your
DSP/BIOS 5 application is created automatically.

The SYS/BIOS 6 installation includes several RTSC platforms that define Memory segments. To
customize these Memory segments, you can create a custom RTSC platform package and use
that to build the application. To generate a custom platform package, use the conversion tool or
the RTSC platform wizard.

If, after using the conversion tool to create a RTSC platform, you want to further customize its
memory settings, you can use the RTSC platform wizard to edit the platform as follows:
1. In CCS v4.x, choose Tools > RTSC Tools > Platform > Edit/View.
2. On the Basic Information page, click Browse and find the location of the repository you

specified when you used the conversion tool.
3. In the Package Name field, then select mbx_evmDm6437 (or some other RTSC platform

package you want to edit). Then click Next.

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 19

4. Use the Device Page to change the clock speed, memory segment sizes and locations, and
memory section assignments.

For more details, see Chapter 5 of the SYS/BIOS User’s Guide (SPRUEX3) and the demos at
http://rtsc.eclipse.org/docs-tip/Demo_of_the_RTSC_Platform_Wizard_in_CCSv4.

5.2 Memory Segments and Sections

The DSP/BIOS 5 MEM manager used section names that could be specified to load to a certain
MEM segment. This also exists in SYS/BIOS 6, but the means to load Memory segments differs.

Memory sections in SYS/BIOS 6 are specified to load into Memory segments using the Program
module’s sectMap[] array. This array maps section name strings to the Memory segments
into which that section is to be loaded. This pseudo-configuration code shows a mapping:

Program.sectMap[“<section name>”] = <Memory segment>.name;

You should replace <section name> above with the string name of the section to be mapped.
Also, replace <Memory segment> with the Memory segment name to load that section into.

Using the mailbox example for the evmDM6437 platform, to load the .text section of the
application into the IRAM Memory segment instead of to the DDR2 Memory segment, redefine
the mapping in the “mailbox.cfg” RTSC configuration script using the Program module as
follows:

var IRAM = Program.cpu.memoryMap.IRAM;
Program.sectMap[“.text”] = IRAM.name;

Some modules allow you to specify a section name for that module’s data to be loaded into. For
instance, the Task module allows you to specify (or create) a section name for a given Task
instance’s stack using the Task module’s Params structure member “stackSection”. Once a
section name is specified using “stackSection”, that section name can be mapped to load into or
run from a particular Memory segment by way of the sectMap[] array.

For example, the following configuration code creates a static Task instance, then creates a new
section name "myTaskStackSection" for its stack, and maps this section to load into the IRAM
Memory segment:

xdc.global.Task = xdc.useModule('ti.sysbios.knl.Task');
var taskParams = new Task.Params();
taskParams.stackSection = "myTaskStackSection";
Task.create('&reader', taskParams);
Program.sectMap[".myTaskStackSection"] = "IRAM";

For more details on section placement, see Chapter 5 of the SYS/BIOS User’s Guide
(SPRUEX3).

http://rtsc.eclipse.org/docs-tip/Demo_of_the_RTSC_Platform_Wizard_in_CCSv4�

SPRAAS7F

20 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

5.3 Heaps

SYS/BIOS 6 provides the HeapMem module to create heaps and manage a program’s memory.
Both SYS/BIOS 6 and XDCtools provide other Heap modules (each of which performs memory
management duties), as well as the IHeap interface.

All SYS/BIOS and XDCtools Heaps implement the IHeap interface. In fact, you may create your
own Heap module by inheriting the IHeap interface. This allows you to define your own memory
management algorithms for your custom Heap.

It’s also important to note that the definition of “Heap” as applied to these modules is very
generic. Heap modules are heaps in the sense that they provide memory management; this
does not imply variable size, non-determinism, or fragmentation, only managed memory.

This section focuses on the HeapMem module for explaining Heaps. The full list of Heap
modules provided by SYS/BIOS 6 and XDCtools are listed in the table at the end of this section.

A Heap is created and configured in the application’s RTSC configuration script. Heap
configuration parameters include size, alignment, and section name. The following configuration
code creates a Heap of size 4096 using the HeapMem module:

xdc.global.HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem');
var heapMemParams = new HeapMem.Params();
heapMemParams.size = 4096;
heapMemParams.sectionName = "myHeapSection";
Program.global.myHeap = HeapMem.create(heapMemParams);

This code uses the HeapMem Params structure to set properties for the new Heap. Notice that a
new Memory section name is used to assign the Heap to a particular Memory segment.

The code to assign the Heap “myHeap” to the Memory segment IRAM using the Program
module would look like this:

Program.sectMap["myHeapSection"] = “IRAM”;

A limitation of the DSP/BIOS 5 MEM manager was that for any MEM segment, you could only
create a single heap in that segment.

One benefit of SYS/BIOS 6 is that you can create more than one heap for a given Memory
segment. The following code creates a second IRAM Heap, HeapMem, of size 8192:

heapMemParams.size = 8192;
heapMemParams.sectionName = "myOtherHeapSection";
Program.global.myOtherHeap = HeapMem.create(heapMemParams);
Program.sectMap["myOtherHeapSection"] = “IRAM”;

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 21

SYS/BIOS 6 and XDCtools provide several Heap modules, as shown in the following table.

Table 2. SYS/BIOS 6 and XDCtools Heap Modules

Heap Module Description
xdc.runtime.IHeap Heap interface. All Heap modules inherit from and implement

this interface. You may inherit from the IHeap interface to
implement your own Heap module and perform any memory
management style.

xdc.runtime.HeapMin A simple, minimum footprint Heap.
xdc.runtime.HeapStd This Heap is based on the C RTS functions malloc() and free().
ti.sysbios.heaps.HeapBuf Single, fixed size buffer, split into blocks of equal size. This

Heap corresponds to the DSP/BIOS 5 BUF module.
ti.sysbios.heaps.HeapMem HeapMem corresponds to the DSP/BIOS 5 MEM module.
ti.sysbios.heaps.HeapMultiBuf Allows you to create many different HeapBuf Heaps of different

sizes.

You can find more information on Heap modules in the online CDOC reference documentation.

5.4 Dynamic Memory Allocation

The DSP/BIOS 5 MEM module supported the MEM_alloc() and MEM_free() APIs to
dynamically allocate and free memory. These functions took a MEM segment ID as an argument
to specify which MEM segment to allocate from.

In SYS/BIOS 6, the Memory module and the Heap modules provided by SYS/BIOS 6 and
XDCtools replace the DSP/BIOS 5 MEM module’s dynamic memory allocation. The APIs were
replaced by the Memory module APIs Memory_alloc() and Memory_free(), and a Heap is
specified as the first argument.

SYS/BIOS 6 provides a default Heap for dynamically allocating and freeing memory without
explicitly configuring and creating a new heap. The default heap is specified by passing NULL as
the IHeap handle to these functions. The following C code dynamically allocates and frees
memory from the default Heap:

Ptr buf = Memory_alloc(NULL, 512, 0, NULL);
Memory_free(NULL, buf, 512);

Alternately, you may create your own Heap and use it to allocate memory. The
Memory_alloc() and Memory_free() functions take a Heap handle of type IHeap_Handle
as the first function argument (IHeap_Handle is a generic Heap handle). To use a HeapMem
Heap in the call to Memory_alloc(), the HeapMem handle must be cast to type
IHeap_Handle. However, casting a HeapMem handle to type IHeap_Handle could result in data
loss, so a special function is provided to cast the handle: HeapMem_Handle_upCast().

The following code can be used to cast the HeapMem handle myHeap to type IHeap_Handle,
and allocate and free memory from this heap:

Ptr buf;
// “Cast” myHeap to type IHeap_Handle
IHeap_Handle iHeapHandle = HeapMem_Handle_upCast(myHeap);
buf = Memory_alloc(iHeapHandle, 512, 0, NULL);
Memory_free(iHeapHandle, buf, 512);

SPRAAS7F

22 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

SYS/BIOS 6 also allows a user-created heap to be assigned as the default system heap,
overriding the default heap that is provided. This way, dynamically-created SYS/BIOS objects
are allocated from the user-created heap that was set as the default heap. The following
configuration code sets the default heap of the program to be myOtherHeap:

Memory.defaultHeapInstance = Program.global.myOtherHeap;

6 Migrating Library Builds
DSP/BIOS 5 and SYS/BIOS 6 applications use a configuration file. As a result, include paths
needed by SYS/BIOS to find header files are automatically added as options to the compiler. In
SYS/BIOS 6 applications, these options are automatically placed into the generated file
“compiler.opt”.

However, since library builds do not use a SYS/BIOS configuration, there are additional steps
you must take to rebuild a library. You’ll need to update the library project options by adding the
extra include search paths that would normally be added by the generated “compiler.opt” file.

You may rebuild your existing DSP/BIOS 5 libraries using the legacy support included with
SYS/BIOS 6. To do so, you’ll need to create a new project within CCSv4. This is required
because there is currently no way to automatically convert your CCSv3.x project to a CCSv4
project.

Creating a project for a library build differs from creating a project for an executable, which has
been described in the previous examples of this document. Since library builds do not use a
RTSC configuration, a few vital compiler search paths will be missing. When you use a RTSC
configuration, these search paths are added automatically. However, because there will be no
RTSC configuration, you’ll need to add these compiler search paths to the project manually.

6.1 Creating a New Library Project for CCSv4

Follow the steps to create a new CCSv4 project that uses SYS/BIOS 6 as described in the
RTSC+Eclipse QuickStart topic of the RTSC-pedia wiki or in the
Bios_Getting_Started_Guide.pdf document. However, when you reach the Project Settings
page in the project-creation wizard, select Static Library from the Output Type drop-down box.

If you select the location of your existing library source files when you begin creating the project,
then when you finish creating the project, all of the library source files that exist in the project
directory are added to the project automatically.

http://rtsc.eclipse.org/docs-tip/RTSC+Eclipse_QuickStart�
http://rtsc.eclipse.org/docs-tip�

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 23

6.2 Updating the Compiler Search Paths for CCSv4 Library Projects

Now that the project has been created, it’s necessary to update the compiler search paths, as
mentioned previously.
1. In the CCSv4 project pane, right-click the library project and select Build Properties.
2. In the left pane of the library project’s properties window, select C/C++ Build. You will see

the build properties in the right pane.
3. Under Configuration Settings, click the Tool Settings tab, then click the + sign next to

C6000 Compiler to show the list of compiler option categories.
4. Click Include Options, then click the + icon next to Add dir to #include search path

(--include path):

Note: For legacy libraries, source files must include the DSP/BIOS file “std.h” as follows:

 #include <std.h>

Including this file has always been a requirement for DSP/BIOS 5 programs, so your library
sources likely already include this file correctly. If std.h is not properly included, the library build
will fail due to undefined identifiers in the file “xdc/std.h”.

5. Type or browse for the path to the SYS/BIOS legacy include directory in the Directory field
and click OK.

6. For both types of library (legacy and SYS/BIOS 6 API), repeat the two previous steps. This
time, add the following additional paths to the compiler’s include file search path, where you
replace the <SYS/BIOS 6 Install Dir> and <XDCtools Install Dir> with the actual locations:

• <SYS/BIOS 6 Install Dir>/packages

• <XDCtools Install Dir>/packages
7. Click OK in the Properties dialog to apply the settings you added.
8. Select Project  Build Active Project to build the library using SYS/BIOS 6.

SPRAAS7F

24 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

7 Porting the Mailbox Example to SYS/BIOS 6 Using Legacy Support
SYS/BIOS 6 supports most legacy DSP/BIOS 5 APIs and Tconf configuration properties. The
subsections that follow show how to build and run an existing DSP/BIOS 5 application using
SYS/BIOS 6 legacy support. That is, the DSP/BIOS 5 APIs are still used, but the project is built
with SYS/BIOS 6.

The subsections that follow show how to convert the DSP/BIOS 5 Tconf configuration to a RTSC
configuration script, modify the project and C source file, and build and run the application.
Section 8 further modifies the application to take advantage of SYS/BIOS 6 modules and APIs.

7.1 Copying the Mailbox Example Files

To preserve the existing application’s configuration and source files, use the following steps to
copy the application source and configuration files to two new directories before making any
changes. These copies will be used for all work in this application note.
1. Create a new directory named “mailbox”. This directory will be used to store the mailbox

application's C source files. You may create this directory anywhere on your computer, and
it will be referred to as the working directory throughout this document.

2. Copy the mailbox C source file (mailbox.c) into the "mailbox" directory from
<DSP/BIOS 5 Install Dir>/packages/ti/bios/examples/basic/mailbox/mailbox.c.

Note: Some newer releases of DSP/BIOS 5.x did not ship with the mailbox example. If your
DSP/BIOS 5.x installation does not have the mailbox example, you can download it from
http://www-s.ti.com/sc/techlit/spraas7.zip.

3. Copy the following mailbox Tconf configuration files to the "mailbox" working directory.
– packages/ti/bios/examples/basic/mailbox/mailbox.tci
– packages/ti/bios/examples/basic/mailbox/evmDM6437/mailbox.tcf
– packages/ti/bios/examples/basic/mailbox/evmDM6437/mailbox_evmDM6437_custom.tci
– packages/ti/bios/examples/common/evmDM6437_common.tci

Don’t create any subdirectories in your working directory. Your working directory should simply
contain the mailbox.c, mailbox.tci, mailbox.tcf, mailbox_evmDM6437_custom.tci, and
evmDM6437_common.tci files when you are done copying files.

All directories shown in the previous list are relative to the location where you installed
DSP/BIOS 5.x. This list shows files for the DM6437 EVM. If you substitute files for another
platform, you must also change the migration steps in later sections accordingly.

http://www-s.ti.com/sc/techlit/spraas7.zip�

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 25

7.2 Converting the Mailbox Configuration Using the Conversion Tool

SYS/BIOS 6 includes a conversion utility called “ti.bios.conversion”, which is run using the
XDCtools command xs.

This section demonstrates how to use the conversion tool to convert the mailbox.tcf Tconf script
into the mailbox.cfg RTSC configuration script and a custom RTSC platform package.

This section uses a repository located at "C:\myRepository" to store the generated RTSC
platform package. If you wish to use a different repository, replace "C:\myRepository" in these
steps with the full path of your repository.

For more information on the conversion tool, see Section 2, “Converting Your Configuration”.
1. At a MS-DOS command prompt, change (cd) to the working directory.
2. Run the following command to convert the mailbox.tcf Tconf script in the configuration

directory to a RTSC configuration script. (Notice the space after the --xp option.)

xs --xp "C:/Program Files/Texas Instruments/<bios_install_dir>/packages"
 ti.bios.conversion --pr "C:\myRepository" --pn mbx_evmDm6437 -i mailbox.tcf

Running this command produces the following output:

Platform: ti.platforms.evmDM6437
 params.catalogName:ti.catalog.c6000
 params.deviceName:DM6437
 params.clockRate:594
Target: ti.targets.C64P
Clock Rate: 594

-

This command also creates the following files:
• mailbox.cfg
• mailboxcfg.h
• mbx_evmDm6437: a directory containing the generated RTSC platform package, located

in the repository C:\myRepository

The “ti.bios.conversion” utility converts the application’s “mailbox.tcf” file to a RTSC configuration
file called “mailbox.cfg.” The contents of the “mailbox.cfg” file will be very similar to the
“mailbox.tcf” file. The tool also re-generates the “mailboxcfg.h” file in its SYS/BIOS 6 form. This
file is included by the C source file “mailbox.c.”

Lastly, the tool creates the directory “mbx_evmDm6437”, which contains a custom RTSC
platform package. Custom RTSC platforms can be used to create user-defined Memory
segments. For more information on custom RTSC platforms and how to use them, please see
Section 3.2, “Updating a CCSv4 Project to Build with a Generated Platform Package”.

Known Issue: There is currently a bug (bugzilla) in XDCtools that requires a workaround in the
mailbox.cfg file. This known issue will cause a build error, but the workaround is very simple.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=306574�

SPRAAS7F

26 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

1. Open the mailbox.cfg file in a text editor.
2. Change the following line:

mbx.length = 2;

to be:

mbx.messageLength = 2;

3. Save and close the file.

7.3 Creating a CCSv4 Project for the Mailbox Program

The Project  Import Legacy CCSv3.3 Project command in CCSv4 does not migrate a
DSP/BIOS 5 project to the SYS/BIOS 6 project organization correctly. So, instead of migrating
the existing project, it is recommended that you create a new SYS/BIOS 6 project.

This section walks you through the CCSv4 project creation wizard to create a new project for the
legacy mailbox example.

For more about the project creation wizard, see the RTSC+Eclipse QuickStart topic of the
RTSC-pedia wiki. By following these steps, you will learn the correct settings to use when
creating a SYS/BIOS 6 project in CCSv4, how to modify the project to choose a different
hardware platform, how to update compiler and XDCtools options, and how to use XGCONF to
view and change the settings in the mailbox.cfg file.
1. In CCSv4, enter the C/C++ perspective by clicking the corresponding button:

2. From the File menu, select File  New  CCS Project. This opens the new project wizard.
3. In the Project Name field, type mailbox, then un-check the Use default location checkbox.

Once this is unchecked, click the Browse button, and navigate to your working directory,
choosing it for the project location.

http://rtsc.eclipse.org/docs-tip/RTSC+Eclipse_QuickStart�
http://rtsc.eclipse.org/docs-tip�

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 27

4. Click Next to bring the wizard to the Select a type of project page. Choose C6000 for the
project type:

5. Click Next to bring the wizard to the Additional Project Settings page. No changes are

necessary for this step of the wizard.
6. Click Next to bring the wizard to the CCS Project Settings page. In this screen, select

“Executable” from the Output type drop-down box. Make sure the device settings are
correct for your target.

SPRAAS7F

28 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

7. Click Next to advance to the Project Templates page. Select the SYS/BIOS > Generic
Examples > Hello Example project template.

8. Click Next to bring the wizard to the RTSC Configuration Settings page. In this part of the

project wizard, we'll choose the custom RTSC platform that was created by the conversion
tool. In order for the wizard to find it, you need to add the repository path to the project.

9. Make sure that the latest versions you have installed of XDCtools, DSP/BIOS, and Inter-
processor Communication are all selected on this page. These will be needed when you
build the project.

10. Click the Add button next to "Products and Repositories."

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 29

11. Choose "Select repository from file-system" and click Browse. Add the path to the location
of the repository in which the conversion tool created a platform package. If you used the
command shown in Section 7.2, the location is C:\myRepository.

12. Make sure the RTSC Target is ti.targets.C64P.
13. Click on the RTSC Platform field. The wizard searches the selected repositories for C64P

platforms.
14. Select the custom RTSC platform created by the conversion tool: "mbx_evmDm6437".
15. In the RTSC Build-Profile field, select "release".

16. Click Finish to complete the project creation.
17. Notice that all the mailbox source and configuration files that exist in the working directory

are automatically added to the mailbox project.
18. Right-click on unneeded files in the mailbox project and delete the following files:

– hello.c
– hello.cfg
– common.cfg.xs
– mailbox.tcf
– mailbox.tci
– evmDM6437_common.tci
– mailbox_evmDM6437_custom.tci

SPRAAS7F

30 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

7.4 Updating the Compiler Search Path

The mailbox.c file contains #include directives for legacy DSP/BIOS header files, such as
std.h. Since the path to these legacy header files is not currently being passed to the compiler,
these legacy header files won’t be found at compile time. So, the mailbox project must be
updated to add the following include path:

<SYS/BIOS 6 Install Dir>/packages/ti/bios/include

Follow these steps to add this directory to the compiler search path for the mailbox program:
1. In the CCSv4 project pane, right-click the mailbox project and select Build Properties.
2. In the left pane of the mailbox project’s properties window, select C/C++ Build.
3. In the Configuration Settings area, click the Tool Settings tab, then click the + sign next to

C6000 Compiler to show the list of compiler options:
4. Click Include Options, then click the + icon next to Add dir to #include search path

(--include path):
5. In the Directory field, type or browse the file system for the path to the SYS/BIOS legacy

include file directory, <SYS/BIOS 6 Install Dir>/packages/ti/bios/include, and click OK. For
example:

6. Click OK in the Properties dialog to apply the settings you added.

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 31

7.5 Building and Running the Application
1. Make sure that the active project in CCSv4 is the “mailbox” project.
2. Create and activate a target configuration by choosing File  New  Target

Configuration. Select the default location, then click Finish to bring up the general setup
for a target configuration.

3. Use the Basic tab under general setup to create a target configuration. If you want to use
the physical DM6437 target, for Connection, select "Spectrum Digital DSK-EVM-eZdsp
onboard USB Emulator”. For Device, select "TMS320DM6437". (You can choose the
“DM6437 Device Cycle Accurate Simulator, Little Endian” if you do not have a physical
DM6437 target.) Press Ctrl+S to save the target configuration.

4. Use View  Target Configurations to see a list of your saved target configurations. Right-
click on the one you want to use and choose Set As Default from the pop-up menu.

5. Choose Project  Build Active Project to build the “mailbox” project using SYS/BIOS 6.
6. Choose Target  Debug Active Target to load the mailbox.out executable.
7. Switch to the Debug perspective.
8. Open the RTA log view by selecting Tools  RTA  Printf Logs. This opens the RTA

Printf Logs pane.
9. Connect CCSv4 to the DM6437 EVM board by selecting Target  Connect Target.
10. Run the application by selecting Target  Run or pressing the F8 key. Output is displayed

in the RTA Printf Logs pane:

SPRAAS7F

32 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

11. Halt the program by selecting Target  Halt.

Note for C28x: As described in Section 2.5, SYS/BIOS 6 uses a larger stack than DSP/BIOS 5,
as well as having a slightly larger footprint. As a result, it is possible that not all code and data
from a legacy DSP/BIOS 5 program will fit into the same memory map with SYS/BIOS 6. If your
legacy program places a lot of code or data in internal memory, you may see link time errors
when building your converted program.

7.6 Using XGCONF to View the SYS/BIOS Configuration

You can use the XGCONF tool to view a legacy SYS/BIOS 6 program’s RTSC configuration
graphically. (For legacy configurations, editing the DSP/BIOS configuration is not supported.) In
this section, you will learn how to open the XGCONF tool and use it to view the current
configuration settings of the mailbox program. For more about using XGCONF, see the
XGCONF topic of the User's Guide RTSC-pedia wiki.
1. To open XGCONF, you must be in the C/C++ perspective of CCSv4. Click the C/C++ icon

to switch back to that perspective.
2. Make sure the mailbox project is set to be the "Active" project. You can do this by right-

clicking on the project in the "C/C++ Projects" view and selecting Set as Active Project.
This step is important since XGCONF works with the properties of the current active project
in the workspace.

3. Right-click on the “mailbox.cfg” file in the project file list and select Open With  XGCONF.
It takes a few seconds for XGCONF to open. During this time, the CCS status bar shows
that the configuration is being processed and validated.

4. Let’s take a look at one of the legacy DSP/BIOS configuration objects that exist in the
mailbox program. Recall the following configuration code from the file
“mailbox_evmDM6437_custom.tci” that creates an MBX object called “mbx”:

var mbx;
mbx = bios.MBX.create("mbx");
mbx.messageSize = 8;
mbx.length = 2;

5. You can see the result of this configuration code in XGCONF. In the Outline pane, toggle
the full tree view of the modules by clicking the icon. Click the + sign next to the ti.bios
package to expand the view of this package, which contains legacy modules.

http://rtsc.eclipse.org/docs-tip/XGCONF_User's_Guide�
http://rtsc.eclipse.org/docs-tip�

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 33

6. Next, click the + sign next to the module “MBX”. Notice that there is an instance under
“MBX” called “mbx”. Click on “mbx” to select it. You see the properties for this MBX instance
in the properties tab. Notice that its properties match those set in the configuration code:

7. You can use XGCONF in this way to view other properties of a SYS/BIOS program’s

configuration. This is a good time to play around with the tool by viewing the TSK instances
and seeing how the properties there match exactly what was configured.

8 Porting the Mailbox Example to SYS/BIOS 6 with New Modules and APIs
In this section, you’ll manually convert the existing, legacy RTSC configuration file and legacy C
code of the mailbox example to use the new SYS/BIOS 6 modules and C APIs.

In the subsections that follow, you will update the configuration files (Section 8.1), C source files
(Section 8.2), and project. Then you will build and run the application (Section 8.3). After
following these steps, the application configuration and C file will no longer contain any
DSP/BIOS legacy configuration code or C code.

As an alternative to removing all legacy code, Sections 9 and 9.2 provide examples that
integrate new SYS/BIOS 6 code with existing legacy DSP/BIOS 5 code.

8.1 Updating the Configuration Files
Where SYS/BIOS 6 configuration code is very similar to DSP/BIOS 5 configuration code,
conversion is straightforward. However, there are some differences that make conversion less
simple. For example, heaps in SYS/BIOS 6 are configured very differently. The following steps
explain the configuration changes needed to port the mailbox application to SYS/BIOS 6.

These steps must be done manually; that is, the conversion tool may not be used to do this. The
conversion tool only works for converting a legacy Tconf configuration script to a legacy RTSC
configuration script. The conversion tool does not support converting a RTSC configuration that
uses legacy SYS/BIOS 6 modules to one that uses non-legacy SYS/BIOS 6 modules.

SPRAAS7F

34 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

8.1.1 Porting the mailbox.cfg File
In SYS/BIOS 6, the useModule() method enables the application to use a particular module,
such as a SYS/BIOS, XDCtools, or a user-defined module. The RTSC configuration script calls
useModule() for all modules the program configures, and it automatically links all the module’s
libraries to the application. Calling useModule() returns a reference to the module, which is
used to configure that module’s settings.
For the mailbox example, only SYS/BIOS and XDCtools modules are necessary. The program
needs to configure settings for the following modules:
• BIOS
• HeapMem
• Defaults
• Memory
• Cache
• Task
• Mailbox
• Clock
• LoggerBuf
• Diags
• Main
So, the useModule() method must also be called for each of these modules in order to link in
their libraries and/or configure them.
Follow these steps to use all of the modules for the mailbox program and to remove unneeded
legacy code:
1. Open “mailbox.cfg” in a text editor.
2. At the top of the file, add the following code to use all necessary modules:

/* use the BIOS module to link in the sysbios library */
xdc.useModule('ti.sysbios.BIOS');

/* use modules for memory heaps and cache configuration */
xdc.global.HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem');
xdc.global.Defaults = xdc.useModule('xdc.runtime.Defaults');
xdc.global.Memory = xdc.useModule('xdc.runtime.Memory');
xdc.global.Cache = xdc.useModule('ti.sysbios.family.c64p.Cache');

/* use modules for Task, Mailbox, and Clock functionality */
xdc.global.Task = xdc.useModule('ti.sysbios.knl.Task');
xdc.global.Mailbox = xdc.useModule('ti.sysbios.knl.Mailbox');
xdc.global.Clock = xdc.useModule('ti.sysbios.knl.Clock');

/* use modules needed for logging */
xdc.global.LoggerBuf = xdc.useModule('xdc.runtime.LoggerBuf');
xdc.global.Diags = xdc.useModule('xdc.runtime.Diags');
xdc.global.Main = xdc.useModule('xdc.runtime.Main');

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 35

3. Remove legacy configuration code from the file. The mailbox.cfg file contains a legacy
reference that was necessary in Section 7, but is no longer needed. Delete the following line
of code from the file:

xdc.loadPackage('ti.bios.tconf');

4. Save the file.

8.1.2 Porting the Contents of the evmDM6437_common.tci File

When you ran the conversion tool in Section 7.2, you used the -i option in order to migrate and
copy in the code of the included *.tci files into the mailbox.cfg file. So, the code from the
“evmDM6437_common.tci” file is now located within the mailbox.cfg file after a comment
containing that file name. Therefore, all edits in this section will be made to the mailbox.cfg file.

The contents of the mailbox.cfg file include code to enable Real Time Analysis, memory heaps,
Real Time Data Exchange, and the Task Manager. It also contains configuration code to create
a heap in the memory section IRAM, to map the heap in IRAM as the segment for SYS/BIOS
objects and mallocs, and to configure the cache and the clock

In the following steps, you will convert this configuration code to SYS/BIOS 6 and remove
unneeded legacy code:
1. Delete the following lines of code from the mailbox.cfg file:

/* Enable common BIOS features used by all examples
 */
bios.enableRealTimeAnalysis(prog);
bios.enableMemoryHeaps(prog);
bios.enableRtdx(prog);
bios.enableTskManager(prog);

It is no longer necessary to use these legacy methods to enable RTA, memory heaps, RTDX or
the Task Manager. RTDX is no longer supported. The Task Manager is enabled by default in
SYS/BIOS 6, and the configuration code to enable RTA was already added by the conversion
tool.

8.1.2.1 Converting the IRAM Heap Creation Code

Next the code in mailbox.cfg creates a heap in IRAM and maps the segment as the default heap
for SYS/BIOS objects and mallocs.

In SYS/BIOS 6, heaps and segments are configured using the Program, Memory, and
HeapMem modules. These modules function in SYS/BIOS 6 as the equivalent of the MEM
manager in DSP/BIOS 5.

The following steps create and set up a heap using the Program, HeapMem and Memory
modules. The configuration that follows sets the heap’s size, maps it to the IRAM segment, and
sets the heap as the default. For details on memory, see Section 5, “Migrating Memory
Configurations”.

SPRAAS7F

36 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

1. Delete the following code from the file “mailbox.cfg”:

/* Enable heaps in IRAM and define label SEG0 for heap usage. */
bios.IRAM.createHeap = true;
bios.IRAM.enableHeapLabel = true;
bios.IRAM["heapLabel"] = prog.extern("SEG0");
bios.IRAM.heapSize = 0x2000;
bios.MEM.BIOSOBJSEG = prog.get("IRAM");
bios.MEM.MALLOCSEG = prog.get("IRAM");

2. Using the HeapMem reference created by the useModule() method earlier in the
mailbox.cfg file, create a HeapMem heap instance of size 0x2000 by adding the following
code:

var params = new HeapMem.Params;
params.size = 0x2000;
params.sectionName = "myHeap";
var heap = HeapMem.create(params);

3. Using the Memory reference created by the useModule() method earlier in the
mailbox.cfg file, assign this heap to be the default Heap for the application. This also
assigns the heap to be the default heap for malloc() and free() calls. Add the following
code:

Memory.defaultHeapInstance = heap;

4. Using the Memory reference created by the useModule() method earlier in the
mailbox.cfg file, assign this heap to be the default Heap for SYS/BIOS objects. Add the
following code:

Defaults.common$.instanceHeap = heap;

5. Using the Program module, which exists during RTSC configuration, map the section name
of our Heap “myHeap”, which was created in Step 2, to load data into the IRAM segment:

var IRAM = Program.cpu.memoryMap.IRAM;
Program.sectMap["myHeap"] = {loadSegment: IRAM.name};

8.1.2.2 Converting the Cache Configuration Code
1. Delete the following lines of code from the mailbox.cfg file:

bios.GBL.C64PLUSCONFIGURE = 1;
bios.GBL.C64PLUSMAR128to159 = 0x0000ffff;

In DSP/BIOS 5, configuring the cache required that this intention be explicitly set in the
Tconf include file (the first line of this code). This is no longer necessary in SYS/BIOS 6, as
the enabling of the cache is now handled in the RTSC platform.

2. Add a line of code to set the MAR 128 – 159 register bit mask:

Cache.MAR128_159 = 0x0000ffff;

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 37

8.1.2.3 Converting the Clock Configuration Code

The legacy module CLK corresponds to the SYS/BIOS 6 Clock module. The CLK module
allowed you to take a specific timer out of reset mode. This property is not supported by the
SYS/BIOS 6 Clock module, so the legacy CLK configuration code in the mailbox example should
be deleted.
1. Delete the following lines of code from the mailbox.cfg file:

bios.CLK.TIMERSELECT = "Timer 0"; /* Select Timer 0 to drive BIOS CLK */
bios.CLK.RESETTIMER = true; /* Take the selected timer our of reset */

2. Add configuration code to set Timer 0 as the timer instance created by the Clock module:

Clock.timerId = 0; /* Select Timer 0 to drive BIOS CLK */

3. Save the file.

8.1.3 Porting the Contents of the mailbox.tci File

When you ran the conversion tool in Section 7.2, the -i option was used in order to migrate and
copy in the code of the included *.tci files into the mailbox.cfg file. So, the code from the
“mailbox.tci” file is now located within the mailbox.cfg file after a comment containing that file
name. Therefore, all edits in this section will be made to the mailbox.cfg file.

The code from the “mailbox.tci” file contains configuration settings for SYS/BIOS Logs and
creates SYS/BIOS Tasks for the mailbox program. While the code to configure logging in
SYS/BIOS 6 is different from earlier versions, SYS/BIOS 6 Task configuration is very similar to
legacy TSK configuration.

In the subsections that follow, you will also convert the logging configuration code to SYS/BIOS
6 format and remove unneeded legacy code.

8.1.3.1 Converting the Log Configuration Code

In DSP/BIOS 5 applications, you printed to a DSP/BIOS LOG by defining a LOG buffer and
calling the LOG_printf() function to write to the buffer. In SYS/BIOS 6, you will create a
default logger to write log output to. One method is to use the XDCtools LoggerBuf module to
create a LoggerBuf instance and set the instance as the default logger for the system so that
output will be written to it.

Additionally, XDCtools provides greater control over the logging in an application by providing
the diagnostics module, “xdc.runtime.Diags,” to enable or disable the logging for a particular
module. For more information on Diags, see Section 8.2.7.

The following steps enable USER2 diagnostics for the mailbox program’s logging. You will
remove the legacy LOG configuration and replace it by setting up an XDCtools LoggerBuf
instance as the default logger in the mailbox application.

SPRAAS7F

38 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

1. Open mailbox.cfg for editing.
2. Delete the following lines of code:

var trace;
trace = bios.LOG.create("trace");
trace.bufLen = 256;
trace.logType = "circular";

3. Add the following code:

/* create trace logger */
var trace = LoggerBuf.create();

/* Set trace to be the default logger for the application. */
Main.common$.logger = trace;

/* Enable diagnostics for USER2 events for our program. Logging in the C
 * Code will be done using USER2 events. Disabling this would disable all of
 * the logging done in mailbox.c */
Main.common$.diags_USER2 = Diags.RUNTIME_ON;

4. Delete the lines of code that configure the LOG_system Log. This Log buffer is not used in
SYS/BIOS 6.

/* Set the buffer length of LOG_system buffer */
bios.LOG_system.bufLen = 512;

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 39

8.1.3.2 Converting the Task Configuration Code

The DSP/BIOS 5 TSK module corresponds to the SYS/BIOS 6 Task module. Creating a static
Task in SYS/BIOS 6 is similar to creating a static TSK in DSP/BIOS 5, and is fairly
straightforward.
1. Delete the legacy TSK configuration code:

/*
 * Create and initialize four TSKs
 */
var reader0;
reader0 = bios.TSK.create("reader0");
reader0.priority = 1;
reader0["fxn"] = prog.extern("reader");

var writer0;
writer0 = bios.TSK.create("writer0");
writer0.priority = 1;
writer0["fxn"] = prog.extern("writer");
writer0.arg0 = 0;

var writer1;
writer1 = bios.TSK.create("writer1");
writer1.priority = 1;
writer1["fxn"] = prog.extern("writer");
writer1.arg0 = 1;

var writer2;
writer2 = bios.TSK.create("writer2");
writer2.priority = 1;
writer2["fxn"] = prog.extern("writer");
writer2.arg0 = 2;

2. Add the following Task configuration code:

/*
 * Create and initialize four Tasks
 */
var reader0Params = new Task.Params();
reader0Params.priority = 1;
var reader0 = Task.create('&reader', reader0Params);

var writer0Params = new Task.Params();
writer0Params.arg0 = 0;
writer0Params.priority = 1;
var writer0 = Task.create('&writer', writer0Params);

var writer1Params = new Task.Params();
writer1Params.arg0 = 1;
writer1Params.priority = 1;
var writer1 = Task.create('&writer', writer1Params);

var writer2Params = new Task.Params();
writer2Params.arg0 = 2;
writer2Params.priority = 1;
var writer2 = Task.create('&writer', writer2Params);

3. Save the file.

SPRAAS7F

40 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

8.1.4 Porting the Contents of the mailbox_evmDM6437_custom.tci File

When you ran the conversion tool in Section 7.2, the -i option was used in order to migrate and
copy in the code of the included *.tci files into the mailbox.cfg file. So, the code from the
“mailbox_evmDM6437_custom.tci” file is now located within the mailbox.cfg file after a comment
containing that file name. Therefore, all edits in this section will be made to the mailbox.cfg file.

The code from the mailbox_evmDM6437_custom.tci file contains configuration settings for the
legacy MBX module. The DSP/BIOS 5 MBX module corresponds to the SYS/BIOS 6 Mailbox
module, and creating a static Mailbox in SYS/BIOS 6 is similar to creating a static MBX in
DSP/BIOS 5.

In the next steps, you will convert this configuration code to SYS/BIOS 6 and remove unneeded
legacy code.
1. Delete the legacy MBX configuration code:

/* Create a mbx */

var mbx;
mbx = bios.MBX.create("mbx");
mbx.messageSize = 8;
mbx.messageLength = 2;

2. Add the following Mailbox configuration code:

var mbxParams = new Mailbox.Params(); // Use a default Mailbox Params
var messageSize = 8;
var length = 2;
Program.global.mbx = Mailbox.create(messageSize, length, mbxParams);

3. Save and close the file.

8.1.5 Viewing the SYS/BIOS 6 Mailbox Configuration Using XGCONF

In Section 7.6, you saw how to use XGCONF to view the legacy SYS/BIOS 6 configuration of the
mailbox program. Now that the mailbox.cfg file has been updated to use non-legacy
configuration code, you can again view it graphically with XGCONF, although you’ll have to look
in different places to see what our configuration contains. (Previously the mailbox configuration
settings were found under “ti.bios”. Now they’ll be found under “ti.sysbios”.)

In this section, you will learn where to look in XGCONF to find SYS/BIOS 6 module settings.
1. Make sure the mailbox project is set to be the "Active" project. You can do this by right-

clicking on the mailbox project in the "C/C++ Projects" view and selecting Set as Active
Project.

2. To open XGCONF, you must be in the C/C++ perspective of CCS. If necessary, click the
C/C++ icon to switch back to that perspective.

3. To open XGCONF, right click the “mailbox.cfg” file in the mailbox project file list, and then
select Open With  XGCONF:

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 41

4. Recall the configuration code you added in Section 8.1.4 to create a mailbox instance in the
file “mailbox.cfg”. Recall that in that section you added the following code:

xdc.global.Mailbox = xdc.useModule('ti.sysbios.knl.Mailbox');
. . .
var mbxParams = new Mailbox.Params(); // Use a default Mailbox Params
var messageSize = 8;
var length = 2;
Program.global.mbx = Mailbox.create(messageSize, length, mbxParams);

5. In the Outline tab, you can use the icon to switch between
two viewing modes. When the icon is highlighted, you see a
tree view of all the packages available for configuration.
Expand the tree in the Outline tab as shown in the figure. The
tree shows that the Mailbox module is ti.sysbios.knl.Mailbox.

6. By toggling the icon off, you can change the view to show
only modules that are used in the application and to list
modules by their full package names.

7. Notice that there is an instance under Mailbox called mbx.
This is the instance created by the RTSC configuration code.
Click on mbx to select it. You will see the properties for this
Mailbox instance in the Properties pane to the left. Notice that
its properties match the statements you added to the
configuration code.

SPRAAS7F

42 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

8. Next, let’s look at some of the Task instances. Recall the Task instances that were created
by code like the following in Section 8.1.3.2.

var reader0Params = new Task.Params();
reader0Params.priority = 1;
var reader0 = Task.create('&reader', reader0Params);

9. In the Outline pane, expand the ti.sysbios.knl.Task module. Notice there are several Task
instances, corresponding to the instances created by the mailbox.cfg script:

You can use XGCONF in this way to view other properties of a SYS/BIOS program’s
configuration. All you need to remember is that the layout of the Outline tab reflects the layout of
the SYS/BIOS 6 and XDCtools packages and modules. Find the module of interest in the Outline
tab, and you can see the end result of the RTSC configuration script for that module.

8.2 Updating the C Source File
The C source file “mailbox.c” contains legacy API calls and includes legacy header files. In order
to port the source file to SYS/BIOS 6, these legacy headers and C API calls must be changed to
their SYS/BIOS 6 equivalents.

8.2.1 Replacing the Legacy Header Files
1. Open the “mailbox.c” file for editing and find the #include statements near the top of the

file. The mailbox.c file includes the following legacy header files:

#include <std.h>
#include <log.h>
#include <mbx.h>
#include <tsk.h>

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 43

2. The first step in converting these #include statements is to determine their SYS/BIOS 6
counterparts. For the most part, a SYS/BIOS 6 header file has a similar name to its legacy
counterpart. For example, the legacy “tsk.h” corresponds to “Task.h” in SYS/BIOS 6. The
SYS/BIOS 6 header files are found in the ”ti/sysbios” directory and sub-directories.

SYS/BIOS 6 requires that #include statements use the package path of the header files,
so it is important to note this path when locating the header files. The DSP/BIOS 5 header
files included in the mailbox.c source file map to SYS/BIOS 6 header files as follows:

std.h ----> xdc/std.h
log.h ----> xdc/runtime/System.h, xdc/runtime/Log.h
mbx.h ----> ti/sysbios/knl/Mailbox.h
tsk.h ----> ti/sysbios/knl/Task.h

3. In addition, the BIOS header file must be included in the application, so you will need:

ti/sysbios/BIOS.h

4. Delete the existing #include statements from the “mailbox.c” file, and replace them with
the new list of SYS/BIOS 6 header files:

#include <xdc/std.h>
#include <xdc/runtime/System.h>
#include <xdc/runtime/Log.h>
#include <xdc/runtime/Diags.h>
#include <ti/sysbios/knl/Mailbox.h>
#include <ti/sysbios/knl/Task.h>
#include <ti/sysbios/BIOS.h>
#include <xdc/cfg/global.h>

For more information on mapping legacy modules to SYS/BIOS 6 and XDCtools modules, see
Section 4.1, “Legacy Module Mappings and API Guide”.

8.2.2 Updating the main() Function to Call BIOS_start()
All SYS/BIOS 6 programs must call the BIOS_start() function. The BIOS_start() function
should be called within main() after all other user initialization code. Add the following code to
the main() function of mailbox.c:

BIOS_start();

8.2.3 Replacing the Legacy MBX_post() and MBX_pend() Calls
The DSP/BIOS 5 MBX_pend() and MBX_post() APIs correspond to the SYS/BIOS 6
Mailbox_pend() and Mailbox_post() APIs. Make the following changes to the mailbox.c
file to use the Mailbox module APIs:
1. In the “mailbox.c” file, go to the reader() function and replace the following legacy code:

if (MBX_pend(&mbx, &msg, TIMEOUT) == 0) {

with the SYS/BIOS 6 equivalent:

if (Mailbox_pend(mbx, &msg, TIMEOUT)== 0) {

SPRAAS7F

44 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

2. In the “mailbox.c” file, find the writer() function and replace the following legacy code:

MBX_post(&mbx, &msg, TIMEOUT);

with the SYS/BIOS 6 equivalent:

Mailbox_post(mbx, &msg, TIMEOUT);

8.2.4 Replacing the Legacy ArgToInt() Macro Call
The ArgToInt() macro is defined in the legacy std.h file. To remove this legacy dependency,
replace it with a simple cast.

In the “mailbox.c” file, go to the writer() function and replace the following line of legacy code:

Int id = ArgToInt (id_arg);

with:

Int id = (Int)id_arg;

8.2.5 Replacing the Legacy LOG_printf() API Calls with Log_print*() Calls
Section 8.1.3.1 showed you how to create a trace logger for the application in the RTSC
configuration file with the XDCtools LoggerBuf module. Now you will modify the C code to use
the new logging API, Log_print*(), where “*” is a place holder for the number of values to
print. For example, if a print statement does not print any arguments use Log_print0(); if a
print statement prints one value use Log_print1(), and so on.

The Log_print*() statement does not specify a log handle, but specifies a Log event
diagnostic argument instead. The Log event diagnostic should match what was specified in the
configuration script; in this case it was diags_USER2. For more information on diagnostics
masks, see Section 8.2.7.
1. In the “mailbox.c” file, go to the reader() function and find the LOG_printf()

statements. Notice the number of variables that each print statement prints; there are
LOG_printf() calls that print zero arguments, and one that prints two arguments. These
calls must be replaced with the appropriate Log_print*() call, depending on the number
of arguments being printed.

2. The first LOG_printf() call in the reader() function does not print any arguments.
Therefore, it should be substituted with the Log_print0() API. Replace the following line
of code in the reader() function:

LOG_printf(&trace, "timeout expired for MBX_pend()");

with the new API call:

Log_print0(Diags_USER2, "timeout expired for MBX_pend()");

Note that Diags_USER2 is specified as the first argument to the new function, not a LOG
buffer handle as in the legacy API. This sets the diagnostics mask for our logging to
USER2, so that all Log_print*() statements specifying Diags_USER2 will have their
output displayed when the application is run.

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 45

3. The second LOG_printf() call in the reader() function prints two values, so replace it
with the Log_print2() API. Replace the following line of code in the reader() function:

LOG_printf(&trace, "read '%c' from (%d).", msg.val, msg.id);

with the new API call:

Log_print2(Diags_USER2, "read '%c' from (%d).", msg.val, msg.id);

4. Replace the following line of code in the reader() function:

LOG_printf(&trace, "reader done.");

with the new API call:

Log_print0(Diags_USER2, "reader done.");

5. Go to the writer() function and replace the following line of code:

LOG_printf(&trace, "(%d) writing '%c' ...", id, (Int)msg.val);

with the new API call:

Log_print2(Diags_USER2, "(%d) writing '%c' ...", id, (Int)msg.val);

Also replace:

LOG_printf(&trace, "writer (%d) done.", id);

with:

Log_print1(Diags_USER2, "writer (%d) done.", id);

6. Save and close the file.

8.2.6 Optional: Replacing the TSK_yield() Legacy API Call

The mailbox example contains a call to TSK_yield() that is commented out. If you wish to
uncomment this call, it must first be converted to a SYS/BIOS 6 call.
1. Open the “mailbox.c” file for editing.
2. Go to the writer() function and replace the following legacy API call:

TSK_yield()

with:

Task_yield()

3. Save and close the file.

8.2.7 More About Diagnostics Masks (Diags)
As shown in Section 8.2.5, the Log_print*() APIs use a diagnostics mask as the first
argument. As mentioned previously, this mask controls the logging output displayed for the
program at run time for greater control over the output of the program.

SPRAAS7F

46 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

There are different types of diagnostics for each module—any of which may be enabled or
disabled—that categorize the logs in the application. This makes it easy to turn off all logging
and print statements for an application, or disable a subset of the print output in the application.

To see the logging results, the diagnostics set for each of the Log_print*() statements must
match what was specified in the application’s RTSC configuration. For the mailbox application,
this was diags_USER2, so that should be the first argument to all Log_print*() calls.

For example, all of the logging output generated by the Log_print*() statements may be
disabled by adding the following line of configuration code and rebuilding the application:

Main.common$.diags_USER2 = Diags.RUNTIME_OFF;

To turn the logging output back on, change this line of code to:

Main.common$.diags_USER2 = Diags.RUNTIME_ON;

Another way to change the output is by changing the diagnostics mask in a Log_print*()
statement. For example, you could change the Log_print*() calls in the writer() function
to specify the Diags_USER1 mask, instead of Diags_USER2.

Specifically, the print statements in the writer() function would change to:

Log_print2(Diags_USER1, "(%d) writing '%c' ...", id, (Int)msg.val);

and:

Log_print1(Diags_USER1, "writer (%d) done.", id);

If you have made the changes to the mailbox.c file (don’t forget to rebuild), only the program
output for the reader() function print statements would be displayed. Since the diagnostics for
USER1 were never enabled in the configuration, changing the diagnostics mask of the
writer() function’s print statements to USER1 disabled them. Adding the following line of
configuration code to mailbox.tci would enable the print output for USER1, and allow the output
of the writer() function to be displayed:

Main.common$.diags_USER1 = Diags.RUNTIME_ON;

For more information on Diags, please see Section 8.2.5 for diagnostic masks used as
arguments in Log_print*() calls, or see the online CDOC reference documentation that came
with your XDCtools installation.

8.3 Building and Running the Application
1. Make sure that the “mailbox” project is the active project. Then, from within the C/C++

perspective, select Project  Build Active Project to build the mailbox application using
SYS/BIOS 6.

Note for C28x: As described in Section 2.5, SYS/BIOS 6 uses a larger stack than
DSP/BIOS 5, as well as having a slightly larger footprint. As a result, it is possible that not
all code and data from a legacy DSP/BIOS 5 program will fit into the same memory map
with SYS/BIOS 6. If your legacy program places a lot of code or data in internal memory,
you may see link time errors when building your converted program.

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 47

2. Enter the Debug perspective in order to load the mailbox.out executable. If you have not
used it before, you can open this perspective by choosing Launch TI Debugger from the
drop-down arrow next to the debug icon:

3. Connect CCSv4 to the DM6437 EVM board by selecting Target  Connect Target.
4. Reset the board by selecting Run  Reset  CPU Reset.
5. Load the program by selecting Target  Load Program and choosing the application

executable “<working directory path>/mailbox/Debug/mailbox.out”.
6. Run the application by selecting Run  Run or pressing the F8 key. Output is displayed in

the RTA Printf Logs pane, as shown in the following picture.

7. Halt the program by selecting Run  Halt.

SPRAAS7F

48 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

9 Adding SYS/BIOS Tasks and Communication to a Legacy Application
Once you have updated an DSP/BIOS 5 legacy application to build and run using SYS/BIOS 6
legacy support, you may want to expand upon that program, making use of some of the new
SYS/BIOS 6 modules and code. This section shows how to add two new SYS/BIOS 6 Tasks to a
hypothetical legacy program that already contains two legacy TSKs.

Suppose a legacy DSP/BIOS 5 program contains two TSKs that run the following “reader” and
“writer” functions, which communicate via MBX. Section 9.1 shows how to add two new
SYS/BIOS 6 Tasks, which communicate with each other via Mailbox. Section 9.2 shows how the
legacy TSKs can communicate with the SYS/BIOS 6 Tasks, and vice versa.

Since this section expands on Section 4.2, “Extending Your Legacy Program with SYS/BIOS 6
APIs”, you should read that section first.

/* ======== reader ======== */
Void reader(Void)
{
 MsgObj msg;
 Int i;

 for (i=0; ;i++) {
 /* wait for mailbox to be posted by writer() */
 if (MBX_pend(&mbx, &msg, TIMEOUT) == 0) {
 Log_print0(Diags_USER2, "BIOS5 reader: timeout expired for MBX_pend()");
 break;
 }
 Log_print2(Diags_USER2, "BIOS 5 reader: read '%c' from BIOS 5 writer (%d).",
 msg.val, msg.id);
 }
 Log_print0(Diags_USER2, "BIOS 5 reader done.");
}

/* ======== writer ======== */
Void writer(Arg id_arg)
{
 MsgObj msg;
 Int i;
 Int id = ArgToInt (id_arg);

 for (i=0; i < NUMMSGS; i++) {
 /* fill in value */
 msg.id = id;

 /* Send message to BIOS 5 MBX. Use legacy API to communicate with legacy code */
 msg.val = i % NUMMSGS + (Int)('a');
 MBX_post(&mbx, &msg, TIMEOUT);
 Log_print2(Diags_USER2, "BIOS 5 writer: (%d) using MBX_post to write '%c' to the
BIOS 5 MBX ...", id, (Int)msg.val);
 }

 Log_print1(Diags_USER2, "BIOS 5 writer: (%d) done.", id);
}

Notice that although this code is “old” legacy code, it has been updated to use the “new” API
Log_print*(). This causes the output of the program to be written into the same log buffer
and displayed in order. For more information on this API, see Section 8.2.5.

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 49

9.1 Adding Two New SYS/BIOS 6 Tasks to a Legacy Program

This section shows how you can expand the program to add two new Tasks.

The two new SYS/BIOS 6 Tasks being added are considered “new code.” As such, there are two
new functions written for them, both of which use SYS/BIOS 6 APIs. Since they will
communicate with one another, they will use a SYS/BIOS 6 Mailbox object and APIs. All of this
conforms to the rules of communication described in Section 4.2.
1. In order to add two new SYS/BIOS 6 Tasks and a Mailbox object to an existing application,

you would first add RTSC configuration code similar to the following to the *.cfg file. The
following code statically configures two new Tasks and a Mailbox, and must be added after
all existing legacy configuration code in order to work correctly (see Section 4.2.1 for
details).

/* create two new BIOS 6 Tasks */
xdc.global.Task = xdc.useModule("ti.sysbios.knl.Task");
var tskParams = new Task.Params();
tskParams.priority = 1;
Task.create('&bios6Reader', tskParams);
Task.create('&bios6Writer', tskParams);

/* create a BIOS 6 Mailbox for communication between BIOS 6 Tasks */
xdc.global.Mailbox = xdc.useModule("ti.sysbios.knl.Mailbox");
var mbxParams = new Mailbox.Params();
var messageSize = 8;
var length = 2;
Program.global.bios6Mailbox = Mailbox.create(messageSize, length, mbxParams);

2. Since this example mixes legacy and new code, you must include the SYS/BIOS 6 header
files before the existing DSP/BIOS 5 legacy headers in the existing legacy C file (note that
the order of XDCtools header files is not important). You would add code similar to the
following lines shown in bold to include necessary header files for the new Task and
Mailbox code. All of the #include directives needed are shown, so that the required ordering
is clear:

/* header files for new code must come before legacy header files */
#include <ti/sysbios/Bios.h>
#include <ti/sysbios/knl/Mailbox.h>
#include <ti/sysbios/knl/Task.h>

#include <xdc/runtime/LoggerBuf.h>
#include <xdc/runtime/Log.h>
#include <xdc/runtime/Diags.h>
#include <xdc/runtime/System.h>
#include <xdc/cfg/global.h>

/* existing legacy header files */
#include <std.h>
#include <mbx.h>
#include <tsk.h>

SPRAAS7F

50 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

3. The following new Task functions could be used for the new SYS/BIOS 6 Tasks:

/*
 * ======== bios6Reader ========
 */
Void bios6Reader(Arg id_arg)
{
 MsgObj msg;
 Int i;

 for (i=0; ;i++) {
 /* wait for mailbox to be posted by writer() */
 if (Mailbox_pend(bios6Mailbox, &msg, TIMEOUT) == 0) {
 Log_print0(Diags_USER2, "BIOS 6 reader: timeout expired for MBX_pend()");
 break;
 }

 Log_print2(Diags_USER2, "BIOS 6 reader: read '%c' from BIOS 6 writer (%d).",
 msg.val, msg.id);
 }

 Log_print0(Diags_USER2, "BIOS 6 reader: reader done.");
}

/*
 * ======== bios6Writer ========
 */
Void bios6Writer(Arg id_arg)
{
 MsgObj msg;
 Int i;
 Int id = (Int)id_arg;

 for (i=0; i < NUMMSGS; i++) {
 /* fill in value */
 msg.id = id;
 msg.val = i % NUMMSGS + (Int)('a');

 /* Send msg to BIOS 6 Mailbox. Use new BIOS 6 API to communicate
 * with non-legacy BIOS 6 code. */
 msg.val = i % NUMMSGS + (Int)('a');
 Mailbox_post(bios6Mailbox, &msg, TIMEOUT);
 Log_print2(Diags_USER2, "BIOS 6 writer: (%d) using Mailbox_post to write '%c'
to the BIOS 6 Mailbox ...", id, (Int)msg.val);
 }

 Log_print1(Diags_USER2, "BIOS 6 writer: (%d) done.", id);
}

4. To properly run a SYS/BIOS 6 program, you would also need to add the following code to
the main() function:

BIOS_start();

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 51

Building and running should yield output similar to the following for this hypothetical example:

9.2 Communicating Between the Existing Legacy TSKs and the New Tasks

The example in the subsections that follow shows how to update our hypothetical example to
communicate between legacy TSK functions and new Task functions.

This section shows how to update the code in Section 9.1 to allow the legacy TSKs to
communicate with the new Tasks, and vice versa.

9.2.1 Update the bios6Writer() Task to Post a Message to the Legacy reader() TSK

First, let’s see how you could change the new bios6Writer() Task to communicate with the
legacy reader() TSK. This is an example of new code communicating with legacy code.
1. Look at the legacy TSK reader() function in Section 9. Notice that it is waiting for a

message via:

MBX_pend(mbx, ...);

To update the bios6Writer() Task to send a message to the legacy reader() TSK, we
must use code that matches that of the legacy code in the reader() function. This means
the following legacy call must be made from within the bios6Writer() Task, which uses
the legacy MBX object:

MBX_post(mbx, ...);

SPRAAS7F

52 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

2. To update the bios6Writer() function to send the legacy reader() TSK a message,
you could add the code shown in bold. (The entire updated function is shown for clarity; new
additions are shown in bold.)

/* ======== bios6Writer ======== */
Void bios6Writer(Arg id_arg)
{
 MsgObj msg;
 Int i;
 Int id = (Int)id_arg;

 for (i=0; i < NUMMSGS; i++) {
 /* fill in value */
 msg.id = id;
 msg.val = i % NUMMSGS + (Int)('a');

 if (i == NUMMSGS - 1) {
 /* Send message to BIOS 5 MBX. Use legacy API to talk with old code. */
 msg.val = '6';
 MBX_post(&mbx, &msg, TIMEOUT);
 Log_print2(Diags_USER2, "BIOS 6 writer: (%d) using MBX_post to write '%c'
to the BIOS 5 MBX ...", id, (Int)msg.val);
 }
 else {
 /*
 * Send msg to BIOS 6 Mailbox. Use new BIOS 6 API to communicate
 * with non-legacy BIOS 6 code:
 */
 msg.val = i % NUMMSGS + (Int)('a');
 Mailbox_post(bios6Mailbox, &msg, TIMEOUT);
 Log_print2(Diags_USER2, "BIOS 6 writer: (%d) using Mailbox_post to write
'%c' to the BIOS 6 Mailbox ...", id, (Int)msg.val);
 }
 }

 Log_print1(Diags_USER2, "BIOS 6 writer: (%d) done.", id); }
}

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 53

3. Look at the legacy reader() function in Section 9. To handle receiving of the message
from the bios6Writer() Task you would add the new code is shown in bold.

/*
 * ======== reader ========
 */
Void reader(Void)
{
 MsgObj msg;
 Int i;

 for (i=0; ;i++) {

 /* wait for mailbox to be posted by writer() */
 if (MBX_pend(&mbx, &msg, TIMEOUT) == 0) {
 Log_print0(Diags_USER2, "BIOS5 reader: timeout expired for MBX_pend()");
 break;
 }

 /* print value */
 if (msg.val == '6') {
 Log_print2(Diags_USER2, "BIOS 5 reader: read '%c' from BIOS 6 writer
(%d).", msg.val, msg.id);
 }
 else {
 Log_print2(Diags_USER2, "BIOS 5 reader: read '%c' from BIOS 5 writer
(%d).", msg.val, msg.id);
 }
 }

 Log_print0(Diags_USER2, "BIOS 5 reader done.");

}

9.2.2 Updating the Legacy writer() TSK to Post a Message to the bios6Reader() Task

Now, let’s see how we would change the legacy writer() TSK to communicate with the new
bios6Reader() Task. This is an example of old code communicating with new SYS/BIOS 6
code.
1. Look at the bios6Reader() function in Section 9.1. Notice that it waits for a message via:

Mailbox_pend(bios6Mailbox, ...);

To update the legacy writer() TSK to send a message to new the bios6Reader()
Task, we again must use code that matches what’s used by the entity that we want to
communicate with. So, the writer() TSK must use the new Mailbox module APIs to
communicate with bios6Reader(), using the new Mailbox object:

Mailbox_post(bios6Mailbox, ...);

SPRAAS7F

54 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

2. To update the writer() function to send the bios6Reader() Task its last message, the
following code shown in bold could be added:

/* ======== writer ======== */
Void writer(Arg id_arg)
{
 MsgObj msg;
 Int i;
 Int id = ArgToInt (id_arg);

 for (i=0; i < NUMMSGS; i++) {
 /* fill in value */
 msg.id = id;
 if (i == NUMMSGS - 1) {
 /* Send msg to BIOS 6 Mailbox. Use new BIOS 6 API to communicate
 * from legacy code to new BIOS 6 code. */
 msg.val = '5';
 Mailbox_post(bios6Mailbox, &msg, TIMEOUT);
 Log_print2(Diags_USER2, "BIOS 5 writer: (%d) using Mailbox_post to
write '%c' to the BIOS 6 Mailbox ...", id, (Int)msg.val);
 }
 else {
 /* Send message to BIOS 5 MBX. Use legacy API to communicate with
 * legacy code. */
 msg.val = i % NUMMSGS + (Int)('a');
 MBX_post(&mbx, &msg, TIMEOUT);
 Log_print2(Diags_USER2, "BIOS 5 writer: (%d) using MBX_post to write
'%c' to the BIOS 5 MBX ...", id, (Int)msg.val);
 }
 }
 Log_print1(Diags_USER2, "BIOS 5 writer: (%d) done.", id);
}

9.2.3 Build and Run

You should see output similar to the following for this example:

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 55

10 Conclusion
After following the example in this document, you should have a better understanding of
SYS/BIOS 6 and changes from DSP/BIOS 5. Although the steps were tailored for the mailbox
example for a specific platform, you should be able to migrate any application for any supported
platform to SYS/BIOS 6 by following its example.

11 References
• SYS/BIOS 6 User’s Guide (SPRUEX3 -- BIOS_INSTALL_DIR/docs/Bios_User_Guide.pdf)

• XDCtools Release Notes (XDC_INSTALL_DIR/xdctools_#_##_release_notes.html). Includes
information about changes in each version, known issues, validation, and device support.

• SYS/BIOS 6 Release Notes (BIOS_INSTALL_DIR/bios_#_##_release_notes.html). Includes
information about changes in each version, known issues, validation, and device support.

• SYS/BIOS Getting Started Guide (BIOS_INSTALL_DIR/docs/
Bios_Getting_Started_Guide.pdf). Includes steps for installing and validating the installation.

• RTSC-pedia at http://rtsc.eclipse.org/docs-tip for more about RTSC and XDCtools and for
demos that use RTSC-related features in CCSv4.

• RTSC+Eclipse QuickStart at http://rtsc.eclipse.org/docs-tip/RTSC+Eclipse_QuickStart for
information about using RTSC in CCSv4.

http://rtsc.eclipse.org/docs-tip�
http://rtsc.eclipse.org/docs-tip/RTSC+Eclipse_QuickStart�

SPRAAS7F

56 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

Appendices

A Unsupported DSP/BIOS 5 APIs
The following table lists DSP/BIOS 5 APIs for which legacy support is currently not provided in
SYS/BIOS 6. The table indicates whether there are plans to support each API in a future
release. For a list of correspondences between DSP/BIOS 5 and SYS/BIOS 6 modules, see
Section 4.1.

Table 3. Unsupported DSP/BIOS 5 APIs

Module API Future Support?
DGS, DHL, DST Dxx_close No
DGS, DHL, DST Dxx_ctrl No
DGS, DHL, DST Dxx_idle No
DGS, DHL, DST Dxx_init No
DGS, DHL, DST Dxx_issue No
DGS, DHL, DST Dxx_open No
DGS, DHL, DST Dxx_ready No
DGS, DHL, DST Dxx_reclaim No
GBL GBL_getVersion No
HST HST_getpipe No
HWI HWI_enter No
HWI HWI_exit No
MPC MPC_getPA Yes
MPC MPC_getPageSize Yes
MPC MPC_getPrivMode Yes
MPC MPC_setBufferPA Yes
MPC MPC_setPA Yes
MPC MPC_setPrivMode Yes
PIP PIP_alloc No
PIP PIP_free No
PIP PIP_get No
PIP PIP_getReaderAddr No
PIP PIP_getReaderNumFrames No
PIP PIP_getReaderSize No
PIP PIP_getWriterAddr No
PIP PIP_getWriterNumFrames No
PIP PIP_getWriterSize No
PIP PIP_peek No
PIP PIP_put No
PIP PIP_reset No
PIP PIP_setWriterSize No
PRD PRD_tick No
RTDX RTDX_channelBusy No

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 57

Module API Future Support?
RTDX RTDX_CreateInputChannel No
RTDX RTDX_CreateOutputChannel No
RTDX RTDX_disableInput No
RTDX RTDX_disableOutput No
RTDX RTDX_enableInput No
RTDX RTDX_enableOutput No
RTDX RTDX_isInputEnabled No
RTDX RTDX_isOutputEnabled No
RTDX RTDX_read No
RTDX RTDX_readNB No
RTDX RTDX_sizeofInput No
RTDX RTDX_write No
TSK TSK_deltatime No
TSK TSK_getsts No
TSK TSK_resetTime No
TSK TSK_settime No
TSK TSK_tick No

B Unsupported DSP/BIOS 5 Tconf Properties and Methods
The following DSP/BIOS 5 Tconf configuration properties and methods are no longer supported.
If your RTSC configuration configures one of these properties or uses one of these methods, a
warning message is provided when you build the application.

B.1 Tconf prog.decl() and prog.extern() Methods

The methods prog.decl() and prog.extern() are no longer supported. If your code uses
either one, a build-time error will occur. If a *.tcf or *.tci file uses either of these methods for a
function assignment, remove prog.decl() or prog.extern() and leave only the string name
of the function being assigned. For example, the following code:

tsk0.fxn = prog.extern("tsk0Fxn");
tsk1.fxn = prog.decl("tsk1Fxn");

needs to be changed to the following:

tsk0.fxn = "tsk0Fxn";
tsk1.fxn = "tsk1Fxn";

If prog.decl() or prog.extern() are used as arguments, replace these method calls with
calls to the new method $externPtr(). For example, the following code:

tsk0.arg0 = prog.decl("foo");
tsk1.arg0 = prog.extern("bar");

needs to be changed to the following:

tsk0.arg0 = $externPtr("foo");
tsk1.arg0 = $externPtr("bar");

SPRAAS7F

58 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

B.2 CLK Module Properties
CLK.CONFIGURETIMER
CLK.PRD
CLK.WHICHHIRESTIMER
CLK.FIXTDDR
CLK.TCRTDDR
CLK.POSTINITFXN
CLK.CONONDEBUG
CLK.STARTBOTH

CLK.<Instance>.order

B.3 GBL Module Properties
GBL.C641XCCFGL2MODE
GBL.C641XCONFIGUREL2

B.4 HWI Module Properties
HWI.RESETVECTOR
HWI.RESETVECTORADDR
HWI.EXTPIN4POLARITY
HWI.EXTPIN5POLARITY
HWI.EXTPIN6POLARITY
HWI.EXTPIN7POLARITY

HWI.<Instance>.monitor
HWI.<Instance>.addr
HWI.<Instance>.dataType
HWI.<Instance>.operation

B.5 IDL Module Properties
IDL.AUTOCALCULATE
IDL.LOOPINSTCOUNT

IDL.<Instance>.calibration
IDL.<Instance>.order

B.6 LOG Module Properties
LOG.<Instance>.dataType
LOG.<Instance>.format

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 59

B.7 MEM Module Properties
MEM.GBLINITSEG
MEM.TRCDATASEG
MEM.SYSDATASEG
MEM.OBJSEG
MEM.BIOSSEG
MEM.SYSINITSEG
MEM.HWISEG
MEM.VECSEG
MEM.RTDXTESTSEG
MEM.USERCOMMANDFILE
MEM.ENABLELOADADDR
MEM.LOADBIOSSEG
MEM.LOADSYSINITSEG
MEM.LOADGBLINITSEG
MEM.LOADTRCDATASEG
MEM.LOADTEXTSEG
MEM.LOADSWITCHSEG
MEM.LOADCINITSEG
MEM.LOADPINITSEG
MEM.LOADCONSTSEG
MEM.LOADECONSTSEG
MEM.LOADHWISEG
MEM.LOADHWIVECSEG
MEM.LOADRTDXTEXTSEG

MEM.<Instance>.base
MEM.<Instance>.len
MEM.<Instance>.space

B.8 PRD Module Properties
PRD.<Instance>.arg1
PRD.<Instance>.order

B.9 SWI Module Properties
SWI.<Instance>.order

B.10 TSK Module Properties
TSK.<Instance>.manualStack
TSK.<Instance>.allocateTaskName
TSK.<Instance>.order

SPRAAS7F

60 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

C Performance Benchmarks
This appendix shows a side-by-side comparison of timing and sizing benchmarks between
DSP/BIOS 5.32, SYS/BIOS 6.10, and SYS/BIOS 6.10 legacy support. This benchmark data is
meant to help you more easily compare DSP/BIOS 5 and SYS/BIOS 6.

For any given benchmark, the result for the version that has the best score is in bold for clarity.
If the best result is a “tie” between 2 or more versions, then the results for all “tied” versions are
in bold.

For more information on DSP/BIOS 5 benchmarks, please refer to the following documents:

• DSP/BIOS Benchmarks (SPRAA16D)

• DSP/BIOS Sizing Guidelines for TMS320C2000/C5000/C6000 DSPs (SPRA772A)

For more information on SYS/BIOS 6 benchmarks, please refer to:

• SYS/BIOS 6 User’s Guide (SPRUEX3) accessible via the SYS/BIOS 6 release notes

C.1 C64 Timing Benchmarks

The following timing benchmarks were run using the C64x Functional Simulator for Little Endian.
Note that for SYS/BIOS 6 benchmarks, the timer has a margin of error of +/- 8 CPU cycles. So,
when comparing benchmark numbers between SYS/BIOS 6 and SYS/BIOS 6 legacy, numbers
that differ by 8 or fewer CPU cycles should be considered equivalent. For some cases this
results in a “tie” for the results between SYS/BIOS 6 and SYS/BIOS 6 legacy that differ by 8.

Benchmark SYS/BIOS 6 APIs
(CPU cycles)

SYS/BIOS 6 legacy
APIs (CPU cycles)

DSP/BIOS 5.32
(CPU cycles)

Hwi_enable 16 8 16
Hwi_disable 8 8 24
Hwi_prolog 96 96 64
Hwi_epilog 112 112 64
Int-to-Task 320 320 568
Int-to-Swi 216 208 192
Swi_enable 48 48 72

Swi_disable 8 16 24
Swi_post, again 40 40 32
Swi_post, no switch 80 72 56
Swi_post, switch 136 128 120
Task_create, no switch 840 840 664
Task_setPri, no switch 160 152 272
Task_yield 152 144 232

SPRAAS7F

 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6 61

Benchmark SYS/BIOS 6 APIs
(CPU cycles)

SYS/BIOS 6 legacy
APIs (CPU cycles)

DSP/BIOS 5.32
(CPU cycles)

Semaphore_post, no task 32 32 32
Semaphore_post, switch 168 168 264
Semaphore_pend, no switch 40 48 24
Semaphore_pend, switch 176 176 232
CLK_gethtime /
xdc_runtime_Timestamp_get32

- 24 64

CLK_getltime / Clock_getTicks 8 8 16

C.2 C64 Sizing Benchmarks

The following size benchmarks were built for C64x little-endian mode.

Table 4. Sizes for the Basic Application

 SYS/BIOS 6 SYS/BIOS 6 legacy DSP/BIOS 5
Code (8-bit bytes) 3328 7168 1984
Initialized Data (8-bit bytes) 520 637 56
Uninitialized Data (8-bit bytes) 1900 2530 1304
C initialization (8-bit bytes) 1076 2100 916
Total Size 6824 12435 4260

Table 5. Sizes for the Swi Static Module Application

 SYS/BIOS 6 SYS/BIOS 6 legacy DSP/BIOS 5
Code (8-bit bytes) 6080 10112 6144
Initialized Data (8-bit bytes) 530 633 72
Uninitialized Data (8-bit bytes) 2212 2742 1784
C initialization (8-bit bytes) 1500 2332 1308
Total Size 10322 15819 9308

Table 6. Sizes for the Semaphore Static Module Application

 SYS/BIOS 6 SYS/BIOS 6 legacy DSP/BIOS 5
Code (8-bit bytes) 11872 14752 11936

Initialized Data (8-bit bytes) 564 613 223
Uninitialized Data (8-bit bytes) 4652 6522 4456
C initialization (8-bit bytes) 2612 3116 3340
Total Size 19700 25003 19955

SPRAAS7F

62 Migrating a DSP/BIOS 5 Application to SYS/BIOS 6

Table 7. Sizes for the Memory Static Module Application

 SYS/BIOS 6 SYS/BIOS 6 legacy DSP/BIOS 5
Code (8-bit bytes) 14240 17280 13344
Initialized Data (8-bit bytes) 652 661 231
Uninitialized Data (8-bit bytes) 8872 10684 8620
C initialization (8-bit bytes) 2780 3236 3468
Total Size 26544 31861 25663

Table 8. Sizes for the Dynamic Semaphore Module Application

 SYS/BIOS 6 SYS/BIOS 6 legacy DSP/BIOS 5
Code (8-bit bytes) 17504 18400 15968
Initialized Data (8-bit bytes) 820 669 235
Uninitialized Data (8-bit bytes) 8872 10692 8632
C initialization (8-bit bytes) 2780 3268 3500
Total Size 29976 33029 28335

	Migrating a DSP/BIOS 5 Application to SYS/BIOS 6
	1 Introduction to SYS/BIOS 6.x Legacy Support
	1.1 What Legacy Support is Provided?
	1.2 What Does this Application Note Cover?
	1.3 What is the General Migration Procedure?
	1.4 Software Requirements

	2 Converting Your Configuration
	2.1 Conversion Tool Syntax
	2.2 Specifying Environment Variables to the Conversion Tool
	2.3 How Memory Map Settings Are Translated
	2.4 Steps to Convert a Tconf Script to a RTSC Configuration Script
	2.5 Memory Map Issues for C28x Users

	3 Converting and Updating Your CCS Project
	3.1 Migrating Code Composer Studio Projects
	3.2 Updating a CCSv4 Project to Build with a Generated Platform Package
	3.3 Updating the Project’s Compiler Search Path
	3.4 Updating a CCSv4 Project’s Search Path to Find Included Configuration Files
	3.5 Building and Running the Project

	4 Converting Your C Code
	4.1 Legacy Module Mappings and API Guide
	4.2 Extending Your Legacy Program with SYS/BIOS 6 APIs
	4.2.1 Place New Configuration Code After Legacy Configuration Code
	4.2.2 Place Header File #include Directives for SYS/BIOS 6 Before Legacy Directives
	4.2.3 Communicating Between Old Code and New Code

	5 Migrating Memory Configurations
	5.1 Memory and RTSC Platforms
	5.2 Memory Segments and Sections
	5.3 Heaps
	5.4 Dynamic Memory Allocation

	6 Migrating Library Builds
	6.1 Creating a New Library Project for CCSv4
	6.2 Updating the Compiler Search Paths for CCSv4 Library Projects

	7 Porting the Mailbox Example to SYS/BIOS 6 Using Legacy Support
	7.1 Copying the Mailbox Example Files
	7.2 Converting the Mailbox Configuration Using the Conversion Tool
	7.3 Creating a CCSv4 Project for the Mailbox Program
	7.4 Updating the Compiler Search Path
	7.5 Building and Running the Application
	7.6 Using XGCONF to View the SYS/BIOS Configuration

	8 Porting the Mailbox Example to SYS/BIOS 6 with New Modules and APIs
	8.1 Updating the Configuration Files
	8.1.1 Porting the mailbox.cfg File
	8.1.2 Porting the Contents of the evmDM6437_common.tci File
	8.1.2.1 Converting the IRAM Heap Creation Code
	8.1.2.2 Converting the Cache Configuration Code
	8.1.2.3 Converting the Clock Configuration Code

	8.1.3 Porting the Contents of the mailbox.tci File
	8.1.3.1 Converting the Log Configuration Code
	8.1.3.2 Converting the Task Configuration Code

	8.1.4 Porting the Contents of the mailbox_evmDM6437_custom.tci File
	8.1.5 Viewing the SYS/BIOS 6 Mailbox Configuration Using XGCONF

	8.2 Updating the C Source File
	8.2.1 Replacing the Legacy Header Files
	8.2.2 Updating the main() Function to Call BIOS_start()
	8.2.3 Replacing the Legacy MBX_post() and MBX_pend() Calls
	8.2.4 Replacing the Legacy ArgToInt() Macro Call
	8.2.5 Replacing the Legacy LOG_printf() API Calls with Log_print*() Calls
	8.2.6 Optional: Replacing the TSK_yield() Legacy API Call
	8.2.7 More About Diagnostics Masks (Diags)

	8.3 Building and Running the Application

	9 Adding SYS/BIOS Tasks and Communication to a Legacy Application
	9.1 Adding Two New SYS/BIOS 6 Tasks to a Legacy Program
	9.2 Communicating Between the Existing Legacy TSKs and the New Tasks
	9.2.1 Update the bios6Writer() Task to Post a Message to the Legacy reader() TSK
	9.2.2 Updating the Legacy writer() TSK to Post a Message to the bios6Reader() Task
	9.2.3 Build and Run

	10 Conclusion
	11 References
	A Unsupported DSP/BIOS 5 APIs
	B Unsupported DSP/BIOS 5 Tconf Properties and Methods
	B.1 Tconf prog.decl() and prog.extern() Methods
	B.2 CLK Module Properties
	B.3 GBL Module Properties
	B.4 HWI Module Properties
	B.5 IDL Module Properties
	B.6 LOG Module Properties
	B.7 MEM Module Properties
	B.8 PRD Module Properties
	B.9 SWI Module Properties
	B.10 TSK Module Properties

	C Performance Benchmarks
	C.1 C64 Timing Benchmarks
	C.2 C64 Sizing Benchmarks

