

Template Version 1.2

Version 1.30 Page 1 of 35

DESIGN DOCUMENT

DSP/BIOS™ LINK

Pool

LNK 082 DES

Version 1.30

Page 2 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

This page has been intentionally left blank.

Page 3 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

This page has been intentionally left blank.

Page 5 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

TABLE OF CONTENTS

1 Introduction ... 7
1.1 Purpose & Scope ... 7
1.2 Text Conventions... 7
1.3 Terms & Abbreviations ... 7
1.4 References ... 7
1.5 Overview.. 7

2 Requirements ... 8

3 Assumptions... 8

4 Constraints ... 8

5 High Level Design... 9
5.1 POOL ... 9
5.2 LDRV POOL..10

6 POOL API.. 12
6.1 Typedefs & Data Structures ...12
6.2 API ...13

7 SMA POOL... 21
7.1 Typedefs & Data Structures ...21

8 LDRV POOL... 23
8.1 Typedefs & Data Structures ...23
8.2 API Definition...32

9 Sequence Diagram.. 34

Page 6 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

TABLE OF FIGURES

Figure 1 Dry Run for POOL Module...35

Page 7 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

1 Introduction

1.1 Purpose & Scope
This document describes the design of shared memory allocator in DSP/BIOS™ LINK.

This component shall be used to allocate buffers / messages to be transferred across

processors (GPP and DSP).

This document describes the design of shared memory allocator for the GPP and

DSP.

The document is targeted at the developers of DSP/BIOS™ LINK. Customers can also

use it to get a better understanding of the component.

1.2 Text Conventions

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

1.3 Terms & Abbreviations
DSPLINK DSP/BIOS™ LINK

Client Refers to a process/ thread/ task in an operating system

that uses DSP/BIOS™ LINK API.

It is used to ensure that description is free from the specifics

of ‘unit of execution’ for a particular OS.

1.4 References
None.

1.5 Overview
DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit

that simplifies the development of embedded applications in which a general-purpose

microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK

provides control and communication paths between GPP OS threads and DSP/BIOS™

tasks, along with analysis instrumentation and tools.

The POOL will be used for allocating buffers.

This document provides a high-level description of the POOL design.

Page 8 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

2 Requirements
The requirements of the POOL are:

1. It shall provide uniform API’s for allocating buffers.

3 Assumptions
None.

4 Constraints
None.

Page 9 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

5 High Level Design

5.1 POOL
POOL Module shall manage different buffer pools, each can have different buffer

allocation techniques. It shall allow different buffer pools to be managed

simultaneously. It shall provide uniform APIs for pool operations. Internal operations

specific to a pool are opaque for the client side application.

It shall be scaleable, so that in case of OSes like Linux, it will map the buffers from

user address space to kernel address space and vice-versa. For other OSes, it shall

simple skip the mapping/unmapping logic.

In case of OSes like Linux, it shall provide an interface, using which buffers can be

allocated/deallocated directly in kernel context, i.e. code executing in kernel context

can directly alloc/free buffers.

It shall provide Initialize and Finalize functions, which shall initialize/finalize all buffer

pools by calling Initialize and Finalize function of the buffer pools (internal to POOL).

So that all buffer pools are initialized/finalized at the time of initializing/finalizing of

DSPLINK. Each pool shall implement its own initialize/finalize logic.

After initialization, calling the Open function shall create the buffer pools for the

given pool ID. For OSes like Linux, Open function shall return information specific to

mapping/unmapping buffers between user and kernel address space.

Closing a specific buffer pool shall destroy the buffers inside the buffer pool and

make the buffer pool unusable.

Figure 1. POOL Architecture.

POOL

Initialize

Finalize

Buffer Pool #1

.
.
.
.
.
.

Initialize

Finalize

Buffer Pool #2

.
.
.
.
.
.

Initialize

Finalize

Buffer Pool #N

.
.
.
.
.
.

Initialize

Finalize

Page 10 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

The above figure depicts the POOL architecture.

5.2 LDRV POOL
This interface provides an access to the buffer pools. This reduces the overhead of

calling the POOL APIs for buffer pool operations. For OSes like Linux, kernel context

code cans directly allocate/deallocate buffers by using this interface. These interface

will be define at kernel level only.

All calls to POOL APIs are actually translated to this interface. So additional

mapping/unmapping logic is required between POOL API alloc/free and POOL

Interface alloc/free. These logics should be scaleable, i.e. it shall be removed for

OSes, which does not have user/kernel separation.

All buffer pool shall expose its own interface, which shall be plugged into an array of

POOL interface type. POOL count shall be maintained to reflect the number of buffer

pools present at any given time. Each buffer pool is provided unique POOL ID, which

shall be used for translating POOL API calls to POOL Interface calls. All information

required for buffer pool creation is also stored in the pool interface array.

POOL is the basic backbone of ZCPY (zero copy) mechanism of transferring

information in DSPLINK. POOL can be implemented using shared memory on devices

like Davinci. For devices like DM642 where the only selected 4MB of DSP memory

can be accessed, which may not fit the requirement for big sized POOL (Also the 4MB

slot has very slow read and write operations). In this case, all control information

related to POOL are accessed through 4MB slot, but buffers (can be very large) are

kept in local physical contiguous memory on both GPP and DSP. These local copies

are replica of peer’s copy. These copies are kept in sync with the help of DMA

engine. The implementation of pool can be via shared memory (SMA POOL) or

synchronized using DMA(SYNC POOL).

Page 11 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

Figure 2. POOL Interface Architecture.

LDRV POOL

Initialize

Finalize

Interface

Open

Close

Alloc

Free

Reconfigure

Buffer Pool #1

Initialize

Finalize

Open

Close

Alloc

Free

Reconfigure

Buffer POOl #N
Initialize

Finalize

Open

Close

Alloc

Free

Reconfigure

Open Params

Pool Count

Page 12 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

6 POOL API

6.1 Typedefs & Data Structures

6.1.1 Pool_ AddrInfo

This structure defines the buffer information structure for the Pool. This structure

defines the configuration attributes required for mapping/unmapping the buffers.

Definition
typedef struct POOL_AddrInfo_tag {
 Uint32 addr [MAX_ADDR_TYPES] ;
 Uint32 size ;
} POOL_AddrInfo;

Fields

addr Array of addresses containing the same address in
different address spaces

size Size of memory block in bytes

Comments

This structure is used for retrieving information about a buffer allocated from the

pool.

Constraints

None.

See Also

None.

Page 13 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

6.2 API

6.2.1 POOL_open
This function opens a specific pool referenced by the pool Id.

Syntax
DSP_STATUS POOL_open (Uint16 poolId, Pvoid params) ;

Arguments

IN Uint16 PoolId

Pool Identification number.

IN Pvoid params

POOL Open specific parameters.

Return Value

DSP_SOK Operation completed successfully.

DSP_SALREADYOPENED The specified POOL has already been opened.

DSP_EACCESSDENIED Access to the DSP is denied.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

When any client wishes to use a specific pool, it first needs to open the pool calling

this API specifying the required pool ID. The pool ID corresponds to the index of the

configured pool within the pool table in the CFG_<PLATFORM>.c file.

Every process that needs to use the specific pool must indicate this to DSPLINK by

making a call to this API. Only the first call for opening a pool makes use of the

passed parameters. For calls from other applications/processes to open the same

pool, the pool configuration parameters, if provided, are ignored. Applications can

even pass NULL as the pool parameters if they are aware that the pool has already

been opened by another process.

This API carries out all mappings and initialization required to be able to use the

specified pool ID from the calling process. This API can be successfully called once by

every process in the system. If this API is called more than once in a single process

(even if called by different threads within the process), the subsequent calls return

an error.

Constraints

All applications using a specific pool ID must ensure that all their requirements are

met with the pool configuration parameters provided by the first caller to POOL_open

() .

Page 14 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

See Also
POOL_close ()

Page 15 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

6.2.2 POOL_close
This function closes a specific pool whose pool id is provided.

Syntax
DSP_STATUS POOL_close (Uint16 poolId) ;

Arguments

IN Uint16 PoolId

Pool Identification number.

Return Value

DSP_SOK Operation completed successfully.

DSP_SCLOSED The final process has closed the specified POOL.

DSP_EINVALIDARG Invalid argument.

DSP_EACCESSDENIED The POOL was not opened.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

Any applications/processes that no longer need to use the opened pool call must call

this API with the specific pool ID. The pool ID corresponds to the index of the

configured pool within the pool table in the CFG_<PLATFORM>.c file. Once this API

has been called, the process cannot make any DSPLINK API calls that make use of

the pool with this ID, for example MSGQ_alloc () , POOL_alloc () etc.

This API removes out all mappings and finalizes the specific POOL for the calling

process. This API can be successfully called once by every process in the system.

However, if POOL_open () was not called in this process for this pool ID,
POOL_close () must not be called for this pool ID. If this API is called more than

once in a single process (even if called by different threads within the process), the

subsequent calls return an error.

Constraints

None.

See Also

POOL_open ()

Page 16 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

6.2.3 POOL_alloc
This function allocates a buffer of the specified size from a pool.

Syntax
DSP_STATUS POOL_alloc (Uint16 poolId, Uint16 size, Pvoid * bufPtr) ;

Arguments

IN Uint16 PoolId

Pool Identification number.

IN Uint16 size

Size of buffer to be allocated.

OUT Pvoid * bufPtr

Location to receive a pointer to the allocated buffer.

Return Value

DSP_SOK Operation completed successfully.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function will call DRV_Invoke with specific command ID.

Constraints

None.

See Also
POOL_free ()

Page 17 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

6.2.4 POOL_free
This function frees a buffer into the specified pool.

Syntax
DSP_STATUS POOL_free (Uint16 poolId, Uint16 size, P void bufPtr) ;

Arguments

IN Uint16 PoolId

Pool Identification number.

IN Uint16 size

Size of buffer to be freed.

IN Pvoid bufPtr

Pointer to the buffer to be freed.

Return Value

DSP_SOK Operation completed successfully.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function will call DRV_Invoke with specific command ID.

Constraints

None.

See Also
POOL_alloc ()

Page 18 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

6.2.5 POOL_writeback

This function writes the content of GPP buffer into DSP buffer (with offset in sync).

On platforms like Davinci which are based on shared memory, this function returns

success. On PCI based platforms this internally calls the DMA engine which keeps the

synchronized pool (SYNC POOL) updated. This function “writebacks” the content so

that the other processor can view latest copy of synchronized pool contents.

Syntax
DSP_STATUS POOL_writeback (IN Uint16 poolId,
 IN Pvoid buf,
 IN Uint32 size)

Arguments

IN Uint16 PoolId

Pool Identification number.

IN Pvoid bufPtr

Pointer to the buffer to be written back.

IN Uint32 size

Size of buffer to be written back.

Return Value

DSP_SOK Operation completed successfully.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function will call DRV_Invoke with specific command ID.

Constraints

None.

See Also
POOL_invalidate ()

Page 19 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

6.2.6 POOL_invalidate

This function This function invalidates the content of the buffer.

On platforms like Davinci which are based on shared memory, this function returns

success. On PCI based platforms this internally calls the DMA engine which keeps the

synchronized pool (SYNC POOL) updated. This function “invalidates” the pool content

so that the processor can view the latest copy of synchronized pool contents.

Syntax
DSP_STATUS POOL_invalidate (IN Uint16 poolId,
 IN Pvoid buf,
 IN Uint32 size)

Arguments

IN Uint16 PoolId

Pool Identification number.

IN Pvoid bufPtr

Pointer to the buffer to be invalidated.

IN Uint32 size

Size of buffer to be written back.

Return Value

DSP_SOK Operation completed successfully.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function will call DRV_Invoke with specific command ID.

Constraints

None.

See Also
POOL_writeback ()

Page 20 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

6.2.7 POOL_translateAddr

This function translates addresses between two address spaces for a buffer that was

allocated from the pool.

Syntax
DSP_STATUS
POOL_translateAddr (IN Uint16 poolId,
 OUT Pvoid * dstAddr,
 IN AddrType dstAddrTyp e,
 IN Pvoid srcAddr,
 IN AddrType srcAddrTyp e) ;

Arguments

IN Uint16 PoolId

 Pool Identification number.

OUT Pvoid * dstAddr

 Location to receive the translated address.

IN AddrType dstAddrType

 Type of address to be translated to.

OUT Pvoid srcAddr

 Address of the buffer to be translated.

IN AddrType dstAddrType

 Type of address to be translated to.

Return Value

DSP_SOK Operation completed successfully.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function will call DRV_Invoke with specific command ID.

Constraints

None.

See Also
None.

Page 21 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

7 SMA POOL

7.1 Typedefs & Data Structures

7.1.1 POOL_AddrXltFlag

This enum defines direction of buffer translation.

Definition

typedef enum {

 USR_TO_KNL = (AddrType_Usr | (AddrType_Knl << 8 u)),

 USR_TO_PHY = (AddrType_Usr | (AddrType_Phy << 8 u)),

 USR_TO_DSP = (AddrType_Usr | (AddrType_Dsp << 8 u)),

 PHY_TO_USR = (AddrType_Phy | (AddrType_Usr << 8 u)),

 PHY_TO_KNL = (AddrType_Phy | (AddrType_Knl << 8 u)),

 PHY_TO_DSP = (AddrType_Phy | (AddrType_Dsp << 8 u)),

 KNL_TO_USR = (AddrType_Knl | (AddrType_Usr << 8 u)),

 KNL_TO_PHY = (AddrType_Knl | (AddrType_Phy << 8 u)),

 KNL_TO_DSP = (AddrType_Knl | (AddrType_Dsp << 8 u)),

 DSP_TO_USR = (AddrType_Dsp | (AddrType_Usr << 8 u)),

 DSP_TO_PHY = (AddrType_Dsp | (AddrType_Phy << 8 u)),

 DSP_TO_KNL = (AddrType_Dsp | (AddrType_Knl << 8 u))

} POOL_AddrXltFlag ;

Fields

USR_TO_KRNL User to kernel address translation.

KRNL_TO_USR Kernel to user address translation.

USR_TO_DSP User to DSP address translation.

PHY_TO_USR Physical to user address translation.

PHY_TO_KNL Physical to kernel address translation.

PHY_TO_DSP Physical to DSP address translation.

KNL_TO_USR Kernel to user address translation.

KNL_TO_PHY Kernel to physical address translation.

KNL_TO_DSP Kernel to DSP address translation.

DSP_TO_USR DSP to user address translation.

DSP_TO_PHY DSP to physical address translation.

DSP_TO_KNL DSP to kernel address translation.

Page 22 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

Comments

This enum will be used at IOCTL level for mapping and unmapping buffers.

Constraints

None.

See Also
POOL_translateAddr ()

Page 23 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

8 LDRV POOL

8.1 Typedefs & Data Structures

8.1.1 FnPoolInfInitialize
This type defines the function, which initialize th e plugged memory allocator.

Syntax
typedef DSP_STATUS (*FnPoolInfInitialize) (OUT Pvoi d * object) ;

Arguments

OUT Pvoid * object

Pointer to the object to be initialized.

Return Value

DSP_SOK The plugged memory allocator component has been

successfully initialized.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

None.

Constraints

None.

See Also
FnPoolInfFinalize ()

Page 24 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

8.1.2 FnPoolInfFinalize
This type defines the function, which finalize the plugged memory allocator

Syntax
typedef DSP_STATUS (*FnPoolInfFinalize) (IN Pvoid o bject) ;

Arguments

IN Pvoid object

Pointer to the object to be finalized.

Return Value

DSP_SOK The plugged allocator component has been

successfully finalized.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

None.

Constraints

None.

See Also
FnPoolInfInitialize ()

Page 25 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

8.1.3 FnPoolInfOpen
This type defines the function, which creates the p lugged memory allocator.

Syntax
typedef DSP_STATUS (*FnPoolInfOpen) (
 IN Pvoid object,
 IN POOL_OpenParams * poolOpenParams)
;

Arguments

IN Pvoid object

Pointer to the internal allocator object.

IN POOL_OpenParams * poolOpenParams

An argument for creating POOL and plugged memory allocator.

Return Value

DSP_SOK Plugged memory allocator is successfully created.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

None.

Constraints

None.

See Also
FnPoolInfClose ()

Page 26 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

8.1.4 FnPoolInfClose
This type defines the function, which destroys plugged memory allocator.

Syntax
typedef DSP_STATUS (*FnPoolInfClose) (IN Pvoid obje ct) ;

Arguments

IN Pvoid object

Pointer to the internal allocator object.

Return Value

DSP_SOK Plugged memory allocator are successfully deleted.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

None.

Constraints

None.

See Also
FnPoolInfOpen ()

Page 27 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

8.1.5 FnPoolInfAlloc
This type defines the function, which allocates a buffer, and returns the pointer to

the user.

Syntax
typedef DSP_STATUS (*FnPoolInfAlloc) (IN Pvoid object,
 IN Uint16 size,
 OUT Pvoid * b ufPtr) ;

Arguments

IN Pvoid object

Pointer to the internal allocator object.

IN Uint16 size

Size of the buffer to be allocated.

OUT Pvoid * bufPtr

Location to receive the allocated buffer.

Return Value

DSP_SOK The buffer has been successfully allocated.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

None.

Constraints

None.

See Also
FnPoolInfFree ()

Page 28 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

8.1.6 FnPoolInfFree
This type defines the function, which frees a buffer.

Syntax
typedef DSP_STATUS (*FnPoolInfFree) (IN Pvoid ob ject,
 IN Uint16 si ze,
 OUT Pvoid bu fPtr) ;

Arguments

IN Pvoid object

Pointer to the internal allocator object.

IN Uint16 size

Size of the buffer to be freed.

OUT Pvoid bufPtr

Location to the buffer.

Return Value

DSP_SOK The buffer has been successfully freed.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

None.

Constraints

None.

See Also
FnPoolInfAlloc ()

Page 29 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

8.1.7 FnPoolInfReconfigure
This type defines the function, which reconfigure t he plugged memory allocator.

Syntax
typedef DSP_STATUS (*FnPoolInfReconfigure) (IN Pvoi d object,
 IN Pvoi d args) ;

Arguments

Return Value

DSP_SOK Internal allocator is successfully reconfigured.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

None.

Constraints

None.

See Also
None.

IN Pvoid object

Pointer to the internal allocator object.

IN Pvoid args

Argument for reconfiguring the plugged memory allocator.

Page 30 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

8.1.8 POOL_Interface

This structure defines the control attributes required for both processors to work with

buffer pools.

Definition
typedef struct POOL_Interface_tag {
 FnPoolOpen open ;
 FnPoolClose close ;
 FnPoolAlloc alloc ;
 FnPoolFree free ;
 FnPoolReconfigure reconfigure ;
 FnPoolWriteback writeback ;
 FnPoolInvalidate invalidate ;
 FnPoolXltBuf xltBuf ;
} POOL_Interface ;

Fields

open Function pointer to the plugged allocator’s open function.

alloc Function pointer to the plugged allocator’s close function.

free Function pointer to the plugged allocator’s free function.

reconfigure Function pointers to the plugged allocator’s reconfigure

function.

writeback Function pointer to the plugged pool's writeback function.

invalidate Function pointer to the plugged pool's invalidate function.

xltBuf Function pointer to the plugged pool's xltBuf function.

Comments

This structure will be initialized by GPP in LDRV Initialize section.

Constraints

None.

See Also
None.

Page 31 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

8.1.9 POOL_OpenParams

This structure defines the allocator open specific parameters.

Definition
struct POOL_OpenParams_tag {
 Pvoid params ;
 Uint32 physAddr ;
 Uint32 virtAddr ;
 Uint32 dspAddr ;
 Uint32 size ;
} ;;

Fields

params Pointer to the user provided parameters.

physAddr Physical address of memory block.

virtAddr Address of memory block in kernel virtual address space.

dspAddr Address of memory block in DSP address space (If the pool is

in shared memory).

size Size of memory block in bytes.

Comments

This structure will be used internally at IOCTL level for typecasting the open

argument passed by user. Allocator open function will return mapping specific

parameters in this structure, which will be used for mapping from User to Kernel and

vice-versa.

Constraints

None.

See Also
None.

Page 32 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

8.2 API Definition

8.2.1 LDRV_POOL_init
This function initializes the POOL component.

Syntax
DSP_STATUS LDRV_POOL_init () ;

Arguments

None.

Return Value

DSP_SOK The POOL component has been successfully initialized.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

DSP_ECONFIG Incorrect configuration.

Comments

This function initializes the POOL component.

Constraints

None.

See Also
LDRV_POOL_exit ()

Page 33 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

8.2.2 LDRV_POOL_exit
This function finalizes the POOL component.

Syntax
DSP_STATUS LDRV_POOL_exit () ;

Arguments

None.

Return Value

DSP_SOK The POOL component has been successfully finalized.

DSP_EINVALIDARG Invalid argument.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function internally calls the finalize function of all buffer pools through the

function interface table.

Constraints

None.

See Also
LDRV_POOL_init ()

Page 34 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

9 Sequence Diagram

POOL IOCTL POOL INF ALLOCATOR

Open

Create Buffer Pools

If map flag is set in attribute then, Map the Physi cal
address to user address space. And if the map
function entry is not NULL, then call it.

Get Map Attributes

Alloc

Allocate buffer

If translate function entry is not NULL, then call it.

Free buffer

Free

If translate function entry is not NULL, then call it.

Page 35 of 35 Version 1.30

DSP/BIOS™ LINK

LNK 082 DES

Pool

Figure 1 Dry Run for POOL Module.

POOL IOCTL POOL INF ALLOCATOR

Close

If map flag is set in attribute then, Unmap the mem ory
used from, user address space. And if the unmap
function entry is not NULL, then call it.

Get Map Attributes

Delete Buffer Pools

	Introduction
	Purpose & Scope
	Text Conventions
	Terms & Abbreviations
	References
	Overview

	Requirements
	Assumptions
	Constraints
	High Level Design
	POOL
	LDRV POOL

	POOL API
	Typedefs & Data Structures
	Pool_ AddrInfo

	API
	POOL_open
	POOL_close
	POOL_alloc
	POOL_free
	POOL_writeback
	POOL_invalidate
	POOL_translateAddr

	SMA POOL
	Typedefs & Data Structures
	POOL_AddrXltFlag

	LDRV POOL
	Typedefs & Data Structures
	FnPoolInfInitialize
	FnPoolInfFinalize
	FnPoolInfOpen
	FnPoolInfClose
	FnPoolInfAlloc
	FnPoolInfFree
	FnPoolInfReconfigure
	POOL_Interface
	POOL_OpenParams

	API Definition
	LDRV_POOL_init
	LDRV_POOL_exit

	Sequence Diagram

