

Template Version 1.2

Version 0.90 Page 1 of 95

DESIGN DOCUMENT

DSP/BIOS™ LINK

ZERO COPY LINK DRIVER

LNK 041 DES

Version 0.90

Page 2 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

This page has been intentionally left blank.

Page 3 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make

corrections, modifications, enhancements, improvements, and other changes to its products

and services at any time and to discontinue any product or service without notice.

Customers should obtain the latest relevant information before placing orders and should

verify that such information is current and complete. All products are sold subject to TI’s

terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the

time of sale in accordance with TI’s standard warranty. Testing and other quality control

techniques are used to the extent TI deems necessary to support this warranty. Except

where mandated by government requirements, testing of all parameters of each product is

not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers

are responsible for their products and applications using TI components. To minimize the

risks associated with customer products and applications, customers should provide

adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted

under any TI patent right, copyright, mask work right, or other TI intellectual property right

relating to any combination, machine, or process in which TI products or services are used.

Information published by TI regarding third–party products or services does not constitute a

license from TI to use such products or services or a warranty or endorsement thereof. Use

of such information may require a license from a third party under the patents or other

intellectual property of the third party, or a license from TI under the patents or other

intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if

reproduction is without alteration and is accompanied by all associated warranties,

conditions, limitations, and notices. Reproduction of this information with alteration is an

unfair and deceptive business practice. TI is not responsible or liable for such altered

documentation.

Resale of TI products or services with statements different from or beyond the parameters

stated by TI for that product or service voids all express and any implied warranties for the

associated TI product or service and is an unfair and deceptive business practice. TI is not

responsible or liable for any such statements.

Mailing Address:

Texas Instruments

Post Office Box 655303

Dallas, Texas 75265

Copyright ©. 2003, Texas Instruments Incorporated

Page 4 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

This page has been intentionally left blank.

Page 5 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

TABLE OF CONTENTS

1 Introduction ... 7
1.1 Purpose & Scope ... 7
1.2 Terms & Abbreviations ... 7
1.3 References ... 7
1.4 Overview.. 7

2 Requirements ... 8

3 Assumptions... 10

4 Constraints ... 10

5 High Level Design... 11
5.1 Architecture overview ...11
5.2 Control flow ...13
5.3 Zero copy mechanism ...14
5.4 ZCPY driver ...17
5.5 SHMIPS component ..21
5.6 SHMDRV component ...22
5.7 ZCPY MQT component...23
5.8 ZCPY DATA component ...24

6 Sequence Diagrams.. 26
6.1 ZCPYMQT_init ()...27
6.2 ZCPYMQT_open () ..28
6.3 ZCPYMQT_close () ..29
6.4 ZCPYMQT_put () ..30
6.5 ZCPYMQT_locate ()...31
6.6 ZCPYMQT_release () ...32

7 SHMIPS .. 33
7.1 GPP and DSP side low level design..33

8 SHMDRV ... 54
8.1 GPP and DSP side low level design..54

9 ZCPY MQT... 64
9.1 GPP side low level design ..64
9.2 DSP side low level design ..81

Page 6 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

TABLE OF FIGURES

Figure 1. Basic architecture of system supporting ZCPY transfer mode......................11
Figure 2. ZCPY sub-components ..12
Figure 3. ZCPY sub-component interaction ..13
Figure 4. Zero copy buffer exchange during data transfer15
Figure 5. Zero copy pointer passing during message transfer.16
Figure 6. Shared memory layout..17
Figure 7. GPP-side component interaction ...19
Figure 8. DSP-side component interaction...21
Figure 9. On the DSP: ZCPYMQT_init () control flow ...27
Figure 10. On the DSP: ZCPYMQT_open () control flow...28
Figure 11. On the DSP: ZCPYMQT_close () control flow ..29
Figure 12. On the DSP: ZCPYMQT_put () control flow...30
Figure 13. On the DSP: ZCPYMQT_locate () control flow ...31
Figure 14. On the DSP: ZCPYMQT_release control flow...32

Page 7 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

1 Introduction

1.1 Purpose & Scope
This document describes the design of zero copy link driver for DSP/BIOS™ LINK.

The document is targeted at the development team of DSP/BIOS™ LINK.

1.2 Terms & Abbreviations
DSPLINK DSP/BIOS™ LINK

ZCPY Zero Copy

SHM Shared Memory

SMA Shared Memory Allocator

CHIRP Channel I/O Request Packet

� This bullet indicates important information.

Please read such text carefully.

� This bullet indicates additional information.

1.3 References
1. LNK 012 DES DSP/BIOS™ LINK

Link Driver

2. LNK 031 DES DSP/BIOS™ LINK

Messaging Component

3. LNK 076 DES DSP/BIOS™ LINK

Buffer Pools

1.4 Overview
DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit

that simplifies the development of embedded applications in which a general-purpose

microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK

provides control and communication paths between GPP OS threads and DSP/BIOS™

tasks, along with analysis instrumentation and tools.

The zero-copy driver provides a fast physical link between the GPP and the DSP,

based on the concept of pointer exchange between the GPP and DSP applications.

This document provides a detailed description of the Zero Copy (ZCPY) driver design.

Page 8 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

2 Requirements
R29 The physical link driver shall not perform any data copies between GPP

memory, shared memory, and DSP memory areas.

R30 In addition to the configurations supported with the previous releases, this

release shall support the following configurations

 Device GPP Operating System Features Supported

OMAP5912 Montavista Linux

Professional Edition 3.1

DSP Bootloading

Zero copy data streaming.

Zero copy messaging

Processor copy data streaming

Processor copy messaging

VP-Hibari PrOS DSP Bootloading

Zero copy messaging

R31 The build system shall allow the capability to directly expose the LDRV level

APIs to reduce code. The APIs exposed shall however be consistent with the

APIs exposed by DSP/BIOS™ LINK in the full configuration.

R32 The following table provides footprint expected in different configurations on

Hibari running PrOS on GPP.

Components Included Footprint

(bytes)

Configuration

Description

GPP DSP GPP DSP

1 Basic DSP bootloading

only

DSP,

PROC (shim over DSP),

OSAL for PrOS

None 1024 None

2 Message transfer

between GPP and DSP

with static configuration

for MSGQ objects and

memory pools

DSP,

PROC (shim over DSP),

MSGQ (shim over

LDRV_MSGQ)

POOL (shim over SMA),

ZCPYMQT,

OSAL for PrOS

MSGQ,

POOL,

ZCPYMQT

1024 1024

3 Both mentioned above All of above All of

above

2048 1024

Page 9 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

R33 The above footprint numbers also assume static configuration for

DSP/BIOS™LINK where no objects are created at runtime and are created

statically prior to the application commences execution.

R34 Additionally, the following table provides the code footprint expected

indifferent configurations on OMAP5912 running Montavista Linux

Professional Edition 3.1 on GPP.

Components Included Footprint

(bytes)

Configuration

Description

GPP DSP GPP DSP

1 Basic DSP

bootloading only

DSP,

PROC,

OSAL for MVLinux Pro

3.1

None 45K 0

2 Message transfer

between GPP and

DSP

DSP,

PROC,

MSGQ,

SMA,

ZCPYMQT,

OSAL for MVLinux Pro

3.1

MSGQ,

POOL,

ZCPYMQT

55K 1500

3 Bootloading,

Message transfer

All of above All of above 55K 1500

4 Bootloading,

Basic data

streaming

DSP,

PROC,

CHNL,

SMA

IOM Driver for

Streaming

60K 1500

5 Bootloading,

Basic data

streaming,

Message Transfer

All of above All of above 70K 3000

R35 The performance measures for transferring data and message buffers

between GPP and DSP are dependent on the H/W configuration and its clock

frequency. Therefore it is best to categorize this data in terms of actual CPU

cycles used while transferring data and message.

 The following table specifies the CPU cycles used by LINK for transferring

 data and message buffers using the zero copy link drivers.

 H/W + S/W

Configuration

Operation CPU Cycles

(average)

Page 10 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

GPP DSP

Data Buffer Transfer using

standard LINK APIs

1000 1000 OMAP5912 running

Montavista Linux

Professional Edition 3.1
Message Transfer using standard

LINK APIs

1000 1000

Hibari running PrOS Message Transfer using shim

LINK APIs and static

configuration.

500 500

In addition, the zero copy driver must meet the following generic requirement:

1. The link driver shall transfer messages at a higher priority than data buffers.

2. The physical link driver shall use a single interrupt for transferring messages over

shared memory.

3. The code used for messaging shall be independent of the code used for data

streaming to enable efficient method for message passing.

4. The existing APIs exposed by PROC and CHNL components shall remain

unchanged.

5. The MSGQ APIs provided on GPP shall be identical to the APIs provided on DSP

by the implementation of MSGQ in DSP/BIOS v5.10 (within the constraints of

different capabilities provided by the OSes running on GPP and DSP).

3 Assumptions
The ZCPY driver design makes the following assumptions:

1. The hardware provides a shared memory area, to which both the GPP and the

DSP have access.

2. The GPP OS provides a facility for translation of the physical address into the

virtual address space of the user application.

4 Constraints
None.

Page 11 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

5 High Level Design
In a multiprocessor system having shared access to a memory region, an efficient

mode of data and message transfer can be implemented, which does not require

copying of data across the processors. This mode of communication is called ZCPY

transfer mode.

Figure 1. Basic architecture of system supporting ZCPY transf er mode

The ZCPY component on each processor shall provide the ability to allocate/free

buffers from the shared memory (SHM) area. It shall also provide the client with

means of writing into and reading from the shared memory region, so that the client

can treat SHM buffers as user-space buffers.

5.1 Architecture overview
The ZCPY driver consists of three major sub-components:

1. Shared memory allocator (SMA)

2. Address translator

3. Shared Memory Inter Processor Signaling (SHMIPS)

The GPP-side ZCPY driver component shall need to implement all of the above three

sub-components. The DSP component does not need the address translator sub-

component, since the address conversion between the GPP virtual address and DSP

physical address is completely done on the GPP-side. In addition, the DSP address

space is uniform, without any kernel-user space division; hence, address translation

is also not required from kernel to user space and vice versa.

GPP DSP

Shared
Memory Free

Allocate

Free

Allocate

Write

Read

Write

Read

Page 12 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

Figure 2. ZCPY sub-components

5.1.1 Shared memory allocator

To ensure that data is transferred between the processors without any copy, the

application buffers must be directly allocated from shared memory. This requires a

memory manager that allows the user to allocate/free buffers from the predefined

shared memory region.

For the detailed design of the shared memory allocator, please refer to the Shared

Memory Allocator (SMA) design document [Ref. 5].

5.1.2 Address translator

The address translator performs four different types of address translation:

1. DSP physical to GPP virtual

2. GPP virtual to DSP physical

3. GPP kernel to GPP user

4. GPP user to GPP kernel.

The conversion between DSP & GPP addresses (1 & 2) is required irrespective of the

OS on the GPP. This address translation is completely performed on the GPP-side,

through predefined mappings between the addresses of the shared memory on the

GPP & DSP sides.

The conversion between user and kernel address space (3 & 4) is required only for

GPP OSes like Linux, having a user/kernel-space division. The implementation of this

part of the address translation is OS-specific.

The functionality of the address translator may be divided across components in

DSP/BIOS™ LINK. For example, while the address translation between the DSP &

GPP addresses may be performed at the link driver level, address translation

Shared
Memory

ZCPY component

Shared memory allocator

Address translator
1. DSP physical to GPP virtual

2. GPP virtual to DSP physical

3. GPP kernel to GPP user

4. GPP user to GPP kernel

Shared Memory Inter Processor
Signaling (SHMIPS)

Allocate

Free

Write

Read

Page 13 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

between the kernel and user spaces (if required) shall be performed at the

user/kernel-space boundary.

5.1.3 Shared Memory Inter Processor Signaling

For data transfer, the link driver manages a configurable number of logical channels.

The SHMIPS component manages the transfer of data and messages across the two

processors. For this, it uses the shared memory control structure and interrupts

between the processors to inform about any changes in status of buffer/message

availability on the channels.

5.2 Control flow

Figure 3. ZCPY sub-component interaction

ZCPY message/buffer allocation

A request for allocation of a zero-copy message or buffer on the GPP is serviced by

the GPP-side shared memory manager. It allocates a buffer of the requested size

from the shared memory region reserved for usage by the shared memory allocator.

After translation of the address (if required) from the kernel space into the user

space, this buffer is returned to the user application that had requested the buffer

allocation.

On the DSP-side, the message or buffer allocation proceeds in a similar manner.

ZCPY message/buffer freeing

On a GPP-side call to free a zero copy message or buffer, the user address is

translated (if required) into its equivalent address in the kernel space. The request is

GPP
Shared
Memory

Control
structure

SMA

DSP

SHMIPS

SHMIPS

User/Kernel space
address translator

GPP/DSP
address

translator

SMA

Buffer

Buffer

Alloc/
Free Alloc/

Free

CHNL_Issue/
CHNL_Reclaim/
MSGQ_Put/
MSGQ_Get

SIO_issue/
SIO_reclaim/
MSGQ_put/
MSGQ_get

Page 14 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

then passed to the shared memory allocator, which frees the buffer and returns it to

the available memory pool.

On the DSP-side, the message or buffer is freed in a similar manner.

ZCPY buffer exchange for data transfer

When the GPP and DSP are ready to transfer data on a specific channel, they both

issue a buffer to the channel in the ZCPY link driver. Data transfer does not take

place until both sides have issued a buffer on the same channel. On issuing a buffer

to a channel, the corresponding driver updates the SHM control structure as

required. When a buffer is available on both sides, the pointers are exchanged. The

buffer allocated by the DSP-side application is sent to the GPP-side user application,

whereas the one on the GPP-side is sent to the DSP-side application.

ZCPY message transfer

When either the GPP or DSP is ready to send a message to the other processor, it

sends the message to the SHMIPS component. On receiving a message from the

other processor, the SHMIPS component makes a callback to the ZCPY MQT

component, which places the received message onto the appropriate local message

queue. Zero copy message transfer occurs in a similar manner to the message

transfer for processor copy mode. In the case of zero-copy messaging, however, the

pointer to the message allocated from shared memory is directly transferred to the

remote processor, and does not require intermediate allocation/freeing of the

messages at the driver level.

5.3 Zero copy mechanism
The data transfer mechanism between the GPP and DSP for zero-copy mode is based

on pointer-exchange.

The typical data transfer control flow during zero copy buffer exchange is illustrated

in the following figure. The mechanism is the same for both input and output channel

modes.

Page 15 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

Figure 4. Zero copy buffer exchange during data transfer

Shared Memory Allocator

SHMIPS

Control structure

Buffer g1

Buffer d1

3. Exchange g1, d1

DSP

2. Issue g1

5. Free d1

2. Issue d1

1. Alloc d1

5. Free g1 1. Alloc g1

n. cmd Data buffer transfer between GPP and DSP

g3 g1 g2

To DSP CHIRP list

From DSP CHIRP list

d1 d3 d2 4. Reclaim d1 4. Reclaim g1

Page 16 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

The message transfer mechanism between the GPP and DSP for zero-copy mode is

based on pointer-passing. The typical message transfer control flow during zero copy

pointer passing is illustrated in the following figure.

Figure 5. Zero copy pointer passing during message transfer.

The following basic steps are followed during data or message transfer between the

GPP and the DSP:

1. Alloc buffer: The GPP and DSP allocate data buffers/messages using the

Shared Memory Allocator.

2. Issue/Put buffer: The GPP and DSP send the data buffer/message to the

SHMIPS component. The SHMIPS component sends the command across to the

other processor. In case of data transfer, the CHIRP is added to the “dataToDsp ”

list within the SHM control structure maintained by the SHMIPS component. In

case of message transfer, the message is added to the “msgToDsp” list within the
SHM control structure.

3. Exchange/pass pointers: In case of data transfer, the channel driver on both

processors exchanges the data buffers present within the shared memory. In

case of message transfer, the message pointer is passed to the other processor.

Shared Memory Allocator

SHMIPS

Control structure

Message g1

Message d1

3. Pass
pointer
to DSP

DSP GPP

2. Put g1

1. Alloc g1

3. Pass
pointer
to GPP

n. cmd Message transfer from DSP to GPP

n. cmd Message transfer from GPP to DSP

2. Put d1

1. Alloc d1 5. Free d1

g3 g1 g2

To DSP message list

From DSP message list

d1 d3 d2

5. Free g1

4. Get g1

4. Get d1

Page 17 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

4. Reclaim/Get buffer: The SHMIPS component sends the received data

buffer/message to the channel/message driver.

5. Free buffer: Once all processing is complete, the application can free the buffer

it received from the other processor.

5.4 ZCPY driver
The ZCPY driver is implemented as a physical link on the GPP-side and an IOM driver

with supporting libraries on the DSP-side.

The ZCPY driver utilizes the shared memory between the GPP and DSP for

implementing the data transfer and message transfer protocols.

The shared memory shall have the following basic areas for both ZCPY and PCPY

(order may be different):

Figure 6. Shared memory layout

Shared Memory Layout

Inter Processor Signaling (SHMIPS) region

SHMIPS Control

Free CHIRP list

Processor Copy (PCPY) DATA region

Data Control structure

Data buffer(s)

Processor Copy (PCPY) message region

Message control structure

Message buffer(s)

Shared Memory Allocator (SMA) region

SMA control

SMA buffer lists

Zero Copy (ZCPY) DATA region

Data control structure

LDRV generic link region for driver sync

SHMDRV Control

Page 18 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

The shared memory area used by the link driver is divided up into several regions

used by the various sub-components of the ZCPY and PCPY link drivers.

The different regions are:

1. LDRV generic link region for driver init (SHMDRV): The LDRV generic

link region contains the control structure for synchronization of the DSPLINK

drivers on the GPP and the DSP.

2. Shared Memory Inter Processor Signaling (SHMIPS) region: The

SHMIPS region contains the control structure and Free CHIRP list used for

communicating events between the two processors.

3. Shared Memory Allocator (SMA) region: The SMA SHM region contains

the control structures and buffer lists for allocating and freeing buffers shared

between the GPP and DSP.

4. Zero Copy (ZCPY) DATA region: The ZCPY Data region contains the control

structure needed by the ZCPY channel driver for implementing the data

transfer protocol between the GPP and the DSP.

5. Processor Copy (PCPY) DATA region: The PCPY Data region contains the

control structure and data buffer(s) needed by the PCPY channel driver for

implementing the data transfer protocol between the GPP and the DSP.

6. Processor Copy (PCPY) message region: The PCPY message region

contains the control structure needed by the PCPY MQT for implementing the

message transfer protocol between the GPP and the DSP.

5.4.1 GPP-side

5.4.1.1 Component interaction

The component interaction diagram indicates the placement of the various ZCPY

driver components within DSPLINK.

Page 19 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

Figure 7. GPP-side component interaction

5.4.2 DSP-side

5.4.2.1 Overview

The DSP-side of the DSPLINK data transfer functionality shall conform to the IOM

interface of DSP/BIOS™. In addition, the messaging functionality shall conform to

the MSGQ interface.

Link Driver and related components

LDRV_PROC LDRV_CHNL

DSP

LDRV_MSGQ

ZCPY Physical Link

ZCPY
MQT

ZCPY
DATA

PCPY Physical Link

PCPY
MQT

PCPY
DATA

PCPY and ZCPY combined SHMIPS

Components involved in messaging

Components involved in data transfer Components involved in both data
transfer and messaging

LDRV_DATA
link

SHM
DRV

LDRV drv

LDRV_POOL

BUF
POOL

S
M
A

 P
O
O
L

Page 20 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

The DSPLINK data transfer protocol shall be contained within the IOM driver. The

messaging content shall be within a separate library to allow users to scale in only

data transfer or only messaging. In addition, the common hardware specific

functionality required by both data transfer and messaging shall be within a separate

H/W link library. The H/W link library includes the SHMIPS component for sending

events to and receiving them from the GPP. It also includes the common hardware

initialization, finalization and handshaking code required for the functioning of both

data and message transfer.

Scalability for CHNL and MSGQ shall be provided through compile-time flags, which

shall be set by the common configuration tool. In addition, the choice of

static/dynamic MSGQ shall also be made through the common configuration tool.

This design allows the flexibility of an optimized and high-performance

implementation of the MQT and data transfer protocol for a particular physical link.

Since all the protocol content shall be within the driver libraries, the implementation

can be optimized for the case where only the zero-copy transfer mechanism is

desired. In addition, the common functionality between the different physical link

data transfer protocols can also be separated out into the common IOM functionality

layer.

5.4.2.2 Component interaction

Page 21 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

Figure 8. DSP-side component interaction

5.5 SHMIPS component

5.5.1 Overview

The Shared Memory Inter-processor signaling (SHMIPS) component is responsible for

notifying an event to its peer on the remote processor. This component shall use the

DSPLINK base library

Class Drivers

GIO
SIO

DIO

MSGQ component

MSGQ

POOL
component

Data Transfer library

DSPLINK IOM driver

Common IOM
functionality

ZCPY
DATA

PCPY and ZCPY combined SHMIPS

Messaging library

ZCPY
MQT

PCPY
MQT

PCPY
DATA

Components involved in DSPLINK
messaging

Components involved in data transfer Components involved in both data
transfer and DSPLINK messaging

DSPLINK Buffer
allocation APIs

BUF
POOL

Other
generic

components

SHMDRV
component

SMA
POOL

Page 22 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

services provided on the hardware platform. It shall provide APIs, which shall be

used by upper layers to establish communication amongst peers at that level.

5.5.2 Services provided

The SHMIPS component shall provide the following basic services:

1. Register an event.

2. Unregister an event.

3. Send a buffer/message to the remote processor.

4. Notify the remote processor about an event.

5.5.3 Design

The SHMIPS component shall maintain lists of messages, which are shared between

the GPP and the DSP. There shall be two unidirectional lists of messages, for

messages to and from the DSP. Similar lists shall also be used for data transfer.

To protect these shared lists, the SHMIPS component shall utilize the services of a

generic component that shall provide critical section protection between the two

processors. For more details, please refer to the SMA design document [Ref. 5].

The SHMIPS component shall maintain the following information to allow transfer of

messages and data between the two processors:

1. Shared lists of messages and CHIRPs are maintained within the SHMIPS control

structure.

2. Free list of CHIRPs is maintained within the shared memory to be able to queue

data transfer requests for transfer to the other processor. This list shall be

configured with the maximum number of outstanding requests on all channels at

any time. Information for this shall be obtained from the static configuration.

3. Shared critical section objects are maintained within the SHMIPS control structure

to provide protection for the shared lists.

In the SHMIPS component, the prioritization between data and message transfer

shall happen on the receiving side within the ISR. On the sender’s end, the

CHIRP/message shall simply be queued on the appropriate shared list.

The physical link interface for the ZCPY driver can be split into SHM DRV, ZCPY Data

and ZCPY MQT. These interfaces are explained in details in the following sections.

5.6 SHMDRV component

5.6.1 Overview:

The SHMDRV component is responsible for initialization and finalization of the shared

memory link sub-components. The SHMDRV implementation of the generic driver

layer requires a shared memory area between the two processors.

5.6.2 Services provided

The SHMDRV shall be responsible for supporting the following features:

� Initialization and finalization of the link sub-components including the IPS

component(s) and POOL interface.

� Handshaking with the remote processor for synchronization of the drivers.

Page 23 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

� Verification of configuration match between the two processors. This

component checks whether the scalability configuration on both processors is

the same, for example if MSGQ, CHNL etc are enabled.

5.6.3 Design

The SHMDRV uses a reserved area within the shared memory region for maintaining

the control structure for synchronization of the GPP and DSP-side DSPLINK drivers

through handshaking.

It provides an implementation of the generic link interface as required by the

LDRV_DRV layer:

LinkInterface SHMDRV_Interface = {
 &SHMDRV_Initialize,
 &SHMDRV_Finalize,
 &SHMDRV_Handshake
#if defined (DDSP_DEBUG)
 ,&SHMDRV_Debug
#endif /* if defined (DDSP_DEBUG) */
} ;

5.7 ZCPY MQT component

5.7.1 Overview

The ZCPY MQT component on a processor is responsible for implementing the

message transfer protocol for the transport. The messages transferred by this MQT

shall not require an intermediate copy into shared memory.

5.7.2 Services provided

The MQT shall be responsible for supporting the following features:

� Locating MSGQs on the remote processor by name.

� Releasing previously located MSGQs on the remote processor.

� Sending messages to MSGQs on the remote processor.

� Receiving messages from the remote processor and transferring to the

appropriate local MSGQ.

5.7.3 Design

The SHMIPS provides the basic capability to transfer buffers between the GPP and

DSP. This gives the complete functionality for transferring messages between the

GPP-side and DSP-side MQTs as required by the ZCPY MQT. Hence the ZCPY

message transfer protocol does not require any additional shared control information

between the two MQTs for coordination between them.

The ZCPY MQT implements the functions within the MQT interface table as required

by the MSGQ component.

The basic services provided by the ZCPY MQT are tabulated below along with

additional information about their design:

Basic services

provided to

MSGQ

SHMIPS

services

used

Design information

Page 24 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

Open MQT Register � Create and initialize the MQT state object

� Register callback with the SHMIPS component.

Close MQT Unregister � Unregister callback with the SHMIPS

component.

� Delete MQT state object

Send message Send � Send event to SHMIPS.

Receive

message

Callback � Receive event from SHMIPS

� Send message to local MSGQ

Locate remote

message queue

Send,

Callback

� Make locate request to remote MQT by sending

event to SHMIPS containing control message.

� If the locate call is synchronous, wait for

receiving locate acknowledgement message

from remote MQT as an SHMIPS event

containing control message.

If the locate call is asynchronous, return from

the function without blocking. When the locate

acknowledgement arrives from the remote

processor, allocate and send an asynchronous

locate message to the reply message queue

specified by the caller.

Release remote

message queue

 Nothing to be done

5.8 ZCPY DATA component

5.8.1 Overview

The ZCPY DATA component on a processor is responsible for implementing the data

transfer protocol between the two processors based on the zero-copy pointer

exchange mechanism. The data buffers transferred using this driver shall not require

an intermediate copy into shared memory.

5.8.2 Services provided

The ZCPY DATA shall be responsible for supporting the following features:

� Opening and closing logical data channels between the two processors.

� Issuing and reclaiming data buffers on these logical channels.

� Canceling data transfer and idling the channels.

5.8.3 ZCPYDATA Interface

The ZCPYDATA is the interface for the Data transfer functionality of the physical link.

The interfaces are exported by the ZCPYDATA to the LDRV_DATA layer for hookup with
LDRV component. The interface exported to the LDRV_DATA layer is as follows:

LinkDataInterface ZCPYDATA_Interface = {
 &ZCPYDATA_Initialize,
 &ZCPYDATA_Finalize,
 &ZCPYDATA_OpenChannel,

Page 25 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

 &ZCPYDATA_CloseChannel,
 &ZCPYDATA_CancelIo,
 &ZCPYDATA_Request
#if defined (DDSP_DEBUG)
 ,&ZCPYDATA_Debug
#endif /* if defined (DDSP_DEBUG) */
} ;

5.8.4 Design

The ZCPY data transfer protocol works on the issue-reclaim model. It transfers

buffers between the processors using pointer exchange mechanism. The data

transfer protocol provides connectivity between the two processors through a

configured number of logical channels. For this, the component uses a control region

shared between the ZCPY DATA components on the two processors. This control

region contains information about data buffer availability on the various logical

channels, and other information used for synchronizing between the drivers on the

two processors.

The ZCPY DATA transfer component uses the features provide by the IPS component

for transferring the data between the DSP and GPP. Both the GPP and DSP issue

buffers for data transfer and the ZCPY driver exchanges the buffer pointers to

complete the transfer.

Page 26 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

6 Sequence Diagrams
The following sequence diagrams show the control flow for a few of the important

functions to be implemented within the DSPLINK zero copy link driver.

The sequence diagrams indicate the messaging control flow through the MQT

component and its interaction with the rest of the DSPLINK components and the

MSGQ and POOL components on the DSP-side.

While the following sequence diagrams show the control flow for the DSP-side of

DSPLINK, the control flow on the GPP-side is similar, and is not detailed in this

document.

� The dashed arrow in all sequence diagrams indicates an indirect control
transfer, which does not happen through a direct function call.

Page 27 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

6.1 ZCPYMQT_init ()

Figure 9. On the DSP: ZCPYMQT_init () control flow

� MSGQ_init () is not called by the application. It gets invoked internally during
DSP/BIOS™ initialization.

MSGQ

ZCPYMQT
1. MSGQ_init ()

2. mqtInit ()

SHMDRV

7. Initialize the
 SHMIPS component

3. SHMDRV_init ()

8. SHMDRV_handshake()

SHMIPS
INT

4. INT_init ()

6. SHMIPS_init ()

5. Initialize the
 interrupt component

9. Wait for GPP to
 complete
 handshake

Page 28 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

6.2 ZCPYMQT_open ()

Figure 10. On the DSP: ZCPYMQT_open () control flow

� MSGQ_startup () is not called by the application. It gets invoked internally
during DSP/BIOS™ initialization.

MSGQ

ZCPYMQT
1. MSGQ_startup ()

2. mqtOpen ()

6. Register the specified
 callback and check if
 anything is
 already pending
 for this event.

SHMIPS

4. SHMIPS_register ()
 callback for the
 ZCPY msg event.

3. Allocate and
 initialize the
 ZCPYMQT
 state
 object

Page 29 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

6.3 ZCPYMQT_close ()

Figure 11. On the DSP: ZCPYMQT_close () control flow

� MSGQ_exit () is not called by the application.

MSGQ

ZCPYMQT
1. MSGQ_exit ()

2. mqtClose ()

4. Unregister the
 specified callback.

SHMIPS

3. SHMIPS_unregister ()
 callback for the
 ZCPY msg event.

3. Finalize the
 ZCPYMQT state
 object

Page 30 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

6.4 ZCPYMQT_put ()

Figure 12. On the DSP: ZCPYMQT_put () control flow

MSGQ

ZCPYMQT
1. MSGQ_put ()

2. mqtPut ()

4. Send the msg
 to the GPP.

SHMIPS

3. SHMIPS_send ()
 message to the
 GPP.

Page 31 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

6.5 ZCPYMQT_locate ()

Figure 13. On the DSP: ZCPYMQT_locate () control flow

� The sequence between the two horizontal dashed lines occurs

asynchronously, and may occur before or after locate has timed out (for

synchronous locate) or function call has returned (for asynchronous locate).

MSGQ

ZCPYMQT
1. MSGQ_locate ()
 MSGQ_locateAsync ()

2. mqtLocate ()

SMA_POOL

7. If sync locate,
 wait on locate
 semaphore

3. MSGQ_alloc ()
 locate control
 message

SHMIPS

5. SHMIPS_send ()
 control msg

6. Send the message
 to the GPP.

8. If sync, return status of MSGQ location
 If async, return status of initiation of
 async locate request

4. Fill the msg fields
 with locate info.

1. Receive locate ack
 msg from the GPP
 2. Send callback to the MQT.

3. If sync locate,
 post locate sem.
 If async and
 msgq found,
 alloc and send locate
 ack msg to user
 MSGQ.

Page 32 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

6.6 ZCPYMQT_release ()

Figure 14. On the DSP: ZCPYMQT_release control flow

MSGQ

ZCPYMQT
1. MSGQ_release ()

2. mqtRelease ()

3. Release any
 resources allocated
 during locate

Page 33 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7 SHMIPS
The SHMIPS component has the same design on both the GPP and DSP sides. This

section primarily refers to the GPP side design. However, the DSP-side design shall

contain the same enumerations, structures, and API definitions, with minimal

changes for different naming conventions on the GPP and DSP-sides.

7.1 GPP and DSP side low level design

7.1.1 Constants & Enumerations

7.1.1.1 SHMIPS_CTRL_SIZE

This constant defines the size of the shared memory control structure required by

the SHMIPS component.

Definition
#define SHMIPS_CTRL_SIZE (sizeof (ShmIpsShmCtrl))

Comments

This constant is used by configuration script for assigning shared memory regions to

the various components using the same memory area.

DSP-side:

The constant definition is:

#define SHMIPS_CTRL_SIZE (sizeof (SHMIPS_ShmControl))

Constraints

None.

See Also
ShmIpsShmCtrl

Page 34 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.1.2 SHMIPS_IRP_SIZE

This constant defines size of the IO Request Packet used within the SHMIPS.

Definition
#if defined (CHNL_COMPONENT)
#define SHMIPS_IRP_SIZE (sizeof (LDRVChnlIRP))
#else /* if defined (CHNL_COMPONENT) */
#define SHMIPS_IRP_SIZE 0
#endif /* if defined (CHNL_COMPONENT) */

Comments

This constant is used for calculation of the total shared memory size required by the

SHMIPS component. In addition to the control structure, the SHMIPS also needs

shared memory space for the free CHIRP list in shared memory when the CHNL

component is enabled.

DSP-side:

The constant definition is:

#if defined (CHNL_COMPONENT)
#define SHMIPS_IRP_SIZE (sizeof (CHNL_Irp))
#else /* if defined (CHNL_COMPONENT) */
#define SHMIPS_IRP_SIZE 0
#endif /* if defined (CHNL_COMPONENT) */

Constraints

None.

See Also
None.

Page 35 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.1.3 CHNL_EVENTS

Defines the number of events supported for CHNL. At one time, multiple physical

links can be selected for CHNL.

Definition
#if defined (CHNL_COMPONENT)
#if defined (CHNL_ZCPY_LINK) && defined (CHNL_PCPY_ LINK)
#define CHNL_EVENTS 2
#else /* if defined (CHNL_ZCPY_LINK) && defined (CH NL_PCPY_LINK) */
#define CHNL_EVENTS 1
#endif /* if defined (CHNL_ZCPY_LINK) && defined (C HNL_PCPY_LINK) */
#else /* if defined (CHNL_COMPONENT) */
#define CHNL_EVENTS 0
#endif /* if defined (CHNL_COMPONENT) */

Comments

The value of this constant differs based on the physical link scalability option

selected. This constant is used for calculation of the value of maximum events

supported by the SHMIPS component for a particular scalability configuration.

Constraints

None.

See Also
MAX_SHMIPS_EVENTS
MSGQ_EVENTS

Page 36 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.1.4 MSGQ_EVENTS

Defines the number of events supported for MSGQ. At a time, only one physical link

can be selected for MSGQ.

Definition
#if defined (MSGQ_COMPONENT)
#define MSGQ_EVENTS 1
#else /* if defined (MSGQ_COMPONENT) */
#define MSGQ_EVENTS 0
#endif /* if defined (MSGQ_COMPONENT) */

Comments

The value of this constant differs based on the physical link scalability option

selected. This constant is used for calculation of the value of maximum events

supported by the SHMIPS component for a particular scalability configuration.

Constraints

None.

See Also
MAX_SHMIPS_EVENTS
CHNL_EVENTS

Page 37 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.1.5 MAX_SHMIPS_EVENTS

This constant defines the maximum number of events supported by the SHMIPS

component.

Definition
#define MAX_SHMIPS_EVENTS (CHNL_EVENTS + MSGQ_EVEN TS)

Comments

The number of events supported by the SHMIPS component is different based on

whether the CHNL and/or the MSGQ component(s) are enabled. It also differs based

on the physical link scalability option selected.

Constraints

None.

See Also
CHNL_EVENTS
MSGQ_EVENTS

Page 38 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.1.6 ShmIpsEvent

This enumeration defines the types of events supported by the SHMIPS component.

This enumeration defines the events based on scalability options selected for CHNL

and MSGQ, as well as physical links.

Definition
typedef enum {
#if defined (MSGQ_COMPONENT) \
 && defined (CHNL_ZCPY_LINK) \
 && defined (CHNL_PCPY_LINK)
 ShmIpsEventMsg = 0,
 ShmIpsEventDataZcpy = 1,
 ShmIpsEventDataPcpy = 2
#endif /* if defined (MSGQ_COMPONENT)
 && defined (CHNL_ZCPY_LINK)
 && defined (CHNL_PCPY_LINK) */

#if !defined (MSGQ_COMPONENT) \
 && defined (CHNL_ZCPY_LINK) \
 && defined (CHNL_PCPY_LINK)
 ShmIpsEventDataZcpy = 0,
 ShmIpsEventDataPcpy = 1
#endif /* if !defined (MSGQ_COMPONENT)
 && defined (CHNL_ZCPY_LINK)
 && defined (CHNL_PCPY_LINK) */

#if !defined (MSGQ_COMPONENT) \
 && !defined (CHNL_ZCPY_LINK) \
 && defined (CHNL_PCPY_LINK)
 ShmIpsEventDataPcpy = 0
#endif /* if !defined (MSGQ_COMPONENT)
 && !defined (CHNL_ZCPY_LINK)
 && defined (CHNL_PCPY_LINK) */

#if !defined (MSGQ_COMPONENT) \
 && defined (CHNL_ZCPY_LINK) \
 && !defined (CHNL_PCPY_LINK)
 ShmIpsEventDataZcpy = 0
#endif /* if !defined (MSGQ_COMPONENT)
 && defined (CHNL_ZCPY_LINK)
 && !defined (CHNL_PCPY_LINK) */

#if defined (MSGQ_COMPONENT) \
 && !defined (CHNL_ZCPY_LINK) \
 && !defined (CHNL_PCPY_LINK)
 ShmIpsEventMsg = 0
#endif /* if defined (MSGQ_COMPONENT)
 && !defined (CHNL_ZCPY_LINK)
 && !defined (CHNL_PCPY_LINK) */

#if defined (MSGQ_COMPONENT) \
 && !defined (CHNL_ZCPY_LINK) \
 && defined (CHNL_PCPY_LINK)
 ShmIpsEventMsg = 0,
 ShmIpsEventDataPcpy = 1

Page 39 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

#endif /* if defined (MSGQ_COMPONENT)
 && !defined (CHNL_ZCPY_LINK)
 && defined (CHNL_PCPY_LINK) */

#if defined (MSGQ_COMPONENT) \
 && defined (CHNL_ZCPY_LINK) \
 && !defined (CHNL_PCPY_LINK)
 ShmIpsEventMsg = 0,
 ShmIpsEventDataZcpy = 1
#endif /* if defined (MSGQ_COMPONENT)
 && defined (CHNL_ZCPY_LINK)
 && !defined (CHNL_PCPY_LINK) */
} ShmIpsEvent ;

Fields

ShmIpsEventMsg Message transfer event.

Only defined if MSGQ component is enabled.

ShmIpsEventDataZcpy ZCPY data transfer event.

Only defined if ZCPY LINK and CHNL component are

enabled.

ShmIpsEventDataPcpy PCPY data transfer event.

Only defined if PCPY LINK and CHNL component are

enabled.

Comments

DSP-side:

The enumeration definition is:

typedef enum {
#if defined (MSGQ_COMPONENT) \
 && defined (CHNL_ZCPY_LINK) \
 && defined (CHNL_PCPY_LINK)
 SHMIPS_EventMsg = 0,
 SHMIPS_EventDataZcpy = 1,
 SHMIPS_EventDataPcpy = 2
#endif /* if defined (MSGQ_COMPONENT)
 && defined (CHNL_ZCPY_LINK)
 && defined (CHNL_PCPY_LINK) */

#if !defined (MSGQ_COMPONENT) \
 && defined (CHNL_ZCPY_LINK) \
 && defined (CHNL_PCPY_LINK)
 SHMIPS_EventDataZcpy = 0,
 SHMIPS_EventDataPcpy = 1
#endif /* if !defined (MSGQ_COMPONENT)
 && defined (CHNL_ZCPY_LINK)
 && defined (CHNL_PCPY_LINK) */

#if !defined (MSGQ_COMPONENT) \
 && !defined (CHNL_ZCPY_LINK) \
 && defined (CHNL_PCPY_LINK)

Page 40 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

 SHMIPS_EventDataPcpy = 0
#endif /* if !defined (MSGQ_COMPONENT)
 && !defined (CHNL_ZCPY_LINK)
 && defined (CHNL_PCPY_LINK) */

#if !defined (MSGQ_COMPONENT) \
 && defined (CHNL_ZCPY_LINK) \
 && !defined (CHNL_PCPY_LINK)
 SHMIPS_EventDataZcpy = 0
#endif /* if !defined (MSGQ_COMPONENT)
 && defined (CHNL_ZCPY_LINK)
 && !defined (CHNL_PCPY_LINK) */

#if defined (MSGQ_COMPONENT) \
 && !defined (CHNL_ZCPY_LINK) \
 && !defined (CHNL_PCPY_LINK)
 SHMIPS_EventMsg = 0
#endif /* if defined (MSGQ_COMPONENT)
 && !defined (CHNL_ZCPY_LINK)
 && !defined (CHNL_PCPY_LINK) */

#if defined (MSGQ_COMPONENT) \
 && !defined (CHNL_ZCPY_LINK) \
 && defined (CHNL_PCPY_LINK)
 SHMIPS_EventMsg = 0,
 SHMIPS_EventDataPcpy = 1
#endif /* if defined (MSGQ_COMPONENT)
 && !defined (CHNL_ZCPY_LINK)
 && defined (CHNL_PCPY_LINK) */

#if defined (MSGQ_COMPONENT) \
 && defined (CHNL_ZCPY_LINK) \
 && !defined (CHNL_PCPY_LINK)
 SHMIPS_EventMsg = 0,
 SHMIPS_EventDataZcpy = 1
#endif /* if defined (MSGQ_COMPONENT)
 && defined (CHNL_ZCPY_LINK)
 && !defined (CHNL_PCPY_LINK) */
} SHMIPS_Event ;

Constraints

None.

See Also
SHMIPS_Register
SHMIPS_Send
SHMIPS_Notify

Page 41 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.2 Typedefs & Data Structures

7.1.2.1 FnShmIpsCbck

This type defines the signature of the callback function to be registered with the

SHMIPS component.

Definition
typedef Void (*FnShmIpsCbck) (IN OPT Pvoid arg, IN OPT Pvoid info) ;

Comments

The first parameter to this function is the event-specific argument passed to the

SHMIPS component when registering the event.

The second parameter depends on the implementation of the SHMIPS component,

and provides additional run-time information about the specific callback to the upper

layers.

DSP-side:

The typedef definition is:

typedef Void (*SHMIPS_Cbck) (Ptr arg, Ptr info) ;

Constraints

None.

See Also
ShmIpsObject

Page 42 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.2.2 ShmIpsObject

This structure defines the SHMIPS object, which contains all the component-specific

information.

Definition
typedef struct ShmIpsObject_tag {
 Uint32 dspId ;
 Uint32 addrGppShmBase ;
 Uint32 addrDspShmBase ;
 FnShmIpsCbck cbckFxn [MAX_SHMIPS_EVENTS] ;
 Pvoid cbckArg [MAX_SHMIPS_EVENTS] ;
 InterruptObject intObj ;
 IsrObject * isrObj ;
 Uint32 dspMaduSize ;
 Bool wordSwap ;
 Uint32 ptrCtrl ;
} ShmIpsObject ;

Fields

dspId ID of the DSP with which the SHM IPS communicates.

addrGppShmBase Base address of the shared memory area reserved for use by

the SHMIPS component.

addrDspShmBase Base address of the shared memory area reserved for use by

the SHMIPS component in DSP address space.

cbckFxn Array of callback functions that can be registered with the

SHMIPS component. One callback function is registered for
each event supported by the SHMIPS component.

cbckArg Array of arguments to the callback functions registered with

the SHMIPS component.

intObj Interrupt object used by the SHM IPS.

isrObj ISR object used by the SHM IPS.

dspMaduSize DSP Minimum Addressable Data Unit size.

wordSwap Indicates whether word-swap is enabled for the DSP MMU.

ptrCtrl Pointer to the SHMIPS control structure in shared memory.

Comments

DSP-side:

The structure definition is:

typedef struct SHMIPS_Object_tag {
 SHMIPS_Cbck cbckFxn [MAX_SHMIPS_EVENT S] ;
 Ptr cbckArg [MAX_SHMIPS_EVENT S] ;
 SHMIPS_ShmCtrl * ptrCtrl ;
} SHMIPS_Object ;

Page 43 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

Constraints

None.

See Also
FnShmIpsCbck
ShmIpsShmCtrl
SHMIPS_Register

Page 44 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.2.3 ShmIpsShmEventCtrl

Defines the SHMIPS control structure for an event shared between the two

processors.

Definition
typedef struct ShmIpsShmEventCtrl_tag {
 volatile List toDspList ;
 volatile List fmDspList ;
 volatile MpcsObj csToDspList ;
 volatile MpcsObj csFmDspList ;
} ShmIpsShmEventCtrl ;

Fields

toDspList Holds the list of buffers to be sent to the DSP.

fmDspList Holds the list of buffers to be received from the DSP.

csToDspList Shared critical section object for protection of operations by

the two processors on the toDspList .

csFmDspList Shared critical section object for protection of operations by

the two processors on the fmDspList .

Comments

DSP-side:

The structure definition is:

typedef struct SHMIPS_ShmEventCtrl_tag {
 volatile QUE_Elem toDspList ;
 volatile QUE_Elem fmDspList ;
 volatile MPCS_Obj csToDspList ;
 volatile MPCS_Obj csFmDspList ;
} SHMIPS_ShmEventCtrl ;

Constraints

None.

See Also
ShmIpsShmCtrl

Page 45 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.2.4 ShmIpsShmCtrl

This structure defines the SHMIPS control structure shared between the two

processors.

Definition
struct ShmIpsShmCtrl_tag {
 ShmIpsShmEventCtrl eventCtrl [MAX_SHMIPS_EVENTS] ;

#if defined (CHNL_COMPONENT)
 volatile List freeChirps ;
 volatile MpcsObj csFreeChirps ;
#endif /* if defined (CHNL_COMPONENT) */
} ;

Fields

eventCtrl Array of control structures for the events supported by the

SHMIPS component.

freeChirps Holds a free list of CHIRPs shared between the two

processors. Defined only if CHNL component is included in the
build config.

csFreeChirps Shared critical section object for protection of operations by

the two processors on the free CHIRP. Defined only if CHNL

component is included in the build config.

Comments

DSP-side:

The structure definition is:

struct SHMIPS_ShmCtrl_tag {
 SHMIPS_ShmEventCtrl eventCtrl [MAX_SHMIPS_EVENT S] ;

#if defined (CHNL_COMPONENT)
 volatile QUE_Elem freeChirps ;
 volatile MPCS_Obj csFreeChirps ;
#endif /* if defined (CHNL_COMPONENT) */
} ;

Constraints

None.

See Also
ShmIpsShmEventCtrl

Page 46 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.3 API Definition

7.1.3.1 SHMIPS_Initialize

This function initializes the SHMIPS component.

Syntax
DSP_STATUS SHMIPS_Initialize (ProcessorId dspId, Ui nt32 ipsId) ;

Arguments

IN ProcessorId dspId

DSP Identifier.

IN Uint32 ipsId

IPS Identifier.

Return Value

DSP_SOK This component has been successfully initialized.

DSP_EFAIL General failure.

Comments

GPP-side:

This function performs the following initialization:

� Initialization of the global SHMIPS object.

� Initialization of the shared lists within the SHMIPS control structure after

address translation to the DSP address space.

� Creation of the shared free CHIRP list by queuing up the CHIRPS within the

reserved shared memory area onto the list in the SHMIPS control structure.

� Initialization of the shared critical section objects within the SHMIPS control

structure.

� Creation, installation and enabling of the interrupt for communication with the

DSP.

DSP-side:

The API definition is:

Void SHMIPS_init ()

This DSP-side function performs the following initialization:

� Initialization of the global SHMIPS object.

� Opening the shared critical section objects within the SHMIPS control

structure.

� Registration of the interrupt service routine for communication with the GPP.

However, it does not initialize the shared lists within the SHMIPS control structure.

These shared structures are initialized by the GPP-side SHMIPS component.

Page 47 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

Constraints

The component must not be initialized.

See Also
SHMIPS_Finalize

Page 48 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.3.2 SHMIPS_Finalize

This function finalizes the SHMIPS component.

Syntax
DSP_STATUS SHMIPS_Finalize (IN ProcessorId dspId, I N Uint32 ipsId) ;

Arguments

IN ProcessorId dspId

DSP Identifier.

IN Uint32 ipsId

IPS Identifier.

Return Value

DSP_SOK This component has been successfully finalized.

DSP_EFAIL General failure.

Comments

GPP-side:

This function performs the following finalization:

� Disabling, uninstall and deletion of the interrupt object used for

communication with the DSP.

� Finalization of the shared lists within the SHMIPS control area

� Finalization of the shared critical section objects within the SHMIPS control

area.

� Finalization of the global SHMIPS object.

DSP-side:

This function is not required within the DSP side implementation.

Constraints

The SHMIPS component must be initialized before calling this function.

See Also
SHMIPS_Initialize

Page 49 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.3.3 SHMIPS_Register

This function registers a callback for a specific event with the SHMIPS component.

Syntax
DSP_STATUS SHMIPS_Register (ShmIpsEvent event,
 FnShmIpsCbck cbckFxn,
 Pvoid cbckArg) ;

Arguments

IN ShmIpsEvent event

Event to be registered.

IN FnShmIpsCbck cbckFn

Callback function to be registered for the specified event.

IN OPT Pvoid cbckArg

Optional argument to the callback function to be registered for the

specified event. This argument shall be passed to each invocation of the

callback function.

Return Value

DSP_SOK The event has been successfully registered.

DSP_EFAIL General failure.

 Comments

DSP-side:

The API definition is:

Void SHMIPS_register (SHMIPS_Event event,
 SHMIPS_Cbck cbckFn,
 Ptr cbckArg) ;

Constraints

The SHMIPS component must be initialized before calling this function.

The cbckFxn parameter must be valid.

The event must be supported by the SHMIPS component.

See Also
ShmIpsEvent
FnShmIpsCbck
SHMIPS_Unregister ()

Page 50 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.3.4 SHMIPS_Unregister

This function unregisters a callback for a specific event with the SHMIPS component.

Syntax
DSP_STATUS SHMIPS_Unregister (ShmIpsEvent event) ;

Arguments

IN ShmIpsEvent event

Event to be unregistered.

Return Value

DSP_SOK The event has been successfully unregistered.

DSP_EFAIL General failure.

 Comments

DSP-side:

The API definition is:

Void SHMIPS_unregister (SHMIPS_Event event) ;

Constraints

The SHMIPS component must be initialized before calling this function.

The event must be supported by the SHMIPS component.

The event must have been registered with the SHMIPS component earlier.

See Also
ShmIpsEvent
SHMIPS_Register ()

Page 51 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.3.5 SHMIPS_Send

This function sends an event to the DSP.

Syntax
DSP_STATUS SHMIPS_Send (ShmIpsEvent event, Pvoid bu fPtr) ;

Arguments

IN ShmIpsEvent event

Event to be sent to the DSP.

IN Pvoid bufPtr

Event-specific argument.

Return Value

DSP_SOK The event has been successfully sent.

DSP_EFAIL General failure.

Comments

In case of a data transfer event, the argument is a pointer to the CHIRP for the

buffer to be sent to the other processor.

In case of a message transfer event, the argument is a pointer to the message to be

sent to the other processor.

DSP-side:

The API definition is:

Void SHMIPS_send (SHMIPS_Event event, Ptr bufPtr) ;

Constraints

The SHMIPS component must be initialized before calling this function.

The event must be supported by the SHMIPS component.

The buffer pointer parameter must be valid.

See Also
ShmIpsEvent

Page 52 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.3.6 SHMIPS_Notify

This function sends a notification of an event to the DSP.

Syntax
DSP_STATUS SHMIPS_Notify (ShmIpsEvent event) ;

Arguments

IN ShmIpsEvent event

Event to be notified to the DSP.

Return Value

DSP_SOK Operation successfully completed.

DSP_ETIMEOUT Timed out while sending interrupt to the DSP.

DSP_EFAIL General failure.

Comments

In case of an interrupt-based protocol, this function sends an interrupt to the DSP

along with information about the event to be notified.

DSP-side:

The API definition is:

Void SHMIPS_notify (SHMIPS_Event event) ;

Constraints

The SHMIPS component must be initialized before calling this function.

The event must be supported by the SHMIPS component.

See Also
ShmIpsEvent

Page 53 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

7.1.3.7 SHMIPS_Debug

This function prints the current status of the SHMIPS subcomponent.

Syntax
Void SHMIPS_Debug () ;

Arguments

None.

Return Value

None.

Comments

This function is defined only on the GPP-side if debugging is enabled.

Constraints

None.

See Also
None

Page 54 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

8 SHMDRV
The SHMDRV component has a similar design on both the GPP and DSP sides. This

section primarily refers to the GPP side design. However, the DSP-side design shall

contain the same enumerations, structures, and API definitions, with minimal

changes for different naming conventions on the GPP and DSP-sides.

8.1 GPP and DSP side low level design

8.1.1 Constants & Enumerations

8.1.1.1 SHMDRV_CTRL_SIZE

This constant defines the shared memory control structure size required by the

SHMDRV component.

Definition
#define SHMDRV_CTRL_SIZE (sizeof (ShmDrvContro l))

Comments

This constant is used by configuration script for assigning shared memory regions to

the various components using the same memory area.

DSP-side:

The constant definition is:

#define SHMDRV_CTRL_SIZE (sizeof (SHMDRV_ShmCo ntrol))

Constraints

None.

See Also
ShmDrvControl

Page 55 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

8.1.1.2 GPP_HANDSHAKE

Handshake value written by GPP

Definition
#define GPP_HANDSHAKE 0xC0C0

Comments

None.

Constraints

None.

See Also
DSP_HANDSHAKE
SHMDRV_Handshake ()

Page 56 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

8.1.1.3 DSP_HANDSHAKE

Handshake value written by the DSP

Definition
#define DSP_HANDSHAKE 0xBAB0

Comments

The lowermost nibble in the DSP handshake value is reserved for configuration

information supplied by the DSP-side SHMDRV component along with the handshake.

This value is compared with the ARM-side configuration information to verify that the

drivers on both processors have been built with the same configuration.

Constraints

None.

See Also
GPP_HANDSHAKE
SHMDRV_Handshake ()

Page 57 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

8.1.2 Typedefs & Data Structures

8.1.2.1 ShmDrvControl

This structure defines the control structure used by GPP and DSP for SHM Link driver

Definition
typedef struct ShmDrvControl_tag {
 volatile Uint16 handshakeGpp ;
 volatile Uint16 handshakeDsp ;
} ShmDrvControl ;

Fields

handshakeGpp Handshake field to be updated by GPP.

handshakeDsp Handshake field to be updated by DSP.

Comments

DSP-side:

The structure definition is:

typedef struct SHMDRV_ShmControl_tag {
 volatile Uint16 handshakeGpp ;
 volatile Uint16 handshakeDsp ;
} SHMDRV_ShmControl ;

Constraints

None.

See Also
SHMDRV_Handshake ()

Page 58 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

8.1.2.2 ShmDrvObject

This structure defines the SHM link driver object, which contains all the component-

specific information.

Definition
typedef struct ShmDrvObject_tag {
 ShmDrvControl * ptrCtrl ;
} ShmDrvObject ;

Fields

ptrCtrl Pointer to the SHM Driver control structure in shared

memory.

Comments

DSP-side:

The structure definition is:

typedef struct SHMDRV_Object_tag {
 Uint32 ptrCtrl ;
 Bool isSync ;
} SHMDRV_Object ;

The second field indicates whether the driver has already been synchronized. This is

required since there may be multiple invocations of the handshaking function, but

the handshaking must be performed only once.

Constraints

None.

See Also
SHMDRV_Initialize ()

Page 59 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

8.1.3 API Definition

The SHMDRV APIs are exposed to LDRV_DRV through a function table:

LinkInterface SHMDRV_Interface = {
 &SHMDRV_Initialize,
 &SHMDRV_Finalize,
 &SHMDRV_Handshake
#if defined (DDSP_DEBUG)
 ,&SHMDRV_Debug
#endif /* if defined (DDSP_DEBUG) */
} ;

On the DSP-side, the functions are directly exposed through APIs, and not through a

function pointer interface.

8.1.3.1 SHMDRV_Initialize

This function initializes the SHMDRV component.

Syntax
DSP_STATUS SHMDRV_Initialize (IN ProcessorId dspId) ;

Arguments

IN ProcessorId dspId

Processor Identifier.

Return Value

DSP_SOK This component has been successfully initialized.

DSP_EMEMORY Failure during memory operation.

DSP_EFAIL General failure.

Comments

GPP-side:

This function performs the following initialization:

� Initialization of the global SHMDRV object.

� Initialization of the shared memory control area for the SHMDRV component.

� Initialization of the IPS for the driver.

DSP-side:

The API definition is:

Void SHMDRV_init ()

This function performs the following initialization:

� Initialization of the global SHMDRV object.

� Initialization of the DSPLINK Interrupt component.

� Initialization of the IPS for the driver.

Page 60 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

Constraints

dspId must be valid.

See Also
SHMDRV_Finalize ()

Page 61 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

8.1.3.2 SHMDRV_Finalize

This function finalizes the SHMDRV component.

Syntax
DSP_STATUS SHMDRV_Finalize (IN ProcessorId dspId) ;

Arguments

IN ProcessorId dspId

Processor Identifier.

Return Value

DSP_SOK This component has been successfully finalized.

DSP_EMEMORY Failure during memory operation.

DSP_EFAIL General failure.

Comments

GPP-side:

This function performs the following initialization:

� Finalization of the IPS for the driver.

� Finalization of the shared memory control area for the SHMDRV component.

� Finalization of the global SHMDRV object.

DSP-side:

There is no finalization function for the DSP-side.

Constraints

dspId must be valid.

See Also
SHMDRV_Initialize

Page 62 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

8.1.3.3 SHMDRV_Handshake

This function performs the necessary handshake between the drivers on the GPP &

DSP.

Syntax
DSP_STATUS SHMDRV_Handshake (IN ProcessorId dspI d,
 IN DrvHandshake hshk Ctrl) ;

Arguments

IN ProcessorId dspId

Processor Identifier.

IN DrvHandshake hshkCtrl

Handshake control action to be executed.

Return Value

DSP_SOK This operation has been successfully completed.

DSP_EFAIL Operation failed.

Comments

DSP-side:

The API definition is:

Void SHMDRV_handshake ()

The API on the DSP-side completes handshaking with the GPP-side driver. It does

not provide separate actions for setup, start and completion of handshake. It

ensures that even if the function is called multiple times, handshaking is only

performed once.

Constraints

dspId must be valid.

See Also
ShmDrvControl

Page 63 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

8.1.3.4 SHMDRV_Debug

This function prints the current status of the SHMDRV subcomponent.

Syntax
Void SHMDRV_Debug (IN ProcessorId dspId) ;

Arguments

IN ProcessorId dspId

Processor Identifier.

Return Value

None.

Comments

This function is defined only on the GPP-side if debugging is enabled.

Constraints

dspId must be valid.

See Also
None.

Page 64 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9 ZCPY MQT
The ZCPY MQT component on a processor is responsible for implementing the

message transfer protocol for the remote transport. The messages transferred by

this MQT shall not require an intermediate copy into shared memory.

This section provides a detailed design for the specific implementation of the zero-

copy MQT. The ZCPY MQT complies with the interface defined by the generic

messaging component on both the GPP and DSP sides. For details about the generic

messaging component and MQT designs, please refer to the messaging design

document [Ref. 4].

The ZCPY MQT component has a similar design on both the GPP and DSP sides.

9.1 GPP side low level design

9.1.1 Constants & Enumerations

9.1.1.1 ZCPYMQT_CTRLMSG_SIZE

This constant defines the size (in bytes) of control messages used within the ZCPY

MQT.

Definition
#define ZCPYMQT_CTRLMSG_SIZE 128

Comments

This constant is available to the user at the API level.

The ZCPY MQT uses the default pool for allocating control messages required for

communication with other processors. The number of control messages required

depends on the frequency of usage of APIs requiring control messages, such as

MSGQ_Locate () . The user must consider this requirement while configuring the

default pool.

The value of this constant is platform-specific, and it is therefore defined within the

platform.h header file.

Constraints

The user must always use this constant when configuring the default pool for the

ZCPY MQT. The user must not hard-code the size within the application. This allows

future compatibility with later versions of the ZCPY MQT, which may have a different

control message size and format.

The required size for control messages is larger than the actual size, to allow for

future extensions, and any changes in structure size due to packing.

If applicable for the platform, the size of the ZCPY MQT control message must be

aligned to the data cache boundary of the DSP by being equal to or a multiple of the

cache line size.

See Also
ZcpyMqtCtrlMsg

Page 65 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.1.2 ZCPYMQT_CTRLCMD_LOCATE

This macro defines the control command message ID for location of a remote MSGQ.

Definition
#define ZCPYMQT_CTRLCMD_LOCATE MSGQ_MQTMSGIDSSTART

Comments

This ID is used as the message ID within the message header, when the message is

an MQT control message indicating a request for location of a remote Message

Queue. A control message has the destination ID as MSGQ_INVALIDMSGQ, indicating
that the message is meant for the MQT, and not a particular MSGQ. In that case, the

identification of the type of control message is made through the message ID field in

the message header. The actual message content differs depending on the control

command.

Constraints

The value of this control message ID must lie within the range defined by the MSGQ

component for MQTs: MSGQ_MQTMSGIDSSTART to MSGQ_MQTMSGIDSEND.

See Also
ZCPYMQT_CTRLCMD_LOCATEACK
ZcpyMqtCtrlMsg
ZCPYMQT_Locate ()

Page 66 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.1.3 ZCPYMQT_CTRLCMD_LOCATEACK

This macro defines the control command message ID for acknowledgement for

location of a remote MSGQ..

Definition
#define ZCPYMQT_CTRLCMD_LOCATEACK (MSGQ_MQTMSGIDSSTART + 1)

Comments

This ID is used as the message ID within the message header, when the message is

an MQT control message indicating an acknowledgement of a request for location of

a remote Message Queue. A control message has the destination ID as

MSGQ_INVALIDMSGQ, indicating that the message is meant for the MQT, and not a

particular MSGQ. In that case, the identification of the type of control message is

made through the message ID field in the message header. The actual message

content differs depending on the control command.

Constraints

The value of this control message ID must lie within the range defined by the MSGQ

component for MQTs: MSGQ_MQTMSGIDSSTART to MSGQ_MQTMSGIDSEND.

See Also
ZCPYMQT_CTRLCMD_LOCATE
ZcpyMqtCtrlMsg
ZCPYMQT_Locate ()

Page 67 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.2 Typedefs & Data Structures

9.1.2.1 ZcpyMqtAttrs

This structure defines the attributes for initialization of the ZCPY MQT.

Definition
typedef struct ZcpyMqtAttrs_tag {
 PoolId poolId ;
} ZcpyMqtAttrs ;

Fields

poolId Pool ID used for allocating control messages. This pool is also

used in case the ID within the message received from the

DSP is invalid. This can occur in case of a mismatch between
pools configured on the GPP and the DSP.

Comments

This structure is available to the user at the API level.

These attributes are provided to the transport once during its initialization, which

takes place during the call to MSGQ_TransportOpen () .

Constraints

None.

See Also
ZCPYMQT_Open ()

Page 68 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.2.2 ZcpyMqtState

This structure defines the ZCPYMQT state object, which contains all the component-

specific information.

Definition
typedef struct ZcpyMqtState_tag {
 PoolId poolId ;
 List * msgList ;
 List * ackMsgList ;
 DpcObject * dpcObj ;
 Bool wordSwap ;
} ZcpyMqtState ;

Fields

poolId The default Pool to be used by the ZCPY MQT.

msgList List of messages received from the DSP.

ackMsgList List of locateAck messages received from the DSP.

dpcObj DPC object used by the ZCPY MQT.

wordSwap Indicates whether word-swap is enabled for the DSP MMU.

Comments

An instance of this object is created and initialized during ZCPYMQT_Open () , and its
handle is returned to the caller. It contains all information required for maintaining

the state of the MQT.

Constraints

None.

See Also
ZCPYMQT_Open ()

Page 69 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.2.3 ZcpyMqtCtrlMsg

This structure defines the format of the control messages that are sent between the

ZCPY MQTs on different processors.

Definition
typedef struct ZcpyMqtCtrlMsg_tag {
 MsgqMsgHeader msgHeader ;
 union {
 struct {
 Uint32 semHandle ;
 Uint32 replyQueue;
 Uint32 arg;
 Uint16 poolId;
 Uint16 padding;
 Uint16 msgqName [DSP_MAX_STRLEN] ;
 } locateMsg ;

 struct {
 Uint32 semHandle ;
 Uint32 replyQueue;
 Uint32 arg;
 Uint16 poolId;
 Uint16 padding;
 Uint32 msgqQueue ;
 } locateAckMsg ;
 } ctrlMsg ;
} ZcpyMqtCtrlMsg ;

Fields

msgHeader Fixed message header required for all messages.

ctrlMsg Defines the format of the different control messages.

locateMsg:
 semHandle -> Semaphore handle for sync locate
 replyQueue -> Reply MSGQ handle for async
 locate
 arg -> User-defined value passed to
 locate
 poolId -> Pool ID to allocate async
 response messages
 padding -> Padding for alignment.
 msgqName -> Name of the MSGQ to be located o n
 the remote processor.
locateAckMsg:
 semHandle -> Semaphore handle for sync locate
 replyQueue -> Reply MSGQ handle for async
 locate
 arg -> User-defined value passed to
 locate
 poolId -> Pool ID to allocate async
 response messages
 padding -> Padding for alignment.
 msgqQueue -> Handle to the MSGQ located on th e
 remote processor.

Page 70 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

Comments

The control messages are used for communication between the MQTs.

Constraints

None.

See Also
ZcpyMqtCtrlCmd

Page 71 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.3 API Definition

The MQT APIs are exposed to MSGQ through a function table:

MqtInterface ZCPYMQT_Interface = {
 &ZCPYMQT_Initialize,
 &ZCPYMQT_Finalize,
 &ZCPYMQT_Open,
 &ZCPYMQT_Close,
 &ZCPYMQT_Locate,
 &ZCPYMQT_Release,
 &ZCPYMQT_Put
#if defined (DDSP_DEBUG)
 ,&ZCPYMQT_Debug
#endif /* defined (DDSP_DEBUG) */
} ;

9.1.3.1 ZCPYMQT_Initialize

This function performs global initialization of the ZCPY MQT.

Syntax
Void ZCPYMQT_Initialize () ;

Arguments

None.

Return Value

None.

Comments

This function is called during the initialization of the MSGQ component, to perform

any global initialization required for the ZCPY MQT.

Constraints

None.

See Also
ZCPYMQT_Finalize ()

Page 72 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.3.2 ZCPYMQT_Finalize

This function performs global finalization of the ZCPY MQT.

Syntax
Void ZCPYMQT_Finalize () ;

Arguments

None.

Return Value

None.

Comments

This function is called during finalization of the MSGQ component, to perform any

global finalization required for the ZCPY MQT.

Constraints

None.

See Also
ZCPYMQT_Initialize ()

Page 73 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.3.3 ZCPYMQT_Open

This function opens the ZCPY MQT and configures it according to the user attributes.

Syntax
DSP_STATUS ZCPYMQT_Open (LdrvMsgqTransportHandle mq tHandle,
 Pvoid mq tAttrs) ;

Arguments

IN LdrvMsgqTransportHandle mqtHandle

Handle to the MSGQ transport object.

IN Pvoid mqtAttrs

Attributes required for initialization of the MQT component.

Return Value

DSP_SOK The ZCPY MQT has been successfully opened.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure

Comments

This function is called during MSGQ_TransportOpen () , when the processor ID

passed uses the ZCPY MQT. It carries out all initialization required for the MQT. This

function is called only once for the MQT before any of its other functions can be

called.

It creates and initializes an instance of the state object ZcpyMqtState , and returns it

to the LDRV MSGQ component.

This function expects certain attributes from the user, which are defined by the

ZcpyMqtAttrs structure.

Constraints

mqtHandle must be valid.

mqtAttrs must be valid.

See Also
ZcpyMqtState
ZcpyMqtAttrs
ZCPYMQT_Close ()

Page 74 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.3.4 ZCPYMQT_Close

This function closes the ZCPY MQT, and cleans up its state object.

Syntax
DSP_STATUS ZCPYMQT_Close (LdrvMsgqTransportHandle m qtHandle) ;

Arguments

IN LdrvMsgqTransportHandle mqtHandle

Handle to the MSGQ transport object.

Return Value

DSP_SOK This component has been successfully closed.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure.

Comments

This function is called during MSGQ_TransportClose () , when the processor ID

passed uses the ZCPY MQT. After successful completion of this function, no further

MQT services shall be available from this MQT.

Constraints

mqtHandle must be valid.

See Also
ZcpyMqtState
ZCPYMQT_Open ()

Page 75 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.3.5 ZCPYMQT_Locate

This function attempts to locate a message queue present on the remote processor.

The message queue to be located is identified by its system-wide unique name.

Syntax
Void ZCPYMQT_Locate (LdrvMsgqTransportHandle mqtHan dle,
 Pstr queueN ame,
 Bool sync,
 MsgqQueue * msgqQu eue,
 Pvoid locate Attrs) ;

Arguments

IN LdrvMsgqTransportHandle mqtHandle

Handle to the LDRV MSGQ transport object.

IN Pstr queueName

Name of the message queue to be located.

IN Bool sync

Indicates whether the location is synchronous.

IN OUT MsgqQueue * msgqQueue

If synchronous: indicates the location to store the handle to the located

message queue.

If asynchronous: indicates the message queue to be used to receive the

response message for location.

IN Pvoid locateAttrs

If synchronous: indicates the attributes for synchronous location of the

MSGQ.

If asynchronous: indicates the attributes for asynchronous location of

the MSGQ.

Return Value

DSP_SOK The message queue has been successfully located.

DSP_ENOTFOUND The specified message queue could not be located.

DSP_ETIMEOUT Timeout occurred while locating the MSGQ.

DSP_ENOTCOMPLETE Operation not complete when WAIT_NONE was

specified as timeout.

DSP_EMEMORY Operation failed due to memory error.

DSP_EFAIL General failure.

Page 76 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

Comments

This API is called to locate a message queue on the processor to which the ZCPY

MQT connects. The message queue is identified through its system-wide unique

name. Before sending a message to the remote MSGQ, a handle to the message

queue must be obtained by calling this API. After the message queue has been

successfully located, the message queue handle can be used for further actions on

the MSGQ, including sending messages to it.

The caller specifies whether the location must be synchronous or asynchronous.

Synchronous: When called synchronously, the msgqQueue parameter is used for

returning the located MSGQ. The API blocks until the remote MSGQ has been

located.

Asynchronous: When called asynchronously, the API is non-blocking, and returns

after issuing a locate request to the remote processor. On receiving the locate

acknowledgement, the MQT creates and fills an MsgqAsyncLocateMsg message, and

sends it to the reply MSGQ specified by the user.

This function allocates a control message, fills its fields with the information about

the message queue to be located and sends it to the SHMIPS. The SHMIPS sends this

control message to its DSP-side counterpart, which forwards it on to the ZCPY MQT

on the DSP. The DSP-side ZCPY MQT attempts to locate the message queue locally,

and sends the corresponding information back to the DSP through a locateAck

message in the same way.

Constraints

mqtHandle must be valid.

queueName must be valid.

msgqQueue must be valid.

See Also
ZCPYMQT_Release ()

Page 77 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.3.6 ZCPYMQT_Release

This function releases the remote MSGQ located earlier.

Syntax
DSP_STATUS ZCPYMQT_Release (LdrvMsgqTransportHandle mqtHandle,
 MsgqQueue msgqQueue) ;

Arguments

IN LdrvMsgqTransportHandle mqtHandle

Handle to the MSGQ transport object.

IN MsgqQueue msgqQueue

Handle to the message queue to be released.

Return Value

DSP_SOK The message queue has been successfully released.

DSP_EMEMORY Operation failed due to a memory error.

DSP_EFAIL General failure

Comments

This function is called during LDRV_MSGQ_Release () if the message queue to be

released is on the remote processor connected by the ZCPY MQT.

This function releases any resources allocated during the call to locate the remote

MSGQ.

Constraints

mqtHandle must be valid.

msgqQueue must be valid.

See Also
ZCPYMQT_Locate ()

Page 78 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.3.7 ZCPYMQT_Put

This function sends a message to the specified remote MSGQ.

Syntax
DSP_STATUS ZCPYMQT_Put (LdrvMsgqTransportHandle mqt Handle,
 MsgqMsg msg) ;

Arguments

IN LdrvMsgqTransportHandle mqtHandle

Handle to the MSGQ transport object.

IN MsgqMsg msg

Pointer to the message to be sent to the destination MSGQ.

Return Value

DSP_SOK The message has been successfully sent.

DSP_EFAIL General failure.

Comments

This function is called during LDRV_MSGQ_Put () if the destination message queue is

on the remote processor connected by the ZCPY MQT.

This function sends a message transfer event to the SHMIPS component.

Constraints

mqtHandle must be valid.

msg must be valid.

See Also
SHMIPS_Send

Page 79 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.3.8 ZCPYMQT_Debug

This function prints debug information about the MQT.

Syntax
Void ZCPYMQT_Debug (LdrvMsgqTransportHandle mqtHand le) ;

Arguments

IN LdrvMsgqTransportHandle mqtHandle

Handle to the message queue.

Return Value

None.

Comments

None.

Constraints

mqtHandle must be valid.

This function is defined only for debug builds.

See Also
None.

Page 80 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.1.3.9 ZCPYMQT_Callback

This function implements the callback invoked by the SHMIPS component on

receiving a message from the remote processor.

Syntax
Void ZCPYMQT_Callback (Pvoid arg, Pvoid info) ;

Arguments

IN Pvoid arg

Argument registered with the SHMIPS component along with the

callback function.

IN Pvoid info

Pointer to message received in the event.

Return Value

None.

Comments

This callback function is registered with the SHMIPS component to receive intimation

about a received message. The SHMIPS component invokes this function when it

receives the corresponding event.

This function is not part of the standard MQT interface expected by the LDRV_MSGQ

component.

Constraints

info must be a valid pointer.

See Also
SHMIPS_Register ()

Page 81 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.2 DSP side low level design

9.2.1 Constants & Enumerations

9.2.1.1 ZCPYMQT_CTRLMSG_SIZE

This constant defines the size (in MADUs) of control messages used between the

ZCPY MQTs on the two processors.

Definition
#define ZCPYMQT_CTRLMSG_SIZE 128

Comments

This constant is available to the user at the API level.

The ZCPY MQT uses the default pool for allocating control messages required for

communication with other processors. The number of control messages required

depends on the frequency of usage of APIs requiring control messages, such as

MSGQ_Locate () . The user must consider this requirement while configuring the

default pool.

The value of this constant is platform-specific, and it is therefore defined within the

platform.h header file.

Constraints

The user must always use this constant when configuring the default pool for the

remote MQT. The user must not hard-code the size within the application. This allows

future compatibility with later versions of the ZCPY MQT, which may have a different

control message size and format.

The required size for control messages is larger than the actual size, to allow for

future extensions, and any changes in structure size due to packing.

If applicable for the platform, the size of the ZCPY MQT control message must be

aligned to the data cache boundary of the DSP by being equal to or a multiple of the

cache line size.

See Also
ZCPYMQT_CtrlMsg

Page 82 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.2.1.2 ZCPYMQT_CTRLCMD_LOCATE

This macro defines the control command message ID for location of a remote MSGQ.

Definition
#define ZCPYMQT_CTRLCMD_LOCATE MSGQ_MQTMSGIDSSTART

Comments

This ID is used as the message ID within the message header, when the message is

an MQT control message indicating a request for location of a remote Message

Queue. A control message has the destination ID as MSGQ_INVALIDMSGQ, indicating
that the message is meant for the MQT, and not a particular MSGQ. In that case, the

identification of the type of control message is made through the message ID field in

the message header. The actual message content differs depending on the control

command.

Constraints

The value of this control message ID must lie within the range defined by the MSGQ

component for MQTs: MSGQ_MQTMSGIDSSTART to MSGQ_MQTMSGIDSEND.

See Also
ZCPYMQT_CTRLCMD_LOCATEACK
ZCPYMQT_CtrlMsg
ZCPYMQT_locate ()

Page 83 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.2.1.3 ZCPYMQT_CTRLCMD_LOCATEACK

This macro defines the control command message ID for acknowledgement for

location of a remote MSGQ..

Definition
#define ZCPYMQT_CTRLCMD_LOCATEACK (MSGQ_MQTMSGIDSSTART + 1)

Comments

This ID is used as the message ID within the message header, when the message is

an MQT control message indicating an acknowledgement of a request for location of

a remote Message Queue. A control message has the destination ID as

MSGQ_INVALIDMSGQ, indicating that the message is meant for the MQT, and not a

particular MSGQ. In that case, the identification of the type of control message is

made through the message ID field in the message header. The actual message

content differs depending on the control command.

Constraints

The value of this control message ID must lie within the range defined by the MSGQ

component for MQTs: MSGQ_MQTMSGIDSSTART to MSGQ_MQTMSGIDSEND.

See Also
ZCPYMQT_CTRLCMD_LOCATE
ZCPYMQT_CtrlMsg
ZCPYMQT_locate ()

Page 84 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.2.2 Typedefs & Data Structures

9.2.2.1 ZCPYMQT_Params

This structure defines the attributes for initialization of the ZCPY MQT.

Definition
typedef struct ZCPYMQT_Params_tag {
 Uint16 poolId ;
} ZCPYMQT_Params ;

Fields

poolId Pool ID used for allocating control messages. This pool is also

used in case the ID within the message received from the

DSP is invalid. This can occur in case of a mismatch between
pools configured on the GPP and the DSP.

Comments

This structure is available to the user at the API level.

These parameters are provided to the MQT once during its initialization, which takes

place during the initialization of the MSGQ component.

The default parameters to be used in case user does not provide any attributes to

the MQT are defined as:

static ZCPYMQT_Params ZCPYMQT_PARAMS = {0};

Constraints

None.

See Also
ZCPYMQT_open ()

Page 85 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.2.2.2 ZCPYMQT_State

This structure defines the ZCPYMQT state object, which contains all the component-

specific information.

Definition
typedef struct ZCPYMQT_State_tag {
 Uint16 poolId ;
 QUE_Obj ackMsgQueue ;
#if defined (USE_SWI)
 QUE_Obj msgQueue ;
 SWI_Handle swiHandle ;
#endif /* if defined (USE_SWI) */
} ZCPYMQT_State ;

Fields

poolId Pool ID used for allocating control messages. This pool is also

used in case the ID within the message received from the

DSP is invalid. This can occur in case of a mismatch between

pools configured on the GPP and the DSP.

ackMsgQueue Queue of locateAck messages received from the GPP.

msgQueue Queue of messages received from the GPP.

Only defined if callback processing is to be performed within

a SWI instead of interrupt context.

swiHandle SWI for processing of locate functionality in non-ISR context.

Only defined if callback processing is to be performed within

a SWI instead of interrupt context.

Comments

An instance of this object is created and initialized during ZCPYMQT_open () , and its
handle is returned to the caller. It contains all information required for maintaining

the state of the MQT.

Constraints

None.

See Also
ZCPYMQT_open ()

Page 86 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.2.2.3 ZCPYMQT_CtrlMsg

This structure defines the format of the control messages that are sent between the

ZCPY MQTs on different processors.

Definition
typedef struct ZCPYMQT_CtrlMsg_tag {
 MSGQ_MsgHeader msgHeader ;
 union {
 struct {
 Uint32 semHandle ;
 Uint32 replyQueue ;
 Uint32 arg ;
 Uint16 poolId ;
 Uint16 padding ;
 Uint16 msgqName [DSP_MAX_STRLEN] ;
 } locateMsg ;

 struct {
 Uint32 semHandle ;
 Uint32 replyQueue ;
 Uint32 arg ;
 Uint16 poolId ;
 Uint16 padding ;
 Uint32 msgqQueue ;
 } locateAckMsg ;
 } ctrlMsg ;
} ZCPYMQT_CtrlMsg ;

Fields

msgHeader Fixed message header required for all messages.

ctrlMsg Defines the format of the different control messages.

locateMsg:
 semHandle - > Semaphore handle for sync locate
 replyQueue -> Reply MSGQ handle for async
 locate
 arg -> User-defined value passed to
 locate
 poolId -> Pool ID to allocate async
 response messages
 padding -> Padding for alignment.
 msgqName -> Name of the MSGQ to be located o n
 the remote processor.
locateAckMsg:
 semHandle -> Semaphore handle for sync locate
 replyQueue -> Reply MSGQ handle for async
 locate
 arg -> User-defined value passed to
 locate
 poolId -> Pool ID to allocate async
 response messages
 padding -> Padding for alignment.
 msgqQueue -> Handle to the MSGQ located on th e
 remote processor.

Page 87 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

Comments

The control messages are used for communication between the MQTs.

Constraints

None.

See Also
ZCPYMQT_CtrlCmd

Page 88 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.2.3 API Definition

The MQT APIs are exposed to MSGQ through the following function table:

MSGQ_TransportFxns ZCPYMQT_FXNS = {
 &ZCPYMQT_open,
 &ZCPYMQT_close,
 &ZCPYMQT_locate,
 &ZCPYMQT_release,
 &ZCPYMQT_put
} ;

9.2.3.1 ZCPYMQT_init

This function performs global initialization of the ZCPY MQT.

Syntax
Void ZCPYMQT_init () ;

Arguments

None.

Return Value

None.

Comments

The DSP/BIOS™ OS calls the mqtInit () function during its boot-up process.

This function initializes the SHMDRV component and waits for handshake completion

with the GPP-side. In case messaging and data transfer are both enabled, the

module getting initialized first ensures that the SHMDRV component is initialized, and

also completes handshake with the GPP.

Constraints

None.

See Also
None.

Page 89 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.2.3.2 ZCPYMQT_open

This function opens the ZCPY MQT and configures it according to the user attributes.

Syntax
Int ZCPYMQT_open (MSGQ_TransportHandle mqtHandle) ;

Arguments

IN MSGQ_TransportHandle mqtHandle

Handle to the MSGQ transport object.

Return Value

SYS_OK This component has been successfully opened.

SYS_EALLOC Failure during memory operation.

Comments

This API is called during the initialization of the MSGQ component. It carries out all

initialization required for the MQT. This function is called only once for the MQT

before any of its other functions can be called.

It creates and initializes an instance of the state object ZCPYMQT_State, and sets it in
the MSGQ transport object.

This function expects certain attributes from the user, which are defined by the

ZCPYMQT_Params structure.

Constraints

This function cannot be called from SWI or HWI context.

The handle to the MSGQ transport object must be valid.

See Also
ZCPYMQT_State
ZCPYMQT_Params
ZCPYMQT_close ()

Page 90 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.2.3.3 ZCPYMQT_close

This function closes the ZCPY MQT, and cleans up its state object.

Syntax
Int ZCPYMQT_close (MSGQ_TransportHandle mqtHandle) ;

Arguments

IN MSGQ_TransportHandle mqtHandle

Handle to the MSGQ transport object.

Return Value

SYS_OK This component has been successfully closed.

SYS_EFREE Failure during memory operation.

Comments

This API is called during the finalization of the MSGQ component. It carries out any

required actions for finalizing the MQT.

After successful completion of this function, no further MQT services shall be

available from the ZCPY MQT.

Constraints

This function cannot be called from SWI or HWI context.

The handle to the MSGQ transport object must be valid.

See Also
ZCPYMQT_State
ZCPYMQT_open ()

Page 91 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.2.3.4 ZCPYMQT_locate

This function attempts to locate a message queue present on the remote processor.

The message queue to be located is identified by its system-wide unique name.

Syntax
Int ZCPYMQT_locate (MSGQ_TransportHandle mqtHandle,
 String queueName,
 Bool sync,
 MSGQ_Queue * msgqQueue,
 Ptr locateAttr s) ;

Arguments

IN MSGQ_TransportHandle mqtHandle

Handle to the MSGQ transport object.

IN String queueName

Name of the MSGQ to be located.

IN Bool sync

Indicates whether locate is synchronous or asynchronous.

IN OUT MSGQ_Queue * msgqQueue

If synchronous: indicates the location to store the handle to the located

message queue.

If asynchronous: indicates the message queue to be used to receive the

response message for location.

IN Ptr locateAttrs

If synchronous: indicates the attributes for synchronous location of the

MSGQ.

If asynchronous: indicates the attributes for asynchronous location of

the MSGQ.

Return Value

SYS_OK The message queue has been successfully located.

SYS_ENOTFOUND The message queue does not exist on the remote
processor.

SYS_ETIMEOUT Timeout during location of the MSGQ.

SYS_EALLOC Failure during memory operation.

Comments

This API is called during MSGQ_locate () . After message queue has been

successfully located, the message queue handle can be used for further actions on

the MSGQ, including sending messages to it.

Page 92 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

The caller specifies whether the location must be synchronous or asynchronous.

Synchronous: When called synchronously, the msgqQueue parameter is used for

returning the located MSGQ. The API blocks until the remote MSGQ has been

located.

Asynchronous: When called asynchronously, the API is non-blocking, and returns

after issuing a locate request to the remote processor. On receiving the locate

acknowledgement, the MQT creates and fills an MSGQ_AsyncLocateMsg message, and

sends it to the reply MSGQ specified by the user.

This function allocates a control message, fills its fields with the information about

the message queue to be located and sends it to the SHMIPS. The SHMIPS sends this

control message to its GPP-side counterpart, which forwards it on to the ZCPY MQT

on the GPP. The GPP-side ZCPY MQT attempts to locate the message queue locally,

and sends the corresponding information back to the DSP through a locateAck

message in the same way.

Constraints

The default pool specified by the user for internal use by this MQT must be

configured before this function can be called.

If called in the synchronous mode, this function cannot be called from the main ()

function, or SWI/HWI context.

The handle to the MSGQ transport object must be valid.

The queueName must be valid.

The locateAttrs must be valid.

See Also
ZCPYMQT_release ()

Page 93 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.2.3.5 ZCPYMQT_release

This function releases the remote MSGQ located earlier.

Syntax
Int ZCPYMQT_release (MSGQ_TransportHandle mqtHandle ,
 MSGQ_Queue msgqQueue) ;

Arguments

IN MSGQ_TransportHandle mqtHandle

Handle to the MSGQ transport object.

IN MSGQ_Queue msgqQueue

Handle to the MSGQ to be released.

Return Value

SYS_OK The message queue has been successfully released.

Comments

This API is called during MSGQ_release () . After this API has been successfully

called, the MSGQ needs to be located again before sending messages to it.

This function releases any resources allocated during the call to locate the remote

MSGQ.

Constraints

The handle to the MSGQ transport object must be valid.

The handle to the message queue must be valid.

See Also
ZCPYMQT_locate ()

Page 94 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.2.3.6 ZCPYMQT_put

This function sends a message to the specified remote MSGQ.

Syntax
Int ZCPYMQT_put (MSGQ_TransportHandle mqtHandle, MS GQ_Msg msg) ;

Arguments

IN MSGQ_TransportHandle mqtHandle

Handle to the MSGQ transport object.

IN MSGQ_Msg msg

Pointer to the message to be sent to the destination MSGQ.

Return Value

SYS_OK The message has been successfully sent.

Comments

This function is called during MSGQ_put () if the destination message queue is on the

remote processor connected by the ZCPY MQT.

This function sends a message transfer event to the SHMIPS component.

This function is non-blocking and deterministic.

Constraints

The handle to the MSGQ transport object must be valid.

The pointer to the message must be valid.

See Also
ZCPYMQT_callback ()
SHMIPS_send ()

Page 95 of 95 Version 0.90

DSP/BIOS™ LINK

LNK 041 DES

ZERO COPY LINK DRIVER

9.2.3.7 ZCPYMQT_callback

This function implements the callback invoked by the SHMIPS component on

receiving a message from the remote processor.

Syntax
Void ZCPYMQT_callback (Ptr arg, Ptr info) ;

Arguments

IN Ptr arg

Argument registered with the SHMIPS component along with the

callback function.

IN Ptr info

Pointer to message received in the event.

Return Value

None.

Comments

This callback function is registered with the SHMIPS component to receive intimation

about a received message. The SHMIPS component invokes this function when it

receives the corresponding event.

This function is not part of the standard MQT interface expected by the MSGQ

module.

Constraints

None.

See Also
SHMIPS_register ()

	Introduction
	Purpose & Scope
	Terms & Abbreviations
	References
	Overview

	Requirements
	Assumptions
	Constraints
	High Level Design
	Architecture overview
	Shared memory allocator
	Address translator
	Shared Memory Inter Processor Signaling

	Control flow
	Zero copy mechanism
	ZCPY driver
	GPP-side
	Component interaction

	DSP-side
	Overview
	Component interaction

	SHMIPS component
	Overview
	Services provided
	Design

	SHMDRV component
	Overview:
	Services provided
	Design

	ZCPY MQT component
	Overview
	Services provided
	Design

	ZCPY DATA component
	Overview
	Services provided
	ZCPYDATA Interface
	Design

	Sequence Diagrams
	ZCPYMQT_init ()
	ZCPYMQT_open ()
	ZCPYMQT_close ()
	ZCPYMQT_put ()
	ZCPYMQT_locate ()
	ZCPYMQT_release ()

	SHMIPS
	GPP and DSP side low level design
	Constants & Enumerations
	SHMIPS_CTRL_SIZE
	SHMIPS_IRP_SIZE
	CHNL_EVENTS
	MSGQ_EVENTS
	MAX_SHMIPS_EVENTS
	ShmIpsEvent

	Typedefs & Data Structures
	FnShmIpsCbck
	ShmIpsObject
	ShmIpsShmEventCtrl
	ShmIpsShmCtrl

	API Definition
	SHMIPS_Initialize
	SHMIPS_Finalize
	SHMIPS_Register
	SHMIPS_Unregister
	SHMIPS_Send
	SHMIPS_Notify
	SHMIPS_Debug

	SHMDRV
	GPP and DSP side low level design
	Constants & Enumerations
	SHMDRV_CTRL_SIZE
	GPP_HANDSHAKE
	DSP_HANDSHAKE

	Typedefs & Data Structures
	ShmDrvControl
	ShmDrvObject

	API Definition
	SHMDRV_Initialize
	SHMDRV_Finalize
	SHMDRV_Handshake
	SHMDRV_Debug

	ZCPY MQT
	GPP side low level design
	Constants & Enumerations
	ZCPYMQT_CTRLMSG_SIZE
	ZCPYMQT_CTRLCMD_LOCATE
	ZCPYMQT_CTRLCMD_LOCATEACK

	Typedefs & Data Structures
	ZcpyMqtAttrs
	ZcpyMqtState
	ZcpyMqtCtrlMsg

	API Definition
	ZCPYMQT_Initialize
	ZCPYMQT_Finalize
	ZCPYMQT_Open
	ZCPYMQT_Close
	ZCPYMQT_Locate
	ZCPYMQT_Release
	ZCPYMQT_Put
	ZCPYMQT_Debug
	ZCPYMQT_Callback

	DSP side low level design
	Constants & Enumerations
	ZCPYMQT_CTRLMSG_SIZE
	ZCPYMQT_CTRLCMD_LOCATE
	ZCPYMQT_CTRLCMD_LOCATEACK

	Typedefs & Data Structures
	ZCPYMQT_Params
	ZCPYMQT_State
	ZCPYMQT_CtrlMsg

	API Definition
	ZCPYMQT_init
	ZCPYMQT_open
	ZCPYMQT_close
	ZCPYMQT_locate
	ZCPYMQT_release
	ZCPYMQT_put
	ZCPYMQT_callback

