

Template Version 1.2

Version 0.30 Page 1 of 77 Texas Instruments Proprietary Information

DESIGN DOCUMENT

DSP/BIOS™ LINK

IPS & Notify

LNK 128 DES

Version 0.30

Page 2 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

This page has been intentionally left blank.

Page 3 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

This page has been intentionally left blank.

Page 5 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

TABLE OF CONTENTS

1 Introduction ... 7
1.1 Purpose & Scope ... 7
1.2 Terms & Abbreviations ... 7
1.3 References ... 7
1.4 Overview.. 7

2 Requirements ... 8

3 Assumptions... 9

4 Constraints ... 10

5 High Level Design... 11
5.1 IPS ...11
5.2 Notify..13

6 Sequence Diagrams.. 15
6.1 IPS_init ...16
6.2 IPS_exit ..17
6.3 IPS_register...18
6.4 IPS_unregister ...19
6.5 IPS_notify ...20
6.6 IPS_ISR ..21
6.7 _NOTIFY_init ...22
6.8 _NOTIFY_exit...23
6.9 NOTIFY_eventWorker..24
6.10 NOTIFY_register ...25
6.11 NOTIFY_unregister ...26

7 Low Level Design.. 27
7.1 IPS ...27
7.2 Notify..38

8 Internal Discussions... 47
8.1 Prioritizing IPS (High level design) ..47
8.2 Prioritizing IPS (Low level discussion)..51
8.3 Notify..54
8.4 IPS component (Older Implementation) ...56

Page 6 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

TABLE OF FIGURES

Figure 1. Block diagram for IPS component ...12

Figure 2. On the GPP: IPS_init () control flow ..16

Figure 3. On the GPP: IPS_exit () control flow ...17

Figure 4. On the GPP: IPS_register () control flow..18

Figure 5. On the GPP: IPS_unregister () control flow ..19

Figure 6. On the GPP: IPS_notify () control flow ..20

Figure 7. On the GPP: IPS_ISR () control flow ...21

Figure 8. On the GPP: _NOTIFY_init () control flow ..22

Figure 9. On the GPP: _NOTIFY_exit () control flow..23

Figure 10. On the GPP: NOTIFY_eventWorker () control flow.....................................24

Figure 11. On the GPP: NOTIFY_register () control flow ..25

Figure 12. On the GPP: NOTIFY_unregister () control flow ..26

Figure 13. Register an Event ...47

Figure 14. Event chart..48

Figure 15. Sending an Event ...49

Figure 16. Receiving an Event ...49

Figure 17. Sending an Event ...50

Figure 18. Receiving an Event ...50

Figure 19. Location of Notify module ..54

Figure 20. Event passed to the user processes ..55

Figure 21. IPS Alternative 1: Shared memory layout ..57

Figure 22. IPS Alternative 2: Shared memory layout ..64

Page 7 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

1 Introduction

1.1 Purpose & Scope
This document describes the design of zero copy link driver for DSP/BIOS™ LINK.

The document is targeted at the development team of DSP/BIOS™ LINK.

1.2 Terms & Abbreviations
DSPLINK DSP/BIOS™ LINK

RT RealTime

OS Operating System

CHNL Data Channel

MSGQ Message Queue

DPC Deferred Procedure Call

IPS Inter processor Signaling

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

1.3 References
1. LNK 012 DES DSP/BIOS™ LINK

Link Driver

Version 1.11, dated JUL 25, 2003

1.4 Overview
DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit

that simplifies the development of embedded applications in which a general-purpose

microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK

provides control and communication paths between GPP OS threads and DSP/BIOS™

tasks, along with analysis instrumentation and tools.

The IPS provides signaling facility between the GPP and the DSP.

This document provides a detailed description of IPS and Dispatch scheme.

Page 8 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

2 Requirements
R1 IPS shall provide uniform interface to the kernel and Notify module.

R2 IPS must provide event prioritization between events.

R3 IPS shall take less time for its own logic execution, so that callbacks can be

called within very short time.

R4 IPS shall be configurable for providing a particular execution context to the

callbacks. (for example, ISR, DPC, thread etc)

R5 Notify shall APIs same IPS have.

R6 Notify shall maintain the event prioritization policy.

Page 9 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

3 Assumptions
A1 On Linux, POSIX threads are available.

Page 10 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

4 Constraints
C1 Only 32 events will be available for each process.

C2 Events will have priority in order to their event no. that is event 0 will have

highest priority.

C3 Event preemption is not allowed.

Page 11 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

5 High Level Design

5.1 IPS

5.1.1 Overview

The Inter-processor signaling (IPS) component is responsible for notifying an event

to its peer on the remote processor. This component shall use the services provided

on the hardware platform. It shall provide APIs, which shall be used by upper layers

to establish communication amongst peers at that level.

5.1.2 Services provided

The IPS component shall provide the following basic services:

1. Register an event.

2. Unregister an event.

3. Send a value to the remote processor.

4. Notify the remote processor about an event.

5. Event prioritization must be done.

5.1.3 Design

The IPS component consists of two major components:

1. IPS send

2. IPS Receive

IPS on either side will provide mechanism to send and receive events. IPS send

component will provide the processes/tasks on either side a notification sending

mechanism. IPS receive component will provide notification receiving mechanism.

Processes have to register their callbacks with the IPS receiving component inorder

to receive an event. While for sending events no need of registration is needed. On

receiving an event register request, IPS receive component will store the processes

/tasks related information to be used at the time of callbacks. Multiple processes can

wait for a particular event to occur i.e. can register for an event.

On receiving an event, IPS receive component calls the callback/callbacks associated

for that event. In the event of calling or processing the callback if a higher priority

event and a low priority event come, then IPS first completes the processing of the

current event and after that it calls the callback associated with the highest priority

event then the low priority event’s callback. If the event is associated with many

interested user processes, then their callbacks are called in the order of registrations.

In this case which process will get the event notification first is unspecified (if they

are all at the same priority of execution).

Inside a process, there is no possibility of having multiple callbacks for same event.

Page 12 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

Below diagram shows the interaction between IPS and user processes.

Figure 1. Block diagram for IPS component

IPS Send

User process calls this component to signal other side about an event. IPS Send

component registers the request and try to send if it finds the hardware notification

transport free. If the transport is not free it buffers the request and tries to send it

later meanwhile user processes are in waiting state for event send to complete.

IPS Receive

This component exposes two basic methods:

1. Event register

User processes calls this method for registering an event notification. IPS stores

the user process related information.

2. Event Receive

On the event of receiving an event, IPS retrieves the information associated with

the event and calls its callback.

IPS
Send

IPS
Rec

IPS
Rec

IPS
Send

Process 1
Process 2

Process 3
Process 1

Process 2
Process 3

Process 1
Process 2

Process 3

Process 1
Process 2

Process 3

GPP DSP

Register

Register

Send

Receive

Send

Receive

Page 13 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

5.2 Notify

5.2.1 Overview

The Notify component is responsible for exposing the features of IPS to the user

applications. In Linux, it also acts as a event dispatcher (Since user mode callbacks

can not be called from kernel) to the user processes through thread and List. It can

be seen as wrapper around IPS component.

5.2.2 Services provided

The Notify component shall provide the following basic services:

1. Register an event.

2. Unregister an event.

3. Send a value to the remote processor.

4. Notify the remote processor about an event.

5. Event prioritization.

5.2.3 Design

The Notify component consists of two major components:

3. Notify send

4. Notify Receive

Notify on either side will expose the IPS provided mechanism for sending and

receiving events. Notify send component will expose the processes/tasks on either

side the notification sending mechanism. Notify receive component will expose the

notification receiving mechanism.

Processes/tasks will register their callbacks with the IPS through Notify register

method. In Linux, user level callbacks are not allowed to be called from kernel.

Notify Component is divided into two parts (both are part of OSAL):

1) Kernel Side Component.

When an user process wants to get notified for an event, the kernel side

component registers a callback with IPS component. This callback is registered

with information pertaining to the user process (such as, process group id, user

level callback function address, user level param). When ever this callback is

called by IPS component, it inserts the information passed by the IPS component

into a linked-list.

2) User Side Component.

In user side component a thread is created, whose job is to look for any buffers

in the linked-list (inserts are done by kernel component). Since the linked-list is

present in kernel only, thus the read system call of the DSPLINK driver module is

modified for reading the linked-list. Since looking for buffers in the linked-list

through system call is bulky operations in terms of time, thus the thread looks for

a buffer for 50 times (each time if it does not finds any buffer it yields the

control), after which it goes to sleep for 2ms.

After it finds a buffer (which contains information about the listener) it calls the

user level callback registered with the notify component.

Page 14 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

Figure 2 shows the block diagram for Notify component.

Figure 2. Block diagram for IPS component

IPS IPS

Process 1
Process 2

Process 3

Process 1
Process 2

Process 3

Process 1
Process 2

Process 1
Process 2

Register

Receieve

Send

Send

Receive

Register

GPP DSP

Page 15 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

6 Sequence Diagrams
The following sequence diagrams show the control flow for a few of the important

functions to be implemented within the DSPLINK IPS component.

While the following sequence diagrams show the control flow for the GPP-side of

DSPLINK, the control flow on the GPP-side is similar, and is not detailed in this

document.

� The dashed arrow in all sequence diagrams indicates an indirect control
transfer, which does not happen through a direct function call.

Page 16 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

6.1 IPS_init

Figure 2. On the GPP: IPS_init () control flow

IPS

1. IPS_init ()

2. Initialize the address of
 Own’s IPS scheduler chart

3. Initialize the address of
 Peer’s IPS scheduler chart

4. Create the listener list for
 each event.

5. Create, Install and Enable
 the interrupt handler.

Page 17 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

6.2 IPS_exit

Figure 3. On the GPP: IPS_exit () control flow

IPS

1. IPS_exit ()

2. NULL the address of
 Own’s IPS scheduler chart

3. NULL the address of
 Peer’s IPS scheduler chart

4. Delete the listener list for
 each events.

5. Delete, Uninstall.

Page 18 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

6.3 IPS_register

Figure 4. On the GPP: IPS_register () control flow

IPS

1. IPS_register ()

2. Check if event is supported

3 Attach the listener
 information to the event
 listener list.

4. Increase the event handler
 count for the event.

Page 19 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

6.4 IPS_unregister

Figure 5. On the GPP: IPS_unregister () control flow

IPS

1. IPS_unregister ()

2 Search the callback in the
event listener list for the
 event

3. Remove the callback, and

decrease the event handler
 count

Page 20 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

6.5 IPS_notify

Figure 6. On the GPP: IPS_notify () control flow

IPS

1. IPS_notify ()

2 wait if same event is being
processed by other side.

3. Lock the scheduler chart

4. Set the bit field for the
event in bitmask.

5. Unlock the scheduler chart
and interrupt the other side

Page 21 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

6.6 IPS_ISR

Figure 7. On the GPP: IPS_ISR () control flow

IPS

2 read the bitmask, if read 0
then return.

3. Determine the highest
 priority event from the
 bitmask.

4. Read the payload and clear
 the bit field for the event in
 bitmask.

5. Unlock the scheduler chart

1 acknowledge the interrupt.

Page 22 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

6.7 _NOTIFY_init

Figure 8. On the GPP: _NOTIFY_init () control flow

NOTIFY

1. _NOTIFY_init ()

2. Call NOTIFY_knlInitialize
 through ioctl.

3. Create event worker
 thread.

Page 23 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

6.8 _NOTIFY_exit

Figure 9. On the GPP: _NOTIFY_exit () control flow

NOTIFY

1. _NOTIFY_exit ()

2. Call NOTIFY_knlFinalize
 through ioctl.

3. delete event worker
 thread.

Page 24 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

6.9 NOTIFY_eventWorker

Figure 10. On the GPP: NOTIFY_eventWorker () control flow

1. Open the DSPLINK driver handle.

2. Look for an event through system read call. If t he
number of bytes read is equal to sizeof event packe t,
then there is valid event. Otherwise look for new
event.

3.if the event is RINGIO event then call the
RINGIO_notifyCallback with read information,
otherwise call the function whose address is provid ed
in event packet.

NOTIFY

Page 25 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

6.10 NOTIFY_register

Figure 11. On the GPP: NOTIFY_register () control flow

1. call NOTIFY_knlRegister through ioctl.

NOTIFY

Page 26 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

6.11 NOTIFY_unregister

Figure 12. On the GPP: NOTIFY_unregister () control flow

1. call NOTIFY_knlUnregister through ioctl.

NOTIFY

Page 27 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7 Low Level Design

7.1 IPS

7.1.1 Constants & Enumerations

7.1.1.1 MAX_IPS_EVENT

This constant defines the maximum number of IPS events supported by the IPS

module

Definition
#define MAX_IPS_EVENT 32

Comments

This constant can have maximum value of 32 for all platforms.

Constraints

None.

See Also
None.

Page 28 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.1.2 Typedefs & Data Structures

7.1.2.1 IPS_EventListener

This structure defines the Event Listener object, which contains the listener-specific

information.

Definition
typedef struct IPS_EventListener_tag {
 ListElement * element ;
 FnIpsCbck fnIpsCbck ;
 Pvoid cbckArg ;
} IPS_EventListener ;

Fields

element Structure that allows it to be used by LIST.

fnIpsCbck Callback functions for the event.

cbckArg Parameters passed to the callback.

Comments

An instance of this object is created and initialized during IPS_register() . It

contains all information required for notify the correct listener about the event.

Constraints

None.

See Also
IPS_register ()

Page 29 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.1.2.2 IPS_Event

This structure defines the Event Listener object, which contains information about all

listener registered currently.

Definition
typedef struct IPS_EventList_tag {
 Uint32 eventHandlerCount ;
 List * listeners ;
} IPS_EventList ;

Fields

eventHandlerCount Number of listener attached to the event.

listeners Pointer to the first event listener.

cbckArg Parameters passed to the callback.

Comments

An array of this object is created (using MAX_IPS_EVENTS). This holds information

about all event listeners registered in the system.

Constraints

None.

See Also
IPS_register ()

Page 30 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.1.2.3 IPS_SchedChart

This structure defines the scheduler Chart, which contains the occurred event-

specific information. This is shared between GPP and DSP.

Definition
typedef struct IPS_SchedChart_tag {
 Uint32 bitMask ;
 Uint16 payloadArr [MAX_IPS_EVENT] ;
 Uint16 padding [IPS_EVENTCHART_PADDING] ;
} IPS_SchedChart ;

Fields

bitMask Bit mask representing current occurred events.

payloadArr Array containing data associated with each occurred event.

padding Padding.

Comments

IPS_EVENTCHART_PADDING is depended upon which CACHE segment is used. Since

bitmask is 32 bit wide thus maximum 32 events can be handled by IPS.

Constraints

None.

See Also
IPS_notify (), IPS_ISR ()

Page 31 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.1.2.4 IPS_EventChart

This structure defines the Event object, which contains the occurred event-specific

information and lock for the chart. This is shared between GPP and DSP.

Definition
typedef struct IPS_EventChart_tag {
 MPCSObj ipsSchedChartLock ;
 IPS_SchedChart ipsSchedChart ;
} IPS_EventChart ;

Fields

ipsSchedChartLock MPCS object used for locking the event chart.

ipsSchedChart Scheduler chart.

Comments

None.

Constraints

None.

See Also
IPS_notify (), IPS_ISR ()

Page 32 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.1.2.5 IPS_Object

This structure defines the IPS objects.

Definition
typedef IPS_Object_tag {
 IPS_EventList ipsEventList [MAX_IPS_EVENTS] ;
 IPS_EventChart * ipsEventChart ;
 IsrObject * isrObject ;
 ProcessorId ipsDspId ;
} IPS_Object ;

Fields

ipsEventList Array containing information about registered listeners and

events

ipsEventChart Shared IPS event chart (Between GPP and DSP). this

contains shared lock and occurred event chart.

isrObject IPS ISR object.

ipsDspId DSP Processor ID.

Comments

This is local to each processor. Here it maintains information about every IPS it has

opened.

Constraints

None.

See Also
IPS_init (), IPS_exit (),IPS_register (), IPS_unreg ister ()

Page 33 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.1.2.6 FnIpsCbck

This typedef defines Signature of the callback function to be registered with the IPS

component.

Definition
typedef Void (*FnIpsCbck) (IN OPT Pvoid arg, IN OPT Pvoid info) ;

Fields

arg Fixed argument registered with the IPS component along

with the callback function.

info Run-time information provided to the upper layer by the

IPS component. This information is specific to the IPS being

implemented

Comments

None.

Constraints

None.

See Also
None.

Page 34 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.1.3 API Definition

7.1.3.1 IPS_init

This function initializes the IPS component.

Syntax
DSP_STATUS
IPS_init (IN ProcessorId dspId) ;

Arguments

IN ProcessorId dspId

DSP Identifier.

Return Value

DSP_SOK The IPS for dspId has been successfully opened.

DSP_EFAIL General failure

Comments

None.

Constraints

dspId must be valid.

See Also
IPS_exit ()

Page 35 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.1.3.2 IPS_exit

This function finalizes the IPS component.

Syntax
DSP_STATUS
IPS_exit (IN ProcessorId dspId) ;

Arguments

IN ProcessorId dspId

DSP Identifier.

Return Value

DSP_SOK The IPS for dspId has been successfully closed.

DSP_EFAIL General failure

Comments

None.

Constraints

dspId must be valid.

See Also
IPS_init ()

Page 36 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.1.3.3 IPS_register

This function registers a callback for a specific event with the IPS component.

Syntax
DSP_STATUS
IPS_register (IN ProcessorId dspId,
 IN Uint32 eventNo,
 IN FnIpsCbck fnIpsCbck,
 IN OPT Pvoid cbckArg) ;

Arguments

IN ProcessorId dspId

DSP Identifier.

IN Uint32 eventNo

Event No to be registered.

IN FnIpsCbck fnIpsCbck

Callback function to be registered for the specified event.

IN OPT Pvoid cbckArg

Optional argument to the callback function to be registered for the

specified event. This argument shall be passed to each invocation of the

callback function.

Return Value

DSP_SOK Operation successfully completed

DSP_EFAIL General failure

DSP_EWRONGSTATE IPS not initialized

Comments

None.

Constraints

The IPS component must be initialized before calling this function.

The fnIpsCbck argument must be valid.

The event must be supported by the IPS component.

See Also
IPS_unregister ()

Page 37 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.1.3.4 IPS_unregister

This function unregisters the callback for the specific event with the IPS component.

Syntax
DSP_STATUS
IPS_unregister (IN ProcessorId dspId,
 IN Uint32 eventNo,
 IN FnIpsCbck fnIpsCbck) ;

Arguments

IN ProcessorId dspId

DSP Identifier.

IN Uint32 eventNo

Event No to be used.

IN FnIpsCbck fnIpsCbck

Callback function to be unregistered for the specified event.

Return Value

DSP_SOK Operation successfully completed

DSP_EFAIL General failure

DSP_EWRONGSTATE IPS not initialized

Comments

None.

Constraints

The IPS component must be initialized before calling this function.

The fnIpsCbck argument must be valid.

The event must be supported by the IPS component.

The event must have been registered with the IPS component earlier.

See Also
IPS_register ()

Page 38 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.1.3.5 IPS_notify

This function registers a callback for a specific event with the IPS component.

Syntax
DSP_STATUS
IPS_notify (IN ProcessorId dspId,
 IN Uint32 eventno,
 IN Uint16 payload);

Arguments

IN ProcessorId dspId

DSP Identifier to notified.

IN Uint32 eventNo

Event No to be used.

IN Uint16 payload

Data to be sent with Event.

Return Value

DSP_SOK Operation successfully completed

DSP_EFAIL General failure

DSP_EWRONGSTATE IPS not initialized

Comments

None.

Constraints

The IPS component must be initialized before calling this function.

The cbckFxn argument must be valid.

The event must be supported by the IPS component.

See Also
IPS_unregister ()

7.2 Notify

Page 39 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.2.1 Typedefs & Data Structures

7.2.1.1 FnNotifyCbck

This typedef defines Signature of the callback function to be registered with the

NOTIFY component.

Definition
typedef Void (*FnNotifyCbck) (IN Uint32 eventNo, IN OPT Pvoid arg, IN
OPT Pvoid info) ;

Fields

eventNo Event number associated with the callback being invoked

arg Fixed argument registered with the IPS component along

with the callback function.

info Run-time information provided to the upper layer by the

notify component. This information is specific to the IPS
being implemented

Comments

None.

Constraints

None.

See Also
None.

Page 40 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.2.2 API Definition

7.2.2.1 _NOTIFY_init

This function initializes the notify component.

Syntax
DSP_STATUS
_NOTIFY_init (IN ProcessorId dspId) ;

Arguments

IN ProcessorId dspId

DSP Identifier.

Return Value

DSP_SOK The notify component has been successfully opened.

DSP_EFAIL General failure

Comments

PROC_attach () internally calls this function. Applications need not call this API.

Constraints

dspId must be valid.

See Also
_NOTIFY_exit ()

Page 41 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.2.2.2 _NOTIFY_exit

This function finalizes the notify component.

Syntax
DSP_STATUS
_NOTIFY_exit (IN ProcessorId dspId) ;

Arguments

IN ProcessorId dspId

DSP Identifier.

Return Value

DSP_SOK The notify component has been successfully closed.

DSP_EFAIL General failure

Comments

PROC_detach () internally calls this function. So applications need not call this

function.

Constraints

dspId must be valid.

See Also
_NOTIFY_init ()

Page 42 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.2.2.3 NOTIFY_register

This function registers a callback for a specific event with the notify component.

Syntax
DSP_STATUS
NOTIFY_register (IN ProcessorId dspId,

 IN Uint32 ipsId,
 IN Uint32 eventNo,
 IN FnIpsCbck fnIpsCbck,
 IN OPT Pvoid cbckArg) ;

Arguments

IN ProcessorId dspId

IN

DSP Identifier.

Uint32 ipsId

IPS identifier.

IN Uint32 eventNo

Event No to be registered.

IN FnIpsCbck fnIpsCbck

Callback function to be registered for the specified event.

IN OPT Pvoid cbckArg

Optional argument to the callback function to be registered for the

specified event. This argument shall be passed to each invocation of the
callback function.

Return Value

DSP_SOK Operation successfully completed

DSP_EFAIL General failure

DSP_EWRONGSTATE

DSP_EINVALIDARG

IPS not initialized

Invalid arguments.

Comments

None.

Constraints

The notify component must be initialized before calling this function.

PROC_attach has been successful before calling this function.

The fnIpsCbck and dspId argument must be valid.

Page 43 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

The event must be supported by the IPS component.

See Also
NOTIFY_unregister ()

Page 44 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.2.2.4 NOTIFY_unregister

This function unregisters the callback for the specific event with the IPS component.

Syntax
DSP_STATUS
NOTIFY_unregister (IN ProcessorId dspId,
 IN Uint32 ipsId,
 IN Uint32 eventNo,
 IN FnNotifyCbck fnNotifyCb ck,
 IN OPT Pvoid cbckArg) ;

Arguments

IN ProcessorId dspId

IN

DSP Identifier.

Uint32 ipsId

IPS identifier.

IN Uint32 eventNo

Event No to be registered.

IN FnIpsCbck fnIpsCbck

Callback function to be registered for the specified event.

IN OPT Pvoid cbckArg

Optional argument to the callback function to be registered for the

specified event. This argument shall be passed to each invocation of the
callback function.

Return Value

DSP_SOK Operation successfully completed

DSP_EFAIL General failure

DSP_EWRONGSTATE

DSP_EINVALIDARG

IPS not initialized

Invalid arguments

Comments

None.

Constraints

The IPS component must be initialized before calling this function.

The fnIpsCbck argument must be valid.

The event must be supported by the IPS component.

Page 45 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

The event must have been registered with the IPS component earlier.

The event must be supported by the NOTIFY component.

All Notifications are complete.

See Also
NOTIFY_register ()

Page 46 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

7.2.2.5 NOTIFY_notify

This function registers a callback for a specific event with the IPS component.

Syntax
DSP_STATUS
NOTIFY_notify (IN ProcessorId dspId,
 IN Uint32 ipsId,
 IN Uint32 eventno,
 IN OPT Uint32 payload);

Arguments

IN ProcessorId dspId

Processor id to which notification needs to be sent.

IN Uint32 ipsId

IPS identifier

IN Uint32 eventNo

Event No to be used.

IN Uint16 payload

Data to be sent with Event.

Return Value

DSP_SOK Operation successfully completed

DSP_EFAIL General failure

DSP_EWRONGSTATE IPS not initialized

DSP_EINVALIDARG Invalid arguments.

Comments

To get the notifications, application on the dspId must register a call back function

with the notify component using ipsId and event no prior to this NOTIFY_notify call.

This API notifies the call back function if the function is registered on the same ipsId

and eventno.

Constraints

The IPS component must be initialized before calling this function.

The cbckFxn argument must be valid.

The event must be supported by the IPS component.

See Also
NOTIFY_register ()

Page 47 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

8 Internal Discussions

8.1 Prioritizing IPS (High level design)
Registering the Events:

The IPS component will provide mechanism to register the user defined event

callbacks. Users will register events with user defined priority (where 0 is the highest

priority, other follow)

typedef struct EventInfo_tag {
Pvoid entryFunction ;
Uint32 params ;

} EventInfo ;

And event is registered in the list below, using event number to index into the list.
EventInfo eventList [MAX_IPS_EVENT] ;
So, users can not register two callback functions for single event but events can have

same user defined priorities.

Figure 13. Register an Event

IPS Scheduler

Need:

As we are well aware of the fact that DSP/BIOSTM LINK uses only one interrupt for

notification of MSGQ/CHNL events. Using only one interrupt limits DSP/BIOSTM LINK

to have events prioritization scheme. The other need is, it does not provide feature

to service other kind of events (For say, a user defined event).

Logic:

Since it has only one interrupt for notification, it must have a priority scheme other

than interrupts priority. This can be achieved by having an event scheduler run after

receiving an interrupt. Job of this scheduler will be to service the highest priority

event first then rest (Assuming that each event is assigned a priority, from a defined

scale for priorities). One constraint for getting the multiple events is the interrupt

handler (for the only one interrupt) must be very fast (i.e. low latency time), so that

other side can send more interrupts in short durations. Now there are two

approaches for servicing events:

Alternative1:

PROCESSOR#1

Return error if already register

Register an event (event no)

Set the priority, callback fn, callback
params using event no as index.

Return success

Page 48 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

This scheduler is based on an event chart. An event chart is basically a data

structure containing an event list to store the occurred events and storage space for

the payload attached with each event. Instead of the event list, a bitmask can be

used to reduce the memory requirement then it might handle less number of events

and might also complex the logic. This scheduler will be called from the ISR directly.

It is an important fact that, the event list (Linklist) management takes more time

ultimately increasing the interrupt latency time. So a bitmask solution is a better

approach. IPS scheduler will handle only 32 events and 16Bits payload attached with

each event. So we require 4Bytes + (4 *16) Bytes = 68Bytes. See Figure 1.

Here for simplicity each event has same priority number as the event No i.e. event 0

has priority 0 (Highest) and so on.

The senders of the events have to lock the event chart, update the bitmask to reflect

presence of the event, attached the payload and interrupts the other side. On the

other side in ISR, scheduler is called. First it locks the event chart, searches for the

highest priority event. Once it finds the highest priority event it clears the events in

the bitmask only after reading the payload, then calls the callback attached to the

event.

As it is clear that prioritization has to be done between different events (mean

different priorities) so if multiple senders want to send same event to the other side

than event are send one at a time meaning second event is send only if the fist

event is taken up by the scheduler on the side..

Figure 14. Event chart

The below figures shows the sequence diagram:

Legend:

Events (No)

16 Bits Payload

0 1 2 3 4 5 6 7 8 9 31

IPS Event Chart

Event bit field indicating presence of
event. (Event no = Priority No)

Each event has an attached 16
bits payload with it.

Page 49 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

In Figure 2, senders on the processor 1 waits if the bit field in the event chart is

already set to one, meaning the scheduler on the processor 2 is yet to service this

event. This is true since priority stands good in always event different events are

handle simultaneously.

Figure 15. Sending an Event

In Figure 3, receiver of the interrupt invokes an ISR to handle the interrupt, whose

main job is to call scheduler logic. Scheduler acquires the event chart lock and then

checks the bitmask for finding out which event is having highest priority, then

clearing it and servicing the event.

Figure 16. Receiving an Event

PROCESSOR#1 PROCESSOR #2
Notify (e1,v1)

Wait until scheduler
takes up the event

Interrupt

Add the event and
payload

Lock the event chart

Unlock the event
chart

Interrupt
PROCESSOR #2

ISR invoked

Find the event and
read the payload

and clear the event
bit field

Lock the event chart

Unlock the event chart

Call the callback for
the event

Page 50 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

Advantages:

1. Does not depend upon any OS resources like DPC.

2. Provides an ISR context to every callback.

Disadvantages:

1. Event preemption can not be achieved.

2. ISR consumes times in IPS; Since ISR calls the scheduler logic.

Alternative 2:

In this scheduler all senders do not have to wait in case of same event is being

process by the other side. Sender interrupts the other side with event and payload.

The other side uses event no passed to determine the priority of the event from the

event list. Then after determining the priority it creates a DPC according to priority

(some scaling has to be done). So the OS really does the actual scheduling part of

the IPS.

Figure 17. Sending an Event

Figure 18. Receiving an Event

PROCESSOR#2

Interrupt

Create a DPC with priority in relation to
event priority.

DPC scheduled to run after the
interrupt handler exits.

Return

PROCESSOR#1 PROCESSOR #2
Notify (e1,v1)

Interrupt

Page 51 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

Disadvantages:

1. Does require OS resources like DPC, threads.

2. Does not provide an ISR context to the callbacks.

Advantages:

1. Event preemption can be achieved.

2. ISR consumes very little times in IPS; Since ISR does not call heavy

scheduler logic.

Chosen Alternative:

Since, IPS should provide ISR context to every callbacks and also should be less

depended upon OS. We will be concentrating on the first alternative as a solution.

8.2 Prioritizing IPS (Low level discussion)

8.2.1 Register

For registering events the following prototype and structure is needed.

Prototype for callbacks:

Void (*IPS_Callback) (Void * params) ;

Structure for storing registered events:

typedef struct EventList_tag {
IPS_CallBack callback ;
Pvoid params ;

} EventList ;

Registered event informaton list:

#define MAX_IPS_EVENT 32 /* Always */

EventList eventList [MAX_IPS_EVENTS] ;

To register an event:

1. Check if the event number is less than maximum number of event supported.

2. Check if the event is already register or not.

3. if event is not registered, then register the event.

IPS_Register (Uint32 eventNo,
 Uint32 priority,
 Pvoid callback,
 Pvoid params)
{

/* check if the eventNo is not beyond the MAX_IPS_E VENTS. */
 if (eventNo < MAX_IPS_EVENTS) {

/* check if the eventNo is already registered. */
if (eventList [eventNo].priority == -1) {

eventList [eventNo].callback = callback ;
eventList [eventNo].params = params ;

}
else {

/* Return already registered error. */
}

}
else {

/* Return INVALID event No reached error. */
}

Page 52 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

}

8.2.2 Notify & Send

For passing the event no and payload the following structures are needed:

typedef struct EventChart_tag {
 Uint32 bitMask ; /* Event bit mask */
 Uint16 payloadArr [MAX_IPS_EVENT] ; /* Payload arr ay */
 Uint16 padding [] ; /* padding for cache line alig nment */
} EventChart ;

typedef struct IpsEventMap_tag {

EventChart eventChart ; /* Event chart */
MPCSObj mpcsObj ; /* lock for the chart. */

} IpsEventMap ;
To send the event:

1. Check if the event is registered with the IPS.

2. If registered, check if the bitfield corresponding to the event in the

 bitmask is set, if set then wait until it is cleared.

3. Lock the eventChart using the mpcsObj.

4. Set the bitfield corresponding to the event in the bitmask.

5. Attached the payload.

6. Send the interrupt.
IPS_Notify (Uint32 eventNo, Uint16 payload)
{

/* check if the eventNo is not beyond the MAX_IPS_E VENTS. */
 if (eventNo < MAX_IPS_EVENTS) {
 /* wait until the previous event with same event no is
 serviced. */
 while (ipsEventMap.eventChart & (1 << eventNo) == 1) ;

 MPCS_Enter (ipsEventMap.mpcsObj, TRUE) ;
 SET_BIT (ipsEventMap.eventChart.bitmask, eventNo) ;
 ipsEventMap.ev entChart.payloadArr [eventNo] = pa yload ;
 MPCS_Leave (ipsEventMap.mpcsObj, TRUE) ;
 Send_Interrupt () ;

}
else {

/* Return INVALID event No reached error. */
}

}
IPS_ISR:

2. Acknowledge the interrupt.
3. Read the eventChart bitmask to find out which events are set. From those

 find out which event has highest priority.

4. Read the payload attached with that event.
5. Lock the event chart.
6. Clear the event bit field in bitmask.

7. Unlock the event chart.
8. Call the callback function attached with this event.

IPS_ISR (Uint32 eventNo, Uint16 payload)
{
 /* Acknowledge the interrupt. */
 Clear_Interrupt () ;
 while (ipsEventMap.eventChart.bitMask > 0) {
 eventMask = ipsEventMap.eventChart.bitMask;

Page 53 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

 for (i=0; i<32; i++) {
if ((eventMask & 1 << i) == 1) {

break ;
}

}

MPCS_Enter (ipsEventMap.mpcsObj, TRUE) ;
payload = ipsEventMap.eventChart.payLoad [i] ;
CLEAR_BIT (ipsEventMap.eventChart.bitmask, i) ;

 MPCS_Leave (ipsEventMap.mpcsObj, TRUE) ;
 eventList [i].callback () ;

}
}

Page 54 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

8.3 Notify
The main job of this module is to provide the application of DSP/BIOSTM LINK, a

mechanism to register their callbacks for the event notification and get notification

about events. As it is known that, all events are generated through IPS module. So

Notify module provides a mechanism to register applications’ callbacks into the IPS

module for event notification. Since IPS module does not expose any APIs for the

above said feature, thus Notify module expose the functionality of IPS register and

event notification to the applications.

Where does it sit?

Figure 19. Location of Notify module

The Notify module plugs directly into the IPS module on the side nearer to the IPS

module while the farthest side exposes the inherited features of IPS. As seen a

dotted line bisects the Notify module into two parts. This is done for OSes where

there is a boundary between user and kernel for example, Linux. IPS module in

these types of OSes is kernel level module. So first part of Notify module talks to IPS

module i.e. it is kernel side implementation. The other part, which is farthest from

IPS, uses some predefined ioctl calls to talk to the kernel side of Notify module.

But in other types of OSes, Notify function behaves as transparent proxy between

applications and IPS module. So this module does not have much thing to do.

So Linux is the main focal point of the interest. In Linux, Kernel can not call the user

mode functions. Then how to invoke the user side IPS event callbacks from the

kernel? Also how to provide the same environment as all kernel side callback gets?

Answer to these questions is POSIX signals (RealTime Signals). Let’s dig deeper into

the signals. Signals are handled in the same fashion as IRQs are. Both have the

highest level of prioritization achievable in respective mode. The only difference is,

signal are executed in user process context, who has installed the signal handler

while IRQ (ISR) does not have any attachment to either kernel or user processes.

Signals can be raised from kernel and can be handled in user process. (POSIX signals

have one advantage over normal signals; they can be queued to a depth of

IPS

To other side

Notify

Process 1

Process 2

Process N

User/Kernel boundary

Page 55 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

max_queued_signals (variable defined in kernel). Users can change the depth via

editing /proc/sys/kernel/rtsig-max file (root privileges needed).)

When a user process requests to register an event notification callback, the user side

Notify module installs a signal handler for predefined signal and calls the kernel side

Notify module to register the user process. Kernel side Notify module stores the user

process’s information and attached its own callback into the IPS module.

When IPS triggers an event, IPS calls the callback associated with the event i.e. it

calls the kernel side Notify module’s callback. Which uses the event no to find out

which user process to be notified from the information stored at registering. In Linux

case, it raises the signal.

Below figure gives the idea about the discussion.

Figure 20. Event passed to the user processes

Based on the above discussion, two alternatives are discussed below:

1. Unique signal for each events:

Here each event has one unique signal associated with it for example; event zero

has first realtime signal and the last event (i.e. 31) is associated with last

realtime signal. But there will be only one signal handler installed for all signals.

Job of this signal handler is to direct the focus to the correct callback.

Let’s see the prototype of this signal handler:

 Void Notify_SignalHandler (Int32 sigNo,

 Siginfo_t * info,
 void * extra) ;

 Here,

 sigNo: generated signal number.

 Info: Signal related information.

 Extra: Don’t care.

So for all signals raised Notify_SignalHandler will be called. Using the sigNo it

can be found which signal was raised. On registering time, if the callback function

IPS

Kernel side Notify

IPS event

Raise a signal

Process 3
Process 2

Process 1

Signal occured

Page 56 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

and parameters (passed to the callback function during call back) were stored in

local array then, using sigNo desired callback function can be called.

For passing the IPS generated value, info parameter can be used. This parameter

has a field si_int which can be set before raising the signal and can be read in

the signal handler.

Advantages:

1. Since signals have associated priorities thus event prioritization can

be effectively achieved in user processes also.

2. Only one signal handler is used for all signals which mean less code

size.

Disadvantages:

1. All RT signals are used up thus user process can not use any of these

signals for other purpose.

2. One signal (one event) is used for only one purpose. So this limits

to, one callback for one event.

2. One signal for all events:

Here, for all events only one signal is used. Job of this signal handler is to direct

the focus to the correct callback.

Let’s see the prototype of this signal handler:

 Void Notify_SignalHandler (Int32 sigNo,

 Siginfo_t * info,
 void * extra) ;

 Here,

 sigNo: generated signal number.

 Info: Signal related information.

 Extra: Don’t care.

So for all signals raised Notify_SignalHandler will be called. Using the sigNo it

can be found which signal was raised. On registering time, if the callback function

and parameters (passed to the callback function during call back) were stored in

local array then, using sigNo desired callback function can be called.

For passing the IPS generated value, info parameter can be used. This parameter

has a field si_int which can be set before raising the signal and can be read in

the signal handler.

Advantages:

3. All RT signals are not used so users can use remaining signals for

their own purpose.

Disadvantages:

1. Effective event prioritization can not be achieved.

8.4 IPS component (Older Implementation)
The ‘IPS’ component on a processor is responsible for notifying its peer on the

remote processor regarding an event that has occurred on its processor. This

component would use the services provided on the H/W platform. It would provide

APIs which shall be used by upper layers to establish communication amongst peers

at that level.

Page 57 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

8.4.1 Alternative 1: IPS component provides basic s ervices to transfer a buffer between the GPP
and DSP.

The IPS component provides services to transfer a command (containing a message

or data buffer) across the physical link. Only one buffer (notify command) can be

transferred at a time.

The events shall be identified by an enumeration.

The shared memory has the following basic areas (order may change):

Figure 21. IPS Alternative 1: Shared memory layout

APIs:

a. IPS_Initialize
b. IPS_Register
c. IPS_Send
d. IPS_Notify
e. IPS_Dispatch
f. IPS_Finalize

Enums:

typedef enum {
 IPS_CmdMsg = 0 ;
 IPS_CmdData = 1 ;
} IPS_Cmd

IPS structures:

/* IPS object and control structure */
typedef struct IPS_Object {
 IPS_CmdObj * cmdIps ;
 IPS_Callback ipsCbck [MAX_IPS_EVENTS] ;

 IPS_ShmControl

IPS_ShmObject

Shared Memory Allocator area

CPU Copy SHM Data control
structure

ZCPY Data control structure

ZCPY Message control structure

CPU Copy SHM Message control
structure

CPU Copy SHM Data area

CPU Copy SHM Message area

Page 58 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

 Pvoid cbckArg [MAX_IPS_EVENTS] ;
#if defined (CHNL_COMPONENT)
 IPS_CmdObj * cmdData ;
#endif /* if defined (CHNL_COMPONENT) */
#if defined (MSGQ_COMPONENT)
 IPS_CmdObj * cmdMsg ;
#endif /* if defined (MSGQ_COMPONENT) */
}

/* Shared IPS control structure */
typedef struct IPS_ShmControl {
 volatile Uint32 ptrCmdToDsp ; /* Ptr./offset to cmdObj */
 volatile Uint32 ptrCmdFmDsp ; /* Ptr./offset to cmdObj */
}

/* Shared IPS command objects */
typedef struct IPS_ShmObject {
 volatile IPS_Cmd cmdToDsp ;
 volatile IPS_Cmd cmdFmDsp ;
}

/* IPS command object */
typedef struct IPS_CmdObj {
 IPS_Cmd event ;
 Uint32 bufPtr ;
 Uint32 bufSize ;
 Uint32 type ; /* Type of command (caller-spec ific) */
}

IPS functions pseudo-code:

/* Function to register an event callback with IPS component */
IPS_Register (event, callback, arg) {
 ipsObj->ipsCbck [event] = callback ;
 ipsObj->cbckArg [event] = arg ;
}

/* Function to send a command to the IPS component */
IPS_Send (cmdObj) {
#if defined (MSGQ_COMPONENT)
 /* Prioritize messaging over data transfer */
 if ((ipsObj->cmdMsg == FREE)
 && (cmdObj->event == IPS_CmdMsg)) {
 ipsObj->cmdIps = ipsObj->cmdMsg = cmdObj ;
 }
#endif /* if defined (MSGQ_COMPONENT) */

#if defined (CHNL_COMPONENT)
 if ((ipsObj->cmdData == FREE)
 && (cmdObj->event == IPS_CmdData)) {
 ipsObj->cmdData = cmdObj ;
 if (ipsObj->cmdIps == FREE) {
 ipsObj->cmdIps = cmdObj ;
 }
 }

Page 59 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

#endif /* if defined (CHNL_COMPONENT) */

 IPS_Dispatch (cmdObj) ;

 /* Return information about whether the message was sent */
}

/* Dispatch the command to the DSP */
IPS_Dispatch (cmdObj) {
 if (ipsShmCtrl->ptrCmdToDsp == FREE) {
 ipsShmCtrl->ptrCmdToDsp = ipsObj->cmdIps ;
 ipsShmCtrl->cmdToDsp = *(ipsObj->cmdIps) ;
 IPS_Notify () ;
 ipsObj->ipsCbck [cmdObj->event] (ipsObj->cb ckArg [cmdObj-
>event]) ;
 }

 /* Return information about whether the message was sent */
}

/* Notify the DSP about command */
IPS_Notify () {
 /* Send an interrupt to the DSP */
 InterruptDsp () ;
}

/* Interrupt service routine of the IPS component * /
IPS_Isr () {
 /* Get required information from the command */
 tempCmd = ptrCmdFmDsp ;
 ...
 /* Clear received command */
 ptrCmdFmDsp = FREE ;

 /* Make callbacks to registered event handlers */
 tempCmd->ipsCbck [tempCmd->event] (tempCmd->cbc kArg [tempCmd-
>event) ;

 /* Dispatch any available command, if free */
 IPS_Dispatch () ;
}

Data transfer:

Data transfer multiplexing & issue-reclaim protocol ensures that the DSP & GPP are

synchronized and ready for transfer.

It has the following in shared memory (name can be changed):

typedef struct CHNL_ShmControl {
 volatile Uint16 dspFreeMask ;
 volatile Uint16 gppFreeMask ;
 volatile Uint16 toDspChnlId ;
 volatile Uint16 fmDspChnlId ;
}

Page 60 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

These are used by the CHNL modules on both processors to check whether the other

processor has a free (issued) buffer before sending a command to the IPS module.

An enum is needed for the command type:

typedef enum {
 CHNL_CmdToDsp = 0 ;
 CHNL_CmdFmDsp = 1 ;
} CHNL_Cmd

The protocol used is similar to the existing SHM/HPI protocol for multiplexing the

channels.

To send a data buffer on output channel:

(At application level):

1. Allocate a buffer (could be kernel buffer or SMA buffer).

2. Fill the buffer with contents.

3. Send the buffer to driver through CHNL_Issue () .

(At driver level)

4. Set the appropriate bit for the channel in the local outputMask .

5. Check if the other processor has a buffer free on this channel (by looking at

dspFreeMask).

For copy-mode transfer: If the other processor has a buffer available on this

channel, check if the output data area is free (check the toDspChnlId value. If

invalid, output data area is free, otherwise contains the buffer for the

toDspChnlId .). If yes, copy the buffer data into the output buffer area.

6. Attempt to dispatch the command to the IPS component: IPS_Send () . For this,

set the cmdObj->type as CHNL_CmdToDsp. Add the buffer chirp to the end of used
queue for this channel.

To receive a data buffer on input channel:

1. Allocate a buffer (could be kernel buffer or SMA buffer).

2. Send the buffer to driver through CHNL_Issue () .

(At driver level)

3. Set the appropriate bit for the channel in the shared gppFreeMask .

4. Add the buffer chirp to the end of channel used queue.

In the callback for SHM copy-mode:

/* Channel callback for SHM copy-mode */
SHMCHNL_Callback (cmdObj) {
 if (cmdObj->type == CHNL_CmdToDsp) {
 /* Get the first chirp from the toDspChnlId queue */
 ...
 /* Complete the transfer (AddIOCompletion) */

Page 61 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

 ...
 /* Reset the appropriate bit in outputMask if the
 * queue is now empty.
 */
 ...

 /* 1. Do a round-robin search of channels t o find the
 * next channel that has a buffer free o n both GPP &
 * DSP.
 * 2. If none was found, reset the toDspChn lId to invalid
 * value.
 * 3. If found, copy the buffer data into t he output
 * buffer area.
 * 4. Get the buffer from the channel used queue (don’t
 * remove from queue) and send to IPS.
 */
 ...
 if (new buffer available) {
 /* Fill IPS command object */
 ...
 IPS_Send (newCmdObj) ;
 }
 }
 else if (cmdObj->type == CHNL_CmdFmDsp) {
 /* Get the first chirp from the fmDspChnlId queue */
 ...
 /* Copy the buffer contents to kernel buffe r */
 ...
 /* Complete the transfer (AddIOCompletion) */
 ...
 /* Reset the appropriate bit in dspFreeMask if the
 * queue is now empty.
 */
 ...
 }
}

Callback for ZCPY is the same, but does not involve the buffer copy.

/* Channel callback for ZCPY mode */
ZCPYCHNL_Callback (cmdObj) {
 if (cmdObj->type == CHNL_CmdToDsp) {
 /* Get the first chirp from the toDspChnlId queue */
 ...
 /* Complete the transfer (AddIOCompletion) */
 ...
 /* Reset the appropriate bit in outputMask if the
 * queue is now empty.
 */
 ...

 /* 1. Do a round-robin search of channels t o find the
 * next channel that has a buffer free o n both GPP &
 * DSP.
 * 2. If none was found, reset the toDspChn lId to invalid
 * value.
 * 3. If found, get the buffer from the cha nnel used

Page 62 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

 * queue (don’t remove from queue) and s end to IPS.
 */
 ...
 if (new buffer available) {
 /* Fill IPS command object */
 ...
 IPS_Send (newCmdObj) ;
 }
 }
 else if (cmdObj->type == CHNL_CmdFmDsp) {
 /* Get the first chirp from the fmDspChnlId queue */
 ...
 /* Complete the transfer (AddIOCompletion) */
 ...
 /* Reset the appropriate bit in dspFreeMask if the
 * queue is now empty.
 */
 ...
 }
}

Message transfer:

There is no specific additional protocol needed for the message transfer within

shared memory.

An enum is needed for the command type:

typedef enum {
 MSGQ_CmdToDsp = 0 ;
 MSGQ_CmdFmDsp = 1 ;
} MSGQ_Cmd

For the SHM copy-mode transfer component, following local structure is needed

(name can be changed). Otherwise the flag can be directly kept global, if nothing

else is needed in the structure.

typedef struct MQT_Object {
 Bool outputFree ;
}

Sequence is very similar for SHM copy-mode and zero-copy message transfer.

To send a message:

(At application level)

1. Allocate message (SMA_Alloc () or MQABUF_Alloc () through MSGQ_Alloc ())

2. Fill the message with contents

3. Send the message to driver through MSGQ_Put () .

(At driver level)

4. For copy-mode transfer: Check if the shared memory output message area is free

(check the outputFree flag). If yes, copy the buffer data into the output

message area.

Page 63 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

5. If the queue is empty, attempt a dispatch to the IPS component: IPS_Send () .

For this, set the cmdObj->type as MSGQ_CmdToDsp. If the call was not successful
(IPS module is already busy), add the message to the end of local message

queue.

In the callback for SHM:

/* Remote MQT callback for SHM */
SHMRMQT_Callback (cmdObj) {
 if (cmdObj->type == MSGQ_CmdToDsp) {
 MSGQ_Free (cmdObj->bufPtr) ;
 /* Get next message from local queue and se nd to IPS */
 if (new message available) {
 /* Fill IPS command object */
 ...
 IPS_Send (newCmdObj) ;
 }
 }
 else if (cmdObj->type == MSGQ_CmdFmDsp) {
 /* Send the received message to local MSGQ */
 ...
 }
}

Callback for ZCPY is the same, but does not involve freeing the message buffer when

it is sent.

/* ZCPY Remote MQT callback */
ZCPYRMQT_Callback (cmdObj) {
 if (cmdObj->type == MSGQ_CmdToDsp) {
 /* Get next message from local queue and se nd to IPS */
 if (new message available) {
 /* Fill IPS command object */
 ...
 IPS_Send (newCmdObj) ;
 }
 }
 else if (cmdObj->type == MSGQ_CmdFmDsp) {
 /* Send the received message to local MSGQ */
 ...
 }

}

8.4.2 Alternative 2: IPS component maintains a shar ed list of messages.

8.4.2.1 IPS component

The IPS component maintains lists of messages, which are shared between the GPP

and the DSP. There are two unidirectional lists of messages, for messages to and

from the DSP. There are similar lists for data transfer also.

The events shall be identified by an enumeration.

The IPS component shall utilize the services of a generic component that will provide

critical section protection between the two processors (CsObj object, CS_Enter () ,

CS_Leave ()).

Page 64 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

The shared memory has the following basic areas (order may change):

Figure 22. IPS Alternative 2: Shared memory layout

The IPS component maintains the shared lists of messages and CHIRPs within the

IPS_ShmControl structure. In addition, it separately maintains a free lists of CHRIPs

within the shared memory. This list is configured with the maximum number of

outstanding requests on all channels at any time. Information for this is obtained

from the static configuration.

In addition to the shared lists, shared critical section objects are maintained within

the IPS_ShmControl structure.

Prioritization between data transfer and messaging happens on the receiving side

within the ISR. While sending data or messages, the CHIRPs or messages are simply

queued onto the appropriate shared lists. On the receiving side, the message list is

checked first and then the data list.

A new API shall be added into the LIST component to initialize a statically

instantiated List object (LIST_Open ()).

APIs:

a. IPS_Initialize
b. IPS_Finalize
c. IPS_Register
d. IPS_Send
e. IPS_Notify

Enums:

typedef enum {
 IPS_CmdMsg = 0 ;
 IPS_CmdData = 1 ;

 IPS_ShmControl

Free CHIRP list

Shared Memory Allocator area

CPU Copy SHM Data control
structure

ZCPY Data control structure

ZCPY Message control structure

CPU Copy SHM Message control
structure

CPU Copy SHM Data area

CPU Copy SHM Message area

Page 65 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

} IPS_Cmd

IPS structures:

/* IPS object and control structure */
typedef struct IPS_Object {
 IPS_ShmControl * ptrControl ;
 IPS_Callback ipsCbck [MAX_IPS_EVENTS] ;
 Pvoid cbckArg [MAX_IPS_EVENTS] ;
}

/* Shared IPS control structure */
typedef struct IPS_ShmControl {
 volatile Uint32 event ; /* Indicates in terrupt reason */
#if defined (CHNL_COMPONENT)
 volatile List freeChirpList ; /* Free list of shared CHIRPs */
 volatile List dataToDspList ; /* List of CHIR Ps to DSP */
 volatile List dataFmDspList ; /* List of CHIR Ps from DSP */
 volatile CsObj freeChirpListCs ; /* CS object for freeChirpList */
 volatile CsObj dataToDspCs ; /* CS object for dataToDsp list */
 volatile CsObj dataFmDspCs ; /* CS object for dataFmDsp list */
#endif /* if defined (CHNL_COMPONENT) */
#if defined (MSGQ_COMPONENT)
 volatile List msgToDspList ; /* List of messa ges to DSP */
 volatile List msgFmDspList ; /* List of messa ges from DSP */
 volatile CsObj msgToDspCs ; /* CS object for m sgToDsp list */
 volatile CsObj msgFmDspCs ; /* CS object for m sgFmDsp list */
#endif /* if defined (MSGQ_COMPONENT) */
}

IPS functions pseudo-code:

/* Function to initialize the IPS component */
IPS_Intialize () {
 /* Initalize the global IPS_Object object */
 /* Initalize the lists within the IPS_ShmContro l area */
 /* Initalize the CS objects within the IPS_ShmC ontrol area */
}

/* Function to finalize the IPS component */
IPS_Finalize () {
 /* Finalize the lists within the IPS_ShmControl area */
 /* Finalize the CS objects within the IPS_ShmCo ntrol area */
 /* Finalize the global IPS_Object object */
}

/* Function to register an event callback with IPS component */
IPS_Register (event, callback, arg) {
 ipsObj->ipsCbck [event] = callback ;
 ipsObj->cbckArg [event] = arg ;
}

/* Function to send a command to the IPS component */
/* The bufPtr could be a pointer to a message or a CHIRP */
IPS_Send (event, bufPtr) {
#if defined (MSGQ_COMPONENT)

Page 66 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

 if (event == IPS_CmdMsg) {
 CS_Enter (ptrControl->msgToDspCs) ;
 LIST_PutTail (ptrControl->msgToDspList, buf Ptr) ;
 CS_Leave (ptrControl->msgToDspCs) ;
 }
#endif /* if defined (MSGQ_COMPONENT) */

#if defined (CHNL_COMPONENT)
 if (event == IPS_CmdData) {
 CS_Enter (ptrControl->freeChirpListCs) ;
 LIST_GetHead (ptrControl->freeChirpList, &c hirp) ;
 CS_Leave (ptrControl->freeChirpListCs) ;

 /* Initialize the CHIRP with buffer details */
 chirp = *bufPtr ;

 CS_Enter (ptrControl->dataToDspCs) ;
 LIST_PutTail (ptrControl->dataToDspList, ch irp) ;
 CS_Leave (ptrControl->dataToDspCs) ;
 }
#endif /* if defined (CHNL_COMPONENT) */

 IPS_Notify (event) ;
}

/* Notify the DSP about event */
IPS_Notify (event) {
 ptrControl->event = event ;

 /* Send an interrupt to the DSP */
 InterruptDsp () ;
}

/* Interrupt service routine of the IPS component * /
IPS_Isr () {
 /* Check for available messages */
#if defined (MSGQ_COMPONENT)
 if (ptrControl->event == IPS_CmdMsg) {
 while (!LIST_IsEmpty (ptrControl->msgFmDspL ist)) {
 CS_Enter (ptrControl->msgFmDspCs) ;
 LIST_GetHead (ptrControl->msgFmDspList, &ptr) ;
 CS_Leave (ptrControl->msgFmDspCs) ;
 LIST_PutTail (&tempList, ptr) ;
 }

 /* Make callback to registered event handle r */
 ipsObj->ipsCbck [IPS_CmdMsg] (ipsObj->cbckA rg [IPS_CmdMsg],
&tempList) ;
 }
#endif /* if defined (MSGQ_COMPONENT) */

 /* Check for available data buffers */
#if defined (CHNL_COMPONENT)
 if (ptrControl->event == IPS_CmdData) {
 while (!LIST_IsEmpty (ptrControl->dataFmDsp List)) {

Page 67 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

 CS_Enter (ptrControl->dataFmDspCs) ;
 LIST_GetHead (ptrControl->dataFmDspList , &ptr) ;
 CS_Leave (ptrControl->dataFmDspCs) ;

 LIST_PutTail (&tempList, ptr) ;
 }

 /* Make callback to registered event handle r */
 ipsObj->ipsCbck [IPS_CmdData] (ipsObj->cbck Arg [IPS_CmdData],
 &tempList) ;

 /* Send the used chirps back to the free li st. */
 while (!LIST_IsEmpty (ptrControl->tempList)) {
 LIST_GetHead (tempList, &chirp) ;

 CS_Enter (ptrControl->freeChirpListCs) ;
 LIST_PutTail (ptrControl->freeChirpList , &chirp) ;
 CS_Leave (ptrControl->freeChirpListCs) ;
 }
 }
#endif /* if defined (CHNL_COMPONENT) */
}

8.4.2.2 Data transfer:

While the description for data transfer in this section gives the pseudo-code for the

GPP-side components, the counterpart on the DSP shall have exactly the same code

except for some of the fields in control structures used for transferring the data

buffers.

Data transfer issue-reclaim protocol ensures that the DSP & GPP are synchronized

and ready for transfer.

A pointer exchange completes for a GPP output channel, when it sends a buffer to

the DSP and receives one in exchange from the DSP. This is ensured by the GPP

output channel only sending a buffer to the DSP if it is already ready on its

corresponding input channel. When the DSP receives this buffer from the GPP, it

sends its corresponding exchange buffer to the GPP. At this point, pointer exchange

is complete and the CHNL_Reclaim () succeeds on both processors.

Similarly, a pointer exchange completes for the GPP input channel when it receives a

buffer from the DSP. This is ensured by the DSP output channel only sending a buffer

to the GPP if it is already ready on that channel. When the GPP receives this buffer, it

issues its ready buffer to the DSP. At this point, pointer exchange is complete and

the CHNL_Reclaim () succeeds on both processors.

The CHIRP structure shall need to be modified to include the channel ID to which the

CHIRP belongs.

The LDRV_CHNL_AddIoRequest () function needs to be modified to not schedule a

DPC. The DPC is now completely owned by the DATA component.

Zero-copy data transfer:

For the ZCPY DATA component, following shared structure is needed (name can be

changed):

typedef struct DATA_ShmControl {
 volatile Uint16 dspFreeMask ; /* Mask indicati ng DSP free buffer*/
 volatile Uint16 gppFreeMask ; /* Mask indicati ng GPP free buffer*/

Page 68 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

}

Following local structure is also needed (name can be changed):

typedef struct DATA_Object {
 Uint16 outputMask ; /* Indicates ready o/p cha nnels */
 Uint16 lastOutput ; /* Last o/p chnl on which data was sent */
}

These are used by the CHNL modules on both processors to check whether the other

processor has a free (issued) buffer before sending a command to the IPS module.

The protocol used is similar to the existing SHM/HPI protocol for multiplexing the

channels. The behavior is same for buffer exchange on both input and output

channels.

To exchange buffers on output channel:

(At application level):

1. Allocate a buffer (SMA buffer).

2. Fill the buffer with contents.

3. Send the buffer to driver through CHNL_Issue () .

(At LDRV CHNL level)

4. Add the buffer chirp to the end of requestList and send the request to the DATA

driver.

(At DATA driver level)

5. Set the appropriate bit for the channel in the local outputMask .

6. Schedule the output data DPC.

(At DATA driver level)

7. In the DPC, process requests for multiple channels at the same time. Check for

all ready channels (channels having GPP as well as DSP free). For each such

ready channel, get a request CHIRP and send to the SHMIPS.

8. On receiving a callback from the SHMIPS component, for each chirp received

from the DSP, get a chirp from the requestList for the corresponding channel

and send it to the SHMIPS component for completing the pointer exchange. Also

indicate to the upper layer that IO is complete on the channel by calling

LDRV_CHNL_AddIOCompletion () .

(At LDRV CHNL level)

9. LDRV_CHNL_GetIOCompletion () completes and returns.

(At application level):

10. CHNL_Reclaim () completes and returns.

� The DSP may issue a buffer after the GPP had already checked for it (in which

case step 7 does not result in a command being issued to the IPS

component). In this condition, the remote processor interrupts the local

processor after setting appropriate event in the IPS control structure. This

results in a callback to the registered handler, and the protocol ensures that
the buffer gets dispatched to the IPS component.

Page 69 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

To exchange buffers on input channel:

(At application level):

1. Allocate a buffer (SMA buffer).

2. Fill the buffer with contents.

3. Send the buffer to driver through CHNL_Issue () .

(At LDRV CHNL level)

4. Add the buffer chirp to the end of requestList and send the request to the DATA

driver.

(At DATA driver level)

5. Set the appropriate bit for the channel in the shared gppFreeMask . Notify the DSP

that the GPP is ready on the input channel.

6. On receiving a callback from the SHMIPS component, for each chirp received

from the DSP, get a chirp from the requestList for the corresponding channel

and send it to the SHMIPS component for completing the pointer exchange. Also

indicate to the upper layer that IO is complete on the channel by calling

LDRV_CHNL_AddIOCompletion () .

(At LDRV CHNL level)

7. LDRV_CHNL_GetIOCompletion () completes and returns.

(At application level):

8. CHNL_Reclaim () completes and returns.

Pseudo-code:

/* Channel issue function for ZCPY mode */
ZCPYCHNL_Issue (...) {
 if (IS_OUTPUT_CHNL (chnldId)) {
 /* Set the local outputMask bit for the cha nnel ID */
 SET_BIT (outputMask, chnlId) ;
 DPC_Schedule (outDataDpc) ;
 }
 else { /* Input channel */
 /* Set the bit to indicate buffer free on t his channel */
 SET_BIT (chnlShmControl->gppFreeMask, chnlI d) ;

 /* Inform the DSP about the free buffer */
 IPS_Notify (IPS_CmdData) ;
 }
}

/* Output channel processing for ZCPY mode */
outDataDpc () {
 /* Process requests for multiple channels at th e same time */
 do {
 /* Get channel ID from round-robin search f or ready channel */
 /* This function checks for chnl Ids where both GPP and DSP
 * are ready
 */
 FindReadyOutput (&chnlId) ;

Page 70 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

 if (chnlId != INVALID_ID) {
 chirp = LDRV_CHNL_NextRequestChirp (pro cId, chnlId) ;

 /* Dispatch the IPS command */
 IPS_Send (IPS_CmdData, chirp) ;
 }
 }
 while (chnlId != INVALID_ID) ;

}

/* Find a ready output channel */
FindReadyOutput (ptrChnlId) {
 /* Find a channel ID where both GPP and DSP are ready by looking
 * at the chnlShmControl->dspFreeMask and outpu tMask
 * Return the channel ID found through the para meter.
 */
}

Callback for ZCPY mode (Note that the actual processing may be done inside a DPC

scheduled from the callback. This is implementation-specific):

/* Channel callback for ZCPY mode */
ZCPYCHNL_Callback (arg, chirp) {
 /* Issue the buffer for pointer exchange */
 if (chirp != NULL)
 reqChirp = LDRV_CHNL_GetRequestChirp (procI d,
 chirp ->chnlId) ;
 IPS_Send (IPS_CmdData, reqChirp) ;

 /* Indicate to upper layer that IO is compl ete on this chirp */
 *reqChirp = *chirp;
 AddIoCompletion (..., chirp) ;
 }

 /* Schedule DPC for o/p channel processing in c ase command was
 * sent by other processor only to indicate ava ilability of free
 * buffer on DSP input channel.
 */
 DPC_Schedule (dataDpc) ;
}

Other functions like CancelIO () can be implemented by clearing the pending IO

list.

Processor-copy data transfer:

For the PCPY DATA component, following shared structure is needed (name can be

changed):

typedef struct DATA_ShmControl {
 volatile Uint16 dspFreeMask ; /* Mask indicati ng DSP free buffer*/
 volatile Uint16 gppFreeMask ; /* Mask indicati ng GPP free buffer*/
 volatile Uint16 toDspFree ; /* Mask indicati ng free toDsp */
 /* buffer area * /
 volatile Uint16 fmDspFree ; /* Mask indicati ng free fmDsp */
 /* buffer area * /

Page 71 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

}

Following local structure is also needed (name can be changed):

typedef struct DATA_Object {
 Uint16 outputMask ; /* Indicates ready o/p cha nnels */
 Uint16 lastOutput ; /* Last o/p chnl on which data was sent */
}

These are used by the CHNL modules on both processors to check whether the other

processor has a free (issued) buffer before sending a command to the IPS module.

For processor copy data transfer, there can be a separate shared memory area

maintained for the buffer copy for each channel. This shall enable transfer on

multiple channels at the same time.

In case multiple buffer areas are not to be reserved for the channels, transfer on

only one channel is possible at a time. In that case, the bufFree field in the shared

memory control structure is a Boolean indicating whether the output buffer area is

free or used.

The protocol used is similar to the existing SHM/HPI protocol for multiplexing the

channels.

To exchange buffers on output channel:

(At application level):

1. Allocate a buffer (kernel buffer).

2. Fill the buffer with contents.

3. Send the buffer to driver through CHNL_Issue () .

(At LDRV CHNL level)

4. Add the buffer chirp to the end of requestList and send the request to the DATA

driver.

(At DATA driver level)

5. Set the appropriate bit for the channel in the local outputMask .

6. Schedule the output data DPC.

(At DATA driver level)

7. In the DPC, process requests for multiple channels at the same time. Check for

all ready channels (channels having GPP as well as DSP free). For each such

ready channel, further check if its output data area is free (a transfer is not

already in progress on that channel). If free, get a request CHIRP, copy the

buffer from request buffer to its SHM area and send to the SHMIPS.

8. On receiving a callback from the SHMIPS component, for each chirp received

from the DSP, get a chirp from the requestList for the corresponding channel.

Copy the buffer from SHM area to the request buffer and inform the DSP about

the cleared shared input buffer area. Send the request CHIRP to the SHMIPS

component for completing the pointer exchange. Also indicate to the upper layer

that IO is complete on the channel by calling LDRV_CHNL_AddIOCompletion () .

(At LDRV CHNL level)

9. LDRV_CHNL_GetIOCompletion () completes and returns.

(At application level):

Page 72 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

10. CHNL_Reclaim () completes and returns.

� The DSP may issue a buffer after the GPP had already checked for it (in which

case step 7 does not result in a command being issued to the IPS

component). In this condition, the remote processor interrupts the local

processor after setting appropriate event in the IPS control structure. This

results in a callback to the registered handler, and the protocol ensures that
the buffer gets dispatched to the IPS component.

To exchange buffers on input channel:

(At application level):

1. Allocate a buffer (SMA buffer).

2. Fill the buffer with contents.

3. Send the buffer to driver through CHNL_Issue () .

(At LDRV CHNL level)

4. Add the buffer chirp to the end of requestList and send the request to the DATA

driver.

(At DATA driver level)

5. Set the appropriate bit for the channel in the shared gppFreeMask . Notify the DSP

that the GPP is ready on the input channel.

6. On receiving a callback from the SHMIPS component, for each chirp received

from the DSP, get a chirp from the requestList for the corresponding channel.

Copy the buffer from SHM area to the request buffer and inform the DSP about

the cleared shared input buffer area. Send the request CHIRP to the SHMIPS

component for completing the pointer exchange. Also indicate to the upper layer

that IO is complete on the channel by calling LDRV_CHNL_AddIOCompletion () .

(At LDRV CHNL level)

7. LDRV_CHNL_GetIOCompletion () completes and returns.

(At application level):

8. CHNL_Reclaim () completes and returns.

Pseudo-code:

/* Channel issue function for SHM copy-mode.
 * This function assumes a reserved shared memory b uffer area for each
 * channel to allow transfers on multiple channels within the same
 * interrupt
 */
SHMCHNL_Issue (...) {
 if (IS_OUTPUT_CHNL (chnldId)) {
 /* Set the local outputMask bit for the cha nnel ID */
 SET_BIT (outputMask, chnlId) ;
 DPC_Schedule (outDataDpc) ;
 }
 else { /* Input channel */
 /* Set the bit to indicate buffer free on t his channel */

Page 73 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

 SET_BIT (chnlShmControl->gppFreeMask, chnlI d) ;
 /* Inform the DSP about the free buffer */
 IPS_Notify (IPS_CmdData) ;
 }
}

/* DPC for output channel processing for PCPY mode */
outDataDpc (...) {
 /* Process requests for multiple channels at th e same time */
 do {
 /* Get channel ID from round-robin search f or ready channel */
 /* This function checks for chnl Ids where both GPP and DSP
 * are ready
 */
 FindReadyOutput (&chnlId) ;
 if (chnlId != INVALID_ID) {
 /* TEST_AND_SET_BIT is atomic for multi ple processors*/
 if (TEST_AND_SET_BIT (pcpyShmCtrl->toDs pFree,
 chnlId) == TRUE) {
 chirp = LDRV_CHNL_GetRequestChirp (procId, chnlId) ;

 /* Copy buffer from request buffer to SHM area */
 MEM_Copy (shmBuffers[chnlId], chirp ->buffer, ...) ;

 /* Dispatch the IPS command */
 IPS_Send (IPS_CmdData, chirp) ;
 }
 }
 }
 while (chnlId != INVALID_ID) ;
}

/* Find a ready output channel */
FindReadyOutput (ptrChnlId) {
 /* Find a channel ID where both GPP and DSP are ready by looking
 * at the chnlShmControl->dspFreeMask and outpu tMask
 * Return the channel ID found through the para meter.
 */
}

Callback for SHM copy-mode (Note that the actual input processing may be done

inside a separate DPC scheduled from the callback. This is implementation-specific):

/* Channel callback for SHM copy-mode */
SHMCHNL_Callback (arg, list) {
 /* Process list of complete CHIRPs. Multiple ch annels may be
 * ready for data transfer.
 */
 LIST_First (list, &curChirp) ;
 if (curChirp != NULL) {
 /* Issue the buffer for pointer exchange */
 reqChirp = LDRV_CHNL_GetRequestChirp (procI d,
 curCh irp->chnlId) ;

 /* Copy buffer from SHM area to request buf fer */
 MEM_Copy (reqChirp->buffer, shmBuffers [chi rp->chnlId], ...) ;

 /* Inform DSP about cleared shared input bu ffer area */

Page 74 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

 /* CLEAR_BIT is atomic over multiple proces sors */
 CLEAR_BIT (pcpyShmCtrl->fmDspFree, chnlId) ;

 /* Combine notification and issuing of the exchange buffer */
 IPS_Send (IPS_CmdData, reqChirp) ;

 /* Indicate to upper layer that IO is compl ete on this chirp */
 AddIoCompletion (..., reqChirp) ;

 /* Process the next chirp in the list */
 LIST_Next (list, &curChirp, &nextChirp) ;
 if (nextChirp != NULL) {
 curChirp = nextChirp ;
 }
 }

 /* Schedule DPC for o/p channel processing in c ase command was
 * sent by other processor only to indicate ava ilability of free
 * buffer on DSP input channel.
 */
 DPC_Schedule (outDataDpc) ;
}

8.4.2.3 Message transfer

While the description for message transfer in this section gives the pseudo-code for

the GPP-side components, the counterpart on the DSP shall have exactly the same

code except for some of the fields in control structures used for transferring the

messages.

Zero-copy message transfer:

For zero-copy mode, there is no specific additional protocol needed for the message

transfer within shared memory.

To send a message:

(At application level)

1. Allocate message (SMA_Alloc () or MQABUF_Alloc () through MSGQ_Alloc ())

2. Fill the message with contents

3. Send the message to driver through MSGQ_Put () .

(At driver level)

4. Directly send the command to the IPS component: IPS_Send () .

To receive a message:

(At application level)

1. Attempt to receive a message from the DSP using MSGQ_Get () .

(At driver level)

2. MQT receives a callback from the SHMIPS component with the received

message(s).

3. The MQT sends the message(s) received from the SHMIPS component to the

appropriate local message queue(s) using MSGQ_Put () .

Page 75 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

 (At application level)

4. Get the message received from the DSP (MSGQ_Get () returns).

5. Free the received message using MSGQ_Free () .

� The MQT may receive the message from the DSP before the application

requests for it. In this case, the order of the steps 1 and (2 and 3) will be

reversed.

Pseudo-code:

/* Message send function for ZCPY mode */
ZCPYRMQT_Send (...) {
 /* Dispatch the IPS command */
 IPS_Send (IPS_CmdMsg, msg) ;
}

In the callback for ZCPY mode (Note that the actual processing may be done inside a

DPC scheduled from the callback. This is implementation-specific):

/* Remote MQT callback for SHM */
ZCPYRMQT_Callback (arg, list) {
 /* Process list of received messages */
 while (!LIST_IsEmpty (list)) {
 LIST_GetHead (list, &msg) ;
 /* Put the message on the appropriate local MSGQ */
 MSGQ_Put (localMsgq, msg, ...) ;
 }
}

Processor-copy message transfer:

For the PCPY MQT component, following shared structure is needed (name can be

changed):

typedef struct PCPYMQT_ShmControl {
 volatile Uint16 toDspFree ; /* Indicates free toDsp msg area */
 volatile Uint16 fmDspFree ; /* Indicates free fmDsp msg area */
}

Following local structure is also needed (name can be changed):

typedef struct MQT_Object {
 List * toDsp ;
}

To send a message:

(At application level)

1. Allocate message (SMA_Alloc () or MQABUF_Alloc () through MSGQ_Alloc ())

2. Fill the message with contents

3. Send the message to driver through MSGQ_Put () .

(At driver level)

4. Add the message to the end of local message list.

Page 76 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

5. Schedule a DPC to transfer the messages.

6. In the output message DPC: For all messages in the local message list:

If the output message area is free:

� Set the toDspFree field in the pcpyShmCtrl structure to claim the output

message area.

� Get the first pending output message from the toDsp local list.

� Copy the message into the output message area.

� Send the shared memory message to the IPS component.

� Free the user message.

To receive a message:

(At application level)

1. Attempt to receive a message from the DSP using MSGQ_Get () .

(At driver level)

2. MQT receives a callback from the SHMIPS component with the received message.

3. MQT allocates a new message using MSGQ_Alloc () .

4. It copies the contents of received message into the newly allocated message.

5. It clears the fmDspFree field in the pcpyShmCtrl structure to release the input

message area and sends a notification to the SHMIPS.

6. Finally, it sends the message to the appropriate local message queue using

MSGQ_Put () .

 (At application level)

7. Get the message received from the DSP (MSGQ_Get () returns).

8. Free the received message using MSGQ_Free () .

� The MQT may receive the message from the DSP before the application

requests for it. In this case, the order of the steps 1 and (2 to 6) will be

reversed.

Pseudo-code:

/* Message send function for SHM copy-mode */
/* This function assumes a reserved shared memory b uffer area for
 * a message */
SHMRMQT_Send (...) {
 LIST_PutTail (toDsp, msg) ;
 DPC_Schedule (msgDpc) ;
}

/* DPC function for sending PCPY mode messages */
msgDpc (...) {
 /* TEST_AND_SET is atomic over multiple process ors */
 if (TEST_AND_SET (pcpyShmCtrl->toDspFree) == TR UE) {
 LIST_GetHead (toDsp, &msg) ;

Page 77 of 77 Version 0.30

DSP/BIOS™ LINK

LNK 128 DES

IPS & Notify

Texas Instruments Proprietary Information

 if (msg != NULL) {
 /* Copy message to SHM area */
 ...
 /* Dispatch the IPS command */
 IPS_Send (IPS_CmdMsg, shmMsg) ;
 MSGQ_Free (msg) ;
 }
 }
}

In the callback for SHM mode (Note that the actual processing could possibly be

done inside a DPC scheduled from the callback. This is implementation-specific):

/* Remote MQT callback for SHM */
SHMRMQT_Callback (arg, msg) {
 if (msg != NULL) {
 MSGQ_Alloc (&newMsg, ...) ;
 newMsg = msg ;

 /* Inform DSP about cleared shared input me ssage area */
 /* CLEAR is atomic over multiple processors */
 CLEAR (pcpyShmCtrl->fmDspFree) ;
 IPS_Notify (IPS_CmdMsg) ;

 /* Put the message on the appropriate local MSGQ */
 MSGQ_Put (localMsgq, newMsg, ...) ;
 }
 else { /* Will not be done always if interrupts are optimized */
 DPC_Schedule (msgDpc) ;
 }
}

8.4.3 Chosen alternative

The alternative 2 has been chosen for the shared memory link IPS component

design, since it provides a high-performance and code-size optimized design for CPU

copy as well as zero-copy data transfer and message transfer.

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Requirements
	Assumptions
	Constraints
	High Level Design
	IPS
	Overview
	Services provided
	Design

	Notify
	Overview
	Services provided
	Design

	Sequence Diagrams
	IPS_init
	IPS_exit
	IPS_register
	IPS_unregister
	IPS_notify
	IPS_ISR
	_NOTIFY_init
	_NOTIFY_exit
	NOTIFY_eventWorker
	NOTIFY_register
	NOTIFY_unregister

	Low Level Design
	IPS
	Constants & Enumerations
	MAX_IPS_EVENT

	Typedefs & Data Structures
	IPS_EventListener
	IPS_Event
	IPS_SchedChart
	IPS_EventChart
	IPS_Object
	FnIpsCbck

	API Definition
	IPS_init
	IPS_exit
	IPS_register
	IPS_unregister
	IPS_notify

	Notify
	Typedefs & Data Structures
	FnNotifyCbck

	API Definition
	_NOTIFY_init
	_NOTIFY_exit
	NOTIFY_register
	NOTIFY_unregister
	NOTIFY_notify

	Internal Discussions
	Prioritizing IPS (High level design)
	Prioritizing IPS (Low level discussion)
	Register
	Notify & Send

	Notify
	IPS component (Older Implementation)
	Alternative 1: IPS component provides basic services to transfer a buffer between the GPP and DSP.
	Alternative 2: IPS component maintains a shared list of messages.
	IPS component
	Data transfer:
	Message transfer

	Chosen alternative

