
 

 
Page 1 of 93  Version 1.20 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

      

DSP/BIOS™ LINK 

 

LINK DRIVER 

 

LNK 012 DES 

 

Version 1.20 

 

 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 2 of 93  Version 1.20       

This page has been intentionally left blank. 
 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 3 of 93  Version 1.20       

IMPORTANT NOTICE 

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make 

corrections, modifications, enhancements, improvements, and other changes to its products 

and services at any time and to discontinue any product or service without notice. 

Customers should obtain the latest relevant information before placing orders and should 

verify that such information is current and complete. All products are sold subject to TI’s 

terms and conditions of sale supplied at the time of order acknowledgment. 

TI warrants performance of its hardware products to the specifications applicable at the 

time of sale in accordance with TI’s standard warranty. Testing and other quality control 

techniques are used to the extent TI deems necessary to support this warranty. Except 

where mandated by government requirements, testing of all parameters of each product is 

not necessarily performed. 

TI assumes no liability for applications assistance or customer product design. Customers 

are responsible for their products and applications using TI components. To minimize the 

risks associated with customer products and applications, customers should provide 

adequate design and operating safeguards. 

TI does not warrant or represent that any license, either express or implied, is granted 

under any TI patent right, copyright, mask work right, or other TI intellectual property right 

relating to any combination, machine, or process in which TI products or services are used. 

Information published by TI regarding third–party products or services does not constitute a 

license from TI to use such products or services or a warranty or endorsement thereof. Use 

of such information may require a license from a third party under the patents or other 

intellectual property of the third party, or a license from TI under the patents or other 

intellectual property of TI. 

Reproduction of information in TI data books or data sheets is permissible only if 

reproduction is without alteration and is accompanied by all associated warranties, 

conditions, limitations, and notices. Reproduction of this information with alteration is an 

unfair and deceptive business practice. TI is not responsible or liable for such altered 

documentation. 

Resale of TI products or services with statements different from or beyond the parameters 

stated by TI for that product or service voids all express and any implied warranties for the 

associated TI product or service and is an unfair and deceptive business practice. TI is not 

responsible or liable for any such statements. 

 

Mailing Address: 

Texas Instruments 

Post Office Box 655303 

Dallas, Texas 75265 

 

Copyright ©. 2003, Texas Instruments Incorporated 

 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 4 of 93  Version 1.20       

This page has been intentionally left blank. 
 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 5 of 93  Version 1.20       

TABLE OF CONTENTS 

1 Introduction ................................................................................................. 8 
1.1 Purpose and Scope ................................................................................ 8 
1.2 Terms and Abbreviations ........................................................................ 8 
1.3 References ........................................................................................... 8 
1.4 Overview.............................................................................................. 8 

2 Requirements ............................................................................................. 10 

3 Assumptions............................................................................................... 10 

4 High Level Design....................................................................................... 11 
4.1 Overview.............................................................................................11 
4.2 GPP side..............................................................................................11 
4.3 DSP side .............................................................................................14 

5 LDRV .......................................................................................................... 17 
5.1 Dependencies ......................................................................................17 
5.2 Description ..........................................................................................17 
5.3 Typedefs and Data Structures ................................................................18 
5.4 API Definition.......................................................................................20 

6 LDRV_PROC................................................................................................ 22 
6.1 Dependencies ......................................................................................22 
6.2 Description ..........................................................................................22 
6.3 API Definition.......................................................................................23 

7 LDRV_CHNL ................................................................................................ 32 
7.1 Dependencies ......................................................................................32 
7.2 Description ..........................................................................................32 
7.3 Constants and Enumerations..................................................................33 
7.4 Typedefs and Data Structures ................................................................35 
7.5 API Definition.......................................................................................38 

8 LDRV_MSGQ ............................................................................................... 53 
8.1 Dependencies ......................................................................................53 
8.2 Description ..........................................................................................53 

9 LDRV_DATA................................................................................................ 54 
9.1 Dependencies ......................................................................................54 
9.2 Description ..........................................................................................54 
9.3 API Definition.......................................................................................55 

10 LDRV_DRV.................................................................................................. 63 
10.1 Dependencies ......................................................................................63 
10.2 Description ..........................................................................................63 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 6 of 93  Version 1.20       

10.3 Constants and Enumerations..................................................................64 
10.4 Typedefs and Structures........................................................................65 
10.5 API Definition.......................................................................................67 

11 DSP ............................................................................................................ 70 
11.1 Description ..........................................................................................70 
11.2 Typedefs and Structures........................................................................71 
11.3 API Definition.......................................................................................75 

12 HAL............................................................................................................. 87 
12.1 Dependencies ......................................................................................87 
12.2 Description ..........................................................................................87 

13 IPS ............................................................................................................. 88 
13.1 Dependencies ......................................................................................88 
13.2 Description ..........................................................................................88 
13.3 Typedefs and Structures........................................................................89 

14 MQT............................................................................................................ 91 
14.1 Dependencies ......................................................................................91 
14.2 Description ..........................................................................................91 

15 LDRV_POOL................................................................................................ 92 
15.1 Dependencies ......................................................................................92 
15.2 Description ..........................................................................................92 

16 DSP-side..................................................................................................... 93 
16.1 Dependencies ......................................................................................93 
16.2 Description ..........................................................................................93 

 
 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 7 of 93  Version 1.20       

 

TABLE OF FIGURES 

Figure 1. GPP-DSP connectivity through DSP/BIOS™ LINK ......................................11 
Figure 2. Link driver GPP-side component interaction .............................................12 
Figure 3. Link driver DSP-side component interaction .............................................15 
Figure 4. LDRV_PROC State Transition Diagram ......................................................22 
 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 8 of 93  Version 1.20       

1 Introduction 

1.1 Purpose and Scope 
This document describes the design of the Link Driver component of DSP/BIOS™ 

LINK. It defines the main functions and data structures used in the implementation 

of the Link Driver component. It also describes how each function is implemented. 

This document is intended for developers implementing the Link Driver component of 

DSP/BIOS™ LINK. Developers implementing new link driver(s) can also use it as a 

reference. 

1.2 Terms and Abbreviations 
DSPLINK DSP/BIOS™ LINK 

ARM Advanced RISC Machines (ARM Ltd’s RISC Processor) 

CHIRP Channel IO Request Packets 

DSP/BIOS™ Built-In Operating System for DSP (TI’s proprietary OS) 

GPP General Purpose Processor 

Link Driver/LDRV Link Driver component of DSP/BIOS™ Link. 

PMGR Processor Manager component of DSP/BIOS™ Link. 

SHM Shared Memory Driver 

1.3 References 
1. LNK 031 DES DSP/BIOS™ LINK 

Messaging Component 

Version 1.11, dated AUG 09, 2004 

2. LNK 082 DES DSP/BIOS™ LINK 

POOL 

Version 1.00, dated DEC 29, 2004 

3. LNK 076 DES DSP/BIOS™ LINK 

Buffer Pools 

Version 1.00, dated DEC 29, 2004 

4. LNK 041 DES DSP/BIOS™ LINK 

Zero Copy Link Driver 

Version 0.80, dated DEC 24, 2004 

1.4 Overview 
DSP/BIOS™ LINK is runtime software, analysis tools, and an associated porting kit 

that simplifies the development of embedded applications in which a general-purpose 

microprocessor (GPP) controls and communicates with a TI DSP. DSP/BIOS™ LINK 

provides control and communication paths between GPP OS threads and DSP/BIOS™ 

tasks, along with analysis instrumentation and tools. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 9 of 93  Version 1.20       

The Link Driver component is responsible for the low level control over the physical 

link between the GPP and DSP. It provides hardware specific control functions to the 

modules in Processor Manager. 

This document provides a detailed description of the generic link driver and the 

framework provided by it for plugging in different hardware-specific physical links. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 10 of 93  Version 1.20       

2 Requirements 
R4 It must be possible to issue multiple buffers into a stream, and all buffers are 

reclaimed in the order in which they were issued. 

R5 It must be possible to specify a finite timeout to wait for a buffer to be 

reclaimed. 

R6 Multiple GPP threads must be able to communicate with multiple DSP threads 

simultaneously over multiple Link channels. 

R7 DSP/BIOS™ LINK shall support communication to both SWI and TSK based 

DSP threads. 

R8 An instrumented version of the GPP side shall provide the number of 

interrupts exchanged between GPP & DSP, total number of bytes read from 

and written to DSP memory space, the number of buffers transferred between 

GPP and DSP on each channel. It would also enable users to inspect the last 

few (configurable) number of buffers that were exchanged between GPP and 

DSP over DSPLINK. 

R9 DSP/BIOS™ LINK shall provide APIs to query DSP/BIOS™ LINK at runtime for 

the values of Link driver statistics counters. 

R10 DSP/BIOS™ LINK DSP side configuration must allow the exclusion of modules 

(via the DSP/BIOS™ configuration tool) not required in a specific usage 

scenario. 

R11 DSP/BIOS™ LINK GPP side configuration shall allow exclusion of modules not 

required in a specific usage scenario. 

3 Assumptions 
The following are assumed in the design:  

1. Though the current implementation does not support multiple processors, the 
design assumes support for multiple DSPs in near future. 

2. The function pointer interface provides a reasonable degree of plug-in capability, 
necessary for scalability of DSP/BIOS™ LINK. 

3. The initial implementation shall be tested with only one link driver. The actual 
test of scalability and plug-in capability may not be feasible until more physical 

link drivers are implemented. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 11 of 93  Version 1.20       

4 High Level Design 

4.1 Overview 
DSP/BIOS LINK provides a uniform API for communication irrespective of the 

underling hardware/method used for communication. 

The Link Driver layer connects the GPP and DSP through its components present on 

both processors. 

Figure 1. GPP-DSP connectivity through DSP/BIOS™ LINK 

The link driver supports transfer of information between the two processors by two 

methods: Data transfer and message transfer. 

� Data transfer happens through communication channels, which are 

conceptual entities in DSP/BIOS™ LINK. The channels are conduits used to 

communicate data between GPP and DSP. Channels can be addressed by 

specifying their number. These channels are unidirectional, which means a 

single channel can transfer data either from GPP to DSP or from DSP to GPP. 

� Messaging provides logical connectivity between the GPP clients and DSP 

tasks. Unlike the data transfer channels where the client is waiting for data to 

arrive on a designated channel, the message transfer is completely 

asynchronous. The messages may be used to intimate occurrence of an error, 

change in state of the system, a request based on user input, etc. 

DSP/BIOS™ LINK supports multiple links (communication hardware components) for 

transfer of data.   Some examples of these links are USB, PCI, Serial Port, Shared 

Memory, Shared Memory with DMA, Shared Memory using pointer passing etc. The 

hardware to be used for data transfer is decided based on the channel identifier. 

4.2 GPP side 

4.2.1 Component interaction 

The component interaction diagram gives an overview of the interaction of the GPP-

side link driver layer with other layers within DSPLINK. It also gives information 

about the various subcomponents within the layer. 

  

Communication Hardware 

DSP/BIOS LINK Driver (MPU 
OS Driver) 
 

DSP/BIOS LINK Driver (IOM 
Driver) 

MPU Application DSP Application 

MPU/GPP DSP 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 12 of 93  Version 1.20       

Figure 2. Link driver GPP-side component interaction 

� The IPS components for multiple physical links may be combined into a single 

component providing services common to the links. 

4.2.2 Details 

The GPP-side Link Driver provides the functionality for PROC, CHNL and MSGQ 

components through the implementation of the following sub-components: 

1. LDRV_PROC 

Link Driver and related components 

LDRV_PROC LDRV_CHNL 

DSP2 

LDRV_MSGQ 

LINK2 Physical Link 

LINK2  
MQT 

LINK2  
DATA 

LINK1 Physical Link 

LINK1  
DATA 

LINK2  IPS 

Components involved in messaging  

Components involved in data transfer  
Components involved in both data 
transfer and messaging 

LINK1  DRV 

LDRV_POOL 

POOL
1 

POOL
2 

DSP1 

LINK1  IPS LINK2  DRV 

LDRV_DATA link 

LINK1  
MQT 

LDRV_DRV 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 13 of 93  Version 1.20       

This subcomponent provides APIs to access and control the target DSP(s). It 

also maintains the current state of the target DSP(s). 

2. LDRV_CHNL 

This subcomponent provides APIs to transfer data between the GPP and the 

DSP. It allocates and de-allocates the user buffers while opening and closing 

the channel. During the data transfer, it is responsible for moving the buffers 

between FREE, REQUESTED and COMPLETED lists. 

3. LDRV_MSGQ 

This subcomponent provides functions to transfer messages between the GPP 

and the DSP. It maintains the local message queues and provides the 

functionality for locating & releasing the local message queues, and sending & 

receiving messages to & from them. It also communicates with the Message 

Queue Transports for communication with the DSP(s) in the system. 

In addition, support for multiple platforms is provided through the following 

subcomponents: 

1. DATA 

The LDRV_DATA subcomponent acts as glue between the LDRV_CHNL 
subcomponent and the data driver for a specific platform. It uses the function 

pointer interface exported by the link driver to communicate with the Link 

Driver. The map between the channel ID and the underlying data driver ID is 

maintained by this subcomponent. 

This sub-component also contains implementations of specific data drivers for 

different platforms and physical links between the GPP and DSP. 

2. DRV 

This subcomponent encapsulates low-level driver synchronization between the 

GPP and the DSP over a physical link. Services of this subcomponent are 

exported by a function pointer interface. This allows the LDRV_DRV 
subcomponent to interact with multiple physical link drivers. The integration 

of a new link driver into the system is also simple. 

This sub-component also contains implementations of specific link drivers for 

different platforms and physical links between the GPP and DSP. 

3. DSP 

This subcomponent encapsulates physical hardware access to communicate 

with the target DSP. Services of this subcomponent are exported by a 

function pointer interface. This allows other subcomponents in LDRV to 
interact with multiple DSPs. The integration of a DSP into the system is also 

simple. 

This subcomponent is designed to be independent of the rest of the sub-

system. Applications that do not need the PROC and CHNL abstractions 
provided by Processor Manager (PMGR provides) can directly use only the 

DSP subcomponent. 

4. HAL 

The Hardware Abstraction Layer provides standard APIs for access and control 

of hardware specific modules to the sub-components within the DSPLINK link 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 14 of 93  Version 1.20       

driver layer. The services provided by the HAL subcomponent are used by the 

DSP sub-component. 

5. IPS  

The Inter-processor signaling (IPS ) subcomponent provides the upper layers 
with the service to register an event from the GPP, about which is wishes to 

be notified. On receiving the event from the GPP, the IPS subcomponent 

provides information about the event to the registered subcomponent. 

This component uses the services provided on the hardware platform. It 

provides APIs, which are used by upper layers to establish communication 

amongst peers at that level. 

The IPS component provides basic services required by the data driver and 

Message Queue Transport components for transferring data buffers and 

messages between the processors. It abstracts the platform-specific details 

by providing standard services to the upper layer. 

6. MQT 

The LDRV_MQT sub-component defines the abstract interface that the Message 
Queue Transports (MQTs) for specific platforms must implement. There may 

be multiple MQT implementations for a single platform, based on the physical 

connection used for connecting the two processors. However, only a single 

MQT each can be configured at a time for communication between the GPP 

and a DSP. 

The MQT plugs into the LDRV_MSGQ component and provides services to send 
& receive messages to & from the remote processor, and locate & release 

message queues on the remote processor. 

7. POOL 

The POOL component provides services to allocate and free data buffers and 
messages, which can be transferred between the processors. 

The LDRV_POOL subcomponent acts as the glue between the PMGR_POOL 
subcomponent and the different pool implementations. It uses the function 

pointer interface exported by the pool implementations to abstract the 

functionality implemented by them. The configuration of pool objects in the 

system is maintained by this component. 

This sub-component also contains implementations of specific pools for the 

different types of data and message transfer supported by the system. 

4.3 DSP side 

4.3.1 Component interaction 

The component interaction diagram gives an overview of the interaction of the DSP-

side link driver layer with other components external to DSPLINK. It also gives 

information about the various subcomponents within the layer. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 15 of 93  Version 1.20       

Figure 3. Link driver DSP-side component interaction 

� The IPS components for multiple physical links may be combined into a single 

component providing services common to the links. 

4.3.2 Details 

The DSP-side of DSPLINK is sub-divided into three separate components, based on 

the functionality provided, and scalability options available: 

DSPLINK  base library 

 

Class Drivers 

GIO 
SIO 

DIO 

MSGQ component 

MSGQ 

POOL 
component  

Data Transfer library 

 

Common IOM 
functionalit y 

LINK2  
DATA 

LINK1  IPS 

Messaging library 

ZCPY 
MQT 

PCPY 
MQT 

LINK1  
DATA 

Components involved in DSPLINK 
messaging 

Components involved in data transfer  Components involved in both data 
transfer and DSPLINK messaging 

DSPLINK  Buffer 
allocation APIs  

POOL
1 

Other 
generic 

components 

LINK1  DRV POOL
2 

LINK2  IPS 

LINK2 DRV 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 16 of 93  Version 1.20       

1. Base component 

The Base DSPLINK component contains all the generic sub-components required 

for both data transfer and messaging. This includes the following: 

� drv : Driver initialization and synchronization sub-component 

� gen: Generic functions and utilities 

� hal : Hardware abstractions functions and utilities 

� ips : Inter-Processor-Signaling component 

� pools : POOL component for allocating and freeing data buffers and 

messages 

2. Data driver 

The Data Driver is implemented as a DSP/BIOS™ IOM driver. It consists of the 

following subcomponents: 

1. Common IOM functionality 

This layer brings out the common functionality within the DSPLINK IOM 

driver, which is required by all physical links. 

2. Physical link layer 

The Physical link layer provides a pluggable component that provides the 

physical connectivity to the GPP. This component is specific to the hardware 

link available between the GPP and the DSP. 

3. MQT 

The MQT sub-component provides messaging functionality between the GPP and 

the DSP. There may be multiple MQT implementations for a single platform, 

based on the physical connection used for connecting the two processors. 

However, only a single MQT each can be configured at a time for communication 

between the GPP and the DSP. 

The MQT complies with the interface expected by the MSGQ component in 

DSP/BIOS™. It provides services to send & receive messages to & from the GPP, 

and locate & release message queues on the GPP. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 17 of 93  Version 1.20       

5 LDRV 
This module provides a central place to initialize resources that the Link Driver uses. 

5.1 Dependencies 

5.1.1 Subordinates 
CFG database 

5.1.2 Preconditions 

None.  

5.2 Description 
This subcomponent fetches the configuration data from the CFG database and 

maintains the information in a global object accessible to all its constituents - 

LDRV_Obj. The LDRV_Obj also contains the run time information required by LDRV 
component. This data includes information such as: 

1. Number of DSPs configured in the system. 

2. Number of data drivers configured in the system. A data driver may be shared 
between multiple DSPs. 

3. Number of memory information tables configured in the system. A MEM table 
may be shared between multiple DSPs. 

4. An array of all data drivers used in the system. If a data driver is configured, but 
not used, it is not available at run-time. 

5. An array of all MEM tables used in the system. If a MEM table is configured, but 
not used, it is not available at run-time. 

6. Array of DSP objects containing run-time information for all target DSPs. 

Additional information for configuration of the system for messaging, POOLS etc. is 

also present. 

 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 18 of 93  Version 1.20       

5.3 Typedefs and Data Structures 

5.3.1 LDRVObject 

This structure defines the Link Driver object containing configuration information for 

the link driver. All the sub-components within the link driver use this object to 

retrieve information for configuring themselves. 

Definition 
typedef struct LdrvObject_tag { 
    Uint32          numDsps       ; 
    DspObject *     dspObjects    ; 
    Uint32          numMemTables  ; 
    LinkMemInfo **  memTables     ; 
 
#if defined (CHNL_COMPONENT) || defined (MSGQ_COMPO NENT) 
    Uint32          numIpsTables  ; 
    IpsObject **    ipsTables     ; 
    LinkObject *    linkObjects   ; 
    Uint32          numPools      ; 
    PoolObject *    poolObjects   ; 
#endif 
 
#if defined (CHNL_COMPONENT) 
    Uint32          queueLength    ; 
    Uint32          numDataTables  ; 
    DataObject **   dataTables     ; 
#endif 
 
#if defined (MSGQ_COMPONENT) 
    Uint32          numMqts       ; 
    Uint32          maxMsgqs      ; 
    MqtObject *     mqtObjects    ; 
#endif 
 
#if defined (DDSP_PROFILE) 
    ProcStats       procStats     ; 
#if defined (CHNL_COMPONENT) 
    ChnlStats       chnlStats     ; 
#endif 
#if defined (MSGQ_COMPONENT) 
    MsgqStats       msgqStats     ; 
#endif 
#endif 
} LdrvObject ; 

Fields 

numDsps Number of DSPs connected to the GPP. 

dspObjects Array of DSP objects. 

numMemTables Number of MEM tables specified in configuration database. 

memTables Array of pointers to link memory information tables. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 19 of 93  Version 1.20       

numIpsTables Number of IPS tables. 

ipsTables Array of pointers to IPS tables. 

linkObjects Array of link objects. 

numPools Number of pools. 

poolObjects Array of pool objects. 

queueLength Maximum number of data buffers that can be queued on a 

channel at a time pending transfer. 

numDataTables Number of data tables. 

dataTables Array of pointers to data tables. 

numMqts Number of Message Queue Transports. 

maxMsgqs Maximum number of local message queues. 

mqtObjects Array of MQT objects. 

procStats Statistics object for processor subcomponent. 

chnlStats Statistics object for channel subcomponent. 

msgqStats Statistics object for messaging subcomponent. 

Comments 

None. 

See Also 
DspObject 
LinkMemInfo 
IpsObject 
LinkObject 
PoolObject 
DataObject 
MqtObject 
ProcStats 
ChnlStats 
MsgqStats 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 20 of 93  Version 1.20       

5.4 API Definition 

5.4.1 LDRV_Initialize 

This function initializes the LDRV component. It fetches the configuration data from 

the CFG database and makes it available for access at run time. It also allocates and 

initializes the global runtime objects required within LDRV context. 

Syntax 
DSP_STATUS LDRV_Initialize () ; 

Arguments 

None. 

Return Values 

DSP_SOK Operation completed successfully. 

DSP_EMEMORY Generic failure while allocating memory. 

DSP_EFAIL General error returned from GPP OS 

Comments 

None. 

Constraints 

None. 

See Also 
LDRV_Finalize 

5.4.2 LDRV_Finalize 

This function releases all the resources that were allocated earlier by a call to 

function LDRV_Initialize ().  

Syntax 
DSP_STATUS LDRV_Finalize () ; 

Arguments 

None. 

Return Values 

DSP_SOK Operation completed successfully. 

DSP_EMEMORY Generic failure while freeing memory 

DSP_EFAIL General error returned from GPP OS 

Comments 

None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 21 of 93  Version 1.20       

Constraints 

None. 

See Also 
LDRV_Initialize 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 22 of 93  Version 1.20       

6 LDRV_PROC 
This subcomponent provides services to control the DSP processor. The generic 

control function may be – reset, start, stop, read, write, send interrupt, clear 

interrupt, etc. 

6.1 Dependencies 

6.1.1 Subordinates 
DSP subcomponent 

6.1.2 Preconditions 

The PROC subcomponents in API and PMGR must validate all data before passing it 

to LDRV_PROC. LDRV_PROC does not perform a runtime check on the function 
arguments and assumes runtime validation of arguments by calling the functions. 

6.2 Description 
This component provides APIs to read from and write into the DSP memory space, 

allowing the PROC subcomponent (in PMGR) to load a DSP executable onto the 

target DSP. This subcomponent uses the services of a DSP module to perform its 

tasks. 

This subcomponent also implements a state machine to encapsulate the current 

state of the DSP. Figure 4 shows the state transition diagram for LDRV_PROC. 

 

Figure 4. LDRV_PROC State Transition Diagram 

Idle 

Started 

Stopped 

Loaded 

Unknown (error) 

Reset 

Error 

Error 

Error 

Error 

Error 

_Initialize 

_Write 
_Idle/_Finalize 

_Start 

_Start 

_Stop 

_Idle/_Finalize 

_Idle/_Finalize 

_Idle/_Finalize 

_Write 

_Write 

_Write 

_xxxx symbolizes a 

function call to 

LDRV_PROC_xxxx 
function 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 23 of 93  Version 1.20       

6.3 API Definition 

6.3.1 LDRV_PROC_Initialize 

This function sets up the peripherals required to make the target DSP reachable from 

the GPP. This function also calls the initialize function exported by the corresponding 

the DSP subcomponent. The target DSP is in the RESET state after successful 
completion of this function. 

Syntax 
DSP_STATUS LDRV_PROC_Initialize (ProcessorId dspId)  

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP to initialize 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EFAIL General error from the GPP OS 

Comments 

None. 

Constraints 

LDRV_Initialize () must be called before calling this function. 

See Also 
LDRV_PROC_Finalize 

6.3.2 LDRV_PROC_Finalize 

This function releases the communication between the GPP and the target DSP. This 

design ensures that the DSP is in RESET state after successful completion of this 
function. This behavior may be customized depending upon the application needs. 

Syntax 
DSP_STATUS LDRV_PROC_Finalize (ProcessorId dspId); 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP to finalize 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EFAIL General error from the GPP OS 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 24 of 93  Version 1.20       

Comments 

None. 

Constraints 

LDRV_Initialize () must be called before calling this function. 

The DSP must not be in the Error  state. 

See Also 
LDRV_PROC_Initialize 

6.3.3 LDRV_PROC_Start 

This function starts the DSP run from the specified address. The target DSP is in the 

STARTED state after successful completion of this function.  

Communication between the GPP and the target DSP may require handshake over 

certain physical links before any data transfer can happen. This function initiates the 

handshake process. 

Syntax 
DSP_STATUS LDRV_PROC_Start (ProcessorId dspId, Uint 32 dspAddr) 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP to start 

IN Uint32 dspAddr 

 
Address to start execution on the DSP 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EFAIL General error from the GPP OS 

DSP_EWRONGSTATE Operation performed in wrong state. 

Comments 

None. 

Constraints 

LDRV_Initialize () must be called before calling this function. 

The DSP must be either in the Loaded  or in the Stopped  state. 

See Also 
LDRV_PROC_Stop 

6.3.4 LDRV_PROC_Stop 

This function stops the DSP execution. The target DSP is in the STOPPED state after 
successful completion of this function. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 25 of 93  Version 1.20       

Syntax 
DSP_STATUS LDRV_PROC_Stop (ProcessorId dspId) 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP to stop 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EFAIL General error from the GPP OS 

DSP_EWRONGSTATE Operation performed in wrong state. 

Comments 

None. 

Constraints 

LDRV_Initialize () must be called before calling this function. 

The DSP must be either in the Started  or in the Stopped  state. 

See Also 
LDRV_PROC_Start 

6.3.5 LDRV_PROC_Idle 

This function puts the DSP in idle mode. On successful execution of this function, the 

DSP is running the IDLE code. 

Syntax 
DSP_STATUS LDRV_PROC_Idle (ProcessorId dspId) 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP to idle 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EFAIL General error from the GPP OS 

DSP_EWRONGSTATE Operation performed in wrong state. 

Comments 

None. 

Constraints 

LDRV_Initialize () must be called before calling this function. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 26 of 93  Version 1.20       

The DSP must not be in the Error  state. 

See Also 
LDRV_PROC_Initialize 
LDRV_PROC_Finalize 

6.3.6 LDRV_PROC_Read 

This function reads specified number of bytes from the DSP memory space in a given 

buffer. 

Syntax 
DSP_STATUS LDRV_PROC_Read (ProcessorId   dspId, 
                           Uint32        dspAddr, 
                           Endianism     endianInfo , 
                           Uint32 *      numBytes, 
                           Uint8 *       buffer) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN Uint32 dspAddr 

 
Address from where to read 

IN Endianism endianInfo 

 
Specifies endianism attribute of the target memory 

IN Uint32 * numBytes 

 
Number of bytes to read 

OUT Uint8 * buffer 

 
Buffer to store the read data 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EFAIL General error from the GPP OS 

DSP_EWRONGSTATE Operation performed in wrong state 

Comments 

None. 

Constraints 

LDRV_Initialize () must be called before calling this function. 

The DSP must not be in the Error  state. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 27 of 93  Version 1.20       

See Also 
LDRV_PROC_Initialize 
LDRV_PROC_Write 

6.3.7 LDRV_PROC_Write 

This function writes specified number of bytes to the DSP memory space from a 

given buffer. 

Syntax 
DSP_STATUS LDRV_PROC_Write (ProcessorId    dspId, 
                            Uint32         dspAddr,  
                            Endianism      endianIn fo, 
                            Uint32         numBytes , 
                            Uint8 *        buffer) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN Uint32 dspAddr 

 
Address to which we need to write 

IN Endianism endianInfo 

 
Specifies endianism attribute of the target memory 

IN Uint32 numBytes 

 
Number of bytes to write 

IN Uint 8 * buffer 

 
Buffer containing data to write 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EFAIL General error from the GPP OS 

DSP_EWRONGSTATE Operation performed in wrong state 

Comments 

None. 

Constraints 

LDRV_Initialize () must be called before calling this function. 

The DSP must not be in the Error  state. 

See Also 
LDRV_PROC_Initialize 
LDRV_PROC_Read 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 28 of 93  Version 1.20       

6.3.8 LDRV_PROC_GetState 

This function gets the current state of the DSP. 

Syntax 
DSP_STATUS LDRV_PROC_GetState (ProcessorId  dspId, 
                               ProcState *  procSta te) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

OUT ProcState * procState 

 
OUT argument to return the current state of the DSP 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EFAIL General error from the GPP OS 

Comments 

The state of the DSP is maintained locally by this subcomponent. 

Constraints 

LDRV_Initialize () must be called before calling this function. 

The DSP must not be in the Error  state. 

See Also 
LDRV_PROC_Initialize 
LDRV_PROC_Finalize 
LDRV_PROC_Idle 
LDRV_PROC_Start 
LDRV_PROC_Stop 

6.3.9 LDRV_PROC_SetState 

Sets the current state of processor to the specified state. 

Syntax 
DSP_STATUS LDRV_PROC_SetState (ProcessorId  dspId, 
                               ProcState    procSta te) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN ProcState procState 

 
The new state of the DSP 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 29 of 93  Version 1.20       

Return Values 

DSP_SOK Operation completed successfully 

DSP_EFAIL General error from the GPP OS 

Comments 

The state of the DSP is maintained locally by this subcomponent. 

Constraints 

LDRV_Initialize () must be called before calling this function. 

See Also 
LDRV_PROC_Initialize 
LDRV_PROC_Finalize 
LDRV_PROC_Idle 
LDRV_PROC_Start 
LDRV_PROC_Stop 

6.3.10 LDRV_PROC_Control 

Provides a hook to perform device dependent control operations. 

Syntax 
DSP_STATUS LDRV_PROC_Control (ProcessorId dspId, 
                              Int32       cmd, 
                              Pvoid       arg) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN Int32 cmd 

 
Command identifier. 

IN Pvoid Arg 

 
Optional argument 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid argument 

Comments 

None. 

Constraints 

LDRV_Initialize () must be called before calling this function. 

The DSP must not be in the Error  state. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 30 of 93  Version 1.20       

See Also 
None. 

6.3.11 LDRV_PROC_Debug 

This is a debug mode function. It prints the debug information of the specified DSP. 

Syntax 
Void LDRV_PROC_Debug (IN ProcessorId procId) 

Arguments 

IN ProcessorId procId 

 
Identifier for the target DSP 

Return Values 

None. 

Comments 

None. 

Constraints 

None. 

See Also 
None. 

6.3.12 LDRV_PROC_Instrument 

This function is defined only if profiling is enabled. It returns the statistics 

information (instrumentation data) of the specified DSP. 

Syntax 
DSP_STATUS LDRV_PROC_Instrument (ProcessorId      p rocId, 
                                 ProcInstrument * r etVal) 

Arguments 

IN ProcessorId procId 

 
Identifier for the target DSP 

IN ProcInstrument * retVal 

 
OUT argument to contain the instrumentation information 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid argument 

Comments 

None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 31 of 93  Version 1.20       

Constraints 

retVal  must be a valid pointer. 

See Also 
None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 32 of 93  Version 1.20       

7 LDRV_CHNL 
This subcomponent provides buffer management services for all logical channels in 

DSP/BIOS™ LINK 

7.1 Dependencies 

7.1.1 Subordinates 
LDRV_IO 

7.1.2 Preconditions 

The CHNL subcomponent in PMGR must validate all data before passing it to 

LDRV_CHNL. LDRV_CHNL does not perform a runtime check on the function arguments 
and assumes runtime validation of arguments by calling the functions. 

7.2 Description 
It creates three different queues to manage the data buffers. A queue of: 

1. Free buffers 

2. Buffers on which data transfer is requested, and, 

3. Buffers on which data transfer has been completed or cancelled. 

It also provides APIs for use by CHNL (of PMGR) subcomponent to perform data 

transfer between the GPP and the DSP. These APIs work in conjunction with the 

LDRV_DATA subcomponent. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 33 of 93  Version 1.20       

7.3 Constants and Enumerations 

7.3.1 IO Completion State flags. 

Status of I/O completion 

Definition 
#define LDRV_CHNL_IOCSTATE_COMPLETE     0x0000 
#define LDRV_CHNL_IOCSTATE_CANCELED     0x0002 
#define LDRV_CHNL_IOCSTATE_TIMEOUT      0x0008 
#define LDRV_CHNL_IOCSTATE_EOS          0x8000 

Comments 

LDRV_CHNL_IOCSTATE_COMPLETE: IO Completed  

LDRV_CHNL_IOCSTATE_CANCELED: IO was cancelled 

LDRV_CHNL_IOCSTATE_TIMEOUT: Wait for IOC timed out  

LDRV_CHNL_IOCSTATE_EOS: End Of Stream reached  

Constraints 

None. 

See Also 
None. 

7.3.2 ChannelState 

Channel State type 

Definition 
typedef enum  { 
    ChannelState_Ready  = 0x01, 
    ChannelState_Idled  = 0x02, 
    ChannelState_EOS    = 0x04, 
    ChannelState_Closed = 0x08 
} ChannelState ; 

Fields 

ChannelState_Ready Indicates channel is ready. 

ChannelState_Idled Indicates channel is idled. 

ChannelState_EOS Indicates channel is in End of Stream state. 

ChannelState_Closed Indicates channel is in closed state. 

Comments 

None. 

Constraints 

None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 34 of 93  Version 1.20       

See Also 
None. 

7.3.3 IOState 

Completion state of IO on a channel 

Definition 
typedef enum  { 
    IOState_Completed    = 1, 
    IOState_NotCompleted = 2 
} IOState ; 

Fields 

IOState_Completed Indicates completion of IO for an IO request on a 

channel. 

IOState_NotCompleted Indicates non-completion of IO for an IO request on a 

channel. 

Comments 

None. 

Constraints 

None. 

See Also 
None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 35 of 93  Version 1.20       

7.4 Typedefs and Data Structures 

7.4.1 LDRVChnlObject 

This structure defines the channel object maintained for every channel opened on a 

per DSP basis. 

Definition 
typedef struct LDRVChnlObject_tag { 
    Uint32          signature     ; 
    Uint32          bufSize       ; 
    ChannelState    chnlState     ; 
    List *          freeList      ; 
    List *          requestList   ; 
    List *          completedList ; 
    ChannelAttrs    attrs         ; 
    SyncEvObject *  syncEvent     ; 
    SyncEvObject *  chnlIdleSync  ; 
} LDRVChnlObject ; 

Fields 

signature Signature of object 

bufSize Size of buffers on this channel. 

chnlState State of the channel 

freeList List for free channel IO request packets (CHIRP) 

requestList List for requested CHIRPs 

completedList List for completed CHIRPs 

attrs Attributes of this CHIRPs 

syncEvent Event to signal when some IO is completed or cancelled for 

this channel 

chnlIdleSync Event to signal when channel has no more pending IO 

requests. 

Comments 

None. 

See Also 
ChannelAttrs 
LDRVChnlIRP 
LDRVChnlIOInfo 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 36 of 93  Version 1.20       

7.4.2 LDRVChnlIRP 

This structure encapsulates information associated with an IO buffer. 

Definition 
typedef struct LDRVChnlIRP_tag { 
    ListElement         link          ; 
    Uint32              buffer        ; 
    Uint32              arg           ; 
    Uint32              size          ; 
    Uint32              iocStatus     ; 
    ChannelId           chnlId        ; 
} LDRVChnlIRP ; 

Fields 

link List element header needed for this structure 

buffer Buffer to fill/empty 

arg Issue reclaim argument 

size Buffer length 

iocStatus Status of IO completion 

chnlId Channel ID 

Comments 

None. 

See Also 
LDRVChnlObject 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 37 of 93  Version 1.20       

7.4.3 LDRVChnlIOInfo 

This structure encapsulates information about a data transfer buffer. 

Definition 
typedef struct LDRVChnlIOInfo_tag { 
    Pvoid               buffer            ; 
    Uint32              size              ; 
    Uint32              arg               ; 
    IOState             completionStatus  ; 
} LDRVChnlIOInfo ; 

Fields 

buffer Pointer to the data buffer 

size Size of the data buffer 

arg Argument to send or received together with the data buffer 

completionStatus Completion status of this IO request 

Comments 

None. 

See Also 
LDRVChnlObject 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 38 of 93  Version 1.20       

7.5 API Definition 

7.5.1 LDRV_CHNL_Initialize 

This function allocates and initializes the resources required by this module. It also 

initializes the data driver for the specific physical link by calling 

LDRV_DATA_Initialize () . 

Syntax 
DSP_STATUS  LDRV_CHNL_Initialize (ProcessorId procI d) 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Memory error occurred 

DSP_EFAIL General error from the GPP OS 

Comments 

None. 

Constraints 

procId  must be valid. 

See Also 
LDRV_CHNL_Finalize 
LDRV_CHNL_Open 

7.5.2 LDRV_CHNL_Finalize 

This function closes all open channels (if any). It then closes the data driver for the 

specific physical link by calling LDRV_DATA_Finalize ().  

Syntax 
DSP_STATUS LDRV_CHNL_Finalize (ProcessorId procId) 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Memory error occurred 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 39 of 93  Version 1.20       

DSP_EFAIL General failure 

Comments 

None. 

Constraints 

procId  must be valid. 

See Also 
LDRV_CHNL_Initialize 

7.5.3 LDRV_CHNL_Open 

This function prepares the specified channel for data transfer. It creates the three 

required queues for buffer management on the channel. It also creates the SYNC 

objects required for waiting on a pending data transfer request. 

Syntax 
DSP_STATUS LDRV_CHNL_Open (ProcessorId      procId,  
                           ChannelId        chnlId,  
                           ChannelAttrs *   attrs) ; 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel to open 

IN ChannelAttrs * attrs 

 
Channel attributes 

Return Value 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Memory error occurred 

DSP_EFAIL General error from the GPP OS 

CHNL_E_BUSY Channel already in use. 

Comments 

None. 

Constraints 

procId  must be valid. 

chnlId  must be valid. 

attrs  must be a valid pointer. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 40 of 93  Version 1.20       

See Also 
LDRV_CHNL_Initialize 

7.5.4 LDRV_CHNL_Close 

This function closes the specified channel. It frees all the resources allocated earlier 

in the call to LDRV_CHNL_Open () . 

Once a channel is closed, no further IO can be performed on it, unless it is opened 

again. 

Syntax 
DSP_STATUS LDRV_CHNL_Close (ProcessorId  procId, 
                            ChannelId    chnlId) ; 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Channel to close 

Return Value 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Memory error occurred 

DSP_EFAIL General error from the GPP OS 

Comments 

None. 

Constraints 

procId  must be valid. 

chnlId  must be valid. 

See Also 
LDRV_CHNL_Initialize 
LDRV_CHNL_Open 

7.5.5 LDRV_CHNL_AllocateBuffer 

This function allocates an array of buffers of specified size and returns them to the 

client. The pool configured for usage by the data driver is used for allocating the data 

buffers. 

Syntax 
DSP_STATUS LDRV_CHNL_AllocateBuffer (IN  ProcessorI d procId, 
                                     IN  ChannelId   chnlId, 
                                     OUT Char8 **    bufArray, 
                                     IN  Uint32      size, 
                                     IN  Uint32      numBufs) ; 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 41 of 93  Version 1.20       

Arguments 

IN ProcessorId procId 

 
Processor Identifier. 

IN ChannelId chnlId 

 
Channel Identifier. 

OUT Char8 ** bufArray 

 
Pointer to receive array of allocated buffers. 

IN Uint32 size 

 
Size of each buffer. 

IN Uint32 numBufs 

 
Number of buffers to allocate. 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Memory error occurred 

DSP_EFAIL General error from the GPP OS 

Comments 

None. 

Constraints 

Processor and channel ids must be valid. 

bufArray  must be valid. 

numBufs  must be less than maximum limit. 

See Also 
LDRV_CHNL_Initialize 
LDRV_CHNL_FreeBuffer 

7.5.6 LDRV_CHNL_FreeBuffer 

This function frees buffer(s) allocated by LDRV_CHNL_AllocateBuffer () . The pool 

configured for usage by the data driver is used for freeing the data buffers. 

Syntax 
DSP_STATUS LDRV_CHNL_FreeBuffer (IN ProcessorId pro cId, 
                                 IN ChannelId   chn lId, 
                                 IN Char8 **    buf Array, 
                                 IN Uint32      num Bufs) ; 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 42 of 93  Version 1.20       

Arguments 

IN ProcessorId procId 

 
Processor Identifier. 

IN ChannelId chnlId 

 
Channel Identifier. 

IN Char8 ** bufArray 

 
Pointer to array of buffers to be freed. 

IN Uint32 numBufs 

 
Number of buffers to be freed. 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Memory error occurred 

DSP_EFAIL General error from the GPP OS 

Comments 

None. 

Constraints 

Processor and channel ids must be valid. 

bufArray  must be valid. 

numBufs  must be less than maximum limit. 

See Also 
LDRV_CHNL_Initialize 
LDRV_CHNL_AllocateBuffer 

7.5.7 LDRV_CHNL_AddIORequest 

This function adds an IO request on a channel. An IO request may be a request for 

transferring a buffer from the GPP to DSP or from the DSP to GPP. The attributes 

specified while creating the channel determines the direction of the data transfer. 

Syntax 
DSP_STATUS LDRV_CHNL_AddIORequest (ProcessorId      procId, 
                                   ChannelId        chnlId, 
                                   LDRVChnlIOInfo *  ioInfo) 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 43 of 93  Version 1.20       

IN ChannelId chnlId 

 
Channel to send/receive data 

IN LDRVChnlIOInfo * ioInfo 

 
The IOInfo structure containing information regarding the IO request 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Memory error occurred 

DSP_EFAIL General error from the GPP OS 

CHNL_E_EOS Channel is in EOS (End of Stream) state. 

CHNL_E_NOIRPS No more IO could be accepted because maximum limit of 

pending IO request has reached 

Comments 

None. 

Constraints 

procId  must be valid. 

ChnlId  must be valid. 

IoInfo  must be a valid pointer. 

See Also 
LDRVChnlIOInfo 
LDRV_CHNL_GetIOCompletion 

7.5.8 LDRV_CHNL_GetIOCompletion 

This function gets a buffer on which IO is complete. It waits for a specified amount of 

time, if required and specified, for an IO completion event on a channel. On 

successful completion, the function returns a buffer to the caller. The contents of the 

buffer depend on the direction of channel.  

For an input channel, the buffer contains valid data as received from the DSP and for 

an output channel, the buffer is an empty buffer that was earlier used to send data 

to the DSP. 

Syntax 
DSP_STATUS LDRV_CHNL_GetIOCompletion (ProcessorId      procId, 
                                      ChannelId        chnlId, 
                                      Uint32           timeout, 
                                      LDRVChnlIOInf o * ioInfo) ; 

Arguments 

IN ProcessorId procId 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 44 of 93  Version 1.20       

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Channel on which to send/receive data 

IN Uint32 timeout 

 
Timeout value 

OUT LDRVChnlIOInfo * ioInfo 

 
Structure containing the OUT buffer pointer and also any values 

associated with the buffer 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Memory error occurred 

DSP_EFAIL General error from the GPP OS 

DSP_ETIMEOUT Timout occurred while performing the operation. 

CHNL_E_NOIOC Timeout parameter was "NO_WAIT", yet no I/O completions 

were queued. 

Comments 

None. 

Constraints 

procId  must be valid. 

chnlId  must be valid. 

ioInfo  must be a valid pointer. 

See Also 
LDRVChnlIOInfo 
LDRV_CHNL_AddIORequest 
LDRV_CHNL_AddIOCompletion 

7.5.9 LDRV_CHNL_AddIOCompletion 

This function performs the required operations for completing an IO operation on a 

CHIRP. 

Syntax 
DSP_STATUS LDRV_CHNL_AddIOCompletion (ProcessorId   procId, 
                                      ChannelId     chnlId, 
                                      LDRVChnlIRP *  chirp) ; 

Arguments 

IN ProcessorId procId 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 45 of 93  Version 1.20       

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

IN LDRVChnlIRP * chirp 

 
The IO request packet on which IO is complete 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EFAIL General error from the GPP OS 

Comments 

This function adds the specified CHIRP to the queue containing CHIRPs on which IO 

is complete. 

Constraints 

procId  must be valid. 

chnlId  must be valid. 

chirp  must be a valid pointer. 

See Also 
None. 

7.5.10 LDRV_CHNL_Idle 

In case of input mode channel this function discards all pending input requests from 

the channel. In case of output mode channel, action of this function depends upon 

the flush parameter and is as follows: 

� If flush is TRUE this function blocks till all output buffers are transferred to the 

DSP. 

� If flush is FALSE this function discards all the output requests pending on this 

channel without blocking. 

Syntax 
DSP_STATUS  LDRV_CHNL_Idle (ProcessorId  procId, 
                            ChannelId    chnlId, 
                            Bool         flush) ; 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Channel on which to cancel IO 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 46 of 93  Version 1.20       

IN Bool flush 

 
This parameter tells whether to block or not on output mode channels. 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EFAIL General error from the GPP OS 

DSP_EMEMORY Memory error occurred 

Comments 

None. 

Constraints 

procId  must be valid. 

chnlId  must be valid. 

See Also 
LDRV_CHNL_AddIORequest 
LDRV_CHNL_GetIOCompletion 

7.5.11 LDRV_CHNL_Control 

Provides a hook to perform device dependent control operations on channels. 

Syntax 
DSP_STATUS LDRV_CHNL_Control (ProcessorId  procId, 
                              ChannelId    chnlId, 
                              Int32        cmd,  
                              Pvoid        arg) ; 

Arguments 

IN ProcessorId procId 

 
Processor Identifier 

IN ChannelId chnlId 

 
Channel Identifier 

IN Int32 cmd 

 
Command id. 

IN Pvoid arg 

 
Optional argument 

Return Values 

DSP_SOK Operation completed successfully 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 47 of 93  Version 1.20       

DSP_ENOTIMPL Functionality not implemented 

Comments 

This function provides a hook to perform the device dependent control operations on 

channels. Not implemented in current implementation 

Constraints 

None. 

See Also 
LDRV_CHNL_Initialize 

7.5.12 LDRV_CHNL_GetChannelMode 

This function gets the mode of the channel (Input or Output). 

Syntax 
ChannelMode LDRV_CHNL_GetChannelMode (ProcessorId   procId, 
                                      ChannelId     chnlId) ; 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

Return Values 

ChannelMode_Input The channel is an input channel. 

ChannelMode_Output  The channel is an output channel. 

Comments 

None. 

Constraints 

procId  must be valid. 

chnlId  must be valid. 

See Also 

None. 

7.5.13 LDRV_CHNL_GetChannelState 

This function gets the current state of the channel. 

Syntax 
ChannelState LDRV_CHNL_GetChannelState (ProcessorId    procId, 
                                        ChannelId     chnlId) ; 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 48 of 93  Version 1.20       

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

Return Value 

The current state of the channel 

Comments 

None. 

Constraints 

procId  must be valid. 

chnlId  must be valid. 

See Also 

None. 

7.5.14 LDRV_CHNL_SetChannelState 

This function sets the channel’s state. 

Syntax 
Void LDRV_CHNL_SetChannelState (ProcessorId   procI d, 
                                ChannelId     chnlI d, 
                                ChannelState  state ) ; 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

IN ChannelState state 

 
New state of the channel. 

Return Value 

None. 

Comments 

None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 49 of 93  Version 1.20       

Constraints 

procId  must be valid. 

chnlId  must be valid. 

See Also 

None. 

7.5.15 LDRV_CHNL_GetChannelEndianism 

This function gets the data endianism associated with a channel. 

Syntax 
Endianism LDRV_CHNL_GetChannelEndianism (ProcessorI d   procId, 
                                         ChannelId     chnlId) ; 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

Return Value 

The endianism associated with the specified channel. 

Comments 

None. 

Constraints 

procId  must be valid. 

chnlId  must be valid. 

See Also 

None. 

7.5.16 LDRV_CHNL_HasMoreChirps 

This function returns TRUE if the channel has more chirps in the IO request queue. 

Syntax 
Bool LDRV_CHNL_HasMoreChirps (ProcessorId   procId,  
                              ChannelId     chnlId)  ; 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

IN ChannelId chnlId 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 50 of 93  Version 1.20       

 
Identifier for the channel 

Return Values 

TRUE The channel has more request CHIRPs. 

FALSE The requested queue in the channel is empty. 

Comments 

None. 

Constraints 

procId  must be valid. 

chnlId  must be valid. 

See Also 

None. 

7.5.17 LDRV_CHNL_NextRequestChirp 

This function returns a pointer to a CHIRP from the request queue of a channel 

without removing it from the queue. 

Syntax 
LDRVChnlIRP * LDRV_CHNL_NextRequestChirp (Processor Id   procId, 
                                          ChannelId      chnlId) ; 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

Return Values 

NULL If the request list is empty 

Non-NULL Pointer to a CHIRP from the request queue 

Comments 

None. 

Constraints 

procId  must be valid. 

chnlId  must be valid. 

See Also 

None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 51 of 93  Version 1.20       

7.5.18 LDRV_CHNL_GetRequestChirp 

This function returns a pointer to a CHIRP from the request queue of a channel and 

removes it from the queue. 

Syntax 
LDRVChnlIRP * LDRV_CHNL_GetRequestChirp (IN Process orId   procId, 
                                         IN Channel Id     chnlId) ; 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

Return Values 

NULL If the request list is empty 

Non-NULL Pointer to a CHIRP from the request queue 

Comments 

None. 

Constraints 

procId  must be valid. 

chnlId  must be valid. 

See Also 

None. 

7.5.19 LDRV_CHNL_Debug 

This is a debug mode function. It prints the debug information of the specified 

channel. 

Syntax 
Void LDRV_CHNL_Debug (ProcessorId procId, ChannelId  chnlId) ; 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

Return Value 

None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 52 of 93  Version 1.20       

Comments 

None. 

Constraints 

procId  must be valid. 

chnlId  must be valid. 

See Also 

None. 

7.5.20 LDRV_CHNL_Instrument 

This function is defined only if profiling is enabled. It returns the statistics 

information (instrumentation data) of the specified channel. 

Syntax 
DSP_STATUS LDRV_CHNL_Instrument (ProcessorId       procId, 
                                 ChannelId         chnlId, , 
                                 ChnlInstrument *  retVal) 

Arguments 

IN ProcessorId procId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

OUT ChnlInstrument * retVal 

 
OUT argument to contain the instrumentation information. 

Return Value 

DSP_SOK Operation successfully completed. 

DSP_SOK retVal is invalid. 

Comments 

None. 

Constraints 

procId  must be valid. 

chnlId  must be valid. 

retVal  must be valid. 

See Also 

None.  



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 53 of 93  Version 1.20       

8 LDRV_MSGQ 
This subcomponent provides functions to transfer messages between the GPP and 

the DSP. 

8.1 Dependencies 

8.1.1 Subordinates 

The MQT subcomponent is used by this subcomponent for interacting with the DSP. 

The POOL subcomponent is used for allocating and freeing messages to be 

transferred between the processors. 

8.2 Description 
This subcomponent provides functions to transfer messages between the GPP and 

the DSP. It maintains the local message queues and provides the functionality for 

locating & releasing the local message queues, and sending & receiving messages to 

& from them. It passes all the requests to the actual MQT for the physical link, using 

its function pointer interface exported by the MQT. 

Usage of function pointer interface ensures that multiple MQTs can be easily plugged 

into the system. 

The configuration is used to determine the MQT to be used. 

The design of the MSGQ component is provided within the Messaging Design 

document [Ref. 2]. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 54 of 93  Version 1.20       

9 LDRV_DATA 
This subcomponent acts as glue between the LDRV_CHNL and the data driver(s) for 

the physical link. 

9.1 Dependencies 

9.1.1 Subordinates 

The DSP subcomponent is used by this subcomponent for interacting with the DSP. 

9.2 Description 
This subcomponent provides the logical data transfer services to LDRV_CHNL. It 

passes all the requests to the actual data driver for the physical link, using its 

function pointer interface exported by the data driver(s). 

Usage of function pointer interface ensures that multiple data drivers can be easily 

plugged into the system. 

To determine the data driver to be used, it maintains a map between channel ID and 

the data driver ID. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 55 of 93  Version 1.20       

9.3 API Definition 

9.3.1 LDRV_DATA_Initialize 

This function initializes the resources required by this module. It also calls the 

function initialize from the function pointer interface exported by all data drivers 

attached to the specified DSP. 

Syntax 
DSP_STATUS LDRV_DATA_Initialize (IN ProcessorId dsp Id) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Out of memory 

DSP_EFAIL General failure returned from GPP OS 

Comments 

None. 

Constraints 

LDRV_Initialize ()  must be called before this function. 

See Also 
LDRV_Initialize 
LDRV_DATA_Finalize 

9.3.2 LDRV_DATA_Finalize 

This function releases the resources required by this module. It also calls the 

function finalize from the function pointer interface exported by all data drivers 

attached to the specified DSP. 

Syntax 
DSP_STATUS LDRV_DATA_Finalize (IN ProcessorId dspId ) ; 

Arguments 

IN ProcessorId dspId 

 
DSP ID of DSP for which the finalization must be performed 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Out of memory 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 56 of 93  Version 1.20       

DSP_EFAIL General failure returned from GPP OS 

Comments 

None. 

Constraints 

LDRV_Initialize ()  must be called before this function. 

See Also 
LDRV_Initialize 
LDRV_DATA_Initialize 

9.3.3 LDRV_DATA_OpenChannel 

This function opens the physical channel corresponding to the specified logical 

channel by calling the function openChannel from corresponding data driver’s 

function pointer interface. 

Syntax 
DSP_STATUS LDRV_DATA_OpenChannel (ProcessorId dspId , 
                                  ChannelId   chnlI d) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Out of memory 

DSP_EFAIL General failure returned from GPP OS 

Comments 

None. 

Constraints 

LDRV_Initialize ()  must be called before this function. 

See Also 
LDRV_Initialize 
LDRV_DATA_CloseChannel 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 57 of 93  Version 1.20       

9.3.4 LDRV_DATA_CloseChannel 

This function closes the physical channel corresponding to the specified logical 

channel by calling the function closeChannel from corresponding link driver’s function 

pointer interface. 

Syntax 
DSP_STATUS LDRV_DATA_CloseChannel (ProcessorId dspI d, 
                                   ChannelId   chnl Id) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Out of memory 

DSP_EFAIL General failure returned from GPP OS 

Comments 

None. 

Constraints 

LDRV_Initialize ()  must be called before this function. 

See Also 
LDRV_Initialize 
LDRV_DATA_OpenChannel 

9.3.5 LDRV_DATA_AllocateBuffer 

This function allocates an array of buffers of specified size and returns them to the 

client. The pool configured for usage by the data driver is used for allocating the data 

buffers. 

Syntax 
DSP_STATUS LDRV_DATA_AllocateBuffer (IN  ProcessorI d procId, 
                                     IN  ChannelId   chnlId, 
                                     OUT Char8 **    bufArray, 
                                     IN  Uint32      size, 
                                     IN  Uint32      numBufs) ; 

Arguments 

IN ProcessorId procId 

 
Processor Identifier. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 58 of 93  Version 1.20       

IN ChannelId chnlId 

 
Channel Identifier. 

OUT Char8 ** bufArray 

 
Pointer to receive array of allocated buffers. 

IN Uint32 size 

 
Size of each buffer. 

IN Uint32 numBufs 

 
Number of buffers to allocate. 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Memory error occurred 

DSP_EFAIL General error from the GPP OS 

Comments 

None. 

Constraints 

Processor and channel ids must be valid. 

bufArray  must be valid. 

numBufs  must be less than maximum limit. 

See Also 
LDRV_DATA_Initialize 
LDRV_DATA_FreeBuffer 

9.3.6 LDRV_CHNL_FreeBuffer 

This function frees buffer(s) allocated by LDRV_DATA_AllocateBuffer () . The pool 

configured for usage by the data driver is used for freeing the data buffers. 

Syntax 
DSP_STATUS LDRV_DATA_FreeBuffer (IN ProcessorId pro cId, 
                                 IN ChannelId   chn lId, 
                                 IN Char8 **    buf Array, 
                                 IN Uint32      num Bufs) ; 

Arguments 

IN ProcessorId procId 

 
Processor Identifier. 

IN ChannelId chnlId 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 59 of 93  Version 1.20       

 
Channel Identifier. 

IN Char8 ** bufArray 

 
Pointer to array of buffers to be freed. 

IN Uint32 numBufs 

 
Number of buffers to be freed. 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Memory error occurred 

DSP_EFAIL General error from the GPP OS 

Comments 

None. 

Constraints 

Processor and channel ids must be valid. 

bufArray  must be valid. 

numBufs  must be less than maximum limit. 

See Also 
LDRV_DATA_Initialize 
LDRV_DATA_AllocateBuffer 

9.3.7 LDRV_DATA_Request 

This function sends an IO request on specified channel by calling the function 

ioRequest from corresponding data driver’s function pointer interface. 

Syntax 
DSP_STATUS LDRV_DATA_Request (ProcessorId dspId, Ch annelId chnlId) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Out of memory 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 60 of 93  Version 1.20       

DSP_EFAIL General failure returned from GPP OS 

Comments 

None. 

Constraints 

LDRV_Initialize ()  must be called before this function. 

See Also 
LDRV_Initialize 

9.3.8 LDRV_DATA_Cancel 

This function cancels pending IO on a channel by calling the function cancelIO from 

corresponding data driver’s function pointer interface. 

Syntax 
DSP_STATUS LDRV_DATA_Cancel (ProcessorId dspId, Cha nnelId chnlId) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Out of memory 

DSP_EFAIL General failure returned from GPP OS 

Comments 

None. 

Constraints 

LDRV_Initialize ()  must be called before this function. 

See Also 
LDRV_Initialize 

9.3.9 LDRV_DATA_Cancel 

This function cancels pending IO on a channel by calling the function cancelIO from 

corresponding data driver’s function pointer interface. 

Syntax 
DSP_STATUS LDRV_DATA_GetPoolId (ProcessorId    dspI d, 
                                ChannelId      chnl Id, 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 61 of 93  Version 1.20       

                                Uint32 *       pool Id) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN ChannelId chnlId 

 
Identifier for the channel 

OUT Uint32 * poolId 

 
Placeholder for returning the pool ID. 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EFAIL General failure returned from GPP OS 

Comments 

None. 

Constraints 

LDRV_Initialize ()  must be called before this function. 

See Also 
LDRV_Initialize 

9.3.10 LDRV_DATA_Debug 

This is a debug mode function. It prints the debug information for the data driver(s) 

towards specified target DSP. 

Syntax 
Void LDRV_DATA_Debug (IN  ProcessorId  dspId) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

Return Values 

None. 

Comments 

None. 

Constraints 

dspId  must be valid. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 62 of 93  Version 1.20       

See Also 
None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 63 of 93  Version 1.20       

10 LDRV_DRV 
This subcomponent encapsulates low-level driver synchronization between the GPP 

and the DSP over a physical link.  

10.1 Dependencies 

10.1.1 Subordinates 

The DSP subcomponent is used by this subcomponent for interacting with the DSP. 

10.2 Description 
This subcomponent provides the driver initialization and synchronization services to 

LDRV_PROC. It passes all the requests to the actual link driver for the physical link, 

using its function pointer interface exported by the link driver. 

Usage of function pointer interface ensures that multiple link drivers can be easily 

plugged into the system. 

It determines the link driver to be used for each DSP through information obtained 

from the configuration. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 64 of 93  Version 1.20       

10.3 Constants and Enumerations 

10.3.1 DrvHandshake 

Defines the types of handshake control actions. 

Definition 
typedef enum { 
    DrvHandshakeSetup = 0, 
    DrvHandshakeStart = 1, 
    DrvHandshakeCompl = 2 
} DrvHandshake ; 

Fields 

DrvHandshakeSetup Setup the handshaking between the processors. 

DrvHandshakeStart Start the handshake process with the remote processor. 

DrvHandshakeCompl Complete the handshaking with the remote processor. 

Comments 

None. 

Constraints 

None. 

See Also 
None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 65 of 93  Version 1.20       

10.4 Typedefs and Structures 

10.4.1 LinkInterface 

This structure defines the interface functions exported by the Link Driver. 

Definition 
struct LinkInterface_tag { 
    FnLinkInitialize    initialize ; 
    FnLinkFinalize      finalize ; 
    FnLinkHandshake     handshake ; 
#if defined (DDSP_DEBUG) 
    FnLinkDebug         debug ; 
#endif /* if defined (DDSP_DEBUG) */ 
} ; 
 
typedef struct LinkInterface_tag LinkInterface ; 

Fields 

initialize Function pointer to initialize  function for the Link Driver. 

finalize Function pointer to finalize  function for the Link Driver. 

handshake Function pointer to the Link Driver function to setup, start 

and complete handshake. 

debug Function pointer to the Link Driver function for printing debug 

information 

Comments 

None. 

See Also 
None. 

10.4.2 LinkObject 

Defines the link object for driver initialization and synchronization. 

Definition 
struct LinkObject_tag { 
#if defined (DDSP_DEBUG) 
    Char8           linkName [DSP_MAX_STRLEN] ; 
    Char8           abbr [DSP_MAX_STRLEN]    ; 
#endif /* if defined (DDSP_DEBUG) */ 
    LinkInterface * interface  ; 
    Uint32          memEntry   ; 
    Uint32          size       ; 
    Uint32          numIps     ; 
    Uint32          ipsTableId ; 
} ; 
 
typedef struct LinkObject_tag LinkObject ; 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 66 of 93  Version 1.20       

Fields 

linkName Name of the link. 

abbr Abbreviation of the link name. 

interface Pointer to the interface table for the link. 

memEntry ID of the LINK mem information entry in the DSP memTable. 

size Size of the memory area used by the link. 

numIps Number of IPS objects used by the link. 

ipsTableId ID of the IPS table in the link driver object. 

Comments 

None. 

See Also 
None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 67 of 93  Version 1.20       

10.5 API Definition 

10.5.1 LDRV_DRV_Initialize 

This function initializes the resources required by this module. It also calls the 

function initialize from the function pointer interface exported by the link driver 

attached to the specified DSP. 

Syntax 
DSP_STATUS LDRV_DRV_Initialize (IN ProcessorId dspI d) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Out of memory 

DSP_EFAIL General failure returned from GPP OS 

Comments 

None. 

Constraints 

LDRV_Initialize ()  must be called before this function. 

See Also 
LDRV_Initialize 
LDRV_DRV_Finalize 

10.5.2 LDRV_DRV_Finalize 

This function releases the resources required by this module. It also calls the 

function finalize from the function pointer interface exported by all the link driver 

attached to the specified DSP. 

Syntax 
DSP_STATUS LDRV_DRV_Finalize (IN ProcessorId dspId)  ; 

Arguments 

IN ProcessorId dspId 

 
DSP ID of DSP for which the finalization must be performed 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EMEMORY Out of memory 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 68 of 93  Version 1.20       

DSP_EFAIL General failure returned from GPP OS 

Comments 

None. 

Constraints 

LDRV_Initialize ()  must be called before this function. 

See Also 
LDRV_Initialize 
LDRV_DRV_Initialize 

10.5.3 LDRV_DRV_Handshake 

This function performs the necessary handshake (if required) for the link between 

the GPP and the target DSP by calling the handshake function from the 

corresponding link driver’s function pointer interface. 

Syntax 
DSP_STATUS LDRV_DRV_Handshake (ProcessorId  dspId, 
                               DrvHandshake hshkCtr l) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN DrvHandshake hshkCtrl 

 
Handshake control action to be executed. 

Return Values 

DSP_SOK Operation completed successfully 

DSP_ETIMEOUT Timed out during handshake with the DSP 

DSP_EFAIL General failure returned from GPP OS 

Comments 

None. 

Constraints 

LDRV_Initialize ()  must be called before this function. 

See Also 
LDRV_Initialize 

10.5.4 LDRV_DATA_Debug 

This is a debug mode function. It prints the debug information for the link driver 

towards specified target DSP. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 69 of 93  Version 1.20       

Syntax 
Void LDRV_DRV_Debug (IN  ProcessorId  dspId) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

Return Values 

None. 

Comments 

None. 

Constraints 

dspId  must be valid. 

See Also 
None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 70 of 93  Version 1.20       

11 DSP 
This subcomponent provides interfaces to directly control and communicate with the 

target DSP. 

11.1 Description  
This subcomponent directly interacts with the hardware and provides access to the 

target DSP. It essentially abstracts the DSP from other subcomponents in acts as an 

abstraction for the DSP. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 71 of 93  Version 1.20       

11.2 Typedefs and Structures 

11.2.1 LinkMemInfo 

This structure defines a memory information entry for the DSP. 

Definition 
typedef struct LinkMemInfo_tag { 
    Uint32  entry       ; 
    Uint32  physAddr    ; 
    Uint32  dspVirtAddr ; 
    Uint32  gppVirtAddr ; 
    Uint32  size        ; 
    Uint32  mapInGpp    ; 
} LinkMemInfo ; 

Fields 

entry Entry number for the MEM record. 

physAddr Physical address 

dspVirtAddr Virtual address in DSP address space 

gppVirtAddr Virtual address in GPP address space 

size Indicates the size of memory entry 

mapInGpp     Flag indicating whether DSP address is mapped to GPP 

address space. 

Comments 

None. 

See Also 
DspObject 

11.2.2 DspObject 

This structure defines the context under which the DSP subcomponent works. 

Definition 
struct DspObject_tag { 
#if defined (DDSP_DEBUG) 
    Char8              dspName    [DSP_MAX_STRLEN] ; 
#endif /* if defined (DDSP_DEBUG) */ 
    DspArch            dspArch                     ; 
    DspInterface *     interface                   ; 
    LoaderInterface  * loaderInterface             ; 
    Bool               autoStart                   ; 
    Char8              execName   [DSP_MAX_STRLEN] ; 
    Uint32             resetVector                 ; 
    Uint32             maduSize                    ; 
    Uint32             endian                      ; 
    Uint32             numMemEntries               ; 
    LinkMemInfo *      memTable                    ; 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 72 of 93  Version 1.20       

    Bool               wordSwap                    ; 
#if defined (CHNL_COMPONENT) || defined (MSGQ_COMPO NENT) 
    LinkObject *       linkObject                  ; 
#endif /* if defined (CHNL_COMPONENT) || defined (M SGQ_COMPONENT) */ 
#if defined (CHNL_COMPONENT) 
    Uint32             numDataDrivers              ; 
    DataObject *       dataObjects                 ; 
#endif /* if defined (CHNL_COMPONENT) */ 
#if defined (MSGQ_COMPONENT) 
    Uint32             mqtId                       ; 
#endif /* if defined (MSGQ_COMPONENT) */ 
#if defined (DDSP_PROFILE) 
    DspStats *         dspStats                    ; 
#endif /* if defined (DDSP_PROFILE) */ 
} ; 

Fields 

dspName Name of the DSP 

dspArch Architecture of the Dsp. 

interface The function pointer interface to access the services of the 

DSP subcomponent for this DSP. 

loaderInterface The function pointer interface to access the services of the 

loader subcomponent for this DSP. 

autoStart Auto start flag for the DSP. 

execName Name of default DSP executable. 

resetVector Reset vector address for the dsp. 

maduSize MADU size of the DSP. 

endian Endianism of the DSP. 

numMemEntries Number of MEM entries. 

memTable Table of MEM entries. 

wordSwap Indicates whether word-swap is enabled for the DSP MEM. 

linkObject Pointer to link object for the DSP. 

numDataDrivers Array of data driver objects supported for the DSP. 

dataObjects Number of data drivers supported for the DSP. 

mqtId ID of the MQT used by the DSP. 

dspStats Profiling information related to the target DSP. 

Comments 

None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 73 of 93  Version 1.20       

See Also 
DspInterface 
LinkMemInfo 
LinkObject 
DataObject 
DspStats 

11.2.3 DspInterface 

This structure defines the interface functions exported by the DSP subcomponent. 

Definition 
typedef struct DspInterface_tag { 
    FnDspSetup              setup            ; 
    FnDspInitialize         initialize       ; 
    FnDspFinalize           finalize         ; 
    FnDspStart              start            ; 
    FnDspStop               stop             ; 
    FnDspIdle               idle             ; 
    FnDspEnableInterrupt    enableInterrupt  ; 
    FnDspDisableInterrupt   disableInterrupt ; 
    FnDspInterrupt          dspInterrupt     ; 
    FnDspClearInterrupt     clearInterrupt   ; 
    FnDspRead               read             ; 
    FnDspWrite              write            ; 
    FnDspControl            control          ; 
#if defined (DDSP_PROFILE) 
    FnDspInstrument         instrument       ; 
#endif /* if defined (DDSP_PROFILE) */ 
#if defined (DDSP_DEBUG) 
    FnDspDebug              debug            ; 
#endif /* if defined (DDSP_DEBUG) */ 
} DspInterface ; 

Fields 

setup Function pointer to setup  function for the DSP. 

initialize Function pointer to initialize  function for the DSP. 

finalize Function pointer to finalize  function for the DSP. 

start Function pointer to start  function for the DSP. 

stop Function pointer to stop  function for the DSP. 

idle Function pointer to idle  function for the DSP. 

enableInterrupt Function pointer to enableInterrupt  function for the DSP. 

disableInterrupt Function pointer to disableInterrupt  function for the DSP. 

dspInterrupt Function pointer to dspInterrupt  function for the DSP. 

clearInterrupt Function pointer to clearInterrupt  function for the DSP. 

read Function pointer to read  function for the DSP. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 74 of 93  Version 1.20       

write Function pointer to write  function for the DSP. 

control Function pointer to control  function for the DSP. 

instrument Function pointer to instrument  function for the DSP. 

debug Function pointer to debug  function for the DSP. 

Comments 

None. 

See Also 
DspObject 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 75 of 93  Version 1.20       

11.3 API Definition 

11.3.1 DSP_Setup 

This function performs necessary operations to make the DSP reachable from the 

GPP. 

Syntax 
DSP_STATUS DSP_Setup (ProcessorId dspId, DspObject *  dspObj) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP 

Return Values 

DSP_SOK  Operation completed successfully 

DSP_EINVALIDARG Invalid dspId  or dspObj  specified 

DSP_EFAIL  General failure returned from GPP OS 

Comments 

This function initializes the necessary hardware abstraction layer. It sets up the ARM 

port interface and the DSP boot configuration. 

Constraints 

None. 

See Also 
DspObject 
DSP_Initialize 

11.3.2 DSP_Initialize 

This function resets the DSP and initializes peripherals required by the DSP (for 

example, MMU entries). 

Syntax 
DSP_STATUS DSP_Initialize (ProcessorId dspId, DspOb ject *  dspObj) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN DspObject * dspObj 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 76 of 93  Version 1.20       

 
Pointer to object containing context information for DSP 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid dspId  or dspObj  specified 

DSP_EFAIL DSP_Setup ()  was not called before calling this 

function 

Comments 

This function initializes the DSP. For example: 

1. Resets the DSP 

2. Sets up the MMU table 

3. Sets up the clock divisors. 

Constraints 

DSP_Setup ()  must be called before calling this function. 

See Also 
DspObject 
DSP_Setup 
DSP_Finalize 

11.3.3 DSP_Finalize 

This function idles the DSP. 

Syntax 
DSP_STATUS DSP_Finalize (ProcessorId dspId, DspObje ct *  dspObj) 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid dspId  or dspObj  specified 

DSP_EFAIL DSP_Setup ()  was not called before calling this 

function 

Comments 

None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 77 of 93  Version 1.20       

Constraints 

DSP_Setup ()  must be called before calling this function. 

See Also 
DspObject 
DSP_Setup 
DSP_Initialize 

11.3.4 DSP_Start 

This function starts the DSP run from the specified address. 

Syntax 
DSP_STATUS DSP_Start (ProcessorId  dspId,  
                      DspObject *  dspObj,  
                      Uint32       dspAddr) 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP 

IN Uint32 dspAddr 

 
Location to start the execution on the DSP 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid dspId  or dspObj  specified 

DSP_EFAIL DSP_Setup ()  was not called before calling this 

function 

Comments 

None. 

Constraints 

DSP_Setup ()  must be called before calling this function. 

See Also 
DspObject 
DSP_Initialize 
DSP_Stop 

11.3.5 DSP_Stop 

This function stops execution on the DSP. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 78 of 93  Version 1.20       

Syntax 
DSP_STATUS DSP_Stop (ProcessorId dspId, DspObject *   dspObj) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid dspId  or dspObj  specified 

DSP_EFAIL DSP_Setup ()  was not called before calling this 

function 

Comments 

This function configures the ARM port interface to put the DSP into a self loop and 

then puts the DSP into a self loop. 

Constraints 

DSP_Setup ()  must be called before calling this function. 

See Also 
DspObject 
DSP_Initialize 
DSP_Start 

11.3.6 DSP_Idle 

This function idles the DSP. 

Syntax 
DSP_STATUS DSP_Idle (ProcessorId dspId, DspObject *   dspObj) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid dspId  or dspObj  specified 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 79 of 93  Version 1.20       

DSP_EFAIL DSP_Setup ()  was not called before calling this 

function 

Comments 

This function writes the idle code onto the DSP and starts its execution. 

Constraints 

DSP_Setup ()  must be called before calling this function. 

See Also 
DspObject 
DSP_Setup 
DSP_Stop 

11.3.7 DSP_EnableInterrupt 

This function enables the specified interrupt for communication with DSP. 

Syntax 
DSP_STATUS DSP_EnableInterrupt (ProcessorId        dspId,  
                                DspObject *        dspObj,  
                                InterruptObject *  intInfo) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP 

IN InterruptObject * intInfo 

 
Pointer to an object containing interrupt information 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid dspId  or dspObj  specified 

DSP_EFAIL DSP_Setup ()  was not called before calling this 

function 

Comments 

None. 

Constraints 

DSP_Setup ()  must be called before calling this function. 

See Also 
DspObject 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 80 of 93  Version 1.20       

InterruptObject 
DSP_DisableInterrupt 
DSP_Interrupt 
DSP_ClearInterrupt 

11.3.8 DSP_DisableInterrupt 

This function disables the specified interrupt for communication with DSP. 

Syntax 
DSP_STATUS DSP_EnableInterrupt (ProcessorId        dspId,  
                                DspObject *        dspObj,  
                                InterruptObject *  intInfo) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP 

IN InterruptObject * intInfo 

 
Pointer to an object containing interrupt information 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid dspId  or dspObj  specified 

DSP_EFAIL DSP_Setup ()  was not called before calling this 

function 

Comments 

None. 

Constraints 

DSP_Setup ()  must be called before calling this function. 

See Also 
DspObject 
InterruptObject 
DSP_EnableInterrupt 
DSP_Interrupt 
DSP_ClearInterrupt 

11.3.9 DSP_Interrupt 

This function sends the specified interrupt to the DSP. 

Syntax 
DSP_STATUS DSP_Interrupt (ProcessorId        dspId,   
                          DspObject *        dspObj ,  



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 81 of 93  Version 1.20       

                          InterruptObject *  intObj , 
                                Pvoid              arg) ; 

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP 

IN InterruptObject * intInfo 

 
Pointer to an interrupt object containing the information regarding the 

interrupt to be sent to the DSP 

IN OPT Pvoid arg 

 
Pointer to a value to send with the interrupt. 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid dspId  or dspObj  specified 

DSP_EFAIL DSP_Setup ()  was not called before calling this 

function 

Comments 

None. 

Constraints 

DSP_Setup ()  must be called before calling this function. 

See Also 
DspObject 
InterruptObject 
DSP_EnableInterrupt 
DSP_DisableInterrupt 
DSP_ClearInterrupt 

11.3.10 DSP_ClearInterrupt 

This function clears an interrupt received from the DSP side on to the GPP side. 

Syntax 
DSP_STATUS DSP_ClearInterrupt (ProcessorId        d spId, 
                               DspObject *        d spObj, 

 InterruptObject *  intObj) ; 
       Pvoid              retVal) ; 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 82 of 93  Version 1.20       

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP 

IN InterruptObject * intInfo 

 
Pointer to an interrupt object containing the information regarding the 

interrupt to be sent to the DSP 

OUT Pvoid retVal 

 
Interrupt value present before clearing the interrupt 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid dspId  or dspObj  specified 

DSP_EFAIL DSP_Setup ()  was not called before calling this 

function 

Comments 

None. 

Constraints 

DSP_Setup ()  must be called before calling this function. 

See Also 
DspObject 
InterruptObject 
DSP_EnableInterrupt 
DSP_DisableInterrupt 
DSP_Interrupt 

11.3.11 DSP_Read 

This function reads data from the DSP memory space. 

Syntax 
DSP_STATUS DSP_Read (ProcessorId  dspId, 
                     DspObject *  dspObj, 
                     Uint32       dspAddr, 
                     Endianism    endianInfo, 
                     Uint32 *     numBytes, 
                     Uint8 *      buffer) ; 

Arguments 

IN ProcessorId dspId 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 83 of 93  Version 1.20       

 
Identifier for the DSP 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP 

IN Uint32 dspAddr 

 
Address to read 

IN Endianism endianInfo 

 
Specifies the memory endianism of the target memory 

OUT Uint32 * numBytes 

 
IN/OUT argument to specify the number of bytes to read and upon 

return contain the actual number of bytes read 

OUT Uint8 * buffer 

 
Buffer to hold the read data 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid dspId  or dspObj  specified 

DSP_EFAIL DSP_Setup ()  was not called before calling this 

function 

Comments 

This function performs the endianism conversion required 

Constraints 

DSP_Setup ()  must be called before calling this function. 

See Also 
DspObject 
DSP_Write 

11.3.12 DSP_Write 

This function writes data into the DSP memory space. 

Syntax 
DSP_STATUS DSP_Write (ProcessorId dspId, 
                      DspObject * dspObj, 
                      Uint32      dspAddr, 
                      Endianism   endianInfo, 
                      Uint32      numBytes, 
                      Uint8 *     buffer) ; 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 84 of 93  Version 1.20       

Arguments 

IN ProcessorId dspId 

 
Identifier for the DSP 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP 

IN Uint32 dspAddr 

 
Address to write the data 

IN Endianism endianInfo 

 
Specifies the memory endianism of the target memory 

IN Uint32  numBytes 

 
Number of bytes to write 

IN Uint8 * buffer 

 
Buffer containing the data to write 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid dspId  or dspObj  specified 

DSP_EFAIL DSP_Setup ()  was not called before calling this 

function 

Comments 

This function performs the necessary endianism conversion on the data before 

writing it to the target memory. 

Constraints 

DSP_Setup ()  must be called before calling this function. 

See Also 
DspObject 
DSP_Write 

11.3.13 DSP_Control 

Hook for performing device dependent control operation. 

Syntax 
DSP_STATUS DSP_Control (IN  ProcessorId dspId, 
                        IN  DspObject * dspObj, 
                        IN  Int32       cmd, 
                        OPT Pvoid       arg) ; 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 85 of 93  Version 1.20       

Arguments 

IN ProcessorId dspId 

 
Processor Id 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP. 

IN Int32 cmd 

 
Command id. 

IN Pvoid Arg 

 
Optional argument for the specified command. 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid dspId  or dspObj  specified 

Comments 

This function performs the necessary endianism conversion on the data before 

writing it to the target memory. 

Constraints 

DSP_Setup ()  must be called before calling this function. 

See Also 
DspObject 
DSP_Write 

11.3.14 DSP_Instrument 

Gets the instrumentation information related to the specified DSP object. 

Syntax 
DSP_STATUS DSP_Instrument (DspObject * dspObj, DspS tats * retVal) ; 

Arguments 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP. 

OUT DspStats * retVal 

 
Placeholder to return the instrumentation information. 

Return Values 

DSP_SOK Operation completed successfully 

DSP_EINVALIDARG Invalid argument(s). 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 86 of 93  Version 1.20       

Comments 

This function is defined only if profiling is enabled within DSPLINK. 

Constraints 

DSP_Setup ()  must be called before calling this function. 

See Also 
None. 

11.3.15 DSP_Debug 

Prints debug information of the specified DSP object. 

Syntax 
Void DSP_Debug (IN DspObject * dspObj) ; 

Arguments 

IN DspObject * dspObj 

 
Pointer to object containing context information for DSP. 

Return Values 

None. 

Comments 

This function is defined only for debug build. 

Constraints 

None.  

See Also 
None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 87 of 93  Version 1.20       

12 HAL 
The Hardware Abstraction Layer provides a low-level layer for access and control of 

hardware specific modules to the sub-components within the DSPLINK link driver 

layer. 

The services provided by the HAL subcomponent are used by the DSP sub-

component. 

12.1 Dependencies 

12.1.1 Subordinates 

None. 

12.2 Description 
The implementation of the hardware abstraction layer is specific to the target 

platform. The hardware modules to be abstracted vary based on the platform 

supported by DSPLINK. 

This document does not provide details for a specific hardware abstraction layer for 

any platform. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 88 of 93  Version 1.20       

13 IPS 
The Inter-processor signaling (IPS ) subcomponent component provides basic 
services required by the data driver and Message Queue Transport components for 

transferring data buffers and messages between the processors. It abstracts the 

platform-specific details by providing standard services to the upper layer. 

13.1 Dependencies 

13.1.1 Subordinates 

None. 

13.2 Description 
The IPS  subcomponent provides the upper layers with the service to register an 
event from the GPP, about which is wishes to be notified. On receiving the event 

from the GPP, the IPS subcomponent provides information about the event to the 

registered subcomponent. 

This component uses the services provided on the hardware platform. It provides 

APIs, which are used by upper layers to establish communication amongst peers at 

that level. 

The design of IPS components is specific to the physical link for the target platform. 

This document does not provide details for a specific IPS component for any 

platform. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 89 of 93  Version 1.20       

13.3 Typedefs and Structures 

13.3.1 FnIpsInitialize 

This type defines the signature of function that initializes an Inter Processor 

Signaling component. 

Definition 
typedef DSP_STATUS (*FnIpsInitialize) (IN Processor Id dspId, 
                                       IN Uint32      ipsId) ; 

Comments 

The function for initialization of the IPS is configured within the DSPLINK static 

configuration, and called by the DRV component during its initialization. 

Constraints 

None. 

See Also 
FnIpsFinalize 

13.3.2 FnIpsFinalize 

This type defines the signature of function that finalizes an Inter Processor Signaling 

component. 

Definition 
typedef DSP_STATUS (*FnIpsFinalize) (IN ProcessorId  dspId, 
                                     IN Uint32      ipsId) ; 

Comments 

The function for finalization of the IPS is configured within the DSPLINK static 

configuration, and called by the DRV component during its finalization. 

Constraints 

None. 

See Also 
FnIpsInitialize 

13.3.3 IpsObject 

This structure defines the Inter Processor Signaling object. 

Definition 
struct IpsObject_tag { 
#if defined (DDSP_DEBUG) 
    Char8           ipsName [DSP_MAX_STRLEN] ; 
    Char8           abbr [DSP_MAX_STRLEN]    ; 
#endif /* if defined (DDSP_DEBUG) */ 
    FnIpsInitialize initialize      ; 
    FnIpsFinalize   finalize        ; 
#if defined (CHNL_COMPONENT) 
    Uint32          irpQueueLength  ; 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 90 of 93  Version 1.20       

    Uint32          irpSize         ; 
#endif /* if defined (CHNL_COMPONENT) */ 
    Uint32          memEntry        ; 
    Uint32          size            ; 
    Uint32          arg1            ; 
    Uint32          arg2            ; 
} ; 
 
typedef struct IpsObject_tag IpsObject ; 

Fields 

ipsName Name of the IPS 

abbr Abbreviation of the IPS name. 

initialize Initialize function for the IPS. 

finalize Finalize function for the IPS. 

irpQueueLength Length of the IRP queue within the IPS. 

irpSize Size of the I/O Request Packet used by the IPS. 

memEntry ID of the LINK mem information entry in the DSP memTable 

size Size of memory area configured for the IPS component. 

arg1 First argument specific to the IPS. 

arg2 Second argument specific to the IPS. 

Comments 

None. 

See Also 
None. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 91 of 93  Version 1.20       

14 MQT 
This subcomponent provides functions to transfer messages between the GPP and a 

specific DSP over a physical link. It provides functionality to locate & release the 

remote message queues on the DSP, and transfer messages between the GPP and 

DSP. 

14.1 Dependencies 

14.1.1 Subordinates 

The IPS subcomponent is used by this subcomponent for interacting with the remote 

processor. 

14.2 Description 
The MQT sub-component defines the abstract interface that the Message Queue 

Transports (MQTs) for specific platforms must implement. There may be multiple 

MQT implementations for a single platform, based on the physical connection used 

for connecting the two processors. However, only a single MQT each can be 

configured at a time for communication between the GPP and a DSP. 

The MQT plugs into the LDRV_MSGQ component and provides services to send & 
receive messages to & from the remote processor, and locate & release message 

queues on the remote processor. 

Usage of function pointer interface ensures that multiple MQTs can be easily plugged 

into the system. 

The standard interface for the MQT component is provided within the Messaging 

Design document [Ref. 2]. 

The design of MQT components is specific to the physical link for the target platform. 

This document does not provide details for a specific MQT component for any 

platform. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 92 of 93  Version 1.20       

15 LDRV_POOL 
The POOL component provides services to allocate and free data buffers and 
messages, which can be transferred between the processors. 

15.1 Dependencies 

15.1.1 Subordinates 

None. 

15.2 Description 
The LDRV_POOL subcomponent defines the abstract interface that the different POOLs 
must implement. It provides the connection between the PMGR_POOL subcomponent 
and the different pool implementations.  

This sub-component also contains implementations of specific pools for the different 

types of data and message transfer supported by the system. 

Usage of function pointer interface ensures that multiple POOLs can be easily 

plugged into the system. 

The configuration of pool objects in the system is maintained by this component. 

The standard interface for the LDRV_POOL component is provided within the POOL 

Design document [Ref. 3]. 

The design of example POOL components based on fixed-size buffers is available 

within the Buffer Pools Design document [Ref. 4]. This document does not provide 

details for a specific POOL implementation. 



 

 

DSP/BIOS™ LINK 

LNK 012 DES 

LINK DRIVER 

Page 93 of 93  Version 1.20       

16 DSP-side 
The DSP-side of DSPLINK provides functionality for transferring data buffers and 

messages between the GPP and DSP. 

16.1 Dependencies 

16.1.1 Subordinates 

None. 

16.2 Description 
The DSP-side of DSPLINK is specific to the platform being supported.  

The design of the DSP-side components is specific to the physical link for the target 

platform. This document does not provide details for the DSP-side design for any 

platform. The details of DSP-side design are available in the design document for the 

specific link driver. For example, design details of the DSP-side for the Zero Copy 

Link Driver are available in the Zero Copy Link Driver design document [Ref. 5]. 

 


	Introduction
	Purpose and Scope
	Terms and Abbreviations
	References
	Overview

	Requirements
	Assumptions
	High Level Design
	Overview
	GPP side
	Component interaction
	Details

	DSP side
	Component interaction
	Details


	LDRV
	Dependencies
	Subordinates
	Preconditions

	Description
	Typedefs and Data Structures
	LDRVObject

	API Definition
	LDRV_Initialize
	LDRV_Finalize


	LDRV_PROC
	Dependencies
	Subordinates
	Preconditions

	Description
	API Definition
	LDRV_PROC_Initialize
	LDRV_PROC_Finalize
	LDRV_PROC_Start
	LDRV_PROC_Stop
	LDRV_PROC_Idle
	LDRV_PROC_Read
	LDRV_PROC_Write
	LDRV_PROC_GetState
	LDRV_PROC_SetState
	LDRV_PROC_Control
	LDRV_PROC_Debug
	LDRV_PROC_Instrument


	LDRV_CHNL
	Dependencies
	Subordinates
	Preconditions

	Description
	Constants and Enumerations
	IO Completion State flags.
	ChannelState
	IOState

	Typedefs and Data Structures
	LDRVChnlObject
	LDRVChnlIRP
	LDRVChnlIOInfo

	API Definition
	LDRV_CHNL_Initialize
	LDRV_CHNL_Finalize
	LDRV_CHNL_Open
	LDRV_CHNL_Close
	LDRV_CHNL_AllocateBuffer
	LDRV_CHNL_FreeBuffer
	LDRV_CHNL_AddIORequest
	LDRV_CHNL_GetIOCompletion
	LDRV_CHNL_AddIOCompletion
	LDRV_CHNL_Idle
	LDRV_CHNL_Control
	LDRV_CHNL_GetChannelMode
	LDRV_CHNL_GetChannelState
	LDRV_CHNL_SetChannelState
	LDRV_CHNL_GetChannelEndianism
	LDRV_CHNL_HasMoreChirps
	LDRV_CHNL_NextRequestChirp
	LDRV_CHNL_GetRequestChirp
	LDRV_CHNL_Debug
	LDRV_CHNL_Instrument


	LDRV_MSGQ
	Dependencies
	Subordinates

	Description

	LDRV_DATA
	Dependencies
	Subordinates

	Description
	API Definition
	LDRV_DATA_Initialize
	LDRV_DATA_Finalize
	LDRV_DATA_OpenChannel
	LDRV_DATA_CloseChannel
	LDRV_DATA_AllocateBuffer
	LDRV_CHNL_FreeBuffer
	LDRV_DATA_Request
	LDRV_DATA_Cancel
	LDRV_DATA_Cancel
	LDRV_DATA_Debug


	LDRV_DRV
	Dependencies
	Subordinates

	Description
	Constants and Enumerations
	DrvHandshake

	Typedefs and Structures
	LinkInterface
	LinkObject

	API Definition
	LDRV_DRV_Initialize
	LDRV_DRV_Finalize
	LDRV_DRV_Handshake
	LDRV_DATA_Debug


	DSP
	Description
	Typedefs and Structures
	LinkMemInfo
	DspObject
	DspInterface

	API Definition
	DSP_Setup
	DSP_Initialize
	DSP_Finalize
	DSP_Start
	DSP_Stop
	DSP_Idle
	DSP_EnableInterrupt
	DSP_DisableInterrupt
	DSP_Interrupt
	DSP_ClearInterrupt
	DSP_Read
	DSP_Write
	DSP_Control
	DSP_Instrument
	DSP_Debug


	HAL
	Dependencies
	Subordinates

	Description

	IPS
	Dependencies
	Subordinates

	Description
	Typedefs and Structures
	FnIpsInitialize
	FnIpsFinalize
	IpsObject


	MQT
	Dependencies
	Subordinates

	Description

	LDRV_POOL
	Dependencies
	Subordinates

	Description

	DSP-side
	Dependencies
	Subordinates

	Description


