INSTALLATION GUIDE DSP/BIOS™ LINK OMAP2530 EVM LNK 172 USR Version 1.65 This page has been intentionally left blank. Version 1.65 Page 2 of 21 ### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright ©. 2003, Texas Instruments Incorporated Version 1.65 Page 3 of 21 This page has been intentionally left blank. Version 1.65 Page 4 of 21 Page 5 of 21 # **TABLE OF CONTENTS** | Α. | INTRODUCTION | 9 | | |----|--|----------------|--| | 1 | Purpose | 9 | | | 2 | Text Conventions | 9 | | | 3 | Terms & Abbreviations | 9 | | | 4 | Dependencies | 10 | | | 5 | References | 10 | | | B. | INSTALLATION | | | | 6 | Basic Installation | 11 | | | 7 | Creating development workspace | 13 | | | 8 | Setting up Linux Workstation | 16
17
18 | | | 9 | Configuring CCS9.1 OMAP2530 | | | | C. | WORKING ON TARGET PLATFORM | 18 | | | 10 | OMAP2530 | 18 | | | 11 | Running the sample applications 11.1 Copying files to target file system 11.2 Loading the kernel module: dsplinkk.ko 11.3 Invoking the application 11.4 Unloading the kernel module: dsplinkk.ko | 18
18
18 | | | D | ADDITIONAL INFORMATION | 18 | | # **TABLE OF FIGURES** | Figure 1. | Expected directory structure on development host | 14 | |-----------|---|----| | Figure 2. | Expected directory structure on the Linux workstation | 15 | Version 1.65 Page 6 of 21 ### A. INTRODUCTION # 1 Purpose $\mathsf{DSP/BIOS^{TM}}$ LINK is foundation software for the inter-processor communication across the GPP-DSP boundary. It provides a generic API that abstracts the characteristics of the physical link connecting GPP and DSP from the applications. It eliminates the need for customers to develop such link from scratch and allows them to focus more on application development. This document provides the users necessary information to install DSP/BIOS $^{\text{TM}}$ LINK on the development host. This document corresponds to the product release Version 1.65. ### 2 Text Conventions | 0 | This bullet indicates important information. | |-----------------|---| | | Please read such text carefully. | | q | This bullet indicates additional information. | | [arg1 arg2] | In context of the commands, contents enclosed in square brackets are the optional arguments to the command. | | | Different values of these arguments are separated by " \mid ". | ## 3 Terms & Abbreviations | CCS | Code Composer Studio | |---------|---| | IPC | Inter Processor Communication | | GPP | General Purpose e.g. ARM | | DSP | Digital Signal Processor e.g. TMS320C5510 | | CGTools | Code Gen Tools, e.g. Compiler, Linker, Archiver | # 4 Dependencies - 1. Mistral CD (Release version 1.1, Date 21st December 2007). - Mistral OMAP2530 EVM Additional Software Development (Revision 3.1, Date 30 June 2008 – Tar ball MS_TI_OMAP2530_ADDL_DRV_Rel_3_1.tar.bz2) ## 5 References | 1. | OMAP2530EVM_SW_U
M.pdf | Software User Manual | |----|------------------------------------|----------------------| | 2. | OMAP2530EVM_HW_U
M.pdf | Hardware User Manual | | 3. | MS_TI_OMAP2530_AD
DL_DRV_UM.pdf | User's Guide | Version 1.65 Page 7 of 21 | 4. | Various | Documentation | included | with | the | OMAP2530 | |----|---------|---------------|----------|------|-----|----------| | | | hardware. | | | | | Version 1.65 Page 8 of 21 ### B. INSTALLATION ## 6 Basic Installation The DSP/BIOS™ LINK is made available as a tar.gz file. To install the product follow the steps below: - 1. Unzip and untar the file dsplink_<version>.tar.gz. - O This document assumes the install path to be in the user home directory if working on a Linux PC. This path will be used in remainder of this document. - O This document assumes the install path to be **L:\dsplink** if working on a Windows PC. This path will be used in remainder of this document. - O If the installation was done at different location, make appropriate changes to the commands listed in the document. It is advisable to archive the released sources in a configuration management system. This will help in merging: - § The updates delivered in the newer releases of DSP/BIOS™ LINK. - § The changes to the product, if any, done by the users. # 6.1 Installing Standalone DSP/BIOS™ and CGTools For compilation of DSP-side sources and applications for OMAP2530, the CGTools version 6.0.18 can be used. This release has been validated with DSP/BIOSTM version 5.32.04. The standalone DSP/BIOS™ and standalone CGTools are available for Linux platform as well. Refer to the URL mentioned below for getting the distribution of DSP/BIOS™ and the associated installation instructions. https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html The directory structure specified in Figure 1 is expected by the build system of DSP/BIOS™ LINK. If you install the tools to a different directory, you will also need to modify the make system and the scripts contained in the release package. You may need to copy the directories to create the structure expected for compiling sources. Refer to section on "Understanding The MAKE System" in the User Guide for details. ## 6.2 Installing GNU make 3.81 For compilation of DSPLINK sources the GNU make 3.81 can be used. Download the make 3.81 from the URL http://ftp.gnu.org/pub/gnu/make/make-3.81.tar.gz. The following are the installation steps required to install make on the development host machine. 1. Copy and untar make-3.81.tar.gz to your home directory. Version 1.65 Page 9 of 21 - 2. cd to make-3.81 directory - 3. Type './configure' and press enter to configure the package for your system. Running `configure' takes awhile. By default, make package's files will be installed in `/usr/local/bin', `/usr/local/man', etc. You can specify an installation prefix other than `/usr/local' by giving `configure' the option `-- prefix=PREFIX'. For example, To install make at /usr/local/bin run the configure command like below. . /configure --prefix=/usr/local. To install make at /usr/bin run the configure command like below. ./configure --prefix=/usr - 4. Type `make' and press enter to compile the package. - 5. Optionally, type `./make check' and press enter to run any self-tests that come with the package. - 6. Type `make install' and press enter to install the programs and any data files and documentation. - 7. For additional details refer to INSTALL file located under make-3.81 directory. # 7 Creating development workspace This document and the scripts included in the release assume the following directory structure on your development host: Version 1.65 Page 10 of 21 **Figure 1.** Expected directory structure on development host - O For Linux, the build system shipped with DSP/BIOS™ LINK assumes that the standalone DSP/BIOS™ is installed in the /opt/'ti-tools/' directory on the <ROOT-DRIVE> and CGTools is installed in the 'ti-tools/c6000' directory on the <ROOT-DRIVE>. - O For the Windows development host, the build system shipped with DSP/BIOSTM LINK assumes that the standalone DSP/BIOSTM is installed in the 'ti-tools\' directory on the <ROOT-DRIVE> and CGTools is installed in the 'ti-tools\c6000\' directory on the <ROOT-DRIVE>. - O To support multiple installations of DSP/BIOS with a single DSP/BIOS™ LINK DSP-side distribution file, a standard /opt/ti-tools/bios on Linux and c:\ti-tools\bios directory is used for the BIOS installation. This can be a soft link or copy to the actual DSP/BIOS installation directory. Version 1.65 Page 11 of 21 ## 8 Setting up Linux Workstation The description in this section is based on the following assumptions: - 1. The workstation is running on Redhat Linux version 9.0 - 2. Services telnetd, nfsd, ftpd are configured on this workstation. - 3. The workstation is assigned a fixed IP address. - O The release package has been tested on RedHat Linux version 9.0. You may be able to build on a different version depending on the compatibility of the build tools in your version with version 9.0. - O A fixed IP address is preferred, as the IP address needs to be specified while booting the target board. This allows the boot loader configuration to be saved in flash. This document and the scripts included in the release assume the following directory structure in your home directory on the Linux workstation: **Figure 2.** Expected directory structure on the Linux workstation In this diagram: - \$ <user> represents the actual user name - § <distribution > represents the actual distribution of Linux being used. ### 8.1 Building the kernel ### 8.1.1 Tool chain 1. The tool chain can be downloaded from: http://www.codesourcery.com/gnu_toolchains/arm/releases/2007q1-21 tar -xjvf arm-2007q1-21-arm-none-linux-gnueabi-i686-pc-linuxqnu.tar.bz2 2. Add the tool chain directory, where it was un - tarred, into your path. Add the path of the mkimage utility into the path as well. The mkimage comes with MISTRAL CD. ``` PATH=$PATH:${HOME}/omap2530/arm-2007q1/bin PATH=$PATH:$(MSOSK 2430)/LinuxBSP/developer/utils/utilities/util ``` Version 1.65 Page 12 of 21 s ### 8.1.2 Kernel MS_TI_OMAP2530_ADDL_DRV_Rel_3_1.tar.bz2 contains complete software package or OMAP2530 EVM Additional Software development project. It contains patches for the Linux Kernel 2.6.23 and images for the Boot Loader, NFS File system. 1. The kernel can be downloaded from: http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.23.tar.bz2 tar -xvfj linux-2.6.23.tar.bz2 2. Apply the patches: Muru patch: This provides the basic support for OMAP architecture. Integrated patch: This patch includes all the changes that have gone in the earlier releases of the OMAP2530EVM. If the user does not have any of the previous releases for OMAP2530EVM, then this patch needs to be used. 3. Change to the kernel folder and apply the Muru Patch on top of linux-2.6.23 sources bzcat ../patches/muru_patch/patch-2.6.23-omap1.bz2 | patch -p1 4. Apply the Integrated patch after muru patch bzcat ../patches/integrated_patch/ms010_integrated_release_3.1.patch.b z2 | patch -p1 5. Set the default configuration using omap_2530evm_defconfig. It is present at: ~/linux-2.6.23/arch/arm/configs/omap 2530evm defconfig make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabiomap_2530evm_defconfig 6. Run the menuconfig make ARCH=arm CROSS COMPILE=arm-none-linux-qnueabi- menuconfig 7. Compile the kernel. make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- uImage 8. Build the modules using command make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- modules The ulmage file generated is located at ~/linux-2.6.23/arch/arm/boot/ directory inside the linux kernel. Use this image to boot the kernel. Version 1.65 Page 13 of 21 #### 8.2 U-Boot boot-loader Please refer the MS_TI_OMAP2530_ADDL_DRV_Rel_3_1/documents to load the uboot.bin and x-loader to the target. MS_TI_OMAP2530_ADDL_DRV_Rel_3_1.tar.bz2 contains patches for the Linux Kernel 2.6.23 and images for the Boot Loader, NFS File system. ``` MS_TI_OMAP2530_ADDL_DRV_Rel_3_1/binaries ``` DownloadUtil.exe and PumpKIN.exe are present at OMAP_EVM\OMAP2EVM\Windows from the MISTRAL CD. ### 8.3 Enable TFTP for downloading the kernel image to target U-boot can be configured to download the kernel onto the target by various mechanisms: - a. TFTP - b. Serial Port This section configures the Linux development host as a TFTP server. Modify the 'xinet.d/tftp' file to enable TFTP: 1. Make the following changes: ``` disable = no server_args = -s /tftpboot ``` 2. Restart the network service ``` $ /etc/init.d/xinetd restart ``` O The above configuration assumes that a directory 'tftpboot' has been created at the root '/' directory. The files in this directory are exposed through the TFTP protocol. ## 8.4 Create target file system The target device needs a file system to boot from. The file system can be exported to the target through NFS. #### 8.4.1 Exporting target file system through NFS First mount the NFS. 1. MS_TI_OMAP2530_ADDL_DRV_Rel_3_1/filesystem/root_file_system contains NFS File system omap2530_rfs.tar.gz. ``` tar zxvf omap2530_rfs.tar.gz ``` - O You need to be 'root' to successfully execute this command. - O The file system can be copied to a different location. In such a case ~/omap2530/target can be a soft link to the actual location. - 3. libpthread libraries required for DSP/BIOS™ LINK are not available by default within the target file system. Copy this from the tool-chain. ``` $ cp ${HOME}/omap2530/arm-2007q1/arm-none-linux- gnueabi/libc/lib/libpthread* ~/omap2530/omap2530_rfs/lib ``` Version 1.65 Page 14 of 21 - O This step is not required if libpthread libraries are available by default in the target file system. - 4. The directory ~/omap2530/omap2530_rfs will be mounted as root directory on the target through NFS. To do so, add the following line to the file /etc/exports. ``` ~/omap2530/omap2530_rfs *(rw,no_root_squash) ``` - O Replace "<~>" in the path above with the actual path of your home directory on the development workstation. - 5. Execute following command to restart the NFS. /etc/init.d/nfs restart # 9 Configuring CCS ### 9.1 OMAP2530 To use CCS for debugging the DSP side application, you will need to configure CCS to use both ARM and DSP with the OMAP2530. Q CCS can attach to only ARM in the beginning. It can attach to the DSP only after the ARM-side application releases it from reset through a call to PROC_Start (). Version 1.65 Page 15 of 21 ## C. WORKING ON TARGET PLATFORM ## 10 OMAP2530 ## 10.1 Configuring Kernel Parameters DSP/BIOSTM LINK requires a few specific arguments to be passed to the Linux kernel during boot up. 2MB of memory is used by DSP/BIOSTM LINK for communication between GPP and DSP, and for DSP external memory. This must be reserved by specifying 2MB less as available for the Linux kernel for its usage. ## 10.2 Configure the DSP/BIOS LINK The build configuration command must be executed to configure DSPLink for the various parameters such as platform, GPP OS, build configuration etc. perl dsplinkcfg.pl --platform=OMAP2530 --nodsp=1 -- dspcfg_0=OMAP2530SHMEM --dspos_0=DSPBIOS5XX --gppos=OMAPLSP -- comps=ponslrmc Version 1.65 Page 16 of 21 ## 11 Running the sample applications Seven sample applications are provided with DSP/BIOS $^{\text{TM}}$ LINK for the OMAP2530 platform. All the sample applications are described in detail in the user guide. This section describes the way to execute the sample applications. The specific instructions shown below refer to the message sample. However, similar instructions can be used for the other applications also. The steps for execution of the samples are given below for execution with Linux running on the GPP. ### 11.1 Copying files to target file system The generated binaries on the GPP side and DSP side and the data files must be copied to the target directory. The commands below demonstrate this for the 'message' sample application as reference. Appropriate sample directory name must be used for other sample applications. **GPP Side** For executing the DEBUG build, follow the steps below to copy the relevant binaries: - \$ cd ~/dsplink - \$ cp gpp/export/BIN/Linux/OMAP/2530/DEBUG/messagegpp - ../omap2530/target_nfs/opt/dsplink/samples/message - \$ cp gpp/export/BIN/Linux/OMAP/2530/DEBUG/dsplinkk.ko - ../omap2530/target_nfs/opt/dsplink/ For executing the RELEASE build, follow the steps below to copy the relevant binaries: - \$ cd ~/dsplink - \$ cp gpp/export/BIN/Linux/OMAP/2530/RELEASE/messagegpp - ../omap2530/target_nfs/opt/dsplink/samples/message - \$ cp gpp/export/BIN/Linux/OMAP/2530/RELEASE/dsplinkk.ko - ../omap2530/target_nfs/opt/dsplink/ - O Enter the commands shown above in single line. - O By default Ring_IO sample runs in multithread mode. To run the sample in multi process mode, define RINGIO_MULTI_PROCESS flag in \$DSPLINK\gpp\src\samples\ring_io\Linux\COMPONENT file and build the sample. DSP Side The DSP binaries can be built either on the Linux workstation or the Windows host. After the binaries have been built, they must be copied into the target file system. If the binaries are generated on Windows PC, any FTP client can be used for transferring these to the target file system. For executing the DEBUG build: Copy the following file into the directory ~/omap2530/target_nfs/opt/dsplink/samples/message: dsplink/dsp/export/BIN/DspBios/OMAP/2530/DEBUG/message.out Version 1.65 Page 17 of 21 For executing the RELEASE build: 1. Copy the following file into the directory ~/omap2530/target_nfs/opt/dsplink/samples/message: dsplink/dsp/export/BIN/DspBios/OMAP/2530/RELEASE/message.out ### 11.2 Loading the kernel module: dsplinkk.ko To load the device driver, login as 'root' and enter following commands on the command prompt. \$ cd /opt/dsplink \$ insmod dsplinkk.ko \$ mknod /dev/dsplink c 230 0 This action generates a warning indicating that the kernel module does not contain the GPL license. This warning can be safely ignored. ### 11.3 Invoking the application #### 11.3.1 Loop sample To invoke the application enter the following commands: \$ cd /opt/dsplink/samples/loop \$./loopgpp loop.out <buffersize> <iterations> processor identifier> - The sample can be executed for infinite iterations by specifying the number of iterations as 0. - Argument processor identifier is optional, if it not provided assumed as default processor (zero). e.g. \$./loopgpp loop.out 1024 10000 #### 11.3.2 Message sample - \$ cd /opt/dsplink/samples/message - The sample can be executed for infinite iterations by specifying the number of iterations as 0. - Argument processor identifier is optional, if it not provided assumed as default processor (zero). e.g. \$./messagegpp message.out 10000 ### 11.3.3 Scale sample - \$ cd /opt/dsplink/samples/scale Version 1.65 Page 18 of 21 - The sample can be executed for infinite iterations by specifying the number of iterations as 0. - Argument processor identifier is optional, if it not provided assumed as default processor (zero). e.g. \$./scalegpp scale.out 1024 10000 ### 11.3.4 Ring_IO sample - \$ cd /opt/dsplink/samples/ring_io - The sample creates two RingIOs with the data buffer size equal to RingIO Data Buffer Size specified through the command line arguments. The minimum value that can be specified is 1024 Bytes. The maximum value depends on the size of the memory configured for DSPLINK. - The RingIO Data buffer size can be given between 1k bytes to 200k bytes with the Default memory configuration provided with the link. - The sample can be executed infinitely by specifying Number of Bytes to transfer as zero. - Argument processor identifier is optional, if it not provided assumed as default processor (zero). e.g. \$./ringiogpp ringio.out 1024 10240 #### 11.3.5 Readwrite sample - \$ cd /opt/dsplink/samples/readwrite - \$./readwritegpp readwrite.out <DSP address> <buffer size> <iterations> cessor identifier> - The sample can be executed for infinite iterations by specifying the number of iterations as 0. - Argument processor identifier is optional, if it not provided assumed as default processor (zero). e.g. - \$./readwritegpp readwrite.out 2213478400 1024 10000 - \$./readwritegpp readwrite.out 276824064 1024 10000 - \$./readwritegpp readwrite.out 284180480 1024 10000 ### 11.3.6 MPCSXFER sample - \$ cd /opt/dsplink/samples/mpcsxfer - \$./mpcsxfergpp mpcsxfer.out <buffer size> <iterations> identifier> Version 1.65 Page 19 of 21 - The sample can be executed for infinite iterations by specifying the number of iterations as 0 - Argument processor identifier is optional, if it not provided assumed as default processor (zero). e.g. \$./mpcsxfergpp mpcsxfer.out 1024 10000 ### 11.3.7 MP_LIST sample - \$ cd /opt/dsplink/samples/mp_list - $\$./mplistgpp mplist.out <iterations> <number of elements> cessor identifier> - Argument processor identifier is optional, if it not provided assumed as default processor (zero). e.g. \$./mplistgpp mplist.out 1000 20 #### 11.3.8 MESSAGE MULTI sample - \$ cd /opt/dsplink/samples/message_multi - Argument processor identifier is optional, if it not provided assumed as default processor (zero). e.g. $\$ for i in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16; do ./messagemultigpp messagemulti.out 10000 $\$ & done ## 11.4 Unloading the kernel module: dsplinkk.ko To unload the device driver, enter following commands on the command prompt. \$ cd /opt/dsplink \$ rmmod dsplinkk Version 1.65 Page 20 of 21 # D. ADDITIONAL INFORMATION None. Version 1.65 Page 21 of 21